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1 Introduction

In recent years there has been a lot of interest in topological phases of matter. Unlike
conventional phases of matter, topological phases are not distinguished by symmetries,
but by so-called topological invariants which have more subtle physical implications. It
comes therefore as no surprise that for a long time only a few topological phases were
studied and those that were, were not studied in the full topological context, which is
only known now. One of the topological phases that has been know for a very long
time is the quantum Hall effect. The quantum Hall effect is a topological phase in
two-dimensions without any symmetries. Even though the bulk of a quantum Hall system
is insulating, it exhibits gapless edge modes. It is therefore different from other insulating
two-dimensional materials. It was soon realized after the discovery of the quantum Hall
effect, that there is a quantized invariant (topological invariant) associated with the
quantum Hall effect [48], but only much later such invariants were found and studied in
other systems.

By now other topological systems are also being studied from an experimental and
theoretical point of view [7]. There exist topological phases in any number of dimensions.
One of the topological phases that received a lot of attention in recent years, is the
one-dimensional topological superconducting phase, without time-reversal symmetry [5].
Similar to the quantum Hall effect, this phase exhibits edge excitations, which are zero-
dimensional for one-dimensional systems. For this particular phase the edge excitations
are called Majorana bound states and they are interesting in themselves. There has been
a lot of effort in detecting Majorana bound states in the lab. One reason is that these
excitations provide evidence that a system is indeed in a topological phase. It is therefore
required to have unambiguous experimental evidence for the presence Majorana bound
states, which in turn requires a good theoretical understanding of the physics associated
with Majorana bound states. In particular for the most common experimental methods
that are used to study them, the signature of Majorana bound states in the measurement
still has to be understood better. And example would be the frequently performed
tunnel probe measurement on Majorana bound states [26, 40,41]. A second reason why
Majorana bound states are interesting is their potential application to a certain quantum
computation scheme. This scheme, called topological quantum computation, relies on the
braiding of so-called non-abelian anyons in order to perform computations [18]. Majorana
bound states are the simplest example of such non-abelian anyons. No other non-abelian
anyons have been realized experimentally yet, which puts further focus on the study of
Majorana bound states. Additionally to probing Majorana bound states, their use in
topological quantum computation also requires them to be manipulated. This also poses
an interesting problem for both experimentalists and theorists [25,27].
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1 Introduction

We can summarize the challenges presented so far as being related to generating
a topological phase, probing Majorana bound states and manipulating them. These
challenges are actually important beyond the intensively studied topological phase of
one-dimensional superconducting systems without time-reversal symmetry. In particular
they are very important for the closely related phase of one-dimensional topological
superconductors with time-reversal symmetry. This phase also exhibits Majorana bound
states, and we will study some of its aspects in this thesis. We will discuss some issues
related to obtaining this topological phase and how electron-electron interactions may
help in achieving this. We will also discuss issues related to using this phase and its edge
states for topological quantum computation, by calculating the result of an exchange of
two such edge states. Finally we will return to the broken time-reversal-symmetry case
and discuss aspects related to tunnel probing Majorana bound states.
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2 Background

In this chapter we introduce the background needed for understanding this thesis. We
will point out for which of the following chapters the specific theories are relevant. Most
of the background is either general to Majorana bound states or relevant to several of
the following chapters.

We begin by introducing the concept of topological phases of matter and we state some
of the existing classification for these phases. In particular we will introduce the classes
that we will focus on. These will be the ones that exhibit phases with Majorana bound
states. Afterwards we will introduce the key ideas of topological quantum computation.
Specifically its primary idea and how it is related to Majorana bound states. This will be
important for chapter 3 where we study whether braiding of Kramers pairs of Majorana
bound states is suited for topological quantum computation. Thereafter we will introduce
more concrete models for systems that exhibit Majorana bound states. In that context
we will emphasize the most important properties of Majorana bound states, which will be
needed for the rest of this thesis. Hereafter we will give a brief summery of bosonization
and Luttinger liquids, which we use to study one-dimensional interacting systems. It
will by no means be a complete introduction to bosonization, and we will skip some of
the details in order to focus on the aspects that will be relevant for later calculations.
Bosonization will be needed in chapter 4 and 5. Finally we introduce the renormalization
group idea and explain how it can be used to study systems. This will again be important
in chapter 4 and 5.

2.1 Topological Phases of Matter

For a long time it was believed that phase transitions in physics are always connected
to a change of symmetry in the physical system. This idea was due to Landau and
was very successful in describing phase transitions. Examples are, when a non-magnetic
phase goes over into a ferromagnetic one it breaks rotational symmetry or when a liquid
becomes a crystal it break continuous translational symmetry.

It was eventually realized that there can be phases and phase transitions that cannot
be classified according to symmetries and symmetry breaking. Most of these so-called
topological phases are strongly interacting and their ground states exhibit long-range
entanglement. This is for instance reviewed in [49]. We will not be concerned with
topological phases in their full generality, but with a subset called topological insulators
and topological superconductors. Those systems are usually only weakly interacting, they
have a band gap in their electronic excitation spectrum and they always belong to certain
symmetry classes. Within each symmetry class there are topologically distinct phases.
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2 Background

There usually exist gapless excitations at the boundary between two such topological
phases or at the system boundary of a topological phase to vacuum. Majorana bound
states, which we will study in this thesis, are such edge excitations.

The question arises which symmetries one should consider when classifying topological
insulators and superconductors. One of the first topological classifications [44] used
time-reversal symmetry T , particle-hole symmetry P and chiral symmetry C = T P.
Those symmetries where chosen because they are not broken by disorder. The resulting
symmetry classes where previously known in the context of random matrix theory and
are know as Altland-Zirnbauer classes [3]. The topological phases of each symmetry class
are classified according to a mathematical group, such that each element of the group
corresponds to a distinct topological phase. It was later on realized by Kitaev [36] that
there is a certain periodicity to the classification with respect to the dimensionality of
the system. Therefore the classification is often called “the periodic table of topological
insulators and superconductors”. Table 2.1 shows this periodic table up to dimensionality
three. Subsequently there was and is a lot of work on classifying topological phases with
respect to other symmetries, for instance the space group symmetries of crystals [45].

We will only be concerned with the original classification. Even more specifically,
out of the symmetries classes from table 2.1 we are interested in the classes that have
topological phases with Majorana bound states. Those are the classes BDI, D and DIII
in one dimension and the classes D and DIII in two dimensions. In this thesis we focus on
the one-dimensional classes, but some of the results in chapter 3 can easily be generalized
to two dimensions. One-dimensional systems are sometimes referred to as wires, and we
will also use this nomenclature.

In every topological class one of the topological phases is called the trivial phase. These
are the ones that do not exhibit edge excitations on boundaries to the vacuum. For the
one-dimensional system, which we will consider, this means that the trivial phases do not
have Majorana bound states at the ends of the one-dimensional wires. Other topological
phases are referred to as non-trivial. Often one also refers to topologically non-trivial
phases simply as topological phases and to topologically trivial phases as non-topological
phases. It has been an experimental and theoretical challenge to engineer topologically
non-trivial phases from existing materials. Chapter 4 is related to this in that we will
study how to get a non-trivial phase for systems of class DIII.

2.2 Topological Quantum Computation

In this section we will explain the main idea behind topological quantum computation.
Before we can do this, we have to explain the origin of the problem which topological
quantum computation tries to overcome. For this purpose we will briefly compare bits
and qubits.
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2.2 Topological Quantum Computation

Class T P C d = 1 d = 2 d = 3

A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z

AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Tab. 2.1: The table shows the topological classification of different symmetry classes [36].
T , P and C denote time-reversal symmetry, particle-hole symmetry and chiral
symmetry respectively. An entry of zero in the symmetry columns means that
the symmetry is absent. For T and P the entries ±1 are the square of the
symmetry operator. For C the entry 1 only means that chiral symmetry is
present.

2.2.1 Gates in Classical and Quantum Computing

A classical computer is based on bits. A bit can be in one of two states, denoted by 0 or
1. When the computer operates on bits the only operations it can preform is to flip the
bit from 0→ 1 or from 1→ 0 or not to flip the bit. Such an operation is called a gate.
Whether or not to flip a bit may depend on the state of the bit itself and on the state of
other bits. The only errors that can occur when working with classical bits are that a
bit gets flipped that should not have been flipped, or that a bit that should have been
flipped does not get flipped. These errors still have to be dealt with, but the fact that
there are only a finite number of them simplifies the situation.

We now consider a quantum computer, which is made out of qubits instead of bits.
Qubits are two-level quantum systems, which take states in a two-dimensional Hilbert
space. This means that if we choose a basis |0〉, |1〉 for this Hilbert space, then the qubit
can be in any one of the states{

a|0〉+ b|1〉 | a, b ∈ C, |a|2 + |b|2 = 1
}
. (2.1)

A lot of the computational power of quantum computers arises from this multitude of
possible states, but there are also new problems associated with it. In order to understand
these problems it is helpful to visualize the state of an individual qubit on the Bloch
sphere. Every point on the sphere corresponds to a possible state of the qubit. One can
see that a sphere represents the possible qubit states (2.1) as follows. First of all as long
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2 Background

|ϕ̄final〉

|0〉

|1〉

Fig. 2.1: Every point on the surface of the Bloch sphere represents a possible state of the
qubit. This increases the room for error because when performing an operation
which should map the initial state |ϕinitial〉 = |0〉 onto the final state |ϕfinal〉 = |1〉
(both red) one has many states close to |ϕfinal〉 where one could end up instead.
The blue arrows are some examples for these erroneous final states |ϕ̄final〉.

as we only consider one qubit, its overall phase is of no physical significance. We use this
freedom to always choose a to be real. The condition in (2.1) then reads

|a|2 + |b|2 = (Re a)2 + (Re b)2 + (Im b)2 = 1 (2.2)

and therefore the three real parameters Re a,Re b and Im b lie on the surface of a sphere.
This illustrates not only that the qubit can be in infinitely many states, but also that
there are always states that are arbitrarily close to each other. This causes problems for
gates. If we consider a gate that transform a state |ϕinitial〉 into a state |ϕfinal〉, anything
that results in a different final state is an error and we end up with a final state |ϕ̄final〉
in that case. Opposed to the binary case of the classical bits this does not only include
our gate not doing anything, but it also includes infinitely many other errors. Even if
our gate is approximately doing what it is supposed to do, there are many other states
close to the final state |ϕfinal〉. Therefore a slight error or imperfection in operating the
qubit can lead to an error. This is illustrated in figure 2.1. Said another way, there are
infinitely many gates that can potentially be applied to a single qubit and this makes it
challenging to operate a physical system such that it performs exactly the desired gate.
Because even small errors can accumulate after performing several gates it is important
to find ways to reduce these errors.

2.2.2 Braiding and a Finite Set of Gates

There has been a lot of work on how to prevent errors in quantum gate operations.
One of the approaches is topological quantum computation, which was first proposed
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2.3 Majorana Bound States

by Kitaev [35]. The main idea is that we return from having infinitely many possible
gates to having a small number of them that are well distinguished. This way a small
perturbation will not change the outcome of a gate. The general mathematical details of
how to achieve this are beyond the scope of this thesis, but we will sketch the general
idea here and explain some problem-specific details in chapter 3.

Topological quantum computation is based on certain two-dimensional particles called
anyons. In a system with a certain number of anyons, there will be a Hilbert space
associated with these anyons. This will be the Hilbert space used for topological quantum
computation. Qubits will be subspaces of this Hilbert space. A property of anyons is that
we can perform operations on this Hilbert space and therefore on the qubits by braiding
the anyons. Braiding the anyons means that we move them around each other such that
initially and finally there are always anyons at the same positions, even though the may
have exchanged position throughout the braiding process. This is called braiding because
when visualized in (2+1) dimensions the paths of the anyons, called world lines, form
braids. This is illustrated in figure 2.2. One can classify the braids according to their
topology, which means according to which braids can be continuously deformed into
each other. An example of topologically equivalent braids is given in figure 2.2 b). The
most important property of braiding is that the transformation on the Hilbert space only
depends on the topology of the braids and not on the details of the path. This means
that there is only one gate per braid. This may still leave us with infinitely many gates,
but one can show that all braids can be generated from a relatively small subset. The
braids in themselves are inherently robust to small perturbations, because if the braiding
path is only altered locally the topology of the braid does not change. This is illustrated
in figure 2.2 b).

In chapter 3 we will study whether Kramers pairs of Majorana bound states can be
used as anyons and therefore for topological quantum computation. In order to answer
this question we will investigate the requirements listed here, namely whether there is a
finite set of transformations that only depend on the braiding topology and not on the
braiding path.

2.3 Majorana Bound States

We will now review the most important properties of Majorana bound states in the
context of simple toy models. We start by describing the Kitaev chain [34], which is the
simplest model with Majorana bound states.

2.3.1 Kitaev Chain

The Kitaev chain is the simplest example of a topological system in class D. It consists
of a one-dimensional chain of spinless fermions. Later we will discuss the generalization
to the time-reversal invariant case, for which spin will be important. Therefore we will

13



2 Background

a)

time

1 2 3

1 23

b)

= =

Fig. 2.2: In (a) the general idea behind braiding of anyons is illustrated. The number
represent the different anyons. The anyons change positions as a function of
time in such a way that they eventually return to the initial positions, but not
necessarily to their own ones. In (b) the equivalence of braids is illustrated.
This results in an inherent robustness again perturbations because even the
perturbed paths on the right still form the same braid topologically. (Note that
the disordered component in the time direction is not physical and is only in
the picture for illustrative purposes).

start of with a spin-polarized chain instead of a spinless one. The Hamiltonian of the
Kitaev chain is

H =
∑
i

t(c†i↑ci+1↑ + h.c.) + µc†i↑ci↑ +∆(c†i↑c
†
i+1↑ + h.c.). (2.3)

The special feature of this Hamiltonian that makes it hard to realize in practice is the
superconducting pairing, which is of p-wave type.

There is a special point in parameter space for the Hamiltonian (2.3). This point is
µ = 0, t = ∆. It is of particular interest because it exhibits most clearly the Majorana
bound states as edge excitations, as we will review shortly. Because of that it is a good
starting point for constructing other toy models based on the Kitaev chain.

In order to see why there is something special about the mentioned point in parameter
space, one should write the Hamiltonian in terms of Majorana fermions. At this point
this is a purely mathematical decomposition, because every fermionic operator can always
be written as the sum of two Majorana fermions of the form

ci↑ =
1

2
(χi↑a + iχi↑b), (2.4)

14



2.3 Majorana Bound States

where the Majorana fermions χi↑a, χi↑b are hermitian operators that satisfy

χ2
i↑a = 1,

χ2
i↑b = 1,

{χi↑a/b, χj↑a/b} = 2δij,

{χi↑a/b, χj↑b/a} = 0. (2.5)

In terms of Majorana fermions the Hamiltonian takes the form

H =
i

2

[
N∑
i=1

−µχi↑aχi↑b + (t+∆)χi↑bχi+1↑a + (−t+∆)χi↑aχi+1↑b

]
. (2.6)

We now note that at the special point µ = 0, t = ∆, the Hamiltonian takes the particularly
simple form

H = i
N−1∑
i=1

tχi↑bχi+1↑a. (2.7)

The remarkable thing is that the two Majorana fermions χ1↑a and χN↑b do not appear
in the Hamiltonian and therefore commute with it. This indicates a ground state
degeneracy. We can think about this ground state degeneracy in terms of the fermion
d = 1

2
(χ1↑a + iχN↑b), so that one ground state is the one where the d-fermion is absent

and in the other one it is present. Even though we can think about the ground state
degeneracy in terms of the fermion there is something special about its Majorana fermion
constituents, namely that they are localized on opposite ends of the wire. This gives
a certain reality to the mathematical decomposition (2.4) in the sense that one is now
able to interact with individual unpaired Majorana fermions. We will refer to these
unpaired Majorana fermions as Majorana bound states. They have many interesting
properties. For example Majorana bound states are equal superpositions of electrons
and holes, because they are of the form χ1↑a = d+ d† and χN↑b = i(d† − d) and d and d†

are zero-energy fermions in a superconductor.
So far we have only discussed one particular set of parameters for which the system

is inside the topological phase. For other parameters inside the topological phase the
Majorana bound states are not perfectly localized. Instead they are exponentially
localized at opposite ends of the wire. This means that Majorana bound states at the
ends of a sufficiently long wire are still decoupled. This is the situation that is most
relevant for the rest of the thesis. In particular we will always assume that the systems
are long enough such that Majorana bound states are decoupled and can therefore be
studied independent of each other.

It is instructive to compare the Hamiltonian (2.7) with the Hamiltonian of the systems
for the parameter values t = ∆ = 0 and µ 6= 0. The latter takes the form

H =
i

2

N∑
i=1

µχi↑aχi↑b. (2.8)
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2 Background

trivial dimerization:

topological dimerization:

Fig. 2.3: The figure illustrates the trivial-dimerization parameter point corresponding to
(2.8) and the topological-dimerization parameter point corresponding to (2.7).
The rectangles denote the original fermions, the circles the Majorana fermions
in which the electrons where decomposed and the lines correspond to couplings
in the Hamiltonian. The topological-dimerization parameter point is inside the
topological phase and has an unpaired Majorana fermion at each end of the
wire.

Even though this Hamiltonian is very similar to (2.7) it does not have unpaired Majorana
fermions at the ends. This is an example for a parameter point inside the topologically
trivial phase. The difference between this parameter point and the one in the topological
phase discussed previously is illustrated in figure 2.3. Because in both cases the Hamilto-
nian only consists out of uncoupled quadratic Majorana-fermion terms, we will call these
points in parameter space topological-dimerization point and trivial dimerization-point
respectively.

Difference Between Majorana Fermions and Majorana Bound States

Because this subtle point will be important throughout the thesis let us summarize
the difference between Majorana fermions and Majorana bound states. Majorana
fermions, sometimes also referred to as Majorana operators, result from the mathematical
decomposition of an ordinary fermion, also called complex fermion. They are related to
an ordinary fermion through (2.4) and they have the properties (2.5). Even though all
complex fermions can always be written in terms of Majorana fermions, this generally
bears no physical significance. In particular Majorana fermions are not related to the
Hamiltonian of any system.

Majorana bound states are also Majorana fermions. But on top of that, they are related
to the Hamiltonian of the system, in particular they commute with it. Majorana bound
states are therefore system specific. They are usually localized at the phase boundary
between topological phases. As such they can be moved adiabatically by changing
the position of the phase boundary. This can be used to adiabatically exchange them,
resulting in braiding operations which are known to exhibit non-abelian statistics [29].

2.3.2 Time-Reversal-Invariant Kitaev Chain

We will now introduce the time-reversal-invariant version of the Kitaev chain. This is
the simplest toy model for topological systems in class DIII, which we study extensively
in this thesis.
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2.3 Majorana Bound States

In order to obtain a time-reversal-invariant model we consider both spin directions.
That way the time-reversal-invariant version of equation (2.3) takes the form

H =
∑
i,σ

t(c†iσci+1σ + h.c.) + µc†iσciσ + σ∆(c†iσc
†
i+1σ + h.c.), (2.9)

where the σ prefactor is 1 for ↑ and −1 for ↓.
If one now considers the topological-dimerization point in parameter space, one is left

with two Majorana bound states at each end of the wire, namely χ1↑a, χ1↓a and χN↑b, χN↓b
respectively. This implies a fourfold ground state degeneracy, instead of just a twofold
one, because two distinct fermions can be formed out of the Majorana bounds states.

Similar to the time-reversal-broken Kitaev chain, there is a certain robustness to the
edge states, such that away from the topological-dimerization point in parameter space
there are still two Majorana bound states localized at each end, as long as the wire is
long enough.

A major difference to the time-reversal-broken Kitaev chain is that our Majorana
bound states are now strictly speaking not unpaired, because there are always two of
them localized at the same end of the wire. These two Majorana bound states are actually
Kramers partners. This prevents them from coupling and acquiring a finite energy, even
if the spin-up and spin-down chains are coupled. Nonetheless, nothing prevents us from
forming local fermions out of the Majorana bound states and their Kramers partners.
They take the form

dR =
1

2
(χ1↑a + iχ1↓a),

dL =
1

2
(χN↑b + iχN↓b). (2.10)

The local fermions fulfill the usual fermionic anti-commutation relations. But they
actually behave quite differently from normal fermions under time-reversal symmetry. In
particular we note that they do not seem to have Kramers partners, since there is only
one at each end of the wire. If one explicitly calculates how the corresponding states
transform under time-reversal symmetry one finds that time-reversal symmetry actually
flips the occupation number of this local fermion. In other words the Kramers partner of
an occupied state is an empty state. This is know as a parity anomaly and it implies
that there has to be another such local fermion somewhere in the system such that total
parity is conserved under time-reversal symmetry.

For most of our studies we adopt a local point of view for DIII systems. Sometimes
we will describe the edge excitations in terms of local fermions and sometimes in terms
of a Kramers pair of Majorana bound states. The former has the advantage that it is
more intuitive to think about the states. The latter has the advantage that it is easier to
check for time-reversal symmetry or construct time-reversal-symmetric models.
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2.4 Bosonization and Luttinger Liquids

In this section we will summarize the most important bosonization results and techniques
that we will use throughout the rest of this thesis. Bosonization is a technique used for
one-dimensional problems, that maps their low-lying degrees of freedom to a free bosonic
field theory. We will apply this to fermions. The advantage of bosonization is that it
allows to treat certain types of interactions exactly. Interactions which cannot be treated
exactly will then be studied in the context of renormalization group theory which we will
introduce in the next section.

One main goal of this section is to remind the reader about some of the most important
aspects of one-dimensional electronic systems in their original and bosonized form. The
other goal of this section is to set up a dictionary for how to translate fermions into
the bosonic theory. This is by no means a complete introduction. Out of the many
relevant details for bosonization we will only present those which are beneficial for later
discussions. This section mostly follows a review by Sénéchal [46], but sticks to the
conventions used in [21], except that we will treat the high energy cutoff differently as
we will explain below. Another goal of this section is to introduce complex coordinates
for the (1 + 1)-dimensional free bosonic theory. Those will turn out to be useful for some
of the conformal-field-theory techniques that we use in chapter 4.

We consider a one-dimensional electronic Hamiltonian which is diagonal in k-space.
Ignoring spin for the moment such a Hamiltonian takes the form

H =
∑
k

ε(k)c†(k)c(k). (2.11)

We only want to describe the low-energy degrees of freedom of this system and therefore
we linearize the dispersion relation around the two Fermi points. Simultaneously we
introduce a cutoff Λ such that our linear approximation is valid for energies in the interval
[−Λ,Λ]. This is illustrated in figure 2.4. The approximate Hamiltonian takes the form

H =
∑

−Λ<vFk<Λ

(vFk)c†(k + kF)c(k + kF)

+
∑

−Λ<vFk<Λ

(−vFk)c†(k − kF)c(k − kF).
(2.12)

We now define position-space operators for right- and left-moving electrons. To lighten
the notation we will not include the ranges for k explicitly, but they are always in an
interval around zero, describing the linearized region around the Fermi points. The right-
and left-moving operators take the form

ψ(x) =
1√
L

∑
k

eikxc(k + kF),

ψ̄(x) =
1√
L

∑
k

eikxc(k − kF).
(2.13)

18



2.4 Bosonization and Luttinger Liquids

EF

−kF kF

vFΛ

Fig. 2.4: The figure shows an example for a dispersion relation. For low energies only the
linearized part of the dispersion close to the Fermi momenta is relevant. Such
a description is necessarily only valid in an energy interval around the Fermi
energy, as indicated in the picture.

Here L is the system size which is always assumed to be large enough such that we can
go from sums to integrals via

∑
k →

L
2π

∫
dk. The fields ψ, ψ̄ are fermionic fields that

fulfill {
ψ(x), ψ†(x′)

}
= δ(x− x′),{

ψ̄(x), ψ̄†(x′)
}

= δ(x− x′),{
ψ(x), ψ̄(x′)

}
= 0.

