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Chapter 1

Introduction

This thesis is concerned with a corner of nanotechnology which is the result of a very
age-inappropriate marriage between two scientific disciplines: The old and renowned field
of organic chemistry, and the young bride of quantum transport. In order to understand
the spirit of this thesis, it is imperative that we begin with a short introduction to the
interdisciplinary field of molecular electronics.

The realization of molecular electronics have been made possible by a series of technolog-
ical innovations which allows for precise engineering on the nanoscale. Several experimental
techniques like the mechanical break junction,>% electromigration,?'?? and the scanning
electron microscope,’’ have made it possible to create single molecule junctions, where one
chemically synthesized molecule is trapped between to metallic electrodes. Additionally,
innovations in cooling techniques and electronic engineering have made it possible to create
a small bias voltage across the molecular junction and measure the current response even
at temperature close to absolute zero.?"

Molecular electronics presents the possibility for merging semiconductor electronics
with precisely engineered molecules synthesized by the multitude of methods available to
contemporary chemistry. The meticulous control over the quantum behavior of molecular
junctions, can then improve technologies such as solar cells,"'® thermoelectrics® and
possibly numerical computing.'"®

Generally speaking molecular electronics is part of broader field of quantum transport.
This field also encompasses transport through doped semiconductor structures. By clever
engineering it is possible to construct nanometer-sized confinements called quantum dots,
which effectively behave like artificial atoms.?*® While these artificial atoms could be
used to construct artificial molecules, at the moment only double or triple quantum dots
have been produced. Molecules on the other hand, are usually much larger. However,
experimentally it has so far proved difficult to control or determine the binding geometry in
molecular junctions. This could possibly be improved, e.g. by constructing the electrodes
from graphene.®”

Historically speaking, theoretical chemistry have improved on their molecular models
since the early 1920’es. Today there exists a range of sophisticated software methods,
which are constructed as reasonable compromises between computational complexity and
calculational accuracy. Here we will rely on a somewhat simplified approach pioneered
by Pariser,”® Parr and Pople®® modeling the mt-system of planar organic molecules. This
Pariser-Parr-Pople model is in fact an extended Hubbard model, and the results, we obtain,
can easily be transferred to other transport systems (like the multiple quantum dots),
which can be described by such models.



2 1. INTRODUCTION

It quickly becomes complicated to keep track of the many electrons and their possible
configurations, this problem usually lends itself to a numerical approach. However, we
dedicate a whole chapter (and a bit more) to a mostly analytical approach to the many-body
problem, known as neoclassical valence bond theory. This treatment covers: the basic ideas
of the theory, shows how many-body calculations can be performed easily, and introduces
a controlled way of approximating the many-body properties of the underlying Hubbard
model. However, there is much more to neoclassical valence bond theory, than there is
room for a in a single chapter, and we are currently preparing a manuscript with the full
story.

In addition to the neoclassical valence bond theory, this work contains three projects
related to molecular electronic quantum transport. Here we will present a quick technical
overview of the topics, and reserve the general introduction to the corresponding chapters.

Chapter 4 considers the investigation of quantum interference in the off-resonant
transport through single-molecule junctions. The chapter on quantum interference contain
several interesting results, and most importantly the interference features of a molecular
junction can be classified according to a “topological” classification scheme. For neutral
hydrocarbon molecule this classification can be evaluated using simple coloring rules even a
child could apply (cf. Figure 1.1). The findings are also part of manuscript being prepared
for publication in collaboration with M. Leijnse, M. Strange, G. Solomon and J. Paaske.

Interference due to molecular structure have been found in the off-resonant transport.
However, very few have considered the interplay between destructive interference and the
enhanced zero-bias conductance mediated by the Kondo effect. In chapter 5, we show how
interference may suppress the Kondo enhanced conductance, and also show how molecular
structure can create an anti-ferromagnetic Kondo effect in only part of the transport
spectrum, hence creating “holes” in the Kondo enhanced conductance. In this project we
acknowledge the help of J. Paaske.

Chapter 6 considers electron pumping in quantum transport junctions. In principle the
chapter tries to answer a simple question: What is the difference between a classical pump
and quantum pump? We develop a straightforward transfer-matrix method for calculating
the quantum pumped current, when ignoring electron-electron interactions all-together.
The semi-classical pumping model is solved analytically allowing for a direct comparison of

Figure 1.1: Childs play: Quantum interference classification of the neutral stilbene molecule
performed by a child.
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the two models. To find the answer you must consult the chapter. Part of this work is

inspired by discussions with J. Thijssen and J. Seldenthuis regarding their proposal for a
an all electric molecular motor.”°

Enjoy.






Chapter 2

On the Constitution of Atoms and Molecules

In order to explain the results of experiments on scattering of a rays by matter
Prof. Rutherford has given a theory of the structure of atoms. According to
this theory the atoms consists of a positively charged nucleus surrounded by a
system of electrons kept together by attractive forces from the nucleus; the total
negative charge of the electrons is equal to the positive charge of the nucleus.

N. Bohr!!

So begins the famous paper on the quantum theory of atoms published by Niels Bohr
exactly a century ago this year. Bohr asserted that the atom was constituted of electrons
and a nucleus, with the electrons moving in quantized classical orbits around the stationary
nucleus. For hydrogen, consisting of a single electron orbiting the nucleus, the electron orbits
are now known as shells each numbered by their principal quantum number n=1,2,....

This was the first hint, about how to understand the wonderful world of atoms and
molecules. However, while Bohr took the first quantum leap towards understanding the
atom, we now know that the Bohr model is wrong. It was a good guess which correctly
explained the optical excitation spectra of hydrogen, but struggled to predict the spectra
of larger atoms. While Bohr also tried to explain diatomic molecules with his model, he
failed.

However the model did encourage the new quantum physics and thirteen years later in
1926 Schrodinger”® was the first to discover that the electronic states of hydrogen were in
fact solutions to the complex wave-equation,

. PO h?
Al = (T + Ay ) pir) = (—mv2 : ve<r>)¢<r> = Ey(r). (2.1)
e
Here H(r) is the Hamiltonian describing the system, % = 1.05-1073* Js is Plancks famous
constant, e = 1.602-107!? C is the elementary charge and m, = 9.109 - 1073! kg is the
electron mass. For the electron in hydrogen the potential V,_; is the electromagnetic
attractive Coulomb potential between the nucleus and the electron,

1 é?

=—— 2.2
47'(60 |I‘e| ( )

Vi—e(re)
Schrodinger’s stationary wave equation is an eigenvalue problem, which can be solved by a
set of eigenenergies E,,, and corresponding eigenfunctions ,;,(r). The eigenfunctions
are labeled by the three integer quantum numbers: the principal quantum number #, and
the orbital quantum numbers [ and m. For the hydrogen atom the such eigenfunctions
Yy1m(r) with the lowest eigenenergies are shown in Table 2.1,

5
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I=1

n=1 -13.6 eV ‘

2s pr 2p})

2p,
n=2 -3.4¢eV ‘ ‘ ‘ ' .

Table 2.1: The hydrogen orbitals 1,,,,(r) shown as constant absolute value surfaces. Blue
and red colors distinguish between positive and negative values of the orbitals. The
wavefunction is indexed by the principal quantum number n and the orbital quantum
numbers | and m.

2.0.1 Many-Body Physics

However, for larger atoms with more than one electron, Pauli’’ showed that one must take
into account an additional quantum parameter called spin. The total spin is S = g meaning
that the electron can have a spin projection of either spin up T or spin down |.

By introducing this spin degree of freedom, Pauli showed that the electrons instead
of piling up in the lowest energy state obey an exclusion principle meaning that no two
particles can exist in the same quantum state. This realization is a consequence of the
anti-symmetry of the electrons, where the exchange of two electrons (located at rq and r,)
adds an overall minus to their many-body wavefunction, W(rq,r,) = =W(r,,rq).

Starting from single-particle orbitals, x;, many-body states can be built by filling up
the orbitals with electrons. The proper anti-symmetrised many-body wavefunction is given

by the Slater determinant,'!
xi(x1)  x2(x1) - an(xp)
1 |xi(x2) Xxa2(x2) -+ an(x2)
‘I’(lexz,---,XN)z\/ﬁ : : : =|lxi x2 - xn| (23)
x1(xn) x2(xn) - an(xn)

In second quantization one introduce field operators which create ¢}, and annihilates ¢,
an electron in the quantum state v.'* The anti-symmetrization is incorporated through
anti-commutation relations valid for orthonormal basis states v;,

AT A A At 5

IS
{6y, 6, =66, +¢,¢, = (2.4)

ij
However, while the antisymmetry of the many-body electron wavefunction can be taken
into account, one must also include the Coulomb repulsion between the negatively charged
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electrons in the equation. The eigenvalue problem has now turned into a complicated
many-body problem, and in that case one must often resort to solving Schrédinger’s equation
numerically.

However, the most closely bound electrons can screen the nuclear charge, and the more
loosely bound electrons will then still inhabit hydrogen-like orbitals for an atom with a
slightly reduced nuclear charge. This screening combined with spherical symmetry assures
that the angular part of the the single particle hydrogen-like orbitals still comprise a fairly
good single-particle basis even for the many-electron atoms.?

2.1 The Nature of the Chemical Bond
Lewis®® was the first to offer a descent explanation of the chemical bond, an explanation
which was quickly formalized by Heitler and London®?.

Here we will seek to give a brief example elucidating the nature of the chemical bond
using the simplest of molecules: hydrogen H, composed of two hydrogen atoms bound
together by a single chemical bond.

As a starting point consider two hydrogen atoms each with one electron in their 7s-shell.
The atoms are located at r; and r, and their wavefunctions overlap with the Hamiltonian
H like,

t = Jdr#);oo(r—I'I)I:Illl)loo(r—rz). (25)
Ignoring the movement of the nuclei the relevant Hamiltonian consists of just two terms,
A=H+H,. (2.6)

In second quantization the creation operator CAL creates an electron in the orbital i € (1,2)

with spin o € (T,]), and the conjugate ¢;  annihilates that same electronic state.
The hopping can in second quantization be written like,

Hy=) > tijel ¢, (2.7a)

izj ©

while the effective Coulomb potential ‘penalty’ for having two electrons in the same 1s
orbitals (as opposed to different orbitals), is captured by the term,

Hy=UY ). (2.7b)
i

The constant U expresses the severity of the Coulomb penalty, and should be compared in
size to the hopping energy t in order to find out which of the two dominates the contribution
to the total energy.
When the spin projection of the two electrons are parallel | T1T) any hopping is blockaded
by the Pauli exclusion principle, and Schrédinger’s equation is trivially H| 77) = 0.
However for two electrons with opposite spin projections the problem becomes harder.
Diagonalizing the Hamiltonian gives the (unnormalized) ground state

U V16t2+U? |, + 4+ 4 . A b At
W) o (E + T] (C;Tch - c;lch)lvac) + (cercirl + c;Tc’;l)lvac), (2.8)
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with the corresponding eigenenergy

E:U(%— 4U—f§+‘ll). (2.9)
This is indeed the electronic ground state of the hydrogen atom, and because E <0 it is
always favorable for the hydrogen atom to bond together to form a molecule. Examining
this bonding wavefunction in different limits of U of t can then tell us something interesting
about the nature of chemical bonding.

In the limit of a vanishing Coulomb interaction |U| < ||, the result is the product of
two so called bonding molecular orbitals occupied by electrons of opposite spin,

W)y oc (€] +ER)(E] | + €5 lvac), (2.10)

with an energy E = —2|t|. This ground state could also have been found by diagonalizing
the hopping H; and forming the Slater determinant of the single particle bonding orbital
for each spin specie.

In this case the bonding arises solely from the delocalization of the electrons over the
entire molecule and the corresponding lowering of the electronic kinetic energy.

In the opposite limit an infinitely large Coulomb energy dominates, |U| > |t|, and the
ground state instead approximates

[W)no oc (€465, — &1 Eblvac). (2.11)

In this case the ground state energy is close to (but smaller than) zero, i.e. E=0". It
is obvious that the large U has almost prohibited the electron from occupying the same
orbital. The result is a singlet ground state, where the (virtual) exchange of electrons
lowers the energy. This state represents the extreme version of a covalent bond.

Usually the nature of an actual bond is found in-between those two extremes, and
the closeness to either the single-particle bonding orbital picture or the singlet picture is
determined by the value of U/t. The overlap of the actual ground state with either extreme
is shown in Figure 2.1.

2.2 Organic Molecules

Pauling”™ was the first to offer a decent explanation of bonding in a wide variety of
molecules. However with many atoms bonding together, the full many-body problem
quickly becomes intractable. Instead of following in the footsteps of Pauling, we shall
leap-frog his explanation, and derive an approximate many-body model, which effectively
describes a wide class of organic molecules.

In the most general description a molecular system consists of positively charged
nuclei located at space coordinates {R,} and negatively charged electrons located at space
coordinates {r;}.

The Hamiltonian describing the total energy of the system consists of several parts.
The kinetic energy of the nuclei, T", and electrons respectively, T¢. The Coulomb repulsion
between the nuclei, V™" and between the electrons, V¢™¢, along with the attractive
Coulomb interaction between the electrons and the nuclei, V¢,

The full Hamiltonian then takes the form,’

H=T"

&)+ T,

e ViR T Vg Vi) (2.12)

{ri}
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095} Singlet character {
09r
0.85

il Bonding orbital

character
0.75F
07 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16
U/t

Figure 2.1: Overlap of the actual ground state with either the single particle bonding
orbital ground state (U = 0), or the singlet ground state (U > |t|) here presented as a
function of U/t.

As was the case for the H, example, the large Coulomb repulsion V™" and V¢ ¢ penalizes
the atoms for being bound closely together in a molecule, while the delocalization of
the electrons over a larger space lowers the collective kinetic energy T¢. Additionally
rearranging the electronic charge can also potentially lower the total electro-static energy
of the system, V¢ + Ve,

When the energy gain from electron delocalization overcomes the Coulomb penalty the
atoms are bound together in a molecule. While the general Hamiltonian perfectly describes
the molecule, it is simply too complicated to deal with the full 6(N, + N,,) continuous
degrees of freedom for any practical calculations. Hence we wish to reduce the complexity
by performing a series of well founded approximations.

The first step is to notice the nuclei are vastly more massive than the electrons®. This
means that for comparable kinetic energies of the nuclei and electrons T, ~ T,, the velocity
of the nucleons are negligible when compared to the velocity of the electrons. This gives
rise to the Born-Oppenheimer approximation where all nuclear coordinates are assumed to
be constant R,.'%

The hydrogen orbitals exhibit a strong hierarchy with well separated energy levels. For
many-electron atoms, this means that orbital energies are well separated, and it is safe to
assume that the electrons in the inner shells are closely bound to the nuclei, while electrons
in the outer (valence) shell are free to delocalize. The effect of the core electrons are then
to screen the electric charge of the nuclei from the valence electrons.

The hydrocarbons composed of only hydrogen and carbon constitutes a major part
of all organic molecules. Including molecules containing the close carbon relatives like
nitrogen, oxygen and sulfur makes it possible to cover almost all of organic chemistry.

Carbon has six electrons, with two core electrons occupying the inner shell (n=1) and
four valence electrons (n = 2). Pauling” was the first to notice that in order to understand
the bonding in carbon compounds one would have to consider linear combinations of the
occupied 2s and 2p orbitals and the unoccupied 2p orbitals. Those new linear combinations

aThe proportion between the mass of a single nucleon and the electron mass is approximately m,,/m, ~
1836.
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H He
3 4 5 6 7 8 9 10
Li || Be B (o N (0] F || Ne
1 12 13 14 15 16 17 18
Na || Mg Al Si P S Cl || Ar

19 20 21 22 23] 24 25 26 27 28 29 30 31 32 33 34 35 36
K || Ca|l Sc|| Ti \) Cr{Mn||Fe|[Co|l Ni|[Cu| Zn| Ga| Ge | As || Se || Br | Kr

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb| Sr|| Y || Zr || Nb|[Mo|| Tc || Ru|| Rh | Pd| Ag|| Cd|| In || Sn|| Sb || Te | Xe
55 56 72 73 74 75 76 7 78 79 80 81 82 83 84 85 86

Cs || Ba Hf || Ta || W || Re || Os || Ir Pt || Au|| Hg|| Tl || Pb || Bi || Po| At || Rn
87 88 104 105 106 107 108 109 110 11 12 13 114 115 116 117 118

Fr || Ra Rf || Db | Sg || Bh|| Hs || Mt || Ds || Rg || Cn || Uut|| Fl ||Uup|| Lv |[Uus|/Uuo

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Lanthanides | | 5 || ce || Pr || Nd|[Pm| Sm| Eu|| Gd|| Tb || Dy | Ho|| Er || Tm|| Yb || Lu

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Actinides | ac || Th || Pa || U || Np || Pu|| Am|| cm| Bk || cf || Es || Fm| Md| No | Lr

Figure 2.2: The periodic table of the elements. Highlighted: The carbon relatives boron,
nitrogen, oxygen and sulfur.

are known as sp-hybridized orbitals. For sp?-hybridized orbitals the 2s orbital is combined
with two of the three p orbitals to form the three sp2-hybridized orbitals which together
resembles a Mercedes star as shown in Figure 2.3.

) V2 1 3 |25)
spP=—| V2 1 V3 || 12p0) | (2.13)
\Q V2 2 0 12py)

For planar molecules the overlap between e.g. carbon sp2 hybridized orbitals or hydrogen
1s orbitals can become rather large and form a strong o-bond.

