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Abstract

This thesis addresses the electronic structure of single-molecule nanojunc-
tions. Over the past decade the experimental field of single-molecule elec-
tronics has progressed tremendously. This has led to the realization of the
single-molecule version of the field effect transistor. Due to a weak coupling
between the molecule and the metal electrodes, these single-molecule tran-
sistor function similarly to single-electron transistors. The theoretical un-
derstanding of single-molecule junctions is, however, far from complete. Due
to their small size, Coulomb interactions between the charge carriers on the
molecule and polarization charges in the neighboring junction environment
plays an important role for their fundamental properties.

A theoretical framework taking into account this effect is developed. It
is based on an continuum electrostatic description of the junction combined
with a quantum mechanical description of the molecule. The main result
is an effective Hamiltonian for the molecule in which the junction is repre-
sented by its electrostatic potential. Hence, the solution to Poisson’s equation
for a given junction geometry is an important part of this approach. The
framework is readily integrated into existing implementations of standard
electronic structure methods.

In the present work a semi-empirical implementation of the approach has
been applied to study polarization effects in a realistic single-molecule tran-
sistor. The Coulomb interaction between the molecule and the environment is
demonstrated to alter the molecular electronic structure significantly. This is
in agreement with experimental observations on single-molecule transistors.
Furthermore, some general properties related to the electrostatic potential in
single-molecule junctions are addressed.

Similar polarization effects can be expected to play a role for the elec-
tronic structure of metal-molecule interfaces where the molecule is chemically
bonded to the surface. Theoretical descriptions of such interfaces are how-
ever complicated by the bonding between the surface and the molecule. A
many-body description which treats the molecule and the surface on equal
footing is one possible approach. The Green’s function based GW method
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belongs to this type of methods. Recent theoretical first-principles studies of
molecules on surfaces have demonstrated that GW gives a qualitative correct
description of the molecular levels when physisorbed on metallic and dielec-
tric surfaces. It is therefore important to know how well GW describes the
electronic structure of isolated molecules. A benchmark study comparing
GW with exact results for semi-empirical model descriptions of molecules
is here given. It shows that GW gives a consistent and good description
of molecular levels. In conjunction with the fact that surface polarization
effects are included in GW, this makes the GW method well suited for the
study of metal-molecule interfaces.
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Resumé

Denne afhandling omhandler elektron strukturen af nanoskala kontakter
bestaende af enkelte molekyler placeret mellem metalliske elektroder. Gen-
nem det sidste arti er der sket et stort fremskridt indenfor eksperimentelt
en-molekyle elektronik. Det har resulteret i realiseringen af en-molekyle ver-
sionen af felt-effekt transistoren som er den fundamentale komponent i en
stor del af moderne forbrugerelektronik. Pa grund af en svag kemisk binding
mellem molekylet og metal-elektroderne fungerer disse en-molekyle transis-
torer som en-elektron transistoren. Det vil sige at strommen gennem en dem
er karakteriseret ved at elektronerne passerer enkeltvis fra den ene elektrode
til den anden via molekylet. Denne sekventielle transport mekanisme, som
betegnes Coulomb blokade, er en konsekvens af den frastgdende Coulomb
vekselvirkning mellem elektronerne. Derudover spiller molekylets friheds-
grader ogsa en vigtig rolle. For eksempel har adskillige eksperimenter demon-
streret at molekylets vibrationelle tilstande pavirker elektron transporten
mellem elektroderne. Den teoretiske forstaelse af en-molekyle transistorer
er dog stadig langtfra komplet. Ud over molekylets frihedsgrader spiller po-
larisering i selve nanokontakten ogsa en vigtig rolle. Pa grund af kontaktens
lille storrelse er Coulomb vekselvirkningen mellem de elektroniske ladnings-
beaererne og den polarisationsladning de inducerer i kontakten signifikant.
Konsekvensen af denne vekselvirkning vil blive belyst i denne afhandling.

