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Abstract

The Greenland ice sheet is an important element of the Earth’s cli-
mate system and is a central climate component for studying the phe-
nomenon of abrupt changes in its overall state due to small changes in
external forcing, commonly known as tipping. The focus on ice sheets is
partly because of evidence of abrupt changes in the paleoclimate record
of Greenland, and partly because the global consequences of tipping the
ice sheet being easily understood. However, due to the vast complexity
of the climate the conceptual understanding of tipping in simple low-
dimensional systems requires some translation to be be applicable to any
real-world system. This thesis analyzes three models along a hierarchy
of dimension and number of processes to bridge that gap.

Firstly, the abrupt changes of the last glacial maximum, the
Dansgaard-Oeschger events, are represented as noise-induced tipping in a
one-dimensional conceptual model with multiplicative noise. This study
discusses the different attributions to the deterministic and stochastic
components in the Itô and Stratonovich interpretations of the stochas-
tic integral. The discrepancy results in considerations with regards to
the physical interpretation of the model, as well as the paradigms of
bistability and monostability of the stadial and interstadial states.

Secondly, the contemporary Greenland ice sheet in a state-of-the-art
model is demonstrated to exhibit a novel mode of variability, namely
that of oscillating ice streams, under mild external atmospheric forcing.
The result of increasing this external forcing at different rates is that
the time before tipping occurs can vary by tens to hundreds of millen-
nia. Using concepts from dynamical systems theory, specifically that of
chaotic transients, it is determined that these long and seemingly random
tipping times are due to crossing a bifurcation point rather than experi-
encing a non-monotonic rate-induced tipping. Furthermore, the delay of
the tipping depends sensitively on the initial condition and the rate of
forcing, implying chaotic variability.

Thirdly, a conceptual model of coupled oscillating ice streams is con-
structed and analyzed to validate the chaotic nature of the variability
seen in the comprehensive model. This model displays various transi-
tions to chaos, including period doubling, intermittency, and attractor
crises, as well as chaotic transients similar to those that are proposed to
delay the tipping in the comprehensive model.
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Resumé

Indlandsisen på Grønland udgør en væsentlig komponent i Jordens
klimasystem og er central for studiet af pludselige ændringer i dens sam-
lede tilstand, ofte betegnet som tipping. Forskningens fokus på iskap-
per skyldes dels de observerede tegn på hurtige ændringer i Grønlands
palæoklima, dels de globale konsekvenser af en tipping af indlandsisen,
som er relativt let at forstå. Imidlertid kræver den komplekse natur
af klimaet, at den konceptuelle forståelse af tipping i simple lavdimen-
sionelle systemer oversættes for at kunne anvendes på virkelige systemer.
Denne afhandling analyserer tre modeller langs et hierarki af dimensioner
og processer for at udfylde dette videnshul.

For det første repræsenteres de bratte ændringer fra det sidste
glaciale maksimum, kendt som Dansgaard-Oeschger-begivenhederne,
som støjinduceret tipping i en endimensionel konceptuel model med mul-
tiplikativ støj. Undersøgelsen diskuterer de forskellige tilskrivninger til
de deterministiske og stokastiske komponenter i Itô- og Stratonovich-
fortolkningerne af det stokastiske integral. Uoverensstemmelserne rejser
spørgsmål om den fysiske fortolkning af modellen samt paradigmerne for
bistabilitet og monostabilitet af de stadiale og interstadiale tilstande.

For det andet demonstrerer en kompleks model af Grønlands indland-
sis oscillerende isstrømme, under milde ydre atmosfæriske påvirkninger.
Resultaterne viser, at tiden før en tipping kan variere fra ti til hundreder
af årtusinder, afhængigt af hastigheden hvormed den ydre forcering æn-
dres. Ved at anvende begreber fra dynamisk systemteori, specifikt kao-
tiske transienter, fastslås det, at disse lange og tilsyneladende tilfældige
tipping-tider skyldes krydsning af et bifurkationspunkt snarere end en
ikke-monotonisk hastighedsinduceret tipping. Desuden viser forsinkelsen
af tipping en følsom afhængighed af starttilstanden og forceringshastighe-
den, hvilket indikerer kaotisk variation.

For det tredje er der konstrueret og analyseret en konceptuel model
af koblede oscillerende isstrømme for at validere den kaotiske karakter
af variabiliteten observeret i den komplekse model. Denne model viser
forskellige overgange til kaos, herunder periode-dobling, intermittens og
attractor-kriser samt kaotiske transienter, der svarer til dem, der forår-
sager forsinket tipping i den komplekse model.
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Zusammenfassung

Der grönländische Eisschild ist ein wichtiger Bestandteil des
Erd-Klimasystems, und ein zentraler Untersuchungsgegenstand des
Phänomens von sogenannten Kipppunkten, das heißt abrupten Verän-
derungen des Gesamtzustandes eines Systems aufgrund kleiner Verän-
derungen externer Einflüsse. Der Schwerpunkt dieser Arbeit liegt auf
Eisdecken, zum Einen weil es Hinweise auf abrupte Veränderungen in
den Paläoklimaaufzeichnungen Grönlands gibt, und zum Anderen, weil
die globalen Folgen des Überschreiten eines Kipppunktes der Eisschilde
besonders klar sind. Allerdings erfordert unser konzeptionelles Verständ-
nis von Kipppunkten, basierend auf niedrigdimensionalen dynamischen
Systemen, eine gewisse Erweiterung um auf Systeme in der wirklichen
Welt, wie zum Beispiel das enorm komplexe Klimasystem, anwendbar zu
sein. Um diese Lücke zu schliessen, werden in dieser Arbeit drei Modelle
analysiert, welche anhand ihrer Dimension und Anzahl von Prozessen
eine Art Hierarchie bilden.

Zuerst werden abrupte Klimaveränderungen während letzten
Glazials, die Dansgaard-Oeschger-Ereignisse, anhang eines eindimen-
sionalen konzeptionellen Systems modelliert, welches als entscheiden-
den Mechanismus durch multiplikatives Rauschen induzierte Kipppunkte
beinhaltet. Hier werden die verschiedenartigen Beiträge der determinis-
tischen und stochastischen Komponenten in den Itô- und Stratonovich-
Interpretationen des stochastischen Integrals diskutiert. Aus dieser
Diskrepanz lassen sich Schlussfolgerungen zur physikalischen Interpre-
tation des Modells, sowie der Paradigmen von Bi- und Monostabilität
des stadialen und interstadialen Klimas, ableiten.

Zweitens wird in einem modernen und komplexen Gletschmodells
eine neuartige Variabilität des grönlandischen Eisschilds in Form von
oszillierenden Eisströmen festgestellt, welche bei einer mittleren Stärke
der atmosphärischen Randbedingungen auftritt. Wird die Stärke der
Randbedingung in unterschiedlichen Raten weiter erhöht, so kann der
Zeitpunkt an dem der Kipppunkt de facto beobachtet wird um Hun-
derte von Jahrtausenden variieren. Unter Verwendung von Konzepten
aus der Theorie der dynamischen Systeme, insbesondere der chaotischen
Transienten, wird festgestellt, dass diese langen und scheinbar zufälligen
Zeitpunkte des Eisschild-Kollapses nach dem Überqueren eines Bifurka-
tionspunkts eintreten, und nicht etwa auf ein nicht-monotones, ratenbe-
dingtes Kippen zurückzuführen sind. Darüber hinaus hängt der Zeit-
punkt des Kollapses stark von den Anfangsbedingungen sowie der Än-
derungsrate der Anfangsbedingungen ab, was eine chaotische Variabilität
des Eisschilds impliziert.

Zuletzt wird ein neues konzeptionelles Modell oszillierender, gekop-
pelter Eisströme vorgeschlagen und analysiert, um die chaotische Natur
der im komplexen Gletschermodell beobachteten Variabilität zu bestäti-
gen. Dieses Modell zeigt verschiedene Übergänge zum Chaos, darunter
Periodenverdopplung, Intermittenz und Attraktorkrisen. Desweiteren
beinhaltet es chaotische Transienten welche denen ähneln, die im kom-
plexen Modell als Mechanismus des verzögerten Eisschild-Kollapses
vorgeschlagen wurden.
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Chapter 1

Introduction

1.1 Tipping in the climate system
The study of the climate in recent decades has a particular focus on the con-
sequences of anthropogenic forcing of the climate system. With the increasing
magnitude and rate of warming experienced by the global climate, special in-
terest is being paid to researching how it has reacted or may yet react to such
forcing. A primary concept in this field of research is that of tipping events
and their associated thresholds, known as tipping points, in the climate [3].
Tipping events and their associated tipping points are a loosely defined phe-
nomenon, indicating an abrupt change in the state of system. This can mean
changes in the state occur very quickly relative to its intrinsic timescale, or
that the state can change by a large amount when a relatively small change
in external forcing is applied to it. In the climate context, tipping phenomena
can be global [105], but more focus is put on tipping elements which generally
refers to subsystems or a combination of coupled subsystems of the climate
that may experience a tipping event with drastic consequences. For example,
the loss of a large percentage of the West Antarctic ice sheet [28] or the Green-
land ice sheet [10], the weakening of the northward ocean circulation in the
Atlantic [7, 23], or the dieback of the Amazon rain forest [11] are all commonly
studied tipping elements. Tipping points are a result of very strong nonlin-
ear interactions between components of the climate system, meaning studying
them is similarly complex. In an ever-changing climate, understanding tipping
points is vital to be able to establish safe operating space of anthropogenic
climate forcing from which tipping events can be avoided.

1.2 Mathematical framework of tipping
As mathematics is the primary tool used to study physical systems, it is useful
to be able to describe these tipping points mathematically as well. There is
a rich history in the literature of mathematical tools and frameworks that

1
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are able to describe, both qualitatively and quantitatively, the mechanism by
which abrupt changes in systems can occur. Coarsely, tipping is investigated as
being one of three types: bifurcation-induced, noise-induced, and rate-induced
[4].

Bifurcation-induced tipping
Bifurcation-induced tipping (b-tipping) is an application of the bifurcations
studied in dynamical systems theory to a system that experiences a tipping
event. These describe the qualitative change in the topological nature of a
system under continuous parameter variations [55]. The simplest examples are
that of the codimension one (meaning only one parameter is varied) saddle-
node or fold and Hopf bifurcations. An example of the saddle-node bifurcation
in one dimension, where a stable fixed point and an unstable fixed point (which
is generally a saddle in dimensions larger than one, hence the name) collide and
annihilate each other, is given in Fig. 1.1. In a system that is initially bistable,
a continuous parameter variation brings the left stable and middle unstable
fixed points closer together, until they meet in a saddle-node bifurcation and
cease to exist, causing the system to jump to the only remaining fixed point
on the right.

Figure 1.1: B-tipping in a 1D system. Under continuous parameter variation,
the bistable potential becomes monostable (a bifurcation) and the system
jumps to a new state.

There are many different types of bifurcations, becoming more complicated
as the codimension increases. A bifurcation need not necessarily equate to a
tipping point – the qualitative change of a system does not always mean a given
equilibrium state changes by a significant amount. For example, stable node
transforming into a small limit cycle after undergoing a supercritical Hopf
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bifurcation results a topologically different phase space, but a solution will
occupy the same region of phase space. Often appended to the description of
a tipping point is some notion of irreversibility of the tipping: once a parameter
variation causes a tipping event, reversing this change in parameter does not
return you to the state before the tipping. A particularly relevant bifurcation
that supplies this is the double-fold bifurcation structure shown in Fig. 1.2
that exhibits bistability and is ubiquitous to the study of b-tipping in the
climate science.

Figure 1.2: Left: Bifurcation diagram of the double-fold bifurcation. Right:
Hysteresis (red curve) of the double-fold bifurcation.

This bistability also results in the phenomenon of hysteresis, which is the
dependence of the state of a system on its history. Navigating the double fold
via continuous parameter variation, a distinct hysteresis loop is created: for
a system on the lower branch to reach the upper branch, it must first cross
the return fold bifurcation. This lends an irreversibility to the tipping: after
a system tips, returning the parameter to its value fore the tipping point will
not return the system to where it was, as it is now stuck on the lower branch.
This irreversibility is particularly relevant to studies of the climate system in
terms of motivating parameter ranges from which tipping can be avoided, as
the tipping cannot be trivially undone.

The weakness of bifurcation theory is that it deals, at least in the classi-
cal theorem, with asymptotic states of autonomous systems. Some obvious
issues arise: although centre manifold theorems exist to be able to reduce the
dimensionality of a system to one low codimension bifurcations can be in-
vestigated, the climate and its subsystems are neither in an asymptotic state
nor autonomous. Such methods are better suited to conceptual models of the
climate, whereby many assumptions are made to simplify the dynamics and
represent the most significant interactions in low dimensional systems, prefer-
ably using systems of ordinary differential equations. Such conceptual models
are safest when describing processes that vary over very long time scale, which
allows some notion of a quasi-steady state being achieved and asymptotic dy-
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namics being valid. Additionally, processes that occur over very long time
scales typically act on very large spatial scales [117] and thus b-tipping can
be seen in models of systems on the global scale [15, 104].

Noise-induced tipping

Noise-induced tipping (n-tipping) might occur in cases where very fast pro-
cesses on a much smaller spatial scale than the dynamics of interest do indeed
have a significant effect on the overall variability and cannot be averaged out.
By representing the fast (and often chaotic) dynamics as a sequence of ran-
dom impulses on the evolution in the slow dynamics, the tools of stochastic
differential equations can be used. The prototypical example of n-tipping is
that of a bistable potential in one dimension, with stochastic perturbation of
a trajectory allowing it to overcome the potential barrier caused by the un-
stable fixed point, which is shown in Fig. 1.3. In this simple example using
the same bistable potential as in the b-tipping example without any param-
eter variation, random perturbations of small magnitude on the system have
a probabilistic chance of being successively in the same direction, allowing
the system to overcome the strongly stabilizing gradient and crossing over the
unstable fixed point. Over time, these perturbations might cause the system
to tip back to the left fixed point, then back to the right and so on. That
means that neither fixed point is asymptotically stable but rather metastable.
As no parameters are being varied, irreversibility in the sense mentioned pre-
viously is not a consideration, and indeed the system may find itself in its
original state, albeit at an indeterminate time due to the probabilistic nature
of stochastic dynamics.

Figure 1.3: N-tipping in a 1D system. Under continuous stochastic perturba-
tion (noise), a system may overcome a potential barrier and jump to a new
start.
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Rate-induced tipping

Rate-induced tipping may occur in scenarios where the forcing parameter
varies in time. Since the problem is now inherently non-autonomous, the
tools of bifurcation theory are not entirely applicable. While it is meaningful
to still consider the frozen system for a fixed (in time) parameter value to
determine asymptotic equilibrium states and even bifurcations of these, the
basins of attraction can be impacted in the non-autonomous scenario. A
schematic example is shown in Fig. 1.4. A bistable potential experiences a
continuous parameter shift that changes the location of the potential, but not
its stability landscape. If the shift occurs slowly such that the system can
continually equilibrate towards the fixed point (known as tracking the fixed
point), tipping will not occur. For a rapid enough shift where the system
cannot track the fixed point, it will tip to the other stable state. Although a

Figure 1.4: R-tipping in a 1D system. Under non-autonomous parameter
variations that change the location of the potential in phase space, the rate of
change might allow the system to track the change (left) or not, causing it to
tip to a different state (right).

cartoon, this example illustrates the concept of basin instability, a prerequisite
for r-tipping in low dimensions [94]. For this 1D system, the basin boundary
lies at the unstable fixed point between the two minima. Consider the infinite
rate, where the parameter shift occurs instantly. If the initial condition of
the system, in this case the left stable fixed point, is such that is is past the
basin boundary after the infinite-rate shift, then that (fixed point) is said to
be basin unstable and r-tipping is possible. More important however is the
critical rate, which is the slowest rate at which r-tipping happens. Of the three
types of tipping, r-tipping is perhaps the most important in regards to studies
of climate systems due to their non-autonomous nature. A large factor is that
simulations done with climate models are performed in a transient way, so
rate-induced effects should always be under consideration.
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1.3 Hierarchy of models

The tipping scenarios described above are quite simple to understand, es-
pecially in their one-dimensional, conceptual formulation. The issue is that
the climate and its subsystems are not even close to being simple or low-
dimensional. The question then is: how can these concepts of tipping be
understood in real systems? It is important to consider these along a ranking
of climate models. Climate models exist along a scale of dimensionality, as
well as quantity of processes that the model, and this organization is called
the hierarchy of models [22]. Low order models that include only a few inter-
actions between relatively little components of the climate system or one of its
subsets may be useful at replicating very clear tipping behaviour and allowing
one to identify exactly the tipping elements, but not so helpful when seeking
any sort of quantitative diagnosis of tipping probabilities that might be useful
for future predictions. On the other end are comprehensive models, which are
better suited for properly simulating the real climate system, but are compu-
tationally very expensive and struggle in making pellucid what components
of a system are most relevant to the tipping. Most importantly, physical and
experimental observations are required to be able to strengthen or falsify the
theories that the models are based on. The end goal is a synthesis, using
results from models higher on the hierarchy along with understanding from
models on the lower end, to arrive at a theory that properly represents the
observational data.

1.4 Chaos

Another important aspect of the climate system that is not always present in
low-order conceptual models is that of chaotic variability. Chaos will play a
primary role in chapter 3 and 4, warranting brief mention here. The defini-
tion of chaos used in this work is that of a deterministic system that displays
exponential divergence of nearby trajectories after a certain amount of time.
Chaos is ubiquitous when describing real-world climate systems - indeed, the
most famous example of a chaotic system is that of Lorenz [71], used to de-
scribe atmospheric convection. The impact of chaos on tipping is a degree
of non-monotonicity of the relationship between the varying parameters with
tipping and subsequently an uncertainty of parameter ranges from which tip-
ping may occur. Things that are taken for granted in these frameworks, such
that bifurcations occur past some critical point or that r-tipping occurs be-
yond some critical rate, no longer hold in cases where attractors are strange
and basin boundaries are fractal. This adds additional complication to the
low-order conceptualization of the complex systems.
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1.5 Objectives of this thesis
This thesis looks at models along a hierarchy: a purely conceptual model de-
rived from real data, a conceptual model derived from physical equations, and
a high-dimensional comprehensive model. All three deal in some way with
the Greenland ice sheet and its modes of variability, with the latter two being
explicitly related and distinct from the first. What is explored are the con-
cepts of the three types of tipping and how they may be represented along the
hierarchy. Chapter 2 deals with the manifestation of multiplicative noise and
its consequences on modelling abrupt changes captured in the paleoclimate
record of the Greenland ice sheet as n-tipping. It deals with how the high
level of abstraction of conceptual models can lead to issues when seeking to
use them to understand real-world processes underlying observational data.
Chapter 3 involves a comprehensive b- and r-tipping modelling study of the
Greenland ice sheet under future warming, where the loss of the ice sheet can
be delayed by up to hundreds of thousands of years due to regional internal
variability. In this case, the scale of the modelling is such that complete com-
prehension of the observed tipping behaviour is obscured, but a full inclusion
of all relevant physical processes allows for incredibly interesting phenomena.
Chapter 4 deals with a model that exhibits a much less drastic form of tip-
ping compared to the first two, investigating the change of the behaviour of a
system from periodic to chaotic. It is a companion to the study of chapter 3,
seeking to isolate the most relevant dynamics and explore how these behave
to strengthen the hypothesis made for the comprehensive model. Simultane-
ously, it demonstrates the rich behaviour exhibited by chaotic systems and
how it is possible to still comprehend them despite the apparent randomness.





Chapter 2

N-tipping in a conceptual
model derived from data

2.1 Introduction

The model study of this chapter, Kypke and Ditlevsen (2024) [60], hereafter
KD24, centres around the most direct evidence of abrupt changes in the pale-
oclimate: that of the ice-core record extracted from the Greenland ice sheet.
This project originated from the simple observation that the paleoclimate
record displays different amplitudes of fast variations depending on the mean
state [25]. Under the paradigm of a stochastic differential equations, this is
termed multiplicative noise as the stochastic term is in some way multiplied
with the state variable, in contrast to additive noise which has a constant am-
plitude and as such the noise is simply added to the deterministic part. The
inclusion of multiplicative noise when modelling this paleoclimate record is the
topic of KD24 and thus this chapter begins with an overview of the nuances of
the simple stochastic differential equations that are the mathematical frame-
work of this project. What follows is an overview of the paleoclimate record
that is the subject of this study, as well as a brief description of some studies
that follow a similar methodology to complement their mention in the article
KD24, which is presented in its entirety in the final section of this chapter.

2.2 Stochastic differential equations

It is desirable to consider some dynamical process that includes some amount
of randomness. In the context of a climate system, this randomness is due
to chaotic dynamics that resolve over a much shorter time scale than that of
the evolution of the mean climate state – this is the Hasselman paradigm [40]
Consider a one-dimensional differential equation for a process that has some

9
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CHAPTER 2. N-TIPPING IN A CONCEPTUAL MODEL DERIVED

FROM DATA

slow, deterministic dynamics and much faster stochastic dynamics,

dx

dt
= f(x) + g(x)ξt (2.1)

This equation is known as the Langevin equation [64]. The function f(x)
describes the slow dynamics, with g(x) representing the strength of the fast
dynamics ξt. This term ξt is denoted the noise term. A desired property for
the solution x of the system (2.1) is for the future evolution of the state to
depend only on the current state and the stationary probability density. This
is roughly speaking the Markov property, and a system endowed with this
is known as a Markov process [32]. In some respects, a Markov process is
stochastic analogue of differential equation for deterministic systems. For the
deterministic dynamics, the Markov property is satisfied if the initial value
x(0) and the time t is known. However, the stochastic dynamics represent the
combined effects of many shorter steps which are not directly resolvable.

For the solution x to be a Markov process, it is required for the noise to be
Gaussian and white [43]. The Gaussian statistics can be achieved by recog-
nizing that on the timescale of the deterministic dynamics, dt, the stochastic
process acts as a sequence of short, independent events such that the Central
Limit Theorem [32] may be applied. A white noise process is defined by its
first and second moment,

E(ξt) = 0

E(ξtξs) = δ(t− s).
(2.2)

The second condition supplies the most desired quality of a white noise pro-
cess, namely that it has a correlation time of zero. While no physical process
can have a zero correlation time, this assumption is made without too many
issues by considering the timescale separation inherent to the system at hand.
As the timescale of the slow dynamics dt is much larger than that of the fast
stochastic dynamics, the stochastic impulses measured at each t are effectively
independent from those measured at t + dt. This is the white noise approxi-
mation and allows the application of the results of stochastic dynamics.