Sp2-orbital

D~-orbital

Figure 2.3: Simple illustration of sp? hybridized orbitals and a six-ring molecule of atoms
with hybridized orbitals. When all remaining sp2-orbitals is bonded with hydrogen, the
ring models the benzene molecule having carbon at every site. With alternating boron and
nitrogen atoms, the ring models the borazine molecule.
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Because the overlaps between the sp? hybridized orbitals are much larger than between
the p,-orbitals the electronic states occupying o-orbitals are much lower in energy. Because
of this separation of energy scales, one can construct an effective low-energy theory for the
isolated system of p,-orbitals commonly known as the mt-system.

2.2.1 The Pariser-Parr-Pople Model

Restricting our model to the m-system formed of overlapping p, orbitals in planar organic
molecules, and by considering the positions of the ions and the location of the m-system
electrons as the only free parameters, heavily reduces the complexity of Schrodinger’s
equation. The equation becomes

(T7 + V4 y7ion L vionTion) (R ), {r;)) = E@({R,), {r:)). (2.14)

Here V7T, V7-ion and vion-ion tooether represent the effective Coulomb potential between
the ions and the 7t-system electrons.

This effective model for the 7mt-system electrons was originally proposed in 1953 by
Pariser,”® Parr and Pople.®> When expressed in second quantized form the Pariser-Parr-
Pople Hamiltonian takes the guise of an extended Hubbard model:

HPPP:T+I:I/,1+HU+HV- (215)

The kinetic term T captures hopping between different p. orbitals and is expressed in terms
of the orbital overlaps t;;.

ZZ(Z] 10A10+t]1 .o zo) (2.16)

@ o=11

Here (i,j) is short for all nearest neighbor orbital pairs i and j. The on-site chemical
potential term I—AIM captures the local electrostatic potential from the ions. For brevity the
chemical potential for carbon is normally chosen such that yc = 0, while hetero-atomic p,
orbitals have a small offset p; = 0.

Hy, = pith;. (2.17)
i

Here we have introduced the counting operator 7; = 7i;y + 1;, where 7A;, = c:rocm counts
the number of electrons on site i with spin o. The interaction Hy + Hy captures both the
Coulomb repulsion between the 7t-electrons as well as part of the Coulomb attraction from

the screened ionic charge,

N N R R 1 R R
Hy+Hy =) Ui(dn - 3) (i - 3)+ 5 > Vil - z)(i) - z)). (2.18)
i

i#]

Here we have introduced the unshielded residual charge z; on site i, where e.g. a carbon
atom usually donates a single electron to the 7t-system leaving a single unshielded charge,
Zc = 1.

The contribution to the on-site Coulomb repulsion H; at a specific site i, takes a
minimum value of —U;/4 when occupied by a single electron, and a maximum U;/4 when
occupied by either zero or two electrons, hence favoring the single occupied case. The
intra-orbital Coulomb interaction Hy has been written on a form, which ensures that any
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contribution from an orbital i to the long distance Coulomb interaction vanishes, when the
residual ionic charge is completely shielded.
The interaction can also be written on the simpler form,

Yo s 1 i =S i
Hu-f—HVZZUiniTTlil-f—EZ‘/ijninj— Hinl, (219)
i i

i#]

where we have removed a the constant term ), (U;/2 + E]-(Ii)ziz]- Vij)/2, and introduced
the local potential offset fi; = %UZ- + Ej(#) Vijzj.

While the PPP model parameters can (in principle) be calculated from complicated
orbital overlap integrals, the parameter values are instead found by fitting the predictions of
the PPP model directly to measurement data of e.g. optical excitation spectra or ionization
energies.

In order to reduce the number of free parameters and perform a satisfactory fit, the
intra-orbital Coulomb integrals V;; are usually described using the semi-empirical Ohno

parametrization”™ b

U;;
‘/i,_

j=
J1+lari?

Here the average Coulomb potential strength U;; = (U; + U;)/2, and r;; is the inter-orbital
distance between p, orbitals labeled i and j. To give you an idea of the length scales involved,
the carbon-carbon bond length is roughly ro_¢ = 1.3 A. The constant a = drtegU/e?, is
chosen such that the V;; approaches the on-site Coulomb interaction U at small distances,

(2.20)

while it approaches the vacuum Coulomb interaction V;; ~ e?/(4megr; j|2) at large distances.®

2.2.2 Spin

This is a good place to introduce the total spin operator, S=);S;, here written in terms
of the local spin operator,

Bt
Siz-iziqurayqy. (2.21)
oy

y

i’

. [0 1 ,_ [0 —i . (1 0
T—(lO,T—iO,T—O_l. (2.22a)

The total spin length S? and the spin projection S% both commute with the PPP (extended
Hubbard) Hamiltonian. Hence their eigenvalues are good quantum numbers of the PPP
eigenstates. Eigenstates with an even (odd) number of electrons have integer (half-integer)
total spin S and spin projection me -S,-S +1,...,S (setting h=1). The lowest total spin
eigenvalues are the singlet (S = 0), doublet (S = %), triplet (S =1) and quadruplet (S = %)

Here we introduced the three-dimensional Pauli tensor = = (77,7
the Pauli matrices,

77) defined in terms of

bor alternatively the Nataga-Nishmoto representation®” given by Vij = Ujj/(1 +aU; ]-|r1-]-|).

“By directly inserting the numerical value of @, and taking 7ij to be the p, orbital distance measured in

Angstrom, the Ohno parametrization gives Vij =28.794 eV/(\/r"izj + (Uij/28.794 eV)2.
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‘ X ‘ zx px [eV] Uy [eV] ‘ ‘ X ‘ tc_x [eV]  tc=x [eV] ‘
c| 1 0 10.06 C (benzene) -2.539
O] 1 -978(=3) 18.89 (14) C -2.22 -2.684
N| 1 -34(272) 14.97 0 -1.5 -2.4
N | 2 -18.43 15 N -2.05 -2.05
S| 1 -10.36 9.85 S -3.0 -3.0
S| 2 -7.8 5.0 S -1.37

Table 2.2: Parameter values for common 7t system hetero-atoms taken from the literature.
While the underlying model and calculational approach differs, the table still offers a sense
of the involved parameters and their relative size. The parameter values have been found
by e.g. fitting models to optical excitation spectra, giving carbon data from benzene and
biphenyl,'® 1*6 or benzo-quinones 9, nitrogen from pyridine?’ (from
pyrrole®!) and sulfur from thiophene.?”%

oxygen from carbony

While we have chosen to quantize spin along the Z-direction, we can just as well choose
any other direction. The spin quantization axis can be rotated an angle 6 around any
direction 7 by the operator R}, which in a doublet spin space takes the form,

Rg = ! 0"S/h = co5(0)] +isin(O)i - . (2.23)

2.2.3 PPP Model Parameters

We will take special interest in the hydrocarbons where any free carbon spz—orbitals are
bonded to hydrogen. Each carbon atom contributes a single electron to the 7 system, and
the local chemical potential is equal for all sites, allowing us to choose the zero-point of
energy such that pc = 0. Hydrocarbons can dimerize into a compound with alternating
o-bond lengths because of the Peierls instability,®” giving rise to three different values of the
transfer integrals between neighbor orbitals. Counting also the on-site Coulomb interaction
U this gives a total of four parameter values modeling all hydrocarbon molecules.

Many organic molecules are similar in structure to hydrocarbons but with few carbon
atoms replaced with hetero-atoms like oxygen, nitrogen and sulfur. These elements are
close relatives of carbon but have one (or more) additional electrons which must then be
accommodated in lone pairs completely occupying a single sp-orbital. This means that
the lone pair only partially shields their nuclear charge, resulting in an attractive potential
incorporated as a lowering of the local chemical potential ux < pc. However this effect
is often compensated for by a larger on-site Coulomb repulsion Uyx > U, entailing that
configurations with one electron per orbital are still energetically favorable.

In addition to forming lone pairs, nitrogen and sulfur can also donate an additional
electron to the m-system. In this case the unshielded nuclear charge is larger zy = zg = 2,
and the local chemical potential and the on-site Coulomb repulsion must also be changed
accordingly.

Reasonable parameter values for carbon, oxygen, sulfur and nitrogen can be found in
the chemistry literature, and some common results for different atoms are presented in
Table 2.2.

dThese values are partly based on DFT, and an exact diagonalization PPP simulation of the benzo-
quinone experimental data published by Fu, Yang, and Wang32.
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For some molecules the distinction between double and single bonds can become
somewhat problematic, and instead one employs the semi-empirical formula,?” t-_c =
t+3.2(rc_c — 1.397), for calculating the transfer integrals between two carbon atoms
separated by a distance rc_c. While we have devoted this section to the numerical values
of the PPP parameters, we would argue against putting too much effort into obtaining
exact numerical results.

One should remember that the PPP model, only considers the 1t-system and ignores any
effects arising from the o-system, and additionally the model relies heavily on more-or-less
correct semi-empirical formulas for some parameter values. So already several approxima-
tions have been made, making it unlikely to have ezract agreement with experimental data.
So while the PPP model captures a wide range of interesting molecular physics, one should
not pursue or be put off by slight disagreements with experimental measurements.

2.3 Numerical Solution of the PPP Hamiltonian

For an N, orbital mt-system containing N electrons there is a total of

(2N,)!

C(2Ne N) = N!(2N, - N)!

(2.24)

many body basis Fock states. At half-filling N = N, and the number of many-body states
grows at least exponentially with n = C(2N,N) > N-1/222N-1,

Analytical solution is of course impossible when considering anything but the very
simplest systems. The computation time of direct numerical diagonalization scales like
matrix size cubed O(n3). However, the memory cost of storing the Hamiltonian or the
eigenvectors as double precision numbers grows at least like 72, hitting 1.3 GB for systems
of size N = 8 and a staggering 58.5 TB at N =12.

It is straightforward to show that the PPP Hamiltonian commutes with the total
number of both spin species N, = >ifis. Hence the Hamiltonian is block-diagonal in
the Fock space of many-body states with blocks characterized by the (N3, N|) quantum
numbers. FEach Fock space block can be solved separately in order to find the total ground
state of the system.

In the balanced half-filled case N, = N = 2N; = 2N, and the basis in the (N/2,N/2)
is of the size C(N,N/2)? = N!?/(N/2)!* > N~122N=1 "hence reducing the basis size with at
least a factor of VN.

When constructing the PPP Hamiltonian in the (N4,N|) Fock subspace, Lin and
Gubernatis®! proposed a clever method, where the Fock states are written as the product
of a spin up and a spin down component,

sy =1011...010)%4]011...101), (2.25)

Focusing on one spin component, the state labels the occupied orbitals using binary
representation. For each spin component all relevant states can be generated as an ordered
lookup table I, of binary indices. In the case of four orbitals occupied by two particles the
list is generated like,
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sg‘ state  index I (s,)

1 |1]0011) 3
2 | |o101) 5
3 | |o110) 6
4 | |1001) 9
5 | |1010) 10
6 | 1100) 12

The full (N},Np) basis is then the direct product space of each spin component basis.
Technically speaking each full basis vector |s) can be assigned an unique index based on
the Lin table indices of the two spin components,

I(s) = 2N (s)) + Iy (7). (2.26)

Usually it is difficult to perform the reverse lookup where an index is matched with the
corresponding Fock state, but using the Lin table method this is actually a simple decimal
to binary conversion.

The PPP Hamiltonian then have a matrix representation in each Fock subspace. The
interaction terms are the simplest because they are both diagonal in the Fock basis, meaning
that
non-zero i=j

(2.27)

<Si|(HU+HV)|5j>:{ o
Zero i#]

The kinetic term T can be calculated for each spin component T,. The kinetic term is
iteratively applied to each state |s;), and by performing the reverse lookup the resulting
states are converted to indices I, in order to fill the corresponding matrix elements of T, .
The Lin index of equation (2.26) have the additional advantage that the the full hopping
matrix is simply the Kronecker product matrix T = Ti ® TT-

The Hamiltonian matrix is naturally sparse, hence reducing the storage limits on the
matrix. However for large systems (~ 16 orbitals) even storing the Hamiltonian in persistent
memory becomes a problem. Instead the action of the Hamiltonian on relevant states H|W)
can be calculated on the fly from the components of each spin subspace Ti, TT.‘QS

2.3.1 The Recursion Method

Because the PPP model is an effective low-energy model we are mostly interested in finding
the low energy eigenstates. Instead of applying common diagonalization techniques which
maps the whole eigenspectrum, the Lanczos method”® iteratively generates a small subset
of the eigenstates while also limiting the memory footprint of the algorithm.

The starting step of the Lanczos algorithm is some relevant state |\¥y). From this state
one calculates the new orthogonal state,

bWy = H|Wy) — ag|Wp) (2.28)
Here the coefficients ay and b; are chosen in order to ensure orthogonality,

_ (WolH|Wp) _ |H |\, )
(Wl ~ T (W)

A new state is then constructed such that it is orthogonal to both |\¥) and |\ ),
bo|Wo) = HW ) — ay W) — by [W) (2.30)

(2.29)
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with coefficients given by,

(W HP) by — (W | H|\P,)

DI 2T W) (2:31)

Generally a complete series of relevant orthogonal states can be iteratively generated by
use of

bn+1|\yn+1> :H|Wn>_an|\pn>_bn|\yn—l> (2'32)
with

_ <\Iln|H|\yn> b _ <\I]n|H|\I]n+l>

- n/ = nl/ 2.33
! <\Iln|\lln> e (‘Pn+1 |\Pn+1> ( )

In fact, by applying this procedure we have transformed the Hamiltonian into a tridiagonal
matrix T with the a; coefficients on the main diagonal and the b; coefficients along the two
neighbor diagonals. The transformation is formally given by,

HQ = QT, (2.34)

Here Q € U(dim(H)) is a unitary operator consisting of the generated orthogonal basis
Q=(%%)I¥),...), and T is the mentioned tridiagonal matrix

ap bl
by a; by
T = by ay bs (2.35)

bs

The space spanned by the basis Q is known as a Krylov subspace of the full Hilbert space.
The major advantage of the Lanczos algorithm, is that starting from some relevant state
[\W,) one immediately constructs the most relevant perturbations [V ),|\W,),.... Hence even
when terminating the algorithm quite quickly all the features relevant to |\) are still
captured.

The Actual Algorithm

The actual algorithm only needs to store two state vectors at a time, and a pseudo code
version based on Golub and Loan?® is presented in algorithm 1.

The tridiagonalization can be terminated after very few iterations — normally less than
200. Simply diagonalizing the tridiagonal Hamiltonian gives a set of eigenstates expressed
in the Krylov subspace basis. Because the basis is not saved during the algorithm, the
Lanczos tridiagonalization must be repeated once more in order to construct the full Fock
space eigenstates.

The Lanczos recursive algorithm is prone to loss of orthogonality of the Lanczos
vectors [26]. The causes and consequences of this orthogonality loss has been extensively
investigated by Paige”™. In order to avoid the many problems related to the loss of
orthogonality of the Krylov subspace basis, the Lanczos method can instead be terminated
before the loss occurs. The resulting relevant eigenstate (e.g. the calculated ground state)
is then simply used as the starting point for a new Lanczos procedure which is also quickly
terminated. This process is then repeated until the eigenstate converges, and it is commonly
known as the restarted Lanczos algorithm.
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initialize 1;

bl «~—0

a; <0

for j <1 to N do

rj — Hopj = bjgjy
..l..

61]' «— I']- IP]

I‘j — I‘j - a]¢]

bjvr < [l

Pj1 < 1j/big

end

Algorithm 1: Minimal pseudocode showing the Lanczos algorithm.

2.3.2 Resolvents

The Lanczos algorithm also lends itself beautifully to the calculation of resolvents of the
type,

Ripa(w) = (Fal ) (2.36)

w-H+i0*
Where usually [V,,) are not eigenfunctions of the Hamiltonian H. The simplest case
involves resolvents between two identical states |\F,) = [\¥,) (normally related to the spectral
function).

Initializing the Lanczos tridiagonalization algorithm using the |¥,) = |\¥,), the same
state resolvent can be found

1
R (w) = (V)| ————— |\ 2.37
ua( ) < Olw—H+i0+| O> ( )
1 t
={(Y|Q——Q"|\¥, 2.38
(WolQ———— 7 Q%) (2.38)
1 2

={— I, |\ 2.

(=07, (W) (2:39)
The last line follows from the fact that
1

Q') = 9 (Wol o) (2.40)

This leaves us almost out of harms way. All we need to do, is to calculate the (1,1) component
of the inverse of a tridiagonal matrix. Calculating the inverse by use of Appendix A, we
can directly write

( ! )11 - ! (2.41)

w—H++i0* b?

w—ay—
bZ

2
w—a - ————
w—ay;—---

Here the continued fraction representation is naturally terminated by setting by = 0 for a
sufficiently large N as discussed by Haydock and Te?’.
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If dealing with off-state resolvents, one can form the odd and even combinations,
Wy} = Wo) + W), [W2) = [Wo) — W) (2.42)

Then the corresponding odd and even resolvents are given by,

Ra(@) = (Pl |W,) = Rua(@) + Ry (@) £ R () £ R ().
w—-—H+10*

Hence the real part of the resolvent, can be calculated from,
Ri(w)-R_(w) = 2{Rap(w) + Rpa(w)}. (2.43)

When the resolvents are real, R ;(w) = Rp,(w), and the relevant off-state a = b resolvent is

then simply expressed in terms of two same state resolvents, R,(w) = i(RJr(w) -R_(w)).

