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Abstract

Long-range atmospheric dispersion modelling is carried out at the Danish Meteorolog-
ical Institute (DMI) to predict concentration and deposition fields of various kinds of
hazardous matter such as radioactive gasses and particles, toxic chemicals and smoke,
aerosols containing infectious germs, and volcanic ash particles. These simulations are
provided as a service to the responsible Danish authorities, thereby enabling early warn-
ings and facilitating the implementation of optimal countermeasures in different emer-
gency situations. The atmospheric dispersion is modelled by using the Danish Emer-
gency Response Model of the Atmosphere (DERMA), which is a Lagrangian puff model
designed specifically for long-range dispersion modelling. However, to extend this capa-
bility to a shorter range (up to about 50 km from the source), reformulations of essential
parts of the model are required. In this PhD thesis, a new hybrid particle-puff approach
is developed and implemented in DERMA, enabling the model to simulate short-range
atmospheric dispersion more accurately. This new description of turbulent diffusion
is evaluated against data from three different tracer experiments to validate both the
short-range and long-range capabilities of the model.

In addition, both historical and recent events have demonstrated the necessity for
being able to conduct inverse modelling as an operational service. This capability would
assist responsible authorities in localizing unknown sources and/or characterizing the
temporal development of gas and particle emissions in emergency situations. Therefore,
two inverse methods have been developed: The first allows for source localization based
on a set of air concentration measurements in cases where the release location is unknown.
The second enables estimation of the multi-nuclide source term from a nuclear power
plant accident in cases where little or no direct information about the release is available,
as it has in fact been the case in historical nuclear accidents. This second method is
designed specifically for use in the early stages of an accident, where an improved source
term estimate may be crucial for facilitating reliable dispersion predictions.

The developments and findings in this PhD project successfully lay the foundations
for new operational tasks at DMI while also constituting important contributions to
the research field of dispersion modelling, especially inverse modelling for source term
estimation and localization.
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Resume

Ved Danmarks Meteorologiske Institut (DMI) foretages lang-distance spredningsmodel-
lering for at udarbejde prognoser for koncentrationer og deponerede mængder af luftb̊arne
partikler og gasser til forskellige beredskabsform̊al. Dette kan for eksempel være rele-
vant ved radioaktive udslip, spredning af askepartikler fra vulkanudbrud og luftb̊arne
dyresygdomme s̊asom mund- og klovsyge. Form̊alet er at forsyne de relevante beredsk-
absmyndigheder med oplysninger, som kan give bedre grundlag for at h̊andtere forskellige
krisesituationer. Til disse form̊al benyttes the Danish Emergency Response Model of the
Atmosphere (DERMA), som er en Lagrangesk puff model, der er udviklet specifikt til
simulering af langdistancespredning. Der er dog et stigende behov for, at DERMA ogs̊a
skal kunne simulere spredning p̊a kortere distancer (indenfor de første ca. 50 km fra
kilden). I dette ph.d.-projekt udvikles en ny hybrid partikel/puff beskrivelse af turbu-
lent diffusion, som har til form̊al at forbedre DERMA’s egenskaber p̊a korte distancer.
Denne nye turbulensbeskrivelse evalueres ved at sammenligne modelforudsigelser med
observationer fra tre forskellige sporgaseksperimenter, som tester modellens evner p̊a
b̊ade korte og lange distancer.

Derudover har b̊ade historiske og nylige hændelser vist, at der er et behov for at
kunne bruge invers modellering til at lokalisere ukendte kilder samt at kunne estimere
størrelser og tidsforløb for et udslip, hvor informationer om disse mangler eller er usikre.
Derfor udvikles to forskellige inverse metoder: Den første er udviklet til kildelokalisering
i tilfælde, hvor udslipspunktet er ukendt, og den anden er udviklet til at estimere kildens
størrelse og tidsforløb i tilfælde, hvor udslipspunktet er kendt, men der mangler infor-
mation om udslippets omfang. Den sidstnævnte metode er tiltænkt de tidligste stadier
af en ulykke p̊a et kernekraftværk, hvor en bedre kildeestimering kan være afgørende for
at kunne simulere realistiske spredningsmønstre.

Resultaterne af ph.d.-projektet danner grundlaget for, at DMI i fremtiden kan vare-
tage nye, eller udvidede, operationelle opgaver indenfor spredningsmodellering. Deru-
dover bidrager projektet med vigtige resultater indenfor disse forskningsfelter, særligt
indenfor brug af probabilistiske inverse metoder.
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Chapter 1

Introduction

1.1 Motivation

Airborne transport of radioactive or otherwise harmful particles and gasses plays an
important role in different types of emergency preparedness. Applications include ra-
dioactive releases associated with e.g., nuclear power plant accidents or detonation of
nuclear weapons, ash from volcanic eruptions, and airborne spread of certain animal
diseases. In addition, there are several categories of minor releases, such as accidental
leakage of gasses or smoke from wildfires, which may cause high concentrations locally.

Particles and gasses can be transported by the wind over large distances. During
this transport, atmospheric turbulence will mix it with the surrounding air and thereby
gradually lower the concentration while distributing it over a larger area. Other processes
may cause particles to deposit onto the ground either by direct contact with the surface
or due to rainout or washout by precipitation. Additionally, some materials may undergo
radioactive decay or may interact chemically along the way, adding further complexity.

From a modelling perspective, it can be useful to distinguish between transport over
different spatial scales (e.g., Zannetti, 2013). In this thesis, we will make the following
distinction between different transport scales:

• near-field transport: within 1 km from the source,

• short-range transport: within 50 km from the source,

• long-range transport: above 50 km from the source and including synoptic scale
phenomena,

• global transport.

For emergency preparedness, the main interest is in the short-range and long-range
transport regimes, depending on the type of incident and its location relative to the area
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of interest. Of course, most accidents will have more severe consequences closer to the
location of the event, i.e. in the near-field regime. However, on these scales, dispersion
modelling may not always be the most relevant tool.

1.1.1 Examples of applications for emergency preparedness

Historical events have shown that accidents in nuclear power plants release enormous
amounts of radioactive nuclides into the atmosphere, which can be transported thousands
of kilometers by the wind. The most notable example was the Chernobyl disaster in
April 1986, where a core meltdown in one of the four reactors of the Chernobyl nuclear
power plant caused an explosion and a subsequent radioactive release to the atmosphere
(Saenko et al., 2011). Roughly 116,000 people were evacuated from the area, and in
addition to the 28 people who died from direct exposure to radiation, the radioactive
release may, according to some estimates, be responsible for more than 20,000 cases
of thyroid cancer in Ukraine, Belarus, and Russia during the period 1991-2015 (Weiss,
2018).

Before the Chernobyl disaster, atmospheric transport was not believed to have a
significant impact over such long distances. However, the detection of high levels of
deposited Cs-137 in Sweden (> 37, 000 Bq/m2) (Saenko et al., 2011), more than 1000 km
from the Chernobyl power plant, highlighted the necessity for long-range dispersion
modelling in nuclear emergency preparedness (Ádám Leelőssy et al., 2018).

Another major historical nuclear accident is the Fukushima disaster. In March 2011,
the Fukushima Daiichi nuclear power plant had three of its six reactor cores damaged
after it was hit by a tsunami and, as a consequence, more than 200,000 people were evac-
uated from the area (Koo et al., 2014). Fortunately, westerly winds mostly transported
the radioactive plume over the Pacific Ocean, whereas northerly winds could have trans-
ported it in the direction of Tokyo, which is located only about 220 km south-southwest
of Fukushima. Instead, when the plume finally reached the west coast of North America
after at least 5,000 km of travel, the concentrations of Cs-137 that could be detected
were far below concerning levels (Koo et al., 2014).

In addition, long-range dispersion modelling is relevant for the transport of ash from
volcanic eruptions, where potentially large amounts of microscopic ash particles can be
injected into the atmosphere (Beckett et al., 2020). Given enough explosive power, the
initial vertical distribution of particles may reach high into the troposphere or even well
above the tropopause. In such cases, the concentration levels may impact flight safety, as
demonstrated by the eruption of the Icelandic volcano below the glacier Eyjafjallajökull
in April 2010. The plume of ash caused the airspace above parts of Europe to close
for almost a week, costing the airline industry an estimated US $ 250 million per day
(Gudmundsson et al., 2010).

Finally, in veterinary emergency preparedness, atmospheric dispersion modelling can
potentially be a useful tool in case of an outbreak of certain viral diseases on animal
farms (Sørensen et al., 2001). Previous cases have demonstrated that airborne spread
of foot-and-mouth disease (FMD), may be transported several hundred kilometers from
an infected farm while maintaining concentrations high enough to potentially infect new
farms (Sørensen et al., 2000; Mikkelsen et al., 2003).
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1.1.2 Use of inverse modelling for atmospheric dispersion

Inverse atmospheric dispersion modelling can be used in cases where information is
lacking about the release, e.g. if the source term is poorly estimated and/or if the release
location is unknown. In October 2017, a plume of Ru-106 drifted over Europe and was
detected in more than 1000 air filter measurements from 34 different countries, but no
release was officially reported (Masson et al., 2019). Several studies have attempted
to estimate the source location in this case, with most findings pointing towards the
southern Ural region of Russia, suggesting the Mayak nuclear facility as the most likely
release location (Sørensen, 2018; Saunier et al., 2019; Le Brazidec et al., 2020; Kovalets
et al., 2020; Tomas et al., 2021). However, some work still needs to be done on developing
robust methods that are suitable for operational use for emergency preparedness.

Further, inverse modelling can be used to estimate the magnitude as well as the
temporal evolution of a release based on available measurements. In the historical nu-
clear power plant accidents, the exact circumstances of the releases remain uncertain.
Therefore, efforts have been made to estimate the source term describing the releases
from both the Chernobyl accident (Liu et al., 2017; Davoine and Bocquet, 2007) and the
Fukushima accident (Winiarek et al., 2012; Stohl et al., 2012; Saunier et al., 2013; Liu
et al., 2017; Terada et al., 2020).

Similarly, in the event of a future accident, it is likely that a significant source of
uncertainty of the predicted dispersion will be due to a lack of information about the
source term. Thus, for emergency preparedness, there is still a need for methods that
can use the early available measurements to constrain the source term sufficiently to
make useful predictions of atmospheric dispersion of the released radionuclides. This
task is further complicated by the fact that, at the early stages, mainly measurements
from ground-based gamma dose rate monitors will be available. This is because the
network of filter measurement stations is sparse, and they have a low sampling frequency,
e.g. 12 hours, 24 hours, or even less frequently. The network of gamma dose rate
monitors is, at least in some areas, relatively dense and samples at a high frequency,
e.g. ten minutes or one hour. However, the drawback is that gamma dose rates are
measurements of the combined radiation from all gamma-emitting nuclides. Studies have
been carried out on developing methods for source term estimation based on gamma dose
rates (Saunier et al., 2013, 2020; Tichỳ et al., 2018), but solving this inverse problem
presents significant challenges because, as discussed by Saunier et al. (2013), the problem
may be ill-conditioned due to the many degrees of freedom of the source term.

1.2 Objectives and outline

This thesis describes an industrial PhD with the Danish Meteorological Institute (DMI)
acting as the industrial partner. Hence, the framework for the PhD is the current
and possible future emergency preparedness related tasks carried out by DMI for the
relevant authorities. Further, the research carried out as part of this study is centered on
the Danish Emergency Response Model of the Atmosphere (DERMA), which is DMI’s
Lagrangian puff model (Sørensen, 1998; Baklanov and Sørensen, 2001; Sørensen et al.,
2007). DERMA is specifically developed for long-range dispersion modelling and, thus,
some assumptions are not valid on shorter spatial scales. For example, DERMA assumes
instant, complete vertical mixing within the planetary boundary layer (PBL), which may
cause large biases near the release location.

Currently, DERMA is used operationally for long-range dispersion in case of nuclear
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accidents, volcanic eruptions, and airborne animal diseases (Sørensen et al., 2000, 2001;
Mikkelsen et al., 2003; Gloster et al., 2010). The objectives of this PhD are to develop
new methodologies enabling DERMA to be used for the following tasks:

• inverse modelling for source localization in case of unknown release location,

• inverse modelling for source term estimation in case of a nuclear power plant ac-
cident, intended to be used at the early stages of an accident in order to obtain a
reliable source term for further simulations,

• short-range modelling, which most importantly includes the development and im-
plementation of a new turbulence description.

The thesis is structured as follows:
The present Chapter gives an introduction as well as an overview of the thesis, Chapter 2
presents the theory and background relevant to the research conducted as part of the
thesis. However, since the articles include parts of the theoretical background, this
chapter should be read in combination with the papers to get the full overview. Next,
the research results are presented in the same chronological order that the research
was carried out. First, Chapter 3 presents the results from the two projects on inverse
modelling, including two published research articles and some additional supplementary
results. Next, the development and implementation of the new turbulence description in
DERMA is described in Chapter 4 in the form of an unpublished manuscript. Finally,
Chapter 5 summarizes the conclusions and presents a broader discussion of the results
in relation to the defined objectives, as well as a discussion of perspectives for further
research.

1.3 Manuscripts and results included in the thesis

The thesis includes three manuscripts in full length presenting the main results of the
research. The first two have been published, whereas submission of the third manuscript
is planned to follow shortly after the hand-in of the PhD thesis. Further, the supple-
mentary results presented in Chapter 3.3 were partly published in the final report of the
DMI-organized NKS-project SOurce CHAracterizatiOn accounting for meTeorologIcal
unCertainties (SOCHAOTIC), which was also co-authored by the author of this the-
sis (Sørensen et al., 2023). The report is not included in full length; instead, only the
relevant results are included in the thesis.

Paper 1 (first author)

Tølløse, K. S., Kaas, E., and Sørensen, J. H. (2021). Probabilistic inverse method
for source localization applied to etex and the 2017 case of ru-106 including analyses of
sensitivity to measurement data. Atmosphere, 12(12)

Paper 2 (first author)

Tølløse, K. S. and Sørensen, J. H. (2022). Bayesian inverse modelling for probabilistic
multi-nuclide source term estimation using observations of air concentration and gamma
dose rate. Atmosphere, 13(11)

Paper 3 (first author)

Tølløse, K. S. and Sørensen, J. H. (2024*). A New Hybrid Particle-Puff Approach
to Atmospheric Dispersion Modelling, Implemented in the Danish Emergency Response
Model of the Atmosphere (DERMA). *manuscript not yet submitted
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models to predict the atmospheric dispersion of radionuclides. Journal of Environ-
mental Radioactivity, 182:20–33.

REFERENCES 7 of 105



8 of 105 REFERENCES



Chapter 2

Background

The articles written as part of this thesis include extensive theoretical sections, which
are unnecessary to repeat in detail here. The aim of this chapter is instead to give an
introduction to the different research fields and describe the theoretical foundation upon
which the papers are based. However, some repetition will occur in order to make this
chapter self-contained.

Chapter 2.1 gives a basic description of the phenomenon of atmospheric transport
and the concept of turbulent diffusion, while 2.2 introduces Lagrangian model types
and different approaches to modelling turbulent diffusion. Next, Chapter 2.3 describes
the main concepts behind parameterization of turbulent quantities. Finally, Chapter 2.4
describes the Bayesian approach to solving inverse problems and presents the approaches
typically used in relation to atmospheric dispersion.

2.1 Atmospheric transport and dispersion

The dynamics of the atmosphere are described by a set of non-linear partial differen-
tial equations, including the Navier-Stokes equations, which describe the momentum-
conservation for a Newtonian fluid, conservation of energy via the thermodynamic equa-
tion, and mass conservation equations, i.e. continuity equations for dry air, water vapor,
liquid water, and ice. As there are no known analytical solutions, to this equation
system, weather forecasts are obtained through numerical integration of the equations
starting from some set of initial conditions.

When it comes to airborne transport of particles and gasses, assuming that they
behave as a passive tracer, i.e., they do not change the thermodynamic properties of the
atmosphere but merely follow the atmospheric flow, the evolution of the concentration
field can be described by the continuity equation

∂c

∂t
= − ∂

∂xi
(cui) + λ, (2.1)

where c is the concentration of the passive tracer in units mass per volume, ui is the wind
component in the xi-direction, and λ denotes any sinks or sources, which can represent
e.g. radioactive decay or loss of mass due to deposition. Further, Eq. (2.1) should
in theory include a molecular diffusion term, but this can often be assumed negligible.
The equation is presented in Eulerian form, meaning that the left-hand side describes
the evolution of the concentration c from a fixed point in space. The first term on the
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right-hand side is the divergence of the kinematic flux cui, which can be interpreted as
the difference between the mass flux in and out of an infinitesimal cube.

Most atmospheric dispersion models are so-called offline models, i.e. they take as
input the wind fields and other relevant atmospheric variables, which are already calcu-
lated by numerical weather prediction (NWP) models. However, weather models apply
Reynolds averaging to the equations in order to make a numerical solution of the equa-
tion system computationally feasible. This process involves writing any variable, a as a
sum of a slowly varying mean flow variable A and a small fluctuating part a′, and then
applying the following averaging rules (Wyngaard, 2010, Ch. 2)

A+ a′ = A,

(A+ a′)(B + b′) = AB + a′b′, (2.2)

where the overbar denotes averaging. Therefore, the turbulent fluctuations are not
included in the wind fields resolved by NWP models, and the effects of turbulence must
instead be parameterized. By applying Reynolds averaging to Eq. (2.1) the continuity
equation instead reads

∂C

∂t
= − ∂

∂xi
(CUi)−

∂

∂xi

(
c′u′i

)
+ λ, (2.3)

where c′u′i is the average kinematic turbulent flux. This term is commonly parameterized
by assuming a diffusion form

c′u′i = −Ki
∂C

∂xi
, (2.4)

where Ki is the turbulent diffusivity in the xi-direction. Further, the first term on the
right-hand side of Eq. (2.3) can further be expanded into

∂

∂xi
(CUi) = C

∂Ui
∂xi

+ Ui
∂C

∂xi
,

describing the change in concentration due to divergence of the wind field and advection,
respectively. It is common to assume that the three-dimensional average wind field is
non-divergent, and we therefore get

∂C

∂t
= −Ui

∂C

∂xi
+
∂

∂xi

(
Ki

∂C

∂xi

)
+ λ, (2.5)

which is the advection-diffusion equation with the added sinks/sources term λ, and where
the diffusion term represents the effects of turbulent mixing and not molecular diffusion.

In an Eulerian model, Eq. (2.5) can be solved numerically, if parameterizations for Ki

and λ are provided. Examples of Eulerian dispersion models are MATCH and SILAM,
which are the dispersion models used operationally for Swedish and Finnish emergency
preparedness (Robertson et al., 1999; Sofiev et al., 2015).

One advantage of this model type is that Eulerian dispersion models automatically
represent the concentration field C in a regular grid, whereas fully Lagrangian models
must interpolate the concentration to a grid in order to provide a useful output. The
drawback of this, however, is that Eulerian models use the same resolution throughout
the domain, although the plume may not fill out the domain. In contrast, Lagrangian
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models are not constrained by grid resolution in the same manner, because the evolution
of the plume is simulated by predicting the particle positions.

Another disadvantage of Eulerian numerical models is the numerical dispersion as-
sociated with temporal and spatial discretization, which tends to generate artificial nu-
merical noise. Additionally, Eulerian models generally require much shorter numerical
time steps to maintain numerical stability. As discussed by Sofiev et al. (2015), these
latter issues can, to some extent, be dealt with by using a semi-Lagrangian approach,
i.e. particles follow Lagrangian trajectories that end up in grid point coordinates of a
homogeneous Eulerian grid at each time step.

2.2 Atmospheric transport from a Lagrangian perspective

There are overall two types of Lagrangian dispersion models, stochastic particle models
and puff models. Both solve the continuity equation in Lagrangian form, where the
change in the concentration is seen from the perspective of the particle moving with
the flow instead of from a fixed grid. We can rewrite both Eq. (2.1) and Eq. (2.5) on
Lagrangian forms, again assuming that the wind field is non-divergent

∂c

∂t
+ ui

∂c

∂xi
= λ, (2.6)

∂C

∂t
+ Ui

∂C

∂xi
=

∂

∂xi

(
Ki

∂C

∂xi

)
+ λ, (2.7)

where the left-hand sides of the equations are the change of the concentration from the
perspective of a particle moving with the wind field ui and the mean wind field Ui,
respectively. Note that in Eq. (2.6), the wind field ui includes the turbulent fluctuations
and, therefore, there is no turbulent flux term.

2.2.1 Lagrangian stochastic particle models

The conceptually simplest type of Lagrangian model is a stochastic particle model, where
the particle trajectories follow the actual wind including the turbulent fluctuations, see
illustration in Figure 2.1. As seen from Eq. (2.6), the change in concentration of each
particle is then only due to λ, which represents processes such as radioactive decay and
deposition. Essentially, this means that the stochastic trajectories explicitly account
for turbulent mixing, and the final concentration field is simply calculated by adding
the contributions from the various particles in each grid box. However, since the NWP
model only provides the average wind, the turbulent fluctuating parts of the winds are
simulated using stochastic differential equations, called the Langevin equations (Chock
and Winkler, 1994)

du′i
dt

= − u′i
tLui

+

(
2

tLui

)1/2

σuiη, (2.8)

where σ2
ui = u′iu

′
i is the variance of the turbulent fluctuation, tLui

is the Lagrangian
time scale, which refers to the auto-correlation time scale of the corresponding wind
component, and η ∈ N (0, 1) is a Gaussian distributed variable with a mean of zero and
a variance one. The quantities σ2

ui and tLui
can be linked to the turbulent diffusivity
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via the relation Ki = σ2
uitLui

. For the vertical component, it is necessary to take into
account the change of σw with height, which adds an extra term to Eq. (2.8). The
Langevin equations can then be written in the numerical form (Chock and Winkler,
1994)

v′i(t+ ∆t) = αHv
′
i(t) +

(
1− α2

H

)1/2
σviη, (horizontal) (2.9)

w′

σw
(t+ ∆t) = αv

w′

σw
(t) +

(
1− α2

v

)1/2
η + (1− αv) tLw

∂σw
∂z

(t), (vertical) (2.10)

where αH = exp
(
−∆t/tLvi

)
and αv = exp (−∆t/tLw), where H and v denote horizontal

and vertical. Further, the equation for horizontal components has been rewritten in
terms of v′i, which here denotes the two-dimensional horizontal turbulent wind vector.

Examples of stochastic particle models are FLEXPART, which can be considered a
”pure” stochastic particle model (Pisso et al., 2019), HYSPLIT, which allows the user
to specify whether a particle or a puff formulation is used (Draxler and Hess, 1997),
and NAME, which is a stochastic particle model that uses a puff description on shorter
spatial scales (Jones et al., 2004).

A notable advantage of stochastic particle models is their explicit consideration of
turbulence through stochastic trajectories, eliminating the need to parameterize turbu-
lent flux terms resulting from Reynolds averaging. Thus, with reliable estimates of σ2

ui
and tLui

, this model type has the potential to accurately simulate dispersion. In addition,
Lagrangian transport schemes do not have the same problems with numerical dispersion
and diffusion as Eulerian models. However, the main disadvantage is that many parti-
cles are needed to resolve the concentration field, which can cause these models to be
computationally expensive. Further, to accurately represent the stochastic trajectories,
the numerical time steps must be small compared to tLui

, which may again add to the

Plume from stack

Particle model Puff model

Figure 2.1: Illustration of the different modelling approaches. The upper figure shows the
plume that is simulated by the models. The lower left figure illustrates how a stochastic
particle model may simulate the dispersion, while the lower right figure illustrates a puff
model. In practice, more puffs are of course released to ensure that the puffs overlap
and form a continuous plume.
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computational expenses (Stohl et al., 2005). As discussed by Jones et al. (2004), the
particle approach is perhaps not suitable on short scales because of the many particles
that are needed to sufficiently resolve the fine structures of the three-dimensional plume,
which may ultimately not be resolved by the output grid. For long-range dispersion, on
the other hand, Jones et al. (2004) argue that the particle approach is more appropriate,
as the plume tends to be well-mixed throughout the PBL. For that reason, the NAME
model employs a hybrid puff-particle approach for short-range modelling but transitions
to a pure particle formulation on longer spatial scales (Jones et al., 2004).

