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Summary
In the thesis several experiments using two room-temperature spin-polarized
atomic ensembles are described.

Two-mode squeezed and entangled states of light are stored in a memory
consisting of the two separate atomic ensembles. The fidelity of the storage sur-
passes a classical benchmark, demonstrating that our memory is a true quantum
memory which is capable of preserving entanglement.

The atomic system is used as a sensor for radio-frequency magnetic fields.
The magnetometer has a best sensitivity in the sub-femtoTesla/

√
Hz range and is

mainly limited by the quantum projection noise of the atoms. Using entanglement
between the ensembles, the signal to noise ratio of the magnetometer is improved.

Long-lived entanglement between the two atomic ensembles is generated using
dissipation as the entangling mechanism. By combining the dissipative dynamics
with continuous measurements, the atomic ensembles can be maintained in an
entangled steady state.

The atomic ensembles are used as a source for two-mode squeezed and en-
tangled light. The squeezed light is generated in a single temporal mode and is
naturally compatible with atomic systems based on the same (cesium) atom.

Resumé
I afhandlingen bliver adskillige eksperimenter diskuteret. Til forsøgene bliver
der benyttet to ensembler af atomer, som er på gasform og bliver opbevaret i
glasbeholdere ved stuetemperatur.

Par af sammenfiltrede lystilstande bliver overført til en kvantehukommelse
bestående af de to ensembler. Overførslen af tilstandene sker med en større præ-
cision end hvad er muligt med en klassisk hukommelse. Vores kvantehukommelse
er dermed i stand til at gemme den ene halvdel af en sammenfiltret tilstand, og
samtidig bevare sammenfiltringen med den anden halvdel.

Det atomare system bliver benyttet til at måle små radio-frekvens magnetfel-
ter. Der opnås en sensitivitet til magnetiske felter i sub-femtoTesla/

√
Hz området.

Målingerne er hovedsageligt begrænset af kvante støj fra atomerne. Ved hjælp af
sammenfiltrede atomer reduceres denne støj, således at signal til støj forholdet i
målingen af magnetfeltet forbedres.

Ved hjælp af dissipative processer genereres sammenfiltrede atomare tilstande,
som kan opretholdes i lang tid. Ved yderligere brug af kontinuerte målinger
opretholdes atomerne i en stationær sammenfiltret tilstand.

Der genereres sammenfiltret lys ved hjælp at de to atomare ensembler. Lyset
bliver udsendt i én enkelt tidslig mode og er kompatibelt med atomare systemer,
som er opbygget af den samme slags atomer der er benyttet til at generere lyset.
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Short abstract
In the thesis several experiments are described. Two-mode squeezed and entan-
gled states of light are stored in a quantum memory consisting of two separate
atomic ensembles. The atomic system is also used as a sensor for magnetic fields.
The magnetometer has a high sensitivity mainly limited by quantum projection
noise. Entanglement-assisted magnetometry is demonstrated. Long-lived atomic
entanglement is generated by dissipation. By combining dissipation with contin-
uous measurements, the atoms can be maintained in an entangled steady state.
The atomic ensembles are used as a source for two-mode squeezed and entangled
light. The squeezed light is generated in a single temporal mode and is naturally
compatible with atomic systems based on the same (cesium) atom.
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Chapter 1

Introduction

1.1 Entanglement

Entanglement is the common theme for the experiments presented in this thesis.
EPR entanglement was first introduced by Einstein, Podolsky and Rosen in 1935
[8], and can be described as non-local non-classical correlations between two
subsystems. In the original paper entanglement is described in terms of position
and momentum operators of two particles which are correlated in the following
way: p̂1 + p̂2 = 0 and x̂1 − x̂2 = x0. Instead of the continuous position and
momentum operators one can consider discrete variables such as the spin-up and
spin-down of a spin-1/2 particle. An example of an entangled state is the singlet
state |↑〉1 |↓〉2 −|↓〉1 |↑〉2, which describes the spins of two spin-1/2 particles. One
imagines that the two particles interact in some way, such that the singlet state
is produced. Then the two particles travel to two different locations. According
to Quantum Mechanics, if one performs a measurement of the spin of particle
one and obtain the result |↑〉1, the spin of the second particle is projected onto
the state |↓〉2. The measurement of particle one therefore changes the state of
particle two, even though the particles are at different locations. This was a
paradox for Einstein, Podolsky and Rosen, since they assumed that the reality
should be described by a local theory. They therefore concluded that Quantum
Mechanics is an incomplete theory. One can think of alternative hidden variables
theories which can be used to explain entanglement. The predictions of local
hidden variable theories and Quantum Mechanics differs, and the theories can
be tested using Bell inequalities [9]. Now we of course believe that Quantum
Mechanics is the correct description of the reality, and we use entanglement to
describe non-local and non-classical correlations.

1



1.2 Quantum Information

One can use small quantum systems to transmit, store and process information.
A piece of information is typically described in terms of a bit, which can take
the value 0 or 1. Quantum Mechanics allows a two-level system to be in a
superposition of two states, which leads to the concept of quantum bits (qubits).
A qubit can be in the states 0 and 1 simultaneously, and the general qubit can
be written as |Ψ〉 = a |0〉 + b |1〉, where a and b are two complex numbers which
satisfy |a|2 + |b|2 = 1. An important field in Quantum Information is Quantum
Cryptography, where qubits are used to send secure information using for instance
the BB84 protocol [10]. The qubits can also be used as building blocks for a
quantum computer. The Hilbert space of N two-level systems has the dimension
2N which grows exponentially with the number of qubits. Simulations of large
quantum systems are therefore impossible on today’s classical computers, since
a classical computer needs (at least) 2N bits to do the simulation. On the other
hand, a future quantum computer would be able to simulate N two-level systems
using only N qubits.

In Quantum Information, light is used as flying qubits for transmitting quan-
tum information, while atomic systems are used as stationary qubits for storing
quantum information. A memory for quantum information is therefore an im-
portant ingredient in a future quantum information network [11]. Due to optical
losses entangled states can not be send directly over long distances. A solution
to the problem is to use entanglement swapping between entangled intermediate
repeater stations consisting of quantum memories [12].

Quantum teleportation [13] is one of the most intriguing possibilities in Quan-
tum Communications. Using quantum teleportation, it is possible to transmit
information from A to B in a way such that the information was never in between
the two parties. This way of transmitting information is appealing. In order to
teleport an unknown state, A and B need to share an entangled state. The cre-
ation and distribution of entanglement is therefore very important in Quantum
Information.

1.3 Quantum Metrology

Quantum Mechanics imposes certain fundamental limits to measurements. These
limits are related to the Heisenberg uncertainty relation. The limits can be sur-
passed only with the use of entanglement. Entanglement has therefore appli-
cations in metrology. One can for instance improve the phase sensitivity of a
Mach-Zender interferometer by using entangled NOON -states [14]. Squeezed
states which has reduced uncertainty in one variable (and increased uncertainty
in the conjugate variable) can also be used to improve measurement sensitivity.
If some parameter is measured using light, the shot noise of light will make the

2



measurement uncertain. Using squeezed light, it is possible to reduce the uncer-
tainty below the shot noise level. Squeezed light is of importance in applications
where very small signals are measured such as in a gravitation wave detector.

When performing a measurement on a quantum system, the system is dis-
turbed by the measurement. This is called the backaction of the measurement.
For instance, in an interferometer (such as a gravitational wave detector) the
measurement of the phase shift can be limited by the radiation pressure from the
light on the mirrors. However, backaction evading measurements can be done by
using Quantum Non-Demolition (QND) techniques, where the backaction noise
is directed into a variable which is conjugate to the measured variable.

Entangled states of atoms can also be used in metrology such as in atomic
clocks where the projection noise of atoms limits the accuracy of time. Such an
entanglement-assisted atomic clock was demonstrated recently in our group [15].

1.4 Cell experiment

The work presented in this thesis is based on earlier work done in the QUAN-
TOP group led by Eugene Polzik. The subgroup of the QUANTOP group I have
worked in is called the "cell experiment". The experiments in the cell experi-
ment are done using one or two room-temperature atomic ensembles of cesium
atoms kept in glass cells, and the experiments have been going on for more than
10 years now. Earlier achievements include entanglement between the ensembles
[16], quantum memory for coherent light states [17] amd quantum teleportation
[18]. Many details regarding our light-atom interface and discussions of the above
mentioned experiments can be found in the recent review [19]. In the cell exper-
iment, continuous variables are used for describing our system (see the book [20]
for an overview of quantum information with continuous variables). Future work
might involve experiments with single photons and single collective exitations in
the atomic ensembles (see the outlook in Sec. 8.2).

1.5 Other atomic systems

All the experiments described in this thesis utilize room-temperature atomic en-
sembles of cesium atoms contained in paraffin-coated glass cells. There are of
course many other systems which are used for quantum information purposes,
and I would like to mention a few.

In our experiment, the paraffin coating prevents decoherence due to collisions
with the cell walls. An alternative approach to avoid decoherence due to wall-
collisions is to fill the glass cell with buffer gas, such that the room-temperature
atoms can not move (instead they diffuse slowly) and thereby do not hit the
cell walls. Buffer gas cells have been used as a memory for classical light pulses
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[21] and squeezed vacuum [22] using the method of electro-magnetically induced
transparancy (EIT). Single photons have been generated and stored using two
separate buffer gas cells [23], and also squeezed light has been generated using a
buffer gas cell [24].

Cold atomic ensembles have been used for many experiments in the fields
of quantum information and quantum metrology. The ensembles have been en-
tangled [25] using the DLCZ scheme [12], and similar to the experiments with
buffer gas cells, single photons emitted from one ensemble have been stored in a
second ensemble [26]. Recently storage times in the millisecond range have been
demonstrated [27, 28]. Cold atomic ensembles can be used as magnetometers [29],
and also magnetic field measurements with Bose-Einstein condensates have been
demonstrated [30, 31]. Such cold atomic magnetometers have a high spatial reso-
lution due to the small size of the ensemble. However, the cold atomic ensembles
are less sensitive to the magnetic field as compared to the cm-sized atomic mag-
netometers based on room-temperature (or high temperature) atomic vapours
due to the smaller number of atoms.

1.6 Outline

• Chapter 2: The interaction between atoms and light is discussed. Of par-
ticular importance is the Quantum Non-Demolition (QND) interaction by
which one can measure an atomic spin componenent without changing it.
The QND interaction can be used to measure the atomic state, to generate
entanglement between the ensembles and as a component in a quantum
memory protocol. Recently we discovered that the interaction between po-
larized light and spin-polarized atomic ensembles is better described by a
"swap and squeezing" interaction. The discovery of the swap and squeezing
interaction has been very important for the work presented in this thesis.
Both in terms of understanding how atoms and light interact, but also in
terms of motivating new experiments such as the generation of two-mode
squeezed light presented in chapter 4 and the entanglement generated by
dissipation as presented in chapter 7. The swap and squeezing interaction
is described in detail in this chapter, and we calculate useful input-output
equations for the light and atomic operators which are used throughout the
thesis to describe the performed measurements and experiments.

• Chapter 3: The experimental details common to all the performed exper-
iments are discussed in this chapter. Some of the experimental details
are also presented in the earlier theses from our group [32, 33] and in the
thesis of Hanna Krauter [34]. In the beginning of my PhD study, a new
data-aquisition method was implemented where the two-time correlation
function C(t, t′) of the detector signals was recorded instead of the inte-
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grated signal variances (which are time-independent). Using the recorded
two-time correlation function, more information can be extracted from the
measurements than was possible before. The details of the data-analysis
are described in this chapter and also in chapter 4.

After the discovery of the swap and squeezing interaction, a mean value
method for measuring the light-atom coupling constant κ2 was implemented.
This coupling constant is an important parameter which is needed for recon-
stucting the atomic state from the measured light. The mean value method
is also used to verify the swap and squeezing input-output equations. Fi-
nally, we present measurements of the atomic noise and of entanglement
between the two atomic ensembles generated by near QND measurements.

• Chapter 4: Two-mode squeezed and entangled light is generated using the
two atomic ensembles as a source. The squeezing is centered around the
atomic Larmor frequency, which in our case is chosen to be 322 kHz, and
has a bandwidth of a few hundred of Hertz set by the atomic transverse
relaxation T2-time. The obtained squeezing of 3.6 dB is in a single temporal
and spatial mode and is naturally compatible with atomic memories based
on the same atom (cesium) as was used to create the squeezing. The swap
and squeezing interaction theory is here used to explain the generation of
the two-mode squeezed light.

• Chapter 5: We demonstrate a radio-frequency atomic magnetometer con-
sisting of two oppositely spin-polarized atomic ensembles. Using the swap
and squeezing interaction, we achieve the backaction evading measurement
of the magnetic field and the suppression of the meter noise (the shot noise
of the probing light). The measurement is mainly limited by the projection
noise of atoms orignating from the Heisenberg uncertainty relation. We ob-
tain the best sensitivity in the sub-femtoTesla/

√
Hz range comparable with

the sensitivity of the state-of-the-art atomic magnetometer which operates
with 104 times more atoms. Furthermore, using entanglement between the
two atomic ensembles, we demonstrate that the magnetometer signal to
noise ratio can be improved for high bandwidth RF magnetic pulses.

• Chapter 6: A new class of states, the displaced two-mode squeezed light
states are stored in a quantum memory consisting of two separate atomic en-
sembles. The input light is squeezed by 6.0 dB, and 18 different light states
with different squeezing phases and displacements in X-P phase space are
stored in the memory. The storage is characterized in terms of the fidelity
which is defined as the average overlap between the input and stored states
for a given input distribution. A classical benchmark fidelity is calculated,
and we obtain the experimental fidelity which is higher than the benchmark
fidelity.
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• Chapter 7: The two atomic ensembles are entangled using dissipation as
the entangling mechanism. The method is robust and leads to states which
are entangled for up to 40 ms. This duration is much longer than the
millisecond lifetimes previously obtained with atomic ensembles entangled
by QND measurements.

We also combine the dissipative dynamics with continuous measurements of
the atomic spins. With the combined method, entanglement is created in a
steady state, and can in principle be maintained for ever. In the experiment
we demonstrate the steady state entanglement which is maintained for the
long duration of one hour.

• Chapter 8: We summarize the main results presented in the previous chap-
ters. We also provide an outlook for the future of the cell experiment.
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Chapter 2

Theory

2.1 Introduction

In this chapter it is described how a gas of spin-polarized atoms and a pulse
of polarized light interact. First the two systems are introduced, and canonical
operators are defined for both systems. Then we give both an overview and
present detailed calculations describing the light-atom interaction. Several kinds
of interactions are described: the Quantum Non-Demolition (QND) interaction,
the single cell interaction, and the swap and squeezing interaction.

The QND interaction is implemented in the experiments using two oppositely
oriented atomic ensembles. The QND interaction has been described earlier in
the previous PhD theses [32, 33] and has been used in earlier experiments in our
setup such as the creation of entanglement between the two ensembles [16] and
for the quantum memory for coherent states [17].

Even though the input-output equations describing the QND interaction has
been derived in the previous PhD theses, I will go through the details of some
of the steps in the derivation. This is done since several of the steps in the
derivation of the QND input-output equations are similar to the steps in the more
complicated derivation of the input-output equations for the swap and squeezing
interaction.

The interaction between a single ensemble and a pulse of light is also discussed.
The presented input-output equations will be useful when comparing the single
cell interaction and the two cell QND interaction.

The swap and squeezing interaction valid for two oppositely oriented ensem-
bles was first described in our Optics Express paper [4]. The paper both presents
the theory which is detailed in this chapter and also experimental results which
are presented in chapter 4.

Atomic decoherence is not included in the swap and squeezing theory pre-
sented in [4]. However, in the derivation of the the swap and squeezing input-
output equations in this chapter, decoherence is included in the model. The
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Figure 2.1: Cesium-133 level scheme and laser frequencies. Figure is from [32].

input-output equations with decoherence included are used throughout the thesis
and in the experimental work when analyzing the data and extracting informa-
tion of the atomic state from the measured light variables. The equations have
been used in data-analysis of published data, but the equations themselves have
not been published before. Details of the swap and squeezing interaction theory
are also presented in the PhD thesis [34] of Hanna Krauter who has been working
on the experiment during the same period as I.

Finally, the input-output equations and the coupling strength for the QND
interaction and the swap and squeezing interaction are compared. Also, a simple
expression for the coupling strength is derived.

2.2 Canonical variables

2.2.1 Atoms

In the experiment we work with a room-temperature gas of cesium atoms. The
relevant quantum states of the cesium atoms are the two hyperfine ground states
denoted 6S1/2 with quantum numbers F = 3 and F = 4, and the excited states
6P1/2 and 6P3/2 (see Fig. 2.1) The transitions from the groundstates 6S1/2 to the
6P1/2 states are called the D1-line, and the transitions from the 6S1/2 states to
the 6P3/2 states are called the D2-line.

Using optical pumping methods, the atoms can be initialized in the state
F = 4, mF = +4 or the state F = 4, mF = −4. An ensemble with NA atoms
pumped into mF = +4 has total mean spin

〈
�J
〉

= Jx · êx = 4NA · êx pointing in
the +x-direction, and an ensemble pumped into mF = −4 has total mean spin〈

�J
〉

= Jx · êx = −4NA · êx pointing in the −x-direction. Here we choose to denote
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Figure 2.2: Illustration of light interacting with two oppositely polarized atomic
ensembles one after the other.

the total angular momentum �J instead of �F . Also, �J is defined to be unitless,
such that �J is the total angular momentum divided by � (Planck’s contant). This
has been the convention in most of the publications from our group. êx is a unit
vector pointing in the x-direction.

Typically we use one ensemble polarized in the +x-direction and one en-
semble polarized in the −x-direction. A pulse of light then interacts with the
two ensembles one after the other as shown in Fig. 2.2. The atomic ensembles
are futhermore kept in a bias magnetic field Bx = 0.92 Gauss pointing in the
+x-direction. Located in this bias field the atomic spins precess at the Larmor
frequency ΩL = gFμBBx/�, where gF is the Landé g-factor and μB is the Bohr
magneton. Cesium atoms in the F = 4 ground state located in the magnetic field
Bx = 0.92 have the Larmor frequency ΩL = 2π · 322 kHz.

The quantum state of an atomic ensemble is well defined by the collective spin
�J =

∑NA

k=1
�jk, where �jk is the spin of the k’th atom. The spin components are

non-commuting [Jy, Jz] = iJx
1. For an atomic ensemble polarized along the ±x-

direction, Jx has a large value and is considered a classical variable. On the other
hand, the transverse spin components Jy and Jz are small quantum variables
with zero (or small) mean values. For such an ensemble the Heisenberg uncer-
tainty relation reads Var (Jy) · Var (Jz) ≥ |Jx|2 /4. For a fully polarized atomic
ensemble we have the following uncertainties on the transverse spin components:
ΔJy = ΔJz =

√|Jx| /2. The fluctuations in the transverse spin components are
smaller than the mean spin by a factor

√
2 |Jx|, which for our case is approx-

imately a factor 106. In this situation it is a good approximation to treat the
mean spin Jx as a classical variable and the transverse spin components Jy and
Jz as quantum variables.

1Often in the litterature, quantum operators like �J are marked with a hat, but in this thesis
I will leave out the hats. Hopefully it will clear when I am thinking about quantum operators
and when I am thinking about classical values.

9



For a single atomic ensemble we can define canonical operators

x = σjx
Jy√|Jx|

p =
Jz√|Jx|

. (2.1)

I use the notation σjx = ±1 depending on whether the atoms are polarized along
the ±x-direction. The canonical variables x and p are non-commuting with the
commutation relation [x, p] = i. The Heisenberg uncertainty relation for canoni-
cal operators x and p is Var (x) · Var (p) ≥ 1/4. For a minimal uncertainty state
with equal variances in the x and p-directions we have Var (x) = Var (p) = 1/2.
Minimal uncertainty states with Gaussian statistics are denoted Coherent Spin
States (CSS). The collective state of a fully spin-polarized atomic ensembles is
such a CSS.

Atomic states close to the fully pumped CSS can also be described in terms
of collective atomic exitations using the Holstein-Primakoff approximation [35].
The creation operator for a collective exitation is denoted b† and is related to
the spin components by x = σjxJy/

√|Jx| =
(
b + b†

)
/
√

2 and p = Jz/
√|Jx| =(

b − b†
)
/
(√

2i
)

such that b = (x + ip) /
√

2.
We can also write b =

∑NA

k=1 |4〉k 〈3|k. A single term |4〉k 〈3|k takes the k’th
atom and moves it from the F = 4, m = 3 state to the F = 4, m = 4 state.
The term does nothing the the rest of the (k − 1) atoms. The CSS is treated as
the groundstate of a harmonic oscillator with creation operator b†. One collec-
tive excitation corresponds to the state proportional to the superposition state
b† |444...4〉 ∝ |344...4〉+ |434...4〉+ |443...4〉+ ... |444...3〉 where each ket labels the
state of the NA atoms, and the superposition has NA terms of such kets.

In the experiments we utilize two oppositely oriented atomic ensembles with
macroscopic classical spin components 〈Jx1〉 = −〈Jx2〉 = |Jx| along the x-
direction. The subscript 1 refers to the first ensemble and the subscript 2 refers
to the second ensemble (see Fig. 2.2). For such two ensembles, we define two sets
c, s of non-local atomic operators [32]

Xc =
J ′

y1 − J ′
y2√

2 |Jx|
=

x1 + x2√
2

Pc =
J ′

z1 + J ′
z2√

2 |Jx|
=

p1 + p2√
2

Xs = −J ′
z1 − J ′

z2√
2 |Jx|

= −p1 − p2√
2

Ps =
J ′

y1 + J ′
y2√

2 |Jx|
=

x1 − x2√
2

, (2.2)

where the prime refers to that the spins are defined in a frame rotating with
the Larmor frequency ΩL. The indices c, s are abbreviations for cosine and sine
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2. Note that in this chapter upper case atomic operators X, P are used to de-
scribe non-local two cell operators and lower case atomic operators x, p are used
to describe for single cell operators. The canonical variables Xj and Pj are
non-commuting with the commutation relation [Xj , Pj] = i for j = c, s. The
collective state of two oppositely oriented and fully polarized atomic ensembles
has Var (Xj) = Var (Pj) = 1/2 and is a CSS.

2.2.2 Light

A pulse of polarized light can be described in terms of the Stokes vector �S =
(Sx, Sy, Sz) where the components are defined by

Sx =
1

2
· [Nph(x) − Nph(y)]

Sy =
1

2
· [Nph(+45o) − Nph(−45o)]

Sz =
1

2
· [Nph(σ+) − Nph(σ−)] . (2.3)

Nph(x) is the number operator for photons polarized in the x-direction, Nph(+45o)
is the number operator for photons polarized in the direction +45 degrees in be-
tween the x- and y-directions and Nph(σ+) is the number operator for σ+ polarized
photons. The Stokes operators satisfy the commutation relation [Sx, Sy] = iSx.
The operators (Sx, Sy, Sz) count photons within a certain pulse duration T , but
we can also define time dependent Stokes operators (Sx(t), Sy(t), Sz(t)) which
count photons per unit of time at the time t. These operators have the units of
1/time.
Let us assume that the light is strongly linearly polarized along either the x or
y-direction, such that Sx has a large value and can be consider a classical vari-
able. The Stokes components Sy and Sz are then small and can be considered as
quantum variables. In this case, canonical operators for light can be defined:

y(t) = σSx
Sy(t)√|Sx(t)|

q(t) =
Sz(t)√|Sx(t)|

. (2.4)

σSx = ±1 depending on the sign of Sx. If the light is strongly polarized in the
y-direction, y(t) and q(t) will be the quadratures 3 of the x-polarized mode (and
vica versa). In the above I chose to define time-varying canonical operators with
the commutation relation [y(t), q(t′)] = iδ(t − t′). Since

∫ +∞
−∞ δ(t)dt = 1, the

δ(t − t′) function has the units of 1/time. Therefore, the operators y(t) and q(t)

2Later when discussing the QND interaction in Sec. 2.3.1 it is shown that the cosine atomic
mode with canonical operators Xc and Pc only couples to a certain cosine light mode (and
similar for the sine mode)

3The electrical field of a mode of light (with creation operater a and frequency ω) can be
written using the quadratures: E(t) ∝ ae−iωt + a†e−iωt ∝ y(t) cos (ωt) + q(t) sin (ωt).
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have the units of 1/
√

time. We can also define dimensionless integrated "cosine"
and "sine" light variables yc, qc, ys and qs by

yc = σSx

√
2

|Sx|T
∫ T

0

Sy(t) cos(ΩLt)dt

qc =

√
2

|Sx|T
∫ T

0

Sz(t) cos(ΩLt)dt, (2.5)

where the operators ys and qs are similarly defined by replacing cos with sin.
These integrated operators are the relevant light operators for the QND interac-
tion and have the commutation relation [yj, qj] = i for j = c, s. One can also
consider integrated light operators with exponentially rising or falling temporal
modes such as yc,± ∝ ∫ T

0
Sy(t) cos(ΩLt)e±γtdt. These operators are the relevant

ones for the swap and squeezing interaction.

2.3 Interactions between atoms and light:
An overview.

2.3.1 Quantum Non-Demolition interaction

The off-resonant Faraday interaction between light propagating in the z-direction
and atoms polarized in the ±x-direction can for low interaction strengths be
described with the Hamiltonian H ∝ SzJz

4. For two oppositely polarized atomic
ensembles located in a magnetic field, we have the following set of input-output
equations for the canonical operators [32]

Xout
j =X in

j + κ̃qin
j , P out

j =P in
j

yout
j =yin

j + κ̃P in
j , qout

j =qin
j , (2.6)

where "in/out" means the state of atoms and light before/after the interaction
and j = c, s stands for "cosine" and "sine". Notice that the cosine atomic mode
only couples to the cosine light mode, and that the sine atomic mode only couples
to the sine light mode. The light-atom coupling strength is denoted κ̃ and is
defined as

κ̃2 = a2 |Jx(t)| |Sx(t)| T. (2.7)

Typically Jx(t) and Sx(t) are time-independent macroscopic values (as discussed
later). a is a coupling constant defined later in Eq. (2.28). In earlier publications
this QND interaction strength was written without the tilde. However, in this
thesis I reserve the symbol κ without the tilde for the coupling strength used in
the swap and squeezing interaction described in Sec. 2.3.4.

4The Hamiltonian is described in detail later in Sec. 2.4.1.
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With a measurement of the output light operator yout
j , we gain information

about the input atomic operator P in
j which is conserved during the interaction.

I.e., we have performed a Quantum Non-Demolition (QND) measurement of the
atomic P -operator. After the QND interaction, the atoms are left in a collective
spin-squeezed state, or equivalently, the two atomic ensembles are entangled [16].
The measurement also disturbs the atomic system, since the light operator qin

j

is transferred to the atomic Xout
j operator. After the interaction, the atomic X-

quadrature is more noisy (anti-squeezed). This is called the backaction of light
on atoms.

2.3.2 Entanglement criterion

Two continuous variables subsystems are entangled if the following Einstein-
Podolsky-Rosen (EPR) variance criterion [36] is fulfilled

ΣEPR ≡ Var

(
p1 + p2√

2

)
+ Var

(
x1 − x2√

2

)
< 1. (2.8)

Here x1, p1 are the canonical variables for subsystem 1 and x2, p2 are the canon-
ical variables for subsystem 2. The criterion is easy to remember since for two
uncorrelated coherent states (such as for instance vacuum) where the variances of
x1, p1 and x2, p2 all equal 1/2 we have ΣEPR = 1. The two uncorrelated coherent
states are therefore at the boundary for entanglement. Two subsystems which
satisfy the EPR criterion are said to be entangled or two-mode squeezed.

Entanglement between the ensembles

In the above we did not specify the subsystems. If the subsystems are the two
atomic ensembles with canonical operators defined by Eq. (2.1) and (2.2), the
EPR criterion takes the following form

ΣEPR = Var

(
J ′

z1 + J ′
z2√

2 |Jx|

)
+ Var

(
J ′

y1 + J ′
y2√

2 |Jx|

)
= Var (Pc) + Var (Ps) < 1. (2.9)

We see that entanglement between the ensembles is equivalent to having two-
mode squeezing of the two non-local operators Pc and Ps. The EPR variance
ΣEPR is often also denoted the atomic noise in projection noise (PN) units.

QND interaction and entanglement between the ensembles

Suppose we are interested in measuring whether the two atomic ensembles are
entangled. If the light-atom interaction is of the QND type, this can be done
by considering the variances of the output light operators yout

c and yout
s . If we

assume that the input light operators are in the vacuum state, we find that

Var
(
yout

c

)
+ Var

(
yout

s

)
= 1 + κ̃2 · ΣEPR. (2.10)
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I.e., from the measurement of the cosine and sine components of the output light
together with the knowledge of the coupling constant κ̃, we can calculate ΣEPR

and find out whether the EPR criterion is fulfilled.

Entanglement between the upper and lower sideband modes

The two subsystems could also be two modes of the electro-magnetic light field.
When discussing the interaction between atoms and light, we typically consider
cosine and sine light modes as defined in Eq. (2.4.8). On the other hand, in
figures showing atomic level schemes and light fields (such as in Fig. 4.3 which
is shown later), we depict upper and lower sideband modes. We are interested
in the upper and lower sideband modes with frequencies ω± = ω0 ±ΩL where ω0

is the carrier frequency (of the local oscillator light field) and ΩL is the Larmor
frequency of the atoms. Only sidebands with frequencies ω± couple coherently
to the atoms (the level scheme picture is also discussed in Sec. 4.2 and 7.2.3).

A mode of light can be described by a creation operator. The creation op-
erators for the upper and lower sideband modes a+ and a− and the creation
operators for the cosine and sine modes ac and as are related by the formulas

ac =
a+ + a−√

2
and as =

a+ − a−√
2i

. (2.11)

For any mode a, we can define canonical operators X and P such that a =
(X + iP ) /

√
2 5. With this definition we find the relations between the canonical

operators

XLc =
X+ + X−√

2
and PLc=

P+ + P−√
2

XLs =
P+ − P−√

2
and PLs=−X+ − X−√

2
, (2.12)

where I here chose the subscripts Lc, Ls, + and − for the cosine, sine, upper
sideband and lower sideband modes, respectively. The criterion for entanglement
between the upper and lower sideband is

ΣEPR = Var

(
X+ + X−√

2

)
+ Var

(
P+ − P−√

2

)
= Var (XLc) + Var (XLs) < 1.

(2.13)
We see that the EPR type entanglement between the upper and lower sideband
is equivalent to squeezing of the cosine and sine modes in the XL-direction.

5Two notations are used for the canonical operators for light. For instance, a cosine light
mode has canonical operators yc, qc (notation 1) or XLc, PLc (notation 2).
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2.3.3 Single cell interaction with light

The input-output equations for a single atomic ensemble interacting with light are
a bit more complicated. Again, assuming that the atoms are located in a static
magnetic field pointing in the x-direction and that the interaction Hamiltonian
H ∝ SzJz, then the input-output equations for a single ensemble are [33]

yout
c = yin

c +
κ̃√
2
pin ∓

(
κ̃

2

)2

qin
s ∓ 1√

3

(
κ̃

2

)2

qin
s,1

yout
s = yin

s ± κ̃√
2
xin ±

(
κ̃

2

)2

qin
c ± 1√

3

(
κ̃

2

)2

qin
c,1

qout
c = qin

c and qout
s = qin

s

xout = xin +
κ̃√
2
qin
c and pout = pin ∓ κ̃√

2
qin

s . (2.14)

The top/bottom signs in ± and ∓ are valid for the first/second ensemble. The
operator qin

c,1 is orthogonal to the qin
c mode and defined by

qin
c,1 =

√
3

(
2

T

)3/2 ∫ T

0

(
T

2
− t

)
cos(ΩLt)qin

L (t)dt. (2.15)

The qin
s,1 mode is similarly defined by replacing cos by sin.

We see from Eq. (2.14) that the interaction is not of the QND type since
neither the x nor the p atomic operator are conserved during the interaction.
I.e., the backaction of light onto the atoms is directed into both atomic opera-
tors. Many quantum information protocols are based on the QND interaction,
but still the single cell interaction is interesting. The teleportation experiment
[18] was for instance carried out using only one ensemble.

It is possible to derive the two cell QND input-output equations given by Eq.
(2.6) from the single cell equations given by Eq. (2.14). For light interacting with
two oppositely oriented ensembles one after the other we find by using Eq. (2.14)
twice that

yout
c = yin

c +
κ̃√
2

(
pin

1 + pin
2

)
yout

s = yin
s +

κ̃√
2

(
xin

1 − xin
2

)
. (2.16)

The above equations equals the two-cell equations given in Eq. (2.6). We can
also find the output two-cell atomic operators by using Eq. (2.14) twice, one time
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for each ensemble, and we find(
xout

1 + xout
2

)
=
(
xin

1 + xin
2

)
+ κ̃qin

c(
pout

1 − pout
2

)
=
(
pin

1 − pin
2

)− κ̃qin
s(

pout
1 + pout

2

)
=
(
pin

1 + pin
2

)(
xout

1 − xout
2

)
=
(
xin

1 − xin
2

)
. (2.17)

Again, these equations match the two cell Eq. (2.6).

2.3.4 Swap and squeezing interaction

Cesium atoms are multi-level atoms with a hyperfine structure given by the quan-
tum numbers F, m. Atoms are polarizable, and the Hamiltonian describing the
light-atom interaction (which is described later in Sec. 2.4.1) includes the rank 0
(scalar), the rank 1 (vector) and the rank 2 (tensor) polarizability [37].

A spin-1/2 atom has no tensor polarizability. When deriving the QND in-
teraction, we are neglegting the tensor polarizability of the atoms, and we are
therefore basically treating the F = 4 multi-level cesium atom as a spin-1/2 atom.
This is problematic, in particular for large interaction strengths.

If one includes the tensor polarizability in the model of light interacting with
two highly polarized oppositely oriented atomic ensembles one ends up with a
swap and squeezing interaction [4] instead of the more simple QND interaction.
The input-output equations for the swap and squeezing interaction are [4] (omit-
ting the c, s subscripts)

Xout =

√
1 − κ2

Z2
X in + κqin, P out =

√
1 − κ2

Z2
P in − κ

Z2
yin,

yout =

√
1 − κ2

Z2
yin + κP in, qout =

√
1 − κ2

Z2
qin − κ

Z2
X in, (2.18)

where κ = Z
√

1 − exp (−2γswT ), and the swap rate γsw is proportional to light
intensity and density of atoms. Z is a function of the light detuning only, and 1/Z2

measures the deviation from the QND interaction. I will also use the notation
ζ2 = 1/Z2 later on. For our experimental probe detuning Δ = −850 MHz (blue
detuning) from the F = 4 → F ′ = 5 D2 transition, we have Z2 ≈ 6.4 (see Sec.
3.6.1 for measurements of Z2).

For large interaction times γswT  1, the coupling strength κ → Z and we
obtain the output operators

Xout =Zqin, P out = − yin/Z,

yout =ZP in, qout = − X in/Z. (2.19)

Wee see that the light and atomic operators have been swapped and squeezed by
the factor Z2 in the variances. The input-output Eqs. (2.18) and (2.19) and their
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application to the creation of squeezed light, atomic magnetometry, quantum
memory and the generation of entangled atoms will be further discussed in the
following chapters.

It should be noted that the complete swap described by Eq. (2.19) is hard to
achieve in the experiment due to atomic decoherence. The decoherence will also
limit the degree of squeezing which can be produced in the experiment. Later in
this chapter we derive more complicated equations where atomic decoherence is
included in the model. Finally, I stress that Eqs. (2.18) and (2.19) are only valid
for highly polarized ensembles. If the atomic polarization is reduced significantly
during the interaction one has to take this into account. This can be done by
assuming that the swap rate γsw is time-dependent, and that there are some
atoms in the ensemble which do not contribute to the collective interaction but
still give rise to additional noise.

2.4 Interactions between atoms and light:
Detailed input-output equations.

After having presented the interactions between light and one or two atomic
ensembles, we now turn to the actual derivations of the input-output equations.
We start by going through the QND interaction. Then we move on to the more
complicated situation where the tensor polarizability and atomic decoherence are
included in the model. The equations of motions for light interacting with a
single polarized ensemble are first derived. Then the results are used to derive
how two oppositely polarized ensembles interact with light.

2.4.1 Hamiltonian

The full Hamiltonian describing the off-resonant 6 interaction between polarized
atoms and polarized light is [32]

Hint = − �cγ

8AΔ

λ2

2π

∫ L

0

(
a0φ(z, t) + a1Sz(z, t)jz(z, t) (2.20)

+a2

[
φ(z, t)j2

z (z, t) − S−(z, t)j2
+(z, t) − S+(z, t)j2

−(z, t)
] )

ρAdz.

A and L are the cross-section and length of the atomic cloud, respectively. The
wavelength of the probe light is λ = 852 nm for all of the experiments presented in
this thesis. The FWHM linewidth of the excited P3/2 state is γ = 2π ·5.21 MHz. z
is the coordinate along the light propagation direction and goes from 0 to L. The
continuous operators φ(z, t), Sz(z, t) and S±(z, t) = Sx(z, t) ± iSy(z, t) have the
units of 1/length, such that c · φ(z, t) is the number of photons passing through

6For the case of room-temperature atoms, the laser detuning should be greater than the
Doppler width of the atomic resonance.
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the area A at the position z per second. jz(z, t) and j±(z, t) = jx(z, t) ± ijy(z, t)
are dimensionless continuous atomic spin operators at the position z such that
�j(z, t)ρAdz is the angular momentum divided by � of the atoms which are located
in the slice dz. ρ is the density of atoms. The total angular momentum divided
by � is �J(t) =

∫ L

0
�j(z, t)ρAdz.

a0, a1, and a2 are the dimensionless scalar, vector and tensor polarizabilities
7 which are a function of the detuning Δ. For the F = 4 hyperfine ground states
coupled to the D2 line, we have the following expressions for the polarizabilities
[32]:

a0 =
1

4

(
1

1 − Δ3′5′/Δ
+

7

1 − Δ4′5′/Δ
+ 8

)
a1 =

1

120

(
− 35

1 − Δ3′5′/Δ
− 21

1 − Δ4′5′/Δ
+ 176

)
a2 =

1

240

(
5

1 − Δ3′5′/Δ
− 21

1 − Δ4′5′/Δ
+ 16

)
. (2.21)

Δ3′5′ and Δ4′5′ are the excited state hyperfine splittings (see level scheme in Fig.
2.1). As in [32], the detuning Δ<0 when the laser frequency is greater than the
atomic transition.

2.4.2 Propagation equations

In the experiments, pulses of light are sent through a cloud of cesium atoms. We
would therefore like some input-output relations that describe the spin and the
Stokes operators before and after the interaction. To derive these relations we
need the interaction Hamiltonian, the Heisenberg equation of motion for the spin
vector and the Maxwell-Bloch equation 8 for the Stokes vector

∂�j(z, t)

∂t
=

1

i�

[
�j(z, t),Hint

]
(2.22)

(
∂

∂t
+ c

∂

∂z

)
�S(z, t) =

[
�S(z, t),Hint

]
. (2.23)

The speed of light is set to infinity such that we can neglect the term ∂
∂t

in Eq.
(2.23). Using Eq. (2.22) and Eq. (2.23) together with the Hamiltonian Eq. (2.20),

7The scalar, vector and tensor polarizabilities are also denoted population, orientation and
alignment, respectively. See [38] for a nice way to visualize atomic polarization.

8The Maxwell-Bloch equation can be derived from the Heisenberg equation of motion for
the creation and annihilation operators for the light field (one would also need the Hamiltonian
for the light field).
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one finds the following equations of motion [32] for the spin operators

∂

∂t
jx(z, t) =

cγ

8AΔ

λ2

2π
{a1Szjy + a2 (2Sy [jxjz + jzjx] − (2Sx − φ) [jzjy + jyjz])}

∂

∂t
jy(z, t) =

cγ

8AΔ

λ2

2π
{−a1Szjx + a2 (− (2Sx + φ) [jxjz + jzjx] − 2Sy [jzjy + jyjz ])}

∂

∂t
jz(z, t) =

cγ

8AΔ

λ2

2π
a2

{
4Sx [jxjy + jyjx] − 4Sy

[
j2
x − j2

y

]}
, (2.24)

and the Stokes operators

∂

∂z
Sx(z, t) =

γρ

8Δ

λ2

2π
{a1Syjz + a2 · 2Sz [jxjy + jyjx]}

∂

∂z
Sy(z, t) =

γρ

8Δ

λ2

2π

{−a1Sxjz − a2 · 2Sz

[
j2
x − j2

y

]}
∂

∂z
Sz(z, t) =

γρ

8Δ

λ2

2π
a2

{
2Sy

[
j2
x − j2

y

]− 2Sx [jxjy + jyjx]
}

. (2.25)

For simplicity we omitted the (z, t) dependence on the right hand side of the equa-
tions. Notice that terms consisting of two spin operators such as [jxjy + jyjx] (z, t) �=
jx(z, t)jy(z, t) + jy(z, t)jx(z, t).