(2.14)

In terms of the left- and right-moving operators and in the continuum limit we can write
the Hamiltonian as

H = ivF

∫
dx
[
−ψ†(x)∂xψ(x) + ψ̄†(x)∂xψ̄(x)

]
. (2.15)

A representation very similar to this will be the starting point of chapter 5.
The reason why these operators are called left- and right-moving is clearest when one

calculates their time evolution with the Schrödinger equation in the Heisenberg picture
Ȯ = i [H,O], where O is an arbitrary operator. For the time-dependent operators one
finds

ψ(x, t) =
1√
L

∑
k

eik(x−vFt)c(k + kF),

ψ̄(x, t) =
1√
L

∑
k

eik(x+vFt)c(k − kF).
(2.16)

The important point to notice is that the right-moving field ψ only depends on x and t
through the linear combination x− vFt and the left-moving field only depends on the
linear combination x + vFt. This justifies calling ψ and ψ̄ left and right moving, but
it also suggests that it might be beneficial to introduce new coordinates, such that the
fields only depend on a single coordinate each.
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It turns out to be very useful to introduce certain complex coordinates. The idea
comes from conformal field theory and is commonly used for two-dimensional field
theories [17,46]. In particular we define the complex coordinates

z = −i(x− vFt) = vFτ − ix,

z̄ = i(x+ vFt) = vFτ + ix,
(2.17)

where we once gave the definition for real times t and for imaginary times τ = it. The
corresponding transformations of the derivatives are

∂z = − i

2

(
1

vF

∂t − ∂x
)

=
1

2

(
1

vF

∂τ + i∂x

)
,

∂z̄ = − i

2

(
1

vF

∂t + ∂x

)
=

1

2

(
1

vF

∂τ − i∂x

)
.

(2.18)

In order to simplify the notation we will often set vF to 1. This makes the equations more
symmetric between x and t. Units can be restored by substituting t→ vFt. Generally an
operator that depended on x and t will now depend on z and z̄ in complex coordinates.
But as we pointed out earlier, there is a separation into left- and right-moving fields,
such that there are operators that will only depend on either z or z̄. For example the
operators ψ and ψ̄ now take the form

ψ(z) =
1√
L

∑
k

e−kzc(k + kF),

ψ̄(z̄) =
1√
L

∑
k

ekz̄c(k − kF).

Note that we replaced the two real coordinates x and t with two complex coordinates
z, z̄. Therefore we increased the number of real parameters by two. The physical part
of the description is obtained when one sets z̄ = z∗, where the star denotes complex
conjugation. The real usefulness of the complex coordinates is only apparent within
conformal field theory where one can exploit the relationship between complex analysis
and conformal symmetry. This will not be important for us, so the complex coordinates
may simply be regarded as convenient coordinates. In particular because we will use
results from the literature which are formulated in terms of complex coordinates.

Before we continue and bosonize the fermionic fields we will calculate their propagator,
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which assumes time ordering, in imaginary time. One finds

〈ψ(z)ψ†(w)〉 =
1

L

∑
k,k′

〈0|c(k + kF)c†(k′ + kF)|0〉e−kz+k′w

=
1

L

∑
k>0

e−k(z−w)

=
1

2π

∫
k>0

dk e−k(z−w)

=
1

2π

1

z − w
. (2.19)

Here we used that the “vacuum” |0〉 is defined with respect to the Fermi energy, such
that the vacuum expectation value is only finite for k > 0. Furthermore we used that
because of the time ordering Re z > Rew and therefore the integral always converges.
Similarly one finds

〈ψ†(z)ψ(w)〉 =
1

2π

1

z − w
. (2.20)

2.4.1 Translation into Bosons

We will state the identities that relate the one-dimensional fermionic system to the
one-dimensional bosonic one. We will skip some important parts of the derivation in
particular most aspects of the mode expansion. The interested reader is referred to [21,46]
for the omitted details. We will however demonstrate some consistency requirements, in
particular to demonstrate some computational techniques that will be useful later on.

As a starting point we consider the Lagrangian of a massless bosonic field ϕ. It takes
the form

L[ϕ] =
C

2

∫
dx
[
(∂tϕ)2 − (∂xϕ)2

]
(2.21)

where we chose units with vF = 1. The constant C will be important for the convention
by which we will translate between fermions and bosons. We will fix it later in order
to arrive at the desired convention, which is the one used by [21]. For that C takes a
value of 1

π
. We do not fix the constant right away to make it easier to compare different

references. The action corresponding to the Lagrangian (2.21) is

S[ϕ] =
C

2

∫∫
dtdx

[
(∂tϕ)2 − (∂xϕ)2

]
(2.22)

The conjugate momentum of ϕ is given by

Π =
δL

δ(∂tϕ)
(2.23)

= C∂tϕ, (2.24)
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such that

[ϕ(x), Π(x′)] = iδ(x− x′). (2.25)

It can be shown, that the field ϕ can be decomposed into left and right moving fields
φ and φ̄ according to

ϕ(x, t) = φ(x− t) + φ̄(x+ t),

ϕ(z, z̄) = φ(z) + φ̄(z̄).
(2.26)

Deriving this decomposition relies on a mode expansion for ϕ and we will not present
the details here.

One often introduces an additional bosonic field θ as C∂xθ = Π1. It is related to φ
and φ̄ as

C∂xθ = Π

= C∂tϕ

= iC(∂z + ∂z̄)(φ+ φ̄)

= iC(∂z − ∂z̄)(φ− φ̄)

= −C∂x(φ− φ̄). (2.27)

Therefore we have

θ = φ̄− φ, (2.28)

up to an additive constant, which we set to zero. This way the chiral fields take the form

φ =
1

2
(ϕ− θ),

φ̄ =
1

2
(ϕ+ θ).

(2.29)

We now want to associate the field ϕ with a electron quantity that behaves like a
boson. Such a quantity is the density n. We postulate the relationship

ϕ = λ

∫ ∞
x

dy n(y), (2.30)

where we will determine λ later according to our choice for C. This means that creating
an electron at position x′ increases ϕ(x) by λ for x < x′. This is the same effect the
operator

exp

[
−iλ

∫ x′

−∞
dy Π(y)

]
(2.31)

1Note that this convention differs by a sign compared to [46] in order to be consistent with [21]
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has, because Π is the canonical momentum of ϕ. Using our definition Π = C∂xθ, we
can rewrite (2.31) as

exp

[
−iλ

∫ x′

−∞
dy Π(y)

]
= exp [−Ciλθ(x)] (2.32)

This operator would be a good candidate for our electronic creation operators for left
or right movers, if it only depended on z or z̄. This is currently not the case because θ
depends on both. On the other hand if we replace θ → θ∓ ϕ we still have the same shift
properties, because ϕ commutes with itself. Additionally everything now depends on
the chiral fields according to (2.29). We can therefore make a consistent ansatz for our
electronic operators. It has the form

ψ†(x) = Ae2iCλφ(x), ψ̄†(x) = Ae−2iCλφ̄(x). (2.33)

We will determine the constants after we explain how to calculate correlation functions
in the bosonic representation. The constants will then be determined such that the
fermionic correlation functions are reproduced.

In order to calculate the correlation functions we first have to note some subtle points
about the exponential operators of the form eiαφ, called vertex operators. As before we
will only point out some issues and state their solutions without going into detail. Details
can be found in the references [17, 46]. Because the operator φ is a fluctuating field, care
has to be taken when defining its exponential. In particular the exponential is defined
according to normal ordering. Normal ordering means that in terms of a mode expansion
of the operator, all the creation operators are to the left of all the annihilation operators.
Generally we will denote normal ordering with colons, such that the normal-ordered
version of an operator O is :O : . The vertex operators which we discussed above are
always implicitly assumed to be normal ordered. The difficulty that now arises is that
some of the normal properties of the exponential function do not hold for normal-ordered
exponentials. In particular we have :eiαφ(z) : : eiβφ(w) : 6= :ei(αφ(z)+βφ(w)) : .

In our case we have instead the very important identity [17]

:eiαφ(z) : : eiβφ(w) : = e−αβ〈φ(z)φ(w)〉 : ei(αφ(z)+βφ(w)) : (2.34)

Together with the property

〈 : ei(αφ(z)+βφ(w)) : 〉 = δα+β,0 (2.35)

this enables us to calculate the correlation functions of the bosonized fermions. The only
missing ingredient is the correlation function 〈φ(z)φ(w)〉. In order to calculate it we can
start from the correlation function for ϕ in imaginary time, which we call

G(x, τ) = 〈ϕ(x, τ)ϕ(0, 0)〉. (2.36)
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Rewriting the action (2.22) in the form

S[ϕ] =
C

2

∫∫
dxdτ

[
ϕ(−∂2

x − ∂2
τ )ϕ
]

(2.37)

we know that G has to satisfy

−∇2G =
1

C
δ(x)δ(τ). (2.38)

The solution is the well known fundamental solution of the Laplace equation in two
dimensions. It is given by

G(x, τ) = − 1

4πC
ln(x2 + τ 2) + const. (2.39)

Here the choice of the constant is quite interesting. It does not affect the asymptotic
behavior of the Green function for large or small values, but it can be used to affect the
units inside the logarithm. In particular the only other length scale that exists in our
system is the one associated with the cutoff. We call this length scale a. One can then
set the constant to 1

4πC
ln(a2), such that the Green function becomes

G(x, τ) = − 1

4πC
ln

(
x2 + τ 2

a2

)
.

This way G does not have any units, but has an implicit dependence on the cutoff scale a.
We will sometimes choose to have an explicit cutoff dependence instead. In that case the
constant in (2.39) is simply put to zero and G has logarithmic units. We will generally
not include a, but it can easily be restored by replacing z → z/a and z̄ → z̄/a.

We can also write the Green function as

G(x, τ) = − 1

4πC
ln(zz̄)

= − 1

4πC
ln(z)− 1

4πC
ln(z̄). (2.40)

Together with the identity

〈ϕ(x, τ)ϕ(0, 0)〉 = 〈φ(z)φ(0)〉+ 〈φ̄(z̄)φ̄(0)〉 (2.41)

this implies

〈φ(z)φ(0)〉 = − 1

4πC
ln(z),

〈φ̄(z̄)φ̄(0)〉 = − 1

4πC
ln(z̄).

(2.42)
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We are now in a position to calculate the correlation functions of the bosonized fermions
(2.33) and fix the constants by comparing with the fermionic correlation function (2.19).
We find

〈ψ(z)ψ†(w)〉 = A2〈e−2iCλ(φ(z)−φ(w))〉(z − w)−
Cλ2

π

= A2(z − w)−
Cλ2

π . (2.43)

From this we find that
Cλ2 = π. (2.44)

For A we find
A−1 =

√
2π (2.45)

if we do not include a in the Green function. With a included in the Green function we
have to replace (z − w) → (z − w)/a in equation (2.43) and therefore in that case we
have

A−1 =
√

2πa. (2.46)

This difference can be understood as follows. We know that the fermionic operators ψ
and ψ̄ have dimensions (length)−

1
2 . If the Green function contains a, it is unitless and

therefore φ and its exponentials are unitless. The prefactor A therefore has to contain the
units in the form of the cutoff a. If the Green function does not contain a then φ has units
and its exponential in (2.33) actually already has the units (length)−

1
2 . Therefore the

prefactor A is unitless. To summarize let us state the complete formulas for translating
from fermions to bosons in the case when we use the convention C = 1

π
. They are

ψ†(x) =
1√
2π

e2iφ(x), ψ̄†(x) =
1√
2π

e−2iφ̄(x). (2.47)

One of the main advantages of bosonization can now be seen in the context of
interactions. It can be shown that for spinless fermions the only effect of interactions is
to change the constants C and vF in the action (2.22). This is then typically written as

S[ϕ] =
1

2πK

∫∫
dtdx

[
(∂tϕ)2 − (∂xϕ)2

]
, (2.48)

such that the system is non-interacting for K = 1.The changed vF we will call u and
it appears when restoring units by the replacement t→ ut. The remarkable advantage
of bosonization is that the bosonized Hamiltonian is still quadratic in the presence
of interactions. Furthermore it is still possible to decompose the bosonic system into
chiral modes that do not interact with each other, by repeating the procedure outlined
above for a different value of C, namely C = 1

πK
. These chiral modes, however, do not

correspond to left- and right-moving fermions anymore (because we bosonized with the
non-interacting C value), but to a mixture of both.

When different species of fermions are present, for example spin up and spin down,
interactions lead to additional non-quadratic terms as described in the next subsection.
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2.4.2 Klein Factors and Spin and Charge Sectors

One aspect of bosonization, which we have not addressed yet, is how to bosonize multiple
types of electrons or fermions at the same time. This could for instance be electrons with
opposite spin directions. We will denote the different kinds of fermions by an index µ.
The simplest ansatz would then be to describe the fermions of kind µ by independent
chiral fields of type µ. This results in the problem that different bosonized fermions no
longer anti-commute. This problem is resolved by defining the bosonized fermions as

ψ†µ(x) =
ηµ√
2π

e2iφµ(x) ψ̄†µ(x) =
ηµ√
2π

e−2iφ̄µ(x) (2.49)

Where the ηµ are Majorana fermion, which are called Klein factors. Klein factors have
nothing to do with the Majorana fermions which are the primary interest of this thesis,
namely the Majorana bound states. The only purpose of Klein factors is to make the
bosonized versions of different kinds of fermions anti-commute.

When studying a spinful system with electron-electron interactions it turns out to be
convenient to transform variables from φ↑/↓ to

φc =
1√
2

(φ↑ + φ↓),

φs =
1√
2

(φ↑ − φ↓).
(2.50)

The new variables describe charge and spin degrees of freedom respectively. The advantage
of spin and charge sectors is that they decouple for a lot of systems even in the presence
of interactions.

The transformation to the spin and charge representation is unitary therefore the
quadratic actions for the fields take the same form as for the spin-up and spin-down field.
Similar to equation (2.22) we have

Sµ[ϕµ] =
1

2π

∫∫
dtdx

[
(∂tϕµ)2 − (∂xϕµ)2

]
, (2.51)

where µ is now c or s, and we have chosen the convention C = 1
π
. Alternatively the

systems are described by the action for the dual fields θµ. These take the same form

Sµ[θµ] =
1

2π

∫∫
dtdx

[
(∂tθµ)2 − (∂xθµ)2

]
. (2.52)

In case when the ϕµ and θµ are coupled, one needs to describe the system by a phase-space
action which contains both fields.

The effect of interactions is now twofold. Firstly it renormalizes the Fermi velocity
and changes the prefactor of the Lagrangian as for a single species of fermions. The
change in Fermi velocity again only appears when restoring units and one has to replace
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t → ut where u is the Fermi velocity of the interacting system. Secondly interactions
add a non-quadratic term to the spin sector. This term describes the backscattering of
electrons. The quadratic actions with interactions take the form

Sµ[ϕµ] =
1

2πKµ

∫∫
dtdx

[
(∂tϕµ)2 − (∂xϕµ)2

]
, (2.53)

or

Sµ[ϕµ] =
Kµ

2π

∫∫
dtdx

[
(∂tθµ)2 − (∂xθµ)2

]
. (2.54)

The additional non-quadratic term in the spin sector is

Sbs[ϕs] =
λbs

2π2

∫∫
dtdx cos(

√
8ϕs), (2.55)

In the preceding equations the Kµ are due to interactions. In particular Ks = Kc = 1
corresponds to the non-interacting case. For repulsive interaction Kc < 1 and Ks > 1.

2.5 Renormalization Group Theory

We saw in the previous section that bosonization can simplify one-dimensional problems,
in particular because part of the interactions is included in the quadratic terms in the
action. Nonetheless there remain non-quadratic interaction terms that one needs to
study. One possible way to study these is by means of renormalization group theory and
we will describe some of its basic ideas in this section. This short introduction mostly
follows [10].

2.5.1 The Renormalization Group Idea, Phase Transitions and Fixed Points

The basic idea behind renormalization group theory is to study the long-range/low-energy
behavior of systems in the following way. One starts with the partition function which is
for example given by a functional integral of the form

Z =

∫
Dφ e−S[φ]. (2.56)

One then divides the degrees of freedom into small-distance/high-energy degrees of
freedom φ> and long-distance/low-energy degrees of freedom φ< such that

φ = φ< + φ>,∫
Dφ =

∫
Dφ<

∫
Dφ>.

(2.57)

One can now calculate the effective action for S ′[φ<] as

e−S
′[φ<] =

∫
Dφ> e−S[φ], (2.58)
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such that ∫
Dφ e−S[φ] =

∫
Dφ< e−S

′[φ<]. (2.59)

One now assumes that the two actions S and S ′ have the same structure and as such are
simply described by different sets of dimensionless parameters Ki and K ′i. The whole
process can therefore be viewed as generating a transformation Ki → K ′i. The main idea
behind renormalization-group theory is studying these kind of parameter transformations.
They are called renormalization-group transformations and their iterated (potentially
continuous version) is called flow of the parameters. Note that the assumption that the
two actions S and S ′ have the same structure is always trivially true when one does not
restrict the number of terms that the actions are allowed to have. That is because one
could always include terms, that are only present in S ′ after integrating φ> out, in S
with a trivial prefactor of zero. Fortunately it turns out that even with a limited number
of terms one can often obtain good approximative renormalization-group results.

There is one special parameter dependence of the action S ′[φ<], which is the dependence
on an additive constant independent of the fields ϕ<. This constant corresponds to the
free energy of the degrees of freedom that were integrated out. One usually ignores
it for two reasons. Firstly because it does not contribute to the low energy dynamics
of the system, and secondly because this contribution is usually well behaved close to
a critical point, whereas other contributions to the free energy are singular close to a
critical point [10]. It is therefore sensible to only consider the singular components.

One of the main motivations for using renormalization-group techniques is the study of
phase transitions. During a phase transition some bulk properties of a system change and
therefore this has to happen on all length scales. But if the length scale is not important
for the physics of the system right at the transition point, then our renormalization
procedure described above should yield the identity transformation Ki → Ki. This
means that fixed points in the renormalization group transformation are related to phase
transitions, which motivates studying the renormalization group transformation at and
close to these fixed points. In particular one often studies the linearized transformation
close to a fixed point.

2.5.2 Scaling Operators and Scaling Dimension

The eigenvalues and eigenvectors of the linearized renormalization group transformation
close to a fixed point have special significance in renormalization group theory. Before
we continue let us assume that during a renormalization step the length scales are
scaled by a factor b > 1. This means that a small distance cutoff a, for example lattice
spacing transforms as ba or alternatively it means that a high energy cutoff Λ scales
as b−1Λ. We denote the eigenvalues and eigenvectors of the linearized renormalization
group transformation with ηi and gi respectively. It is common to write the eigenvalue
as ηi = byi . Under repeated application of the renormalization group transformation
the sign of yi plays an important role. If it is positive the coupling will increase. In
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that case the coupling is called relevant. If yi is negative the coupling will decrease and
is called irrelevant. In the case where yi vanishes, the coupling stays the same and is
called marginal. However, marginal couplings usually change if the renormalization group
transformation is calculated to higher accuracy.

If we denote the fields to which the gi couple with φi then the deviations from the
fixed point have the form ∑

i

gi

∫
ddx

ad
φi. (2.60)

Under a renormalization group transformation a→ ba and gi → byigi. In order for the
partition function to remain unchanged, as required by (2.59) we have to require the
transformation property φi(x)→ bxiφ(x), where

xi = d− yi. (2.61)

The quantity xi is called scaling dimension of the operator φi. The required transformation
behavior of φi is also consistent with another of its properties which can be shown (chapter
3.8 in [10]), namely that for long distances 〈φi(r1)φi(r2)〉 ∝ 1

|r1−r2|2xi
. This suggest that

φi has units (length)−xi which implies the same transformation behavior under rescaling.
Note the important implication that given a fixed point together with set of correspond-

ing scaling operators and their scaling dimensions, one can actually do renormalization
group studies without explicitly integrating out any degrees of freedom. This is because
the information about the result of such a calculation is already contained in the scaling
operators and their scaling dimensions.

2.5.3 Continuous Renormalization and Flow Equations

When we study renormalization group transformations we will always consider infinites-
imally small ones. This is commonly done by setting b = (1 + d`). This way one can
obtain differential equations for the change of the coupling constants. In particular the
first-order transformation gi → byigi implies

dgi
d`

= yigi. (2.62)

Such equations are called flow equations. Chapter 4 will focus on deriving and analyzing
such equations in a Majorana bound state context.
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3 Braiding in Class DIII

Majorana bound states, which can exist in class D systems, exhibit non-abelian statistics
under exchange [1, 29]. This is one of the reasons why Majorana bound states have
received a lot of attention in the literature because it would be interesting to realize
non-abelian statistics in the lab. Furthermore, non-abelian statistics can be used for
fault tolerant quantum gates, which is commonly referred to as topological quantum
computation [42].

In this chapter we will study the exchange properties of a close cousin of the Majorana
bound state, namely Kramers pairs of Majorana bound states. Kramers pairs of Majorana
bound states can appear in systems of class DIII.

We will begin by briefly discussing how Majorana fermion operators transform under
time-reversal symmetry. This is important for two reasons. Firstly we want to construct
time-reversal invariant DIII Hamiltonians and secondly given a Majorana bound state
we want to obtain its Kramers partner by application of time-reversal symmetry.

Subsequently we will review relevant aspects of adiabatic physics, in particular the
notion of Berry phases (abelian as well as non-abelian). We will then demonstrate
how these Berry phases can be calculated in different formulations of the problem. In
particular we will start with Berry phases of the many-body Fock space states and show
how they can be calculated in terms of second-quantized operators or equivalently in
terms of first-quantized Bogoliubov-de Gennes (BdG) states.

We will then discuss an effect that we call local mixing of a Kramers pair of Majorana
bound states. This effect alone shows that generically the result of exchanging two
Kramers pairs of Majorana bound states is path dependent and therefore cannot fulfill
any particular set of statistics. As such Kramers pairs of Majorana bound states cannot
be used for fault tolerant quantum operations. We will also discuss sufficient conditions
under which local mixing is absent.

Finally we will discuss the most general transformation that can occur when exchanging
Kramers pairs of Majorana bound states. We will argue generally that it takes a simple
form in the absence of local mixing.

3.1 Time-Reversal Symmetry and Majorana Fermion Operators

We consider a Kramers pair of ordinary fermions and denote their second-quantized
operators with c↑ and c↓ respectively. Even though we use a spin index for concreteness,
the following discussion applies to Kramers pairs in general.

It is well known that such fermions transform under time-reversal symmetry, T ,
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3 Braiding in Class DIII

according to

T c↑T −1 = c↓,

T c↓T −1 = −c↑.
(3.1)

We decompose these fermions into Majorana fermions as

c↑ =
1

2
(χa↑ + iχb↑),

c↓ =
1

2
(χa↓ + iχb↓).

(3.2)

Comparing equation (3.1) and (3.2) we notice that the type a and type b Majorana
fermions transform oppositely under time reversal. This is due to the i in the decom-
position (3.2) and due to the anti-unitarity of T . In particular the Majorana fermions
transform as

T χa↑T −1 = χa↓,

T χa↓T −1 = −χa↑,
T χb↑T −1 = −χb↓,
T χb↓T −1 = χb↑.

(3.3)

Note the sign difference between the type a and type b transformations.
It is possible to use a different convention where all the Majorana fermions transform the

same way under time-reversal symmetry. This is done by by changing the decomposition
of the ordinary fermion into Majorana fermions. In particular one would change the
definition of c↓ to

c↓ =
1

2
(χa↓ − iχb↓).

We will not use this convention and continue with the one described above, where the
decomposition of ordinary fermions is always the same, but therefore type a and type b
Majorana fermions transform differently.

Before we conclude this section we briefly discuss the transformation properties of
complex fermions that are constructed from a single Majorana Kramers pair. We start
from the Majorana Kramers pair χ↑, χ↓ such that T χ↑T −1 = χ↓ and T χ↓T −1 = −χ↑
and construct the fermion

d =
1

2
(χ↑ + iχ↓). (3.4)

The time-reversal form of this is

T dT −1 = T 1

2
(χ↑ + iχ↓)T −1

=
1

2
(χ↓ + iχ↑)

= +id†. (3.5)
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Related to this the parity of d, iχ↑χ↓, flips sign under time-reversal symmetry. This is no
reason for concern, because if we started out with a Kramers pair of fermions, we can
actually form two fermions (type a and type b) of the form (3.4), which behave atypical
under time reversal. Therefore the overall parity is always conserved. The interesting
thing is, however, that in class DIII systems the fermions of the form (3.4) are spatially
separated, so that local parity is not conserved under time reversal. This is referred
to as the parity anomaly. To guarantee that time reversal never changes the overall
parity, there always has to be an even number of zero-energy Kramers pairs of Majorana
bound states (which are equivalent to fermions of the kind of equation (3.4)). This
transformation behavior is also the reason why it is often more intuitive to construct
time-reversal invariant Hamiltonians in terms of Majorana fermions, even when one
wants to describe fermions of the form (3.4).