An issue arises in that the white noise process as defined does not represent
a function in the ordinary sense. For instance, it does not take in some time
t and return a value of the function at that point. In this way it is similar to
the Dirac-delta function δ(t−s) which defines its correlation time. The Dirac-
delta is also not an ordinary function but rather a generalized function (also
called a distribution, but this verbiage is avoided so as to not cause confusion
with probability distribution) which takes as an input a test function rather
than a point. Using the Dirac-delta as an example, a generalized function can
be defined only by integration with some other function f(t),∫ ∞

−∞
f(t)δ(t− s)dt = f(s), (2.3)
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which gives the definition of the Dirac-delta function as a corresponding to a
generalized function ϕδ(φ) with the property

ϕδ(φ) = φ(s). (2.4)

This notion can be extended to the stochastic case, leading to generalized
stochastic processes (GSP) which are a class of generalized functions. Specif-
ically, a GSP ϕ(φ) takes in a function φ and assigns to it a random variable,
and has the condition of being linear and converging in probability distribu-
tion. GSP have the properties of being infinitely differentiable, with these
derivatives are also generalized functions, and

ϕ̇(φ) = −ϕ(φ̇). (2.5)

If a GSP is Gaussian, then it may be defined by the mean and covariance,

E(ϕ(φ)) = m(φ)

E([ϕ(φ)−m(φ)][ϕ(ψ)−m(ψ)] = C(φ,ψ)
(2.6)

where m(φ) is the mean function, and the Gaussian property survives the
derivation,

E(ϕ̇(φ)) = −m(φ̇)

E([ϕ̇(φ)−m(φ)][ϕ̇(ψ)−m(ψ)]) = C(φ̇, ψ̇).
(2.7)

As an example, the GSP associated with white noise has mean and covariance

E(ϕ(φ)) = 0

E(ϕ(φ)ϕ(ψ)) =
∫ ∞

0

∫ ∞

0
δ(t− s)φ(t)ψ(s)dtds.

(2.8)

As a GSP in this case is only useful when associated with a stochastic
process, we consider the GSP ϕW (φ) corresponding to the stochastic process
Wt, which has the properties

E(Wt) = 0

E(WtWs) = min(t, s).
(2.9)

Using the differentiation properties of the GSP, the mean and covariance of
the derivative of ϕW (φ) can be calculated,

E(ϕ̇W (φ)) = 0

E(ϕ̇W (φ)ϕ̇W (ψ)) =

∫ ∞

0

∫ ∞

0
δ(t− s)φ(t)ψ(s)dtds.

(2.10)

This is exactly equal to the mean and covariance of the white noise GSP, thus
giving the result that the white noise process is a GSP which is the derivative
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of a GSP corresponding to the stochastic process Wt. The process Wt is named
the Wiener process and has the properties

E(Wt) = 0

E(WtWs) = min(t, s).
(2.11)

The Wiener process has the property that its increments are independent -
the probability density of an increment in time, Wt −Ws, depends only on
t−s and not on previous values of Wt. This gives that the white noise process
can be thought of, in a sense, as the derivative of a stochastic process that has
stationary independent increments. Using this Wiener process, the Langevin
equation 2.1 is given in the form

dx = f(x)dt+ g(x)dWt (2.12)

which is termed a stochastic differential equation (SDE). This form is preferred
due to the irregularities of the white noise process ξt. Technically, this equation
is still incomplete due to the issues that arise when taking the integral of the
stochastic term, which is the focus of KD24.

Further than a Markov process, it is desired for the solution of an SDE
to have continuous sample paths so as to represent a continuous physical
system. In that case, the system is known as a Markov diffusion process.
Fundamentally, Markov diffusion processes, which are written as SDEs (2.12),
are general processes with stationary independent increments. They can be
derived as such: Locally in t, such that x is close to constant, f(x) = −a and
g(x) = b by linearization. Therefore, Markov diffusion processes are locally
an SDE of the form dx = −adt + bdWt. Since dWt is Gaussian the resulting
x is Gaussian and can be defined by the first two moments. These are termed
the drift and the diffusion and correspond to the functions f(x) and g2(x)
in equation (2.12). This is the reason why it is possible to define the system
by only two terms: Since the primary condition that a system is a Markov
diffusion process is tied to that which guarantees continuous sample paths,
it is the result that a continuous Markov process can be represented fully
by the drift and diffusion, which is linear in dWt. This linear dependence
on dWt is vital – if the process were any smoother, it would not retain the
Markov property. On the other hand, if the process were any more irregular
the property of continuous sample paths would be lost [43].

As a Markov diffusion process is defined by its first two moments, it has
associated with it a Fokker Planck equation (FPE) [31, 51, 87],

∂p(x, t)

∂t
= − ∂

∂x

[
f(x)p(x, t)

]
+

1

2

∂2

∂x2
[
g(x)2p(x, t)

]
, (2.13)

which describes the temporal evolution of the probability density of the process
and is the basis for the analysis carried out in KD24. To precisely summarize,
a stochastic process that is pathwise continuous and has the Markov property



2.2. STOCHASTIC DIFFERENTIAL EQUATIONS 13

is the solution x(t) of equation (2.12) furnished with a stochastic integral such
as that of Itô or Stratonovich.

It is possible to describe a stochastic process with nonwhite noise that
retains the Markov property. As mentioned previously, any noise representing
some physical process will have a nonzero correlation time and will thus not
be white. Additionally, the Wiener process has a variance that increases with
time, meaning it is not a stationary process. This is not an issue in the
stochastic modelling of the climate, as the negative feedback of the climate
drift guarantees the solutions do not increase without bound. However, if
noise is to represent some physical process in and of itself, it would be strange
for it have variance increasing with time. Hence, a good representation would
be a stochastic process which is both stationary and Gaussian. There is only
one such process, namely the Ornstein-Uhlenbeck (O-U) process,

dy = −γydt+ σdWt, (2.14)

which has the correlation function

⟨y(t)y(s)⟩ = σ2

2γ
exp[−γ|t− s|]. (2.15)

This gives a correlation time τcorr = γ−1 for the O-U process. This is also
commonly called a red or Brownian noise process.

Augmenting an SDE with a second equation 2.14 that describes the fast
fluctuations, as is done in equation (13) in KD24, results in a solution which
is still a Markov process. The reason this is not immediately applicable in
the scope of non-parametric modelling of D-O events, and in general why
both the white noise assumption and zero-inertia case is made, is that the
paleorecord consists of a time series of a single variable and thus the model
should be similarly one-dimensional. To properly model a red noise process
to retain the Markov property in this scheme requires a paleorecord on the
timescale of the fast dynamics. As the ice-core record is one of the highest
resolution paleoclimate proxies available, it would be difficult to imagine some
new marker that would represent the fast dynamics. It only appears in the ice
record as some noise on the mean climatic state, which can only be interpreted
in the Gaussian white noise sense. Thus the white noise approximation is not
only necessary from the mathematical analysis side, but also from the data
side.

The visualization of a low order SDE as a particle in a potential well is
useful because it gives an idea of what parts of the dynamics belong to the
deterministic (slow) drift, with the stochastic (fast) diffusion modulating the
behaviour within this potential. This analogy extends to the representation
of the climate system where the potential describes some underlying climate
dynamics and the noise is the effect of chaotic processes on much shorter
time scales, i.e. weather, as in the Hasselmann paradigm. For multiplicative
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noise the delineation between drift and diffusion, in this case climate and
weather, is not so clear. This is because for additive noise a single separation
of time scales is sufficient to make the approximation that weather acts as a
white noise process on the climate time scale. With inertial systems, a third
timescale is involved, which complicates the multiplicative noise case. Just as
any real-world stochastic process should be assumed to be the white noise limit
of a coloured noise process, so too should it be expected that a climate system
has some inertial effects on some timescale. As is described in the paper, the
relative size of this third timescale can have a profound effect on how the
stability of the climate system is understood. Physically, the intuition behind
the different Itô and Stratonovich interpretations depending on the relative
relaxation and noise correlation time scales is thus: In the view of the Itô
integral representing a more ‘discontinuous’ process (which it is natural to do
as a result of its non-anticipating nature) then the idea that the noise acts
on a faster time scale than the inertia means that the variable, imagined as
a particle in a potantial well, experiences a more ‘rough’ noise. In contrast,
if the Stratonovich integral is thought of to represent a limit of a continuous
process – which is how it was derived, and that it follows the regular chain rule
supports this – the fact that the noise acts slower than the inertial relaxation
means the variable has the noise somehow smoothed by the inertia.

2.3 Dansgaard-Oeschger events

During the last glacial period, paleoclimate proxies show clear abrupt tran-
sitions in the mean climate state [21]. Ice core records extracted from the
Greenland ice sheet display sudden jump in the ratio of two isotopes of oxy-
gen, 16O and 18O. The heavier isotope 18O is associated with precipitation at
lower temperatures [20], and thus the ratio of 18O to 16O, known as δ18O, is an
indicator of atmospheric temperature. Multiple ice core records from various
locations in Greenland all show these jumps in δ18O, signifying that it is not
some regional temperature variations but rather a climatic phenomenon on a
larger spatial scale. The ice core record displays two distinct states in the δ18O
time series. Lower values of δ18O correspond to the colder stadial climate in-
terspersed by the warmer interstadial climate with larger (less negative) δ18O
values. The magnitude of δ18O is such that the difference in temperature
between these states is 5 to 15 degrees Celsius [50, 120]. Most notable is the
timescale of the shift from the stadial to the interstadial, which occurs over
only decades. These changes from stadial to interstadial climate are known
as the Dansgaard-Oeschger (D-O) events, and are the premier example of
evidence for abrupt climate change.

The climate signal in Greenland in invariably linked to the north Atlantic
ocean. Since the precipitation that occurs over Greenland originates from
evaporation over the north Atlantic, the δ18O signal is linked to the tem-
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perature of the precipitation source as well. Additionally, temperatures of
Greenland are influenced by the nearby large heat reservoir that is the At-
lantic ocean. The north Atlantic is evidenced to show a strong meridional
(south to north) circulation pattern which brings warm, high salinity water
from the tropics to the higher latitudes, where it then sinks to become bottom
water and travels back to the tropics. This mode of circulation is known as
the Atlantic Meridional Overturning Circulation (AMOC) and is driven by
differences in temperature and salinity between the tropics and the mid- to
high-latitudes. This thermohaline circulation (THC) has been suggested to
display different states corresponding to different strengths of the circulation,
i.e different magnitudes of volume flux across latitude bands [107].

Furthermore, these different modes of circulation have been replicated in
ocean models [106]. The circulation can be vigorous, with a large pole-to-
equator salinity gradient that transports large amounts of heat from the equa-
tor northwards. Alternatively, the circulation can be weak or even stagnant
with reduced northward heat transport. In this way, the two states seen in the
ice core record might represent modes of circulation for the AMOC, namely
stagnant in the stadial and stronger in the interstadial. The circulation might
even travel in reverse in the glacial climate [12], corresponding to states of the
THC where temperature differences dominate the flow as opposed to salin-
ity differences. This is in contrast to the AMOC of the present day, which
is in a strong circulatory mode. The hypothesis that it might weaken due
to increased freshwater flux in the mid-to-high latitudes, correspondingly de-
creasing the salinity gradient and weakening the circulation, would result in
decreased heat transport to the north Atlantic. Still, the mechanism by which
these abrupt changes happen could be the same, encouraging continual study
of the D-O events.

Other physical processes may be involved the inception or progression of
D-O events. Sea ice, which would serve to insulate the ocean-atmosphere
boundary in the north Atlantic and thereby reduce the heat transfer, might
explain the asymmetry between the transition from the stadial to the inter-
stadial and vice versa [27, 86]. Atmospheric carbon dioxide levels have been
suggested to modulate the duration and frequency of the D-O events, ex-
plaining the longer interstadials earlier in the LGP compared to the shorter
ones that occurred more recently [116]. The D-O events themselves might be
triggered by large atmospheric forcing due to volcanic eruptions [70], which
clashes with the paradigm of bifurcation- or noise-induced tipping, where a
large shift in state is due to a small, non-abrupt change in forcing.

The changes in mean climate of the D-O events are also reflected in pale-
oclimate proxies in other parts of the world, implying the change in climate
state goes beyond Greenland or even the northern hemisphere. Most promi-
nent is the ice core record of Antarctica, which shows a more gradual shift in
temperature in the time periods corresponding to D-O events. This coupling
has been explained as a bi-polar see-saw between temperatures in the northern
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Atlantic and southern ocean [84, 106]. Since the northern Atlantic is connected
to the southern ocean which in turn influences the precipitation over and and
thus the ice-core record in Antarctica, there is an anti-phase relationship be-
tween warming in Greenland and warming in Antarctica. Moreover, due to
the much larger mass of the southern Atlantic compared to the northern At-
lantic, any changes are smoothed by the larger thermal inertia, explaining the
more gradual increase and decrease of δ18O in Antarctic ice cores. Other pa-
leoclimate proxies displaying signals related to D-O events are also mentioned
in KD24.

Modelling of D-O events
The literature is rife with attempts to replicate D-O events to explain their
cause and/or underlying mechanisms. This is done along the hierarchy of
models, meaning both low-order dynamical systems as well as large compre-
hensive models have been employed by different studies. The work done in
KD24 is of the former type, so specific attention is paid to models of this
class. While comprehensive models [66, 74, 101, 116] are much more represen-
tative of real-world processes, their major weakness in replicating D-O events
is that most are oscillatory in nature and not spontaneously occurring , as is
suggested by the data [26].

Two broad approaches to conceptual modelling of D-O events are seen
in the literature. Firstly are phenomenological models built from physical
principles which seek to replicate the behaviour of the D-O events without
mimicking them exactly. These may include a stochastic element whereby
the abrupt transitions are triggered randomly, or are purely deterministic
models which rely on an oscillatory mechanism to replicate the cycles. Sim-
ilar to the comprehensive models, non-stochastic low-order models rely on a
purely oscillatory mechanism to replicate the D-O cycles [90] and will not
be discussed. For stochastic models, in addition to the model of Vettoretti
et al. [116] mentioned previously, the model of Monahan, Timmermann and
Lohmann [76, 110] models the overturning circulation rather than the D-O
events themselves. This model explicitly includes multiplicative noise, but
as described in KD24 it is clear which stochastic interpretation is applicable.
The 2018 study of Boers et al. [9] and the 2023 study of Riechers et al. [91]
include a sea ice component along with a model of the ocean circulation, with
the latter also including non-Gaussian noise, namely an α-stable process that
describes sudden, large of sea ice removal events.

The other approach is that of the models derived directly from the data.
These studies all assume the same Langevin form of a slow deterministic drift,
the climate potential, plus a stochastic component representing fast processes
as seen in equation 2.1. These are again subdivided into two classes, namely
parametric models which assume the precise functional form of the poten-
tial and estimate the parameters of this function, and non-parametric models.
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Parametric models generally take the from of either a one-dimensional polyno-
mial bistable potential model or a two-dimensional relaxation-oscillator of the
form of a Van der Pol or FitzHugh model [30, 115]. Non-parametric models,
by construction, can only derive a model with dimension equal to the number
of observational time series included. For those studies that do use multiple
time series [8, 92], a gradient system is assumed.

Two-dimensional relaxation-oscillation models of D-O events arose primar-
ily to represent some other qualities of the signal beyond the abrupt changes,
specifically the asymmetry in the transitions. While the jump from stadial
to interstadial occurs very rapidly and in accordance with an abrupt transi-
tion due to noise-induced tipping, the transition from interstadial to stadial
is generally more gradual. A one-dimensional stochastic differential equation
with a bistable potential implies a time-reversal symmetry of the stochastic
process, which does not match the reality of the time series of the LGP. What
two-dimensional models offer is two different paths in phase space that can
represent the different state transitions. Since these two paths are implied
to be unidirectional, this creates some manner of periodic orbit and hence a
relaxation-oscillation.

Some models that exhibit relaxation-oscillations, such as the FitzHugh
model, also have parameter regimes that show excitability. An excitable sys-
tem is one with a single stable equilibrium, but the phase space is such that
any large enough perturbation from this equilibrium will embark on an ex-
cursion to a different part of phase space before returning to the equilibrium.
These systems are generally the result of some fast-slow dynamics where the
slow dynamics has a cubic structure typical of bistable systems [54, 119]. This
means in the fast dynamics, the solution will move to one of the two branches
of the cubic manifold, appearing as a bistable system. However, on the slow
manifold, the flow serves to push the solution towards the equilibrium. This
combinations means that a trajectory perturbed far enough from the equi-
librium will rapidly jump to the unstable branch of the cubic, where it will
then move along until it reaches a fold bifurcation, whereafter it will jump
the the stable branch and approach the equilibrium. This equilibrium would
represent the stadial in the case of the D-O events, while the unstable cubic
branch is the interstadial.

The 1999 study of Ditlevsen [24], the first to perform an inverse SDE
modelling of D-O events, considered the noise term to be a combination of
an α-stable process and a O-U red noise process with correlation time of less
than a year. While the Markov property can be supplied by the α-stable noise
and the red noise process considered as a separate equation, the system will
not have continuous sample paths. The recent study of Riechers et al. [92]
employs the Kramer-Moyal expansion of the master equation to derive the
first-order (drift) coefficients for an SDE of a system where the isotope and a
second Greenlandic paleoclimate record – that of atmospheric calcium dust –
are coupled.
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The studies described in the following paragraphs all derive stochastic
differential equations in some parametric way. The 2010 study of Livina et
al. [67] study assumes stationary of the stochastic process only in a sliding
window of time, allowing for the climate potential to to also vary in time.
The potential varies in polynomial order such that here are between one and
four stable states at a given time. The size of the sliding window also affects
the amount of stable states: since the noise is assumed additive, the number
of peaks in the probability density function determines the number of stable
states.

The 2009 study of Kwasniok and Lohmann [57] describes the use of non-
linear Kalman filtration techniques for estimating parameters of stochastic
models. This technique has the advantage of being able to estimate observa-
tional (i.e. non-dynamic) noise. In this case, it would be the noise that occurs
due to the deposition of the isotope and its vertical diffusion through the ice
sheet, along with noise introduced through the extracting of the ice core and
measuring the isotope signal. The 2012 study of Kwasniok and Lohmann[58]
describes a damped oscillator with additive stochastic forcing on both the
position and velocity. Using a Kalman filter to estimate the parameters of
the model, they find that the strong dissipation regime so that the relaxation
time of the inertia (γ−1 in KD24) is very small. This suggests that inertial
effects do not play a major role in the physical processes underlying the D-O
events. The 2013 study of Kwasniok [56] again uses a Kalman filter to esti-
mate the parameters of a bistable potential and a 2D relaxation-oscillating
FitzHugh-type model. It also studies a Gaussian mixture model, where the
process is assumed to be switching between multiple processes with Gaussian
probability densities. In this way, the stadial and interstadial are modelled as
different processes, with some transition probability between the two.

The 2015 study of Krumscheid et al. [53] introduces a framework to model
stochastic processes using maximum likelihood estimation of parameters for
a bistable potential. The 2016 study of Mitsui and Cruxifix [75] study also
describes two models, one being a bistable potential and the other of the re-
laxation oscillator. A nonlinear Kalman filter is utilized along with Bayesian
estimation. What sets this study apart is the inclusion of the variation of both
insolation and global ice volume, which acts a time-dependent eternal forcing.
The 2017 study of Boers et al. [8] study uses Bayesian inference to estimate
the parameters of generalized Langevin equation, which is a Langevin equa-
tion that describes a non-Markovian processes. The 2019 study of Lohmann
and Ditlevsen [68] investigates three paradigms of dynamical models used to
represent D-O events: the bistable potential and the FitzHugh and Van der
Pol oscillators. To do so, Bayesian statistics are employed to estimate the
parameters of the three types of models, to see which form best represents
D-O events. In this study, not just the stationary probability density of the
process is used to derive the model, but other statistical properties, such as
the distribution of the waiting times between subsequent D-O events as well
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as their duration, are considered.
The conceptual models described in the section above generally exhibit

either monostability or bistability in their deterministic dynamics. This is
an important distinction as well as a primary result of KD24, namely that
stochastic interpretation due to modelling assumptions can lead to the data
being interpreted in one way or the other. The primary difference is the return
from the stadial to the interstadial being path dependent, that is the physical
mechanism responsible for the transition from the stadial to the interstadial is
not the same as the other direction. Not only is this a reason for the asymme-
try of the transitions, but could also explain why the length of the interstadial
is related to the rate of temperature decrease therein [69]. Secondly, a change
in the amplitude of the stochastic forcing for a constant climate potential
would result in very different trajectories whether the system has a bistable
potential or a monostable one. In the case of bistability where both the stadial
as well as the interstadial are stable, any reduction in the stochastic forcing
will have the effect of decreasing the transition rate between the states. This
would increase the metastability, in terms of residence time, for both states.
On the other hand, in the monostable setting, a decrease in stochastic forcing
would serve to not only decrease the transition probability from the stadial to
the interstadial, but also increase the rate of the return to the stadial, since
the relative contribution deterministic dynamics to the flow is larger. The
residence time in the stadial would be greatly increased, and greatly reduced
for the interstadial.

2.4 The paper
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A B S T R A C T

The interpretation of multiplicative noise in a stochastic differential equation in the context of data-driven
inverse modeling is discussed. Application to the well-known paleoclimate phenomenon of Dansgaard–Oeschger
events leads to qualitatively different ‘climate potentials’ in the case of the Itô or the Stratonovich interpretation
of the stochastic integral. While a physical model is endowed with an interpretation from construction,
whether implicitly or explicitly, inverse models derived from data do not afford such a luxury. In this case, a
physical model must accompany the mathematical model equation in order to be able to choose a stochastic
interpretation. This case study illustrates the differences between the two representations of stochastic noise
and demonstrates the need for input from physical constraints when constructing conceptual stochastic models
of the observed climate records.