2.4.3 QND interaction

For large detunings, the vector polarizability a1(Δ) → 1, and the tensor polariz-
ability a2(Δ) → 0 (see Eq. 2.21). Then it is a good approximation 9 to neglect the
tensor polarizability and only keep terms in the equations of motion (2.24) and
(2.25) which are proportional to a1. In this case we find the following equations
for the spin operators

∂

∂t
jx(z, t) = −acSz(z, t)jy(z, t)

∂

∂t
jy(z, t) = acSz(z, t)jx(z, t)

∂

∂t
jz(z, t) = 0 (2.26)

and the Stokes operators

∂

∂z
Sx(z, t) = −ρA · a · Sy(z, t)jz(z, t)

∂

∂z
Sy(z, t) = ρA · a · Sx(z, t)jz(z, t)

∂

∂z
Sz(z, t) = 0. (2.27)

9As detailed in Sec. 2.5, the approximation is only good for small coupling strengths.
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The parameter a is defined by

a ≡ − γ

8AΔ

λ2

2π
· a1, (2.28)

and describes the coupling strength between the spin and Stokes operators. No-
tice that jz(z, t) is conserved during the interaction in the sense that it does not
depend on t, and that Sz(z, t) is conserved in the sense that it does not depend
on z.

For the case of a room-temperature atomic ensemble, the atoms are moving
fast on the timescale of the interaction. Therefore, in Eq. (2.27) for the Stokes
vector, the spin operators can be replaced by their average values over the cell
length. The equations for Stokes operators now read

∂

∂z
Sx(z, t) = −ρA · a · Sy(z, t) 〈jz(z, t)〉z

∂

∂z
Sy(z, t) = ρA · a · Sx(z, t) 〈jz(z, t)〉z

∂

∂z
Sz(z, t) = 0. (2.29)

The average value of the spin is defined by 〈jz(z, t)〉z = 1
L

∫ L

0
jz(z, t)dz. Similarly,

in the equations for the spin operators, the Stokes operators should be averaged
over the cell length. We find

∂

∂t
jx(z, t) = −c · a · 〈Sz(z, t)〉z jy(z, t)

∂

∂t
jy(z, t) = c · a · 〈Sz(z, t)〉z jx(z, t)

∂

∂t
jz(z, t) = 0. (2.30)

The average Stokes operator is defined by 〈Sz(z, t)〉z = 1
L

∫ L

0
Sz(z, t)dz.

I now introduce the integrated collective atomic operators: �J(t) =
∫ L

0
�j(z, t)ρAdz.

We also have the relation
〈
�j(z, t)

〉
z

= 1
LρA

�J(t). By inserting these expressions
into the above equations, we find the equations of motions in terms of collective
spin operators �J(t)

∂

∂z
Sx(z, t) = − a

L
· Sy(z, t)Jz(t)

∂

∂z
Sy(z, t) =

a

L
· Sx(z, t)Jz(t)

∂

∂z
Sz(z, t) = 0 (2.31)
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∂

∂t
Jx(t) = −c · a · 〈Sz(z, t)〉z Jy(t)

∂

∂t
Jy(t) = c · a · 〈Sz(z, t)〉z Jx(t)

∂

∂t
Jz(t) = 0. (2.32)

QND input-output equations

We can find the z-dependence of the Stokes vector �S(z, t) by solving the differental
equation (2.31). We now choose to use the input-output notation �S in(t) = c�S(z =
0, t) and �Sout(t) = c�S(z = L, t) for the Stokes vector. The in/out operators
�S in/out(t) have the units of 1/time. For the input/output operators we have⎛⎝Sout

x (t)
Sout

y (t)
Sout

z (t)

⎞⎠ =

⎛⎝ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎞⎠⎛⎝S in
x (t)

S in
y (t)

S in
z (t)

⎞⎠ . (2.33)

We see that the effect of the atoms on the light is a rotation of the Stokes vector
in the x-y plane by the angle θ = −aJz(t) (where Jz(t) is independent of t).

Since 〈Sz(z, t)〉z is independent of both z and t, we can solve Eq. (2.32). The
effect of the light on the atoms is a rotation of the spin vector in the x-y plane
by the angle ω̃T = −aSz(t)T (where Sz(t) is independent of t)⎛⎝Jx(T )

Jy(T )
Jz(T )

⎞⎠ =

⎛⎝ cos(ω̃T ) sin(ω̃T ) 0
− sin(ω̃T ) cos(ω̃T ) 0

0 0 1

⎞⎠⎛⎝Jx(0)
Jy(0)
Jz(0)

⎞⎠ . (2.34)

In the experiments, we are often in the situation with small rotation angles
θ � 1 and ω̃T � 1 and large classical values of Sx(t) and Jx(t). In this case,
the equations of motion (2.31) and (2.32) are particulary simple. We find the
following input-ouput equations for the Stokes operators

Sout
x (t) = S in

x (t)

Sout
y (t) = S in

y (t) + aJz(t)Sx(t)

Sout
z (t) = S in

z (t), (2.35)

and the following differential equations for the spin operators

∂

∂t
Jx(t) = 0

∂

∂t
Jy(t) = aSz(t)Jx(t)

∂

∂t
Jz(t) = 0. (2.36)
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The above equations for the spin operators can be integrated and we find

Jx(T ) = Jx(0)

Jy(T ) = Jy(0) + aTJx(t)Sz(t)

Jz(T ) = Jz(0). (2.37)

Notice that we have kept the time-dependence on the operators Jx(t) and Sx(t)
in the above equations even though those operators are time-independent. The
reason for this is to keep track of the units of those operators. For instance,
throughout the thesis, Sx(t) has the units of 1/time while Sx(z, t) has the units
of 1/length and Sx is dimensionless.

In the above calculations, we considered one atomic ensemble located in zero
magnetic field. The tensor polarizability was neglected. In this situation, the
interaction is of the QND type. One can measure the atomic Jz(t)-operator (see
Eq. 2.35) while the same operator is conserved during the interaction (see Eq.
2.36). On the other hand, for a single ensemble located in a non-zero magnetic
field, one can show that the interaction is not of the QND type. Instead, the
input-output equations are given by Eq. (2.14). Also, for two oppositely oriented
ensembles located in a non-zero magnetic field, one can show that the interaction
is of the QND type. In this case, the input-output equations are given by Eq.
(2.6).

2.4.4 Tensor polarizability

We now move on to the more complicated case of interaction of light with multi-
level atoms which both have vector and tensor polarizability. The starting point
is the equations of motion (2.24) and (2.25). We now have to consider atomic
tensor operators such as for instance [jyjz + jzjy] (z, t). These operators can be
approximated by the vector operators if the atoms are highly polarized. To be
specific, highly polarized means that that atoms are only located in the two
quantum states F = 4, m = 4 and F = 4, m = 3 with the largest angular
momentum projection.

In terms of the density matrix σmm, this means that we are only including
density matrix elements σ44, σ43, σ34 and σ33. By only keeping such density
matrix elements, we can simplify the tensor operators. Assuming F = 4, we find
[32]

[jyjz + jzjy] (z, t) ≈ 0

[jxjy + jyjx] (z, t) = σjx · 7jy(z, t)

[jxjz + jzjx] (z, t) = σjx · 7jz(z, t)[
j2
x − j2

y

]
(z, t) ≈ σjx

7

2
jx(z, t) (2.38)
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In the last equation for j2
x − j2

y , we also assumed 4σ44  σ33. By inserting the
approximations given by Eq. (2.38) into Eqs. (2.24) and (2.25), we find

∂

∂t
jx(z, t) = − c · a{Szjy + σjxξ2Syjz

}
∂

∂t
jy(z, t) =c · a

{
Szjx +

1

2
σjxξ2 (2Sx + φ) jz

}
∂

∂t
jz(z, t) = − c · a · ξ2σjx {2Sxjy − Syjx} (2.39)

∂

∂z
Sx(z, t) = − ρA · a{Syjz + σjxξ2Szjy

}
∂

∂z
Sy(z, t) =ρA · a

{
Sxjz +

1

2
σjxξ2Szjx

}
∂

∂z
Sz(z, t) = − ρA · a · ξ2σjx

{
1

2
Syjx − Sxjy

}
, (2.40)

The coupling constant a was defined in Eq. (2.28). We also defined the parameter
ξ2 ≡ 14a2/a1. Note that ξ2 can be both positive and negative. I.e., we define
ξ ≡ √

14a2/a1 if a2/a1 > 0, and ξ ≡ i ·√14a2/a1 if a2/a1 < 0. The parameter
ξ2 depends on the detuning. For our experimental detuning, we have the value
ξ2 ≈ 1/6.4. This means that ξ2 is a small parameter. Still, as we will see later, a
non-zero ξ2 has a large effect for long interaction times.

2.4.5 Approximations

In the following we assume that the atomic ensemble is polarized along either the
+x or −x-direction, and that the probe light is propagating in the z-direction and
is linearly polarized along either the x or y-direction. With these assumptions,
the x-components of the Stokes and spin vectors Sx(z, t) and jx(z, t) are large
and macroscopic and are not changed by the interaction. We also assume that
Sx(z, t) is independent of time.

In the differential equations (2.40) for Sy(z, t) and Sz(z, t), we neglect the
terms proportional to jx, since these terms only lead to a small rotation of the
Stokes vector in the Sy-Sz-plane. As discussed earlier in Sec. 2.4.3, atoms are
moving fast on the timescale of the interaction. Therefore, in Eq. (2.40) for the
Stokes vector, the spin operators are replaced by their average values over the
cell length. The equations for the Stokes operators now read

∂

∂z
Sx(z, t) = 0

∂

∂z
Sy(z, t) = ρA · a · Sx(z, t) 〈jz(z, t)〉z

∂

∂z
Sz(z, t) = ρA · a · ξ2 · σjx · Sx(z, t) 〈jy(z, t)〉z . (2.41)
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Similarly, in Eq. (2.39) for the spins, the Stokes vector should be averaged over
the cell length. We also neglect the terms proportional to φ and Sx which lead
to a small rotation of the spin vector in the jy-jz plane. This is known as the
AC Stark shift. Using these approximations, the equations for the spin operators
now read

∂

∂t
jx(z, t) = 0

∂

∂t
jy(z, t) = c · a · 〈Sz(z, t)〉z jx(z, t)

∂

∂t
jz(z, t) = c · a · ξ2 · σjx · 〈Sy(z, t)〉z jx(z, t). (2.42)

As was done in Sec. 2.4.3, we now introduce the integrated atomic spin vector
�J(t). In terms of �J(t), Eq. (2.41) reads

∂

∂z
Sy(z, t) =

a

L
· Sx(z, t)Jz(t)

∂

∂z
Sz(z, t) =

a

L
· ξ2 · σjx · Sx(z, t)Jy(t), (2.43)

while Eq. (2.42) for the spin components reads

∂

∂t
Jy(t) = c · a · 〈Sz(z, t)〉z Jx(t)

∂

∂t
Jz(t) = c · a · ξ2 · σjx · 〈Sy(z, t)〉z Jx(t). (2.44)

We can solve the equations for the Stokes operatos by integrating over z, since
Sx(z, t) is constant in z and t as discussed earlier. We obtain

Sy(L, t) = Sy(0, t) + aSx(z, t)Jz(t)

Sz(L, t) = Sz(0, t) + aξ2σjxSx(z, t)Jy(t). (2.45)

The average values of Sy(z, t) and Sz(z, t) over the cell length are simply

〈Sy(z, t)〉z = Sy(0, t) +
1

2
aSx(z, t)Jz(t)

〈Sz(z, t)〉z = Sz(0, t) +
1

2
aξ2σjxSx(z, t)Jy(t). (2.46)

Inserting this in Eq. (2.44) for the spin gives

∂

∂t
Jy(t) = aS in

z (t)Jx(t) +
1

2
a2ξ2σjxSx(t)Jx(t)Jy(t)

∂

∂t
Jz(t) = aξ2σjxS in

y (t)Jx(t) +
1

2
a2ξ2σjxSx(t)Jx(t)Jz(t), (2.47)
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where we used the input/output notation for the Stokes operators. Also, using
this notation, we find

Sout
y (t) = S in

y (t) + aSx(t)Jz(t)

Sout
z (t) = S in

z (t) + aξ2σjxSx(t)Jy(t). (2.48)

Equations (2.47) and (2.48) reduce to the single cell QND input-output equations
(2.35) and (2.36) in the limit ξ2 → 0.

2.4.6 Single cell canonical operators

The equations of motion will soon start to be longer. In order to keep the notation
simple, we now switch to the canonical operator language. We define

x(t) = σjx
Jy(t)√|Jx(t)|

p(t) =
Jz(t)√|Jx(t)|

yin(t) = σSx
S in

y (t)√|Sx(t)|
qin(t) =

S in
z (t)√|Sx(t)|

. (2.49)

yout(t) and qout(t) are similarly defined by replacing "in" with "out". Equation
(2.47) for the spin operators can be rewritten using the canonical operator lan-
guage: (

ẋ(t)
ṗ(t)

)
= ã

(
qin(t)

−ζ2yin(t)

)
− ã2ζ2

2

(
x(t)
p(t)

)
. (2.50)

When deriving the above equation, it is assumed that Jx(t) and Sx(t) are constant
in time. This means that the atomic T1 time (representing the decay of the mean
spin Jx(t)) should be long compared to the interaction time T . If this is not the
case, one should also add terms in Eq. (2.50) proportional to the time derivative
of 1/

√|Jx(t)|. For an exponential decay Jx(t) = Jx(0)e−t/T1, this leads to a term
ẋ = ... + 1

2T1
x in the x-quadrature and similar in the p-quadrature. However,

in most of the experiments, the T1-decay is small and can be neglected. In Eq.
(2.50), we used the coupling constant ã between the time-dependent canonical
operators which is defined by

ã ≡ a
√

|Jx(t)| |Sx(t)|. (2.51)

We also used the definition ζ2 ≡ −ξ2σSx . In the experiments presented in this
thesis, the probe is polarized along the y-direction. σSx < 0 for this probe
polarization. We therefore choose to define ζ2 such that it is positive for a y-
polarized probe.
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2.4.7 Magnetic field and rotating frame

In the experiment, the atoms are located in a magnetic field pointing in the x-
direction. This situation can in the theory be described by the total Hamiltonian
Htot = Hint + HB where Hint is given by Eq. (2.20) and HB = gFμB

�J · �B. We
already calculated the contribution from Hint to the time evolution of the spin
operators using the Heisenberg equation of motion given by Eq. (2.22). Now, we
calculate the contribution to the time evolution due to HB. We find

dJy

dt
= −ΩLJz and

dJz

dt
= ΩLJy. (2.52)

In the canonical operator language this reads(
ẋ
ṗ

)
= Ω

(−p
x

)
, (2.53)

where we defined Ω ≡ σjxΩL. This term should be added to the right hand side
of Eq. (2.50) in order to include the time evolution from both Hint and HB.

In order to solve the equations of motion for an atomic ensemble located in a
magnetic field, it is convinent to consider rotating frame operators x′, p′ defined
by (

x′

p′

)
=

(
cos Ωt sin Ωt
− sin Ωt cos Ωt

)(
x
p

)
. (2.54)

In terms of the rotating frame operators, the equations of motion (2.50) and
(2.53) now read(

ẋ′

ṗ′

)
= ã

(
cos Ωt sin Ωt
− sin Ωt cos Ωt

)(
qin(t)

−ζ2yin(t)

)
− γ

(
x′(t)
p′(t)

)
+
√

2γbad

(
Fx(t)
Fp(t)

)
.

(2.55)
In the above equation we added the term: ẋ′ = ... − γbadx

′ +
√

2γbadFx(t) in
order to include atomic decoherence processes in the theory. The rate γbad is
the rate of the "bad" decoherence processes which leads to a decay of x′ and
p′. The operators Fx(t) and Fp(t) are rotating frame noise operators with zero
mean. We will assume that the noise is "white" and that the decay is towards
the vacuum state. This means that the noise operators have the correlation
〈Fx(t)Fx(t

′)〉 = Var (Fx) δ(t − t′) with Var (Fx) = 1/2 10. In Eq. (2.55) we also
used the parameter γ which is defined by

γ ≡ ã2ζ2

2
+ γbad. (2.56)

10 In the experiment, there can be several different sources of bad decoherence. Some, such as
the loss of atoms from the F = 4 manifold, will lead to a decay towards the vacuum state. Other
processes can induce decay to states which have noise higher than vacuum. An example of such
a process is in-elastic collisions within the F = 4 manifold where population is transferred to
m-levels different from m = 4. However, to keep things simple, we will assume that the decay
is towards the vacuum state.
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γ is the total decay rate and has two contributions. The first term ã2ζ2/2 is due
to the coherent interaction between light and atoms, and the second term γbad

is due to incoherent processes. In the experiment γ is easily measurable. The
inverse of γ is called the transverse relaxation time T2 ≡ 1/γ. The first term in
Eq. (2.56) is an important parameter and is denoted the swap rate. It can be
rewritten as

γsw ≡ ã2ζ2

2
= 14a1a2

(
γ

8Δ

λ2

2π

)2
NAΦ

A2
, (2.57)

where Φ is the photon flux which has the units 1/s and is defined as Φ = 2 |Sx(t)|.
We can formally solve Eq. (2.55), and we find

(
x′(t)
p′(t)

)
=

∫ t

t′=0

e−γ(t−t′)ã

(
cos Ωt′ sin Ωt′

− sin Ωt′ cos Ωt′

)(
qin(t′)

−ζ2yin(t′)

)
dt′

+

∫ t

t′=0

e−γ(t−t′)
√

2γbad

(
Fx(t

′)
Fp(t

′)

)
dt′ + e−γt

(
x′(0)
p′(0)

)
. (2.58)

These are the input-output equations for the single cell rotating frame canonical
operators.

2.4.8 Integrated light modes

Instead of the time-dependent light operators, we can define integrated exponen-
tially rising and falling temporal light modes such as

yin
c,± =

1

Nc,±

∫ T

0

yin(t) cos(ΩLt)e±γtdt

yout
c,± =

1

Nc,±

∫ T

0

yout(t) cos(ΩLt)e±γtdt. (2.59)

Notice, that these modes are defined to oscillate at the Larmor frequency ΩL and
not at the frequency Ω = σjxΩL. In general, for any temporal mode function
h(t), we can define a (temporal) mode yh as

yh =
1

Nh

∫ T

0

y(t)h(t)dt, (2.60)

The normalization constant Nh is chosen to satisfy |Nh|2 =
∫ T

0
|h(t)|2 dt. With

this choice, one can show that Var (yh) = Var (y) if 〈y(t)y(t′)〉 = Var (y) δ(t − t′)
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and 〈y(t)〉 = 0. For specific cases we have

h(t) = cos(Ωt)e+γt ⇒ |Nc,+|2 =
e2γT − 1

4γ

h(t) = cos(Ωt)e−γt ⇒ |Nc,−|2 =
1 − e−2γT

4γ

h(t) = e+γt ⇒ |N+|2 =
e2γT − 1

2γ

h(t) = cos(Ωt) ⇒ |Nc|2 =
T

2
. (2.61)

In the above, we considered light modes which are integrated from t = 0 to
the duration of the probe pulse T . These integrated light modes do not depend
on the intermediate time t. On the other hand, sometimes it is convinient to
introduce time-dependent cosine and sine modes. For instance, we can define a
time-dependent mode yout

c (t):

yout
c (t) =

√
2

δt

∫ t+δt

t′=t

yout(t′) cos (ΩLt′) dt′. (2.62)

The integration interval δt should be much larger than 1/ΩL but still much shorter
than the relevant light-atom interaction time 1/γ. The time-dependent modes
yout

c (t) and yout
s (t) are measured in the experiment and corresponds to the raw

data. From the measurements of these time-dependent modes, one can calculate
all other integrated modes as discussed later in Sec. 3.7.

Using the definitions of the integrated light modes, we can rewrite Eq. (2.58)
for the atomic operators as

(
x′(T )
p′(T )

)
= ã

√
1 − e−2γT

4γ

(
qin
c,+

−σjxqin
s,+

)
− ãζ2

√
1 − e−2γT

4γ

(
σjxyin

s,+

yin
c,+

)

+
√

2γbad

√
1 − e−2γT

2γ

(
Fx,+

Fp,+

)
+ e−γT

(
x′(0)
p′(0)

)
. (2.63)

We now define the important parameters

κ2 =
1 − e−2γT

ζ2
and ε2 =

γbad

γ
. (2.64)

Strictly speaking, using these definitions, both κ2 and ε2 can be negative. How-
ever, in the following it is assumed that ζ2 is positive (which implies that also
γ > 0, κ2 > 0 and ε2 > 0) and ã is positive. We now rewrite the solution for the
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atomic operators as(
x′(T )
p′(T )

)
=

κ
√

1 − ε2

√
2

(
qin
c,+

−σjxqin
s,+

)
− κ

√
1 − ε2ζ2

√
2

(
σjxyin

s,+

yin
c,+

)
+εκζ

(
Fx,+

Fp,+

)
+
√

1 − κ2ζ2

(
x′(0)
p′(0)

)
. (2.65)

Notice that the atomic operators only couple to exponentially rising input light
modes. Equation (2.65) is the final result for the input-output equations for the
atomic canonical variables for the case of a single cell located in a magnetic field
and where both the tensor polarizability and the decay is included.

2.4.9 Light operators

The next step is to calculate the input-output equations for the appropriate
light modes. We first rewrite Eq. (2.48) for the Stokes operators in terms of
the canonical light operators yout(t) and qout(t) and the rotating frame atomic
operators:

yout(t) = yin(t) + ãp(t) = yin(t) + ã
[
cos(ΩLt)p′ + σjx sin(ΩLt)x′]

qout(t) = qin(t) − ãζ2x(t) = qin(t) − ãζ2
[
cos(ΩLt)x′ − σjx sin(ΩLt)p′

]
. (2.66)

Now, Eq. (2.58) for x′(t) and p′(t) are inserted. Actually, we are interested in
finding equations for the integrated operators yout

c,−, yout
s,−, qout

c,− and qout
s,−. This can

be done by using the approximation ΩL  γ. With this approximation we have
cos2(ΩLt)e−γt ≈ 1

2
e−γt and cos(ΩLt) sin(ΩLt)e−γt ≈ 0. Using the assumption

ζ2 > 0, we find (using matrix notation)⎛⎜⎜⎝
yout

c,−
yout

s,−
qout
c,−

qout
s,−

⎞⎟⎟⎠ =

⎛⎜⎜⎝
yin

c,−
yin

s,−
qin
c,−

qin
s,−

⎞⎟⎟⎠− 1 − ε2

2

⎛⎜⎜⎜⎝
1 0 0 σjx

ζ2

0 1 −σjx

ζ2 0
0 −σjxζ2 1 0

σjxζ2 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

yin
c,− −

√
1 − κ2ζ2yin

c,+

yin
s,− −

√
1 − κ2ζ2yin

s,+

qin
c,− −

√
1 − κ2ζ2qin

c,+

qin
s,− −

√
1 − κ2ζ2qin

s,+

⎞⎟⎟⎟⎠

+
κ
√

1 − ε2√
2

⎛⎜⎜⎝
0 1

σjx 0
−ζ2 0
0 σjxζ2

⎞⎟⎟⎠(
x′(0)
p′(0)

)
+

ε
√

1 − ε2√
2ζ

⎛⎜⎜⎝
0 1

σjx 0
−ζ2 0
0 σjxζ2

⎞⎟⎟⎠(
Fx,− −

√
1 − κ2ζ2Fx,+

Fp,− −
√

1 − κ2ζ2Fp,+

)
.

(2.67)

The above equation for the output light operators is a bit complicated. First of
all, notice that the right hand side contains terms with both rising and falling light
modes. This is not desirable, in fact, we would like to decompose the modes such
that the equation only contains orthogonal light modes. This will be discussed
in detail in Sec. 2.4.12.
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The main focus in this thesis is on the interaction between light and two
oppositely oriented atomic ensembles. Equation (2.67), which is valid for light
interacting with a single ensemble, will later in Sec. 2.4.11 be used to derive the
two cell input-output equations. Otherwise, we will not go into more details with
the above equation.

2.4.10 Two cell atomic operators

We now focus on the interaction between light and two oppositely oriented atomic
ensembles (see the illustration in Fig. 2.2). In this case, a significant simplification
of the input-output equations occurs.

The equations of motion for the first cell operators x′
1 and p′1 have already

been derived and are given by Eq. (2.58) or (2.65), if one replaces x′ with x′
1, p′

with p′1 and uses σjx = +1 and Ω = +ΩL. When considering the equations of
motion for the second cell operators x′

2 and p′2 one has to be careful. The light
interacts with the two atomic ensembles one after the other. This means that
the light, which enters the second cell, has already interacted with the first cell.
Below we show that even though the light has interacted with the first cell this
has no influence on evolution of the second cell operators. This means that we
can also use Eq. (2.58) or (2.65) for the second cell, if we replace x′ with x′

2, p′

with p′2 and use σjx = −1 and Ω = −ΩL.
In order to describe the situation with light interacting with both ensembles,

we use the following notation for the different input-output light operators

yin cell 1−→ yout,1 = yin,2 cell 2−→ yout,2, (2.68)

where the light which outputs cell 1 is used as input to cell 2. We can write yout,1

and qout,1 given by Eq. (2.66) again using explicitly the cell 1 operators:

yout,1(t′) = yin(t′) + ã [cos(ΩLt′)p′1(t
′) + sin(ΩLt′)x′

1(t
′)]

qout,1(t′) = yin(t′) − ãζ2 [cos(ΩLt′)x′
1(t

′) − sin(ΩLt′)p′1(t
′)] . (2.69)

We now calculate what happens to the cell 2 operators by using the light operators
which are output from the cell 1:(

x′
2(t)

p′2(t)

)
=

∫ t

t′=0

e−γ(t−t′)ã

(
cos Ωt′ sin Ωt′

− sin Ωt′ cos Ωt′

)(
qout,1(t′)

−ζ2yout,1(t′)

)
dt′

+

∫ t

t′=0

e−γ(t−t′)
√

2γbad

(
Fx(t

′)
Fp(t

′)

)
dt′ + e−γt

(
x′(0)
p′(0)

)
. (2.70)

The light operators in Eq. (2.69) can be inserted in Eq. (2.70) for the cell 2
operators. The cell 2 operators have terms similar to the ones given by Eq.
(2.58), and have extra terms which are proportional to the cell 1 operators such
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as

x′
2(t) = ... − ãζ2

∫ t

t′=0

e−γ(t−t′) {x′
1(t

′) cos(2ΩLt′) − p′1(t
′) sin(2ΩLt′)} dt′,

and similarly for p′2(t). Such extra terms average out for times greater than 1/ΩL

and we neglect these. Doing this, we find that the cell 2 operators are also given
by Eq. (2.58) and (2.65) with yin(t′) and qin(t′) being the light mode that inputs
cell 1. It is as if the atoms in the cell 2 do not know that the light has interacted
with the atoms in the cell 1.

We can now calculate the time evolution of the two cell non-local operators
defined in Eq. (2.2) using the single cell Eq. (2.65). For two oppositely oriented
ensembles, several terms cancel since σjx = +1 for the first ensemble and σjx = −1
for the second ensemble. We arrive at a quite simple expression for the two cell
operators(

Xout
c

P out
c

)
=
√

1 − κ2ζ2

(
X in

c

P in
c

)
+ κ

√
1 − ε2

(
qin
c,+

−ζ2yin
c,+

)
+ εκζ

(
Fxc,+

Fpc,+

)
, (2.71)

and a similar equation for the sine atomic operators. In the above, we used the
notation in/out for atomic operators at time t = 0 and t = T , respectively. Fxc,+

and Fpc,+ are noise operators 11. In the limit ε2 → 0, which is the case when
decoherence is negligible, Eq. (2.71) reduces to Eq. (2.18) which was presented in
the beginning of the chapter when discussing the swap and squeezing interaction.

2.4.11 Two cell light operators

We can also find the light operators which output cell 2. Using the single cell
equation (2.66) twice, we find

yout,2(t) = yout,1(t) + ãp2(t) = yin(t) + ã {p1(t) + p2(t)}
qout,2(t) = qout,1(t) − ãζ2x2(t) = qin(t) − ãζ2 {x1(t) + x2(t)} . (2.72)

In the previous Sec. 2.4.10, we showed that the time-evolution of the cell 2 op-
erators is independent of the cell 1 operators. The output light operators can
therefore be found in the same way as when we derived Eq. (2.67). Due to the
fact that σjx = +1 for atoms in the first ensemble and σjx = −1 for atoms in the

11The noise operator Fxc,+ is defined by Fxc,+ ≡ (Fx1,+ + Fx2,+) /
√

2. 1 and 2 refers to the
noise operators for atoms in cell 1 and 2. This means that Fxc,+ is a non-local noise operator.
The other noise operators are similarly defined as either the sum or difference of the single cell
noise operators.
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second ensemble some terms cancel, and we find(
yout,2

c,−
qout,2
c,−

)
= ε2

(
yin

c,−
qin
c,−

)
+ κ

√
1 − ε2

(
P in

c

−ζ2X in
c

)
+
(
1 − ε2

)√
1 − κ2ζ2

(
yin

c,+

qin
c,+

)
+

ε
√

1 − ε2

ζ

(
Fpc,− −√

1 − κ2ζ2Fpc,+

−ζ2
{
Fxc,− −

√
1 − κ2ζ2Fxc,+

}) , (2.73)

and similarly for the sine modes. In most cases it is clear from the context
whether the light interacts with one or two atomic ensembles. Therefore, from
now on we will not write the superscript out, 2 on the cell 2 output light opera-
tors but instead just use the superscript out. The above equation for the output
light operators together with Eq. (2.71) for the atomic operators are the final
input-output equations for the full swap and squeezing interaction theory with
decoherence included in the model.

We would also like to have an expression for the variances of the output light
operators such as Var

(
yout

c,−
)

(where the superscript out is used instead of out, 2).
As mentioned earlier, this requires some work since the right hand side of Eq.
(2.73) contains both rising and falling light modes. The problem is that the rising
and falling light modes are not orthogonal. This implies that the variance of a
linear combination of the two light modes cannot be "easily" calculated since

Var
(
Ayin

c,+ + Byin
c,−
) �= A2Var

(
yin

c,+

)
+ B2Var

(
yin

c,−
)
, (2.74)

where A and B are some arbitrary constants. Notice, that the right hand side
and left hand side of Eq. (2.74) are not equal. To solve the problem we have to
decompose the rising and falling modes into two orthogonal modes.

2.4.12 Orthogonal modes

Suppose we have two normalized temporal modes h1(t) and h2(t). We would like
to find the variance of a linear combination of the light operator Ayh1 + Byh2.
Assuming 〈y(t)y(t′)〉 = Var (y) δ(t− t′) and 〈y(t)〉 = 0, a small calculation shows
that

Var (Ayh1 + Byh2) =
[
A2 + B2 + 2AB 〈h1 |h2〉

] · Var (y) . (2.75)

The inner product between two modes is defined by 〈h1 |h2〉 =
∫ T

0
h1(t)h2(t)dt.

We see that only if the two modes are orthogonal 〈h1 |h2〉 = 0, then the variance
can be found from the simple relation:

Var (Ayh1 + Byh2) =
[
A2 + B2

] · Var (y) ⇔ 〈h1 |h2〉 = 0. (2.76)

The right hand side of the input-output equation (2.73) for the light op-
erators contains terms with both exponentially rising and falling modes. It is
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convinient to introduce a mode orthogonal to hc,+ = cos(ΩLt)e−γt/Nc,+. This
mode is denoted hc,+,⊥ or hc,⊥ for short. Using the method of Gram-Schmidt
orthonormalization we find the relation for the modes

hc,− =
√

1 − C2hc,+,⊥ + Chc,+, (2.77)

where the parameter C is defined as

C =
γT

sinh(γT )
. (2.78)

A similar equation holds for the sine modes and also for the modes h− and h+

which are used for the noise operators (such as Fx,−). To be specific, we also have
the relation

h− =
√

1 − C2h+,⊥ + Ch+. (2.79)

Notice, that even though the normalizations of the modes hc,+ and h+ differs
by a factor of 2 (|Nc,+| = |N+| /2), the decomposition into orthogonal modes is
similar for the two cases.

Equation (2.77) for the mode-function h(t) also holds for the light operators
yh. In particular, for the input modes we have the relation

yin
c,− =

√
1 − C2yin

c,⊥ + Cyin
c,+. (2.80)

The input falling light mode has now been decomposed into two orthogonal
modes: the rising mode and the "perpendicular" mode. The expression (2.80)
can now be inserted into the one cell Eq. (2.67) and the two cell Eq. (2.73). This
way, the equations for the output light operators can be rewritten in terms of
orthogonal modes only. The noise operators should also be decomposed into or-
thogonal modes. I will not write out the expressions explicitly since the equations
will be slightly longer and because the rewriting is straight forward.

2.4.13 Atomic Noise

We now have an expression (not written down) for the output light operators
in terms of orthogonal modes only. With this expression, we can calculate the
variances of the output operators since for two orthogonal operators such as yin

c,+

and yin
c,⊥ the variances can be calculated from the following equation

Var
(
Ayin

c,+ + Byin
c,⊥
)

= A2Var
(
yin

c,+

)
+ B2Var

(
yin

c,⊥
)
, (2.81)

where A and B are some factors. If we assume that the input light operators and
the noise operators are vacuum with variance 1/2, we find

Var
(
yout

c,−
)

= t2m · 1

2
+ κ2

mVar
(
P in

c

)
, (2.82)
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where we defined the two parameters

t2m =
sinh (2γT ) +

(
1 − 2ε2

)
(1 − cosh (2γT )) − 2ε2

(
1 − ε2

) (
Z2 − 1

)
(2γT − sinh (2γT ))

e2γT − 1

(2.83)

and
κ2

m =
(
1 − ε2

)
Z2
(
1 − e−2γT

)
. (2.84)

Using Eq. (2.82), it is possible to find the variance of the atomic P in
c operator

from the measured variance of the output light operator yout
c,−. One would also

need the values of the parameters κ2
m and t2m. Usually, κ2

m is measured with the
mean value transfer method described in Sec. 3.6.1, and t2m is calculated using
Eq. (2.83) together with measured values of γ and κ2

m and estimated values of
Z2 and T .

If we measure both the cosine and sine components of the output light, we
have the following relation

Var
(
yout

c,−
)

+ Var
(
yout

s,−
)

= t2m + κ2
m

(
Var

(
P in

c

)
+ Var

(
P in

s

))
= t2m + κ2

m · ΣEPR. (2.85)

From the measurement of the variances of the cosine and sine output light oper-
aters, we can calculate the atomic noise in PN-units ΣEPR. In particular, we can
determine whether the two atomic ensembles are entangled (ΣEPR < 1). I want
to emphasize that the above equation is only true if the temporal mode func-
tion of the output light is chosen to be exponentially falling with time constant
T2 = 1/γ. Equation (2.85) is very important and is used throughout the thesis
when analyzing experimental data and reconstructing atomic variances from the
measured output light variances.

2.5 Final remarks on the light-atom interaction
theories

The input-output equations (2.18) for the swap and squeezing interaction the-
ory differ from the input-output equations (2.6) for the QND interaction theory.
Firstly, the coupling strengths κ2 and κ̃2 are defined differently, and secondly, the
input operators are reduced in the swap and squeezing interaction theory while
not changed in the QND interaction theory.

In this section, we discuss how the two sets of input-output equations are
related. We compare the two coupling constants κ̃2 and κ2, and we also rewrite
κ̃2 into a simple expression involving the optical depth and the probability for
spontaneous emission.
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Comparison between the swap and squeezing interaction theory and
the QND interaction theory

For short interaction times one can Taylor expand the coupling constant κ2 =(
1 − e−2γswT

)
/ζ2 ≈ 2γswT/ζ2. Inserting the definition for the swap rate γsw ≡

ã2ζ2/2 given by Eq. (2.57), we find the relation κ2 ≈ ã2T . This is exactly
the definition of κ̃2 given in Eq. (2.7). So κ2 ≈ κ̃2 for short interaction times
2γswT � 1. For the intermediate coupling strength κ2 = 1 and at our exper-
imental detuning where ζ2 ≈ 1/6.4, we have 2γswT ≈ 0.17. This leads to the
value κ̃2 = 2γswT/ζ2 ≈ 1.12 which is not too far from the value of κ2 = 1.

In the swap and squeezing interaction theory, the input variances are reduced
by the factor 1 − κ2ζ2 while in the QND interaction theory the input variances
are not changed. For ζ2 ≈ 1/6.4 and for small coupling strengths, the factor
1 − κ2ζ2 is close to 1. At the intermediate coupling strength κ2 = 1, the input
variances are reduced by the factor 1 − 1/6.4 ≈ 0.84.

The above small calculations demonstrate that the QND input-output equa-
tions are a good approximation to the swap and squeezing input-output equations
as long as the coupling is weak (2γswT � 1).

However, in most of our experiments the coupling is of intermediate strength
(κ2 ≈ 1). Then, the light-atom interaction is described better with the swap and
squeezing interaction theory than with the QND interaction theory.

In some of the experiments (the generation of two-mode squeezed light de-
scribed in chapter 4 and entanglement generated by dissipation & and steady
state entanglement described in chapter 7) where long interaction times are uti-
lized (2γswT  1), the QND interaction theory is not valid, and the interaction
has to be described by the swap and squeezing interaction theory.

Finally, note that it is possible to realize the QND interaction in multi-level
atoms with a tensor polarizability using special methods such as dynamical decou-
pling. In [39], the QND interaction is realized by switching the probe polarization
from vertical to horisontal on a fast timescale. Using our description of the light-
atom interaction, this can be understood from the fact that ζ2 changes sign by
changing the probe polarization (see below Eq. (2.51)).

Simple expression for the coupling strength

We can try to rewrite the QND coupling constant κ̃2 in terms of some physically
relevant parameters. Using the definition of κ̃ and the constant a(Δ) given by
Eq. (2.28), we find

κ̃2 = a2 |Jx(t)| |Sx(t)|T

=

[
NAσCS

A

]
·
[

NphσCS

A

(γ/2)2

Δ2

]
, (2.86)
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where we used |Jx(t)| = 4NA for the fully pumped ensemble and |Sx(t)| T = Nph/2
and defined the atomic cross section

σCS =

(
λ2

2π

)
a1(Δ)

1√
8
, (2.87)

which has the units of an area. The two terms in Eq. (2.86) can be interpreted as
the optical depth on resonance α and the depumping parameter ηT defined here
as

α =
NAσCS

A
and ηT =

NphσCS

A

(γ/2)2

Δ2
. (2.88)

The depumping parameter is interpreted as the probability of spontaneous emis-
sion and equals the spontaneous emission rate ηsp times the probe duration T
such that ηT = ηsp · T . In total we find the relation

κ̃2 = α · ηT . (2.89)

In general, spontaneous emission is a source of decoherence. But we also see
that without spontaneous emission, the coupling is not possible. The optimal
situation is a high optical depth and a tolerable depumping parameter.
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Chapter 3

Experimental details

3.1 Introduction

In this chapter we present the experimental details which are in common to all of
the performed experiments. The lasers and the experimental setup are described
and the measurement procedures are discussed. We present results for calibration
measurements of the Faraday angle, decay rates and the coupling parameters. It
is described how the atomic state can be characterized using a measurement of the
light which has interacted with the atoms. We demonstrate that it is possible to
initialize the atoms in a CSS and then entangle the two atomic ensembles. Since
many of the experimental details have been described earlier in the PhD theses
by B. Julsgaard [32] and J. Sherson [33], some parts are discussed only briefly.