2.4 Approximations

2.4.1 The Hubbard Approximation

The Pariser-Parr-Pople model can be approximated by a simple Hubbard model with only
an effective on-site interaction U*, given by

H=T+) Uil —3)(A -3+ > it + AN, (2.44)
i i

Note the introduction of the energy offset AN,, which is required in order to match the
eigenenergies of the PPP model exactly.

To demonstrate the adequateness of this approximation, we calculate the ground state
of simple half-filled Hubbard chains of varying lengths N, varying the effective U*. The
ground states are then compared with the ‘exact’ groundstates calculated using the full
PPP Hamiltonian of equation (2.15). The principle of replacing the PPP model with an
effective U* Hubbard model have also recently been investigated for benzene and graphene
using a Peierls-Feynman-Bogoliubov variational theory,”* where they found U*/t =1.6 +2
for a benzene 7t-system. From the calculated results in Figure 2.4 one sees that the ground
state of a U* ~ 1.9|t| Hubbard model is almost identical to the groundstate of the full PPP
model. We will return to the Hubbard approximation already in the next chapter when
confronting valence bond theory.

There is in general also quite good agreement between the low energy eigenspectrum of
the two models. However the ordering in the eigenenergy spectrum can mix up unpredictably
for chains N, > 4. This is understandable, because excited state wacefunctions will have a
higher degree of ionized sites, hence enhancing the role of the off-site V operator.

2.4.2 The Hiickel/Tight-Binding Approximation

The complexity of the many-body Hubbard model prohibits the exact numerical solution
of general systems with more than ~ 16 sites. Inspired by the partial success of the single-
particle picture in Fig. 2.1 the tight-binding approximation deals with this problem by
ignoring the Coulomb repulsion altogether . The tight-binding Hamiltonian only contains
the hopping and the onsite chemical potential

Hy=T+H, = > (6] ¢ 5+ il ¢ 0 ) + Z%nl (2.45)

{@jyo=11
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U/t
(YHubbard | YPpp)

Chain length N,

Figure 2.4: Wavefunction overlap between the ground state in a PPP model of a (non-
dimerized) carbon chain of length N, and the similar Hubbard model with a renormalized
local Coulomb repulsion U*. The optimal choice for the effective Hubbard model appears
to be U*/|t] = 1.9.

In the chemistry literature this is known as a simple Htickel model. The eigenfunction of
the tight-binding Hamiltonian are simple molecular orbitals. Slater determinants of these
molecular orbitals then constitutes many-body eigenstates.

Because the tight-binding model is a non-interacting model the full many-body wave-
functions are single Slater determinants of the relevant single-particle wavefunctions. The
size of the single particle basis scales linearly with system size N, and hence the numerical
solution of single-particle problems is immensely more feasible than the full many-body
treatment.

2.4.3 The Hartree Self-Consistent Field Approximation

The Hartree approximation deals with this problem by letting each electron move in the
average Coulomb potential of the other electrons, hence effectively reducing the calculation
to a one-body problem.

The Hartree Hamiltonian can easily be expressed in terms of the average electron
densities (A, ),

HHartree«ﬁ)) =T+ HLI}Iartree + I_"Igartree (2'46)
with
HHartree < > ZU ( flig %)ﬁzﬁ _ZUi(<ﬁiT><ﬁil>+ éll) (2.47&)
i
HHartree < > Zvl] (ﬁ]—l)_ZVz]<ﬁl><ﬁ]> (2.47b)
ij

The many-body ground state is then constructed as a Slater determinant of the N lowest
single particle eigenfunctions. Because the Hamiltonian depends parametrically on the
wavefunction averages (fi;,), the solution to Schrédinger’s equation Hyp, ree({1))[10) = E[i))
must then be found self-consistently.

Starting from eigenstates of the barebones hopping Hamiltonian 7', the averages (7;,)
are calculated and inserted into the expression of the mean field Hamiltonian. The process of
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diagonalization and recalculation of the averages inserted into the Hamiltonian is repeated
until the solutions converge. As was the case for the non-interacting tight binding model,
the single-particle eigenstates of the Hartree Hamiltonian delocalize over the molecule
7i-system and behave like large molecular orbitals.

2.5 Conclusions

In this chapter we introduced the concept of chemical bonding, and discussed the Pariser-
Parr-Pople (PPP) Hamiltonian describing the p,-bonding in planar organic molecules. The
PPP model is the starting point for the theoretical investigations in the rest of the thesis.

We also explained the exact diagonalization procedure based on the iterative Lanczos
procedure, and showed how to calculate resolvents numerically. In the end we also discussed
some popular approximations to the PPP model, most notably the non-interacting Hiickel
model, which we also will return to in the coming work.



Chapter 3

Neoclassical Valence Bond Theory

Starting from the discovery by Rumer that the eigenfunctions corresponding
to different distributions of valence bonds in a molecule can be represented
by plane diagrams which provide information regarding their mutual linear
independence, a very simple graphical method is developed for calculating the
coefficients of the integrals occurring in the matrix elements involved in Slater’s
treatment of the electronic structure of molecules.

L. Pauling™

Let us begin this chapter in the heyday of molecular bonding theory during the late 1920s
and 1930s. Heitler and London®? had proposed a solution for the chemical bonding in the
Hydrogen molecule. Naively speaking larger molecules could probably be described as a
patchwork of such bonds between the electrons of the constituent atoms. However, actual
derivation is hard because the mathematical tools for dealing with many-body problems
are still scarce.

In 1933 Pauling and Wheland® performed the analytical calculation of bonding in
larger molecules by extending the work of Slater'’’. Pauling’® extended Slaters many-body
calculation by a graphical representation of the bonded valence electrons in the molecule,
and this revelation was the first serious valence bond (VB) theory. The hallmark of the
theory is the single page derivation of the benzene 7m-system ground state previously
investigated by Hiickel in a series of papers.*®

However, almost simultaneously Slater, Mulliken, Lennard-Jones, and others developed
the molecular orbital (MO) theory based on single particle orbitals delocalized over the
entire molecule. And like Betamax in the seventies videotape format war, valence bond
theory was left out in the cold, while molecular orbital theory became the preferred tool of
computational chemistry through the middle of the century.®®”” Klein and Trinasjstic®!
have delivered a detailed historical account of the evolution of valence bond theory and its
applications in chemistry.

Our intention is to solve the semi-emperical Pariser-Parr-Pople model analytically by
using a graphical valence bond theory. The starting point is to project out most of the
(very large) Hilbert space of the PPP model. This was first done by Spalek'’% in 1977, and
the effective Hamiltonian for the projected subspace is commonly known as the t-J model.
The t-J model can then be solved graphically by representing the basis in terms of valence
bond states.

This have been employed for bulk materials to investigate quantum phase transitions
and superconductivity.” Here we will follow the prodigal son, when he returns home to his
father. We will describe the mathematical derivation of the t-J model, the valence bond

21
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basis and the related graphical rules. We will then apply them to some example molecules,
compare to the exact results derived for the PPP model, and discuss the various pros and
cons of this neoclassical® valence bond theory.

3.1 Derivation of the t-J Model Hamiltonian

The basic idea is to consider only a small subspace of the full many-body Hilbert space of
the Pariser-Parr-Pople model. When the Coulomb interaction U is larger than the hopping
amplitude t this can be done accurately by projecting out the high energy many-body
states containing (many) doubly occupied sites. At half-filling the low energy many-body
states have exactly one electron per site, and the effective Hamiltonian for the electronic
spins is the well-known Quantum Heisenberg Hamiltonian.*!

he full PPP model can perfectly well be solved in neoclassical valence bond theory, but
for brevity we will not consider the full implementation here. In order to keep the derivation
as approachable as possible, we ignore any variation in the local chemical potential y;, or
any Coulomb interaction between electrons on different orbitals. This is similar to the
simple Hubbard approximation of the PPP model (cf. section 2.4.1).

The Hubbard model is one of the simplest Hamiltonians describing interacting electrons
on any lattice. The electrons hop between connected orbitals i and j with an amplitude £;;,
and two electrons of opposite spin can occupy the same orbital i at a cost of the Coulomb
energy U;. In second quantization the Hubbard Hamiltonian looks like,

H=T+U== t;je},¢;,+U> iy, (3.1)
ij

ijo

where 7 is the kinetic term (assuming t; j= t;-‘]-), and U is the Coulomb interaction. Note
that the Hubbard model conserves the number of particles, the total spin S, and the total
spin projection §Z.

Hence, consider a system of N,, sites occupied by N, < N, electrons. Following Auerbach®
we partition the Hilbert space of the many-body electronic system into a subspace S
containing all the states with no doubly occupied sites, and another subspace D containing
states with at least one doubly occupied site.

S =|n1y,nip,ma0,.. ., N 1) Viinjp+n <1, (3.2a)
D =|nyy,nyp,n,...,1N1) di:njp+ny =2 (3.2b)

The S Hilbert space is actually the null space of the Coulomb operator U, and it is quite
easy to redefine,

S = {states [Y) | Ulp) = Ol, and D= {states ) | Ulp) = 0}. (3.3)

Hence the states in the two subspaces are only connected to each other through the kinetic
term 7. Then introduce the projection P onto the subspace S, and the projection Q onto
the subspace D. These projection operators are idempotent P2 = P and Q? = Q, mutually
orthogonal QP = 0, and because S and D constitutes a partition of the original Hilbert
space, P+Q =1, where Z is the identity operator.

& Neoclassical is here chosen as facetious juxtaposition to many of the adjectives, which have been added
to valence bond theory over the years: Especially the modern valence bond theory23 and post-modern
valence bond theory.102
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Having introduced the projection operators, our objective is to find an effective Hamil-
tonian for the projected eigenstates [p) = Plp), and the first step is a dissection of
Schrodinger’s equation on the full Hilbert space,

H(P+Q)=E(P+Q)lp) = HPlpp)+HOlPg)=Elpp)+Elpg).  (3.4)

Applying the projection operator Q gives us the following equation for [ipg),

IIPQ>—E QHQQ 1Plyp). (3.5)

If we instead apply the projection P to equation (3.4) and insert the result for [ipg), we
obtain the effective Schrodinger’s equation,

Because S contains no doubly occupied sites, one must have PUP = 0, and since 4 does
not change the distribution of electrons, QHP = QT P. Inserting these results, yields

(PTP+PTQ QTP)lll)p> E|yp). (3.7)

HQ

Note that no approximations have been carried out yet. Equation (3.7) is an exact projection
of the original Hubbard model to the subspace of singly occupied sites S, and e.g. the
eigenspectrum E of both models must be identical. All we have achieved so far, is to reduce
size of the Hilbert space at the cost of a more complicated Schrédinger’s equation.

In order to simplify the effective Hamiltonian, we expand (E —QHQ)™! in powers of
t/(E-"U),

1 1 1 1
= T .
E_ono E—ouo ' E—ouo e—ouo " (38)

Assuming that |t| < |E — U|, our effective Hamiltonian restricted to the S space, takes the
final form,

H.g(E)=PTP+ +PTQ%QTP (3.9)

1 stoa s s st s
=P T_ﬁZZtijtjkciacja”jT”jiijcky P. (3.10)
ijk oy

Note that Hg depends parametrically on the energy, which means that Schrédinger’s
equation Hyg(E )i = E¢p must now be solved self-consistently.

This result is exactly what you would expect. The projected Hamiltonian allows both
direct hopping between S states, and (to first order in t?/U) transitions involving one
virtual visit to the D subspace.
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The expression of equation (3.10) can be simplified. When the initial and final site is
the same, i.e i = k, the following derivation yields a familiar result,

i#]

aaet g
ZZtU ji¢ la ]anJTnJleyCiy

ij oy

en e o . At
_Ztll ]ZZ( Cio ]O' ]chaczé"'cza ]Un]UC]UClU)

Ao ot 41 WA
_Ztl] ]lZ( ioCic ]‘] +nl(7 ]0 (nlU ]o nionjg))

Zt” ]1[ (S: sx+5ys3’)+2s S =3 (fighijo +ighis)

S

:——Z4|t1]' (s S ﬁﬁ) (3.11)

This is the quantum Heisenberg Hamiltonian for spins on a lattice.
When, i # k, the derivation is quite similar,
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_ZtZ]t]kZ(cmc]Gn]g ]Gck0+cmc]0n]0c]0cka)
ijk
izk
1t 2 & IS SRS PN 1at 4 & 1at a4 &
_Ztl]t]kZ(fclockanj_Clackéc]cfc]o+7Cm kotje — 2%i6Cko ]G)
ijk o
izk
Ztl}tlk chacka nj ZCIUTG)/Cky ZC]O'TU)/ iy
ijk
izk Z C ﬁ
& olis kU ]
:——Ztl]t]k g8 - = io ke I (3.12)
ijk

Here 7 = (77, T?, 77) is the Pauli tensor defined in equation (2.22) , and the local spin

operators (setting Ai=1),

Si=) ¢ Toytiy (3.13a)
oy

Sij =Y &y Tayly (3.13b)
oy

Hence the effective Hamiltonian governing the projected subspace, can be written like,

Hi_;j=P(T+K+J)P. (3.14a)
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This is the t-] Hamiltonian with the three terms generally defined as,

= Z( Uzcw ]a+hc) (3.14b)
]

li]

Z]l] ( A' n:])' (3.14c)

z:tk A X Z ¢
Z]uk ( 8- ’Z"‘”]. (3.14d)

ijk

Here the two exchange couplings are defined as functions of the energy in the following
way:

]_'(E)__4|tij|2
Y E-U’ (3.15)
- B 4-tijtjk

One can even expand the energy in terms of g = 4[t|*>/U,* so
E=E9 4+ W 4+ g2E?) 4. (3.16)
And assuming E(©) = 0 the two coupling strengths takes their usual form:

4)t;1?

4tijtjk
u’ '

a (3.17)

Jij = lim J(E) =

lim Jije = lim Jiji(E) =
At half-filling all sites are occupied by an electron, which means that P(7 + J)P = 0,
and the t-] model reduces to the quantum Heisenberg model with an anti-ferromagnetic
coupling.

When the Coulomb energy is much larger than the hopping amplitudes 4U > t, the
coupling constants orders hierarchically t > J ~ J. Because t is the major contributor
to the hopping of holes (or electrons) rather than J the [ is usually dropped from the
Hamiltonian,” giving us the well-known -] model,

i#] Aa
Ht-]_ _Z( ZJZ Cio ]a+hc]+ Z]l]( i n]) P. (318)

]

However, typical values for the interaction and hopping integrals in organic molecule
7t-systems have U ~ |2t|, so in general one should not drop the J term.

3.1.1 Above Half-Filling

The derivation of the -] Hamiltonian can trivially be generalized to include systems above
half-filling. Here, the Hilbert space contains states with one or more doubly occupied sites.

Consider a system with N, orbitals occupied by N, > N, electrons. It is obvious that
at least n = N, — N, of the orbitals must be doubly occupied. Let the states with exactly
n doubly occupied sites belong to a subspace D,,, while states with more than n doubly
occupied sites belong to Ds,,. Again the two subspaces can be defined using the I/ operator

D, = {states [Y) | Ulp) = nU|1,b)}, and D, = {states [Py | Ulp) = nU|z,b}}. (3.19)
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It is trivial to introduce the projection P onto the D, subspace, and the projection Q
onto the D, subspace. By removing the constant offset nU to the Coulomb energy,
one reproduces the t-J] Hamiltonian of equation (3.14), so that the effective Hamiltonian
becomes H,fr = Hyj+nU.

3.2 The Dimer Example

As a warm up exercise consider the already scrutinized dimer (cf. section 2.1), consisting
of two orbitals hybridized by a hopping t and with on-site Coulomb repulsive energy U.
At half-filling the t-J] Hamiltonian for the Hilbert subspace S of singly occupied sites is,

H,, :PICP:P{](§1 8, - ”14”2 )}P (3.20)

In this case the S subspace contains four different many-body states | T1T2), | L1d2), | T1l2)
and | [1T,). Only the quantum Heisenberg part of the t-J] Hamiltonian contributes, and it
follows directly from the definition in equation (3.14c) that,

Kty =0,
KlIl)=0,
KITy =571 =111,
KDY =37 (110) = 111).

When subtracting the last two equations one finds that the ground state is a singlet. The
eigenenergy can be found directly using the approximate expression for J of equation (3.17),

1
V2

With an energy E; = 0 the excited state is the triplet,
1y =111),
1
lt2)y=—=(TLH+IT),

V2
lt3) =1 11).

Isy=—=(Ty-1I1),  Es=-J=-4t*/U. (3.21)

The Heisenberg Hamiltonian K commutes with the total spin S, and so K can be diagonalized
in the singlet space and the triplet space separately.

If you looked up section 2.1, you have probably noticed that the ground state energy
of the singlet E, differ from the one we derived directly from the Hubbard model. If we
instead use the full self-consistent expression for the exchange coupling | of equation (3.15),
we find the familiar

442
E=- = E=5(U+VU2+1612).

U-E

3.3 Ground States and Spin

Let us take a closer look at the quantum Heisenberg model, which describes the effective
interactions between the electronic spins in different orbitals. At half-filling this becomes
the only surviving contribution to the #-J Hamiltonian, and the many-body states become
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pure spin states. For both the quantum Heisenberg model and the parent Hubbard model
on bipartite lattices (also knwon as alternant lattices), there exists strong constraints on
the total spin of the system ground state.