2.2.2 Lagrangian puff models

In Lagrangian puff models, each particle/puff follows the mean wind trajectories, and the
effects of turbulence are instead parameterized by assuming Gaussian diffusion around
each puff center, see illustration in Figure 2.1. The relative dispersion around a particle
moving with the mean wind can be related to the properties of the turbulent wind
components as (Gifford, 1984)

σ2
i = 2σ2

uit
2
Lui

{
τi −

(
1− e−τi

)
− 1

2

(
1− e−τi

)2
}
, (2.11)

where t is the age of the puff, and τi = t/tLui
. The concentration field from a puff with

center coordinates (xp, yp, zp) can then be written as

Cp =
Qp

2πσ2
yσz

exp

{
−1

2

(
x− xp
σy

)2

− 1

2

(
y − yp
σy

)2

− 1

2

(
z − zp
σz

)2
}
, (2.12)

where Qp is the mass/activity carried by the puff, which is assumed radially symmetric in
the horizontal dimensions. Hence, σy and σz denote the horizontal and vertical standard
deviations of the puff’s distribution, respectively.

In addition to HYSPLIT and NAME, which, as mentioned above include some puff
elements, a few examples of puff models are CALPUFF (Scire et al., 2000) and RIM-
PUFF (Thykier-Nielsen et al., 1999), which can both be considered ”pure” puff models.
Further, models such as DIPCOT (Andronopoulos et al., 2009), DERMA (Sørensen
et al., 2007), and the Puff-Particle-Model (PPM) (De Haan and Rotach, 1998) are ex-
amples of models that combine the puff approach with stochastic particle trajectories.
Like the hybrid formulation proposed by Jones et al. (2004) for short-range modelling,
PPM divides dispersion into a meandering component and a puff component, represent-
ing relative dispersion. Thus, PPM aims to describe the turbulence more accurately by
dividing the turbulence into these two physically distinct processes. However, to obtain
this, PPM needs more particles and more frequent puff splitting compared to normal
puff models and is therefore intended as a more efficient version of a stochastic particle
model (De Haan and Rotach, 1998).

The main advantages of the puff model approach compared to stochastic particle
models are that much fewer particles are needed to resolve the concentration field and
that the trajectories following the mean wind can still be represented correctly using
long numerical time steps because only the smooth mean wind trajectories need to be
estimated. However, a significant disadvantage is that when puffs grow large, one of
the underlying assumptions fails. This is because puffs are advected with the wind at
their center, leading to unrealistic behavior when the puff size grows larger than the
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characteristic scale of the wind shear. Especially the vertical wind shear, i.e. different
wind speeds and directions at different heights, should in theory distort the Gaussian
shape of the puff. The typical solution to this problem is vertical puff splitting, such
that puffs growing larger than some threshold will be divided into, e.g., three new puffs
at different heights. This approach is used in models such as CALPUFF, RIMPUFF,
NAME, HYSPLIT and PPM (Scire et al., 2000; Thykier-Nielsen et al., 1999; Jones et al.,
2004; Draxler and Hess, 1997; De Haan and Rotach, 1998).

While this approach does enable a more physically realistic behavior, the use of puff
splitting may, as noted by Draxler and Hess (1997), cause practical issues because the
number of puffs may exceed the array dimension. While solutions exist for this, such as
puff merging, it introduces a new layer of complexity to the code structure. A different
solution to the problem, avoiding the use of puff splitting, is the approach used in
DERMA proposed by Sørensen (1998). In DERMA, complete mixing is assumed within
the boundary layer. Thus, the concentration field from a puff within the boundary layer
is described by a modified version of (2.12)

Cp =
Qp

2πσ2
yh

exp

{
−1

2

(
x− xp
σy

)2

− 1

2

(
y − yp
σy

)2
}
δ(z, h), (2.13)

where δ(z, h) = 1 if z < h and otherwise δ(z, h) = 0. According to the discussion above,
this formulation is only anticipated to amplify the issue of puffs growing larger than the
characteristic scale of vertical wind shear. However, DERMA combines this formulation
with a stochastic transport scheme, which randomly moves puff centers in the vertical
direction inside the PBL, thereby ensuring that all puffs are exposed to the vertical wind
shear. While this formulation is perhaps less intuitive than using puff splitting, DERMA
has demonstrated a good performance when compared to other models for long-range
dispersion (Graziani et al., 1998).

On the other hand, the formulation in Eq. (2.13) is not suitable for short-range
modelling, primarily due to the instantaneous complete mixing. The development of a
new, more advanced hybrid particle-puff formulation for DERMA is one of the main
focuses of this PhD. Hence, the topic is further explored in the manuscript presented in
Chapter 4.1.

The different model formulations described above depend on unknown quantities,
which represent statistics of the turbulent fluctuations, either Ki in the Eulerian case,
or the turbulent quantities σ2

ui and tLui
. However, estimating these requires some un-

derstanding of the atmospheric boundary layer turbulence, which is the subject of the
subsequent section.

2.3 Turbulence in the planetary boundary layer

Turbulence is chaotic, which means that it is only theoretically predictable for time
scales characteristic of the dynamics considered. Since the time scales of the largest
turbulent eddies of the atmosphere are in the order of tens of minutes, they can be
considered random for most practical purposes. However, although the actual turbulent
fluctuations are random, underlying statistics governing this random motion may still be
described. This section is mostly based on Wyngaard (2010, Ch. 9-10), with additional
references explicitly cited where relevant. Given the extensive scope of this subject, the
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purpose of this section is mainly to motivate the ideas behind the common approaches
used for parameterizing turbulent quantities.

2.3.1 Structure of the PBL

In the free atmosphere, the atmospheric flow is largely laminar. However, as a lower
boundary condition of the atmosphere, the contact with the stationary surface of the
earth imposes a no-slip condition. Thus, in the lowest part of the atmosphere, there will
always be a region with vertical wind shear, which may cause the formation of turbulence.
The turbulent eddies then tend to enhance vertical mixing, thereby creating a region
with well-mixed conditions, which we generally call the planetary boundary layer (PBL)
or the atmospheric boundary layer (ABL). Thus, the magnitude of the vertical wind
shear is very important for the turbulent conditions of the PBL. Specifically, we often
consider the shear production of turbulent kinetic energy (TKE), which can be assumed
proportional to

(
∂U

∂z

)2

+

(
∂V

∂z

)2

.

In addition to this mechanical interaction, there is also an exchange of heat between
the atmosphere and the surface, which greatly impacts the static stability of the atmo-
sphere. In practice, the surface flux of virtual potential temperature, also called the
buoyancy flux, is considered. This quantity impacts the gradient of virtual potential
temperature, which accounts for the stability effects related to both the temperature
profile and water vapor content in the atmosphere. Generally, the atmosphere can be
considered statically stable when the virtual potential temperature increases with height,
i.e.

∂Θv

∂z
> 0.

Figure 2.2: Illustration of the typical diurnal cycle of the PBL over land and under
clear skies. At sunrise, heating from the surface initiates the formation of a convective
boundary layer/mixed layer. At sunset, the surface starts effectively losing heat via
long-wave radiation and, therefore, starts cooling the atmosphere from below, forming
a stable nocturnal boundary layer. The figure is from Stull et al. (2000).
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Static stability is very important for the behavior of the PBL because an unstable strati-
fication will amplify any vertical movement and typically produce more turbulent eddies.
A stable stratification, on the other hand, dampens the vertical movement and tends to
reduce the amount of turbulence and thereby vertical mixing.

An important concept relating these means of turbulent production is the dynamic
stability, which can be quantified through the gradient Richardson number

Ri =

g
Tv

∂Θv
∂z(

∂U
∂z

)2
+
(
∂V
∂z

)2 , (2.14)

which is the fraction of the buoyant production of turbulence (may be positive or nega-
tive) and the shear production. The atmospheric flow is said to be dynamically unstable
for Ri < Ric, where Ric = 0.25 is the typically agreed critical Richardson number. On
the other hand, when Ri exceeds this limit, the stable stratification is strong enough to
”kill” the turbulence produced by the wind shear.

The surface fluxes of momentum and heat play an important role for the resulting
structure of the PBL. The latter is related to the temperature difference between the
surface and the atmosphere, which causes a natural diurnal cycle in the structure of
the PBL. The typical diurnal cycle consists of a growing convective boundary layer
during the day, which is dominated by buoyant production, while during the night when
the surface cools the atmosphere, the PBL will tend to stably stratify, see Figure 2.2.
Further, above the stably stratified nocturnal boundary layer (NBL), there may be a
residual layer with ”left-over” turbulence from the previous day. It should be noted
that this typical diurnal cycle may evolve differently depending on the conditions, e.g.,
a low cloud cover at night may absorb and re-emit long-wave radiation and prevent the
formation of the NBL. Further, even when a stable nocturnal boundary layer is formed,
its structure may not be constant, but the NBL may intermittently be destroyed by the
turbulence in the residual layer.

As mentioned previously, the static stability is determined by the buoyancy flux,
which can be related to the surface sensible and latent heat fluxes, Qs and Ql, as
(w′θ′v)0 ≈ (Qs + 0.07Ql)/(ρ0cp), where ρ0 is the surface air density and cp is the
heat capacity at constant pressure (Zannetti, 2013, Ch. 3). The surface momentum

flux τ0 = −ρ0

√(
w′u′

)2
0

+
(
w′v′

)2
0

is often considered via the so-called friction velocity

u∗ =
√
τ0/ρ0. As described in the following sections, these quantities are fundamental

in any PBL parameterization.

2.3.2 Surface layer

As the structure of the PBL is highly complex, some understanding can be gained from
considering different parts of the boundary layer individually. Right above the surface
is a thin viscous sublayer, where only molecular diffusion is responsible for the vertical
transport of momentum, heat, and moisture. Above this is the surface layer, typically
the lowest ∼ 10% of the PBL, where turbulent fluxes can be assumed constant with
height.

By assuming that the surface layer structure depends only on z, u∗, (w′θ′v)0, and
g/Tv, Monin and Obukhov (1954) used similarity theory to show that the structure of
the mean wind speed U and the mean virtual potential temperature Θv could be written
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as

κz

u∗

∂U

∂z
= φm

( z
L

)
and − κzu∗(

w′θ′v
)

0

∂Θv

∂z
= φh

( z
L

)
, (2.15)

where the left-hand sides are dimensionless gradients, and φm and φh are unknown
functions of the dimensionless height z/L. Further, κ = 0.4 is the von Kármán constant,
and the length scale L, called the Obukhov length, is defined as

L = − u3
∗Tv

κg
(
w′θ′v

)
0

. (2.16)

Using experimental data, the functions φm and φh can be estimated, for example,
Högström (1988) proposed the following expressions

stable : φm = 1.0 + 4.8
z

L
, φh = 1.0 + 7.8

z

L
,

unstable : φm =
(

1.0− 19.3
z

L

)−1/4
, φh =

(
1.0− 12.0

z

L

)−1/2
. (2.17)

By integrating (2.15) from the surface to some reference height, the surface fluxes can
be determined.

2.3.3 Turbulence parameterizations in Lagrangian dispersion models

Just as Monin and Obukhov (1954) showed how the constant surface fluxes of momentum
and heat can be estimated based on simple assumptions about the surface layer structure,
estimates of the turbulent fluxes throughout the remaining boundary layer can be based
on similar considerations. As already described, in Lagrangian dispersion models, the
turbulent fluxes are related to the quantities σ2

ui and tLui
.

As described by e.g. Zannetti (2013, Ch. 3), many different parameterizations exist,
and most of them rely on semi-empirical relations between σ2

ui and tLui
and the quantities

z, u∗, L, as well as the PBL height h. In addition, while u∗ is typically assumed a
representative velocity scale of stable and neutral boundary layers, a convective velocity
scale is typically assumed the representative velocity scale of unstable boundary layers

w∗ =

(
hg
(
w′θ′v

)
0

Tv

)1/3

. (2.18)

As part of the improvement of DERMA in the short-range regime, the parameterization
by Hanna (1984) was implemented, which is described in further detail in the manuscript
presented in Chapter 4.

2.4 Inverse dispersion modelling

The term inverse problem describes any problem where a physical quantity cannot be
measured directly. Instead, it must be inferred indirectly through another quantity,
which, when combined with physical or mathematical models, enables the estimation of
the quantity of interest. This section provides a brief introduction to Bayesian theory
and its applications to atmospheric dispersion problems.
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First, we consider Bayes’ theorem, which connects the probability distribution of a set
of parameters m, representing the variables we seek to estimate, to a set of observations
y, which only provide indirect information about m:

P (m|y, I) =
P (m|I)P (y|m, I)

P (y|I)
. (2.19)

Here, P (m|y, I) is the posterior probability distribution for m, given y as well as I,
representing any prior informaiton. Next, P (m|I) is the prior probability distribution
for m, i.e. based only on I, and P (y|m, I) is the likelihood, which is the probability
distribution for y given m. Finally, for most practical purposes, P (y|I) is an unknown
normalization constant and, therefore, Eq. (2.19) is often written on the form

P (m|y, I) ∝ P (m|I)P (y|m, I). (2.20)

2.4.1 Solving inverse problems

In order to estimate the posterior distribution, we must be able to solve the forward
problem, which is the problem relating m to a set of modelled observations ŷ. This can
be written as

ŷ = f(m), (2.21)

where f is the forward operator. In addition, some functional forms need to be assumed
for P (m|I) and P (y|m, I). The former will depend strongly on the type of variable
and the available prior information, while the latter is often assumed to be Gaussian,
P (y|m, I) = N (ŷ,σ), where σ may be related to uncertainties of both observations and
model predictions (Tarantola, 2005).

One approach to solving inverse problems is to simply maximize Eq. (2.20) and
thereby find the optimal solution for m. In the simplest cases, where f is linear, and
where both the likelihood and the prior distribution are Gaussian, an analytical solution
can be found (Tarantola, 2005). In more complex cases, e.g. with a non-linear f , more
advanced variational methods can be used, such as the 3D-var and 4D-var methods
typically used for data assimilation in numerical weather prediction models (Andersson
et al., 1998; Courtier et al., 1994).

However, instead of estimating the optimal solution for m, there are also probabilistic
inversion methods that sample the posterior probability distribution by evaluating the
right-hand side of Eq. (2.20) for a sufficiently large number of realizations of m and
normalize the resulting distribution. One option is to use random-walk-based Markov
Chain Monte Carlo (MCMC) methods, such as Metropolis-Hastings or Gibbs (Hastings,
1970; Casella and George, 1992) to explore the parameter space of m. Although these
methods are designed to gradually gravitate towards higher probabilities, they require
tuning of case-dependent parameters such as the step size of the random walk. An
alternative approach, avoiding the use of random walks, is Hamiltonian Monte Carlo
(HMC) methods, which propose new realizations of m based on estimated gradients
of the posterior distribution (Betancourt, 2017). An example of a Hamiltonian Monte
Carlo algorithm is the No U-Turn Sampling (NUTS), which uses adaptive step sizing
such that the user only needs to perform a minimum of parameter tuning (Hoffman
et al., 2014). This advantage is significant compared to other Monte Carlo methods,
which typically require parameter tuning to ensure convergence.
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It is important to note that, despite the robustness of the mathematical framework
for solving inverse problems, there is no guarantee that a method will converge to a mean-
ingful solution, as these problems can be ill-conditioned. As discussed by e.g. Enting
(2002, Ch. 8), this issue is particularly relevant for atmospheric dispersion modelling, be-
cause the diffusive processes lead to a gradual information loss as the tracer is dispersed.
Combined with the fact that the three-dimensional plume is typically only sampled by
a coarse two-dimensional surface network, this means there may not be enough data to
adequately constrain the parameters we are trying to estimate.

2.4.2 Source-receptor relationship

In the context of dispersion modelling, the forward problem, also sometimes called the
source-receptor relationship, is the relation between a certain release scenario and a set
of modelled observations. Solving this problem consists of first running the dispersion
model based on the specific scenario and then interpolating the resulting concentration
field to the locations and times of the measurements. A detailed description is provided
in the article presented in Chapter 3.1, but the basics are covered in the description
below.

First, we can write the atmospheric dispersion problem as L(C) = Q, where C is the
concentration field, Q = Q(m,x, t) is a source function related to the source term model
m, a vector containing relevant quantified information about the source term, and L(·)
is the forward advection-diffusion operator, based on Eq. (2.7)

L(·) =
∂

∂t
(·) + U · ∇(·)−∇ · (K∇(·))− λ(·). (2.22)

Next, given the location and time of the i’th observation yi, the corresponding modelled
observation is calculated as

ŷi = 〈C, hi〉 ≡
∫

t

∫

V
Chi dV dt, (2.23)

where hi is a filter function, extracting the concentration at the location and time of
the i’th measurement. This forward-based approach has been used for both source
localization (e.g., Saunier et al., 2019; Le Brazidec et al., 2020) and for source term
estimation in cases with known location (e.g., Stohl et al., 2012; Liu et al., 2017; Saunier
et al., 2020). However, since this approach requires a new run with the dispersion model
for every proposed source location, it may not be computationally efficient, if prior
knowledge is limited.

Another approach is to make use of the adjoint model. This method relies on the
Lagrangian duality relationship (Pudykiewicz, 1998; Marchuk et al., 2005)

〈C,Q∗〉 = 〈C∗, Q〉, (2.24)

where C∗ is the adjoint concentration field obtained running the adjoint dispersion model
with the source term Q∗, i.e. L∗(C∗) = Q∗ , where the adjoint advection-diffusion
operator is defined as

L∗(·) = −
(
∂

∂t
(·) + U · ∇(·)

)
−∇ · (K∇(·))− λ(·). (2.25)
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As we can see from this equation, the total derivative changes sign in the adjoint version,
meaning that puffs follow back-trajectories. It follows from Eq. (2.24) that, by setting
Q∗ = hi, the modelled observation ŷi can be computed as

ŷi = 〈C∗i , Q〉 =

∫

t

∫

V
C∗i Q dV dt. (2.26)

Hence, Eq. (2.23) and Eq. (2.26) provide two mathematically equivalent methods
for solving the forward problem. Depending on the specific inverse problem, there may
be advantages to either of the two approaches. The forward-based approach requires
a run with the dispersion model for every proposed source term model, whereas the
adjoint-based approach requires a run with the adjoint dispersion model for each avail-
able observation. Thus, the efficiency of each approach will depend on how well the prior
distribution constrains m, as well as on the number of observations available. For this
reason, the adjoint-based approach is popular for source localization methods in partic-
ular, where it may significantly reduce the number of model runs needed (e.g., Seibert
et al., 2002; Yee et al., 2014; Efthimiou et al., 2017; Kovalets et al., 2018; Sørensen, 2018;
Tomas et al., 2021).

Based on these considerations, the methods developed as part of this PhD, described
thoroughly in Chapter 3, use an adjoint-based approach for source localization and a
forward-based approach for cases with known release location. Figure 2.3 is from the
article presented in Chapter 3.1 and shows the resulting two-dimensional probability
distribution for source location when the method is applied to the Ru-106 case.
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Figure 2.3: Example of a probabilistic source localization method applied to the Ru-106
case. The blue triangle shows the location of the highest probability density, the red
diamond shows the location of the Mayak nuclear facility, the blue square shows the
location of the NIIAR nuclear facility, and the yellow circles show the locations of the
sampling stations. For more details, see the original figure description in the article in
Chapter 3.1 The figure is from Tølløse et al. (2021).
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Chapter 3

Inverse modelling for source term
estimation

For emergency preparedness, the most important role of atmospheric dispersion mod-
elling is of course being able to make forward calculations predicting current and future
air and ground concentrations, which can support decision-making during emergency sit-
uations. However, in cases of unexplained elevated levels of harmful particles or gasses,
it is likely that the responsible authorities wish to know the cause, at least in order to
predict if there are geographical areas with worse conditions. However, it could also help
provide a clearer understanding of the types of scenarios for which they need to prepare.
In such cases, the main objective would be the localization of the source.

Moreover, during the initial phases of emergency situations, there may be limited
information regarding what has actually happened. Thus, there will be large uncertain-
ties on the estimated released amounts and, consequently, on the predicted dispersion.
Therefore, a method for source term estimation can be very useful during or immediately
after the release to enable better simulations of the dispersed matter.

In both these types of cases, inverse dispersion modelling can be used to estimate
all quantifiable information about the source term, such as the location, spatial extent,
and the temporal evolution of release rates, whether it is stationary or moving, etc. In
theory, these two types of problems are described by the same overall inverse problem
only with different prior knowledge about the source term. However, in order to develop
methods that are best suited for the tasks they are intended to solve, it is useful to
consider the two types of scenarios individually such that the methods can be tailored
to the specific problems.

3.1 Paper 1: Probabilistic Inverse Method for Source Lo-
calization Applied to ETEX and the 2017 Case of Ru-
106 including Analyses of Sensitivity to Measurement
Data

The inspiration for this article (Tølløse et al., 2021) stemmed from the unexplained
release of Ru-106 in 2017. Given the large amount of measurement data available (more
than 1000 air concentration measurements from 34 different countries), the case offered
an ideal opportunity to test source localization methods. Consequently, the case gave
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rise to a series of studies attempting to estimate the location of the release based on the
available measurements (Sørensen, 2018; Saunier et al., 2019; Le Brazidec et al., 2020;
Kovalets et al., 2020; Tomas et al., 2021). These studies generally agree that the release
most likely came from the southern Ural region in Russia, and most suggest the Mayak
nuclear facility as a likely candidate.

In this article, we describe a new method for source localization, a probabilistic
approach based on Bayesian theory which allows accounting for the uncertainties associ-
ated with both measurements and model predictions. For validation, the method is first
applied to the ETEX case, where the method accurately predicts the source location.
Further, to examine the robustness of the method, sensitivity analyses are performed,
where the ETEX data is essentially modified to be more similar to the Ru-106 case.
This involved excluding observations within varying distances from the source location,
as well as computing average concentrations over extended durations using the three-
hour average concentrations provided by the ETEX data. The method offers robust
predictions, in the sense that the release location was predicted within the region of
highest probability density throughout the sensitivity analyses. Finally, the method is
applied to the Ru-106 case, leading us to the same conclusion as other studies: the
Mayak nuclear facility is identified as the most probable release location.
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Abstract: In recent years, cases of unexplained, elevated levels of radioactive particles have demon-
strated an increasing need for efficient and robust source localization methods. In this study, a
Bayesian method for source localization is developed and applied to two cases. First, the method is
validated against the European tracer experiment (ETEX) and then applied to the still unaccounted
for release of Ru-106 in the fall of 2017. The ETEX dataset, however, differs significantly from the
Ru-106 dataset with regard to time resolution and the distance from the release site to the nearest
measurements. Therefore, sensitivity analyses are conducted in order to test the method’s sensitivity
to these parameters. The analyses show that the resulting source localization depends on both the
observed temporal resolution and the existence of sampling stations close to the source. However,
the method is robust, in the sense that reducing the amount of information in the dataset merely
reduces the accuracy, and hence, none of the results are contradictory. When applied to the Ru-106
case, the results indicate that the Southern Ural region is the most plausible release area, and, as
hypothesized by other studies, that the Mayak nuclear facility is the most likely release location.