3.2 The Adiabatic Theorem and Berry Phases

The adiabatic theorem of quantum mechanics [9, 31] deals with the adiabatic time
evolution of systems. Adiabatic time evolution means that the system depends on
parameters that change slowly as a function of time (quantified below) and there is no
additional time dependence. The systems are assumed to have a Hamiltonian of the form

H(λ(t)), (3.6)

such that λ is the collection of time-dependent parameters. The precise meaning of the
parameters λ changing slowly is as follows. For fixed values of the parameters λ we can
diagonalize the Hamiltonian. Out of the eigenstates of the Hamiltonian we will focus on
a particular degenerate subspace such that

H(λ)|ai(λ)〉 = ε(λ)|ai(λ)〉, (3.7)

where i runs over the states spanning the degenerate subspace. In order to lighten the
notation we will often use capitalized letters to denote an implicit parameter dependence.
This way equation (3.7) reads H|Ai〉 = E|Ai〉. It is now further assumed that for each
parameter value λ the states |Ai〉 are separated by an energy gap from all the other
states of the system. The requirement that the parameters λ change slowly means that
they change slowly compared to the energy gap separating the degenerate states |Ai〉
from all other states. Furthermore it is assumed that the degeneracy of our subspace is
not lifted for any parameter value λ. This way we have associated the states |ai(λ)〉 at
different values of λ with each other, because we can simply follow the eigenstates with
energy eigenvalues ε(λ).

In case of Majorana bound states the degenerate subspace that we are investigating is
formed by the ground states of the system. The parameters that we will change are the
positions of the Majorana bound states, but we will also consider other parameters for
illustrative purposes.
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3 Braiding in Class DIII

Under the conditions of adiabatic time evolution described above, the adiabatic theorem
states that that states that are initially in a superposition of basis states |ai(λinitial)〉 will
evolve into states that are a superposition of basis states |ai(λfinal)〉.

The question that remains is how these states evolve exactly. We will first consider
the case of non-degenerate subspaces. We define the adiabatic time-evolution operator,
Uadiabatic, as the limit of the normal time-evolution operator with varying parameters.
The limit is that of these parameters varying slowly in time in the sense described above.
One then finds for the time evolution of a state |Ainitial〉

Uadiabatic|Ainitial〉 = e−iϕdynamic−iϕgeometric|Afinal〉, (3.8)

where the dynamical phase is given by the energy dependence of the state

ϕdynamic =

∫ t

0

dt′ε(λ(t′)) (3.9)

and the geometric phase is given by

ϕgeometric =

∫
C
〈A|∇λ|A〉 · dλ, (3.10)

where the integral is taken over the path C that the system took in parameter space,
starting at λinitial and ending at λfinal.

The dynamical phase will not appear in any further discussion, as it is not relevant for
the systems which we have in mind. We will consider the adiabatic evolution of ground
states of systems. Therefore we will always have ε(λ) = 0 and hence ϕdynamical = 0.

The central object of our studies will be the geometric phase. It is important to note
that the geometric phase in equation (3.10) is not uniquely defined, because instead of the
parameter-dependent state |A〉 we could just as well have chosen the parameter-dependent
state eif(λ)|A〉, where f is a real-valued function. We refer to the different choices of
λ-dependence of the state as gauge choices. It is now easy to see that the geometric
phase (3.10) is in fact gauge dependent. In particular one has

|A〉 → eif(λ)|A〉 =⇒ ϕgeometric → ϕgeometric − (f(λfinal)− f(λinitial)) . (3.11)

From the gauge property (3.11) one could get the impression that the geometric phase
is meaningless, as one can always choose a gauge in which it vanishes identically. Michael
Berry realized that this gauge dependence of the geometric phase actually vanishes if one
considers closed loops [8]. This can easily be seen in equation (3.11) in the case when
λinital = λfinal. Since we are now dealing with a gauge-independent quantity one can
readily expect to find physical implications. An example of a physical manifestations of
geometric phases is the well known Aharonov-Bohm effect. In honor of Berry’s insight,
the geometric phase is often referred to as Berry phase.
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3.2 The Adiabatic Theorem and Berry Phases

Before we move on to the more general case of degenerate subspaces, we state some
common and useful quantities in relation to the Berry phase. For completeness let us
state the definition of the gauge independent geometric phase as

ϕgeometric =

∮
C
〈A|∇λ|A〉 · dλ. (3.12)

The integrand times i is often referred to as the Berry potential A,

A = i〈A|∇λ|A〉. (3.13)

The Berry potential is a gauge dependent quantity with the transformation property

|A〉 → eif(λ)|A〉 =⇒ A→ A−∇λf. (3.14)

Another useful concept is the Berry curvature. It is defined by applying Stokes’ theorem
to equation (3.12). In particular one has

ϕgeometric =

∫∫
S
Ωij dλidλj, (3.15)

where the integration is over a surface such that its boundary is the closed loop from
equation (3.12), ∂S = C. Also note that equation (3.15) uses a summation convention
over repeated indices. The advantage of the Berry curvature is that it is a gauge invariant
quantity. Its components can be expressed in terms of the components of the Berry
potential as

Ωij = ∂iAj − ∂jAi, (3.16)

where the partial derivatives refer to components of λ such that ∂i = ∂λi . Henceforth we
will drop the subscript “geometric” for ϕ, since we will only study geometric phases.

We now discuss the more general situation in which we consider the adiabatic evolution
of a degenerate subspace. This case was first discussed in [50]. In order to understand this
case it is helpful to think about the evolution as being generated by the Berry potential
and generalize from there on. The major difference is now that the components of the
Berry potential are no longer scalars but matrices. In particular the components are
defined as

Ajki = i〈Aj|∂i|Ak〉. (3.17)

In order to calculate the adiabatic evolution we have to perform an integration over a
path in parameter space again. At the same time we have to take into account that the
different Berry-potential matrices along the path might not commute with each other.
The correct generalization of the Berry phase eiϕ is therefore the transformation

Uadiabatic = P exp

(∮
C
Ai dλi

)
, (3.18)
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3 Braiding in Class DIII

where P denotes path ordering of the non-commuting matrices.
The class of gauge transformations in the general case is the class of all parameter-

dependent basis transformations W (λ) and the Berry potential transforms as

|Ai〉 → W (λ)|Ai〉 =⇒ Ai → WAiW † −W∂iW
†. (3.19)

The unitary transformation (3.18) transforms under a gauge transformation as

|Ai〉 → W (λ)|Ai〉 =⇒ U → W (λinitial)UW
†(λinitial). (3.20)

As such it is not fully gauge invariant, but the remaining gauge freedom simply corresponds
to a choice of basis for the transformation as a whole.

3.3 Relation between Fock Space States and Operators

We will now apply the concept of Berry phases to the degenerate ground states of
topological superconductors that host Kramers pairs of Majorana bound states. We
consider a systems with two such Kramers pairs, which we denote with Xη, X̃η where
η = 1, 2. The tilde denotes the Kramers partner of an operator. There is a gauge freedom
in the choice of Kramers pairs because any pair of linear combination of the form

cosαηXη ± sinαηX̃η (3.21)

is an equally valid choice of Kramers pairs.
It will often be convenient to write Kramers pairs of Majorana fermions as an operator

spinor of the form Xη = (Xη, X̃η)
T . This way a different gauge choice of Kramers pairs

will take the form
eiαησyXη, (3.22)

where σy is a Pauli matrix that operates on the spinor space.
Now in order to calculate Berry potentials we have to specify a λ-dependent basis of

our ground states. We obtain such a basis by forming fermionic operators out of the
Majorana bound states of the form

Dη =
1

2

(
Xη + iX̃η

)
. (3.23)

We can now label the ground states by the occupation numbers of the Dη fermions. In
particular we use the basis

|00〉,
|01〉 = D†2|00〉,
|10〉 = D†1|00〉,
|11〉 = D†1D

†
2|00〉,

(3.24)
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3.3 Relation between Fock Space States and Operators

where one has to keep in mind that the Dηs as well as the |00〉 state are parameter
dependent.

Before we begin the calculation of Berry potentials we will briefly discuss the role of
symmetries. Because we have a parameter-dependent problem we expect that the physics
is only influenced by symmetries that are present independently of the parameter values.
In the case of superconductors one such symmetry is the fermion parity. Given such a
symmetry and a basis that is also an eigenbasis of the symmetry operator, there are
no Berry-potential terms relating states with different eigenvalues under this symmetry.
This can be seen directly from (3.17). Let us assume we have a symmetry S such that
S|Ai〉 = µi|Ai〉. Since S is assumed to be parameter independent we also have that
derivatives of |Ai〉 with respect to λ are eigenstates of S, because S∇λ|Ai〉 = ∇λS|Ai〉 =
µi∇λ|Ai〉. As such, the derivatives of |Ai〉 are not going to have any overlap with states
that have a different eigenvalue under this symmetry and therefore corresponding Berry
potentials vanish.

Following the preceding discussion we consider parity as a parameter-independent
symmetry for our system. Parity conservation then implies that there are no Berry
potentials between states of even parity spanned by |00〉 and |11〉 and states of odd parity
spanned by |01〉 and |10〉.

The question remains whether states with different local parity couple adiabatically.
More specifically, whether there are Berry potentials between |01〉, |10〉 and |00〉, |11〉
respectively. An explicit calculation for the odd-parity sector gives

i〈10|∂i|01〉 = i〈00|D1∂iD
†
2|00〉

= i〈00|D1(∂iD
†
2)|00〉

= i〈00|
{
D1, ∂iD

†
2

}
|00〉

= i
{
D1, ∂iD

†
2

}
. (3.25)

In the last line we assumed that the system is non-interacting. This implies that the
Dηs are superpositions of fermionic single-particle operators. Therefore the same is true
for their derivatives and consequently the anti-commutator is simply a c-number and
the expectation value can be computed trivially. Similarly one finds for the even-parity
sector

i〈00|∂i|11〉 = i
{
D†1, ∂iD

†
2

}
. (3.26)

Recall that by assumption the different Kramers pairs of Majorana bound states (and
therefore the Dηs) are sufficiently separated in space such that they do not overlap. This

will still be true after taking derivatives, such that the operators D1 and ∂iD
†
2 are spatially

separated and do not have any overlap. This implies that their anti-commutators vanish
and there is no mixing between different local parity states. We will show this more
explicitly later on, when we discuss the BdG formulation.

We have shown that not only global parity but also local parity is conserved. Therefore
there are no Berry potentials between different states and each state acquires an abelian
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3 Braiding in Class DIII

Berry phase independently. Hence the total transformation acting on the ground state
subspace is abelian as well. This seems to contradict the non-abelian statistics, which are
known for Majorana bound states in class D systems, and is especially worrisome because
arguments similar to the ones we just gave seem to apply in those kind of systems. We
will explain how all that fits into our formalism once we discuss braiding explicitly. For
now we will only focus on adiabatic processes that do not braid the Kramers pairs of
Majorana bound states in order to develop some more formalism.

An adiabatic process now simply multiplies all the basis states from equation (3.24)
by different geometric phases. Because we cannot measure an overall phase, but only
phase differences, we have to choose a reference phase. We choose the Berry phase which
is picked up by the state |00〉 throughout the process. It is then convenient to redefine
the Berry potentials such that their integrals directly yield the phase difference to our
reference phase. The redefined Berry potentials have the form

Ajji = i〈Aj|∂i|Aj〉 − i〈00|∂i|00〉. (3.27)

Note that this redefinition includes the fact that only the diagonal jj components of A
do not vanish.

Direct calculation of the Berry potentials yields

A10,10
i = i (〈10|∂i|10〉 − 〈00|∂i|00〉) = i

{
D1, ∂iD

†
1

}
, (3.28a)

A01,01
i = i (〈01|∂i|01〉 − 〈00|∂i|00〉) = i

{
D2, ∂iD

†
2

}
, (3.28b)

A11,11
i = i (〈11|∂i|11〉 − 〈00|∂i|00〉) = i

{
D1, ∂iD

†
1

}
+ i
{
D2, ∂iD

†
2

}
. (3.28c)

We again assumed that the system is non-interacting in order to compute the expectation
values. Interestingly all the information about phase differences is contained in the
parameter dependence of the second quantized operators. This is important because it
implies that those quantities can be calculated in a BdG formulation. Another important
thing to note about equations (3.28) is that both fermions, Dη, contribute independently
to the Berry potentials and therefore to the Berry phases. Hence it is meaningful to
study them individually in this local basis choice.

Because we want to compare the results to the results for Majorana bound states in
class D systems, we write the quantities of interest in terms of Kramers pairs of Majorana
bound states. We find that the anti-commutators of the Dη fermions take the form

i
{
Dη, ∂jD

†
η

}
=

1

2

{
Xη, ∂jX̃η

}
. (3.29)

Therefore one of the most important Berry-potential formulas that we will use is

Aηi =
1

2

{
Xη, ∂iX̃η

}
. (3.30)
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This gives us Berry-phase differences

ϕη =

∮
C
Aη · dλ, (3.31)

which are the phase differences between states with D†η(λinitial)Dη(λinitial) = 0, 1. The
unitary transformations that correspond to those phase differences are simply given by

Uη = exp
(ϕη

2
Xη(λinitial)X̃η(λinitial)

)
. (3.32)

Of course the unitary transformations are only defined up to an overall phase, which we
do not care about. The unitary transformations for η = 1, 2 commute and can simply
be multiplied to get the total unitary transformation. This is in accordance with the
previous argument, that one can study the separated Kramers pairs of Majorana fermions
independently of each other. Equations (3.30), (3.31) and (3.32) set the framework for
our calculations, because the relate the parameter-dependent single-particle operators of
the system to the to the adiabatic transformation that acts on the many-body states.

Before we go ahead and calculate those quantities for actual systems we will connect
them to the BdG formalism, which is very useful in practice because it is a single-particle
first-quantized formalism. This means that the Hilbert space in this formalism is much
smaller than in the second-quantized many body formalism. We will state the important
connection between the BdG formalism and the formalism for adiabatic phases. This
connection is an expression for the Berry potential in terms of BdG states.

3.3.1 Connection to BdG States

When dealing with non-interacting superconducting systems, that is systems where
superconductivity is taken into account on the mean-field level, it is often convenient to
use the BdG formalism. The starting point is a quadratic many-body Hamiltonian H,
which may contain superconducting-pairing terms. We assume that H has been written
in terms of local fermionic field operators ψi(x), where the index i may correspond to
spin and/or orbital degrees of freedom. In short we will write all local field operators
together as a vector ψ(x) = (ψ1(x), . . . , ψn(x))T . With a slight abuse of notation we
also define the short notation ψ†(x) = (ψ†1(x), . . . , ψ†n(x))T , where the abuse of notation
is that even though we take the adjoint on the left hand side we still define the whole
expression as column vector.

The idea behind the BdG formulation is now to introduce operator spinors of the form

Ψ (x) =

(
ψ(x)
Uψ†(x)

)
, (3.33)

where U is a unitary matrix. From this definition Ψ (x) satisfies Ψ †i (x) = PijΨj(x) (with
summation convention) where the matrix P is given by

P =

(
0 U †

U 0

)
. (3.34)
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This matrix is closely related to the particle-hole symmetry operator P which appears in
the BdG formalism and which is given by

P = PK, (3.35)

where K denotes complex conjugation.
Common examples are the case where U is simply taken to be the identity in which

case P = τxK, where τx denotes a Pauli matrix in particle-hole space. Another common
choice is to choose U such that it maps fermions to their time-reversed partners. For
spin-1

2
particles that means U = iσy, where σy denotes a Pauli matrix in spin space. In

this case one has P = σyτyK.
With the help of the spinors Ψ (x) one can rewrite any electronic Hamiltonian as

H =
1

2

∫
dxΨ †(x)H(x)Ψ (x) + const., (3.36)

where H is particle hole symmetric

{H,P} = 0 (3.37)

and we assumed for simplicity that H is local, i.e. H only depends on one position
coordinate. We can now think of H as a first-quantized Hamiltonian acting on 2N -
dimensional spinors. If we have such a spinor c(x) we can associate with it a second-
quantized single-particle operator, c, by defining

c =

∫
dx c†(x)Ψ (x). (3.38)

This association is useful because one can show that

H(x)c(x) = εc(x) =⇒ [c,H] = εc, (3.39)

which means that diagonalizing the first-quantized Hamiltonian H diagonalizes the second
quantized Hamiltonian H by means of (3.38).

To more directly take advantage of the first-quantized nature of the Hamiltonian H, we
will often discuss it and its eigenstates independently of the position basis and use Dirac
notation. In particular we define ci(x) = 〈i, x|c〉, where ci(x) are the components of c(x).
We will write the equivalence between operators and states given by (3.38) as c ≡ |c〉. For
us the most important relationship between second quantization and the BdG formulation
is the relationship between inner products of BdG states and anti-commutators of the
corresponding fermionic operators. Given two BdG states |c1〉, |c2〉 and the corresponding
operators c1, c2, the relationship reads

〈c1|c2〉 =
{
c†1, c2

}
. (3.40)
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Equations (3.40) and (3.28) enable us to calculate Berry potentials directly from the
BdG formulation, which is very useful especially for numerical calculations. With the
help of (3.40) we can also more directly support the statement we made earlier about the
anti-commutator {D1, ∂iD

†
2}. The wave functions of the associated BdG states |D1〉, |D2〉

are localized at different points in space and therefore have no overlap. The same is true
if we take derivatives of them and consequently the anti-commutator vanishes.

Let us state the explicit form of the Berry potentials in the BdG formulation. We get

Aη = 〈X|∇λ|X̃〉. (3.41)

Note the difference of a factor of two between (3.41) and (3.30). This originates from us
choosing the convention 〈X|X〉 = 〈X̃|X̃〉 = 1 instead of 2, which it should be by direct
application of (3.40), because Majoranas operators anti-commute with themselves to 2.
The reason for choosing this convention is that we use the BdG formulation for numerical
calculations and LAPACK’s1 diagonalization returns vectors that are normalized to 1.
Therefore Majorana fermions do not have the usual association c ≡ |c〉, but instead
X ≡

√
2|X〉.

3.4 Local Mixing

In this section we will focus on adiabatic manipulations that only affect one Kramers pair
of Majorana bound states. The situation we have in mind is a loop in parameter space
that does not exchange nor braid the Kramers pairs and after which all the Kramers
pairs of Majorana bound states are back at their original positions. In this case the
adiabatic transformation is described by the abelian Berry potential (3.30) but we will
drop the index η because we are only considering one Kramers pair. We will refer to
such transformations as local mixing.

The presence or absence of local mixing is very important in the context of topological
quantum computation. The reason is that local mixing, by its definition, is a local
adiabatic manipulation which is therefore not compatible with topological protection.

In this section we will compute non-vanishing Berry curvatures for two toy models,
analytically for one model and numerically for the other. Later we will discuss in detail
some sufficient symmetry conditions that guarantee the absence of local mixing. This
is important because we will show later that the presence or absence of local mixing is
equivalent to whether the braiding transformation of the exchange of the Kramers pairs
of Majorana bound states takes a particularly simple path-independent form or not.

3.4.1 Analytical Toy Model

We construct our analytical toy model starting from the model of two Kitaev chains,
which transform into each other under time-reversal symmetry. We consider these two

1LAPACK is a standard linear-algebra library, which is used by most higher level programming
languages to perform linear-algebra calculations
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χ1a↑χ1b↑χ2a↑

χ1a↓χ1b↓χ2a↓

µ
∑

σ c
†
1σc1σ

∆[c1↑c1↓ + c†1↓c
†
1↑]

↑ :
↓ :

c1σc2σc3σc4σc5σc6σc7σ

Fig. 3.1: The figure shows our DIII model, which is built out of two Kitaev chains at the
topological-dimerization point in parameter space. The rectangles correspond
to the original electronic states, and the circles to their decomposition into
Majorana operators. Lines indicate couplings. Our model consists out of the
indicated end of the wire with one Kramers pair of Majorana bound states and
a Kramers pair of bulk states. Furthermore it is illustrated how a local chemical
potential and s-wave pairing couple the Majorana operators in our model. Blue
dashed lines represent s-wave pairing and red dotted lines the chemical potential.
Importantly the s-wave pairing couples the two initial Kitaev chains.

chains at the topological-dimerization point in parameter space where they have an
unpaired Majorana bound state at each end. With those parameter values there are
Kramers pairs of Majorana bound states perfectly localized at both ends of the chains.
For our analytical toy model we consider one of these Kramers pairs of Majorana bound
states as well as the Kramers pair of bulk states right next to it. In order to observe
interesting adiabatic physics we introduce additional coupling parameters: a chemical
potential term and an s-wave pairing term on the last fermionic site of the two Kitaev
chains. The situation is depicted in figure 3.1. The Hamiltonian has the form

H = Hbulk +Hµ +H∆. (3.42)

The bulk Hamiltonian is given by

Hbulk =
Eg

2

∑
σ

iχ2aσχ1bσ. (3.43)

The chemical potential term on the last site has the form

Hµ = µ
∑
σ

c†1σc1σ

=
µ

2

∑
σ

iχ1aσχ1bσ + const. (3.44)
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The additional s-wave pairing Hamiltonian has the form

H∆ = ∆
(
c1↑c1↓ + c†1↓c

†
1↑

)
=
∆

2
(iχ1a↑χ1b↓ + iχb↑χ1a↓) . (3.45)

If we only consider Hbulk then by construction the Majorana bound states are χ1aσ. If
we also introduce the other couplings we have to solve for the new parameter-dependent
zero-energy Majorana bound states, which we denote with X and X̃ in accordance with
our convention that parameter-dependent quantities are denoted by capitalized letters.

We find X by solving for
[H,X] = 0. (3.46)

X̃ is simply found by means of T , namely

X̃ = T XT −1. (3.47)

This way we find X and X̃ to be

X = cos θχ1a↑ − sin θ (cosαχ2a↑ + sinαχ2a↓) ,

X̃ = cos θχ1a↑ − sin θ (cosαχ2a↑ − sinαχ2a↓) ,
(3.48)

where we parametrized the Majorana bound states using the two angles θ and α. We
define α by

µ =
√
µ2 +∆2 cosα,

∆ =
√
µ2 +∆2 sinα

(3.49)

and θ by

tan θ =

√
µ2 +∆2

Eg

. (3.50)

The parameters α and θ can be interpreted as follows. How much our initial Kramers
pair χ1a↑, χ1a↓ is mixed with the bulk is controlled by θ. Here θ = 0 corresponds to the
initial Kramers pair and θ = π

2
corresponds to a Kramers pair of Majorana fermions that

has no overlap with the initial Kramers pair. One can interpret α as follows. It controls
how much the individual Kramers partners get mixed within their own spin direction as
opposed to the opposite one.

We now calculate the Berry potential according to equation (3.30). We find

Aθ = 0,

Aα = −1

2
sin2 θ.

(3.51)

It can easily be seen that this can lead to non-zero Berry phases. In particular we can
make a loop in parameter space by taking α = 0→ 2π. Because the Berry potential is
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3 Braiding in Class DIII

α-independent, we get a Berry phase of ϕ = −π sin2 θ, which is clearly finite. Therefore
our simple toy model demonstrates local mixing. We also calculate the Berry curvature
with respect to α and θ and find

Ωαθ = sin θ cos θ. (3.52)

Before we proceed to our numerical demonstration of local mixing, we discuss some
important aspects of the toy-model result. In particular we saw that varying α alone
gives us a Berry phase. The same is not true for θ. As discussed earlier α controls
how the initial Kramers pair of Majorana fermions gets mixed within the two different
wires as opposed to between them. Note, however, that even for a generic value of α
(corresponding to a finite ∆), a change in θ does not contribute to the Berry phase. This
is because for fixed α one could choose a different spin directions in which one has two
decoupled wires (or wire ends for that matter). Therefore it is important that α changes
making it impossible to decompose the system into independent wires throughout the
entire process.

3.4.2 Numerical Demonstration of Local Mixing

We will now numerically demonstrate local mixing. This way we can study a slightly
more complicated model, that does not rely on perfectly localized Kramers pairs of
Majorana bound states. We will study a single-particle BdG Hamiltonian of a wire with
two Kramers pairs of Majorana bound states. As we discussed earlier the Berry potential
is now given by (3.41), such that we can calculate Berry phases according to (3.31) or the
Berry curvature equivalent. For numerical studies it is usually more convenient to work
with the Berry curvature, because it is gauge independent, and numerical eigenstates
usually have a random gauge. So unless one does explicit gauge fixing, which we will do
later when we study braiding, the Berry curvature is more convenient to work with. The
explicit expression of the Berry Curvature for Majorana bound states is given by

Ωλiλj =
∑
N

1
E2
N

[〈X|(∂λiH)|N〉〈N |(∂λjH)|X̃〉 − 〈X|(∂λjH)|N〉〈N |(∂λiH)|X̃〉], (3.53)

where the sum is over all (parameter-dependent) bulk states N with eigenenergies EN .
For our BdG Hamiltonian we choose the spinor convention

Ψ (x) = (ψ↑(x), ψ↓(x), ψ†↓(x),−ψ†↑(x))T.