A Dbipartite lattice contains two sublattices A and B, such that lattice points in A
are only connected to lattice points in B and vice versa. For the quantum Heisenberg
model, if S4 and Sp denotes the maximum value of the spin projection on the A and B
sublattices respectively, the Lieb-Mattis theorem®’ states that the ground state has a total
spin Sy <|S4 — Spl, and the eigenenergy spectrum is ordered according to spin S such that
E(S+1)> E(S) for all states with a total spin S >S4 — Sg|.

In the #-] model at half-filling each orbital is occupied with a single electron of spin
%, and for a bipartite lattice with sublattices of equal size, Sy — Sg = 0, and hence by the
Lieb-Mattis theorem, the ground state must be a singlet Sy = 0. On the other hand, when
one sublattice contains just one more orbital than the other, then S4, — Sg = %, and the
ground state must be a doublet Sy = % However, when the number of orbitals in each
sublattice differ by more than one, then S, — Sg > %, and the Lieb-Mattis theorem cannot
precisely predict the spin of the ground state.

Lieb” later investigated the repulsive Hubbard model on a bipartite lattice with Ny
orbitals belonging to the lattice A and Ny orbitals belonging to the lattice B. At half-filling
the total spin of the ground state is given by S = %|NA — Ng|. This means that a bipartite
lattice with an equal number of sublattice sites Ny = N has a singlet ground state, while
a bipartite lattice with Ny = Ng+1 has a doublet ground state etc.

Due to the Lieb theorem and the Lieb-Mattis theorem many systems have low spin
ground states, and because the t-] Hamiltonian conserves the total spin, we can simplify
our calculations by limiting them to this low spin Hilbert subspaces.

3.3.1 Rules for Addition of Angular Momentum

According to the addition rules of angular momentum, two systems with angular momentum
j1 and j, repsectively, will have a total angular momentum eigenvalue j fulfilling the relation,
i =il <j<ji+j-

Applying this logic to the combination of two spin % systems we find a singlet and a
triplet.

® = ={0,1}. (3.22)

N =
N =

Similarly the combination of two singlets will produce a spin singlet, adding a spin % system
to a singlet gives a doublet, and adding a triplet gives a triplet. Extending this logic, the
number of different spin multiplets when combining any number # of spin % systems can
be computed. Table 3.1 shows the result of such a computation up till n =15.

Hence low spin systems can be built up from the combination of singlet states,

00®---®0=0,
1®0® @0—1
2 2

10®---®0=1.
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n\S | 3 115 2 28 3 3% 4 4
1 1
2 | 1 1
3 2 1
4 | 2 3 1
5 5 4 1
6 | 5 9 5 1
7 14 14 6 1
8 | 14 28 20 7 1
9 42 48 27 8 1
10 | 42 90 75 35 9
11 132 165 110 44 10
12 | 132 297 275 154 54
13 429 572 429 208 65
14 | 429 1001 1001 637 273
15 1430 2002 1638 910 350

Table 3.1: The number of spin S multiplets when adding 7 spin % particles. E.g. a system
of n = 4 electrons, has 2 spin singlets, 3 spin triplets and one spin S = 2 quintuplet.

3.4 Valence Bonds

The absolutely simplest singlet state is the maximally entangled state of two electrons,

I (4 4 4 A
|s) = — {CT,TCJZFJ - CI,lCJZF,T} lvac). (3.23)

V2

Each state consists of a number of singlet pairings between different sites. Adopting the
notation of Beach and Sandvik® we introduce the valence bond creation operator,

1
N et _etet
Xij = \/E( it Gy JT) (3.24)
It is readily seen that this operator representation of the singlet is undirected, because
1 1
0t

T A e e RN
1 = lehe-eigh) = =+ i) = 3 (3.25)

The singlet — being composed of two fermionic operators — is itself bosonic and obeys the

usual commutation relation [ )2?, AO’L] = 1. When the valence bond operators share only

one site index a bit of algebra s ows that,

[)Cyfff ?f]IWC>———xkl+|vac>- (3.26)
Likewise a set of triplet valence bond creation operators can be introduced:
A1+|vac> = Czl ]L|vac> (3.27a)
. 1
Rijwac) = 7( chel + ¢l el vac), (3.27b)

)Zl-sflvac) = éjT ;Tlvac) (3.27¢)
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A notable difference to the singlets is that all triplet operators are directed, so )Efj =- )Z;T

for I =1,2,3. The commutation relation in equation (3.26) can be generalized to include
any combination of singlet and triplet states,®

NIDNT.A 1 5
[Xipj,)(fj X}’f] |vac) = ET’\"pV)(?flvac), (3.28)

where TAHPY = %tr(T“T"TPJrT”).
Having quarried our building blocks in the form of valence bond operators, a valence
bond state can be built up by adding valence bonds to the vacuum state.

But there is a lot of freedom in writing down the valence bond states, and several
papers®1% have been dedicated to investigating different ways of efficiently representing
these states. Apart from valence bonds, states pertaining to the t-J model can also
contain empty sites (holons), doubly occupied sites (doublons) and the occasional un-
bonded electron (spinon/free radical). We will choose the following general many-body
representation of the valence bond states,

doublons spinons valence bonds
—_——
_(pt oAt oAt At At At NCLENCS § St
1) = (613,166,000, 6o (X iy Kk, =+ Ky 1V 2€)- (3.29)

Here the spinons are ordered by their indexes j; < j,. This last convention can seem
unnecessary at the moment, but it ensures that the pictographical representation of a
valence bond state, which we are about to introduce, is wholly unambiguous.

Note that the actual ordering of doublons and valence bond states can be completely
arbitrary, because both states are bosonic, and they can readily be interchanged without
altering the represented valence bond state.

3.5 Valence Bond States Pictionary

In the original game of Pictionary® you compete to guess an unknown word from a drawing.
However, the title does not alleviate to mere guesswork, but is instead a reference to the
portmanteau components picture and dictionary... although, you may think of this as a
simple game of “Find the ground state”. As we shall see, the valence bond states have a
direct interpretation in terms of bond diagrams. Because the Hamiltonian can be split into
local operators acting on nearest neighbor pairs or three connected sites, one can easily
chart the workings of the ¢t-J] Hamiltonian on a set of example states.

This picture dictionary of the Hamiltonian, can then quite easily be applied to molecular
systems of choice. If this descriptions seems puzzling, everything will hopefully be much
clearer when we have ended this short section.

The underlying lattice is composed of sites and bonds. A site i is depicted as a gray
circle, while a bond t;; is shown as a gray bars connecting sites i and j. To create a
pictionary we must start with our equivalent of letters: valence bond states. A holon is
depicted as an empty circle, a spinon is a filled circle, and a doublon is two filled circles. A
singlet state is drawn as a black line connecting the sites, while a triplet state is represented
by a directed arrow.
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name operator representation ‘ pictionary representation
spinon fzrllva@ 0O
At
doublon N lvac) 0
singlet valence bond )Ef.);lvac) i ( m—) i
triplet valence bondP X}Jflvac) i (cm—- )

Having developed our alphabet, we can put them together and form extended valence
bond states. The next step in our linguistic endeavor is to consider the action - the verbs
- the operators. Taking the Hamiltonian operators of the t-] model term by term, our
vocabulary increases quickly.

Note that we will mostly be considering singlet or doublet ground state molecules, and
as a result the entries related to triplet valence bonds are only sporadically included in the
pictionary.

3.5.1 The Hopping 7

The local hopping operator can be written as a sum of local terms, P7P = Zi;aj PT;iP,

where

T = —t,-jZé;rGéjg. (3.30)
o

The wrapping projection operator P ensures that the Hamiltonian only applies to states in
the projected space. Hence only operations which conserve the number of singly occupied
sites should be considered.
As an example consider the case, when site i is occupied by a doublon and site j by a
spinon. Then
TjiéjTé;‘lé]mvac) = —t]-ié;.rlél. lé}éhé}ﬂvac) = t]-ié;rTé}é}LlIvac). (3.31)

Interpreted as a pictionary entry the result can be written

’];| s O >: tji | O) 9o > (332&)

l j
Similarly when considering a holon and a spinon,

7j . O >= —tij | ® >, (3.32b)
! J

and by direct analogy the pictorial valence bond case looks like

Ti | @ N ) = |
T ’ J\ >: —t;j ’ > (3.32d)

Acting on any other categories of pairs yield zero in the projected space.

(3.32¢)

‘(.
-
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3.5.2 The Quantum Heisenberg Hamiltonian
The quantum Heisenberg Hamiltonian can also be decomposed into local operators PXP =
%Zi,j Kij = ZO-,]-)IC{]', where
f o Nl
Kij:]ij(si-sj—T) [: ’Cji]- (3.33)

Since this operator commutes with local number operator, 7;, the projection P is implicit.
When applied to connected sites with either holons or doublons the result vanishes, and
only states containing combinations of valence bonds and spinons contribute.

Two valence bonded sites constitute an eigenstate of the Heisenberg Hamiltonian, and
one can easily verify that,

IC:]| _ >:—]| _ > (3.34&)

K | (o ):o. (3.34b)

Applying K;; to a nearest neighbor pair results in the following entries in our pictionary,

° J\ >:%] / " > (3.34¢)

[
and finally when considering two valence bond states,
/j / > =) X > (3.34d)
k

Since the Heisenberg Hamiltonian yields zero when applied to empty of doubly occupied
sites, these are all the dictionary entries we need.

3.5.3 The Mixed Term 7

The only remaining term of the ¢-J Hamiltonian is J, which can be written as a sum of
local terms PJP = Z:T,f PJijkP. Note that Jij, acts on three consecutively connected
sites i,j and k, and

14tk (o & e 1. (4 4 el e h
~7z‘jk=§ il sik.sj_% :Ejijk sik.sj_% , (3.35)

Kjx

where fijk = 4ti]‘f]'k/U.

This local operator only conserves the number of singly occupied sites when acting on
a combination of two singly connected sites and one doubly occupied (or empty) site. The
dictionary contains three distinct cases. Initially, we consider that states, where the triply
connected sites ijk are occupied by a holon and a valence bond, and

Tijk ‘ J\ > =—Jijk ) / > (3.36a)

i k

Tijk l J\ > = 0. (3.36b)

i k
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Secondly, when the three sites are occupied by a valence bond and a spinon, we have

Tijk T />=%fz‘jk > -
i k

e > (3.36¢)

Tijk

e > (3.36d)
i k

Finally, this can easily be generalized to the last case, where the two sites are valence

bonded with two other sites.
/ \ > (3.36¢)

For doublons the entries are very similar. All you need to do is to replace the holon with a
doublon and reverse the order of i,j and k.

3.6 Valence Bond States Non-Orthogonality

The pictionary now details the valence bond graphical language for dealing with many-body
calculations in the -] model. However, it turns out that our words may not be wholly
unambiguous. . .

Consider e.g., two valence bond states |A) = X?;;ﬁgllvac) and |B) = )Eg;)ﬁ?llvac) in a
four site model. Writing out the states in terms of creation operators it is relatively
straight-forward to show that their mutual overlap is given by, (A|B) = %, and in fact the
valence bond states are in general non-orthogonal.

3.6.1 Overlaps

Jijk

17
j ~ S >:§]ijk

i k

Following Beach and Sandvik® we consider as an example, a general pure singlet valence
bond state,
_ 0t »0t ~ 0t
i) = Xii, Kigi, - Kiy i [V4C)- (3.37)

iyip
The mutual overlap between two such states is written like

— ~0 ~0 0 »0t »0f ~0t
(iltps) = acl®fy . -+ 275,00, AT AT 0L vae) (3.38)
Graphically the two states are superposed on the lattice, and the valence bonds will either
overlap directly or form loops. Any overlapping bonds correspond to identical valence
bonds and they can all safely be ignored. The loops can be contracted by repeated use of

the commutation relation, [)E?j,)fgj)ﬁgfﬂvac) = —%)Egﬂvac), which removes two sites from

the loop at the cost of —% until only two sites are left. This means that each n-site loop
contributes with a factor of (~2)2~2. An example is shown in Figure 3.1(a).

Letting N, be the total number of sites in loops, and Ny counting the number of loops,
the overlap can be calculated using the formula

(i]o) = (=2)No=No/2, (3.39)
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a)

/( /7
4 site Ioop / \ M
b) ! 13

2 //string ’

12
6

% \

4

11

Figure 3.1: Two examples of stilbene valence bond states (green and yellow) superposed
on each other. In this visualization it is rather easy to see the loop and string structure
determining the mutual overlap of the two states.

Valence bond states containing holons (doublons) are simple to deal with, since the
overlap vanishes when there is any mismatch between the holons (doublons) of the two
states. When considering spinons, we need the commutation relation,

|¢io 201 = \/_ (3.40)
Graphically a spinon in each state will mark the end of a string of valence bond states.
The string can be contracted one site at time at the cost of i/ V2 per contraction, and a
string of length 1 contributes to the overlap with a factor (—2)"/2. Hence the presence of
spinons does not alter equation (3.39).

The triplet states can in principle be dealt with by using equation (3.28), but we will
not cover all the cases here. Graphically any loop must contain an even number of triplet
bonds and the sign of the contribution will depend on the mutual direction of the involved
triplets. An example is shown in Figure 3.1(b).

3.6.2 Overcompleteness

The valence bond states are not only non-orthogonal, but as a basis they are also over-
complete. For the simple four site model at half-filling, we can write down three different
valence bond states. However, consulting Table 3.1 only two singlet states exist in this
case. In fact the three states are related, so

L0t 50t | ~0t 50t | ~0t £0t
X12X34+ X13X23 + X23X14 = 0. (3.41)
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For a given set of valence bond states |v;),|v,),...,|vN), we can construct the overlap
matrix S with the matrix elements S;; = (i|j) (not to be confused with the spin operator).
If the set forms an overcomplete basis the dimension of S is larger than the rank, i.e.,

dim(S) > rank(S). (3.42)

The overcomplete basis can be reduced to a complete basis by Gaussian elimination of
the overlap matrix S. From the reduced row echelon form, the complete basis |v;) subset
can then be extracted.

Another approach is due to Rumer,”’ where a full basis can be constructed by placing
the lattice sites in a circle, and only include states with non-crossing valence bonds. These
Rumer diagrams can also be constructed by repeated application of the pictionary on the
Kekulé state on a chain (all valence bonds along the chain bonds, cf. equation (3.54)).

Any valence bond state can be re-expressed in the complete basis |v;),

py=> ailvi) (3.43)

The overlap with a particular basis state [v;) is then,

<”f |‘P> = <Vj|vi> = Zaisjir (3.44)

1

and the the expansion coefficients a; can then be found by solving this set of linear
equations,

a (vily)
S| ¢ |= : . (3.45)

Ay (wal)
3.6.3 Operators in a Non-Orthogonal Basis

While valence bond states and valence bond operators can be written in a bra-ket fashion,
it is desirable to work with state vectors and operator matrices. While the translation
between the two representations is trivial fin a orthogonal basis, we must be careful, when
working in anon-orthogonal basis.

A valence bond state can be written on ket or vector form,

€1
C2

p)=> alvy ~ ¢=| | (3.46)
p :
Cﬂ
Consider then an operator A written in both representations,

a1 ... O
A=) wajivil ~ A=| : C | (3.47)

ij Ay ... Gy
In an orthogonal basis, the coefficients are identical 4;; = a;;, however, in a non-orthogonal

basis this is no longer the case. Here we will design the matrix representation, such that
Algp) and A ¢ produces the same results.
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Sandwiching the operator A between two basis states |ve) and |v;), the matrix represen-
tation produces,

elAlor)y ~ WelAviy = a(welv;) =D~ Sy, (3.48)
j j

while the operator representation gives,

elAlory = aij(vlvi)wjlv) =Y~ SkiaijSjr. (3.49)
1] ]
Equating those two expressions we end up with a set of linear equations, Sa = SaS. When
the basis is complete the overlap matrix is invertible and the above equation reduces to,
a=as.
In the matrix representation, the identity operator, I, takes the usual diagonal form
with matrix elements g;; = 6;;. In a complete valence bond basis it is straightforward to

find the corresponding coefficients a;; = aik(S_l)kj = (S71);;, giving us the valence bond

ijs
operator representation [ = Zi]’ |Vi>Sj_]‘l (vl
3.7 Schrédinger’s Equation

Having dealt with the non-orthogonality of the valence bond basis, the next important
goal is to find the many-body ground state and excited states. Hence we wish to solve
Schrodinger’s equation. The pictionary of equation (3.32)-(3.34) already constitutes a
matrix representation of the Hamiltonian. This means that

Ht_jlvi) = Zlv])ﬁ]l (350)
j

Then expand the eigenfunctions in the valence bond basis, such that ) =" j cjlvj). We
can rewrite Schrodinger’s equation in terms of this non-orthogonal basis,

Hlp)=H> cjlv)) =) fyjcjlogy =E > cxlv). (3.51)
j kj k
This can be rewritten as a matrix equation

S(h—EI)c=0. (3.52)

When the overlap matrix S is invertible, we obtain the usual Schrédinger’s equation,
) = E|p). Then proper normalization of the ground states requires that ([ip) = 1, hence
giving that

Wlpy = ciej(vilv)) =D €Sijcj=c'Se=1. (3.53)
ij ij

3.8 Examples

3.8.1 Benzene

Having developed the valence bond pictionary, our first example is the the aromatic benzene
molecule considered by Pauling and Wheland®’, with a 7t-system consisting of six p, orbitals
connected in a ring. According to the Lieb-Mattis theorem, the ground state is a singlet.
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Figure 3.2: Fulvene, showing both the molecular structure diagram and the m-system
lattice.