Til dette formal praesenteres en teoretisk metode til beskrivelse af en-
molekyle kontakten. Den er baseret pa en elektrostatisk kontinuum beskriv-
else af kontakt delene, dvs elektroderne og dielektrikaet der separerer
molekylet fra gate elektroden, kombineret med en kvantemekanisk beskrivelse
af molekylet. Denne tilgang resulterer i en effektiv Hamilton for molekylet
hvori kontakt delene er repraesenteret ved det elektrostatiske potentiale.
Lgsningen af Poisson’s ligning for det elektrostatiske potentiale er derfor en
vigtig del af denne tilgang. I praktisk kan metoden relativt nemt integreres
i eksisterende implementeringer af elektron struktur metoder.

Beregninger baseret pa en realistisk en-molekyle transistor demonstrerer
at polarisations effekter fra kontakten sendrer molekylets elektron struktur
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betydeligt. Det er i overensstemmelse med eksperimentelle observationer
pa en-molekyle transistorer. Derudover studeres generelle egenskaber af en-
molekyle transistorer som er relateret til det elektrostatiske potentiale i kon-
takten.

Tilsvarende polarisations effekter kan forventes at have indflydelse pa
elektron strukturen af metal-molekyle kontakter hvor molekylet er kemisk
bundet til metal overfladen. Teoretiske beskrivelser af disse systemer kom-
pliceres imidlertid af den kemiske binding mellem molekylet og overfladen.
En atomar mange-partikel beskrivelse som behandler molekylet og overfladen
pa lige fod er en mulig tilgang. Den Green’s funktion baserede GW metode
hgrer til denne type. Teoretiske studier af enkelte molekyler pa overflader har
demonstreret at GW metoden giver en kvalitativ korrekt beskrivelse af de
molekylaere niveauer nar molekylet er physisorberet pa en metal overflade.
Det er derfor relevant at vide hvor godt GW metoden beskriver elektron
strukturen af isolerede molekyler.

Til dette formal praesenteres et benchmark studie der sammenligner GW
med eksakte resultater for en semi-empirisk beskrivelse af en rackke kon-
jugerede molekyler. Studiet viser at GW metoden giver en konsistent og god
beskrivelse af de molekylaere niveauer. Eftersom GW metoden giver en god
beskrivelse af bade polarisations effekter fra metal overflader og niveauerne i
molekyler, kan den bidrage til en bedre forstaelse af metal-molekyle kontak-
ter.

vi



List of included papers

Paper 1

Strong polarization-induced reduction of addition energies in single-
molecule nanojunctions

K. Kaasbjerg and K. Flensberg

Nano Letters, 8, 3809 (2008)

Paper 11

Fully selfconsistent GW calculations for semi-empirical models and
comparison to exact diagonalization

K. Kaasbjerg and K. S. Thygesen

Submitted to Physical Review B

vil






Table of contents

1 Introduction
1.1 Single-molecule electronics . . . . . . .. ...
1.2 The single-electron transistor . . . . . .. ... ... .. ...
1.2.1 Constant-interaction model . . . . . . . ... ... ..
1.3 Single-molecule SETs . . . . . . ... ... ... ...
1.3.1 Fabrication techniques . . . . . . . ... ... ... ..
1.3.2 Addition energy . . . . .. ...
1.3.3 The junction polaron . . . . . . .. .. ... ... ...
1.3.4 Experimental overview . . . .. ... ... ... .. ..
1.3.5 Theoretical descriptions . . . . . . ... ... ... ..
1.4 Thesisoutline . . . . . . ... ..o Lo

2 Electrostatics of single-molecule SET's
2.1 Junction Hamiltonian . . . . . . . . . . ... ... ... ....
2.1.1  Quantum mechanical version . . . . . . ... ... ...
2.1.2  The screened Coulomb interaction . . . . . . . . . . ..
2.2 Effective single-particle Hamiltonian . . . . . . . . . .. .. ..
2.3 Validity of an electrostatic approach . . . . . . . ... ... ..

3 Poisson’s equation
3.1 Junction potential . . . . . . . ... ...
3.2  Electrostatic Green’s function . . . . . .. ... ... ... ..
3.2.1 Analytical solution in simplified junction . . . . . . . .
3.3 Finite Element Method . . . . . . . ... ... ... ... ...