This way the particle-hole operator takes the form P = σyτyK and the time-reversal
operator takes the form T = iσyK, as mentioned earlier. Here the τs denote Pauli
matrices in particle-hole space and σs denote Pauli matrices in spin space.

With the given conventions the BdG Hamiltonian that we study reads

H =

(
p2

2m
− µ(x)

)
τz + p(α · σ)τz + p(v∆ · σ)τx +∆τx. (3.54)
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This Hamiltonian describes a one-dimensional system with p-wave pairing v∆, s-wave
pairing ∆, and spin-orbit interaction α. For α = 0, ∆ = 0 and v∆ = (vx, 0, 0)T this
model is the continuum version of two Kitaev wires with opposite spin and p-wave
pairing.

For certain parameters the Hamiltonian (3.54) is in its topological phase. This can be
controlled by the chemical-potential term, such that the Hamiltonian is in the topological
phase for µ > µc and in the trivial phase for µ < µc, where µc is some critical value. The
precise value of µc is determined by the other parameters of the Hamiltonian, but we
will not provide an explicit expression. The important thing to remember is that there
will be a Kramers pair of Majorana bound states at the phase boundary between the
topological phase and the trivial phase. Therefore the chemical potential term in the
Hamiltonian (3.54) is position dependent, such that we can create a phase boundary. In
particular we choose the position dependence

µ(x) = µ0 + µ tanh

(
x− x0

w

)
, (3.55)

where µ0 and µ will be chosen such that µ(x) crosses µc close to x0. Therefore there will
be a Kramers pair of Majorana bound states close to x0. We will study local mixing of
this Kramers pair as we change the parameters µ0 and w. Note that these parameters
do not couple to spin as they only appear in the chemical potential, but as we will see
they can still cause local mixing.

In order to see that there is finite local mixing we calculate the Berry curvature, which
is shown in the inset of figure 3.2. Although the values of the Berry curvature are small
they are finite. We also want to study how they depend on the other parameters of the
system. In order to do that we calculate the Berry curvature for a specific point in the
µ0w-plane and look at its dependence as a function of the other parameters. This is
depicted in figure 3.2. This is of course insufficient to calculate any Berry phases because
they involve an integral of the Berry curvature over an area in µ0w-plane, but because
the Berry curvature seems fairly smooth in the color plot, even studying a single point
will give us some good indication of the Berry curvature’s parameter dependence.

We study the parameter dependence as follows. We start with the Hamiltonian with
α = ∆ = 0 and v∆ = (vx, 0, 0)T, where it corresponds to two decoupled Kitaev wires.
Here we expect a vanishing Berry curvature, because we calculate it with respect to
parameters that do not couple these two Kitaev wires. Afterwards we increase one of
the spin-orbit-coupling parameters or ∆ and look for changes in the Berry curvature.
Figure 3.2 clearly shows that for one direction of spin-orbit coupling as well as for s-wave
pairing, we get a finite Berry curvature. In the next subsection we will discuss in detail
how one can understand that there is local mixing for some parameter values but not for
others. We will do that in the context of studying sufficient conditions that guarantee the
absence of local mixing. Before we get there we will discuss some technical but important
aspects of the numerical calculations.
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Fig. 3.2: The plot shows the Berry curvature for the Hamiltonian (3.54) with m = 1,
µ = 10, µ0 = 0, v∆ = (5, 0, 0)T and ∆ = α = 0. It is plotted as a function of
different dimensionless parameters on the x-axis. The key shows the meaning of
the dimensionless parameters for each individual plot. The inset shows a larger
area of the Berry curvature for the case αx/vx = 0.2. The unit of length for all
plots is 1. The total wire has a length of 40.

Identifying Majorana Bound States in Numerical Diagonalization

The technical issue we want to discuss is related to the study of single Kramers pairs of
Majorana bound states, that are not split by the finite length of the wire. Because we
can always obtain the Kramers partner by applying T we will only discuss the issue of
how to obtain single Majorana bound states that are not split by finite size.

First of all, let us be more specific about what we mean when we say “not split by finite
size”. We mean that the splitting is below the accuracy of our numerical calculation.

We start by discussing how to obtain Majorana bound states in the situation when they
are actually slightly split and then discuss the problems that arise once that assumption
is no longer true. When they are slightly split we are going to have two fermionic states
|d〉 and |d̄〉 such that

H|d〉 = ε|d〉,
H|d̄〉 = −ε|d̄〉,
P|d〉 ∝ |d̄〉.

(3.56)
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3.4 Local Mixing

For our purpose the most important consequence of this is that 〈d|P|d〉 = 0, because the
states are eigenvectors with different eigenvalues. This will no longer be true when we
consider degenerate states (ε = 0).

We can now define the two operators

M1 =
1√
2

(1 + P),

M2 =
i√
2

(1− P),
(3.57)

which respectively particle-hole symmetrize or anti-symmetrize a state. We can now
define two Majorana states as |χ1〉 = M1|d〉 and |χ2〉 = M2|d〉. The orthogonality of |d〉
and P|d〉 guarantees that |χ1〉 and |χ2〉 are normalized and in particular cannot be zero.
Even though we now found two Majorana states, we actually want to find the localized
Majorana states |χL〉 and |χR〉 and generally the two states we found are superpositions
of the two localized states. We expect to have

|χ1〉 = cos β0|χL〉+ sin β0|χR〉,
|χ2〉 = − sin β0|χL〉+ cos β0|χR〉,

(3.58)

for some arbitrary angle β0. The most systematic way to obtain the localized Majorana
states is to define new angle-dependent symmetrized and anti-symmetrized states as

|χβ1 〉 = M1eiβ|d〉,
|χβ2 〉 = M2eiβ|d〉.

(3.59)

We can now express those states again in terms of the localized basis and obtain

|χβ1 〉 = cos(β0 + β)|χL〉+ sin(β0 + β)|χR〉,
|χβ2 〉 = − sin(β0 + β)|χL〉+ cos(β0 + β)|χR〉.

(3.60)

The goal is to find β = −β0 such that the Majorana states we constructed are the
localized ones.

The problem of finding the right value of β can be phrased as a simple optimization
problem. All we need is a quantity that measures how localized on a particular side a
state is. This quantity could for instance be the norm of a state that has been projected
onto the left half of the system. The advantage of this procedure, for slightly split
Majorana bound states, is that it makes sure that the Majorana states are guaranteed to
be a superposition of the states |d〉 and |d̄〉.

We now consider the case where the Majorana bound states do not have any overlap.
In this case the particle-hole conjugate of a state, which we obtain numerically, is not
necessarily orthogonal to that state. In particular that means that given a zero-energy
eigenstate, it does not necessarily correspond to a fermionic state. We will therefore
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3 Braiding in Class DIII

denote it with |ϕ0〉 instead of |d〉. Generally a zero-energy state will have the form
|ϕ0〉 = a|χL〉+ b|χR〉, where a and b are arbitrary complex numbers. We can again form
states |χ1〉 and |χ2〉 by means of the operators (3.57), but this time this will not result in
properly normalized Majorana states. Consider for example the case where both a and b
are real. We then have |χ1〉 =

√
2(a|χL〉+ b|χR〉) and |χ2〉 = 0. Inserting an additional

phase β into the calculation, as we did above, will mix the states |χ1〉 and |χ2〉, but we
will never obtain a localized Majorana bound state in this way.

Since the phase procedure discussed above does not work we do a projection in real
space of e.g. |χ1〉. If we project onto the left part of the wire, the projected state will
not contain |χR〉. We then possibly retain a non-normalized Majorana state on the left.
If we can reliably normalize it, we achieve our goal and obtained a localized Majorana
bound state. The problem is that this may lead to considerable numerical errors if the
amplitude of our non-normalized Majorana is too small or zero. To prevent this the
normalization procedure should only be performed if the initial weight is high enough. If
it is not, one repeats the procedure with |χ2〉. If the weight is still not large enough, one
starts anew with a different zero-energy state |ϕ′0〉. Because the zero energy states that
one obtains numerically are still orthogonal, one of them is guaranteed to have sufficient
weight on the left.

The projection in real space does not commute with our Hamiltonian. Therefore we
have to ensure that the resulting state is still a zero-energy eigenstate. We do this by
calculating the norm of H|χprojected〉 and comparing it to the gap of the system. If this
is smaller than a certain chosen precision, we have a localized Majorana bound state.
This can be thought of as a variational method for finding the localized Majorana bound
states, but essentially it is just a systematized way to ensure that the wave function is
localized on one end. As an equation the final condition reads

〈χprojected|H2|χprojected〉
E2

gap

< ε, (3.61)

where ε is the required precision. In most numerical experiments we chose ε = 10−5.

3.4.3 Sufficient Conditions for the Absence of Local Mixing

We will now discuss sufficient conditions for the absence of local mixing in detail. We
discuss it in detail, because we will argue later that the braiding transformation of
Kramers pairs of Majorana bound states simplifies and becomes path-independent in the
absence of local mixing.

The basic idea comes from the model of two copies of the Kitaev chain. It is obvious
that there will be no local mixing as long as the two chains are not coupled. Of course,
even if we introduce some coupling it could be the case that we can decompose the model
in a different way into two uncoupled chains. In fact time-reversal symmetry actually
guarantees that we can decompose the model at each point in parameter space into two
chains which are each others Kramers partners. The question arises why this did not
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Fig. 3.3: Figure (a) is a sketch of how time-reversal symmetry can always decompose a
system into two subsystems that are related by time-reversal symmetry. Figure
(b) is an illustration of a symmetry Π that allows for the same decomposition.

prevent local mixing. The reason is that, even though time-reversal symmetry guarantees
such a decomposition, this decomposition may change as a function of the parameters
and as such does not constrain the adiabatic evolution. We therefore look for symmetries
that decompose the system analogously to time-reversal symmetry, but do not depend
on parameters. This situation is illustrated in figure 3.3.

We will only consider BdG Hamiltonians and study symmetries of these. We call the
symmetry operator, which we are looking for, Π and assume that its eigenvalues will
have magnitude one. Π is supposed to decompose the system into two parts which are
related by time reversal symmetry. This condition can easily be satisfied by requiring

{Π, T } = 0.

This way the part of the system with eigenvalue +1 is the Kramers partner of the
part of the system with eigenvalue −1. This condition is for example satisfied by U(1)
spin-rotation symmetries such as σx, σy and σz. Interestingly our numerical results show
that spin-rotation symmetry does not prevent local mixing. In particular figure 3.2 shows
finite local mixing for the case of the Hamiltonian (3.54) with α = 0, v∆ = (vx, 0, 0)T

and ∆ finite. In this case the Hamiltonian is clearly σx-symmetric. Consequently we
have to constrain Π more to exclude spin-rotation symmetries.

Spin rotation-symmetries have to be excluded because Majorana bound states are
actually never eigenstates of spin. If we consider a single “spin-up” Kitaev wire at the
topological-dimerization point in parameter space, then the Majorana state at the end of
the wire has the form χa↑ = c†↑ + c↑. This means it is a superposition of an electron with
spin up and a missing electron with spin up, which is a spin-down hole. Actually a single
Kitaev wire does not consist of a single spin direction, but out of spin-up electrons and
spin-down holes. We only used the terminologies spin-up/spin-down wires for convenience
and we will continue to do so when no confusion is possible. With respect to figure 3.3b
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it means that Π only implies the T relationship, but not the Majorana bound states at
the end of the individual wires.

The Majorana bound states not being spin eigenstates means that if we decompose the
wire into two wires using a spin symmetry, then the Majorana bound states necessarily
have some weight in both wires. As such the symmetry does not help us to make
statements about them. We solve this problem by considering what distinguishes
Majorana bound states from other choices of zero-energy states. Majorana bound states
are eigenstates of the particle-hole operator P, because this is the BdG equivalent of
self-adjoint single-particle operators in second quantization. So if we want to ensure that
the eigenstates of our symmetry operator Π are also eigenstates of P , we have to require

[Π,P ] = 0.

Since the requirements we discussed so far turn out to be sufficient, we summarize
them before proving the absence of local mixing in that case. For a parameter-dependent
BdG Hamiltonian H(λ) we require a parameter-independent symmetry operator Π such
that

[H(λ), Π] = 0, (3.62a)

{T , Π} = 0, (3.62b)

[P , Π] = 0. (3.62c)

We now demonstrate how such a symmetry Π can be used to choose a gauge in which
the Berry potential vanishes identically. The gauge choice is such that the parameter-
dependent Majorana states are also eigenstates of Π. In particular we require

Π|X(λ)〉 = +|X(λ)〉,
Π|X̃(λ)〉 = −|X̃(λ)〉,

(3.63)

where we made the λ-dependence explicit. We now briefly discuss how our assumptions
(3.62) went into (3.63). We choose simultaneous eigenstates of H, Π and P, which is
only possible if all these operators commute pairwise. By our assumptions (3.62a) and
(3.62c) this is the case. The only thing one might be worried about is that H and P are
actually anti-commuting instead of commuting. This is related to the question whether
it is always possible to choose a Majorana basis for the zero energy states, which is a
more fundamental question than the one we address here. For completeness we give the
argument for the statement that H and P commute on the zero-energy subspace of the
Hilbert space. Given that H and P anti-commute we have [H,P ] = −2PH, which is
clearly zero on the zero-energy subspace of H. The last assumption that went into (3.63)
is (3.62b) and it results in X and X̃ having opposite eigenvalues with respect to Π.

Given the basis choice (3.63) it is easy to see that ∂i|X̃(λ)〉 is also an eigenstate of Π
with eigenvalue −1 because

Π∂i|X̃(λ)〉 = ∂iΠ|X̃(λ)〉
= −∂i|X̃(λ)〉, (3.64)
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where we used that Π is λ independent. It now follows that all the Berry potentials are
zero, because when we calculate them according to (3.41) we calculate the inner product
between two eigenvectors of Π with different eigenvalues. This has to be zero for any
hermitian operator Π.

We will now discuss how to systematically find symmetries Π and apply it to our
numerical model.

Systematically Finding Π

We now describe a practical strategy for finding Π. The idea is to construct a basis
for hermitian operators that fulfill (3.62b) and (3.62c). Subsequently we attempt to
construct an operator out of this basis that commutes with the Hamiltonian, that is an
operator that fulfills (3.62a).

We start with a basis for all hermitian matrices which we decompose as follows into a
tensor product out of the following constituents. There are particle-hole Pauli matrices
τi, spin Pauli matrices σi and matrices describing any remaining orbital structure λi. We
assume that we have a particularly chosen basis for the λi, such that its members are
either fully real or imaginary. We denote these by λR

i and λI
i respectively. This choice of

basis for the λi is helpful with respect to time-reversal symmetry.
It turns out to be most convenient to work with the chiral symmetry operator C instead

of either T or P . C is defined as

C = T P . (3.65)

The advantage of working with C is that it is linear as opposed to anti-linear. We choose
to work with C and T . The conditions that the elements in our Π-operator basis have to
fulfill are then {C, Π} = [T , Π] = 0, which means that (3.62c) is replaced by

{C, Π} = 0. (3.66)

If (3.62b) and (3.66) are satisfied, (3.62c) will be as well.
We will now construct a basis for the Π operators for the choices of T and P , which

we used earlier. Those where T = iσyK and P = σyτyK. In that case C = iτy. The
requirement (3.66) implies that the basis operators have to be proportional to τx or
τz. The next constraint is (3.62b). This means that the operators have to be either
proportional to a spin Pauli matrix σi or they have to be fully imaginary, which means
proportional to λI

i. Putting everything together we obtain the basis{
λR
i σjτx, λ

R
i σjτz, λ

I
iτx, λ

I
iτz
}
. (3.67)

We assume that the real λ matrices contain the identity matrix in λ space, so we also
have basis elements that effectively do not operate in λ space. Contrary to this the Pauli
matrices here do not contain an identity element σ0, because it transforms differently
under time reversal.
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We will now apply this to our numerical study. In that case we do not have any
orbital degrees of freedom, so we only have λR = 1 and no imaginary λs. Because of the
chemical potential in the Hamiltonian, basis elements proportional to τz cannot appear
in Π. Similarly the s-wave pairing term eliminates terms proportional to τz, so if we have
both a chemical-potential term and an s-wave term we cannot find a Π operator. We
will therefore assume that ∆ = 0. In that case there are three basis operators remaining
and we can construct a Π operator of the form Πl̂ = l̂ · στz, where l̂ is a unit vector.
The condition that it commutes with the other terms in the Hamiltonian becomes

0 = [Hα, Πl̂] = 2i(α× l̂) · σ,
0 = [Hv∆ , Πl̂] = −ip(v∆ · l̂)τy,

(3.68)

The first conditions requires l̂ ‖ α whereas the second one requires l̂ ⊥ v∆. Hence we
can find a symmetry that prevents local mixing if α ⊥ v∆ as well as ∆ = 0. This is in
complete agreement with the numerical results, which we presented earlier.

There is an obvious generalization of our symmetry condition. It comes from the fact
that we used global symmetries to make statements about localized states. All the above
arguments would still hold if the symmetry conditions are only satisfied locally around
the Kramers pairs of Majorana bound states. This might be helpful because one might
be able to induce local symmetries at least approximately by means of tuning.

3.5 Braiding of Kramers pairs of Majorana Bound States

In this section we study braiding of Kramers pairs of Majorana bound states. In contrast
to the previous section we therefore have to consider two Kramers pairs at the same time.
We use the local basis (3.24) and will study braiding in the case of a simple toy model.

There is an issue with the local basis choice (3.24). After we have exchanged the
two Kramers pairs of Majorana fermions this basis will not go back to itself because by
definition of the exchange D1(λfinal) ∝ D2(λinitial) and D2(λfinal) ∝ D1(λinitial). This is a
problem because having the same basis after a loop in parameter space was precisely what
got rid of some ambiguities of the Berry phases and made them well-defined quantities.
We can correct for this basis mismatch by transforming the basis after the exchange from
the final to the initial basis. This way the transformation of the exchange decomposes
into

U = BUlocal, (3.69)

where Ulocal is similar to the local transformations from the previous section with the
difference that the path in the integral corresponding to (3.31) is not closed but goes
from λinitial to λfinal. B is determined as the transformation that takes the final Ds back
to the initial ones. Equivalently in terms of the Kramers pairs of Majorana bound states,
it is defined by the requirement that

BXfinal
η B† = X initial

η . (3.70)
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3.5 Braiding of Kramers pairs of Majorana Bound States

One might be worried about the transformation properties of equation (3.69) under
gauge transformations. First of all it is clear that the decomposition can only hold as long
as we restrict ourselves to local gauge transformations. Under a gauge transformation
W (λ) the operator U should transforms according to equation (3.20). We explicitly show
that this relation holds for our decomposition (3.69) under local gauge transformations,
which have the form

Wlocal = ef1(λ)X1X̃1ef2(λ)X2X̃2 . (3.71)

This is important, because we will show below that B and Ulocal do not satisfy the same
transformation property individually.

We denote Wlocal(λinitial/final) by Wi/f respectively. It follows directly from BXfinal
η B† =

X initial
η that

Wi BW †
f Wf X

final
η W †

f Wf B
†W †

i = Wi X
initial
η W †

i .

Hence B transforms as
B → WiBW

†
f .

If one replaces Xη, X̃η by WlocalXηW
†
local,W

†
localX̃ηWlocal in (3.30) and calculates (3.31)

one easily finds that the local phases transform as ϕη → ϕη + (2fη(λfinal)− 2fη(λinitial)),
from which it follows that Ulocal transforms as

Ulocal → Wf UlocalW
†
i .

Hence neither B nor Ulocal transform according to (3.20), in particular because they
depend on the gauge choice at λfinal. This dependence however drops out of their product,
such that U indeed fulfills (3.20) proving that our decomposition (3.69) is valid for any
local gauge choice.

A pictorial representation of the decomposition (3.69) is given in figure 3.4, where the
circles represent Kramers pairs and the gauge freedom in the choice of Kramers partners
is represented by the choice of angle at which the circles are split into two halves.

Application to Class D

Before we study our toy model for class DIII systems, we demonstrate how the same
ideas apply (even though quite trivially) to class D systems. In class D systems we only
have two well-separated Majorana bound states X1 and X2. We can form a fermion out
of these states of the form D = 1

2
(X1 + iX2). With this fermion we can specify a basis

for the ground states as

|0〉, D†|0〉.

Similar to before, the continuous Berry phase difference between these states is generated
by the Berry potential A = 1

2
{X1,∇λX2}. Because the two Majorana bound states

are spatially separated, the Berry potential vanishes identically. This corresponds to
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initial basis exchange

basis transformation final basis

Ulocal
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B B† =

Fig. 3.4: This figure shows a pictorial representation of the decomposition (3.69). A loop
in parameter space is achieved by a continuous exchange followed by a basis
transformation. The circles represent Kramers pairs of Majorana fermions. The
ambiguity of dividing a circle into two halves represents the gauge freedom in
choosing Kramers partners. Two different lines and colors are used to divide
the circles to distinguish the two Kramers pairs.

Ulocal = 1 in equation (3.69). Therefore all the braiding statistics in class D are generated
by B. The conditions for B in this case are

BXfinal
1 B† = X inital

1 ,

BXfinal
2 B† = X inital

2 .
(3.72)

By definition of the exchange we have that Xfinal
1/2 ∝ X initial

2/1 . Since Majorana fermions are

self-adjoint, the proportionality constants can only be ±1. This way the equations (3.72)
become

Bs1X
initial
2 B† = X inital

1 ,

Bs2X
initial
1 B† = X inital

2 ,
(3.73)

where s1 and s2 are signs. The rest of the argument is the same as the usual argument
why Majorana fermions obey their particular braiding statistics. The idea is that fermion
parity is conserved throughout the exchange and it is given by P = siX1X2, where s is
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again a sign factor. Therefore we have

P = siX initial
1 X initial

2

= siXfinal
1 Xfinal

2

= ss1s2iX initial
2 X initial

1 .

It follows that s1s2 = −1 due to parity conservation. If one inserts this into equation
(3.73) one obtains the well-known equation

B = U = exp
(
±π

4
X initial

1 X initial
2

)
.

The remaining sign cannot be determined from general arguments and depends on the
details of the system and exchange, in particular whether one exchanges in a clockwise
or counterclockwise direction.

Even though the usual argument for the class D statistics is only the last part of the
argument presented here, we presented it in a larger context, which will be important for
class DIII.

3.5.1 Toy Model

The toy model that we study is the time-reversal symmetric analog of braiding by
tuning couplings [43]. It consists out of four Kramers pairs of Majorana fermions
χi, χ̃i = T χiT −1, which we again write as spinors χi = (χi, χ̃i)

T. The Hamiltonian
will be build out of coupling terms between Kramers pairs of Majorana fermions. The
coupling between Kramers pair i and j takes the form

Hij = itχT
i σze

iβijσyχj. (3.74)

This is the most general form of a time-reversal invariant coupling between two Kramers
pairs.

In the toy model there will be exactly three coupling terms, H41, H42 and H43. So
we have H = aH41 + bH42 + cH43, where a, b, c are parameter dependent. In order to
have the appropriate ground-state degeneracy at every point in parameter space, there is
at least one non-zero coupling and at most two at each point in parameter space. This
way there always exist exactly two zero-energy Kramers pairs of Majorana bound states
at every point in parameter space. Furthermore, only the relative coupling strength
between Kramers pairs of Majorana fermions is important, therefore we parametrize the
Hamiltonian generally as

H = cos θHij + sin θHik, (3.75)

where θ controls the relative strength of the two couplings. We will refer to this
Hamiltonian as a switching Hamiltonian, because changing θ from 0 to π

2
moves a zero

energy Kramers pair from site k to site j. This situation is depicted in figure 3.5. Strictly
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Fig. 3.5: Each circle denotes a site with a Kramers pair of Majorana fermions. The two
different colors denote the two Kramers pairs of Majorana bound states. Lines
between the sites denote couplings. As a single coupling is switched from one
position to the next, the corresponding Kramers pair of Majorana bound states
moves in the opposite direction. Note that the sites label the static basis and
therefore the numbers do not change.

speaking we have different parameters θ for the different switching processes, but because
it will be possible to understand everything from a single switching process, we will not
add additional indices to θ.