3.2 Setup

3.2.1 Lasers

Several different lasers are used in the experiments. The atoms are probed using
either a Toptica DFB diode laser or a Titanium-Saphire laser. Two homebuild
external cavity pump lasers denoted the "pump" and the "repump" laser are used
for optical pumping. The laser frequencies are shown in Fig. 2.1 together with
the relevant cesium level structure. Cesium has the ground state 6S1/2 with the
hyperfine levels F = 3, 4, the excited state 6P1/2 with hyperfine levels F ′ = 3, 4
and the excited state 6P3/2 with hyperfine levels F ′ = 2, 3, 4, 5. The pump light
is resonant with the D1 transition, and the repump light is resonant with the
D2 transition. The probe light is blue detuned from the F = 4 → F ′ = 5 D2
transition with detuning Δ. The typical value of the probe detuning is around
Δ = −850 MHz.
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Figure 3.1: Cubic cesium vapor cell. In the end of the stem there is a drop of
metallic cesium.

3.2.2 Cells

The heart of the experiment is the two cesium vapor cells which are custom made
by the company Hellma 1. Such a vapor cell is shown in Fig. 3.1. The cells are
qubic with inside length L = 22 mm. There is a stem attached to the cell, and at
the bottom of the stem there is a drop of metallic cesium. The cesium evaporate
from the metallic drop and passes from the stem to inside the cell through a
small hole. The density of atoms inside the cell depends on the temperature. In
many cases, the experiments are performed at room-temperature, however, the
cells can be heated by a flow of hot air if one wants to increase the density of
atoms.

The cells have been anti-relaxation coated with paraffin by M. Balabas. With
such a coating the moving cesium atoms can bounce of the inside glass surface
many times without depolarizing. The quality of the coating can be estimated
from measured relaxation times T1 and T2. Different coating materials have been
investigated in our group [7]. Recently, relaxation times in the excess of 1 minute
was demonstrated [40] by another group. Such a coating could be useful for our
cells also. In particular, the quantum memory experiment should benefit from
such long relaxation times since the storage time in the dark is directly related
to the relaxation rates.

The cells have two anti-reflection coated windows attached in order to reduce
probe transmission losses (these windows are not shown in the Fig. 3.1). The two
cells are located in separate magnetic shieldings. Several coils are used to create
the bias magnetic field, compensation fields and RF fields. The bias magnetic
field is pointing in the x-direction and has the magnitude of 0.92 Gauss. This
bias field makes the atoms Larmor precess with the frequency ΩL = 322 kHz.
The frequency of the RF field is typically chosen to match the Larmor frequency.

1www.hellma.com
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3.2.3 Optical pumping

The basic setup common to all of the experiments is shown in Fig. 3.2. The
atomic ensembles are polarized by the pump and repump laser light travelling
in the x-direction. The pump and repump light used for the first ensemble is
σ+-polarized such that the atoms in the first ensemble are polarized in the +x-
direction. Similarly, the pump and repump light used for the second ensemble is
σ−-polarized such that the atoms in the second ensemble are polarized in the −x-
direction. The pump and repump light is expanded by lenses to a size comparable
with the cell size. The pump and repump light can be turned on and off using
acousto-optical modulators (AOM’s).

3.2.4 Probing and homodyning

The probe light is propagating along the z-direction and is typically polarized in
the y-direction. The probe light is expanded to a top hat spatial intensity profile
with the diameter of 21 mm using a π-shaper 2. The probe light traverse the two
cells one after the other and is detected by a balanced homodyne setup consisting
of waveplates, a polarizing beamsplitter and two detectors. In Fig. 3.2 both a
half-wave plate and a quarter-wave plate is shown. Depending on the setting of
the waveplates, the Sy or Sz component of the Stokes vector can be measured.

The homodyne signal (which equals the difference between the two detector
signals) is sent to a lock-in amplifier where the Stokes operator is demodulated
at the detection frequency Ωdet = 322 kHz which also equals the atomic Larmor
frequency ΩL. The output of the lock-in amplifier is then send to the computer
where it is measured by a data aquisition card and stored for later data analysing.
More details of the data analysis can be found in Sec. 3.7.

3.2.5 Pulse sequence

Most of our experiments are pulsed, and the pulse sequence used most often is
seen in Fig. 3.3. The atoms are first initialized in the CSS using the resonant
pump and repump light. The atomic ensembles can the be probed by a 1st and
a 2nd probe pulse. We can also apply optional magnetic RF pulses. The first
RF pulse is used to create a mean perpendicular component of the spin (see Sec.
3.4). The second RF pulsed is used when generating unconditional entanglement
(see Sec. 3.8). The pump and repump pulses are shaped by AOM’s, the probe
pulse is shaped by an electro-optical modulator (EOM), and the RF pulses are
generated by a computer card.

2www.pishaper.com
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Figure 3.2: Setup. The figure shows the two oppositely oriented atomic ensembles
and several laser beams denoted probe, Faraday probe, pump and repump. The
probe light and the Faraday probe light can be measured with separate homodyne
setups.

Figure 3.3: Typical experimental pulse sequence. The atoms are first initialized
in the CSS using the pump and repump light. The atomic state can be probe by
a 1st and a 2nd probe pulse. The two magnetic RF pulses are optional. The first
RF pulse can be used to create a transverse spin component, as detailed in Sec.
3.4. The second RF pulse can be used to feed the measured 1st probe results
back to the atomic spins as done when creating unconditional entanglement, as
explained in Sec. 3.8.
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3.3 Faraday angle
In the experiments we utilize a weak Faraday probe to measure the mean spin
〈Jx(t)〉 of each atomic ensemble. The mean spin is an important parameter in
the experiment, since the atomic noise Var (Jy) and Var (Jz) and the coupling
parameters such as κ2 and γsw depends on the mean spin.

The Faraday probe is linearly polarized and is propagating in the x-direction,
as seen in Fig. 3.2. When traversing the atomic ensemble, the polarization of the
Faraday probe is rotated by an angle θF proportional the mean spin 〈Jx〉. Using
Eq. (2.33), we find

θF = −a1 (Δ) γλ2 〈Jx〉
32πAcellΔ

. (3.1)

The Faraday angle and the rotation angle θ of the Stokes vector are related by
the formula 2θF = θ where θ = −a 〈Jx〉. The Faraday probe is on DC (i.e. it is
not pulsed) and is measured continuously in time θF = θF (t). This way, the time
evolution of the mean spin 〈Jx(t)〉 can be monitored continuously.

For a fully pumped ensemble |〈Jx〉| = 4NA, the number of atoms can be
determined from the measured Faraday angle. The number of atoms is related
to the Faraday angle by the equation

NA =

∣∣∣∣32πAcellθF Δ

a1 (Δ) γλ24

∣∣∣∣ , (3.2)

as seen from Eq. (3.1).

3.4 T1 and T2 times
The atomic spins decay in time due to for instance spontaneous emission, atomic
collisions, loss of atoms and magnetic field inhomogeneities. Often, the decay is
modelled as an exponential decay in time. The decay time of the mean spin is
denoted T1 and the decay time of a transversal/perpendicular (to the magnetic
field direction x) spin component is denoted T2. We have

Jx(t) = Jx(0) exp (−t/T1) and J⊥(t) = J⊥(0) exp (−t/T2) . (3.3)

The model with an exponential decay is often a good approximation to the ex-
perimental situation in particular for short times 3.

3In some situations the decay is not neccesarily exponential. The exact time dependence
of the spins depends on the specific decay mechanisms and the quantum state of the atoms
(which often vary with time). When investigating anti-reflection coatings [7], the decay was for
instance modelled as a sum of two exponentials. In the "entanglement generated by dissipation"
experiment discussed in chapter 7, we measured the decay of the mean spin for long times. In
that case, different decay mechanisms (mainly spontaneuos emission from different light fields)
were included in a model used to fit the non-exponential time dependence of the mean spin
〈Jx(t)〉.
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The decay time of the mean spin can be measured by the Faraday probe since
θF (t) ∝ 〈Jx(t)〉. From such a measurement, the T1-time can be determined by
an exponential fit to 〈Jx(t)〉. The decay time of the transversal spin can be mea-
sured by applying an RF magnetic field in the y-z-plane after the optical pumping
stage (see Fig. 3.3). When the RF field is resonant with the Larmor frequency,
a perpendicular component 〈J⊥〉 is created as described later in Sec. 5.3. The
decay of the perpendicular component can be measured by the probe light. From
the measurement of 〈J⊥(t)〉, one can extract the T2-time from an exponential fit.
Note, that the measurement of the T2-time is very similar to the measurement of
the amplitude of the RF magnetic field. The latter measurement is presented in
detail in chapter 5. A different (but very related) method to measure the T2-time
is the Magneto-Optical Resonance Signal (MORS) method [41] also described in
the previous theses [32, 33]. With this method, frequency resolved spectra of the
atomic resonances are measured. The spectra can be fitted and the widths of the
resonances are related to the T2-time.

In the experiments, the probe power and the number of atoms are often varied.
It is therefore important to know how the T2-time depends on these parameters.
As will be clear later, it is convinient to consider the decay rate γ = 1/T2 instead
of the decay time. The probe power is measured as the sum of the light power
hitting the two detectors which are part of the homodyne setup, see Fig. 3.2. In
our experiment, the probe power is measured in Volts where 1 Volt corresponds
to the power of 1.65 mW. For a fully pumped atomic ensemble, the Faraday angle
can be used as a measure for the number of atoms as discussed in Sec. 3.3. To
compare the two cases where either the probe power or the number of atoms are
changed, it is convinient to plot γ as a function of the product of the Faraday
angle and the probe power θF · P (which has the unit deg· V ).

Figure 3.4 shows the measured rate γ as a function of θF · P . For these
measurements, the probe power was fixed to P = 3.5 V and the number of atoms
was changed by heating the cells. Circles represent the decay rate for atoms
in cell 1 and squares for atoms in cell 2. The solid lines are linear fits to the
measured decay rates. For the measured Faraday angles (in the range 8-14 deg),
γ is linear with the Faraday angle θF . This will often be the case when changing
the number of atoms by heating the cells. Later, we show results demonstrating
that the decay rate increases quadratically with the probe power. In Fig. 3.4, we
see that the decay rate is larger for cell 1 than for cell 2. This can partially be
explained by the fact that the probe light power is higher on cell 1 than on cell
2 due to optical losses in between the two cells.

The total decay rate γ includes both the coherent decay rate γsw and the
incoherent decay rate γbad. Using measurements of κ2, it is possible to separate
the two contributions γ = γsw +γbad. This way, one gains better understanding of
both the coherent and incoherent processes. These measurements are described
later in Sec. 3.10.
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Figure 3.4: Vary the temperature, P = 3.5 V probe power. The figure shows
the measured decay rate γ = 1/T2 for the two atomic ensembles (cell 1 with red
circles and cell 2 with blue squares) together with linear fits.

3.5 Detection efficiency

The probe light experiences optical losses due to reflections on the glass cells and
due to optics after the cells. Each cell has four air-glass or glass-air interfaces
which normally introduce around 4% of reflection losses. Since the cells have
anti-reflection coated windows attached on the outside, the total reflection losses
from both cells are reduced by a factor of two down to around 16% (or slightly
more). There are also optical losses in the detection system from lenses, mirrors,
waveplates, beamsplitters and the photodiodes. The total detection efficiency
is denoted ηdet and is typically estimated to be around 0.8. When estimating
the detection efficiency, we include only half of the reflection losses through the
cells. Measurements of losses are presented later in Sec. 6.3.4 when discussing
the memory experiment.

Optical losses can be modelled as a beamsplitter which transmits only part
of the light (see Fig. 3.5). In quantum mechanics one needs to take the vacuum
into account which enters through the unused port of the beamsplitter. When
modelling detection losses, we assume that all detection losses occur after the
light has interacted with the atoms. The light states before/after the detection
losses are denoted output/measured. Using the beamsplitter model, we find the
relation between the measured and output light operators

ymeas(t) =
√

ηdety
out(t) +

√
1 − ηdety

vac(t), (3.4)
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Figure 3.5: Optical losses can be
modelled as a beamsplitter with
transmission coefficient η. In the
quantum mechanical treatment of
the beamsplitter vacuum (dashed
line) will enter through an unused
port.

where ηdet is the intensity detection loss parameter and yvac(t) is a vacuum oper-
ator with zero mean and variance 1/2. We can define qmeas(t) similarly.

Detection losses have a different effect on mean values than on variances. We
have

〈ymeas〉 =
√

ηdet

〈
yout

〉
Var (ymeas) = ηdetVar

(
yout

)
+ (1 − ηdet) · 1

2
, (3.5)

as found from Eq. (3.4). The effect of the detection efficiency is always included
in the data analysis in particular when measuring atomic noise (see Sec. 3.11).
However, to keep things simple when discussing the equations and the results,
the detection efficiency is often not mentioned in the text.

3.6 Kappa calibration
The light-atom coupling parameter κ2 is by far the most important parameter
in our experiment. In the QND interaction theory, the coupling parameter is
denoted κ̃2, in the swap and squeezing interaction theory, the coupling paremeter
is denoted κ2, and when also including bad decay in the swap and squeezing
interaction theory, the coupling constant is denoted κ2

m. When referring to the
coupling parameter in general, I will just call it the κ2 parameter. I.e. the
term "the κ2 parameter" can refer both to κ̃2, κ2 or κ2

m. A large κ2 parameter
is important in almost all applications. Also, the κ2 parameter is used when
estimating the noise of the atomic state in projection noise units.

The κ2 parameter can be measured in several ways. For a single atomic en-
semble, one can estimate κ̃2 by measuring the noise of a thermal unpolarized
atomic ensemble. This method has the advantage that unpolarized states should
be easy to produce. The method has the disadvantage that it can not be used
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to verify the input-output equations for the QND interaction or the swap and
squeezing interaction. When deriving those input-output equations, we assumed
that the atoms are highly polarized and have a large macroscopic spin compo-
nent Jx. Both of these assumptions are not valid for a thermal ensemble. The
input-output equations for the thermal ensemble are therefore different than the
input-output equations for a highly polarized ensemble. For instance, there is no
backaction of light on atoms when measuring on thermal ensembles.

Using the thermal noise method, the projection noise was estimated in the
first paper demonstrating spin-squeezing of an atomic ensemble using QND mea-
surements [42]. The method has also been used more recently in our group’s
paper on single ensemble spin squeezing [5] and in papers on single ensemble
QND measurements for magnetometry purposes [29, 43].

For the situation with two oppositely spin-polarized ensembles, one can find κ̃2

by producing the highly oriented CSS and measure the noise of this state for dif-
ferent number of atoms. To be sure that one really has produced a highly oriented
state, the orientation should be measured using for instance the Magneto-Optical
Resonance Signal (MORS) method [41]. In our experiments, we typically obtain
orientations in the range 98-99.9%. When probing the CSS, the measured out-
put light noise variance should be linear with the number of atoms for a QND
interaction since κ̃2 ∝ NA. This linearity of the output light noise together with
the high orientation is enough to find the κ̃2. Note, that this linearity is actually
only true if the interaction is of the QND type. For the case of the swap and
squeezing interaction, the output light noise is only linear with NA for short inter-
action times 2γswT � 1. The above described method was used in our previous
experiments [16, 17, 18] for estimating the projection noise.

In this thesis, the measurements of the κ2 parameter is done by a "mean
value transfer" method. The mean value transfer method is based on mean value
measurements instead of noise measurements. This is an advantage, since mea-
surements of mean values are less uncertain than measurements of noise. The
method is also valid for long interaction times where the interaction is not of the
QND type but instead of the swap and squeezing type.

Finally, it is possible to estimate the κ2 parameter based on the number
of photons, probe detuning and number of atoms using Eq. (2.86). This is a
bit similar to estimating the projection noise level from the number of atoms
as is done in the magnetometry experiment (see Sec. 5.6.1). This method of
estimating the κ2 parameter is however quite uncertain due to the relatively
large uncertainties in the number of atoms and number of photons.
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3.6.1 Mean value transfer method

The mean value transfer method is now described. The method can be used
to verify the input-output equations for the swap and squeezing interaction. In
particular, it can can be used to measure the coupling constant κ2

m. The language
of canonical operators is used to describe the procedures. The results obtained
with the mean value method do not depend on the detection efficiency ηdet, and
the detection efficiency is therefore neglected. We now go through the different
steps in the procedure.

Input displacements

In many of our experiments, the input light quadrature operators yin(t) and
qin(t) are vacuum operators. However, it is possible to create non-zero mean
values

〈
yin
〉
,
〈
qin
〉

in these operators using electro-optical modulators (EOM’s).
A typical modulation of the light will be on the form

〈
yin(t)

〉
= A cos (ΩLt)

where A here is some amplitude. Notice, that we here choose the modulation
frequency which equals the Larmor frequency of the atoms. With such an input
modulation, a small calculation using the mode functions defined in Sec. 2.4.8
gives

〈
yin

c,+

〉
=
〈
yin

c,−
〉
. Depending on the voltages to the EOM’s, we can choose

whether a mean value is created in y, in q or in both.

Two cell mean value input-output equations

We can write up how the mean values are changed during the light-atom in-
teraction using the full swap and squeezing interaction theory which includes
decoherence parametrized by ε2. The input-output equations for the mean val-
ues are a bit simpler than the input-ouput equations (2.71) and (2.73) for the
operators since noise operators such as Fxc,+ have zero mean. We find the mean
of the output atomic operators(〈Xout

c 〉
〈P out

c 〉
)

=
√

1 − κ2ζ2

(〈
X in

c

〉〈
P in

c

〉)+ κ
√

1 − ε2

( 〈
qin
c,+

〉
−ζ2

〈
yin

c,+

〉) , (3.6)

and the mean of the output light operators(〈
yout

c,−
〉〈

qout
c,−
〉) =

{
ε2 +

(
1 − ε2

)√
1 − κ2ζ2

}(〈yin
c,−
〉〈

qin
c,−
〉)+ κ

√
1 − ε2

( 〈
P in

c

〉
−ζ2

〈
X in

c

〉) .

(3.7)
In the above equations we assumed that

〈
yin

c,+

〉
=
〈
yin

c,−
〉

which is true when the
input light mean values are created with EOM’s as discussed above.

ζ2 measurement

The parameter ζ2 = −14a2/a1 is an important parameter for the swap and
squeezing interaction theory. ζ2 depends on the atomic transition (cesium D2
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Figure 3.6: The figure shows yout
c (t) (solid line) and qout

c (t) (dashed line) as a
function of time. Prior to the probing, an RF magnetic field created equal mean
values 〈Pc(t = 0)〉 = 〈Xc(t = 0)〉 in the atomic collective operators.

transition in our case) and on the probe detuning Δ. Using the expressions for
the vector and tensor polarizabities given in Eq. (2.21), we calculate ζ−2

theory = 6.4
for our usual detuning Δ = −850 MHz.

It is possible to measure ζ2 using the mean value transfer method. Starting
from a CSS, equal mean values 〈Pc(t = 0)〉 = 〈Xc(t = 0)〉 in the collective atomic
spin operators are created using the RF coils. Then, two separate measurements
are performed where 〈yout

c (t)〉 and 〈qout
c (t)〉 are measured, respectively. These

light operators describe the cosine component of the output light operators at
time t and are defined in Eq. (2.62). The mean values of the cosine output light
operators equal

(〈yout
c (t)〉

〈qout
c (t)〉

)
= ã exp (−γt)

( 〈Pc(t = 0)〉
−ζ2 〈Xc(t = 0)〉

)
. (3.8)

The above equation can be calculated using techniques similar to the ones used
when deriving the swap and squeezing input-output equations. In the above it is
assumed that the input light operators have zero mean. The measurements are
shown in Fig. 3.6. From the measured ratio 〈yout

c (0)〉 / 〈qout
c (0)〉, we find the value

ζ−2
meas = 6.3. The measured value is very close to the theoretical value ζ−2

theory = 6.4.
This measurement is therefore supporting that we indeed realize the swap and
squeezing interaction in the experiment.
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Reduction of the light noise

In the swap and squeezing interaction theory, the input light operators are re-
duced by a certain factor. If decoherence is not included in the model, the reduc-
tion equals e−γswT =

√
1 − κ2ζ2. When including decoherence, the situation is a

bit more complicated. However, if only mean mean values of the operators are
considered, the reduction equals ε2+(1 − ε2)

√
1 − κ2ζ2 as seen from Eq. (3.7). It

is a highly non-trivial fact that the input mean values are reduced. For instance,
in the QND interaction theory, the input operators are not reduced.

The procedure used for measuring the reduction of the input mean values
is now briefly discussed. First, an input mean value

〈
yin

c,+

〉
is created in the y-

quadrature. This input modulation can be measured when the atoms are "off".
The atoms are denoted off when the atomic Larmor precession frequency is out-
side the detection bandwidth which is centered around 322 kHz 4. Then, the
atoms are turned "on" by matching the Larmor frequency with the detection
frequency of 322 kHz, and the output light mean value can be measured. The
signal when the atoms are on is〈

yout
c,−
〉

=
(
ε2 +

(
1 − ε2

)√
1 − κ2ζ2

) 〈
yin

c,+

〉
(3.9)

The reduction of the input mean value ε2 + (1 − ε2)
√

1 − κ2ζ2 can be calculated
from the ratio of the two measurements results

〈
yout

c,−
〉
/
〈
yout

c,+

〉
.

The fact that the input light operators are reduced is beneficial in almost all
applications including magnetometry (chapter 5), quantum memory (chapter 6)
and generation of entanglement by near QND measurements. This is because
in these applications the output light is used to estimate an atomic quadrature.
When the input light operator is reduced, the output light operator will be less
noisy and one can estimate the atomic quadrature better.

κ2 measurement

The coupling strength κ2 can be measured with a mean value transfer method
using two probe pulses (see pulse sequence in Fig. 3.3). The procedure is now
described.

We first create an input displacement
〈
qin,1st
c,+

〉
in the 1st probe pulse. The size

of the displacement can be measured when atoms are off. During the interaction
between atoms and the 1st probe pulse, the input light mean value of the 1st probe
pulse is transferred to the atomic 〈Xout

c 〉 operator with a certain gain. Using a
2nd probe pulse, the mean value of the atomic operator can be measured. This
is done by first using a magnetic π-pulse positioned in between the two probe
pulses) to rotate Xc into Pc and then measure the atomic quadrature with a 2nd

4The Larmor precession frequency can be tuned by changing the current through the coils
which generate the static bias magnetic field Bx pointing in the x-direction.
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probe pulse y-quadrature measurement. The following equations describe the
procedure:〈

yout,2nd
c,−

〉
= κ

√
1 − ε2

〈
P out,π

c

〉
(atomic state after π-pulse)

= κ
√

1 − ε2
〈
Xout

c

〉
(atomic state before π-pulse)

= κ2
(
1 − ε2

) 〈
qin,1st
c,+

〉
(3.10)

From the ratio of the two measurement results
〈
yout,2nd

c,−
〉

/
〈
qin,1st
c,+

〉
, we can find

the factor κ2
m = κ2 (1 − ε2). The actual measurements of κ2

m are presented later
in Sec. 3.10.

3.7 Measured data
In the experiment, either Sout

y (t) or Sout
z (t) are measured using the homodyne

detection setup. But let us assume in this section that Sout
y (t) is measured. The

homodyne detector signal is sent to a lock-in amplifier and demodulated at the
detection frequency Ωdet = 322 kHz. The lock-in amplifier has two outputs: a
cosine and a sine component. The outputs of the lock-in amplifier are sent to a
computer data aquisition card. The measured data are on the form

X(t) ∝
∫ t+δt

t′=t

[
Sout

y (t′) cos(Ωdett
′) + iSout

y (t′) sin(Ωdett
′)
]
dt′, (3.11)

where the multiplication with cos(Ωdett
′) and sin(Ωdett

′) are done by the lock-in
amplifier. The integration over the small time δt is done by the lock-in band-
width and the data card sampling rate. The data X(t) is here written using
complex notation where the real part corresponds to the cosine component of
Sout

y (t) and the imaginary part corresponds to the sine component. The data is
denoted X(t), but it should not be confused with the two cell atomic canonical
operators Xc and Xs. We can also write up a simpler expression for the measured
data X(t) ∝ yout

c (t) + i · yout
s (t) by using the definitions of the time-depending

canonical operators given in Eq. (2.62).

Time is treated as a continuous variable in Eq. (3.11). However, data points
are acquired at a certain rate 1/δt using a computer data aquisition card. The
sampling rate δt is typically 80 or 160 μs. One can say that time is discretized.
The data is therefore represented by a column vector denoted �X or the row vector
denoted

�X† =
(
X∗(t1) X∗(t2) ... X∗(tN)

)
. (3.12)

The star ∗ denotes complex conjugation. The † symbol means complex conjugate
and transpose. To keep notation simple, I will not write the arrow over the data
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vector. Instead I use the notation X ≡ �X. If we utilize a probe pulse of T =1 ms
duration, a sampling rate δt = 80 μs and the total number of samples N = 13
in each cycle, the total sampling time will be δt · N = 1.04 ms. In this case, the
data X is a vector of length N = 13.

From the measured X(t) we can calculate the integrated canonical operators.
We have for instance

yout
c,− ∝

∫ T

t′=0

Real [X(t′)] e−γt′dt′

yout
s,− ∝

∫ T

t′=0

Imag [X(t′)] e−γt′dt′. (3.13)

In the above equation the normalization constant is not specified. In the exper-
iment, this constant is found by measuring the shot noise of light, see Sec. 3.9.
For now we just assume that it is possible to normalize the canonical operators
correctly such that vacuum has the variance of 1/2.

In the experiment, the measurements are repeated many times (typically
1000’s of times) and the mean value 〈X(t)〉 is recorded. From the measured
〈X(t)〉, one can calculate the mean value of any output temporal light mode such
as for instance

〈
yout

c,−
〉
. We also record the integrated variances of one particular

mode such as for instance Var
(
yout

c,+

)
. This means that we choose a certain mode

(exponentially falling or rising with time constant 1/γ = T2) and for this mode,
we record the variance. The covariance matrix is also recorded. From this matrix,
it is possible to calculate the variance of any output mode.

3.7.1 Covariance matrix and variances

In this section the covariance matrix is defined and it is explained how the variance
of any output light mode can be calculated from the covariance matrix. The
complex covariance function is defined as

C(t, t′) ≡
〈{

X(t) − X(t)
}{

X∗(t′) − X
∗
(t′)

}
]
〉

= 〈X(t)X∗(t′)〉 − 〈X(t)〉 〈X∗(t′)〉 . (3.14)

X(t) = 〈X(t)〉 is the average value of X(t) (it is an average of independent and
identical measurements and not over time). Time is treated as a continuous vari-
able in Eq. (3.14). For discretized time, we instead define the covariance matrix
as C ≡ 〈

XX†〉 − 〈X〉 〈X†〉 which satisfy C† = C. Since X† is a row vector of
length N and X is a column vector of length N , the outer product C of X and
X† is an N × N matrix.

When analyzing data, we are typically interested in integrating the signal with
some temporal modefunction here denoted u(t). For discrete data u is a column
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vector. We have the integrated signal Xu =
∫ T

0
u∗(t)X(t)dt which in the discrete

version is a inner product Xu = u†X. The normalization of the modefunction
should be

∫ T

0
|u(t)|2 dt = 1 or u†u = 1. Using matrix notation we can easily find

the variance of any mode u as

Var (Xu) =
〈
u†XX†u

〉
= u†Cu. (3.15)

In the experiment, the covariance matrix is recorded and Eq. (3.15) is used when
analyzing the data. Typically, we use the covariance matrix to find the variances
of the exponentially rising and falling modes Var

(
yout

c,+

)
and Var

(
yout

c,−
)

where the
time constant of the exponential mode function is set to T2. However, the vari-
ance Var (yout

u ) of any temporal mode u(t) can be calculated from the measured
covariance matrix.

3.8 Conditional variances and entanglement
We now discuss how entanglement between two atomic ensembles can be gen-
erated by a QND measurement. The procedures and experimental results are
discussed extensively in the thesis [33]. Using this method, entanglement was
first generated in our setup in 2001 [16]. Since this first demonstration, we have
realized that the interaction between atoms and light is better described with
the swap and squeezing model. However, for small or intermediate coupling
strengths, the swap and squeezing interaction and the QND interaction are quite
similar, and both interactions can be used to generate entanglement via a mea-
surement. For small or intermediate coupling strengths, I will therefore say that
the swap and squeezing interaction is of a "near QND" type. In the quantum
memory experiment (chapter 6) and in the magnetometry experiment (chapter
5) the near QND interaction is used to generate entanglement. In chapter 7, the
near QND method for generating entanglement is refined and is used to generate
steady state entanglement.

First assume that light and atoms interact via the QND interaction described
in Sec. 2.3.1. One can utilize a 1st probe pulse to make QND measurements of
the collective atomic operators Pc ∝ (J ′

z1 + J ′
z2) and Ps ∝ (

J ′
y1 + J ′

y2

)
. This is

done by measuring the integrated ouput light operators yout,1st
c and yout,1st

s defined
in Sec. 2.4.8. After the interaction, these atomic operators are squeezed. This is
equivalent to having entanglement between the ensembles. In order to verify the
squeezing, one can utilize a 2nd probe pulse to measure Pc and Ps again. The
2nd pulse measurements results are denoted yout,2nd

c and yout,2nd
s . If the results

obtained from the 1st and 2nd probe pulses are close to each other (or identical
for the case of perfect QND measurements), the atomic operators are squeezed.

For a coherent spin state, the operators Pc and Ps are random variables with
zero mean and variance 1/2. This means that the outcome of the 1st measure-
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ment result is also random. As discussed in [33], this implies that the generated
squeezed state will be displaced away from zero by a random amount. If we re-
peat the sequence with a 1st and 2nd probe pulse several times, the displacement
will take random values in each shot. This means that the squeezing will not be
apparent in the measured variances Var (yout,1st

c ) and Var
(
yout,2nd

c

)
of the 1st and

2nd probe pulse measurements (sine operators are also measured). To verify the
entanglement, we instead have to consider the conditional variance here defined
as the variance of the operator

ycond
c = yout,2nd

c − αyout,1st
c . (3.16)

The optimal α-parameter is the one which minizes the conditional variance
Var

(
ycond

c

)
. In the experiment, the optimal αopt is be calculated from the mea-

sured data. This optimal αopt will have a value between 0 and 1 depending on
how good the QND measurement is. If the QND measurements are perfect, such
that the 1st and 2nd pulse measurement results are identical, we have αopt = 1.
From the measured conditional light variance, we can find the "conditional EPR
variance". For the QND interaction we have (see Sec. 2.3.2)

Var
(
ycond

c

)
+ Var

(
ycond

s

)
= 1 + κ̃2 · Σcond

EPR, (3.17)

where we assumed that input light operators are vacuum. The two ensembles
are conditionally entangled if Σcond

EPR < 1. The term conditional is used since the
entanglement depends on the 1st probe pulse measurement.

We can also find the conditional entanglement for the case of the near QND
measurement. In this case, the conditional light operator is defined as

ycond
c = yout,2nd

c,− − αyout,1st
c,+ . (3.18)

The only differences between this equation and the previous definition (3.16) are
the subscripts which indicate that the temporal mode functions are rising for the
1st pulse and falling for the 2nd pulse. The conditional EPR variance can be
calculated from the output light noise variances using the following equation

Var
(
ycond

c

)
+ Var

(
ycond

s

)
= t2m + κ2

m · Σcond
EPR, (3.19)

where we used the full swap and squeezing interaction theory which has bad de-
cay included, see Eq. (2.82).

We can also consider "unconditional" entanglement. The term unconditional
refers to entanglement which does not depend on the 1st probe measurement re-
sults. Such entanglement can be achieved by doing a feedback in between the two
pulses (see pulse sequence in Fig. 3.3) to the atomic operators Pc and Ps propor-
tional to the 1st probe measurement results yout,1st

c and yout,1st
s . The feedback is in
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the experiment done by RF coils located around the ensembles. With the optimal
feedback gain, the atomic operators will be squeezed with a zero displacement in
each shot. This implies that the entanglement between the two ensembles ΣEPR

can be measured directly using the 2nd probe measurement results Var
(
yout,2nd

c

)
and Var

(
yout,2nd

s

)
using the formula given by Eq. (2.10) (which is valid for the

QND interaction) or the formula given by Eq. (2.85) (which is valid for the swap
and squeezing interaction).

Conditional and unconditional entanglement are basically the same things
for the case of QND or near QND measurements. When creating unconditional
entanglement, the feedback is done by the RF coils. On the other hand, when gen-
erating conditional entanglement, a kind of feedback is done in the data-analysis
stage using the α-parameter when comparing 1st and 2nd pulse results. For the
same experimental settings (number of atoms, number of photons, laser detun-
ings, and so on), the amount of conditional entanglement which can be generated
is equal to the amount of unconditional entanglement which can be generated.
Depending on the application of the entanglement it may be preferable to use
either conditional or unconditional entanglement. For instance, in the memory
experiment we utilize unconditional entanglement while in the magnetometry we
utilize conditional entanglement.

3.8.1 Covariance matrix and conditional variances

The conditional variance can be calculated from the measured covariance matrix.
Typically, the covariance matrix contains information about two probe pulses:
the 1st and the 2nd probe pulse. Let u1 be the modefunction for the 1st probe
pulse and u2 the modefunction for the 2nd probe pulse. u1 and u2 are orthogonal
since the two pulses are not overlapping in time. This means that the inner
product u†

1u2 = 0. Let the data vector X contain both the 1st and 2nd pulse
data. We can calculate the variance Var (Xu1) = u†

1Cu1 of the 1st pulse and the
variance Var (Xu2) = u†

2Cu2 of the 2nd pulse for the specific mode functions u1

and u2.
We choose the mode function u2 to be an exponential falling mode with time

constant T2. This is because we want to use Eq. (2.85) to calculate the atomic
noise in projection noise units from the measured 2nd pulse variances. On the
other hand, the mode function 1 can be optimized to achieve the best conditional
variance. Typically we choose the mode 1 to be exponentially rising with time
constant 1/γm ≈ 1

2
· T2.

The data representing the measurements of the conditional operators ycond
c

and ycond
s is denoted Q. We have Q ∝ ycond

c + i · ycond
s . Q can be calculated from

the measured data X using the formula Q = u†
2X −αu†

1X. We can calculate the
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variance of Q as

Var (Q) = |Q|2 = u†
2Cu2 + α2u†

1Cu1 − α
(
u†

1Cu2 + u†
2Cu1

)
, (3.20)

where we assumed that α is a real number 5. By solving the equation d |Q|2 /dα =
0, we find the minimum

Var (Q)|min = u†
2Cu2 −

(
u†

1Cu2 + u†
2Cu1

)2

4u†
1Cu1

, (3.21)

using the value

αopt =
u†

1Cu2 + u†
2Cu1

2u†
1Cu1

. (3.22)

We see that Var (Q) can be reduced below the 2nd pulse variance Var (Xu2) if
there are correlations between the 1st and the 2nd pulse manifested in non-zero
values of u†

1Cu2 and u†
2Cu1. The conditional variance can then be found using

the equation
Var

(
ycond

c

)
+ Var

(
ycond

s

) ∝ Var (Q)|min . (3.23)
The proportionality constant is found by calculating the shot noise for the u2

mode. Once we have found the conditional light variance, we can calculate the
conditional atomic noise Σcond

EPR using Eq. (3.19).

3.9 Light noise
An important calibration measurement is the measurement of the shot noise of
light. This calibration enables us to find the proportionality constant between
the raw data and the canonical operators X(t) ∝ yout

c (t) + i · yout
s (t).

In polarization homodyning, the large and classical y-polarized mode of the
probe light is used as a local oscillator when measuring the quantum fluctuations
in the x-polarized mode. The homodyne detection is well balanced when classical
intensity noise of the local oscillator is cancelled when subtracting the two detec-
tor signals. When the x-polarized mode is vacuum, the well balanced homodyne
signal is proportional to the amplitude of the local oscillator. In this case we say
that the detection is shot noise limited.

In terms of variances, shot noise limited detection means that the variance
of the data Yu (integrated with some modefunction) is proportional to the light
power. We here chose to denote the data representing the shot noise measure-
ments as Y (t) while leaving the data X(t) to represent some general measurement.
We have

Var (Yu) = snslope · P. (3.24)
5We also assume that the cosine and sine components are uncorrelated.
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Figure 3.7: Light noise measurements. Measured variance as a function of probe
power together with a linear fit.

The proportionality constant is denoted snslope which is an abbreviation for "shot
noise slope". The linearity is checked experimentally for probe powers P=0-10 V.
In order to observe the linearity, it is important that the homodyne detectors are
balanced. If the detectors are not well balanced, one will observe that Var (Yu)
also has a quadratic component proportional to P 2. Fig. 3.7 shows measurements
of the light noise variance for the specific mode function which is exponentially
falling with time constant of T2 = 6.5 ms. Also shown is a linear fit. The variance
scales linearly with the probe power which implies that the detection system is
shot noise limited.

Once we have determined snslope, we can find the proportionality constant
between the raw data and the canonical operator. For the general data Xu we
have

Var (yu) =
Var (Xu)

snslope · P · 1

2
. (3.25)

If we insert Xu = Yy in Eq. (3.25), we find the relation Var (yu) = 1/2 as it should
be since vacuum has the variance of 1/2.

If the shot noise is delta-correlated such that 〈y(t)y(t′)〉 = Var (y) δ(t−t′) then
the variance Var (yu) is independent of the modefunction u(t). Delta-correlation
in time corresponds to a flat frequency spectum. However, in the experiment the
spectrum of the shot noise is not flat due to a peaked detection system (measured
spectra are presented later in Fig. 4.5). This implies that snslope depends on the
modefunction. For exponentially falling modes with temporal mode constant T2,
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Figure 3.8: The shot noise slope as a function of the mode function time T2 for
exponentially falling mode. The data are fitted to a function of the form given
by Eq. (3.26).

snslope has the following empirical dependence on the mode constant

snslope(T2) = a + b · exp (−c · T2 + d) , (3.26)

where a, b, c, d are fit parameters. Data of snslope as a function of T2 is presented
in Fig. 3.8 together with a fit of the form given by Eq. (3.26). For each mode
function time, snslope is found from a linear fit similar to what is shown in Fig.
3.7. We see that snslope vary with only a fraction of a percent within the range
of T2 = 4-12 ms.

3.10 Measurements of κ2

Using the mean value transfer method described in Sec. 3.6.1, the coupling
strength κ2

m = κ2 (1 − ε2) can be measured for a given set of experimental set-
tings including the number of atoms NA, probe power P , probe duration T and
detuning Δ. For the same experimental settings, the transverse relaxation time
T2 is also measured. Measurements of the T2-time was presented earlier in Sec.
3.4. I.e., for a set of experimental settings, we have the two measurements κ2

m

and T2.

There are different ways of expressing the measured data. From the two
measurements, ε2 can be calculated using the swap and squeezing interaction
theory. The two parameters κ2

m and ε2 carry the same information as the two
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Figure 3.9: Vary the temperature, P = 3.5 V probe power. The figure shows the
measured κ2

m with black dots, the calculated ε2 with blue circles and a function
as a red line calculated from the fits to the γ, γsw, γbad presented in Fig. 3.10. The
uncertainties on the κ2

m data points are due to statistical uncertainties.

measured parameters κ2
m and T2. One can also calculate the two parameters γsw

and γbad and the sum of them γ = γsw+γbad = 1/T2. Again, the three parameters
γsw, γbad, γ carry the same information as the two measured parameters κ2

m and
T2.

Vary the number of atoms

We start by presenting measurements of κ2
m and ε2 for probe pulses of duration

T = 1 ms and power P = 3.5 V. For these measurements, the number of atoms
was changed by increasing the temperature of the glass cells. The results are
plotted in Fig. 3.9 as a function of the parameter θF ·P which has the units deg·V.
Black dots represent measurements of κ2

m and blue circles represent measurements
of ε2. We see that κ2

m increases with the number of atoms. On the other hand,
ε2 decreases with number of atoms. Since ε2 = γbad/γ equals the ratio of the bad
decay rate to the total decay rate it is a good thing to have a small ε2. It would
be best to have ε2 = 0, but in the measurements presented here ε2 is around 0.3.

