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Chapter 1

Introduction

This thesis is concerned with a corner of nanotechnology which is the result of a very
age-inappropriate marriage between two scientific disciplines: The old and renowned field
of organic chemistry, and the young bride of quantum transport. In order to understand
the spirit of this thesis, it is imperative that we begin with a short introduction to the
interdisciplinary field of molecular electronics.

The realization of molecular electronics have been made possible by a series of technolog-
ical innovations which allows for precise engineering on the nanoscale. Several experimental
techniques like the mechanical break junction,65,66 electromigration,40,120 and the scanning
electron microscope,47 have made it possible to create single molecule junctions, where one
chemically synthesized molecule is trapped between to metallic electrodes. Additionally,
innovations in cooling techniques and electronic engineering have made it possible to create
a small bias voltage across the molecular junction and measure the current response even
at temperature close to absolute zero.20

Molecular electronics presents the possibility for merging semiconductor electronics
with precisely engineered molecules synthesized by the multitude of methods available to
contemporary chemistry. The meticulous control over the quantum behavior of molecular
junctions, can then improve technologies such as solar cells,118 thermoelectrics49 and
possibly numerical computing.108

Generally speaking molecular electronics is part of broader field of quantum transport.
This field also encompasses transport through doped semiconductor structures. By clever
engineering it is possible to construct nanometer-sized confinements called quantum dots,
which effectively behave like artificial atoms.2,38 While these artificial atoms could be
used to construct artificial molecules, at the moment only double or triple quantum dots
have been produced. Molecules on the other hand, are usually much larger. However,
experimentally it has so far proved difficult to control or determine the binding geometry in
molecular junctions. This could possibly be improved, e.g. by constructing the electrodes
from graphene.85

Historically speaking, theoretical chemistry have improved on their molecular models
since the early 1920’es. Today there exists a range of sophisticated software methods,
which are constructed as reasonable compromises between computational complexity and
calculational accuracy. Here we will rely on a somewhat simplified approach pioneered
by Pariser,76 Parr and Pople83 modeling the π-system of planar organic molecules. This
Pariser-Parr-Pople model is in fact an extended Hubbard model, and the results, we obtain,
can easily be transferred to other transport systems (like the multiple quantum dots),
which can be described by such models.

1



2 1. INTRODUCTION

It quickly becomes complicated to keep track of the many electrons and their possible
configurations, this problem usually lends itself to a numerical approach. However, we
dedicate a whole chapter (and a bit more) to a mostly analytical approach to the many-body
problem, known as neoclassical valence bond theory. This treatment covers: the basic ideas
of the theory, shows how many-body calculations can be performed easily, and introduces
a controlled way of approximating the many-body properties of the underlying Hubbard
model. However, there is much more to neoclassical valence bond theory, than there is
room for a in a single chapter, and we are currently preparing a manuscript with the full
story.

In addition to the neoclassical valence bond theory, this work contains three projects
related to molecular electronic quantum transport. Here we will present a quick technical
overview of the topics, and reserve the general introduction to the corresponding chapters.

Chapter 4 considers the investigation of quantum interference in the off-resonant
transport through single-molecule junctions. The chapter on quantum interference contain
several interesting results, and most importantly the interference features of a molecular
junction can be classified according to a “topological” classification scheme. For neutral
hydrocarbon molecule this classification can be evaluated using simple coloring rules even a
child could apply (cf. Figure 1.1). The findings are also part of manuscript being prepared
for publication in collaboration with M. Leijnse, M. Strange, G. Solomon and J. Paaske.

Interference due to molecular structure have been found in the off-resonant transport.
However, very few have considered the interplay between destructive interference and the
enhanced zero-bias conductance mediated by the Kondo effect. In chapter 5, we show how
interference may suppress the Kondo enhanced conductance, and also show how molecular
structure can create an anti-ferromagnetic Kondo effect in only part of the transport
spectrum, hence creating “holes” in the Kondo enhanced conductance. In this project we
acknowledge the help of J. Paaske.

Chapter 6 considers electron pumping in quantum transport junctions. In principle the
chapter tries to answer a simple question: What is the difference between a classical pump
and quantum pump? We develop a straightforward transfer-matrix method for calculating
the quantum pumped current, when ignoring electron-electron interactions all-together.
The semi-classical pumping model is solved analytically allowing for a direct comparison of

Figure 1.1: Childs play: Quantum interference classification of the neutral stilbene molecule
performed by a child.
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the two models. To find the answer you must consult the chapter. Part of this work is
inspired by discussions with J. Thijssen and J. Seldenthuis regarding their proposal for a
an all electric molecular motor.96

Enjoy.





Chapter 2

On the Constitution of Atoms and Molecules

In order to explain the results of experiments on scattering of α rays by matter
Prof. Rutherford has given a theory of the structure of atoms. According to
this theory the atoms consists of a positively charged nucleus surrounded by a
system of electrons kept together by attractive forces from the nucleus; the total
negative charge of the electrons is equal to the positive charge of the nucleus.

N. Bohr11

So begins the famous paper on the quantum theory of atoms published by Niels Bohr
exactly a century ago this year. Bohr asserted that the atom was constituted of electrons
and a nucleus, with the electrons moving in quantized classical orbits around the stationary
nucleus. For hydrogen, consisting of a single electron orbiting the nucleus, the electron orbits
are now known as shells each numbered by their principal quantum number n = 1,2, . . ..

This was the first hint, about how to understand the wonderful world of atoms and
molecules. However, while Bohr took the first quantum leap towards understanding the
atom, we now know that the Bohr model is wrong. It was a good guess which correctly
explained the optical excitation spectra of hydrogen, but struggled to predict the spectra
of larger atoms. While Bohr also tried to explain diatomic molecules with his model, he
failed.

However the model did encourage the new quantum physics and thirteen years later in
1926 Schrödinger93 was the first to discover that the electronic states of hydrogen were in
fact solutions to the complex wave-equation,

Ĥ(r)ψ(r) =
(
T̂ + ĤV (r)

)
ψ(r) =

(
− ~2

2me
∇2 −Ve(r)

)
ψ(r) = Eψ(r). (2.1)

Here Ĥ(r) is the Hamiltonian describing the system, ~ = 1.05 · 10−34 Js is Plancks famous
constant, e = 1.602 · 10−19 C is the elementary charge and me = 9.109 · 10−31 kg is the
electron mass. For the electron in hydrogen the potential Ve−i is the electromagnetic
attractive Coulomb potential between the nucleus and the electron,

Vn−e(re) =
1

4πε0

e2

|re|
. (2.2)

Schrödinger’s stationary wave equation is an eigenvalue problem, which can be solved by a
set of eigenenergies Enlm and corresponding eigenfunctions ψnlm(r). The eigenfunctions
are labeled by the three integer quantum numbers: the principal quantum number n, and
the orbital quantum numbers l and m. For the hydrogen atom the such eigenfunctions
ψnlm(r) with the lowest eigenenergies are shown in Table 2.1,

5



6 2. ON THE CONSTITUTION OF ATOMS AND MOLECULES

l = 1

En l = 0 m = 0 m = ±1

n=1 -13.6 eV

1s

n=2 -3.4 eV

2s 2pz 2px 2py

Table 2.1: The hydrogen orbitals ψnlm(r) shown as constant absolute value surfaces. Blue
and red colors distinguish between positive and negative values of the orbitals. The
wavefunction is indexed by the principal quantum number n and the orbital quantum
numbers l and m.

2.0.1 Many-Body Physics

However, for larger atoms with more than one electron, Pauli77 showed that one must take
into account an additional quantum parameter called spin. The total spin is S = ~

2 meaning
that the electron can have a spin projection of either spin up ↑ or spin down ↓.

By introducing this spin degree of freedom, Pauli showed that the electrons instead
of piling up in the lowest energy state obey an exclusion principle meaning that no two
particles can exist in the same quantum state. This realization is a consequence of the
anti-symmetry of the electrons, where the exchange of two electrons (located at r1 and r2)
adds an overall minus to their many-body wavefunction, Ψ (r1,r2) = −Ψ (r2,r1).

Starting from single-particle orbitals, χi , many-body states can be built by filling up
the orbitals with electrons. The proper anti-symmetrised many-body wavefunction is given
by the Slater determinant,101

Ψ (x1,x2, . . . ,xN ) =
1
√
N !

∣∣∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN (x1)
χ1(x2) χ2(x2) · · · χN (x2)
...

...
. . .

...
χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
≡

∣∣∣χ1 χ2 · · · χN
∣∣∣ , (2.3)

In second quantization one introduce field operators which create ĉ†ν and annihilates ĉν
an electron in the quantum state ν.14 The anti-symmetrization is incorporated through
anti-commutation relations valid for orthonormal basis states νi ,

{ĉ†νi , ĉνj } = ĉ
†
νi ĉνj + ĉνj ĉ

†
νi = δi,j . (2.4)

However, while the antisymmetry of the many-body electron wavefunction can be taken
into account, one must also include the Coulomb repulsion between the negatively charged
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electrons in the equation. The eigenvalue problem has now turned into a complicated
many-body problem, and in that case one must often resort to solving Schrödinger’s equation
numerically.

However, the most closely bound electrons can screen the nuclear charge, and the more
loosely bound electrons will then still inhabit hydrogen-like orbitals for an atom with a
slightly reduced nuclear charge. This screening combined with spherical symmetry assures
that the angular part of the the single particle hydrogen-like orbitals still comprise a fairly
good single-particle basis even for the many-electron atoms.63

2.1 The Nature of the Chemical Bond

Lewis58 was the first to offer a descent explanation of the chemical bond, an explanation
which was quickly formalized by Heitler and London42.

Here we will seek to give a brief example elucidating the nature of the chemical bond
using the simplest of molecules: hydrogen H2 composed of two hydrogen atoms bound
together by a single chemical bond.

As a starting point consider two hydrogen atoms each with one electron in their 1s-shell.
The atoms are located at r1 and r2 and their wavefunctions overlap with the Hamiltonian
Ĥ like,

t =
∫

drψ∗100(r− r1)Ĥψ100(r− r2). (2.5)

Ignoring the movement of the nuclei the relevant Hamiltonian consists of just two terms,

Ĥ = Ĥt + ĤU . (2.6)

In second quantization the creation operator ĉ†iσ creates an electron in the orbital i ∈ (1,2)
with spin σ ∈ (↑,↓), and the conjugate ĉiσ annihilates that same electronic state.

The hopping can in second quantization be written like,

Ĥt =
∑
i,j

∑
σ

tij ĉ
†
iσ ĉjσ , (2.7a)

while the effective Coulomb potential ‘penalty’ for having two electrons in the same 1s
orbitals (as opposed to different orbitals), is captured by the term,

ĤU =U
∑
i

n̂i↑n̂i↓. (2.7b)

The constant U expresses the severity of the Coulomb penalty, and should be compared in
size to the hopping energy t in order to find out which of the two dominates the contribution
to the total energy.

When the spin projection of the two electrons are parallel | ↑↑〉 any hopping is blockaded
by the Pauli exclusion principle, and Schrödinger’s equation is trivially Ĥ | ↑↑〉 = 0.

However for two electrons with opposite spin projections the problem becomes harder.
Diagonalizing the Hamiltonian gives the (unnormalized) ground state

|Ψ 〉 ∝
U4t +

√
16t2 +U2

4t

 (ĉ†2↑ĉ
†
1↓ − ĉ

†
2↓ĉ
†
1↑)|vac〉+ (ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓)|vac〉, (2.8)
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with the corresponding eigenenergy

E =U
(

1
2 −

√
4t2
U2 + 1

4

)
. (2.9)

This is indeed the electronic ground state of the hydrogen atom, and because E < 0 it is
always favorable for the hydrogen atom to bond together to form a molecule. Examining
this bonding wavefunction in different limits of U of t can then tell us something interesting
about the nature of chemical bonding.

In the limit of a vanishing Coulomb interaction |U | � |t|, the result is the product of
two so called bonding molecular orbitals occupied by electrons of opposite spin,

|Ψ 〉U=0 ∝ (ĉ†1↑ + ĉ†2↑)(ĉ
†
1↓ + ĉ†2↓)|vac〉, (2.10)

with an energy E = −2|t|. This ground state could also have been found by diagonalizing
the hopping Ĥt and forming the Slater determinant of the single particle bonding orbital
for each spin specie.

In this case the bonding arises solely from the delocalization of the electrons over the
entire molecule and the corresponding lowering of the electronic kinetic energy.

In the opposite limit an infinitely large Coulomb energy dominates, |U | � |t|, and the
ground state instead approximates

|Ψ 〉t≈0 ∝ (ĉ†1↑ĉ
†
2↓ − ĉ

†
1↓ĉ
†
2↑)|vac〉. (2.11)

In this case the ground state energy is close to (but smaller than) zero, i.e. E = 0−. It
is obvious that the large U has almost prohibited the electron from occupying the same
orbital. The result is a singlet ground state, where the (virtual) exchange of electrons
lowers the energy. This state represents the extreme version of a covalent bond.

Usually the nature of an actual bond is found in-between those two extremes, and
the closeness to either the single-particle bonding orbital picture or the singlet picture is
determined by the value of U/t. The overlap of the actual ground state with either extreme
is shown in Figure 2.1.

2.2 Organic Molecules

Pauling79 was the first to offer a decent explanation of bonding in a wide variety of
molecules. However with many atoms bonding together, the full many-body problem
quickly becomes intractable. Instead of following in the footsteps of Pauling, we shall
leap-frog his explanation, and derive an approximate many-body model, which effectively
describes a wide class of organic molecules.

In the most general description a molecular system consists of positively charged
nuclei located at space coordinates {Ra} and negatively charged electrons located at space
coordinates {ri}.

The Hamiltonian describing the total energy of the system consists of several parts.
The kinetic energy of the nuclei, T n, and electrons respectively, T e. The Coulomb repulsion
between the nuclei, V n−n, and between the electrons, V e−e, along with the attractive
Coulomb interaction between the electrons and the nuclei, V e−n.

The full Hamiltonian then takes the form,9

Ĥ = T n{Ra} + T
e
{ri } +V

n−n
{Ra} +V e−n{ri },{Ra} +V

e−e
{ri } . (2.12)
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Figure 2.1: Overlap of the actual ground state with either the single particle bonding
orbital ground state (U = 0), or the singlet ground state (U � |t|) here presented as a
function of U/t.

As was the case for the H2 example, the large Coulomb repulsion V n−n and V e−e penalizes
the atoms for being bound closely together in a molecule, while the delocalization of
the electrons over a larger space lowers the collective kinetic energy T e. Additionally
rearranging the electronic charge can also potentially lower the total electro-static energy
of the system, V e−n +V e−e.

When the energy gain from electron delocalization overcomes the Coulomb penalty the
atoms are bound together in a molecule. While the general Hamiltonian perfectly describes
the molecule, it is simply too complicated to deal with the full 6(Ne +Nn) continuous
degrees of freedom for any practical calculations. Hence we wish to reduce the complexity
by performing a series of well founded approximations.

The first step is to notice the nuclei are vastly more massive than the electronsa. This
means that for comparable kinetic energies of the nuclei and electrons Tn ∼ Te, the velocity
of the nucleons are negligible when compared to the velocity of the electrons. This gives
rise to the Born-Oppenheimer approximation where all nuclear coordinates are assumed to
be constant Ra.12,14

The hydrogen orbitals exhibit a strong hierarchy with well separated energy levels. For
many-electron atoms, this means that orbital energies are well separated, and it is safe to
assume that the electrons in the inner shells are closely bound to the nuclei, while electrons
in the outer (valence) shell are free to delocalize. The effect of the core electrons are then
to screen the electric charge of the nuclei from the valence electrons.

The hydrocarbons composed of only hydrogen and carbon constitutes a major part
of all organic molecules. Including molecules containing the close carbon relatives like
nitrogen, oxygen and sulfur makes it possible to cover almost all of organic chemistry.

Carbon has six electrons, with two core electrons occupying the inner shell (n = 1) and
four valence electrons (n = 2). Pauling79 was the first to notice that in order to understand
the bonding in carbon compounds one would have to consider linear combinations of the
occupied 2s and 2p orbitals and the unoccupied 2p orbitals. Those new linear combinations

aThe proportion between the mass of a single nucleon and the electron mass is approximately mn/me ≈
1836.
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Figure 2.2: The periodic table of the elements. Highlighted: The carbon relatives boron,
nitrogen, oxygen and sulfur.

are known as sp-hybridized orbitals. For sp2-hybridized orbitals the 2s orbital is combined
with two of the three p orbitals to form the three sp2-hybridized orbitals which together
resembles a Mercedes star as shown in Figure 2.3.

sp2 =
1
√

6


√

2 1
√

3√
2 1 −

√
3

−
√

2 2 0



|2s〉
|2px〉
|2py〉

 . (2.13)

For planar molecules the overlap between e.g. carbon sp2 hybridized orbitals or hydrogen
1s orbitals can become rather large and form a strong σ -bond.

Figure 2.3: Simple illustration of sp2 hybridized orbitals and a six-ring molecule of atoms
with hybridized orbitals. When all remaining sp2-orbitals is bonded with hydrogen, the
ring models the benzene molecule having carbon at every site. With alternating boron and
nitrogen atoms, the ring models the borazine molecule.
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Because the overlaps between the sp2 hybridized orbitals are much larger than between
the pz-orbitals the electronic states occupying σ -orbitals are much lower in energy. Because
of this separation of energy scales, one can construct an effective low-energy theory for the
isolated system of pz-orbitals commonly known as the π-system.

2.2.1 The Pariser-Parr-Pople Model

Restricting our model to the π-system formed of overlapping pz orbitals in planar organic
molecules, and by considering the positions of the ions and the location of the π-system
electrons as the only free parameters, heavily reduces the complexity of Schrödinger’s
equation. The equation becomes(

T π +V π−π +V π−ion +V ion−ion
)
ϕ({Ra}, {ri}) = Eϕ({Ra}, {ri}). (2.14)

Here V π−π, V π−ion and V ion−ion together represent the effective Coulomb potential between
the ions and the π-system electrons.

This effective model for the π-system electrons was originally proposed in 1953 by
Pariser,76 Parr and Pople.83 When expressed in second quantized form the Pariser-Parr-
Pople Hamiltonian takes the guise of an extended Hubbard model:

ĤPPP = T̂ + Ĥµ + ĤU + ĤV . (2.15)

The kinetic term T̂ captures hopping between different pz orbitals and is expressed in terms
of the orbital overlaps tij .

T̂ =
∑
〈i,j〉

∑
σ=↑,↓

(
tij ĉ
†
i,σ ĉj,σ + tji ĉ

†
j,σ ĉi,σ

)
. (2.16)

Here 〈i, j〉 is short for all nearest neighbor orbital pairs i and j. The on-site chemical
potential term Ĥµ captures the local electrostatic potential from the ions. For brevity the
chemical potential for carbon is normally chosen such that µC = 0, while hetero-atomic pz
orbitals have a small offset µi , 0.

Ĥµ =
∑
i

µi n̂i . (2.17)

Here we have introduced the counting operator n̂i = n̂i↑ + n̂i↓, where n̂iσ = ĉ†iσ ĉiσ counts

the number of electrons on site i with spin σ . The interaction ĤU + ĤV captures both the
Coulomb repulsion between the π-electrons as well as part of the Coulomb attraction from
the screened ionic charge,

ĤU + ĤV =
∑
i

Ui(n̂i↑ − 1
2 )(n̂i↓ − 1

2 ) +
1
2

∑
i,j

Vij(n̂i − zi)(n̂j − zj ). (2.18)

Here we have introduced the unshielded residual charge zi on site i, where e.g. a carbon
atom usually donates a single electron to the π-system leaving a single unshielded charge,
zC = 1.

The contribution to the on-site Coulomb repulsion ĤU at a specific site i, takes a
minimum value of −Ui/4 when occupied by a single electron, and a maximum Ui/4 when
occupied by either zero or two electrons, hence favoring the single occupied case. The
intra-orbital Coulomb interaction ĤV has been written on a form, which ensures that any
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contribution from an orbital i to the long distance Coulomb interaction vanishes, when the
residual ionic charge is completely shielded.

The interaction can also be written on the simpler form,

ĤU + ĤV =
∑
i

Ui n̂i↑n̂i↓ +
1
2

∑
i,j

Vij n̂i n̂j −
∑
i

µ̃i n̂i , (2.19)

where we have removed a the constant term
∑

i(Ui/2 +
∑

j(,i) zizjVij )/2, and introduced

the local potential offset µ̃i = 1
2Ui +

∑
j(,i)Vijzj .

While the PPP model parameters can (in principle) be calculated from complicated
orbital overlap integrals, the parameter values are instead found by fitting the predictions of
the PPP model directly to measurement data of e.g. optical excitation spectra or ionization
energies.

In order to reduce the number of free parameters and perform a satisfactory fit, the
intra-orbital Coulomb integrals Vij are usually described using the semi-empirical Ohno

parametrization73 b

Vij =
Uij√

1 + |αrij |2
(2.20)

Here the average Coulomb potential strength Uij = (Ui +Uj )/2, and rij is the inter-orbital
distance between pz orbitals labeled i and j. To give you an idea of the length scales involved,
the carbon-carbon bond length is roughly rC−C ≈ 1.3 Å. The constant α = 4πε0U/e

2, is
chosen such that the Vij approaches the on-site Coulomb interaction U at small distances,

while it approaches the vacuum Coulomb interaction Vij ≈ e2/(4πε0|rij |2) at large distances.c

2.2.2 Spin

This is a good place to introduce the total spin operator, S =
∑

i Si , here written in terms
of the local spin operator,

Si =
~
2

∑
σγ

ĉ†iστσγ ĉiγ . (2.21)

Here we introduced the three-dimensional Pauli tensor τ = (τxi , τ
y
i , τ

z
i ) defined in terms of

the Pauli matrices,

τx =
(

0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
. (2.22a)

The total spin length S2 and the spin projection Sz both commute with the PPP (extended
Hubbard) Hamiltonian. Hence their eigenvalues are good quantum numbers of the PPP
eigenstates. Eigenstates with an even (odd) number of electrons have integer (half-integer)
total spin S and spin projection m ∈ −S,−S + 1, . . . ,S (setting ~ = 1). The lowest total spin
eigenvalues are the singlet (S = 0), doublet (S = 1

2), triplet (S = 1) and quadruplet (S = 3
2).

bor alternatively the Nataga-Nishmoto representation67 given by Vij =Uij /(1 +αUij |rij |).
cBy directly inserting the numerical value of α, and taking r̃ij to be the pz orbital distance measured in

Angstrom, the Ohno parametrization gives Vij = 28.794 eV/(
√
r̃2ij + (Uij /28.794 eV)2.
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X zX µX [eV] UX [eV]

C 1 0 10.06
O 1 -9.78 (−3) 18.89 (14)
Ṅ 1 -3.4 (-2.72) 14.97
N̈ 2 -18.43 15
Ṡ 1 -10.36 9.85
S̈ 2 -7.8 5.0

X tC−X [eV] tC=X [eV]

C (benzene) -2.539
C -2.22 -2.684
O -1.5 -2.4
N -2.05 -2.05
Ṡ -3.0 -3.0
S̈ -1.37

Table 2.2: Parameter values for common π system hetero-atoms taken from the literature.
While the underlying model and calculational approach differs, the table still offers a sense
of the involved parameters and their relative size. The parameter values have been found
by e.g. fitting models to optical excitation spectra, giving carbon data from benzene and
biphenyl,15 oxygen from carbonyl46 or benzo-quinones d, nitrogen from pyridine29 (from
pyrrole31) and sulfur from thiophene.27,99

While we have chosen to quantize spin along the ẑ-direction, we can just as well choose
any other direction. The spin quantization axis can be rotated an angle θ around any
direction n̂ by the operator Rn̂θ, which in a doublet spin space takes the form,

Rn̂θ = eiθn̂·S/~ = cos(θ)Î + i sin(θ)n̂ · τ. (2.23)

2.2.3 PPP Model Parameters

We will take special interest in the hydrocarbons where any free carbon sp2-orbitals are
bonded to hydrogen. Each carbon atom contributes a single electron to the π system, and
the local chemical potential is equal for all sites, allowing us to choose the zero-point of
energy such that µC = 0. Hydrocarbons can dimerize into a compound with alternating
σ -bond lengths because of the Peierls instability,82 giving rise to three different values of the
transfer integrals between neighbor orbitals. Counting also the on-site Coulomb interaction
U this gives a total of four parameter values modeling all hydrocarbon molecules.

Many organic molecules are similar in structure to hydrocarbons but with few carbon
atoms replaced with hetero-atoms like oxygen, nitrogen and sulfur. These elements are
close relatives of carbon but have one (or more) additional electrons which must then be
accommodated in lone pairs completely occupying a single sp2-orbital. This means that
the lone pair only partially shields their nuclear charge, resulting in an attractive potential
incorporated as a lowering of the local chemical potential µX < µC . However this effect
is often compensated for by a larger on-site Coulomb repulsion UX > UC , entailing that
configurations with one electron per orbital are still energetically favorable.

In addition to forming lone pairs, nitrogen and sulfur can also donate an additional
electron to the π-system. In this case the unshielded nuclear charge is larger zN = zS = 2,
and the local chemical potential and the on-site Coulomb repulsion must also be changed
accordingly.

Reasonable parameter values for carbon, oxygen, sulfur and nitrogen can be found in
the chemistry literature, and some common results for different atoms are presented in
Table 2.2.

dThese values are partly based on DFT, and an exact diagonalization PPP simulation of the benzo-
quinone experimental data published by Fu, Yang, and Wang32.
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For some molecules the distinction between double and single bonds can become
somewhat problematic, and instead one employs the semi-empirical formula,29 tC−C =
t + 3.2(rC−C − 1.397), for calculating the transfer integrals between two carbon atoms
separated by a distance rC−C . While we have devoted this section to the numerical values
of the PPP parameters, we would argue against putting too much effort into obtaining
exact numerical results.

One should remember that the PPP model, only considers the π-system and ignores any
effects arising from the σ -system, and additionally the model relies heavily on more-or-less
correct semi-empirical formulas for some parameter values. So already several approxima-
tions have been made, making it unlikely to have exact agreement with experimental data.
So while the PPP model captures a wide range of interesting molecular physics, one should
not pursue or be put off by slight disagreements with experimental measurements.

2.3 Numerical Solution of the PPP Hamiltonian

For an Na orbital π-system containing N electrons there is a total of

C(2Na,N ) =
(2Na)!

N !(2Na −N )!
(2.24)

many body basis Fock states. At half-filling N =Na and the number of many-body states
grows at least exponentially with n = C(2N,N ) ≥N−1/222N−1.

Analytical solution is of course impossible when considering anything but the very
simplest systems. The computation time of direct numerical diagonalization scales like
matrix size cubed O(n3). However, the memory cost of storing the Hamiltonian or the
eigenvectors as double precision numbers grows at least like n2, hitting 1.3 GB for systems
of size N = 8 and a staggering 58.5 TB at N = 12.