Keywords: source localization; atmospheric dispersion modelling; inverse modelling; Bayesian
inference; ETEX; Ru-106

1. Introduction

In the case of an accidental release of a substance to the atmosphere, the time and
location of the release may be unknown, in which case, only indirect information about the
source location is available. If a network of sampling stations has detected the substance,
this provides an indication of the geographic location of the plume of the substance at
times later than the release time. There is no unambiguous way of calculating the source
location from this information; instead, inverse problem theory is needed in order to relate
the measurements to possible release scenarios. In the case of an unreported release of
harmful particles or gasses, source localization is likely to be an operational task carried
out by national emergency management agencies. The aim of this study is to develop and
illustrate a method suitable for operational usage, and therefore, the focus is on efficiency
and robustness.

Examples of previous work on source localization include different applications of
adjoint dispersion modelling, i.e., running the model backwards in time, such as the
methods by Pudykiewicz [1], Wotawa et al. [2], Seibert et al. [3,4], and Sørensen [5]. Some
studies have combined adjoint dispersion modelling with Bayesian inference and Markov
chain Monte Carlo methods, such as the method by Keats et al. [6] and Yee et al. [7,8]. One
of the main challenges in inverse dispersion modelling is that model predictions are subject
to large unknown errors, which complicate direct comparison of model and measurements.
This is demonstrated by Yee et al. [8], who suggest altering the cost function to take this into
account by representing the standard deviations with probability distributions allowing for
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variation around the estimated uncertainties. Other studies suggest using a cost function
that is less sensitive to outliers, i.e., model predictions with large errors, than the typical
Gaussian distribution, such as the log-normal distribution [9,10]. As opposed to the
previously mentioned studies, Saunier et al. [9] and Le Brazidec et al. [10] both estimate
the source term using forward-based methods, utilizing a variational approach and a
Markov chain Monte Carlo method, respectively. Another approach, which is also less
sensitive to outliers, is to use a correlation-based cost function such as the methods by
Efthimiou et al. [11], Kovalets et al. [12,13], and Tomas et al. [14]. An additional advantage
of this approach is that evaluation of the probability is possible without a need for explicitly
specifying the uncertainties.

A recent case, which has demonstrated the need for better source localization methods,
is the release of Ru-106 in the fall of 2017 (see Section 2.2). To date, no release has been
reported, but several studies have attempted to estimate the source location [5,9,10,13–15].
These studies are in overall agreement and point towards the Southern Ural region as the
most likely release area. Within this geographical area, it has been suggested that the release
site could be either the Mayak nuclear facility, cf. http://www.po-mayak.ru/ (accessed on
13 October 2021), or the NIIAR nuclear facility, cf. http://www.niiar.ru (accessed on 13
October 2021).

The methodology developed in this study is inspired by the combination of Bayesian
inference and adjoint dispersion modelling used by Keats et al. [6] and Yee et al. [7,8] but with
a correlation-based measure for the probability, similar to the method by Tomas et al. [14].
First, the method is validated against the European tracer experiment (ETEX) (see Section 2.1)
and then applied to the Ru-106 case (Section 2.2). However, there are a few important differ-
ences between the ETEX dataset and the dataset of Ru-106 measurements: first, ETEX consists
of a large set of three-hour measurements, whereas most measurements in the Ru-106 case
are conducted over either approximately 12 h, 24 h, or one week; this is at least the case
for the dataset used in this study, where a number of measurements have been discarded,
because they do not meet the quality control requirements defined in Section 2.2. Second,
in the ETEX case, there are several measurement stations located less than a few hundred
kilometers from the release site, one of which is located directly downstream (see Section 3.1
for a discussion of this). In the Ru-106 case, on the other hand, most measurements that fulfill
the quality control requirements are more than 2000 km away from the estimated source. There
are a few measurements from locations in Russia close to the estimated source. However,
these measurements are conducted over a week or more and therefore contain only limited
information about when the plume of Ru-106 passed the measurement stations. To study the
effects of the differences between the two datasets, the validation against the ETEX case in-
cludes analyses of the sensitivity to these parameters. In addition, the importance of including
non-detections is examined, i.e., measurements conducted in the relevant geographical area
and period, which have not detected concentrations above the detection limit. Further, there
are a few differences that could be mentioned: the tracer gas used in the ETEX experiment
was non-depositing and non-decaying, whereas Ru-106 is subject to both radioactive decay
(although with a quite long half-life of 371.5 days) as well as dry and wet deposition.

Section 2 describes the data and methodology, Sections 2.1 and 2.2 describe the
measurement datasets, Sections 2.3 and 2.4 describe the meteorological data and the
dispersion model, while Sections 2.5 and 2.6 describe the methodology. Next, the results
are presented and discussed in Section 3, Section 3.1 presents the results of the validation
on the ETEX dataset, including tests of sensitivity to the data quality, and Section 3.2 shows
the results of applying the methodology to the Ru-106 case. Finally, Section 4 presents a
summary and the conclusions of the study.

2. Materials and Methods
2.1. ETEX Dataset

The European tracer experiment (ETEX) is a tracer gas experiment designed to test and
compare the capabilities of atmospheric transport models to predict long-range atmospheric
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dispersion [16,17]. ETEX consisted of two separate experiments, ETEX-1 and ETEX-2,
of which only the first is considered in this study. The non-decaying and non-depositing
gas perfluoromethylcyclohexane (PMCH) was used as tracer, and a total of 340 kg of the
gas was released to the atmosphere with a constant release rate during the release period,
starting from 16.00 UTC on 23 October 1994 and lasting 11 h and 50 min. The location of the
release (48◦03′30′′ N, 2◦00′30′′ W) is close to the village of Monterfil in Brittany, France.

The sampling network consisted of 168 ground-level sampling stations distributed
in 17 European countries. The sampling was carried out over 30 three-hour intervals,
the first starting at 15.00 UTC on 23 October 1994, i.e., one hour before the release started.
The different sampling stations were planned to start sampling about six hours before
the expected time of tracer arrival. Therefore, each sampling station has not necessarily
measured the concentration in all possible sampling intervals. A total of 3046 valid samples
are available, of which 935 are measurements of non-zero concentrations, and the remaining
are non-detections, i.e., levels below the detection limit.

As mentioned previously, the sensitivity analyses include a deliberate reduction in the
temporal resolution of the ETEX dataset. This is performed by computing averages of four
measurements at adjacent time intervals, such that a 12 h measurement interval is obtained.
However, there are some measurement intervals, where measurements are lacking, which
means that it is not possible to combine the measurements to 12 h averages. These intervals
occur randomly throughout the measurement campaign. The measurements that only
combine to shorter time intervals are discarded. This approach has resulted in a dataset
consisting of a total of 665 12 h measurements, of which 281 are measurements of non-zero
concentrations. This is repeated for 24 h intervals, resulting in a dataset consisting of
288 24 h measurements, of which 123 are measurements of non-zero concentrations.

2.2. Ru-106 Dataset

During September and October 2017, small concentrations of Ru-106 were detected in
high-volume air samples in several European countries by different sampling networks.
The concentration levels were below those requiring public protective actions, but the large
geographical area affected suggested a release of considerable magnitude [18].

The dataset used in this study is adapted from Masson et al. [18]. The full dataset
consists of more than 1000 air concentration measurements from 34 different countries,
of which some are non-detections, i.e., levels below detection limits. However, for some
of these measurements, information about the sampling period is limited to a start and
end date, with no information on the time of the day. For measurements conducted over,
e.g., 24 h, this incomplete information gives rise to large uncertainties. For longer mea-
surements, on the other hand, imposing starting and ending time is not as problematic.
In this study, all measurements conducted over less than five days where no starting
and ending time is given have been discarded. For longer measurements, we assume
that the measurement interval starts and ends at 12.00 UTC if the times are not specified.
Further, a few measurement periods either start or end outside the simulation period
(see Section 2.3), and hence, these measurements have been discarded as well. Finally,
the dataset includes a number of non-detections with quite high detection limits com-
pared to the numerical values of some of the non-zero measurements. As described in
Section 2.6.1, the non-detections are interpreted as zeros, and therefore, non-detections with
high detection limit have also been discarded from the dataset. The maximum accepted
detection limit is chosen somewhat arbitrarily to the 5th percentile of all included non-zero
measurements, which ensures that all included non-detections are, if not zero, at least small
in comparison with the majority of the non-zero measurements. The limits defined in this
way are 0.22 mBq m−3 for measurements conducted over up to 36 h and 0.0030 mBq m−3

for measurements conducted over more 36 h.
The dataset that remains, after discarding the measurements described above, con-

sists of 583 samples, of which 349 are measurements of non-zero concentrations and the
remaining are non-detections. However, approximately half of these measurements are
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concentration averages over a week or more. It is questionable whether a weekly mean
value is useful for source localization, since there is no information about when, during this
period, the plume actually passed the measurement station. To address this issue, a source
localization is first based on all 583 measurements, and next, a localization is based on
two separate datasets: the first only including measurements conducted over up to 36 h,
similar to approaches by other studies [5,14], and the second only including measurements
conducted over more than 36 h. The purpose is to examine whether the weekly averages
contain valuable information, but also whether including them in the dataset introduces a
risk of reducing the accuracy of the localization.

2.3. Meteorological Data

The simulations have been conducted using meteorological data from the global
numerical weather prediction model of the European Centre for Medium-Range Weather
Forecasts (ECMWF) [19,20]. For the ETEX case, ERA5 reanalysis data [19] of horizontal
resolution 0.25◦ × 0.25◦ are employed; for the Ru-106 case, cycle CY47R1 data [20] of
0.1◦ × 0.1◦ resolution. The meteorological fields are available hourly in regular lat-lon
grids. The model simulation for the ETEX case starts on 27 October 1994 at 09.00 UTC and
runs (backwards in time) until 22 October 1994 at 06.00 UTC. The model simulation for
the Ru-106 case starts on 10 October 2017 at 00.00 UTC and runs (also backwards) until
21 September 2017 at 00.00 UTC. The domains used for the simulations are limited area
domains: for the ETEX case, the domain limits are 20◦ W to 30◦ E and 40◦ N to 65◦ N,
and for the Ru-106 case, the domain limits are 15◦ W to 80◦ E and 30◦ N to 70◦ N.

2.4. Dispersion Modelling

The atmospheric dispersion is modelled using the Lagrangian model DERMA, the Dan-
ish Emergency Response Model of the Atmosphere [21,22]. The model can be represented
mathematically with the operator:

L(·) = D
Dt

(·)−∇ · (K∇(·)) + λ(·), (1)

where D
Dt (·) = ∂

∂t (·) + u · ∇(·) is the total derivative and thus contains both the time
derivative and the advection terms, u is the three-dimensional wind field, ∇ · (K∇(·))
is the turbulent diffusion term, where K is the turbulent diffusion tensor, and λ denotes
radioactive decay and deposition. Provided a source function Q, the concentration field C
can then be obtained by numerically integrating the differential equation L(C) = Q.

Our method for source localization relies on the use of adjoint dispersion modelling,
which implies that the sign of the total derivative is changed and the particles, and thus
moves opposite the wind direction. The mathematical operator for the adjoint dispersion
model is defined as [1,23]:

L∗(·) = −D
Dt

(·)−∇ · (K∇(·)) + λ(·). (2)

The adjoint concentration field C∗ can be obtained by applying a source function,
Q∗, and numerically integrating the differential equation L∗(C∗) = Q∗. Note that only
the total derivative changes sign, which can be interpreted as if the particles are moved
backwards in time, but the physical processes diffusion, decay, and deposition behave as
in the original forward-in-time model.

2.5. Source-Receptor Relationship

Although the aim is to estimate the location of the source, it is necessary to consider
additional source term characteristics such as start time, duration, and amount of released
material, since these characteristics are closely related to the release location. In this study,
only stationary point releases with a constant release rate in a finite time interval are
considered. Further, the source is assumed to be located inside the planetary boundary
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layer (PBL), where the concentration is assumed constant with height and, consequently,
only two spatial coordinates are necessary. Thus, all possible sources can be described by
the following source term model:

m = (xrelease, tstart, ∆trelease, q), (3)

where xrelease = (φrelease, λrelease) are the horizontal coordinates of the source location,
latitude, and longitude, respectively. tstart is the start time of the proposed release, ∆trelease
is the duration, and q is the constant release rate.

In order to establish the source–receptor relationship, i.e., a function that relates a
proposed source term model m to a set of expected detections ŷ (implying that a set of
detections y exists), a source function Q(m, x, t) must be related to the proposed source
term model m:

Q(m, x, t) = δ(x− xrelease) qt(m, t), (4)

qt(m, t) =
{

q tstart ≤ t ≤ tstart + ∆trelease
0 otherwise

.

Here, Q is the release rate corresponding to the proposed source term model m as
function of location x and time t, and δ(x) is the Dirac delta function. Assuming that the
ith measurement yi is a point measurement at the location xi, initiated at time ti, and of
duration ∆ti, the expected detection ŷi can be computed as the following inner product:

ŷi = 〈C, hi〉 ≡
∫

t

∫

V
Chi dV dt =

1
∆ti

∫ ti+∆ti

ti

C(xi) dt, (5)

where the filter function hi extracts the concentration value C at the location and time of
the ith measurement. C is related to Q(m, x, t) as described in Section 2.4. To obtain the
last equality in Equation (5), the following definition of the filter function is used:

hi(x, t) = δ(x− xi) τi(t), (6)

τi(t) =
{

∆t−1
i ti ≤ t ≤ ti + ∆ti

0 otherwise
.

Using Equation (5) to estimate the expected detections requires a forward run with the
dispersion model for each proposed source term model, m. If a large number of realizations
of m is needed, this approach may be computationally inefficient. Instead, the method
developed here relies on the adjoint source–receptor relationship [6–8], which is obtained
by using the Lagrangian duality relationship. Only the main result is shown here, and for
further details, the reader is referred to [1,6,23]. The Lagrangian duality relationship states:

〈C, Q∗〉 = 〈C∗, Q〉, (7)

where, as described in Section 2.4, C is the concentration field obtained by using the source
function Q, and C∗ is the adjoint concentration field obtained by using the source function
Q∗. Equation (7) provides a relation between the value of an adjoint concentration field
C∗ originating from a given location and the actual concentration C evaluated at the same
location. By setting Q∗ = hi and using Equations (5) and (7), it follows that the expected
detections ŷi can be computed using the adjoint concentration field:

ŷi = 〈C∗i , Q〉 =
∫

t

∫

V
C∗i Q dV dt, (8)

where C∗i is the adjoint concentration field obtained by using the filter function hi as source
function. Thus, when using this adjoint source–receptor relationship, it is sufficient to run
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the adjoint dispersion model once per measurement instead of once per realization of m.
Further, using the definition of the source function, Equation (4), it follows that:

ŷ = qX, where (9)

Xi = Xi(xrelease, tstart, ∆trelease) ≡
∫ tstart+∆trelease

tstart
C∗i (xrelease)dt.

Thus, the expected detection is proportional to the time integrated adjoint concentra-
tion field, and the proportionality constant is the proposed release rate q.

2.6. Proposed Method for Direct Marginal Posterior Estimation

Given a set of concentration measurements, y, which contains indirect information
about the source term, the probability distribution for the elements of m, Equation (3), can
be determined by applying Bayes’ theorem:

P(m|y, I) =
P(m|I) P(y|m, I)

P(y|I) , (10)

where P(m|I) is the prior probability distribution for m, P(y|m, I) is the likelihood,
and P(y|I) is a statistical model-independent constant called the evidence. I is any back-
ground information that may be available about, e.g., source location or amount of released
material. To evaluate Equation (10), the quantities P(m|I) and P(y|m, I) need to be esti-
mated for a selection of realizations of m, and the resulting posterior probability distribution
P(m|y, I) can then be estimated by normalizing the distribution. To obtain a good estimate
of the probability distribution, it is important to make sure that the relevant parts of this
parameter space is sampled. One option is to use Markov chain Monte Carlo methods to
sample the parameter space [6–8,10]. This approach is especially useful for sampling very
large parameter spaces. However, a few simplifications are described below, which further
reduce the dimensionality of the parameter space, such that evaluation of the probability
for the entire model grid is computationally feasible. Therefore, there is no need for using
Markov chain Monte Carlo methods to sample the probability distribution.

Instead of sampling the posterior distribution for m, the idea presented here is to ob-
tain a direct estimate of the marginal posterior distribution for µ = (xrelease, tstart, ∆trelease).
First, the posterior probability distribution for m may be rewritten as:

P(q,µ|y, I) =
P(q|µ, I) P(µ|I) P(y|q,µ, I)

P(y|I) . (11)

Further, it is useful to define the conditional posterior distribution for q, where µ is
assumed known:

P(q|y,µ, I) =
P(q|µ, I) P(y|q,µ, I)

P(y|µ, I)
. (12)

The marginal distribution for µ can be related to Equations (11) and (12), and by re-
ordering the terms, it can be shown that:

P(µ|y, I) =
P(q,µ|y, I)
P(q|y,µ, I)

=
P(µ|I) P(y|µ, I)

P(y|I) .

Focusing on the case where no quantifiable prior information about the source is
available, both P(µ|I) and P(q|µ, I) can be assumed uniform. However, for the prior
probability to be uniform for the source location, a factor of cos(φrelease) is necessary to
compensate for the convergence of longitude lines approaching the poles. The marginal
distribution for µ is proportional to the evidence of the conditional posterior distribution
for q, P(y|µ, I), which, in this case, reduces to:

P(µ|y, I) ∝
∫

cos(φrelease) P(y|q,µ, I)dq. (13)
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2.6.1. Likelihood and Uncertainty Quantification

In order to evaluate Equation (13), one first needs to define the likelihood, P(y|q,µ, I).
The traditional approach is to evaluate the probability of observing yi given the model
prediction ŷi = qXi and some assumed probability distribution for the residual yi − qXi.
For example, one could assume that yi − qXi is Gaussian distributed with variance σ2

i , such
as the methods by Keats et al. and Yee et al. [6–8]. The variance can then be related to the
uncertainties associated with both the observation and the model prediction σ2

i = σ2
o,i +σ2

m,i,
where σo,i is the observation uncertainty, and σm,i is the modelling uncertainty. The resulting
likelihood is the joint Gaussian distribution:

P(y|q,µ, I) =
1√

(2π)N |R|
exp

[
−1

2
(y− qX)TR−1(y− qX)

]
, (14)

where N is the number of measurements, R = O + M is the error covariance matrix,
with O and M being the error covariance matrices for observation and modelling errors,
respectively. |R| denotes the determinant of R. Assuming that measurements are unbiased,
the observation errors can be assumed uncorrelated, and hence O is a diagonal matrix with
diagonal elements σ2

o,i related to the accuracy of the measurement equipment. The elements
of M, on the other hand, are unknown, and the structure is likely to be complex. There are
three main contributions to the uncertainty on the time integrated adjoint concentration Xi:
(1) errors in the estimated trajectories due to uncertain meteorological data, (2) errors in the
turbulent diffusion and deposition due to inaccurate parameterizations, and (3) numerical
errors. The two first contributions, which we assume are dominant, may cause systematic
errors, e.g., due to systematic over- or underestimation of wind speeds or of the turbulent
diffusion coefficients. Considering this nature of the modelling errors, it is likely that the
errors on predictions that are close in time and space are correlated. However, estimating
the off-diagonal elements of M is highly non-trivial, and therefore, the best solution might
still be to assume that M is diagonal; previous studies also assume uncorrelated modelling
errors [6–8,10]. Based on these assumptions, the likelihood in Equation (14) can be related
to the following cost function:

J =
N

∑
i

(
yi − qXi

σi

)2
, (15)

such that P(y|q,µ, I) ∝ exp(−J). Although the values of σo,i may be known, we assume
that the errors on the model prediction are generally much larger than the observation un-
certainties σm,i � σo,i, and hence σi ≈ σm,i. Thus, minimizing J as defined in Equation (15)
requires quantitative estimates of σm,i. In this study, we use an alternative correlation-based
cost function, which allows for evaluation of the likelihood without the need for quantify-
ing uncertainties. As described below, the cost function defined in Equation (15) will then
only be used to determine the source strength. As mentioned previously, this approach is
inspired by previous methods using correlation-based cost functions [11–14]. However,
in contrast to the previous studies, we implement the correlation-based cost function in the
Bayesian framework described in the previous section. Our method resembles the method
by Tomas et al. [14], where the probability of a given source location is assumed to be pro-
portional to the time integrated Pearson correlation coefficient. In our Bayesian framework,
this corresponds to marginalizing over the tstart dimension of P(µ|y, I). Thus, the main
difference is that the method presented here allows for releases of different durations.

The likelihood is assumed proportional to the reflective correlation coefficient de-
fined as:

r(yi, ŷi) =
∑i yi ŷi√

∑i y2
i ∑i ŷ2

i

. (16)

It should be stressed that this assumption is not theory-based, and that correlation
cannot, in general, be interpreted as probability. Consequently, the resulting probability
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distribution should be interpreted as a rough estimate of the true probability distribution.
The use of the reflective correlation coefficient is also different from the previous studies,
which use the regular Pearson correlation coefficient [11–14]. The reflective correlation
coefficient can be thought of as a non-central version of the Pearson correlation coefficient.
Both are normalized measures of the co-variation of two variables, but instead of comparing
the variation around the mean values of each variable, the reflective correlation compares
the variation around zero. Thus, as opposed to the Pearson correlation coefficient, r, as
defined in Equation (16), is not invariant under translation, i.e., adding a constant to all
instances of one of the variables will change the value of r. Both correlation coefficients
are equal to either 1 or −1 for a perfect linear relation; however, the Pearson correlation
coefficient assumes a relation of the form y = ax + b, whereas the reflective correlation
assumes a relation of the form y = ax. Thus, r, as defined in Equation (16), is more suited
for the problem considered here. Further, since concentration variables are non-negative, r
varies between 0 and 1. Therefore, probabilities are naturally ensured to be non-negative
as well.

Finally, as mentioned previously, one of the challenges in this problem is direct com-
parison of a measurement and a model prediction with a large, unknown error. However,
the correlation is a measure of how well high and low values follow each other in the
two variables. Thus, the exact value of the individual model prediction is less important,
and hence, the correlation-based probability is potentially a robust alternative to more
traditional approaches. Based on these considerations, it is also reasonable to include
non-detections by assuming that these are measurements of zero concentration; as long
as the detection limit of the filter station considered is small compared to the numerical
values of the non-zero measurements.

Another important feature of the correlation coefficient is the independence of the
release rate, q, due to the direct proportionality ŷ = qX. This means that the likelihood can
be taken outside the integral in Equation (13), and thus, the marginal distribution P(µ|y, I)
can be written as:

P(µ|y, I) ∝ cos(φrelease)
∑i yiXi√

∑i y2
i ∑i X2

i

, (17)

where, as in Equation (9), Xi is the time integrated adjoint concentration at the location of
the proposed release and over the proposed release interval.

Although the likelihood is independent of q, it is still possible to estimate the most
likely release rate, denoted q̂, since this is just the slope of the best linear fit. By minimizing
the least-squares cost function defined in Equation (15) with respect to q, one obtains
the expression:

q̂(µ, y) =
∑i σ−2

i yiXi

∑i σ−2
i X2

i
.