The five Rumer diagrams are given by the two Kekulé structures (all valence bonds between
nearest neighbors),

and . (3.54)

and the three Dewar states,

(3.55)

The Hamiltonian can be derived directly from the pictionary. The result is given by,

-3 0 o 1L 1A

0 -3 12 1o 1p

HH=jl 1 1 -2 0 o0 [ (3.56)
1 1 0 -2 0
1 1 0 0 -2

Here the ground state is right away

|GS) =0.4098 ©+© —-0.1780 ®+@ +® ,

confirming the original result of Pauling and Wheland®’.

3.8.2 Fulvene

The Fulvene (CgHg) molecule is depicted in Figure 3.2, and the 7t-system contains six
p, orbitals. While we could begin our analysis from the five Rumer diagrams, this is
undesirable because the 1t-system structure forces the pictionary to produce states outside
the Rumer basis.
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Instead the symmetry of the molecule is exploited in order to construct a complete
basis. From the pictionary (section 3.5), we generate the eleven singlet states shown in
Figure 3.3. A suitable choice of mirror symmetric or anti-mirror-symmetric superpositions
of the valence bond states, creates a proper basis,

1

/

—3J

6a 6b 7

S

Figure 3.3: Fulvene, molecular model states ordered by their diagonal element in the
Hamiltonian

[a) = 11), (3.57a)
p) = |th3a) + [th3p), (3.57b)
|tpe) = [iPaa) + [Pap) (3.57¢c)
[a) = t3a) = [P3p), (3.57d)
[e) = [haa) — thap)- (3.57¢)

In this basis the Hamiltonian separates completely into two subspaces composed of either
mirror-symmetric states or the mirror-anti-symmetric states. For simplicity we assume
that all Js are identical, giving the result,

-3 1A -1/ 0 0
2 =21h 0 0 0
0 0

H=J| -1 0 -2 (3.58)
0 0 0 -1 1
0 0 0 1 -2
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The overlap matrix takes an unusual form because the states are not normalized,

1 -1 1A 0 0
-1 22 -1 0 0
S=| 12 -1 1 0 0o | (3.59)
0 0 0 112 —11/
0 0 0 =112 3

The actual ground state of the system belongs to the parity symmetric subspace, and has
a total energy of Egg = —4],

las) o liba) = 319p) + 311Pe)- (3.60)

In principle the state should be properly normalized. Because our basis is non-orthogonal
the coefficients of the valence bond states in the ground state representation should be
interpreted very carefully. It is not correct to just take the ratios of the coefficients and
conclude that the Kekulé state [i,) constitutes 60% of ground state.

To emphasize this point consider a slightly different basis, where [¢,) and |i).) are
replaced with

|§bb’> = |11b50>+|‘1[)5b>1 (3.61)
[We) = [ea) + [ep)- (3.62)

In this basis the symmetric ground state is,
WGs) o< [a) = 31y) + 3er). (3.63)

with a somewhat larger total weight on the Kekulé state [i,).
Instead one should consider the normalized overlap between the ground-state and the
Kekulé state,

(Yalbcs)

VWcslps W (Wala) -

This shows that in this case the Kekulé state is a surprisingly good substitute for the total
ground state. The remaining 1/20 of the ground state is captured by the two other basis
states. However, one should not mistakenly think that the overlap with the two remaining
states is just 1/20.

Repeating the calculation of equation (3.64) for the different basis states allow us to
produce the overlap table,

(3.64)

|11ba> |l:bb> |lzbc> |lzbb’> |lzbc’>
(Pgs| 0.95 0.80 0.63 0.40 0.40

While the Kekulé state has the largest overlap with the ground state, it turns out that the
|Yy,) state with one ‘long’ valence bond also has a large overlap with the ground state.

The fact that two valence bond states with valence bonds of different lengths both have
a large overlap with the ground state, emphasizes that the length of valence bonds should
not be directly interpreted as the spin correlation length.

When replacing a resonating valence bond state with a large overlap state one should
ensure that the complete symmetry of the original state is retained in the replacement
state. Also the actual ground state energy is sometimes much smaller than the energy of
the overlap state, ()|H|ib).
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3.9 Benchmarks

We can easily benchmark the calculations done by our neoclassical valence bond theory
against exact numerical calculations of the parent Hubbard model described in the previous
chapter.

To get a sense of how well the valence bond theory works for systems of varying size, we
will choose to do the comparison for non-dimerized chains of varying lengths. We choose
to compare the overlap between the valence bond ground state [i,;) and the renormalized
projection of the Hubbard model ground state to the S subspace Plpy)/(Yu|Plpy). The
result is presented in Figure 3.4, along with the norm of the S projected norm (P y|Plipy).
This (almost perfect) agreement with valence bond theory independent of the value of U is

b) 1

0.998¢ 0.8¢
o 0.996¢ _ 0.6
3 B
] a
> =
© 0.994} 0.45
—o— U=0 ——U=0
0.9921 —e— U=ltl 0.21 ——U=ltl
—e— U=4ltl —e— U=4ltl
U=16ltl U=16ltl
0'992 4 6 8 10 12 02 4 6 8 10 12
n n

Figure 3.4: Comparing P projected ground states calculated by exact diagonalization and
VB theory. a) Shows the direct overlaps as a function of chain length n. b) The norm of
the ground state in the projected subspace S calculated from the parent Hubbard model.

somewhat surprising. If you remember that we performed an expansion in terms t/(E — U)
when deriving the effective Hamiltonian, then the obvious conclusion may be that the
expansion was solid and well-defined. However, the truth is a little more complicated than
this.

In order to understand this we expand our Hamiltonian to fourth order in the hopping
using equation (3.8),

1
E-QUQ

1

mQTP. (3.65)

H = PTQ( QTQ)2



40 3. NEOCLASSICAL VALENCE BOND THEORY

Half of the relevant t* order processes involving only two connections sharing a single site
tij and tj; (assuming t;; = 0), are given by

m - 0.
I - -027 - 012 - -027 — 1T or-TT.
— 102 — 17 or - TI7.
— =207 — -270 — -20T — 77 or-TlT.
- 120 — 17 or - TIT. (3.66)
N - 027 - -012 - 027 - TNT or-I17.
— =102 — TIT or =T1.
- 20T —> 270 — 20T — TIT or—17.
- =120 - TT or-17l.

The remaining half can be found by flipping all the spins and/or reversing the order of
sites.

In this case the effective interaction will always come with a prefactor, J3 = |t; jlzltjklz/ (E-
U)3, and the effective spin Hamiltonian capturing the above rules takes the form,

(2) 1 1 1
Hijk = _S(Si S]— Z)_S(S] 'Sk—Z)+4(SZ‘ 'Sk—Z). (3.67)

To keep the algebra simple, we will instead work with the local Heisenberg operator
Kij=8;-8;- % Assuming for brevity that all hopping integrals are equal, t;; = and
that the molecular graph have no 4-loops, we can easily write down the full Hamiltonian
summing over all possible connected three sites (ijk) in the molecule.

2 lt|*
Z]4H}j,j = E-op 3 (-8Kij — 8K + 4. (3.68)
(ijk) (i,7.K)

This means an enhancement of the singlet pairing between neighboring sites and an
additional triplet pairing between next nearest neighbors ((i, j)).

Let us consider the other case, where the two pairs of neighbors do not share a site,
meaning that we must consider two sets of neighbor vertices (i, j) and (k,I) with i,j =k, 1.
The resulting Hamiltonian is simply the direct product of singlet pairings between the two
neighbor pairs, and

@ _ LeltlPll> 2
ik (E-U)? E-2U

{/cij,/ckl}. (3.69)

The additional factor of 2 comes from counting all the possible sequences of spin flip
processes. For brevity we assume (again) equal couplings t;; =ty = t, and

@ _ 2 et
ikl E-2U (E-U)?

(Z’Cﬁ)z - {/c,-]-,/cjk} =Y K|

@j) (irj,k) (j)

(3.70)
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So starting from the product K? we must remove the additional contributions from all sets
of neighbor pairs sharing a single vertex, (i,j) and (j, k) with i = k.

If one remembers that the anti-commutator involving the spatial components (x, v, z) of
the Pauli spin operators behave like, {S/,S ib} = %6%;7, it is straightforward to show that

1
{Kijllcjk}:_E(Kij'i"cjk_lcik)' (3.71)
We can rewrite all this as
g 8t 2 (202 3 (3 + Ky K + 2K (3.72)
(E-U)?E-2U o ij " ik ik ‘ '

Expressing H in units of hopping [t| allow to write the Hamiltonian in terms of the
dimensionless parameter a = |t|/(E — U).

H' =4aK +32a°(K+K?) +4a® Y (2K + 2Kj - 3K ). (3.73)
(irj k)
When |U| > |E| instead (note that a changes with E — U),
H' ~4aK+16a°(K+K?)-4a® Y~ K. (3.74)
(k)
Ignoring the terms with three connected sites, both Hamiltonians are of the form
H' =a(E’, U)K +b(E',U)K>. (3.75)

Solving Schrodinger’s equation H'[¢p) = E’|), shows us that while the relevant energies
E’ can depend on the coefficient functions a and b, the actual eigenfunctions are still the
same. Hence the eigenfunctions to first order in J, are very close to the eigenfunctions even
up to J? order.

—2
n | Epg /il | D) At ER) /e 4\
2 2 2 - =7
4 | 4472 | -3.07  -4.62 A
6 | -6.988 | -3.87  -5.70 S-10f
8 | -9.518 | -4.53  -6.60 R
10 | -12.053 | -5.10  -7.39 all e
12 | -14.593 | -5.62  -8.18 I e
2 4 6 8 10 12

Figure 3.5: Comparison of the valence bond energies Efjlb), Eﬁ), and the exact tight-binding

ground state energy for chains of length n at U = 0.

To benchmark how well the ground state energy is determined, we calculate the energy
using the usual ¢-] model Ej with J = 4¢>/U, or the usual E(!) with J = 4¢>/(U - E). Lastly
we calculate the energy EMV) from the full self-consistent equation including corrections H(?)
(but ignoring the term concerned with three connected sites).
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n | Eg /| B e | ES) e D

2 |-0828 ] -1 -0.83 - =

4 |-1.952 | -2.37 | -1.65  -2.18 2

6 |-3.093 | -3.74 | -2.36  -3.11 s _
8 | -4.236 | -5.12 | -2.95  -3.93 _67+EJ“
10 | -5.381 | -6.51 | -3.48  -4.66 o)
12 | -6.526 | -7.89 | -3.96  -5.32 E®

2 4 6 8 10 12
n

Figure 3.6: Comparison of the valence bond energies Ej, Ef}? , Efjj), and the Hubbard ground
state energy for chains of length n at U = 4]|¢|.

n | Eg /| Epan | ED e ED
2 | -0.2462 | -0.2500 | -0.2462 - =
4 |-0.5826 | -0.5915 | -0.5711 -0.5986 §
6 | -0.9219 | -0.9359 | -0.8867 -0.9438 S
8 |-1.2621 | -1.2812 | -1.1924 -1.2868
10 | -1.6028 | -1.6270 | -1.4885 -1.6265
12 | -1.9437 | -1.9730 | -1.7759 -1.9624

2)

) gl

vb?

Figure 3.7: Comparison of the valence bond energies Ej, E (

Vl and the Hubbard ground
state energy for chains of length n at U = 16]¢|.

For chains of different lengths, and using various values of U the resulting energies are
shown in Figures 3.5, 3.6 and 3.7 along with the exact results. Obviously the second highest
order of perturbation theory yields the best result, but perhaps surprisingly valence bond
theory seems equally adequate at describing both non-interacting and strongly interacting
systems.

3.10 Conclusions

In this chapter we have derived the fundamentals of the neoclassical valence bond theory,
and shown how the valence bond method offers a controlled way of calculating many-body
properties perturbatively in the exchange coupling J/U = 4|t|?>/U?. The solution of the
molecular many-body problem converges quickly and the treatment can in principle be
calculated to higher orders.

We have shown how to calculate the molecular ground state, and how to consistently
deal with the non-orthogonal Rumer basis. We have further shown that even though valence
bond theory is restricted to a subspace of the Hamiltonian the results of the valence bond
energy calculation still offer precise results.



Chapter 4

Quantum Transport

The advent of nanotechnology have made it possible to build devices and perform ex-
periments on the molecular scale. One field, which this technological development have
furthered, owes its existence to a human urge as old as Mary Shelley, the author of “Dr.
Fankenstein”. The field of quantum transport mercilessly probes miniscule quantum systems
by passing an electrical current through them. And who knows, one day the molecules
finally produce an experimental physicist will experience the Eureka moment of bringing
one of those systems to life. ..

Quantum transport is mostly concerned with probing low dimensional systems in
the form of various semi-conductor hetereostructures®® or synthesized organic molecules.
Molecule experiments can be done in several ways. One approach is to deposit the molecule
as a thin film on a conducting surface and probe the electric properties of the molecule
using a scanning tunneling microscope (STM).?” Another approach involves creating a
break junction, where a small gold constriction is broken lightly by mechanical means,
creating a nano gap where the molecules can be deposited.?>%0 There exist various other
techniques, e.g. electromigration®’>'? or nano-sized junctions with graphene electrodes
formed from electroburning.®®

Vir
—@
'y I'r

electrode l A O N\ O Lo l electrode

Figure 4.1: Schematic of a quantum junction. A quantum system (in this case a molecule)
is coupled to two macroscopic electrodes — also called leads. By controlling the local
electrostatic environment by a backgate V,, and applying a voltage Vg across the junction
the current response I is measured. The size of the coupling between the molecule and the
electrodes are captured by the tunneling rates Iy, Ik.

43
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In general we shall model the typical quantum transport setup as a quantum system
(molecule) attached to two electrodes between which there is a bias voltage V;g. A backgate
Vg controls the local electrostatic environment. A schematic is presented in Figure 4.1.

In this chapter we will first describe a general quantum dot using the constant interaction
model, and use this model to obtain a phenomenological understanding the transport
features of a Coulomb blockaded quantum junction. Then we turn to a perturbative
analytical derivation of the quantum transport, focusing on the off-resonant coherent
transport. The treatment is finished with a quick discussion about the differences and
similarities of single-orbital transport and multiple orbital transport (a molecule).

4.1 The Constant Interaction Model

The constant interaction model®? is a simplified representation of the quantum system
energy levels. The model assumes that the quantum system (independent of the number
of electrons occupying it) can be described using single particle states with an energy
spectrum E;. The Coulomb interaction between the electrons in the quantum system can
be modeled by a uniform (constant) electron-electron repulsion, U. The backgate V, simply
changes the local electrostatic potential on the quantum system.

The many-body ground state energy £y then depends directly on the number of the
dot electrons N, and we have the energies £y = %UN(N -1)+ Zfil E|ij2)+eNV,. Then
the energy differences are

Ay - {AEWHW +U(N-1)-eV, for N odd, 1)
UNN-1)-eV, for N even,

where we have introduced AE; = E; —E;_;.

Charging spectrum Coherent spectrum
U0
L F
A2 t N
AE; +U MR LA HR

left
electrode

W . Q ....... o1
electrode electrode electrode

eVy eVy

Figure 4.2: The constant interaction model models a quantum dot as an artificial atom
which can be charged by tuning the gate voltage. The charge spectrum describes the energies
related to the charging of the quantum system. Whenever a sublevel is present within
the bias window there is resonant transport. The coherent spectrum with the interaction
removed is relevant for the coherent transport, which does not charge the system.
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In the constant interaction model two different charge ground states are degenerate
AEN =0, when the gate is tuned at

eV, =

8

{AEN/2 +UN  for N odd, 42)

UN for N even,

where we have removed a superfluous offset, U. The gate difference between consecutive
charge degeneracy points is also called the charging energy or the addition energy,

AEx,+U for N odd,
EN —{ N/2F or o (4.3)

add U for N even.

A graphical depiction of the charge degeneracy points of the constant interaction model is
shown in Figure 4.2.

4.1.1 Coulomb Blockade

Assume that the lead electrons are kept at a temperature kgT > hI'. When the coupling
rates between the molecule and the electrodes are much smaller than the electronic charging
energy, hly, il < E 44, the quantum system is weakly coupled to the electrodes. According
to perturbation theory the coherent transport processes are then suppressed by a factor
72T Tr/(E—E,q4)%. However, when the electron energy E resonates with the addition energy
Euda = E = —aeVy + ¢ electrons can tunnel trough the junction effortlessly. This is the
resonant transport regime, and by consulting the charging spectrum in Figure 4.2, it can
be shown that resonant tunneling is only possible when an energy level lies within the bias
window, i.e., AE; € [pr, pr]-

1% W’\v
o}z'
N A \

A Coulomb
RS

Figure 4.3: Charge stability diagram. The differential conductance dI/dV;r plotted as
a function of gate V, and bias Vir. Note the pattern of alternating diamond size in
consistency with the constant interaction model. Here we have chosen a symmetric bias
pur =eV/2 and ug = —eV/2. However, for asymmetric couplings, the edges of the diamond
structure are controlled by chemical potential, as indicated in the figure. Asymmetric
couplings will in general produce skewed diamonds.