In Fig. 3.10 we instead plotγ, γsw, γbad with red circles, blue squares and green
diamonds, respectively. We also plotted linear fits to the three rates. The linear
dependence of the γ′s (when varying the temperature) is an empirical fact. The
fact that the swap rate γsw is proportional to the number of atoms is very nice and
is expected from the swap and squeezing theory as seen in Eq. (2.57). The bad de-
cay rate γbad is also proportional to the number of atoms. This is expected if the
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Figure 3.10: Vary the temperature, P = 3.5 V probe power. The figure shows
the rates γ, γsw, γbad together with linear fits.

decay is due to two-body collisions 6. Based on the linear fits, we can obtain an
expression for κ2

m as a funtion of the fit parameters since κ2
m = γsw

γ
Z2
(
1 − e−2γT

)
.

This is plotted in Fig. 3.9 as a red line. The measured data points for κ2
m lies

close to this line demonstrating that the two ways of representing the data (by
either the set κ2

m and ε2 or the set γ, γsw, γbad) are consistent.

In Fig. 3.10 we present data for temperatures corresponding to values of θF ·P
in the range 30-50 deg·V. In this range, γ, γsw and γbad are all linear. This is
very encouraging. If this linearity is also true for higher values of θF · P , the
ε2-parameter will decrease towards 0 for large number of atoms. In this case, the
bad decay is negligable and we have a true swap and squeezing interaction as
given by Eq. (2.18). A non-zero ε2-parameter will limit applications of the swap
and squeezing interaction. A very important limitation is for instance that the
maximum value for κ2

m is Z2 (1 − ε2). I.e., it is not possible to reach high values
of κ2

m if ε2 is large. In conclusion, it would be nice if we could increase the number
of atoms even more such that ε2 → 0.

Vary the probe power

We also measured κ2
m and T2 for the case when the probe power was varied. For

the experimental settings of θF ≈ 8.5 deg and probe powers in the range P = 1-

6The probability that two atoms collide is proportional to the density of atoms.
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Figure 3.12: Vary the probe power P . Room-temperature data. The figure shows
the rates γ, γsw, γbad together with linear or quadratic fits.
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9.5 V 7, we obtain the results plotted in Figs. 3.11 and 3.12. The data are plotted
as a function of the product θF · P , but it should be kept in mind that only the
probe power was varied. Figure 3.12 shows that γsw is proportional to the probe
power. This is expected from the theory as seen in Eq. (2.57). On the other hand,
the total decay rate γ and the bad decay rate γbad are both quadratic (with also a
constant and linear term) with the probe power. A quadratic dependence is not
as good as a linear dependence since it means extra bad decay for large values of
θF ·P . Notice, that a decay due to single atom spontaneous emission is supposed
to scale linearly with the number of photons and is therefore not the reason for
the quadratic dependence. The quadratic dependence is not fully understood.
We expect that the quadratic decay could originate from a small misalignment
of the probe beam, imperfect polarization or an inhomogenous intensity profile
of the light.

In the limit of zero probe power, γsw goes to zero and γbad goes to some non-
zero value as seen in Fig. 3.12. The decay rate at zero probe power is called
the decay rate "in the dark" γdark. The decay time in the dark is denoted
T dark

2 = 1/γdark. In Fig. 3.11, we see that ε2 has a minimum. For low probe
powers, the dark decay dominates over the swap rate and ε2 is large. Increasing
the probe power then lowers ε2 until the quadratic component of γbad takes over
and ε2 increases. Compared to the case where the temperature is varied, ε2 is
higher when the probe power is varied.

We have now seen that it is better to increase the temperature than to increase
the probe power, if we want a low ε2. However, increasing the probe power does
have some advantages. In the experiment, increasing the probe power is an easy
way to increase κ2

m since the probe power can be changed simply by turning
a waveplate. On the other hand, increasing the temperature takes a bit more
effort. With our current setup, the temperature is changed by blowing hot air
on the cells. The heating (and in particular the cooling) takes time (time-scale is
around 10’s of minutes to hours). Also, there is the risk of over-heating the cells,
which might result in a damaged cell. The most convinient setting is therefore
room-temperature. However, usually results get better with higher temperatures,
as also visible in ε2 measurements.

3.11 Atomic noise
In almost all applications it is important that the atoms can be initialized in a
coherent spin state. This is done by optical pumping. If the atoms are perfectly
pumped into the F = 4, m = ±4 states, the variance of the atomic operators
should equal Var (Xc) = Var (Xs) = Var (Pc) = Var (Ps) = 1/2. In many ex-

7The DC output of the homodyne detectors is limited by 10 V, so typically we use less than
10 V probe power.
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perimental situations it is not possible to realize the CSS perfectly. Then the
variances of the atomic canonical operators are (slightly) greater than 1/2.

The initial atomic state can be measured using a probe pulse. From the
measured covariance matrix, the variance of the yout

c,− operator can be calculated
(see Sec. 3.7). From this output variance, we can calculate the atomic noise
Var (Pc) by using Eq. (2.82) which is repeated here

Var
(
yout

c,−
)

= t2m · 1

2
+ κ2

mVar
(
P in

c

)
. (3.27)

If κ2
m and ε2 have been measured beforehand (as discussed in Sec. 3.10), t2m can

be calculated using Eq. (2.83). Using the values for κ2
m and t2m, Var (Pc) can

be determined using Eq. (3.27) 8. Var (Ps) can similarly be determined from
the measured Var

(
yout

s,−
)
. The two variances are in most cases equal and we

therefore consider the EPR variance ΣEPR = Var (Pc) + Var (Ps) instead. This
EPR variance is also called the atomic noise in projection noise (PN) units.
Whenever ΣEPR < 1, the two atomic ensembles are entangled. When ΣEPR = 1
we say that the atomic noise is PN-limited.

8One should also include the detection efficiency in the analysis of the noise, see Sec. 3.5.
However, for simplicity the detection efficiency is not included in Eq. (3.27). When stating
numbers for the atomic noise, the detection efficiency has been taken into account.
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In order to fully characterize the atomic state we should also measure the
sum Var (Xc) + Var (Xs). Often this is not done since for atoms in the CSS
there is no reason why this sum should not equal Var (Pc) + Var (Ps). On the
other hand, when producing spin-squeezed atomic states by (near) QND mea-
surements, the operators Xc and Xs are anti-squeezed, leading to higher noise
in the sum Var (Xc) + Var (Xs). In order to measure these variances one needs
to utilize a magnetic π-pulse prior to the probe pulse. This π-pulse rotates the
atomic operators Xc and Xs into Pc and Ps such that they can be measured later
with yout

c,− and yout
s,− measurements. Such measurements are presented in the Sec.

6.3.3. But for now we will focus on the measurements of the atomic P -operators.

Figure 3.13 shows the atomic noise ΣEPR plotted with red circles as a func-
tion of θF · P for the case where the temperature and thereby the number of
atoms is varied. At room-temperature (corresponding to the first point which
has θF ≈ 8.5 deg), the noise is ΣEPR = 1.02(6) 9. The atomic noise is indeed very
close to being PN-limited. For higher number of atoms, the atomic noise increase
up to ΣEPR = 1.08(6) (for the last point which has θF ≈ 13.5 deg). Sometimes
we have also measured the atomic noise in PN units for even higher Faraday
angles than presented in Fig. 3.13. The typical situation is that the atomic noise
variance grows linearly with θF for small Faraday angles. For higher Faraday
angles the noise grows even faster. We are therefore not able to produce the CSS
for high Faraday angles 10. Since most of our experiments require that atoms can
be initialized in the CSS, this is a severe limitation.

In Fig. 3.13 we also plot the atomic noise measured with a 2nd probe pulse
Σ2nd

EPR and the conditional variance Σcond
EPR. The 2nd pulse atomic noise is slightly

lower than the 1st pulse atomic noise. This is expected from the swap and
squeezing interaction theory. The reduction of the atomic noise by the 1st probe
pulse is the subject of chapter 7. The conditional noise for the number of atoms
shown in Fig. 3.13 is in the range Σcond

EPR=0.70-0.75(4). Since Σcond
EPR < 1, the two

atomic ensembles are entangled. The degree of entanglement is similar to what
was obtained in the magnetometry experiment (see Sec. 5.7.1) and slightly better
than what was obtained in the memory experiment (see Sec. 6.3.3).

9The uncertainties on ΣEPR and Σcond
EPR are estimated to be 6%. Uncertainties on the detec-

tion efficiency, the shot noise, the measured output variances, the coupling constant κ2
m and

the reduction of the light noise t2m are included.
10The initial atomic state is created by optical pumping. If the pumping is not perfect, this

leads to higher atomic noise. The problem is most severe for large atom numbers.
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3.12 Conclusions
In this chapter we presented calibration measurements supporting the swap and
squeezing theory. The parameter ζ2 was measured experimentally. We also ver-
ified that the swap rate γsw is proportional to the product θF · P when varying
either the number of atoms or the probe power. This proportionality is predicted
by the swap and squeezing theory. Measurements of the important coupling con-
stant κ2

m was presented, and it was explained how to calculate the atomic noise
from the measured output light noise. The initial atomic state was characterized,
and it was shown that it is possible to reach nearly PN-limited atomic noise. We
also presented results demonstrating entanglement between the two atomic en-
sembles. The ensembles were in this case entangled by a near QND measurement.

We have shown that the interaction gets closer to the pure swap and squeezing
interaction (with ε2 = 0) when the number of atoms is increased. Unfortunately,
the initial atomic noise ΣEPR also increases with the number of atoms. A future
goal would be to realize PN-limited atomic noise with high number of atoms. In
order to do so, this requires perfect optical pumping which can be hard to achieve
for large number of atoms. The combination of a pure swap and squeezing inter-
action and PN-limited atomic noise will improve all the main results discussed in
this thesis.
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Chapter 4

Generation of two-mode squeezed
and entangled light in a single
temporal and spatial mode

4.1 Introduction

In this chapter we will discuss the experimental demonstration of the "generation
of two-mode squeezed and entangled light in a single temporal and spatial mode"
[4]. The squeezed light is generated using two cesium vapor cells kept at room-
temperature. In the experiment, we obtain 3.6 dB of non-degenerate quadrature
squeezing in a single temporal mode. The two entangled sidebands are separated
by twice the Larmor frequency of the atoms which can be widely tuned. The
squeezed state is generated in the same spatial mode as the local oscillator.

The paper [4] includes the theory describing the generation of the entangled
light. The theory was discussed in detail in chapter 2 where it was denoted the
swap and squeezing interaction theory. Also, the paper includes some mean value
measurements where the important parameter Z2 = ζ−2 was determined. These
measurements were presented earlier in Sec. 3.6.1. Since both the theory and the
measurement of Z2 have been presented, we focus in this chapter on the noise
measurements demonstrating the squeezed light generation and on the charac-
terization of the spectrum and the temporal modes of the squeezed light.

Quadrature entangled or squeezed light has application in many areas of
physics including quantum cryptography [44], teleportation [45], computation
[46] and quantum non-demolition (QND) measurements [42].

In many situations where light is used to measure some parameter, the shot
noise of the probing light makes the measurement uncertain. In this case, utilizing
quadrature squeezed light can improve the signal to noise ratio leading to a better
estimate of the parameter of interest. One important application of squeezed light
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is for gravitational wave detection [47]. Regarding the experiments performed in
our group, squeezed light may help in many of them including generation of en-
tanglement between the two ensembles [16] and quantum teleportation [18]. In
atomic magnetometry, squeezed light can improve the magnetometer sensitivity
beyond the shot noise limit as demonstrated recently in [48].

The typical way to produce entangled or squeezed light is to use a sub thresh-
old optical parametric amplifier (OPA) first demonstrated in [49]. The method
is still of importance and the attainable degree of squeezing is getter higher and
higher [50]. Atomic vapour has been used for generating entangled light using the
method of four wave mixing with an atomic beam [51] and later also with cold
atoms [52, 53]. Using polarization self-rotation squeezed light has been produced
[54, 24]. The above mentioned methods generate multimode squeezed light in
the sense that the output light contains many pairs of freqencies which are in-
dependently entangled. This can be a disadvantage in for instance quantum
cryptography. If the many modes carry the same information this might com-
promise the security since many copies of the same state is sent to the reciever.
An eavesdropper might detect one of the many multiple modes unnoticed if not
all of them are measured by the reciever.

The entangled light generated in our experiment is in a single spatial mode
and in a near single temporal mode. As discussed, this might be an advantage in
cryptography protocols. Also, the entangled light is generated by atoms, and the
light is therefore naturally compatible with the same kind of atoms in terms of
wavelength and bandwidth. This is of importance if the entangled light should
be interfaced with atoms in an application.

4.2 Theory

The two-mode squeezed light is generated using two spin-polarized atomic en-
sembles. The setup is shown in Fig. 4.1 and the pulse sequence is shown in Fig.
4.2. The atomic ensembles are located in a bias magnetic field Bx pointing in
the x-direction leading to the precession of the atomic spins with the Larmor
frequency ΩL.

During the initial optical pumping stage, the atoms in the first (second) en-
semble are prepared in the ground state F = 4, m = 4 (F = 4, m = −4), where
we chose the x-direction as the quantization axis. The level schemes of the atoms
in the two atomic ensembles are depicted in Fig. 4.3. In the theory describing
the light-atom interaction, only two ground state levels (m = ±4 and m = ±3)
for each atomic ensemble are included in the model. In the level-scheme picture,
the bias field splits the relevant ground state levels m = ±4 and m = ±3 by the
Larmor frequency.
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Figure 4.1: The two atomic ensembles are located in a bias magnetic field Bx and
oppositely polarized using pump and repump light. The probe light is propagat-
ing in the z-direction, interacting with the two atomic ensembles, and the output
light is measured with the homodyne detection setup.

Figure 4.2: Pulse sequence. First, op-
tical pumping with pump and repump
light intializes the two atomic ensem-
bles in oppositely oriented states. Then,
the probe light with duration T interacts
with the two atomic ensembles.

After the optical pumping stage, a pulse of probe light interacts with the
two ensembles. The input light is linearly polarized in the y-direction. The y-
polarized mode serves as a strong and classical local oscillator depicted in the
level scheme in Fig. 4.3 as a sum of right hand and left hand circular polarized
light. The probe light is detuned from the atomic D2 transition by the amount
Δ = −850 MHz.

The x-polarized mode is initially in the vacuum state, but during the light-
atom interaction, atoms in the two ensembles emit x-polarized photons propa-
gating in the forward direction 1. Since the ground state energy levels are split
by the Larmor frequency, the x-polarized photons are emitted in the upper and
lower sidebands with frequencies ω± = ω0 ± ΩL, where ω0 is the optical fre-
quency of the local oscillator light. In the level scheme depicted in Fig. 4.3,
the x-polarized upper and lower sideband modes are denoted a+ and a−. The
emission of x-polarized photons is accompanied by the creation or annihilation
of atomic collective excitations in either the first or second ensemble. The level
scheme picture of the interaction is also discussed in Sec. 7.2.3. As will be shown

1Spontaneous emission of photons propagating in the forward direction is enhanced by the
optical depth as compared to spontaneous emission of photons which are propagating in other
directions.
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Figure 4.3: Level structure and light fields for the two atomic ensembles. â+ and
â− are annihilation operators for the upper and lower sidebands. b̂†1 and b̂†2 are
creation operators for the collective atomic excitation for the first and second
ensemble. χ1 and χ2 are coupling strengths.

in the next section and also demonstrated in the experiment, the photons emitted
in the upper and lower sidebands are correlated (entangled). Also note that the
entangled photons are emitted in the same spatial (flat-top) mode as the local
oscillator.

4.2.1 Input-output equations

The swap and squeezing interaction theory presented in chapter 2 was first in-
troduced in our paper [4] where it was used to explain how entangled light was
generated from the atomic ensembles. In the absence of atomic decoherence, the
swap and squeezing interaction theory leads to the input-output equations given
by Eq. (2.18) which for the light variables read

yout
c,− =

√
1 − κ2

Z2
yin

c,+ + κP in
c , yout

s,−=

√
1 − κ2

Z2
yin

s,+ + κP in
s ,

qout
c,− =

√
1 − κ2

Z2
qin
c,+ − κ

Z2
X in

c , qout
s,−=

√
1 − κ2

Z2
qin
s,+ − κ

Z2
X in

s . (4.1)

If the initial atomic state is vacuum 2 then for long interaction times 2γswT  1
where κ2 → Z2 we obtain

Var
(
yout

c,−
)

= Z2/2, Var
(
yout

s,−
)
=Z2/2,

Var
(
qout
c,−
)

= 1/
(
2Z2

)
, Var

(
qout
s,−
)
=1/

(
2Z2

)
. (4.2)

We see that the output cosine and sine light modes are squeezed by the amount Z2

in the variance in the q-direction. For our experimental detuning Δ ≈ −850 MHz
2The variances of the canonical operators equal Var (Xc) = Var (Xs) = Var (Pc) =

Var (Ps) = 1/2 for the vacuum state.
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we should expect the squeezing of a factor Z2 ≈ 6.4 in the variance. Two-mode
squeezing of the cosine and sine mode is equivalent to entanglement between the
upper and lower sidebands (see Sec. 2.3.2) which were discussed in the previous
section.

The input-output equations (4.1) describe coherent evolution and predict
squeezing by a factor Z2 in the variances in a single temporal mode (an expo-
nentially falling mode with time constant 1/γsw). However, in the model leading
to Eq. (4.1), atomic decoherence due to for instance collisions and spontaneous
emission was neglected.

When including atomic decoherence, several things change. First, the squeez-
ing is instead emitted in a temporal mode with time constant T2 (which is faster
than 1/γsw). Second, the expected degree of squeezing decreases 3. Third, not
only a single temporal mode will be squeezed. This can be understood by the
following argument. While the squeezed light leaves the cells, the atomic state
decays back to the initial CSS due to bad decoherence processes. The squeez-
ing process then starts anew in an incoherent fasion leading to several squeezed
temporal modes.

4.3 Experimental results

In the experiment, a 10 ms long probe pulse is sent through the two atomic en-
sembles (see Figs. 4.1 and 4.2) and the output light is measured with a homodyne
setup consisting of waveplates and two detectors. In polarization homodyning the
quadratures of the x-polarized light can be measured with the help of the strong
y-polarized local oscillator. Depending on whether we choose a half wave plate
or a quarter waveplate, we can measure either the y or the q-quadrature of the
output light. Since the squeezing is in the q-quadrature, we utilize the quarter
waveplate for the noise measurements.

4.3.1 Covariance matrices

When measuring the output light, the signals from the two detectors are sub-
tracted and sent to a lock-in amplifier. The lock-in detection frequency is set
to 322 kHz which also equals the atomic Larmor precession frequency ΩL. The
output of the lock-in amplifier is sent to the computer and the data X(t) ∝
qout
c (t) + i · qout

s (t) (here written using complex notation) is sampled as described
in Sec. 3.7. The time-dependent quadrature operators qout

c (t) and qout
s (t) are

3For a non-zero ε parameter (which describe the decoherence processes) the degree of squeez-
ing can be calculated from Eq. (2.72) by using the orthogonal mode decompostion method
explained in Sec. 2.4.12.
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defined in Eq. (2.62). In the experiment both the mean value 〈X(t)〉 and the
covariance matrix CX(t, t′) (which is defined in Eq. (3.14)) are recorded. In the
noise measurements presented in this chapter, the measured mean values are close
to zero.

In the experiment, we perform two separate noise measurements. In one of
the measurements the shot noise of light is recorded. The data representing the
"shot noise measurement" is denoted Y (t) ∝ qin

c (t) + i · qin
s (t). In these measure-

ments the atoms are not present. This is achived experimentally by changing the
Larmor frequency ΩL such that it is outside the detection bandwidth which is
a few kHz wide and centered around 322 kHz. This covariance matrix for the
shot noise measurement is denoted CY (t, t′). In the other measurement, the out-
put light noise is measured when the atoms are present (with Larmor frequency
ΩL = 322 kHz) such that squeezed light is generated. The data representing the
"light noise measurement" is denoted X(t). The covariance matrix for the light
noise measurement is denoted CX .

As described in Sec. 3.7, data points are acquired at a certain rate 1/δt, where
δt = 160 μs for the experiments presented in this chapter. For a total measure-
ment time T = 10.24 ms (corresponding to a 10.24 ms probe pulse), this gives
N = 64 data points. This way the measured covariance function is actually a
N × N matrix. Similarly the data X(t) is a vector of length N .

In Fig. 4.4 we plot the difference between the light noise and the shot noise
covariance matrices |CX | − |CY |. We see that along the diagonal the light noise
covariance matrix has smaller values than the shot noise covariance matrix. This
is a clear evidence of squeezed light. The noise reduction is largest at t = 0
and then gets smaller with increasing times (along the diagonal). This is related
to the fact that the squeezing is in a falling exponential temporal mode. The
temporal modes will be discussed later in more detail.

4.3.2 Calculation of the spectrum

From the covariance matrix, several things can be calculated such as the spec-
trum of the noise and the degree of squeezing for any temporal mode. We will
first describe how to calculate the spectrum from the covariance matrix. The
spectrum is here defined as the norm squared of the Fourier transform of the
signal. Neglegting constants (such as 2π), the Fourier transform of X(t) is given
by

X(ω) ∝
∫ T

0

X(t)e−iωtdt, (4.3)
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Figure 4.4: The difference between the light noise covariance matrix |CX | and
the shot noise covariance matrix |CY |.

where T is the total duration of the pulse of light. The spectrum is then

S(ω) ∝ X(ω)X∗(ω) ∝
∫ ∫

X(t)X∗(t′)e−iω(t−t′)dtdt′. (4.4)

By averaging over measurements and using the definition of the covariance func-
tion CX(t, t′) = 〈X(t)X∗(t′)〉 (assuming zero mean values), we find

〈S(ω)〉 ∝
∫ ∫

CX(t, t′)e−iω(t−t′)dtdt′. (4.5)

This can also be written in matrix notation (when discretizing the time) as

〈S(ω)〉 ∝ E†CXE, (4.6)

where E is the column vector E = (e−iωt1 , e−iωt2 , ..., e−iωtN )
tr, t1, t2, ..., tN are the

discretized time points and tr denotes transpose.

4.3.3 Measured spectra

We now present the measured spectra for the shot noise and the light noise mea-
surements. The light noise measurement was repeated 40.000 times and the shot
noise measurement was repeated 30.000 times. From the measured covariance
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Figure 4.5: Power spectrum of the output light noise. Dashed line represent the
shot noise of light. Solid line represent the noise when atoms are present. The
dip in the spectrum at zero frequency offset shows that the light exiting the cells
is squeezed.

matrices, we calculate the noise spectra using Eq. (4.6). The results are plotted
in Fig. 4.5 which shows the noise power as a function of frequency offset in kHz.
A frequency offset of zero corresponds to the 322 kHz lock-in detection frequency.
The dashed line shows the shot noise spectrum of the probe light when the atoms
are not present. The spectral shape of the spectrum of the shot noise is a feature
of the detection system, in particular of the lock-in amplifier detection band-
width. The light noise spectrum is shown in Fig. 4.5 with a solid line. When
the atoms are present, a dip in the spectum occurs. The dip is a feature of the
squeezing of the output light. As seen in Fig. 4.5, the width of the dip is a few
hundreds of Hz. As expected from the theory, the width is comparable to the
inverse of the decay time of the atomic coherences measured independently to be
γ = 1/T2 = 1/ (5.7 ms) = 175 Hz.

As a remark, note that the light noise spectrum is asymmetric. Using the
definition of the covariance function given by Eq. (3.14) and the formula for the
spectrum given by Eq. (4.5), we conclude that the spectrum is asymmetric only
if the covariance function has an imaginary part. The covariance function is
imaginary only if there are correlations between the cosine and sine components
of the output light operator since

CX(t, t′) = 〈X(t)X∗(t′)〉 ∝ 〈(
qout
c (t) + i · qout

s (t)
) (

qout
c (t) − i · qout

s (t)
)〉

. (4.7)

We believe that the observed (but small) correlations between the cosine and sine
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Figure 4.6: For each of the uncorrelated modes vn, the variance Var (Xn) normal-
ized to shot noise is plotted (see appendix A for how the variances are calculated).
The first mode is squeezed by 3.6 dB.

components might be due a small difference between the Larmor frequency ΩL

and the detection frequency of 322 kHz.

4.3.4 Temporal mode analysis

We now turn to the temporal mode analysis of the data. According to the
Karhunen-Loéve theorem [55, 56], we can find a set of mutually uncorrelated
modes by performing a spectral decomposition of the CX matrix. The interesting
modes are the eigenfunctions and the variances of these modes are the eigen-
values. Details of how to perform the spectral decomposition can be found in
appendix A.

From the measured covariance matrices CX (the light noise) and CY (the shot
noise) 4 we find a set of mutually uncorrelated modes. The variances of these
modes normalized to the shot noise (see Eq. (A.12)) are sorted in ascending order
and plotted in Fig. 4.6. The total number of eigenvalues (and modes) is equal
to the size of the covariance matrix which is 64 for this specific measurement.
In Fig. 4.6, we see that the first mode is squeezed by 3.6 dB. Besides this first
mode, there is a whole background of modes which are either slightly squeezed
or slightly anti-squeezed by up to 1 dB. The structure of the squeezed modes is

4Since the spectrum of the shot noise is not flat (as seen in Fig. 4.5), both CX and CY are
needed to find the interesting uncorrelated modes. For more details see appendix A.
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Figure 4.7: Absolute value of the first and second temporal mode functions. The
first mode is fitted to an exponential falling function.

in qualitative agreement with the theory including decoherence which predicts a
single dominant squeezed mode and several less squeezed modes.

We now estimate the statistical uncertainties on the eigenvalues plotted in
Fig. 4.6. The eigenvalues are calculated from the measured covariance matrices,
which in the experiment are calculated by averaging the results obtained with
40.000 measurement cycles. To see how the eigenvalues depends on the numbers
of averages, we calculated the degree of squeezing/anti-squeezing (eigenvalues)
for the first and last mode using 10.000, 20.000, 30.000 and 40.000 averages. For
the four different number of averages, we obtained the degree of squeezing of -3.9
dB, -3.67 dB, -3.65 dB and -3.64 dB for the first mode and the degree of anti-
squeezing by +1.56 dB, +1.22 dB, +1.04 dB and +1.00 dB for the last mode.
We see that both the squeezing and anti-squeezing gets lower when averaging
more data. However, the numbers are not that different, so we expect that more
averages (> 40.000) would not change the degree of squeezing as plotted in Fig.
4.6 dramatically.

The absolute value of the first modefunction |φ1(t)| is plotted in Fig. 4.7
together with a fit to an exponentially decaying function. The decay time for the
exponential fit is 5.5 ms which is very close to the measured T2 = 5.7 ms. The
shape of the first temporal mode function is in agreement with the theory which
predicts squeezing in an exponentially falling temporal mode with time constant
T2.
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Figure 4.8: Real and imaginary part of the second temporal mode function.

The second mode function is also plotted in Fig. 4.7 which shows the absolute
value of the modefunction and in Fig. 4.8 which shows the real and imaginary
part of the modefunction. This second temporal mode function is very noisy.
The absolute value of the modefunction is slightly rising in time.

As a comment, it should be noted that the temporal mode of the squeezed
light can in principle be shaped by varying the intensity of the probe light. This
way, it should be possible to for instance achieve a flat top (or an exponentially
rising) squeezed temporal light mode. Such temporal modes would be interesting
if one would like to couple the squeezed light to a different atomic ensemble.

4.4 Conclusions

We have demonstrated a squeezed light source based on the swap and squeezing
interaction of light with two spin-polarized atomic ensembles. The experimentally
obtained degree of squeezing was 3.6 dB. From the theory where atomic deco-
herence and light losses are neglected, we expected 10 log10(Z

2) dB of squeezing.
For our experimental probe detuning where Z2 ≈ 6.4, this corresponds to 8 dB
of squeezing. The fact that the measured squeezing is lower than the expected
is contributed to atomic decoherence and light losses (detection efficiency). De-
tuning the probe light further away from the atomic resonance will increase the
expected degree of squeezing. However, this comes at the cost of a lower swap
rate γsw and less coherent interaction compared to decoherence processes such as
atomic collisions. In this experiment, the atoms were kept at room-temperature.
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Increasing the number of atoms might have positive effects on the squeezed light
generation since the coherent part of the interaction in this way can be increased
compared to decoherence processes such as spontaneous emission.

The squeezed light is generated in a near single mode with a bandwidth of a
few hundreds of Hertz. This kind of narrowband squeezing can be of relevance for
some quantum cryptography protocols. The light is naturally compatible with
atomic ensembles or atomic memories based on the same atom (cesium) since the
wavelength of the squeezed light match the wavelength of the atomic transition
(cesium D2 transition in our case). Furthermore, the squeezing is centered at
the Larmor frequency of the atoms and has the bandwidth comparable to the
inverse atomic decay time 1/T2. The squeezed light can for instance be used in
combination with an atomic ensemble for improved QND measurements.
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Chapter 5

Atomic magnetometry

5.1 Introduction

In this chapter I describe the "Quantum Noise Limited and Entanglement-Assisted
Magnetometry" experiment. The results have been published in Physical Review
Letters [2]. In the experiment, two ensembles of cesium atoms are used as a sen-
sor for radio-frequency (RF) magnetic fields. Our sensor has a high sensitivity to
the magnetic field, and the sensitivity is mainly limited by the projection noise
(PN) of atoms. Furhermore, we demonstrate that entanglement between the two
atomic ensembles can improve the atomic magnetometer.

In atomic magnetometry [57], one uses the Faraday interaction of a spin po-
larized atomic ensemble with light to measure the strength of a magnetic field.
The sensitivity of an atomic magnetometer is limited by quantum mechanical
principles. The measured signal will be noisy due to shot noise (SN) of the prob-
ing light, intrinsic atomic spin projection noise and backaction noise arising from
the measurement.

Entanglement can reduce the atomic noise below the projection noise and
thereby lead to better sensitivity as discussed in theoretically in [58, 59, 60, 61,
62, 63, 64, 65]. Entanglement of a few ions has been used for spectroscopy [66, 67].
There have also been measurements with atomic ensembles demonstrating sub
projection noise sensitivity. These include interferometry with 103 atoms [68] and
Ramsey spectroscopy with up to 105 atoms [15, 69].

Backaction evading measurements can be done using QND techniques. In
a QND measurement, an atomic spin component Jz can be measured without
being disturbed. Instead, the backaction noise piles up in the conjugate spin
component Jy. In the field of atomic magnetometry, QND measurements are of
great interest. In our group, QND measurements are implemented using a two
cell setup [16]. It is also possible to achieve a backaction evading measurement
using stroboscopic probe light as demonstrated recently in [70].

77



The Faraday rotation signal is noisy due to the shot noise of the probe light.
The shot noise can be reduced by utilizing squeezed light. In [48] the noise on
the Faraday rotation signal was reduced by utilizing squeezed probe light.

In this chapter, we demonstrate backaction evading measurements of the mag-
netic field. We also show that the magnetometer sensitivity is limited mainly by
the projection noise of atoms. The combination of a large number of atoms
NA ≈ 1.5 · 1012 and near projection noise limited sensitivity enables us to achive
high sensitivity to the magnetic field in the sub-femtoTesla/

√
Hz range.

Furthermore, we demonstrate that using entanglement between the two en-
sembles created by a near QND measurement, the atomic noise can be reduced
below the projection noise limit. This way, entanglement is used to improve the
uncertainty on the measurement and improve our magnetometer signal to noise
ratio (SNR).

5.2 Interaction in terms of spin and Stokes vector

When discussing atomic magnetometry, the interaction between atoms and light
is typically described in terms of the total spin vector �J = (Jx, Jy, Jz) of an ensem-
ble of atoms and the Stokes vector �S = (S1, S2, S3) describing the polarization of
the light. Previously, we denoted the Stokes vector �S = (Sx, Sy, Sz), but to match
the notation in this chapter with the notation used in the article [2], we here use
the �S = (S1, S2, S3) notation instead. In chapter 2, the equations describing the
swap and squeezing interaction were written in terms of the canonical variables.
We will start by translating those equations into the spin/Stokes vector language.

To keep the notation simple, the vector �J is in this chapter understood as a
rotating frame operator while the vector in the lab frame is denoted �J lab 1. We
can define dimensionless integrated Stokes operators such as

S in
2c ∝

∫ T

0

S in
2 (t) cos (ΩLt) e+γtdt

Sout
2c ∝

∫ T

0

Sout
2 (t) cos (ΩLt) e−γtdt, (5.1)

where the normalization is chosen such that a coherent light state has the vari-
ances Var (S2c) = Var (S3c) = Φ/2 (and similar for the sine operators). Φ is here
defined as the number of photons in a pulse. The variance of Φ/2 is denoted the
shot noise of light. For convinience I do not write the subscript + or − on the
integrated Stokes operators. The input light operators are in this chapter always

1This is a bit different than in chapter 2 where a prime was used to denote rotating frame
spin-operators.
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integrated with an exponentially rising mode function and the output light oper-
ators with an exponentially falling mode function. The input-output equations
(presented later in Eq. (5.2)) rely on that the time constant of the mode function
is 1/γ = T2. However, one might improve SNR by using a time constant Tm

shorter than T2. This is discussed later in Sec. 5.6.2.

5.2.1 Swap and squeezing interaction

We can directly translate the swap and squeezing input-output equations given
by Eq. (2.18) if we insert the definitions of the canonical operators (given by Eq.
(2.2) for atomic variables and Eq. (2.5) for light variables) and the definition of
the integrated Stokes operators given by Eq. (5.1) 2. We find

Sout
2c = t · S in

2c + κ

√
Φ

2 |Jx|
(
J in

z1 + J in
z2

)
Sout
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(
J in

y1 + J in
y2

)
Sout

3c = t · S in
3c − ζ2κ

√
Φ

2 |Jx|
(
J in

y1 − J in
y2

)
Sout

3s = t · S in
3s + ζ2κ

√
Φ

2 |Jx|
(
J in

z1 − J in
z2

)
Jout

y1 − Jout
y2 = t · (J in

y1 − J in
y2

)
+ κ

√
2 |Jx|

Φ
S in

3c

Jout
z1 − Jout

z2 = t · (J in
z1 − J in

z2

)− κ

√
2 |Jx|

Φ
S in

3s

Jout
z1 + Jout

z2 = t · (J in
z1 + J in

z2

)− ζ2κ

√
2 |Jx|

Φ
S in

2c

Jout
y1 + Jout

y2 = t · (J in
y1 + J in

y2

)− ζ2κ

√
2 |Jx|

Φ
S in

2s, (5.2)

where we used the definition t ≡√
1 − ζ2κ2. For our setting of the probe detuning

Δ = −850 MHz, ζ−2 ≈ 6.4. For a fully pumped ensemble, we have |Jx| = FNA

where NA is the number of atoms in a single cell and F = 4 is the ground state
hyperfine quantum number.

2Notice the sign in the definition of Xs = − (Jz1 − Jz2) /
√

2 |Jx| changes the signs in Eq.
(5.2) as compared to Eq. (2.18) when a term (Jz1 − Jz2) is present.
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5.3 A pulsed radio frequency magnetometer and
the projection noise limit

In this section, we describe how an atomic ensemble can be used as a sensor for
magnetic fields. We consider the special case of measuring RF magnetic fields
with a pulsed scheme. The atomic ensemble can be described in terms of the spin
vector �J depicted in Fig. 5.1. The atoms are first polarized in the x-direction
by optical pumping (see pulse sequence in Fig. 5.4b). In this case the atomic
spins can be represented as a long vector with an uncertainty disk on the top.
The length of the vector is Jx = 4NA which is a macroscopic classical value.
On the other hand, the transverse spin components Jy and Jz are small and can
be treated as quantum variables which must satisfy the Heisenberg uncertainty
relation ΔJy ·ΔJz ≥ |Jx| /2. For atoms in a CSS, the transverse spin components
have equal uncertainties ΔJy = ΔJz =

√|Jx| /2. The atoms are as usual located
in a bias magnetic field pointing in the x-direction such that a transverse spin
component (Jy or Jz) will precess at the Larmor frequency ΩL.

We then apply an RF pulse with amplitude BRF for a certain duration τ . This
creates a transverse spin component

〈J⊥〉 = ΓBRFJxT2 [1 − exp (−τ/T2)] /2. (5.3)

Γ = ΩL/B = 2.2 · 1010 rad/ (sec · Tesla) for cesium. Often one uses the notation
Γ = gF μB/� where gF is the Landé factor (F is the hyperfine quantum number,
F = 4 in our case) and μB is the Bohr magneton. T2 is the transverse spin
coherence time. In a pulsed scheme, the atoms decay slower during the RF pulse
(when no light is on the atoms) than during the probing pulse (where the probe
light is on the atoms). In Eq. (5.3), T2 should be understood as the coherence
time during the RF pulse. For a pulsed scheme, this coherence time equals the
decay time in the dark T dark

2 .
The transverse spin component can be measured with a pulse of light. As-

suming that the only noise source is the PN of atoms, we can find the minimal
detectable field by equating Eq. (5.3) to the projection noise ΔJ⊥ =

√|Jx| /2.
The result is

Bmin =
[
Γ
√

|Jx| /2T2 {1 − exp (−τ/T2)}
]−1

. (5.4)

We call this the "minimal detectable field", but it should really be understood as
the standard deviation ΔB of the measurement of the magnetic field using the
measurement time ≈ τ . Notice that Bmin depends on T2 and τ . This dependence
is discussed in detail in Sec. 5.4.

The PN-limited sensitivity is defined as SPN ≡ Bmin

√
τ and has the unit

Tesla/
√

Hz. It equals the standard deviation of the measured field if one uses
repeated measurements for a total duration of 1 second 3.

3Repeating the same measurement M times for a total duration Mτ improves the uncertainty
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Figure 5.1: Radio-frequency magnetometer. The atomic spin �J precesses in
crossed dc and RF magnetic fields (the blue dashed spiral). The precessing �J
imposes an oscillating polarization rotation on the probe light.

5.3.1 Projection noise limited...

In the thesis and in particular in this chapter the term "projection noise limited
..." is used with different meanings. To make sure that there is no confusion, I
here go through the different expressions.

PN-limited atomic noise

If the atomic noise in PN-units is ΣEPR = 1, we say that the atomic noise is
PN-limited. The CSS is an example of an atomic state with PN-limited atomic
noise. The two atomic ensembles are entangled if ΣEPR < 1. The noise of an
entangled atomic state is therefore below the PN limit.

PN-limited measurement

The magnetometer signal is proportional to Sout
2c + i · Sout

2s (here written using
complex notation). For simplicity, in the following we only consider the cosine
component of the signal. In our two cell magnetometer, the signal Sout

2c carries
information of the atomic spin component Jz1 + Jz2 . Assume the mean signal
can be written as 4 〈

Sout
2c

〉
= κ

√
Φ

2 |Jx| 〈Jz1 + Jz2〉 . (5.5)

ΔB on the magnetic field by the factor
√

M . The sensitivity is however the same independent
of the number of averages M (and the averaging time Mτ).

4In Eq. (5.5) we only assume that the mean signal 〈Sout
2c 〉 is proportional to the mean atomic

spin 〈Jz1 + Jz2〉. The proportionality constant is here denoted κ
√

Φ
2|Jx| .
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If the variance of the signal satisfy 5

Var
(
Sout

2c

) ≤ κ2 · Φ

2
, (5.6)

we say that the measurement (of the spin component) is PN-limited. If we use
the measurement of the spin to measure BRF, we say that the measurement of
BRF is PN-limited.

In a standard atomic magnetometer, it is not possible to do a PN-limited
measurement of the spin. This is because the SN of the probe light also contribute
to the variance of the signal. In order to achieve a PN-limited measurement, one
needs to either (A) suppress the shot noise or (B) reduce the atomic noise below
the PN-level. Later in Sec. 5.3.5, we show that the light noise can be suppressed
using the swap and squeezing interaction and that the atomic noise can be reduced
below the PN-level by entangling the two atomic ensembles

PN-limited sensitivity

As already stated earlier, the PN-limited sensitivity is defined as SPN ≡ Bmin

√
τ

where Bmin is given by Eq. (5.4). In the experiment, the minimal detectable
field equals BRF/SNR where BRF is the applied field and SNR is the signal to
noise ratio. We use two different expressions for the measured sensitivity. We
consider either Sτ ≡ (BRF/SNR)

√
τ or Stot ≡ (BRF/SNR)

√
Ttot. Ttot is the

total cycle time which includes the time spent on pumping and probing. The last
expression for the sensitivity gives a worse sensitivity since Ttot > τ . We say that
the measured sensitivity is PN-limited if it is less than Bmin

√
τ .