Thus, in order to estimate q̂, one needs to quantify σi. As described previously,
we assume σi ≈ σm,i. We have then examined the perhaps three simplest assumptions:
(1) assuming σi ∝ Xi as suggested by Keats et al. [6], (2) assuming σi ∝ yi, and (3) assuming
σi constant, i.e., the uncertainty is the same for all model predictions. The idea behind
the two first approaches is that the uncertianty should be of the same magnitude as the
predicted concentration itself. The first approach, however, leads to the assumption that
predictions of zero concentration has no uncertainty, and since these predictions are not
rare, this approach does not work well in practice. The idea behind the third approach is
that the model might be better at predicting higher concentrations, and accordingly, one
should give greater weights to these terms. We found that the third approach gives the
overall best results, while the second approach leads to systematic underestimation of the
release rates for the ETEX case. It should be noted that this is not necessarily a general
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result; it may depend on the dispersion model used as well as on the case considered.
By assuming σi constant, we obtain the following simple expression for q̂:

q̂(µ, y) = ∑i yiXi

∑i X2
i

. (18)

3. Results and Discussions

Since the elements of µ are continuous variables, there are infinitely many possible
realizations of µ within the limited area domain of the simulation. However, it is assumed
that the resolution of the output data is sufficient to properly resolve the main features of
the probability distribution. The spatial resolution of the output is the same as the input
meteorological data, see Section 2.3, and the concentration fields are output every third
hour. Thus, only model grid points are considered as possible source locations, only model
output times are considered possible start times, and only durations, which are multiples
of the time-resolution of model output are considered possible release periods. In addition,
an upper limit for the release duration has been chosen, of 36 h.

As described in the previous section, P(µ|y, I) is a four-dimensional probability
distribution for the source location, start time, and duration. When nothing is known about
the release time, the best estimate of the source location is obtained by marginalization:

P(xrelease|y, I) =
∫

∆trelease

∫

tstart
P(µ|y, I) dtstart d∆trelease. (19)

Another useful concept, which was applied to inverse atmospheric dispersion mod-
elling by Tomas et al. [14], is the highest posterior density region (HDR) [24]. Let M be
the sample space of xrelease, in this case, the coordinates of all grid points in the simulation
domain. Given the probability density function P(xrelease|y, I), the 100(1− α)% HDR is
defined as the subset R(Pα) of the sample space of M, such that

R(Pα) = {xrelease|P(xrelease|y, I) ≥ Pα}. (20)

Thus, the 100(1− α)% HDR is the smallest possible region, in which the probability
density integrates to 100(1 − α)%. The HDR can be thought of as a generalization of
a confidence interval, where R(Pα) is the most credible region for the confidence level
100(1− α)%. However, due to the assumptions described in Section 2.6, the probability
distribution, and therefore the HDRs, should be interpreted with caution. Thus, it cannot
a priori be assumed that, e.g., the 10% HDR corresponds to a 10% confidence level. In-
stead, the results based on the ETEX case can give an indication of how to interpret the
different HDRs.

3.1. Application to the ETEX Case

First, the methodology is applied to the set of three-hour measurements, both with
and without non-detections. The two-dimensional marginal distributions for the release
location, shown in Figure 1, are obtained by initially applying Equation (17) and then
Equation (19). Figure 1a shows the results based on non-zero measurements only, while
Figure 1b shows the results when including non-detections. It should be noted that the
plots do not use the same colorbars; instead, the minimum and maximum values on each
colorbar are defined by the minimum value of the 90% HDR and the maximum value of the
probability density. The reason is that comparing the overall structures of the probability
densities is considered more relevant than comparing the actual values of the probability
densities. Further, Table 1 shows the coordinates for the locations of maximum probability
as well as the distances from these locations to the true release site. The table also shows
results based on the different datasets used as part of the sensitivity analyses described in
Section 3.1.1.
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Figure 1. Marginal posterior probability distribution for release location for ETEX in units of km−2. The blue triangle
shows the location of highest probability density, the red diamond shows the actual release location, and the yellow circles
show the locations of the sampling stations. The results are based on the set of three-hour measurements. (a) is based on
non-zero measurements only, while (b) is the result when including non-detections. A zoom of the area near the maximum
probability is shown in Figure 2.

Table 1. List of locations of maximum probability for the different versions of the ETEX dataset.
The table also shows the distance to the true release site.

Data Set Coordinates for Location
of Maximum Probability

Distance to
True Release Site

3 h measurements
excluding non-detections 48.0◦ N, 1.0◦ W 75 km

3 h measurements
all measurements 48.0◦ N, 1.0◦ W 75 km

12 h measurements
all measurements 48.0◦ N, 0.75◦ W 94 km

24 h measurements
all measurements 48.0◦ N, 0.75◦ W 94 km

24 h measurements
excluding data within 200 km 47.75◦ N, 2.5◦ W 50 km

24 h measurements
excluding data within 400 km 46.5◦ N, 0.25◦ W 218 km

24 h measurements
excluding data within 800 km 47.0◦ N, 1.5◦ W 123 km

Figure 2 shows the same results as in Figure 1, only for a smaller geographical area.
Here, it is easier to see that the probability is generally high in the area close to the true
release location. Further, comparison of the two figures clearly indicates the added effects of
the non-detections: the result in Figure 2b is based on more sampling stations (more yellow
circles) than the result in Figure 2a. Associated with several of these added sampling
stations, there are areas of lower probability upstream from the measurement station,
e.g., the stations north east and south east of the release location.

Finally, it is worth noticing that, in both figures, the sharp peaks of the probability
distributions are located near the sampling station in Rennes (the yellow circle directly
east of the estimated release location). Examining the dataset, it was discovered that
this sampling station measured the highest values in the dataset, which emphasizes the
importance of testing the sensitivity to measurements close to the source location.
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Figure 2. Marginal posterior probability distribution for release location for ETEX in units of km−2. The blue triangle shows
the location of highest probability density, the red diamond shows the actual release location, and the yellow circles show
the locations of the sampling stations. The results are based on the set of three-hour measurements. (a) is based on non-zero
measurements only, while (b) is the result when including non-detections. The probability distributions are identical to
those shown in Figure 1 but for a smaller geographical area.

3.1.1. Sensitivity Analyses

Now, the sampling periods are deliberately extended to 12 and 24 h, as described in
Section 2.1. In both cases, non-detections are included. The resulting probability distribu-
tions are shown in Figure 3, and to make comparison easier, the same geographical area as
in Figure 2 is used. Thus, Figures 2b and 3a,b show the results based on measurements
of 3, 12 and 24 h, respectively. As one might expect, the coarser time resolutions result in
wider, less accurate, probability distributions. Nonetheless, all three distributions have the
area of maximum probability in the same general area, indicating that even 24 h average
concentrations are useful for source localization.
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Figure 3. Marginal posterior probability distribution for release location for ETEX in units of km−2. The blue triangle shows
the location of highest probability density, the red diamond shows the actual release location, and the yellow circles show
the locations of the sampling stations. The results are based on both non-zero measurements and non-detections. (a) is
based on 12-h measurements, while (b) is based on 24-h measurements.

Figure 4 shows the results based on the 24-h measurements, where in Figure 4b–d,
measurements within a radius of 200, 400, and 800 km of the release location, respectively,
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are excluded from the dataset. The resulting probability distribution strongly depends
on the distance from the release site to the nearest measurements: the precision of the
source localization gradually decreases as measurements are removed from the dataset,
i.e., the peak of the distribution becomes less sharp. The location of maximum probability,
on the other hand, is closest to the true release site for the dataset, where measurements
within a radius of 200 km are excluded, see Table 1. This may be a coincidence, or it may
be explained by the fact that the measurement station in Rennes dominates the localization
when these measurements are included.
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Figure 4. Marginal posterior probability distribution for release location for ETEX in units of km−2. The blue triangle
shows the location of highest probability density, the red diamond shows the actual release location, and the yellow circles
show the locations of the sampling stations. The results are based on the 24 h measurements and include both non-zero
measurements and non-detections. (a) is based on all measurements, (b) is the result when excluding measurements within
a radius of 200 km from the source, (c) is the result when excluding measurements within a radius of 400 km from the
source, and (d) is the result when excluding measurements within a radius of 800 km from the source.

For all four probability distributions, the true source location is located well within
the 30% HDR, and only in one case, Figure 4d, the true source is located just outside,
almost at border, of the 10% HDR. This indicates that, rather than considering the location
of maximum probability, one should consider, e.g., the 10% HDR and combine this with
independent information about possible release site candidates, if such exists.
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3.1.2. Time and Magnitude of the Release

Determining the most likely release period and the amount of released material can
be approached in different ways. One option is to consider the two-dimensional marginal
posterior distribution P(tstart, ∆trelease|y, I). However, the start time and duration vary
significantly with the release location considered. Therefore, instead, the two-dimensional
conditional posterior distribution P(tstart, ∆trelease|y, xrelease, I) is considered for the most
likely release sites. In case no information about possible release sites exist, the best
estimate of the source location would be the location of maximum probability. However,
if we imagine that ETEX was a nuclear accident, it would most likely be possible to obtain
a list of nuclear facilities within the 10% HDR, which could be used to suggest one or a few
concrete source locations. Thus, for the ETEX case, the time and magnitude of the release
will simply be evaluated for the true release site.

The resulting conditional posterior distribution is shown in Figure 5a using the dataset
of three-hour measurements, and in Figure 6a, using the dataset of 24 h measurements,
where measurements within a radius of 800 km are excluded. In both figures, the 25, 50,
and 75% HDRs are plotted together with the probability densities. Further, based on all
release periods within the 50% HDR, the distribution of q̂∆trelease, i.e., the time integrated
release, is estimated and shown in Figures 5b and 6b, where the values of q̂ are estimated
using Equation (18). Since the amount of released material may vary several orders of
magnitude, the logarithm of the time integrated release is considered.

According to the result shown in Figure 5a, the most likely release started on 23
October 1994 at 18.00 UTC and lasted six hours, which is two hours after the true release
started and half the duration. However, both the 25% and 50% HDR indicate that releases
that start earlier but have a longer duration have almost similar probabilities. The same
pattern, only more pronounced, is seen in in Figure 6a, where an even larger area of the
parameter space have almost the same probability. This is expected, since this result is
based on the dataset with the coarser time resolution and without measurements within
the first 800 km. In both cases, the true release is located inside the 50% HDR, and hence,
this is interpreted as the best possible estimate of the release period.
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Figure 5. Time and magnitude of the release based on the true release site. The blue triangles show the most likely release,
and the red diamond shows the true release. (a) Marginal posterior probability distribution for start time and duration
for ETEX in units of h−2. The result is based on the set of three-hour measurements. (b) Probability distribution for time
integrated release based on the start times and durations within the 50% HDR of the result in (a).
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Figure 6. Time and magnitude of the release based on the true release site. The blue triangles show the most likely release,
and the red diamond shows the true release. (a) Marginal posterior probability distribution for start time and duration for
ETEX in units of h−2. The result is based on the set of 24 h measurements, where measurements within a radius of 800 km
are excluded. (b) Probability distribution for time integrated release based on the start times and durations within the 50%
HDR of the result in (a).

Surprisingly, the probability distributions for the logarithm of the time integrated
release rates, Figures 5b and 6b, indicate that the second dataset, where the data quality
has been reduced, gives a better prediction of the magnitude of the release. The probability
distribution in Figure 5b predicts a release between 30 and 240 kg, with the most likely
release being 90 kg. In comparison, the true release is 340 kg, which is of the same order
of magnitude as the largest estimated releases but not included in the predicted interval.
The probability distribution in Figure 6b, on the other hand, predicts a release between 90
and 840 kg with the most likely release being 310 kg. As mentioned previously, examination
of the dataset showed that the measurement station in Rennes had measured the highest
values in the dataset and that this measurement station seems to dominate the resulting
probability distribution, see Section 3.1. It is, therefore, possible that the estimate of q̂ in
Figure 5b is also dominated by a few measurements close to the source, which may make it
less robust than the estimate of q̂ in Figure 6b.

3.2. Application to the Ru-106 Case

The two-dimensional marginal distributions for the release location, shown in
Figures 7 and 8, are obtained by first applying Equation (17) and then Equation (19).
Figure 7 shows the result based on all Ru-106 measurements, while Figure 8 shows the
results based on two different sub-datasets: Figure 8a shows the result based on measure-
ments of up to 36 h, of which the majority are either 12-h or 24-h averages, and Figure 8b
shows the result based on measurements of more than 36 h, of which the majority are
weekly averages (see Section 2.2 for details). Further, Table 2 shows the coordinates for the
location of maximum probability as well as the distance from this location to the NIIAR
and Mayak nuclear facilities, respectively.

The results in both Figures 7 and 8a show areas of high probability near the Mayak
nuclear facility, which is located within the 10% HDR. In both cases, the NIIAR nuclear
facility is located only just inside the 50% HDR. Assuming that the HDRs can be interpreted
as in the ETEX case, Section 3.1, we would expect the true source location to be located
inside or at least close to 10% HDR. Therefore, we conclude that Mayak is the most likely
release site.

The 10% HDR of the probability distribution based on long-period measurements only,
Figure 8b, extends further to the north and does not contain Mayak. However, Mayak is
located just outside the 10% HDR, whereas NIIAR is only included in the 50% HDR. Hence,
this result also indicates that the Mayak nuclear facility is the most likely release site.
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Figure 7. Marginal posterior probability distribution for the Ru-106 case in units of km−2. The blue
triangle shows the location of highest probability density, the red diamond shows the location of the
Mayak nuclear facility, the blue square shows the location of the NIIAR nuclear facility, and the yellow
circles show the locations of the sampling stations. The result is based on all non-zero measurements
and non-detections.
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Figure 8. Marginal posterior probability distribution for the Ru-106 case in units of km−2. The blue triangle shows the
location of highest probability density, the red diamond shows the location of the Mayak nuclear facility, the blue square
shows the location of the NIIAR nuclear facility, and the yellow circles show the locations of the sampling stations. (a) the
result is based on all non-zero measurements and non-detections, both up to 36 h. (b) the result is based on all non-zero
measurements and non-detections, both more than 36 h.

Table 2. List of locations of maximum probability for the different versions of the Ru-106 dataset. The table also shows the
distance to the Mayak and NIIAR nuclear facilities.

Data Set Coordinates for Location
of Maximum Probability Distance to Mayak Distance to NIIAR

All measurements 57.9◦ N, 60.0◦ E 241 km 771 km
Measurements conducted

over up to 36 h 57.8◦ N, 59.4◦ E 239 km 735 km

Measurements conducted
over more than 36 h 58.4◦ N, 59.9◦ E 296 km 794 km
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Time and Magnitude of the Release

The release period is estimated by considering the conditional posterior distribution
P(tstart, ∆trelease|xrelease) based on the most likely release site. Further, as described in
Section 3.1.2, the amount of released material is estimated by considering the distribution
of q̂∆trelease based on all release periods within the 50% HDR. Again, the values of q̂ are
estimated using Equation (18). Assuming that the Mayak nuclear facility is the release site,
we obtain the conditional posterior distribution P(tstart, ∆trelease|xrelease) shown in Figure 9.

The result in Figure 9a indicates that the release started between 23 September 2017
around 18.00 UTC and 26 September 2017 at 15.00 UTC and lasted between 3 and 36 h;
generally, earlier releases (before September 00.00 UTC) would be of longer duration. In
fact, the probability distribution has at least three local maxima: one on 24 September
around 00.00 UTC, one on 25 September around 08.00 UTC, and one on 26 September
around 02.00 UTC. This may indicate that the release possibly consisted of a few different
release periods, which has also been hypothesized by Saunier et al. [9]. However, since
the source term model only allows for constant releases within a single time interval,
the probability of the combination of two release periods is not considered explicitly,
and hence this hypothesis cannot be tested with our method. The 50% HDR covers quite a
large area of the parameter space, and it is therefore difficult to estimate the release time
and duration more accurately than this.

The probability distribution for the logarithm of the time integrated release rate,
Figure 9b, predicts a release between approximately 210 and 1600 TBq, with the most likely
release being 620 TBq, which is in accordance with the estimates of other studies [5,9,10,14].
The probability distribution also allows for a release that is significantly larger, up to
about 8250 TBq, although this is in unlikely scenario. By comparison with the distribution
P(tstart, ∆trelease|xrelease) in Figure 9a, it is likely that this option of a much larger release is
related to the possibility of an early release, i.e., 23–24 September.
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Figure 9. Time and magnitude of the release based on the location of the Mayak nuclear facility. The blue triangles show
the most likely release. (a) Marginal posterior probability distribution for start time and duration for the Ru-106 case in
units of h−2. The result is based on all measurements, i.e., also including measurements conducted over more than 36 h.
(b) Probability distribution for time integrated release based on the start times and durations within the 50% HDR of the
result in (a).

4. Summary and Conclusions

The methodology combines the adjoint source–receptor relationship with a simplified
Bayesian approach and a correlation-based probability measure. This provides an efficient
way to obtain an estimate of the four-dimensional probability distribution for latitude,
longitude, start time, and duration of a release, based on the assumption that the release
rate is constant during the release period. The two-dimensional probability distribution for
the source location is then obtained by marginalization.
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The validation against ETEX shows that the methodology yields an accurate source
localization when applied to the entire set of three-hour measurements; in this case, the lo-
cation of maximum probability is 75 km downstream from the true source location, and the
latter is located well within the 10% HDR. When excluding measurements close to the
source or extending the measurement intervals, the width of the probability distribution is
increased, but the area of high probability, e.g., the 10% or 30% HDR, still contains the true
release site. The exact location of maximum probability, on the other hand, depends less
systematically on these parameters, cf. Table 1, indicating that this measure is not useful
alone but should be interpreted in combination with the 10% HDR. Thus, since the location
of the maximum probability does not necessarily coincide with the true source location,
a more robust interpretation of the result is to consider a larger area of high probability,
such as the 10% HDR, and combine this result with information about possible release sites
in the area to be able to suggest concrete source locations.

For a suggested release site, the start time and duration of the release is estimated
by considering the conditional posterior distribution. When evaluating the conditional
posterior distribution for the true source location in the ETEX case, a rough estimate of the
start time and duration of the release is obtained. The methodology does not accurately
pinpoint the correct release period but rather gives an interval of possible start times
and durations. For the ETEX case, this means that releases of 3 to 36 h duration are
possible, with the starting times ranging from 22 October 1994 around 10–15 UTC until
approximately 32 h later. Thus, this method may not necessarily be ideal for accurately
estimating the release period.

An estimate of the magnitude of the release is obtained by considering the distribution
of the logarithm of the time-integrated release. For the ETEX case, the estimate is better
when excluding the measurements close to the source. This may be related to the fact that
the estimated optimal release rate is dominated by fewer data points with high values,
when the measurements close to the source are included. As described in Section 2.6.1,
the implication of setting σi = constant is that measurements of higher values dominate
the estimate of q̂, which is likely to explain why the magnitude of the release is better
estimated when excluding these measurements. However, a more thorough analysis of
this is needed in order to reach a conclusion. For the two different versions of the ETEX
datasets considered, the source was estimated between 30 and 240 kg and between 90 and
840 kg, respectively. In both cases, the interval of estimated releases includes values of the
roughly the same order of magnitude as true release, 340 kg.

Further, the non-detections are included in the dataset by assuming that these are
measurements of zero concentration, though they can be non-zero concentrations below
the detection limit. The results show that the non-detections do add information, e.g., by
locally decreasing the probability in areas upstream from measurement stations that only
measured concentrations below the detection limit. However, the result is quite similar
to that based on the dataset of only non-zero measurements. This indicates that, for the
case considered, non-detections are not crucial for source localization, but they should be
included if they exist.

The methodology is then applied to the Ru-106 case using three different datasets: the
first including all measurements that fulfill the quality control requirements described in
Section 2.2, the second only including measurements conducted over up to 36 h, and the
third only including measurements conducted over more than 36 h. The result based
on the first two datasets are almost indistinguishable by visual comparison. The third
share similar features, but the 10% HDR is shifted towards north and covers a larger
geographical area. However, despite these differences, the method proves to be robust,
since the three datasets lead to the same overall conclusion. The two-dimensional marginal
probability distribution for the location indicates that the Southern Ural region is the most
plausible release area. By comparison of the 10% HDR and previously suggested release
sites, we conclude that the most likely release site is the Mayak nuclear facility. Based on
this assumption, the results indicate that the release started between 23 September 2017
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at 18.00 UTC and 26 September 2017 at 15.00 UTC and lasted between 3 and 36 h. Finally,
the magnitude of the release is estimated between 210 and 1600 TBq, with the most likely
release being 620 TBq.

The main objective of this study was to develop a robust and efficient method suitable
for operational use. The simplifications made allow for efficient evaluation of the probabil-
ity, while the correlation-based probability measure provides a robust way of comparing
measurements and model results despite the potentially large, unknown modelling errors.
Through various sensitivity analyses, it has been demonstrated that the methodology yields
useful results, even when the information contained in the dataset is reduced.
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3.2 Paper 2: Bayesian Inverse Modelling for Probabilistic
Multi-Nuclide Source Term Estimation Using Obser-
vations of Air Concentration and Gamma Dose Rate

The article (Tølløse and Sørensen, 2022) describes a method developed for source term
estimation in case of nuclear power plant accidents. After the Chernobyl disaster in 1986,
long-range dispersion models have been developed to predict the dispersion of radioactive
particles and gasses in case of a similar accident. In March 2011, the Fukushima Daiichi
nuclear power plant experienced a loss of electricity, after it was hit by a tsunami. This
caused the cooling systems for three of the power plant’s six reactors to stop working,
which eventually resulted in damaged reactor cores, several hydrogen explosions, and
large amounts of radioactive matter released to the atmosphere (Koo et al., 2014). In
addition, the loss of electricity meant that the in-plant monitoring systems were shut
down. Thus, with no measurements available to provide reliable information about
the release, any simulations made in real-time were associated with large uncertainties.
Afterward, inverse methods have been used to estimate the source term (Winiarek et al.,
2012; Stohl et al., 2012; Saunier et al., 2013; Liu et al., 2017; Terada et al., 2020).
However, the methods developed in these studies may not be suitable for real-time use
in case of a future accident.

This issue was addressed by Saunier et al. (2020), who refined their method specifi-
cally for deployment during the early stages of an accident. In 2022 and 2023, the DMI-
organized international research project SOurce CHAracterizatiOn accounting for me-
TeorologIcal unCertainties (SOCHAOTIC) also targeted this problem (Sørensen et al.,
2023). To be able to evaluate the developed methods, an artificial core melt event from
the Loviisa nuclear power plant in southern Finland was considered.

The method described in this article is intended for source term estimation at the
early stages of an accident, inspired by Saunier et al. (2020). However, the novelty of this
study is to use a probabilistic inversion method to be able to quantify the uncertainties
of the estimated source term. The method is applied to the artificial Loviisa case, using
the same meteorological data, dispersion model, and gamma dose rate model for both
the construction of the observation data and for the source term estimation. Hence,
the article showcases the method in an idealized scenario, where model uncertainties are
negligible.

As DMI’s contribution to the SOCHAOTIC project, this method was applied to a
few additional cases, most importantly, to the same artificial Loviisa case but where the
measurement data set is created using different meteorological forecast data, as well as a
different dispersion model and gamma dose rate model. Thus, this study demonstrates
the performance of the method under more realistic conditions where model uncertainties
are no longer negligible. Selected results from the SOCHAOTIC report are presented in
Chapter 3.3.
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Abstract: In case of a release of hazardous radioactive matter to the atmosphere from e.g., a nuclear
power plant accident, atmospheric dispersion models are used to predict the spatial distribution
of radioactive particles and gasses. However, at the early stages of an accident, only limited in-
formation about the release may be available. Thus, there is a need for source term estimation
methods suitable for operational use shortly after an accident. We have developed a Bayesian inverse
method for estimating the multi-nuclide source term describing a radioactive release from a nuclear
power plant. The method provides a probabilistic source term estimate based on the early available
observations of air concentration and gamma dose rate by monitoring systems. The method is in-
tended for operational use in case of a nuclear accident, where no reliable source term estimate exists.
We demonstrate how the probabilistic formulation can be used to provide estimates of the released
amounts of each radionuclide as well as estimates of future gamma dose rates. The method is
applied to an artificial case of a radioactive release from the Loviisa nuclear power plant in southern
Finland, considering the most important dose-contributing nuclides. The case demonstrates that only
limited air concentration measurement data may be available shortly after the release, and that to
a large degree one will have to rely on gamma dose rate observations from a frequently reporting
denser monitoring network. Further, we demonstrate that information about the core inventory of
the nuclear power plant can be used to constrain the release rates of certain radionuclides, thereby
decreasing the number of free parameters of the source term.