It is straightforward to show that the PPP Hamiltonian commutes with the total
number of both spin species N̂σ =

∑
i n̂iσ . Hence the Hamiltonian is block-diagonal in

the Fock space of many-body states with blocks characterized by the (N↑,N↓) quantum
numbers. Each Fock space block can be solved separately in order to find the total ground
state of the system.

In the balanced half-filled case Na = N = 2N↑ = 2N↓, and the basis in the (N/2,N /2)
is of the size C(N,N/2)2 =N !2/(N/2)!4 ≥N−122N−1, hence reducing the basis size with at
least a factor of

√
N .

When constructing the PPP Hamiltonian in the (N↑,N↓) Fock subspace, Lin and
Gubernatis61 proposed a clever method, where the Fock states are written as the product
of a spin up and a spin down component,

|s〉 = |011 . . .010〉↑|011 . . .101〉↓ (2.25)

Focusing on one spin component, the state labels the occupied orbitals using binary
representation. For each spin component all relevant states can be generated as an ordered
lookup table Iσ of binary indices. In the case of four orbitals occupied by two particles the
list is generated like,
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sσ state index Iσ (sσ )

1 |0011〉 3
2 |0101〉 5
3 |0110〉 6
4 |1001〉 9
5 |1010〉 10
6 |1100〉 12

The full (N↓,N↑) basis is then the direct product space of each spin component basis.
Technically speaking each full basis vector |s〉 can be assigned an unique index based on
the Lin table indices of the two spin components,

I(s) = 2N I↓(s↓) + I↑(s↑). (2.26)

Usually it is difficult to perform the reverse lookup where an index is matched with the
corresponding Fock state, but using the Lin table method this is actually a simple decimal
to binary conversion.

The PPP Hamiltonian then have a matrix representation in each Fock subspace. The
interaction terms are the simplest because they are both diagonal in the Fock basis, meaning
that

〈si |(ĤU + ĤV )|sj〉 =

non-zero i = j

zero i , j
(2.27)

The kinetic term T̂ can be calculated for each spin component T̂σ . The kinetic term is
iteratively applied to each state |sσ 〉, and by performing the reverse lookup the resulting
states are converted to indices Iσ in order to fill the corresponding matrix elements of T̂σ .
The Lin index of equation (2.26) have the additional advantage that the the full hopping
matrix is simply the Kronecker product matrix T̂ = T̂↓ ⊗ T̂↑.

The Hamiltonian matrix is naturally sparse, hence reducing the storage limits on the
matrix. However for large systems (∼ 16 orbitals) even storing the Hamiltonian in persistent
memory becomes a problem. Instead the action of the Hamiltonian on relevant states H |Ψ 〉
can be calculated on the fly from the components of each spin subspace T̂↓, T̂↑.

98

2.3.1 The Recursion Method

Because the PPP model is an effective low-energy model we are mostly interested in finding
the low energy eigenstates. Instead of applying common diagonalization techniques which
maps the whole eigenspectrum, the Lanczos method55 iteratively generates a small subset
of the eigenstates while also limiting the memory footprint of the algorithm.

The starting step of the Lanczos algorithm is some relevant state |Ψ0〉. From this state
one calculates the new orthogonal state,

b1|Ψ1〉 = Ĥ |Ψ0〉 − a0|Ψ0〉 (2.28)

Here the coefficients a0 and b1 are chosen in order to ensure orthogonality,

a0 =
〈Ψ0|Ĥ |Ψ0〉
〈Ψ0|Ψ0〉

, b1 =
〈Ψ1|Ĥ |Ψ0〉
〈Ψ1|Ψ1〉

. (2.29)

A new state is then constructed such that it is orthogonal to both |Ψ0〉 and |Ψ1〉,

b2|Ψ2〉 = Ĥ |Ψ1〉 − a1|Ψ1〉 − b1|Ψ0〉 (2.30)
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with coefficients given by,

a1 =
〈Ψ1|H |Ψ1〉
〈Ψ1|Ψ1〉

, b2 =
〈Ψ1|H |Ψ2〉
〈Ψ2|Ψ2〉

. (2.31)

Generally a complete series of relevant orthogonal states can be iteratively generated by
use of

bn+1|Ψn+1〉 = Ĥ |Ψn〉 − an|Ψn〉 − bn|Ψn−1〉 (2.32)

with

an =
〈Ψn|Ĥ |Ψn〉
〈Ψn|Ψn〉

, bn+1 =
〈Ψn|Ĥ |Ψn+1〉
〈Ψn+1|Ψn+1〉

(2.33)

In fact, by applying this procedure we have transformed the Hamiltonian into a tridiagonal
matrix T with the ai coefficients on the main diagonal and the bi coefficients along the two
neighbor diagonals. The transformation is formally given by,

HQ =QT , (2.34)

Here Q ∈ U (dim(H)) is a unitary operator consisting of the generated orthogonal basis
Q = (|Ψ0〉, |Ψ1〉, . . .), and T is the mentioned tridiagonal matrix

T =


a0 b1 . . .
b1 a1 b2

b2 a2 b3
b3

...
. . .


(2.35)

The space spanned by the basis Q is known as a Krylov subspace of the full Hilbert space.
The major advantage of the Lanczos algorithm, is that starting from some relevant state
|Ψ0〉 one immediately constructs the most relevant perturbations |Ψ1〉, |Ψ2〉, . . .. Hence even
when terminating the algorithm quite quickly all the features relevant to |Ψ0〉 are still
captured.

The Actual Algorithm

The actual algorithm only needs to store two state vectors at a time, and a pseudo code
version based on Golub and Loan36 is presented in algorithm 1.

The tridiagonalization can be terminated after very few iterations – normally less than
200. Simply diagonalizing the tridiagonal Hamiltonian gives a set of eigenstates expressed
in the Krylov subspace basis. Because the basis is not saved during the algorithm, the
Lanczos tridiagonalization must be repeated once more in order to construct the full Fock
space eigenstates.

The Lanczos recursive algorithm is prone to loss of orthogonality of the Lanczos
vectors [26]. The causes and consequences of this orthogonality loss has been extensively
investigated by Paige75. In order to avoid the many problems related to the loss of
orthogonality of the Krylov subspace basis, the Lanczos method can instead be terminated
before the loss occurs. The resulting relevant eigenstate (e.g. the calculated ground state)
is then simply used as the starting point for a new Lanczos procedure which is also quickly
terminated. This process is then repeated until the eigenstate converges, and it is commonly
known as the restarted Lanczos algorithm.
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initialize ψ1
b1← 0
a1← 0
for j← 1 to N do

rj ←Hψj − bjψj−1

aj ← r†jψj
rj ← rj − ajψj
bj+1←

∣∣∣∣∣∣rj ∣∣∣∣∣∣
ψj+1← rj /bj+1

end

Algorithm 1: Minimal pseudocode showing the Lanczos algorithm.

2.3.2 Resolvents

The Lanczos algorithm also lends itself beautifully to the calculation of resolvents of the
type,

Rba(ω) = 〈Ψa|
1

ω − Ĥ + i0+
|Ψb〉 (2.36)

Where usually |Ψa/b〉 are not eigenfunctions of the Hamiltonian Ĥ . The simplest case
involves resolvents between two identical states |Ψa〉 = |Ψb〉 (normally related to the spectral
function).

Initializing the Lanczos tridiagonalization algorithm using the |Ψ0〉 = |Ψa〉, the same
state resolvent can be found

Raa(ω) = 〈Ψ0|
1

ω − Ĥ + i0+
|Ψ0〉 (2.37)

= 〈Ψ0|Q
1

ω − T + i0+Q
†|Ψ0〉 (2.38)

=
( 1
ω − T + i0+

)
11
〈Ψ0|Ψ0〉2 (2.39)

The last line follows from the fact that

Q†|Ψ0〉 =


1
0
...

〈Ψ0|Ψ0〉 (2.40)

This leaves us almost out of harms way. All we need to do, is to calculate the (1,1) component
of the inverse of a tridiagonal matrix. Calculating the inverse by use of Appendix A, we
can directly write ( 1

ω − Ĥ + +i0+

)
11

=
1

ω − a0 −
b2

1

ω − a1 −
b2

2

ω − a2 − · · ·

(2.41)

Here the continued fraction representation is naturally terminated by setting bN = 0 for a
sufficiently large N as discussed by Haydock and Te39.
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If dealing with off-state resolvents, one can form the odd and even combinations,

|Ψ+〉 = |Ψa〉+ |Ψb〉, |Ψ−〉 = |Ψa〉 − |Ψb〉. (2.42)

Then the corresponding odd and even resolvents are given by,

R±(ω) = 〈Ψ±|
1

ω − Ĥ + i0+
|Ψ±〉 =Raa(ω) +Rbb(ω)±Rab(ω)±Rba(ω).

Hence the real part of the resolvent, can be calculated from,

R+(ω)−R−(ω) = 2 {Rab(ω) +Rba(ω)} . (2.43)

When the resolvents are real, Rab(ω) =Rba(ω), and the relevant off-state a , b resolvent is
then simply expressed in terms of two same state resolvents, Rab(ω) = 1

4 (R+(ω)−R−(ω)).

2.4 Approximations

2.4.1 The Hubbard Approximation

The Pariser-Parr-Pople model can be approximated by a simple Hubbard model with only
an effective on-site interaction U ∗, given by

H = T̂ +
∑
i

U ∗i (n̂i↑ − 1
2 )(n̂i↓ − 1

2 ) +
∑
i

µi n̂i +∆N̂a (2.44)

Note the introduction of the energy offset ∆N̂a, which is required in order to match the
eigenenergies of the PPP model exactly.

To demonstrate the adequateness of this approximation, we calculate the ground state
of simple half-filled Hubbard chains of varying lengths Na varying the effective U ∗. The
ground states are then compared with the ‘exact’ groundstates calculated using the full
PPP Hamiltonian of equation (2.15). The principle of replacing the PPP model with an
effective U ∗ Hubbard model have also recently been investigated for benzene and graphene
using a Peierls-Feynman-Bogoliubov variational theory,94 where they found U ∗/t = 1.6± 2
for a benzene π-system. From the calculated results in Figure 2.4 one sees that the ground
state of a U ∗ ≈ 1.9|t| Hubbard model is almost identical to the groundstate of the full PPP
model. We will return to the Hubbard approximation already in the next chapter when
confronting valence bond theory.

There is in general also quite good agreement between the low energy eigenspectrum of
the two models. However the ordering in the eigenenergy spectrum can mix up unpredictably
for chains Na > 4. This is understandable, because excited state wacefunctions will have a
higher degree of ionized sites, hence enhancing the role of the off-site V operator.

2.4.2 The Hückel/Tight-Binding Approximation

The complexity of the many-body Hubbard model prohibits the exact numerical solution
of general systems with more than ∼ 16 sites. Inspired by the partial success of the single-
particle picture in Fig. 2.1 the tight-binding approximation deals with this problem by
ignoring the Coulomb repulsion altogether . The tight-binding Hamiltonian only contains
the hopping and the onsite chemical potential

Ĥtb = T̂ + Ĥµ =
∑
〈i,j〉

∑
σ=↑,↓

(
tij ĉ
†
i,σ ĉj,σ + tji ĉ

†
j,σ ĉi,σ

)
+
∑
i

µi n̂i (2.45)
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Figure 2.4: Wavefunction overlap between the ground state in a PPP model of a (non-
dimerized) carbon chain of length Na and the similar Hubbard model with a renormalized
local Coulomb repulsion U ∗. The optimal choice for the effective Hubbard model appears
to be U ∗/ |t| = 1.9.

In the chemistry literature this is known as a simple Hückel model. The eigenfunction of
the tight-binding Hamiltonian are simple molecular orbitals. Slater determinants of these
molecular orbitals then constitutes many-body eigenstates.

Because the tight-binding model is a non-interacting model the full many-body wave-
functions are single Slater determinants of the relevant single-particle wavefunctions. The
size of the single particle basis scales linearly with system size Na and hence the numerical
solution of single-particle problems is immensely more feasible than the full many-body
treatment.

2.4.3 The Hartree Self-Consistent Field Approximation

The Hartree approximation deals with this problem by letting each electron move in the
average Coulomb potential of the other electrons, hence effectively reducing the calculation
to a one-body problem.

The Hartree Hamiltonian can easily be expressed in terms of the average electron
densities 〈n̂iσ 〉,

ĤHartree(〈n̂〉) = T + ĤHartree
U + ĤHartree

V (2.46)

with

ĤHartree
U (〈n̂〉) =

∑
iσ

Ui
(
〈n̂iσ 〉 − 1

2

)
n̂iσ̄ −

∑
i

Ui
(
〈n̂i↑〉〈n̂i↓〉+ 1

4

)
(2.47a)

ĤHartree
V (〈n̂〉) =

∑
ij

Vij (〈n̂i〉 − 1)
(
n̂j − 1

)
−
∑
ij

Vij〈n̂i〉〈n̂j〉. (2.47b)

The many-body ground state is then constructed as a Slater determinant of the N lowest
single particle eigenfunctions. Because the Hamiltonian depends parametrically on the
wavefunction averages 〈n̂iσ 〉, the solution to Schrödinger’s equation HHartree(〈n〉)|ψ〉 = E|ψ〉
must then be found self-consistently.

Starting from eigenstates of the barebones hopping Hamiltonian T , the averages 〈n̂iσ 〉
are calculated and inserted into the expression of the mean field Hamiltonian. The process of
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diagonalization and recalculation of the averages inserted into the Hamiltonian is repeated
until the solutions converge. As was the case for the non-interacting tight binding model,
the single-particle eigenstates of the Hartree Hamiltonian delocalize over the molecule
π-system and behave like large molecular orbitals.

2.5 Conclusions
In this chapter we introduced the concept of chemical bonding, and discussed the Pariser-

Parr-Pople (PPP) Hamiltonian describing the pz-bonding in planar organic molecules. The
PPP model is the starting point for the theoretical investigations in the rest of the thesis.

We also explained the exact diagonalization procedure based on the iterative Lanczos
procedure, and showed how to calculate resolvents numerically. In the end we also discussed
some popular approximations to the PPP model, most notably the non-interacting Hückel
model, which we also will return to in the coming work.



Chapter 3

Neoclassical Valence Bond Theory

Starting from the discovery by Rumer that the eigenfunctions corresponding
to different distributions of valence bonds in a molecule can be represented
by plane diagrams which provide information regarding their mutual linear
independence, a very simple graphical method is developed for calculating the
coefficients of the integrals occurring in the matrix elements involved in Slater’s
treatment of the electronic structure of molecules.

L. Pauling78

Let us begin this chapter in the heyday of molecular bonding theory during the late 1920s
and 1930s. Heitler and London42 had proposed a solution for the chemical bonding in the
Hydrogen molecule. Naively speaking larger molecules could probably be described as a
patchwork of such bonds between the electrons of the constituent atoms. However, actual
derivation is hard because the mathematical tools for dealing with many-body problems
are still scarce.

In 1933 Pauling and Wheland80 performed the analytical calculation of bonding in
larger molecules by extending the work of Slater100. Pauling78 extended Slaters many-body
calculation by a graphical representation of the bonded valence electrons in the molecule,
and this revelation was the first serious valence bond (VB) theory. The hallmark of the
theory is the single page derivation of the benzene π-system ground state previously
investigated by Hückel in a series of papers.45

However, almost simultaneously Slater, Mulliken, Lennard-Jones, and others developed
the molecular orbital (MO) theory based on single particle orbitals delocalized over the
entire molecule. And like Betamax in the seventies videotape format war, valence bond
theory was left out in the cold, while molecular orbital theory became the preferred tool of
computational chemistry through the middle of the century.63,97 Klein and Trinasjstic51

have delivered a detailed historical account of the evolution of valence bond theory and its
applications in chemistry.

Our intention is to solve the semi-emperical Pariser-Parr-Pople model analytically by
using a graphical valence bond theory. The starting point is to project out most of the
(very large) Hilbert space of the PPP model. This was first done by Spa lek106 in 1977, and
the effective Hamiltonian for the projected subspace is commonly known as the t-J model.
The t-J model can then be solved graphically by representing the basis in terms of valence
bond states.

This have been employed for bulk materials to investigate quantum phase transitions
and superconductivity.5 Here we will follow the prodigal son, when he returns home to his
father. We will describe the mathematical derivation of the t-J model, the valence bond

21
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basis and the related graphical rules. We will then apply them to some example molecules,
compare to the exact results derived for the PPP model, and discuss the various pros and
cons of this neoclassicala valence bond theory.

3.1 Derivation of the t-J Model Hamiltonian

The basic idea is to consider only a small subspace of the full many-body Hilbert space of
the Pariser-Parr-Pople model. When the Coulomb interaction U is larger than the hopping
amplitude t this can be done accurately by projecting out the high energy many-body
states containing (many) doubly occupied sites. At half-filling the low energy many-body
states have exactly one electron per site, and the effective Hamiltonian for the electronic
spins is the well-known Quantum Heisenberg Hamiltonian.41

he full PPP model can perfectly well be solved in neoclassical valence bond theory, but
for brevity we will not consider the full implementation here. In order to keep the derivation
as approachable as possible, we ignore any variation in the local chemical potential µi , or
any Coulomb interaction between electrons on different orbitals. This is similar to the
simple Hubbard approximation of the PPP model (cf. section 2.4.1).

The Hubbard model is one of the simplest Hamiltonians describing interacting electrons
on any lattice. The electrons hop between connected orbitals i and j with an amplitude tij ,
and two electrons of opposite spin can occupy the same orbital i at a cost of the Coulomb
energy Ui . In second quantization the Hubbard Hamiltonian looks like,

Ĥ = T +U = −
∑
ijσ

tij ĉ
†
iσ ĉjσ +U

∑
ij

n̂i↓n̂j↑, (3.1)

where T is the kinetic term (assuming tij = t∗ij), and U is the Coulomb interaction. Note
that the Hubbard model conserves the number of particles, the total spin S, and the total
spin projection Ŝz.

Hence, consider a system of Na sites occupied by Ne < Na electrons. Following Auerbach5

we partition the Hilbert space of the many-body electronic system into a subspace S
containing all the states with no doubly occupied sites, and another subspace D containing
states with at least one doubly occupied site.

S = |n1↓,n1↑,n2↓, . . . ,nNe↑〉 ∀i : ni↑ +ni↓ ≤ 1, (3.2a)

D = |n1↓,n1↑,n2↓, . . . ,nNe↑〉 ∃i : ni↑ +ni↓ = 2. (3.2b)

The S Hilbert space is actually the null space of the Coulomb operator U , and it is quite
easy to redefine,

S =
{
states |ψ〉

∣∣∣ U|ψ〉 = 0
}
, and D =

{
states |ψ〉

∣∣∣ U|ψ〉 , 0
}
. (3.3)

Hence the states in the two subspaces are only connected to each other through the kinetic
term T . Then introduce the projection P onto the subspace S, and the projection Q onto
the subspace D. These projection operators are idempotent P 2 = P and Q2 =Q, mutually
orthogonal QP = 0, and because S and D constitutes a partition of the original Hilbert
space, P +Q = I , where I is the identity operator.

aNeoclassical is here chosen as facetious juxtaposition to many of the adjectives, which have been added
to valence bond theory over the years: Especially the modern valence bond theory23 and post-modern
valence bond theory.102
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Having introduced the projection operators, our objective is to find an effective Hamil-
tonian for the projected eigenstates |ψP 〉 = P |ψ〉, and the first step is a dissection of
Schrödinger’s equation on the full Hilbert space,

Ĥ(P +Q)|ψ〉 = E(P +Q)|ψ〉 ⇒ ĤP |ψP 〉+ ĤQ|ψQ〉 = E|ψP 〉+E|ψQ〉. (3.4)

Applying the projection operator Q gives us the following equation for |ψQ〉,

|ψQ〉 =
1

E −QĤQ
QĤP |ψP 〉. (3.5)

If we instead apply the projection P to equation (3.4) and insert the result for |ψQ〉, we
obtain the effective Schrödinger’s equation,(

P ĤP +P ĤQ 1

E −QĤQ
QĤP

)
|ψP 〉 = E|ψP 〉. (3.6)

Because S contains no doubly occupied sites, one must have PUP = 0, and since U does
not change the distribution of electrons, QĤP =QTP . Inserting these results, yields(

PT P +PT Q 1

E −QĤQ
QT P

)
|ψP 〉 = E|ψP 〉. (3.7)

Note that no approximations have been carried out yet. Equation (3.7) is an exact projection
of the original Hubbard model to the subspace of singly occupied sites S, and e.g. the
eigenspectrum E of both models must be identical. All we have achieved so far, is to reduce
size of the Hilbert space at the cost of a more complicated Schrödinger’s equation.

In order to simplify the effective Hamiltonian, we expand (E −QĤQ)−1 in powers of
t/(E −U ),

1

E −QĤQ
=

1
E −QUQ

+
1

E −QUQ
QT Q 1

E −QUQ
+ . . . (3.8)

Assuming that |t| � |E −U |, our effective Hamiltonian restricted to the S space, takes the
final form,

Ĥeff(E) = PT P + +PT Q 1
E − (U + T )

QT P (3.9)

= P

T − 1
U

∑
ijk

∑
σγ

tijtjk ĉ
†
iσ ĉjσ n̂j↑n̂j↓ĉ

†
jγ ĉkγ

P . (3.10)

Note that Ĥeff depends parametrically on the energy, which means that Schrödinger’s
equation Ĥeff(E)ψ = Eψ must now be solved self-consistently.

This result is exactly what you would expect. The projected Hamiltonian allows both
direct hopping between S states, and (to first order in t2/U) transitions involving one
virtual visit to the D subspace.
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The expression of equation (3.10) can be simplified. When the initial and final site is
the same, i.e i = k, the following derivation yields a familiar result,

i,j∑
ij

∑
σγ

tijtji ĉ
†
iσ ĉjσ n̂j↑n̂j↓ĉ

†
jγ ĉiγ

=
∑
ij

tijtji
∑
σ

(
ĉ†iσ ĉjσ n̂jσ ĉ

†
jσ̄ ĉiσ̄ + ĉ†iσ ĉjσ n̂jσ̄ ĉ

†
jσ ĉiσ

)
=
∑
ij

tijtji
∑
σ

(
−ĉ†iσ ĉiσ̄ ĉ

†
jσ̄ ĉjσ + n̂iσ n̂jσ̄ + 1

2 (n̂iσ n̂jσ − n̂iσ n̂jσ )
)

= −
∑
ij

tijtji

2(Sxi S
x
j + Syi S

y
j ) + 2Szi S

z
j −

1
2

∑
s

(n̂iσ n̂jσ + n̂iσ n̂jσ̄ )


= −1

2

∑
ij

4
∣∣∣tij ∣∣∣2 (Ŝi · Ŝj − n̂i n̂j4

)
. (3.11)

This is the quantum Heisenberg Hamiltonian for spins on a lattice.

When, i , k, the derivation is quite similar,

i,k∑
ijk

tijtjk
∑
σγ

ĉ†iσ ĉjσ n̂j↑n̂j↓ĉ
†
jγ ĉkγ

=
i,k∑
ijk

tijtjk
∑
σ

(
ĉ†iσ ĉjσ n̂jσ ĉ

†
jσ̄ ĉkσ̄ + ĉ†iσ ĉjσ n̂jσ̄ ĉ

†
jσ ĉkσ

)
=
i,k∑
ijk

tijtjk
∑
σ

(
1
2 ĉ
†
iσ ĉkσ n̂j − ĉ

†
iσ ĉkσ̄ ĉ

†
jσ̄ ĉjσ + 1

2 ĉ
†
iσ ĉkσ n̂jσ̄ −

1
2 ĉ
†
iσ ĉkσ n̂jσ

)
=

1
2

i,k∑
ijk

tijtjk

∑
s

ĉ†iσ ĉkσ n̂j −
∑
sγ

ĉ†iστσγ ĉkγ ·
∑
σγ

ĉ†jσ̄τσγ ĉjγ


= −1

2

i,k∑
ijk

tijtjk

Ŝik · Ŝj −∑
σ ĉ
†
iσ ĉkσ n̂j
4

 . (3.12)

Here τ = (τxi , τ
y
i , τ

z
i ) is the Pauli tensor defined in equation (2.22) , and the local spin

operators (setting ~ = 1),

Si =
∑
σγ

ĉ†iστσγ ĉiγ , (3.13a)

Sij =
∑
σγ

ĉ†iστσγ ĉjγ . (3.13b)

Hence the effective Hamiltonian governing the projected subspace, can be written like,

Ht-J = P (T +K+J )P . (3.14a)
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This is the t-J Hamiltonian with the three terms generally defined as,

T = −
∑
ij

tij∑
σ

ĉ†iσ ĉjσ + h.c.

 , (3.14b)

K =
1
2

i,j∑
ij

Jij(E)
(
Ŝi · Ŝj −

n̂i n̂j
4

)
, (3.14c)

J =
1
2

i,k∑
ijk

J̃ijk(E)

Ŝik · Ŝj −∑
σ ĉ
†
iσ ĉkσ n̂j
4

 . (3.14d)

Here the two exchange couplings are defined as functions of the energy in the following
way:

Jij(E) = −
4|tij |2

E −U
,

J̃ijk(E) = −
4tijtjk
E −U

.

(3.15)

One can even expand the energy in terms of β = 4|t|2/U ,44 so

E = E(0) + βE(1) + β2E(2) + · · · (3.16)

And assuming E(0) = 0 the two coupling strengths takes their usual form:

Jij = lim
E→0

Jij(E) =
4|tij |2

U
, J̃ijk = lim

E→0
J̃ijk(E) =

4tijtjk
U

. (3.17)

At half-filling all sites are occupied by an electron, which means that P (T + J )P = 0,
and the t-J model reduces to the quantum Heisenberg model with an anti-ferromagnetic
coupling.

When the Coulomb energy is much larger than the hopping amplitudes 4U � t, the
coupling constants orders hierarchically t � J ≈ J̃. Because t is the major contributor
to the hopping of holes (or electrons) rather than J̃ the J is usually dropped from the
Hamiltonian,5 giving us the well-known t-J model,

Ht-J = P

−∑ij
tij∑

σ

ĉ†iσ ĉjσ + h.c.

+
1
2

i,j∑
ij

Jij

(
Ŝi · Ŝj −

n̂i n̂j
4

)P . (3.18)

However, typical values for the interaction and hopping integrals in organic molecule
π-systems have U ∼ |2t|, so in general one should not drop the J term.

3.1.1 Above Half-Filling

The derivation of the t-J Hamiltonian can trivially be generalized to include systems above
half-filling. Here, the Hilbert space contains states with one or more doubly occupied sites.

Consider a system with Na orbitals occupied by Ne > Na electrons. It is obvious that
at least n =Ne −Na of the orbitals must be doubly occupied. Let the states with exactly
n doubly occupied sites belong to a subspace Dn, while states with more than n doubly
occupied sites belong to D>n. Again the two subspaces can be defined using the U operator

Dn =
{
states |ψ〉

∣∣∣ U|ψ〉 = nU |ψ〉
}
, and D>n =

{
states |ψ〉

∣∣∣ U|ψ〉 , nU |ψ〉} . (3.19)
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It is trivial to introduce the projection P onto the Dn subspace, and the projection Q
onto the D>n subspace. By removing the constant offset nU to the Coulomb energy,
one reproduces the t-J Hamiltonian of equation (3.14), so that the effective Hamiltonian
becomes Hef f =Ht-J +nU .