We already know how to calculate Ulocal from our discussions of local mixing. In order
to calculate B it is therefore important to find Xfinal

η . We do that by finding the initial
and final states of each switching process individually and then piecing them together.

During each individual switching process one of the Kramers pairs of Majorana bound
states does not change (for a given local gauge choice). We study what happens to the
other one by solving [H,Xη] = 0 for the Hamiltonian (3.75). We find

Xη = eiασy
(
cos θeiβijσyχj − sin θeiβikσyχk

)
, (3.76)

where α is an arbitrary gauge choice that may depend on the βs and θ.
We want to patch three switching processes together such that Xη is continuous. In

order to do that conveniently, we pick a particular parameter dependence for α, such
that Xη(θ = 0) = ±χj and Xη(θ = π

2
) = ∓χk. The sign change is motivated by analogy

to switching processes for single Majorana bound states in class D systems. A particular
gauge choice of α, which gives the desired Xη at θ = 0, π

2
, is

α± = −βij cos θ − βik sin θ + (1∓ 1)
π

2
.

Table 3.1 shows Xη initially and after each switching process. It has exactly the same
structure as for single class D Majorana bound states. During the process the initial
Kramers pairs transform into the final ones according to

X initial
1 = χ1 →Xfinal

1 = χ2,

X initial
2 = χ2 →Xfinal

2 = −χ1.
(3.77)

Therefore the basis transformation that generates this transformation is simply

B = exp
(π

4
(χ1χ2 + χ̃1χ̃2)

)
, (3.78)
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3.5 Braiding of Kramers pairs of Majorana Bound States

H43 H41 H42 H43

X1 χ1 −χ3 −χ3 χ2

X2 χ2 χ2 −χ1 −χ1

Tab. 3.1: The table shows the instantaneous Xη between switching processes. The
instantaneous Xη are required to be continuous. Therefore the initial and final
conditions of the individual switching processes have to match. The braiding
process is of the form depicted in figure 3.5.

which is structurally the same as two independent braiding transformations of pairs of
Majorana bound state. According to (3.69) the total braiding transformation is

U = exp
(π

4
(χ1χ2 + χ̃1χ̃2)

)
exp

(ϕ1

2
χ1χ̃1 +

ϕ2

2
χ2χ̃2

)
. (3.79)

The question arises how general the transformation (3.79) is. After all it was derived in
the context of our simple toy model. From the construction it is clear that we can always
choose a local gauge such that (3.77) holds and therefore (3.78) remain true, even in a
more complicated system. Therefore the question about the generality of equation (3.79)
reduces to the question of how general our Ulocal is. We argued earlier that we have local
parity conservation which means the quantities D†ηDη = i

2
XηX̃η + 1

2
are conserved. This

means that the Dη fermions can only pick up phases, which is equivalent to the mixing of
the Kramers pairs described by equation (3.32). Therefore Ulocal is fully general, which
implies that (3.79) is fully general.

The general transformation (3.79) that we found contains path-dependent phases, which
means that the transformation cannot be used for topological quantum computation.
The natural question to ask is whether there are additional conditions under which these
phases become path independent. It turns out that the question of whether there is any
path dependence in (3.79) is equivalent to the question whether there is local mixing.
The absence of local mixing is equivalent to path independence and the presence of local
mixing is equivalent to path dependence.

As we mentioned already in the context of local mixing, if the phases in (3.79) are
path independent, then there cannot be any local mixing. Otherwise we could append a
local mixing path to a braiding path and we would obtain a transformation with different
phases. We will now argue that the converse is also true and that in the absence of local
mixing the transformation can always be brought into a particular form.

To show that in the absence of local mixing there is no path dependence in the phases
ϕη, we assume that we have two braiding paths 1 and 2 such that the mixing angles
along those paths are ϕη and ϕ̄η. The corresponding braiding transformations are given
by U and Ū . We can now form a local mixing operation Ū †U with mixing angles ϕη− ϕ̄η,
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a) b)

1 2 2 1 2 2

ϕ1

ϕ2

1 2U :

1 2Ū :

1 2Ū †U :

ϕ2 − ϕ̄2 = 0

ϕ1 − ϕ̄1 = 0

Fig. 3.6: (a) Two exchanges along different paths can be combined into two local op-
erations (solid and dashed line). Consequently the mixing angles are path
independent if local mixing angles are zero. (b) One Kramers pair gets moved
out of the way for the other to make a loop. During the first half pair 1 rotates
by ϕ1 and during the second half it rotates by ϕ2. If there is no local mixing
this implies ϕ1 + ϕ2 = 0.

but since there is no local mixing by assumption, we have ϕη − ϕ̄η = 0. Therefore the ϕη
are path independent. The argument is illustrated in figure 3.6a).

We now argue that for path-independent phases we necessarily have ϕ1 = −ϕ2. For
our simple toy model this can be verified by means of a straightforward calculation of
Ulocal, but we give a more general argument instead. Ulocal always decomposes into two
independent local rotations. Therefore the phase picked up by one Kramers pair of
Majorana bound states does not depend on the other Kramers pair. We can therefore
imagine moving the second Kramers pair a little out of the way such that the first
Kramers pair can make a loop which does not encircle the second one, but passes through
the initial position of the second one. During the first half of this loop the Kramers pair,
e.g. X1, will acquire a mixing angle ϕ1, the same it would acquire during an exchange.
During the second half of this loop X1 will acquire a mixing angle ϕ2, the same which
X2 would have acquired during an exchange. The absence of local mixing now implies
that ϕ1 + ϕ2 = 0, which we wanted to show. The situation is illustrated in figure 3.6b).

Now that we showed that in the absence of local mixing we have ϕ1 = −ϕ2, we can
bring equation (3.79) to a particularly simple form. We can do this by means of the

gauge transformation W = e
ϕ1

4
χ1χ̃1e−

ϕ1

4
χ2χ̃2 , such that

WUW † = exp
(π

4
(χ1χ2 + χ̃1χ̃2

)
. (3.80)

The transformation is, of course, only meaningful because the ϕη do not depend on the
specific braiding path, otherwise we would need a different transformation for each path.
In this simplified form of the transformation, (3.80) corresponds to two independent
exchanges of Majorana bound states χ1, χ2 and χ̃1, χ̃2 respectively.

The question arises how to physically interpret the particular gauge choice that
simplifies the transformation. This question can only be answered in the context of
criteria that guarantee the absence of local mixing to begin with. In particular the
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3.5 Braiding of Kramers pairs of Majorana Bound States

sufficient symmetry condition which we discussed earlier allowed us to choose a gauge
that decomposes the system into two independent parts that are each others time-reversed
partners and that do not get mixed throughout the process. In that case this gauge
choice will be precisely the one leading to the simplified transformation (3.80).

3.5.2 Numerical Simulation

As the last part of this chapter we discuss numerical simulations of braiding of Kramers
pairs of Majorana bound states. In particular we will discuss how we can dynamically
exploit the gauge freedom to obtain the braiding transformation very efficiently. We will
then demonstrate braiding in the absence and presence of local mixing.

Let us consider the decomposition (3.69) again. We discussed earlier how U and B
transform under gauge transformations. In particular we can choose bases for which
Ulocal’s local phases ϕη take any value. We exploit this to choose a gauge where Ulocal = 1.
This way we simply have U = B, which means that the Berry potential disappeared from
the calculation. This is ideal for numerical calculations because in order to calculate the
Berry potential, one has to numerically take derivatives. Therefore for this particular
gauge choice the braiding path in parameter space does not need to be discretized in
such a fine grid as to allow for the approximation of derivatives.

All that is left to discuss is how to actually make the preferable gauge choice in practice.
In order to do that let us assume that we have N numerical solutions for a Kramers pair
of Majorana bound states for a discretized approximation to the braiding path. We will
denote those states with |Xn〉 and |X̃n〉, where n = 1 . . . N , denotes position along the
braiding path. This means that we already obtained Majorana bound states from the
numerical solutions by the method described earlier, but they are not necessarily in the
Ulocal = 1 gauge. We will now obtain this gauge by successively rotating the Kramers
pairs. We will denote the rotated pairs with |XR

n 〉 and |X̃R
n 〉. Because we only rotate the

Kramers pairs relative to each other the starting point is arbitrary and we simply set
|XR

1 〉 = |X1〉 and |XR
1 〉 = |X̃1〉. We will now describe how to obtain |XR

n+1〉, |X̃R
n+1〉 from

|XR
n 〉, |X̃R

n 〉 and |Xn+1〉, |X̃n+1〉.
In order to calculate the rotation we assume that the Kramers pair at n still has some

overlap with the Kramers pair at n+ 1, but this overlap does not need to be large. We
can therefore write the Kramers pair at n + 1 in terms of the eigenbasis at n. It will
be a superposition of the nth Kramers pair (because we assumed overlap) and some
particle-hole symmetric combination of bulk states. Additionally it is very important
that the nth Kramers pair may appear rotated in this decomposition. Therefore we have

|Xn+1〉 = cos θR(ϕ)|XR
n 〉+ sin θ|χbulk,n〉

|X̃n+1〉 = cos θR(ϕ)|X̃R
n 〉+ sin θT |χbulk,n〉,

(3.81)

where R(ϕ) is the rotation we referred to and |χbulk,n〉 is a particle-hole symmetric linear
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combination of bulk states. The rotation matrix is given by

R(ϕ)|Xn〉 = cosϕ|Xn〉+ sinϕ|X̃n〉
R(ϕ)|X̃n〉 = − sinϕ|Xn〉+ cosϕ|X̃n〉,

(3.82)

and is fully determined by the parameter ϕ. Up to a factor of cos θ, R(ϕ) is given by
the matrix elements 〈XR

n |Xn+1〉, 〈X̃R
n |Xn+1〉, 〈XR

n |X̃n+1〉 and 〈X̃R
n |X̃n+1〉. The factor of

cos θ can be obtained by solving 〈XR
n |Xn+1〉2 + 〈X̃R

n |Xn+1〉2 = cos2 θ. Therefore R(ϕ) is
easily calculated. We then define

|XR
n+1〉 = R(ϕ)†|Xn+1〉 = cosϕ|Xn+1〉 − sinϕ|X̃n+1〉,

|X̃R
n+1〉 = R(ϕ)†|X̃n+1〉 = sinϕ|Xn+1〉+ cosϕ|X̃n+1〉.

(3.83)

It can now easily be verified that the discrete analog of the Berry potential vanishes:

〈XR
n |
(
|X̃R

n+1〉 − |X̃R
n 〉
)

= 〈XR
n |
(

(cos θ − 1)|X̃R
n 〉+ sin θT R|Xbulk,n〉

)
= 0. (3.84)

Therefore our new gauge given by the bases |XR
n 〉 and |X̃R

n 〉 satisfies Ulocal = 1. In order
to obtain this gauge choice we had to calculate R(ϕ), for which we had to divide by cos θ,
which described the overlap of consecutive Kramers pairs. Therefore for this procedure
the discretization has to be fine enough such that cos θ is not too small. This is far less
restrictive than requiring a discretization which is fine enough to approximate derivatives
well.

After fixing the gauge for both sequences of Kramers pairs of Majorana bound states
we still need to calculate B. For this we only need the states |X̃R

1,1〉, |X̃R
2,1〉, |X̃R

1,N〉,
|X̃R

2,N〉 and their Kramers partners. Here the first index denotes the two Kramers pairs
respectively and the second index denotes the position along the discretized braiding path.
Note that all the work from the gauge fixing procedure described above enters in the
properly gauged final states at position N , which are only obtained after consecutively
rotating the whole sequence of bases. We now calculate the rotation matrices R(ϕη) which
relate |X̃R

1,1〉, |X̃R
2,N〉 and their Kramers partners and |X̃R

2,1〉, −|X̃R
1,N〉 and their Kramers

partners. Note the minus sign, which is in accordance with our earlier conventions. With
the ϕηs from these rotation matrices the braiding transformation is given by (3.79).

We will now describe our actual numerical simulation. We consider a Y-junction,
which we describe by a block Hamiltonian with 4 blocks on the diagonal. Three blocks
describe the one-dimensional arms of the Y. The fourth block is a single site for the
only purpose of coupling the other three blocks. The only additional finite entries in the
Hamiltonian couple the last site of every wire block to our additional 1-site coupling
block. To supplement our theory on braiding of Kramers pairs of Majorana fermions,
we plot the sum ϕ1 + ϕ2 for different braiding situations with and without local mixing.
Without local mixing the sum should vanish and otherwise we expect it to be finite. The
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Fig. 3.7: The plot shows the sum of the phases, which the two Kramers pairs pick up
after one exchange, as a function of s-wave pairing. Without s-wave pairing
the sum vanishes and therefore the process can be mapped to the independent
exchange of two pairs of Majorana bound states. For finite s-wave pairing the
sum of the phases is finite and therefore such a mapping is no longer possible.

parameters that are changing are the positions of the phase boundaries to which the
Kramers pairs of Majorana bound states are pinned. Figure 3.7 shows the sum ϕ1 + ϕ2

as a function of s-wave pairing. The sum is clearly finite for finite s-wave pairing. This
is consistent with our earlier results, which showed that s-wave pairing induces local
mixing.

3.6 Summary

In this chapter we studied braiding of Kramers pairs of Majorana bound states as
they appear in class DIII topological superconductors in one and two dimensions. We
constructed a detailed framework relating the Berry phases of the many-body Fock-space
states to the second quantized single-particle operators and to BdG states. We used
this to show that local adiabatic manipulations of Kramers pairs of Majorana bound
states are possible. This implies that Kramers pairs of Majorana bound states cannot
be used for topological quantum computation. We termed this local manipulation local
mixing and also discussed sufficient symmetry conditions of the BdG Hamiltonian that
guarantee the absence of local mixing. Finally we classified the possible transformations
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3 Braiding in Class DIII

that can be achieved as a result of braiding Kramers pairs of Majorana bound states.
We did this in the context of a simple toy model but argued that the result is as general
as symmetries allow. Generally braiding leads to path-dependent transformations as we
already expected from the local mixing results. Interestingly the absence of local mixing is
enough to guarantee the path independence of the braiding transformation. Furthermore
in the absence of local mixing the braiding transformation takes a particularly simple
form for a certain basis choice. In that form it corresponds to two independent braiding
transformations of two Majorana bound states and their Kramers partners respectively.
We also used our theoretical framework for braiding to perform numerical braiding
simulations for a Y-junction using a BdG calculation. In particular we exploited that a
certain gauge choice allows one to calculate the braiding outcome without the need of
taking derivatives numerically, which allows for a more coarse discretization and therefore
decreases the numerical effort.
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4 Topologically Non-Trivial DIII Phase Through
Interactions

In this chapter we study how interactions can help to achieve a topologically non-
trivial phase in one-dimensional class DIII systems. For non-interacting systems it
is well understood for which parameter values one-dimensional DIII systems will be
in a topological phase. In particular it is understood which relative magnitudes the
superconducting-pairing terms need to have [22,24]. The problem with those parameter
values is that they cannot be attained without electron-electron interaction [20,51]. It
is therefore important to study DIII phases in the presence of interactions. This has
been studied by several authors in the context of mean-field theory both analytically [11]
and numerically [24]. It was also studied in the case of attractive interactions in the
spin sector [32]. We will consider the case of repulsive interactions and perform an
renormalization group (RG) analysis to investigate the effect of interactions. This is a
natural generalization of the existing work.

In the first part of this chapter we will introduce the general framework in which we
will work and then comment on the connection between the non-trivial topological phase
and interactions in general. This is an important point, because the general classification
of topological phases is only valid for non-interacting systems. We will therefore discuss
when an interacting one-dimensional class DIII phase is topologically non-trivial, and
how that relates to the non-interacting case. This discussion will partially follow [32].
Afterwards we begin with the (RG) analysis. In particular we will use a result that relates
second-order perturbative flow equations to coefficients of operator product expansions
(OPE) [10]. The focus will be on the application of this particular result instead of its
derivation. We explicitly present the calculations for a simple case that can be treated
analytically to a large extend and later state the generalized flow equations which can
only be solved numerically.

4.1 Fixed-Point System and Perturbations

In this section we will first specify the non-interacting Hamiltonian of the system that we
want to study. We will then bosonize the individual terms, add interactions and define
the perturbations for which we will perform an RG analysis.

The starting point is a spinful linearized low-energy Hamiltonian for free electrons,
where each spin direction has the form of equation (2.15). The Hamiltonian has the form

H0 = ivF

∑
σ

∫
dx
[
−ψ†σ(x)∂xψσ(x) + ψ̄†σ(x)∂xψ̄σ(x)

]
. (4.1)
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4 Topologically Non-Trivial DIII Phase Through Interactions

Note that we assume the same Fermi velocity vF for all the electrons, which means that
the Hamiltonian is SU(2) symmetric additionally to being time-reversal symmetric.

Additionally to the free Hamiltonian we consider induced superconducting pairing. We
consider singlet and triplet pairing. The Hamiltonian for the singlet pairing is

H = ∆s

∫
dx
(
ψ↑(x)ψ̄↓(x)− ψ↓(x)ψ̄↑(x) + h.c.

)
. (4.2)

The triplet pairing is assumed to be the result of a combination of induced singlet pairing
and some inversion symmetry breaking. Therefore we only consider m = 0 triplet pairing.
The Hamiltonian is

H = −∆t

∫
dx
(
ψ↑(x)ψ̄↓(x) + ψ↓(x)ψ̄↑(x) + h.c.

)
. (4.3)

We will now translate the Hamiltonians to their bosonized forms. The free electron
part H0 translates in the usual way to

H =
1

2π

∑
σ

∫
dx
[
(∂xϕσ)2 + (∂xθσ)2

]
. (4.4)

Since want to include interactions we will use the charge and spin sector defined in (2.50),
instead of spin-up and spin-down sectors. For convenience let us restate the translation
rules for the bosons (2.49) but in terms of charge- and spin-sector fields. We have

ψ†σ(x) =
ησ√
2π

e2iφσ(x) ψ̄†σ(x) =
ησ√
2π

e−2iφ̄σ(x)

=
ησ√
2π

e
i√
2

(ϕc+σϕs−θc−σθs) =
ησ√
2π

e
i√
2

(−ϕc−σϕs−θc−σθs), (4.5)

where σ as a prefactor is 1 for ↑ and −1 for ↓.
The superconducting terms take the following forms. For the singlet pairing we get

Hs =
∆s

2π

∫
dx
(
η↑η↓e

−2i(φ↑−φ̄↓) − η↓η↑e−2i(φ↓−φ̄↑) + h.c.
)

= iη↑η↓
∆s

π

∫
dx
(
sin(−2(φ↑ − φ̄↓)) + sin(−2(φ↓ − φ̄↑))

)
= iη↑η↓

∆s

π

∫
dx
(

sin(
√

2(θc − ϕs)) + sin(
√

2(θc + ϕs))
)

= iη↑η↓
2∆s

π

∫
dx sin(

√
2θc) cos(

√
2ϕs). (4.6)

Similarly one finds for the triplet pairing

Ht = iη↑η↓
2∆t

π

∫
dx cos(

√
2θc) sin(

√
2ϕs). (4.7)
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Because the Klein factors will not appear anywhere else, we replace the combination iη↑η↓
with its eigenvalues ±1. For the most part the signs of the singlet and triplet pairing
will not play a role and therefore we will simply replace iη↑η↓ with 1.

It is very useful to realize that the superconducting-pairing terms only depend on
θc and ϕs. When we include interactions we will get an additional non-quadratic
backscattering term, which will also only depend on ϕs. It is therefore possible to
formulate the whole interacting problem in terms of an action S[θc, ϕs]. The fixed point
part is S0[θc, ϕs] = S0[θc] + S0[ϕs], where

S0[θc] =
Kc

2π

∫∫
dτdx

[
(∂τθc)

2 + (∂xθc)
2
]
, (4.8)

and

S0[ϕs] =
1

2πKs

∫∫
dτdx

[
(∂τϕs)

2 + (∂xϕs)
2
]
. (4.9)

It is important to note that these actions actually describe fixed points for all values of
Ks and Kc. Additional to the fixed point action we have perturbations away from the
fixed points. They are

Ss[θc, ϕs] =
2∆s

π

∫∫
dτdx sin(

√
2θc) cos(

√
2ϕs), (4.10)

St[θc, ϕs] =
2∆t

π

∫∫
dτdx cos(

√
2θc) sin(

√
2ϕs), (4.11)

Sbs[ϕs] =
λbs

2π2

∫∫
dτdx cos(

√
8ϕs). (4.12)

For the renormalization group method that we are going to use we have to write our
perturbations in the form

Spert =
∑
i

gia
xi−2

∫∫
dτdxOi(x, τ), (4.13)

where the gi are the coupling constants for which we will calculate the flow, a is the
small scale cutoff and xi the scaling dimension of the operator Oi. The purpose of this
particular form of the perturbations is to make the coupling constants gi dimensionless
such that they can be compared with each other. In order for the gi to be dimensionless
it is important that the cutoff is not part of the Oi and their correlation functions in the
sense discussed in chapter 2. The simplest way to account for the cutoff is to work in
units of the cutoff and restore units when necessary such that the gi are unitless.

There is an ambiguity in the choice of the of the initial g0
i and the normalization of

the operators Oi. The ambiguity can readily be seen by the trivial scaling gi → cgi
and Oi → c−1Oi. It is therefore important to specify all the perturbation operators
explicitly, together with their initial conditions for the coupling constants. During the
renormalization-group transformations additional perturbations will be generated, but
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4 Topologically Non-Trivial DIII Phase Through Interactions

for these the normalization can be determined later because the initial condition for the
coupling constants are going to be zero.

For the perturbation operators and the initial coupling constants we choose

g0
s =

∆s

π
Os = 2 sin(

√
2θc) cos(

√
2ϕs), (4.14)

g0
t =

∆t

π
Ot = 2 cos(

√
2θc) sin(

√
2ϕs), (4.15)

g0
bs =

λbs√
8π2

Obs =
√

2 cos(
√

8ϕs). (4.16)

In order to have a more systematic notation we will change the subscripts to numbers. We
replace s→ 1, t→ 2 and bs→ 3. Additionally to these perturbations the renormalization
group flow will generate other perturbations to the fixed point action. The corresponding
operators Oi are

O4 =
(
(∂xϕs)

2 + (∂τϕs)
2
)

= 4∂zϕs∂z̄ϕs, (4.17)

O5 =
(
(∂xθc)

2 + ∂τθc)
2
)

= 4∂zθc∂z̄θc, (4.18)

O6 =
√

2 (∂τθc∂τϕs + ∂xθc∂xϕs)

=
√

8 (∂zθc∂z̄ϕs + ∂z̄θc∂zϕs) , (4.19)

O7 =
√

2 cos(
√

8θc). (4.20)

Since O4, O5 and O6 represent correction to quadratic parts of the Hamiltonian, they
can in principle be included exactly. This is not by default part of the RG formalism
which we will use, but we will explain later how to include them exactly. While O4 and
O5 have the same form as the existing parts of the quadratic actions, O6 is not present in
our initial action. O6 corresponds to interactions that are odd under inversion symmetry.
As such it can be thought of as a result of inversion symmetry breaking. O7 is another
non-quadratic perturbation and represents Cooper-pair interactions.

For the renormalization group analysis two other properties of the operators Oi are
needed. Both of them are contained in the correlation functions 〈Oi(w, w̄)Oi(z, z̄)〉 at
the fixed points. Those correlation functions generally have the form

〈Oi(z, z̄)Oi(w, w̄)〉 =
ci

(z − w)2hi(z̄ − w̄)2h̄i
, (4.21)

where ci is a constant, which determines the normalization of Oi. The constants h and h̄
are called holomorphic and anti-holomorphic conformal dimensions respectively. They
are related to the scaling dimension of the operator through

xi = hi + h̄i, (4.22)
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4.1 Fixed-Point System and Perturbations

additionally they are related to the conformal spin

si = hi − h̄i. (4.23)

We will not investigate perturbations with finite conformal spin, because they are not
generated during the RG flow. We will comment on this in the appendix of this chapter.
As we will be mostly dealing with operators and correlation functions that do not
have conformal spin, it is instructive to simplify those expression in terms of x and τ
coordinates. For example equation (4.21) takes the the form

〈Oi(x, τ)Oi(x
′, τ ′)〉 =

ci
((x− x′)2 + (τ − τ ′)2)xi

. (4.24)

Note that it only depends on the magnitude of the distance.