Keywords: source characterization; atmospheric dispersion modelling; inverse modelling;
Bayesian inference

1. Introduction

In case of a nuclear accident, radioactive particles and gasses may be released to
the atmosphere. Consequently, an important part of emergency preparedness is to run
simulations with atmospheric dispersion models, thereby predicting the atmospheric
distribution as well as deposition of radioactive particles and gasses on the surface of
the Earth. However, such models are subject to a number of uncertainties, the most
important being the uncertainties of the meteorological predictions, inaccurate physics
parameterizations in the dispersion model, and uncertainties of the estimated source term.
Immediately after an accident in a nuclear power plant, only limited information about
the release may be available. Thus, at the early stages of the accident, the dominating
source of uncertainty is most likely the source term. If this is the case, inverse modelling
can be used to obtain a source term estimate, which in turn can be used for running the
atmospheric dispersion model. The aim of this study is to develop an inverse method for
source term estimation, which is suited for operational use for emergency preparedness at
the early stages of an accident, i.e., providing a source term estimate based on the limited
data available shortly after the accident.
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In the early phase of a nuclear power plant accident, a limited number of air concentra-
tion observations will be available, and these will typically have a low spatial and temporal
resolution, e.g., the filters in such measurement stations may be changed every 24 h or even
less frequently. In addition, there may exist gamma dose rate observations at much higher
resolution, both spatially and temporally. However, since such measurements are the sum
of contributions from all the different radionuclides, it is not clear a priori if they are useful
for source term estimation.

Previous studies have used inverse methods for source term estimation. Lately, the
still unaccounted for release of Ru-106 in the fall of 2017, was subject to several studies,
e.g., [1–4]. However, since the release location has still not been confirmed, the main focus
of these studies is localization of the source. The Fukushima Daiichi nuclear disaster in 2011,
on the other hand, demonstrated that in-plant monitoring systems may not be working
during a severe accident. Thus, different inverse methods have been applied in order to
assess the source term. Some studies have estimated the release of certain radionuclides
based solely on air concentration measurements [5,6], other include surface deposition
measurements [7,8], while other again also include gamma dose rates [9]. Saunier et al. [9]
demonstrate that information about ratios between the amounts of certain radionuclides
can be used to further constrain the release rates. They use a variational approach to assess
the source term, thereby providing a deterministic estimate. However, by using different
Bayesian approaches, Liu et al. [6] show that significant uncertainties are associated with
the estimated source term, indicating that probabilistic methods are better suited for this
type of problem.

Most previous studies in this field aim at estimating the source term associated with
accidents a long time after they occurred. However, for emergency preparedness, it is also
important to be able to estimate source terms during the early stages, where especially air
concentration measurement data are limited. This was addressed by Saunier et al. [9], who
further developed their method to be applicable in real-time in case of an accident [10].
Our method is inspired by Saunier et al. [9,10], but instead we use a Bayesian inference
method to be able to realistically account for uncertainties of the estimated source term,
similar to Liu et al. [6].

The method is applied to an idealized artificial release case from the Finnish Loviisa
nuclear power plant. A set of simulated air concentration measurements and gamma dose
rate measurements have been created as described in Section 2.1. The same meteorological
data and dispersion model have been used for data creation and for the source term
estimation. Thus, the study demonstrates the uncertainties of the estimated source term
arising only from the information loss due to the limited measurement capabilities. Due to
the idealized nature of our study, our results apply to a situation, where model errors are
negligible. In reality, meteorological uncertainties and model errors will further increase
the uncertainty of the estimated source term.

Section 2 describes the data and methodology; Section 2.1 describes the synthetic
measurement data set, Sections 2.2 and 2.3 describe the meteorological data and the dis-
persion model used, while Sections 2.4–2.7 describe the methodology. Next, the results
are presented and discussed in Section 3. Finally, Section 4 presents a summary and the
conclusions of the study.

2. Materials and Methods
2.1. Artificial Loviisa Release Case

For the artificial release from the Loviisa nuclear power plant in south Finland, the
selected source term describes a core melt event without functioning mitigation systems.
The initial event is a total loss of all power systems without battery back-up. The filtered
containment venting system is assumed disconnected, and instead comprises an exhaust
pathway from the reactor containment. It is postulated that the exhaust pathway was open
at the time of melt-through of the reactor vessel. The released activity was corrected for
decay and ingrowth for the time period between the emergency shutdown of the nuclear

50 of 105 3.2. PAPER 2: BAYESIAN INVERSE MODELLING FOR PROBABILISTIC MULTI-
NUCLIDE SOURCE TERM ESTIMATION USING OBSERVATIONS OF AIR CONCEN-
TRATION AND GAMMA DOSE RATE



Atmosphere 2022, 13, 1877 3 of 17

reactor (SCRAM) and the time of the release starting three hours later. It is assumed that
there was no significant heat release associated with the accident, and therefore all material
is released from a fixed height of 27 m above ground.

The time evolution is given in one-hour time steps starting at the onset of the accident
(time of the SCRAM) and the following 12 h, intended to represent the first part of the
release to undergo subsequent detection by the gamma monitoring stations and capture
by the air filter stations. The source term was developed for the research project SOurce
CHAracterizatiOn accounting for meTeorologIcal unCertainties (SOCHAOTIC), for further
details, see [11].

Figure 1 shows the gamma dose field at the end of the simulation, 63 h after the release
starts, as well as the locations of gamma dose rate stations and filter stations. The source
term is given in Section 3.

0.001

0.01

0.1

1.0

10.0

Figure 1. Total gamma dose in units of mSv at 63 h after the release start. Areas only influenced by
background radiation are left uncolored. The black diamond shows the release location, the yellow
circles show the locations of the gamma stations, and the red triangles show the locations of the
filter stations.

2.1.1. Simulated Gamma and Filter Station Measurements

The total dose rate at the gamma monitoring stations is the sum of the contributions
from cloud and ground since the stations are not shielded from activity deposited on
the ground. Over time, the contamination of the station itself will also contribute to
the measurements.
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A set of 11 nuclides was selected to represent the most important nuclides for human
doses: Kr-88∗, Xe-133∗, Xe-135∗, Xe-135m∗, Cs-134#, Cs-137, I-131#, I-132∗#, I-133#, I-135#

and Te-132. The list consists of the expected top five for the gamma monitoring stations
(denoted by ∗), and top five for the air filter stations (denoted by #), expected to represent
more than 90% of the dose rate contribution in the first 12 h of the postulated event.
Moreover, two nuclides from the top ten list, Cs-137 and Te-132, were included since they
represent key nuclides as seen from historical releases. For further details, see [11].

The artificial scenario consisting of simulated filter station and gamma station mea-
surements was derived by predicting the atmospheric dispersion of radionuclides from a
9-hour release at the Loviisa nuclear power plant starting at 08:00 UTC on 22 September
2021. The DERMA atmospheric dispersion model was applied to the release scenario
described above and using Harmonie data, cf. Sections 2.2 and 2.3, thereby providing
average concentration values at existing filter stations, and gamma dose rates at gamma
stations by using the ARGOS gamma dose model [12,13]. The filter concentration values
are computed as 24 h averages from 08:00 UTC to 08:00 UTC the next day. Further, the
filter measurement stations are assumed to have a detection limit of 0.1 mBq m−3. For the
gamma dose rates, we have assumed a background radiation of 0.1 µSv h−1, which has
been added to all modelled dose rates.

2.2. Meteorological Data

The simulations have been carried out using meteorological data derived by the
non-hydrostatic convection-permitting limited-area numerical weather prediction model
Harmonie [14]. The horizontal grid resolution is approximately 2.5 km, and the vertical
dimension is resolved by 65 levels with a terrain-influenced hybrid coordinate. The low-
est model level is about 12 m above ground, and the highest at approximately 10 hPa.
The model is configured with three-hourly data assimilation cycling. For the Loviisa
case, the model simulation starts on 22 September 2021, at 00:00 UTC and runs until
24 September 2021, at 23:00 UTC.

2.3. Dispersion Modelling

The atmospheric dispersion is modelled by using the Danish Emergency Response
Model of the Atmosphere (DERMA) [15,16]. DERMA is used operationally for a number
of Danish emergency preparedness purposes [17–21] including nuclear [13]. The three-
dimensional model is of Lagrangian type making use of a hybrid stochastic particle-puff
diffusion description [15,16]. The model uses aerosol size dependent dry and wet deposition
parameterizations as described by [22].

DERMA is interfaced with the nuclear decision-support system ARGOS (Accident
Reporting and Guidance Operational System) [12,13], where the integration is accom-
plished through automatic online exchange of data between ARGOS and the DMI High
Performance Computing (HPC) facility. The dose calculation modules are incorporated
in ARGOS.

2.4. Problem Description

The temporal release profiles of the radionuclides considered are estimated by using
observations of both air concentration and gamma dose rate combined with a series of
forward runs by the dispersion model DERMA. We assume an overall start time t0 and end
time tn of the release. We then separate the total release period into n time bins of duration
∆tbin and for each of these assume a unit release of each of the included radionuclides.
The releases are assumed to be point releases at ground level. As described in Section 2.1.1,
we assume that only a selection of all released radionuclides contributes significantly to the
gamma dose rates, while other radionuclides will be ignored. Let Co

ik be the k’th observed
average concentration of the i’th radionuclide, measured over a specified time period at a
specified filter station. Similarly, let Γo

κ be the κ’th observed gamma dose rate measured at
a specified time and gamma station.
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The atmospheric dispersion model DERMA is run forward in time for each of the unit
releases, and for the j’th release of the i’th radionuclide the average activity concentrations
cijk are calculated, where the k-index corresponds to the location and time of an existing
filter measurement. Further, instantaneous activity concentrations cijκ and deposition
values dijκ are calculated, where the κ-index corresponds to the location and time of an
existing gamma dose rate observation. By using the gamma dose model as described in
Section 2.3, the contributions to the gamma dose rates γijκ = γijκ(cijκ , dijκ) are calculated.
For a given set of non-negative coefficients, λij, the predicted average concentrations and
gamma dose rates corresponding to existing measurements are calculated:

Cm
ik = ∑

j
λijcijk

Γm
κ = ∑

i
∑

j
λijγijκ . (1)

2.5. Bayesian Inversion and Sampling Method

Given a set of observations, (Co, Γo) , the coefficients, λ can be determined by applying
Bayes’ theorem:

P(λ,θ|Co, Γo, I) =
P(λ,θ|I) P(Co, Γo|λ,θ, I)

P(Co, Γo|I) , (2)

where θ denotes any so-called nuisance parameters, i.e., unknown parameters, which are
not of direct interest. One way to account for these is to treat them just like the parameters
of interest and consider P(λ,θ|Co, Γo, I), which is the posterior probability distribution for
the combined set of parameters (λ,θ). P(λ,θ|I) is then the prior probability distribution
for (λ,θ), P(Co, Γo|λ,θ, I) is the likelihood, and P(Co, Γo|I) is the evidence; a statistical
constant independent of (λ,θ). I is any background information that may be available, e.g.,
amount of material present in the core at the time of the accident.

To evaluate Equation (2), the quantities P(λ,θ|I) and P(Co, Γo|λ,θ, I) must be es-
timated for a selection of realizations of (λ,θ), and the resulting posterior probabil-
ity distribution P(λ,θ|Co, Γo, I) can then be estimated by normalizing the distribution.
The posterior probability distribution for λ can then be determined by marginalizing:

P(λ|Co, Γo, I) =
∫

θ
P(λ,θ|Co, Γo, I)dθ. (3)

To get a good estimate of the probability distribution, the relevant parts of the parame-
ter space must be sampled. One option is to use random-walk based Markov Chain Monte
Carlo (MCMC) methods, such as Metropolis-Hastings or Gibbs [23,24]. However, these
methods generally require a large number of iterations, because the random-walk based
model proposals do not sample the parameter space of the posterior probability distribution
in the most efficient way. Further, parameters such as the step size of the random-walk
typically need to be tuned to the specific case. Instead, we use the Hamiltonian Monte
Carlo (HMC) method No U-Turn Sampling (NUTS) [25], implemented in the Python library
PyMC3 [26]. HMC methods generally have an advantage over random-walk based MCMC
methods, because the model proposals are not generated by a random-walk but instead
based on estimated gradients of the posterior distribution. Thus, much fewer iterations
are typically needed to sufficiently sample the probability distribution. However, the
efficiency of HMC algorithms strongly depends on the step size parameter. The NUTS al-
gorithm uses adaptive step sizing such that the step size does not need to be set by the user.
Further, as the name suggests, the algorithm is constructed such that trajectories in the
parameter space avoid making “U-turns”, i.e., retracing their own steps. Thus, it should
produce more independent samples in fewer iterations. When the aim is to use Bayesian
inverse modelling operationally, the NUTS algorithm is ideal, since very little parameter
tuning is necessary [25]. In addition, when using the PyMC3 implementation [26], Gelman-
Rubin convergence diagnostics [27] are automatically calculated, when sampling with two
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or more chains. This makes it easy to control that the sampler has converged. For further
details on the NUTS algorithm, see [25].

2.6. Prior Probability Distributions

Defining useful prior probability distributions for the release rates is challenging, since
the magnitude of the release is unknown. To allow for variation over several orders of mag-
nitude while ensuring non-negative values, we use log-normal prior distributions. Assum-
ing a normal distributed variable x ∼ N (µ, σ), then the variable z = ex ∼ Lognormal(µ, σ)
is log-normal distributed with parameters µ and σ. Thus, these denote the mean and stan-
dard deviation of x and not of the log-normal distributed variable z. The prior probability
distribution for the coefficients λij can be written as:

P(λij|I) = Lognormal(µi, σi), (4)

where µi and σi are parameters to be determined for the specific radionuclide. Given that
total amount of the i’th radionuclide in the core inventory is Si in units of Bq, the upper
limit for λij is Si/∆tbin, where ∆tbin is the duration in seconds of each assumed unit release.
To allow for release rates approaching the upper limit with reasonable probability, we set
µi + 2σi = log(Si/∆tbin), where log() denotes the natural logarithm. The lower limit must
be small compared the “typical” release rate, µi. Since the typical release rate is unknown,
we assume µi = log( f Si/∆tbin), where f is some (small) fraction. Assuming a sufficiently
low value for f will result in a conservative prior distribution, which allows for a broader
range than necessary. In this study, we use f = 10−3, which means that µi ± 2σi includes
six orders of magnitude for each release rate. Thus, the mean and standard deviations for
the prior probability distributions are given as:

µi = log(10−3Si/∆tbin) and σi =
1
2

log(103). (5)

Further, we can use information about the core inventory to reduce the parameter
space by imposing correlations between release rates of certain radionuclides, inspired by
the method by Saunier et al. [9,10]. For example, two different isotopes of the same element
will largely behave similarly during a release. Thus, if the half-lives of two such isotopes
are long compared to the duration of the release and if there is no significant ingrowth
from other processes, the ratio of the release rates between two isotopes can be assumed
constant and equal to the ratio of the amounts in the core inventory. For example, 134Cs
and 137Cs have half-lives of approximately 2 and 30 years, respectively, and thus, the ratio
of their activity concentrations in the core inventory can be considered constant during the
release. Accordingly, based on the amounts of the two isotopes in the core, we can assume
the ratio of their release rates to be constant.

For other isotope pairs, it is necessary to take into account the difference in half-lives
in order to set realistic constraints on the release rates. In this case, knowing the amount
of the two isotopes at the time of SCRAM gives one limit for the isotopic ratios, while
estimating the activity concentration n hours later will provide an estimate of the other
limit, assuming no significant ingrowth. An example is the isotope pair 131I and 133I, which
has half-lives of approximately 8 days and 20.8 h, respectively. Let the release rates of these
isotopes be q131I and q133I, respectively. Based on their activity concentrations in the core
at the time of the accident, we have

q133I
q131I

< 2.1. Assuming that the duration of the main
release is less than 24 h, we can determine the other limit. Due to radioactive decay during
these 24 h, the amount of 133I is decreased by a factor of 0.45, while we assume that the
amount of 131I is unchanged due to its relatively long half-life. Thus, a lower limit can be
determined

q133I
q131I

> 0.9. Following this approach, we determine the following constraints:

q134Cs
q137Cs

= 1.4, 0.001 <
q132I
q131I

< 1.5, 0.9 <
q133I
q131I

< 2.1 and 0.15 <
q135I
q131I

< 2.0. (6)
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For 134Cs and 137Cs, this effectively means that only one release rate needs to be
determined instead of two, and that the combined set of measurements of the two isotopes
can be used. For the other isotope pairs, the constraints allow us to define log-normal
distributions with upper and lower bounds, which depend on the release rate of one of the
other nuclides. Let λmj and λnj be the coefficients for two release rates, which are related by
the flexible constraints rlower < λnj/λmj < rupper. Then, the prior probability distribution
for λmj will be defined as in Equation (4), while the prior probability distribution for λnj
can be written as:

P(λnj|I, constraints) ∝

{
P(λnj|I) rlower <

λnj
λmj

< rupper

0 otherwise
. (7)

It might be possible to impose further constraints, i.e., across the type of element, such
that the release rates of the iodine isotopes can also be related to the release rates of the
caesium isotopes, Te-132 and the noble gasses. However, the underlying assumptions in
this case are less trivial.

2.7. Likelihood and Uncertainty Quantification

The likelihood is the probability of observing the set of measurements (Co, Γo), given
a proposed source term, λ. The likelihood is evaluated by assuming a probability distribu-
tion for the residuals Co

ik − Cm
ik (λij) and Γo

κ − Γm
κ (λij). In this study, we use a log-normal

likelihood, which is less sensitive to outliers than the Gaussian distribution and auto-
matically gives a higher weight to measurements/predictions of low values. This makes
it useful when dealing with measurement values over several orders of magnitude [6].
One practical challenge when dealing with log-normal distributions is that only positive
values are mathematically allowed, while the physical quantity may in principle be zero.
For the gamma dose rates, this is not an issue, since we add background radiation to
the modelled measurements, thereby ensuring that values are always positive. For the
air concentration measurements, on the other hand, modelled predictions may be zero,
while the measured predictions may be below the detection limit. Assume that for a
given measurement, Co

ik, the detection limit is εik. To avoid zero-values, we use these
altered observations and model predictions C̃o

ik = max
(
εik, Co

ik
)

and C̃m
ik = max

(
εik, Cm

ik
)
.

These altered forms have the additional benefit that they provide a theoretically sound way
of using non-detections, since these will only contribute to the likelihood, when the mod-
elled concentration is above the detection limit. Thus, there is no risk of falsely interpreting
a low value as a zero. The likelihood is given as:

P
(

C̃o, Γo|λ, I
)
= ∏

k
∏

i
Lognormal

(
C̃m

ik , σf

)
∏

κ

Lognormal
(
Γm

κ , σg
)
, (8)

where Cm
ik and Γm

κ are as defined in Equation (1). σf and σg are related to the uncertainty of
the measurements as well as the unknown model errors. In this study, both are negligible
as discussed in Section 1. However, in order to make the method as general as possible,
the uncertainty parameters are treated as nuisance parameters, i.e., they are kept as free
parameters and sampled by the Monte Carlo algorithm. In practice, a wide uniform
distribution has been used as prior distribution for the nuisance parameters σf, σg ∼
U(0, 10), which allows for a broad range of shapes of log-normal distributions.

3. Results and Discussions

As described in Section 2.5, the results are obtained by using the NUTS algorithm [25],
which is implemented in the PyMC3 python library [26]. The algorithm is constructed in
such a way that almost no parameter tuning is necessary. To ensure convergence, the target
acceptance rate was increased from the default 0.8 to 0.99. Aside from this, everything was
kept at PyMC3’s default values; two simultaneously running chains, each with 1000 tuning
steps and 1000 draws from the target distribution. This provides a total of 2000 realizations
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of the posterior probability distribution. For further details on the NUTS parameters,
see [25,26].

In our analysis, we include 10 of the 11 radionuclides described in Section 2.1.1,
excluding Xe-135m based on the rationale that its short half-life of approximately 15 min
makes it unimportant on longer temporal, and thus also spatial scales. This means that
there is not enough information in the measurement data to sufficiently constrain the
release rate of Xe-135m. The other three noble gasses are included, although there are no
filter measurements to help constrain their release rates. However, as long as their half-lives
are sufficiently different, we expect the gamma dose rate patterns to differ enough to be
able to distinguish between their contributions. The prior probability distributions for the
release rates of Kr-88, Xe-133, Xe-135, Cs-137, I-131 and Te-132 were defined as log-normal
distributions, Equation (4) with mean and standard deviations given by Equation (5).
The release rate for Cs-134 was defined as a deterministic variable, equal to the release rate
for Cs-137 multiplied by the fixed ratio 1.4. Finally, the prior distributions for the release
rates of I-132, I-133 and I-135 were defined as bound log-normal distributions Equation (7),
where the bounds are given by the flexible constraints, Equation (6).

We assume that the time of the emergency shutdown of the nuclear reactor (SCRAM),
22 September, 05:00 UTC, is known. We therefore consider this as the first possible time of
release. We then consider the release during the following 24 h by assuming twelve 2-h
constant releases, i.e., ∆tbin = 7200 s. The source term estimation is based on the simulated
measurements described in Section 2.1.1, but only measurements until 23 September,
08:00 UTC are used for the source term estimation, leaving the remaining measurements for
validation of model predictions based on the estimated source term. Thus, for all particles,
only two 24-h filter measurements from each of the five filter stations are available, i.e., ten
filter measurements per particle. However, first, all measurements without any information
are discarded; if a given measurement is not influenced by any of the time-binned unit
releases, it is removed from the data set. After this automatic removal of data, only one
filter measurement per particle from each of the two filter stations in southern Finland are
left. Thus, even when using the additional constraints described in Section 2.6, the amount
of filter measurement data is very limited.

The gamma dose rates, on the other hand, are measured every hour at 214 different
locations, see Figure 1. Thus, from 22 September, 05:00 UTC to 23 September, 08:00 UTC,
a total of 5778 measurements. After the automatic removal of data without information,
1918 measurements are left.

Given the high dimensionality of the parameter space, it is not possible to visu-
alize all elements of the actual posterior distribution. Instead the individual release
rates are shown in Figure 2. The plots show the median release rates as well as the
10th and 90th percentiles based on marginal distributions for each 2-h release period.
Further, Figure 3 shows histograms of the marginal distributions of time integrated releases
for all radionuclides. The only release rate, which is well determined for most time bins
is that of Xe-133. This makes sense, since it is the only relatively long-lived noble gas; the
half-life is approximately five days, while Xe-135 and Kr-88 have half-lives of roughly nine
and three hours, respectively. Further, since the noble gasses do not deposit, the gamma
dose rate pattern of Xe-133 will also be easy to distinguish from those of the long-lived
particles. For the particles, the estimated release rates clearly indicate the effects of the
constraints in Equation (6); the release rates of the four iodine isotopes, which are all
“tied together”, are better estimated than those of both the caesium isotopes and of Te-132.
Since the release rates of the two caesium isotopes are forced to differ only by a factor, we
also expect these to be better estimated than the release rate of Te-132. While it is not easy
to see that this is the case, it is clear from Figure 3 that the released amounts of the two
caesium isotopes are better estimated than Te-132.
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Figure 2. Release rates for each radionuclide in each 2-h time bin. The solid blue lines show the
medians of the marginal distributions, while the dashed blue lines show the 10th and 90th percentiles.
For comparison, the solid black lines show the true release profile. To focus on the release rates of
high magnitude, we have set the minimum value on the y-axis to 10% of the lowest true release rate.
Thus, predicted release rates below this limit are not shown in the plot, e.g., the predicted release rate
of Xe-135 only shows the 90th percentile, while both the 10th percentile and the median are below the
axis limit.
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Figure 3. Probability density for each radionuclide as a function of time-integrated release. The
vertical red lines show the actual released amounts.