3.2 The Dimer Example

As a warm up exercise consider the already scrutinized dimer (cf. section 2.1), consisting
of two orbitals hybridized by a hopping t and with on-site Coulomb repulsive energy U .
At half-filling the t-J Hamiltonian for the Hilbert subspace S of singly occupied sites is,

Ht-J = PKP = P
{
J
(
Ŝ1 · Ŝ2 −

n̂1n̂2

4

)}
P . (3.20)

In this case the S subspace contains four different many-body states | ↑1↑2〉, | ↓1↓2〉, | ↑1↓2〉
and | ↓1↑2〉. Only the quantum Heisenberg part of the t-J Hamiltonian contributes, and it
follows directly from the definition in equation (3.14c) that,

K| ↑↑〉 = 0,

K| ↓↓〉 = 0,

K| ↑↓〉 = 1
2 J (| ↓↑〉 − | ↑↓〉) ,

K| ↓↑〉 = 1
2 J (| ↑↓〉 − | ↓↑〉) .

When subtracting the last two equations one finds that the ground state is a singlet. The
eigenenergy can be found directly using the approximate expression for J of equation (3.17),

|s〉 =
1
√

2
(| ↑↓〉 − | ↓↑〉) , Es = −J = −4t2/U. (3.21)

With an energy Et = 0 the excited state is the triplet,

|t1〉 = | ↓↓〉,

|t2〉 =
1
√

2
(| ↑↓〉+ | ↓↑〉) ,

|t3〉 = | ↑↑〉.

The Heisenberg Hamiltonian K commutes with the total spin Ŝ, and so K can be diagonalized
in the singlet space and the triplet space separately.

If you looked up section 2.1, you have probably noticed that the ground state energy
of the singlet Es differ from the one we derived directly from the Hubbard model. If we
instead use the full self-consistent expression for the exchange coupling J of equation (3.15),
we find the familiar

E = − 4t2

U −E
⇒ E = 1

2 (U ±
√
U2 + 16t2).

3.3 Ground States and Spin

Let us take a closer look at the quantum Heisenberg model, which describes the effective
interactions between the electronic spins in different orbitals. At half-filling this becomes
the only surviving contribution to the t-J Hamiltonian, and the many-body states become
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pure spin states. For both the quantum Heisenberg model and the parent Hubbard model
on bipartite lattices (also knwon as alternant lattices), there exists strong constraints on
the total spin of the system ground state.

A bipartite lattice contains two sublattices A and B, such that lattice points in A
are only connected to lattice points in B and vice versa. For the quantum Heisenberg
model, if SA and SB denotes the maximum value of the spin projection on the A and B
sublattices respectively, the Lieb-Mattis theorem60 states that the ground state has a total
spin S0 ≤ |SA − SB|, and the eigenenergy spectrum is ordered according to spin S such that
E(S + 1) > E(S) for all states with a total spin S ≥ |SA − SB|.

In the t-J model at half-filling each orbital is occupied with a single electron of spin
1
2 , and for a bipartite lattice with sublattices of equal size, SA − SB = 0, and hence by the
Lieb-Mattis theorem, the ground state must be a singlet S0 = 0. On the other hand, when
one sublattice contains just one more orbital than the other, then SA − SB = 1

2 , and the

ground state must be a doublet S0 = 1
2 . However, when the number of orbitals in each

sublattice differ by more than one, then SA − SB > 1
2 , and the Lieb-Mattis theorem cannot

precisely predict the spin of the ground state.

Lieb59 later investigated the repulsive Hubbard model on a bipartite lattice with NA
orbitals belonging to the lattice A and NB orbitals belonging to the lattice B. At half-filling
the total spin of the ground state is given by S = 1

2 |NA −NB|. This means that a bipartite
lattice with an equal number of sublattice sites NA =NB has a singlet ground state, while
a bipartite lattice with NA =NB ± 1 has a doublet ground state etc.

Due to the Lieb theorem and the Lieb-Mattis theorem many systems have low spin
ground states, and because the t-J Hamiltonian conserves the total spin, we can simplify
our calculations by limiting them to this low spin Hilbert subspaces.

3.3.1 Rules for Addition of Angular Momentum

According to the addition rules of angular momentum, two systems with angular momentum
j1 and j2 repsectively, will have a total angular momentum eigenvalue j fulfilling the relation,
|j1 − j2| ≤ j ≤ j1 + j2.

Applying this logic to the combination of two spin 1
2 systems we find a singlet and a

triplet.

1
2
⊗ 1

2
= {0,1}. (3.22)

Similarly the combination of two singlets will produce a spin singlet, adding a spin 1
2 system

to a singlet gives a doublet, and adding a triplet gives a triplet. Extending this logic, the
number of different spin multiplets when combining any number n of spin 1

2 systems can
be computed. Table 3.1 shows the result of such a computation up till n = 15.

Hence low spin systems can be built up from the combination of singlet states,

0⊗ 0 ⊗ · · · ⊗ 0 = 0,
1
2
⊗ 0 ⊗ · · · ⊗ 0 =

1
2
,

1 ⊗ 0 ⊗ · · · ⊗ 0 = 1.
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n\S 0 1
2 1 11

2 2 21
2 3 31

2 4 41
2 . . .

1 1
2 1 1
3 2 1
4 2 3 1
5 5 4 1
6 5 9 5 1
7 14 14 6 1
8 14 28 20 7 1
9 42 48 27 8 1

10 42 90 75 35 9
. . .

11 132 165 110 44 10
12 132 297 275 154 54
13 429 572 429 208 65
14 429 1001 1001 637 273
15 1430 2002 1638 910 350 . . .

Table 3.1: The number of spin S multiplets when adding n spin 1
2 particles. E.g. a system

of n = 4 electrons, has 2 spin singlets, 3 spin triplets and one spin S = 2 quintuplet.

3.4 Valence Bonds

The absolutely simplest singlet state is the maximally entangled state of two electrons,

|s〉 =
1
√

2

{
ĉ†1,↑ĉ

†
2,↓ − ĉ

†
1,↓ĉ
†
2,↑

}
|vac〉. (3.23)

Each state consists of a number of singlet pairings between different sites. Adopting the
notation of Beach and Sandvik8 we introduce the valence bond creation operator,

χ̂0†
ij =

1
√

2

(
ĉ†i↑ĉ

†
j↓ − ĉ

†
i↓ĉ
†
j↑

)
. (3.24)

It is readily seen that this operator representation of the singlet is undirected, because

χ̂0†
ij =

1
√

2

(
ĉ†i↑ĉ

†
j↓ − ĉ

†
i↓ĉ
†
j↑

)
=

1
√

2

(
−ĉ†j↓ĉ

†
i↑ + ĉ†j↑ĉ

†
i↓

)
= χ̂0†

ji . (3.25)

The singlet – being composed of two fermionic operators – is itself bosonic and obeys the
usual commutation relation [χ̂0

ij , χ̂
0†
ij ] = 1. When the valence bond operators share only

one site index a bit of algebra shows that,[
χ̂0
ij , χ̂

0†
kj χ̂

0†
il

]
|vac〉 = −1

2
χ̂0†
kl |vac〉. (3.26)

Likewise a set of triplet valence bond creation operators can be introduced:

χ̂1†
ij |vac〉 = ĉ†i↓ĉ

†
j↓|vac〉, (3.27a)

χ̂2†
ij |vac〉 =

1
√

2

(
ĉ†i↑ĉ

†
j↓ + ĉ†i↓ĉ

†
j↑

)
|vac〉, (3.27b)

χ̂3†
ij |vac〉 = ĉ†i↑ĉ

†
j↑|vac〉. (3.27c)



Regarding Molecules 29

A notable difference to the singlets is that all triplet operators are directed, so χ̂l†ij = −χ̂l†ji
for l = 1,2,3. The commutation relation in equation (3.26) can be generalized to include
any combination of singlet and triplet states,8

[
χ̂
ρ
ij , χ̂

µ†
kj χ̂

ν†
il

]
|vac〉 =

1
2
T λµρνχ̂λ†kl |vac〉, (3.28)

where T λµρν = 1
2tr(τλ†τµτρ†τν).

Having quarried our building blocks in the form of valence bond operators, a valence
bond state can be built up by adding valence bonds to the vacuum state.

But there is a lot of freedom in writing down the valence bond states, and several
papers8,105 have been dedicated to investigating different ways of efficiently representing
these states. Apart from valence bonds, states pertaining to the t-J model can also
contain empty sites (holons), doubly occupied sites (doublons) and the occasional un-
bonded electron (spinon/free radical). We will choose the following general many-body
representation of the valence bond states,

|ψ〉 = (

doublons︷          ︸︸          ︷
ĉ†i1↑ĉ

†
i1↓
ĉ†i2↑ĉ

†
i2↓

)(

spinons︷    ︸︸    ︷
ĉ†j1σ1

ĉ†j2σ2
)(

valence bonds︷                      ︸︸                      ︷
χ̂l1†k1P k1

χ̂l2†k2P k2
· · · χ̂lN†kN P kN )|vac〉. (3.29)

Here the spinons are ordered by their indexes j1 < j2. This last convention can seem
unnecessary at the moment, but it ensures that the pictographical representation of a
valence bond state, which we are about to introduce, is wholly unambiguous.

Note that the actual ordering of doublons and valence bond states can be completely
arbitrary, because both states are bosonic, and they can readily be interchanged without
altering the represented valence bond state.

3.5 Valence Bond States Pictionary

In the original game of Pictionary® you compete to guess an unknown word from a drawing.
However, the title does not alleviate to mere guesswork, but is instead a reference to the
portmanteau components picture and dictionary... although, you may think of this as a
simple game of “Find the ground state”. As we shall see, the valence bond states have a
direct interpretation in terms of bond diagrams. Because the Hamiltonian can be split into
local operators acting on nearest neighbor pairs or three connected sites, one can easily
chart the workings of the t-J Hamiltonian on a set of example states.

This picture dictionary of the Hamiltonian, can then quite easily be applied to molecular
systems of choice. If this descriptions seems puzzling, everything will hopefully be much
clearer when we have ended this short section.

The underlying lattice is composed of sites and bonds. A site i is depicted as a gray
circle, while a bond tij is shown as a gray bars connecting sites i and j. To create a
pictionary we must start with our equivalent of letters: valence bond states. A holon is
depicted as an empty circle, a spinon is a filled circle, and a doublon is two filled circles. A
singlet state is drawn as a black line connecting the sites, while a triplet state is represented
by a directed arrow.
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name operator representation pictionary representation

spinon ĉ†i↓|vac〉

doublon ĉ†i↑ĉ
†
i↓|vac〉

singlet valence bond χ̂0†
ij |vac〉 i j

triplet valence bondb χ̂1†
ij |vac〉 i j

Having developed our alphabet, we can put them together and form extended valence
bond states. The next step in our linguistic endeavor is to consider the action - the verbs
- the operators. Taking the Hamiltonian operators of the t-J model term by term, our
vocabulary increases quickly.

Note that we will mostly be considering singlet or doublet ground state molecules, and
as a result the entries related to triplet valence bonds are only sporadically included in the
pictionary.

3.5.1 The Hopping T
The local hopping operator can be written as a sum of local terms, PT P =

∑
i,j PTijP ,

where

Tij = −tij
∑
σ

ĉ†iσ ĉjσ . (3.30)

The wrapping projection operator P ensures that the Hamiltonian only applies to states in
the projected space. Hence only operations which conserve the number of singly occupied
sites should be considered.

As an example consider the case, when site i is occupied by a doublon and site j by a
spinon. Then

Tji ĉ†i↑ĉ
†
i↓ĉ
†
j↑|vac〉 = −tji ĉ†j↓ĉi↓ĉ

†
i↑ĉ
†
i↓ĉ
†
j↑|vac〉 = tji ĉ

†
i↑ĉ
†
j↑ĉ
†
j↓|vac〉. (3.31)

Interpreted as a pictionary entry the result can be written

Tji
∣∣∣

i j

〉
= tji

∣∣∣ 〉
. (3.32a)

Similarly when considering a holon and a spinon,

Tij
∣∣∣

i j

〉
= −tij

∣∣∣ 〉
, (3.32b)

and by direct analogy the pictorial valence bond case looks like

Tji
∣∣∣∣

i

j

〉
= tji

∣∣∣∣ 〉
, (3.32c)

Tij
∣∣∣∣

i

j

〉
= −tij

∣∣∣∣ 〉
. (3.32d)

Acting on any other categories of pairs yield zero in the projected space.
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3.5.2 The Quantum Heisenberg Hamiltonian K
The quantum Heisenberg Hamiltonian can also be decomposed into local operators PKP =
1
2
∑

i,jKij =
∑
〈i,j〉Kij , where

Kij = Jij

(
Ŝi · Ŝj −

n̂i n̂j
4

) [
=Kji

]
. (3.33)

Since this operator commutes with local number operator, n̂i , the projection P is implicit.
When applied to connected sites with either holons or doublons the result vanishes, and
only states containing combinations of valence bonds and spinons contribute.

Two valence bonded sites constitute an eigenstate of the Heisenberg Hamiltonian, and
one can easily verify that,

Kij
∣∣∣

i j

〉
= −J

∣∣∣
i j

〉
(3.34a)

Kij
∣∣∣

i j

〉
= 0. (3.34b)

Applying Kij to a nearest neighbor pair results in the following entries in our pictionary,

Kij

∣∣∣∣∣∣
i

j

〉
= 1

2 J

∣∣∣∣∣∣
〉
, (3.34c)

and finally when considering two valence bond states,

Kjk

∣∣∣∣∣∣ j

k

〉
= 1

2 J

∣∣∣∣∣∣
〉
. (3.34d)

Since the Heisenberg Hamiltonian yields zero when applied to empty of doubly occupied
sites, these are all the dictionary entries we need.

3.5.3 The Mixed Term J
The only remaining term of the t-J Hamiltonian is J , which can be written as a sum of
local terms PJ P =

∑i,k
ijk PJijkP . Note that Jijk acts on three consecutively connected

sites i,j and k, and

Jijk =
1
2

4tijtjk
U

Ŝik · Ŝj −∑
s ĉ
†
isĉksn̂j
4

 =
1
2
J̃ijk

Ŝik · Ŝj −∑
s ĉ
†
isĉksn̂j
4

 , (3.35)

where J̃ijk = 4tijtjk/U .
This local operator only conserves the number of singly occupied sites when acting on

a combination of two singly connected sites and one doubly occupied (or empty) site. The
dictionary contains three distinct cases. Initially, we consider that states, where the triply
connected sites ijk are occupied by a holon and a valence bond, and

Jijk
∣∣∣∣

i

j

k

〉
= −J̃ijk

∣∣∣∣ 〉
, (3.36a)

Jijk
∣∣∣∣

i

j

k

〉
= 0. (3.36b)
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Secondly, when the three sites are occupied by a valence bond and a spinon, we have

Jijk

∣∣∣∣∣∣
i

j

k

〉
= 1

2 J̃ijk

∣∣∣∣∣∣
〉
, (3.36c)

Jijk

∣∣∣∣∣∣
i

j

k

〉
= 1

2 J̃ijk

∣∣∣∣∣∣
〉
. (3.36d)

Finally, this can easily be generalized to the last case, where the two sites are valence
bonded with two other sites.

Jijk

∣∣∣∣∣∣
i

j

k

〉
= 1

2 J̃ijk

∣∣∣∣∣∣
〉
. (3.36e)

For doublons the entries are very similar. All you need to do is to replace the holon with a
doublon and reverse the order of i,j and k.

3.6 Valence Bond States Non-Orthogonality

The pictionary now details the valence bond graphical language for dealing with many-body
calculations in the t-J model. However, it turns out that our words may not be wholly
unambiguous. . .

Consider e.g., two valence bond states |A〉 = χ̂0†
12χ̂

0†
34|vac〉 and |B〉 = χ̂0†

23χ̂
0†
14|vac〉 in a

four site model. Writing out the states in terms of creation operators it is relatively
straight-forward to show that their mutual overlap is given by, 〈A|B〉 = 1

2 , and in fact the
valence bond states are in general non-orthogonal.

3.6.1 Overlaps

Following Beach and Sandvik8 we consider as an example, a general pure singlet valence
bond state,

|ψi〉 = χ̂0†
i1i2
χ̂0†
i3i4
· · · χ̂0†

iN−1iN
|vac〉. (3.37)

The mutual overlap between two such states is written like〈
ψj |ψi

〉
= 〈vac|χ̂0

jN+1jN
· · · χ̂0

j3j4
χ̂0
j1j2
χ̂0†
i1i2
χ̂0†
i3i4
· · · χ̂0†

iN−1iN
|vac〉. (3.38)

Graphically the two states are superposed on the lattice, and the valence bonds will either
overlap directly or form loops. Any overlapping bonds correspond to identical valence
bonds and they can all safely be ignored. The loops can be contracted by repeated use of
the commutation relation, [χ̂0

ij , χ̂
0†
ik χ̂

0†
jl ]|vac〉 = −1

2 χ̂
0†
kl |vac〉, which removes two sites from

the loop at the cost of −1
2 until only two sites are left. This means that each n-site loop

contributes with a factor of (−2)2−n/2. An example is shown in Figure 3.1(a).

Letting No be the total number of sites in loops, and N	 counting the number of loops,
the overlap can be calculated using the formula

〈i|o〉 = (−2)N	−No/2. (3.39)
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Figure 3.1: Two examples of stilbene valence bond states (green and yellow) superposed
on each other. In this visualization it is rather easy to see the loop and string structure
determining the mutual overlap of the two states.

Valence bond states containing holons (doublons) are simple to deal with, since the
overlap vanishes when there is any mismatch between the holons (doublons) of the two
states. When considering spinons, we need the commutation relation,[

ĉiσ , χ̂
0†
ij

]
=

1
√

2
ĉ†jσ̄ . (3.40)

Graphically a spinon in each state will mark the end of a string of valence bond states.
The string can be contracted one site at time at the cost of i/

√
2 per contraction, and a

string of length n contributes to the overlap with a factor (−2)n/2. Hence the presence of
spinons does not alter equation (3.39).

The triplet states can in principle be dealt with by using equation (3.28), but we will
not cover all the cases here. Graphically any loop must contain an even number of triplet
bonds and the sign of the contribution will depend on the mutual direction of the involved
triplets. An example is shown in Figure 3.1(b).

3.6.2 Overcompleteness

The valence bond states are not only non-orthogonal, but as a basis they are also over-
complete. For the simple four site model at half-filling, we can write down three different
valence bond states. However, consulting Table 3.1 only two singlet states exist in this
case. In fact the three states are related, so

χ̂0†
12χ̂

0†
34 + χ̂0†

13χ̂
0†
23 + χ̂0†

23χ̂
0†
14 = 0. (3.41)
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For a given set of valence bond states |v1〉, |v2〉, . . . , |vN 〉, we can construct the overlap
matrix S with the matrix elements Sij = 〈i|j〉 (not to be confused with the spin operator).
If the set forms an overcomplete basis the dimension of S is larger than the rank, i.e.,

dim(S) > rank(S). (3.42)

The overcomplete basis can be reduced to a complete basis by Gaussian elimination of
the overlap matrix S. From the reduced row echelon form, the complete basis |vi〉 subset
can then be extracted.

Another approach is due to Rumer,90 where a full basis can be constructed by placing
the lattice sites in a circle, and only include states with non-crossing valence bonds. These
Rumer diagrams can also be constructed by repeated application of the pictionary on the
Kekulé state on a chain (all valence bonds along the chain bonds, cf. equation (3.54)).

Any valence bond state can be re-expressed in the complete basis |vi〉,

|ψ〉 =
∑
i

αi |vi〉 (3.43)

The overlap with a particular basis state |vj〉 is then,〈
vj |ψ

〉
=
∑
i

αi
〈
vj |vi

〉
=
∑
i

αiSji , (3.44)

and the the expansion coefficients αi can then be found by solving this set of linear
equations,

S


α1
...
αn

 =


〈
v1|ψ

〉
...〈

vn|ψ
〉

 . (3.45)

3.6.3 Operators in a Non-Orthogonal Basis

While valence bond states and valence bond operators can be written in a bra-ket fashion,
it is desirable to work with state vectors and operator matrices. While the translation
between the two representations is trivial fin a orthogonal basis, we must be careful, when
working in anon-orthogonal basis.

A valence bond state can be written on ket or vector form,

|φ〉 =
∑
i

ci |vi〉 ∼ φ =


c1
c2
...
cn

 . (3.46)

Consider then an operator Â written in both representations,

Â =
∑
ij

|vi〉αij〈vj | ∼ A =


a11 . . . a1n
...

...
an1 . . . ann

 . (3.47)

In an orthogonal basis, the coefficients are identical aij = αij , however, in a non-orthogonal
basis this is no longer the case. Here we will design the matrix representation, such that
Â|φ〉 and Aφ produces the same results.
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Sandwiching the operator Â between two basis states |vk〉 and |vl〉, the matrix represen-
tation produces,

〈vk |Â|vl〉 ∼ 〈vk |Avl〉 =
∑
j

ajl〈vk |vj〉 =
∑
j

Skjajl , (3.48)

while the operator representation gives,

〈vk |Â|vl〉 =
∑
ij

αij〈vk |vi〉〈vj |vl〉 =
∑
ij

SkiαijSjl . (3.49)

Equating those two expressions we end up with a set of linear equations, Sa = SαS. When
the basis is complete the overlap matrix is invertible and the above equation reduces to,
a = αS.

In the matrix representation, the identity operator, I, takes the usual diagonal form
with matrix elements aij = δij . In a complete valence bond basis it is straightforward to

find the corresponding coefficients αij = aik(S−1)kj = (S−1)ij , giving us the valence bond

operator representation Î =
∑

ij |vi〉S
−1
ij 〈vj |.

3.7 Schrödinger’s Equation

Having dealt with the non-orthogonality of the valence bond basis, the next important
goal is to find the many-body ground state and excited states. Hence we wish to solve
Schrödinger’s equation. The pictionary of equation (3.32)-(3.34) already constitutes a
matrix representation of the Hamiltonian. This means that

Ĥt-J |vi〉 =
∑
j

|vj〉hji . (3.50)

Then expand the eigenfunctions in the valence bond basis, such that |ψ〉 =
∑

j cj |vj〉. We
can rewrite Schrödinger’s equation in terms of this non-orthogonal basis,

Ĥ |ψ〉 = Ĥ
∑
j

cj |vj〉 =
∑
kj

hkjcj |vk〉 = E
∑
k

ck |vk〉. (3.51)

This can be rewritten as a matrix equation

S (h −EI)c = 0. (3.52)

When the overlap matrix S is invertible, we obtain the usual Schrödinger’s equation,
h |ψ〉 = E|ψ〉. Then proper normalization of the ground states requires that

〈
ψ|ψ

〉
= 1, hence

giving that 〈
ψ|ψ

〉
=
∑
ij

c∗i cj〈vi |vj〉 =
∑
ij

c∗iSijcj = c†Sc = 1. (3.53)

3.8 Examples

3.8.1 Benzene

Having developed the valence bond pictionary, our first example is the the aromatic benzene
molecule considered by Pauling and Wheland80, with a π-system consisting of six pz orbitals
connected in a ring. According to the Lieb-Mattis theorem, the ground state is a singlet.
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Figure 3.2: Fulvene, showing both the molecular structure diagram and the π-system
lattice.

The five Rumer diagrams are given by the two Kekulé structures (all valence bonds between
nearest neighbors),

and . (3.54)

and the three Dewar states,

. (3.55)

The Hamiltonian can be derived directly from the pictionary. The result is given by,

ĤJ = J


−3 0 1/2 1/2 1/2
0 −3 1/2 1/2 1/2
1 1 −2 0 0
1 1 0 −2 0
1 1 0 0 −2

 . (3.56)

Here the ground state is right away

|GS〉 = 0.4098

 +

− 0.1780

 + +

 ,
confirming the original result of Pauling and Wheland80.

3.8.2 Fulvene

The Fulvene (C6H6) molecule is depicted in Figure 3.2, and the π-system contains six
pz orbitals. While we could begin our analysis from the five Rumer diagrams, this is
undesirable because the π-system structure forces the pictionary to produce states outside
the Rumer basis.
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Instead the symmetry of the molecule is exploited in order to construct a complete
basis. From the pictionary (section 3.5), we generate the eleven singlet states shown in
Figure 3.3. A suitable choice of mirror symmetric or anti-mirror-symmetric superpositions
of the valence bond states, creates a proper basis,

1

2 3a 3b 4a 4b

5a 5b 6a 6b 7

Figure 3.3: Fulvene, molecular model states ordered by their diagonal element in the
Hamiltonian

|ψa〉 = |ψ1〉, (3.57a)

|ψb〉 = |ψ3a〉+ |ψ3b〉, (3.57b)

|ψc〉 = |ψ4a〉+ |ψ4b〉, (3.57c)

|ψd〉 = |ψ3a〉 − |ψ3b〉, (3.57d)

|ψe〉 = |ψ4a〉 − |ψ4b〉. (3.57e)

In this basis the Hamiltonian separates completely into two subspaces composed of either
mirror-symmetric states or the mirror-anti-symmetric states. For simplicity we assume
that all Js are identical, giving the result,

H = J


−3 1/2 −1/2 0 0
2 −21/2 0 0 0
−1 0 −21/2 0 0
0 0 0 −11/2 1
0 0 0 1 −21/2

 . (3.58)
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The overlap matrix takes an unusual form because the states are not normalized,

S =


1 −1 1/2 0 0
−1 21/2 −1/2 0 0
1/2 −1/2 1 0 0
0 0 0 11/2 −11/2
0 0 0 −11/2 3

 . (3.59)

The actual ground state of the system belongs to the parity symmetric subspace, and has
a total energy of EGS = −4J,

|ψGS〉 ∝ |ψa〉 − 1
3 |ψb〉+

1
3 |ψc〉. (3.60)

In principle the state should be properly normalized. Because our basis is non-orthogonal
the coefficients of the valence bond states in the ground state representation should be
interpreted very carefully. It is not correct to just take the ratios of the coefficients and
conclude that the Kekulé state |ψa〉 constitutes 60% of ground state.

To emphasize this point consider a slightly different basis, where |ψb〉 and |ψc〉 are
replaced with

|ψb′〉 = |ψ5a〉+ |ψ5b〉, (3.61)

|ψc′〉 = |ψ6a〉+ |ψ6b〉. (3.62)

In this basis the symmetric ground state is,

|ψGS〉 ∝ |ψa〉 − 1
7 |ψb′〉+

2
7 |ψc′〉. (3.63)

with a somewhat larger total weight on the Kekulé state |ψa〉.
Instead one should consider the normalized overlap between the ground-state and the

Kekulé state, 〈
ψa|ψGS

〉√〈
ψGS |ψGS

〉√〈
ψa|ψa

〉 ≈ 0.95 (3.64)

This shows that in this case the Kekulé state is a surprisingly good substitute for the total
ground state. The remaining 1/20 of the ground state is captured by the two other basis
states. However, one should not mistakenly think that the overlap with the two remaining
states is just 1/20.