We will now demonstrate the calculation of the correlation function for one of the
trigonometric perturbations, O3, and for one of the quadratic perturbations O4. The
values for all the constants of all the Oi are given in table 4.1. The correlation function
of O3 can be calculated by an application of (2.34) and (2.35). One finds

〈O3(z, z̄)O3(w, w̄)〉 =
1

2

〈
ei
√

8ϕ(z,z̄)e−i
√

8ϕ(w,w̄) + e−i
√

8ϕ(z,z̄)ei
√

8ϕ(w,w̄)
〉

+
1

2

〈
ei
√

8ϕ(z,z̄)ei
√

8ϕ(w,w̄) + e−i
√

8ϕ(z,z̄)e−i
√

8ϕ(w,w̄)
〉

=
1

2

1

(z − w)2Ks(z̄ − w̄)2Ks

〈
ei
√

8ϕ(z,z̄)−i
√

8ϕ(w,w̄) + e−i
√

8ϕ(z,z̄)+i
√

8ϕ(w,w̄)
〉

+
1

2
(z − w)2Ks(z̄ − w̄)2Ks

〈
ei
√

8ϕ(z,z̄)+i
√

8ϕ(w,w̄) + e−i
√

8ϕ(z,z̄)−i
√

8ϕ(w,w̄)
〉

=
1

(z − w)2Ks(z̄ − w̄)2Ks
. (4.25)

This implies that c3 = 1, x3 = 2Ks and s3 = 0. For the quadratic terms one can calculate
the correlation functions using Wick’s theorem. We will use lines to indicate the possible
contractions. We find

〈O4(z, z̄)O4(w, w̄)〉 = 16∂zϕs(z)∂z̄ϕs(z̄)∂zϕs(w)∂z̄ϕs(w̄)

=
K2

s

(z − w)2(z̄ − w̄)2
. (4.26)

From this expression we see that c4 = K2
s , x4 = 2 and s4 = 0.

We are now able to go ahead with the operator product expansion based renormalization
group calculation and will explain how to apply this method below, but first we discuss
how different topological phases can be distinguished in the Luttinger-liquid picture.
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4 Topologically Non-Trivial DIII Phase Through Interactions

ci xi

O1 1 1
2
(Ks +K−1

c )
O2 1 1

2
(Ks +K−1

c )
O3 1 2Ks

O4 K2
s 2

O5 K−2
c 2

O6 KsK
−1
c 2

O7 1 2K−1
c

Tab. 4.1: This table lists the important perturbations away from the Luttinger-liquid
fixed points, together with their normalization and their scaling dimensions.

4.2 Superconducting Pairing and Interactions

In this section we present arguments, why interactions favors triplet pairing over singlet
pairing. In particular we discuss how the backscattering term, which is due to interactions,
relates to the different superconducting pairings. All those terms are trigonometric
functions of the fields. They therefore have several minima and have the smallest energy
if the fields assume a constant value throughout the system corresponding to a minimum
of the trigonometric term. This will generally not happen, because there are other
terms in the action which favor non-constant fields. Nevertheless it is instructive to
consider which constant values reduce the energy associated with the trigonometric
terms the most. We will refer to this as pinning of the fields to a certain value. For the
discussion we will assume that the sign of the backscattering coupling constant is positive,
which corresponds to repulsive interaction. We will make no such assumption for the
superconducting terms, because they are the product of two trigonometric functions and
the overall sign can therefore be changed by pinning one field to a maximum rather than
a minimum.

We start of by observing that the backscattering term (4.12) ideally pins the field ϕs to
√

8ϕbs
s = π + 2πnbs. (4.27)

where nbs is an integer. For the superconducting pairings the ϕs field ideally gets pinned
to a maximum or a minimum of the trigonometric function in which it appears. Whether
it is pinned to a minimum or a maximum depends on the sign of the superconducting
order parameter and on the pinning value of the other field θc. For the singlet pairing
(4.10) the extrema are obtained for ϕs values of

√
2ϕs

s = 2πns, (4.28)

where ns is an integer. For the triplet pairing (4.11) the extrema are obtained for values
of √

2ϕt
s =

π

2
+ 2πnt, (4.29)
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4.2 Superconducting Pairing and Interactions

where nt is an integer. It can now be seen that there are no compatible pinning values
for the singlet pairing term and the backscattering term. On the other hand there are
compatible values for the triplet pairing and the backscattering term when nbs = 2nt.

It is furthermore instructive to look at the spin field close to a system boundary. At
the boundary we have the boundary condition

ψ↑ = eiα↑ψ̄↑,

ψ↓ = eiα↓ψ̄↓,
(4.30)

describing complete normal reflection. Due to time-reversal symmetry we actually have
α↑ = α↓. For the spin field in the bosonized formulation this implies

√
8ϕs = 0 mod 2π. (4.31)

This boundary condition is compatible with the pinning values of the singlet pairing,
but it is not compatible with any pinning values of the triplet pairing. Therefore if the
system is dominated by triplet superconductivity in the bulk, the pinning value of ϕs

has to change from its bulk value to an allowed boundary value close to the boundary.
The lowest energy configuration is achieved by the smallest change in ϕs, because of the
(∂xϕs)

2 term in the action. The change close to the boundary will therefore be towards
the allowed boundary value, which is closest to the bulk value, but it turns out that there
are actually two values that are equally close. One of which is smaller than the bulk value
and one of which is larger. Therefore there are two degenerate ground states associated
with the boundary. This is illustrated in figure 4.1. Depending on which value of ϕs is
chosen at the boundary, ∂xϕs will be positive or negative close to the boundary. This
corresponds to finite spin densities with opposite sign. A magnetic field, which breaks
time-reversal symmetry, will therefore lift this ground state degeneracy. We have therefore
seen that for the triplet-pairing dominated phase we have a ground-state degeneracy
associated with a system boundary, which is lifted by a magnetic field. This is therefore
similar to the usual Kramers pair of Majorana fermions, which is known to appear in
non-interacting one-dimensional DIII systems at a system boundary. Furthermore one
can directly associate a spin with the boundary by means of∫

dxns = − 1√
2π

∫
dx ∂xϕs

= − 1√
2π

(ϕs(bulk)− ϕs(boundary))

= ±1

4
. (4.32)

This is also consistent with the fractional spin, which is associated with Kramers pairs of
Majorana bound states [33].
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√
8ϕs

Distance from the Edge

2π

4π

6π

Bulk Triplet Pinning

Degenerate Boundary
Configurations

Boundary Pinning

Fig. 4.1: This figure illustrates at which values of ϕs the bulk-triplet-pairing term would
like to pin the field. It also indicates at which values the boundary condition
would like to pin the field. As a result there has to be a kink close to the
boundary, and there are two degenerate possibilities whose derivatives have
exactly opposite sign at each point.

4.2.1 Systems with Initial Triplet Pairing

So far we have discussed how interactions may favor triplet pairing over singlet pairing
and in the following section we will study how this is reflected in the RG flow. In order to
have a strong effect to low orders in the RG flow, we will consider systems that initially
already have some triplet pairing. We assume this to be weaker then the existing singlet
pairing, but still finite. This is a realistic situation, because one usually proximitizes
systems with s-wave superconductors. Without initial triplet pairing, it will be very
difficult to reach a topological phase, because triplet pairing then has to be generated
by the RG flow to second order. Since singlet pairing is a relevant perturbation, it will
dominate the RG flow if the initial triplet pairing is too small or absent. If the initial
singlet- and triplet-pairing are comparable, higher order correction will determine which
term dominates the flow, because to first order they have the same scaling dimension.

In order to understand why one may expect initial triplet pairing it is helpful to define

H+ = ∆+

∫
dxψ↑(x)ψ̄↓(x), (4.33)

H− = ∆−

∫
dx ψ̄↑(x)ψ↓(x). (4.34)

This way the singlet-pairing term (4.2) is given by H+ +H− and the triplet-pairing term
(4.3) is given by H+ −H−. In order to have triplet pairing it therefore suffices to have
different values of ∆+ and ∆−.
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Quantum Spin Hall System

Superconductor

Fig. 4.2: The figure shows narrow quantum-spin-Hall system. The edge states are indi-
cated by lines, where the solid lines have spin up and the dashed lines have
spin down. The edges are assumed to be tunnel coupled and one edge of the
system is proximitized by a superconductor. This yields a finite ∆+ and almost
vanishing ∆−.

In order to realize a situation in which ∆+ and ∆− are different it is useful to note
that H+ and H− are related by inversion symmetry. Inversion symmetry relates right
and left movers as

ψσ → ψ̄σ,

ψ̄σ → ψσ.
(4.35)

In order to have different values of ∆+ and ∆− it is therefore necessary to break inversion
symmetry in accordance with the non-interacting results [20]. If inversion symmetry
is broken, ∆+ and ∆− will generally be different. This property can very easily be
illustrated in a conceptually simple system, due to our collaborator Arbel Haim. The
system consists of a narrow quantum-spin-Hall system, such that the opposite edges are
tunnel coupled. The total of the four edge states constitutes the one dimensional system
that we are looking at. In this system the inversion symmetry relates the channels of the
two edges. Consequently we can break the inversion symmetry by proximitizing only one
of the edges with a superconductor. This way ∆+ will be finite and ∆− will be close to
0. The situation is depicted in figure 4.2.
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4 Topologically Non-Trivial DIII Phase Through Interactions

4.3 Operator Product Expansion and Flow Equations

Our goal is to calculate flow equations to second order in the coupling constants according
to the formula [10]

dgk
d`

= (2− xk)gk − π
∑
ij

cijkgigj, (4.36)

where cijk are the coefficients of an OPE. An OPE is an expansion of the form

Oi(z, z̄)Oj(w, w̄) ∼
∑
k

cijk

(z − w)2hi+2hj−2hk(z̄ − w̄)2h̄i+2h̄j−2h̄k
Ok(w, w̄). (4.37)

The idea behind an OPE is that we can express the product of two local operators
with arguments that are very close in terms of a sum of local operators. Those local
operators only depend on one of the coordinates, and have a divergent prefactor that
depends on the coordinate difference. The divergent prefactor captures the fluctuations
as the arguments come closer to one another. For dimensional reasons the exponents
of the divergent terms are given by the conformal dimensions of the operators which
are involved. The constants cijk are the OPE coefficients, and are precisely the numbers
which we want to calculate for equation (4.36). In an OPE only the divergent terms
are kept. It is therefore not an exact expansion and should only be applied inside an
expectation value and only if the arguments are close. Furthermore we will only use the
terms in the OPE which do not have any conformal spin. Terms with conformal spin will
not be used in equation (4.36) and will not be included. The reason for that is explained
in the appendix 4.A.

In order to calculate OPEs we will generally use the following strategies. If we have
vertex-operator terms, the first step is to use equation (2.34) which we restate here for
convenience:

:eiαφ(z) : : eiβφ(w) : = e−αβ〈φ(z)φ(w)〉 : ei(αφ(z)+βφ(w)) : .

Because the correlation function is a negative logarithm, the first exponential on the
right-hand side is divergent if αβ < 0. The second exponential on the right-hand side is
normal ordered and does therefore not contain any divergence. As an OPE only consists
out of divergent terms, this means that we do not need to consider terms where αβ > 0.
The second step is now to Taylor expand the normal-ordered exponential in a Taylor
series in z − w and/or z̄ − w̄. This way high enough orders in the Taylor expansion are
not going to yield divergent terms and we can omit them. On top of that we end up
with operators that only depend on one coordinate, as we are supposed to in an OPE.
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4.3 Operator Product Expansion and Flow Equations

We will demonstrate this for the OPE for O3 with itself. We find

O3O3 =
1

2

(
ei
√

8ϕ(z,z̄)e−i
√

8ϕ(w,w̄) + e−i
√

8ϕ(z,z̄)ei
√

8ϕ(w,w̄)
)

+
1

2

(
ei
√

8ϕ(z,z̄)ei
√

8ϕ(w,w̄) + e−i
√

8ϕ(z,z̄)e−i
√

8ϕ(w,w̄)
)

∼ 1

2

1

(z − w)2Ks(z̄ − w̄)2Ks

(
ei
√

8ϕ(z,z̄)−i
√

8ϕ(w,w̄) + e−i
√

8ϕ(z,z̄)+i
√

8ϕ(w,w̄)
)

∼ 1

2

1

(z − w)2Ks(z̄ − w̄)2Ks

(
ei
√

8(∂zϕ(z−w)+∂z̄ϕ(z̄−w̄)) + e−i
√

8(∂zϕ(z−w)+∂z̄ϕ(z̄−w̄))
)

∼ 1

2

1

(z − w)2Ks(z̄ − w̄)2Ks

(
2− 8(z − w)2(∂zϕ)2 − 8(z̄ − w̄)2(∂z̄ϕ)2

− 16(z − w)(z̄ − w̄)∂zϕ∂z̄ϕ
)

∼ const. + conf. spin− 2

(z − w)2Ks−1(z̄ − w̄)2Ks−1
O4. (4.38)

Here we assumed for the moment that Ks < 1. This way all higher order terms will
no longer be singular and therefore do not contribute to the OPE. We also assumed
that Ks >

1
2
, such that there are some singular terms at all. In the last line we did

not explicitly write the term which couples to the identity operator and the two terms
which have integer conformal spin. The reason is that they do not contribute to the flow
equations. We have thus derived one OPE coefficient c334 = −2 under the assumption
Ks >

1
2
. We also noted that we would get additional terms if Ks > 1.

For quadratic terms the strategy is to use Wick’s theorem. We demonstrate this with
O4. For clarity we write the normal ordering within Wick’s theorem explicitly. One finds

O4(z, z̄)O4(w, w̄) = 16
(

:∂zϕs(z)∂z̄ϕs(z̄)∂zϕs(w)∂z̄ϕs(w̄) :

+ :∂zϕs(z)∂z̄ϕs(z̄)∂zϕs(w)∂z̄ϕs(w̄) :

+ :∂zϕs(z)∂z̄ϕs(z̄)∂zϕs(w)∂z̄ϕs(w̄) :

+ :∂zϕs(z)∂z̄ϕs(z̄)∂zϕs(w)∂z̄ϕs(w̄) :
)

∼ Ks2

(z − w)2(z̄ − w̄)2
− 4Ks

(z − w)2
:∂z̄ϕ(z̄)∂z̄ϕ(w̄) :

− 4Ks

(z̄ − w̄)2
:∂zϕ(z)∂zϕ(w) :

∼ const. + conf. spin. (4.39)

The OPE of O4 with itself does therefore not contribute to the flow equations. Note
that the conformal spin terms in principle have to be expanded in the difference between
z − w or z̄ − w̄. Within this expansion each term separately will have conformal spin
and can therefore be dropped.
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4 Topologically Non-Trivial DIII Phase Through Interactions

Finally the strategy for OPEs between quadratic and trigonometric terms is the
following. When individually looking at the OPE of exponentials with quadratic terms,
we can expand the exponentials and apply Wick’s theorem to the expansion. Up to
a correlation function this results in a derivative of the exponential. We will use the
shorthand notation

:∂zϕ(z) : eiαϕ(w,w̄) =
−iαKs

4

1

z − w
eiαϕ(w,w̄), (4.40)

to denote all the possible contractions of a term with the series expansion of the expo-
nential. The result can again be written as an exponential yielding (4.40). A similar
identity holds for contractions with z̄ derivatives. As an example we calculate the OPE
between O4 and O3. We find

O4O3 =
√

8
∑
δ=±1

:∂zϕ(z)∂z̄ϕ(z̄) : eiδ
√

8ϕ(w,w̄)

=
√

8
∑
δ=±1

[
:∂zϕ(z)∂z̄ϕ(z̄) : eiδ

√
8ϕ(w,w̄)

+ :∂zϕ(z)∂z̄ϕ(z̄) : eiδ
√

8ϕ(w,w̄)

+ :∂zϕ(z)∂z̄ϕ(z̄) : eiδ
√

8ϕ(w,w̄)

+ :∂zϕ(z)∂z̄ϕ(z̄)eiδ
√

8ϕ(w,w̄) :
]

∼
√

8
∑
δ=±1

[−K2
s

2

1

(z − w)(z̄ − w̄)
eiδ
√

8ϕ(w,w̄)

− iδKs√
2

1

z − w
:∂z̄ϕ(z̄)eiδ

√
8ϕ(w,w̄) :

− iδKs√
2

1

z̄ − w̄
:∂zϕ(z)eiδ

√
8ϕ(w,w̄) :

]
∼ −2K2

s

(z − w)(z̄ − w̄)
O3 + conf. spin. (4.41)

This means that we have found c433 = −2K2
s .

All other OPEs can straightforwardly be calculated in the same way. Before we present
the results and discuss the flow equations, we will discuss two technical points. The
first one is about a symmetry of the OPE coefficients and the second one is about the
multitude of fixed points for different parameter values of Ks and Kc.
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4.3.1 Symmetry of the OPE Coefficients

In this subsection we are going to explain how to use some standard results from conformal
field theory in order to relate certain OPE coefficients to each other. The results which
we will use can be found in any related textbook, for example [17]. They will help us
to reduce the amount of coefficients that one has to calculate or alternatively allows
for consistency checks as discussed in [10], for example. The first simple relation is
related to terms without conformal spin, which are the ones that we are interested in.
As already mentioned before, when the exponents of z and z̄ are the same their product
only depends on the magnitude of z. With respect to the OPE coefficients this implies
that they are symmetric in their first two indices when we consider only operator without
conformal spin.

Another important result from conformal field theory that we need is that the general
2-point function of scaling operators has the form (4.21). Additionally the general 3-point
function has the form

〈Oi(1)Oj(2)Ok(3)〉 =
Cijk

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
31 z̄h̄1+h̄2−h̄3

12 z̄h̄2+h̄3−h̄1
23 z̄h̄3+h̄1−h̄2

31

. (4.42)

Here we introduced two shorthand notations. Firstly a number n as an argument is short
for zn, z̄n and secondly zij is short for zi − zj. As an OPE is valid inside an expectation
value when the arguments of the two operators approach each other, it is possible to
calculate the 3-point function in the limit of two approaching arguments by first applying
an OPE and then using equation (4.21). This can be done for any pair of operators in
the three-point function. One therefore has a relationship between the normalization
constants ci, the three-point function constants Cijk and the OPE coefficients cijk. It
takes the form

Cijk = cijkck

= cikjcj

= cjkici.

(4.43)

This means that we can always relate OPE coefficients when the set of their indices is
the same. As an example let us look at the OPE coefficients which we calculated above,
namely c334 = −2 and c433 = −2K2

s . Together with c3 = 1 and c4 = K2
s from table 4.1

we actually see that they fulfill equation (4.43).
There is a subtle point about (4.43), because OPE coefficients only exist for singular

terms. In particular we noted earlier that c334 only appears when Ks >
1
2
. On the

other hand there is no such restriction for c433. Therefore even though there is a
relationship between existing OPE coefficients, the existence of one OPE coefficient
does not automatically imply the existence of another one with permuted indices. This
problem can be solved if one knows the scaling dimensions of the operators involved,
because they can be used to calculate the degree of the divergence. So if one knows the
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4 Topologically Non-Trivial DIII Phase Through Interactions

scaling dimension of the three operators related by an OPE coefficient, one can always
check whether there can indeed be a associated diverging term in the OPE.

The relationship (4.43) actually takes its simplest form if one normalizes all the scaling
operators such that ci = 1 for all operators. In that case the OPE coefficients are simply
symmetric in all their indices. The reason we do not choose to do that is that we want the
operators to be defined independently of Ks and Kc. We will consider several different
values of Ks and Kc and we want the perturbations to be defined independently of the
fixed point in question. This will be important in he next subsection where we will
illustrate how to combine the flow equations for the different fixed points.

4.3.2 Combining Flow Equations for Different Fixed Points

The OPE coefficients, which we calculated above are actually enough to calculate the flow
equations for the well-known Kosterlitz-Thouless(KT) model [37]. Applying equation
(4.36) yields

ġ3 = (2− 2Ks)g3 + 4πK2
s g3g4,

ġ4 = 2πg2
3,

(4.44)

where we abbreviated derivatives with respect to ` with a dot. We will now discuss the
meaning of this equation and its parameters in detail. Ks is a parameter in the fixed-point
action. Therefore equations (4.44) describe the flow in the vicinity of the fixed point for
which Ks has its given value. The parameters g3 and g4 are then perturbations away
from this fixed point. There seems to be an unfortunate redundancy in this description,
because g4 actually couples to a term that has the same structure as the fixed point
action. A perturbation consisting only of g4 with g3 = 0 will simply place the system at
a fixed point with a different value of Ks. This can also be seen in the flow equations
(4.44), which vanish identically if g3 vanishes implying that all points on the g3 = 0 line
are fixed points. The problem with the equation is that they are only perturbative in g4,
even though g4 simply places the system at another fixed point. We will now describe
how to improve on that.

The idea of how to improve the flow equations is very simple, and is best understood
when one thinks of a discretized solution of the flow equations. For a certain value of Ks

we start at a point with g4 = 0 and g3 finite. There we calculate the change in in constants
g3 and g4 during the first renormalization group step. At the new point in parameter
space with finite g3 and finite g4 we then want to calculate the next changes again. But
now g4 is finite and that means that flow equations around the original Ks point are
not the best approximation we have. In particular we get the best approximation if
we choose a new Ks such that the new g4 vanishes again. This means that we simply
put g4 = 0 on the right hand side of the flow equations. Simultaneously Ks becomes
an ` dependent parameter. Its change will be given directly by the change in g4. The
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situation is illustrated in figure 4.3. The flow equations are now given by

ġ3 = (2− 2Ks)g3,

K̇s =
∂Ks

∂g4

ġ4.
(4.45)

All that remains is to calculate the change of Ks when g4 changes. For that we have to
compare the free action (4.9) with the perturbation

g4

∫∫
dxdτ O4 = g4

∫∫
dxdτ

(
(∂xϕs)

2 + (∂τϕs)
2
)
. (4.46)

The change in the prefactor of (4.9) and (4.46) now has to be the same. Therefore we
have

d

(
1

2πKs

)
= − dKs

2πK2
s

!
= dg4,

which implies
∂Ks

∂g4

= −2πK2
s . (4.47)

Combining equation (4.44), (4.45) and (4.47) we arrive at the flow equations

ġ3 = (2− 2Ks)g3,

K̇s = −4π2K2
s g

2
3,

(4.48)

which are the well-known flow equations for this problem [21]1.

To summarize this subsection, we illustrated how to combine a family of quadratic
flow equations into a single system of flow equations. The resulting system no longer
needs to be quadratic and in our example it was quartic.

4.4 Flow Equations and their Solutions

We will now state the flow equations which have been calculated using the methods
described above. We will once state the flow equations around the non-interacting fixed
point Ks = Kc = 1, because they take a particularly simple form and allow for analytic
solutions. Afterwards we will state the flow equations more generally using the method
described above to combine flow equations at different Ks and Kc values.

1In order to get the same result as in the reference on has to perform the substitution g3 → 1√
8π
g.
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Ks

g3

K0
s

0
1

K1
s

Fig. 4.3: The figure illustrates a situation where we start the flow at point 0, for which
we have the starting fixed point at a value K0

s . Consequently g0
4 is zero. A

circle indicates the range of validity of the RG equations around K0
s . After an

RG step we are at the parameter point 1. Even though we might still use the
RG equations around the point K0

s , the fixed point with a value of K1
s is closer

and one obtains a better approximation by using the RG equations around this
point.

4.4.1 Flow Equations Close to Ks = Kc = 1

Close to the non-interacting point the flow equations are

ġ1 = (1 + πg4 −
√

2πg3)g1, (4.49)

ġ2 = (1 + πg4 +
√

2πg3)g2, (4.50)

ġ3 = 4πg4g3, (4.51)

ġ4 = 2πg2
3. (4.52)

In principle the interaction terms g6 and g7 would also enter the flow equations, but they
do not flow themselves and are assumed to be initially zero. We have therefore omitted
them from the flow equations. Note that the equations for g3 and g4 are simply the KT
flow equations. They can therefore be solved independently of the rest of the equations.
Furthermore the equations for g1 and g2 are completely decoupled from each other. It is
therefore possible to insert the solutions of the KT equation in the differential equations
for g1 and g2 and then integrate them directly.

Before solving all four flow equations, we will review the solutions of the KT flow
equations, in particular with respect to the initial conditions. The KT flow equations
have the well know constant of motion

g2
3 − 2g2

4 = I, (4.53)

which can straightforwardly be verified. The parameter space can be divided into several
sectors depending on whether this constant is positive or negative. The solutions to the KT
flow equations that lie inside the different sectors behave qualitatively different. Therefore
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we discuss the solutions in the different sectors separately. From the assumption that
we have repulsive interaction, we know that g0

3 > 0 and K0
s > 1. From the relationship

(4.46) we know
1

2π
+ g4 =

1

2πKs

it follows that g0
4 < 0.