The histograms in Figure 3 show that for some radionuclides, the amounts are quite
well constrained, e.g., the release of I-131, which varies from roughly 70 PBq to 180 PBq,
and Xe-133, which varies from roughly 3.6 EBq to 4.4 EBq. The latter, however, only
barely include the true released amount in the probability distribution. For the remaining
radionuclides, the released amounts are not very accurately estimated, especially not for Kr-
88 and Xe-135. Given the limited amount of measurement data, this result is not surprising.
Further, it is important to note that the log-normal prior distribution ensures release rates
of positive values. Hence, the estimated release will necessarily have the same duration as
the considered release period, 24 h in this case. However, we see from Figure 2 that most
release rates drop significantly in magnitude after 12 h from SCRAM.
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From Figures 2 and 3, it may seem that the source term is not sufficiently constrained
by the data. Clearly, release rates for some nuclides are poorly estimated, e.g., Kr-88
and Xe-135, and it may therefore be tempting to exclude these from the source term.
However, we found that when excluding these, the estimated release rates of the remaining
nuclides are less accurate. Thus, it seems that the release of some of the other nuclides com-
pensate for their lacking contribution. On the other hand, it is important to note that includ-
ing Kr-88 and Xe-135 in the source term does not seem to compromise the release rates of the
remaining nuclides. Thus, when it is not known a priori which nuclides constitute the best
possible source term, the safer choice seems to be to include more nuclides than necessary.
Further, the marginal distributions are obtained by integrating over the remaining parame-
ters of the multi-nuclide source term, and therefore all correlations between parameters
are ignored. As demonstrated below, though the marginal distributions of individual
releases might be uncertain, the gamma dose rate patterns of different realizations of the
multi-nuclide source term vary significantly less.

Figure 4 shows predicted air concentrations and gamma dose rates as function of
observations. The upper plots show filter measurements, and the lower plots show gamma
dose rates. The left plots show measurements before 23 September, 08:00 UTC, i.e., the
measurements that are used for the source term estimation. The right plots show mea-
surements after 23 September, 08:00 UTC and therefore show a prediction of future values
based on the estimated source term. The percentiles are estimated by first calculating the
concentrations and gamma dose rates from all source terms in the posterior distribution
and then finding the percentiles in the calculated values. The plots with the gamma dose
rates show a randomly selected subset of 300 observations, since more data in the plot
makes it impossible to distinguish the different data points. The figure shows that the
average activity concentrations at the filter stations are generally estimated to match the
observations within the uncertainties, although some allow for a wide variation. On the
other hand, the predicted gamma dose rates fit very well with the observed even for the
predicted values. Considering the fact that a total of 1918 gamma measurements and only
2 filter measurements for each nuclide are used for the inversion, it is not surprising that
the gamma dose rates are more accurately estimated.
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Figure 4. Cont.
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Figure 4. Model predictions with uncertainties (median and 10th and 90th percentile) on the y-axis,
and observations on the x-axis. The solid black lines indicate a perfect correlation, while the dashed
black lines indicate a factor of 5 between model and observation. (a) shows the filter measurements
until 23 September, 08:00 UTC, i.e., the measurements that are used for the source term estimation,
whereas (b) shows the filter measurements after 23 September, 08:00 UTC, i.e., predicted future air
concentrations. (c) similarly shows the gamma dose rates until 23 September, 08:00 UTC, and (d)
shows the gamma dose rates after 23 September, 08:00 UTC.

Figure 5 shows the predicted gamma dose rates at the locations of six selected gamma
stations, viz. the six stations that measured the highest values. The plots show that there
is good agreement between modelled observed gamma dose rates and that even the time
evolution is captured very well.
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Figure 5. Cont.
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Figure 5. Gamma dose rates at locations of gamma stations during the first 24 h after the accident.
Model predictions with uncertainties (median and 10th and 90th percentile) are shown by the blue
dots and error bars, while the true gamma dose rates are shown by the black solid line. The selected
gamma stations are all close to release locations, viz. the six stations that measured the highest values
during the first 24 h.

Finally, Figure 6 shows the probability distributions of the two uncertainty parameters
σf and σg; both parameter distributions indicate relatively narrow log-normal distributions,
which is expected given that model errors are negligible.
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Figure 6. Marginal probability distributions of the uncertainty parameters, (a) σf and (b) σg.

3.1. Including All Data

For comparison, we show the estimated source term when including all measurements.
Figure 7 shows the release rates and probability densities of released amounts for three
selected nuclides, Cs-134, I-131 and Xe-133. Interestingly, the release rates are all better
defined than the previous result, i.e., the distributions are narrower. However, the release
rate estimates are not necessarily more accurate. On the other hand, comparison with
Figure 2 shows that the use of later measurements allows for a better estimate of the
duration, as all release rates are very low after 16 h from the SCRAM.

As discussed previously, there are not many filter measurements available, and there-
fore the gamma dose rates are dominant; thus, the estimated source term is more likely
to match the gamma dose rates than the filter measurements. This is apparent from
Figure 8, which shows the modelled air concentrations and gamma dose rates as function
of observations, similar to Figure 4. There is a very good agreement for gamma dose rates,
while for air concentrations, the discrepancy is somewhat larger.
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Figure 7. Release rates and probability densities for selected nuclides. For further description of the
plots, see captions of Figures 2 and 3.
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Figure 8. Model predictions with uncertainties (median and 10th and 90th percentile) on the y-axis,
and observations on the x-axis. The solid black lines indicate a perfect correlation, while the dashed
black lines indicate a factor of 5 between model and observation. (a) shows the filter measurements,
whereas (b) shows the gamma dose rates.
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3.2. Efficiency

Regarding efficiency, we only have rough estimates of the computation time. However,
we see that the time depend strongly on the amount of data included. The computation
time for the first result, using data from only the first 24 h, was approximately half an hour.
When including all data, the computation time was approximately 3.5 h. These estimates
are the wall times of the runs of the NUTS algorithm, when running the algorithm in
parallel on two CPUs on a standard modern laptop. In addition, some time is of course
required for running the dispersion model and restructuring the data.

When operationalized, the code should be adapted to run on an HPC facility to
further decrease computation time. In addition, the total set of gamma dose rate obser-
vations constitute 8953 measurements from a relatively dense network sampling at every
hour. We suspect that there is a lot of redundant information in this data set, so instead
using a subsample of this data set might be sufficient and would reduce computation
time significantly.

4. Summary and Conclusions

We have developed a Bayesian inverse method for probabilistic source term estimation
to be used for accidental nuclear releases to the atmosphere. The source term probability
distribution is sampled using the Hamiltonian Monte Carlo algorithm NUTS, which is
robust and needs only limited parameter tuning. In theory, this makes it directly applicable
to other cases without making significant changes to the method.

The method is applied to a synthetic data set derived by running an atmospheric
dispersion model for a realistic accident at a nuclear power plant. The data set consists of air
concentration measurements at existing filter stations as well as gamma dose rates at gamma
stations. We have shown that even with a limited set of air concentration measurements,
realistic source term estimation is possible based on early observations of gamma dose
rates. Further, the results indicate that additional constraints on the release rates based
on information on the nuclear reactor core inventory can be used to improve the accuracy
of the predictions. The estimated released amounts of most individual radionuclides are
described by relatively wide probability distributions. However, the gamma dose rates
predicted using the probabilistic source term correspond well with observations.

Of course, when applied to a real-world case, we expect that model errors will reduce
the accuracy of the predictions to some extent. However, if the models used are unbiased,
we anticipate that the predicted gamma dose rates will still be more accurately estimated
than the release rates of the individual radionuclides. Further, to make the method as
generally applicable as possible, we treat the uncertainty parameters as nuisance parame-
ters. Hence, no assumptions about the magnitude of the uncertainties are made; the only
assumption is that the residuals are log-normal distributed.

In conclusion, we have developed a method that performs well applied to the sim-
ulated release case, and the results indicate that even with limited measurement data
available, it is possible to construct a probabilistic source term that provides accurate pre-
dictions of gamma dose rates and reasonable estimates of the released amounts of most of
the radionuclides considered. Due to the few assumptions made and the robust theoretical
foundation, we expect the method to generalize well. However, in order to fully examine
the performance of the method, future application to real-world cases is necessary.
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3.3 Supplementary results

The results presented in the article in the previous section demonstrated that the
methodology gives an accurate source term estimate when model errors are negligible.
The next step is then to test the capabilities of the method in a more realistic setup,
where model uncertainties are no longer negligible. Therefore, the method is applied
to the same release scenario as studied in the article but using a different measurement
data set.

3.3.1 Data and methods

The observational data set was created by the Finnish Meteorological Institute (FMI)
by running their operational dispersion model SILAM (Sofiev et al., 2015) driven with
Harmonie NWP model forecast data of 5 km horizontal resolution. The simulation had a
duration of 48 hours from the time of the SCRAM, i.e. shutdown of the nuclear reactor,
and hourly average concentrations were provided at the locations of the filter stations, as
well as hourly gamma dose rates at the locations of gamma stations. For further details,
see Sørensen et al. (2023).

As in the article, the hourly average concentrations at the filter stations were used to
estimate 24-hour average concentrations for a more realistic data set. Further, average
concentrations below a threshold value of 0.1 m Bq m−3 are interpreted as non-detectable.
It should be noted that the simulation period is shorter than the period selected in the
article, where the model was run for 63 hours. As discussed in the article, it will take some
time before the released particles and gasses are measured by the monitoring system.
Thus, when attempting to estimate the source term for the entire 48-hour period, the
release rates in the latest time bins should not be expected to be constrained by any
data.

The method described in Section 2 of the article was then applied to the SILAM-
generated data set, using the same configurations of the NUTS algorithm (Hoffman
et al., 2014) as described in Section 3 of the article. However, to reduce the number of
free parameters in the source term model and hopefully allow for easier convergence, we
here used six-hour time bins instead of the two-hour bins used in the article. Further, we
again exclude Xe-135m from the analysis due to its short half-life of roughly 15 minutes.

3.3.2 Source term estimation, including gamma dose rates

Figures 3.1 and 3.2 show the estimated release rates and marginal distributions of time-
integrated releases, respectively (similar to Figures 2 and 3 in the article). The results
given in Figure 3.1 show that essentially none of the release rates are estimated correctly.
The release rate of Kr-88 is very well constrained from 6 to 12 hours, but to a much lower
value than the actual release. Moreover, certain iodine isotopes appear to be somewhat
constrained; however, once again, the values do not align with the actual release rates.
Overall, the estimated release rates exhibit no noticeable pattern, and the values are
consistently far too low.

The marginal distributions of the time-integrated releases, shown in Figure 3.2, con-
firm that none of the releases are accurately estimated. Further, they support the con-
clusion that all releases are significantly underestimated. To understand these results,
we take a closer look at the predicted air concentrations and gamma dose rate patterns
obtained by applying the estimated source term. These are shown in Figure 3.3 (similar
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Figure 3.1: Release rates for each radionuclide in each 6-hour time bin (including
gamma dose rates). The solid blue lines show the medians of the marginal distributions,
while the dashed blue lines show the 10th and 90th percentiles. For comparison, the
solid black lines show the true release profile. The minimum value on the y-axis is set
to 10% of the lowest true release rate, which means that predicted release rates below
this limit are not shown in the plot. The figure is from Sørensen et al. (2023).
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Figure 3.2: Probability density for each radionuclide as a function of time-integrated
release (including gamma dose rates). The vertical red lines show the actual released
amounts. The figure is from Sørensen et al. (2023).
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Figure 3.3: Model predictions based on the estimated source term on the y-axis (median
and 10th and 90th percentile), and observations on the x-axis (including gamma dose
rates). The solid black lines indicate a perfect correlation, while the dashed black lines
indicate a factor of 5 between model and observation. (a) shows the filter measurements,
and (b) shows the gamma dose rates. The figure is from Sørensen et al. (2023).

to Figure 8 in the article). There appears to be little or no correlation between the
modelled air concentrations and the observed values. However, given the small number
of filter measurements and the large number of gamma dose rates, it seems reasonable
that the likelihood will be dominated by the latter. This interpretation is supported by
the fact that the observed gamma dose rates are, at least to some extent, replicated by
the model as seen in Figure 3.3b.

It seems that to reproduce the observed gamma dose rates, the estimated source term
must comprise release rates that are systematically underestimated. This suggests a sig-
nificant discrepancy between the gamma dose rates generated by the two different model
systems. This is further investigated in Chapter 3.3.4, but first, we will attempt to apply
the same method for source term estimation but based only on the filter measurements.

3.3.3 Source term estimation, not including gamma dose rates

When using filter measurements only, gasses cannot be included in the source term
because they are not captured by the filters. Further, as discussed in the article, one
of the main reasons for including gamma dose rates in the first place is that very few
filter measurements will be available at this early stage. During the simulation period,
only two measurements are available from each of the five filter stations. This provides
ten 24-hour average air concentrations for each particle, of which most are below the
assumed detection limit. In practice, the effective number of observations is higher for
some nuclides, because of the constraints imposed by the isotopic ratios. However, in any
case, the amount of data is very limited, and the problem is likely to be ill-conditioned.

Figure 3.4 and 3.5 show the estimated release rates and the corresponding histograms
of the total released amounts. Compared to Figures 3.1 and 3.2, the estimated release
rates based only on filter measurements are much better constrained for all nuclides from
6 to 12 hours. Thus, the timing of the release seems to be described reasonably well,
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Figure 3.4: Release rates for each radionuclide in each 6-hour time bin (not including
gamma dose rates). The solid blue lines show the medians of the marginal distributions,
while the dashed blue lines show the 10th and 90th percentiles. For comparison, the
solid black lines show the true release profile. The minimum value on the y-axis is set
to 10% of the lowest true release rate, which means that predicted release rates below
this limit are not shown in the plot. The figure is from Sørensen et al. (2023).

although the magnitude of the release is still underestimated as seen from the histograms
in Figure 3.5. The release rates in the remaining time bins are entirely unconstrained,
resulting in the posterior distribution being essentially identical to the prior distribution
for each nuclide. However, this outcome is expected when there is insufficient data to
constrain the source term.
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Figure 3.5: Probability density for each radionuclide as a function of time-integrated
release (not including gamma dose rates). The vertical red lines show the actual released
amounts. The figure is from Sørensen et al. (2023).

Figure 3.6 shows the predicted concentrations as a function of observations. It shows
that for most nuclides, there is exactly one measurement that is predicted almost per-
fectly, while the remaining are quite far from the true values. Further, the measurements
that are determined well are several orders of magnitude larger than the remaining.
Thus, this suggests that the method has effectively estimated each release rate to match
the single high-value observation available for each nuclide. The pattern looks slightly
different for the caesium-nuclides, because of the prior distribution defined in Eq. (7)
based on the constraints in Eq. (6) in the article. As discussed previously, these con-
straints effectively increase the number of measurements for nuclides connected via the
isotopic ratios.
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Figure 3.6: Model predictions based on the estimated source term on the y-axis (median
and 10th and 90th percentile), and observations on the x-axis (not including gamma dose
rates). The solid black lines indicate a perfect correlation, while the dashed black lines
indicate a factor of 5 between model and observation. The figure is from Sørensen et al.
(2023).

3.3.4 Discrepancy between models

To further investigate why the gamma dose rates do not seem to be useful for source term
estimation when using the SILAM-generated observations, we compare the predicted
gamma dose rates from the two model systems when imposing the true source term.
Figure 3.7 shows two different comparisons of the gamma dose rates from the two model
systems; 3.7a shows the DERMA+ARGOS gamma dose rates as a function of those
predicted by the SILAM model, and 3.7b shows the histograms of the two distributions.
It is evident from these plots that the gamma dose rates predicted by DERMA+ARGOS
are consistently much higher than those predicted by the SILAM model. In fact, there
appears to be an average difference of two orders of magnitude between them.

This naturally explains why the predicted source term systematically underestimates
all releases, but the magnitude of the difference is also somewhat concerning. However,
further exploring the causes of this difference is beyond the scope of this thesis. Instead,
a few discussion points and possible explanations are listed below, and based on that
we can attempt to formulate suggestions that can help avoid this in future work or, at
least, help better understand the cause.

• The two meteorological data sets use different horizontal resolutions, 2.5 km for
DERMA+ARGOS and 5 km for SILAM. Since the Loviisa nuclear power plant is
located near the coast, it is not unlikely that local sea breeze effects play a role,
and these might not be resolved equally well by the two models.

• The dispersion models might have different tendencies to either overestimate or
underestimate diffusion. The different concentration fields will then cause different
gamma dose rate patterns. Further, for reasons that will be discussed extensively
in Chapter 4, the current version of DERMA does not always perform well in the
short-range regime and it is therefore not unlikely that the model has biases near
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the source.

• The gamma dose rate models make different assumptions and may therefore also,
in principle, produce different gamma dose rates, even provided the exact same
concentration field.

Thus, the bias in the gamma dose rates may either be caused by differences in the
meteorological data, differences in the dispersion models used, differences in the gamma
dose rate models used, or any combination thereof. Although there are large sources of
uncertainty in essentially all parts of the modelling, it does not seem likely that any of
the explanations above can explain a mean bias this large on its own.

To investigate the cause, a comprehensive comparison should be conducted, altering
only one model variable between the two data sets. For instance, variations in me-
teorological data, dispersion models, or gamma dose rate models could be examined
independently. Ideally, all three combinations should be explored to examine if a sys-
tematic bias exists in any of the models. If the observed bias can only be explained
by the combined effect of several model biases, then releasing the same source under
different weather conditions could help determine if the pattern is persistent.

Regardless of the explanation, it is evident that under these specific conditions,
emergency preparedness authorities in Denmark and Finland would predict significantly
different levels of gamma doses, provided the same source term and start time.
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Figure 3.7: The plots show two different comparisons of the gamma dose rates from the
two models, where the DERMA+ARGOS gamma dose rates are obtained by imposing
the true source term. (a) gamma dose rates from DERMA+ARGOS vs gamma dose
rates from SILAM. (b) histograms showing gamma dose rates from both models. The
figure is from Sørensen et al. (2023).
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Chapter 4

Improved description of turbulent
diffusion in DERMA

4.1 Paper 3: A New Hybrid Particle-Puff Approach to
Atmospheric Dispersion Modelling, Implemented in
the Danish Emergency Response Model of the Atmo-
sphere (DERMA)

The manuscript describes the developments made to enable DERMA’s application in
short-range dispersion modelling. It is intended for submission after the hand-in of the
PhD thesis.

The most important part of the work presented in this manuscript is a reformulation
of the turbulence description in DERMA. This new description features a more advanced
stochastic transport scheme that divides the turbulent diffusion into two parts: puff-
growth, and stochastic displacement. This serves multiple purposes; for small puffs,
it ensures that the puffs only grow due to eddies smaller than the puff itself, while
larger eddies instead advect the puffs. For large puffs, on the other hand, the stochastic
displacement allows puffs to be exposed to vertical wind shear. In addition, two plume
rise algorithms have been implemented in order to better estimate the effective initial
height in scenarios involving heat release.

Although this new hybrid formulation is developed with the existing framework of
DERMA in mind, the methodology is generally applicable and could be implemented in
any similar puff model. Hence, in this study, the implementation in DERMA serves as
a case study, demonstrating the capabilities of this new turbulence description.

In addition, the new turbulence description is evaluated by comparing model predic-
tions to observations from three different tracer gas experiments, specifically selected to
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pose different challenges to the model: ETEX, the Øresund experiment, and the Kincaid
experiment. The results show that the new version of DERMA consistently performs
better than the currently operational version, especially in the short-range regime.
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Abstract. The Danish Emergency Response Model of the
Atmosphere (DERMA) is a Lagrangian puff model origi-
nally developed for long-range dispersion modelling, on dis-
tances longer than roughly 50 km from the source, e.g. in
case of nuclear disasters. The model is used operationally as5

part of Danish emergency preparedness for the prediction of
atmospheric dispersion in case of nuclear accidents, airborne
spread of animal diseases, and ash from volcanic eruptions.
To be able to simulate dispersion on shorter spatial scales,
a new description of turbulent diffusion has been developed10

and implemented in DERMA, combining a stochastic parti-
cle approach with a classic puff model. Further, updates have
been made to the parameterizations of the turbulent wind
fluctuations and Lagrangian time scales, the boundary layer
height, and the initial plume rise due to heat release. This15

allows for a more realistic description of turbulent diffusion
near the release location, while an updated version of the ex-
isting turbulence description is still used at longer distances.
DERMA is then evaluated against three different tracer gas
experiments: the European Tracer Experiment (ETEX), the20

Øresund experiment, and the Kincaid experiment. The com-
parison shows that the new hybrid approach gives more ac-
curate predictions, especially on shorter spatial scales, but a
small improvement is also observed for long-range disper-
sion.25

1 Introduction

Lagrangian atmospheric dispersion models can be divided
into two categories, stochastic particle models and puff mod-
els. Both rely on modelling the positions of particles fol-
lowing Lagrangian trajectories. In stochastic particle mod-30

els, each particle follows a turbulent trajectory estimated us-
ing stochastic differential equations, and the resulting con-
centration field is then determined by the spread of particles.
These models typically make as few assumptions as possible
and therefore their behavior should in principle be the most 35

physically accurate. Some examples are the models FLEX-
PART (Stohl et al., 2005; Pisso et al., 2019), NAME (Jones
et al., 2004), and HYSPLIT (Draxler and Hess, 1997). How-
ever, Jones et al. (2004) argues that the stochastic particle
formulation is not ideal near the release location, because the 40

very fine three-dimensional structures of the plume require a
large number of particles to be resolved sufficiently, and too
few particles may instead introduce statistical noise. Thus,
NAME uses a hybrid particle-puff description for short-range
modelling, while on longer distances the particles are as- 45

sumed to be point concentrations (Jones et al., 2004). In any
case, however, a large number of particles is needed, which
makes this type of model computationally expensive. Fur-
ther, as discussed by Stohl et al. (2005), short advection time
steps, on the order of a few seconds, may be necessary in 50

order to correctly resolve the turbulent trajectories in all con-
ditions.