Jha matching level Ha matching level

v,"‘\}\‘\v,/%v

Cotunneling lines

Charge
degeneracy
points

Usually only the bias voltage eVir = pg — pur can be controlled experimentally. It can
be argued that when the molecule couples more strongly to one electrode, the chemical
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potential of that electrode will be pinned to the quantum energy levels, and the bias will
only control the chemical potential of the other electrode. When the electrodes couple
symmetrically to the molecule, the bias controls the chemical potentials symmetrically:
pr=V/2 and pup =-V/2.

Figure 4.3 shows a typical charge stability diagram plotting the differential conductance
dI/dVigr as a function of bias voltage Vir and backgate V,. The resonant transport is
clearly visible as lines of enhanced conductance forming a Coulomb diamond structure.
Note the alternation of diamond size, which is consistent with the constant interaction
model.

In the off-resonant regime within the Coulomb diamonds, the resonant tunneling is
exponentially suppressed by the distance to the diamond edge as well as the inverse
temperature. At low temperatures electron transport is dominated by coherent processes
known as co-tunneling. The quantum system does not change charge state during these
processes and hence the (aptly named) coherent spectrum of Figure 4.2 applies. By
increasing the bias voltage co-tunneling can also happen via excited states of the quantum
system. This sudden increase in the number of transport channels is the explanation for
the co-tunneling lines, which show up in the charge stability diagrams (cf. Figure 4.3).

It is well known that many semiconductor quantum junctions can be Coulomb blockaded,
and experiments have also found molecular junctions exhibiting such blockade effects.”

4.2 Current

Applying a bias voltage V across the molecular junction causes a current, I to flow through
the device. We calculate this current perturbatively to second order in the coupling between
the molecule and the leads. Assuming that the molecular junction is in the Coulomb
blockade regime with the couplings being small compared to the addition energy, this
perturbative expansion is well-behaved in the off-resonant transport regime.

Both the left and the right electrode are modeled as a non-interacting electron gas at
thermal equilibrium, with an electrode chemical potential y, and a density of states p,(¢),
and are described by simple quadratic Hamiltonian,

Hy =) Eavlhvolave = f depa(e)eh (e)e,,(e) with a € {Left, Right}  (4.4a)
vo o

Here &, = €4y — po, Where &,,, is the dispersion of electrodes and v are the quantum
numbers of the electrode continuum states.

The molecular electronic system is described by a Hamiltonian H,,. With N electrons
occupying the molecule, it is solved by the electronic eigenfunctions |171)ZN Y with eigenenergies
ElN . Let us introduce the excitation energies s? = EIN - Eé\’ . The energy costs of adding
an electron to the N electron molecular eigenstate IQD% ), are given by ehm = EN+1 _EN.
and the energies needed to remove an electron from that same eigenstate, are given by
eh =EN_EN-T.

The presence of a backgate V, allow us to tune the electrostatic energy of the molecule,

Hy = —xeV,N, (4.4Db)

where we have introduced the dimensionless electrostatic coupling parameter «. By adding
this term to the molecular Hamiltonian the energies of the N-electron molecular eigenstates
|1,blN) are shifted to EIN = EIN —KxeVyN.
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The starting point for our perturbative analysis is the completely uncoupled system,
described by the Hamiltonian,

Hy= > H,+H,+H, (4.4c)
a=L,R
Introduce a hybridization Hy, which couples the molecule and the electrodes. For brevity

we assume that only one molecular orbital i, couples to either lead a = L, R. In that case
the hybridization can be written

Hr = ) (tai,€f sCave +h.c.). (4.4d)
a,Vv,o0

Applying a bias voltage Vi g = puy — pg across the molecular junction by tuning the chemical
potentials of the two electrodes, the system can sustain a current through the molecule by
the tunneling of either electrons or holes from one electrode to the other.

4.2.1 The Fermi Golden Rule

The transition of a quantum system from an initial state |i) to the final state |f) happens
at at rate I'r;, given by Fermi’s golden rule [14, p. 86-88],

271 A2
Iy = 7|<f|T|z>| S(Ef —E;). (4.5)
Here the T-matrix is given as,
P(E) = Hy + Hp——— 1 (4.6)
T T El - I:IO + ll/] ‘ ‘

4.2.2 Sequential Tunneling

There are no coherent transport processes when expanding to second order in the hybridiza-
tion I—AIT. However, sequential transport with electrons incoherently tunneling on and off
the molecule are permitted.

The rate at which electrons tunnel onto the molecule and excite it from the eigenstate
n to the state m is given by

N R 2
T = Tang(ehm — e Vo) (PN el 1w (4.7)

Here we have defined the rate I, = 2n|taia|2pa/ h if assuming a constant density of states,
Pa(€) = po- The ny(e) =1/(exp((€ — po)kpT) + 1) is the Fermi-Dirac distribution function.
Similarly one can define rates for the holes tunneling off the molecule

R 2
T =T (1= 1 (e Vg — enh) ) (¥ 1€, N[ (4.8)

At vanishing temperature T — 0, the Fermi-Dirac distribution approaches a Heaviside step
function, and within the off-resonant transport regime, either Ly or I’,ﬁ% vanishes. Hence
in the zero-temperature limit sequential tunneling only belongs to the resonant transport
regime, and turning up the temperature allows for an exponentially suppressed sequential
tunneling tail in the off-resonant regime.

At an infinitesimal bias p; — pg, the calculation becomes particularly simple and
the sequential tunneling rates vanish anywhere but outside the parameter regime where
|£€g]| < |eVir|.- Hence sequential tunneling marks the edge of the Coulomb diamonds, and
the conductance due to sequential tunneling at the charge degeneracy point is usually
proportional to the quantum of conductance Gy = 2e%/h, with a proportionality constant
FLFR/(FL + FR)
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4.2.3 Co-Tunneling

To fourth order in the hybridization, Hy, we find the first contribution to coherent electron
transport across the molecular junction. Initially the molecule is in the ground state of the
uncoupled system, i) = [\¥,) = |\P§>|\I’OL>|\I’0N> We then consider the transition to a final
state |\V,) = CAZ; U(Eﬁ)fay(ea)l\l’,f\’ )|\I’0R)|\I’0L) with one electron transferred between electrodes
a and f, and the molecule possibly transitioned to some eigenstate |[WNY. The Fermi
golden rule (4.5) gives the rate,

2

—Hr|Wo)| d(eq +en—¢p). (4.9)
o—Ho

1

27 X . A
7 (earep) = - [CE KIGICRG 160y () () Hr -

The next step is to insert the expression for Hy, keeping only terms in the calculation which
effectively transports an electron between the electrodes. Next, utilizing that the initial state
is an eigenstate of Hy|¥,) = (E0L+E0R+Eé\])|\lfo> and that H, ¢, (€)|Wao) = (Egq —€)C,(€)[Wy0)
and Hyé! (€)[W,0) = (Eoq — )¢} ) W,0) equation (4.9) reduces to

o

27 . N 2
Iog (earep) = S-Itwi Pliri (1= figo(ep))(fay (ea)) D |Phio(ea) + g (ea)|0lea + &0 —2p)
n

Here the two amplitudes p and h are given by,

1

yo N st

Vo, w)=(¥,_ | - ¢ W), 4.10

pm,n( g ) < ml layKeVg+a)+Eé\]—Hm+10+ lﬁgl 7’l> ( )
1

W (Vo, ) = (W, |éf _ e W) 4.11

m,n( g ) < ml lﬁGKeVg+a)_E(I]\]+Hm_i0+ Iﬂ(Vl 1’l> ( )

We assume now for simplicity that the molecule always relaxes to its ground state
after each tunneling event. This can be achieved in the limit of asymmetric couplings, e.g.
|tri,| >> |tri, |, where the molecule is in near perfect equilibrium with one electrode.

When applying a bias voltage eVir = pr — pr > 0 across the molecule, the total current
is proportional to the sum of the rates of all the current carrying processes taking place.
When considering electrodes with a constant density of states, p,, the total current is
simply

I'=1Igp—Ir=epL PRJ dé‘LJ deg » (Tre(er €1) ~Trr(eL €g))- (4.12)
—0o0 -0 oy

When the temperature is the smallest energy scale of the system, we can approximate the
Fermi-Dirac distribution with a Heaviside step function. Assuming V > 0, the total current
can then be simplified to,

eh Vin/2 0 yo 0y, 70 2
I(Vgi VIR) = EFLFRZ O(leVir| - &y)dw Ihm,()(vg; W = &y) + pm,o(vgi w)| .

0
m,o _eVLR/Z"'Em

(4.13)
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And inserting a complete set of states the two amplitudes can be written,

(Nl BN ey

YoV w) = 7 4.14
PmntYs ; KeVg+w—efn+iO+ (4.14)
. (W Ny e e, )
hm,n(Vg: w) = T . (4.15)
] KeVg+w—£ln—10+

While the poles of the p and h amplitudes all lie outside the off-resonant regime, we can
ignore their imaginary component, i.e., |p + h|> = (Re(p) + Re(h))?. In a Hubbard/PPP
model the ground state can be calculated by exact diagonalization as shown in section 2.3.
Then the particle and hole amplitudes can be calculated using the Lanczos method as
described in section 2.3.2.

4.3 The Feynman-Dyson Orbitals

Let us define the Feynman-Dyson orbitals for a given charge state, N,

(iolph) = (B el ), (4.16a)
(iolpn) = (BN 16, 1Y), (4.16b)
Here we have written the Feynman-Dyson orbitals as state kets, hinting that they constitute
a basis in some single particle Hilbert space. In single-particle models like the Hartree

self-consistent-field or the non-interacting Hiickel models, the Feynman-Dyson orbitals are
identical to the molecular orbitals.

Feynman-Dyson orbitals

ch=-5.28 ef=-4.65 sg=-4.09 €p=3.25 ¢P=5.22 eP=5.59
o . °) (]
O~ *Q » o-«%o L) al r~C )
o @ (] o é e o - ] g
[ 2 °
e o © ® od o o ® = B ) i 9
o o0 ® . [ 2 3 c @
Hickel orbitals
€)=-2.56 eN=-2.13 €)=-1.63 €P=0.729 €P=2.56 €b=3.35
[ )
® ~Q ® oo % 0% @ P
@ o Qo o { @ L ° ® o L] °
e O ® Y o=d o ® e O o ®
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Figure 4.4: Feynman-Dyson orbitals (only the six closest) for the neutral acenaphthylene
7t-system, and the Hiickel molecular orbitals (only six closest). The largest discrepancy
happens for the 5’17 case, where some Hiickel nodes have vanished in the PPP model
Feynman-Dyson orbital, or at the eg case, where the orbitals differ substantially.

The Feynman-Dyson orbitals and the excitation spectra constitutes the only requisite
ingredients for the sequential tunneling calculation (cf. equation (4.7)) and the co-tunneling
calculation (cf. equation (4.15)). The molecular structure determines the Feynman-Dyson
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orbitals, and in the next chapter we will discuss some relations between molecular structure
and the Feynman-Dyson orbitals, and will investigate the consequences for the off-resonant
transport.

For the small set of molecular systems we have considered, the closest Feynman-Dyson
orbitals of the PPP model are quite similar to the Hiickel molecular orbitals. As a “typical”
example consider the neutral acenaphthylene 7t-system presented in Figure 4.4.

When the lowest Feynman-Dyson orbitals d)g/h vanish on certain sites, sequential
tunneling current can be suppressed because the molecule becomes trapped in a single
quantum state.'* This is the common explanation for negative differential resistance®”
present in e.g., charged benzene.!'"

4.4 Conclusions

This chapter presented a short review of some analytical methods for understanding and
dealing with electron transport through quantum systems. The main result is the expression
of the co-tunneling current (cf. equation (4.13)) expressed in terms of particle and hole
amplitudes, which we will return to in the coming chapters.



Chapter 5

Quantum Interference

In the early 1800s Thomas Young demonstrated the wave nature of light using a double slit
experimental setup. Coherent light passing through the two slits interfered destructively
or constructively depending on the path length difference between them, forming the
well-known interference pattern shown in Figure 5.1.

It is even more surprising that Young’s double slit experiment works with single particles,
where the particle simultaneously “follows both paths” through the double slit and interferes
constructively (destructively) with itself. This is indeed impossible in classical physics, and
it makes interference an inherent quantum mechanical phenomenon. Young’s double slit
experiment have also been carried out with single electrons,?® or even large molecules,*®
hence proving the wave nature of their propagation.

constructive
destructive
— constructive

o — O 2
/ §
<
O / °3
~ g
[
O z
initial state final state

Figure 5.1: Young’s double slit experiment demonstrating single particle interference.

It is easy to translate the concept of single particle quantum interference to molecular
quantum transport. Naively, electrons tunnel through the molecule and depending on the
molecular structure, the propagation of the electronic wavefunction is either enhanced or
destroyed due to constructive or destructive interference. Even though this naive picture is
oversimplified, quantum interference effects are present in molecular junctions.

The ability to control such quantum interference effects have potential applications in
various fields such as molecular quantum information processing,'*® or for the design of
effective molecular thermoelectric devices. 107114

In this chapter we shall examine quantum interference in the off-resonant transport
through molecular junctions in the Coulomb blockade regime. Several quantum chemical
numerical calculations have already investigated this phenomena in strongly coupled
systems.0°0,02,103,104,119 §ome analytical results have been obtained for non-interacting

o1
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model systems.®* Quantum interference in molecules have also been found experimentally
in several experiments for quinone molecules.?”:%7

We describe the molecule m-system using the full Pariser-Parr-Pople model from
equations (2.15)-(2.18),

HPPPZT+I:I +HU+HV (51)
ZZ(Z]ZOA]U—'_t]l]Uzo) (52)
@jyo=11
=D mifi (5.3)
i
Hy +Hy =) Ui(hi - 3) Z Vii(i; — z;)(A) - z)). (5.4)
i i#]

Here (i, j) represents all nearest neighbor pairs.

In the following we will divide our analysis of the transport through the m-system
according to the electronic ground state degeneracy. Most of our attention will be focused
on the investigation of transport through a molecular system, which has a non-degenerate
electronic ground state. Later, we also analyze transport through spin-degenerate doublet
ground states.

5.1 Non-Degenerate (Spin-Singlet) Ground State

Let us start simple, by assuming that the molecular ground state under consideration is
non-degenerate. Later in this chapter we will also investigate spin degenerate ground states,
but for now we will try to make a clear case of quantum interference in the off-resonant
transport through a non-degenerate (hence spin-singlet) N-electron molecule ground state.
Remember that this means that we consider a charge state with an even number of electrons
N. The current through the junction at zero temperature T = 0 is given by equation (4.13),

eVLR/Z 2
I(V VLR _—FLTLZJ |€VLR|—E da)|h V w — )+me(V a))| .

eVLR/2+em

(5.5)

At zero-bias we can drop the condition that one electrode couples more strongly to the
molecule (cf. section 4.2.3), and the off-resonant conductance is simply,

= —rLrR > g5 (Ve, 0) + pg (Ve 0)|’ (5.6)
o=",1
with the particle (p) and hole (h) amplitudes,
PV, w)—ZOPONlC il il L (5.7)
00178 ; KeVg+a)—£ZO+10+ ' '
(Wollet MNP e, 1Y)
aV
(Ve 0) = ! . (5.8)

_h Lo+
p KeVg+a) €10 10

Note that equation (5.6) only holds when the N-electron charge state is also the total
ground state, which is true for gate voltages xeV, € [530' ego]. Note also that we have
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ignored the contribution from sequential tunneling, and we should only trust this expression
anywhere near the charge degeneracy points at sg{)p .

This zero-bias conductance formula and the transport amplitudes of equation (5.8)
houses several clues about molecule quantum interference, and in the following we will in
some detail derive those constraints.

The hole and particle amplitudes in equation (5.8), is a sum of simple poles located at
gate voltages keV, = e%p . As shown in Figure 5.2, the relative sign of the poles at eg{)p

puts a topological constraint on the quantum interference features:

1. When the two divergences share the same sign, one of the amplitudes, p or h, goes to
infinity, and the other goes to minus infinity, when approaching the pole from point
within [ego ;ego]. Hence the total amplitude h+ p must cross zero an odd number of
times.

2. On the other hand when the divergences have opposite signs h and p will both go
to positive or negative infinity from within [ego;ego]. This means that the total
amplitude h + p must cross zero an even number of times, meaning an even number
of zeros in the conductance G.

While this fact have been sporadically mentioned for non-interacting systems,’% 10112 we

will show that many more interesting consequences come from this simple observation.
To formalize our arguments we introduce a classification of the quantum interference
pattern, and a transport process with an odd (even) number of nodes belongs in the odd
(even) quantum interference class. Based on this reasoning. we conjure up an entity
capturing the quantum interference class, by taking the ratio of the numerators of the two

dominating poles of the total amplitude p + h located at eggp )
- Z?l(\yol\]lé;io'l\y&’l[_l ><\I]é>ll_1 |61R0|\I]0]\I>
Do (o 16, 10" X, 1€, 19

110

(5.9)

where we have added a sum over the degeneracy of the N +£1 ground states, |\I’({\r]ni1>. Here
Qi > 0 means that the two divergences share the same sign resulting in an odd number of
nodes in the off-resonant coherent transport, while Qi < 0 means that the divergences have
opposite signs, and the result is an even number of nodes. This interference classification
lends itself to the graphical representation shown in Figure 5.2.