Repeating the calculation of equation (3.64) for the different basis states allow us to
produce the overlap table,

|ψa〉 |ψb〉 |ψc〉 |ψb′〉 |ψc′〉

〈ψGS | 0.95 0.80 0.63 0.40 0.40

While the Kekulé state has the largest overlap with the ground state, it turns out that the
|ψb〉 state with one ‘long’ valence bond also has a large overlap with the ground state.

The fact that two valence bond states with valence bonds of different lengths both have
a large overlap with the ground state, emphasizes that the length of valence bonds should
not be directly interpreted as the spin correlation length.

When replacing a resonating valence bond state with a large overlap state one should
ensure that the complete symmetry of the original state is retained in the replacement
state. Also the actual ground state energy is sometimes much smaller than the energy of
the overlap state, 〈ψ|Ĥ |ψ〉.
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3.9 Benchmarks

We can easily benchmark the calculations done by our neoclassical valence bond theory
against exact numerical calculations of the parent Hubbard model described in the previous
chapter.

To get a sense of how well the valence bond theory works for systems of varying size, we
will choose to do the comparison for non-dimerized chains of varying lengths. We choose
to compare the overlap between the valence bond ground state |ψvb〉 and the renormalized
projection of the Hubbard model ground state to the S subspace P |ψH 〉/〈ψH |P |ψH〉. The
result is presented in Figure 3.4, along with the norm of the S projected norm 〈ψH |P |ψH 〉.
This (almost perfect) agreement with valence bond theory independent of the value of U is
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Figure 3.4: Comparing P projected ground states calculated by exact diagonalization and
VB theory. a) Shows the direct overlaps as a function of chain length n. b) The norm of
the ground state in the projected subspace S calculated from the parent Hubbard model.

somewhat surprising. If you remember that we performed an expansion in terms t/(E −U )
when deriving the effective Hamiltonian, then the obvious conclusion may be that the
expansion was solid and well-defined. However, the truth is a little more complicated than
this.

In order to understand this we expand our Hamiltonian to fourth order in the hopping
using equation (3.8),

H (2) = PT Q
( 1
E −QUQ

QT Q
)2 1
E −QUQ

QT P . (3.65)



40 3. NEOCLASSICAL VALENCE BOND THEORY

Half of the relevant t4 order processes involving only two connections sharing a single site
tij and tjk (assuming tik = 0), are given by

↑↑↑ → 0.

↓↑↑ → −02↑ → 0↑2 → −02↑ → ↓↑↑ or − ↑↓↑ .

→ ↑02 → ↑↑↓ or − ↑↓↑ .

→ −20↑ → −2↑0 → −20↑ → ↓↑↑ or − ↑↓↑ .

→ ↑20 → ↑↑↓ or − ↑↓↑ .

↑↓↑ → 02↑ → −0↑2 → 02↑ → ↑↓↑ or − ↓↑↑ .

→ − ↑02 → ↑↓↑ or − ↑↑↓ .

→ 20↑ → 2↑0 → 20↑ → ↑↓↑ or − ↓↑↑ .

→ − ↑20 → ↑↓↑ or − ↑↑↓ .

(3.66)

The remaining half can be found by flipping all the spins and/or reversing the order of
sites.

In this case the effective interaction will always come with a prefactor, J3 = |tij |2|tjk |2/(E−
U )3, and the effective spin Hamiltonian capturing the above rules takes the form,

H
(2)
ijk = −8

(
Si · Sj −

1
4

)
− 8

(
Sj ·Sk −

1
4

)
+ 4

(
Si · Sk −

1
4

)
. (3.67)

To keep the algebra simple, we will instead work with the local Heisenberg operator

Kij = Si · Sj −
n̂i n̂j

4 . Assuming for brevity that all hopping integrals are equal, tij = t and
that the molecular graph have no 4-loops, we can easily write down the full Hamiltonian
summing over all possible connected three sites 〈ijk〉 in the molecule.

∑
〈ijk〉

J4H
(2)
ijk =

|t|4

(E −U )3

∑
〈i,j,k〉

(−8Kij − 8Kjk + 4Kik). (3.68)

This means an enhancement of the singlet pairing between neighboring sites and an
additional triplet pairing between next nearest neighbors 〈〈i, j〉〉.

Let us consider the other case, where the two pairs of neighbors do not share a site,
meaning that we must consider two sets of neighbor vertices (i, j) and (k, l) with i, j , k, l.
The resulting Hamiltonian is simply the direct product of singlet pairings between the two
neighbor pairs, and

H
(2)
ijkl =

16|tij |2|tkl |2

(E −U )2
2

E − 2U

{
Kij ,Kkl

}
. (3.69)

The additional factor of 2 comes from counting all the possible sequences of spin flip
processes. For brevity we assume (again) equal couplings tij = tkl = t, and

H
(2)
ijkl =

2
E − 2U

16|t|4

(E −U )2

(∑
〈i,j〉
Kij

)2
−

∑
〈i,j,k〉

{
Kij ,Kjk

}
−
∑
〈i,j〉
K2
ij

 . (3.70)



Regarding Molecules 41

So starting from the product K2 we must remove the additional contributions from all sets
of neighbor pairs sharing a single vertex, 〈i, j〉 and 〈j,k〉 with i , k.

If one remembers that the anti-commutator involving the spatial components (x,y,z) of
the Pauli spin operators behave like, {Sai ,S

b
i } =

1
2δa,b, it is straightforward to show that{

Kij ,Kjk
}

= −1
2

(
Kij +Kjk −Kik

)
. (3.71)

We can rewrite all this as

H (2) =
8|t|4

(E −U )2
2

E − 2U

(
2K2 +

∑
〈i,j,k〉

(Kij +Kjk −Kik) + 2K
)
. (3.72)

Expressing H in units of hopping |t| allow to write the Hamiltonian in terms of the
dimensionless parameter α = |t|/(E −U ).

H ′ = 4αK+ 32α3(K+K2) + 4α3
∑
〈i,j,k〉

(
2Kij + 2Kjk − 3Kik

)
. (3.73)

When |U | � |E| instead (note that α changes with E −U),

H ′ ≈ 4αK+ 16α3(K+K2)− 4α3
∑
〈〈i,k〉〉

Kik . (3.74)

Ignoring the terms with three connected sites, both Hamiltonians are of the form

H ′ = a(E′ ,U ′)K+ b(E′ ,U ′)K2. (3.75)

Solving Schrödinger’s equation H ′ |ψ〉 = E′ |ψ〉, shows us that while the relevant energies
E′ can depend on the coefficient functions a and b, the actual eigenfunctions are still the
same. Hence the eigenfunctions to first order in J , are very close to the eigenfunctions even
up to J2 order.

n ET B / |t| E
(1)
vb / |t| E

(2)
vb / |t|

2 -2 -2 –
4 -4.472 -3.07 -4.62
6 -6.988 -3.87 -5.70
8 -9.518 -4.53 -6.60
10 -12.053 -5.10 -7.39
12 -14.593 -5.62 -8.18
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Figure 3.5: Comparison of the valence bond energies E
(1)
vb , E

(2)
vb , and the exact tight-binding

ground state energy for chains of length n at U = 0.

To benchmark how well the ground state energy is determined, we calculate the energy
using the usual t-J model EJ with J = 4t2/U , or the usual E(1) with J = 4t2/(U −E). Lastly

we calculate the energy E(1) from the full self-consistent equation including corrections H (2)

(but ignoring the term concerned with three connected sites).



42 3. NEOCLASSICAL VALENCE BOND THEORY

n EH / |t| EJ / |t| E
(1)
vb / |t| E

(2)
vb / |t|

2 -0.828 -1 -0.83 –
4 -1.952 -2.37 -1.65 -2.18
6 -3.093 -3.74 -2.36 -3.11
8 -4.236 -5.12 -2.95 -3.93
10 -5.381 -6.51 -3.48 -4.66
12 -6.526 -7.89 -3.96 -5.32
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Figure 3.6: Comparison of the valence bond energies EJ , E
(1)
vb , E

(2)
vb , and the Hubbard ground

state energy for chains of length n at U = 4|t|.

n EH / |t| EJ / |t| E
(1)
vb / |t| E

(2)
vb / |t|

2 -0.2462 -0.2500 -0.2462 –
4 -0.5826 -0.5915 -0.5711 -0.5986
6 -0.9219 -0.9359 -0.8867 -0.9438
8 -1.2621 -1.2812 -1.1924 -1.2868
10 -1.6028 -1.6270 -1.4885 -1.6265
12 -1.9437 -1.9730 -1.7759 -1.9624

2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

n

E
 (

u
n
it
s
 o

f 
|t
|)

 

 

E
H

E
J

E
(1)

E
(2)

Figure 3.7: Comparison of the valence bond energies EJ , E
(1)
vb , E

(2)
vb , and the Hubbard ground

state energy for chains of length n at U = 16|t|.

For chains of different lengths, and using various values of U the resulting energies are
shown in Figures 3.5, 3.6 and 3.7 along with the exact results. Obviously the second highest
order of perturbation theory yields the best result, but perhaps surprisingly valence bond
theory seems equally adequate at describing both non-interacting and strongly interacting
systems.

3.10 Conclusions
In this chapter we have derived the fundamentals of the neoclassical valence bond theory,

and shown how the valence bond method offers a controlled way of calculating many-body
properties perturbatively in the exchange coupling J/U = 4|t|2/U2. The solution of the
molecular many-body problem converges quickly and the treatment can in principle be
calculated to higher orders.

We have shown how to calculate the molecular ground state, and how to consistently
deal with the non-orthogonal Rumer basis. We have further shown that even though valence
bond theory is restricted to a subspace of the Hamiltonian the results of the valence bond
energy calculation still offer precise results.



Chapter 4

Quantum Transport

The advent of nanotechnology have made it possible to build devices and perform ex-
periments on the molecular scale. One field, which this technological development have
furthered, owes its existence to a human urge as old as Mary Shelley, the author of “Dr.
Fankenstein”. The field of quantum transport mercilessly probes miniscule quantum systems
by passing an electrical current through them. And who knows, one day the molecules
finally produce an experimental physicist will experience the Eureka moment of bringing
one of those systems to life. . .

Quantum transport is mostly concerned with probing low dimensional systems in
the form of various semi-conductor hetereostructures38 or synthesized organic molecules.
Molecule experiments can be done in several ways. One approach is to deposit the molecule
as a thin film on a conducting surface and probe the electric properties of the molecule
using a scanning tunneling microscope (STM).47 Another approach involves creating a
break junction, where a small gold constriction is broken lightly by mechanical means,
creating a nano gap where the molecules can be deposited.65,66 There exist various other
techniques, e.g. electromigration40,120 or nano-sized junctions with graphene electrodes
formed from electroburning.85

electrode electrode

gate

Figure 4.1: Schematic of a quantum junction. A quantum system (in this case a molecule)
is coupled to two macroscopic electrodes – also called leads. By controlling the local
electrostatic environment by a backgate Vg , and applying a voltage VLR across the junction
the current response I is measured. The size of the coupling between the molecule and the
electrodes are captured by the tunneling rates ΓL, ΓR.

43
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In general we shall model the typical quantum transport setup as a quantum system
(molecule) attached to two electrodes between which there is a bias voltage VLR. A backgate
Vg controls the local electrostatic environment. A schematic is presented in Figure 4.1.

In this chapter we will first describe a general quantum dot using the constant interaction
model, and use this model to obtain a phenomenological understanding the transport
features of a Coulomb blockaded quantum junction. Then we turn to a perturbative
analytical derivation of the quantum transport, focusing on the off-resonant coherent
transport. The treatment is finished with a quick discussion about the differences and
similarities of single-orbital transport and multiple orbital transport (a molecule).

4.1 The Constant Interaction Model

The constant interaction model53 is a simplified representation of the quantum system
energy levels. The model assumes that the quantum system (independent of the number
of electrons occupying it) can be described using single particle states with an energy
spectrum Ei . The Coulomb interaction between the electrons in the quantum system can
be modeled by a uniform (constant) electron-electron repulsion, U . The backgate Vg simply
changes the local electrostatic potential on the quantum system.

The many-body ground state energy EN then depends directly on the number of the
dot electrons N , and we have the energies EN = 1

2UN (N − 1) +
∑N

i=1Ebi/2c + eNVg . Then
the energy differences are

∆EN =

∆E(N+1)/2 +U (N − 1)− eVg for N odd,

U (N − 1)− eVg for N even,
(4.1)

where we have introduced ∆Ei = Ei −Ei−1.

left
electrode

right
electrode

Charging spectrum Coherent spectrum

left
electrode

right
electrode

Figure 4.2: The constant interaction model models a quantum dot as an artificial atom
which can be charged by tuning the gate voltage. The charge spectrum describes the energies
related to the charging of the quantum system. Whenever a sublevel is present within
the bias window there is resonant transport. The coherent spectrum with the interaction
removed is relevant for the coherent transport, which does not charge the system.
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In the constant interaction model two different charge ground states are degenerate
∆EN = 0, when the gate is tuned at

eVg =

∆EN/2 +UN for N odd,

UN for N even,
(4.2)

where we have removed a superfluous offset, U . The gate difference between consecutive
charge degeneracy points is also called the charging energy or the addition energy,

ENadd =

∆EN/2 +U for N odd,

U for N even.
(4.3)

A graphical depiction of the charge degeneracy points of the constant interaction model is
shown in Figure 4.2.

4.1.1 Coulomb Blockade

Assume that the lead electrons are kept at a temperature kBT > ~Γ . When the coupling
rates between the molecule and the electrodes are much smaller than the electronic charging
energy, ~ΓL,~ΓR� Eadd , the quantum system is weakly coupled to the electrodes. According
to perturbation theory the coherent transport processes are then suppressed by a factor
~2ΓLΓR/(E−Eadd)2. However, when the electron energy E resonates with the addition energy
Eadd = E = −αeVg + ε electrons can tunnel trough the junction effortlessly. This is the
resonant transport regime, and by consulting the charging spectrum in Figure 4.2, it can
be shown that resonant tunneling is only possible when an energy level lies within the bias
window, i.e., ∆Ei ∈ [µR,µL].

0

Charge 
degeneracy 
points

Cotunneling lines

Coulomb 
diamond

matching level matching level

Figure 4.3: Charge stability diagram. The differential conductance dI/dVLR plotted as
a function of gate Vg and bias VLR. Note the pattern of alternating diamond size in
consistency with the constant interaction model. Here we have chosen a symmetric bias
µL = eV /2 and µR = −eV /2. However, for asymmetric couplings, the edges of the diamond
structure are controlled by chemical potential, as indicated in the figure. Asymmetric
couplings will in general produce skewed diamonds.

Usually only the bias voltage eVLR = µR −µL can be controlled experimentally. It can
be argued that when the molecule couples more strongly to one electrode, the chemical
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potential of that electrode will be pinned to the quantum energy levels, and the bias will
only control the chemical potential of the other electrode. When the electrodes couple
symmetrically to the molecule, the bias controls the chemical potentials symmetrically:
µL = V /2 and µR = −V /2.

Figure 4.3 shows a typical charge stability diagram plotting the differential conductance
dI/dVLR as a function of bias voltage VLR and backgate Vg . The resonant transport is
clearly visible as lines of enhanced conductance forming a Coulomb diamond structure.
Note the alternation of diamond size, which is consistent with the constant interaction
model.

In the off-resonant regime within the Coulomb diamonds, the resonant tunneling is
exponentially suppressed by the distance to the diamond edge as well as the inverse
temperature. At low temperatures electron transport is dominated by coherent processes
known as co-tunneling. The quantum system does not change charge state during these
processes and hence the (aptly named) coherent spectrum of Figure 4.2 applies. By
increasing the bias voltage co-tunneling can also happen via excited states of the quantum
system. This sudden increase in the number of transport channels is the explanation for
the co-tunneling lines, which show up in the charge stability diagrams (cf. Figure 4.3).

It is well known that many semiconductor quantum junctions can be Coulomb blockaded,
and experiments have also found molecular junctions exhibiting such blockade effects.74

4.2 Current

Applying a bias voltage V across the molecular junction causes a current, I to flow through
the device. We calculate this current perturbatively to second order in the coupling between
the molecule and the leads. Assuming that the molecular junction is in the Coulomb
blockade regime with the couplings being small compared to the addition energy, this
perturbative expansion is well-behaved in the off-resonant transport regime.

Both the left and the right electrode are modeled as a non-interacting electron gas at
thermal equilibrium, with an electrode chemical potential µα and a density of states ρα(ε),
and are described by simple quadratic Hamiltonian,

Ĥα =
∑
νσ

ξαν ĉ
†
ανσ ĉανσ =

∫ ∞
−∞

dερα(ε)ĉ†ασ (ε)ĉασ (ε) with α ∈ {Left,Right} (4.4a)

Here ξαν = εαν − µα, where εαν is the dispersion of electrodes and ν are the quantum
numbers of the electrode continuum states.

The molecular electronic system is described by a Hamiltonian Ĥm. With N electrons
occupying the molecule, it is solved by the electronic eigenfunctions |ψNi 〉 with eigenenergies

ENi . Let us introduce the excitation energies ε0
i = ENi −E

N
0 . The energy costs of adding

an electron to the N electron molecular eigenstate |ψNm 〉, are given by ε
p
nm = EN+1

n − ENm ,
and the energies needed to remove an electron from that same eigenstate, are given by
εhnm = ENm −EN−1

n .

The presence of a backgate Vg allow us to tune the electrostatic energy of the molecule,

Ĥg = −κeVgN̂ , (4.4b)

where we have introduced the dimensionless electrostatic coupling parameter κ. By adding
this term to the molecular Hamiltonian the energies of the N -electron molecular eigenstates
|ψNi 〉 are shifted to ẼNi = ENi −κeVgN .
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The starting point for our perturbative analysis is the completely uncoupled system,
described by the Hamiltonian,

Ĥ0 =
∑
α=L,R

Ĥα + Ĥm + Ĥg . (4.4c)

Introduce a hybridization ĤT , which couples the molecule and the electrodes. For brevity
we assume that only one molecular orbital iα couples to either lead α = L,R. In that case
the hybridization can be written

ĤT =
∑
α,ν,σ

(tα,iα ĉ
†
iασ
ĉανσ + h.c.). (4.4d)

Applying a bias voltage VLR = µL−µR across the molecular junction by tuning the chemical
potentials of the two electrodes, the system can sustain a current through the molecule by
the tunneling of either electrons or holes from one electrode to the other.

4.2.1 The Fermi Golden Rule

The transition of a quantum system from an initial state |i〉 to the final state |f 〉 happens
at at rate Γf i , given by Fermi’s golden rule [14, p. 86-88],

Γf i =
2π
~

∣∣∣〈f |T̂ |i〉∣∣∣2 δ(Ef −Ei). (4.5)

Here the T̂ -matrix is given as,

T̂ (E) = ĤT + ĤT
1

Ei − Ĥ0 + iη
T̂ . (4.6)

4.2.2 Sequential Tunneling

There are no coherent transport processes when expanding to second order in the hybridiza-
tion ĤT . However, sequential transport with electrons incoherently tunneling on and off
the molecule are permitted.

The rate at which electrons tunnel onto the molecule and excite it from the eigenstate
n to the state m is given by

Γ
pα
nm = Γαnα(εpNnm −κeVg )

∣∣∣〈Ψ N+1
n |ĉ†iασ |Ψ

N
m 〉

∣∣∣2 . (4.7)

Here we have defined the rate Γα = 2π|tαiα |
2ρα/~ if assuming a constant density of states,

ρα(ε) = ρα. The nα(ε) = 1/(exp((ε −µα)kbT ) + 1) is the Fermi-Dirac distribution function.
Similarly one can define rates for the holes tunneling off the molecule

Γ hαnm = Γα

(
1−nα(κeVg − εhNnm)

) ∣∣∣〈Ψ N
m |ĉiασ |Ψ

N+1
n 〉

∣∣∣2 . (4.8)

At vanishing temperature T → 0, the Fermi-Dirac distribution approaches a Heaviside step
function, and within the off-resonant transport regime, either Γ

pα
nm or Γ hαnm vanishes. Hence

in the zero-temperature limit sequential tunneling only belongs to the resonant transport
regime, and turning up the temperature allows for an exponentially suppressed sequential
tunneling tail in the off-resonant regime.

At an infinitesimal bias µL → µR, the calculation becomes particularly simple and
the sequential tunneling rates vanish anywhere but outside the parameter regime where

|εpN00 | < |eVLR|. Hence sequential tunneling marks the edge of the Coulomb diamonds, and
the conductance due to sequential tunneling at the charge degeneracy point is usually
proportional to the quantum of conductance G0 = 2e2/h, with a proportionality constant
ΓLΓR/(ΓL + ΓR).
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4.2.3 Co-Tunneling

To fourth order in the hybridization, ĤT , we find the first contribution to coherent electron
transport across the molecular junction. Initially the molecule is in the ground state of the
uncoupled system, |i〉 = |Ψ0〉 = |Ψ R

0 〉|Ψ
L

0 〉|Ψ
N

0 〉. We then consider the transition to a final

state |Ψα〉 = ĉ†βσ (εβ)ĉαγ (εα)|Ψ N
n 〉|Ψ R

0 〉|Ψ
L

0 〉 with one electron transferred between electrodes

α and β, and the molecule possibly transitioned to some eigenstate |Ψ N
n 〉. The Fermi

golden rule (4.5) gives the rate,

Γ
γσ
αβ (εα , εβ) =

2π
~

∣∣∣∣∣∣〈Ψ N
n |〈Ψ R

0 |〈Ψ
L

0 |ĉ
†
αγ (εα)ĉβσ (εβ)ĤT

1

E0 − Ĥ0
ĤT |Ψ0〉

∣∣∣∣∣∣2 δ(εα + ε0
n − εβ). (4.9)

The next step is to insert the expression for ĤT , keeping only terms in the calculation which
effectively transports an electron between the electrodes. Next, utilizing that the initial state
is an eigenstate of Ĥ0|Ψ0〉 = (E0L+E0R+EN0 )|Ψ0〉 and that Ĥα ĉα(ε)|Ψα0〉 = (E0α−ε)ĉα(ε)|Ψα0〉
and Ĥ0ĉ

†
α(ε)|Ψα0〉 = (E0α − ε)ĉ†αε)|Ψα0〉 equation (4.9) reduces to

Γ
γσ
αβ (εα , εβ) =

2π
~
|tLiL |

2|tRiR |
2〈1− n̂βσ (εβ)〉〈n̂αγ (εα)〉

∑
n

∣∣∣pγσn,0(εα) + hγσn,0(εα)
∣∣∣2 δ(εα + εn − εβ).

Here the two amplitudes p and h are given by,

p
γσ
m,n(Vg ,ω) = 〈Ψm|ĉiαγ

1

κeVg +ω+EN0 − Ĥm + i0+
ĉ†iβσ |Ψn〉, (4.10)

h
γσ
m,n(Vg ,ω) = 〈Ψm|ĉ†iβσ

1

κeVg +ω −EN0 + Ĥm − i0+
ĉiαγ |Ψn〉. (4.11)

We assume now for simplicity that the molecule always relaxes to its ground state
after each tunneling event. This can be achieved in the limit of asymmetric couplings, e.g.
|tLiL | >> |tRiR |, where the molecule is in near perfect equilibrium with one electrode.

When applying a bias voltage eVLR = µL −µR > 0 across the molecule, the total current
is proportional to the sum of the rates of all the current carrying processes taking place.
When considering electrodes with a constant density of states, ρα, the total current is
simply

I = IRL − ILR = eρLρR

∫ ∞
−∞

dεL

∫ ∞
−∞

dεR
∑
σγ

{ΓRL(εR, εL)− ΓLR(εL, εR)} . (4.12)

When the temperature is the smallest energy scale of the system, we can approximate the
Fermi-Dirac distribution with a Heaviside step function. Assuming V > 0, the total current
can then be simplified to,

I(Vg ,VLR) =
e~
2π

ΓLΓR

∑
m,σ

∫ eVLR/2

−eVLR/2+ε0
m

θ(|eVLR| − ε0
m)dω

∣∣∣hγσm,0(Vg ,ω − ε0
m) + pγσm,0(Vg ,ω)

∣∣∣2 .
(4.13)
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And inserting a complete set of states the two amplitudes can be written,

p
γσ
m,n(Vg ,ω) =

∑
l

〈Ψ N
m |ĉiαγ |Ψ

N+1
l 〉〈Ψ N+1

l |ĉ†iβσ |Ψ
N
n 〉

κeVg +ω − εpln + i0+
, (4.14)

h
γσ
m,n(Vg ,ω) =

∑
l

〈Ψ N
m |ĉ†iβσ |Ψ

N−1
l 〉〈Ψ N−1

l |ĉiαγ |Ψ
N
n 〉

κeVg +ω − εhln − i0+
. (4.15)

While the poles of the p and h amplitudes all lie outside the off-resonant regime, we can
ignore their imaginary component, i.e., |p + h|2 = (Re(p) + Re(h))2. In a Hubbard/PPP
model the ground state can be calculated by exact diagonalization as shown in section 2.3.
Then the particle and hole amplitudes can be calculated using the Lanczos method as
described in section 2.3.2.

4.3 The Feynman-Dyson Orbitals

Let us define the Feynman-Dyson orbitals for a given charge state, N ,

〈iσ |φpn〉 = 〈Ψ N+1
n |ĉ†iσ |Ψ

N
n 〉, (4.16a)

〈iσ |φhn〉 = 〈Ψ N−1
n |ĉiσ |Ψ

N
0 〉. (4.16b)

Here we have written the Feynman-Dyson orbitals as state kets, hinting that they constitute
a basis in some single particle Hilbert space. In single-particle models like the Hartree
self-consistent-field or the non-interacting Hückel models, the Feynman-Dyson orbitals are
identical to the molecular orbitals.

εh
0=-4.09εh

1=-4.65εh
2=-5.28 εp

0=3.25 εp
1=5.22 εp

2=5.59

εh
0=−1.63εh

1=−2.13εh
2=−2.56 εp

0=0.729 εp
1=2.56 εp

2=3.35

Feynman-Dyson orbitals

Hückel orbitals

Figure 4.4: Feynman-Dyson orbitals (only the six closest) for the neutral acenaphthylene
π-system, and the Hückel molecular orbitals (only six closest). The largest discrepancy
happens for the ε

p
1 case, where some Hückel nodes have vanished in the PPP model

Feynman-Dyson orbital, or at the ε
p
2 case, where the orbitals differ substantially.

The Feynman-Dyson orbitals and the excitation spectra constitutes the only requisite
ingredients for the sequential tunneling calculation (cf. equation (4.7)) and the co-tunneling
calculation (cf. equation (4.15)). The molecular structure determines the Feynman-Dyson
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orbitals, and in the next chapter we will discuss some relations between molecular structure
and the Feynman-Dyson orbitals, and will investigate the consequences for the off-resonant
transport.

For the small set of molecular systems we have considered, the closest Feynman-Dyson
orbitals of the PPP model are quite similar to the Hückel molecular orbitals. As a “typical”
example consider the neutral acenaphthylene π-system presented in Figure 4.4.