1. Introduction

One of the most famous examples of abrupt climate changes ob-
served in the paleoclimatic record are the Dansgaard–Oeschger (D–O)
events. The climate record of the Last Glacial Period (LGP), which
spanned approximately 120 to 11 kiloyears before year 2000 (kyr b2k),
is measured in the ice-cores of the Greenland ice sheet and marked by
distinct and abrupt transitions between colder stadial and warmer in-
terstadial periods [1]. These climatic changes are known as D–O events,
and occurred about 24 times in the LGP. The D–O events correspond to
approximately 10–15 Kelvin of warming in Greenland over the course
of a few decades, with subsequently incremental cooling to the fully
glacial conditions of the stadial [2]. While there is only direct evidence
of D–O events in the LGP because the ice-core record of Greenland
only extends to the end of the last interglacial period, they may not
be unique to this time period. Coupling with Antarctic ice-cores [3],
evidence in marine sediment cores [4] and speleothems [5] (see also
references therein) suggest they may have occurred in previous glacial
periods as well.

D–O events are interesting in the context of the present climate
primarily because of their temporal scale. They are an example that
the climate can change on time scales that could be of consequence in
the near future, namely of decades to centuries. They are additionally
intriguing because there is no universal agreement on their cause and
transition mechanism. The transitions between stadial and interstadial
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states themselves may be externally forced [6–11], stochastic [12–17]
or even both [18]. Possible important physical drivers for the transi-
tions include change in sea ice [19,20], atmospheric carbon dioxide
levels [21,22] or volcanic events [23]. Comprehensive models generally
exhibit D–O events as oscillations [24,25] and transitions are not
spontaneous. See also the review articles [26–28].

D–O events are difficult to simulate in complex models, thus a
full understanding of their causes is still lacking. For this reason it
is desirable to investigate them using low order dynamical systems
models where the dynamics are in full view. Without a full understand-
ing, a modeling strategy is to construct simplified models, optimizing
parameters to best fit to observational data. This is an inverse modeling
approach. Such conceptual models may be either data-derived [29–
31] or constructed from physical principles [32,33]. Generally the
data-derived inverse models of D–O events do not propose a physi-
cal mechanism whereas conceptual models developed from physical
principles tautologically do.

1.1. Stochastic differential equation models of D–O events

This study derives a conceptual model from the data in an inverse
modeling scheme. The model paradigm this study follows is to describe
the climate proxy as the variable 𝑥 of a stochastic differential equation
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(SDE):

𝑑𝑥 = 𝐹 (𝑥)𝑑𝑡 + 𝜎(𝑥)𝑑𝑊𝑡, (1)

where the Wiener process 𝑊𝑡 = ∫ 𝑡
0 𝜉𝑠𝑑𝑠 has the properties ⟨𝜉𝑡⟩ = 0,

⟨𝜉𝑡1𝜉𝑡2 ⟩ = 𝛿(𝑡1 − 𝑡2) and 𝜉𝑡 is Gaussian distributed, i.e. 𝜉𝑡 is a white noise
Gaussian process. The crux of this methodology is to model the climate
as being driven by some long timescale climate dynamics described
by a function 𝐹 (𝑥) along with a stochastic component that represents
processes that occur on much faster time scales.

Observing the record showing two distinct climate states, the stadial
and the interstadial (see Fig. 1), it is natural to consider the abrupt
changes as being a transition from one stable state to the other stable
state. The measured quantity in the ice core is 𝛿18O, a ratio of heavier
18O isotopes to lighter 16O, and is a proxy for local temperature.
Correlation of ocean sediment records with the ice-core record [34]
suggest that the Atlantic ocean is the source of the transitions. In
this sense, the paleoclimate temperature variations are themselves a
proxy of north Atlantic ocean circulation strength. A mechanism of
bistablity in the north Atlantic is that of the thermohaline circulation
with multiple modes of circulation [35]. Two regimes of flow, one
with strong equator-to-pole meridional overturning circulation and one
with weak circulation, correspond to warmer and colder Greenland
temperatures respectively.

This bistability is seen in both conceptual models [36,37] as well as
general circulation models [38], with more recent earth system models
being able to reproduce spontaneous ‘D–O-like’ events [39]. A proposed
mechanism for D–O events is such a bistable climate system, i.e. the
ocean circulation, with a stochastic term, i.e. freshwater fluxes from
atmospheric forcing via wind stress, surface heating, and precipitation,
that causes transitions between the two states. Examples of studies that
follow a similar framework involve methods such as models with non-
Gaussian noise [12], Kalman filters [29], Gaussian mixture models or
relaxation-oscillation models [15], Bayesian parameter inference [17,
30], and non-stationary potentials [16].

1.2. Additive noise

The majority of previous studies assume the intensity of the noise is
constant or additive [12,16,17,29]. The Fokker–Planck equation associ-
ated with the additive noise SDE

𝑑𝑥 = 𝐹 (𝑥)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (2)

is

𝜕𝑡𝑃 (𝑥, 𝑡) = −𝜕𝑥
[

𝐹 (𝑥)𝑃 (𝑥, 𝑡)
]

+ 𝜎2

2
𝜕2𝑥
[

𝑃 (𝑥, 𝑡)
]

. (3)

When the stationary probability distribution is obtained from the ob-
served time series record, the potential that drives the dynamics of the
additive noise SDE is obtained from the Fokker–Planck equation by
having 𝜕𝑡𝑃 = 0:

𝑈 (𝑥) = −𝜎2

2
log[𝑃 (𝑥)] (4)

where 𝜕𝑈
𝜕𝑥 = −𝐹 (𝑥). The potential can be uniquely determined from

the stationary probability density 𝑃 (𝑥) up to a constant factor of the
noise strength. Due to the monotonicity of the logarithm the maxima
of the probability density function 𝑃 (𝑥) coincide with the minima of the
potential 𝑈 (𝑥) and thus with the stable equilibria of the deterministic
dynamics. Therefore the number of equilibria will always be identical
to the number of maxima in probability density.

1.3. Multiplicative noise

From the paleoclimatic record it is observed that the intensity of the
fast fluctuations constituting the noise as indicated in Eq. (1) depends
on the climate state [40]. State dependent noise is termed multiplicative
noise. In this case deriving the resulting potential is not completely

straightforward. This is due to the fact that when integrating the noise
term by way of generalized functions, the resulting Riemann–Stieltjes
integral

∫

𝑏

𝑎
𝐺(𝑡)𝑑𝑊 (𝑡) = lim

𝑛→∞

𝑛
∑

𝑖=1
𝐺(𝜏𝑖)[𝑊 (𝑡𝑖) −𝑊 (𝑡𝑖−1)], (5)

where 𝜏𝑖 ∈ [𝑡𝑖−1, 𝑡𝑖], has a different expected value depending on where
in the interval 𝜏𝑖 is chosen. The two most common choices are the left
endpoint, named the Itô interpretation [41], and the midpoint, named
the Stratonovich interpretation [42]. Often the 𝛼-convention is used to
designate the different interpretations, where the value of 𝛼 in the
interval 𝜏𝑖 = (1 − 𝛼)𝑡𝑖−1 + 𝛼𝑡𝑖 is 0 for Itô and 1∕2 for Stratonovich.
In theory, any value of 𝛼 ∈ [0, 1] is a valid choice for the stochastic
integral, but these are by far the two most common. For a more general
function 𝐺

(

𝑥(𝑡)
)

, the definition of the integral is

∫

𝑏

𝑎
𝐺
(

𝑥(𝑡)
)

𝑑𝑊 (𝑡) = lim
𝑛→∞

𝑛
∑

𝑖=1
𝐺
(

𝑥∗(𝜏𝑖)
)

[𝑊 (𝑡𝑖) −𝑊 (𝑡𝑖−1)], (6)

and the 𝛼-convention is 𝑥∗(𝜏𝑖) = (1 − 𝛼)𝑥(𝑡𝑖−1) + 𝛼𝑥(𝑡𝑖).
Due to the difference of the stochastic integrals, Eq. (1) is incom-

plete and an interpretation of the noise term must be specified [43]. As
a consequence the same SDE can result in different stochastic processes
depending on whether the Itô or Stratonovich interpretation is applied.
A corollary is that two different SDEs, one interpreted as Itô and the
other as Stratonovich, can result in the same stochastic process. Thus
solving the inverse problem of deriving the SDE, and especially the
potential, from a stochastic realization requires a specification of the
noise. Here we perform the derivation of the SDE from the data for
both the Itô and Stratonovich integrals.

As SDEs they are distinguished by the notation 𝑑𝑥 = 𝐹𝐼 (𝑥)𝑑𝑡+𝜎(𝑥) ⋅
𝑑𝑊𝑡 for Itô and 𝑑𝑥 = 𝐹𝑆 (𝑥)𝑑𝑡 + 𝜎(𝑥)◦𝑑𝑊𝑡 for Stratonovich, where 𝐹𝐼
and 𝐹𝑆 are different potential functions. The associated Fokker–Planck
equation using the 𝛼 convention is

𝜕𝑡𝑃 (𝑥, 𝑡) = −𝜕𝑥

[

(

𝐹 (𝑥) + (1 − 𝛼)𝜎(𝑥)𝜎′(𝑥)
)

𝑃 (𝑥, 𝑡)
]

+ 1
2
𝜕2𝑥
[

𝜎(𝑥)2𝑃 (𝑥, 𝑡)
]

. (7)

As can be seen from this equation, a simple relation exists between the
drift terms of the two interpretations,

𝐹𝑆 (𝑥)𝑑𝑡 + 𝜎(𝑥)◦𝑑𝑊𝑡 =
[

𝐹𝐼 (𝑥) +
1
2
𝜎(𝑥)𝜎′(𝑥)

]

𝑑𝑡 + 𝜎(𝑥) ⋅ 𝑑𝑊𝑡, (8)

so any Stratonovich integral may be converted to an Itô integral and
vice versa. This relation is especially useful when numerically inte-
grating an SDE since the commonly used Euler–Maruyama method is
only applicable to Itô SDEs. A Stratonovich SDE can be converted to
one of the Itô type and integrated using the Euler–Maruyama method,
or alternatively integrated with a predictor–corrector scheme such
as a Heun method. Itô and Stratonovich integrals have some other
differences as well, the most notable being that differentiation under
the Itô interpretation requires the Itô lemma [41],

𝑓
(

𝑥(𝑡)
)

= 𝑓
(

𝑥(0)
)

+ ∫

𝑡

0
𝑓 ′(𝑥(𝑠)

)

𝑑𝑥(𝑠) + 1
2 ∫

𝑡

0
𝑓 ′′(𝑥(𝑠)

)

𝑑𝑠. (9)

On the other hand the Stratonovich interpretation uses the chain rule
of regular calculus.

One previous study includes state-dependent noise in the form of a
piecewise constant noise term, where the amplitude is a lower constant
value in the interstadials than in the stadials [44]. However their state
dependent noise function 𝜎(𝑥) still has a derivative that is zero except
for a single point, so there is no difference between the stochastic
interpretations.

2. Data

The paleoclimate data studied is a time series of the 𝛿18O in permille
as measured in the Greenlandic ice-core extracted as part of the North
GReenland Ice-core Project (NGRIP) [45]. The 20-year average values
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Fig. 1. Detrended 𝛿18O signal from NGRIP from years 20 to 85 kyr b2k (note that time runs from right to left).

on the GICC05modeltext time scale are used [46]. The time series is
also truncated at 85 kyr b2k as the resolution decreases further back in
time due to the thinning of layers of ice in the ice core. For a further
distinction of the two states, the data is detrended. Insolation trends
due to orbital variations are removed through subtracting a 25 kyr
running mean [17] and the resulting 𝛿18O anomaly is analyzed. This
25 kyr running mean corresponds to the highest frequency of orbital
variations, namely precession, which has a period of approximately
20 kyr. This method is effectively a rectangular kernel, which has the
important property of not filtering out impulses, i.e. the D–O events
themselves. Fig. 1 shows the time series that is the starting point of
this study.

3. Methods

3.1. Derivation of multiplicative noise 𝜎(𝑥)

A heuristic method is used to derive the multiplicative noise term
𝜎(𝑥) from the data. Since the fluctuations are larger in the stadials than
in the interstadials [40] we prescribe a linearly decreasing function of
𝜎(𝑥) with respect to the 𝛿18𝑂 anomaly. Physically, if the noise term is to
represent the influence of the atmosphere, an increase in Greenlandic
temperatures corresponds to a decrease in the meridional temperature
gradient which in turn decreases atmospheric forcing. Following the
definition of the stadial and interstadial periods [47], the data is
separated into the two states. The values of ⟨𝑥⟩ and 𝜎 in each of these
two states is derived, and the linear function is constructed from these
values. To measure 𝜎 it is assumed that the signal in either of the two
states follows an Ornstein–Uhlenbeck (O–U) process, following [40]

𝑑𝑥 = −𝜃𝑥 + 𝜎𝑑𝑊𝑡. (10)

For a stationary O–U process the variance is given by the fluctuation–
dissipation relation

Var(𝑥) = 𝜎2

2𝜃
, (11)

and the term 𝜃 may be recovered from the autocorrelation

⟨𝑥(𝑡)𝑥(𝑠)⟩ = Var(𝑥) exp[−𝜃|𝑡 − 𝑠|]. (12)

3.2. Derivation of the non-linear potentials F(x)

Once the function 𝜎(𝑥) is determined the multiplicative Fokker–
Planck Eq. (7) is solved for 𝐹 (𝑥) for the two stochastic calculi. Fig. 2
shows the two potentials 𝑈 (𝑥) = ∫ 𝐹 (𝑥)𝑑𝑥 in the Itô and Stratonovich
interpretations, along with the potential for the additive noise case (2).
When comparing the drift in the multiplicative noise cases to that of
the additive noise case, the stability of the interstadial is much reduced.
Further, for the Itô case, the interstadial has in fact lost stability such
that the resulting climate potential is mono stable.

Fig. 2. Derived potentials.

4. Discussion

Due to the qualitative difference of the potential obtained by the
two different stochastic interpretations, careful consideration is re-
quired when deriving physical properties of the system from observa-
tions. The question to be answered is whether the climate potential
that underlies the D–O events is monostable, as in the Itô calculus, or
bistable, as in the Stratonovich calculus. How is a choice of a stochastic
integral made? The data itself is agnostic to interpretation, and math-
ematically the problem is inconsequential: either interpretation works,
as long as they are applied consistently. The choice is ultimately a
modeling problem. In this case the SDE inversely modeled by the data
requires a conceptual physical model of the phenomenon by which
to interpret the results. Conventional understanding is that a physical
system is better suited to Stratonovich interpretation. The Wong–Zakai
theorem [48] gives that the limit of a sequence of stochastic pro-
cesses with finite autocorrelation that goes to zero is interpreted as
Stratonovich. In this sense it is derived from a continuous process.
For a fully discrete system, for example in financial analysis, the Itô
interpretation is more appropriate.

However, the one dimensional SDE is generally the result of simpli-
fication of dynamics that occur on multiple time scales. Through this
reduction, multiplicative noise of the Itô type can be seen in physical
systems as well. The most prominent example are inertial systems with
colored noise,

�̈� = −𝛾(𝑥)�̇� + 𝐹 (𝑥) + 𝜎(𝑥)𝜂

�̇� = − 𝑎
𝜏𝑛

𝜂 + 𝜆
𝜏𝑛

𝜉𝑡
(13)

where for convenience, we use the notation, �̇� ≡ 𝑑𝑥∕𝑑𝑡 and 𝑑𝑊𝑡 = 𝜉𝑡𝑑𝑡.
To reduce the complexity of Eq. (13), two limits are taken: one

is an adiabatic elimination of fast inertia (𝜏𝑟 = 𝛾(𝑥)−1 → 0) into the
overdamped regime (also known as the strong dissipation or Smolu-
chowski regime) and the second is the white-noise approximation of the
unresolved dynamics (𝜏𝑛 → 0). If the time scale of the inertial relaxation
is greater than that of the noise autocorrelation (𝜏𝑟 ≫ 𝜏𝑛), then the
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multiplicative noise is Itô in the limit as both go to zero. If the noise
autocorrelation in greater than the relaxation time scale of the inertia
(𝜏𝑟 ≪ 𝜏𝑛), the Stratonovich interpretation for the multiplicative noise is
used [49–54].

The system of Eq. (13) in the white noise limit is

�̈� = −𝛾(𝑥)�̇� + 𝐹 (𝑥) + 𝜎(𝑥)𝜉𝑡. (14)

For additive noise 𝜎(𝑥) = 𝜎, adiabatic elimination is equivalent to
setting the left hand side of Eq. (14) equal to zero [55,56]. This is
not the case for multiplicative noise, where the limits must be taken
carefully. Eq. (13) in the white noise and adiabatic limit is

�̇� =
𝐹 (𝑥)
𝛾(𝑥)

+ 1
2
𝜎(𝑥)2

𝛾(𝑥)
𝜕𝛾(𝑥)−1

𝜕𝑥
− 𝛼

2
𝜕𝜎(𝑥)2𝛾(𝑥)−2

𝜕𝑥
+

𝜎(𝑥∗)
𝛾(𝑥∗)

𝜉𝑡, (15)

where 𝑥∗ = 𝛼𝑥(𝑡 + 𝑑𝑡) + (1 − 𝛼)𝑥(𝑡) [56]. In the case where the
fluctuation–dissipation theorem applies,

𝜎(𝑥)2

2𝛾(𝑥)
= constant (16)

the system obtained by setting the left hand side of Eq. (13) to zero

�̇� =
𝐹 (𝑥)
𝛾(𝑥)

+
𝜎(𝑥∗)
𝛾(𝑥∗)

𝜉𝑡, (17)

is equivalent to the system interpreted in the anti-Itô (𝛼 = 1) sense. This
is the result of Volpe et al. [57] and Lançon et al. [58], see also [56,59].

Another example where we see Itô multiplicative noise is in an SDE
with noise feedback delay [60]. This is a circuit system which has
been designed to effectively act in an Itô manner by implementing an
explicit dependence of the multiplicative noise on the previous time
step through introducing a delay of the feedback of the state on the
noise term, i.e. the 𝑥 in the 𝜎(𝑥) term. One dimensional systems can also
be either Itô or Stratonovich in the case where multiple times scales are
involved [61,62].

Now understanding the situation, we return to the case of the
𝛿18O anomaly time series. To accompany the SDE derived directly
from the data, a conceptual physical model is required, which will
not only provide an idea of the underlying mechanisms but also pro-
vide a stochastic interpretation. The stochastic bistable Stommel-type
model [36] has been extended to include multiplicative noise by Tim-
mermann, Lohmann and Monahan [63,64]. Their multiplicative noise
term arises due to a stochastically parameterized eddy transport in
salinity and temperature. As in Cessi [36], the temperature relaxes
quickly to some mean value, and a white noise approximation may be
made. In this case the white-noise limit is taken via the Wong–Zakai
theorem, so that the resulting SDE uses Stratonovich calculus. Then the
thermohaline circulation remains bistable based on the model derived
from the data.

In another study, Kwasniok and Lohmann [65] fit the D–O event
time series data to a stochastic oscillator

�̈� = −𝛾�̇� + 𝐹 (𝑥) + 𝜎𝜉𝑡 (18)

which is Eq. (14) with constant damping and additive noise. The vari-
able 𝑥 represents a temperature proxy and its derivative is the change in
temperature, but otherwise the system is not physically defined. They
find it is in the strongly dissipative regime and can be reduced to a
first-order equation by adiabatic elimination of the second derivative.
By augmenting the system with multiplicative noise, a reduction to first
order would result in an SDE

𝑑𝑥 =
𝐹 (𝑥)
𝛾

𝑑𝑡 +
𝜎(𝑥)
𝛾

𝑑𝑊𝑡, (19)

with the Itô interpretation. However, this interpretation still relies on
the fact that the autocorrelation of the noise is assumed to be decaying
faster than the relaxation of the fast variable, i.e 𝜏𝑟 ≫ 𝜏𝑛. This could
be understood as a temporal scale of the thermal relaxation time of the
surface temperature of Greenland and the autocorrelation time of the
atmospheric variability. The stochastic interpretation is still a result of
modeling choices.

Various studies model the D–O events using a two-dimensional
model generally assume the form of a van der Pol or FitzHugh–Nagumo
type model [15,17,22]. These have a form similar to Eq. (14), but the
variable of interest is on the fast timescale. This means the system is
in the underdamped regime and cannot be adiabatically reduced to
one dimension. While the models in these studies include only additive
noise, we again consider their stochastic interpretation in the possible
case of multiplicative noise. In the underdamped regime of Eq. (14) the
difference between the Itô and Stratonovich integrals is smaller than 𝑑𝑡,
so they are equivalent. First, the second order SDE is split into a system
of first-order equations

𝑑𝑥 = 𝑣𝑑𝑡

𝑑𝑣 =
(

−𝛾𝑣 + 𝐹 (𝑥)
)

𝑑𝑡 + 𝜎(𝑥)𝑑𝑊𝑡.
(20)

Using the 𝛼-convention, 𝑥∗ = (1−𝛼)𝑥(𝑡)+𝛼𝑥(𝑡+𝑑𝑡). Expanding the term
𝜎(𝑥∗)𝑑𝑊𝑡,

𝜎(𝑥∗)𝑑𝑊𝑡 ≈ 𝜎(𝑥(𝑡))𝑑𝑊𝑡 + 𝜎′(𝑥(𝑡))
(

𝛼𝑥(𝑡 + 𝑑𝑡) + (1 − 𝛼)𝑥(𝑡) − 𝑥(𝑡)
)

× 𝑑𝑊𝑡 + (𝑑𝑡2)

≈ 𝜎(𝑥(𝑡))𝑑𝑊𝑡 + 𝛼𝜎′(𝑥(𝑡))𝑑𝑥𝑑𝑊𝑡 + (𝑑𝑡2)

≈ 𝜎(𝑥(𝑡))𝑑𝑊𝑡 + 𝛼𝜎′(𝑥(𝑡))𝑣(𝑡)𝑑𝑡𝑑𝑊𝑡 + (𝑑𝑡2),

(21)

and the difference between the interpretations given in the 𝛼 term is of
the order (𝑑𝑡)3∕2 < 𝑑𝑡 and thus vanishes faster than the time scale of the
dynamics. If instead there is a stochastic component to both variables,

𝑑𝑥 = 𝑣𝑑𝑡 + 𝜎𝑥𝑑𝑊𝑡

𝑑𝑣 =
(

−𝛾𝑣 + 𝐹 (𝑥)
)

𝑑𝑡 + 𝜎𝑣(𝑥)𝑑𝑊𝑡.
(22)

Then the stochastic term is in the fast variable is instead

𝜎𝑣(𝑥∗)𝑑𝑊𝑡 ≈ 𝜎𝑣
(

𝑥(𝑡)
)

𝑑𝑊𝑡 + 𝛼𝜎′𝑣
(

𝑥(𝑡)
)

𝑣(𝑡)𝑑𝑡𝑑𝑊𝑡 + 𝛼𝜎′𝑣(𝑥(𝑡))𝜎𝑥𝑑𝑡 + (𝑑𝑡2),

(23)

and the difference between the Itô and Stratonovich interpretations is
now of the order 𝑑𝑡 and must be taken into account.