5.3.2 Single cell magnetometer

In Sec. 5.3 we considered a PN-limited measurement of the magnetic field. In an
experiment there are other noise sources than the PN of atoms, this is true in
particular if only one atomic ensemble is used as the magnetic field sensor. We
now go through the details of how much extra noise one would expect for such a
single cell magnetometer.

Consider a single cell atomic magnetometer based on the Faraday interaction
which can be described by the Hamiltonian Hint ∝ SzJz. We here neglect the ten-
sor polarizability of atoms, which give rise to the a2-terms in the full Hamiltonian
given by Eq. (2.20). The atomic signal is encoded in the S2c and S2s integrated

5Equation (5.6) is derived assuming that the fluctuations on the output light are smaller
than the fluctuations orignating from the projection noise of atoms: Var (Sout

2c ) = κ2 · Φ
2|Jx| ·

Var (Jz1 + Jz2) ≤ κ2 · Φ
2|Jx| · |Jx| = κ2 · Φ/2.
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Stokes operates. For a single atomic ensemble the output cosine light operator is

Sout
2c = S in

2c +
κ̃√
2

√
Φ

|Jx|J
in
z −

(
κ̃

2

)2

S in
3s −

1√
3

(
κ̃

2

)2

S in
3,s1 (5.7)

This equation can be found from the single cell input-output Eq. (2.14) and the
definitions of the canonical operators. The sine operator is given by a similar
expression. Assuming all input operators are in the vacuum states, we find

Var
(
Sout

2c

)
=

Φ

2

[
1 +

κ̃2

2
+

κ̃4

12

]
. (5.8)

From this equation it is obvious that we do not have a PN-limited measurement.
Besides the term Φ

2
· κ̃2

2
arising from the PN, we have the shot noise term Φ

2
·1 and

the backaction noise term Φ
2
· κ̃4

12
. The signal grows linearly with κ̃ and the noise

grows as
√

1 + κ̃2/2 + κ̃4/12. One can calculate the optimal interaction strength
κ̃2 = 2

√
3 ≈ 3.5 where the signal to noise ratio is maximal. For κ̃2 > 2

√
3 the

backaction noise prevails and the signal to noise ratio decreases.

5.3.3 Two cell QND magnetometer

The single cell magnetometer has the disadvantange that one is not performing
a QND measurement of the spin. In other words, the backaction noise piles up
in the atoms for large κ̃.

For two atomic ensembles, the interaction can be described by the Hamilto-
nian Hint ∝ Sz (Jz1 + Jz2), if the tensor terms proportional to a2 are neglected,
see Eq. (2.20). With two oppositely oriented ensembles one can achieve the QND
interaction since the backaction noise on the two ensembles cancel each other. In
this case, the input-output equations for the Stokes operators are given by

Sout
2c = S in

2c + κ̃

√
Φ

2 |Jx|
(
J in

z1 + J in
z2

)
and Sout

3c = S in
3c

Sout
2s = S in

2s + κ̃

√
Φ

2 |Jx|
(
J in

y1 + J in
y2

)
and Sout

3s = S in
3s, (5.9)

and the equations for the collective atomic operators are given by

Jout
y1 − Jout

y2 =
(
J in

y1 − J in
y2

)
+ κ̃

√
2 |Jx|

Φ
S in

3c and Jout
z1 + Jout

z2 = J in
z1 + J in

z2

Jout
z1 − Jout

z2 =
(
J in

z1 − J in
z2

)− κ̃

√
2 |Jx|

Φ
S in

3s and Jout
y1 + Jout

y2 = J in
y1 + J in

y2.

(5.10)
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We focus on the signal Sout
2c and its variance

Var
(
Sout

2c

)
= Var

(
S in

2c

)
+ κ̃2 Φ

2 |Jx|Var
(
J in

z1 + J in
z2

)
. (5.11)

Assuming that all input operators are in the vacuum state, we find

Var
(
Sout

2c

)
=

Φ

2

[
1 + κ̃2

]
. (5.12)

If we could reach the limit κ̃2 → ∞, the contribution from the shot noise would
be negligible and the measurement would be PN-limited. In the experiment this
limit can not be reached for several reasons. Classical noise typically become a
problem for high κ̃. This is because classical noise in �J or �S scales as N2

A or
N2

ph in the variance where Nph is the number of photons. The quantum noise
however scales as NA or Nph in the variance which means that classical noise will
dominate for large NA or Nph. One could also try to increase κ̃2 by increasing
the interaction time T . This can only be done to some extend, since atomic
decoherence will ruin the signal for interaction times comparable to or larger
than T2. Also, for large interaction strengths, the interaction between light and
two oppositely oriented ensemblesis is not of the QND type (due to the tensor
polarizability of atoms). Instead the interaction is better described using the
swap and squeezing theory. This is discussed in detail in Sec. 5.3.5.

5.3.4 Comparison of single cell and two cell magnetometers

We now compare the performance of the single cell magnetometer and the two
cell QND magnetometer. The two cell magnetometer uses 2NA atoms. For a fair
comparison we assume that the single cell magnetometer also uses 2NA number of
atoms. For the two cell case, we assume that the RF magnetic field BRF is applied
to both ensembles at the same time. With this in mind, the mean signals 〈Sout

2c 〉
for the single cell and the two cell cases have equal magnitudes. The variance of
the signals are however different. For the single cell case (with twice the number
of atoms), the variance is

Var
(
Sout

2c

)
=

Φ

2

[
1 +

(√
2κ̃
)2

2
+

(√
2κ̃
)4

12

]
=

Φ

2

[
1 + κ̃2 +

κ̃4

3

]
, (5.13)

where κ̃ is the coupling constant for NA number of atoms and
√

2κ̃ is the coupling
constant for 2NA number of atoms. For the two cell case, the variance is given
by Eq. (5.12). The variances differes by the backaction noise term κ̃4/3. We can
also consider the signal to noise ratio’s for the different magnetometers. Assum-
ing the spins are displaced by one PN-unit (〈Jz1 + Jz2〉 =

√|Jx|), we find SNR =

κ̃/
√

1 + κ̃2 for the two cell QND magnetometer and SNR = κ̃/
√

1 + κ̃2 + κ̃4/3
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Figure 5.2: Signal to noise ratio’s for the different magnetometers as a function
of κ̃2 (or κ2). Single cell magnetometer: SNR = κ̃/

√
1 + κ̃2 + κ̃4/3, two cell

QND magnetometer: SNR = κ̃/
√

1 + κ̃2 and swap and squeezing magnetometer:
SNR = κ/

√
1 − ζ2κ2 + κ2. For the swap and squeezing magnetometer κ2 can

maximally reach the value κ2
max = ζ−2 ≈ 6.4.

for the single cell magnetometer. These expressions are plotted in Fig. 5.2. The
maximum SNR equals 1 (for κ̃2 → ∞) for the two cell QND magnetometer and
0.68 for the single cell magnetometer.

We can achieve the backaction evading QND measurement using two oppo-
sitely oriented atomic ensembles. As described above, the single cell magnetome-
ter is not backaction evading, and the two cell QND magnetometer is therefore
preferable. I want to mention that there are some tricks which enables a QND
measurement on a single atomic ensemble. If we are only interested in measuring
the atomic spins of a single ensemble for a duration shorter than 1/ΩL then the
measurement can be of the QND type. This was the approach in the first paper
on spin-squeezing using QND measurements [42]. This approach obviously has
the disadvantage that the time 1/ΩL is short. In our experiments ΩL = 322 kHz
such that the time 1/ΩL ≈ 3 μs. A different approach is to stroboscopically turn
the probe light on and off with twice the Larmor frequency [70]. This way the
probe only interacts with the atoms when the rotating frame operator Jz equals
the lab operator J lab

z . This therefore enables a QND measurement of the Jz.

The measurement of the magnetic field using a single cell or a two cell QND
magnetometer is not PN-limited since the variance of the signal consists of both
SN of light and PN of atoms. One can improve both the single cell and the
two cell QND magnetometer by using squeezed light. This reduces the variance
Var

(
S in

2c

)
< Φ/2 and thereby increases the magnetometer signal to noise ratio.
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Magnetometry with squeezed light was recently demonstrated in [48]. One can
also squeeze the atomic spins such that the atomic noise is reduced below the PN
limit. For a single ensemble, the spins can be squeezed by "Nuclear-Electronic
spin entanglement" [5]. For two ensembles, the spins can be entangled using a
QND measurement [16] as discussed earlier in Sec. 3.8. In Sec. 5.7 we will present
results of such an entanglement-assisted magnetometer.

5.3.5 Two cell swap and squeezing magnetometer

The interaction between light and two oppositely oriented atomic ensembles is
not of the QND type due to the tensor polarizability of the atoms. Instead,
the interaction is better described by the swap and squeezing interaction theory
which leads to the input-output equations (5.2). In the absence of atomic decay
(ε2 = 0) and for long interaction times 2γswT  1, the light and atomic operators
are completely swapped

Sout
2c =

1

ζ

√
Φ

2 |Jx|
(
J in

z1 + J in
z2

)
(5.14)

With this input-output equation, the signal Sout
2c is proportional to the atomic

operator
(
J in

z1 + J in
z2

)
. The only noise source is in this case the atomic noise. If

the atomic noise is PN-limited, the measurement will also be PN-limited.
The measurement described by Eq. (5.14) is a perfect PN-limited measure-

ment of the spin. The measurement is backaction evading and the noise of the
meter (the input shot noise) is completely squeezed and is therefore not present.

If we do not have a complete swap, the swap and squeezing interaction leads
to the signal (see Eq. (5.2))

Sout
2c = t · S in

2c + κ

√
Φ

2 |Jx|
(
J in

z1 + J in
z2

)
. (5.15)

The variance of Sout
2c is

Var
(
Sout

2c

)
= t2 · Var

(
S in

2c

)
+ κ2 Φ

2 |Jx|Var
(
J in

z1 + J in
z2

)
. (5.16)

If the atomic noise in PN-units is denoted ΣEPR and we assume the input light
is in a coherent state such that Var

(
S in

2c

)
= Φ/2 then

Var
(
Sout

2c

)
=

Φ

2

[
t2 + κ2 · ΣEPR

]
. (5.17)

The signal to noise ratio (assuming the spins are displaced by one PN-unit and
that the atomic noise equals PN) for the swap and squeezing interaction is plotted
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in Fig. 5.2. In the swap and squeezing interaction theory κ2 =
(
1 − e−2γswT

)
/ζ2

can maximally reach the value κ2
max = ζ−2 ≈ 6.4. For this value SNR equals 1.

In Fig. 5.2 we also see that SNR is higher for the swap and squeezing interaction
than for the QND interaction. This is because the input light noise is reduced
below the shot noise level Φ/2 by the factor t2 = (1 − ζ2κ2). One should notice
that κ̃ is different from κ for large interaction strengths, and that the QND in-
teraction is an approximation to the swap and squeezing interaction for the case
of two oppositely oriented atomic ensembles (see Eq. 2.5).

If we do not have a complete swap such that t2 = 1 − ζ2κ2 > 0, we see from
Eqs. (5.6) and (5.17) that the measurement is not PN-limited even for PN-limited
atomic noise (ΣEPR = 1) due to the residual light noise contribution to the vari-
ance. On the other hand, if we can reduce the atomic noise via entanglement, it
is possible that the measurement can be PN-limited.

When including bad decoherence in the swap and squeezing interaction, the
reduction of the light noise changes. For a non-zero ε2 parameter we should use
the factor t2m defined in Eq. (2.83) instead of the factor t2 when calculating the
output noise using Eq. (5.17). Since t2m > t2 the reduction of the light noise
gets smaller. The bad decay therefore limits how well the light noise can be
suppressed. If ε2 is large, the reduction of the light noise is small and we instead
have to utilize the backaction evading measurement together with entanglement
between the atomic ensembles to achieve the near PN-limited measurement.

5.4 Magnetometry and Bandwidths

The PN-limited sensitivity of an atomic magnetometer depends on the magne-
tometer bandwidth δA ≡ 1/T2 and the bandwidth of the RF pulse δRF ≡ 1/τ .
Below we examine how the sensitivity scales with these bandwidths.

We consider the constant BRF which is applied for a certain duration τ . The
PN-limited sensitivity equals SPN ≡ Bmin

√
τ , where Bmin is given by Eq. (5.4).

Inserting the expression for Bmin, we find the full expression for the sensitivity:

SPN =
1

Γ

√
2

|Jx|
√

τ

T2 (1 − exp (−τ/T2))
(5.18)

We can consider the two limits of short/long RF pulses compared to the atomic

87



T2-time. We find

SPN =
1

Γ

√
2

|Jx|
1√
τ

for τ � T2 or δRF  1/T2

SPN =
1

Γ

√
2

|Jx|
√

τ

T2
for τ  T2 or δRF � 1/T2. (5.19)

The sensitivity given by Eq. (5.18) together with the asymptotic expressions in
Eq. (5.19) (all divided by 1

Γ

√
2

|Jx|) are shown in Fig. 5.3. The upper left figure
show the sensitivity as a function of T2 for a fixed value of τ = 1. The lower left
shows the same but with the 1st axis equal to δA = 1/T2. The upper right figure
shows the sensitivity as a function τ with a fixed value for T2 = 1, and the lower
right figure shows the same but with the 1st axis equal to δRF.

The upper right figure shows that for an atomic magnetometer with a fixed
T2 time there is an optimal RF pulse duration τ ≈ T2 where the magnetometer
has the best sensitivity. In this sense, the RF bandwidth and the atomic band-
width should be matched. On the other hand, for a specific RF duration τ (see
upper and lower left figures) the sensitivity improves with larger T2. For T2  τ
the sensitivity becomes independent of T2 as also seen in Eq. (5.19). This is
the setting where the magnetometer has the best sensitivity. If one would like to
demonstrate a magnetometer with as good sensitivity as possible, one would need
a magnetometer with as large T2 as possible, and then measure the RF pulses
with duration τ ≈ T2.

In the experiment we will entangle the two atomic ensembles by a near QND
measurement prior to the RF magnetic pulse. The entanglement has a certain
lifetime T2E . For RF durations τ ≥ T2E the entanglement has decayed and the
entanglement will not improve the performance of the magnetometer. Under our
experimental conditions, the entangled states decays faster than coherent states
such that T2E < T2. Entanglement will therefore only improve the magnetometer
in the situation described by the in-equalities

τ ≤ T2E < T2 or δRF ≥ 1/T2E > 1/T2. (5.20)

As argued above, this is not the limit where the magnetometer has the best
sensitivity. The best sensitivity (reached in the limit τ  T2) will not be improved
by entanglement. Instead, entanglement improves the magnetometer for short RF
pulses. This will also be apparent in the experiment results presented later in
Sec. 5.7
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Figure 5.3: Red solid line: normalized sensitivity
√

τ
T2(1−exp(−τ/T2))

. Blue dashed
line: Asymptotic expression 1/

√
τ valid for τ � T2. Black dashed dotted line:

Asymptotic expression
√

τ/T2 valid for τ  T2.
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5.5 Setup, pulse sequence and procedure

A sketch of a two cell magnetometer is shown in Fig. 5.4a. The RF magnetic field
BRF is generated by sending a current through a coil. In the sketch, the coil is
arranged such that both atomic ensembles are located in the same RF magnetic
field. The ensembles, which are located in a bias magnetic field, are oppositely
oriented using optical pumping methods, and probed by linearly polarized light.
In the real setup (which differs from the setup shown in the sketch in Fig. 5.4), the
two ensembles are located in separate magnetic shieldings, and two separate RF
coils, one located around each ensemble, are used to make the RF magnetic fields.
The two mirrors are also not present and the cells are put in a linear arrangement
as shown in Fig. 3.2. The Stokes operator Sout

2 (t) is measured by polarization
homodyning. The output of the detectors are sent to a lock-in amplifier where
the cos(ΩLt) and sin(ΩLt) components of the photocurrent are extracted. The
outputs of the lock-in amplifier are measured using a FPGA data acquisition
card. On the computer, the cosine and sine components are integrated over the
pulse duration to obtain the signals Sout

2c and Sout
2s . For more details of the data

aquisition and the data analysis procedure see Sec. 3.7.

Fig. 5.4b shows the pulse sequence for the experiment. First, optical pumping
light polarizes the two atomic ensembles. Then, the RF magnetic field is applied
for a certain duration τ . During the RF magnetic pulse, no light is on the atoms.
The decay time in the dark (when no light is on the atoms) is T dark

2 > 30 ms. This
long coherence time is needed for high sensitivity RF magnetic field measurements
as discussed in Sec. 5.4 6. Then a probe pulse is used to measure the atomic spins
and thereby the RF field amplitude BRF. In Fig. 5.4b, we see that the temporal
mode function of the probe is chosen to be exponentially falling. The optimal
time constant of the mode function is discussed in Sec. 5.6.2.

The pulse sequence for the entanglement-assisted measurements is shown in
Fig. 5.4c. A first probe pulse prior to the RF pulse is used to entangle the
two ensembles. Afterwards the RF pulse is applied and finally a second probe
pulse is used for measuring the magnetic field amplitude BRF. The method
for creating the conditional entanglement has been discussed earlier in Sec. 3.8.
Measurements of conditional entanglement has also been presented earlier in Sec.
3.11. As seen in Fig. 5.4c, we choose the temporal mode function of the 1st
probe to be exponentially rising and the modefunction of the 2nd probe pulse to
be exponentially falling. The temporal mode functions for the case of conditional
entanglement have been discussed in Sec. 3.8.

6On the other hand, in a DC magnetometer, the RF field, the pump light and the probe
light are all applied simultaneously. This has the disadvantage that the decay time T2 is short
due to spontaneous emission.
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Figure 5.4: (a) Sketch of the experimental setup. Cubic 22mm paraffin coated
cells filled with cesium are placed in the DC bias field B in two separate magnetic
shields. The atoms are optically pumped so that the directions of the collective
spins in the two cells (black arrows) are opposite. A pulse of BRF at the frequency
Ω is applied orthogonally to the B field. The polarization rotation of the top-
hat shaped probe beam pulse (diameter 21mm) is detected by two detectors
(HWP - half wave plate). The lock-in amplifier measures the cos (Ωt) and sin (Ωt)
components of the photocurrent. (b) Pulse sequence for projection noise limited
magnetometry. The temporal mode function for the probe is shown with a dashed
black curve. (c) Pulse sequence and temporal modes for entanglement-assisted
magnetometry.
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Figure 5.5: Results of a series of measurements of Ŝ2s,c without BRF (grey points)
and after a 15 ms RF pulse with BRF = 30(7) fT (red points). The solid and
the dashed lines show the standard deviation of the experimental points, and
of the the projection noise (PN) limited measurement, respectively. The spin
displacement in the rotating frame is indicated by the blue arrow. (Inset) Power
spectrum of the photocurrent (arb. units, centered at Ω) The narrow peak of the
red/black spectrum is the atomic spin signal/projection noise. The broad part
of the spectrum is the shot noise of light with the width set by the detection
bandwidth.

5.6 Experimental results

5.6.1 The PN-limited magnetometer

We now present the results of the magnetic field measurements very close to the
PN limit. Figure 5.5 shows two series (grey and red) of raw data points of the in-
tegrated signals Sout

2c and Sout
2s normalized to PN-units. This means that we have

plotted Sout
2c /

√
Φ
2
· κ2, such that the standard variation Δ

[
Sout

2c /
√

Φ
2
· κ2

]
= 1

for the PN-limited measurement. In order to normalize the raw data to PN-
units, one needs to know the shot noise Φ/2 and the coupling constant κ2. SN
is proportional to light power P and κ2 is a function of light power and Faraday
angle θF . Both P and θF are continuously monitored. The details of the shot
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noise measurements have been discussed in Sec. 3.9 and the details of the κ2 mea-
surements (using the mean value transfer method) have been discussed in Sec. 3.6.

The grey points in Fig. 5.5 correspond to measurements of Sout
2c and Sout

2s where
no BRF is applied to the atoms. The mean values 〈Sout

2c 〉 and 〈Sout
2s 〉 are therefore

zero. The standard deviations Δ
[
Sout

2c /
√

Φ
2
· κ2

]
and Δ

[
Sout

2s /
√

Φ
2
· κ2

]
of the

measurements are plotted with blue solid lines such that the distance between
the horizontal (or vertical) solid lines equal twice the standard deviation. The
variances of Sout

2c and Sout
2s are equal in magnitude.

The black dashed lines represent the PN-limited measurement. The horizontal
(or vertical) dashed lines are separated by two PN-units. The measured standard
deviations represented by the blue solid lines are a bit larger than the black
dashed lines which correspond to the PN of atoms. This is expected due to the
contribution from the shot noise of light to the total magnetometer noise. By
comparing the solid lines with the dashed lines, one can directly see that we are
very close to having a PN-limited measurement.

For the measurements presented in Fig. 5.5, we measured the faraday angle
θF = 17.1 deg in the beginning of the probe pulse. From the measured Faraday
angle, the numbers of atoms can be estimated to be 7 NA = 2 · 7.8(7) · 1011

using Eq. (3.2). The atomic decoherence time in the dark was measured to be
T dark

2 = 32 ms.

We now perform a measurement where the RF magnetic field BRF = 30(7) fT
is applied for the duration τ = 15 ms (see appendix B for the calibration of the
RF magnetic field 8). This RF field tilts the spin vector and results in a non-zero
mean value in the signal Sout

2c + iSout
2s as shown with red points in Fig. 5.5. An

important figure of merit is the signal to noise ratio defined by

SNR =
|〈Sout

2c + iSout
2s 〉|√

1
2
· [Var (Sout

2c ) + Var (Sout
2s )]

. (5.21)

The signal to noise ratio can easily be found from the data in Fig. 5.5 since
SNR equals the signal (the length of the arrow in Fig. 5.5) divided by standard
deviation (1/2 of the distance between the blue lines). This way we find the value

7The factor of two on the number of atoms comes from the fact that we have two ensembles.
The uncertainty on the number of atoms comes from the uncertainty on the length of the cells
L = 22(1) mm which has δL/L = 4.5% relative uncertainty. The symbol δL is used for the
uncertainty on L. Since NA ∝ L2 as seen in Eq. (3.2), we have δNA/NA = 2 · δL/L, such that
the relative uncertainty on NA is δNA/NA = 2 · 4.5% = 9%. The symbol δNA is used for the
uncertainty on NA.

8In the paper [2] we used a slightly higher value for the applied RF magnetic field. However,
in this thesis I will use the value BRF = 30(7) fT. This leads to slightly better results for the
magnetometer sensitivity as compared to numbers stated in [2].
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SNR = 12.3 for the data presented in Fig. 5.5. Note, that the signal to noise
ratio depends on the applied BRF.

The minimal detectable field can be calculated from the applied RF magnetic
field and the signal to noise ratio: Bmin = BRF/SNR = 30 fT/12.3 = 2.4(5) fT.
The sensitivity is then calculated as Sτ = Bmin

√
τ = 2.9(6) · 10−16 T/

√
Hz where

we neglected the time used for optical pumping and probing. The uncertainties
on the measured sensitivity and the measured Bmin are estimated to be 22% due
to the uncertainty on the applied BRF.

We can compare the measured sensitivity with the PN-limited sensitivity of
SPN = 2.6(1) · 10−16 T/

√
Hz 9 which can be calculated using the Bmin from Eq.

(5.4) and multiplying by
√

τ . One need to use the numbers for NA = 2·7.8(7)·1011,
T dark

2 = 32 ms and τ = 15 ms. The experimentally measured sensitivity Sτ =
2.9(6) · 10−16 T/

√
Hz is 10% higher than the calculated PN-limited sensitivity.

Since the measured sensitivity is very close to the PN-limited sensitivity (in fact
the sensitivities are equal to within the uncertainties), we can claim that our mag-
netometer is PN-limited or at least very close to being PN-limited. The difference
between the two sensitivities is due to the residual shot noise, atomic decay, and
classical noise of the atomic spins. I emphasize that the measurements have been
done utilizing the backaction evading swap and squeezing interaction and that
the contribution from the shot noise to the total magnetometer noise is reduced.

5.6.2 The best experimental sensitivity

We now present the results for the best experimental sensitivity. The best means
here that we have optimized the sensitivity with respect to different experimen-
tal parameters such as the pump duration Tpump, the probe power P , the probe
duration T , the mode function, the RF duration τ and the number of atoms NA.
Since these are many experimental parameters which should be varied, I can not
guarantee that we could not have done slightly better by choosing slightly differ-
ent experimental settings. I will not go in depth with the optimization procedures
except for the optimization of the mode function.

For a specific measurement set, we used the total cycle time Ttot = 30 ms
including the RF duration τ = 22.5 ms, the probe duration T = 1.5 ms and the
optical pumping duration Tpump = 6 ms. The applied RF field was BRF = 30(7)
fT and the faraday angle was θF = 17.9 deg. The probe power was P = 9.5 V
leading to a quite short decay time T2 = 1.9 ms when the probe light is on the
atoms. This time corresponds to the decay rate γ = 1/T2 = 0.51ms−1. The decay

9The uncertainty on the calculated PN-limited sensitivity originates in the uncertainty in the
number of atoms (which is due to the uncertainty on the length on the cell). To be specific we
have δBmin/Bmin = 1

2δNA/NA = δL/L = 4.5%. The symbol δBmin is used for the uncertainty
on Bmin.
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Figure 5.6: The signal to noise ratio SNR is plotted as a function of the mode
constant γm = 1/Tm.

time with probe light on the atoms T2 is significantly smaller than the decay time
in the dark T dark

2 . In a pulsed atomic magnetometer, it is important to have a
long T dark

2 in order to obtain high sensitivity. However, the probe duration T
should be short in order not to "waste time" on the probing stage. The probe
power is therefore chosen to be large, such that the decay time T2 with the probe
light on is short (remember, the T2-time depends on P as shown for instance in
Fig. 3.11). The readout of the atomic spins can then be fast since this happens
on the fast time scale T2.

For the above mentioned measurement set, we optimized the signal to noise
ratio SNR with respect to the modefunction. We considered exponentially falling
mode functions with time constant γm = 1/Tm. Using such a mode function
means that the data are weighted by the exponentially falling temporal mode
∝ e−γmt = e−t/Tm . The signal and the noise was calculated using the covariance
matrix method described in Sec. 3.7.1.

Fig. 5.6 shows the calculated SNR as a function of the temporal mode con-
stant γm = 1/Tm. We see that SNR has a maximum SNR = 14.86 at the value
γopt = 1.62 ms−1 corresponding to Topt = 0.62 ms. The maximum is quite broad.
In the range γm from 0.1 ms−1 to 4 ms−1, SNR only differs by up to around 3-4%
from the maximum value. The optimal mode constant γopt differs significantly
from the decay constant γ = 1/T2, it is larger by a around a factor of three.
Using SNR obtained with the optimal mode constant γopt, we calculate the best
experimental senstivity Stot = BRF

√
Ttot/SNR = 3.5(8) · 10−16 T/

√
Hz 10.

10The uncertainty on the best experimental sensitivity is estimated to be 22% due the un-
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Our best experimental sensitivity is close to the best to-date sensitivity op-
tained by an atomic magnetometer [71]. The magnetometer [71] is a so-called
Spin Exchange Relaxation Free (SERF) atomic magnetometer and operates with
104 times more atoms. Our magnetometer can achieve a similar sensitivity with
less atoms since our measurement of the magnetic field is (almost) PN-limited.

5.7 Entanglement-assisted magnetometry

One can reduce the atomic noise below the PN limit by the use of entanglement
between the two atomic ensembles. Entanglement is quantified in terms of the
Einstein-Podolsky-Rosen variance ΣEPR defined in Eq. (2.9), and the criterion for
having entanglement between the ensembles is ΣEPR < 1.

In our case, the two atomic ensembles are entangled prior to the RF pulse
(see Fig. 5.4c) using a 1st probe pulse. The magnetic field BRF is afterwards
measured with a 2nd probe pulse. Using the measurement result obtained with
the 1st probe pulse, we can reduce the uncertainty on the 2nd probe measurement.
This leads to a better SNR for the magnetic field BRF measurement.

When utilizing the 1st pulse measurement to reduce the noise on the 2nd pulse
measurement, we use the notion of conditional variance described earlier in Sec.
3.8. The conditional light operator was defined in Eq. (3.18) using the language
of canonical operators. In terms of the Stokes vector language, the conditional
Stokes operator is defined as

Scond
2c = Sout,2nd

2c,− − αSout,1st
2c,+ . (5.22)

The sine operator Scond
2s is defined similarly. The parameter α is optimized in

the experiment in order to minimize the conditional Stokes variance defined by[
Var

(
Scond

2c

)
+ Var

(
Scond

2c

)]
/2. From the conditional Stokes variance, we can cal-

culate the conditional atomic variance Σcond
EPR. The condition for conditional entan-

glement is Σcond
EPR < 1. For the case of the entanglement-assisted magnetometry,

we define the signal to noise ratio as

SNR =

∣∣∣Sout,2nd
2c + iSout,2nd

2s

∣∣∣√
1
2
· [Var

(
Scond

2c

)
+ Var

(
Scond

2s

)] . (5.23)

Since Var
(
Scond

2c

)
+ Var

(
Scond

2c

)
< Var (Sout

2c ) + Var (Sout
2c ), we see that entangle-

ment improves the signal to noise ratio.

One way to verify that we have entanglement is to use the two ensembles as
a magnetometer, calculate the minimal detectable field BRF/SNR for some BRF

certainty on the applied BRF.
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and compare with the PN-limited Bmin given by Eq. (5.4). If the experimental
BRF/SNR is smaller than the PN-limited Bmin, the atoms are entangled. This
procedure for verifying entanglement is however not very good. This is because
the noise of the signal Sout

2c contains both a contribution from the shot noise of
light and the projection noise of atoms. However, the contribution from the shot
noise is not included in Eq. (5.4) for Bmin.

In order to verify entanglement, we instead calculate Σcond
EPR from the measured

output light variances. We use the full swap and squeezing interaction theory in-
cluding the decoherence when calculating ΣEPR and Σcond

EPR. This is done using
the atomic noise reconstruction formula given by Eq. (2.85). To do this recon-
struction, we need to know the κ2 parameter. The calibration of κ2 was in the
magnetometry experiment done using the mean value transfer method described
in Sec. 3.6.1 and by measuring the mean value of the output signal 〈Sout

2c + iSout
2s 〉

which is proportional to κ. More details can be found in appendix C.

5.7.1 Results of entanglement-assisted magnetometry

We now present the measurements which demonstrate that entanglement can
improve our atomic magnetometer. The results presented here are obtained at
room-temperature corresponding to the faraday angle of θF ≈ 8 deg. The RF
magnetic field BRF with a variable duration τ applied to one of the ensembles is
measured using two approaches. In the first approach (see pulse sequence in Fig.
5.4b) the RF magnetic field is applied directly after the optical pumping stage
and measured with a probe pulse. In the second approach (see pulse sequence in
Fig. 5.4c) the two atomic ensembles are entangled using a 1st probe pulse located
after the optical pumping. Then, the RF magnetic field is applied and measured
with a 2nd probe pulse. The data sets for the first and second approaches are
denoted "without" and "with" entanglement, respectively. The data without en-
tanglement serves as a reference data set with which the data with entanglement
can be compared.

The results of the measurements are shown in Fig. 5.7 (a,b,c). In the three fig-
ures, circles represent data with entanglement and squares represent data without
entanglement.

We start by considering Fig. 5.7a. The square data points without entangle-
ment show the variance of the signal [Var (Sout

2c ) + Var (Sout
2s )] /2 normalized to

the shot noise Φ/2 as a function of RF pulse duration τ . In Fig. 5.7a, we also
plot the results one would obtain with a PN-limited measurement of the spin.
This is shown with a solid black line. If we include a detection efficiency ηdet in
the analysis, we have the following criterion for the PN-limited measurement

1

2
· [Var

(
Sout

2c

)
+ Var

(
Sout

2s

)] ≤ ηdet · κ2 · Φ

2
, (5.24)
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Figure 5.7: Entanglement-assisted magnetometry results. Circles and squares
represent data with and without entanglement, respectively. (a) Magnetometer
read out noise in units of shot noise of light. Dashed lines are linear fit. The
solid line at 2.5 is the limit for the PN-limited measurement of the magnetic field
given by Eq. (5.24). (b) Sensitivity Sτ = BRF

√
τ/SNR of the magnetic field

measurement. (c) Signal to noise ratio SNR times the RF bandwidth δRF for
the magnetometer. Since SNR depends linearly on the applied magnetic field
amplitude BRF, SNR has been normalized to the value BRF = 138 fT.

which is very similar to Eq. (5.6). Using the procedure described in appendix
C, we measured the value of κ2 = 3.1 for the specific experimental settings used
for obtaining the results plotted in Fig. 5.7. Using this κ2 and the estimated
detection efficiency ηdet ≈ 0.8, we find that the PN-limited measurement has
[Var (Sout

2c ) + Var (Sout
2s )] /2 ≈ 0.8 · 3.1 · (Φ/2) ≈ 2.5 · (Φ/2). The data without en-

tanglement has [Var (Sout
2c ) + Var (Sout

2s )] /2 ≈ 3.9 ·(Φ/2) (for short RF durations).
In terms of the standard deviation, the measurement has

√
3.9/2.5 ≈ 1.25 times

higher standard deviation than the PN-limited measurement. This is slightly
higher than the 10% above the PN-limited measurement stated in Sec. 5.6.1. The
difference could be due to the lower optical depth 11 used in the entanglement-
assisted magnetometry since for low optical depths the reduction of the light noise
is smaller than for high optical depths 12.

It is also possible to calculate the atomic noise in projection noise units from
the measured output variances and the κ2 calibration using the full swap and
squeezing interaction theory which includes bad decoherence. This is done using
Eq. (2.85) for the reconstruction of the atomic noise. For short RF durations we
find the atomic noise ΣEPR = 1.10(8).

11The optical depth is proportional to the Faraday angle.
12This is because ε2 decreases with increasing optical depth as seen in Fig. 3.9.
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Measured conditional variances

We now turn to the data with entanglement plotted as blue circles in Fig. 5.7a.
As discussed, the two atomic ensembles are entangled using a 1st probe pulse
prior to the RF magnetic pulse. The magnetic field BRF is afterwards measured
with the 2nd probe pulse. The entanglement between the ensembles is visible in
the conditional variances

[
Var

(
Scond

2c

)
+ Var

(
Scond

2s

)]
/2 which are plotted with

blue circles in Fig. 5.7a.
In Fig. 5.7a we see that the conditional variances are significantly lower than

the variances obtained without entanglement. The difference is largest for short
RF durations where the conditional variance is 25-30% lower than the variance
obtained without entanglement. This is exactly the strength of the entanglement-
assisted magnetometer. The noise on the measured output light is reduced by
entangling the two atomic ensembles.

For RF magnetic pulse durations τ ≤ 2 ms, the measured conditional vari-
ances are

[
Var

(
Scond

2c

)
+ Var

(
Scond

2s

)]
/2 ≈ 2.9 · (Φ/2). In terms of the standard

deviation, the entanglement-assisted measurement has
√

2.9/2.5 ≈ 1.08 higher
standard deviation than the PN-limited measurement. This is even closer to the
PN-limited measurement than when no entanglement was utilized (which had
the standard deviation 25% higher than the PN-limited measurement). We con-
clude that the entanglement-assisted measurement of BRF is very close to being
PN-limited. It should be possible to achieve the better than PN-limited mea-
surement of BRF by improving the detection efficiency and increasing the optical
depth. Since the data was taken at room-temperature, the optical depth can
easily be increased by a factor 2 or 3 by increasing the temperature of the cells.

We can also find the conditional atomic noise in PN-units Σcond
EPR. This quantity

is found from the measured conditional variance and the κ2 calibration. Again,
we use the full swap and squeezing interaction theory including bad decoherence
when estimating the (conditional) atomic noise in PN-units. For short RF pulses
(τ ≤ 1 ms) we obtain the atomic noise reduction of approximately 30% below
the PN-level. For longer RF pulses the entanglement degrades due to atomic
decoherence.

With increasing RF pulse duration, the measured output light noise increases
as seen in Fig. 5.7a. This is true both for the case with and without entanglement.
To illustrate this, we make linear fits to the data (squares and circles). The fits
are shown in Fig. 5.7a as dash-dotted lines. From the slopes of the linear fits,
it is seen that the conditional variance decays faster than the variance obtained
without entanglement.

From the measurements presented in Fig. 5.7a, it is clear that the atomic de-
cay is not towards the vacuum state. The long term decay in the dark (during the
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RF pulse) is expected to be towards the thermal state 13. The output variance
when measuring on the thermal state is 1 + κ̃2 · 15

8
in SN units (see the thesis

[33]), which for our setting of the κ2 parameter is around 7.

SNR

In Fig. 5.7a we plotted the variance and not the standard deviation on the mea-
surement. The standard deviation equals the squareroot of the variance. In
magnetometry an important figure of merit is the signal to noise ratio SNR
where the noise is here meant as the standard deviation. With entanglement the
noise is reduced compared to the case without entanglement. The signal is in
the two cases the same, if one neglects the small decay of the mean spin during
the 1st probe pulse. The reduction of the noise using entanglement is therefore
directly transferred into an improved SNR.

Fiugre 5.7c shows the signal to noise ratio times the bandwidth SNR · δRF

as a function of the bandwidth. For large bandwidths the product SNR · δRF

approximately reaches a constant value. Using entanglement this product is
improved due to the lower noise of the entangled atomic state.

Sensitivity

From the measured SNR, the applied BRF and the duration of the RF field τ ,
we calculate the sensitivity Sτ = BRF

√
τ/SNR for the case with and without

entanglement. Note that we here neglect the time it takes for the pumping Tpump

and probing Tprobe. When neglecting Tpump and Tprobe, the improvement in SNR
due to entanglement is directly translated into an improvement of the sensitivity.

This sensitivity as a function of RF bandwidth is plotted in Fig. 5.7b for the
cases with and without entanglement. As expected, the best sensitivity is reached
for long RF pulses or equivalent small bandwidths. We also see that entanglement
improves the magnetometer sensitivity in particular for large bandwidths. This is
expected since the conditional variance decays faster than the variance obtained
without entanglement, as discussed earlier in Sec. 5.4.

We can also calculate the sensitivity Stot = BRF

√
Ttot/SNR where both the

pumping and probing time is included. For the case without entanglement, we
have Tpump = 4 ms and Tprobe = 2 ms leading to the Ttot = τ + 6 ms, and for the
case with entanglement, we have Tpump = 4 ms, Tprobe,1st = 2 ms and Tprobe,2nd = 3
ms leading to Ttot = τ + 9 ms. When including these times, the sensitivity is
worse than compared to what is plotted in Fig. 5.7b due to non-zero pumping
and probing times.

We use an extra probe pulse for generating entanglement as seen in the pulse
sequences Fig. 5.4b/c. In our case, this means that the total cycle time is 3 ms

13The state of a completely unpolarized atomic ensemble is denoted the thermal state.
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longer for the data with entanglement compared to the data without entangle-
ment. When taking this extra time into account, we find that the sensitivity
for the data with entanglement is approximately the same as for the data with-
out entanglement. Again I point out, that this is due to non-zero pumping and
probing times. In the experiments, we could have shortened both of these times.
This could have been done by increasing the power of the pump and the probe
to compensate for the shorter durations. Also note that for higher optical depths
the swap rate γsw increases such that one needs shorter probe pulses to obtain a
fixed interaction strength κ2.

5.8 Conclusions

In conclusion, we have demonstrated an atomic RF magnetometer mainly limited
by the projection noise of the atoms. This can be achieved due to the backaction
evading measurement and the reduction of the shot noise from the probing light.
Our magnetometer has a high sensitivity to the magnetic field with a best mea-
sured sensitivity Stot = 3.5(8) ·10−16 T/

√
Hz. This sensitivity is comparable with

the sensitivity obtained with the state-of-the-art (SERF) atomic magnetometer.
Since the PN-limited sensitivity increases with the number of atoms, it is possible
to further increase the sensitivity by using larger cells or heating the cells further.
It is also possible to obtain higher sensitivity to long RF pulses by improving the
atomic coherence time (in the dark). This could be done by improving the bias
magnetic field homogeneity and by improving the anti-relaxation coating of the
cells [40]. In this way, it should be possible to reach the sensitivity of the best
superconducting SQUID magnetometers [72].