When the lowest Feynman-Dyson orbitals φ
p/h
0 vanish on certain sites, sequential

tunneling current can be suppressed because the molecule becomes trapped in a single
quantum state.14 This is the common explanation for negative differential resistance57

present in e.g., charged benzene.10

4.4 Conclusions
This chapter presented a short review of some analytical methods for understanding and

dealing with electron transport through quantum systems. The main result is the expression
of the co-tunneling current (cf. equation (4.13)) expressed in terms of particle and hole
amplitudes, which we will return to in the coming chapters.



Chapter 5

Quantum Interference

In the early 1800s Thomas Young demonstrated the wave nature of light using a double slit
experimental setup. Coherent light passing through the two slits interfered destructively
or constructively depending on the path length difference between them, forming the
well-known interference pattern shown in Figure 5.1.

It is even more surprising that Young’s double slit experiment works with single particles,
where the particle simultaneously “follows both paths” through the double slit and interferes
constructively (destructively) with itself. This is indeed impossible in classical physics, and
it makes interference an inherent quantum mechanical phenomenon. Young’s double slit
experiment have also been carried out with single electrons,28 or even large molecules,48

hence proving the wave nature of their propagation.
0
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Figure 5.1: Young’s double slit experiment demonstrating single particle interference.

It is easy to translate the concept of single particle quantum interference to molecular
quantum transport. Naively, electrons tunnel through the molecule and depending on the
molecular structure, the propagation of the electronic wavefunction is either enhanced or
destroyed due to constructive or destructive interference. Even though this naive picture is
oversimplified, quantum interference effects are present in molecular junctions.

The ability to control such quantum interference effects have potential applications in
various fields such as molecular quantum information processing,108 or for the design of
effective molecular thermoelectric devices.49,107,114

In this chapter we shall examine quantum interference in the off-resonant transport
through molecular junctions in the Coulomb blockade regime. Several quantum chemical
numerical calculations have already investigated this phenomena in strongly coupled
systems.6,50,62,103,104,119 Some analytical results have been obtained for non-interacting

51
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model systems.64 Quantum interference in molecules have also been found experimentally
in several experiments for quinone molecules.37,87

We describe the molecule π-system using the full Pariser-Parr-Pople model from
equations (2.15)-(2.18),

ĤPPP = T̂ + Ĥµ + ĤU + ĤV (5.1)

T̂ =
∑
〈i,j〉

∑
σ=↑,↓

(
tij ĉ
†
i,σ ĉj,σ + tji ĉ

†
j,σ ĉi,σ

)
, (5.2)

Ĥµ =
∑
i

µi n̂i , (5.3)

ĤU + ĤV =
∑
i

Ui(n̂i↑ − 1
2 )(n̂i↓ − 1

2 ) +
1
2

∑
i,j

Vij(n̂i − zi)(n̂j − zj ). (5.4)

Here 〈i, j〉 represents all nearest neighbor pairs.
In the following we will divide our analysis of the transport through the π-system

according to the electronic ground state degeneracy. Most of our attention will be focused
on the investigation of transport through a molecular system, which has a non-degenerate
electronic ground state. Later, we also analyze transport through spin-degenerate doublet
ground states.

5.1 Non-Degenerate (Spin-Singlet) Ground State

Let us start simple, by assuming that the molecular ground state under consideration is
non-degenerate. Later in this chapter we will also investigate spin degenerate ground states,
but for now we will try to make a clear case of quantum interference in the off-resonant
transport through a non-degenerate (hence spin-singlet) N -electron molecule ground state.
Remember that this means that we consider a charge state with an even number of electrons
N . The current through the junction at zero temperature T = 0 is given by equation (4.13),

I(Vg ,VLR) =
e~
2π

ΓLΓL

∑
m,σ

∫ eVLR/2

−eVLR/2+ε0
m

θ(|eVLR| − ε0
m)dω

∣∣∣hγσm,0(Vg ,ω − ε0
m) + pγσm,0(Vg ,ω)

∣∣∣2 .
(5.5)

At zero-bias we can drop the condition that one electrode couples more strongly to the
molecule (cf. section 4.2.3), and the off-resonant conductance is simply,

G =
e2~
2π

ΓLΓR

∑
σ=↑,↓

∣∣∣hσσ0,0(Vg ,0) + pσσ0,0(Vg ,0)
∣∣∣2 , (5.6)

with the particle (p) and hole (h) amplitudes,

p
γσ
0,0(Vg ,ω) =

∑
l

〈Ψ N
0 |ĉiαγ |Ψ

N+1
l 〉〈Ψ N+1

l |ĉ†iβσ |Ψ
N

0 〉

κeVg +ω − εpl0 + i0+
, (5.7)

h
γσ
0,0(Vg ,ω) =

∑
l

〈Ψ N
0 |ĉ

†
iβσ
|Ψ N−1
l 〉〈Ψ N−1

l |ĉiαγ |Ψ
N

0 〉

κeVg +ω − εhl0 − i0+
. (5.8)

Note that equation (5.6) only holds when the N -electron charge state is also the total
ground state, which is true for gate voltages κeVg ∈ [εh00, ε

p
00]. Note also that we have
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ignored the contribution from sequential tunneling, and we should only trust this expression

anywhere near the charge degeneracy points at ε
h/p
00 .

This zero-bias conductance formula and the transport amplitudes of equation (5.8)
houses several clues about molecule quantum interference, and in the following we will in
some detail derive those constraints.

The hole and particle amplitudes in equation (5.8), is a sum of simple poles located at

gate voltages κeVg = εh/pn0 . As shown in Figure 5.2, the relative sign of the poles at ε
h/p
00

puts a topological constraint on the quantum interference features:

1. When the two divergences share the same sign, one of the amplitudes, p or h, goes to
infinity, and the other goes to minus infinity, when approaching the pole from point
within [εh00;εp00]. Hence the total amplitude h+ p must cross zero an odd number of
times.

2. On the other hand when the divergences have opposite signs h and p will both go
to positive or negative infinity from within [εh00;εp00]. This means that the total
amplitude h+ p must cross zero an even number of times, meaning an even number
of zeros in the conductance G.

While this fact have been sporadically mentioned for non-interacting systems,62,110–112 we
will show that many more interesting consequences come from this simple observation.

To formalize our arguments we introduce a classification of the quantum interference
pattern, and a transport process with an odd (even) number of nodes belongs in the odd
(even) quantum interference class. Based on this reasoning. we conjure up an entity
capturing the quantum interference class, by taking the ratio of the numerators of the two

dominating poles of the total amplitude p+ h located at ε
h/p
00 ,

Qi ≡
∑

n〈Ψ N
0 |ĉ

†
iLσ
|Ψ N−1

0n 〉〈Ψ
N−1

0n |ĉiRσ |Ψ
N

0 〉∑
m〈Ψ N

0 |ĉiRσ |Ψ
N+1

0m 〉〈Ψ
N+1

0m |ĉ
†
iLσ
|Ψ N

0 〉
, (5.9)

where we have added a sum over the degeneracy of the N ± 1 ground states, |Ψ N±1
0m 〉. Here

Qi > 0 means that the two divergences share the same sign resulting in an odd number of
nodes in the off-resonant coherent transport, while Qi < 0 means that the divergences have
opposite signs, and the result is an even number of nodes. This interference classification
lends itself to the graphical representation shown in Figure 5.2.

Applying equation (5.6) and the definition of the Qi parameter, it is possible to interpret
the destructive interference mechanism of each node. In the odd interference class the
particle amplitude, p, and the hole amplitude, h, will always have opposite signs and cancel
each other near the middle of the off-resonant regime. We will therefore refer to this node
as “particle-hole interference”.

On the other hand, the two-node case (even interference class) is an example of
destructive single-particle interference within the particle (or hole) transport process. If
the nodes are located near the edge of the off-resonant regime, the destructive interference
is dominated by either particle of hole amplitudes, because the other process is suppressed
with a factor inversely proportional to the addition energy, |εp00 − ε

h
00| (the width of the

off-resonant regime). However, when the interference pattern is very asymmetric, with
either Qi ≈ 0 or Qi � −1, this interpretation becomes problematic, and any destructive
interference in the even interference class is a more complicated mixture of single-particle
and particle-hole interference.
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hole transport processes.

Single particle interference in either 
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2 degenerate 
nodes

1 node

3 nodes

Figure 5.2: Quantum interference classification. Here the even and odd interference classes

are determined by the relative sign of the poles at κeVg = εh/p00 . The highlighted red shows
the p+h amplitude within the charge state under consideration. Note that the interference
mechanism can be determined confidently in these cases with |Qi| close to unity.

5.2 The Pairing Theorem for Alternant Hydrocarbons

We now turn our attention to hydrocarbon π-systems, and their corresponding PPP model
with µi = 0 and zi = 1 for all sites i. Let us further restrict our considerations to bipartite
(also referred to as ‘alternant’) π-systems where the lattice sites can be divided into separate
sublattices A and B, where members of A are only connected to members of B and vice
versa.

It turns out that the eigenstates of such systems are paired,24 and to investigate this
Rushbrooke-Coulson pairing theorem we introduce the anti-unitary particle-hole transfor-
mation working on complex numbers z and creation operators in the following way,

Azĉ†iσA
† = z∗(−1)i ĉiσ (5.10)

Here the prefactor (−1)i takes different values when i belong to different sublattices.

(−1)i =

1 for i ∈ A
−1 for i ∈ B

. (5.11)

The number operator then transforms like

A(n̂iσ − 1
2 )A† = −(n̂iσ − 1

2 ), (5.12)
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and by extension A(n̂i − 1)A† = −(n̂iσ − 1). From this it is easy to prove that

AT̂A† = T̂ , AĤUA† = ĤU , and AĤVA† = ĤV . (5.13)

However, transforming the local chemical potential gives, AĤµA† = −Ĥµ. This explains the
restriction to hydrocarbon π-systems, where we can take all µi = 0. Hence for the considered
systems, the total Hamiltonian is invariant under the transformation AĤA† = Ĥ .

Applying the anti-unitary transformation to the completely empty state |0〉 produces
the completely filled state |2Na〉,

A|0〉 = |2Na〉. (5.14)

Applying the particle-hole transformation to a state |ψNn 〉 yields |φNn 〉 =A|ψNn 〉. The |φNn 〉
states belongs to the Na −N charge state, and transforming Schrödinger’s equation, it is
easy to demonstrate that the transformed states are also eigenstates,

AĤA†A|ψNn 〉 = EnA|ψNn 〉 ⇒ ĤA|ψNn 〉 = EnA|ψNn 〉 ⇒ Ĥ |φNn 〉 = En|φNn 〉, (5.15)

In fact the |ψNn 〉 even share the same eigenenergy spectrum, En. Assuming that |ψNn 〉 is
non-degenerate, the transformed state |φNn 〉 is also non-degenerate and up to a phase factor
γ ∈ {0,π} we have,

|φNn 〉 = eiγ |ψ2Na−N
n 〉. (5.16)

In general we will say that the N -electron eigenstates |ψNn 〉 are paired with the (2Na −N )-
electron eigenstates |ψ2Na−N

n 〉. In the special case of half-filling, 2N =Na, the transformed
state is given by

A|ψNn 〉 = eiγ |ψNn 〉. (5.17)

5.2.1 Spin-Degenerate States

As mentioned, the above derivation only holds true for non-degenerate states |ψNn 〉. For
degenerate states, the analysis becomes a little bit more involved, so in the following we will
only consider the (very common) spin degeneracy. As mentioned in section 2.2.2 the total
spin operator S2 and the spin projection Sz commutes with the PPP Hamiltonian, and
hence each eigenstate |ψNn 〉 will be characterized by some total spin S and a spin projection
quantum number m ∈ −S,−S + 1, . . . ,S. Eigenstates belonging to the same spin S multiplet
will be degenerate, and in general a state |ψNn (S,m)〉 must transform as

A|ψNn (S,m)〉 = eiγ |ψ2Na−N
n (S,−m)〉. (5.18)

Again γ ∈ 0,π. The |ψNn (S,m)〉-states are related by a “spin rotation”, which reverses the
spin projection quantum number, m→−m. To express this relationship mathematically
we introduce the general spin lowering operator Ŝ− = Ŝx − iŜy and the spin raising operator
Ŝ+ = Ŝx + iŜy . Acting with either on a spin state produces,30

Ŝ−|ψNn (S,m)〉 =
√

(S +m)(S −m+ 1)|ψNn (S,m− 1)〉, (5.19)

Ŝ+|ψNn (S,m)〉 =
√

(S −m)(S +m+ 1)|ψNn (S,m+ 1)〉. (5.20)
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Repeated application of these spin operators by a number of 2m times, produces the “spin
rotated state”,

(Ŝ−)2m|ψNn (S,m)〉 =
−m+1∏
n=m

√
(S +n)(S −n+ 1)|ψNn (S,−m)〉 =MSm|ψNn (S,−m)〉, (5.21)

(Ŝ+)2m|ψNn (S,−m)〉 =
m−1∏
n=−m

√
(S +n)(S −n+ 1)|ψNn (S,m)〉 =MSm|ψNn (S,m)〉. (5.22)

Here we introduced the (positive) pre-factor MSm =
∏m−1
n=−m

√
(S +n)(S −n+ 1). The spin

lowering and raising operators transform under the anti-unitary transformation like

AŜ−A† = −Ŝ+, AŜ+A† = −Ŝ−. (5.23)

Finally, transforming equation (5.21), gives us that

(−1)2meiγ
m−1∏
n=−m

MSm|ψ
2Na−N
n (S,+m)〉 = eiγ

′
MSm|ψ

2Na−N
n (S,+m)〉. (5.24)

Note that for half-integer spin, 2m is odd, and the phases between the two transformed
states must fulfill that ei(γ−γ

′) = −1, while for integer spin, 2m is even, and ei(γ−γ
′) = 1.

5.2.2 Interference Classification of Non-Degenerate Alternant Hydrocarbons

For the alternant hydrocarbons at half-filling, Na =N , with a singlet ground state |Ψ Na
0 〉,

the Qi classification can now be readily evaluated.
First, we note that the orbital overlaps can be transformed,

〈Ψ Na−1
n |ĉiRσ |Ψ

Na
0 〉 = 〈Ψ Na−1

n |A†AĉiσA
†A|Ψ Na

0 〉

= (−1)i〈ΦNa−1
n |(−1)i ĉ†iσ |Φ

Na
0 〉

= (−1)iei(γ0−γn)〈Ψ Na+1
n |(−1)i ĉ†iσ |Ψ

Na
0 〉. (5.25)

And hence the classification becomes

Qi =
〈Ψ N

0 |ĉ
†
iLσ
|Ψ N−1

0 〉〈Ψ N−1
0 |ĉiRσ |Ψ

N
0 〉

〈Ψ N
0 |ĉiRσ |Ψ

N+1
0 〉〈Ψ N+1

0 |ĉ†iLσ |Ψ
N

0 〉

= (−1)iL+iRei(γ0−γn)ei(γn−γ0)
〈Ψ N

0 |ĉiRσ |Ψ
N+1

0 〉〈Ψ N+1
0 |ĉ†iLσ |Ψ

N
0 〉

〈Ψ N
0 |ĉiRσ |Ψ

N+1
0 〉〈Ψ N+1

0 |ĉ†iLσ |Ψ
N

0 〉

= (−1)iL+iR . (5.26)

Quite clearly we conclude that

Qi =

1 when iL and iR belong to the same sublattice,

−1 when iL and iR belong to the different sublattices.
(5.27)

Define the equivalence relation between lattice sites, where i ≡ j, if both i and j belong to
the same sublattice. Then the quantum interference belongs to the odd class if iL ≡ iR, and
the quantum interference pattern belongs to the even class when iL . iR. We shall refer to
this result as the coloring rule, because a simple coloring of the lattice in alternating black
and white, makes it easy to calculate the interference class (cf. Figure 5.3).
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+1 −1

odd evenclass

Half �lling

Figure 5.3: Coloring rule for naphthalene: Here the solid arrow marks the orbital which
couples to one electrode, while the dashed arrows marks orbitals potentially coupling to
the remaining electrode. Note how the simple coloring predicts the interference class, with
same colored orbitals in the odd class, and differently colored orbitals in the even class.

5.3 Examples (Spin-Singlet)

Having established the pairing theorem and the simple coloring rules for predicting their
quantum interference class in equation (5.27), we will look at some simple examples of
bipartite lattices presented in Figure 5.4. It is left as (an easy) exercise for the reader, to
verify that the coloring rule indeed predicts the correct interference class.
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Figure 5.4: Simple bipartite Hubbard model systems, and their zero-bias conductance at
half-filling. Note that the interference patterns obey the coloring theorem of equation (5.27).

For all example molecular junctions we calculate the transport by Lanczos diagonaliza-
tion of the full PPP model and subsequent numerical calculation of the relevant resolvents
in equation (5.8). In general we will take ΓLΓR = 0.01e2V 2/G0. The examples have been
chosen for pedagogical reasons. However the Lanczos numerical diagonalization sets an
upper limit to the size of the π-system which (currently) can have no more than 16 orbitals.

5.3.1 Benzene

Our first chemically relevant example is the benzene molecule, where it is well-known50

from both theoretical and experimental work that the meta-substituted neutral molecule



58 5. QUANTUM INTERFERENCE

exhibits destructive quantum interference, as shown in Figure 5.5. It is obvious that
meta-substituted benzene connects two sites belonging to the same sublattice, and hence
we classify the interference as belonging to the odd interference class.
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Figure 5.5: Conductance and interference of neutral benzene in the two cases of (a) para-
substituted benzene and (b) meta-substituted benzene. Note that the interference in
meta-substituted benzene happens between particle and hole transport processes, and
hence it is not an example of single particle interference.

While some speculated that the interference in benzene, is due to single-particle
interference between the two paths around the circular molecule,91 we can from Figure 5.2
directly conclude that the destructive interference in the off-resonant transport through
meta-substituted benzene is due to interference between hole and particle transport processes.

5.3.2 Quinone

In our next example we attach two carbon-atoms to the benzene molecule, and end up with
a quinone-like chemical structure. Our calculation of the off-resonant transport through the
neutral para-substituted molecule is presented in Figure 5.6. In this case the connecting
orbitals belong to different sublattices and the off-resonant transport belongs to the even
interference class. Because Qi = 1 we safely conclude that the destructive interference
happens completely within the particle transport process, p (and conversely completely
within the hole transport process, h). We will return to the “single-particle” interference in
the next section, where we will investigate it using neoclassical valence bond theory for the
slightly simpler four-orbital model.
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Figure 5.6: Quinone-like structure and the result of our transport calculation. The para-
configuration places the interference in the even class, and we do indeed find two destructive
interference nodes.

As a fun example we may also show an extreme case with a ridiculous amount of
four quantum transport nodes, by considering the [4]-dendralene cross-conjugated system
presented in Figure 5.7. As an emperical rule the number of interference nodes
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Figure 5.7: Quantum interference belonging to the even class with an impressive four nodes
in [4]-dendralene. Note the interference pattern near each charge-degeneracy point with
two nodes zero bias, and two nodes at finite bias.

However, the coloring rule only applies at half-filling. The quinone-like molecule also
exhibits destructive interference in the quarter-filled case as shown in Figure 5.8. It turns
out that in this case Qi > 0, and the resulting interference belongs to the odd class. While
|Qi| is not of order unity, the destructive interference still happens between particle and
hole process.

5.4 Robustness

In this section we shortly discuss the robustness of some of the quantum interference results
we have obtained so far.
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Figure 5.8: Quinone-like structure and the result of a transport calculation in the quarter-
filled case. Note the conductance asymmetry as a function of gate. In this case the
interference also happens between particle and hole transport processes.

5.4.1 Next-Nearest Neighbor Hopping

We have established the coloring rule (5.27) for alternant hydrocarbons ignoring the small
but non-zero hopping between next nearest neighbor orbitals. By adding such next-nearest
neighbor (NNN) hopping, all molecules become non-alternant. Hence NNN hopping could
potentially invalidate our coloring rule for alternant hydrocarbons. However, the NNN
hopping is usually about an order of magnitude smaller than the nearest neighbor hopping,
and it turns out that our quantum interference classification is quite robust under the
introduction of next-nearest neighbor hopping. The quinone-like molecule serves as a
prototypical example, and in Figure 5.9 we plot the interference number Qi as a function
of the NNN hopping amplitude.
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Figure 5.9: Quantum interference classification Qi as a function of the next-nearest-neighbor
hopping tNNN, for the quinone-like hydrocarbon attached to leads in two different ways.
The quantum interfererence classification survives for even large values of the next-nearest
neighbor hopping, and only at tNNN ≈ −1.5 eV (which is comparable to the nearest neighbor
hopping amplitude), does the class change.
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5.4.2 Hetero-Atoms

The 1,4-benzo-quinone molecule is basically a benzene molecule with oxygen atoms sub-
stituted at the para orbitals. For hetero-atomic molecules the pairing theorem is broken
by the presence of non-zero values of the local chemical potential, µO , 0. However, the
Qi-classification is expected to hold within a certain parameter regime. Calculating the
value of Qi for different values of µO and UO produces the plot in Figure 5.10. The sudden
shift of Qi is due to a change of the ground state in either the 7 or 9 electron charge state.

While the pairing theorem seems to hold for the 1,4-benzo-quinone, this conclusion
depends heavily on the effect which µ and U have on the excitation spectrum. In general,
larger molecules means smaller excitation energies, and hence larger effects of µ and U .
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Figure 5.10: 1,4-Benzo-quinone with oxygen at the red sites. The value of Qi has been
calculated for various values of µO and UO. Different semi-empirical parameters for have
been found, but they are probably close to µO ≈ −3 eV and UO ≈ 1.5UC , which does not
change the interference class. Note how the attached sidearms changes the red region of
positive Qi, hence confirming our intuition that the ground state of larger molecules may
more easily change interference class when substituting carbon with hetero-atoms.

5.4.3 Transport Through the σ -System

Note that the quantum interference effects are all shown on a logarithmic scale, which
can make it hard to interpret the robustness of our calculation. Additional transport
channels through e.g. the σ -system can destroy the interference effect.50 As an example
we consider the transport through para-substituted benzene with various added constant
offsets presented in Figure 5.11.

One should note that transport through the σ -system is expected to be suppressed by
a factor proportional to the energy difference between σ -system and π-system.
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Figure 5.11: Zero-bias conductance of the π-system of meta-substituted benzene with
an additional conductance channel through the σ -system. For small values of Gσ the
interference is still visible, while large values of Gσ quench it completely.

5.5 Quantum Interference in Hückel Models

Let us shortly turn our attention to the simpler non-interacting Hückel models, which is
equivalent to our full PPP model, when setting the Coulomb interaction U = 0. Hence,
the pairing theorem also applies to these models, and we do not expect large discrepancies
between the interference features of the full PPP models and the Hückel models.

For non-interacting models the zero-bias transport is calculated in terms of the trans-
mission T (E)using the Landauer formula,56 G(E) = G0T (E). The transmission through the
molecule can then be given explicitly by the particle and hole transport amplitudes,19,64

T (E) = π2η2〈vac|ĉiR

 1

E −T + i
∑

α ~Γα ĉ
†
iα
ĉiα

 ĉ†iL |vac〉 (5.28)

with η = ~ΓL + ~ΓR. This can be then be written in terms of particle and hole amplitudes

T (E) = π2η2|
∑
σ

(pσσ00 + hσσ00 )|2, (5.29)

where the infinitesimal 0+ in the definition of the particle and hole amplitudes have been
replaced by the finite η. In the limit of small electrode couplings ΓL,ΓR� t, this reduces to the
off-resonant conductance expression of equation (5.6). Hence, the interference classification
can be directly carried over to non-interacting Hückel model transport calculations.

For small hydrocarbon π-systems, we have already showed that the Hückel model ground
state can have a rather large overlap with the full PPP ground state (cf. Figure 2.4). The
most prominent dissonance between the interference features of the two models, happens
for the alternant hydrocarbons in the even class with two interference nodes. In a Hückel
model the nodes become degenerate and produces the fine-tuned anomaly of Figure 5.2.
An example is shown for the quinone-like molecule in Figure 5.12.

The coloring rules are especially valuable here, because they straight-away reveal the
degeneracy of the nodes in the even interference class. The PPP Coulomb interaction
tends to lift this node degeneracy. A similar effect can be achieved in the Hückel model by
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Figure 5.12: Comparison of the calculated transport for the Hückel model and the PPP
model of the quinone-like hydrocarbon. The Hückel model produces a single degenerate
node, which is split in the full PPP treatment.

opening the charge state gap through the (artificial) introduction of a constant interaction,
U . It is not imperative that Hückel+U and PPP models should always share interference
node structure, and it would be interesting to find π-systems where the models produce a
different number of interference nodes.

5.6 Quantum Interference in Valence Bond Models

In this section we will examine interference in off-resonant transport using the neoclassical
valence bond theory presented in chapter 3. In fact it was the valence bond theory which
originally brought the quantum interference classification of alternant hydrocarbons to our
attention.

Generally speaking, transport through a P |Ψ 〉 state, is composed of three parts: Initially
an electron (or a hole) is created in the orbital connected to one electrode, propagated
through the molecule and then removed at the orbital connected to the other electrode.
However, the t-J Hamiltonian have equivalent rules regarding holes and electrons, except
for the relative minus in their hopping entries of equation (3.32a)-(3.32b).

Tji
∣∣∣

i j

〉
= tji

∣∣∣ 〉
. (5.30)

Tij
∣∣∣

i j

〉
= −tij

∣∣∣ 〉
, (5.31)

The powers of the Hamiltonian governs the propagation of the doublon (holon). In alternant
hydrocarbons the relative sign between doublon and hole propagation is then given by
(−1)m, where m is the number of hops between the two connecting sides. This notion
implies that the transport through the projected ground state P |Ψ 〉 also follow the quantum
interference coloring rules for alternant hydrocarbons stated in equation (5.27).

While the quantum interference classification follows easily from valence bond theory, a
natural next step is to analyze the necessary circumstances for quantum interference addi-
tional nodes. According to an empirical rule103 transport through conjugated (alternating
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double and single bonds) molecular paths interferes constructively, while transport through
cross-conjugated paths interfere destructively.

This semi-empirical rule works partly because cross-conjugated paths often fall into the
odd quantum interference class. Here, we will focus on the cross-conjugated molecules in
the even interference class, like this one:

Cross-conjugated path four-orbital model

The minimal example is the four-orbital chain attached to electrodes at the two central
orbitals. While this transport path is itself conjugated, the following treatment can be
generalized to larger cross-cnjugated molecules.