The previously mentioned study of Krumscheid et al. [44] has state-
dependent noise in a data-driven model derivation and assumes Itô
calculus. Their multiplicative noise term takes the form of a piecewise
constant function, and as such has zero derivative except at the jump.
Due to this, the difference between the Itô and Stratonovich interpreta-
tions vanishes except at a single point, which can be safely disregarded.
Their study does include continuous functions as candidate noise terms
but find the additive noise model outperforms them with regard to their
parameter fitting routine.

5. Conclusions

In this study, we have derived a data-driven conceptual model of
the D–O events including multiplicative noise and seen the reduced
stability of the interstadial state when compared to the stadial. We also
describe the need to specify a stochastic calculus to be able to interpret
the climate potential of the model. We have outlined models which may
be interpreted as either Itô or Stratonovich in limiting cases and suggest
that the interpretation depends on a physical understanding of the
system. For example, if the system derived from the data were meant to
represent the stability of the thermohaline circulation but the stochastic
integral interpreted as Itô, one would arrive to the erroneous conclusion
that the data shows the overturning circulation was monostable, when
there is evidence beyond the ice-core record that it is bistable.

The result that the Itô interpretation leads to monostable dynamics
is one that is echoed by other conceptual models [17,33,65]. These
monostable excitable models with fast–slow dynamics, which require at
least 2 dimensions, mirrors the scenario in which the Itô interpretation
is applicable. That is, the Itô interpretation comes about due to reduc-
tion of a strongly dissipative inertial system, which can be represented
as a 2D system with different timescales, to a system in 1D.
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Ultimately, this work shows that when deriving stochastic models,
the stochastic interpretation can fundamentally affect the results. Inter-
preting whether the underlying nature of the climate that gave rise to
D–O events is a mono- or bi-stable system is vital step to understanding
the phenomenon. This is affected by the noise interpretation, which
seems to be a completely non-physical, mathematical formalism but is
in fact determined by the timescales of the dynamics of the system.
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Chapter 3

B- and r-tipping in a
comprehensive ice sheet
model

3.1 Introduction

This project and article of this chapter deals with the interplay of rate-induced
tipping within a chaotic system. Similarly to noise-induced tipping, r-tipping
in the setting of a double-fold bifurcation occurs through a saddle manifold
in between stable states. Due to climate systems being spatially extended, it
should be expected for them to display chaotic variability. This chaotic nature
can cause complications when trying to comprehend the tipping behaviour, as
it introduces unpredictability. There are two types of unpredictability related
to tipping in chaotic systems that manifest. Firstly, for a given parameter
value, what is the final attractor? Secondly, under a parameter shift that
causes a system to tip, at what time will the tipping occur?

The former issue arises primarily due to uncertainties in the basins of at-
traction for different states of a system. For chaotic attractors or chaotic non-
attracting sets between attractors such as chaotic saddles, basin boundaries
can be fractal [37] or even riddled [80]. For this reason, two very nearby initial
conditions may actually belong to two different basins of attraction, and there
is no guarantee that increasing the confidence in the initial state will result
in an increase in the confidence of the resulting asymptotic state. This can
be similar to the non-chaotic phenomenon of partial tipping [1], where nearby
initial conditions under a parameter shift can diverge to separate attractors.

The latter issue comes about due to lifetimes associated with non-attracting
chaotic sets. These lifetimes are the mean time a trajectory spends near a
chaotic non-attracting set due to following along its stable manifolds before
eventually being repelled. The chaotic non-attracting set can be the previously
mentioned chaotic saddle in between the stable attractors or a ghost attrac-
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tor that lingers after a boundary crisis causes the annihilation of a previously
stable chaotic attractor [38]. In the case of a chaotic saddle, a trajectory that
experiences r-tipping may remain about this state for a while before reaching
the other asymptotic state. For a ghost attractor, a system that experiences a
b-tipping from a chaotic attractor will also have transients that remain in the
phase space of this attractor that no longer exists before eventually tipping to
the only remaining stable attractor. Both cases result in chaotic transients,
which are long-lived transients that remain near the stable manifolds of a
chaotic non-attracting set. The escape time from these transients depends
sensitively on the initial condition of the system, but for an ensemble they are
exponentially distributed which creates the unpredictability. Furthermore, in
complex systems where only transient forcing is possible and the true bifur-
cation values are not known, the scenarios might appear similar, and it is
not trivial to determine whether b-tipping or r-tipping has occurred. This
is the case of the system that is the subject of the article of this chapter: a
study on how a regional phenomenon – that of an oscillating ice stream – can
seemingly affect the large scale tipping of the entire ice sheet, along with the
investigation of whether it is indeed possible to diagnose the displayed chaotic
transients as being a result of b- or r-tipping.

The project described in this chapter began as a straightforward project
of r-tipping of the Greenland ice sheet. R-tipping generally occurs in systems
with multiple feedback timescales [29]. A simple understanding is such: in
simple bistable tipping systems, it is positive feedbacks that establish the two
states and negative feedbacks that keep them stable. If there are positive feed-
backs that act on a very fast timescale compared to some negative feedbacks,
a parameter forcing at a large rate can induce these positive feedbacks before
the negative ones can kick in. On the other hand, of the forcing rate is slow,
the negative feedbacks are able to keep up with the positive ones, and the
system tracks the changing equilibrium and does not tip.

Ice sheets are components of the climate that generally evolve on very long
time scales. The bulk of their dynamics occurs as creep flow in response to
changes in the amount of mass flux at their surface. Mass at the surface is
added in the form of precipitation, also called accumulation, and lost due to
melting or sublimation, also called ablation. This process depends largely on
surface air temperature. Accumulation also depends heavily on the moisture
content in the air, giving both a positive and negative feedback associated
with the elevation of the ice sheet surface. Since moisture reduces with eleva-
tion, so too will the accumulation decrease until the ice sheet reaches steady
state. On the other hand, due to the negative lapse rate of temperature in
the atmosphere a thicker ice sheet will experience more accumulation due to
the lower temperature – this is the melt elevation feedback. There is an equi-
librium altitude, above which accumulation occur and below which ablation
occurs. For the example of an ice sheet above this equilibrium line, if suddenly
there is some atmospheric forcing that increases the altitude of the line, the
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resulting melt will still take thousands of years [65]. Thus the melt-elevation
feedback is relatively insensitive to rate-induced tipping. Another positive
feedback prevalent is the ice-albedo feedback, where more ice cover reflects
more incoming solar radiation and thereby decreasing the absorbed energy
from the sun, promoting lower temperatures and ice sheet growth. Similarly
to accumulation and ablation, this is also not expected to experience r-tipping
due to the slow speed of the ice sheet flow.

Where ice sheets do experience fast flow velocities is in ice shelves, which
are sections of ice sheets that are floating in the ocean. Due to this, they do
not experience as much friction at their base and are able to advance more
easily. Ice shelves can be grounded underwater, and this portion that is under-
water can experience additional melting due to increasing ocean temperatures,
causing the grounding line to retreat. If this grounding line is on a retrograde
slope, the retreat will expose more of the ice sheet base to the warmer ocean,
further increasing melt in a positive feedback. This is dubbed the marine ice
sheet instability [103, 118]. Due to the the increased flow velocities, as well as
the possibility of calving of large sections of the ice sheet, the mass loss can
be much quicker than for atmospheric sources of climate forcing. This may
be the situation in the west Antarctic ice sheet (WAIS), where large sections
are ice shelves grounded on a retrograde slope, and suggests there may be the
possibility of r-tipping the WAIS.

In contrast to the WAIS, Greenland does not have a large amount of float-
ing ice shelves. While it does contain many marine-terminating outlet glaciers,
many of which are accelerating in mass loss [42, 44, 48, 52, 63, 73, 93, 111],
these are most limited to the southern and western coasts of Greenland. An-
thropogenic temperature forcing is strongest in those areas, which somewhat
explains their increasing melting rates. Ultimately, the fact that are largely
constrained to mountainous regions near the coast suggest that they have a
limited impact on the mas loss of the GrIS as a whole [45]. Thus, the rela-
tively slow evolution of the GrIS suggest that r-tipping due to anthropogenic
temperature forcing is not expected to occur.

Indeed, that is also (somewhat) the conclusion of the project of this chap-
ter. Firstly, the qualities of the chaotic transients and their scaling laws
suggest, though not with overwhelming confidence due to the low sample size,
that the tipping was due to a bifurcation (or boundary crisis) rather than
rate-induced effects. Perhaps more pertinently, the timescales of the tipping
trajectories exceeded 100 kyrs, even for warming rates of 0.1 Kelvin/yr. Not
only does this exceed the timescale of Milankovitch cycles [5], which have a
much greater effect on global climate than 1 Kelvin of warming, but it is also
impossible to consider the climate that forces the ice sheet as being constant
for such a length of time. The results of this article are not so relevant to any
ideas of anthropogenic climate change, but rather they demonstrate the issues
that the complexity of a system can impart on the tipping behaviour. The
remainder of this chapter is dedicated to the background on how ice sheets are
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modelled, along with a brief introduction of the concept of chaotic transients
before the manuscript of a paper that reports on the findings of this project.

3.2 Ice Sheet Dynamics
An ice sheet behaves as a very viscous fluid. It can thus be mathematically
described by the equation for Stokes flow,

∇ · u = 0 (3.1)
ρg −∇ · t = 0, (3.2)

where u is the velocity vector, ρ is the density of ice, g is the gravitational
force vector and t is the Cauchy stress tensor. The diagonal elements of t are
the normal stresses and the off-diagonal elements are the shear stresses. The
deviatoric stress tensor τ is the total stress t minus the hydrostatic pressure,

t = −pI + τ . (3.3)

The deviatoric stress tensor determines the deformation of the ice and is re-
lated to the strain rate tensor ε̇ by the viscosity,

τ = 2ηε̇, (3.4)

where the strain depends on the velocity,

ε̇ =
1

2

(
∇u+∇uT

)
. (3.5)

Generally, an effective stress and strain is used. This is calculated as

τ =

√
1

2
I2(τ ), (3.6)

where I2(τ ) is the second invariant of the tensor,

I2(τ ) =
1

2

[
tr (τ 2)− (tr τ )2

]
. (3.7)

Since the deviatoric stress tensor is traceless, the effective stress can be written
in index notation as

τ =

√
1

2
τijτij . (3.8)

The same is done for the effective strain,

ε̇ =

√
1

2
ε̇ij ε̇ij (3.9)
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where the components can be given explicitly as

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.10)

From experimental observation [33, 78], the effective viscosity η that now
governs the relationship

τij = 2ηε̇ij (3.11)
depends on the temperature and pressure as well as the strain,

η(T, p, τ) =
1

2A(T, p)τn−1
. (3.12)

This may be arranged to be written in terms of the effective strain rate as

η(T, p, ε̇) =
1

2

(
A(T, p)

)−1/n
ε̇(1−n)/n. (3.13)

This equation is know as Glen’s Flow law, and underpins the deformational
creep flow of ice sheets. The rate factor A(T, p) is given as an Arrhenius law,

A(T, p) = A0 exp
[
− (Q+ pV )/RT

]
, (3.14)

and represents the softness of the ice: the warmer the ice, the softer it is and
the faster it will deform. Equations 3.1, 3.2 and 3.11 describe the fundamental
equations of ice sheet flow.

Since the rate factor depends on the temperature, the system now must
be thermomechanically coupled. The thermodynamics of the system are de-
scribed by an equation for the balance of the internal energy U ,

ρ
DU

Dt
= −∇ · q + tr (t · ε̇) + ρr, (3.15)

where D•
Dt = ∂•

∂t+(∇•)·u is the material or Lagrangian derivative. The internal
energy is assumed to depend linearly on temperature, such that DU

Dt = cDT
Dt

where c is the specific heat capacity of ice. The heat flux q can be described
as due to conduction, where for q = −κ∇T , κ is the thermal conductivity of
ice. The dissipation tr (t · ε̇) transforms kinetic energy into internal energy.
Expanding

t = −pI + τ = −pI + 2ηε̇, (3.16)
gives tr (t · ε̇) = 2η tr (ε̇2) = 4ηε̇2. The radiation flux r is negligible in an ice
sheet. Thus the thermodynamic equation simplifies to

ρc
DT

Dt
= κ∆T + 4ηε̇2. (3.17)

Boundary conditions that set the equilibrium state that the ice sheet
evolves to must be described. The boundary is free at the surface and inter-
acting with bedrock or ocean at its base. A kinematic and dynamic boundary
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condition is described for a free boundary as follows. At the interface with the
atmosphere, the stresses are negligible and the dynamic boundary condition
is the stress-free condition. There is a volume flux driven by the surface mass
balance as, which is the difference between the accumulation of ice through
densification of snowfall and the ablation of surface ice. Defining the free sur-
face as z = h(x, y, t), its material derivative is equal to the vertical surface
mass balance, giving

∂h

∂t
+ ux

∂h

∂x
+ uy

∂h

∂y
− uz = as. (3.18)

The sign of as is chosen such that positive corresponds to mass gain. A
temperature boundary condition is required to solve the equation 3.17 and
is simply that the ice temperature at the surface is equal to the atmospheric
temperature at the surface. In this way, the surface boundary is entirely
determined by external conditions: the accumulation rate and the surface
temperature.

At the base of the ice sheet, the ice may either be grounded on bedrock or
floating on the ocean. There is a basal mass balance ab which describes the
mass lost due to melting and the mass gained due to refreezing. For grounded
ice, the interface is no longer stress-free due to friction. This friction stress
can produce melting in the case of sliding at the bedrock. Heat also enters the
base of the ice sheet though a geothermal heat flux. Finally, since the melting
temperature of ice decreases as pressure increases, the ice is at its warmest at
the base of the ice sheet and there is a heat flux from the basal ice into the ice
sheet above. Similar to the free surface, the boundary condition for the base
z = b(x, y, t) is given by

∂b

∂t
+ ux

∂b

∂x
+ uy

∂b

∂y
= ab, (3.19)

where uz = 0 since the ice cannot penetrate into the bedrock and ab is the
vertical basal mass balance determined by the thermodynamic balance and
the input geothermal heat flux. The sign of ab is chosen such that positive
corresponds to mass loss (melting).

A floating ice sheet over the ocean is called an ice shelf. Since the inter-
face between ocean and ice is a free boundary, the dynamic and kinematic
boundary conditions are described as follows. Boundary stresses are those of
the hydrostatic pressure of the water column along with shear stresses due
to ocean circulation, although this latter stress is generally negligible. The
thermodynamic boundary condition is such that the basal ice is the same
temperature as the water. There is a heat flux from the water into the basal
ice as well as a frictional heating from the current, which describes the basal
mass balance. However, since the ice temperature is prescribed by the ocean
temperature, it is more typical to derive the basal mass balance or basal heat
fluxes from measured quantities. There are also lateral stresses on ice shelves.
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Due to the differences in the lateral pressures on the ice shelf portion that is
above versus below the sea level, the ice shelf thins at it advances. Eventually,
crevasses form that extend though the thickness of an ice shelf, causing it to
break off in an event known as calving. This effects a mass flux given as a
calving rate ac.

Similarly to floating ice shelves, grounded ice sheets have areas where there
is water under the ice sheet. If the basal ice reaches the pressure melting point,
water under the ice sheet serves to decrease the basal friction. This can occur
over areas of hard bedrock where a layer of water lubricates the ice sheet,
or else in areas with weak till which becomes saturated with water and can
deform very easily. These areas are known as ice streams because they have
a very large streaming velocity at their base which extends to the entire ice
column. These basal velocities depend on the basal shear stress τb and have
different functional forms depending on the conditions at the base. Crucial
to all is the effective pressure a the base of the ice, which is the difference
between the overburden pressure and the pressure of the water layer. For
sliding over hard bedrock, the topography is typically rough. The pressure
of the subglacial water layer serves to reduce basal stress by filling cavities
in the lee side of undulations in the bedrock as well as uplifting the ice sheet
through buoyancy. In the case of a soft deformable till at the base of the
ice sheet, the basal stress depends on the till rheology, which turn directly
depends on the quantity subglacial water that can permeate the till and reduce
internal friction. Overall, the boundary condition for grounded ice must be
different based on whether there is basal sliding or not. In the former case, the
horizontal velocities at the base in equation 3.19 are zero and the base simply
loses or gains mass as given by the basal mass balance. In the case of nonzero
basal velocity, it is determined by the basal shear stress. Since the streaming
velocity dominates over deformational creep it is easier to measure the velocity
than the basal shear stress and empirical sliding laws can be derived in this
way.

Using the continuity equation and the boundary conditions, the thickness
of an ice sheet can be determined. Integrating equation 3.1 from the base to
the surface and using the Leibniz integration rule, then substituting equations
3.18 and 3.19, gives

∂

∂x

∫ h

b
uxdz +

∂

∂y

∫ h

b
uydz +

∂h

∂t
− ∂b

∂t
= as + ab − ac. (3.20)

Finally, defining the ice thickness H = h − b and depth-averaged horizontal
velocities ūx = 1/H

∫ h
b uxdz and ūy = 1/H

∫ h
b uydz, the equation for the

change in ice thickness is

∂H

∂t
= −∇ ·Hū+ as + ab − ac. (3.21)
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Ice sheet model Yelmo

The numerical ice sheet model Yelmo [97] simulates the evolution of an ice
sheet by solving approximate solutions to the Stokes flow equations along with
thermodynamic equations and boundary conditions, as resolving the Stokes
flow directly would be too computationally expensive. One feature of ice
sheets that allow for simplification of their dynamics is their aspect ratio. The
thickness of an ice sheet is orders of magnitudes smaller than its horizontal
extent. This allows the assumption that the flow is essentially parallel to the
base, and vertical shear is negligible [39]. Effectively, the three dimensional
flow of the ice sheet can be simplified to two dimensions by integrating the
velocities over the depth. For these shallow ice approximations the stresses
are dominated in the vertical by the normal (non-deviatoric) stress and in the
horizontal by the shear stresses. Then the momentum balance equation 3.2 in
the z direction gives

∂tzz
∂z

= −ρg, (3.22)

since τxz, τyz ≪ tzz. This can integrate from the stress-free surface boundary
(z = h) to give

tzz = ρg(h− z), (3.23)

which is the hydrostatic pressure. Using the definition of the deviatoric stress
such that τzz = p − tzz, as well as the traceless quality of the tensor, the
pressure is

p = ρg(h− z)− τxx − τyy, (3.24)

which leads to the horizontal normal stresses being given by the shear stresses
as

txx = −ρg(h− z) + 2τxx + τyy, (3.25)
tyy = −ρg(h− z) + τxx + 2τyy. (3.26)

Due to the aspect ratio of the ice sheet, the partial derivatives of the vertical
velocity in the horizontal direction are much smaller than the partial deriva-
tives of the horizontal velocity in the vertical direction and are therefore ne-
glected. These equations, along with the flow law relating the velocities to the
shear stresses (equations 3.10 and 3.11), give the first-order Blatter-Pattyn
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approximation [6, 83],

4
∂

∂x

(
η
∂ux
∂x

)
+ 2

∂

∂x

(
η
∂uy
∂y

)
+

∂

∂y

(
η

[
∂ux
∂y

+
∂uy
∂x

])

+
∂

∂z

(
η
∂ux
∂z

)
= ρg

∂h

∂x
, (3.27)

4
∂

∂y

(
η
∂uy
∂y

)
+ 2

∂

∂y

(
η
∂ux
∂x

)
+

∂

∂x

(
η

[
∂ux
∂y

+
∂uy
∂x

])

+
∂

∂z

(
η
∂uy
∂z

)
= ρg

∂h

∂y
. (3.28)

From the conservation of mass (equation 3.1) the partial derivative of the
vertical velocity in the vertical direction, ∂uz

∂z , can be written in terms of the
horizontal velocities. This gives the effective strain rate in equation 3.10 as

ε̇2 =
∂ux
∂x

2

+
∂uy
∂y

2

+
∂ux
∂x

∂uy
∂y

+
1

4

(
∂ux
∂y

+
∂uy
∂x

)2

+
1

4

∂ux
∂z

2

+
1

4

∂uy
∂z

2

.

(3.29)

Further simplifications are required for the above shallow model for effi-
cient computation. The two most typical are the Shallow Ice Approximation
(SIA) and the Shallow Shelf Approximation (SSA). They are distinguished by
the conditions of the stress at their basal boundary. The SIA is characterized
by grounded ice that is frozen at its base, applying a no-slip condition. In this
case, the flow is purely shear flow such that all horizontal derivatives may be
eliminated. This greatly simplifies equations 3.27 and 3.28 to

∂

∂z

(
η
∂ux
∂z

)
= ρg

∂h

∂x
, (3.30)

∂

∂z

(
η
∂uy
∂z

)
= ρg

∂h

∂y
, (3.31)

and the effective strain rate in equation 3.29 to

ε̇2 =
1

4

∂ux
∂z

2

+
1

4

∂uy
∂z

2

. (3.32)

These equations may then be integrated over the ice thickness to arrive at the
horizontal velocities. However, this would require implicit integration, and
a more direct integration can be found. Since the shear flow dominates the
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momentum balance,

∂τxz
∂z

=
∂p

∂x
= ρg

∂h

∂x
(3.33)

∂τyz
∂z

=
∂p

∂y
= ρg

∂h

∂y
(3.34)

(3.35)

it can be integrated, which gives an effective stress of

τ =

√
1

2
(τ2xz + τ2yz) = ρg(h− z)|∇h|. (3.36)

This can be used in the viscosity equation and substituted into equation 3.31,
then integrated from the base (z = b) to arrive at

ux = −2(ρg)n|∇h|n−1∂h

∂x

∫ z

b
A(T, p)(h− s)nds (3.37)

uy = −2(ρg)n|∇h|n−1∂h

∂y

∫ z

b
A(T, p)(h− s)nds. (3.38)

The term ρgH |∇h|, which is the negative of the shear stress at the base, is
the driving stress τd. In the SIA, it is equal to the negative of the basal stress
such that the ice sheet flows to an extent there these two are in equilibrium.