To the best of our knowledge, we have demonstrated entanglement-assisted
metrology with the highest to-date numbers of atoms. The degree of entangle-
ment can in principle be ΣEPR = ζ−2 ≈ 1/6.4 for our detuning. This corresponds
to 8 dB of spin-squeezing. This expected degree of entanglement can be even
larger for a further detuned probe. Due to different decoherence effects includ-
ing spontaneuos emssion, the entanglement generated in our experiment is lower
than this value 1/6.4. With higher optical depth (i.e. more atoms), we expect
that the experimental obtainable degree of entanglement can be improved.

We demonstrated that using entanglement it is possible to get very close
to the PN-limited measurement of the magnetic field. It should be possible to
surpass the limit with only slightly higher optical depth. We demonstrated that
using entanglement we can improve the signal to noise ratio of the magnetometer.
However, for short RF durations non-zero pumping and probing times limit the
magnetometer sensitivity. This is true both for the measurement with and with-
out entanglement. Our magnetometer can therefore be improved by shortening
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these times.
The entanglement-assisted magnetometer is more affected by the non-zero

probe time due to the additional probe pulse used for generating entanglement.
Since entanglement improves the magnetometer mainly for short RF durations
or equivalent large RF bandwidths, we need to reduce the probing time in order
to fully take advantage of the entanglement-assisted magnetometry.
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Chapter 6

Quantum memory for entangled
continuous-variables states

6.1 Introduction

In this chapter we describe the "quantum memory for entangled continuous-
variables states" experiment published in Nature Physics [1]. The main result is
the demonstration of the storage of a new class of states: displaced two-mode
squeezed states. We store an extensive alphabet of states which are squeezed by
6 dB and where the squeezing direction and displacement of the states are varied.
The performance of the memory is quantified in terms of the fidelity. For a range
of input states, we obtain the experimental memory fidelity of 0.52 ± 0.02. We
show that this fidelity exceeds a calculated classical benchmark proving that our
memory is true quantum memory. This means that our memory can outperform
any classical memory, and that the memory is capable of preserving entanglement.

A quantum memory for light is an important ingredient in a future quantum
information network [11]. There have been many experiments with storage of
single photons (see the reviews [73, 11, 19]) and few experiments towards a quan-
tum memory for non-classical continuous variables (CV) states. In the field of
CV quantum information processing, a quantum memory for non-classical CV
states has many applications in for instance quantum communications [74], CV
quantum repeaters [75, 76], entanglement-enhanced quantum metrology [1, 15]
and CV cluster state quantum computation [77].

A quantum memory should be able to store a wide range of inputs and should
be able to preserve quantum information better than any classical memory. An
earlier experiment using the same setup demonstrated storage of displaced co-
herent states [17]. Storage of non-classical CV squeezed vacuum states based on
electromagnetically induced transparency (EIT) has been performed [22, 78] but
with a fidelity below the classical benchmark [79].
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We store two entangled sideband modes of light described by the creation
operators a†

+ and a†
− with the frequencies ω± = ω0 ± ΩL where ω0 is an optical

frequency (corresponding to the wavelength 852 nm for the cesium D2 transition)
and ΩL = 2π ·322 kHz. The two modes are stored in our atomic system consisting
of two separate atomic ensembles. With our kind of memory protocol, the upper
sideband mode is stored in the first cell and the lower sideband mode is stored
in the second cell (see Sec. 6.2.3). It is convinient to also consider the cosine
and sine modes which are defined as the sums and differences of the upper and
lower sideband modes (see Eq. łeq:relationlightmodes). As discussed in Sec. 2.3.2,
entanglement between the upper and lower sidebands is equivalent to two-mode
squeezing of the cosine and sine modes. For the experimental value of 6dB of
squeezing in the cosine and sine modes, the two-mode squeezed vacuum can be
written in the photon number representation of the upper and lower sideband
modes as (see for instance the textbook [80])

|Ψ〉 = 0.8 |0〉+ |0〉− + 0.48 |1〉+ |1〉− + 0.29 |2〉+ |2〉− + 0.17 |3〉+ |3〉− + ... (6.1)

6.2 Memory protocol
We now describe the memory protocol used in the experiment. The protocol is
an improved version of the protocol used in the earlier experiment which demon-
strated the storage of displaced coherent states [17]. In order to emphasize the
transfer of quantum states from light to atoms, we use the notation XL, PL and
XA, PA for the canonical operators of light and atoms, respectively. The interac-
tion between atoms and light given by the input-output Eq. (2.18) is described
in terms of the cosine and sine modes. The index c, s on the atomic and light
operators is in most cases omitted, since the input-output equations are similar
for the cosine and sine modes. However, it should be kept in mind that in the
experiment the cosine and sine modes are stored simultaneously.

The light state to be stored has the canonical variables Xpure
L and P pure

L . This
state is assumed to be "pure" meaning that

Var (Xpure
L ) · Var (P pure

L ) =
1

2s
· s

2
=

1

4
, (6.2)

where s is the squeezing factor. This state travels trough transmission and en-
trance losses given by ηtr and ηent before reaching the atomic system (see Fig.
6.2 and Sec. 6.3.4). The state, which is input to the memory, is described by the
operators X in

L and P in
L . It is important to note the difference between the states

denoted "pure" and "input". The relation between the pure states and the input
states is given by(

X in
L

P in
L

)
=

√
ηentηtr

(
Xpure

L

P pure
L

)
+
√

1 − ηentηtr

(
Xvac

L

P vac
L

)
. (6.3)
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6.2.1 Storage of the input light states

We start by discussing how the input light states are stored in the final atomic
states. For simplicity we neglect atomic decoherence when discussing the memory
protocol. The input-output equations for the light-atom interaction are in this
case given by Eq. (2.18). The protocol consists of (1) an interaction between the
light and the atoms, (2) a measurement of the XL quadrature of the output light
and (3) a feedback of the measurement to the atomic PA operator with gain g.
One should note that the measured light operator differs from the output light
operator due to a less-than unity detection efficiency ηdet. We have

Xmeas
L =

√
ηdetX

out
L +

√
1 − ηdetX

vac
L , (6.4)

where Xvac
L is a vacuum operator with zero mean and variance 1/2. After the

feedback the final atomic variables are

Xfin
A = tX in

A + κP in
L

P fin
A = tP in

A − κ

Z2
X in

L − gXmeas
L

= tP in
A − κ

Z2
X in

L − g
[√

ηdet

(
tX in

L + κP in
A

)
+
√

1 − ηdetX
vac
L

]
= (t − g

√
ηdetκ)P in

A −
( κ

Z2
+ g

√
ηdett

)
X in

L − g
√

1 − ηdetX
vac
L , (6.5)

where t =
√

1 − κ2/Z2. In the experiment, we made the specific choice of κ = 1
and g

√
ηdet = t (see Sec. 6.3.1). With this choice, we find

Xfin
A =

√
1 − 1/Z2X in

A + P in
L

P fin
A = −X in

L −
√

1 − 1/Z2

√
1 − ηdet

ηdet
Xvac

L . (6.6)

For Gaussian states, a perfect state transfer means that both the mean values
and the variances of the final operators equal the mean values and the variances
of the initial operators. Using Eq. (6.6), we find the relation for the transfer of
mean values 〈

Xfin
A

〉
=
〈
P in

L

〉
and

〈
P fin

A

〉
= − 〈X in

L

〉
, (6.7)

since both
〈
X in

A

〉
= 0 and 〈Xvac

L 〉 = 0. We see that the mean values of an input
state are transferred perfectly to the final state (up to a rotation in X-P phase
space). For the transfer of variances, we find

Var
(
Xfin

A

)
=
(
1 − 1/Z2

)
Var

(
X in

A

)
+ Var

(
P in

L

)
Var

(
P fin

A

)
= Var

(
X in

L

)
+
(
1 − 1/Z2

)(1 − ηdet

ηdet

)
Var (Xvac

L ) . (6.8)
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Due to a detection efficiency ηdet < 1, a part of the measured vacuum noise
Var (Xvac

L ) is transferred to the final atomic operator P fin
A . Also note, that the

initial atomic noise Var
(
X in

A

)
is reduced by the factor 1−1/Z2. For our usual de-

tuning Δ = −850 MHz, we have Z2 ≈ 6.4 and find the reduction 1−1/Z2 = 0.84.
In the original protocol [17], there was no reduction of the input atomic noise.
The protocol described here will therefore lead to a better storage compared to
the original protocol.

In the original protocol, the atoms are initially prepared in a CSS such the
the input noise is Var

(
X in

A

)
= 1/2. In our improved protocol, we choose to spin-

squeeze the X in
A operator prior to the storage. This results in less initial atomic

noise Var
(
X in

A

)
< 1/2. The combination of spin-squeezing and the reduction of

the initial atomic noise by the factor 1−1/Z2 are important improvements of the
original protocol.

For perfect atomic squeezing and unity detection efficiency, the memory proto-
col described here in principle results in a perfect transfer of the initial operators
to the final operators. This does not rely on the inputs being Gaussian states,
and the memory would also work for non-Gaussian states such as single photon
states (Fock states) or Schrödinger cat states.

We can evaluate the performance of the memory for our experimental param-
eters. In terms of the variances, we find

Var
(
Xfin

A

)
= Var

(
P in

L

)
+ 0.36

Var
(
P fin

A

)
= Var

(
X in

L

)
+ 0.11, (6.9)

where we inserted the experimental values ηdet = 0.79, Z2 ≈ 6.4 and Var
(
X in

A

)
=

0.43 into Eq. (6.8). We see that our memory is expected to add only a small
amount of noise (less than one vacuum unit in total for both atomic quadratures)
if we consider the storage of the input states.

6.2.2 Storage of the pure light states

In the previous section we described how an input state is transferred to the final
atomic state. We will now instead discuss the storage of the pure states. The
pure states and the input states are related by Eq. (6.3). Since the mean values
of the input states are transferred with unity gain, the mean values of the pure
states will be transferred with a gain G =

√
ηtrηent = 0.85 lower than one due to

transmission and entrance losses.
The storage of the pure states can be described by the following simple equa-

tion

Xfin
A = GP pure

L + OX

P fin
A = −GXpure

L + OP . (6.10)
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Expected Measured Difference
φ Var

(
P fin

A

)
Var

(
Xfin

A

)
Var

(
P fin

A

)
Var

(
Xfin

A

)
Var (SP ) Var (SX)

0 0.34 1.94 0.52 1.99 0.18 0.05
90 1.69 0.59 1.95 0.73 0.26 0.14

Table 6.1: The Table shows the expected final atomic state variances Var
(
P fin

A

)
and Var

(
Xfin

A

)
, the measured atomic variances and the extra noise Var (SP ) and

Var (SX) which is not accounted for in the theoretical model. The measured
atomic variances are also found in the Table 6.2.

The two noise operators Ox and OP (with zero mean) describe the noise added
during the storage process. Since the mean values and variances of both the pure
and final state operators are measured, the gain G and the variances of the noise
operators Var (OX) and Var (OP ) can easily be found from the experimental data.

By inserting Eq. (6.3) into Eq. (6.6), we find the operators OX and OP

OX =

√
1 − 1

Z2
XA +

√
1 − G2P vac

L + SX

OP = −
√

1 − G2Xvac
L −

√
1 − 1

Z2

√
1 − ηdet

ηdet
X̃vac

L + SP . (6.11)

We here choose to introduce two new noise operators SX and SP . These noise
operators describe noise processes which are not included in the theoretical model,
but are present in the experiment.

The variance of the noise operators can be estimated, and we find Var (OX) =
0.50 and Var (OP ) = 0.25 for the theoretical case Var (Sx) = Var (SP ) = 0. Using
these values, we can find the expected final atomic state variances for the case
where the pure states are squeezed by 6 dB in either the XL (with squeezing
phase φ = 0 deg) or the PL-direction (φ = 90 deg). The results are shown in
Table 6.1. These expected values will later be compared with the experimental
results.

6.2.3 Storage of the upper and lower sidebands

So far we have discussed the memory protocol in terms of the cosine and sine
canonical operators for atoms and light. We will now describe the protocol in
terms of the upper and lower sideband modes and the local (cell 1 and cell 2)
atomic operators.

The local atomic operators and the non-local atomic operators are related by

XA1 =
1√
2

(XAc + PAs) , PA1 =
1√
2

(PAc − XAs) ,

XA2 =
1√
2

(XAc − PAs) , PA2 =
1√
2

(PAc + XAs) , (6.12)
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where the subscripts 1 and 2 refers to the first and second atomic ensemble,
respectively. We can also find the relations between the upper and lower sideband
modes of light and the cosine and sine modes

XLc =
1√
2

(X+ + X−) , PLc =
1√
2

(P+ + P−) ,

XLs =
1√
2

(P− − P+) , PLs =
1√
2

(X+ − X−) . (6.13)

We write the input-output equations for the quantum memory as

Xfin
Ac =GP pure

Lc + OX , P fin
Ac = − GXpure

Lc + OP ,

Xfin
As =GP pure

Ls + OX , P fin
As = − GXpure

Ls + OP , (6.14)

in the same way as was done in Eq. (6.10) but where we here write the cosine and
sine components explicitly. Equation (6.14) can be rewritten by inserting Eqs.
(6.12) and (6.13), and we find

Xfin
A1 =GP pure

+ +
OX + OP√

2
, P fin

A1 = − GXpure
+ +

OP − OX√
2

,

Xfin
A2 =GP pure

− +
OX − OP√

2
, P fin

A2 = − GXpure
− +

OP + OX√
2

. (6.15)

We see that the upper sideband is stored in the first atomic ensemble and the lower
sideband is stored in the second ensemble. We also see that the amount of noise
added to each local atomic canonical variable equals {Var (OX) + Var (OP )} /2.
These calculations will be used later in Sec. 6.6.

6.3 Methods

6.3.1 Calibration of the gains

The method for calibrating the gains of the memory is now described. Using Eq.
(6.5), an equation describing the mean value transfer can be found〈

Xfin
A

〉
= κ

〈
P in

L

〉〈
P fin

A

〉
= −

( κ

Z2
+ g

√
ηdett

) 〈
X in

L

〉
. (6.16)

In the above it is assumed that the intial atomic operators and the vacuum
operator have zero mean

〈
X in

A

〉
=
〈
P in

A

〉
= 〈Xvac

L 〉 = 0. The two prefactors κ and
− ( κ

Z2 + g
√

ηdett
)

are denoted the gains of the memory. Prior to the storage, we
calibrated the gains such that κ = 1 and κ

Z2 + g
√

ηdett = 1. This was done in the
following way similar to the κ-calibration method described in Sec. 3.6.
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Procedure

Calibration of the input modulation: Using electro-optical modulators,
mean values

〈
X in

L

〉
and

〈
P in

L

〉
can be created in the input light. These input

mean values can be calibrated beforehand.
Calibration of κ2: A 1st probe pulse with a non-zero mean value

〈
P in,1st

L

〉
�= 0

is sent through the atomic ensembles. This mean value is transferred to the
atomic system through the light-atom interaction as seen in Eq. (6.16). Then, a
magnetic π-pulse is utilized to rotate Xfin

A into P fin
A . Finally, a 2nd probe pulse is

used to measure P fin
A . The mean value of the 2nd pulse measurement equal〈

Xout,2nd
L

〉
= κ

〈
Xfin

A

〉
= κ2

〈
P in,1st

L

〉
. (6.17)

The κ2 parameter can be found from the measured ratio
〈
Xout,2nd

L

〉
/
〈
P in,1st

L

〉
.

κ2 is roughly proportional to the light power, and the light power is adjusted
such that κ2 = 1.
Calibration of the feedback gain g: A 1st probe pulse with a non-zero mean
value

〈
X in,1st

L

〉
�= 0 is sent through the atoms. Then, the measurement results

are fed back to the atomic system using the RF coils. Finally, a 2nd probe pulse
is used to measure P fin

A . The mean of the 2nd pulse measurement result equal〈
Xout,2nd

L

〉
= κ

〈
P fin

A

〉
= −κ

( κ

Z2
+ g

√
ηdett

)〈
X in,1st

L

〉
. (6.18)

From the measured ratio
〈
Xout,2nd

L

〉
/
〈
X in,1st

L

〉
, we find the factor κ

(
κ

Z2 + g
√

ηdett
)
.

The electronic gain g is adjusted such that
(

κ
Z2 + g

√
ηdett

)
= 1. For κ2 = 1, this

condition is equivalent to g
√

ηdet = t.

6.3.2 Experimental setup

The experimental setup together with the pulse sequence are shown in Fig. 6.1.
The displaced two-mode squeezed light together with the local oscillator (LO)
light are produced in the "Preparation" part of the setup. The light from the
Ti:Sa laser is split into several parts. One part is used as the LO which is
pulse-shaped using an elector-optical modulator (EOM) followed by a polarizing
beamsplitter (PBS). In each experimental cycle, three local oscillator pulses are
shaped: the "QND spin-squeezing pulse", the "input pulse |Ψ〉" and the "probe"
(see pulse sequence).

A second part of the light is used as a "seed". This light is amplitude (AM)
and phase modulated (φM) using EOM’s and a PBS. Amplitude and phase mod-
ulation at the specific frequency of ΩL = 2π · 322 kHz creates displaced coherent
light states in the upper and lower sidebands with frequencies ω± = ω0 ± ΩL.
Equivalently, coherent states are created in the cosine and sine modes. The last
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Figure 6.1: Setup and pulse sequence. At the sender station, two-mode
squeezed light is generated by the Optical Parametric Amplifier (OPA). A vari-
able displacement of the state is achieved by injecting a coherent input into OPA
modulated by electro-optical modulators (EOM’s). The output of the OPA is
shaped by a chopper, and combined on a polarizing beamsplitter with the local
oscillator (LO) beam, such that the squeezed light is only on during the "input
pulse". A beamshaper and a telescope create an expanded flattop intensity pro-
file. The light is then send to the receiver (memory) consisting of two oppositely
oriented ensembles of spin-polarized cesium vapour in paraffin coated cells and a
homodyne detector. The detector signal is processed electronically and used as
feedback onto the spins obtained via RF magnetic field pulses. Pulse sequence
for the initiation of the memory, storage and verification. Each RF "feedback"
pulse is 0.15 msec long and centered between two consecutive light pulses.
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part of the light is used as input to a nonlinear crystal located inside a cavity
(the second harmonic generation SHG). Here, the infra-red light at frequency ω0

is frequency converted into blue light with frequency 2ω0. The blue light is then
used to input the optical parametric amplifier (OPA) where the blue photons are
downconverted back into pairs of infra-red photons with frequencies around ω0.
With a blocked seed beam, the output of the OPA will be two-mode squeezed
vacuum as described in Eq. (6.1) . If we add the seed beam into the OPO, the
output of the OPO will instead be a displaced two-mode squeezed state. The
output of the OPO is then combined at a PBS with the LO. A chopper (rotating
disk with a hole) makes sure that the squeezed light is on only during the "input
pulse".

6.3.3 Pulse sequence and the initial atomic states

The initial atomic state

The pulse sequence for the experiment is shown in Fig. 6.1. In the "preparation of
the initial atomic state" part, the atoms are first initialized in a state close to the
coherent spin state (CSS) by the use of resonant pumping and repumping light
for the duration of 5 ms. The experiments are done at room-temperature and the
Faraday angle proportional to the number of atoms was measured to be θF ≈ 7
deg. The atoms are probed with a T = 1.5 ms probe pulse with power P = 3 V.
The initial atomic state is characterized to have Var (XA) = Var (PA) = 0.55(4)
in terms of the canonical operators. This state is 10% more noisy than the CSS
which has the variances of 1/2. This is not optimal, but since it is only 10% extra
noise it will only slightly reduce the memory performance.

The state characterization is done using the swap and squeezing input-output
Eq. (2.18). By sending light through the atoms and measuring the Xout

L canonical
operator, we can reconstruct the atomic variance using the equation

Var
(
Xout

L

)
= t2Var

(
X in

L

)
+ κ2Var

(
P in

A

)
. (6.19)

If one applies a magnetic π-pulse prior to the probe pulse, it is possible to mea-
sure X in

A instead of P in
A . The π-pulse rotates XA into PA by the use of a DC

magnetic field applied for a certain duration. This way, Var
(
X in

A

)
can similarly

be determined. The detection efficiency is also included in reconstruction of the
atomic variances using Eq. (6.4).

The coupling parameters t2 and κ2 are measured using the mean value trans-
fer method. Remember that κ2 equals one in the experiment. The measured
t2 = 0.80(4) agrees with the expected 1 − 1/Z2 ≈ 0.84 (using Z2 ≈ 6.4) within
the experimental uncertainties. Notice, that we here do not use the full swap and
squeezing theory, which includes bad decoherence parametrized by the ε2 param-

111



eter, since this was how the results for the atomic variances were calculated in
the Nature Physics Letter.

Full swap and squeezing theory for data analysis

We now discuss how atomic decoherence can be included in the data analysis,
and how this changes the calculated atomic variances Var (XA) and Var (PA).
When using the full swap and squeezing theory, Eq. (2.82) is used for analyzing
the noise instead of Eq. (6.19). The only difference between the two equations is
that t2 should be replaced with t2m parameter and κ2 should be replaced with κ2

m.
Since we use the mean value method for measuring κ2 = 1, the same value

will also be our estimate for the κ2
m = 1. On the other hand, t2m is calculated

from Eq. (2.83) and is not a measured parameter (it is found from the probe
duration T , the T2-time, ε2 and Z2). We can calculate t2m using the measured
parameters, and we find t2m = 0.87(1). To calculate this value, we used the
values T = 1.5 ms, Z2 ≈ 6.4 and ε2 = 0.35(5). ε2 is found from the equation
ε2 = 1 − κ2

m/ {Z2 (1 − exp (−2T/T2))} using the measured T2 = 11(1) ms.
When reconstructing the atomic variances, the difference between the results

using the two models will be approximately (t2m − t2) · 1
2
≈ 0.07 · 1

2
where the 1

2

is the variance of the vacuum. This means that if we would use the full swap
and squeezing interaction theory, our atomic variances would be less noisy by the
amount 0.07 · 1

2
. In all of this chapter, we will keep the numbers for the variances

as stated in the Nature Physics Letter, but it should be kept in mind, that using
the more advanced reconstruction procedure with ε2 = 0.35, we would get lower
estimates for the atomic noise and thereby a better storage.

The spin-squeezed state

After the optical pumping stage, the atoms interact with the off-resonant "QND
spin-squeezing pulse", the output light is measured and the results are fed back
to the atoms by the "feedback" pulse. The feedback is applied with RF magnetic
fields to the two ensembles. This creates a spin-squeezed collective atomic state
with Var (XA) = 0.43(3) and Var (PA) = 1.07(5). The spin-squeezed state has
the variances reduced by 14% compared to the CSS and 22% compared to the
state after the optical pumping. The more squeezing the better, and one would
improve the memory if one could increase the squeezing. The product of the
variances is Var (XA) · Var (PA) = 0.46 > 1/4, and the atomic state is therefore
not a minimal uncertainty state.

Storage and verification

During the "storage" part, a displaced squeezed state |Ψ〉 is sent to the memory.
The output light operators Xout

Lc and Xout
Ls are measured and the signals are fed
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back to the atomic system using the RF coils. According to Eq. (6.6), the light
state is transferred to the final atomic state.

Finally, during the "verification" stage, the final atomic state is characterized
by the "probe pulse". Using a measurement of the Xout

L operator, we can probe
either the Xfin

A or the P fin
A operator (depending on if we apply the optional π-

pulse). If we store the same state |Ψ〉 in the memory many times, we can build
up the statictics (mean and variances) of the final atomic operators Xfin

A and P fin
A .

6.3.4 Measured Losses

The total losses ηtot are divided into three parts as shown in Fig. 6.2. The total
loss includes the transmission losses ηtr (including the OPA output efficiency
0.97), the entrance losses ηent and the detection losses ηdet such that ηtot=ηtr ·
ηent ·ηdet. Remember that the η-paramters are intensity transmission coefficients.

The physical memory consist of two glass cells, which introduce quite some
losses due to reflections at glass-air or air-glass interfaces. Each interface intro-
duce around 4% losses 1. Since our light-atom interaction model does not include
losses between the cells, we assign one half of the losses through the cells to the
entrance losses and the other half to the detection losses.

From the measurement of the quadratures of the squeezed light (with variances
0.29(1) and 1.34(6), we find the total losses ηtot = 0.567(35). We measure the
transmission through the cells of 0.817(20), the transmission through the optics
after the cells of 0.889(10) and estimate the efficiency of the photodiodes to
be 0.98(1). Assigning one half of the losses through the cells to the entrance
losses and another half to the detection losses we find ηent =

√
0.817 = 0.90(1),

ηdet =
√

0.817 · 0.889 · 0.98 = 0.79(2) and ηtr = ηtot/ (ηentηdet) = 0.80(4).

6.4 Experimental results

Input states

A quantum memory should be able to store a range of states. In the experiment,
we choose to store 18 different pure states. The states are characterized by their
mean values {〈Xpure

L 〉 ; 〈P pure
L 〉 = 0, 3.8, 7.6; 0, 3.8, 7.6} and variances. The states

are squeezing by 6 dB in either the XL or PL-direction. The squeezing phase
is defined to be φ = 0 deg for squeezing along XL-direction and φ = 90 deg for
squeezing along PL-direction. We choose to divide the states into three alphabets
shown in the inset in Fig. 6.2. The alphabets are parametrized by the parameter
dmax = max {〈Xpure

L 〉 , 〈P pure
L 〉} where the maximum is taken over states in the

alphabet. The first alphabet with dmax = 0 contains two vacuum states with

1The cells have anti-reflection coated windows attached at the outside. This way, only inside
glass-air or air-glass interfaces contribute to the losses from the cells.
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Initial pure states |Ψ〉 Final atomic states overlap〈
Xpure

L

〉 〈
P pure

L

〉
φ

〈
Pfin

A

〉 〈
Xfin

A

〉
Var

(
Pfin

A

)
Var

(
Xfin

A

)
Θ

0.0 0.0 0 -0.06 0.25 0.52(2) 1.99(3) 0.62
0.0 3.8 -0.06 3.19 0.60
3.8 0.0 -3.47 -0.42 0.57
3.8 3.8 -3.39 2.89 0.49
0.0 0.0 90 -0.07 0.06 1.95(6) 0.73(1) 0.55
0.0 3.8 -0.06 3.14 0.42
3.8 0.0 -3.22 0.48 0.46
3.8 3.8 -3.21 3.59 0.50
0.0 7.6 0 -0.03 6.30 0.55(2) 2.01(4) 0.49
7.6 0.0 -6.83 -0.46 0.37
3.8 7.6 -3.20 6.07 0.35
7.6 3.8 -6.54 2.80 0.22
7.6 7.6 -6.40 6.03 0.15
0.0 7.6 90 -0.08 6.24 2.12(8) 0.78(3) 0.18
7.6 0.0 -6.37 0.59 0.35
3.8 7.6 -3.13 6.75 0.32
7.6 3.8 -6.38 3.79 0.43
7.6 7.6 -6.36 6.72 0.27

Table 6.2: The three first columns display the mean displacements and the squeez-
ing phase (φ = 0 corresponds to XL being squeezed) of the initial pure light states.
The next four columns display the mean values and variances of the final atomic
states after the storage. The last column displays the overlap between the initial
pure light states and the final atomic states. Vacuum state variances are 1/2.
The uncertainties on the variances are calculated as the standard deviation of
the variances within each subgroup of the input states.

squeezing phase φ = 0 deg or φ = 90 deg. The next aplphabet with dmax = 3.8
contains 8 states and the last alphabet with dmax = 7.6 contains all 18 states.

Transfer of mean values

The mean and variances of the final states are shown in Table 6.2 for the 18
different pure states |Ψ〉. The first thing to notice is that the mean values of the
final atomic states are lower than the pure states. By averaging over all states,
we calculate the average gain of the memory (the ratios − 〈P fin

A

〉
/ 〈Xpure

L 〉 and〈
Xfin

A

〉
/ 〈P pure

L 〉) to be G = 0.85. This number agrees with the factor √
ηtrηent =

0.85 by which the mean values of the pure states are attenuated with before they
enter the memory. With the chosen settings κ = 1 and κ/Z2 + g

√
ηdett = 1,

this attenuation is expected. Even though the average gain is as expected, the
gains for the single input states vary quite a bit. The reason for this variation is
not exactly known. It is probably related to technical issues such as the phase
stability of the interferometer, the stability of the Larmor precession frequency
and the stability of the electronic feedback gain and of κ. These things could lead
to wrong mean values in the final atomic operators, rotations in XL-PL space of
the light operators and rotations in XA-PA space of the final atomic operators.
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Transfer of variances

The variances of the final atomic states are also shown in Table 6.2. For the first
four input states in Table 6.2 with mean values 0 or 3.8 and squeezing phase
φ = 0, the variances of the stored states do not vary significantly. We have there-
fore only showed the average values for these four states. Similarly, the variances
has been grouped for other sets of states.

Earlier in Sec. 6.2.2, the expected final atomic variances were estimated and
displayed in table 6.1. The table also shows the measured final atomic variances
for input states in the alphabet with dmax = 3.8. The differences between the
measured final atomic state variances and the expected variances are denoted
Var (SX) and Var (SP ) depending on if we consider X or P operators. As shown
in Table 6.1, the experimental measured variances differ from the expected ones
by the amounts Var (SX) ≈ 0.10 and Var (SP ) ≈ 0.22 (which are averaged over
the squeezing phase φ). The calculated differences are small (only a fraction of
the vacuum variance) which means that the measured data agrees well with the
expected theoretical estimates.

The small discrepancy between measured and expected variances could be
due to mixing of the anti-squeezing into the squeezed direction due to phase in-
stabilities. This would lead to higher noise, mainly in the squeezed direction.
We also see from Table 6.1 that the atomic noise is slightly higher when we are
storing light states with large displacements. This is probably due to technical
noise orignating from the EOM’s which are modulating the input light.

6.5 Fidelity of the storage

6.5.1 Overlap formula

The overlap integral Θ between the initial pure state of light and the final atomic
state equals

Θ =
exp[− 〈Xfin

A 〉−〈P pure
L 〉

2[Var(Xfin
A ))+Var(P pure

L )]
]√

Var
(
Xfin

A

)
+ Var (P pure

L )
·
exp[− 〈Pfin

A 〉+〈Xin
L 〉

2[Var(Pfin
A )+Var(Xpure

L )]
]√

Var
(
P fin

A

)
+ Var (Xpure

L )
, (6.20)

and is used as the figure of merit for the transfer of a single quantum state. The
overlap is a good measure of quantum state transfer only if either the initial
or final state is pure. This means, that the overlap between the input light
state and the final atomic state is not a good measure of the state transfer.
We therefore focus on the overlap between the pure states and the final atomic
states. For a pure state squeezed along for instance the PL-direction, the overlap
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reaches unity when 〈XA〉 = 〈PL〉 , 〈PA〉 = −〈XL〉 and Var (XA) = Var (PL) =
1/(2s), Var (PA) = Var (XL) = s/2.

6.5.2 Experimental overlaps and fidelities

The overlaps between the pure light states and the final atomic states can be
calculated using Eq. (6.20) and are also shown in Table 6.1. We see that the
overlap depends highly on the input state. The overlap is small when the input
displacement is large due to the non-unity gain G = 0.85 of the state transfer.
Furthermore, we see that the overlap is smaller for squeezing angles φ = 90 deg
due to the the more noisy final atomic states.

We now focus on the experimental fidelity which is defined as the average
overlap between the input pure states and the final atomic states for a certain
input alphabet. For each of the three alphabets shown in the inset to Fig. 6.2,
we calculate the fidelity as the average overlap. The results are plotted in Fig.
6.2 as circles connected by lines. The experimental fidelity decreases with larger
dmax mainly due to the mismatch in mean values of the pure light states and the
final atomic states.

6.5.3 Classical benchmark

A classical benchmark is also plotted in Fig. 6.2 as squares connected by lines.
The benchmark has been calculated by the theory team of the authors to Ref.
[1]. The benchmark is an upper bound for the fidelity of state transfers for a
classical memory. The inputs to the classical memory are states squeezed by 6dB
and displaced in phase space. Before entering the classical memory, the states
travel through the transmission losses which equals the experimental value ηtr.
A comparison of our memory and the classical memory is depicted in Fig. 6.2.
The benchmark values have been obtained by first truncating the Hilbert space
to a finite photon number and then solving the finite-dimensional optimization
employing semi-definite programming [81]. The result of the truncation of the
Hilbert space is the constant upper bound of 0.45 of the benchmark for dmax > 3.5,
whereas the actual benchmark decreases further for a larger dmax (the benchmark
for an infinite Gaussian distribution of displacements is 0.38). For more details,
see the Supplementary Information to [1].

Since the experimental fidelity F = 0.52 ± 0.02 for dmax = 3.8 is higher than
the classical benchmark 0.45, our memory outperforms any classical memory for
this set of input states. This means that our memory is a true quantum memory.

Beating the classical benchmark means that our memory is able to preserve
entanglement if only one part of an EPR pair (for instance the upper sideband
mode a+) is stored in the memory and the other part (the lower sideband mode
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a−) is left as a propagating mode. Based on the performance of our memory,
we can calculate the expected EPR variance ΣEPR = 0.77 < 1 between the
stored mode and the propagating mode (see Sec. 6.6). This variation of the
experiment could be implemented if the two co-propagating modes a+ and a−
could be separated prior to the storage. The separation could for instance be
done by using a narrowband filter cavity where one mode is transmitted and the
other mode is reflected.

6.6 Storage of one part of an EPR-entangled pair
In the experiment, the sender (Alice) prepares and sends a two-mode entangled
state to the receiver (Bob) who then stores it in his quantum memory. Although
the memory is a true quantum memory as proven by its ability to outperform the
classical benchmark, the noise added in the storage process to both EPR modes
leads to a separable state of the two memory cells. Note that for input states
with the squeezing direction φ = 0 displaced up to 3.8 (Table 6.1), we are very
close to having two displaced entangled atomic ensembles after the storage since
the parameter ΣEPR describing EPR-entanglement for this case equals

ΣEPR = Var

(
Xfin

A1 − Xfin
A2√

2

)
+ Var

(
P fin

A1 + P fin
A2√

2

)
= Var

(
P fin

Ac

)
+ Var

(
P fin

As

)
= 0.52 + 0.52 = 1.04, (6.21)

which is only slightly above 1.

Since outperforming the classical benchmark is sufficient to prove that the
memory is capable of storing entanglement, we should be able to think of a
modification of the experiment which can do exactly that. One example of such
an experiment is the protocol where Alice sends only one mode of the EPR-
entangled pair to Bob for storage, and the other mode is sent to a third person,
Charlie. In this case only one of the two entangled modes gets distorted by
the memory. After the storage, Bob and Charlie perform a joint measurement
to test whether there is entanglement between Bob’s stored atomic state and
Charlie’s light state. In practice, Alice would have to separate the upper and
lower sidebands, which could for instance be done using a cavity which transmits
one sideband and reflects the other. The initial entanglement of the upper and
lower sidebands is characterized by

ΣEPR = Var

(
Xpure

+ − Xpure
−√

2

)
+ Var

(
P pure

+ − P pure
−√

2

)
= 1/s. (6.22)

Alice then sends the EPR-entangled upper sideband (together with a lower side-
band in the vacuum state) to Bob who stores the upper sideband in the first
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Figure 6.2: Fidelities. The figure shows the values of the experimental fidelity
(circles) and the theoretical benchmark values (squares) as a function of the size
of the set of states dmax with one vacuum unit of displacement corresponding to
dmax = 1/

√
2. The inset illustrates the alphabet of states used in the experiment.

The three sets of states with dmax = 0; 3.8; 7.6 used for the determination of the
experimental values of the fidelity plotted in the graph are shown in the inset
within dashed, dotted and dashed-dotted squares, respectively. The panel in the
bottom shows schematically the propagation channels used in the calculations of
the fidelity of the quantum memory (left part) and of the benchmark fidelity of
the classical memory (right part). Errorbars on the experimental data represent
the standard deviations of the results where all statistical and systematic errors
have been included.
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ensemble (and the vacuum in the lower sideband in the second ensemble). After
the storage Bob and Charlie share entanglement since

ΣEPR = Var

(
Xpure

− + P fin
A1√

2

)
+ Var

(
P pure
− − Xfin

A1√
2

)
=

1

2

[
1

2s
(1 + G)2 +

s

2
(1 − G)2 + Var (Ox) + Var (Op)

]
= 0.77 < 1, (6.23)

which has been calculated using the experimentally obtained parameters of our
memory from Table 6.1, Eq. (6.15) and utilizing the fact that Var (Xpure

+ + Xpure
− ) =

s and Var (P pure
+ + P pure

− ) = s. We conclude, based on the experimental perfor-
mance of our quantum memory for the storage of both modes of the two-mode
entangled states, that if we instead stored only one part of the EPR-pair, one
of the atomic memories would be entangled with the other part of the EPR-pair
after the storage.

6.7 Conclusions and outlook
We have demonstrated the storage of a new class of light states: the displaced
two-mode squeezed states. In the experiment, the two modes of light are stored
in two atomic modes which are implemented in the experiment using two atomic
ensembles.

For each of the 18 pure input states, we have characterized the final stored
atomic states. When storing pure states with squeezing phase φ = 0 deg and small
displacements dmax ≤ 3.8, the final atomic states have EPR variance ΣEPR =
1.04(4). If the memory had performed only slightly better (such that ΣEPR <
1), we would have succeded in transferring the entanglement between the two
sidebands to entanglement between the two atomic ensembles.

Our memory is capable of preserving entanglement if only one part of an EPR
pair is stored in the memory and the other part is left as a propagating mode.
This has been demonstrated by calculating a classical benchmark fidelity and
showing that the experimental fidelity is higher than the benchmark. Direct cal-
culations using the measured variances of the final atomic states also show that
entanglement can be preserved for the case where one part of the EPR pair is
stored and the other part is left as a propagating mode. Our memory is therefore
a true quantum memory.

There are several ways the experiment can be optimized. In the experiment
the atoms were first initialized in a state close to the CSS and was then pre-
pared in a spin-squeezed state with variance 14% below the PN limit. However,
it should be possible to increase the degree of spin-queezing further. One should
first be more careful to start from the CSS with an EPR variance of 1. Then
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a realistic value of the attainable squeezing is 40% below the PN limit. This
degree of squeezing should be possible to obtain by careful optimizing the alig-
ment, the polarization, the power and the duration of the QND spin squeezing
probe. One could also increase the density of atoms. This typically increases
the amount of attainable spin-squeezing as showed in the Fig. 3.13 in Sec. 3.11.
Since squeezed light is available in the experiment, it could also be possible to
squeeze the QND spin-squeezing probe. This should also lead to a higher degree
of atomic squeezing.

In the experiment, the mean values of the pure states are transferred with
less than unity gain. This is the main reason for the decrease in fidelity for
large displacements. In a future experiment this can easily be changed by simply
increasing the light power and the electronic gain.

The losses play an important role when working with non-classical light states,
and any loss will degrade the memory performance. The glass cells used in the
experiment are anti-reflection (AR) coated on the outside of the windows. AR-
coating on also the inside of the windows will reduce the losses on two cells from
the measured 18% to only a few percent. Such cells are under the investigation
in the group.

The memory storage time is in the experiment 1 ms which equals the time
between the "input pulse |Ψ〉" and the "probe" (see Fig. 6.1). We did not attempt
to vary the storage time in the experiment. The decay-time in the dark is typically
T dark

2 ≥ 30 ms so it should be possible to store quantum states for times longer
than the 1 ms done in the experiment.

We use the fidelity as the figure of merit for the storage. When increasing
the storage time, the fidelity will decrease. The maximal storage time is reached
when the experimental fidelity equals the benchmark fidelity. The maximal stor-
age time will depend on the size dmax of the input distribution, since the overlap
between a final atomic state (after some storage time) and the initial pure light
state depends on both the T dark

2 -time and the initial light displacement.

We have demonstrated the quantum storage of the two-mode squeezed states.
However, we have not demonstrated that it is possible to retrieve the stored
states. The retrieval of states should be feasible in our setup. Several retrieval
protocols have been discussed in the thesis [33], but the protocols have not yet
been implemented in our setup.
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Chapter 7

Entanglement generated by
dissipation & Steady state
entanglement

7.1 Introduction

In this chapter we present experiments where entanglement between two atomic
ensembles is generated using dissipation as the entangling mechanism. The gen-
erated entanglement is long lived, and we present experimental results which
demonstrate that the ensembles can maintained in an entangled state for around
40 ms.