Applying equation (5.6) and the definition of the Qi parameter, it is possible to interpret
the destructive interference mechanism of each node. In the odd interference class the
particle amplitude, p, and the hole amplitude, h, will always have opposite signs and cancel
each other near the middle of the off-resonant regime. We will therefore refer to this node
as “particle-hole interference”.

On the other hand, the two-node case (even interference class) is an example of
destructive single-particle interference within the particle (or hole) transport process. If
the nodes are located near the edge of the off-resonant regime, the destructive interference
is dominated by either particle of hole amplitudes, because the other process is suppressed
with a factor inversely proportional to the addition energy, |£go - egol (the width of the
off-resonant regime). However, when the interference pattern is very asymmetric, with
either Qi ~ 0 or Qi <« —1, this interpretation becomes problematic, and any destructive
interference in the even interference class is a more complicated mixture of single-particle
and particle-hole interference.
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Even (Qi < 0) Odd (Qi > 0)
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Figure 5.2: Quantum interference classification. Here the even and odd interference classes
are determined by the relative sign of the poles at xeV, = g(i)zép . The highlighted red shows
the p + h amplitude within the charge state under consideration. Note that the interference
mechanism can be determined confidently in these cases with |Qi| close to unity.

5.2 The Pairing Theorem for Alternant Hydrocarbons

We now turn our attention to hydrocarbon 7-systems, and their corresponding PPP model
with p; =0 and z; =1 for all sites i. Let us further restrict our considerations to bipartite
(also referred to as ‘alternant’) 7t-systems where the lattice sites can be divided into separate
sublattices A and B, where members of A are only connected to members of B and vice
versa.

It turns out that the eigenstates of such systems are paired,?* and to investigate this
Rushbrooke-Coulson pairing theorem we introduce the anti-unitary particle-hole transfor-
mation working on complex numbers z and creation operators in the following way,

Azet AT =27 (-1)'¢, (5.10)

10

Here the prefactor (—1)! takes different values when i belong to different sublattices.

. 1 forieA
-1) = . 5.11
=1 {—1 for 1 € B ( )

Alitig = ) A" = ~(iig — ), (5.12)
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A

and by extension A(A; —1)A" = —(#;, —1). From this it is easy to prove that
ATAY =T, ARy AY =y, and ARy A" = H,,. (5.13)

However, transforming the local chemical potential gives, .AI—AIM.AVr = —I—AI#. This explains the
restriction to hydrocarbon 7-systems, where we can take all y; = 0. Hence for the considered
systems, the total Hamiltonian is invariant under the transformation AHAY = H.

Applying the anti-unitary transformation to the completely empty state |0) produces
the completely filled state |2N,),

A0 = |2N,). (5.14)

Applying the particle-hole transformation to a state [p1') yields |p2) = Alwl). The |pY)
states belongs to the N, — N charge state, and transforming Schrédinger’s equation, it is
easy to demonstrate that the transformed states are also eigenstates,

AHAT Ay =E, AlpY) = HApY)=EAp)y = HIp))=E,lp)), (5.15)

In fact the [p)) even share the same eigenenergy spectrum, E,. Assuming that |} ) is
non-degenerate, the transformed state |qbl,>] ) is also non-degenerate and up to a phase factor
y € {0, 7t} we have,

1Ny = 7 [Ny, (5.16)

In general we will say that the N-electron eigenstates [p) ) are paired with the (2N, — N)-
electron eigenstates |1,b,3N”_N). In the special case of half-filling, 2N = N,, the transformed

state is given by
Ay = eV ). (517)

5.2.1 Spin-Degenerate States

As mentioned, the above derivation only holds true for non-degenerate states |v,bnN Y. For
degenerate states, the analysis becomes a little bit more involved, so in the following we will
only consider the (very common) spin degeneracy. As mentioned in section 2.2.2 the total
spin operator S? and the spin projection S$* commutes with the PPP Hamiltonian, and
hence each eigenstate |1,b£:] Y will be characterized by some total spin S and a spin projection
quantum number m € —=S,-S + 1,...,S. Eigenstates belonging to the same spin S multiplet
will be degenerate, and in general a state [p) (S, m)) must transform as

AN (S, m)y = e |paNN (S, —m)). (5.18)

Again y € 0,7t. The [}V (S, m))-states are related by a “spin rotation”, which reverses the
spin projection quantum number, m — —m. To express this relationship mathematically
we introduce the general spin lowering operator $~ = §* —i$¥ and the spin raising operator
St=38%4+i8y. Acting with either on a spin state produces,®’

STIYN (S, m)y = (S +m)(S —m+ D)yl (S, m-1)), (5.19)
STWN(S, m)y = (S —m)(S +m+ 1)|PpN (S, m+1)). (5.20)
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Repeated application of these spin operators by a number of 2m times, produces the “spin
rotated state”,

—m+1

Sy (S, m)y = | | VS +m(S —n+ DIy (S, ~m)y = Msylp) (S,-m)),  (5.21)
m—1
(S (S,-m)y = | | V(S+m(S=n+1lpl (S, m)) = Myl (S,m)).  (5.22)

Here we introduced the (positive) pre-factor Mg, = T:__lm \/(S +n)(S—n+1). The spin
lowering and raising operators transform under the anti-unitary transformation like

AS—AT =8t ASTAT=-§". (5.23)

Finally, transforming equation (5.21), gives us that

2N,-N

1>l I_[ Myl " (S, +m)) = eV Mg,lp " (S, +m)). (5.24)

Note that for half-integer spin, 2m is odd, and the phases between the two transformed
states must fulfill that e!(?=?") = -1, while for integer spin, 2m is even, and /77 = 1.

5.2.2 Interference Classification of Non-Degenerate Alternant Hydrocarbons

For the alternant hydrocarbons at half-filling, N, = N, with a singlet ground state |\If0N ),
the Qi classification can now be readily evaluated.
First, we note that the orbital overlaps can be transformed,

(W, 1) = (e AT A AT AN
= (~1)(@y " (1) e Ry

= (=) 00w | -1ye g, (5.25)
And hence the classification becomes
VI N, MY
(\I,NlclRal\yNH)(\I,Nﬂl :rLal\yN>

(‘I’Nlc Ao el 1Y)
<\Il()I\I|CiRG|W0N+1><‘I"oI\]+1|520|\I’(§\]>
= (~1)*ix, (5.26)

— (_1 )iL+iRei<VO_Vn) (771

Quite clearly we conclude that

Qi = (5.27)

1 when i; and ig belong to the same sublattice,
—1 when i; and ip belong to the different sublattices.

Define the equivalence relation between lattice sites, where i = j, if both i and j belong to
the same sublattice. Then the quantum interference belongs to the odd class if i} =i, and
the quantum interference pattern belongs to the even class when i; # ir. We shall refer to
this result as the coloring rule, because a simple coloring of the lattice in alternating black
and white, makes it easy to calculate the interference class (cf. Figure 5.3).
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Figure 5.3: Coloring rule for naphthalene: Here the solid arrow marks the orbital which
couples to one electrode, while the dashed arrows marks orbitals potentially coupling to
the remaining electrode. Note how the simple coloring predicts the interference class, with
same colored orbitals in the odd class, and differently colored orbitals in the even class.

5.3 Examples (Spin-Singlet)

Having established the pairing theorem and the simple coloring rules for predicting their
quantum interference class in equation (5.27), we will look at some simple examples of
bipartite lattices presented in Figure 5.4. It is left as (an easy) exercise for the reader, to
verify that the coloring rule indeed predicts the correct interference class.

o
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@ ‘ol /
O, Uk L/ °
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[&] o~ —_— e J—
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S 107 8l oreereenennnn, : 1 Even
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o 10—67 .::, ‘-:- - 9 ===
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Figure 5.4: Simple bipartite Hubbard model systems, and their zero-bias conductance at
half-filling. Note that the interference patterns obey the coloring theorem of equation (5.27).

For all example molecular junctions we calculate the transport by Lanczos diagonaliza-
tion of the full PPP model and subsequent numerical calculation of the relevant resolvents
in equation (5.8). In general we will take I} Tz = 0.01e?V2/G,. The examples have been
chosen for pedagogical reasons. However the Lanczos numerical diagonalization sets an
upper limit to the size of the 7-system which (currently) can have no more than 16 orbitals.

5.3.1 Benzene

Our first chemically relevant example is the benzene molecule, where it is well-known®’

from both theoretical and experimental work that the meta-substituted neutral molecule
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exhibits destructive quantum interference, as shown in Figure 5.5. It is obvious that
meta-substituted benzene connects two sites belonging to the same sublattice, and hence
we classify the interference as belonging to the odd interference class.

a) Zero bias conductance lg(G/Go)

=

= 3
(=} -5 —_
-> -> g 10 S
~
Ne =6 107 =10 3
-5 0 5 -5 0 5
keVy [eV] keVy [eV]
b) . Zero bias conductance log(G/Go)
10
< 5 10°
->
N, =6 .
-5 0 5
keVy [eV] keVy [eV]

Figure 5.5: Conductance and interference of neutral benzene in the two cases of (a) para-
substituted benzene and (b) meta-substituted benzene. Note that the interference in
meta-substituted benzene happens between particle and hole transport processes, and
hence it is not an example of single particle interference.

While some speculated that the interference in benzene, is due to single-particle
interference between the two paths around the circular molecule,”! we can from Figure 5.2
directly conclude that the destructive interference in the off-resonant transport through
meta-substituted benzene is due to interference between hole and particle transport processes.

5.3.2 Quinone

In our next example we attach two carbon-atoms to the benzene molecule, and end up with
a quinone-like chemical structure. Our calculation of the off-resonant transport through the
neutral para-substituted molecule is presented in Figure 5.6. In this case the connecting
orbitals belong to different sublattices and the off-resonant transport belongs to the even
interference class. Because Qi = 1 we safely conclude that the destructive interference
happens completely within the particle transport process, p (and conversely completely
within the hole transport process, h). We will return to the “single-particle” interference in
the next section, where we will investigate it using neoclassical valence bond theory for the
slightly simpler four-orbital model.
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Figure 5.6: Quinone-like structure and the result of our transport calculation. The para-
configuration places the interference in the even class, and we do indeed find two destructive

interference nodes.

As a fun example we may also show an extreme case with a ridiculous amount of
four quantum transport nodes, by considering the [4]-dendralene cross-conjugated system
presented in Figure 5.7. As an emperical rule the number of interference nodes

Zero bias conductance

10
7 3
- o -5 —
3 10 ﬁ
N

Ne == 8 ~10 m
10
-4 -2 0 2 4
keVy [eV] keVy [eV]

Figure 5.7: Quantum interference belonging to the even class with an impressive four nodes
in [4]-dendralene. Note the interference pattern near each charge-degeneracy point with
two nodes zero bias, and two nodes at finite bias.

However, the coloring rule only applies at half-filling. The quinone-like molecule also
exhibits destructive interference in the quarter-filled case as shown in Figure 5.8. It turns
out that in this case Qi > 0, and the resulting interference belongs to the odd class. While
|Qi| is not of order unity, the destructive interference still happens between particle and

hole process.

5.4 Robustness

In this section we shortly discuss the robustness of some of the quantum interference results
we have obtained so far.
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Figure 5.8: Quinone-like structure and the result of a transport calculation in the quarter-
filled case. Note the conductance asymmetry as a function of gate. In this case the
interference also happens between particle and hole transport processes.

5.4.1 Next-Nearest Neighbor Hopping

We have established the coloring rule (5.27) for alternant hydrocarbons ignoring the small
but non-zero hopping between next nearest neighbor orbitals. By adding such next-nearest
neighbor (NNN) hopping, all molecules become non-alternant. Hence NNN hopping could
potentially invalidate our coloring rule for alternant hydrocarbons. However, the NNN
hopping is usually about an order of magnitude smaller than the nearest neighbor hopping,
and it turns out that our quantum interference classification is quite robust under the
introduction of next-nearest neighbor hopping. The quinone-like molecule serves as a
prototypical example, and in Figure 5.9 we plot the interference number Qi as a function
of the NNN hopping amplitude.

4l
>,
meta
meta 1’4
0.5+
-
o | SETITTTRRIIIIPRRRIIPIRTIPNY o ST
para - -
-0.5} 1 | para
-1 .
-0.5 -1 -1.5 -2
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Figure 5.9: Quantum interference classification Qi as a function of the next-nearest-neighbor
hopping tnnN, for the quinone-like hydrocarbon attached to leads in two different ways.
The quantum interfererence classification survives for even large values of the next-nearest
neighbor hopping, and only at fyyn =~ —1.5 €V (which is comparable to the nearest neighbor
hopping amplitude), does the class change.
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5.4.2 Hetero-Atoms

The 1,4-benzo-quinone molecule is basically a benzene molecule with oxygen atoms sub-
stituted at the para orbitals. For hetero-atomic molecules the pairing theorem is broken
by the presence of non-zero values of the local chemical potential, yp # 0. However, the
Qi-classification is expected to hold within a certain parameter regime. Calculating the
value of Qi for different values of yp and Up produces the plot in Figure 5.10. The sudden
shift of Qi is due to a change of the ground state in either the 7 or 9 electron charge state.
While the pairing theorem seems to hold for the 1,4-benzo-quinone, this conclusion
depends heavily on the effect which y and U have on the excitation spectrum. In general,
larger molecules means smaller excitation energies, and hence larger effects of p and U.

Qi
a)
(o] . )
-> -> é) ’ 1
S . 0
é ' -1
N, =8
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o) . 4
€ | :
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-
é | .
Ne =12 0 -2 -4 -6 -8 -10
]

po [eV

Figure 5.10: 1,4-Benzo-quinone with oxygen at the red sites. The value of Qi has been
calculated for various values of yp and Ug. Different semi-empirical parameters for have
been found, but they are probably close to pp = -3 eV and Ugp = 1.5U¢, which does not
change the interference class. Note how the attached sidearms changes the red region of
positive Qi, hence confirming our intuition that the ground state of larger molecules may
more easily change interference class when substituting carbon with hetero-atoms.

5.4.3 Transport Through the o-System

Note that the quantum interference effects are all shown on a logarithmic scale, which
can make it hard to interpret the robustness of our calculation. Additional transport
channels through e.g. the o-system can destroy the interference effect.”’ As an example
we consider the transport through para-substituted benzene with various added constant
offsets presented in Figure 5.11.

One should note that transport through the o-system is expected to be suppressed by
a factor proportional to the energy difference between o-system and 7-system.
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Zero bias conductance

keVy [eV]

Figure 5.11: Zero-bias conductance of the m-system of meta-substituted benzene with
an additional conductance channel through the o-system. For small values of G, the
interference is still visible, while large values of G, quench it completely.

5.5 Quantum Interference in Hiickel Models

Let us shortly turn our attention to the simpler non-interacting Hiickel models, which is
equivalent to our full PPP model, when setting the Coulomb interaction U = 0. Hence,
the pairing theorem also applies to these models, and we do not expect large discrepancies
between the interference features of the full PPP models and the Hiickel models.

For non-interacting models the zero-bias transport is calculated in terms of the trans-
mission T(E)using the Landauer formula,”® G(E) = GoT(E). The transmission through the
molecule can then be given explicitly by the particle and hole transport amplitudes,'?:64

1
®\E-T +iy ml,cl e,

D(

T(E) = *n*(vac|¢, cAerlvac) (5.28)

with # = hl} + hIx. This can be then be written in terms of particle and hole amplitudes
2|Z (Poo +hao) (5.29)

where the infinitesimal 0" in the definition of the particle and hole amplitudes have been
replaced by the finite 77. In the limit of small electrode couplings I7, Iz < ¢, this reduces to the
off-resonant conductance expression of equation (5.6). Hence, the interference classification
can be directly carried over to non-interacting Hiickel model transport calculations.

For small hydrocarbon mt-systems, we have already showed that the Hiickel model ground
state can have a rather large overlap with the full PPP ground state (cf. Figure 2.4). The
most prominent dissonance between the interference features of the two models, happens
for the alternant hydrocarbons in the even class with two interference nodes. In a Hiickel
model the nodes become degenerate and produces the fine-tuned anomaly of Figure 5.2.
An example is shown for the quinone-like molecule in Figure 5.12.

The coloring rules are especially valuable here, because they straight-away reveal the
degeneracy of the nodes in the even interference class. The PPP Coulomb interaction
tends to lift this node degeneracy. A similar effect can be achieved in the Hiickel model by
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Figure 5.12: Comparison of the calculated transport for the Hiickel model and the PPP
model of the quinone-like hydrocarbon. The Hiickel model produces a single degenerate
node, which is split in the full PPP treatment.

opening the charge state gap through the (artificial) introduction of a constant interaction,
U. It is not imperative that Hiickel+U and PPP models should always share interference
node structure, and it would be interesting to find 7-systems where the models produce a
different number of interference nodes.

5.6 Quantum Interference in Valence Bond Models

In this section we will examine interference in off-resonant transport using the neoclassical
valence bond theory presented in chapter 3. In fact it was the valence bond theory which
originally brought the quantum interference classification of alternant hydrocarbons to our
attention.

Generally speaking, transport through a P|W) state, is composed of three parts: Initially
an electron (or a hole) is created in the orbital connected to one electrode, propagated
through the molecule and then removed at the orbital connected to the other electrode.
However, the -] Hamiltonian have equivalent rules regarding holes and electrons, except
for the relative minus in their hopping entries of equation (3.32a)-(3.32b).