We can now state the relevant solutions to the KT flow equations. For the case when
I = A2, with a real A, we have

g3(`) = A sec

(
4πA√

2
`+ arctan

(√
2g0

4

A

))
, (4.54)

g4(`) =
A√
2

tan

(
4πA√

2
`+ arctan

(√
2g0

4

A

))
. (4.55)

For the case I = 0 we have

g3(`) =

√
2

4π`− (g0
4)−1

, (4.56)

g4(`) =
1

(g0
4)−1 − 4π`

. (4.57)

The region in parameter space where I = 0 is a line called the separatrix, because it
separates the other two regimes. For the case I = −A2, with a real A, we have

g3(`) = A csch

(
4πA√

2
`− arcoth

(√
2g0

4

A

))
, (4.58)

g4(`) =
A√
2

coth

(
−4πA√

2
`+ arcoth

(√
2g0

4

A

))
. (4.59)

With the help of the above solutions, the equations for ġ1 and ġ2 can readily be
integrated. The general form of the solutions are

g1(`) = g0
1 exp

(
`+ π

∫ `

0

d`′
(
g4(`′)−

√
2g3(`′)

))
, (4.60)

g2(`) = g0
2 exp

(
`+ π

∫ `

0

d`′
(
g4(`′) +

√
2g3(`′)

))
. (4.61)

Evaluation of the remaining integrals yields for I = A2

∫ `

0

d`′g3(`′) =

√
2

4π
ln

∣∣∣sec
(

4πA√
2
`+B

)
+ tan

(
4πA√

2
`+B

)∣∣∣
| secB + tanB|

, (4.62)

∫ `

0

d`′g4(`′) = − 1

4π
ln

∣∣∣cos
(

4πA√
2
`+B

)∣∣∣
| cosB|

. (4.63)
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For I = 0 it yields ∫ `

0

d`′g3(`′) =

√
2

4π
ln |4πg0

4`− 1|, (4.64)∫ `

0

d`′g4(`′) =
1

4π
ln |1− 4πg0

4`|. (4.65)

Finally for I = −A2 it yields

∫ `

0

d`′g3(`′) =

√
2

4π
ln

∣∣∣tanh
(

2πA√
2
`− B

2

)∣∣∣∣∣tanh B
2

∣∣ (4.66)

∫ `

0

d`′g4(`′) =
1

4π
ln

∣∣∣sinh
(
−4πA√

2
`+B

)∣∣∣
| sinhB|

(4.67)

In order to investigate the topological phase transition it is helpful to look at the ratio
between triplet and singlet pairing. During the RG flow the ratio changes according to

g2(`)

g1(`)
=
g0

2

g0
1

exp

(√
8π

∫ `

0

d`′ g3(`′)

)
. (4.68)

For the further discussion it is helpful to look at the maximum change in the ratio
between singlet and triplet pairing. This corresponds to the ` → ∞ limit in equation
(4.68). This limit is only finite below the separatrix and with (4.66) we find

lim
`→∞

g2(`)

g1(`)
=
g0

2

g0
1

exp

(√
8π

∫ ∞
0

d`′ g3(`′)

)
=
g0

2

g0
1

1∣∣tanh B
2

∣∣
=
g0

2

g0
1

(
g0

3 −
√

2g0
4

−g0
3 −
√

2g0
4

) 1
2

. (4.69)

If we stop the RG flow at some RG time `∗ which is long enough, we can approximate
the ratio at this point by the ratio in the limit ` → ∞. The precise condition on this
approximation is ` �

√
2

2πA
, which can be seen from equation (4.66). Additionally we

have to require that our perturbative flow equations are still valid for RG times as
long as `∗. This is the case if the relevant superconducting pairing terms are still small
enough to fall into the perturbative regime. If we neglect the effect of g4 on the flow
of the superconducting pairing terms, compared to their scaling dimension, we find the
condition

g0
1/2 � C exp

(
−
√

2

4πA

)
, (4.70)
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where C is a constant that corresponds to the maximum value of g1/2 for which one
trusts the perturbative results.

For given initial values g0
1 and g0

2 we can now discuss the phase boundary between
the topological and the trivial phase. As a condition for the phase boundary we use
that the ratio between g2 and g1 is 1 when we stop the flow. Later we will comment
more on why this is reasonable. From equation (4.69) we see that this corresponds to
a straight line through the origin in the g3g4-plane. One is therefore in the topological
phase when equation (4.69) is bigger than 1. We can solve this inequality for g0

3 and find
the condition

g0
3 ≥
√

2
(g0

2)2 − (g0
1)2

(g0
2)2 + (g0

1)2
g0

4. (4.71)

The closer the boundary line, where equality holds, is to the separatrix, the bigger the
factor in equation (4.69) is. Building on the discussion from the previous paragraph,
equality only holds when the long RG-time approximation is valid. For initial values of
g3 and g4, which are closer to the origin, this condition will eventually be violated and
the maximum ratio (4.69) will not be reached. In this case the phase boundary has to
move closer to the separatrix, where the maximum value is larger and a value below the
maximum is still sufficient to bring the system into the topological phase. The exact
shape of the curve in this regime is hard to calculate analytically. On the separatrix
and above it the integral in (4.68) does not converge for large `. The ratio between
triplet and singlet pairing is therefore only limited by the RG time for which we leave
the perturbative regime. Lets presume the perturbative regime is valid until the pairing
coupling constants reach some value C which is of order unity. We then have a stopping
time which is given by

`∗ = ln
C

g0
1

. (4.72)

There is then a minimum value of g0
3 for which (4.68) evaluated at `∗ takes a value greater

than 1. These are the points of the phase boundary on and above the separatrix. These
points can then be continuously connected to the line from the large RG-time regime.

The question remains whether it is justified to use the non-interacting criterion g2 > g1

to identify the topological phase, even though the problem is still interacting when we
stop the flow. This is indeed the case because the superconducting pairing operators are
relevant close to the non-interacting fixed point. In order for non-trivial KT-like physics
to happen between the superconducting pairing terms and the interaction terms, we
would need to be close to the parameter point where the superconducting pairing terms
are marginal. This is the case when Ks +K−1

c = 4, which is in the strongly interacting
regime. It is therefore justified to exclude this kind of physics close to the non-interacting
point. In the next section we will study more general flow equations numerically and
this will further support this claim.

Temperature imposes another constraint on the validity of the above discusion. When
the energy cutoff reaches termeperature we have to stop the RG flow. This imposes a
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maximum on `∗ of the form

`∗ ≤ ln
Λ0

T
. (4.73)

The above discussion is only valid as long as the stopping times stay below the temperature-
imposed limit.

4.4.2 General Flow Equations

In this section we study more general flow equations, which were obtained according to
the scheme presented above, where we did not keep terms where the scaling dimension
was to high. There are equations for every gi with the exception of g4 and g5. Instead
we will have flow equations for Ks and Kc as described above. The equations are

ġ1 =

(
2− 1

2
Ks −

1

2Kc

)
g1 −

√
2π(H(Ks))g3 −H(K−1

c )g7)g1 +
√

2π
Ks

Kc

g2g6 ,(4.74)

ġ2 =

(
2− 1

2
Ks −

1

2Kc

)
g2 +

√
2π(H(Ks))g3 −H(K−1

c )g7)g2 +
√

2π
Ks

Kc

g1g6, (4.75)

ġ3 = (2− 2Ks)g3 −
π√
2
H(K−1

c −Ks)(g
2
1 − g2

2), (4.76)

ġ6 =
√

2πH(Ks +K−1
c − 2)g1g2, (4.77)

ġ7 = (2− 2K−1
c )g7 +

π√
2
H(K−1

c −Ks)(g
2
1 − g2

2), (4.78)

K̇s = −2πK2
s

(π
2
H(K−1

c +Ks − 2)(g2
1 + g2

2) + 2πH(2Ks)g
2
3

)
, (4.79)

K̇c = 2π
(π

2
H(K−1

c +Ks − 2)(g2
1 + g2

2) + 2πH(2K−1
c )g2

7

)
. (4.80)

Here H denotes the Heaviside function, which is zero for negative arguments and 1 for
positive ones.

We will use these equations to numerically support the claims made in the previous
subsection. We will integrate the flow numerically until either singlet or triplet pairing
reaches a constant value at which the validity of the perturbation calculation breaks
down. Depending on whether singlet or triplet pairing reaches this value first, we will
call the phase trivial or topological. The results are plotted in figure 4.4 together with
the long RG-time result. We see that the long RG-time result indeed agrees with the
numerical calculation in the appropriate regime. Furthermore we see that the phase
boundary has the qualitative shape that that we argued in the previous section. This
supports our claim that close to the non-interacting fixed point the additional KT physics
associated with the superconducting pairing terms is not relevant, because this of KT
physics is included in the full flow equations.
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Long RG-time approximation
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Fig. 4.4: The plot shows the numerically computed phase boundary (dots) between the
topological and trivial phase. The topological phase is above the dots. The plot
also shows our theoretical long RG-time result. We argued from our analytical
results that the phase boundary should lie above the long RG-time limit. For
small Ks values this is the case. For larger Ks values this does not seem to be the
case anymore in this plot. This is an indication that we leave the perturbative
regime for which the analytical results were computed. The numerical results
were computed for an initial ratio of of g0

2/g
0
1 = 0.8.

4.5 Summary

In this chapter we have investigated the effect of repulsive interaction on the one
dimensional DIII phase. We first reviewed why such a system can still be thought of
as being topological and has edge states even in the presence of interaction. We then
performed an RG analysis, which confirmed the previously known result that interactions
support the topological phase. Previously this result was only known for mean field
treatments and attractive interactions. We presented a general RG analysis for repulsive
interactions. We derived analytical results for the case of weak interactions and solved
the flow equations for the more general case numerically.

4.A Conformal Spin

There are several references that explain how to obtain the formula (4.36) [10, 16, 46].
One issue that is often mentioned but not explained in detail is regarding the absence
of OPE coefficients that relate to terms with conformal spin. In particular there is the
important statement that terms with conformal spin do not contribute to the RG flow.
We will show that this is true for terms with integer conformal spin and we will argue
that this is the relevant situation for most calculations, in particular our one. We will
not derive (4.36) here, because the derivation that can be found in the references which

83



4 Topologically Non-Trivial DIII Phase Through Interactions

we mentioned above. Nevertheless we sketch very vaguely where the term appears about
which we are going to reason in this section.

In deriving (4.36) one has to expand the partition function close to the fixed point in
a power series in terms of the perturbations. This is proportional to an expansion of the
expectation value 〈exp(−Spert)〉. Comparing this to the general form of the perturbations
(4.13) we see that the individual terms in the expansion will consist out of expectation
values of n operators at different coordinates, together with 2n integrals over the different
coordinates. The second-order correction in the flow equations is obtained when one
considers two operators with coordinates that are very close together. The hard short
scale cutoff a implies that their coordinates cannot be closer than a. It is then important
for the RG flow equations to calculate the change in the integral when the short scale
cutoff is increased. This can then be computed with the help of the OPE, which is valid
for operators with close arguments inside an expectation value. The relevant quantity to
look at is therefore∫∫

a2<|x2+τ2|<(a(1+d`))2

dxdτ〈. . . Oi(x1, τ1)Oj(x2, τ2)..〉, (4.81)

where x = x2 − x1 and τ2 − τ1. After applying the OPE only the divergent prefactor will
depend on x and τ and therefore the integral can be computed analytically. We will now
argue that it vanishes for terms in the OPE that have conformal spin.

In order to understand why terms with conformal spin do not contribute to the RG
flow we have to take a look at integrals in terms of complex coordinates. We generally
write ∫∫

dxdτ =
i

2

∫∫
dzdz̄. (4.82)

A generic term after inserting an OPE into (4.81) will have the form

i

2

∫∫
a2<zz̄<(a(1+d`))2

dzdz̄
cijk

zhz̄h̄
〈. . . Ok(z2, z̄2)..〉, (4.83)

where we introduced the shorthand notations h = hi + hj − hk and h̄ = h̄i + h̄j − h̄k.
The important thing to keep in mind is that we do not integrate over all of the two-
dimensional complex space. Instead we integrate over a two-dimensional real subspace
that correspond to the initial xτ -plane. This is means that the integral is only over
points for which z̄ = z∗. It is therefore enough to parameterize z as

z = reiϕ, (4.84)

z̄ as

z̄ = re−iϕ, (4.85)
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and integrate over r and ϕ. If we now look at the integral, which we have to perform we
find

i

2

∫∫
a2<zz̄<(a(1+d`))2

1

zhz̄h̄
=

∫
a<r<(a(1+d`))

dr

∫ 2π

0

dϕ
e−i(h−h̄)ϕ

rh+h̄−1

= 2πδh,h̄

∫
a<r<(a(1+d`))

dr
1

r2h−1
. (4.86)

This shows that the integral vanishes for integer conformal spin. For this argument it
is very important that the short distance cutoff is chosen to be rotationally symmetric,
but since we expect that the long-distance physics is not dependent on the details of the
short distance cutoff we assume that we can always chose a rotationally symmetric cutoff
scheme.

We will now argue why for our purpose only integer conformal spin is relevant. This is
the relevant situation for the OPEs which we are dealing with, because the terms with
conformal spin appear as a result of a Taylor expansions in z and z̄. Terms with different
powers of z and z̄ will have finite integer conformal spin, i.e. an integer difference in h
and h̄. This is independent of whether h and h̄ are integers themselves.
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5 Environmental Coulomb Blockade

In contrast to the previous chapters, in this chapter we will study Majorana bound states
in class D systems. One of the most relevant questions about Majorana bound states
is how they influence observables or to put it differently, which measurable quantities
indicate their presence. The most common method for probing Majorana bound states is
via a tunnel probe. Such a measurement ideally yields a zero-bias tunneling conductance
of 2e2

h
at zero temperature. We want to study how certain electric environments influence

this result. In order to do this we will first review related results regarding interactions in
the tunnel probe, which is modeled as a Luttinger liquid. We will then derive an effective
action for tunnel probes that are coupled to general electric environments. Thereafter we
will discuss some specific examples motivated by the general result. The reason to study
electronic environments is that they are described by macroscopic quantities that are
easily measurable in practice. This is opposed to the Luttinger-liquid parameters which
are hard to determine experimentally.

5.1 Superconductor-Luttinger Liquid Junction

In this section we will review some of the results from Fidkowski et al. [13]1. The
system of interest is one that is commonly used in experiments, where a topological
phase is obtained in a heterostructure by proximitizing a helical wire with an s-wave
superconductor. The wire itself is helical through a combination of external magnetic
field and spin-orbit coupling, but this will not be of particular relevance to us. The
important thing to note is that usually only a part of the wire is proximitized and
therefore brought into the topological phase. The rest of the wire therefore naturally
forms a helical lead, which is used as a tunnel probe. The situation is illustrated in figure
5.1. The superconductor itself is grounded and the question is what conductance one
observes when measuring a current from the helical lead into the superconductor. In
particular we are interested in the zero-bias conductance, which contains information
about the Majorana bound state which is at zero energy.

As we are only interested in low bias and therefore low-energy physics, we will focus on
the low energy degrees of freedom in the helical lead and in the topological superconductor.
For the helical lead this means that we can use the linearized approximation of the
dispersion and treat it as a Luttinger liquid. For the topological superconductor it
means that we only consider the Majorana bound state and no other (gapped) degrees of

1Note that the notation and conventions in this thesis differ compared to the reference. In particular
the Luttinger liquid field names ϕ and θ are interchanged.
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SC

Topological SC Helical Lead

I

G = 2e2

h

Majorana Bound States

Fig. 5.1: This figure shows a typical experimental system for tunnel probing Majorana
bound states. Part of a helical wire is proximitized by an s-wave superconductor
(SC) such that it is in a topological phase with Majorana bound states. The
remaining part of the helical wire acts as a lead, which is used for tunnel probing
one of the Majorana bound states. The zero-bias conductance is measured from
the lead into the superconductor and ideally reaches a value of 2e2

h
.

freedom. This assumes that there are no other subgap states additional to the Majorana
bound state at the end of the wire.

In the absence of interactions one expects a zero-bias conductance of 2e2

h
. This can be

understood in the following way. For an ideal metallic non-interacting lead the states
inside the lead are delocalized throughout the whole lead. This is also true for the
Majorana bound state, which couples to the metallic lead. Therefore there will be an
extended zero energy state in the lead, which is an equal superposition of electrons and
holes. This means that there has to be perfect Andreev reflection at zero energy, and all
electrons get reflected as a hole and vice versa. The system therefore exhibits perfect
Andreev reflection at zero energy. It is well known from mesoscopic scattering theory that
perfect Andreev reflection corresponds to a conductance of 2e2

h
[4, 39, 47]. Backscattering

that takes place at the interface between the lead and the topological superconductor
will yield corrections to this. As we often work with units in which h̄ = e = 1, the
conductance 2e2

h
becomes 1

π
in these units.

In the presence of interactions the picture of the extended Majorana bound states
may no longer be right. In this case an adequate description is to treat the coupling
between the Majorana bound state and the lead perturbatively. We will call this case
the normal-reflection fixed point and the previous case the Andreev-reflection fixed point.
Figure 5.2 illustrates the physics behind both fixed points.

We will now discuss each of the fixed points individually and state their corresponding
effective actions. The starting point for modeling the half-infinite Luttinger liquid is the

88



5.1 Superconductor-Luttinger Liquid Junction

a) G = 0

ψ̄†(x)

ψ†(x)

ψ̄(x)

ψ(x)

χ

b) G = 2e2

h

ψ̄†(x)

ψ†(x)

ψ̄(x)

ψ(x)

χ

Fig. 5.2: The figure shows the physical picture behind the two fixed points that are
studied. The extended directed lines describe electrons/holes in the lead and
the circle/ellipse describes the Majorana bound state χ. In a) the starting
point is electrons that get normal reflected at the interface (solid lines) and the
pertubation (dashed lines) is tunnel coupling to the Majorana bound state. In b)
the Majorana bound state extends throughout the lead such that the electrons
get Adreev reflected (solid lines). The perturbation is normal reflection at the
interface (dashed lines).

Hamiltonian (2.15) with the integral over space going from zero to infinity:

H = ivF

∫ ∞
0

dx
[
−ψ†(x)∂xψ(x) + ψ̄†(x)∂xψ̄(x)

]
. (5.1)

This Hamiltonian is only fully meaningful if a boundary condition at zero is specified
and we are going to do that in the following subsections. The general idea is to map the
semi-infinite system with left- and right-moving excitations onto an infinite system with
only right-moving excitations. This is sketched in figure 5.3. Thereafter one integrates
out all degrees of freedom not at x = 0, in order to get an effective action for the interface
between the topological superconductor and the lead.

5.1.1 Normal-Reflection Fixed Point

At the normal-reflection fixed point we start with the Hamiltonian (5.1) together with
the boundary condition that all electrons get normal-reflected at zero. This implies that
ψ(x = 0) = eiβψ̄(x = 0), where β is an arbitrary phase, which we set to zero at this point.
For the bosonized theory this boundary condition implies that

ϕ(x = 0) = 0 modπ. (5.2)

In the bosonized theory the Hamiltonian takes the form

H =

∫ ∞
0

dx
u

2π

[
K(∂xθ)

2 +K−1(∂xϕ)2
]
, (5.3)
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a)
φ̄(x)
φ(x)

b)
φ̃(x)

Fig. 5.3: The picture illustrates the basic idea behind the unfolding technique, where
one maps a semi-infinite system into a infinite chiral one. For this technique to
be useful, one has to start with non-interacting left- and right-moving modes.
Otherwise unfolding will introduce complicated non-local interactions.

where we included interactions in the form of the Luttinger-liquid parameter K. Because
ϕ(x = 0) is pinned by the boundary condition, the only remaining degree of freedom
at the boundary is θ(x = 0). After integrating out the rest of the wire one obtains an
effective boundary action [13] for Θ = θ(x = 0) of the form

S0
n[Θ] =

K

2π

∫
dω

2π
|ω||Θ|2. (5.4)

This is the action for the normal reflection fixed point. The zero-bias conductance
associated with this fixed point is zero because the lead is not coupled to the Majorana
bound state at all.

The action describing the tunneling between the Majorana bound state and the lead is

St = it

∫
dτ
[
ψ†(x = 0) + ψ(x = 0)

]
χ, (5.5)

in terms of fermions. Here χ describes the Majorana bound state at the end of the
topological superconductor. When bosonizing this action we have to remember to insert a
Klein factor η, because we have two different species of fermions (the ones in the lead and
the Majorana bound states). We will then combine the Majorana bound state operator
χ and the Klein factor η into an operator σx = iηχ. The bosonized action becomes

St[Θ] = t

√
2

π

∫
dτ σx cosΘ. (5.6)

The operator σx flips the parity in both the lead and the topological superconductor,
but since it commutes with all the other operators in the action we can simply replace
σx by its eigenvalues for the following renormalization-group analysis. To simplify the
analysis even more we can actually replace σx with 1 because the sign of t is irrelevant
to first order in the analysis.

We will now carry out the first order perturbative renormalization group analysis
explicitly for the action (5.4) and (5.6). This is a well known problem and it was first
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investigated in the context of Luttinger liquids by Kane and Fisher [30]. Since a lot of the
following analysis can be reduced to this model, we will present it explicitly. According
to the general renormalization group theory outlined in chapter 2, we have to calculate∫

DΘ> e−S
0
n[Θ<+Θ>]−St[Θ<+Θ>] = e−S

0
n[Θ<]

∫
DΘ> e−S

0
n[Θ>]−St[Θ<+Θ>]

= e−S
0
n[Θ<]Z0

>〈e−St[Θ<+Θ>]〉>. (5.7)

Here Z0
> denotes the partition function of the quadratic Θ> part. It does not depend on

any fields and therefore represents just a shift of − lnZ0
> in the free energy. As already

discussed in chapter 2 this shift is not important for the renormalization group analysis,
and we will therefore ignore it. The expectation value 〈. . . 〉> is defined as

〈. . . 〉> =
1

Z0
>

∫
DΘ> . . . e

−S0
n[Θ>]. (5.8)

We will now evaluate the expectation value perturbatively assuming that St is small. In
that case on can approximate the expectation value as

〈e−St[Θ<+Θ>]〉> ≈ 1− 〈St[Θ< +Θ>]〉>
≈ e−〈St[Θ<+Θ>]〉> . (5.9)

Therefore we have to calculate 〈St[Θ< +Θ>]〉>. This yields

〈St[Θ< +Θ>]〉> =
t

2

√
2

π

∫
dτ 〈ei(Θ<(τ)+Θ>(τ)) + c.c〉>

=
t

2

√
2

π

∫
dτ

[
eiΘ<(τ) exp

(
−1

4

∫
b−1Λ<|ω|<Λ

dω

2π

2π

K

1

|ω|

)
+ c.c

]
=
tb−(2K)−1

2

√
2

π

∫
dτ
[
eiΘ<(τ) + c.c

]
= tb−(2K)−1

√
2

π

∫
dτ cosΘ<(τ). (5.10)

This readily maps back to the original action. We still have to rescale τ → bτ , which
ensures that the cutoff of the low energy theory is again Λ. This way the only parameter
that changes is the strength of the tunnel coupling, which makes it easier to compare to
its previous value. One obtains a scaling dimension of the tunneling term of 1− (2K)−1.
This means that the normal-reflection fixed point is stable for K < 1

2
and unstable for

K > 1
2
.

5.1.2 Andreev-Reflection Fixed Point

For the Andreev-reflection fixed point, the bulk Hamiltonian is the same as (5.1) and (5.3),
but the boundary condition is different. At low energies all incident electrons are reflected

91



5 Environmental Coulomb Blockade

as holes and vice versa. This yields the boundary condition ψ†(x = 0) = eiβψ̄(x = 0),
where β is again an arbitrary phase which we set to zero. In terms of the bosonized
operators this implies

θ(x = 0) = 0 modπ. (5.11)

With this boundary condition one can again derive an effective action for the remaining
degree of freedom at the boundary Φ = ϕ(x = 0). One finds [13]

S0
a [Φ] =

1

2πK

∫
dω

2π
|ω||Φ|2. (5.12)

Because of the perfect Andreev reflection (which is incorporated in the boundary condi-
tions) there is a conductance of 2e2

h
associated with this fixed point.

Normal reflections occurring at the junction are treated as a perturbation. It is
described by an action of the form

Sr ∝
∫

dτ
[
ψ†(x = 0)ψ̄(x = 0) + h.c.