4 Characterization of an OPV5 SET
4.1 OPVSLSET . . . . .
4.2 Polarization effects . . . . . . ...
4.3 Gatecoupling . . . . . ... ..
4.4 Stability diagram . . . . .. ..o
4.5 Conclusion and outlook . . . . . . . .. ... ... ... .. ..

X



X TABLE OF CONTENTS

5 Surface polarization and the GW approximation
5.1 The GW approximation . . . . .. .. ... ... ... ... ..
5.2 The spectral function . . . . . . .. .. ...
5.2.1 First-principles calculations . . . . . .. .. ... ...
5.3 Renormalization of molecular levels . . . . . .. ... .. ...

6 Assessment of the GW approximation for molecules
6.1 Quasi-particle energies . . . . . . ...
6.2 Pariser-Parr-Pople Hamiltonian . . . . . . ... ... ... ..
6.3 Exact diagonalization . . . . . . . ... ... .00
6.3.1 Representation of the basis states . . . . . . . .. ...
6.3.2 Calculating the ground state - Lanczos algorithm . . .
6.3.3 Calculating the Green’s function. . . . . . . . .. ...
6.3.4 Correlation measure - von Neumann entropy . . . . . .
6.4 Results. . . .. ... . . . .
6.4.1 Total energies . . . . . . .. ... L.
6.4.2 Spectral properties . . . . ... ...
6.4.3 Lattice DFT . . . . ... . ... ... ... .......
6.5 Conclusion and outlook . . . . . . . .. ... ...

A Atomic units

B Self-consistent Hiickel scheme
C Green’s function primer
References

Paper 1

Paper 11

09|



Chapter 1

Introduction

The fundamental unit behind the functionality of modern computers is the
MOSFET (metal-oxide-semiconductor field-effect transistor) illustrated in
Fig.[1.1] In computer processors (CPUs) hundreds of millions of these tran-
sistors form the logic gates that perform the commands issued by a program.
Since its invention at Bell Labs in 1960, the MOSFET has undergone an
enormous miniaturization, which has resulted in smaller and faster computer
processors. This development has followed the empirical Moore’s law which
states that the transistor density in integrated circuits doubles roughly every
two years. The mainstream CPUs of today have a 45 nm channel length,
corresponding to the distance between the source and drain electrodes. As
the microelectronics industry is approaching fundamental physical limits the
downscaling of conventional MOSFETsS is unlikely to continue at unchanged
pace [1].

The operational principle of the MOSFET is based on the so-called field
effect which allows to control the density of mobile charge carriers in the chan-
nel between the source and drain electrodes by simple electrostatic means.
The situation is illustrated for a positive gate voltage in Fig. [[.I(b). In this
way the source-drain current can be modulated turning the MOSFET into
a valve that can be switched on and off. In order to control the number of
mobile charge carriers in the channel, a good capacitive coupling between
the gate electrode and channel is required. However, due to the downscaling
of the device dimensions, this becomes increasingly difficult due to screening
effects in the nearby source and drain electrodes. One way to increase the
capacitive coupling is to use a thinner gate dielectric which places the gate
electrode closer to the channel. This, however, has the drawback that it
leads to increasing leakage currents to the gate electrode resulting in power
dissipation and heating. A lot of research is being invested in finding an
alternative to SiO, as the gate dielectric material. High-x dielectrics, i.e.
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Figure 1.1: The MOSFET. (a) Cross sectional view of a MOSFET. The gate
electrode is separated from the transistor channel between the source and drain
electrodes by an insulating layer of dielectric material. (b) With a positive voltage
applied to the gate electrode a conducting channel is formed between the source
and drain electrodes. Taken from Ref. [4].

oxides with a higher dielectric constant than SiOy (¢, = 3.9), allow for an
increased capacitive coupling to the channel without the need of decreasing
the thickness of the gate dielectric. However, the requirements for such a
replacement are not few and research is still ongoing [2, 3].