The ground state of the four-orbital chain has the following valence bond representation
in the projected subspace,

P |Ψ 4
0 〉 ≈ c1

∣∣∣∣ 〉
− c2

∣∣∣∣ 〉
, with c1 ≈ 0.82, and c2 ≈ 0.30. (5.32)

Because the interference belongs to the even quantum interference class, a node should
be present in the particle amplitude alone (cf. Figure 5.2. The particle amplitude for an
electron tunneling through this molecule is given by equation (4.11). For brevity we will only
calculate transport amplitudes in the projected space S of single occupied orbitals. This
calculation becomes close to exact in the large U limit, where most of the wave-function
weight is indeed in this subspace. Formally we approximate,

pσσ00 = 〈Ψ 4
0 |ĉ3σ

1

z+E4
0 − Ĥm

ĉ†2σ |Ψ
4

0 〉 ≈ 〈Ψ
4

0 |P ĉ3σ
1

z+E0 − Ĥ
ĉ†2σ P |Ψ

4
0 〉. (5.33)

Tunneling onto the center orbitals (2 or 3), produces the following combinations of states,

ĉ†2σ

∣∣∣∣ 〉
= − 1
√

2

∣∣∣∣ 〉
ĉ†2σ

∣∣∣∣ 〉
= − 1
√

2

∣∣∣∣ 〉
=

1
√

2

(∣∣∣∣ 〉
+
∣∣∣∣ 〉)

And applied to the ground state,

|a〉 = ĉ†2σP |Ψ
4

0 〉 = −α

a1︷          ︸︸          ︷∣∣∣∣ 〉
−β

a2︷          ︸︸          ︷∣∣∣∣ 〉
, (5.34)

|b〉 = ĉ†3σP |Ψ
4

0 〉 = −α

b1︷          ︸︸          ︷∣∣∣∣ 〉
−β

b2︷          ︸︸          ︷∣∣∣∣ 〉
. (5.35)
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Here α = (c1 + c2)/
√

2 ≈ 0.79, and β = c2/
√

2 ≈ 0.21. The particle transport amplitude is
then given by,

pσσ00 = 〈Ψ 4
0 |P ĉ3σ

1

z+E0 − Ĥ
ĉ†2σ P |Ψ

4
0 〉 = 〈b| 1

z+E0 − Ĥ
|a〉 = bS

1
z+E0 − h

a. (5.36)

Here we have changed to a convenient matrix representation with h given by the pictionary
discussed in section 3.5. The overlap matrix between the |b1〉 and |b2〉 valence bond states,
is given by

S =
(

1 −1/2
−1/2 1

)
b

. (5.37)

As a first step, we may directly calculate the resolvent by matrix inversion of (z+E0 − h).
The resulting amplitude is shown in Figure 5.13. While there is no interference node (as
compared to the Hubbard result in Figure 5.4), the amplitude is small even on a logarithmic
scale. The absence of nodes is not a failure of valence bond theory, but in fact the correct
result in the subspace of single occupied sites as shown in the inset.
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Figure 5.13: Particle transport calculated numerically by matrix inversion for a model
with |U | = 16|t|. The right panel shows the particle amplitude squared, and while it is
logarithmically small, there is no interference nodes. The inset presents the result of a
transport calculation in a Hubbard model using a projected ground state P |Ψ 〉, hence
validating the valence bond result. The left panel shows two parts of the amplitudes with
the initial state propagated to either |b1〉 or |b2〉. From this it is clear that these two
amplitudes almost cancel each other out completely.

If we wish to capture the interference node, we must extend our calculation to the part
of the Hilbert space with double occupied sites, D. In the full Hilbert space the transport
amplitude can be expressed in terms of projection operators P and Q,

pσσ00 ≈ 〈Ψ
4

0 |(P +Q) ĉ3σ
1

z+E0 − Ĥ
ĉ†2σ P |Ψ

4
0 〉+ 〈Ψ

4
0 |P ĉ3σ

1

z+E0 − Ĥ
ĉ†2σ (P +Q) |Ψ 4

0 〉. (5.38)
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Here we have only left out the contribution from processes which both end and start
in the D projected part of the ground state. This is a valid approximation because,
〈Ψ |Q|Ψ 〉 � 〈Ψ |P |Ψ 〉 for large values of the Coulomb interaction, U .

Because propagation of the projected Q|Ψ 〉 is suppressed by a factor of 1/U , we will
also approximate (z + E0 − Ĥ)−1 ≈ P (z + E0 − Ĥ)−1P . This gives us the final expression
pσσ00 ≈ p

σσ
P P + pσσPQ + pσσQP , with (A and B being stand-ins for projection operators),

pσσAB = 〈Ψ 4
0 |A ĉ3σP

1

z+E0 − Ĥ
P ĉ†2σ B |Ψ

4
0 〉. (5.39)

Next step is to construct the state, P ĉ†2σ Q|Ψ
4

0 〉 by using equation (3.5),

Q|Ψ 〉 =
1

E −QHQ
QT P |Ψ 〉 ≈ 1

E −U
T P |Ψ 〉. (5.40)

In our case we have that,

P ĉ†2σT P |Ψ0〉 =
(
− c1√

2
−
√

2c2

) ∣∣∣∣ 〉
+
(√

2c1 +
c2√

2

) ∣∣∣∣ 〉
=

∣∣∣∣ 〉
+
∣∣∣∣ 〉

+γ
∣∣∣∣ 〉

(5.41)

Here we have used that, c1/
√

2 +
√

2c2 = 1, and set γ =
√

2c1 + c2/
√

2. The sister state
P ĉ†3σT P |Ψ0〉 is calculated in the same way. Having extended our ground state we must
ensure that it is correctly normalized. When diagonalizng P |Ψ N

0 〉, but in reality we must
introduce normalization factors,

1 =
〈
Ψ N

0 |Ψ
N

0

〉
= 〈Ψ N

0 |P |Ψ
N

0 〉+ 〈Ψ
N

0 |Q|Ψ
N

0 〉 = c2
P + c2

Q (5.42)

Because the Q projected part of the wavefunction is derived from the P projected part
using equation (5.40), we can write cQ ≈ 2cP t/U , giving

cP =
1

√
1 + t2/U2

U=16|t|≈ 1 (5.43)

As a result of including part of the D Hilbert space, the transport amplitude have now
obtained the predicted nodes. While our endeavor into valence bond theory transport
interference stops here, the current investigation have revealed several important points.
First and foremost the transport through the projected ground state P |Ψ 〉 must be quite
weak, and this only happens because we keep valence bond states beyond the main Kekulé
component. Additionally, the interference nodes are not expected to show up for transport
through the projected ground state alone, but adding a small part of the Q|Ψ 〉 component
reveals the nodes (at least in the large U limit). As shown by the Q|Ψ 〉 case, valence bond
theory also offers a controlled way of extending the calculations to the full D subspace,
and hence to lower values of U .

These points could probably be used to create a set of rules for the interference based
on molecular structure, but we will not pursue these ideas further here.
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Figure 5.14: Right panel shows the amplitude squared with an interference node present.
The inset shows the result of a transport calculation for the full Hubbard model, which
agrees almost perfectly with the valence bond result. The left panel shows the components
of the amplitude as defined by equation (5.39).

5.7 Spin-Doublet Ground State

When the ground state is a spin doublet |Ψ0σ 〉 with σ =↑,↓, equation (4.13) and equa-
tion (5.6) no longer holds. However, because the PPP model is spin rotation sym-
metric, each of the ground states must be equally occupied. We define the shorthand
A
σγ
l,m(Vg ) = hσγl,m(Vg ,0) + pσγl,m(Vg ,0). The zero-bias conductance is then composed of three

distinct terms,

G =
1
2
e2~
2π

ΓLΓR

∑
σ

(
|Aσσσ,σ |2 + |Aσ̄ σ̄σ ,σ |2 + |Aσ̄σσ̄ ,σ |2

)
. (5.44)

The first two terms capture the potential scattering of the electrons in the electrodes on
the molecule, while the last term captures transport processes which flip the spin of the
molecular ground state doublet.

A slight of hand alters the above expression, giving

G =
1
2
e2~
2π

ΓLΓR

∑
σ

(
1
2 |A

σσ
σ,σ +Aσ̄ σ̄σ ,σ |2 + 1

2 |A
σσ
σ,σ −Aσ̄ σ̄σ ,σ |2 + |Aσ̄σσ̄ ,σ |2

)
. (5.45)

Our goal for the next page is to put this expression on a simpler form, by employing the
overall spin rotation symmetry of the molecule model. The total spin operator is given by

S =
~
2

∑
i

∑
σγ

ĉ†iστσγ ĉiγ . (5.46)
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Then introduce an overall spin π/2 rotation about the y-axis described by the operator
R̂y = eiπSy /2~ =

∏
j R

y
jσ . In spin space the local rotation of a spin σ at site j is,

R̂
y
jσ = eiπτ

y
j /4 =

1
√

2

(
Ij + iτyj

)
=

1
√

2

(
1 1
−1 1

)
jσ

. (5.47)

It is then straightforward to show that

R̂y ĉ†iσ (R̂y)† =
1
√

2

(
ĉ†i↑ − σ ĉ

†
i↓

)
. (5.48)

For brevity we have introduced the algebraic shorthand σ =↑ / ↓= 1/ − 1. This means
reversely that R̂

y
i (ĉ†i↑ + σ ĉ†i↓)(R̂

y
i )† = σ

√
2ĉ†iσ .

The spin rotation of the doublet ground state directly yields,

R̂y |Ψ0σ 〉 = eiπS
y /2~|Ψ0σ 〉 =

1
√

2

(
|Ψ0↑〉 − σ |Ψ0↓〉

)
. (5.49)

We then begin by calculating,(
ĉ†i↑ + σ ĉ†i↓

)
|Ψ0γ〉 = (R̂y)†R̂y

(
ĉ†i↑ +γĉ†i↓

)
(R̂y)†R̂y |Ψ0γ〉 (5.50)

= (R̂y)†(σ ĉ†iσ )
(
|Ψ0↑〉 −γ |Ψ0↓〉

)
. (5.51)

Next step is to rotate the resolvents,

p↑↑γ,γ + σp↓↓γ,γ = 〈Ψ0γ |ĉj↑
1

E − Ĥ
ĉ†i↑|Ψ0γ〉+ σ〈Ψ0γ |ĉj↓

1

E − Ĥ
ĉ†i↓|Ψ0γ〉 (5.52)

= 〈Ψ0γ |
(
ĉj↑ + ĉj↓

) 1

E − Ĥ

(
ĉ†i↑ + σ ĉ†i↓

)
|Ψ0γ〉 (5.53)

=
(
〈Ψ0↑| −γ〈Ψ0↓|

)
ĉj↑

1

E − Ĥ
σ ĉ†iσ

(
|Ψ0↑〉 −γ |Ψ0↓〉

)
. (5.54)

For σ =↓ / − 1 this result is particularly simple, with p↑↑γ,γ − p↓↓γ,γ = γp↑↓↓,↑, which can be

directly generalized to A↑↑γ,γ −A↓↓γ,γ = γA↑↓↓,↑.
This finishes our calculation with the result

G =
e2~
2π

ΓLΓR

(1
2
|W |2 +

3
2
|J |2

)
, with W = Aσσσ,σ +Aσ̄ σ̄σ ,σ and J = Aσ̄σσ̃ ,σ . (5.55)

This result is identical to the perturbative calculation of the conductance in an effective
Kondo model for the |Ψγ〉 subspace. Anticipating the treatment of the Kondo effect in the
next chapter, J will be referred to as the exchange transport amplitude, while W is the
potential scattering amplitude.

5.7.1 Quantum Interference Classification

Let us now turn to the classification of first the potential scattering, W , followed by the
classification of the exchange transport processes, J. The potential scattering amplitude
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can be written,

W =
∑
σ

Aσσγ,γ =
∑
σ

(
hσσγ,γ + pσσγ,γ

)
(5.56)

=
〈Ψ0γ |

(∑
σ ĉiRσ

)
|Ψ N+1
n 〉〈Ψ N+1

n |
(∑

σ ĉ
†
iLσ

)
|Ψ0γ〉

ω − εpn0

+
〈Ψ0γ |

(∑
σ ĉ
†
iLσ

)
|Ψ N−1
n 〉〈Ψ N−1

n |
(∑

σ ĉiRσ
)
|Ψ0γ〉

ω − εhn0

. (5.57)

The Qi-parameter determining the quantum interference class is defined by the ratio,

QiW =

∑
m〈Ψ0γ |

(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ N−1

0m 〉〈Ψ
N−1

0m |
(
ĉiR↑

+ ĉiR↓
)
|Ψ0γ〉∑

n〈Ψ0γ |
(
ĉiR↑

+ ĉiR↓
)
|Ψ N+1

0n 〉〈Ψ
N+1

0n |
(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ0γ〉

, (5.58)

where we explicitly sum over the ground state degeneracy in each of the neighbor charge

states. Similarly for the exchange amplitude J = A↑↑γ,γ −A↓↓γ,γ one can define the classification

QiJ =

∑
m〈Ψ0γ |

(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ N−1

0m 〉〈Ψ
N−1

0m |
(
ĉiR↑

+ ĉiR↓
)
|Ψ0γ〉∑

n〈Ψ0γ |
(
ĉiR↑

+ ĉiR↓
)
|Ψ N+1

0n 〉〈Ψ
N+1

0n |
(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ0γ〉

. (5.59)

When the states |Ψ N−1
0 〉 and |Ψ N+1

0 〉 are both singlets (and otherwise non-degenerate), we
have that

QiW
QiJ

=
〈Ψ0γ |

(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ N−1

0 〉〈Ψ N+1
0 |

(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ0γ〉

〈Ψ0γ |
(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ N−1

0 〉〈Ψ N+1
0 |

(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ0γ〉

< 0. (5.60)

This is because only one of the ĉ†iL↓
operators contribute for each choice of γ , adding only

one minus to the overall calculation. Hence with singlet neighbor charge states the W and
J amplitudes must always belong to different interference classes.

In the case of odd-alternant hydrocarbons (i.e., alternant hydrocarbons with an odd
number of carbon atoms), the pairing theorem applies. In the case of half-filling we have
from equation (5.24) that

A|Ψ Na
σ 〉 = −|Ψ Na

σ̄ 〉 (5.61)

Additionally we introduce a π spin rotation R̂π, which transforms R̂πĉ
†
iσ R̂
†
π = −σ ĉ†iσ̄ . From

this it can be shown that acting on spin eigenstates |S,m〉,

R̂†π|0,0〉 = |0,0〉, (5.62a)

R̂†π|12 ,σ〉 = −σ |12 , σ̄〉 (5.62b)

R̂†π|1,0〉 = −|1,0〉, R̂†π|1,±1〉 = |1,∓1〉. (5.62c)

In general we write R̂†π|S,m〉 = eiϕm |S,−m〉. This makes it possible to transform (assuming
m is only due to singlet or triplet spin degeneracy),

〈Ψ N−1
0m |

(
ĉiR↑ ± ĉiR↓

)
|Ψ0γ〉 = 〈Ψ N−1

0m |A
†A

(
ĉiR↑ ± ĉiR↓

)
A†A|Ψ0γ〉

= (−1)iRei(γ0−γm)〈Ψ N+1
0,−m |

(
ĉ†iR↑ ± ĉ

†
iR↓

)
|Ψ0γ̄〉

= ±(−1)iRei(γ0−γm)e−iϕm〈Ψ N+1
0,m |

(
ĉ†iR↑ ± ĉ

†
iR↓

)
|Ψ0γ〉, (5.63)
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where we in the last expression applied the R̂π spin rotation,

QiW =

∑
m〈Ψ0γ |

(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ N−1

0m 〉〈Ψ
N−1

0m |
(
ĉiR↑

+ ĉiR↓
)
|Ψ0γ〉∑

n〈Ψ0γ |
(
ĉiR↑

+ ĉiR↓
)
|Ψ N+1

0n 〉〈Ψ
N+1

0n |
(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ0γ〉

,

= (−1)iR+iL

∑
m〈Ψ0γ |

(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ N+1

0m 〉〈Ψ
N+1

0m |
(
ĉiR↑

+ ĉiR↓
)
|Ψ0γ〉∑

n〈Ψ0γ |
(
ĉiR↑

+ ĉiR↓
)
|Ψ N+1

0n 〉〈Ψ
N+1

0n |
(
ĉ†iL↑

+ ĉ†iL↓
)
|Ψ0γ〉

,

= (−1)iL+iR . (5.64)

Also for the exchange amplitude,

QiJ =

∑
m〈Ψ0γ |

(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ N−1

0m 〉〈Ψ
N−1

0m |
(
ĉiR↑

+ ĉiR↓
)
|Ψ0γ〉∑

n〈Ψ0γ |
(
ĉiR↑

+ ĉiR↓
)
|Ψ N+1

0n 〉〈Ψ
N+1

0n |
(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ0γ〉

= −(−1)iR+iL

∑
m〈Ψ0γ |

(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ N+1

0m 〉〈Ψ
N+1

0m |
(
ĉiR↑

+ ĉiR↓
)
|Ψ0γ〉∑

n〈Ψ0γ |
(
ĉiR↑

+ ĉiR↓
)
|Ψ N+1

0n 〉〈Ψ
N+1

0n |
(
ĉ†iL↑
− ĉ†iL↓

)
|Ψ0γ〉

= −(−1)iR+iL = −QiW (5.65)

Hence for odd-alternant hydrocarbons the potential scattering transport and the exchange
amplitude transport have opposite interference classes at half-filling.

5.8 Examples (Spin-Doublet)

The simplest example is the odd-alternant three site chain at half-filling. While the Feynman-
Dyson orbital weight vanishes at the middle site, 〈Ψ0γ |ĉ†2σ |Ψ

N−1
0m 〉 = 0, the next orbitals in

our expansion still obey the pairing theorem and the coloring rule holds. According to the
doublet coloring rules the W amplitude belongs to the even interference class, while the J
amplitude belongs to the odd class.
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Figure 5.15: The potential scattering and the excchange ampltidues for a simple three-site
chain. The resulting total amplitude |W |2/2 + 3|J |2/2, shows no sign of the interference of
|J |2 correctly predicted by our coloring rule.

Alternatively we consider a an odd-alternant chain with a two side-coupled orbitals.
Again the transport result obeys the coloring rule, but because both transport channels
exhibit destructive interference the total conductance also shows some (although weaker)
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Figure 5.16: The potential scattering and the exchange amplitudes for a a seven-orbital
model. While exchange and potential scattering belong to different interference classes,
the interference is somewhat visible in the total amplitude |W |2/2 + 3|J |2/2.

interference feature. The coloring rules does not prohibit all interference features in the
total conductance, but the rule still ensures that interference nodes are somewhat obscured.

Away from half-filling the coloring rule can be broken if (and only if) a neighbor
charge states has (at least) a spin-triplet ground state. Using Lieb’s theorem we engineer a
molecule with a spin triplet ground state at half-filling. An example is shown in Figure 5.17
for the neutral−1 charge state of a cross-conjugated system.
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Figure 5.17: Here the 8-electron ground state is a triplet, hence voiding our interference
theorem. As is obvious both W and J belong to the odd interference class.

Interference in transport through benzene in the 7 (or 5) electron charge state have
previously been investigated. Here the interference effect was due to a vanishing Feynman-
Dyson orbital weight, giving rise to a suppression of the sequential tunneling at one diamond
edge.9,10 Since the 6-electron ground state is a singlet, and the 4-electron (8-electron) ground
state is a triplet, the theorem of equation (5.60) does no longer hold, and both W and J
may belong to the same interference class. This is clearly illustrated in Figure 5.18 showing
both |W |2, |J |2 and the total amplitude 1

2 |W |
2 + 3

2 |J |
2.
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Figure 5.18: Calculation of transport amplitudes through benzene away from half-filling in
the 7-electron charge state. In the meta-configuration the Feynman-Dyson overlap with the
triplet ground state in the 8-electron charge state vanishes, and our theorem QiJ = −QiW
holds. In the para-configuration this is not the case, and then QiJ = QiW < 0. Note that
in order to lift an additional orbital symmetry of the 7-electron ground state, we have
introduced a small offset µ = −0.1 eV at the colored site.

5.9 Conclusions
In this chapter we have investigated quantum interference in the off-resonant transport

through Coulomb blockaded molecule junctions. We have found two quantum interference
mechanism: between particle and hole transport, and within either particle (hole) channel.

We introduced the even and odd quantum interference classes determining the number
of interference nodes in the off-resonant transport. For neutral alternant hydrocarbons with
a singlet ground state we proved that the interference class be calculated using a simple
coloring rule.

For doublet ground state molecules we showed that the transport is composed of a
potential scattering channel and an exchange channel. When the neighbor charge states
both have a singlet ground state, or for neutral odd-alternant hydrocarbons the two channels
belong to different interference classes. For neutral hydrocarbons a coloring rule still predicts
the interference class.

The work presented in this chapter is currently under preparation for publication in
collaboration with M. Leijnse, M. Strange, G. Solomon and J. Paaske.



Chapter 6

Kondo Interference

The Kondo effect is a rich many-body phenomena still part of active research today. The
Kondo model describes how a localized magnetic moment interacts with the electrons in a
conduction band. At very low temperatures the magnetic moment and the free electrons
can form a complex many-body anti-ferromagnetic state, where the electrons “try” to screen
the local magnetic moment. In a metallic host the Kondo correlated many-body state
increases the scattering cross-section of the magnetic impurity, and increases the resistivity
of the conductor.43

temperature

co
nd

uc
ta

nc
e

Kondo correlated singlet

local moment

Figure 6.1: Kondo enchanced conductance at low temperatures, where the local magnetic
moment form a spin-singlet like many-body state with the conduction electrons.

In quantum transport a quantum dot spin-doublet ground state can similarly be screened
by the conduction electrons in both leads, and forms a spin-singlet like state (cf. Figure 6.1).
The resulting increase in electron scattering from one lead to the other gives rise to a
Kondo enhanced conductance at zero bias voltage. In the constant interaction model every
odd-electron charge state is a spin doublet. At low temperatures every second Coulomb
diamond then carries a Kondo enhanced zero-bias conductance25,86 (cf. Figure 6.2).

Kondo effect has been found in quantum dot setups34,35 as well as molecular junc-
tions.72,74a,95 However, according to Natelson et al.68 some irregularities have been found
in Kondo effect through molecules. In the previous chapter we investigated quantum inter-
ference in the off-resonant transport through organic molecule π-systems. The structure of
the molecule and the contact geometry turned out to give and an interesting impact on the

73
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0

Kondo enhanced 
zero-bias conductance

Figure 6.2: Every second charge state have a spin-doublet ground state, and at low
temperatures the formation of a Kondo correlated state between the spin-doublet and the
lead electrons will give rise to a Kondo enhanced zero-bias conductance anomaly.

interference features. In the following we wish to investigate whether quantum interference
can influence the Kondo enhanced current.

6.1 The Schrieffer-Wolff Transformation

Our starting point is the full Hamiltonian describing a transport junction with a molecule
(multiple quantum dot) coupled to two electrodes (cf. equation (4.4)),

Ĥ = Ĥ0 + ĤT = ĤL + ĤR + Ĥm + Ĥg + ĤT . (6.1a)

Here the operators are still given by,

Ĥα =
∑
νσ

ξν ĉ
†
ανσ ĉανσ , α ∈ {L,R}, (6.1b)

Ĥg = −κeVg
∑
i

n̂i , (6.1c)

ĤT =
∑
νσ

(
tLĉ
†
Lνσ ĉiLσ + t∗Rĉ

†
iRσ
ĉRνσ

)
+ h.c. (6.1d)

The molecule Hamiltonian Ĥm commutes with the number of electrons on the molecule N̂ ,
meaning that Ĥm is block-diagonal within each charge state N , and have eigenfunctions
|Ψ N
i 〉 with corresponding eigenvalues ENi . The ground state in the N -particle charge state

is assumed to be a spin-doublet |Ψ N
σ 〉 indexed by σ =↑,↓ with an eigenenergy EN0 .

The first step is to perform a Schrieffer-Wolff transformation,14,92 which reduces our
model to an effective Kondo Hamiltonian. As a service to the reader, we perform this
transformation in some detail. The Schrieffer-Wolff transformation projects out all states
on the molecule except the doublet ground state |Ψσ 〉. It is rather straightforward to
calculate the effective Hamiltonian for this reduced molecule up to second order in the
electrode hybridization, ĤT ,

Ĥ
(0)
σσ ′ = Ĥ0

σσ ′ = 〈Ψσ |Ĥ0|Ψσ ′〉, (6.2a)

Ĥ
(1)
σσ ′ = ĤT

σσ ′ = 〈Ψσ |ĤT
σσ ′ |Ψσ ′〉, (6.2b)

Ĥ
(2)
σσ ′ = 〈Ψσ |ĤT

1

E0 − Ĥ0
ĤT |Ψσ ′〉. (6.2c)
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Here the indices σ and σ ′ run over the two doublet ground states Ψ↑ and Ψ↓. The first
order term vanishes trivially, because the hybridization Hamiltonian ĤT does not couple
the two ground states. The zeroth order effective Hamiltonian is,

Ĥ (0) = ĤLR +E0 + Ĥg . (6.3)

In order to deal with the the second order contribution, we introduce the annihilation and
creation operator shorthand ĉη with η ∈ {†, }. Let |n〉 and |n′〉 symbolize two many-body
lead states, and then rewrite the matrix elements of the second order contribution,

〈n′ |Ĥ (2)
σ ′σ |n〉 = 〈n′ |〈Ψσ ′ |ĤT

1

E0 − ĤLR − Ĥm − Ĥg
ĤT |Ψσ 〉|n〉

=
1
2

∑
ανγη
α′ν′γ ′η′

∑
|l〉
〈n′ |ĉη

′

α′ν′γ ′ |l〉〈Ψσ ′ |ĉ
η̄′

iα′γ ′
t∗α′ tα

E0 −κeVgN − Ĥm − Ĥg ± εl
ĉ
η̄
iαγ
|Ψσ 〉〈l|ĉ

η
ανγ |n〉.

(6.4)

Here l index the eigenspectra of either the N + 1-electron or the N −1-electron charge state.
The sign of εl depends on the actual values of α, α′, η and η′. However, as is customary,
we will drop εl .