75| @) = 1| @l®). .0
i j

Tij] ®)=-t;|@ ) (5.31)
' J

The powers of the Hamiltonian governs the propagation of the doublon (holon). In alternant
hydrocarbons the relative sign between doublon and hole propagation is then given by
(=1)", where m is the number of hops between the two connecting sides. This notion
implies that the transport through the projected ground state P|W) also follow the quantum

interference coloring rules for alternant hydrocarbons stated in equation (5.27).
While the quantum interference classification follows easily from valence bond theory, a
natural next step is to analyze the necessary circumstances for quantum interference addi-
tional nodes. According to an empirical rule'"® transport through conjugated (alternating
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double and single bonds) molecular paths interferes constructively, while transport through
cross-conjugated paths interfere destructively.

This semi-empirical rule works partly because cross-conjugated paths often fall into the
odd quantum interference class. Here, we will focus on the cross-conjugated molecules in
the even interference class, like this one:

Cross-conjugated path four-orbital model

The minimal example is the four-orbital chain attached to electrodes at the two central
orbitals. While this transport path is itself conjugated, the following treatment can be
generalized to larger cross-cnjugated molecules.

The ground state of the four-orbital chain has the following valence bond representation
in the projected subspace,

PI‘I’OA‘)zcl'/ />—C2|X>, with ¢ ~ 0.82, and ¢, ~0.30.  (5.32)

Because the interference belongs to the even quantum interference class, a node should
be present in the particle amplitude alone (cf. Figure 5.2. The particle amplitude for an
electron tunneling through this molecule is given by equation (4.11). For brevity we will only
calculate transport amplitudes in the projected space S of single occupied orbitals. This
calculation becomes close to exact in the large U limit, where most of the wave-function
weight is indeed in this subspace. Formally we approximate,

1 1
00 = (Wles, ———— 0, IWe) = (WP &, ———— ¢ P9, 5.33
Poo O|302+ A, 261V ) = (Wl 30 tEg—H %) (5.33)

Tunneling onto the center orbitals (2 or 3), produces the following combinations of states,

/)5 N
O )= L)L

And applied to the ground state,

At
Cro

At
C2a

a a
@)=, P1% = -a| SN )-8| LS (5.34)
by b,

(5.35)
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Here a = (¢1 + ¢,)/V2 ~0.79, and B = ¢,/V2 ~ 0.21. The particle transport amplitude is
then given by,

1 1
= (wHpe, —— &b plet b| _|a)=bS———a. 5.36
poo = (W 1P és, Z+E-H 20 PI¥y) =< Eo— )= z+Eg—h (5.36)
Here we have changed to a convenient matrix representation with £ given by the pictionary
discussed in section 3.5. The overlap matrix between the |b;) and |b,) valence bond states,
is given by

_ 1 =14
S_( Y )b. (5.37)

As a first step, we may directly calculate the resolvent by matrix inversion of (z+ Eg — k).
The resulting amplitude is shown in Figure 5.13. While there is no interference node (as
compared to the Hubbard result in Figure 5.4), the amplitude is small even on a logarithmic
scale. The absence of nodes is not a failure of valence bond theory, but in fact the correct
result in the subspace of single occupied sites as shown in the inset.
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Figure 5.13: Particle transport calculated numerically by matrix inversion for a model
with |U| = 16]t|. The right panel shows the particle amplitude squared, and while it is
logarithmically small, there is no interference nodes. The inset presents the result of a
transport calculation in a Hubbard model using a projected ground state P|W), hence
validating the valence bond result. The left panel shows two parts of the amplitudes with
the initial state propagated to either |b;) or |b,). From this it is clear that these two
amplitudes almost cancel each other out completely.

If we wish to capture the interference node, we must extend our calculation to the part
of the Hilbert space with double occupied sites, D. In the full Hilbert space the transport
amplitude can be expressed in terms of projection operators P and Q,

1 1
09 x (W (P + Q) &3, ———= b, PV + (WP &y, ———— &0 (P+Q) Y. (5.38
poo = (¥ (P+Q) % [Wo) + (W [P s, T S (P +Q) Wy, (5.38)
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Here we have only left out the contribution from processes which both end and start
in the D projected part of the ground state. This is a valid approximation because,
(V|IQIV) < (W|P|W) for large values of the Coulomb interaction, U.

Because propagation of the projected Q|W) is suppressed by a factor of 1/U, we will
also approximate (z+ Ey—H)™' ~ P(z+ Ey— H)"'P. This gives us the final expression
Poo = Ppp +Ppo +PGps With (A and B being stand-ins for projection operators),

1 .
pig = (YA e, P ﬂpc§08|\y04), (5.39)

0—

Next step is to construct the state, P62 - |‘I’O4> by using equation (3.5),

Q¥) =

QTPIW) ~ - ! ~TPI¥), (5.40)

1
E-QHQ

In our case we have that,

P&, TPW) = (———\/_cz)|/> (\/_cl+—2) ) . />
>+|/ y >+7’|, /> (5.41)

Here we have used that, ¢;/V2+ V2c, = 1, and set Yy = V2¢; + c/V2. The sister state
77(:3 I P|¥) is calculated in the same way. Having extended our ground state we must
ensure that it is correctly normalized. When diagonalizng Pl\PéV ), but in reality we must
introduce normalization factors,

1= (WYY = (W [Py + (BN 1QIWY ) = 3 + ¢

2 (5.42)

Because the Q projected part of the wavefunction is derived from the P projected part
using equation (5.40), we can write cg = 2cpt/U, giving

1 U=16|t|
(p=——— =~ 1 5.43
P V1 +t2/U? (5.43)

As a result of including part of the D Hilbert space, the transport amplitude have now
obtained the predicted nodes. While our endeavor into valence bond theory transport
interference stops here, the current investigation have revealed several important points.
First and foremost the transport through the projected ground state P|W) must be quite
weak, and this only happens because we keep valence bond states beyond the main Kekulé
component. Additionally, the interference nodes are not expected to show up for transport
through the projected ground state alone, but adding a small part of the QW) component
reveals the nodes (at least in the large U limit). As shown by the Q|W) case, valence bond
theory also offers a controlled way of extending the calculations to the full D subspace,
and hence to lower values of U.

These points could probably be used to create a set of rules for the interference based
on molecular structure, but we will not pursue these ideas further here.
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Figure 5.14: Right panel shows the amplitude squared with an interference node present.
The inset shows the result of a transport calculation for the full Hubbard model, which
agrees almost perfectly with the valence bond result. The left panel shows the components
of the amplitude as defined by equation (5.39).

5.7 Spin-Doublet Ground State

When the ground state is a spin doublet [W,) with o =1,], equation (4.13) and equa-
tion (5.6) no longer holds. However, because the PPP model is spin rotation sym-
metric, each of the ground states must be equally occupied. We define the shorthand
AZZ;(Vg) = h?};(Vg,O) + PZZ( Vg, 0). The zero-bias conductance is then composed of three
distinct terms,

1e’h __ .
- _e_rLrRZ( AZG P +1AZS 1P +AZ% ). (5.44)

The first two terms capture the potential scattering of the electrons in the electrodes on
the molecule, while the last term captures transport processes which flip the spin of the
molecular ground state doublet.

A slight of hand alters the above expression, giving

1€2h 1 2 2 50 |2
G:ETTLFR;(leg" FAZG P + 3ATG — ATGP +IAZLP). (5.45)

Our goal for the next page is to put this expression on a simpler form, by employing the
overall spin rotation symmetry of the molecule model. The total spin operator is given by

h " A
= Ezzcjarcayciy. (5.46)
ay
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Then introduce an overall spin 7/2 rotation about the y-axis described by the operator
RY = ¢!TSy/2h = ]_[]- R?U. In spin space the local rotation of a spin o at site j is,

A -
jo

1 1
B

It is then straightforward to show that

A . 1
At t at At
Rvét (Rt = 5 (e -ocl). (5.48)
For brevity we have introduced the algebraic shorthand o =1/ |=1/-1. This means

reversely that Ry (et it acl l = a\/_
The spin rotation of the doublet ground state directly yields,

R Wy, ) = & 219 ) = 7 (1%01) - oW, )). (5.49)

We then begin by calculating,
(f, +oef, ) Woy ) = (R)TRY (e + el ) (R)TRY %, ) (5.50)
= (RV) (oe],) (IWor) - ¥ ¥, )). (5.51)

Next step is to rotate the resolvents,

1 1
Pyy + Py = (Wopléy =€) Wy ) + 0 (Woy 16 =€) W) (5.52)
1
_<WOV|(C]T+CN)E H(C+T+UC1l)|\P07’> (5.53)
N S
= (1] _y<\p0l|)c].TE _Hac:ra(l\l’m)— I%0,)). (5.54)

For ¢ =] /—1 this result is particularly simple, with py y py )y = )/pl 1 which can be

directly generalized to AI,TV A%,ly = 7/A1lT
This finishes our calculation with the result

e’h 3 -
G= —rLrR (—|W|2 + §|]|2), with W =AJ% +AJ, and ] = AZ7,. (5.55)

0,0
This result is identical to the perturbative calculation of the conductance in an effective
Kondo model for the |\I/7,) subspace. Anticipating the treatment of the Kondo effect in the
next chapter, | will be referred to as the exchange transport amplitude, while W is the
potential scattering amplitude.

5.7.1 Quantum Interference Classification

Let us now turn to the classification of first the potential scattering, W, followed by the
classification of the exchange transport processes, J. The potential scattering amplitude
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can be written,

W= A99 = Z(h“ +p9%) (5.56)
(W1, IRC,)|WN+1><\IJ,£V“|(ZU )
B w—e,
(ol (3 6, )1 1><\ifN (50 G0 )1 o> 557
a)—£n0

The Qi-parameter determining the quantum interference class is defined by the ratio,
A~ N— N=1({ » A
(W (65 3+ 8 IO (6 + 6 ) %oy )
N+ N+1
S Wl (€, €5, IO BN (¢F 1 + 6 ) Iy )

where we explicitly sum over the ground state degeneracy in each of the neighbor charge

iy = (5.58)

states. Similarly for the exchange amplitude | = ATT —Ai%, one can define the classification
st At N-1\\pyN-1

> Poyl (€81 =8  JIPOnTIWNT (€, 1+ ¢, ) 1%0y)
. A N+I\pn\pN+1

Zn<\POV|(CiRT + CiRl)|\P0n+ ><\I/ " ( i T_Cz l)|\I]0y>

When the states |\I’0N ~1y and |‘l’ON 1y are both singlets (and otherwise non-degenerate), we
have that

i = (5.59)

. At N-1 N+1

Qi (Woyl(¢f 1+ I NwpV (el —ef )1,
i Af Af N-1 N+1|( at

Qi (Toyl(ef =] )T (g + ) 1)

(5.60)

This is because only one of the ézr | operators contribute for each choice of y, adding only
one minus to the overall calculation. Hence with singlet neighbor charge states the W and
J amplitudes must always belong to different interference classes.

In the case of odd-alternant hydrocarbons (i.e., alternant hydrocarbons with an odd
number of carbon atoms), the pairing theorem applies. In the case of half-filling we have
from equation (5.24) that

ANy = @y (5.61)

Additionally we introduce a 7 spin rotation R, which transforms ﬁnéjaR; = —aé;. From
this it can be shown that acting on spin eigenstates |S, m),

RY0,0) =0,0), (5.62a)
RiL, o) =-0lL,6) (5.62b)
R 1,0)=—1,0), RI|1,+1)=]1,F1). (5.62c)

In general we write RY|S,m) = e/¥n|S, —m). This makes it possible to transform (assuming
m is only due to singlet or triplet spin degeneracy),

V(8 26 )%, = (U AT A, x¢ ) ATAIG,)
:( 1)1Re i(yo— ym)<\I/N+1|( IRT+CI'R.L)|\I]07>
= i(_l)zl{e (yO_ynl)e—l(prn(\IIOI’\;:-ll(é\;l'RT + éj-Ri)|\p0y>; (563)
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where we in the last expression applied the ﬁn spin rotation,

Zm(\Poyl(é:rT+cl l)|\yN hyw -1 ( i1t )|\I/0y)

w = ,
3oyl + €50 )P0 TG (F 4+ 8 ) 10, )
N+1 N+1|( 2 A
= (-1 ig+ip Lom <\PO7’|( lLT+Cz i)l\p mJr ><\I]0n:r |(Ci ) )|W0y>
Z <\II07’|( +Cz l)lWONnH)(\PONnHl( i T+C )l\POy>
= (=1L (5.64)

Also for the exchange amplitude,

S Pyl (€84 = eF JIROTUNTI(E 1+ €5 ) 1%0y)
S (ol (&3 + €5, )10, X1 (€ zLT‘CT ) 1%,
(¢

i =
o
S (o (65 1 = €5 WO WG (0 + 5,0 ) 190
N+1 N 1
S (ol (€5 + €5, )0 RGI(E] 5 = €1 ) 19y
= —(=1)’**L = —Qiyy (5.65)

— _(_1)iR+l

Hence for odd-alternant hydrocarbons the potential scattering transport and the exchange
amplitude transport have opposite interference classes at half-filling.

5.8 Examples (Spin-Doublet)

The simplest example is the odd-alternant three site chain at half-filling. While the Feynman-
Dyson orbital weight vanishes at the middle site, (\Wy, |¢; G|\I’OIX;1) = 0, the next orbitals in
our expansion still obey the pairing theorem and the coloring rule holds. According to the
doublet coloring rules the W amplitude belongs to the even interference class, while the |
amplitude belongs to the odd class.
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Figure 5.15: The potential scattering and the excchange ampltidues for a simple three-site
chain. The resulting total amplitude |W|?>/2 + 3|J|>/2, shows no sign of the interference of
IJ|> correctly predicted by our coloring rule.

Alternatively we consider a an odd-alternant chain with a two side-coupled orbitals.
Again the transport result obeys the coloring rule, but because both transport channels
exhibit destructive interference the total conductance also shows some (although weaker)



REGARDING MOLECULES 71

10
&

< > wi 107°
~
B

N, =7 » -
10
-2 0 2
keVy [eV]

Figure 5.16: The potential scattering and the exchange amplitudes for a a seven-orbital
model. While exchange and potential scattering belong to different interference classes,
the interference is somewhat visible in the total amplitude |W|%/2 + 3|J|?/2.

interference feature. The coloring rules does not prohibit all interference features in the
total conductance, but the rule still ensures that interference nodes are somewhat obscured.

Away from half-filling the coloring rule can be broken if (and only if) a neighbor
charge states has (at least) a spin-triplet ground state. Using Lieb’s theorem we engineer a
molecule with a spin triplet ground state at half-filling. An example is shown in Figure 5.17
for the neutral—1 charge state of a cross-conjugated system.
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Figure 5.17: Here the 8-electron ground state is a triplet, hence voiding our interference
theorem. As is obvious both W and | belong to the odd interference class.

Interference in transport through benzene in the 7 (or 5) electron charge state have
previously been investigated. Here the interference effect was due to a vanishing Feynman-
Dyson orbital weight, giving rise to a suppression of the sequential tunneling at one diamond
edge.”'” Since the 6-electron ground state is a singlet, and the 4-electron (8-electron) ground
state is a triplet, the theorem of equation (5.60) does no longer hold, and both W and |
may belong to the same interference class. This is clearly illustrated in Figure 5.18 showing
both |[W|?, |J|? and the total amplitude %lWl2 + %|]|2.
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Figure 5.18: Calculation of transport amplitudes through benzene away from half-filling in
the 7-electron charge state. In the meta-configuration the Feynman-Dyson overlap with the
triplet ground state in the 8-electron charge state vanishes, and our theorem Qij = —Qiy
holds. In the para-configuration this is not the case, and then Qi; = Qi < 0. Note that
in order to lift an additional orbital symmetry of the 7-electron ground state, we have
introduced a small offset y =—0.1 eV at the colored site.

5.9 Conclusions

In this chapter we have investigated quantum interference in the off-resonant transport
through Coulomb blockaded molecule junctions. We have found two quantum interference
mechanism: between particle and hole transport, and within either particle (hole) channel.

We introduced the even and odd quantum interference classes determining the number
of interference nodes in the off-resonant transport. For neutral alternant hydrocarbons with
a singlet ground state we proved that the interference class be calculated using a simple
coloring rule.

For doublet ground state molecules we showed that the transport is composed of a
potential scattering channel and an exchange channel. When the neighbor charge states
both have a singlet ground state, or for neutral odd-alternant hydrocarbons the two channels
belong to different interference classes. For neutral hydrocarbons a coloring rule still predicts
the interference class.

The work presented in this chapter is currently under preparation for publication in
collaboration with M. Leijnse, M. Strange, G. Solomon and J. Paaske.



Chapter 6

Kondo Interference

The Kondo effect is a rich many-body phenomena still part of active research today. The
Kondo model describes how a localized magnetic moment interacts with the electrons in a
conduction band. At very low temperatures the magnetic moment and the free electrons
can form a complex many-body anti-ferromagnetic state, where the electrons “try” to screen
the local magnetic moment. In a metallic host the Kondo correlated many-body state
increases the scattering cross-section of the magnetic impurity, and increases the resistivity
of the conductor.*?

Kondo correlated singlet

local moment

conductance

A4

Ty temperature

Figure 6.1: Kondo enchanced conductance at low temperatures, where the local magnetic
moment form a spin-singlet like many-body state with the conduction electrons.

In quantum transport a quantum dot spin-doublet ground state can similarly be screened
by the conduction electrons in both leads, and forms a spin-singlet like state (cf. Figure 6.1).
The resulting increase in electron scattering from one lead to the other gives 