Lagrangian puff models are a computationally cheaper al-
ternative, where each puff instead follows the average wind
field, and turbulent diffusion is assumed to follow a Gaussian 55

distribution locally around each puff’s centroid. Some exam-
ples are the models CALPUFF (Scire et al., 2000), DIPCOT
(Andronopoulos et al., 2009), RIMPUFF (Thykier-Nielsen
et al., 1999), and DERMA (Sørensen et al., 2007). In this
type of model, much fewer particles are used compared to 60

the stochastic particle models, and the Gaussian concentra-
tion distributions then "fill the gaps" between particle loca-
tions. For relatively young puffs, this assumption works quite
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well, but when the puffs grow beyond a certain size, the verti-
cal wind shear may cause puffs to stretch over different flow
regimes, which would in reality distort the Gaussian shape
(Jones et al., 2004). A typical solution for this problem, used
in e.g. NAME, CALPUFF, and RIMPUFF, is the use of puff5

splitting, i.e. a puff that grows too large is split into several
smaller puffs at different heights (Jones et al., 2004; Scire
et al., 2000; Thykier-Nielsen et al., 1999). This ensures a
more physical behavior, but it introduces new challenges due
to the continuously increasing number of puffs (Draxler and10

Hess, 1997).
Some puff models such as DIPCOT and DERMA also

combine the puff approach with a stochastic displacement
of puffs (Andronopoulos et al., 2009; Sørensen et al., 2007).
Another example of a hybrid formulation is the Puff-Particle-15

Model (PPM) suggested by De Haan and Rotach (1998). In
this approach, the turbulent effects are separated into two dis-
tinct physical processes, a meandering part (larger scale than
the puff) and a relative dispersion around each puff centroid,
represented by the puff growth. However, in order to keep20

puffs smaller than the meandering scales, PPM uses more
puffs and more frequent puff splitting than in regular puff
models and should be thought of as something halfway be-
tween a stochastic particle model and a puff model (De Haan
and Rotach, 1998).25

In the current version of DERMA, complete mixing
throughout the boundary layer is assumed, which means that
the concentration field of a puff is only assumed Gaussian
horizontally, while it is described by a uniform distribution
vertically for puffs inside the PBL. Thus, according to the30

arguments above, the puffs in DERMA are likely to stretch
over different flow regimes. However, a vertical stochastic
transport scheme inside the PBL is used as an alternative
to puff splitting, i.e. randomly moving the centroid of the
puff to a new vertical position will allow the puff to expe-35

rience the vertical wind shear over time (Sørensen, 1998;
Sørensen et al., 2007). Despite the relatively simple formula-
tion, DERMA was part of the ETEX model evaluation pro-
gram, where it ranked as one of the best performing models
(Graziani et al., 1998).40

DERMA is currently used operationally for a number of
purposes for Danish emergency preparedness including nu-
clear accidents, volcanic eruptions, and airborne animal dis-
eases (Sørensen et al., 2000, 2001; Mikkelsen et al., 2003;
Gloster et al., 2010; Hoe et al., 2002). In recent years, the45

model has further been used in different research projects
about inverse modelling for source localization and source
term reconstruction from a nuclear accident (Sørensen, 2018;
Tølløse et al., 2021; Tølløse and Sørensen, 2022).

The current version of DERMA is specifically designed50

for long-range dispersion modelling, and some assumptions
are not applicable on shorter scales. Thus, the aim of this
study is to develop a new description of turbulent diffu-
sion, which enables DERMA to accurately predict dispersion
closer to the release location.55

In this study, we develop a new hybrid particle-puff ap-
proach, which separates the turbulent diffusion in a stochas-
tic part and a puff part. On shorter scales, the separation is
based on the size of the puff compared to the length scale
associated with the largest turbulent eddies. This is concep- 60

tually similar to the approach by De Haan and Rotach (1998)
used in the PPM. However, on longer scales, the stochastic
part works as compensation for the fact that the puff assump-
tion fails for physically large puffs, similar to the formula-
tion in the current version of DERMA. In addition to the new 65

description of turbulent diffusion, several updates have been
made to DERMA, which are described in detail in Section
2. Further, the new particle-puff approach has been evaluated
against three tracer gas experiments; the European Tracer Ex-
periment (ETEX), the Øresund experiment, and the Kincaid 70

experiment. Details on the evaluation process and the results
are presented in Section 3. Finally, a summary and the con-
clusions are presented in Section 4.

2 Model description

In this section, a detailed description of all the new elements 75

in DERMA is given. For a more general description of the
current version of DERMA, see Sørensen (1998); Baklanov
and Sørensen (2001); Sørensen et al. (2007). In Section 2.1,
the new hybrid particle-puff formulation is described. Next,
Section 2.2 describes the updates made to the PBL parame- 80

terization including a new parameterization of turbulent wind
fluctuations, Lagrangian time scales, and PBL height. Fi-
nally, Section 2.3 describes the Concawe and Briggs plume
rise algorithms, which have also been implemented.

2.1 Hybrid particle-puff description 85

As discussed previously, one of the shortcomings of the puff
model approach is that puffs will eventually grow larger than
the characteristic length scale of the vertical wind shear,
causing the puff assumption to fail. Further, the smallest
puffs may be smaller than the largest turbulent eddies in some 90

conditions. Therefore, theoretically, at the early stages, the
puffs should be displaced by these, until they grow larger
than the eddies themselves. In this study, we develop a sim-
ple hybrid approach, which attempts to target both of these
issues. For small puffs, the hybrid approach is designed such 95

that puffs are displaced by the largest eddies, while smaller
eddies cause the puffs to grow, and for large puffs, the
stochastic part will expose puffs to the wind shear without
the need for puff splitting.

As in the current version of DERMA, the puffs grow ac- 100

cording to the formulation by (Gifford, 1984)

σ2
i = 2KitLui

{
τi−

(
1− e−τi

)
− 1

2

(
1− e−τi

)2
}
, (1)

where σi is the puff’s standard deviation along the xi-axis,
Ki is the turbulent diffusivity, tLui is the Lagrangian time
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scale, i.e. the auto-correlation time for the velocity fluctua-
tions, t is the age of the puff, and τi = t/tLui . However, to
allow Ki and tLui to be time-dependent, we instead consider
the time derivative of Equation (1)

∂

∂t
σ2
i = 2σ2

uitLui
(
1− e−τi

)2
,5

where we have used the relation between the diffusivity and
the turbulent velocity scale Ki = σ2

uitLui . This can be writ-
ten in the numerical form

∆σ2
i (t+ ∆t/2) = 2σ2

ui(t)tLui (t)∆t

(
1− exp

(
− t+ ∆t/2

tLui (t)

))2

,

(2)

which is evaluated at the time t+∆t/2, i.e. halfway between10

the two neighboring time steps. However, to avoid double-
counting the effects of turbulence, Eq. (2) should describe
the combined effects of the puff growth and stochastic parts
of the turbulent diffusion.

To find a suitable formulation, we consider the case where15

puffs have been dispersed around a point following mean
wind trajectory xt and assume that the puff centroids, xp,
are distributed according to Gaussian particle distributions
in all three spatial dimensions. Thus, along the xi-axis puff
centroids are distributed as f(xi) =N (xi,t,σi,part). Fur-20

ther, the concentration field from each puff around its cen-
troid is assumed to follow the Gaussian distribution g(xi) =
N (0,σi,puff ). The resulting concentration distribution can
be obtained by calculating the convolution of the two distri-
butions25

f(xi)~ g(xi) =

∞∫

−∞

f(x′i)g(xi−x′i)dx′i.

Further, it can be shown that (Bromiley, 2003)

f(xi)~ g(xi) =N
(
xi,t,

√
σ2
i,part +σ2

i,puff

)
.

Now, we want to impose the requirement that the resulting
concentration distribution is identical to the Gaussian dis-30

tribution N (xi,t,σi), with σi from Eq. (1), in accordance
with the formulation by Gifford (1984). To ensure this, the
increment of the variances for the distributions f(xi) and
g(xi) must fulfill the following requirement at every numer-
ical time step35

∆σ2
i,puff = β2

i ∆σ2
i ,

∆σ2
i,part = (1−β2

i )∆σ2
i , (3)

where ∆σ2
i is given by Eq. (2), and βi ∈ [0,1] is a param-

eter determining how much stochastic movement is used. If
βi = 1, the model is a classical puff model, while in the40

case βi = 0, the turbulent diffusion is described purely by
the stochastic transport and the puffs keep their initial sizes.

For the variance of the Gaussian particle distribution f(xi)
to increase with ∆σ2

i,part for each iteration, the step size of
the random walk must be ∆σi,part. 45

If the turbulence is Gaussian and if there is no vertical
wind shear, the two approaches (puff vs particle) are equiva-
lent, and any combination of the two (i.e. any value of βi)
should be valid, given of course that there is a sufficient
number of particles. However, since vertical wind shear is 50

a very fundamental feature of the atmosphere, especially in
the PBL, adding a stochastic element to the turbulence de-
scription should improve the performance by exposing puffs
to the winds at different heights.

2.1.1 Determining βi 55

Early in the life of a puff, the puff might be smaller than
the turbulent eddies themselves, and therefore we can make
a physical distinction between the particle part and the puff
part. Although our approach is different, this is conceptually
similar to the approach by De Haan and Rotach (1998). Here, 60

we use the fraction of the turbulent kinetic energy (TKE) on
larger scales than the puff itself. Thus, we first consider the
TKE spectrum (Kolmogorov, 1941)

TKE(k)∝ ε2/3k−5/3, (4)

where ε is the TKE dissipation rate, k = 2π
λ is the wave num- 65

ber, and the wavelength λ corresponds to the length scale as-
sociated with the turbulent eddies. In reality, k = |k|, where
k is the three-dimensional wave number, which is of course
not necessarily equal in all physical dimensions. However,
for this purpose, we assume that the relation (4) holds in each 70

spatial dimension individually. Thus, assuming that the puff
has the spatial extent σi along the xi-axis, we can estimate
the fraction of the TKE accounted for by eddies on smaller
spatial scales than the puff itself

TKEpuff
TKE

=

∫∞
2π
σi

TKE(ki)dki
∫∞

2π
li

TKE(ki)dki
=

(
σi
li

)2/3

, (5) 75

where li is the length scale associated with the largest eddies
along the i’th physical dimension, which is estimated as li =
σuitLui .

The fraction in Eq. (5) seems like a natural choice for the
value of β2

i , except that when the puff grows larger than the 80

largest eddies, the particle part will then naturally die out.
Thus, to ensure that the stochastic part does not vanish, we
define

βi = max

(
βmin,

(
σi
li

)1/3
)
, (6)

where βmin ∈ [0,1] is a hyperparameter that needs to be de- 85

termined to find the ideal balance between the particle and
puff parts. We have found that βmin =

√
1/2, which divides
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the turbulence evenly between the particle part and the puff
part, gives good results.

It is assumed that puffs inside the boundary layer are re-
flected both at the surface and at the PBL top. Further, for
puffs above the boundary layer, the stochastic part will auto-5

matically be turned off by setting βi = 1.

2.1.2 Short-range and long-range formulations

The concentration field from a puff in a point (xp,yp,zp) can
be written as

Cp =
Qp

2πσ2
yσz

exp

{
− 1

2

(
x− xp
σy

)2

− 1

2

(
y− yp
σy

)2

− 1

2

(
z− zp
σz

)2}
,

(7)

10

where Qp is the mass/activity carried by the puff. However,
when a puff has grown to a certain size compared to the PBL
height, the current DERMA assumption of complete mix-
ing is adapted, i.e. a uniform distribution is assumed ver-
tically. This happens whenever σz ≥ h/α, where h is the15

PBL height, and α is another hyperparameter determining
how fast a puff is assumed to fill out the boundary layer. We
found that α= 2 gives good results, which means that com-
plete mixing is assumed when 2σz exceeds the PBL height.
Whenever a puff fulfills this requirement, the concentration20

field becomes

Cp =
Qp

2πσ2
yh

exp

{
−1

2

(
x−xp
σy

)2

− 1

2

(
y− yp
σy

)2
}
δ(z,h),

(8)

where δ(z,h) =

{
1 if z ≤ h
0 if z > h

.

When the complete mixing state is reached, the puff is as-
sumed to fill out the boundary layer at all later times, even25

when the boundary layer grows. Further, since the puff is no
longer growing vertically, all turbulence is assumed to go to
the stochastic movement, i.e. we set βz = 0. Only if the cen-
ter of a completely mixed puff escapes the boundary layer, it
will transform back to a Gaussian form in the vertical dimen-30

sion.
This long-range formulation is similar to that of the current

version of DERMA but with the improved stochastic trans-
port scheme described above, whereas the existing version
simply assigns a new random height to each puff inside the35

PBL at every time step (Sørensen et al., 2007).

2.2 Parameterization of boundary layer parameters

The calculation of both the puff part and particle part de-
scribed above depends on σ2

ui and tLui , which in turn depend
on several boundary layer parameters that are either imported40

or calculated in DERMA.
From the output of the numerical weather prediction

(NWP) model, DERMA imports instantaneous turbulent
fluxes of momentum, τ , and sensible and latent heat, Qs
and Ql. From these, the following parameters are calculated45

(Zannetti, 2013, Ch. 3)

L=− u3∗Tv
κg
(
w′θ′v

)
0

, (9)

u∗ =

√
τ

ρ
, (10)

w∗ =

(
hg
(
w′θ′v

)
0

Tv

)1/3

, (11)

where L is the Obukhov length, which is related to the 50

static stability of the boundary layer, and the friction ve-
locity u∗ is assumed the fundamental velocity scale of
the non-convective turbulent boundary layer, whereas w∗ is
the convective velocity scale. Further, ρ is the air density,
g = 9.81 ms−2 is the gravitational acceleration constant, 55

κ= 0.4 is the von Karman constant, Tv is the surface vir-
tual temperature, and h is the PBL height, which is calcu-
lated as described in Section 2.2.1. Finally,

(
w′θ′v

)
0

is the
surface buoyancy flux, i.e. the flux of virtual potential tem-
perature, which can be estimated directly from the imported 60

heat fluxes as
(
w′θ′v

)
0

= (Qs + 0.07Ql)/(ρcp), where cp is
the heat capacity at constant pressure (Zannetti, 2013, Ch. 3).

2.2.1 PBL height

The PBL height parameterization is based on the approach by
Vogelezang and Holtslag (1996), where the inversion layer is 65

reached when a modified form of the Bulk Richardson num-
ber exceeds the critical value of 0.25.

Ri(z) =
(g/Θv,s)(Θv(z)−Θv,s)z

U(z)2 +V (z)2 + 100u2∗
, (12)

where Θv,s is the surface virtual potential temperature,
Θv(z) is the virtual potential temperature at height z, and 70

U(z) and V (z) are the horizontal wind components at height
z. The PBL height h is set equal to the height z where the
following requirement is obtained for the first time moving
upwards from the ground, Ri(z) = 0.25.

2.2.2 Turbulent wind fluctuations 75

As in the current version of DERMA, the constant turbulent
diffusivityKy = 6·103m2s−1 and corresponding Lagrangian
time scale τLv = 104 s are assumed for the horizontal diffu-
sion (Sørensen et al., 2007). The vertical component of turbu-
lent velocity fluctuations and the corresponding Lagrangian 80

time scale is parameterized based on Hanna (1984). The for-
mulas are given below for the different stability regimes and
are valid for puffs within the PBL. For puffs above the bound-
ary layer, we instead use the constant values σw = 0.1 ms−1

and τLw = 100 s. In the following, z is the particle’s height 85

above the ground, and f = 10−4 s−1 is the Coriolis param-
eter, assumed constant with the typical value valid for mid-
latitudes.
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Stable conditions

σw = 1.3u∗
(

1− z

h

)
(13)

tLw = 0.1
h

σw

( z
h

)0.8
(14)

Neutral conditions

σw = 1.3u∗exp

(
−2

fz

u∗

)
(15)5

tLw =
0.5z/σw

1 + 15fz/u∗
(16)

Unstable conditions

If z
h < 0.03:

σw
w∗

= 0.96

(
3
z

h
− L

h

)1/3

(17)

If 0.03≤ z
h < 0.4:10

σw
w∗

= min

[
0.96

(
3
z

h
− L

h

)1/3

,0.763
( z
h

)0.175
]

(18)

If 0.4≤ z
h < 0.96:

σw
w∗

= 0.722
(

1− z

h

)0.207
(19)

If 0.96≤ z
h < 1:

σw
w∗

= 0.37 (20)15

If z
h < 0.1and z >−L:

tLw =
0.1z

σw[0.55− 0.38z/L]
(21)

If z
h < 0.1and z ≤−L:

tLw = 0.59
z

σw
(22)

If z
h ≥ 0.1:20

tLw = 0.15
h

σw

[
1− exp

(
−5

z

h

)]
(23)

2.3 Plume rise algorithm

Two different plume rise algorithms have been implemented
in the DERMA model; the Concawe formula and the Briggs
formula. The former has the advantage that it is compatible25

with the current operational setup of DERMA, while the lat-
ter takes into account more meteorological considerations.
A good overview and a comparison of the algorithms are
given by (Korsakissok and Mallet, 2009). All quantities in
the equations below are in SI units.30

2.3.1 Concawe formula

The Concawe formula only takes the heat release as input
and is, therefore, more general than the Briggs formulas de-
scribed below. Further, its formulation makes it particularly
interesting in the context of the DERMA model, because it 35

can be directly implemented in the current operational setup.
The plume rise ∆h is calculated as (Brummage, 1968)

∆h= 0.071
Q0.55
h

U0.67
, (24)

where Qh is the heat release, and U is the model’s hori-
zontal wind speed at the height of the release, i.e. the stack 40

height zs. In the Kincaid experiment, however, the heat re-
lease needs to be calculated from the measurements of the
exhaust velocity vg , the gas temperature Tg , and the temper-
ature of the ambient air T . The heat release is calculated as
(Korsakissok and Mallet, 2009) 45

Qh = 228.19vgd
2
s(Tg −T ), (25)

where ds is the stack diameter.

2.3.2 Briggs formulas

The Briggs formulas are specifically developed for gas being
exhausted from a stack, and therefore both the exhaust veloc- 50

ity and the gas temperature are considered explicitly. Further,
different formulations are used for different stability condi-
tions. The formulas presented here are from (Briggs, 1965).

First, the static stability parameter sp and the initial buoy-
ancy flux parameter Fb are defined: 55

sp =
g

T

dΘ

dz
, Fb = gvgd

2
s

Tg −T
Tg

, (26)

where g is the gravitational acceleration constant, and dΘ/dz
is the gradient of the mean potential temperature. Since the
algorithm is implemented in DERMA, the ambient air tem-
perature T is here the model temperature instead of the ob- 60

served as used for calculation of Qh in Eq. (25).
In all cases, the plume rise is given by

∆h= min(∆h1,∆h2), (27)

where the stability dependent formulas for ∆h1 and ∆h2 are
given below. 65

Stable conditions

∆h1 = 2.6

(
Fb
Usp

)1/3

∆h2 = 4F
1/4
b s−3/8p (28)
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Unstable and neutral conditions

∆h1 =

{
21.4

F
3/4
b

U if Fb < 55

38.71
F

3/5
b

U if Fb ≥ 55

∆h2 =





4.3
(

Fb
Uw2

∗

)3/5
h2/5 unstable

1.54
(
Fb
Uu2

∗

)2/3
z
1/3
s neutral

(29)

2.3.3 Partial penetration of inversion layer

If the plume rise is large enough, or the PBL shallow enough,5

the plume may be lifted above the inversion layer at the top
of the PBL. However, in some cases, the plume may also
partially penetrate the inversion layer and leave a part of the
plume trapped in the PBL. The formulas presented here are
from Hanna and Paine (1989).10

The penetration factor P , i.e. the fraction of the plume that
penetrates the inversion layer is calculated as

P = 1.5− ∆z

∆h
, (30)

where ∆h is the calculated plume rise and ∆z = h− zs.
Note that the formulation of P allows for negative values as15

well as values larger than 1. However, as long as P ≤ 0, the
plume stays below the inversion layer, and when P ≥ 1, the
entire plume is above the inversion layer. Thus, only when
∆z/1.5<∆h < 2∆z, we need to account for partial pene-
tration. When this is the case, the altered plume rise of the20

part trapped in the boundary layer is given by

∆hbelow = (0.62 + 0.38P )∆z, (31)

and the effective release rate is Qbelow =Q(1−P ). How-
ever, Hanna and Paine (1989) do not provide a formula for
calculating the height of the penetrating part of the plume.25

Instead, we assume

∆habove = (1 + 0.38P )∆z, (32)

and the effective release rate Qabove =QP , which gives a
symmetric behavior around the boundary layer inversion. In
practice, this is implemented by releasing the fraction (1−P )30

of the puffs according to Eq. (31) and the fraction P of the
puffs according to Eq. (32).

2.3.4 Initial puff size

Finally, the puffs’ initial sizes will also be influenced by the
plume rise. These are calculated as (Hanna and Paine, 1989)35

σy0 =
∆h

3.5
,

σz0 =
∆h

2
. (33)

3 Model evaluation

The DERMA model with the new elements described in Sec-
tion 2 is evaluated against three different tracer gas experi- 40

ments. For comparison, the model performance is compared
to that of the current version of DERMA. For simplicity,
we will refer to these as the "new" and "old" model ver-
sions throughout this section. First, the models are evaluated
against the first European Tracer Experiment (ETEX), which 45

has also previously been used for evaluation of DERMA
(Graziani et al., 1998). Next, to evaluate the models’ perfor-
mances on shorter spatial scales, we use the Øresund experi-
ment and the Kincaid experiment, which both consist of sev-
eral releases on different days using varying measurement se- 50

tups. In both experiments, the tracer concentrations are mea-
sured at ground level within the first 50 km downstream. The
Kincaid experiment further provides a test case for the plume
rise algorithms due to the large heat release associated with
the release of the tracer. More details on the experiments and 55

the data used are given in Section 3.1, 3.2, and 3.3. Next,
Section 3.4 describes the experimental setup, and Section 3.4
presents and discusses the evaluation results.

3.1 The European tracer experiment

The European tracer experiment (ETEX) consisted of two 60

releases, ETEX-1 and ETEX-2 (Graziani et al., 1998; Nodop
et al., 1998). In the ETEX-1, which is used in this study, the
non-decaying and non-depositing gas perfluoromethylcyclo-
hexane (PMCH) was used as a tracer, and a total of 340 kg
of the gas was released to the atmosphere with a constant re- 65

lease rate during a 12-hour period starting at 16.00 UTC on
23 October 1994.

The gas was released near Monterfil in Brittany, France,
from 8 meters above the ground, see Figure 1. The gas was
then sampled over 30 three-hour intervals by a network of 70

168 ground-level sampling stations distributed in 17 Eu-
ropean countries. The ETEX observation data set is avail-
able via https://remon.jrc.ec.europa.eu/past_activities/etex/
site/index.html (latest access March 12, 2024).

3.2 The Øresund experiment 75

The Øresund experiment consisted of nine non-buoyant sul-
fur hexafluoride (SF6) releases on different days from 16
May to 14 June 1984 (Mortensen and Gryning, 1989). Six
releases were made from Barsebäck in Sweden (from 95 m
above the ground), and three from the Gladsaxe mast in Den- 80

mark (from 115 m above the ground), release locations are
shown in Figure 1. In each of the releases, the release loca-
tion was chosen based on the wind direction, such that the
tracer was released near the upwind coast of Øresund and
was sampled by a network of ground-based stations on the 85

opposite coast. The sampling stations were typically config-
ured in an arc near the coast and one or more arcs further in-
land. The dataset is thoroughly described by Mortensen and
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Gryning (1989) and is publicly available from https://doi.org/
10.5281/zenodo.161966 (latest access March 12, 2024).

In this study, we use all the available ground-based mea-
surements, but when possible, measurements adjacent in
time are averaged to provide average concentrations over5

longer time periods. This was done to reduce noise from the
relatively short sampling periods (down to 15 m).