14 Inspired by the previous chapters we introduce the particle and hole
excitation energies εhnm = ENm − EN−1

n and ε
p
nm = EN+1

n − ENm , as well as the corresponding
amplitudes,

p
αγ,α′γ ′

σ ′ ,σ (Vg ) =
∑
l

〈Ψ N
σ ′ |ĉiαγ |Ψ

N+1
l 〉〈Ψ N+1

l |ĉ†iα′γ ′ |Ψ
N
σ 〉

κeVg − ε
p
l0

, (6.5)

h
αγ,α′γ ′

σ ′ ,σ (Vg ) =
∑
l

〈Ψ N
σ ′ |ĉ

†
iα′γ ′
|Ψ N−1
l 〉〈Ψ N−1

l |ĉiαγ |Ψ
N
σ 〉

κeVg − εhl0
. (6.6)

The sum over |l〉 drops out, and assuming that the hopping amplitudes tα can be chosen
real, the second order contribution can be written on operator form,

Ĥ
(2)
σ ′σ =

∑
ανγ
α′ν′γ ′

t∗α′ tα

((
h
αγ,α′γ ′

σ ′ ,σ + pαγ,α
′γ ′

σ ′ ,σ

)
ĉ†ανγ ĉα′ν′γ ′ − h

αγ,α′γ ′

σ ′ ,σ δανγ,α′ν′γ ′
)

=
∑
ανγ
α′ν′γ ′

t∗α′ tα

(
h
αγ,α′γ ′

σ ′ ,σ + pαγ,α
′γ ′

σ ′ ,σ

)
ĉ†ανγ ĉα′ν′γ ′ −

∑
α,γ

t∗α′ tαh
αγ,αγ
σ ′ ,σ . (6.7)

It is readily seen that the constant contribution h
αγ,αγ
σ ′ ,σ is diagonal in σ − σ ′ space. In fact

this contribution is merely a constant which together with the H (0) contribution can be
safely ignored in the following, i.e., h

αγ,αγ
↑,↑ = hαγ,αγ↓,↓ . We re-introduce the total amplitude

A
αγ,α′γ ′

σ,σ ′ = hαγ,α
′γ ′

σ,σ ′ + pαγ,α
′γ ′

σ,σ ′ . It can then be shown that,

Ĥ
(2)
σσ =

∑
ανγ
α′ν′γ

t∗α′ tαA
αγ,α′γ
σ,σ ĉ†ανγ ĉα′ν′γ ,

Ĥ
(2)
σ̄σ =

∑
ανγ
α′ν′γ

t∗α′ tαA
αγ,α′ σ̄
σ̄ ,σ ĉ†ανσ ĉα′ν′ σ̄ . (6.8)
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The effective Hamiltonian can be written as a spin model in terms of the usual spin-like
operators given by,

siαν;α′ν′ =
1
2

∑
σσ ′

ĉ†ανστ
i
σσ ′ ĉα′ν′σ ′ , and (6.9)

S i =
1
2

∑
σσ ′

ĉ†στ
i
σσ ′ ĉσ ′ . (6.10)

Here τ i ∈ {τ0, τx, τy , τz} are the usual Pauli matrices with τ0 = Î being the identity operator.
The effective Kondo Hamiltonian for the doublet ground state, then takes the usual form,

ĤK =
∑
αν

∑
α′ν′

Jαα′sαν;α′ν′ ·S +
∑
ανσ

∑
α′ν′

W σ
αα′ ĉ

†
ανσ ĉα′ν′σ . (6.11)

Here the exchange couplings J and the potential scattering W are given by,

Jαα′ = 2tα′ tαA
ασ,α′ σ̄
σ̄ ,σ , and Wαα′ =

1
2
tα′ tα

∑
γ

A
αγ,α′γ
σ,σ (6.12)

One arrives at this expression by using that A
αγ,α′γ
σσ −Aαγ̄,α

′γ̄
σσ = σAασ,α

′ σ̄
σ̄ ,σ as discussed in

the previous chapter 5 (remember the algebraic shorthand σ =↓∼ −1 and σ =↑∼ +1). For a
given molecular system all relevant amplitudes can be evaluated numerically.

For a single-orbital quantum system (the so-called Anderson model) it is well known
that the Schrieffer-Wolff transformation produces the single-channel Kondo model with all
exchange couplings satisfying

det
(
JLL JLR
JRL JRR

)
= 0, (6.13)

and with the potential scattering amplitudes proportional to the exchange coupling
Wαβ(Vg ) = K(Vg )Jαβ(Vg ). Extended structures consisting of more than one orbital, also
reduce to a single-channel Kondo model, when the same orbital, iL = iR, connects to both
electrodes.

For molecules with different sites connected to electrodes, the couplings are in general
not identical, and in this case the effective Hamiltonian is a two-channel Kondo model.
The two-channel Kondo model is known to have a non-Fermi liquid fixed point in some
part of parameter space.

6.2 Poor Man’s Scaling

We will attack the Kondo problem using the Poor man’s scaling approach pioneered by
Anderson3 for the equilibrium Kondo problem with electrodes modeled as having constant
density of states and bandwidth 2D0. The effect of integrating out an infinitesimal part
δD of the conduction band can be calculated perturbatively in the coupling Jαβ . To second
order the exchange J is then renormalized according to the Poor man’s scaling equation,
given by81,88,89

dlnDJαα′ = −
∑
β

JαβJβα′ρβ . (6.14)

In the anti-ferromagnetic Kondo model the exchange couplings diverge at a critical band-
width D ∼ TK , called the Kondo temperature. The Kondo temperature marks the breakdown
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of the Poor man’s perturbative scaling equations. In the already mentioned single-channel
Kondo model (all Jαβ equal), more advanced approaches like Wilson’s numerical renor-

malization group117 show that the couplings converge to a universal Fermi liquid fixed
point.69 At this fixed point the impurity spin and the electrons in both electrodes form a
complex many-body antiferromagnetic state, where the electrons screen the impurity spin.
In this screened state the junction acts as a single transport channel carrying a unit of
conductance G0.

For unequal couplings we assume equal density of states ρL = ρR, and define gαβ = Jαβρα
in order to simplify the scaling equation,

dlnDgαα′ = −
∑
β

gαβgβα′ . (6.15)

Here gαα′ is a two-by-two tensor in the electrode indices. To simplify the calculations we
write the couplings on the form,

gLR = nx + iny (6.16a)

gRL = nx − iny (6.16b)

gLL = g0 +nz (6.16c)

gRR = g0 −nz. (6.16d)

Then the g tensor can be written, g = g0 I + n · τ, where τ iab is the usual Pauli tensor. This
allow us to write the scaling equation on the matrix form

dg

dlnD
= −g · g = g2

0 +n2 + 2g0n · τ (6.17)

It is then easy to show that

dg0

dlnD
=

1
2

d(gLL + gRR)
dlnD

= −g2
LL − g

2
RR − 2gLRgRL = (g2

0 +n2). (6.18)

Similarly it is easy to find the derivative of the n vector.

dn

dlnD
= 2g0n. (6.19)

In fact the length of the n vector conforms to the same differential equation (6.19),

dn
dlnD

=
d
√
n2

dlnD
=

n

n
· dn

dlnD
= 2g0n. (6.20)

Interestingly the direction of n is preserved during scaling because,

dn̂
dlnD

=
1
n

dn

dlnD
− n

n2
dn

dlnD
= 0. (6.21)

By adding or subtracting equation (6.18) and equation (6.20), we obtain the two final
scaling equations

d(g0 ±n)
dlnD

= −(g0 ±n)2 (6.22)
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Figure 6.3: The n vector. The direction is preserved during scaling (cf. equation (6.21)).

Like in the original Poor man’s scaling problem, these scaling equations have a constant
of motion called the Kondo Temperature Tk. In this case there are two such constants of
motion, given by,

Tk =De−1/(g0+n), and T ∗ =De−1/(g0−n). (6.23)

The Kondo temperatures can be calculated from the initial values of the band width D =D0
and the exchange couplings J0

αβ. It is convenient to introduce the dimensionless Kondo
parameters,

Fk =
(
Tk
D0

)−eV/(2|t|2ρ)

, and F∗ =
(
T ∗

D0

)−eV/(2|t|2ρ)

. (6.24)

Here we have introduced the average t = (tL + tR)/2. Knowing the two constants of motion,
the rescaled couplings are given as a function of the scaling parameter D, in the following
way,

g0

ρ|t|2/eV
=

1
ln(FkD/D0)

+
1

ln(F∗D/D0)
, (6.25a)

n

ρ|t|2/eV
=

1
ln(FkD/D0)

− 1
ln(F∗D/D0)

(6.25b)

Scaling the bandwidth D from some value D0 towards zero, the running couplings g0 or n
diverge at some point during the scaling if either Fk < 1 or F∗ < 1.

The scaling of the bandwidth is terminated, when the bandwidth approaches the typical
energy scale of the junction – normally given by the temperature of the electrodes, T ,
the bias voltage, V , or an external magnetic field, B.89 Poor man’s scaling captures the
behavior of the junction, when the typical energy scale lies above the Kondo temperature,
i.e., kbT > TK . Here the differential conductance is proportional to the rescaled gLR, which
for real exchange couplings gLR = |n|sin(φ), and

dI
dV
∝ |gLR|2 = |n|2 sin2(φ) =

∣∣∣∣∣ 1
ln(T /Tk)

− 1
ln(T /T ∗)

∣∣∣∣∣2 |J0
LR|

2

|J0
LR|2 + |J0

LL − J
0
RR|2/4

. (6.26)
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Alternatively, if we wish to calculate the universal conductance below the Kondo tempera-
ture, Goldhaber-Gordon have developed a phenomenological expression for the conduc-
tance34,54 based on NRG simulations of the single-channel Kondo model,

G(kbT ) = G0

(
1 +

(
kbT

T ′k

))−s
, with T ′k =

Tk√
2s − 1

, and s = 0.22. (6.27)

Introduce the dimensionless temperature, F = (kbT /D0)−eV/(2|t|
2ρ), which runs from unity to

zero during scaling. The Goldhaber-Gordon formula is then,

G(F) = G0

(
1 +

(
F

F′k

))−s
with F′k =

Fk√
2s − 1

, and s = 0.22. (6.28)

It is generally believed that the potential scattering Wαβ is irrelevant for the scaling of

the exchange couplings.70 However, because we are interested in interference, the potential
scattering W can be orders of magnitudes larger than the exchange, J. A more detailed
analysis can reveal to what degree we should be concerned about the potential scattering.
However, we will expose such an analysis to later works, and continue with the scaling
equations (6.15) in the following.

6.3 Interference in the Kondo-Enhanced Conductance

We can only speculate whether interference in the initial value of the JLR coupling constant,
discussed in the previous chapter, will survive the scaling.
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Figure 6.4: Interference in the zero-bias Kondo enhanced conductance. We assume equal
coupling to both electrodes with t = tL = tR. The color plot shows the scaling of |JLR|2 in units
of 4|t|4/e2V2, where the shaded region marks the complete break down of the perturbative
scaling. The line cuts hihglight, how the persistence of the destructive interference feature
for temperatures larger than the Kondo temperature.

Above the Kondo temperature the Poor man’s scaling analysis provides a useful tool
for calculating the rescaled conductance. For a biradical hydrocarbon with two interference
nodes in the initial exchange coupling (also considered in the previous chapter), we
perform the Poor man’s scaling analysis for temperatures above the Kondo temperature
(cf. Figure 6.4). The two destructive interference nodes prevail, but the feature becomes
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more abrupt at lower temperatures. This is easily seen to be consistent with the scaling
equations (6.15), where dlnDJLR ∝ JLR.

It is still unclear whether such destructive interference features will prevail in the
unitary limit as T → 0, and perturbative scaling methods cannot settle this issue. In
order to determine the relevance of interference below the Kondo temperature, a further
analysis is necessary using more sophisticated numerical methods such as Wilson’s numerical
renormalization group.117

6.4 Partial Ferromagnetic Kondo Effect

When the exchange coupling J is negative, the scaling equations (6.15) do not diverge as
the bandwidth is reduced. Instead they converge to the (unstable) fixed-point J = 0. For
equal couplings this is a direct consequence of the scaling equation, dg/dlnD = −2g2. In
this case the exchange couplings are quenched and only the potential scattering contributes
to the total current.

For general values of the exchange couplings JLL, JRR and JLR, ferromagnetic scaling
depends on at least two of the couplings being negative, or alternatively that only one of
the same-electrode couplings, JLL or JRR, is negative and completely dominates the scaling
behavior. While the destructive interference of JLR coupling constant depend on which two
orbitals couple to the electrodes. For the same electrode couplings JLL and JRR, we can
dissect the amplitudes Aασ,ασ̄σ σ̄ , starting with the hole amplitude. Because the sign of the
amplitude is important, we will not introduce an interference class. Instead we consider
the numerators, hn, of the poles, which constitutes the hole amplitude,

hn =
∑
σ

〈Ψ0σ̄ |ĉ†iα γ̄ |Ψ
N−1
n 〉〈Ψ N−1

n |ĉiαγ |Ψ0σ 〉. (6.29)

If the state |Ψ N−1
n 〉 is a spin singlet (ignoring any other symmetries), choosing e.g. σ =↑,

we have that

hn = 〈Ψ0γ̄ |ĉ†iα γ̄ |Ψ
N−1
n 〉〈Ψ N−1

n |ĉiαγ |Ψ0γ〉

= 〈Ψ0γ |ĉ†iαγ |Ψ
N−1
n 〉〈Ψ N−1

n |ĉiαγ |Ψ0γ〉 ≥ 0. (6.30)

At the last equality we employed the spin reversion R̂π, which in spin 1/2 space transforms
R̂πĉ†iσ (R̂π)† = −σ ĉ†iσ̄ . The corresponding particle amplitude (with |Ψ N+1

n 〉 assumed to be a
singlet) have the numerators,

pn = 〈Ψ0γ̄ |ĉiαγ |Ψ
N+1
n 〉〈Ψ N+1

n |ĉ†iα γ̄ |Ψ0γ〉

= −〈Ψ0γ |ĉiα γ̄ |Ψ
N+1
n 〉〈Ψ N+1

n |ĉ†iα γ̄ |Ψ0γ〉 ≤ 0. (6.31)

Again we used the spin reversion in the last equality.

Adding the positive numerator hole amplitudes and the negative numerator particle
amplitudes result in positive values of Jαα. Assume instead that |Ψ N±1

nm 〉 is part of a
spin triplet indexed by m = −1,0,1. Then spin reversion applied in the evaluation of the
numerators produces an additional sign, R̂π|Ψ N±1

n0 〉 = −|Ψ N±1
nm 〉. Hence, the only way to

circumvent the “positiveness” of Jαα is to couple (strongly) to one or more spin triplet
eigenstates of the neighbor charge states. In the following we will examine some examples,
where the (strong) coupling to triplet states produce ferromagnetic scaling.



Regarding Molecules 81

6.5 Examples

Here we will investigate various anomalous Kondo Effect behaviors for some chosen example
systems. To keep things simple we will in general assume equal hopping between the
electrodes and the molecule, tL = tR = t.
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Figure 6.5: Ferromagnetic Kondo effect in a simple three-orbital model. The exchange
couplings are shown both within the relevant charge state (unshaded) and extended beyond
(shaded). The first Feynman-Dyson orbital vanishes at the center site, and removes the
pole at the charge-degeneracy point. The coupling to the first excited state does not vanish.
This state is a triplet forcing all JLL = JRR = JLR to be negative, and produces FM Kondo
effect.

The simplest example is a three-orbital radical model equivalent to a triple quantum
dot. Here we couple both electrodes to the center orbital as shown in Figure 6.5. When
the three-orbital model is mirror symmetric, the coupling to the neighbor charge states
N ± 1 vanishes when coupling through the center orbital. The first excited state is a spin
triplet, which forces all the couplings to be negative, and produces a ferromagnetic (FM)
Kondo scaling. The ferromagnetic scaling is readily seen from the computed Kondo scaling
parameters, which are both larger than unity Fk > 1 and F∗ > 0.

Similar systems have also been considered by both Numata et al.71 and Baruselli et al.7,
using a numerical renormalization group (NRG) approach, and their results confirm our
findings.

Benzene have triplet states in the N = 4 and N = 8 electron charge states. All the N
odd charge states of benzene have an additional orbital degeneracy, which can be lifted
by a chemical potential offset on a single site. We investigate Kondo effect in the N = 7
electron charge state, and the result is presented in Figure 6.6. Towards the 6-electron
charge state, we have usual AFM Kondo, while towards the 8-electron side, we have FM
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Figure 6.6: Kondo interference in a benzene ring. Note that only a small region of gate
exhibits ferromagnetic Kondo effect. Effectively the Kondo interference have been cut out
at one site. Note that we have broken the orbital degeneracy with a small offset µ = −0.1 eV
at the colored orbital, and that we here plot the conductance as given by equation (6.28).
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Figure 6.7: Classification of Kondo interference patterns depending on the spin of the
ground state of the neighboring charge states. As indicated the full anti-ferromagnetic
Kondo effect and the full ferromagnetic Kondo effect are special cases of all the possible
patterns.
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Figure 6.8: Ortho-coupled benzene. when the same site coupling constants become negative
close to the triplet charge degeneracy point JLR dominates the scaling. See also the scaling
flow in Figure 6.9.
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where all the couplings flow together.
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Kondo. The cross-over between the two types of Kondo effect is directly visible in the
dimensionless Kondo scaling parameters. At one side, they are both

The benzene example is prototypical for doublet ground states with singlet and triplet
ground states in the two charge state neighbors, of which we show a few more in an
appendix. In fact not many possibilities exist for the possible patterns of AFM and FM
Kondo effect. We show a simple schematic of the different possibilities in Figure 6.7.

Let us apply this table to the two examples we have considered so far. The three-orbital
model is special: It is of the singlet-singlet type, but has k = 0 and ends up in the full FM
Kondo case. The benzene example is a clearly singlet-triplet case with an intermediate
value of k.

Another interesting example is benzene connected to the leads in the ortho configuration.
The result of our calculation is shown in Figure 6.8. The main difference compared to the
previous example is that the off-diagonal coupling JLR is now positive. In this case JLR
alone determines the scaling when the Jαα are negative, and the whole charge state has
AFM Kondo. It is unusual but interesting to have JLR win over the same-lead couplings,
and a plot of the running couplings are shown in Figure 6.9.

6.6 Conclusions
In this chapter we have investigated the interference in the Kondo enhanced zero-bias

conductance using a Poor man’s scaling approach. We have shown that the interference
nodes in the exchange coupling J (and hence the conductance) persists under scaling when
considering transport above the Kondo temperature.

We have also shown how the interference structure in the exchange coupling may lead
to a ferromagnetic Kondo effect, which repress the zero-bias conductance. If one of the
ground states in the two neighbor charge states is a spin-triplet, one may even have both
Kondo enhanced and Kondo suppressed zero-bias conductance within the same charge
state. This means that it is possible to reach both regimes by tuning the backgate voltage.

The work presented in this chapter, is also being composed into a publication.



Chapter 7

Molecular Electron Pumps

This story begins with the suggestion of a design for an all-electrical molecular motor
by Seldenthuis et al.96. This molecular motor shown in Figure 7.1 is constructed from an
organic molecule with two sidearms comprising different species of hetero-atoms (nitrogen
and oxygen). The hetero-atoms create a permanent electric dipole moment in the molecule,
and the dipole moment can then be manipulated by the electrostatic backgate. A periodically
changing electrostatic potential rotates the sidearms, and this rotation can be detected as
a change in the junction conductance.

AC ~ gate

+ +

- -

electrode electrode

Figure 7.1: The all electrical molecular pump proposed by Seldenthuis et al.96. The
alternating potential on the backgate repels and attracts the hetero-atoms on the sidearms
of the molecule, causing the arms to rotate. The instantaneous conductance through the
π-system changes periodically as a function of the rotation angle of the pz-orbitals on
turning carbon backbone.

The rotating molecule can also pump electrons from one electrode to the other, much
like a quantum mechanical analog of the Archimedes screw shown in Figure 7.2. It is
unknown if the pumping of electrons through the molecule necessitates a full quantum
mechanical calculation of the transport, or the pumping can be described semi-classically
as a simple charging effect. The aim of this chapter is cast some light upon this conundrum,
and the important question we will try to answer is: Whether a coherent quantum pump
is significantly different from a semi-classical pump?

It turns out that quantum pumping in mesoscopic systems have already been investigated
heavily in the scientific literature, starting with the seminal paper by Thouless113. Since

85
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Figure 7.2: The archimedes screw is a simple mechanical pump, where the turning of the
screw transports water (or other stuff).

then, several works have been dedicated to adiabatic charge pumping,13,18,21,22 where both
the size of the pumping perturbation V and the driving period T is small, so V T � 1.

Most experiments, which investigates electron pumping, have focused on quantum dot
turnstile geometries, where a ratchet, which moves back and forth between the electrodes,
carry an integer number of electrons from one electrode to the other.33,84 This kind of
pumping is due to a simple charging effect of the ratchett, which makes quantum coherency
completely irrelevant. However, coherent quantum pumping have been investigated experi-
mentally in quantum dots by Switkes et al.109 and (more importantly) Vavilov, Dicarlo,
and Marcus115, who tried to distinguish quantum pumping from classical pumping by
examining the symmetry of the pumped current under an applied magnetic field.

In order to investigate quantum coherent transport we develop a fairly intelligible
Floquet scattering method. The Floquet method utilizes that the periodic driving scatters
an incoming electron into transmitted and reflected components in the many driving-induced
sidebands. This scattering mechanism was first investigated in the adiabatic regime by
Büttiker and Landauer.16,17 We will apply the Floquet scattering method on the Hückel
level of theory ignoring electron-electron interactions completely. The approach is quite
close to the work done by Agarwal and Sen1, and comparable to the non-equilibrium
Green’s function calculations performed by Arrachea4.

7.1 Naive Floquet Scattering Theory

Consider a general Hückel model for (spin-less) electrons, described by the Hamiltonian

Ĥ = T̂ + Ĥε =
∑
〈i,j〉

(
tij ĉ
†
i ĉj + tji ĉ

†
j ĉi

)
+
∑
i

εi n̂i . (7.1)

Assume that some parameters tij , ε changes periodically on time τ, such that after a
period T , H(τ) =H(τ + T ). The radian frequency of the oscillation is given by Ω = 2π/T ,
and the Hamiltonian for this periodically driven system can be decomposed into Fourier
components indexed by ν,

H(τ) =
∑
ν

HνeiνΩτ . (7.2)
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If H(τ) depends harmonicallya on time, only H±1,H0 , 0. The wavefunction ψ(τ) can also
be written as a sum of Fourier components,

ψn(τ) =
∑
ω

ψωe−iωτ . (7.3)

Writing down Schrödinger’s equation in Fourier space, we have,

i~∂tψ(τ) =H(τ)ψ(τ), (7.4a)∑
ω

~Ωψωe−iωτ =
∑
ν

Hν
∑
ω′
ψω

′
ei(−ω

′+νΩ)τ , (7.4b)

~Ωψω =
∑
ν

Hνψω+νΩ. (7.4c)

Rewriting ω =ωµ =ω0 +µΩ, we get that

~ωµψµ =
∑
ν

Hνψµ+ν . (7.5)

We have up till now considered the Hamiltonian quite generally. In basis of tight-binding
orbitals |n〉 the tight-binding Hamiltonian, takes the form,

Hν
n = |n〉〈n|Hν = −

∑
m,n

tνnm|n〉〈m|+ ενn |n〉〈n|. (7.6)

Note that we have introduced the Fourier components tνnm of ενn of the tight-binding model
parameters. Applying this to equation (7.5), gives us the result,

~ωµψ
µ
n =

∑
ν

−∑
m,n

tνnmψ
µ+ν
m + ενnψ

µ+ν
n

 . (7.7)

Starting from some value of the wave-function ψ
µ
n ,we end up traversing a grid in (n,ν)-space

connected by Fourier components tνnm and ενn .

When the Hamiltonian depends harmonically on time, it only “connects” neighbor sites
in the (n,ν)-grid as pictured in Figure 7.3. This can be directly realized when calculating,

~ωµψ
µ
n =

∑
ν

− ∑
m=±1

tνnn±1ψ
µ+ν
n±1 + ενnψ

µ+ν
n

 (7.8)

=
∑
ν

(
−tνnn+1ψ

µ+ν
n+1 − t

ν
nn−1ψ

µ+ν
n−1 + ενnψ

µ+ν
n

)
. (7.9)

Collecting coefficients into vectors ψn = (. . . ,ψ−Nn , . . . ,ψν−1
n ,ψνn ,ψ

ν+1
n , . . .), the above equation

can be written as a matrix equation.

~ω†Iψn = −tnn+1ψn+1 − tnn−1ψn−1 + εnψn. (7.10)

aHarmonically means that the parameters only depend on time through harmonic functions of the form,
cos(Ωτ +φ).
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Figure 7.3: (n,ν)-grid when only H±1,H0 , 0. Red sites denotes the incoming wavefunction
and reflected waves in the left electrode, while the green sites labels the transmitted modes
of the right lead.

Here

tnn+1 =



. . .
. . .

. . .
t−1
nn+1 t0nn+1 t1nn+1

t−1
nn+1 t0nn+1 t1nn+1

t−1
nn+1 t0nn+1 t1nn+1

. . .
. . .

. . .


, (7.11)

and tn+1,n = (tn,n+1)†. When there is no additional phase arising because of e.g. a magnetic
field, we have that tn+1,n = (tn,n+1)† = tn,n+1. The energy offset matrix shares the tridiagonal
structure,

εn =



. . .
. . .

. . .
ε−1
n ε0

n ε1
n

ε−1
n ε0

n ε1
n

ε−1
n ε0

n ε1
n

. . .
. . .

. . .


. (7.12)

Isolating ψn+1 we get that

ψn+1 = t−1
nn+1

(
εn − ~ω†I

)
ψn − t−1

nn+1tnn−1ψn−1. (7.13)
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Writing this as a matrix equation(
ψn+1
ψn

)
= Tn

(
ψn
ψn−1

)
. (7.14)

The forward scattering transfer matrix looks like,

Tn =
(
t−1
nn+1(εn − ~ω†I) −t−1

nn+1tnn−1
I 0

)
, (7.15)

and the inverse (or backward scattering) transfer matrix is given by,

(Tn)−1 =
(

0 I

−t−1
nn−1tnn+1 t−1

nn−1(εn − ~ω†I)

)
. (7.16)

So given the wavefunction coefficients at two neighboring sites, we can by repeated use of
equation (7.15) solve the wavefunction for any other two given sites. For example(

ψm+1
ψm

)
=

 1∏
a=m

Ta


(
ψ1
ψ0

)
. (7.17)

Let us return to our transport model. The electrodes will be modeled as semi-infinite
tight-binding chains. Consider the two electrode tight-binding sites closest to the quantum
pump, which will be occupied by an incoming and several reflected plane electron waves. In
the opposing electrode the wavefunction is composed of transmitted plane waves, and since
the wavefunction can be propagated from one electrode to the other by successive use of
the transfer matrix equation, we can solve for the transmission and reflection coefficients.

The incoming wave coefficients a and the reflection coefficients r, can be related to the
wavefunction coefficients by a linear relation,(

ψn+1
ψn

)
= OL

(
a
r

)
=

(
eik

T
I e−ik

T
I

I I

)(
a
r

)
. (7.18)

Similarly the transmission coefficients f are also related to the wave-function coefficients in
the outgoing leads (

ψn+1
ψn

)
= OR

(
f
0

)
=

(
eik

T
I e−ik

T
I

I I

)(
f
0

)
. (7.19)

It can be shown that the inverse operator to the basis-change operator O looks like

O−1 =
(

1
2sinkI 0

0 1
2sinkI

)(
I −e−ikI

−I eikI

)
. (7.20)

7.1.1 A Simple Quantum Pump Example

To demonstrate the use of our method we will - as an example - investigate the very simple
quantum pump sketched on Fig. 7.4. The Floquet scattering equation looks like:(

a
r

)
= S

(
f
0

)
, (7.21)
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left lead right lead

Figure 7.4: Simple quantum pump model

where the scattering matrix is the product of two basis-change operators and three transfer
matrices:

S = O−1
L

(
0 I

−t−1
21t23 t−1

21(εn − ~ω†I)

)(
0 I

−t−1
32t34 t−1

32(εn − ~ω†I)

)
×
(

0 I

−t−1
43t45 t−1

43(εn − ~ω†I)

)
OR. (7.22)

Choose a Krönecker delta vector a = δn,0, which represents only a single incoming wave,(
δn,0

r

)
=

(
S11 S12
S21 S22

)(
f
0

)
. (7.23)

We can then find the transmitted wave coefficients, f = S−1
11δn,0, and the reflected wave

coefficients r = S21f = S21S−1
11δn,0.