In previous experiments using our setup [16, 2, 1], entanglement was created
using a measurement of the collective atomic spin operators. After the mea-
surement, the entangled state decayed rapidly and the entanglement lasted only
for a few milliseconds. With the method denoted "entanglement generated by
dissipation", the ensembles are entangled without the use of a measurement.

We also combine the dissipative entangling mechanism with continuous mea-
surements. Using this combined method, we demonstrate that the atomic en-
sembles can be maintained in an entangled steady state. In this case, the entan-
glement does not decay but instead "lives for ever". The results demonstrating
entanglement generated by dissipation & steady state entanglement are submit-
ted and available on the archive [3] 1.

The method "entanglement generated by dissipation" is based on the idea
that if two atomic systems share a common enginered reservoir, dissipation can
drive the two systems into an entangled steady state [82, 83, 84, 85]. Such a

1At the time of writing, the results demonstrating steady state entanglement are not in the
current arXiv version (v1). An updated version or a new arxiv paper including those results
should appear soon.
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steady state will be robust, the entanglement will not depend on the initial state
of the atomic systems, and the entanglement will be present at all times. This
kind of entanglement can be used on-demand at any instance of time. In our
case, the common reservoir shared between the two atomic ensembles consists of
the modes of a drive light field passing though the ensembles.

In most of the experiments presented in this chapter, the atoms are first
initialized in a fully polarized state. Then, a drive field is applied and the atoms
will evolve into an entangled state. Due to spontaneous emission, the atoms
will depolarize, prohibiting the entanglement to persist for long times. In order
to achieve a true steady state, both pump and repump fields should therefore
be applied to the atoms to keep them well polarized. We demonstrate that
the addition of pump light increases the time the entanglement generated by
dissipation can be maintained. A theoretical analysis presented in [3] shows that
for high optical depths and in the presence of both pump and repump fields,
entanglement should persist in a steady state. For the optical depths used in
the presented experiments, unfortunately, the atoms did not reach an entangled
steady state by means of dissipative processes only.

Measurements on the atomic systems can be used to create entanglement as
discussed several times earlier in this thesis. Using a method combining dissipa-
tive processes (by the drive, the pump and the repump light) with continuous
measurements, we demonstrate that entanglement can be generated in a steady
state. With this combined method, we generate atomic entanglement 20% below
the projection noise limit which "lives for ever".

7.2 Theory

In our experimental system, the generation of entanglement by dissipation can
to a large extend be explained by the swap and squeezing interaction theory
developed in chapter 2. However, the theory has some limitations which makes
it hard to predict the time evolution of the atomic state over long periods of
time. A related theory presented in [86, 3], here denoted the "master equation
approach", has been developed. This theory can be used to describe the long
term dynamics and the steady state of the atomic systems.

Below we discuss the entanglement generated by dissipation experiment us-
ing the swap and squeezing interaction. The master equation approach is also
discussed and compared to the swap and squeezing interaction theory.

7.2.1 Swap and squeezing interaction theory

The simplest form of the swap and squeezing interaction theory is the input-
output equations (2.19). From these input-output equations, one can see that it
is possible to generate entanglement in a steady state. After a long interaction
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time 2γswT  1, the collective atomic P -operator is squeezed by the amount
Z2 = 1/ζ2. Since this is true for both the Pc and Ps operators, the EPR variance
criterion ΣEPR = ζ2 < 1 is satisfied and the two atomic ensembles are entangled
in a steady state. For our experimental value of the detuning Δ = −850 MHz, we
have ζ2 ≈ 1/6.4 and the theory predicts a substantial amount of entanglement.

As seen in the input-output Eq. (2.19), the interaction between light and
atoms is symmetric. This means that entanglement is not only generated be-
tween the two atomic ensembles but also between the upper and lower sidebands
of the output light. In the paper [2] where the swap and squeezing interaction
was first introduced, the entanglement between the sidebands of light was demon-
strated. This was the topic of chapter 4.

We now move on to the more complicated input-output equations for the full
swap and squeezing interaction theory which also include "bad decoherence" pro-
cesses. The bad decoherence originates from unwanted processes such as sponta-
neous emission, atomic collisions, dephasing due to magnetic field inhomogeneity
and so on. First a comment on how the entanglement is influenced by the bad
decoherence γbad. In the input-output equations, the bad decay is parametrized
in terms of the parameter ε2 = γbad/γ where γ = 1/T2. In the limit of long
interaction times, one finds from Eq. (2.71) that

Var
(
P out

c

)→ (
1 − ε2

)
ζ2Var

(
yin

c,+

)
+ ε2Var (Fpc,+) for γT  1. (7.1)

If we assume that the input light operators and the noise operators are in the
vacuum state, the EPR variance equals ΣEPR = ζ2 + (1 − ζ2) ε2. We see that a
non-zero ε2 will reduce the generated entanglement. However, entanglement will
always be generated no matter how large γbad is. We just need an ε2 < 1. This
will always be the case as long as γsw �= 0. The fact that entanglement should be
generated for all ε2 < 1 relies heavily on the assumption that the input light and
noise operators are in the vacuum state. In the experiment, this is unfortunately
not necessarily true. This will be discussed later when presenting the experimen-
tal results.

We now discuss the T1 and T2 decay times and how they are related to the
entanglement generated by dissipation. In the experiment, typical values are
T2 ≈ 6 ms and T1 ≈ 34 ms when the drive light is on the atoms. The T1-time is
the characteristic decay time of the mean spin Jx. The decay of the mean spin
is a problem since the collective coupling is proportional to Jx. If the mean spin
decays, the swap rate γsw ∝ Jx goes down and the coupling constant κ2 decreases
with time. This means that the collective effects responsible for the entanglement
gets smaller and smaller with time. When γsw decreases, ε2 goes up and we also
expect less entanglement as seen from Eq. (7.1). Similarly, if T2 is short due to
bad decoherence processes, ε2 goes up and the degree of entanglement is reduced.
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In earlier experiments in our setup such as the generation of entanglement by
a QND measurement [16], the time that entanglement could be sustained was
limited by the T2-time. On the other hand, in the swap and squeezing interac-
tion theory, entanglement is expected only for times γT  1 ⇔ T  T2. As
explained earlier, the T1-time limits the time entanglement can be maintained,
since for times comparable with the T1-time, the collective coupling (the swap
rate) decreases. However, the T1-time is significantly longer than the T2-time,
and we expect to see entanglement generated for a long duration on the order of
the T1-time.

When deriving the input-output equations, we assume that the mean spin Jx

is constant in time and that the atoms are highly oriented. For interaction times
comparable with T1, both of the assumptions are typically not true.

The two assumptions are related to the use of pump and repump fields. In
the beginning of each measurement cycle, all atoms are prepared in the highly
polarized F = 4, m = ±4 state by applying resonant pump and repump fields
for some duration. In the fully pumped state, the mean spin of the atoms in the
F = 4 manifold is maximal Jx = ±4NA. The orientation of the F = 4 atoms
defined by p4 = 1

4

∑F
m=−F mρFm,Fm where ρFm,Fm is the density matrix for the

2F + 1 = 9 states in the F = 4 manifold equals one for this fully pumped state.
After the pumping stage, entanglement will be generated by using a drive

pulse. If the pump and repump fields are turned completely off during the drive
pulse (see Fig. 7.2a), the mean spin Jx and the orientation p4 will decay towards
zero. The mean spin decays mainly due to the loss of atoms to states with F = 3
but also slightly due to depolarization of the atoms in the F = 4 manifold. If
instead the pump light is kept on simultaneously with the drive light (see Fig.
7.2b), the orientation p4 will still be high. And if also the repump light is kept on
simultaneously with the drive (see Fig. 7.2c), the mean spin Jx will still be large.
In the cases where pump and/or repump light is applied during the drive pulse,
Jx and p4 will reach non-zero steady state values. The exact values will depend
on the power of the pump, the repump and the drive.

If we are interested in generating an entangled steady state, it is now clear
that we need to apply both pump and repump fields simultaneously with the
drive light. The pump light re-orients atoms in the F = 4 manifold, and the
repump light makes sure that atoms lost to the F = 3 manifold are recycled and
put back in the F = 4 manifold, such that they can take part in the collective
interaction.

7.2.2 Comparison between theories

We are interested in a theory which can describe the light-atom interaction for
long interaction times. The theory should include processes such as spontaneous
emission due to the drive, pump and repump fields and also atomic collisions.
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These processes influence the time evolution of the collective state of the two
atomic ensembles. In particular, a steady state will be highly dependent on these
processes. Such a theory has been developed by C. Muschik et al [86]. This
theory is also used in [3] to describe the experiment and the experimental results.

I would like to point out some differences between the theory developed in
[86] and the swap and squeezing interaction theory described in chapter 2. In the
swap and squeezing interaction theory, the decay of the transverse spin was put in
the model by including the bad decoherence rate γbad and the noise operators Fx

and Fp. However, the theory does not include a way to calculate the magnitude
of γbad or the variance of the noise operators. In the theory presented in [86],
the effect of spontaneous emission is calculated using the relevant level structure
of cesium and the appropriate dipole matrix elements. This way, both the decay
rates and the noise properties can be calculated from the light intensities of the
drive, pump and repump fields. Also, the decay of the mean spin Jx is included
in the model presented in [86] which is important for predicting the steady state.

In the experiment, entanglement is generated by a long drive pulse of light.
The atomic state is then measured using a short pulse of light. It is important to
note that the swap and squeezing input-output equations for the light operators
are still valid if we only consider interaction times which are short compared to
the T1-time and highly polarized atomic ensembles. We will therefore still be able
to measure the atomic state as described by Eq. (2.82) under these conditions.
In conclusion, we will be able to measure the atomic state using the swap and
squeezing theory, but we will have to use the theory from [86] to be able to predict
the atomic state.

7.2.3 Master equation approach

I will now go through some main points of the master equation approach de-
scribed in [86, 3]. In the theory, the time evolution of the density operator is
calculated using a master equation. In the derivation, the light fields are traced
out such that one ends up with an effective Hamiltonian describing the spin dy-
namics only. The drive light is acting as a reservoir or environment which can be
thought of as dissipation. This motivates the name "entanglement generated by
dissipation".

As usual, we consider two oppositely polarized atomic ensembles with level
structure as shown in Fig. 7.1. Atoms in ensemble 1 (2) initially occupy the level
F = 4, mF = 4, (F = 4, mF = −4). The ensembles interact with strong linearly
y-polarized light represented in the x-quantization axis as a superposition of right
hand and left hand circularly polarized light. Situated in this light field, the atoms
can be excited and spontaneously emit photons in all directions. The photons are

125



described by modes âk where �k is the wavevector. Since spontaneous emission
is a resonant process, and the atomic ground state levels are separated by the
energy �ΩL where ΩL is the Larmor frequency, the frequency of the spontaneously
emitted photons will be ω+ or ω−. Here ω± = ω0 ± ΩL and ω0 is the laser
frequency. Atoms in ensemble 1 (2) couple to σ−-polarized light with coefficient
χ1 (χ2) and to σ+-polarized light with coefficient χ2 (χ1). For the cesium D2 line,
several excited states (F ′ = 3, 4, 5) contribute to χ1 and χ2. Each contribution is
proportional to the dipole matrix elements for the specific transition divided by
the specific detuning. The χ1 and χ2 coefficients are closely related to the a1 and
a2 cofficients used in the Hamiltonian given by Eq. (2.20). Upon absorption of
a σ−-polarized photon, a collective spin excitation b†1 can be created in the first
ensemble together with the creation of a photon in the upper sideband (see Fig.
7.1). This leads to a term proportional to

∫
Δωus

d�kχ1akb1+h.c. in the Hamiltonian.
The integration (over �k) runs over modes within a narrow frequency interval Δωus

centred around ω+ (us stands for upper sideband.) In total, we find four such
terms which give rise to the total Hamiltonian

H ∝
∫

Δωls

d�k
(
Aa†

k
+ A†ak

)
+

∫
Δωus

d�k
(
Ba†

k
+ B†ak

)
, (7.2)

where Δls is a narrow frequency interval centred around ω− and where we have
defined the variables

A = χ2b1 + χ1b
†
2 and B = χ2b2 + χ1b

†
1. (7.3)

This Hamiltonian leads to a master equation for the density matrix ρ of the
ensembles [86]

∂ρ

∂t
=

dΓ

2

(
AρA† − A†Aρ + BρB† − B†Bρ + h.c.

)
+ Lnoiseρ. (7.4)

Γ is the single atom radiative decay rate and Lnoise represents undesired noise
arising from single atom spontaneous emission or atomic collisions. Emission in
the forward propagating modes is enhanced by the optical depth d as compared
to the modes into other directions and give rises to the first terms in Eq. (7.4)
which are proportional to d. In the absence of the noise term, the term in the
parentheses will drive the collective state of the atomic ensembles into an entan-
gled steady state with ΣEPR = ζ2 < 1 [86]. The emission of a forward propagating
photon could arise from both the first and second ensemble, the two paths are in-
distingishable, and this leads to entanglement between the two atomic ensembles.

The master equation (7.4) has been solved for the special case where only
three levels in each ensemble are included. I.e., the multilevel cesium atom is
simplied as a three-level atom consisting of the two states F = 4, m = 4 and
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Figure 7.1: Level structure and light
fields for the two atomic ensembles.
â+ and â− are annihilation operators
for the upper and lower sidebands.
b̂†1 and b̂†2 are creation operators for
the collective atomic excitation for
the first and second ensemble. χ1

and χ2 are coupling strengths.

F = 4, m = 3 in the F = 4 manifold and the auxillary state F = 3, m = 3 in
the F = 3 manifold for the case of the first ensemble. For the second ensem-
ble, we only consider the three levels F = 4, m = −4, F = 4, m = −3, and
F = 3, m = −3. The auxillary level F = 3, m = ±3 is included to simiulate loss
of atoms from the F = 4 manifold. This reduction of the density matrix is quite
similar to what was done in Sec. 2.4.4 where the swap and squeezing interaction
was derived. The big difference is that the F = 3, m = ±3 state is now included
such that the decrease in Jx can be modelled.

Consider the situation where three levels per ensemble are included in the
model. The Langevin noise term Lnoise in Eq. (7.4) consists of several terms
which will now be discussed briefly. We can can consider noise processes which
take an atom from the initial state to a final state |initial〉 → |final〉. There
will be terms representing processes such as |F = 4, m = 4〉 → |F = 4, m = 4〉,
|F = 4, m = 4〉 → |F = 4, m = 3〉, and |F = 4, m = 4〉 → |F = 3, m = 3〉. These
terms represent dephasing, de-polarization (of the F = 4 manifold) and loss of
atoms (from the F = 4 manifold to the F = 3 manifold), respectively. The
origin of these terms can for example be spontaneous emission from the drive,
pump and repump fields. In this case, the strength of these processes can be
calculated from the dipole matrix elements. One can also put in atomic collisions
by hand. In [3], all these noise processes were included in the master equation
for the three atomic levels (in each ensemble). This model was used for fitting
the experimental data. Since the fitting was done by C. Muschik, I choose to not
present the fits in this thesis. For more details of the the theory one should refer
to [86, 3].

7.3 Quasi steady state entanglement generated by
dissipation

In this section, we present the results of entanglement generated by dissipation.
The entanglement can be sustained for a long time before it eventually decays.
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Figure 7.2: Pulse sequences used
in the experiments. Pump and
repump fields create the initial
atomic state at t = 0 close to
the CSS. The drive field creates
the entanglement. In (a) and
(b), the atomic state at time t is
measured using the output light
within the time interval from t to
t + tprobe. In (c), the output light
before time t is used to estimate
the atomic state at time t.

We therefore call this quasi steady state entanglement. Some of the procedures
for analyzing the data are presented in this section, while other more detailed
methods are presented in appendix D.

The pulse sequence for this kind of measurement is shown in Fig. 7.2a. The
atoms are first initialized in a state close to the CSS using pump and repump
light. This initial atomic state is characterized beforehand using the methods
described in Sec. 3.11. As discussed in appendix D.1, the value of the coupling
constant κ2 at time t = 0 can be found from the characterization of the initial
atomic state.

At time t = 0, the pump and repump light is turned off. Then, the drive light
responsible for the entangling mechanism is turned on. Starting from the CSS,
the atomic state now evolves into some state, hopefully an entangled state.

The generation of entanglement by dissipation does not require a measure-
ment. However, in order to verify that entanglement is generated, the output
light is measured. From the measurement of the output light, the time-evolution
of the atomic noise in PN-units ΣEPR(t) can be estimated, and it can be deter-
mined whether the atoms are entangled or not.

In the experiment, the cosine and sine components of the output light, Sout
2c (t)

and Sout
2s (t), are measured and the covariance matrix (discussed earlier in Sec.

3.7.1) is recorded. Figure 7.3 shows the recorded covariance matrix. The elements
along the diagonal decrease with time, demonstrating some time-evolution of the
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Figure 7.3: The covariance matrix for
the entanglement generated by dissi-
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during the probing, room-temperature
data. The light noise contribution to
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Figure 7.4: The output light noise in
shot noise units without atoms (blue)
and with atoms (red). For these spe-
cific measurements we chose tprobe = 1
ms.

atomic state.
The atomic noise ΣEPR(t) at time t can be estimated using the output light

measured in the time interval from t to t + tprobe (see the pulse sequence in Fig.
7.2a). tprobe is a short time interval typical in the range 0.5-1 ms. Notice that
(a) the evolution of the atomic state is slow compared to tprobe and (b) only the
output light after time t is used to estimate the atomic state at time t.

The measured covariance matrix is used for the atomic noise reconstruction.
Since the whole covariance matrix is recorded from time t = 0 to t = T , where T
is a long time, typically 30-180 ms, we can extract the atomic noise evolution in
the whole time interval 0 < t < T − tprobe.

To get an idea of how the "raw" data looks, we plotted the measured output
light noise at time t in Fig. 7.4. To be specific, the figure shows the calculated
variances

[
Var

(
Sout

2c,−(t)
)

+ Var
(
Sout

2s,−(t)
)]

/2 normalized to shot noise units. The
time dependent integrated cosine Stokes operator is defined as

Sout
2c,−(t) ∝

∫ t+tprobe

t′=t

Sout
2 (t′) cos(ΩLt′)e−γt′dt′. (7.5)

The sine operator is similarly defined. The variances of these operators can be
calculated from the covariance matrix as described in Sec. 3.7.1.

From the measured variances
[
Var

(
Sout

2c,−(t)
)

+ Var
(
Sout

2s,−(t)
)]

, the atomic
noise ΣEPR(t) at time t can be estimated using Eq. (2.85). In order to have
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a good signal to noise ratio, we choose the coupling strength κ2 around one. The
coupling strength κ2 depends on for instance the probe power P , the number of
atoms NA and the time interval tprobe. For our experimental settings of P and
NA, we obtain κ2 around one for tprobe =0.5-1 ms.

Figure 7.4 shows two things. In blue, it shows the measured shot noise of light
at time t. The shot noise is normalized such that it has the (average) value of 1.
In red, we have the output light variance when the atoms are present. The vari-
ance starts at the value around 1.75 and then decreases to the value 1.65. This
change happens due to a time evolution of the atomic state. The decrease in the
output light noise can happen for two reasons. Either because the atomic noise
in PN-units ΣEPR decreases, or because the mean spin Jx decreases. Only with
the combined measurement of Jx and the output light noise, we can calculate the
atomic noise in PN-units ΣEPR(t) and determine whether the atomic ensembles
are entangled.

We present results for two experimental settings: room-temperature (RT)
and high-temperature (HT). The two settings correspond to two different values
for the density of atoms. The density of atoms can be found from the initial
Faraday angle which has the values θF ≈ 8 deg (RT) and θF ≈ 14 deg (HT). The
main results are presented in Fig. 7.5 which shows the calculated atomic noise
in PN-units and the Faraday angle as a function of time for the RT and the HT
data.

The Faraday angle θF is recorded continuously with an auxillary weak "Fara-
day probe". The Faraday angle is an important parameter since we can find the
mean spin Jx from the Faraday angle measurement. For reasons explained in
appendix D.3, we calculate a compensated Faraday angle θ4 from the measured
θF . The mean spin of the atoms in the F = 4 hyperfine manifold is proportional
to the compensated angle Jx ∝ θ4. The compensated angle as a function of time
is plotted in Fig. 7.5. We see that the angle decreases from the initial value with
time 2.

The atomic noise in PN units as a function of time can be calculated from
the noise of the output light operators

[
Var

(
Sout

2c,−(t)
)

+ Var
(
Sout

2s,−(t)
)]

and the
compensated Faraday angle θ4(t) by using the knowledge of the initial atomic
noise at t = 0 measured beforehand. More details of the data analysis is presented
in appendix D.

Starting with the RT-data: The atomic state starts from the CSS with noise
ΣEPR = 1.00(6) at t = 0 3. When the drive is turned on, the atomic noise

2From calculations using the dipole matrix elements of cesium, we believe that the main
reason for this decrease in the Faraday angle is due to atoms lost to the F = 3 manifold and
only slightly due to the de-polarization of atoms in F = 4.

3The uncertainties on ΣEPR and Σcond
EPR are estimated to be 6%. Uncertainties on the detec-

tion efficiency, the shot noise, the measured output variances, the coupling constant κ2
m and

the reduction of the light noise t2m are included.
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Figure 7.5: Dots connected with lines: Atomic noise in projection noise units as
a function of time. Solid lines: Compensated Faraday angles θ4/θmax, see Sec.
D.3. Blue is room-temperature data, red is high-temperature data.

decreases below one (ΣEPR < 1), demonstrating that the atomic ensembles are
entangled. In the period from t ≈ 5, ...10 ms, the atoms are in a quasi steady
entangled state with the variance reduced by almost 15%. Then the atomic noise
starts to increase, and for t ≥ 20 ms, the atomic noise ΣEPR ≥ 1 and the atomic
ensembles are no longer entangled.

The reason for the increase in noise after t = 10 ms is twofold. First, due to
the reduction of the mean spin Jx ∝ θ4, the collective interaction looses strength.
Second, with time, the atoms in the F = 4 hyperfine manifold depolarize. The
initial CSS has the least amount of noise possible without entanglement, and
depolarization will inevitably add noise with time. The main reason for the
depolarization is spontaneous emission due to the drive light. In the dark, the
decay times have the values T1 ≈ 130 ms and T2 ≈ 40 ms. With drive light on,
these values reduce to T1 ≈ 34 ms and T2 ≈ 6 ms.

We now continue with discussing the high-temperature data. The atomic
state at t = 0 has ΣEPR = 1.10(7). The state is a bit more noisy than the CSS
4. When the drive is turned on, the atomic noise decreases. We see from Fig. 7.5
that initially the noise decreases faster than for the RT-data. This is expected
due to the higher density of atoms in the HT-data. Similar to the RT-data,
the HT-data shows that the atoms reach an entangled quasi steady state. The

4In our experiments, it is typical that the initial atomic noise increases with the density of
atoms. This was discussed in Sec. 3.11.
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variance is reduced to 15% below the PN limit after t = 5 ms, similar to the RT
data. For t ≥ 20 ms, the atomic ensembles are no longer entangled.

The maximal degree of entanglement depends on the initial atomic noise at
t = 0. The fact that the initial atomic noise is above one (for the HT-data),
therefore limits the maximal degree of entanglement. On the other hand, if en-
tanglement could be generated in a steady state (as demonstrated later in Sec.
7.4), the generated entanglement would be independent of the initial atomic state.

For both the RT and HT settings, no steady state entanglement is reached.
Instead, the atoms reach a quasi steady state. The entanglement last for ap-
proximately 20 ms for both the RT and the HT settings. In earlier experiments
in our setup where entanglement was generated by a measurement, we obtained
entanglement which lasted for a few ms only. With the method of generating
entanglement by dissipation, entangled states can be maintained for an order of
magnitude longer time.

7.3.1 Lifetime measurement

So far, we demonstrated that entanglement between the atomic ensembles can be
maintained for a long time ≈ 20 ms if the drive is on during this whole period.
But what happens if the drive is suddenly turned off? This situation has been
tested. First, the atoms are entangled by applying a drive of 8 ms duration. Then,
after a variable delay tdark, a probe pulse of 1 ms duration is used to measure
the atomic state. This way, the decay of the entanglement "in the dark" can be
measured. The results for ΣEPR as a function of tdark are plotted in Fig. 7.6. For
this measurement, the initial atomic noise at t = 0 was ΣEPR = 1.06(6). This
is a bit higher than for the RT data presented in the Sec. 7.3. After 8 ms with
drive light on the atoms and 1 ms delay, the noise is ΣEPR = 0.93(6) as seen in
Fig. 7.6. Again, this is slightly higher that the 15% noise reduction obtained in
Sec. 7.3. This is mainly due to the higher initial atomic noise.

Figure 7.6 shows that the atomic noise increases with tdark. After 2.5-3 ms,
the atoms are no longer entangled. For long times, the atomic noise increases
significantly above the projection noise (ΣEPR = 1). It is clear from this measure-
ment that the decay in the dark is not directed towards the vacuum but instead
towards a more noisy state. I will not go into more details of which state the
atoms decay to in the dark.

7.3.2 Addition of pump and repump fields

It is important that the atoms are well polarized in order to be able to reach
an entangled steady state. Using pump light, it is possible to keep the atoms
highly polarized. In this section, we demonstrate that is possible to maintain an
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Figure 7.6: Decay in the dark. An entangled state is first generated by dissipation.
After a variable delay tdark the atomic noise ΣEPR is measured. It is here plotted
as a function of the delay. Errorbars represent statistical uncertainties on the
measured output variances only.

entangled state for ≈ 40 ms by applying pump light simultaneous with the drive
light.

The pulse sequence for this measurement is shown in Fig. 7.2b. During the
drive pulse, the pump light is kept on. The repump light is off during the drive
pulse. The results are plotted in Fig. 7.7. The compensated Faraday angle divided
by the initial maximal Faraday angle θ4/θmax is shown as a black line. During
the drive period of 180 ms, the angle drops significantly. The fact, that the angle
does not decay to zero is mainly due to a small leak-through of the repump light.

The atomic noise ΣEPR is plotted in Fig. 7.7 with red dots connected by lines.
After 5 ms of drive light, the noise is reduced to 10% below the PN-limit. This is
slightly worse than what was obtained with the pump light off during the drive
pulse (see Sec. 7.3). This is because the bad decay rate is significantly higher
when the pump light is on the atoms. The entanglement can be maintained for
≈ 40 ms as seen in the inset to Fig. 7.7. This is a factor of two longer than
the 20 ms obtained in Sec. 7.3 without the pump light. This demonstrates that
de-polarization of the F = 4 atoms was limiting the entanglement generation
demonstrated in Sec. 7.3. It also demonstrates that depolarization can be par-
tially circumvented using pump light.

For long interaction times t ≈ 180 ms, the Faraday angle θF (t → ∞) stabi-
lizes at a low value and the noise reaches the value ΣEPR = 1.30(8). The noise is
above the projection noise because the decay of the atomic state is not directed
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towards the vacuum, as explained below Eq. (7.1). The noise added due to the
pump is towards the vacuum if the pump puts atoms in the state F = 4, m = ±4
(x-quantization axis). However, misaligment of the pump beam and classical in-
tensity noise on the pump light might give rise to additional noise. In these cases,
the decay will be towards a state with noise higher than vacuum.

When the Faraday angle decreases, the collective interaction parametrized by
γsw also decreases. This makes the ratio ε2 = γbad/γ worse, and less entanglement
will be generated. We have therefore also performed experiments where repump
light was shone on the atoms during the drive. Adding the repump light makes
the Faraday angle decay slower. Also, the steady state Faraday angle increases
with repump power. The outcome of these measurements was that the repump
light did not improve the maximum attainable entanglement generated by dissi-
pation or the period of time where the entanglement could be maintained. It is
not understood why adding the repump light did not improve the entanglement
generation. It might be due to misalignment, a too small beam size, non-perfect
polarization or classical intensity noise.

In the paper [3], the experimental data presented in Fig. 7.5 and Fig. 7.7 are
fitted using the master equation theory described in Sec. 7.2.3. See [3] for the
actual fits. The theory is also used to predict whether it is possible to obtain
entanglement generated by dissipation for long times γT  1. For the RT atomic
density used in our experiment, the theory predicts no entanglement in the steady
state. This is also what is seen in the experiment presented in Fig. 7.7. For
densities higher (by more than a factor of two) than the RT density, the theory
predicts that entanglement could be generated in a steady state if both pump
and repump light is applied. Efforts to obtain entangled steady states generated
by dissipation using higher densities of atoms have been made, but unfortunately
without succes.

7.4 Steady state entanglement and continuous mea-
surements

In this section we present two important results. (A) Using the combined method
of dissipative processes by the drive, pump and repump light and continuous mea-
surements, we demonstrate steady state entanglement between the two ensembles
maintained for more than one hour. (B) We demonstrate that the entanglement
is independent of the initial atomic state, as should be the case for a steady state.

Consider the pulse sequence shown in Fig. 7.2c. The atoms are first initialized
in the CSS, and then the drive light is turned on. The pump and the repump
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Figure 7.7: Room-temperature data. The pump field is on during the probing
as shown in the pulse sequence in Fig. 7.2b. The solid black line shows the
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by lines show the atomic noise ΣEPR in PN units. The inset is a zoom in of the
first 60 ms.
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light is kept on during the drive pulse. For this measurement, the atomic noise
ΣEPR(t) is plotted as a blue line in Fig. 7.8. At t = 0, the noise is slightly larger
than one. After a few ms the noise decreases down to around one. Then, the
noise increases slightly and reaches a steady value above one for the whole mea-
surement duration of 150 ms. The Faraday angle (not plotted in Fig. 7.8) also
reaches a steady state value θ4(t → ∞) ≈ 0.97 · θmax. Since both the Faraday an-
gle and the atomic noise reach constant values, the atoms are indeed in a steady
state. But since in the steady state ΣEPR > 1, no entanglement is generated by
dissipation only.

The output light is measured continuously in time. Until now, we have mea-
sured the atomic state at time t using the output light measured after time t (see
Eq. (7.5)). If we also utilize the measurements prior to time t, the estimate for
the atomic state can be improved.

Entanglement can in this way be generated conditioned on the measurements
prior to time t. The conditional atomic noise is denoted Σcond

EPR and was discussed
extensively in Sec. 3.8. The criterion for conditional entanglement is Σcond

EPR < 1.
The conditional atomic noise can be calculated from the measurement of

the conditional output light operators Sout,cond
2c (t) and Sout,cond

2s (t). The cosine
operator is defined as

Sout,cond
2c (t) = Sout

2c,−(t) − αSout,prior
2c,+ (t), (7.6)

and the sine operator is defined similarly. Sout
2c (t) was defined earlier in Eq. (7.5).

The integrated output light operator Sout,prior
2c,+ (t) prior to time t is defined as

Sout,prior
2c,+ (t) ∝

∫ t

t′=0

Sout
2 (t′) cos(ΩLt′)e+γm(t′−t)dt′. (7.7)

The sine operator is defined similarly. The conditional light noise equals the sum[
Var

(
Sout,cond

2c (t)
)

+ Var
(
Sout,cond

2s (t)
)]

. α should be optimized in order to min-
imize the conditional light noise variances. The conditional atomic noise Σcond

EPR(t)
can then be calculated from the conditional light noise using Eq. (3.19).

The atomic coherences decay on the T2 time scale. This is the reason for
weighting the integrated output light operator given by Eq. (7.5) with a falling
exponential modefunction. If we want to estimate the atomic state at time t
using the measured output light prior to time t, we instead use an exponentially
rising modefunction ∝ e+γmt′ . The time constant of this exponentially rising
mode is denoted 1/γm, and typically is 1/γm chosen to be one half or one third
of the T2-time. This optimizes the knowledge of the atomic state at time t. The
exponential rising and falling modefunctions are depicted in the pulse sequence
in Fig. 7.2c.
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The conditional atomic noise is plotted in Fig. 7.8 in green. After a short
evolution lasting around 20 ms, the conditional noise reaches a constant value
Σcond

EPR = 0.80(5). This value is below one, demonstrating the steady state entan-
glement between the two atomic ensembles. This steady state entanglement is
one of the main results of this chapter.

In the above experiment, the atoms started in the CSS and then evolved
into an entangled steady state. We also performed an experiment where all light
fields where at DC, meaning that the light fields were not pulsed. Instead, the
intensities were kept at constant values similar to the peak values in the pulsed
experiment. The atomic state was then measured continuously in time. The
results for the atomic noise and the conditional atomic noise are shown in Fig.
7.8 in black and cyan. The results are similar to the ones obtained in the pulsed
experiment. The black and cyan measurement points were obtained during more
than one hour of measurement time. This demonstrates that the entanglement
is maintained for the extremely long duration of one hour. The one hour limit is
not a fundamental limit to how long time the entanglement can be maintained.
By keeping the drive light on the atoms, the entanglement can be maintained for
as long as one wishes.

We also tested that the steady state is independent of the initial state. In
the pulsed experiment before, the initial atomic state was the fully pumped CSS.
Now, we instead prepare an initial "noisy state" which is only partially pumped.
The Faraday angle at t = 0 for the noisy state is θF ≈ 0.6 · θmax. Then, the drive
light is turned on. Pump and repump light is applied simultaneous with the drive
light with intensities similar to the ones used in the experiments where we started
from the CSS. The atomic noise and the conditional atomic noise are plotted in
Fig. 7.8 in red and yellow, respectively. After an initial evolution lasting around
50 ms, the noise settle at constant values similar to the values obtained when the
initial state was the CSS. Similarly, the Faraday angle settles at a value close to
the value obtained when the initial state was the CSS. This demonstrates that
the steady state is independent of the initial state.

7.5 Conclusions

In this chapter, we demonstrated (a) quasi steady state entanglement generated
by dissipation and (b) steady state entanglement generated by a method com-
bining the dissipation due to the drive, pump and repump light with continuous
measurements. The steady state entanglement between the two ensembles was
maintained for more than one hour.

In previous experiments in our setup [16, 2, 1] where entanglement was gen-
erated by (near) QND measurements, the entanglement had a limited lifetime of
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Figure 7.8: The blue and green lines show the atomic noise and the conditional
atomic noise, when the initial atomic state is close to the CSS. The red and yellow
lines show the atomic noise and the conditional atomic noise, when the initial
atomic state equals the noisy (not fully polarized) state. The black and cyan lines
show the atomic noise and the conditional atomic noise, when the drive, pump
and repump fields are at DC.
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a few ms. The results presented in this chapter is therefore a big step forward in
terms of the time the entanglement can be maintained. Compared to the previous
experiments, the obtained degree of entanglement is slightly lower. This is due to
the extra decoherence introduced by the pump and repump light which was not
present in the previous experiments. However, there is still room for improve-
ments. First of all, one should increase the density of atoms. The demonstrated
steady state entanglement was performed with room-temperature atoms. With a
higher density of atoms, the degree of entanglement is should increase. However,
with increasing number of atoms, classical noise might become a problem. This
is not a fundamental limitation, and the problem should be possible to overcome.
Also, the effect of the repump light is not fully understood. For instance, the re-
pump light did not help getting better experimental results when considering the
entanglement generated by dissipation only. Better understanding of the effect
of the repump light might also lead to more entanglement.

The entanglement generated in the steady state was conditioned on the mea-
surement. A variation of the experiment would be to actually do a feedback of
the measured light to the atomic system using the RF magnetic coils. The en-
tanglement will in this case be un-conditional (see the thesis [33]).

Entanglement is a useful resource in the fields of quantum information and
quantum metrology. In this thesis, entanglement has been utilize to improve both
a quantum memory and an atomic magnetometer. The entanglement can also be
a used as resource for dissipative entanglement distillation and repeater schemes
[87]. One of the strengths of entanglement generated in a steady state is that it
does not depend on the initial conditions. In many of the previous experiment
performed in our group, the generation of entanglement is only possible if one
starts out in a state very close to the CSS. This condition is now relaxed, which
might be useful in future experiments. The major strength of steady state entan-
glement is of course that it is in a steady state. This means that the entanglement
can be maintained for a long period, and can be used on demand at any instance
of time.
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Chapter 8

Conclusions and outlook

8.1 Conclusions
In the thesis, we presented several experiments which have been implemented
using an atomic system consisting of two spin-polarized atomic ensembles. The
common theme of the experiments is entanglement or equivalently (for our sys-
tem) two-mode squeezing. Even though entanglement between the two atomic
ensembles was demonstrated 10 years ago in 2001 [16], it is still fascinating that it
is possible to create entanglement between two macroscopic objects separated by
half a meter and each consisting of approximately 1012 atoms which are contained
in a volume of (2 cm)3. The atomic system is simple in the sense that the atoms
are kept at room-temperature and contained in glass cells. There is therefore no
need for cooling and trapping of the atoms using lasers or electric or magnetic
fields.

During the years I have been a member of the QUANTOP group, we have
succeeded in generating entanglement in several ways. These include genera-
tion of atomic entanglement by QND measurements, spin squeezing via nuclear-
electronic spin entanglement [5] and generation of two-mode squeezed and entan-
gled light [4]. The most recent experiment, which demonstrate that the atoms
can be maintained in an entangled steady state for more than an hour, is truly
fascinating.

Two applications of our atomic system were presented in the thesis. In the
first application, the atoms are used as a magnetic sensor, and in the second
application, the atoms are used as a memory for quantum information. In both
of the experiments, the goal is to outperform any classical device. As a method
for achieving that goal, we utilize entanglement to improve the performance of
our quantum device.

The main results presented in the thesis are summarised below:

• The interaction between two spin-polarized atomic ensembles and polar-
ized light is described with the swap and squeezing interaction theory. The
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theory includes atomic decay in the model and agrees well with the exper-
imental results for both small and large coupling strengths.

• The two spin-polarized atomic ensembles are used as a source for non-
degenerate quadrature entangled two-mode squeezed light. In the experi-
ment, 3.6 dB of squeezing is obtained. The squeezed light is generated in
a single temporal mode and is naturally compatible with atomic systems
based on the same (cesium) atom.

• We demonstrate an atomic magnetometer with a best sensitivity to the
radio-frequency magnetic field in the sub-femtoTesla/

√
Hz range compara-

ble with the sensitivity of the state-of-the-art atomic magnetometer which
uses 104 more atoms. Our magnetometer operates slightly above or at
room-temperature. It consist of approximately 1012 atoms and is mainly
limited by the quantum projection noise of the atoms. Using entangle-
ment, the signal to noise ratio of the magnetometer was improved. To the
best of our knowledge, our results present entanglement-assisted metrol-
ogy with the highest to-date number of atoms. Our entanglement-assisted
magnetometer is one of the first examples where entanglement-assisted and
quantum limited sensing achives the absolute sensitivity which challenges
state-of-the-art devices that do not use quantum information processing
techniques.

• Entangled two-mode squeezed states of light are stored in a quantum mem-
ory consisting of two separate atomic ensembles. The input light states are
squeezed by 6.0 dB and have variable squeezing phases and displacements in
X-P phase space. The fidelity of the storage surpasses a calculated classi-
cal benchmark demonstrating that our memory is a true quantum memory
which is capable of preserving entanglement.

• Entanglement is generated between the two atomic ensembles using dissi-
pation as the entangling mechanism. This leads to entangled states which
can be maintained for a duration up to 40 ms. Using a method combining
the dissipative dynamics with a continuous measurement, we produce an
entangled steady state which in the experiment is maintained for more than
one hour.

8.2 Outlook

We now discuss how some of the obtained results can be improved and provide
an outlook for the cell experiment.
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8.2.1 Larger coupling strength

QND measurements can be utilized to entangle the two atomic ensembles. In this
thesis, spin-squeezing of 25-30% (below the projection noise level) was demon-
strated using near QND measurements. In the previous thesis [33], up to 36%
of spin-squeezing was reported. Since a high degree of squeezing is important in
many applications, it would be an important achievement to improve the degree
of spin-squeezing.

In the experiment, we observe that the degree of entanglement increases with
the number of atoms when the number of atoms is changed by heating the cells.
However, at some point classical noise becomes a problem 1, and one no longer
gains by heating. The classical noise is probably connected to imperfect optical
pumping. If the classical noise could be reduced, it would be possible to obtain
more squeezing by further heating the cells.

In order to obtain a high degree of squeezing, a large coupling strength κ2

and long relaxation times (mainly T2) are needed. This statement can also be
expressed as γbad � γsw where γbad is the decay rate from incoherent processes
(such as for instance collisions and spontaneous emission) and γsw is the rate of
the coherent swap and squeezing interaction. It is possible to achive γbad � γsw

only for large optical depths. Below, we present several options for increasing the
optical depth using different cell geometries.