]
. (5.13)

This translates into a bosonic action of the form

Sr[Φ] = 2λ

∫
dτ cos(2Φ). (5.14)

The translation is a little subtle, because strictly speaking it only makes sense for a
regularized action with a short distance cutoff a. This is contained in the fact that λ has
units (length)−1 such that it implicitly contains a, which is the only scale.

A similar analysis to the one above yields a scaling dimension of 1 − 2K for the
normal-reflection perturbation. Therefore the Andreev-reflection fixed point is stable for
K > 1

2
and unstable for K < 1

2
. This complements the results for the normal-reflection

fixed point and is also consistent with the result for the non-interacting case (K=1)
where one expects perfect Andreev reflection. We will now proceed and study electric
environments instead of Luttinger liquids.

5.2 Coupling to an Electric Environment

We now want to study a Majorana bound state coupled to an electric environment. This
allows for one immediate generalization of the previously presented results to the case
of a metallic lead with both spin direction, as opposed to a helical lead with only one
spin direction. This generalization follows because Majorana bound states only couple
to a particular spin direction in the lead [15]. If we then assume that all the effects
of the electrons in the other spin direction can be effectively modeled as part of the
electric environment, we arrive at a model identical to the one above plus the electric
environment, where ψ and ψ̄ describe the spin direction to which the Majorana bound
state couples.
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5.2 Coupling to an Electric Environment

In order to see how to include the environment, we have to revisit the coupling between
the lead and the Majorana bound state, namely equation (5.5). The problem with this
action is that it does not conserve charge. The reason is that the electrons that are created
and annihilated by ψ† and ψ have a charge of e, but the Majorana bound state does not
have any charge associated with it because it is an equal superposition of electrons and
holes. In order to account for the changing total charge in the topological superconductor,
we introduce the macroscopic charge operator Q for the topological superconductor and
its canonically conjugate operator α. Those operators fulfill [α,Q] = i. Therefore e±iα

creates/annihilates a charge in the topological superconductor respectively. The complete
tunneling action then reads

St = it

∫
dτ
[
ψ†(x = 0)e−iα + ψ(x = 0)e+iα

]
χ (5.15)

and its bosonized form is

St[Θ,α] = t

√
2

π

∫
dτσx cos(Θ + α). (5.16)

The electric environment itself is described by an action for α of the general form

Senv[α] =
1

2

∫
dω

2π
G−1
αα(ω)|α|2, (5.17)

where Gαα is the Green function for α which we will determine below. Since the non-
quadratic tunneling term (5.16) only couples to the linear combination Θ+ = Θ + α, we
can integrate out the combination Θ − α and obtain an effective action for Θ+. This
effective action has the form

S[Θ+] =
1

2

∫
dω

2π
G−1

+ (ω)|Θ+|2, (5.18)

where the Green function is given by

G+(ω) =
π

|ω|
+Gαα(ω). (5.19)

We will now derive the coupling of the Andreev-reflection fixed point to the environment.
Contrary to the normal-reflection fixed point, we will not include the charge in the
tunneling Hamiltonian. The motivation for this is to get a purely additive change to the
action. Since a change in electron number in the lead necessarily means that the charge
in the topological superconductor has to change, we will include a capacitive coupling
term of the form

H =
(Q+Nlead)2

2C

=
(Q+ Φ/π)2

2C
, (5.20)
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where C is the capacitance of our tunnel junction. The Lagrangian for α is obtained by
Legendre transforming the environment Hamiltonian from Q to −α̇. If we now denote
the Legendre transform of a function f(x) with f ?(p) then there exists the general rule
that for f(x) = g(x + y) we have f ?(p) = g?(p) − py. In our case x = Q, p = −α̇ and
y = Φ/π. Therefore the capacitive coupling leads to an additional term in the Lagrangian
of the form

L[α, Φ] = α̇
Φ

π
. (5.21)

In imaginary time this has the form

L[α, Φ] = −i∂τα
Φ

π
. (5.22)

Therefore the corresponding action is

S[α, Φ] =

∫
dτ

(
−i∂τα

Φ

π

)
=

∫
dω

2π

1

2π
(ωα∗Φ− ωαΦ∗) . (5.23)

This action is linear in α and Φ, therefore we can integrate out α and obtain an additional
quadratic term for the Φ field. The additional quadratic term has the form

Seff,env[Φ] =

∫
dω

2π

(
1

π2

ω2

2
Gαα(ω)|Φ|2

)
. (5.24)

The total quadratic action for the Φ is then

S[Φ] =

∫
dω

2π

[(
|ω|
2π

+
1

π2

ω2

2
Gαα(ω)

)
|Φ|2

]
. (5.25)

Additionally there is still the normal-reflection perturbation, which is unaffected by
charging physics. Therefore it still has the form (5.14).

The missing part to study the effect of the electric environment is the action for α
or more precisely Gαα. General P (E) theory states that this Green function has the
form [23]

Gαα(ω) =
Z∗t (iω)

|ω|
, (5.26)

where Z∗t is the impedance of the tunnel junction and is given by

Zt(ω) =
1

iωC + (Zenv(ω))−1
. (5.27)

Here C is the capacitance of the tunnel junction and Zenv is the impedance of the
environment. The tunnel junction impedance is therefore given by a capacitor in parallel
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C Zenv

1 2

C Zenv

2

1

Fig. 5.4: The figure displays the circuit associated with a tunnel junction. Tunnel events
charge the tunnel junction capacitively by moving charge from 1 to 2. Sequential
tunnel events become therefore energetically unfavorable for the duration it
takes to discharge the capacitor through the environment impedance Zenv. By
associating the grounds of the original circuit with each other one sees that this
physics is described by the correlations between the point 1 and 2 is given by
the response of a circuit with a capacitor and an impedance in parallel.

with the environment impedance. We will now briefly describe the physical picture
behind this. In the absence of tunneling, the tunnel junction constitutes a capacitor
with capacitance C. Tunneling events now charge this capacitor and therefore make
further tunneling events energetically less favorable until the capacitor is discharged
again. In order to discharge the capacitor the charge has to flow to a ground through the
environment which has an impedance Zenv. Since we are interested in whether tunnel
events are favorable, we are therefore interested in electric correlations between both sides
of the capacitor. Therefore the circuit for those correlations has the capacitor and the
environmental impedance in parallel with respect to the tunnel junction. The situation
is illustrated in figure 5.4.

For small frequencies one can approximate the environmental impedance by a constant
real resistance R and if ωRC � 1 we can approximate the tunneling impedance by R as
well, such that the Green function Gαα takes the simple form

Gαα(ω) =
R

|ω|
. (5.28)

We can now analyze the stability of the fixed points as a function of R. In particular
we will map the non-interacting fermions coupled to an environment to a model with an
effective Luttinger-liquid parameter Keff and then apply the results which we reviewed
earlier.

95



5 Environmental Coulomb Blockade

5.2.1 Normal-Reflection Fixed Point

Starting from (5.19) we find that

G+(ω) =
π +R

|ω|
.

If we now bring (5.18) to the form

S0
n[Θ+] =

Keff

2π

∫
dω

2π
|ω||Θ+|2,

we find

Keff =

(
1 +

R

π

)−1

. (5.29)

We know that the critical K value is at 1
2
. It follows that the critical value for R is π.

In proper units this is h
2e2

. For higher resistances the coupling to the Majorana bound
state is irrelevant and the normal reflection fixed point is stable. For smaller resistances
the coupling is relevant and the normal reflection fixed point is unstable. This was first
found by [38].

5.2.2 Andreev-Reflection Fixed Point

A similar analysis can be performed for the Andreev-reflection fixed point. Inserting
(5.28) into (5.25) yields

S[Φ] =
1

2πKeff

∫
dω

2π
|ω||Φ|2,

with the same Keff as above. Therefore the Andreev-reflection fixed point is stable for
resistances smaller than π and unstable for resistances larger than π.

5.3 Special Environments

Motivated by the result that there is a crossover depending on how the resistance of the
environment compares to h

2e2
we now study two particular environments that fall into

that regime. First we briefly demonstrate how the crossover appears if the Majorana
bound state is coupled to a metallic quantum dot with quantum point contact drain,
which is shown if figure 5.5b. The idea is that a conductance of e2

h
is associated with

each fully open channel in the quantum point contact. So one might expect a crossover
for exactly two channels, depending on the effect of the dot itself. More interestingly we
will study two Majorana bound states that are coupled through a metallic quantum dot,
which is shown in figure 5.5c. The motivation here is that the conductance of 2e2

h
, which

is associated with a Majorana bound state, is exactly the critical resistance value for the
other Majorana bound state.
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a)
Topological SC Normal Lead

b)
Topological SC Normal LeadMetallic Quantum Dot

Back Gate Constriction

c)
Topological SC Topological SCMetallic Quantum Dot

Back Gate

Fig. 5.5: In a) the basic system, which consists of a semi-infinite topological superconduc-
tor and a semi-infinite metallic lead, is depicted. The circle denotes a Majorana
bound state at the boundary and the fading illustrates that the wires are ap-
proximated to be semi-infinite. In b) we consider a topological superconductor
coupled to a metallic quantum dot, which itself is coupled to a lead via a
quantum point contact. Note that the metallic quantum dot is modeled as
two independent semi-infinite ends, which are coupled by charging. In c) we
have a system where two topological superconductors are coupled via a metallic
quantum dot. The dot is again modeled as two independent semi-infinite wires,
that are coupled by charging.

5.3.1 Metallic Dot with a Quantum Point Contact Drain

The action for the environment of a metallic dot with a quantum point contact drain is

Senv[α,Q, Φi] =

∫
dτ

iQ∂τα + EC

(
Q+

1

π

N∑
i=1

Φi −Ng

)2
+

N∑
i=1

1

π

∫
dω

2π
|ω||Φi|2,

(5.30)
where Q is the charge operator for the dot and Ng is an offset by a gate voltage. The
operators Φi are the fields that describe the charge passing through the quantum point
contact through channel i, similar to the action (5.12) with K = 1, except for the crucial
difference of a factor of 1

2
. This factor is different, because the effective action describes

the middle of an infinite wire, see 5.5b, instead of the edge of a semi-infinite one as in
5.5a. The zero-dimensional actions for the point contacts are derived in [14]. We further
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assume that all channels in the point contact are either completely open (and therefore
included in the action) or completely blocked (and therefore omitted from the action).
Consequently the action does not contain any backscattering at the point contacts. The
action for α can be obtained using the following steps. First we note that the offset due
to a gate Ng can be removed by trivially shifting Q. Furthermore the coupling between
the fields Φi and Q is only through the sum of all the Φi. It is therefore advantageous to
perform a change of variables for the Φi. We choose to do that by means of a unitary
transformation, such that the last part of the action does not change. We transform the
fields Φi → UijΦj. We require that one of the transformed fields, which we call Φa, is
the average of all the initial fields, i.e. field Φa = 1√

N

∑
i Φi, where the prefactor follows

from the requirement that the transformation is unitary. All the other transformed
fields will not couple to Q and we therefore omit them from the action. The part of the
unitary transformation corresponding to them is therefore arbitrary (as long as they are
orthogonal to Φa) and unimportant and we will not specify it. Our simplified action now
has the form

Senv[α,Q, Φa] =

∫
dτ

iQ∂τα + EC

(
Q+

√
N

π
Φa

)2
+

1

π

∫
dω

2π
|ω||Φa|2. (5.31)

We now integrate out Φa and obtain

Senv[α,Q] =

∫
dω

2π

EC|ω|
|ω|+NEC/π

|Q|2 + i

∫
dτ Q∂τα. (5.32)

Finally we integrate out Q to obtain

Senv[α] =

∫
dω

2π

(
1

4

ω2(|ω|+NEC/π)

EC|ω|

)
|α|2, (5.33)

which we can compare with (5.17) to find

Gαα =
2EC|ω|

ω2(|ω|+NEC/π)

≈ 2π

N |ω|

=
h/e2

N

1

|ω|
, (5.34)

where we approximated the result for small frequencies compared to the charging energy
and restored units in the last line. Compared with (5.28) we find that the system at low

frequencies behaves as a resistor with a resistance R = h/e2

N
, such that one should see a

crossover in the conductance at two open channels as speculated above.
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5.3.2 Two Majorana Bound States Coupled via a Metallic Dot

We now consider a metallic Coulomb blocked island coupled to two Majorana bound
states. This is an inverse version of the system studied by Fu [19] and later Hutzen et
al. [28], as they studied a Coulomb blocked topological-superconductor island with two
Majorana bound states coupled to normal leads. The situation where more than two
Majorana bound states are on the superconducting island and coupled to leads was also
studied by several authors [2, 6] and is known as the topological Kondo effect. This will
not be relevant to us as we only consider systems with coupling to two Majorana bound
states.

Because we assume that we have a big metallic dot such that there is no coherent
transport from one end to the other, the Majorana bound states are decoupled from
each other and each one couples to its own dot degrees of freedom in the same way a
single Majorana bound state coupled to a lead previously. We therefore introduce a new
index r which is either L or R describing the degrees of freedom on the left side or the
right side of the dot respectively. The total Hamiltonian describing the system consists
of three parts:

H =
∑
r

[Hel,r +Ht,r] +HC. (5.35)

The individual parts are

Hel,r =
∑
k

ξkc
†
k,rck,r, (5.36)

Ht,r = tr
∑
k

(
c†k,r − ck,r,

)
χr (5.37)

HC = EC(NL +NR −Ng)2, (5.38)

where Ng is again a gate offset in the charging energy. The charging energy part HC is
particularly important because it is the only interaction between the left and the right
side. The current operator for the two contacts are

Ir = ietr
∑
k

(
ck,r + c†k,r

)
χr. (5.39)

For weak tunneling and away from Ng being a half integer, the dot is in Coulomb
blockade. The largest correction to the current comes from cotunneling via virtual states
which differ by one unit of charge. A second order Fermi’s golden rule calculation gives a
conductance

Gcotun =
e2

h
ΓRΓL

(
1

E+
C

+
1

E−C

)2

. (5.40)

for T � EC, where Γr = 2πvF|tr|2 and E±C = EC(1∓ 2Ng), where we assumed without
loss of generality that Ng ∈

(
−1

2
, 1

2

)
. The cotunneling conductance diverges near the

charge degeneracy points Ng = ±1
2
. In order to understand the behavior near these
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points we follow the discussion by Fu [19]. For large charging energies we can restrict
the analysis to the two degenerate charge sectors at Ng = 1

2
. This means that the total

number of electrons NL +NR can either be 0 or 1. We can therefore represent this charge
by a fermion f , such that NL +NR = f †f . This way the charging Hamiltonian becomes

HC = EC (NL +NR −Ng)2

= EC

(
f †f(1− 2Ng)−N2

g

)
. (5.41)

One can also express the tunneling Hamiltonian in terms of the fermion f . First of all
we observe that [c†k,rχr, NL + NR] = c†k,rχr. The same kind of commutation relation,
and therefore the same dynamics in the Schrödinger equation, can be obtained if we
replace c†k,rχr by c†k,rf and treat c†k,r and f as independent fermions. We then have

[c†k,rf, f
†f ] = c†k,rf . From this it follows that we also have to perform the replacement

ck,rχr → −f †ck,r. This way the tunneling Hamiltonian projected on the charge states 0
and 1 is

Ht,r = tr
∑
k

(
f †ck,r + c†k,rf

)
, (5.42)

and associated current operators become

Ir = −ietr
∑
k

(
f †ck,r − c

†
k,rf
)
. (5.43)

With the approximations made, the conductance is given by the conductance of a resonant
level [12]

G =
e2

h

4ΓLΓR

4E2
C(1− 2Ng)2 + Γ2 + 2ΓLΓR

, (5.44)

where Γ = Γ2
L + Γ2

R. Equation (5.44) agrees with the perturbative cotunneling result
(5.40), if only the cotunneling via the N = 1 charge state is included, i.e. keeping only
the E+

C term in equation (5.40). Even though the result was derived for Ng ≈ 1
2
, it can

easily be generalized by simply replacing (1− 2Ng) by twice the distance of Ng to the
closest charge degeneracy point (half integer value). We define an asymmetry angle
sin θ = (ΓL/Γ) with which the result takes the form

G =
e2

h

2 sin 2θ

(2EC(1− 2Ng)/Γ)2 + 1 + sin 2θ
. (5.45)

The reason for parameterizing the conductance with an asymmetry angle is to make the
result easier to compare with the following approximation which will be derived in a
different limit.

The non-perturbative result (5.44) was derived under the assumption that Γr � EC,
such that we reduce the analysis to only two charge states. The opposite limit in which
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the contacts have large transparency can be studied best starting from the effective
action close to the Andreev-reflection fixed point. The action is

S[ΦL, ΦR] =
∑
r

[
1

2π

∫
dω

2π
|ω||Φr|2 + 2λr,bs

∫
dτ cos(2Φr)

]
+ SC[ΦL, ΦR], (5.46)

with

SC[ΦL, ΦR] = EC

∫
dτ

(
ΦL

π
+
ΦR

π
−Ng

)2

, (5.47)

where λr,bs are the backscattering amplitudes. Because only the combination ΦL + ΦR

appears in the charging term, it is natural to introduce the total charge field Φ+ = ΦL+ΦR

and the difference charge field Φ− = ΦR − ΦL, which is related to the current via
I = −i∂τΦ−

2π
. For λr,bs � EC and at low energies |ω| � EC the mode Φ+ gets pinned at

πNg. We can therefore integrate it out by replacing the cosine terms in the action (5.46)
by their averages over Φ+. This is valid when λr,bs � EC, Λ. Here Λ denotes the high
energy cutoff again. This results in the following effective low-energy action for Φ−

S[Φ−] =
1

4π

∫
dω

2π
|ω||Φ−|2 +

∫
dτ
(
λ̃bse

iΦ− + c.c
)
, (5.48)

where

λ̃bs =
(
λL,bse

iπNg + λR,bse
−iπNg

)
〈eiΦ+〉0. (5.49)

We evaluate the expectation value as

〈eiΦ+〉0 = exp

(
−π

2

∫
dω

2π

1

π|ω|+ 4EC

)
≈ 4EC

πΛ
. (5.50)

The model is now solvable because it maps to a single non-interacting quantum point
contact [14]. The backscattering matrix element needed in the quantum point contact
model is given by Vbs = 2πaλ̃bs, where a is the short-distance cutoff associated with
the high-energy cutoff Λ: a = vF

Λ
. Moreover the current operator is I = −i∂τΦ−

2π
for the

original and the quantum point contact model. Therefore we find for the conductance

G =
e2

h

1

1 +
∣∣∣ Vbs

2vF

∣∣∣2 (5.51)

and in terms of the parameters of our original model

G =
e2

h

1

1 +
(

8EC

Λ2

)2
(λ2

bs + 2λL,bsλR,bs cos(2πNg))
, (5.52)
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Fig. 5.6: The plot shows the conductance of two Majorana bound states coupled to
a metallic dot as a function of gate voltage on the dot. The dashed blue
line illustrates the weak backscattering limit (5.53), whereas the solid black
line illustrates the weak tunneling limit (5.45). In both cases the plot is for
symmetric coupling. For half-integer values of gate voltage, the conductance
reaches its maximum of e2

h
corresponding to two Majorana bound state-metal

lead junctions in series, each of which has a resistance of h
2e2

.

where λ2
bs = λ2

L,bs + λ2
R,bs. We will again introduce an asymmetry angle as sin θ =

(λR,bs/λbs). The result then reads

G =
e2

h

1

1 +
(

8λbsEC

Λ2

)2
(1 + sin 2θ cos(2πNg))

. (5.53)

In both the weak-tunneling and the weak-backscattering limit conductance is maximal
at the charge neutrality point and reaches e2

h
for symmetric coupling. This agrees with

the result for two resistors in series with a resistance of h
2e2

, each corresponding to the two
coupled Majorana bound states. An example of the line shapes for symmetric coupling
is shown in figure 5.6.

5.4 Summary

In this chapter we studied aspects of tunnel probing Majorana bound states in class D
systems. Tunnel probing ideally exhibits a zero-bias conductance of 2e2

h
if a Majorana

bound state is present. Building on the results from Fidkowski et al. [13] we studied
this result in the presence of a general electric environment. At low frequencies there
is a crossover at an environment resistance of h

2e2
. Motivated by that we studied two

particular systems that exhibit this crossover. In particular we showed how the crossover
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can be controlled by a quantum point contact. Furthermore we studied a system of two
Majorana bound states coupled to a metallic dot. For the latter case we derived the line
shape of the system in certain limits.
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6 Conclusion

To summarize this thesis we will briefly summarize the ideas of the main chapters 3, 4
and 5 and discuss to what extent important question could be answered and where there
is potential for expanding upon the work in this thesis.

In chapter 3 we investigated whether topological one-dimensional superconducting
systems with time-reversal symmetry, class DIII, can be used for topological quantum
computation similar to the analogous systems with broken time-reversal symmetry, class
D. We found that it is generally not possible to use class DIII systems for topological
quantum computation, because their edge excitations contain a local degree of freedom
that can be manipulated adiabatically, which we called local mixing. This generally makes
adiabatic manipulations path dependent and does therefore not allow for topological
quantum computation. Furthermore we analyzed which symmetry conditions are sufficient
to prevent local mixing. Finally we showed that the absence of local mixing is enough
to ensure that the braiding transformations in such systems are path independent. Our
results give a full qualitative account of the adiabatic transformations that can occur
during an adiabatic manipulation of a DIII system. Further work in this area could focus
on more detailed quantitative calculations. This might be very interesting, because we
identified adverse effects to topological quantum computation and we identified sufficient
symmetry conditions to suppress theses effect, but we did not quantify adverse effects as
a result of such a symmetry breaking. This could be done in the context of studying
concrete systems with clearly defined qubits and gates and calculating coherence times
and fidelities as a result of local mixing.

In chapter 4 we investigate how repulsive interactions may help to induce a topological
DIII phase. This has been studied before, mostly in the context of mean-field theory
and we presented a fairly general renormalization-group treatment of this problem. Our
treatment is not model specific but relies on a general low-energy theory, which form is
mostly determined by symmetries. For weak interaction strengths we were able to solve
the renormalization-group flow analytically and make some statements about when the
system is in the topological phase and when it is not. We supported those results by a
numerical solution of flow equations, which are valid beyond weak interaction strengths.
Our results support the general conclusion that interactions can drive a system into
a topological phase. Even though our results are already quite general they could be
generalized in a particular way. In our calculations we always assumed that we at least
approximately have spin-charge separation. From a computational point of view this is
not a necessary assumption and one could calculate renormalization group equations even
without this assumption. In particular this would mean that one can include inversion
asymmetric interactions and differences in Fermi velocities analytically. Another more
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technical point that presents itself for further studies is how to obtain information about
the topological phase from renormalization group equations. A general approach, which
we used as well, consists of studying an unstable fixed point and investigate it with
respect to which perturbation it is most unstable. This is usually done with perturbative
renormalization group techniques and involves some ambiguity with respect to the validity
of this perturbative regime. It would be desirable to find less ambiguous methods. One
possibility could be to study boundary conformal field theories describing the gapless
edge excitations of the topological phases.

In chapter 5 we studied one of the most common ways to probe Majorana bound states
by means of a conductance measurement. Based on existing theories we studied how the
zero-bias conductance of such measurements is affected by the electric environment. We
derived low-energy effective theories for coupling a general electric environment to the
system. This is of practical interest because the electric properties of a system, namely
its impedance, can easily be measured experimentally. In the low-frequency regime the
impedance can be approximated by a real resistance. This way one obtains the well
known result of a qualitative crossover in the zero-bias conductance as a function of the
environment resistance. Motivated by this crossover we studied two particular systems.
One where a quantum point contact is used to tune the system through the crossover,
another where two Majorana bound states are coupled to a metallic quantum dot. The
latter system is right in the crossover regime and we studied its conductance in the
weak and strong coupling regime. We found a strong gate voltage dependence which
reflects that the system is indeed at a crossover point. Building on the work which we
presented here in this thesis it would be interesting to have conductance calculations for
general electric environments. Those are analytically challenging beyond the constant
impedance approximation. It might therefore be helpful to perform numerical calculations
of the conductance in the case of a general electric environment. Another apparent
generalization of the results in this thesis would be a similar analysis for systems in class
DIII.

In conclusion, in this thesis we have studied several aspects relevant for one-dimensional
topological superconductors. These aspects where related to obtaining a one-dimensional
topological phase in class DIII and manipulating the Kramers pairs of Majorana bound
states which it hosts. Furthermore we studied aspects of probing Majorana bound states
in a topological phase in class D.
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