On the other hand, the SSA is used to represent fast flow due to low
friction at the basal boundary. In this case, the driving stress exceeds the
basal stress and the flow is more rapid. This results in a plug flow, where the
entire ice column is travelling at the same speed. This is the opposite case of
the SIA, where now the shear flow is negligible. As the horizontal velocities
are constant over the entire thickness they may be integrated over the vertical
coordinate,

v̄x =
1

H

∫ h

b
ux(z)dz (3.39)

v̄y =
1

H

∫ h

b
uy(z)dz. (3.40)

The effective strain rate is

ε̇2 =
∂ux
∂x

2

+
∂uy
∂y

2

+
∂ux
∂x

∂uy
∂y

+
1

4

(
∂ux
∂y

+
∂uy
∂x

)2

. (3.41)

due to the independence of velocity on depth. This allows the viscosity to be
integrated over the depth,

η̄ =
1

2
ε̇−(n−1)/n

∫ h

b
A(T, p)−1/ndz. (3.42)
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Then the equations 3.27 and 3.28 become

4
∂

∂x

(
η̄
∂v̄x
∂x

)
+ 2

∂

∂x

(
η̄
∂v̄y
∂y

)
+

∂

∂y

(
η̄

[
∂v̄x
∂y

+
∂v̄y
∂x

])
= ρgH

∂h

∂x
+ τb,x

(3.43)

4
∂

∂y

(
η̄
∂v̄y
∂y

)
+ 2

∂

∂y

(
η̄
∂v̄x
∂x

)
+

∂

∂x

(
η̄

[
∂v̄x
∂y

+
∂v̄y
∂x

])
= ρgH

∂h

∂y
+ τb,y,

(3.44)

where τb is the basal stress. These basal stress terms not found in 3.27 and
3.28 appear due to the vertical integration, being related to the boundary
conditions.

Often, a hybrid approach combining the SIA and SSA is used to reap
the advantages of each. The total horizontal velocity is given as the sum
of deformational creep velocity ud calculated using the SIA and basal sliding
velocity ub calculated using the SSA. Yelmo as described in Robinson et al. [97]
is such a hybrid model. However, over its continual development it has changed
to replace the hybrid approach with that of a Depth-Integrated Viscosity
Approximation (DIVA) [99]. In this scheme, the viscosity is integrated over
the depth in the same way as in the SSA but using the entire effective strain
rate of equation 3.29. The velocities are also depth averaged. This results in
the same form of the stress balance as for the SSA, equation 3.44, but with
additional terms in the effective viscosity and a more complete basal stress.

Under the shallow approximation, the horizontal heat conduction terms in
the heat flux term in the thermodynamic equation 3.17 are negligible, reducing
∆T ≈ ∂2T

∂z2
. Expanding the material derivative, the thermodynamic equation

is
∂T

∂t
=

κ

ρc

∂2T

∂z2
−
(
ux
∂T

∂x
+ uy

∂T

∂y
+ uz

∂T

∂z

)
+

4ηε̇2

ρc
. (3.45)

The basal stress τb takes the form of a regularized Coulomb friction law
[102],

τb = −cb
(

|ub|
|ub|+ u0

)q ub

|ub|
. (3.46)

The coefficient cb is a field that determines the friction properties of the bed
itself. It depends linearly on the effective pressure Neff at the base of the ice
sheet,

cb = λNeff, (3.47)

with λ in turn describing the relative strength of the till. The exponent q
determines the friction regime. It is bounded between 0 and 1, corresponding
to plastic friction for q = 0 and linear friction for q = 1. The variable u0 is
a threshold that sets a maximal value for |τb/cb|. This prevents cases where
effective pressure is low from resulting in too large a basal stress [13]. This
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effectively allows the model to switch between two modes of basal motion: For
|ub| < u0, the magnitude is

|τb/cb| =
(
|ub|
u0

)q

, (3.48)

which corresponds with sliding of hard bedrock. For |ub| > u0, the magnitude
is

|τb/cb| = 1. (3.49)

This is the case of deformation of weak till and corresponds to plastic friction,
which is independent of the velocity.

The value of λ in the friction coefficient is calculated based on the pale-
oclimate history of the till. By assuming that areas with bedrock below sea
level were previously submerged and thus their till is formed primarily by
sediments with a weaker internal friction, a linear relationship with altitude
is constructed. The effective pressure is calculated as in Bueler and van Pelt
[17],

Neff = min

[
Po, N0

(
δPo

N0

)s

10C(1−s)

]
, (3.50)

with overburden pressure Po = ρgH , empirical parameters N0 and C derived
from the conditions of the Siple ice stream in Antarctica [113], and δ setting a
lower limit for effective pressure. The till saturation ratio is s = Hw/Hw,max.
The amount of water in the till Hw increases with basal melt, which is the
negative of the basal mass balance,

∂Hw

∂t
= − ρ

ρw
ab − Cd, (3.51)

where Cd is a constant drainage rate.
The calving rate is determined simply by some threshold thickness for

floating ice Href, along with a characteristic time scale τc over which calving
occurs,

ac =
Href −H

τc
. (3.52)

The ice sheet also interacts with the bedrock below it by compressing it due
to its weight. Subsequent removal of the ice sheet will result in the bedrock
uplifting, known as isostasy. The rate and extent of this depends on the
properties of the solid Earth. The isostatic component in the experiments
was handed by an Elastic Lithosphere-Relaxing Asthenosphere (ELRA) model
[16]. While on very long timescales the isostasy has been shown in models to
cause oscillations in the volume of Greenland [121], the effect of isostasy in
the experiments of this paper is relatively minor.
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Atmosphere model REMBO

In the experiment, the surface boundary conditions are handled by the regional
parameterized atmosphere model REMBO [98]. REMBO stands for regional
energy-moisture balance orographic model and is a 2D model of temperature
and precipitation over the region of Greenland. The temperature component
is handled by an energy balance model, where the incoming energy due to
solar radiation is balance with the outgoing temperature-dependent outgoing
longwave radiation (OLR) [15, 104]. Due to the large spatial and temporal
scale of the system, horizontal transport is dominated by diffusion rather
than advection. Since the atmosphere is coupled to the ice sheet, there is
also energy gained and released via condensation of water (precipitation) and
melting of the ice sheet (evaporation). A universal structure of the atmosphere
is assumed, meaning the lapse rate of temperature and moisture with altitude
is fixed, and the sea-level temperature can be used to derive the temperature
at any altitude. Overall, the energy balance is given as

cpρaHa
∂Tsl
∂t

=DT∇2Tsl + (1− α)S −
[
A+B(Tsl − γz)

]
+ LwPw + LsPs − LsMs, (3.53)

for the sea-level temperature Tsl. The diffusion constant DT decreases with
latitude as well as altitude z to represent weaker atmospheric activity. A
portion of the incoming solar radiation S is reflected by the albedo α which
depends on the snow cover. The functional form of the OLR, A+B(Tsl−γz)A,
is empirical [15]. The precipitation P is split into water Pw and snowfall Ps,
with respective latent heats of condensation Lw and Ls. The final term, Ms,
is the melt rate of the surface of the ice sheet.

The precipitation depends on the amount of moisture in the atmosphere
Q, which is handled via a moisture balance equation,

ρaHe
∂Q

∂t
= DQ∇2Q− P. (3.54)

The diffusion constant DQ also decreases with latitude. The precipitation
depends not only on the moisture constant, but also on the surface slope:
P = (1 + k|∇z|)(Q/τ) [114]. This is what lends the model its orographic
nature. The total precipitation is split into water and snow based on the
temperature, being all snow below -7◦C and all water above 7◦C.

As mentioned earlier, the temperature and precipitation determine the
surface mass balance as of the ice sheet. Precipitation falls as snow with a
thickness hs which then may freeze into ice, which has a thickness hi. The snow
has a maximum thickness hs,max = 5 metres, beyond which it is converted into
ice. The snow also freezes into ice depending on the temperature, given by
the freezing rate rf (T ). The snow and ice may instead melt, determined by
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the temperature-dependent melt rate Ms. Altogether,

dhs
dt

=

{
Ps −Ms(1− rf ) if hs < hs,max

0 if hs = hs,max
, (3.55)

dhi
dt

=


Ps −Ms(1− 2rf ) if hs = hs,max and dhs

dt ≥ 0

Msrf if hs > 0

min(Ps −Ms, 0) if hs = 0

. (3.56)

The melt rate is calculated using an isolation-temperature method (ITM)
[114],

Ms =
∆t

ρwLm
[τa(1− α)S + c+ λT ]. (3.57)

The ITM explicitly takes albedo into account, such that highly reflective fresh
snow will melt less quickly than older, dirtier snow or ice. The transmissiv-
ity τa represents the amount of shortwave radiation that penetrates through
the atmosphere to the surface and increases with altitude. The parameters
c and λ are empirical. Many ice sheet models use the positive degree day
(PDD) method to compute the melt rates, which depends on temperature
only. The inclusion of the altitude-dependent transmissivity in the ITM pro-
vides a stronger coupling to the surface elevation than just the constant lapse
rate of the temperature [85].

3.3 Ghost attractors and long-lived transients
A dynamical system experiencing a saddle-node bifurcation can manifest a
ghost attractor in phase space for a small parameter regime past the bifurca-
tion point [108]. This ghost attractor manifests as a time bottleneck experi-
enced by the system before before leaving the region in phase space where the
bifurcation took place. To see this, use the normal form of the saddle-node
bifurcation,

ẋ = µ+ x2. (3.58)
Since the definition of a saddle-node bifurcation guarantees it can be written in
this normal form [55], the result is universal to systems experiencing a saddle-
node bifurcation. As the ghost exists beyond the bifurcation point µ = 0,
equation 3.58 is solved for µ > 0, x(0) = x0

1
√
µ
arctan

x(t)
√
µ

− 1
√
µ
arctan

x0√
µ
= t. (3.59)

To experience the bottleneck, a trajectory must be pass through the point
where the bifurcation took place, in this case x = 0. For example, to go from
x0 = −1 to x(t) = 1, the time spent is

2 arctan
1
√
µ
=

√
µt, (3.60)
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which gives

t ∼ 1
√
µ

(3.61)

in the limit µ → 0 from the left since arctan(x) → 0 faster than
√
x →

0. This bottleneck is a generic feature of the equilibrium system, requiring
only a that system is initialized near the bifurcation point on the x axis and
must pass through it – the ghost exists even for a fixed parameter value.
Simultaneously, it is immediately clear that any transient simulation of a
system will not be able to properly capture the bifurcation point, even by a
very slow variation of the parameter, since the time a system to tip goes to
infinity as the parameter approaches the bifurcation value. This is not problem
in climate applications however, as identification of the exact bifurcation value
is typically unimportant. Due to the chaotic nature of the climate systems,
a probabilistic view of tipping behaviour is more suitable. Additionally, the
bottleneck only occurs in very small parameter regimes, as for larger values
of √µ the value of x(t)− x0 dominates.

In the model study of the manuscript of this chapter, an adaptive quasi-
equilibrium function (AQEF) is used to attempt to estimate the tipping value.
As discussed in the manuscript, this scheme is not be able to capture the bi-
furcation value but rather give some upper bound depending on the hyperpa-
rameters of the AQEF. These hyperparameters are the maximal rate of forcing
increase, the temporally averaged ice sheet mass loss for which the system is
considered to be in quasi-equilibrium, and the time span over which this mass
loss is averaged. The most important is the maximal rate of forcing increase.
Since the ghost bottleneck depends only on the value of the parameter above
the bifurcation value, so it is entirely independent of its rate of increase. Nev-
ertheless, because the system achieves only a quasi equilibrium, if the rate
is too large the bifurcation point will be overshot by a large amount. Inter-
estingly, in transient hysteresis experiments the faster the parameter value is
varied, the less abrupt the tipping appears. This is known as rate-dependent
hysteresis [2, 49] and occurs because of the inertia of a system rather than
the temporal bottleneck. For a large rate, the system is not able to relax to
equilibrium before the parameter increases further [14]. Thus a small rate of
forcing increase simultaneously ameliorates the issues of both the saddle-node
ghost as well as the rate-dependent hysteresis. Nevertheless it can only give
an upper bound for the bifurcation value.

Long transients appear as well in chaotic systems. A chaotic transient is a
solution trajectory that remains some time around a chaotic nonattracting set
[62]. Due to the invertability of the dynamical system, the chaotic nonattract-
ing set has attracting and repelling manifolds such that it is a chaotic saddle.
While this nonattracting set can arise for a variety of reasons, focus will be
laid on two in particular. The first is a chaotic transient appearing after a
boundary crisis. A boundary crisis is a type of bifurcation whereby a chaotic
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set collides with some unstable orbit, creating a chaotic non-attracting set [36].
In this way, it has many parallels with the saddle-node bifurcation. Indeed,
the nonattracting set that remains after this boundary crisis is also termed a
ghost attractor, and also results in a temporal bottleneck before a trajectory
may move to another part of phase space. However, where the saddle-node
ghost attractor has a transient lifetime that scales as the reciprocal of a square
root (equation 3.61), the lifetime of these chaotic transients are exponentially
distributed, with a mean that scales as

⟨τ⟩ ∼ (p− pc)
−γ , (3.62)

where p is the parameter, pc is the parameter value at which the crisis occurs
and γ > 0 is the critical parameter, the value of which depends on the system.

Another appearance of a chaotic non-attracting set for systems that ex-
perience bistability is as a chaotic saddle in the basin boundary between two
stable attractors [18]. Trajectories that start or land near this basin boundary
due to a parameter shift spend some time along the stable manifolds of the
saddle before eventually escaping to one of the two attractors. In this case, the
lifetime of the saddle scales with the fractal dimension of the chaotic saddle,

⟨τ⟩ ∼ [(λ1(D −Db)]
−1 (3.63)

where D is the phase space dimension, Db is the dimension of the chaotic
saddle (less than D) and λ1 is the maximum Lyapunov exponent of the saddle.
The closer the chaotic saddle is to full dimension, the longer the mean lifetime.
The manuscript describes how the scaling of the chaotic transients observed
are indicative of a boundary crisis rather than due to crossing a chaotic saddle
due to r-tipping.

3.4 The manuscript
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Abstract. Model simulations of the Greenland ice sheet (GrIS) using a state-of-the-art comprehensive ice sheet model coupled

to a regional energy-moisture balance atmospheric model under external forcing in the form of temperature increases are

performed. These simulations exhibit oscillations in the total ice sheet volume under global temperature increase magnitudes

between 1.0 and 2.0 K above pre-industrial temperatures. These oscillations are isolated to the northwestern drainage basin

of the GrIS and are due to two ice streams which alternate between fast and slow basal velocities, manifesting in a build-5

up/surge variability. Further, these ice streams are interacting due to their spatial proximity, resulting in irregular periodicity.

The regions these ice streams appear in is also where the large-scale loss (tipping) of the entire GrIS originates, meaning these

oscillations affect the tipping behaviour. As a result of these ice streams, the time it takes before the ice sheet collapses can

vary by hundreds of thousands of years among simulation ensemble members. These long tipping times are proposed to be due

to chaotic transients, implying the ice stream oscillations are a source of internal chaotic variability in ice sheets.10

1 Introduction

Due to the existence of positive feedbacks affecting its mass balance, the present-day Greenland ice sheet (GrIS) is thought to

experience a sudden loss of mass when an external forcing parameter is increased beyond a critical threshold, known as tipping

point and causing tipping of the ice sheet to a largely ice-free state (Robinson et al., 2012). The GrIS is therefore one of the

principal tipping elements in the Earth’s climate system due to its straightforward impact of raising global sea level as well15

as the relatively uncomplicated dynamics that underlie the tipping. This is principally due to the fact that the feedbacks that

determine the equilibrium state, those of the melt elevation and ice-albedo, are positive and dominate over negative feedbacks

such as the glacial-isostatic adjustment.

Nevertheless, the GrIS also displays some features of variability that do not have such simple dynamics and are not so well

constrained. These are areas of fast flowing ice, which are either topographically-confined outlet glaciers or large ice streams.20

The discharge of ice through these contributes a large amount to the total ice sheet mass loss despite their relatively small

spatial extent (Shepherd et al., 2020). It has also been shown that they may be accelerating due to increased atmospheric and

1



oceanic forcing (Krabill et al., 2004; Rignot and Kanagaratnam, 2006; Luthcke et al., 2006; Howat et al., 2008; Holland et al.,

2008; Khan et al., 2014; Trusel et al., 2018; Larocca et al., 2023).

Due to the magnitude and tempo of anthropogenic forcing on the climate and the resulting accelerating mass loss of the25

GrIS, it is worth investigating whether the rate of parameter forcing has an effect on the tipping behaviour. The circumstance

of a system tipping before the equilibrium bifurcation value of the forcing parameter is reached when it is increased at a large

rate is known as rate-induced tipping or r-tipping (Ritchie et al., 2023) and is expected to occur in non-autonomous systems,

especially those with multiple dynamic time scales (Feudel, 2023). In this study, a state-of-the-art ice sheet model coupled to

a regional atmospheric energy-moisture balance model is used to simulate the Greenland ice sheet under varying magnitudes30

and rates of warming to determine whether r-tipping of the Greenland ice sheet is possible.

2 Methods

2.1 Model description

The model used to study the evolution of the ice sheet is the three-dimensional thermomechanical ice-sheet model Yelmo

(Robinson et al., 2020) coupled with the regional energy-moisture balance model REMBO (Robinson et al., 2010). This model35

setup is therefore similar to that of Robinson et al. (2012) but with an alternate ice sheet model. Yelmo is a depth-integrated

viscosity approximation (DIVA) model (Robinson et al., 2022). The domain of the ice-sheet model covers the entirety of

Greenland at a 16 km horizontal resolution. The surface mass balance is determined by the temperature and precipitation

calculated by REMBO. The surface gains mass as precipitation and loses it through a melt rate calculated using an insolation-

temperature melt method, whereby insolation and albedo is explicitly taken into account. Additionally, a heuristic 2 m/day40

melt rate is applied to areas where in the present day there is no ice. The isostatic adjustment is an elastic lithosphere-relaxing

asthenosphere (ELRA) model (Bueler et al., 2007) with a relaxation timescale of 3000 years.

Due to the emphasis on regions of fast-flowing ice, the most important processes in this study are those occurring at the base

of the ice sheet. The flow of ice in Yelmo is calculated using the Depth Integrated Viscosity Approximation (DIVA) (Robinson

et al., 2022) of the first order Blatter-Pattyn shallow ice equations (Blatter, 1995; Pattyn, 2003),45
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where x and y are the two horizontal directions and ū and v̄ the vertically integrated flow velocities in these directions,

respectively. The parameter η̄ is the vertically integrated viscosity, which depends on temperature and velocity, H is the ice

thickness and h(x,y) is the vertical surface coordinate of the ice sheet. The basal frictional stress τb = (τb,x, τb,y) is modelled50

using a Weertman sliding law,

τb =−cb

(
|ub|

ub +u0

)q |ub|
ub

, (3)
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where ub = (ub,vb) is the basal velocity vector, u0 and q are empirical parameters, and cb is a field defining the bed friction

coefficient. The threshold speed u0 = 100 m/yr allows the basal stress to saturate at large velocities, where it becomes inde-

pendent of basal velocity (Schoof, 2005). The coefficient cb depends linearly on the effective pressure Neff at the base of the55

ice,

cb = c0 +λNeff, (4)

where for a lesser effective pressure the bed friction will similarly be lower, decreasing the basal shear stress and increasing

basal velocities. The factor λ represents the till strength of the bedrock and depends on the elevation above or below sea level.

This due to the past history of the bedrock, with regions being below sea level having weaker till due to previously being60

submerged. The effective pressure differs from the overburden pressure depending on the basal water content, following the

parameterization of Bueler and van Pelt (2015),

N̂eff =N0

(
δPO

N0

)s

10
e0
Cc

(1−s), (5)

and where PO = ρigH is the overburden pressure of the ice, N0 is a reference pressure, and s=Hw/Hw,max. The till water

thickness Hw cannot exceed this maximum value Hw,max, which is set to 2 metres. For a fully saturated till such that s= 1,65

the effective pressure is minimal, and is equal to δPO, where δ is 0.2. The coefficients e0 and Cc are till constants taken from

(Tulaczyk et al., 2000). Finally, since the overburden pressure is an upper limit for the effective pressure, the minimum of the

two is taken,

Neff =min

{
PO, N̂til

}
. (6)

The basal water layer thickness Hw changes with the basal melt rate ḃg and is removed via a constant drainage rate Cd,70

∂Hw

∂t
=− ρi

ρw
ḃg −Cd (7)

In turn, the basal melt rate

ḃg =− 1

ρiL

(
Qb + k

∂T

∂z
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b

+Qgeo

)
(8)

depends on warming from basal friction due to sliding Qb as well as geothermal heat flux Qgeo, and is reduced by conduction

of heat into the ice sheet above through conduction as determined by the ice temperature gradient at the base. Thus an increased75

basal velocity will induced additional let at the base, further increasing Hw in a positive feedback.

2.2 Experimental setup

The coupled model is first run to equilibrium to arrive at an initial state from which the model is perturbed. To obtain multiple

initial states with small differences, a single simulation is run to 400 kiloyears (kyr), with the state of the ice sheet captured at

the 100, 200, 300 and 400 kyr marks. This simulation is seen in Fig 1, with the four initial conditions labelled A, B, C and D.80
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Figure 1. Ice volume time series of the equilibrium simulation for the four initial states A to D (left) and ice sheet extent and ice stream

locations of the initial state D (right) with contour lines at 1 km ice thickness.