3.3 The Kincaid experiment

The Kincaid experiment consists of a series of SF6 releases
spread out over three roughly one-month-long periods in10

1980 and 1981 (Bowne and Londergan, 1983). The gas was
released from the 187 m high stack of the Kincaid power
plant, located in Illinois, USA, see Figure 1. In the surround-
ing area, primarily consisting of flat farmland with some
lakes, air concentrations were sampled over one-hour peri-15

ods by a network consisting of roughly 1500 potential sam-
pling locations distributed in 12 arcs in varying distances
from 0.5 km up to 50 km downwind of the source. Not all
samplers are active at all times, so the number of measure-
ment locations varies. The SF6 tracer was released through20

the stack of the power plant, and the high gas temperatures
often resulted in a substantial effective plume rise. The gas
temperature as well as the exhaust velocity were measured
and are available together with relevant meteorological ob-
servations from a nearby weather mast (Bowne and Londer-25

gan, 1983).
The data is distributed as part of the Model Validation

Kit (MVK) described by Olesen (2005), which is available
via https://www.harmo.org/kit.php (latest access March 12,
2024). As discussed by Olesen (2005), the concentration pat-30

terns are often irregular, with high and low values simultane-
ously occurring along the same arc. To provide a more robust
foundation for model evaluation, arcwise maxima have been
estimated along with a quality indicator ranging from 0-3,
which indicates how reliable each arcwise maximum is.35

However, there exists a different version of the Kincaid
data set by John Irving, which was distributed via his website
now maintained by the Harmo organization, https://www.
harmo.org/jsirwin (latest access March 12, 2024). The two
data sets differ slightly due to different algorithms used for40

assigning sampling stations to arcs as well as to assessing
the quality of measurements, see discussion https://www.
harmo.org/jsirwin/KincaidHourlyDiscussion.html (latest ac-
cess March 12, 2024). In this study, we use the version from
John Irving, and both the entire set of SF6 measurements and45

the quality-controlled arcwise maximum values are used for
the validation.

3.4 Experimental setup

For all three experiments, the simulations have been carried
out using meteorological data from the limited-area NWP50

model Harmonie (Bengtsson et al., 2017). We use a hori-

zontal grid resolution of approximately 2 km and a terrain-
influenced hybrid vertical coordinate with 65 levels. The do-
mains used for the simulations are shown in Figure 1. For
initial conditions and spatial boundary conditions, we use the 55

ERA5 reanalysis (Hersbach et al., 2020).
Both the current version of DERMA and the version de-

scribed in Section 2 have then been run for all three experi-
ments. For the Kincaid experiment, the new model was run
with both of the plume rise algorithms described in Section 60

2.3. In all experiments, we use advection time steps of three
minutes, and the sources have been discretized by releasing
50 puffs at every time step during the release period.

The resulting concentration fields have been interpolated
in space using bilinear interpolation, and integrated in time to 65

obtain a list of modelled average concentrations correspond-
ing to the set of observations. Denoting the observations x
and the predictions y, we define the following statistical pa-
rameters used for model validation (cf. Draxler et al., 2001)

rmse =

√
1

N

∑

i

(yi−xi)2, 70

nmse =
1

Nµxµy

∑

i

(yi−xi)2,

r =
(x−µx) · (y−µy)

σxσy
,

b =
1

N

∑

i

yi−xi,

fb =
2b

µx +µy
, (34)

fms = 100
N(y > 0)∩N(x > 0)

N(y > 0)∪N(x > 0)
, 75

foex = 100

(
N(yi>xi)

N
− 1

2

)
,

fa2 = 100

(
N(1/2<yi/xi<2)

N

)
,

fa5 = 100

(
N(1/5<yi/xi<5)

N

)
,

where µ and σ are the mean and standard deviation, rmse
is the root mean square error, nmse is the normalized mean 80

square error, r is the Pearson correlation coefficient, and b
mean bias. Further, fb is the fractional bias, which is a nor-
malized measure of the mean bias, fms is the figure of merit
in space, which is defined as the percentage of overlap be-
tween the measured and predicted areas, foex is a measure 85

of how many predictions are over-/underestimated, it is cen-
tered around zero and ranges from −50% to 50%. Finally,
faα is the fraction of the predictions that are within a fac-
tor of 1/α to α from the observation. For the calculation of
foex and faα, the 0-0 pairs are excluded. Due to the infinite 90

nature of Gaussian distributions, a puff model technically al-
ways has non-zero predictions everywhere. For that reason,
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Figure 1. The three modelling domains used for the Harmonie simulations are indicated by the red squares in each plot. The upper plot
shows the domain used for ETEX. The lower left plot shows the domain used for the Øresund experiment. The lower right plot shows the
domain used for the Kincaid experiment. In all three plots, the red (and green in the case of the Øresund experiment) diamond shows the
release location, and the black x’s indicate the locations of sampling stations.

model predictions lower than the detection limit for each ex-
periment are interpreted as non-detections.

3.5 Evaluation results

For all three experiments, the statistical parameters Eq. (34)
have been calculated and are shown in the tables 1-3. In Fig-5

ures 2-4, scatter plots of the model predictions as a function

of the observed values are shown, as well as quantile-quantile
plots of predictions vs observations. For the Kincaid experi-
ment, the model is further evaluated using the arcwise maxi-
mum values with quality indicator 3 (best quality), shown in 10

Table 4 and Figure 5.
From Table 1, we see that the performances of the old and

new models are quite similar for the ETEX experiment. The
new model does show a slight improvement for the parame-
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Figure 2. Results for the evaluation against ETEX. (left) scatter plot of model predictions as a function of observations, and (right) Quantile-
quantile plot. Concentrations are in [ngm−3]. The upper figures are for the current version of DERMA, and the lower figures are for the new
version.

Table 1. Statistical parameters Eq. (34) calculated for ETEX.

mean std rmse nmse r b fb fms foex fa2 fa5

Observations 0.10 0.44 0.00 0.00 1.00 0.000 0.00 100.0 0.0 100.0 100.0
Old 0.13 0.63 0.57 24.42 0.47 0.023 0.19 55.8 -4.0 20.8 40.5
New 0.10 0.60 0.53 26.78 0.52 -0.005 -0.05 55.8 -14.5 23.8 43.6

ters r, b and fb, fa2 and fa5. For the other parameters, the old
model performs slightly better, but the differences are very
small in general, which is expected because the long-range
formulation of the new hybrid approach is similar to that of
the current DERMA model, and there are few measurement5

stations close to the release point. From the scatter plots in
Figure 2, it does look like the new model has slightly less
spread for higher values, while the quantile-quantile plots are
very similar.

The improved performance for long-range dispersion can10

likely be explained by the new random walk based on Eq. (3),

where the step size of the random walk depends on the local
turbulence as well as the duration of the numerical time step.
On the other hand, the current version of DERMA assigns a
new random height to all puffs inside the PBL at every time 15

step. For this reason, the new formulation should also gen-
eralize better for different durations of advection time step,
whereas the physical behavior of the old formulation will
change with the advection time step.

From Table 2, we see that the ground concentrations pre- 20

dicted by the old DERMA model are systematically un-
derestimated for the Øresund experiment. This is in accor-
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Figure 3. Results for the evaluation against the Øresund experiment. (left) scatter plot of model predictions as a function of observations,
and (right) Quantile-quantile plot. Concentrations are in [ngm−3]. The upper figures are for the current version of DERMA, and the lower
figures are for the new version.

Table 2. Statistical parameters Eq. (34) calculated for the Øresund experiment. When possible, longer time averages have been calculated to
reduce the noise arising from the very short sampling periods, see Section 3.2 for further details.

mean std rmse nmse r b fb fms foex fa2 fa5

Observations 114.30 213.80 0.00 0.00 1.00 0.00 0.00 100.0 0.0 100.0 100.0
Old 29.31 48.53 231.09 15.94 0.09 -84.99 -1.18 51.5 -31.2 14.5 32.5
New 131.46 186.30 229.13 3.49 0.35 17.16 0.14 74.1 -6.4 24.9 47.7

dance with the expectations due to the instantaneous verti-
cal mixing throughout the PBL, which will cause lower con-
centrations near the source. In reality, the gas was released
quite close to the ground, and we would therefore expect the
ground concentrations to be high near the source. Essentially,5

the new model performs better across all statistical parame-
ters, and the same is indicated by Figure 3. Although none of
the models correlate particularly well with the observations,
the new model does predict high observed concentrations
better, whereas the old model underestimates all the higher10

concentrations. The quantile-quantile plot also indicates that
the new model is better on average, although it overestimates
lower values and underestimates the highest observations.

For the Kincaid experiment, we first consider the results
based on the full measurement data set. Table 3 shows that 15

the old model systematically overestimates the ground con-
centrations with a mean concentration of 360.44 ngm−3,
whereas the mean of the observations is 53.87 ngm−3. This
is again in accordance with the expectations; due to the
plume rise, the effective release height is often quite high 20
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Figure 4. Results for the evaluation against the Kincaid experiment using all available measurements. (left) scatter plot of model predictions
as a function of observations, and (right) Quantile-quantile plot. Concentrations are in [ngm−3]. The upper figures are for the current version
of DERMA, the middle figures are for the new version using the Briggs plume rise formula, and the lower figures are for the new version
using the Concawe formula.

above the surface, and therefore the ground concentrations
should be low near the source, whereas the old model mixes
the tracer down to the surface from the start. The new ver-
sion also has a positive bias, but the magnitude depends
strongly on the plume rise algorithm used. The results ob-5

tained by using Briggs’ formula give only a very small bias
(average concentration of 60.29 ngm−3), while the results
obtained by using the Concawe formula have an average of
112.05 ngm−3. The remaining statistics are quite similar for
the two new models, and for rmse, nmse, r, b and fb the per- 10
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Figure 5. Results for the evaluation against the Kincaid experiment using arcwise maximum values with quality flag 3. (left) scatter plot of
model predictions as a function of observations, and (right) Quantile-quantile plot. Further, concentrations have been divided by the mean
release rate for the given release. The upper figures are for the current version of DERMA, the middle figures are for the new version using
the Briggs plume rise formula, and the lower figures are for the new version using the Concawe formula.

formance is significantly better than for the old model, while
for the remaining statistics, there seems to be only a small
improvement. Figure 4 also shows that there is a very large
spread in the scatter plots for all three models. However, the
quantile-quantile plots do suggest a significantly better rep-5

resentation of the concentration field with the new model,
especially when using the Briggs plume rise scheme.

It should be noted that this comparison method is very sen-
sitive to even small errors in the meteorological model data;
since the spatial and temporal resolution of the measurements 10

90 of 105 4.1. PAPER 3: A NEW HYBRID PARTICLE-PUFF APPROACH TO ATMOSPHERIC
DISPERSION MODELLING, IMPLEMENTED IN THE DANISH EMERGENCY RE-
SPONSE MODEL OF THE ATMOSPHERE (DERMA)



K. Tølløse et al.: A New Hybrid Particle-Puff Approach to Atmospheric Dispersion Modelling 13

Table 3. Statistical parameters Eq. (34) calculated for the Kincaid experiment using all available measurements.

mean std rmse nmse r b fb fms foex fa2 fa5

Observations 53.87 171.12 0.00 0.00 1.00 0.00 0.00 100.0 0.0 100.0 100.0
Old 360.44 1160.86 1205.80 74.89 0.04 306.58 1.48 29.2 29.9 8.1 16.9
New (Briggs) 60.29 216.25 246.82 18.76 0.20 6.43 0.11 31.9 11.7 8.7 18.4
New (Concawe) 112.05 326.12 332.81 18.35 0.25 58.19 0.70 32.9 21.0 9.4 19.5

Table 4. Statistical parameters Eq. (34) calculated for the Kincaid experiment using the arcwise maximum values with quality flag 3.

mean std rmse nmse r b fb foex fa2 fa5

Observations 41.03 35.03 0.00 0.00 1.00 0.00 0.000 0.0 100.0 100.0
Old 66.30 84.99 89.06 2.92 0.19 25.27 0.471 13.5 53.3 85.1
New (Briggs) 27.37 35.41 47.16 1.98 0.18 -13.66 -0.399 -19.1 32.3 63.2
New (Concawe) 46.48 50.37 49.74 1.30 0.37 5.45 0.124 -1.3 43.6 76.6

is so high, an error in e.g. the wind direction may result
in large errors. Therefore, the comparison with the arcwise
maximum values might be a more robust way of evaluating
the model. As described in Section 3.3, the observations from
the Kincaid experiment were assigned to arcs with the same5

approximate distance to the source. There are up to 12 arcs
at distances 0.5 km, 1 km, 2 km, 3 km, 5 km, 7 km, 10 km,
15 km, 20 km, 30 km, 40 km and 50 km (not all arcs exist
for all release periods). For every one-hour sampling period,
the maximum value in each arc has been determined and,10

by comparison with neighboring values, a quality indicator
from 0 to 3 has been assigned. The predicted maximum con-
centration of an arc was estimated by first interpolating the
concentration field to all sampling locations of that arc, and
then calculating the maximum value. When comparing the15

model predictions to observations, only values with quality
flag 3 are used.

From Table 4, the results are slightly more ambiguous
than from the previous comparisons. The new model using
Briggs’ formula performs slightly better than the old model20

for the parameters nmse, b and fb, while the old model per-
forms slightly better for foex, fa2 and fa5. However, the new
model using the Concawe formula seems to stand out with
better performance on all parameters except for fa2 and fa5,
where the old model performs slightly better. Generally, all25

models perform much better on the arcwise maxima than
when using the entire dataset, which confirms that this ap-
proach is less sensitive to, e.g., errors in the predicted wind
direction. From Figure 5, we also see that all three scatter
plots have a much smaller spread than in Figure 4.30

There is quite a large difference in performance between
the two new versions, which are identical except for the
plume rise scheme used. This clearly indicates the impor-

tance of estimating the start height correctly in order to pre-
dict reliable ground concentrations near the source. 35

The Kincaid experiment has been used for evaluation by
many different dispersion models. Thus, we can also com-
pare the performance of DERMA to other models. However,
most evaluations use the MVK version of the arcwise max-
ima, which means that direct comparison of the statistical 40

parameters is perhaps not meaningful, but it can give an in-
dication of the expected range of the parameters. We can see
that DERMA performs similarly to other models as, see e.g.
Bellasio et al. (2018, Table 4), which lists the performance of
nine different dispersion models evaluated against the Kin- 45

caid experiment.

4 Summary and conclusions

This paper describes a new hybrid particle-puff formulation
for dispersion modelling, making use of simple assumptions
to separate turbulence into a stochastic particle part and a 50

puff part, without the theoretical risk of double counting tur-
bulent effects. This formulation allows for the use of a lim-
ited number of puffs and longer advection time steps com-
pared to stochastic particle models. Further, compared to the
classical puff approach, it allows for a more realistic descrip- 55

tion of turbulent diffusion for small puffs. For large puffs, on
the other hand, the formulation allows puffs to be exposed to
the vertical wind shear in the PBL without the need for puff
splitting.

In addition, new parameterizations have been imple- 60

mented in DERMA for turbulent wind fluctuation and La-
grangian time scales, for PBL height, and for plume rise. For
the latter, both the Concawe formula and the Briggs formula
have been implemented.
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The model evaluation shows that implementation of the 65

new hybrid approach improves the performance of DERMA
for all three considered experiments. The evaluation method
is not very robust, since the model predictions are very sensi-
tive to meteorological errors. However, since our evaluation
uses a large amount of measurement data sampled over many5

days during different times of the year, the overall trends in
the results should give a good indication of the models’ per-
formances. Further, the use of the arcwise maxima from the
Kincaid experiment provides a completely different way of
comparing model predictions with observations, which again10

indicates improved performance when using the new hybrid
formulation.

Further, a comparison of the two plume rise algorithms
indicates how important it is to correctly estimate the ini-
tial plume height in order to predict the dispersion near the15

source. Unfortunately, there is no clear answer to which
plume rise algorithm is best; in our evaluation, the Briggs
formulas seem to give slightly better results when calculating
statistics based on all data, while the Concawe formula per-
forms better when compared to the arcwise maxima. How-20

ever, the Concawe formula is somewhat more generally ap-
plicable, because it only needs the released heat, whereas the
Briggs formulas are specifically developed for gas being ex-
hausted from a stack and both gas temperature and exhaust
velocity are necessary inputs.25

In conclusion, the developed hybrid particle-puff formu-
lation, in combination with the additional new implementa-
tions, has improved the performance of DERMA, especially
for short-range dispersion modelling. Thus, the implemen-
tation of these improvements in the operational version of30

DERMA could pave the way for new applications of the
model in the future.
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Chapter 5

Discussion and Conclusions

The discussion presented here focuses on the findings in the context of the overall objec-
tives of the PhD project, while detailed discussions of the different results are included in
the previous chapters. First, Chapter 5.1 presents the conclusions of the first two articles
and evaluates their readiness for potential operationalization. Next, Chapter 5.2 summa-
rizes the conclusions of the third manuscript and discusses how the findings have shifted
the perspectives for DERMA as a short-range dispersion model. Finally, Chapter 5.3
explores perspectives for future research.

5.1 Towards operational use of inverse methods for source
term estimation

5.1.1 Source localization

In the first article, presented in Chapter 3.1, it is demonstrated that the developed
methodology can efficiently predict a two-dimensional probability distribution for the
release location given essentially no prior knowledge and only making the following
assumptions:

1. the release comes from a stationary point source with a constant release rate,

2. the source is located at some height inside the PBL,

3. the source is located inside the selected model domain and the release happens
during the selected simulation period.

The first two requirements of course put restrictions on the type of scenarios, we can
consider with this method, but the latter is not very restrictive, since the model domain
and simulation period can always be extended.

The sensitivity analyses show that the method provides consistent results both when
observations are not available near the release location, and when the effective sampling
frequency of the measurements is reduced to both 12 and 24 hours. Both of these changes
made to the observation data reduce the precision of resulting posterior probability
distribution, i.e. the high density regions cover larger geographical areas. However,
the release location is consistently predicted inside the area of the highest probability
density. Hence, in combination with a list of potential release locations in the area, the
method can be used to point out the most likely candidates.
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Applying the method to the Ru-106 case predicts an area of high probability density
covering a relatively large area in Russia, south of the Ural mountains. Combining this
result with the locations of nuclear facilities in the area, we conclude that the Mayak
nuclear facility is the most likely release location.

In both of the cases considered, many observations sampled from a large geograph-
ical area were available. Thus, additional sensitivity analyses could be performed to
determine the threshold at which the methodology becomes ineffective, specifically iden-
tifying the minimum amount of data required to ensure meaningful results. Aside from
that, the methodology could in principle be made ready for operationalization without
much extra work, if a standardized input format providing the relevant measurement
information is defined.

5.1.2 Source term estimation during nuclear accident

In the second article, presented in Chapter 3.2, the developed method is demonstrated
in an idealized case where model errors are negligible. While this study shows promising
results, the supplementary results presented in Chapter 3.3 indicate the methodology
does not have a robust performance when applied to more realistic scenarios. Thus,
although the first important steps are made in the development of this method, more
work is needed.

In theory, the problem of source term estimation for a known location should be
much simpler to solve than localizing a source, where neither the location nor the source
strength is known. To understand why this second problem seems to cause more chal-
lenges, there are a number of differences between the two studies that are worth pointing
out.

In the source localization method, various simplifications and assumptions are made
about the source term. These, when combined with the adjoint modelling approach,
enable a highly efficient assessment of the likelihood of a proposed source term model.
Further, the correlation-based likelihood, allows the probability of a proposed source
location to be decoupled from the source strength. Consequently, the probability can
quickly be evaluated for all grid points in the model domain without the need for a
Monte Carlo method to sample the distribution.

On the other hand, when the source location is known, minimal assumptions are
made about the source, permitting release rates to evolve over time. Further, the arti-
ficial Loviisa power plant release consisted of 11 dose-contributing radioactive nuclides,
of which 4 are gasses, which are not captured by filter stations but instead only mea-
sured through their contribution to the nuclide-independent gamma dose rates. Finally,
we observed a large discrepancy between the gamma dose rate patterns from the two
modelling systems, DERMA+ARGOS and SILAM, rendering the gamma dose rates in-
effective for source term estimation in this case. Considering these deficiencies, it is not
surprising that the inverse problem may be ill-conditioned, i.e. the data are not sufficient
to constrain the parameters describing the source term.

5.2 DERMA as a short-range dispersion model

In the manuscript for the third article, presented in Chapter 4.1, a new description of
turbulent diffusion is provided. This new approach is a hybrid between a classical puff
model and a stochastic particle model. The hybrid formulation gives a more realistic
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description for small puffs by allowing advection by larger eddies. For large puffs, the
stochastic displacement instead provides a way of exposing puffs to vertical wind shear
without the need for puff splitting. In addition, the method is formulated such that the
turbulent diffusion is not double-counted.

The simplified turbulence description in the currently operational version of DERMA
poses one of the primary challenges in improving the model to enable short-range mod-
elling. Thus, the work presented in this article is an important first step towards an
operational short-range version of DERMA. Additionally, the implementation of the
Briggs and Concawe plume rise algorithms greatly improves the realism of simulations
near the release location in cases with heat release.

The model evaluation carried out as part of the project shows that the new turbulence
description improves the performance of DERMA across all spatial scales, however,
especially for short-range dispersion.

5.3 Future perspectives

One important future perspective is of course the potential operationalization of the
developed methods. However, regardless of whether the methods can and will be oper-
ationalized in the future, there are of course still open research questions.

Most importantly, further research is required on methods for estimating source terms
in the event of nuclear power plant accidents. Specifically concerning this project, a cru-
cial aspect is understanding the large discrepancy between the gamma dose rates from
the two model systems considered. Initially, it would be logical to employ the newly de-
veloped short-range version of DERMA to address the issue and achieve a more accurate
dispersion pattern near the source. Next, it would be advisable to conduct comparisons
between newly generated sets of gamma dose rates produced by the DERMA+ARGOS
system utilizing various meteorological forecast data, e.g. data from several different
members of a meteorological ensemble prediction system. Ideally, this should be applied
to different cases regarding meteorological scenarios as well as release scenarios.

Further, it might be worth considering reformulating the problem slightly. The study
aimed to provide a source term estimate given no other information than an estimated
amount of each nuclide in the core inventory. However, permitting the release rate of
each nuclide to vary independently within each time interval will introduce numerous
degrees of freedom to the source term. Consequently, a substantial amount of data may
be necessary to effectively constrain the parameters of the source term. Therefore, it
may be beneficial to consider imposing additional constraints on the prior distribution
of the source term. For example, using discrete source term ensembles for the prior
distributions could greatly reduce the dimensionality of the problem.

Despite the discussions above, it is important to highlight the overall success achieved
by employing a probabilistic inversion method to the source term estimation problem.
We showed that when the inverse problem was not ill-conditioned, the method efficiently
sampled the posterior probability distribution for the multi-nuclide source term. More-
over, this was accomplished without the need for parameter tuning, thanks to the NUTS
algorithm.

Next, the developed source localization method showed promising results, and it is
likely that the approach can be successfully applied in case of a new incident similar
to the Ru-106 case. However, other categories of incidents might also occur, where the
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measured particles/gasses are not captured by as large a sampling network as in the
Ru-106 case. Thus, additional sensitivity studies should be carried out to test the limits
of the method. Furthermore, our analysis exclusively incorporated air concentration
measurements, while ground deposition measurements were also available. Hence, future
research could explore the utilization of these measurements, thereby increasing the total
amount of data available.

Finally, the new short-range version of DERMA is in principle ready to be put into
use, as the advancements are directly integrated into the DERMA code. Nonetheless, the
initial step will naturally involve running the new version in parallel with the currently
operational model and monitoring the differences in model predictions across various
scenarios. Moreover, as previously discussed, the model evaluation approach is highly
susceptible to errors in the meteorological forecast data. One potential solution to ad-
dress this issue could involve utilizing a meteorological ensemble prediction system to
generate a probabilistic dispersion forecast. However, assessing probabilistic forecasts
poses additional challenges, and novel evaluation techniques may need to be developed.
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