8.2.2 Cell geometry

The cells used in the current setup are cubic with inside length L = 22 mm. In
the following, we consider other cell geometries where the area of the cell Acell

is different from the length L. The area and the length are defined with respect
to the probe propagation direction which is chosen to be the z-direction. The
dimension of the cell in the z-direction is L while the dimension of the cell per-
pendicular to the probe direction is

√
Acell as depicted in Fig. 8.1.

Longer cells

Higher optical depths can be achieved with longer cells since the optical depth on
resonance α is proportional to the product of the density of atoms NA/ (A · L)
2 and the length of the cell : α = σCS · NA

A·L · L (see Eq. (2.88)). A high optical
depth is good since κ̃2 is proportional to the optical depth: κ̃2 = α · ηT (see Sec.
2.5).

1Quantum noise scales as NA and classical noise scale as N2
A (in terms of variances). Classical

noise therefore becomes a problem for large number of atoms.
2We assume that the probe beam fills the whole cell such that the cross-section area A of

the probe beam equals the cell area Acell.
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Figure 8.1: The figure shows a
rectangular cell with length L
and cross-section area Acell. The
cell is located in a cylindrical
magnetic shielding with symme-
try axis along the x-direction. A
set of coils is used for creating
the bias magnetic field Bx. The
probe is propagating in the long
direction of the cell.

The most important decoherence processes (spontaneous emission and two-
body collisions) are independent of the length L. This means that the relaxation
time T2 should not change when increasing the length. Other decoherence pro-
cesses depend on the size of the cell (for instance collisions with cell walls) and in
particular can magnetic field inhomogeneity be a problem for larger cells. This
is discussed below. It is realistic to increase the length of the cell by a factor of
2 or 4 (leading to a cell with length around 5 or 10 cm). The optical depth and
κ̃2 will go up with the same factor leading to a stronger interaction between the
atoms and the light field.

With a longer cell, magnetic field inhomogeneity might become a problem.
This is because, in our current setup, the long direction of the cell is in the z-
direction, while the symmetry axis of the cylindrical magnetic shielding and the
set of coils generating the static bias field is in the x-direction (see Fig. 8.1).
The magnetic field is therefore most homogeneous in the x-direction and least
homogeneous in the y and z-directions. With the current cell (L = 22 mm) and
shielding (cylindrical with a length of 35 cm and a diameter of 19 cm), the decay
rate due to magnetic field inhomogeneity (which should be less than the decay
rate in the dark) is small compared to typical values for the swap rate (see Fig.
3.12). However, with a longer cell it will be neccesary to make new shieldings
and bias coils with larger diameter to keep the magnetic field homogeneous over
the entire cell length.

Using longer cells to increase the coupling between atoms and light has the
clear advantage that the technology for making larger cells and larger shieldings
is available.
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μ-cells

In our group, there are plans for making μ-cells with dimensions around 100 μm
× 100 μm × 5 mm. Such a cell has a small area A ≈ (100 μm)2 and a relatively
large length L ≈ 5 mm. Smaller cells have several advantages which are discussed
below.

For a cell with a small area, less photons are needed to achieve a certain cou-
pling strength. Remember that κ̃2 = α · ηT and that the depumping parameter
(the probablity for spontaneous emission) ηT =

NphσCS

A
(γ/2)2

Δ2 is proportional to
the intensity of the probing light I = Nph/A. Assume that we reduce the cell
area while keeping the depumping parameter constant. When reducing the area
by some factor, the number of photons should be reduced by the same factor
(if we choose to not change the probe detuning). The number of photons can
be reduced by either reducing the probe power or the probe duration. Reducing
the probe duration has the obvious advantage that the interaction happens on a
faster time-scale. In the current setup, the probe duration is around 1 ms, which
means that the experiments can be run at a 1 kHz rate. Faster rates are of course
important in applications where speed is important.

With shorter interaction times, the atomic system would be compatible with
single photons which for instance could be stored in the atomic ensemble. Single
photons with a bandwidth of less than 10 MHz are available in our group [88, 89].

An interesting experiment would be to generate a single collective excitation
in an atomic ensemble by detecting a single photon as in the DLCZ scheme [12].
Such experiments have been done using cold [25] or stationary atoms in a cell
filled with buffer gas [23] but not with room-temperature moving atoms.

In our experiments, a weak quantum field is co-propagating with a strong
local oscillator (LO) field. The quantum field and the LO field have orthogonal
polarizations. With our current setup, the LO field consists of approximately
Nph = 1012 photons. If we want to detect a single photon in the quantum field,
we should be able to filter out a single photon from the 1012 photons in the LO
field. This is not possible with so many photons in the LO field. However, with
smaller cells, less photons are needed in the LO field. This way, it might be
possible to filter out a single photon in the quantum field.

The μ-cells can be located in a low-finess cavity 3 . Due to the several round-
trips of the probe light, the probe sees an effective optical depth which is increased
by the finesse. This might be a promising way for achiving a stronger coupling
between light and a room-temperature atomic ensemble.

3There will be some optical losses since the light has to pass the glass walls of the cell several
times. The finesse of the cavity will therefore be low.
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8.2.3 Nano-mechanical membrane–atomic ensemble inter-
face

In our group, there are plans to start a collaboration between the "membrane"
sub-group and the "cell experiment" sub-group 4. The membrane sub-group [90]
is working on the physics of a nano-mechanical oscillator (the membrane). The
membrane can be connected to an LC-circuit consisting of a capacitor and an
RF coil. Oscillations of the membrane will give rise to an oscillating current
flowing in the LC-circuit which generate a small RF magnetic field. An atomic
ensemble can be used as a very sensitive sensor for this small RF field. In this
way, the quantum state of the membrane can be measured. The approach with
the RF coil can be used to make a nano-mechanical membrane–atomic ensemble
interface. The membrane, the LC-circuit and the atomic ensemble are compatible
since the Larmor frequency of the atoms and the LC resonance frequency can be
tuned to match the mechanical resonance frequency of the membrane. A different
approach would be to connect the membrane and an atomic ensemble optically
with a laser beam [91]. A hybrid nano-mechanical membrane–atomic ensemble
system would be very interesting, and possible experiments could be to transfer
quantum states from one system to the other and entangle the membrane with
the atomic ensemble.

8.2.4 Possible experiments using the current setup

There are several interesting experiments which can be done using our current
setup. These include atom-atom teleportation and quantum memory.

Teleportation

Quantum teleportation between two atomic systems has been realized with ions
(see the review [92]) in close proximity to one another, and also with ions sep-
arated by one meter [93]. However, atom-atom teleportation has not yet been
demonstrated with atomic ensembles. Several schemes have been proposed for
implementing atom-atom teleportation in our setup in the previous Ph.D. thesis
[33]. Those protocols utilize either two or three atomic ensembles. We are cur-
rently considering a protocol with two atomic ensembles which are polarized in
the same direction. In this protocol, either a high coupling strength or squeezed
light is needed for a high fidelity of the teleportation. Implementing this protocol
and achieving atom-atom teleportation is a future goal for the cell experiment
which should be possible to achieve using our existing setup.

4See group webpage for a description of the current experiments. www.quantop.nbi.dk.
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Quantum memory

Both coherent [17] and two-mode squeezed [1] light states have been stored in our
atomic memory. The storage fidelities have been above the classical benchmark
fidelities, but still far below unity. A future goal would be to improve the storage
fidelity and also to increase the storage time which currently has been a few ms.

So far retrieval of the stored states has not been demonstrated in our setup.
The retrieval could be done by (1) shining light through the ensembles with a first
pulse (where one quadrature of the stored state is transferred to the first pulse),
(2) perform a measurement on the atomic state with a second pulse (where the
second quadrature of the stored state is measured), and (3) doing a feed-forward
on the first pulse using the measurement result obtained with the second pulse.
This way, the state of the atoms is transferred to the first pulse of light. With the
current setup, the scheme is unfortunately unrealistic, since light travels at the
speed of light, leaving not much time for the measurement and the feed-forward
(in the previous experiments the pulses have been of millisecond duration). How-
ever, if the retrieved state should later be stored in a different quantum memory,
it is not neccesary to do the feed-forward on the light. Instead the feed-forward
can be done on the second memory. This is easier, since the coherence time of
the memory would be at least several milliseconds. Then, there would be plenty
of time to do the feed-forward.

8.2.5 Quantum network

A quantum network [11] consists of nodes (more than two) connected by quantum
channels (light). At the nodes, which could be atomic ensembles, ions or other
atomic systems, quantum information or entanglement is stored and processed.

In our setup, it would be interesting to increase the number of atomic en-
sembles from two to four. This can be done simply by duplicating the existing
setup. This opens up for the possibility to have a network of multi-entangled
atomic ensembles/memories. Multi-entangled states have been generated using
ions [66, 94] and very recently with four cold atomic ensembles [95]. There has
also been interest in studying the dynamics of multi-particle entangled states
under the influence of decoherence and observing the evolution from a multi-
particle entangled state to an unentangled state using trapped ions [96]. Similar
experiments could be done with atomic ensembles.

8.3 Final remarks
In the thesis, it is demonstrated that a relatively simple system consisting of two
room-temperature atomic ensembles can be utilized for many different experi-
ments such as the generation of two-mode squeezed and entangled light, atomic
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magnetometry, quantum memory and generation of atomic entanglement. With
further developments as outlined in this chapter, stronger coupling between atoms
and light is possible, leading to improved performance and the possibility to cou-
ple the atomic ensembles to single photons.
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Appendix A

Details of the temporal mode
analysis

In this appendix, we describe the details of the temporal mode analysis discussed
in Sec. 4.3.4. The procedure described below is used for obtaining Figs. 4.6, 4.7
and 4.8 from the measured covariance matrices CX (the light noise) and CY (the
shot noise).

The recorded data is represented by the column vector X = (X(t1), ..., X(tN))tr,
where the total measurement time T is discretized into N time bins. Using the
measured N ×N covariance matrix CX , we can find the variance of any temporal
mode. For a given mode un, the variance of the signal X is Var (Xn) = u†

nCXun

using matrix notation. Note that un is a column vector and u†
n is a row vector.

As discussed in Sec. 4.3.3, the measured spectrum of the shot noise (see Fig.
4.5) is not flat due to a peaked detection system. But let us for simplicity first
analyze the situation with a flat shot noise spectrum. In time domain, this
corresponds to a delta-correlation 〈Y (t)Y (t′)〉 = Var (Y ) δ (t − t′) where Y (t) is
the data representing the shot noise. We use the notation Y for the shot noise
data and X for the (squeezed) light noise data. For delta-correlated shot noise,
the variance Var (Yn) = Var (Y ) is independent of the modefunction (as long as
the mode function un is normalized). We are interested in the ratio

LNn

SNn

=
Var (Xn)

Var (Yn)
=

u†
nCXun

u†
nCY un

, (A.1)

which is the output light noise normalized to the shot noise for the temporal
mode un. If we can find a mode where this ratio is below one, the output light
in this mode is squeezed. For delta-correlated shot noise, Eq. (A.1) is simplified
to LNn/SNn = Var (Xn) /Var (Y ). Since Var (Y ) is a constant, we just have to
consider Var (Xn).
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The question is now, which modes should we consider? The question is an-
swered by the Karhunen-Loéve theorem [55, 56] which states that we can find a
set of mutually uncorrelated modes by performing a spectral decomposition of the
CX matrix. The interesting modes are the eigenfunctions and the variances of
these modes are the eigenvalues. To be specific, we need to solve the eigenvalue
equation

CXφn = λnφn (n = 1, 2, ..., N) , (A.2)

where λn are the eigenvalues and φn are the eigenvectors (column vectors). Solv-
ing the eigenvalue equation means that given the matrix CX , which is measured
in the experiment, we should find the eigenvectors φn and the eigenvalues λn. In
practice, this is done on a computer using some mathematical software (matlab).
We can also write Eq. (A.2) in matrix notation

CXΦ = ΦΛ. (A.3)

Φ is the matrix where the n’th column consists of the n’th eigenvector φn, and Λ is
a diagonal matrix with the eigenvalues λn in the diagonal. Since CX is symmetric,
or hermitian if the matrix is complex, the eigenvectors are othonormal. In matrix
notation, this means that the matrix Φ is orthogonal (or unitary if the matrix
is complex) Φ†Φ = ΦΦ† = �. The matrix � is the unity matrix with ones in
the diagonal and zeros elsewhere. The dagger symbol † means transposing the
vector/matrix and complex conjugate the elements. The fact that the modes
given by the eigenvectors φn are uncorrelated is in mathematical terms described
by the equation

φ†
nCXφm = 0 for all n �= m. (A.4)

This equation is a direct consequence of the eigenvalue equation (A.3) which
states that the matrix Φ†CXΦ = Λ is a diagonal matrix. Having found the
eigenvectors and the eigenvalues, we can now calculate the light noise in shot
noise units LNn/SNn = λn/Var (Y ) for each mode φn.

Using the fact that Φ is unitary, one can show that the smallest eigenvalue
equals the smallest variance which can be obtained with any mode. The best
obtainable squeezing is therefore obtained with the mode φ1 corresponding to
the smallest eigenvalue λ1 (where we labelled the eigenvalues in ascending or-
der). Similarly, the largest eigenvalue λN equals the largest variance which can
be obtained for any mode. I.e., the eigenvector φN corresponds to the most anti-
squeezed mode.

In the above, it was assumed that the shot noise spectrum is flat, but in the
experiment the shot noise spectrum is actually peaked. This makes the procedure
described above a bit more complicated since both LNn and SNn depend on the
mode un. In loose terms, we now have to first divide the light noise with the shot
noise (see Eq. (A.1)) and then solve the eigenvalue equation. This way, we can
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correct for the non-flatness of the shot noise spectrum. Below, we go through the
different steps in this procedure.
(a) One should first solve the eigenvalue equation for the shot noise

Φ†
SNCY ΦSN = ΛSN , (A.5)

where the subscript SN is used for the solution to this eigenvalue equation. The
eigenfunctions are othonormal Φ†

SNΦSN = ΦSNΦ†
SN = � since CY is hermitian.

(b) Now, do a transformation of the CX covariance matrix. Let

CX → ΦCXΦ, (A.6)

where the transformation matrix Φ is defined by

Φ = ΦSNΛ
−1/2
SN Φ†

SN . (A.7)

The matrix exponential Λ
−1/2
SN makes sense since ΛSN is a diagonal matrix. The

matrix Φ is hermitian, i.e. Φ = Φ†. However, it is not unitary since Φ†Φ =
ΦΦ† = Φ2 = ΦSNΛ−1Φ†

SN �= �. The transformation given by Eq. (A.6) does the
job of dividing the light noise by the shot noise while taking into account that
Var (Yn) depends on the mode φn.
(c) Then, solve the eigenvalue equation

Φ†
L̃N

(ΦCXΦ)ΦL̃N = ΛL̃N (A.8)

The subscript L̃N is used for the solution to this eigenvalue equation. Solving the
eigenvalue equation means finding the eigenvector matrix ΦL̃N and the eigenvalue
matrix ΛL̃N .
(d) Construct a new matrix V which is defined by

V = ΦΦL̃N . (A.9)

In terms of the matrix V , the eigenvalue equation (A.8) reads

V †CXV = ΛL̃N . (A.10)

We can also calculate
V †CY V = �, (A.11)

where we used that ΦSN is unitary and that it satisfy the eigenvalue equation
(A.5).

The modes of interest vn are the columns of the V matrix. For each of these
modes, the shot noise variance is given by v†

nCY vn = 1 and the light noise variance
is given by v†

nCXvn = λL̃N(n) where λL̃N(n) is the (n, n) element of the diagonal
matrix ΛL̃N . In matrix notation, the light noise divided by the shot noise is

LN

SN
=

V †CXV

V †CY V
=

ΛL̃N

�
= ΛL̃N . (A.12)

The modes vn are uncorrelated since V †CXV is diagonal.
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Appendix B

Calibration of the RF magnetic field

In the magnetometry experiment, we apply the RF magnetic field BRF separately
to the two atomic ensembles using the RF coils. The current through each coil
is generated using an "RF card" which apply an oscillating voltage to the coil.
The typical frequency of the voltage is ω = 2π · 322 kHz which is set to equal the
atomic Larmor frequency. The RF card has the maximum set voltage Uset = 1 V.
At this set voltage, the RF field amplitude BRF was measured using a pick-up coil
positioned close to the cell number two inside the shielding. This measurement
is described in Sec. B.2, and we found the value BRF = 1.1 · 10−10 T. This field is
"large", and we are interested in applying smaller magnetic fields. We typically
use RF set voltages in the range from 312.5 μV to 1.25 mV which generate
RF magnetic field amplitudes BRF in the range of 30-140 fT (see table B.1).
However, the pick-up coil is not sensitive enough for the detection of such small
fields. We therefore extrapolate BRF at low RF set voltages from the magnetic
field amplitude BRF measured at Uset = 1 V with the pick-up coil. At the low
settings, the output voltage of the RF card is not proportional to the set voltage.
This has to be taken into account, and the details can be found in Sec. B.3.

B.1 Impedance of the pick-up coil

The impedance of the pick-up coil is an important parameter we need to deter-
mine. The pick-up coil is modelled as a an inductor L in series with a resistor
R1. The inductor and the resistor are in parallel with a capacitance C. The
schematic diagram of the pick-up coil is shown in Fig. B.1 top. We can calculate
the impedance Zcoil of the pick-up coil to be

Zcoil =
(R1 + iωL) · 1

iωC

R1 + iωL + 1
iωC

. (B.1)
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For large frequencies, where the resistance R1 can be neglected (R1/L � ω), the
above formula can be rewritten as

Zcoil ≈ iωL

1 − (ω/ωres)
2 for R1/L � ω, (B.2)

where ωres ≡ 1/
√

LC is the resonance frequency of the coil. Below the resonance
frequency the formula simplifies to

Zcoil ≈ iωL for R1/L � ω and ω2 � ω2
res. (B.3)

The approximation Z ≈ iωL is valid in the experiment for the frequency ω =
2π · 322 kHz.

The self-inductance L of the pick-up coil can be estimated in the following
way. Suppose we apply an RF magnetic field at the position of the pick-up coil
in the direction perpendicular to plane of the coil. The oscillating magnetic field
induces an electro-motive force (EMF), and a current I will run through the coil.
The pick-up coil makes its own magnetic field B to cancel the applied RF field
(Lenz’s law). The generated magnetic field can be calculated from the formula
for a thin coil:

B =
Nwμ0I

2r
, (B.4)

where Nw equals the number of windings, μ0 is the vacuum permeability, I is the
current and r is the radius of the coil. B is the generated magnetic field in the
center of the coil. The flux through the pick-up coil from the generated magnetic
field can be estimated to be

Φ ≈ B · Acoil =
Nwμ0I

2r
· Nwπr2 =

π

2
N2

wμ0Ir, (B.5)

where Acoil is the area of the coil. The self-inductance of the coil is defined by
the equation Φ = L · I, and we therefore find

L ≈ π

2
N2

wμ0r. (B.6)

For the pick-up coil used in the experiment, we have the following numbers:
Nw = 60, 2r = 0.021 m, μ0 = 4π ·10−7 N/A2. This leads to an inductance L = 75
μH. The impedance at the frequency ω = 2π · 322 · 103 s−1 is Zcoil = iωL = i · 151
Ω. The resistance R1 = 6.5 Ω could also have been included in the calculation of
the impedance, but since R1 � ωL it can safely be neglected.

Measured inductance and resonance frequency of the pick-up coil

We now present measurements of the inductance and the resonance frequency of
the pick-up coil. The schematic diagram of the measurement is shown in Fig.
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Figure B.1: Top: Impedance Zcoil of the pick-up coil. Bottom: Schematics of the
setup for testing the coil/measuring the RF magnetic field.

B.1. The pick-up coil with impedance Zcoil was connected to a function generator
which applied an oscillating voltage ε 1. The amplitude of the applied voltage
was fixed and the frequency was varied. The signal U was monitored on an
oscilloscope with an input resistance Rm = 50 Ω. The amplitude |U | and the
phase of the signal (with respect to the applied voltage) was measured and the
results are plotted in Fig. B.2. Circles represent the measured amplitude |U |, and
the inset shows the measured phase as dots connected by lines. The frequency
was varied from 200 Hz to 2 MHz. The measured signal is expected to be on the
form

U =
Rmε

Zcoil + Rm
, (B.7)

since U = RmI and ε = (Z + Rm) I. The amplitude |U | was fitted to a function
of the form

|U | = Rm |ε| ·
{

ω2L2[
1 − (ω/ωres)

2]2 + R2
m

}−1/2

, (B.8)

where we used the expression given by Eq. (B.2) for the impedance of the coil.
The fit is shown in Fig. B.2 as a solid line, and the obtained fit parameters are
L = 62.5(13) · 10−5 μH and fres ≡ 2π · ωres = 2.8(3) MHz. Using the fitted
parameters and Eq. (B.2), we calculate the impedance of the pick-up coil to be

1We use complex notation for the impedance and the voltages. The voltages have and
amplitude (the absolute value of the complex signal) and a phase.
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Figure B.2: The pick-up coil was connected to a function generator and the
voltage U was measured on an oscilloscope with an input resistance of 50 Ω.
The circles shows the amplitude of the measured signal. The solid line is a fit.
The inset shows the phase difference between the input signal and the measured
signal.

Z = i · 128(3) Ω at the frequency of 322 kHz (which is much below the resonance
frequency).

B.2 Measurement of the RF field with the pick-up
coil

The measurement of the RF magnetic field amplitude BRF with the pick-up coil
can be represented by the schematics shown in Fig. B.1 bottom. The pick-up coil
is represented by the impedance Zcoil. The oscillating magnetic field creates a flux
through the pick-up coil which generates an electromotive force εω. The current
through the pick-up coil can be found from measuring the voltage Uω across the
measurement resistor Rm = 50Ω. The amplitude Uω is defined from the time
dependent voltage U(t) = Uωeiωt where we have used the complex notation for
the voltage. The voltage Uω and the electromotive force εω are related by the
formula

εω = (Rm + Zcoil) Iω =

(
1 +

Zcoil

Rm

)
Uω, (B.9)

since the measured voltage over the resistor Rm is given by Uω = RmIω. To
convert voltage Uω into εω, we need to know the impedance of the pick-up coil
Zcoil and the measurement resistance Rm.
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The electromotive force can be related to the complex RF field BRF(t) =
BRFeiωt by the formula

εω = −dΦ

dt
= −NwAcoiliωBRF. (B.10)

Isolating BRF, we find

BRF =
−εω

NwAcoiliω
=

i (1 + Zcoil/Rm) Uω

NwAcoilω
and |BRF| =

|1 + Zcoil/Rm| |Uω|
NwAcoilω

.

(B.11)
In the actual measurements, the pick-up coil was inserted in the magnetic shield-
ing close to the cell number two. The RF magnetic field was then applied using
the RF set value Uset = 1 V and the frequency 322 kHz. The pick up coil was
connected to a spectrum analyzer, and we measured the signal USA = 1.2μV
on the spectrum analyzer. Since the spectrum analyzer measures the power
PSA = U2

SA/Rm over the resistance Rm = 50Ω, USA is an rms voltage. The am-
plitude of the voltage is Uω =

√
2USA = 1.7μV. If the voltage Uω is inserted in

Eq. (B.11) together with the measured impedance Zcoil = i · 128(3) Ω, we find
the magnetic field BRF = 1.11 · 10−10 T for the RF set voltage Uset = 1 V.

We can estimate the uncertainty on BRF. The uncertainty on Uω is estimated
to be 15%. The uncertainty on the coil diameter is estimated to be 5% giving a
10% uncertainty on Acoil. The uncertainties on Zcoil, Rm, Nw and ω are negligible.
In total, we have the uncertainty on the δBRF/BRF =

√
0.152 + 0.12 = 18%.

The result for the RF magnetic field including uncertainty is therefore BRF =
1.1(2) · 10−10 T.

B.3 RF card calibration

B.3.1 Extrapolation

As described in the previous section, the RF magnetic field amplitude BRF =
1.1(2) · 10−10 T was measured with the pick-up coil for the specific set voltage
Uset = 1 V. Since the pick-up coil is not adapted to measuring smaller RF mag-
netic fields, we extrapolate BRF at smaller set voltages using the measured value
at Uset = 1 V. Assuming BRF ∝ Uset, we find that BRF = c·Uset with c = 1.1·10−10

T/V. In the next sections it is shown that this formula is only valid for Uset in the
range from 1.25 mV to 1 V. For smaller set voltages Uset < 1.25 mV, we estimate
BRF from either the measured output voltage of the RF card or the signal from
the atomic magnetometer
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Figure B.3: The output of the RF card was connected to a spectrum analyzer.
The figure shows the measured voltages for different set voltages. The line is
found from the value at Uset = 1 V. The measured voltage is proportional to the
set voltage except for the lowest set voltages.

B.3.2 Output RF voltage

It is first tested whether the output of the RF card is proportional to the set
voltage. The output of the RF card was connected to a spectrum analyzer and
the output voltage Umeas was measured for different set voltages Uset. The results
are shown in a double logarithmic plot in Fig. B.3. The measured voltage for
Uset = 1 V is used to plot a line Umeas = c̃ ·Uset where c̃ is the slope of the line. If
the measured voltages would be proportional to the set voltage, all the data points
would lie on the line. We see that the measured voltage is indeed proportional
to the set voltage for voltages down to around Uset = 1.25 mV. Below this set
voltage, the measured voltage is not proportional to the set voltage 2. For set
voltages Uset < 1.25 mV, we can use the actual measurements (red circles) and
not the line to extrapolate BRF if we assume that BRF ∝ Umeas. The values for
Umeas and the estimated BRF are shown in table B.1 under the columns Umeas

and BRF ∝ Umeas.

B.3.3 Magnetometer signal

The most sensitive way of measuring the RF field amplitude BRF is with the
atomic magnetometer. We therefore measured BRF for small set voltages using
the atomic magnetometer. Figure B.4 shows the mean value of the measured
signal |〈Sout

2c + iSout
2s 〉| as a function of the set voltage in a double logarithmic plot.

The RF field was applied to cell number two only. A line |〈Sout
2c + iSout

2s 〉| = c ·Uset

2This is partly due to a digitization of the output voltage.
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Figure B.4: Measured signal |〈Sout
2c + iSout

2s 〉| for different RF set voltages Uset.
The line is found from the measured signal at the set voltages 7.5 mV. The mea-
sured signal is proportional to the set voltages except for the lowest set voltages.

is also plotted where the slope c is found from the measured signal at the set
voltage Uset = 7.5 mV. For set voltages in the range 1.25 mV to 7.5 mV, we see
from Fig. B.4 that the signal is proportional to the set voltage.

For set voltages smaller than 1.25 mV the signal is not proportional to the
set voltage. If we assume that BRF is proportional to the signal, we can find BRF

from the measured signals also for set voltages smaller than 1.25 mV. The mea-
sured signals and the estimated BRF are shown in table B.1 under the columns
|〈Sout

2c + iSout
2s 〉| and BRF ∝ |〈Sout

2c + iSout
2s 〉|.

B.3.4 Comparison

As seen in table B.1, our estimate for BRF (for Uset < 1.25 mV) depends on
whether we assume BRF ∝ Umeas or BRF ∝ |〈Sout

2c + iSout
2s 〉|. This requires some

explanation.
For the three set voltages Uset = 1.25 mV, 625 μV and 312.5 μV we measured

both Umeas and |〈Sout
2c + iSout

2s 〉|. The correlations between Umeas and |〈Sout
2c + iSout

2s 〉|
are plotted in Fig. B.5. The figure also shows a linear fit |〈Sout

2c + iSout
2s 〉| =

a · Umeas + b. The points lie almost perfect on the line which shows that the two
measured parameters are strongly correlated 3.

The fitted offset b was expected to be zero, but from Fig. B.5 we see that it

3We are fitting two parameters (the slope and the offset of the line) using three data points.
It would have been better with more data points, but unfortunately only three points were
available. The statistical uncertainties on the measured points are small, so we still trust the
fit even though only three points were used.
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Figure B.5: The figure shows the correlation between the measured voltage and
the measured signal for the three set voltages Uset = 1.25 mV, 625 μV and 321.5
μV. The black line is a linear fit to the data.

has a small non-zero value. It is not understood why there is this small offset. It
could be due to a small leak-through of the RF card, such that when Uset = 0 V,
then Umeas has a small value, and a small magnetic field BRF is present. It could
also be due to an electronic offset in the signal, such that even in the abscence of
the magnetic field BRF = 0, the signal |〈Sout

2c + iSout
2s 〉| has a small value.

The fact that the offset b is non-zero implies that the estimate for BRF depends
on whether we assume that BRF ∝ |〈Sout

2c + iSout
2s 〉| or BRF ∝ Umeas. Since it is

not clear what the reason for the offset is, I choose to average the estimates for
the magnetic field. At the set voltage Uset = 321.5 μV, we obtain the average
value BRF ≈ (26 + 34) fT ≈ 30 fT. The uncertainty on this value is estimated to
be 22% (where most the uncertainty comes from the uncertainty on BRF for the
1 V set voltage). Our estimate for the magnetic field is therefore 30(7) fT at the
set voltage Uset = 321.5 μV 4.

4In the paper [2] we stated the number BRF = 36 fT for the RF magnetic field. This number
is slightly different from the number BRF = 30 fT stated in this thesis. The numbers differ since
in the paper we assumed BRF ∝ Umeas (see last column of Tab. B.1) and we used a slightly
higher value for the impedance of the pick-up coil.
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Uset |〈Sout
2c + iSout

2s 〉| BRF ∝ |〈Sout
2c + iSout

2s 〉| Umeas BRF ∝ Umeas

in a.u. in a.u.
1 V 1.1 · 10−10 T 1.1 · 10−10 T

1.25 mV 1 138 fT 1 138 fT
625 μV 0.424 59 fT 0.462 64 fT

312.5 μV 0.190 26 fT 0.249 34 fT

Table B.1: BRF for different set voltages Uset. BRF is assumed to be proportional
to Uset for set voltages in the range from 1.25 mV to 1 V. For set voltages lower
than 1.25 mV, BRF is assumed to be proportional to the either the measured
signal |〈Sout

2c + iSout
2s 〉| or the measured output voltage Umeas of the RF card.
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Appendix C

κ-calibration by RF displacement

In the magnetometry experiment, κ2 was measured for a specific value of the
probe light power P ≈ 5 V using the mean value transfer method described in
Sec. 3.6.1. However, some magnetic field measurements were done with a higher
probe power P ≈ 9 V. We therefore want to extrapolate the value of κ2 at this
higher power. This was done in the following way.

We apply a particular RF magnetic field BRF with a specific duration τ to the
atomic ensembles. The magnetic field creates a mean value in the atomic spins
|〈Jz1 + Jz2〉 + i 〈Jy1 + Jy2〉| here written using complex notation. The mean value
in the spins can be read out in the signal

∣∣〈Sout
2c + iSout

2s

〉∣∣ = κ
√

ηdet

√
Φ

2 |Jx| |〈Jz1 + Jz2〉 + i 〈Jy1 + Jy2〉| . (C.1)

For the probe power P = 5 V where κ is known, we can find the atomic displace-
ments normalized to

√|Jx|:

|〈Jz1 + Jz2〉 + i 〈Jy1 + Jy2〉| /
√

|Jx|. (C.2)

On the other hand, if we do not know κ (since we changed the probe power),
but know the atomic displacement (since we apply the same magnetic field as
before and uses the same number of atoms as before), we can find κ from the
measured signal |〈Sout

2c + iSout
2s 〉| using Eq. (C.1).

Once we know κ, we can calculate the atomic noise in PN-units ΣEPR from
the measured output variances [Var (Sout

2c ) + Var (Sout
2s )] using the atomic noise

reconstruction formula given by Eq. (2.85).
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Appendix D

Details of the data analysis

In this appendix, we describe some of the details regarding the data analysis
procedures used in the experiments demonstrating entanglement generated by
dissipation & steady state entanglement (chapter 7).

D.1 Initial atomic noise

The initial atomic noise is characterized using the methods detailed in Sec. 3.11.
To be specific, this means that we calibrate κ2 and T2 beforehand. κ2 is measured
by the mean value transfer method (see Sec. 3.6), and both κ2 and T2 are measured
for different atomic densities. We then measure the atomic noise of the fully
pumped state with a one ms probe pulse. Using the calibration of κ2 and T2,
we find the initial atomic noise in PN units at both the room-temperature and
high-temperature settings.

The initial atomic noise is used as a fixed parameter when calculating the
atomic noise for t > 0. This requires a small comment. When measuring κ2 with
the mean value transfer method, two probe pulses are used. The pulses have
edges where the light intensity is ramped from zero to some peak value. In the
experiments where entanglement is generated by dissipation, the atomic noise is
not measured using a separate pulse of light. Instead, a long drive pulse is used
and afterwards in the data-analysis (on the computer), the measured data are
chopped into smaller time-bins (or pulses) which are analyzed separately. These
time-bins have no edges.

κ2 depends on the number of photons which differs in pulses with and without
edges. The duration of an edge is approximately 100 μs. The duration of the
time-bins is denoted tprobe. For the case tprobe = 1 ms, the edge duration is 10%
of the whole duration. This would lead to a change in κ2 of also 10% (this is a
rough estimate). It is therefore problematic to use κ2 found from the mean value
transfer calibration in the data analysis of time bins of a long pulse.

On the other hand, the initial atomic noise should not depend on if the probe
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pulse has edges or not. It should actually not depend on the probe duration
either. We have therefore chosen to first calibrate κ2 using the mean value transfer
method using two 1 ms pulses. Then, the initial noise is measured using a similar
1 ms pulse. Afterwards, we measure the initial atomic noise using a time-bin
(which has no edges) chopped out from the beginning of the long drive pulse.
By equating the initial atomic noise measured by the 1 ms probe pulse and the
atomic noise measured using the time-bin with duration tprobe, we can find a value
for κ2(t = 0) which is valid for the time-bin.

D.2 Time-evolution of the coupling constants
In the previous section, we detailed how the coupling constant κ2 at the initial
time t = 0 was calibrated. We now continue by describing how κ2 is calculated
for times t > 0. The main thing which needs to be incorperated in the data
analysis is that the mean spin is time-dependent Jx = Jx(t). This leads to a
time-dependent coupling constant and decay time: κ2 = κ2(t) and T2 = T2(t).

The mean spin is proportional to the compensated Faraday angle: Jx(t) ∝
θ4(t) which can be calculated from the measured Faraday angle θF (t). To find
out how κ2 and T2 depend on Jx, let us instead consider the rates γsw and γbad.
The relation between these parameters is given by Eq. (2.64) and the fact that
γ = γsw + γbad = 1/T2.

γsw(0) and γbad(0) can be found using κ2(0) and T2(0). At later times, the
following model is used for the time-evolution of the rates:

γsw(t) = γsw(0) · θ4(t)

θmax

and γbad(t) = γbad(0). (D.1)

Here it is assumed that the atoms are fully pumped at time t = 0 such that
θ4(0) = θmax. The above model is reasonable since the swap and squeezing
interaction theory predicts that γsw is proportional to Jx (see Eqs. (2.51) and
(2.57)).

Using the above model, it is possible to calculate the time evolution of the
rates γsw(t) and γbad(t) for t > 0. The rates vary on the slow time-scale set by the
T1-time. Since the length of the time-bins tprobe ≈ 0.5-1 ms is short compared to
the T1-time, the rates can be considered constant from time t to t + tprobe Once
the time-dependences of γsw(t) and γbad(t) are known, the atomic noise ΣEPR(t)
at time t can be calculated from the measured light noise in the time interval t
to t + tprobe for any time t > 0 using the methods of Sec. 3.11.

D.3 Faraday angle compensation
The coupling strength κ2 depends on the mean spin Jx of atoms in the F = 4
manifold. Jx is continuously monitored by measuring the Faraday rotation of
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a weak probe beam denoted the Faraday probe. Usually, the mean spin Jx is
considered proportional to the rotation angle θF . However, if many atoms are
present in the F = 3 manifold, this is no longer true. This is because atoms in
the F = 3 manifold also contribute slightly to the Faraday angle. Usually, we
assume that the contribution from F = 3 atoms is small, since the Faraday probe
is far detuned from transitions starting from the F = 3 states and since in many
cases most atoms are in the F = 4 manifold.

In the experiments presented in this chapter, it happens that many atoms
are located in the F = 3 manifold. Then, the measured Faraday angle should be
corrected for the F = 3 atoms. There are two contributions to the Faraday angle.
One contribution θ4 from the atoms in the F = 4 manifold and one contribution
θ3 from the atoms in the F = 3 manifold. The total angle of rotation is given by

θF = θ4 + θ3 = K ·
[
4p4N4

a1(Δ45′)

Δ45′
+ 3p3N3

a1(Δ32′)

Δ32′

]
, (D.2)

where K is a proportionality constant which can be found by comparing with
Eq. (3.1). p4 and p3 are the orientations of the F = 4 and F = 3 manifolds,
respectively. N4 and N3 are the number of atoms in the F = 4 and F = 3
manifolds. The total number of atoms is N = N4 + N3. Δ45′ and Δ32′ are the
Faraday probe detunings from the transitions F = 4 → F ′ = 5 and F = 3 →
F ′ = 2. a1(Δ45′) and a1(Δ32′) are the vector polarizablities of the cesium atom
for the F = 4 and the F = 3 ground states 1. For the detuning Δ45′ = −850
MHz, we have |Δ23′ | = |Δhfs| − |Δ2′5′ | + Δ45′ (see cesium level scheme in Fig.
2.1). Using the hyperfine splitting |Δhfs| = 9193 MHz and the energy difference
between the F ′ = 2 and the F ′ = 5 excited states |Δ2′5′ | = 603 MHz, we find
Δ23′ = 9193 − 603 + (−850) MHz = 7740 MHz. Remember the convention that
a detuning is positive if the laser frequency is less than the atomic transition.
For the above mentioned detunings, we have a1(Δ45′) = 1.14 > 0 and a1(Δ23′) =
−1.03 < 0 such that a1(Δ45′)/Δ45′ < 0 and a1(Δ23′)/Δ23′ < 0. Since both
of these numbers have the same sign (negative), θ4 and θ3 also have the same
sign. Since θ4 = θF − θ3, we see that the measured angle θF overestimates the
contribution to the angle from the F = 4 atoms.

In the typical experiment all atoms are initally pumped into the state F =
4, m = 4. In this situation, the Faraday angle is maximal at t = 0 (for a given
number of atoms N) and has the value (compare with Eq. (D.2))

θmax = K · 4 · 1 · N · a1(Δ45′)

Δ45′
. (D.3)

1 The vector polarizability for the F = 4 ground state should be evaluated with the detuning
Δ45′ . This is how a1 for the F = 4 states was defined in the thesis [32]. Similarly, the vector
polarizability for the F = 3 states should be evaluated with respect to the detuning Δ23′ .
Notice that in [32], the sign of a1(Δ32′) is wrong.
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We can now solve Eq. (D.2) for N4/N or θ4/θF using Eq. (D.3) and the fact
N3 = N − N4. After defining the parameter

D ≡ 3

4

a1(Δ32′)

a1(Δ45′)

Δ45′

Δ32′
, (D.4)

we find
N4

N
=

θF /θmax − Dp3

p4 − Dp3

and
θ4

θmax

=
θF/θmax − Dp3

1 − Dp3

p4

. (D.5)

For the above stated detunings we have D = 0.074.

In the analysis of the data presented in chapter 7, it is assumed that p4 = 1
and p3 = 1.

In the paper [3], experimental results of p4 are presented. After the optical
pumping stage, the orientation of the atoms equal p4 = 0.998(3). After 15 ms
of drive light on the atoms, the orientation is reduced to p4 = 0.980(3). The
assumption p4 = 1 is therefore a good assumption.

p3 = 1 is a worst case scenario which compensates maximally for the F = 3
atoms. If we instead had chosen a lower value for p3, this would lead to an
estimate of the atomic noise which is lower (than the estimate for the atomic
noise using p3 = 1). To be on the safe side, we stick to the value p3 = 1. Also,
experimental measurements of Magneto-Optical Resonance Signals (MORS) [41]
of the F = 3 atoms shows that p3 has a value close to 1 for our experimental
settings.
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