The forcing in the subsequent experiments is applied as an increase of the summer temperature at seal-level in the atmosphere

as well as in the boundary ocean as was done in Robinson et al. (2012). This summer temperature anomaly is approximately

equivalent to a global mean temperature increase. To get an estimate of the tipping value, an adaptive quasi-equilibrium function

(AQEF) is applied to each of the four initial states. This AQEF increases the forcing small amount, allows the trajectory to

relax to near equilibrium, then increases the forcing again. The increase is done in an adaptive way such that the longer it takes85

the model to equilibrate, the less the forcing is subsequently increased. Using this scheme, the tipping value was found to be

around 1.275 K. This will set the range of forcing values investigated, as any forcing at or beyond this value will not be subject

to r-tipping.

The values of the forcing parameter thus range from 0.1 to 1.3 K with increments of 0.1K. Additionally, the forcing is applied

linearly over some amount of time rather than instantaneously. In this way we examine the effect the rate of increase of the90
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forcing has on the resultant trajectory. These types of experiments are commonly known as ramping experiments as the forcing

parameter is ramped up over a period of time. The ramping rates of 0.001, 0.01, and 0.1 K/yr span three orders of magnitude.

The ramping experiments are run for 5 kyrs with zero forcing before the ramping is applied, which removes a slight transient.

After the forcing has reached its maximum value, it is kept constant and the ice sheet is allowed to evolve to equilibrium.

3 Results95

3.1 Tipping of the ice sheet

Figure 2 shows the ice volume in parameter space for the four initial states. There is clear tipping behaviour for a forcing value

around 1.3 K. This tipping resembles that of a saddle-node bifurcation. The tipping value for states B, C and D agree quite

well, but that of A tips around 1.35 K.

Figure 2. Left: Adaptive quasi-equilibrium function initialised from states A to D in parameter space to estimate the tipping value. Inset:

closer look at the parameter range from 1.25 to 1.4 K. Right: ice sheet extent before and after tipping with contour lines at 1 km ice thickness.

3.2 Spatial and temporal behaviour of the oscillations100

Figure 3 shows the ice volume time series for the simulations with forcing values of 0.1 to 1.1 K. The simulations with a

forcing value of 1.2 K are omitted for visual clarity, but they follow the same variability as the simulations for 1.1 K with

eventual tipping to an ice volume of less than 1 million km3. The colour of the curves for each forcing value represents the rate

of forcing, from darkest corresponding to the fastest rate of 0.1 K/yr to the lightest corresponding to the slowest rate of 0.001

K/year. Although the ramping rates vary by a few orders of magnitude, they are still all much faster than the relaxation of the105
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ice sheet to its equilibrium state and thus there is initially no discernible difference in the trajectories for a given forcing level.

Indeed, if the simulation were stopped after 25 kyr, the decrease in ice volume would be very monotonic with respect to the

temperature forcing and almost identical for the different forcing rates.

Figure 3. Total ice sheet volumes for forcing from 0.1 to 1.1K for three different rates of forcing: 0.1 K/yr (darkest) to 0.001 K/yr (lightest)

for the initial state A.

For warming below 1.0 K there is some slight periodic variability, due to small changes in the volume flux through outlet

glaciers. The most striking behaviour appears for the larger values of forcing, 1.0 K and 1.1 K, after about 25 kyr, for which110

larger amplitude and period oscillations appear. For a forcing of 1.00 K, the oscillations are larger in amplitude and more

temporally irregular. Further, for a forcing of 1.05 K, the ice volume is much smaller, and even more variable.

The ice volumes of the individual hydrological drainage basins of Greenland indicate that the source for the variability seen

in these large oscillations is primarily in the north-northwest region. The study of the spatial fields is therefore restricted to

this area. The spatial extent of the ice sheet in the case of a simulation displaying the larger, irregular oscillations (forcing115

of 1.05 K) compared to one with the smaller, more regular ones (forcing of 1.00 K) is shown in Fig. 4. The first difference
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to be seen is in the extent of the ice sheet in this region. For a forcing of 1.00 K, the ice-sheet margin is such that both

areas of large basal velocity, the ice streams, are marine-terminating, termed the ‘unretreated’ configuration. These ice streams

approximately correspond to the Humboldt and Petermann glaciers. The spatial extent of the ice sheet in this case shall be

termed the ‘unretreated’ configuration. In the simulation with a forcing of 1.05 K, the ice sheet extent is much reduced. From120

the mean ice thickness profiles, the ice margin is almost 100 km further inland. The Humboldt glacier ice stream is no longer

connected to the ocean, although the Petermann glacier ice stream still terminates at the Petermann fjord. We refer to this as

the ‘retreated’ configuration.

Figure 4. Time-averaged basal velocity field as well as mean ice thickness and basal velocity profiles along the ice stream centreline for the

unretreated (top) and retreated (bottom) configurations. The red and blue lines in the middle panels designate the centrelines of the Humboldt

and Petermann ice streams respectively.

The temporal behaviour of the two configurations is compared by taking the spatial mean in a small box that contains the

Petermann and Humboldt glaciers in the retreated and unretreated configurations and plotted in Fig. 5. For the unretreated case,125

the basal velocities in the ice streams behave quite differently. The Petermann ice stream is in a state of steady flow of around

100 m/yr. This is facilitated by a till that is close to saturated. The Humboldt alternates between near zero basal movement and

sliding velocities of 100 m/yr. The periods of stagnation are due to a refreezing of the till under the ice, evinced by a reduction
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in the mean basal water layer thickness. While the basal velocities are minimal, the ice thickness increases, establishing a

‘build up’ phase. The subsequent loss of mass due to rapid ice streaming is a ‘surge’ phase. The period of these oscillations130

switches between approximately 5 and 9 kyr. This steady cycle of mass gain during the build-up phase and loss during the surge

results in a change in ice thickness between 300 and 500 metres. The Petermann also shows a change in ice thickness with the

temporal same pattern while maintaining constant ice stream flow, suggesting the thickness variations are synchronized with

the nearby Humboldt.

Figure 5. Time series of basin ice volume, mean ice thickness, basal velocity, and basal water content in rP (blue) and rH (red) in the

unretreated (left) and retreated (right) configurations.

In the retreated configuration the ice thicknesses and basal velocities are closer in magnitude and the oscillations have larger135

amplitude and periodicity as mentioned previously. The temporal variables of the remnants of the two ice streams are plotted,

here designated the ‘retreated Petermann’ (rP) and the ‘retreated Humboldt’ (rH). While the exact location of these points

differs slightly for the different simulations, the existence of the two are robust in all the simulations exhibiting the oscillations.

In the retreated configuration, the rP is no longer in a steady flow state, with occasional refreezing of the basal till.

Two broad patterns for the oscillations in the retreated configuration emerge. The first is that of short oscillations with a140

period of around 8 kyr, such as seen at the end of the time series in the left hand side of Fig. 5. The basal velocity in rP abruptly
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switches between maximal and minimal, with corresponding drops in basal water layer thickness when the velocity is near

zero. In the rH, the till remains saturated, but the flow is not steady. It is increasing during the surge and decreasing during the

buildup. The magnitude of this variation is not so large, around10s of m/yr in the spatial mean. This is an order of magnitude

less than that of the build-up and surges. In the other pattern, the period is much longer, and the shape of the build-up and surge145

is asymmetric. While the basal velocity in rP switches abruptly between the build-up and surge phases, the increase in the rH

is gradual. This slows the mass loss until a point where the till rapidly refreezes in both ice streams.

Due to the constant saturation of the till in rH during the short oscillations, the changes in basal velocities are rather due to

the changes in ice thickness, which are induced by the large build-up and surges in rP. In this manner, the distinguishing factor

between the two patterns is that in the short oscillations, rP is in a build-up/surge mode and rH is in a near steady flow mode.150

In the longer period case, both are in the build-up/surge mode, with more gradual surge in rH. In between the oscillations there

is occasionally a period where both rH and rP are in a steady flow state with an associated minimum in the ice volume which

may last tens of thousands of years.

3.3 Forcing values beyond 1.05 K

To get a better idea of the tipping behaviour, two slower ramping rates of 1e-4 and 1e-5 K/yr are introduced. The values of the155

forcing parameter investigated are also increased in resolution, ranging from 1.0K to 1.3 K with increments of 0.05K. For the

simulations forced to values above 1.05 K, tipping behaviour is observed. Figure 6 shows time series of simulations for forcing

values of 1.05 to 1.30 K. Again, there are three different initial states with four rates of warming for each. The most prominent

feature in this case is the seemingly random tipping times, depending neither on the magnitude of the warming nor on the rate.
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Figure 6. Time series of the ice sheet volume for different forcing values, warming rates, and initial conditions B - D.

Spatially, the retreat of the ice sheet begins primarily in the northern region. This is contrary to ice sheet mass loss patterns of160

other ice sheet studies, for example Bochow et al. (2023), where mass loss also occurs in the southwest of Greenland. Due to the

similarities in the model setups between this study and that of Robinson et al. (2012), the spatial tipping pattern is equivalent.

The pattern of ice-sheet loss also looks similar to that of Zeitz et al. (2022) (their Fig. 3a) albeit without the regrowth of the ice

sheet. Due to the ice sheet mass loss occurring initially in the region where the oscillations are, they invariably have an effect

on the overall tipping behaviour.165
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3.4 Removal of the unpredictability

As a test to see whether the oscillating ice streams does have an effect on the tipping of the ice sheet, the mechanism responsible

is isolated. As described previously, the ice stream oscillations are surges in the basal velocity of the ice stream due to the

thermomechanical coupling at the base of the ice sheet. To remove the oscillations but maintain the ice stream, the basal

velocities in the region of interest need to be lower but non zero. For lower basal velocities, the mass lost due to streaming is170

closer to the accumulation rate, bringing the ice stream to a steady flow state (Robel et al., 2013). To achieve this, the value of

δ in equation 5 is increased. This raises the minimal effective pressure (Bueler and van Pelt, 2015) which increases the basal

frictional stress when the till water layer thickness is maximal. Simulations performed with a value of δ = 0.10 from initial

condition B for three forcing values around the tipping point at two rates each are seen in Fig. 7. As this value effects ice

streams across the entire ice sheet, the tipping point is different. Specifically, the tipping point is larger as δ increases as the ice175

sheet loses less mass dynamically due to lower ice stream velocities.

Figure 7. Time series of the ice sheet volume with δ = 0.1.
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4 Discussion

4.1 Tipping of the GrIS

The predominant source of mass loss of the GrIS in the present day is still under contention. Accelerating mass loss is typ-

ically seen in marine-terminating outlet glaciers due to their sensitivity to oceanic forcing (Krabill et al., 2004; Rignot and180

Kanagaratnam, 2006; Howat et al., 2008). However, they are topographically confined which might limit their impact under

greater forcing ((Joughin et al., 2010). For this reason, future loss due to negative surface mass balance forced by increasing

atmospheric temperatures might outweigh that of ice sheet dynamics (Enderlin et al., 2014; Bevis et al., 2019). The ice extent

before and after the tipping in Fig. 2 indicates that the mass loss does not start in regions with a lot of marine-terminating outlet

glaciers, specifically the southeast Van Den Broeke et al. (2009). In fact, many remain after the tipping has completed. This185

indicates the importance of oceanic forcing on r-tipping the GrIS is not important.

4.2 Ice stream oscillations

Here we find the appearance of millennial scale periodic oscillations of the ice volume which are unrelated to the isostatic

adjustment. Ice streams do not only represent a drain for rapid mass loss in ice sheets, but also are a source of internal periodic

variability. Periodic behaviour of ice masses can be seen in glaciers, which are typically confined to some topographical valley190

and/or have a basal slope, see for example Budd (1975); Kamb et al. (1985); Clarke (1987). Their reduced spatial extent implies

that their periodic behaviour is on a much shorter time scale of decades to centuries and thus directly observable. It has been

shown in models that ice sheets and ice streams, similar to valley glaciers, can also exhibit oscillatory behaviour under the right

conditions. These larger-scale oscillations were first proposed as Heinrich events (HE) during the last glacial period (Heinrich,

1988; Broecker et al., 1992; MacAyeal, 1993) However, HE might be triggered instead to external forcing (Alvarez-Solas et al.,195

2013).

Studies of oscillatory behaviour in ice sheets include parameterized models (Oerlemans, 1983; Fowler and Johnson, 1995;

Payne, 1995; Robel et al., 2013) and comprehensive ice sheet models with both idealized geometries (Calov et al., 2010;

Van Pelt and Oerlemans, 2012; Feldmann and Levermann, 2017) and realistic topographies (Papa et al., 2006; Roberts et al.,

2016; Schannwell et al., 2023). Additionally, some studies include a coupling to additional components of the climate system200

(Calov et al., 2002; Ziemen et al., 2019). Common to ice-sheet model simulations of the Laurentide ice sheet are oscillations

in ice sheet volume that sometimes show quasiperiodicity or seemingly chaotic behaviour. It would be expected that due to

the large spatial extent of the system and the complex basal topography that the oscillations would not have a near-constant

period. Even in the idealised geometry of Calov et al. (2010) there is spontaneous spatial asymmetry that leads to inconsistent

oscillation frequency. Such irregular variability is of especial importance when studying the tipping behaviour of a system.205
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4.3 Effect of oscillations on tipping

Figure 6 displays the trajectories of simulations forced close to the tipping point. What is most striking about these simulations

is that the time a trajectory takes to begin to tip to the ice-free state can vary by over 100 kyr, and this tipping time occurs

seemingly randomly. Indeed, there is a marked decrease in the mean tipping time of the ensemble of simulations as the forcing

value is increased, but there are trajectories for a forcing of 1.20 K that tip 100 kyr before a trajectory of 1.30 K. Additionally,210

the tipping time is also independent of the rate of the forcing, so clear there is no critical forcing rate for which r-tipping occurs.

What appears to be occurring is that simulations forced to or beyond 1.10 K enter the retreated spatial configuration, wherein

the ice sheet oscillates in volume, before potentially collapsing to an ice-free state. All of the simulations that collapse to so

from this oscillatory regime, implying it is inextricably linked to the tipping behaviour. When considering just the final state at

the end of the 400 kyr simulation, some trajectories for forcing values of 1.10 and 1.15K tip, whereas virtually all simulations215

forced beyond these values tip. This might suggest there is a tipping point between 1.15 and 1.20 K, and that some runs which

are forced to values below this tip due to rate-induced effects, albeit non-monotonically with rate. However, this r-tipping

framework does not explain why almost all of the simulations that do tip do so at drastically different times. Rather, it is

important to consider the transient rather than just the asymptotic behaviour.

Long transients occurring before a tipping point are generic to these systems. However, these transients generally have an220

associated scaling law that relates the transient lifetime (i.e. the time before tipping occurs) and the magnitude of the forcing

past the bifurcation point (Strogatz, 1994). In this case, it would be expected for all the trajectories for a given forcing value

that tip to do so at approximately the same time. There may be some slight differences due to the large dimension of the system,

but these would likely not be on the order of tens or even hundred of kiloyears.

Systems where long transients have lifetimes of indeterminate length are ones which experience chaotic variability and225

are called chaotic transients (Lai and Tél, 2011). Specifically, the lifetime of any chaotic transient depends sensitively on its

initial condition, but the lifetimes of an ensemble are exponentially distributed. These chaotic transient come about due to the

existence of chaotic non-attracting sets, which can appear in one of two ways in our system: Firstly, a chaotic attractor that

undergoes a crisis (Grebogi et al., 1982), which is effectively a bifurcation for a chaotic system, can leave behind a ghost

attractor. A trajectory that is forced beyond this crisis parameter value will remain around the ghost attractor for some time230

before eventually tipping, causing the chaotic transient. Secondly, the saddle manifold between the ice-free and ice-covered

stable states, sometimes called an edge or melancholia state Lucarini and Bódai (2017), might be chaotic itself and a trajectory

that experiences an r-tipping through this saddle has a chaotic transient. These two different ways in which chaotic transients

can manifest have different scaling laws for their mean lifetimes (Mehling et al., 2024). For chaotic transients after an attractor

crisis, the relationship between the mean transient lifetime τ and the forcing parameter value p is (Grebogi et al., 1986)235

⟨τ⟩ ∼ |p− pc|−γ , (9)

where pc is the parameter value where the attractor crisis occurs, and γ > 0 is the critical exponent that is unique to the system.

This scaling is only relevant for forcing values very slightly past the tipping point, as the mean lifetime approaches zero very

quickly if p− pc is large. As the mean transient lifetime for forcing values at or above 1.20 K decreases as the forcing value
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is increased, it is expected that the chaotic transients are due to an attractor crisis rather than crossing a chaotic saddle. In the240

case of forcing values of 1.10 and 1.15 K, the mean lifetime may be longer than the 400 kyr simulation period, explaining why

not all of these simulations tip.

4.4 Transient lifetime for a forcing value of 1.05 K

The state of the system at a forcing level of 1.05 K is of interest since it is on the boundary between more predictable patterns

and the irregular oscillations of the chaotic transients. None of the simulations at this forcing value tipped to an ice free state245

after 400 kyr of model time, but their time series look very similar to those that do tip. In this parameter range, the system

may either be on a chaotic attractor or otherwise a chaotic transient with a lifetime much longer than 400 kyr. Using the mean

lifetime of the simulations that tip to an ice free state and assuming that they are chaotic transients, the critical exponent can

be estimated. While there are only 12 simulations at these forcing levels, using a maximum likelihood estimation to fit them

to an exponential distribution results in a critical exponent γ in equation 9 of around 9.959. Using this, the mean lifetime for a250

forcing value is around 511 kyrs, which is indeed larger than the 400 kyr simulation run time. A few additional simulations at

this forcing level were done going to 1 myr. None of these simulations tip, suggesting that they are not chaotic transients and

the system is on a chaotic attractor at this parameter value. They may be supertransients, which are chaotic transients that have

an even longer mean lifetime that scales with system size as well Lai and Tél (2011). Changing, for example, the resolution of

the model would increase the system size, increasing the transient lifetimes. Since this does not reflect the physical reality, it is255

an undesired quality. Roberts et al. (2016) observed that the behaviour of the ice stream oscillations of the Laurentide ice sheet

in a comprehensive ice sheet model do not qualitatively change as the resolution is increased, supporting the idea that they are

not supertransients due to the spatial dimension of the numerical model.

Lohmann and Ditlevsen (2021) use similar methodology to this study, wherein the Atlantic meridional overturning circula-

tion (AMOC) was forced at different rates in an ocean model. While there is a clear rate of forcing below which tipping does260

not occur, at rates faster than 150 years there is irregular behaviour in the tipping probabilities and tipping times. Due to the

understanding that this is rate-induced behaviour as the tipping parameter value is not being crossed, the fact that some runs

tip and some do not is due to the basin of attraction of the stable ‘AMOC on’ state is riddled with the fractal basin boundary of

the chaotic saddle. What is clear for the simulations of this study is that all of the trajectories beyond a forcing value of 1.20

K eventually tip. This suggests not only that partial tipping does not occur, but also that there is no riddled basin boundary in265

this parameter regime. Further, the scaling of the tipping times of the tipping simulations for parameter values less than this

is on a similar order of magnitude. As demonstrated in Mehling et al. (2024), the transient lifetime associated with a ghost

attractor can be magnitudes larger than that associated with the lifetime of the chaotic saddle. While this indeed only describes

the lifetime when starting on the saddle and not crossing it, the spatial and temporal similarities of the trajectories displaying

oscillations implies that those with forcing between 1.05 and 1.20 K share a chaotic non-attracting set with those of forcing270

equal to and greater than 1.20 K. Similarly, we see that the scaling of the transient lifetime suggests the bifurcation point has

been crossed. Mehling et al. (2024) show the lifetime of the chaotic saddle increases as the bifurcation point is neared from
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the left. This is the reverse of the scaling due to a boundary crisis, where the lifetime increases as the bifurcation point is

approached from the right.

4.5 Removal of the unpredictability275

Removing the oscillatory mode by increasing δ makes the tipping more predictable. For forcing values of 2.075 and 2.080 K,

the tipping occurs at approximately the same time for both the fast and slow rates of forcing increase. This is in contrast to

the simulations with the oscillations, where the tipping at a given forcing value can vary by tens to hundreds of millennia, and

corroborates the hypothesis that the oscillations cause the delay in tipping. For a forcing value of 2.070, the simulation forced

at a fast rate of 0.1 K/year tips, whereas it does not for a slow rate of 0.001 K/year, suggesting rate-induced tipping.280

Increasing δ also reveals some interesting interplay between the parameterization that allows for the oscillations and the

tipping. As increasing δ decreases the ice stream velocity, the ice sheet loses less mass dynamically and thus the tipping value

increases. For a slowly increasing external forcing, the tipping now may occur much later, depending on the rate. However, the

tipping is now no longer delayed by the oscillations. Since the lifetime of the transients can be upwards of 100 kyrs, it may be

the case that the tipping occurs later for a lower forcing value. Thus the oscillations simultaneously serve to lower the value of285

the tipping point as well as increase the time before tipping occurs.

4.6 Intermediate tipping

Within the simulation ensemble, there are a few anomalous runs that do not behave as expected. There are two such types:

for a forcing level of 1.00 K, which is generally in the unretreated configuration, some simulations end up in the retreated

configuration with ice volume variability similar to but slightly smaller in magnitude than those of larger forcing values as290

seen in Fig. 8. This might suggest the chaotic attractor associated with the ice stream oscillations also exists for lesser forcing

values, albeit with a smaller basin of attraction. Secondly, there is a simulation with a forcing value of 1.15 K which remains

in the unretreated configuration. That is, for larger forcing values the less chaotic attractor remains at a diminished size. This

represents a complication in the analysis, since this parameter value is assumed to be already in the monostable, ice-free state.

In this case, the structure of the attractors may be that there is intermediate tipping (Lohmann et al., 2024). The picture would295

be that around a forcing value of 1.00 K, there are two attractors for the ice-covered state, corresponding to the retreated and

unretreated configurations. The attractor for the retreated configuration experiences a boundary crisis between 1.05 and 1.10

K, with corresponding chaotic transients remaining on the associated ghost attractor. On the other hand, the attractor of the

unretreated configuration experiences a bifurcation at a forcing value slightly larger than 1.15 K. This scenario could then have

r-tipping onto either the unretreated or retreated configurations, the latter of which experiences an earlier tipping to an ice-free300

state, resulting in an indirect r-tipping to the ice-free state. The basin boundary between the two ice-covered attractors could be

fractal which leads to nearby initial conditions approaching one or the other (McDonald et al., 1985).
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Figure 8. Time series (left) and mean ice thickness and basal velocity fields (right) for typical and anomalous model trajectories.