7.1.2 Pumped Current

The current carried by a single mode ei(kx−ωkτ) is given by,

Jk = it0
〈
ψ|n− 1

〉〈
n|ψ

〉
− it∗0

〈
ψ|n

〉〈
n− 1|ψ

〉
= −2Im{t0

〈
ψ|n− 1

〉〈
n|ψ

〉
}

= 2Re(t0)sin(ka) + 2Im(t0)cos(ka). (7.24)

For a transmitted wave composed of several modes kj each with the weight fj , the current
at site n is given by,

J(n) = −2Im

t0∑j,l f ∗j fle−i(kj (n−1)a−ωjτ)ei(klna−ωlτ)


= −2Im

t0∑j,l f ∗j flei(kl−kj )naeikjaei(ωj−ωl )τ
 . (7.25)

Now, the difference ωl −ωj is a multiple of the base driving frequency Ω. Integrating over
a period T = 2π/Ω, only terms with ωl =ωj contribute. Hence one must have kl = kj and
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then the averaged current is,

〈J〉T = −2Im

t0∑j |fj |2eikja
 =

∑
j

|fj |2Jkj . (7.26)

For the slightly more complicated case which have several reflected modes kj with weight
rj and one incident wave at k0 with weight 1, the current is given by

J(n) = −2Im{t0
〈
ψ|n− 1

〉〈
n|ψ

〉
}

= −2Im

t0∑j,l r∗j rlei(kj−kl )nae−ikjaei(ωj−ωl )τ
− 2Im

{
t0e

ik0a
}

− 2Im

t0∑j r∗j e
i(kj+k0)nae−ikjaei(ωj−ω0)τ + t0

∑
l

rle
−i(kl+k0)naeik0aei(ω0−ωl )τ

 .
Again integrating over one base period T we obtain,

〈J〉T = Jk0
−
∑
j

|rj |2Jkj . (7.27)

Now, if the two leads are identical, the total current through the device should be conserved,
and

Jtot = Jk0
−
∑
j

{
|fj |2 + |rj |2

}
Jkj = 0. (7.28)

7.1.3 The Band Egde

In the Floquet formulation a periodic Hamiltonian allows for some initial state to absorb
or emit a number of modulation quanta of energy ~Ω.

Think about what would happen if the time-dependent part of the Hamiltonian was able
to excite states with energies outside the electrode energy band. This is most important,
when modeling the electrodes as semi-infinite tight-binding chains, which only supports
a single band of energies E ∈ (−2t0,2t0). The answer is rather straightforward. Looking
at equation (7.3), it is obvious that only Fourier components ψω within the band survive,
and the components of state vectors ψω, which are positioned outside the band, must be
removed.

7.2 Symmetry and Quantum Pumping

It is perhaps not obvious how the symmetry of the Hamiltonian will affect the ability of
a quantum system to pump particles. Normally one would argue that a time-reversal
symmetric Hamiltonian should not be able to sustain a net current. However, Wagner116

and Kohler, Lehmann, and Hänggi52 have showed that in a Floquet scattering formalism
this reasoning is flawed.

It is the asymmetry of the electronic system near the Fermi energy which drives the
pumping. The mechanism is displayed in Figure 7.5, where the symmetry of the Hamiltonian
is related to the symmetry of the transmission coefficients. The relevant Hamiltonian
symmetry is that of generalized parity. This symmetry operation involves a time translation
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Figure 7.5: Shows the symmetry of transmission coefficients for scattering between tow
electrodes based on Kohler, Lehmann, and Hänggi52. a) The Hamiltonian is time-reversal
symmetric, i.e. H(n,τ) = H(n,−τ). b) The Hamiltonian is symmetric with respect to
generalized parity, i.e. H(n,τ) =H(−n,τ + τ ′).

along with a parity operation n→−n. If this symmetry is broken, a net current may be
pumped by the system.

The results of the time reversal symmetry and the generalized symmetry is not directly
obvious from our scattering matrix approach. The general rule is that no current can run
whenever the scattering matrix is involutory, i.e., S−1 = S. Written in terms of transfer
matrices this condition takes the form:

2∏
i=N−1

Ti =
N−1∏
i=2

(Ti)
−1. (7.29)

7.3 Two Models

We can apply the above method to a very simple model as pictured on Fig. 7.4. Here we
show the results for two (prototypical) example quantum pumps.

7.3.1 A One-Parameter Pump

Here the central dot is coupled weakly to the right lead by a static coupling tL = t and
also weakly to the left lead through the oscillating coupling tR = t(1 + cos(Ωτ)). For
small frequencies ~Ω = 0.001t0 and small couplings t = 0.01t0 the transmission difference,
fR(ν)− fL(ν), and the resulting current, I(E) = ρ(fR − fL), is shown in Figure 7.6. Here we

have introduced the density of states of the tight-binding chain, ρ(E) = 1/(π
√

(2t0)2 −E2).
The lead electrons constitutes a Fermi sea, where the occupation of each electronic

state is determined by the temperature through the Fermi-Dirac distribution. At zero
temperature all states below the Fermi energy EF are fully occupied, while all states above
the Fermi energy are completely unoccupied. The total (cumulative) current is a simple
sum of the current pumped by states below the Fermi energy, Itot(EF) =

∑
E<EF

I(E).
Note that the system is not spatially symmetric, and hence a net current can indeed

flow. It is not surprising that a net current only flows at values of E close to the resonance,
since this is the only place where the total transmission differs significantly from zero. In
this example, the net current is of the order of 〈I〉T = 10−5t0/~.

7.3.2 A Two-Parameter Pump

We can also build a simple two-parameter pump. Assume again that the single orbital is
coupled to the two leads with the couplings tR = t and tL = t cos(Ωτ +φ), and then change
the resonance energy periodically ε(τ) = εcos(Ωτ). Again we choose parameters so that
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Figure 7.6: A single orbital coupled to two leads through the couplings tR = t and
tL = t(1 + cos(Ωτ) with parameters t = 10−2t0 and ~Ω = 10−3t0. The left panel shows
transmission difference fR(ν)− fL(ν) as a function of incoming energy E, while the right
panel shows the current and the cumulative current.

the oscillation frequency ~Ω = 10−3t0, the tunneling t = 10−2t0 and the resonance energy
ε = 5 · 10−3t0.

For zero phase difference, φ = 0, we showcase the resulting transmission difference and
the resulting current in Figure 7.7. Note that the transmission (rather surprisingly) mainly
involves very distant side bands, and hence for these parameters, the system behaves highly
non-adiabatic.
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Figure 7.7: A single oscillating orbital ε(τ) = εcos(Ωτ) coupled to two leads by a static
coupling tR = t and an oscillating coupling tL = t cos(Ωτ +φ). Chosen parameters ~Ω =
10−3t0, ε = 5 · 10−3t0 and t = 10−2t0. The left panel shows transmission difference and the
right panel shows current and cumulative current.

7.4 Rate Equation

Let us now turn to the semi-classical electron pump, which we model as a single orbital
coupled to two electrodes. Again the orbital on-site energy and the coupling to the electrodes
depend periodically on time in a way, which emulates the simple two-parameter pump
examined in section 7.3.2. Let P (τ) be the instantaneous probability for the orbital to
be occupied by an electron. Again the leads are modeled as a Fermi sea electrons in the
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Figure 7.8: Cumulative current calculated by the Floquet scattering method. Current is
shown as a function of the Fermi level E and the phase difference φ. Note that no electrons
are pumped at E = 0. The non-zero current extends to about E = ±2ε = ±0.01t0.

zero-temperature limit. When the orbital on-site energy, ε, lies below the Fermi energy,
the lead electrons can tunnel onto the orbital, and when the orbital is above the Fermi
energy the electrons tunnel out of the orbital.

The rates at which the electrons tunnel to either the right electrode or the left electrode
are of course determined by the instantaneous tunneling rates. At any given instant of
time the probability for having an electron occupying the orbital changes according to the
rate equation:

Ṗ (τ) = −[ΓL(τ) + ΓR(τ)]P (τ)θ(ε(τ)) + [ΓL(τ) + ΓR(τ)](1− P (τ))θ(−ε(τ))

= −[ΓL(τ) + ΓR(τ)]P (τ) + [ΓL(τ) + ΓR(τ)]θ(−ε(τ)). (7.30)

Here ΓL and ΓR determine the rates at which electrons leave (or enter) the left and the right
electrode respectively. Note that the Heaviside step functions θ(±ε(τ)) determine whether
electrons tunnel onto the single orbital or off the single orbital.

We can actually guess a steady state solution to this equation,

P (τ) = exp(−F(τ − τ0))(g(τ − τ0) + P (τ0)), (7.31)

and direct derivation yields that,

Ṗ (τ) = −f (τ)P (τ) + exp(−F(τ))ġ(τ). (7.32)
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Figure 7.9: Couplings ΓL(τ), ΓR(τ) along with θ(ε(τ)).

Hence identifying

F(τ) =
∫ τ

τ0

dτ ′ [ΓL(t′) + ΓR(τ ′)], (7.33a)

g(τ) =
∫ τ

τ0

dτ ′ exp(F(τ ′))[ΓL(τ ′) + ΓR(τ ′)]θ(−ε(τ ′)). (7.33b)

Now, the total current flowing between the single orbital, and the right lead is given by the
expression

I(τ) = ΓR(τ)P (τ)θ(ε(τ))− ΓR(τ)(1− P (τ))θ(−ε(τ))

= ΓR(τ)P (τ)− ΓR(τ)θ(−ε(τ)). (7.34)

Now, our toy model will have a single orbital with the on-site chemical potential

ε(τ) = ε1 cos(Ωτ +χ) + ε0, where cos(χ) = −ε0/ε1. (7.35)

On the other hand the two tunneling rates depend on time such that,

ΓL(τ) = 1
2ΓL {(cos(2Ωτ + 2φ) + 1} ,ΓR(τ) = ΓR (constant). (7.36)

In that case for the first period 0 < τ < 2π/Ω,

F(τ) =
∫ τ

0
dτ ′ [1

2ΓL{(cos(2Ωτ −φ) + 1}+ ΓR]

= 1
2ΓL

{
Ωτ + cos(Ωτ + 2φ)sin(Ωτ)

Ω

}
+ ΓRτ. (7.37)



96 7. MOLECULAR ELECTRON PUMPS

Also F(2πn/Ω) = ΓL
πn
Ω

+ ΓR
2πn
Ω

. Note that g(τ) is constant in any of the intervals
Ωτ ∈ [2(nπ −χ),2nπ]. For τ ∈ [0,2(π −χ)/Ω] we have

g(τ) =
∫ τ

0
dτ ′ exp(F(τ ′))(1

2ΓL{(cos(Ωτ ′ + 2φ) + 1}+ ΓR) (7.38)

= −1 + exp

1
2ΓL

Ωτ − 1
2 sin(2φ) + 1

2 sin(2Ωτ + 2φ)
Ω

+ ΓRτ

 , (7.39)

and

g(2π/Ω) = g(2(π −χ)/Ω)

= −1 + exp

ΓL(−1
4 sin(2φ)− 1

4 sin(−2φ+ 4χ) + (π −χ)) + 2ΓR(π −χ)
Ω

 . (7.40)

The constant solution when P (τ0) = P (2πn/Ω+ τ0) is then simply

P =
exp(−F(2π/Ω))g(2π/Ω)

1− exp(−F(2π/Ω))
. (7.41)

During one period T = 2π/Ω the time-averaged current is then easily calculated to give,

〈I〉 =
Ω

2π
ΓR

(∫ 2π/Ω

0
dτ P (τ)− 2(π −χ)

Ω

)
=

Ω

2π
ΓR

∫ 2π/Ω

0
dτ exp(−F(τ))(g(τ) + P )−

(
1− χ

π

)
ΓR. (7.42)

The rates can easily be related to the original tight-binding parameters from the Floquet
scattering model using the Fermi Golden Rule [14] (assuming a constant density of states
ρ = 1/(2πt0)),

ΓL(τ) =
2π
~
|〈i|Ĥ |f 〉|2ρ =

1
~
t2

t0
cos2(Ωτ +φ). (7.43)

Relate the different angles of the two problems, φscattering = φr −χ/2, and redefine time to
have units of inverse energy τ ′ = τ/~. T

7.5 Comparison

The resulting current for two comparable systems is presented in Figures 7.10 - 7.11.

The results look, if not identical, then at least qualitatively very similar. You may
note that the scattering calculation produces a current ten times larger than the rate
equation. This discrepancy could perhaps be removed if including the broadening of the
sharp resonance due to tunneling. But the conclusion is (unfortunately) that for such
simple systems “quantum” pumping cannot be distinguished from “classical” pumping.
More elaborate systems where quantum interferences plays a role, could however be a
promising candidate for finding a distinction between the two.
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Figure 7.10: Current calculated from a rate
equation as a function of phase angle φ and
Fermi energy E. Note that the scale of ε
is unimportant, but here chosen to ease a
direct comparison with the scattering results.
The rates are given by ΓL = ΓR = 0.012t0/~,
and the driving frequency is ~Ω = 0.001t0.
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Figure 7.11: Current calculated from a naive
Floquet scattering method with ε = 0.005t0,
t = 0.01t0, and driving frequency ~Ω =
0.001t0.

7.6 Conclusions
In conclusion we have investigated pumping of a molecular pump model, and found that

coherent quantum pumping is nearly indistinguishable from classical pumping around a
resonance. For this purpose we have derived a simple, but effective Floquet scattering
approach describing harmonic time-dependent evolution of the electrode scattering states.

I would like to thank J. Thijssen of the TU Delft for our discussions about the theory
of molecular quantum pumps.





Resumé

Teoretiske undersøgelser ang̊aende enkelt-molekyler

Denne afhandling undersøger organiske molekyler med fokus p̊a anvendelse indenfor
molekylær elektronik. Et enkelt molekyle kan, hvis det lykkes at placere molekylet mellem
to mikroskopiske elektroder, indg̊a som en del af et elektronisk kredsløb og i princippet
fungere som en lillebitte elektronisk komponent.

For at opn̊a en tilstrækkelig god beskrivelse af de elektroniske egenskaber for s̊a klejne
komponenter må man ty til kvantemekanikken. I denne afhandling undersøger vi plane
organiske molekyler, hvor elektronerne i det s̊akaldte π-system kan beskrives kvantemekanisk
med den kemiske Pariser-Parr-Pople (PPP) model. Der findes adskillige numeriske metoder
til udføre udregninger med denne PPP model, men stort set ingen analytiske tilgangsm̊ader.

Vi forsøger at udbedre denne rystende mangel p̊a fornuftige analytiske metoder, ved at
forsøge en akut genopliving af Paulings og Rumers valens-bindings-udregninger. Denne
ny-klassicistiske valens-bindings-teori giver mulighed for med en stærk reduktion i kom-
pleksitet, at udføre en kontrolleret tilnærmelse til den fulde PPP model. Tilnærmelse
kan i princippet udføres s̊a præcist at resultatet ikke kan skelnes fra udregninger udført
med eksakt diagonalisering. Vi viser ligeledes hvorledes ny-klassicistisk valens-bindings-
teori fungerer lige godt, uanset om man inkluderer elektron-elektron vekselvirkningen i
udregningerne eller undlader at medtage den.

I den efterfølgende del af afhandlingen vender vi os i stedet mod kvante-transport af
elektroner gennem molekylernes π-system. Helt specifikt undersøger vi hvordan elektronerne
kan kvante-interferere under deres vej igennem molekylet. Det viser sig at elektron-
transporten igennem molekylet kan inddeles i to kvante-interferens-klasser, og for neutrale,
alternante kulbrinter udleder vi en simpel regel til at forudsige transportens interferens-klasse.
Endvidere erfares det, at hvis der inkorporeres en elektro-statisk gate til at kontrollere
molekylets elektrostatiske energi, kan der findes adskillige interessant interferens-fænomener.

Molekylære kontakter med en spin-doublet grundtilstand kan ved meget lave temper-
aturer underg̊a en Kondo-overgang, hvor ledningselektronernes spin skærmer molekylets
spin i en effektiv mange-partikel singlet-tilstand. Vi viser at kvante-interferens kan overleve
denne Kondo-overgang og dermed blive voldsomt forstærket. Endvidere opdager vi, at det
er muligt at finde interferens i Kondo-overgangs-temperaturen. Denne effekt forudsætter
at spin-triplet tilstande i de nærliggende ladningstilstande kobler stærkt til spin-doublet
grundtilstanden. Denne analyse afslører ogs̊a muligheden for at spredningen af elektroner
fra en elektrode til den anden (gennem spin-doublet grundtilstanden) kan for̊arsage Kondo
effekt, hvilket ellers ikke er set indtil videre.

Til sidst beskæftiger vi os ogs̊a med pumpning af elektroner, hvor en vekselspænding
kan rotere et molekyle og dermed i princippet fungerer som en lille kvantemekanisk pumpe.
Hovedspørgsm̊alet er her, om en s̊adan pumpe opfører sig anderledes end en klassisk pumpe.
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For at undersøge den kvantemekaniske pumpning, udvikler vi en simpel ikke-vekselvirkende
metode, som vi kalder simpel Floquet-spredning, og den semi-klassiske pumpe undersøger
vi med en analytisk løsning af de tilhørende rate-ligninger.

Nyd det.



Appendix A

Inverting a Jacobi Matrix

A Jacobi matrix, is a symmetric tridiagonal matrix, of the form

T =


a0 b1 . . .
b1 a1 b2

b2 a2 b3
b3

...
. . .


(A.1)

We will only be interested in a single matrix element of the inverse (T −1)11. For simplicity
we will define a sequence of submatrices of T, such that

Ti =


ai bi+1 . . .
bi+1 ai+1 bi+2

bi+2 ai+2 bi+3
bi+3

...
. . .


(A.2)

If T is invertible the inverse is given by it’s adjugate matrix. In the case of the 11 component,
the exact formula is,

(T −1)11 =
1

det(T0)
detT1 (A.3)

Now, using Laplace’s equation for the matrix determinant, it is straightforward to show
that

detAi = ai detAi+1 − b2
i+1 detAi+2 (A.4)

Hence we can produce a recursive calculation

det(Ai)
det(Ai−1)

=
1

ai−1 − b2
i

det(Ai+1)
det(Ai )

(A.5)

Which conclusively shows that

(T −1)11 =
1

a0 −
b2

1

a1 −
b2

2

a2 − · · ·

(A.6)
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Appendix B

Numerical Representation of Valence Bond States

In order to construct a full basis set one forms Rumer diagrams, where lattice sites are
positioned in a circle and only states with non-crossing valence bonds are included.8,90,105

Similarly, the basis can be built up as the full Krylov subspace basis for a chain of the
same size, if starting from a Kekulé state.

The crucial part of the calculation is to choose an effective representation of the valence
bond basis. The state can be represented as an integer array, where the entries label the
state of each site. Hence entry i must refer to whether the site i is occupied by a spinon,
holon, doublon or connected to another site by a valence bond.

Working in base N we use the following table for determining the value entry i.

number meaning

0i holon
1i spinon (↓)
2i spinon (↑)
3i doublon

0j singlet (0) paired to site j
1j triplet (1) paired to site j
2j triplet (2) paired to site j
3j triplet (3) paired to site j

As an example of this ordering consider the valence bond state

|ψ〉 = ĉ†2↑(ĉ
†
6↑ĉ
†
6↓)χ̂

0†
13χ̂

1†
45|vac〉. (B.1)

In base 6 the corresponding numerical representation reads,

|ψ〉 = (03,22,01,15,14,36)6. (B.2)

The states are usually stored in different number basis which renders the naked states
unreadable. Consider, e.g., the above state in base 10, where |ψ〉 = (3,14,1,11,10,21)10.

You may note that this representation is a little redundant when representing valence
bonds. According to the first entry (03) site 1 is connected to site 3 with a singlet valence
bond, but the same information is contained in the third entry (01).

Alternatively the valence bond states could be written as a list of pairs of site indices
(i, j). Such a representation has the disadvantage that the same state have multiple
representations depending on the ordering of the pairs. Applying an operator to a state can
easily change the pair ordering, which means that all states must be reordered before they
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can be compared to the basis states. Hence the added redundancy of our basis naming
scheme means that each state now has a single unique representation, and we do not have
to worry about reordering anything.

Another approach orders the sites in a circle and labels the sites according to whether
it is a spinon, a holon, a doublon, valence bond paired to the right or valence bond paired
to the left. This is a very effective model for the spin-singlet subspace, because this basis
automatically incorporates the Rumer basis.105

Calculating overlaps and elements of the Hamiltonian is a direct implementation of our
convenient pictionary of section 3.5 and the calculation of overlaps in section 3.6.1.



Appendix C

Examples of Kondo Effect in Transport Through
Molecules

 −100

−10−1

−10−2

10−2

10−1

 100

 

 

JLR JLL JRR

−3 −2 −1 0 1 2 3

100

 

 

Fk F*

−3 −2 −1 0 1 2 3

0.2

0.4

0.6

0.8

 

 

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6

 [eV]  [eV]

 [eV]

N=3

Figure C.1: Asymmetrical triple-dot with µ1 = −µ3 = 2 eV. The asymmetry induces a finite
overlap (Feynman-Dyson orbital) between the charge state ground states at the center
orbital. This belongs clearly to the singlet-singlet class with AFM Kondo near the Coulomb
diamond edges.
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Figure C.2: Calicene. The 6-electron charge state have a triplet ground state, which
forces all exchange couplings negative in the left part of the diamond. Interestingly the
negative couplings does not lead to a ferromagnetic Kondo effect, as can be seen from
the dimensionless Kondo scaling parameter Tk < 1. This is consistent with the scaling
equations, and shows that it is not in general true, that negative exchange couplings are
not always sufficient in order to create anti-ferromagnetic Kondo effect.



Appendix D

Floquet Scattering Theory for Extended Struc-
tures

This is a direct extension of the naive Floquet theory to the investigation of branched
structures. Here we describe how to extend the naive Floquet method to both branched
structures and structures with dead ends (leafs).

D.1 Branched structures

If the system branches out into a more complex structure with some sites having three or
more connected sites, we must refine our transfer matrix approach, In taking the system of

1 2 3 

4a 5a

4b 5b 

6 7 8 

Figure D.1: Example branched system

Figure D.1 as a branched system example, then |3〉 couples to both |4a〉 and |4b〉. In that
case Schrödinger’s equation (7.7)

ωµψ
µ
3 =

∑
ν

(
−tν3,4aψ

µ+ν
4a − t

ν
3,4bψ

µ+ν
4b − t

ν
3,2ψ

µ+ν
2 + εν3ψ

µ+ν
3

)
(D.1)

Which can be rewritten on transfer matrix form,

t3,4aψ4a + t3,4bψ4b = −t3,2ψ2 + (ε3 −ω†I)ψ3(
t3,4a t3,4b 0

0 0 1

)
ψ4a
ψ4b
ψ3

 =
(
ε3 −ω†I −t3,2

1 0

)(
ψ3
ψ2

)
. (D.2)

Simply applying equation (7.15) gives us that
t4a,5a 0 0 0

0 1 0 0
0 0 t4b,5b 0
0 0 0 1



ψ5a
ψ4a
ψ5b
ψ4b

 =


ε4a −ω†I 0 −t4a,3

1 0 0
0 ε4b −ω†I −t4b,3
0 1 0



ψ4a
ψ4b
ψ3

 (D.3)
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Very similarly one may show that
t5a,6 0 0
t5b,6 0 0

0 1 0
0 0 1



ψ6
ψ5a
ψ5b

 =


ε5a −ω†I −t5a,4a 0 0

0 0 ε5b −ω†I −t5b,4b
1 0 0 0
0 0 1 0



ψ5a
ψ4a
ψ5b
ψ4b

 (D.4)

And to tie it all back together, we have the equation(
t6,7 0
0 1

)(
ψ7
ψ6

)
=

(
ε6 −ω†I −t6,5a −t6,5b

1 0 0

)
ψ6
ψ5a
ψ5b

 . (D.5)

Hence we can now connect
〈
3|ψ

〉
to

〈
6|ψ

〉
by multiplying transfer matrices. In the branched

part of the system we can propagate the wavefunction on each branch independently, like
t4a,5a 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1



ψa+1
ψa
ψb
ψb−1

 =


εa −ω†I −ta,a−1 0 0

1 0 0 0
0 0 1 0
0 0 0 1



ψa
ψa−1
ψb
ψb−1

 . (D.6)

D.2 Tree structures

Similarly we can build a structure with dead ends (or leafs if you prefer). In taking the

1 2 3 

4 

5 6 

Figure D.2: Example tree system

system of Figure D.2 as a leaf system example, then |4〉 is only coupled to |3〉. In that case
Schrödinger’s equation (7.7),

ωµψ
µ
3 =

∑
ν

(
−tν3,4aψ

µ+ν
4a − t

ν
3,4bψ

µ+ν
4b − t

ν
3,2ψ

µ+ν
2 + εν3ψ

µ+ν
3

)
. (D.7)

This can be rewritten on transfer matrix form,

t3,4aψ4a + t3,4bψ4b = −t3,2ψ2 + (ε3 −ω†I)ψ3(
t3,4a t3,4b 0

0 0 1

)
ψ4a
ψ4b
ψ3

 =
(
ε3 −ω†I −t3,2

1 0

)(
ψ3
ψ2

)
. (D.8)

Simply applying equation (7.15) gives us that
t4a,5a 0 0 0

0 1 0 0
0 0 t4b,5b 0
0 0 0 1



ψ5a
ψ4a
ψ5b
ψ4b

 =


ε4a −ω†I 0 −t4a,3

1 0 0
0 ε4b −ω†I −t4b,3
0 1 0



ψ4a
ψ4b
ψ3

 . (D.9)
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Very similarly one may show that
t5a,6 0 0
t5b,6 0 0

0 1 0
0 0 1



ψ6
ψ5a
ψ5b

 =


ε5a −ω†I −t5a,4a 0 0

0 0 ε5b −ω†I −t5b,4b
1 0 0 0
0 0 1 0



ψ5a
ψ4a
ψ5b
ψ4b

 . (D.10)

And to tie it all back together we have the equation

(
t6,7 0
0 1

)(
ψ7
ψ6

)
=

(
ε6 −ω†I −t6,5a −t6,5b

1 0 0

)
ψ6
ψ5a
ψ5b

 (D.11)

Hence we can now connect
〈
3|ψ

〉
to

〈
6|ψ

〉
by multiplying transfer matrices. In the branched

part of the system we can propagate the wavefunction on each branch independently, like
t4a,5a 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1



ψa+1
ψa
ψb
ψb−1

 =


εa −ω†I −ta,a−1 0 0

1 0 0 0
0 0 1 0
0 0 0 1



ψa
ψa−1
ψb
ψb−1

 . (D.12)
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