5 Conclusion

We have demonstrated the existence of oscillations of ice streams in the present-day GrIS under moderate seal-level temperature

forcing in a comprehensive ice sheet model, which occur due to thermomechanical coupling at the base of the ice. These305

oscillations appear for a retreated configuration of the Petermann and Humboldt glaciers. As the tipping of the ice sheet is in

the region where these ice streams are found, they delay the tipping of the ice sheet to an ice-free state, with a longer delay

for smaller forcing values past a threshold. That is, the chaotic attractor corresponding to the oscillations is generated between

a forcing value of 1.0 and 1.05 K. It then experiences a boundary crisis between 1.05 and 1.1K, whereafter the ghost of this

attractor is a chaotic non-attracting set generating chaotic transients that tip after some indeterminate amount of time. This310

delay in the tipping obscures whether the GrIS is susceptible to r-tipping, since chaotic transients can also occur as a result of

crossing a chaotic saddle. However, scaling of their lifetimes as well as removal of the oscillatory mechanism indicates they

are rather due to a bifurcation-induced tipping.

The conclusions are limited by the amounts and types of simulations conducted. A full investigation of the phase space and

the basins of attraction in the parameter range around the tipping would give a much clearer picture on when the tipping may315

occur, or if there are multiple, closer steady states before a larger tipping. Additionally, an edge-tracking algorithm (Lucarini

and Bódai, 2017; Mehling et al., 2024) can be used to approximate the chaotic non-attracting set, even for a ghost attractor.

This can be used to identify whether it is such a ghost attractor or else a chaotic saddle. In connection with other elements of the

climate system, the oscillations themselves on a shorter time scale are worth studying. For example, they may represent a peri-
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odic freshwater forcing condition on the Atlantic Meridional Overturning Circulation. Considering the retreated configuration320

where oscillations occur as a different state, r-tipping onto this attractor may be investigated.

The implications of chaotic transients on anthropogenic climate change in this context is phenomenological rather than

directly relevant due to the long time scales. The chaotic transients demonstrate that a system, in this case the GrIS, may

appear to be on a stable ice-covered attractor. However, the tipping to an ice-free state does eventually happen even if the

forcing parameter is kept constant, as the tipping point had been crossed a long time ago - the ‘safe’ parameter space to prevent325

tipping is actually smaller than originally believed. On the other hand, these long transients allow for overshooting of the

tipping point, after which the forcing parameter may still be reduced to prevent the tipping (Bochow et al., 2023).
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Chapter 4

Chaos and crises in a
physically-derived conceptual
model of coupled ice streams

4.1 Introduction
The manuscript that is the topic of this chapter is an extension of the study
of the behaviour seen in the comprehensive ice sheet model simulations of
the previous chapter, specifically their chaotic behaviour. Since the primary
candidate of the unpredictability of the tipping are the oscillations of the ice
stream, it is desirable to construct a conceptual model of these such that
parameters analogous to those in the ice sheet model may be altered and it
can be studied:

1. what parameter changes cause the model to exhibit chaos,

2. what characteristics of the chaotic mode change as parameters are fur-
ther changed,

3. how robust this chaos is in the parameter space.

Since the oscillations are believed to behave chaotically, there must be some
manner of nonlinearity. Obviously, the oscillations themselves are a product of
some nonlinear behaviour, but if the ice sheet system were such that multiple
ice streams were oscillating at different frequencies, this would not amount
to a chaotic system. There must be some sort of interaction between certain
oscillating ice streams. As seen in the manuscript of the previous chapter, the
northwestern basin was the primary contributor to the irregular behaviour
preceding the tipping of the ice sheet, and in that region was what looked
like an ice stream that is bisected such that it has two termini that oscillate
aperiodically. This motivates the construction of a conceptual model that
consists of the coupling of multiple ice streams in a nonlinear way. What
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CHAPTER 4. CHAOS AND CRISES IN A PHYSICALLY-DERIVED

CONCEPTUAL MODEL OF COUPLED ICE STREAMS

follows in this chapter is a derivation of the equations used in the model
from the general equations of ice sheet evolution form the previous chapter.
Thereafter, the various transitions from periodic to chaotic variability are
introduced, whereafter the manuscript is presented.

4.2 Ice stream velocity
Firstly, a conceptual model with zero spatial dimensions that is based on the
2D flow field as described in the previous chapter is required. Raymond [89]
derived a reduced-order model of the basal velocity of an ice stream with a
horizontal bed, i.e. a pure ice stream and not one in a topographic valley.
This results in a uniform ice thickness along the width of the ice stream. The
deviatoric stress and effective strain rate are defined as in the previous chapter,
giving the viscosity from the flow law

η =
1

2Aτn−1
. (4.1)

In this case, the rate factor A is assumed to be constant. The assumptions
on the flow are thus: the horizontal flow is unidirectional, taken to be in the
x direction, such that uy = 0. The horizontal flow is also plug flow, such that
it is constant along the z direction. There is no normal stress beyond the
hydrostatic stress. Thus, the remaining components of the shear stress tensor
are τxy and τxz. The result is that the B-P equations 3.27, 3.28 become

∂

∂y

(
η
∂ux
∂y

)
+

∂

∂z

(
η
∂ux
∂z

)
= ρg

∂h

∂x
, (4.2)

and the effective stress is

τ =
1

2

√(
τ2xy + τ2xz

)
. (4.3)

A useful relationship for solving for the velocity is derived from the relationship
between the strain rate and the shear stress,

∂ux
∂y

=
τxy
η

= 2Aτn−1τxy, (4.4)

∂ux
∂z

=
τxz
η

= 2Aτn−1τxz. (4.5)

Since the boundary condition for the base is not known when it is not frozen
to the bedrock, an empirical sliding law must be used. Such sliding laws are
well known in ice sheet models, appearing even in comprehensive SIA models
[19, 81, 96] to represent ice streams or glacier surges. These multi-valued slid-
ing laws are piecewise functions that switch from zero basal velocity to basal
shear stress-dependent velocity when some condition is met. This condition
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may simply be that the base has reached pressure melting point and is tem-
perate, or that basal melting has produced a sufficient amount of subglacial
water to induce sliding. As described in the previous chapter, the relationship
between the basal velocity and the basal stress has a different functional from
depending on the condition of the base. In the case of deformation of a weak
till, the basal shear stress saturates and is independent of velocity [46]. In this
case, the basal shear stress at the base of the ice sheet z = H is prescribed,

τxz(y,H) = τf , (4.6)

and will be derived later. The boundary at the surface z = 0 is again stress-
free,

τxz(y, 0) = 0. (4.7)

To derive a zero-dimensional equation for the basal velocity, the system de-
scribed by equations 4.1 - 4.7 is integrated over the entire thickness and width
then evaluated at the centreline, where the velocity is the greatest. Evalu-
ating at the centreline allows the assumption ∂ux

∂y ≫ ∂ux
∂z as away from the

shear margins, the horizontal gradients in velocity are stronger than vertical
gradients. This means the effective shear stress is simply 1

2τxy. Using this,
the integral of equation 4.2 at z = H is

∂

∂y

(
η
∂ub
∂y

)
H − τ0 = ρgH

∂h

∂x
, (4.8)

using the stress boundary conditions. From the flow law, we have

η
∂ux
∂y

=

(
1

2A

∂ux
∂y

)1/n

. (4.9)

The first integral over the width from some point y to the centreline at the
half-width W/2 gives

− 1

2A

∂ub
∂y

Hn =

[
− ρgH

∂h

∂x
+ τ0

]n
[W/2− y]n, (4.10)

where the boundary condition ∂ub
∂y |(W/2,z) = 0 is used. The final integral gives

ub(W/2) =
AWn+1

2n(n+ 1)Hn

[
ρgH

∂h

∂x
− τ0

]n
, (4.11)

which is the basal velocity at the centreline.
This equation 4.11 differs from equation 5 of Robel et al. [95] by a factor

of 2n. This is because that paper assumed the relation between the rate factor
A and the associated rate factor B used in Raymond [89] to be of the usual
form A = B−n. However, comparing equation 1b in Raymond to equation
4.22 in Greve and Blatter [39], the actual form of B used in the former reads
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A = (2B)−n. This is supported by the calculation in Tulaczyk et al. [113]
of 21−n(n + 1)−1B−n = 1.45 × 10−25 s−1 Pa−3 for an ice temperature of -15
degrees Celsius, which matches a value of A/2 from table 5.2 in Paterson [82]
for the typical value of n = 3. As a result, the basal velocity as given in
equation 5 of Robel et al. is too small by a factor of 2n. However, the rate
factor varies by orders of magnitude with ice temperature, so this factor can
be corrected by assuming the ice is warmer which allows a larger rate factor
to be used that is equal to that of Robel et al. after the correction. To remain
consistent with Robel et al., their equation for the basal velocity as well as
their value of A is used.

The sliding law also requires the aforementioned dynamic variable that
determines whether the ice is streaming or stagnant with zero velocity. Since
the streaming is assumed to be due to deformation of subglacial till rather than
sliding over hard bedrock, the switch should be related to the till water content
rather than just the basal temperature being at pressure melting point. This
has been formulated using concepts from soil mechanics in Tulaczyk et al.
[112, 113]. Effectively, the till has some internal failure stress τf below which
it remains consolidated and above which it can deform. This failure stress
depends on the normal stress applied, meaning that as water enters the till
and the effective normal stress σn is lowered, the failure stress also decreases,

τf = c+ σn tan(ϕ), (4.12)

where ϕ is the internal friction angle of the soil, which is larger for more dense
(i.e. lower void ratio) till [109]. A driving stress greater than this failure stress
induces shear deformation of the soil and sliding of the ice stream.

The amount of water the till can contain is represented by the void ratio
e = VV /VT , which is the ratio of the volume of liquid Vv, or rather void that
the liquid can occupy, to the volume of solid Vs in a soil sample. As the total
soil volume is V = Vv + VS , the void ratio has a limit of infinity in the case
of Vs → 0. The lower bound of e is 0. This void ratio depends also on the
effective normal stress σn,

e = e0 − C log[σn/σn,0], (4.13)

where e0 and σn,0 are empirical parameters [113]. The greater the applied
stress, the more compact the soil will be and the less liquid can enter. This
equation is inverted to solve for the effective normal stress σn(e). Since the
void ratio represents the water content of the till, its change in time can be
described by the basal melt rate. As mentioned in the previous chapter, basal
melting can occur when the sum of the thermodynamic sources and sinks
including geothermal heat flux, heat generated by friction due to sliding, and
heat lost by conduction into the ice sheet above are overall positive.

The failure stress τf is equivalent to the basal friction stress and a sliding
law is thereby constructed. When the till water content is low, the basal
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friction is larger than the driving stress and the basal velocity is zero. When
the driving stress exceeds the friction, the term τd− τf > 0 and the streaming
velocity is nonzero. If this induces further basal melt, the frictional stress will
continue to decrease until it is near zero, and the basal velocity will reach an
upper limit based on the driving stress. This increased velocity will serve to
reduce the ice thickness (equation 3.21) which reduces the driving stress. This
is a negative feedback to ensure solutions do not blow up.

4.3 Routes to chaos and attractor crises
In this section, the different ways chaotic behaviour in dynamical systems
arises is qualitatively described. While quantitative theoretical results exist for
one or two dimensional maps [35, 37, 38, 80], for systems of higher dimension
most useful equations are for calculating the dimensions of chaotic saddles
or escape rates from chaotic non-attracting sets, or even supertransients in
spatiotemporal systems [62]. For this project, the goal was to describe a model
that can qualitatively reproduce the chaotic variability of ice streams, with less
focus on the calculation of these quantities. Perhaps more relevant is the fact
that scaling laws exist for many of of these phenomena, due to the notion that
chaotic variability is actually a universal phenomenon [41, 55, 79, 108]. That
is, all systems displaying chaotic behaviour do so in very similar ways. This is
a remarkable feature, as commonly chaotic systems are thought of to behave
unpredictably. It is these qualities of universality that make studying lower-
dimensional systems relevant to understanding chaos in higher-dimensional
ones.

The change in dynamics from periodic to chaotic in a system is termed the
route to chaos and can occur in a variety of ways [41, 79]. Firstly, a periodic
attractor may undergo local bifurcations that cause it to transform into a
chaotic attractor. There are three such types:

1. Cascade of period doubling bifurcations,

2. Quasiperiodic (Ruelle-Takens) route to chaos,

3. Intermittent (Poumeau-Manneville) route to chaos.

The first one is the most classical example. A limit cycle experiences a a
period-doubling or flip bifurcation when looking at a discrete mapping. This
period doubling then repeats as the parameter is increased, generating an
infinite number of periodic orbits. In the limit, the motion between all of these
periodic orbits becomes chaotic. The cascade of period doubling bifurcations is
associated with Feigenbaum universality – the ratio of the differences between
parameter values of successive period doubling bifurcations is constant in the
limit as the chaotic regime is approached regardless of the system in which it
occurs [55, 108].
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In the quasiperiodic route to chaos, a limit cycle becomes quasiperiodic
after experiencing a Hopf bifurcation. This introduces a second oscillatory
frequency to the motion, which will be quasiperiodic if it is incommensurate
with that of the original limit cycle. If this occurs a second time, the result-
ing orbit is chaotic. Unlike in the case with the cascade of period doubling
occurring an infinite number of times, only three incommensurate frequencies
are required for chaos [77, 100].

Finally, the intermittent route to chaos can occur in a variety of ways. A
periodic attractor can experience one of three bifurcations that will remove its
attracting nature: it may be destroyed via a saddle-node bifurcation of limit
cycles (also known as a tangent bifurcation in the discrete mapping), or else
become unstable through a Hopf bifurcation or the inverse of a period doubling
bifurcation. As a result, the system spends time in a part of phase space
that experiences regular periodic behaviour before intermittently bursting with
chaotic variability. The case of the tangent bifurcation in the case of an
iterative map is the most illuminating. Before such a tangent bifurcation,
there is a stable periodic orbit. After the tangent bifurcation, locally the
stable orbit has disappeared, but any trajectory in the area will be caught
in the area of phase space where the tangent bifurcation occurred – in this
way, it is similar to the ghost of the saddle-node bifurcation discussed in the
previous chapter.

The three types of intermittent routes to chaos as given by Poumeau and
Manneville [88] correspond to the three bifurcations listed above, and can be
recognized by qualities of the intermittently periodic motion as well as scaling
laws for the mean time in between intermittent bursts. In the case of a type I
intermittency which arises due to a tangent bifurcation, the periodic motion
of of the intermittent trajectory will look similar to that of the periodic orbit
before the route to chaos. The mean time between intermittent bursts scales
as a reciprocal square root [79],

⟨τ⟩ ∼ |p− pc|−1/2, (4.14)

where p is the value of the parameter past the critical value pc where the
intermittency begins. Much like the quasiperiodic route to chaos begins with
a Hopf bifurcation, type II intermittency will see the appearance of a second
frequency in the intermittently periodic behaviour. The scaling law is similar
to that of type I in equation 4.14, with the exponent instead being −1. Fi-
nally, type III occurs due to a period doubling bifurcation, and as such the
regular oscillations of the intermittency will have double the period of that of
the pre-chaotic limit cycle. The scaling is the same as for type II. Parameter
regimes where the chaotic attractors exists are also dense with periodic win-
dows. Periodic windows are the result of a tangent bifurcation which creates
a stable periodic orbit that replaces the chaotic one. These tangent bifurca-
tions are the reverse of those that lead to type I intermittency, explaining why
chaotic orbits before a periodic window are strongly intermittent.
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Alternative to a local bifurcation, there may be some global bifurcation
that causes the appearance of a chaotic attractor or for a chaotic attractor
to suddenly grow in size. These are called crises and come in two flavours:
boundary and interior [36], the former of which was introduced in the previous
chapter. A boundary crisis results in the collision and annihilation of a chaotic
attractor with an unstable periodic orbit as a parameter is varied. Similar to
a saddle-node bifurcation, it can also result in the spontaneous appearance of
a chaotic attractor when the parameter changes in the opposite direction. It
is termed a boundary crisis as it occurs when a chaotic attractor collides with
an unstable orbit in its own basin boundary. As mentioned in the previous
chapter, the annihilation of the chaotic attractor leaves a ghost of the chaotic
attractor, a non-attracting chaotic set that causes chaotic transients.

An interior crisis results in the sudden enlargement of a chaotic attractor.
Similarly to a boundary crisis, it is the result of a collision between a chaotic
attractor and an unstable orbit, which in this case is in the interior of the basin
of attraction. Interior crises are associated with periodic windows. Near the
end of a periodic window, a cascade of period-doubling bifurcations recreates
a chaotic attractor. As the tangent bifurcation that initiated the periodic
window creates an unstable periodic orbit as well, the eventual collision of this
with the chaotic attractor during the interior crisis causes it to increase in size.
Additionally, chaotic non-attracting sets are present in these periodic windows,
being the ghost of the former chaotic attractor that existed before the saddle-
node bifurcation. Thus even in a periodic window, chaotic transients can
occur. Interior crises also causes crisis-induced intermittency, which is similar
to the intermittent route to chaos albeit with the non-intermittent motion
being chaotic as well. Just as for Pomeau-Manneville intermittency, the mean
lifetime between intermittent bursts scales with the parameter value beyond
the crisis. However, the scaling law is that same as that of a boundary crisis,
with a critical exponent γ that depends on the system under consideration.

4.4 The manuscript
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Abstract

Regions of fast-flowing ice in ice sheets, known as ice streams, have been theorized to be able to

exhibit build-up/surge oscillatory variability due to thermomechanical coupling at the base of the

ice. A simple model of three coupled ice streams is constructed to replicate the spatial configuration

of a single ice stream being bisected into two termini. This model is shown to exhibit both steady-

flow and build-up/surge oscillations. Further, the variability can be chaotic due to the nonlinear

coupling of three incommensurate frequencies. This provides a mode of chaotic internal variability

for ice sheets that contain these ice streams, which evolve via purely laminar flow.

I. INTRODUCTION

Fast variations in ice sheet volumes are most commonly thought to occur due to variability

in other components of the climate externally forcing the ice sheet. This is because the

dynamics of ice sheets are dominated by the slow deformational creep of an extremely

viscous fluid. However, ice sheets possess an internal mode of variability that manifests as

a cyclic variation of the volume of the ice sheet driven by the thermomechanical coupling of

the ice sheet at its base. Due to the immense overburden pressure of the ice, the base can

find itself at the pressure melting point such that the base of the ice is liquid. The water

under the ice sheet can promote very rapid movement of the ice, generally in topographically

confined channels, known as ice streams. Important to this process is the characteristics of

the bedrock under the ice. The water can either lubricate the ice sheet base causing it to

slide on top of hard bedrock (basal sliding), or saturate a weak till enough to cause it to

shear (subglacial deformation) [1].

In comprehensive ice sheet model simulations of the Laurentide ice sheet (LIS) covering

parts of North America during the Last Glacial Period (LGP), such ice streams have been

shown to transport large quantities of ice over relatively short periods of time [2–6]. These

have been theorized to result in what are known as Heinrich events (HE), which are large

amounts of ice-rafted debris found in the marine sediment records of the LGP [7, 8]. These

HE are marked for their abrupt nature and are sometimes synchronous with the Dansgaard-

Oeschger events seen in the ice-core record of Greenland [9]. Due to their rapid onset, HE

are most commonly thought to have occurred due to rapid ice streams. Whether they are

externally forced or occur spontaneously due to the internal variability of the ice sheet is
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still under contention [10].

The aforementioned model studies of the LIS display these oscillations in ice sheet volume

even under constant external forcing conditions. These oscillations are irregular in period,

also described as quasiperiodic [11], as to be expected due to the size and complexity of the

ice sheet. Non-chaotic oscillations have also been suggested in a zero-dimensional concep-

tual model of Robel et al. [12] (hereafter R13), where a subcritical Hopf bifurcation between

steady-streaming and oscillations of the ice stream thickness results in hysteresis behaviour

and bistability for a range of ice surface temperatures. This model has also been expanded

with a stochastic component [13]. In this case, the noise represents fast, small-scale pro-

cesses, such as atmospheric variability in surface temperature and accumulation rates. The

resulting model is able to randomly alternate between steady streaming and oscillations due

to noise-induced tipping from one mode to the other. This is an example of the Hasselmann

paradigm [14], where small amplitude variations of the mean climate state are modelled

using stochastic forcing.

Recently, a comprehensive model study of the present-day Greenland ice sheet has dis-

played oscillations similar to those of R13 [12] under mild temperature forcing [15] However,

the period and amplitude of these oscillations are highly irregular despite the external forc-

ing containing no stochastic or chaotic component. These oscillations are evidenced to delay

the tipping of the ice sheet and are theorized to be chaotic transients [16]. In this study, a

conceptual model of ice streams displaying chaotic variability is constructed. Building upon

the model of R13 [12], it is modified to include nonlinear coupling. The coupling is inspired

by the oscillating ice stream seen in Kypke et al. [15]. What is originally two individual ice

streams, that behave independently, retreat inland under an external temperature perturba-

tion such that they are much closer and seemingly coupled. Since they are fed by a common

upstream section of the ice stream the system of ODEs is able to display chaos when two

‘downstream’ terminating ice stream boxes are coupled to a single ‘upstream’ ice stream

box with unidirectional flow with three incommensurate frequencies [17]. Using this model,

it is demonstrated how certain parameters affect the overall variability, and how chaotic

modes and chaotic transients can arise solely from ice stream dynamics. While the setup

of this conceptual model does not exactly match the conditions and configuration of the

comprehensive ice sheet model simulations on which it is based, there is a suitable similarity

to be able to explore the situations that can lead the system to exhibit chaotic variability.
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II. R13 MODEL FOR ICE STREAM TEMPORAL VARIABILITY

The R13 [12] conceptual model of ice stream temporal variability assumes an idealized

geometry of an ice stream with constant width and length. The variables are “spatially

lumped” such that they are described by average values and reduced to zero spatial dimen-

sions. The upper panel of Fig. 1 shows a cross section of the ice stream displaying the mass

and energy fluxes. The prognostic variables of the model are ice stream ice thickness H, ice

sheet basal temperature Tb, the thickness of the solids in the unfrozen section of till htill,s,

and till void ratio e. The void ratio is the fraction e = Vw

Vs
, where Vw is the volume of water

and Vs is the volume of solids in the till such that the total till volume is VT = Vw+Vs. It can

take on any value greater than zero is related to the porosity ϕ ∈ [0, 1) by the relationship

ϕ =
e

1 + e
. (1)

The thickness of the water in the till is given as htill,w = ϕhtill, max and is related to the void

ratio and thickness of the solids in the unfrozen till by htill,w = ehtill,s. The basal velocity is

a diagnostic variable determined by the driving stress and the basal frictional stress, which

depends on the till water content. The till water content depends on the unfrozen till height

and the void ratio via hwater = ehtill,s. The model has three cases for the state of the basal

till, seen in the lower panel of Fig. 1 and described below.

A. Frozen till

The first state is completely frozen till: the unfrozen till height htill,s = 0 and either Tb ≥ 0

(Tb is positive for negative temperatures) or it is 0 and the basal melt rate is negative. In

this case, there is no basal sliding,

u = 0, (2)

the void ratio does not change, i.e. no water in the till is melting or freezing,

de

dt
= 0, (3)

the unfrozen till thickness stays at 0,

dhtill,s

dt
= 0, (4)

4



FIG. 1. (Top) Schematic of the fluxes of the R13 model. Broad arrows represent mass fluxes and

wiggly arrows represent energy fluxes. (Bottom) Schematic of the three till cases.

and the temperature of the basal ice layer increases or decreases,

dTb

dt
= − 1

Cihb

(
τfu+ qg −

Ki(Ts − Tb)

H

)
, (5)

depending on the difference between the geothermal heat flux qg and the energy diffusing

to the surface of the ice as determined by the gradient between the surface and basal tem-

peratures, Ts and Tb respectively. The prefactor Ci is the heat capacity of ice and hb is the

thickness of the base of the ice that is being warmed.
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B. Partially frozen till

The second case is partially frozen till. In this case, the basal temperature is 0◦C, and

the void ratio is at a minimum value, e = ec, known as the ‘till consolidation void ratio’.

Additionally, the unfrozen till thickness is greater than zero but must be either less than its

maximum value, or it is at its maximum value and with a negative melt rate. In this case,

there is again no basal sliding since it is still partially frozen,

u = 0, (6)

the void ratio does not change,
de

dt
= 0, (7)

the unfrozen till thickness changes depending on the melt rate,

dhtill,s

dt
=

τfu+ qg − Ki(Ts−Tb)
H

Lfρi
, (8)

where Lf is the latent heat of fusion of ice and ρi is the density of ice. As all the energy is

being used to melt or refreeze the till, so the basal temperature stays at 0◦C

dTb

dt
= 0. (9)

C. Thawed till

The final case is where the till is thawed. The unfrozen till thickness will be maximum,

and an additional energy budget is used to increase the void ratio. The basal velocity in

nonzero and is given as

u =
AfW

n+1

4n(n+ 1)Hn
max [τd − τf , 0]

n, (10)

where the driving stress τd depends on the ice thickness and surface slope and the basal

stress τf depends on the water content: it is equal to ∞ for fully or partially frozen till

(resulting in u = 0 in sections 2.1 and 2.2) and decreases to zero with increasing till water

content: τf = τ0 exp [−ce]. The parameter Ag is the rate factor and n the exponent of Glen’s

Flow law [18].

The void ratio changes depending on the melt rate,

de

dt
=

τfu+ qg − Ki(Ts−Tb)
H

htill,sLfρi
, (11)
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the unfrozen till thickness does not change and stays maximal,

dhtill,s

dt
= 0, (12)

and the basal temperature stays at 0◦C,

dTb

dt
= 0. (13)

A large, increasing void ratio for a fixed total till thickness represents the solids gradually

being replaced until the entire till is just a layer of water. Physically, a maximum void

ratio that depends on the till properties would be expected, and any water beyond this is

somehow drained from the system. A large void ratio is not an issue in this simplified model

however, as the only component that depends on the void ratio is the basal friction τf which

saturates to near zero very quickly as the void ratio increases.

D. Ice thickness

In all three of the cases, the change in ice thickness is

dH

dt
= ac −

Hub

L
, (14)

i.e. a balance between the mass gained via accumulation due to precipitation ac and the

mass lost due to sliding, assuming ice thickness goes to 0 at the end of the ice stream. This

gives a mean surface slope of h/L.

III. SPLIT ICE STREAM MODEL

In Kypke et al. [15], a single large ice stream is split by a topographical ridge into

two termini. These ice stream sections have differing basal properties and geometries, the

subsequent oscillations will have different amplitudes and potentially different periods. This

is modelled as a coupling between three ice streams, each described by the conceptual R13

model [12]. The coupling in the model is achieved by designating the three box models and

coupling them by conserving volume between one ‘upstream’ box (box 1) and two smaller

‘downstream’ boxes (boxes 2 and 3), as in Fig. 2 This figure is not to scale: the lengths are

on the order of 100s of kilometres and the widths on the order of 10s of kilometres, while

the height is on the order of a kilometre.
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FIG. 2. Schematic of the three-box split ice stream mode. Box 1 gains volume from accumulation

and loses volume to boxes 2 and 3 due to streaming flow. Boxes 2 and 3 gain volume from

accumulation and as volume flux from box 1, and lose volume due to streaming flow.

For the upstream box, the ice thickness lost due to basal sliding depends on the difference

between the height of box 1 and the heights of boxes 2 and 3. This difference is a linear

combination of the heights of boxes 2 and 3, weighted by their relative widths.

dH1

dt
= ac −

(H1 − W2

W1
H2 − W3

W1
H3)ub,1

L1

(15)

This can cause a scenario where the height of box 2 or 3 is larger than that of box 1, since H1

represents the mean height for box 1. The widths of box 2 and box 3 sum up to the width of

box 1 (W1 = W2+W3), but otherwise the rest of the parameters are unconstrained. Coupling

between the boxes also occurs via modulation of the driving stress. Since the driving stress

depends on the surface slope, the driving stress of the upstream box 1 is modified to depend

on the difference between its height and the height of the downstream boxes in the same
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manner as described above,

τd1 = ρig
H1

L1

(
H1 −

W2

W1

H2 −
W3

W1

H3

)
. (16)

There is also a coupling through a volume flux when box 1 is losing volume. Since boxes

2 and 3 are downstream from box 1, and volume loss occurs via basal sliding, this volume

must enter boxes 2 and 3. with each getting a fraction determined by W2,3/W1. To keep

the coupling unidirectional, the condition is set that the volume flux is only nonzero if the

change in volume of box 1 is negative. This prevents the case where boxes 2 and 3 lose

volume while box 1 is gaining volume. Explicitly, this means

dVi

dt
=

LiWiac −WiHiub,i − Wi

W1

dV1

dt
if dV1

dt
< 0

LiWiac −WiHiub,i otherwise
(17)

for i = 2, 3.

The basal velocity depends largely on three parameters: the box width, the box length

via the driving stress, and the rate factor Ag. The rate factor is a parameter that depends

largely on the temperature of the ice. This factor can vary by multiple orders of magnitude,

from 6.8×10−24 Pa−3 s−1 at 0 degrees to 3.6×10−27 Pa−3 s−1 at -50 degrees [18]. The larger

the rate factor, the ‘softer’ the ice, and the faster it will to flow. Since the temperature of

the ice is not specified, a constant value of 5×10−16 as in R13 [12] is used, which corresponds

to a temperature of around -10 ◦C. The basal velocity depends very strongly on box width,

being raised to the fourth power of this parameter. Otherwise, the only other appearance of

the box widths are in determining the relative strength of the coupling of the driving stress

of box 1 to boxes 2 and 3. While the basal velocity does scale as ∼ L−3, the primary effect

that the length of the box has on the basal velocity is to determine the flow regime. The

equilibrium ice thickness in the steady flow regime, derived from equation (14), depends

on the length and the basal velocity such that it ultimately scales linearly with length. A

larger L means a larger ice thickness, which increases the basal melt rate and brings any

configuration closer to the steady-flow regime.

As in R13 [12], the geothermal heat flux and surface temperature also determine the flow

regime in opposite ways. A large geothermal heat flux increases the basal melt rate, and a

larger (more negative) surface temperature increases the conduction of heat from the base

upwards through the ice sheet, decreasing the basal melt rate. Depending on the size of
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the ice stream boxes we may expect a smaller geothermal heat flux in the upstream box,

which is closer to the centre of the ice sheet. This is due to the properties of the crust

and mantle of Greenland. However, the difference would not be more than a few mW/m2,

so a constant value across the boxes can also be assumed The surface temperature is also

assumed to be larger in the upstream box, primarily to represent a lower temperature due

to a higher altitude as a result of a larger ice sheet thickness. Similarly, the accumulation

rate in the upstream box is larger to represent a larger surface mass balance due to lower

runoff at lower temperatures.

IV. CHAOTIC VARIABILITY AND ROUTES TO CHAOS

The split ice stream model displays all the same modes of variability as in R13 [12]:

steady flow as well as weak and strong build-up/surge (stick-slip) oscillations. Further, it is

able to exhibit chaotic variability, an example of which is presented in this section. Figure

3 shows a simulation for a set of parameters where the tree boxes are in the three different

modes: Box 1 is in the steady-flow mode, characterized by the arbitrarily large void ratio

(not pictured) and small but nonzero basal velocity. Spikes in this basal velocity occur due

to the coupling to box two, where strong surging occurs. This build-up/surging mode in

box 2 is due to occasional refreezing of the till, identified by a basal velocity that becomes

zero when the void ratio becomes minimal and the unfrozen till thickness becomes less than

maximal. Box 3, on the other hand, is in the regime of weaker build-up/surge oscillations.

The unfrozen till thickness is maximal, but the void ratio varies along with the basal velocity.

Altogether, their coupling results in a chaotic state.

To investigate how chaos arises under parameter variation, we restrict ourselves to only

changing one parameter. Figure 4 shows a bifurcation diagram, given by the peaks in the

total ice volume in all three boxes, as a function of the surface temperature in box 2. It should

be noted that the steady-streaming mode does not appear as the surface temperatures of

box 3 is such that it are fixed in the oscillatory mode. There are three regimes, characterized

by the rate of change of the void ratios in boxes 1 and 2 and determined by the value of

Ts,2. These three regimes represent different dominant sources of variability. In the first

one, for Ts,2 <, box 2 has a large and increasing void ratio and box 1 has a minimal void

ratio. The oscillations are subsequently paced by the variability in box 1. For a large enough
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FIG. 3. Variables for the individual boxes in the chaotic regime. The void ratio of box 1 is

arbitrarily large, so it is omitted for readability.

Ts,2 > 6.65, box 2 is now in the weak build-up/surge mode. For even larger Ts,2 > 9.05,

the less frequent surging events allows the thickness of box 1 to grow to the point where it

has a positive basal melt rate and e1 is increasing. That is, box 2 is in the build-up/surge

mode and box 1 is in the steady-streaming mode meaning box 2 dominates the variability.

These regimes describe the asymptotic state, but as the void ratio can increase without

bound, transitions from one regime to another can take a very long time to equilibrate

depending on the initial values of these variables which may introduce long transients in the

non-equilibrium setting.

The bifurcation diagram reveals a few chaotic windows. In the parameter window between

14.9 and 15.4 (lower part of Fig. 4), the transition from periodic to chaotic as Ts,2 is reduced

11



FIG. 4. Bifurcation diagram for Ts,2 from 0 to 27 (top) and a zoomed view of the chaotic window

between 14.6 and 15.6 (bottom).
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FIG. 5. Poincaré map of the period-doubling route to chaos at the beginning of the chaotic window

of Fig.3.

occurs as a cascade of period-doubling bifurcations. Figure 5 shows a sequence of a return

map of a Poincaré-like map at the onset of the chaotic window. What begins as a 2-cycle

experiences a period-doubling bifurcation into a 4-cycle. The return map then begins to

appear as a strange attractor by Ts,2 = 15.10.

The transition back to a periodic orbit occurs as the orbits become increasingly more

intermittent, with bursts of chaotic behaviour in between regular periodic motion. This can

be seen in Fig. 6, which shows the same Poincaré-like maps as Fig. 5. As Ts,2 continues to

decrease, these intermittent bursts become more and more rare, as shown by the clustering

of points around one part of the attractor around (12.6, 0.48). This continues until the

motion is purely periodic. Hence this route to chaos, or rather route from chaos, occurs as

13



FIG. 6. Poincaré map of the intermittency route to chaos at the end of the chaotic window Fig. 3.

the Pomeau-Manneville intermittency type [19].

V. BISTABILITY, CRISES AND CHAOTIC TRANSIENTS

In this section, the model is applied to replicate the behaviour seen in Kypke et al. [15].

In that study, there are two configurations of the ice sheet in the northwestern drainage

basin with two distinct ice sheet extents. In the ‘unretreated’ case with a larger ice sheet

extent, the ice streams oscillate in a more regular manner. Under moderate warming of

about 1◦C, the ice sheet in that region retreats and the ice streams now oscillate in a

more irregular pattern. As has been shown in the previous section, the model can shift

from regularly periodic to chaotic under very small surface temperature perturbations. We

also demonstrate the transition from oscillatory to chaotic under variation of the length of

14



FIG. 7. Bifurcation diagram for varying L2 displaying hysteresis of chaotic and regular periodicity.

The top figure shows increasing L2, bottom figure is decreasing L2. Observe the region of bistability

in 222 < L2 < 231.5.

one of the downstream boxes in this section to represent the retreat of the ice sheet under

temperature forcing. This comes with the caveat that the conceptual model parameters have

not been altered to match those of the comprehensive ice sheet model, so the similarities

are purely qualitative.

Figure 7 shows the bifurcation diagram under variation of the length of box 2. The region

between 222 and 232 km is bistable, displaying both periodic and chaotic variability. At

L2 = 231.5 km, the chaotic attractor experiences a boundary crisis [20]. At L2 = 222 km, the

periodic attractor disappears and only the chaotic attractor remains, implying a saddle-node

bifurcation of limit cycles. The periodic motion occurs when the unfrozen till thickness of

box 2 htill,2 is constant and maximal. On the chaotic attractor, the till periodically partially
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FIG. 8. Projection of the attractor in the ice stream volume and box 3 void ratio plane for L2 =

231.5 km, displaying the existence of bistable chaotic and periodic attractors.

refreezes. This explains the direction of the hysteresis: for larger ice stream lengths the ice

thickness will be larger, decreasing the heat lost to conduction and maintaining a larger basal

melt rate which in turn keeps the till unfrozen. The bistability in this region also results in

a fractal boundary between the basins of attraction of the chaotic and periodic attractors

[21]. This results in neighbouring initial conditions near the basin boundary approaching

one attractor or the other, and can explain the appearance of the ‘anomalous’ simulations

in Kypke et al. [15], where trajectories forced to parameter values expected to be in the

retreated configuration are in the unretreated configuration, and vice versa.

The split-stream model also displays a chaotic transient in the transition between chaotic

to periodic after the boundary crisis at L2 = 232 km. Figure 9 shows a time series for a

trajectory initialized on the chaotic attractor for L2 = 231.5 km. After 100 kyr of simulation

time (orange line in Fig. 9), the value of L2 is slowly increased to 232.5 km over 50 kyr and
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FIG. 9. Transient transition from chaotic to periodic for a slow parameter shift of L2 from 231.5

km to 232.5 km. The orange line indicates where the parameter shift begins, and the yellow line

is where it ends. The system does not transition to periodic until more than 100 kyr after the

parameter has changed.

kept constant at that value thereafter (yellow line in Fig. 9). The trajectory remains chaotic

for a while although the system only has a periodic attractor at this parameter value. The

periodic motion then begins around 260 kyrs of simulation time, more than 100 kyr after

the parameter shift is finished. A similar chaotic transient is proposed to occur in Kypke et

al. [15], albeit with a collapse to a state where the ice stream no longer exists rather than

to a periodic orbit.

VI. CONCLUSIONS

A model of split ice streams based on the simple model of R13 [12] has been proposed.

Our model displays all of the same modes of variability due to thermomechanical coupling

at the base of the ice sheet: steady flow, oscillations, and build-up/surge (or stick-slip)

oscillations. Using this split ice stream model it has been demonstrated that ice streams

can exhibit purely temporally chaotic variability over a range of parameter values. Chaotic

windows arise in a variety of ways, including period doubling, type I intermittency, and

boundary crises. While the coupling geometry implemented in this paper is inspired by

a scenario seen in model simulations of the Greenland ice sheet, a simple reversing of the

coupling direction could allow for the model to represent ice streams which converge into a

common terminus. This scenario could also be applicable to regions such as the Siple ice

stream in the West Antarctic ice sheet [1].

An important process not accounted for is the positive melt-elevation feedback which

would decrease the accumulation rate at smaller ice thicknesses. This feature is vital if one

wishes to extend the model to be able to include the effects of ‘tipping’ of the ice streams as

seen in Kypke et al. [15]. That is, if the ice thickness is brought low enough to decrease the
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accumulation rate a suitable amount, the ice stream could lose all of its mass and not recover.

The first question is whether this feedback would dominate over the feedbacks that allow

for the oscillations. If the surface temperature is allowed to decrease as H decreases, the

conductive term in the basal melt rate would be less sensitive to changes in ice thickness. As

mentioned in R13 [12] there is no timescale associated with the vertical temperature gradient

through the ice, which can occur on a timescale of thousands of years. The inclusion of such

a propagation timescale might alleviate the complications associated with introducing an

altitude-dependent accumulation rate.

Appendix A: Model parameters

TABLE I. Shared parameter values

Constant Description Value Units

ρi Density of ice 917 kg m−3

Lf Latent heat of fusion of ice 3.335×105 J kg−1

Ki Thermal conductivity of ice 2.1 J s−1 m−1 K−1

hb Basal ice layer thickness 10 m

Ci Specific heat capacity of ice 1.94×106 J K−1 m−3

Af Glen’s flow law rate factor 5×10−25 Pa−3 s−1

ec Till consolidation void ratio 0.3 —

τ0 Empirical till coefficient 9.44×108 Pa

c Empirical till exponent 21.7 —

qg Geothermal heat flux 0.07 W m−2
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TABLE II. Specific parameter values for boxes 1,2 and 3 respectively

Constant Description Value Units

htill, max Maximal till thickness 1 m

2

2

ac Accumulation rate 0.05 m yr−1

0.0455

0.0417

Ts Surface Temperature 15 ◦C

0-30 a

15

L Ice stream length 200 km

200-300 b

250

W Ice stream width 60 km

35

25

a Parameter range in section IV. Fixed at 15 in section V
b Parameter range in section V. Fixed at 200 in section IV
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Chapter 5

Outlook

The concepts explored in the studies contained in this thesis are simultane-
ously vast and nuanced, requiring further work to fully flesh out their under-
standing. The modelling study of chapter 3 presents the most opportunity for
further study. The question of whether the chaotic transients are caused by a
chaotic saddle or a boundary crisis, which in turn provides an answer whether
the system is in a bistable or monostable regime when the tipping occurs and
thus if r-tipping is possible, still requires a concrete answer. The application
of an edge-tracking algorithm [72] to approximate the chaotic non-attracting
set that delays the ice sheet mass loss allows for more focused study of its
patterns of variability. In the context of the spatially extended system that is
the GrIS, understanding of the edge state could hint at which regions of the
ice sheet are most sensitive to changes that may bring them towards this edge
state form which tipping may occur. Most interestingly would be if this edge
state was in a part of phase space that is distinct from either the ice-covered of
ice-free attractors, indicating that arriving at such a state by any means would
facilitate tipping. Specifically, the study of chapter 3 only explored one path
of trajectories in parameter space, beginning at a cluster of very similar initial
states. This line of investigation could be buttressed with many additional
equilibrium simulations starting from very different initial conditions to get a
better idea of the parameter space. This would also help to shed light on the
possibility of multistability of the ice-covered state that was suggested in the
the article.

Another relevant study is using the same methodology as in the paper of
chapter 3 but restricting the analysis to a shorter time scale. The question
to be answered is whether there could be r-tipping into the oscillatory state.
As the ice stream oscillations themselves have a non negligible amplitude vis-
a-vis global seal level rise and are quite rapid when compared to the typical
evolution of the ice sheet, the local and global impact caused by entering this
configuration may be relevant on the order of kiloyears.

As the goal of the paper of chapter 4 is primarily to introduce the coupled
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94 CHAPTER 5. OUTLOOK

conceptual ice stream model, the analysis can naturally be extended in future
works. Most relevant is a more focused application to the ice streams seen in
the comprehensive model – this includes more direct parameterization to fit
the ice stream configuration seen in the Greenland ice sheet. Another step
could be the more rigorous exploration of the chaotic attractors, routes to
chaos, and crises present in the model. For example, an explicit calculation
of the critical parameter of the chaotic transients introduced in section VI of
that paper can be done, along with identification of the types of intermittency
routes to chaos.

More interestingly, this model may allow for the investigation of the in-
teraction between r-tipping and chaotic transients. A primary issue in the
comprehensive model study was the inability to distinguish whether r-tipping
was actually occurring, owing to the random tipping times and long transients
before tipping. The question in particular is whether there exists some em-
pirical scaling of the tipping times for a system that tips through a chaotic
saddle due to rate-induced effects. While the lifetime (which is the inverse of
the escape rate from) of the saddle, which depends on its fractal dimension
[34], determines some part of this chaotic transient, whether the rate at which
the parameter is change also plays a role is unknown. Applying the afore-
mentioned edge tracking algorithm can be used to approximate this chaotic
saddle, allowing estimation of the escape rate. Such concepts have been ex-
plored before with regards to tipping probabilities in Kaczas et al. [47], which
focuses on predictability of a final system based on how well the initial state
is known rather than the mean time it may take a trajectory to tip in this
scenario. Of course, it might be preferable to use an even simpler, purely
conceptual system in such a study instead.
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