While conventional silicon-based electronics has progressed, FETs based
on other materials have gained increasing interest. These include ex-
amples such as organic FETs (OFETs) and organic thin film transistors
(OTFT) in which an organic semiconductor is used as channel [5], self-
assembled-monolayer FETs (SAMFETSs) where a molecular monolayer con-
stitute the channel [6], carbon nanotube FETs [7], and semiconductor
nanowire FETs [§]. Apart from conventional FET applications, these types
of transistors open up for interesting applications such as flexible displays
and various sensing devices [9].

1.1 Single-molecule electronics

The idea of using single molecules as the functional unit in electronic devices
originates from the theoretical work by Aviram and Ratner in 1974 [10].
Their idea was that a rectifying behavior of a molecular device could be tai-
lored into the molecule with functional donor and acceptor groups. However,
only within the past two decades have experimental techniques that allow for
single-molecule studies been developed. These include different microscopy
methods such as scanning tunneling microscopy (STM) and atomic force
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microscopy (AFM) where the molecule is studied on a conducting substrate.
More recently, the single-molecule version of the field effect transistor has
been realized [I1]. Such three-terminal junctions have the advantage that
they allow to tune the molecular levels independently of an applied bias.
This is in contrast to e.g. STM measurements which lacks potential control
over the molecule. Here, the substrate and the tip function as source and
drain electrodes.

The progress within the field of single-molecule experiments has led
to many interesting observations. STM experiments probing a single or-
ganic molecule on a silicon surface has shown negative differential resistance
(NDR) [12]. A theoretical explanation ascribes this effect to a bias induced
shift of the current carrying molecular level which moves it inside the band-
gap of the silicon substrate [13]. Other studies have demonstrated current-
induced switching behavior due to molecular bistabilities [14] [15]. Impressive
STM and AFM measurements on single pentacene molecules have demon-
strated that images of the molecular orbitals [16] and the molecular atomic
structure [I7] can be obtained with very high resolution.

On the theoretical side a lot of work has been invested in understanding
the experimental observations. Furthermore, single-molecule devices exploit-
ing the molecular electronic structure have been suggested. These include
exotic proposals as the quantum interference effect transistor (QuIET) [I8]
and the interference single-electron transistor (I-SET) [19]. The functionality
of these devices is based on interference effects that arises from the symmetry
of the molecule combined with the coupling to the metallic electrodes.

With focus on factors that determine the electronic structure of single-
molecule nanojunctions, the scope of the present work is more general. Part
of this work is motivated by experimental observations on three-terminal
single-molecule transistors [20]. Since their functionality is similar to that of
a single-electron transistor, a brief introduction to single-electron transistor
theory is given in the following section. Subsequent sections present some
introductory considerations on single-molecule transistors and an overview
of relevant experimental results.

1.2 The single-electron transistor

The single-electron transistor (SET) schematically illustrated in Fig. [1.2|(a)
can be viewed as a FET where the channel has been replaced by a small
conducting island with tunnel couplings to the source and drain electrodes.
Due to the small size of the island the flow of electrons between the source and
drain electrodes is dominated by the Coulomb repulsion between electrons on
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Figure 1.2: Schematic illustration of a single-electron transistor. (a) The island is
connected to the source and drain electrodes with tunnel couplings. The energy of
the island can be shifted with the gate electrode which couples capacitively to the
island. (b) Capacitor description of the single-electron transistor. The potential
of the island Vj is determined by the voltages applied to the electrodes and the
charge @@ on the island.

Gate

the island. For a given charge () = —eN on the island, the Coulomb charging
energy associated with the addition of another electron is considerable. In
order to have a current flowing extra energy must therefore be provided by
the source-drain voltage. The resulting current is characterized by sequential
tunneling events, where single electrons one by one traverse the island. This
classical transport mechanism corresponds to the current to lowest order in
the tunnel couplings. Every time an electron tunnels to and off the island the
number of electrons N on the island fluctuates by one. Due to the blocking

of the current at low biases, this phenomenon is referred to as Coulomb
blockade.

Instead of increasing the source-drain voltage, the blockade can also be
lifted by applying a voltage V; to the gate electrode. This results in a series
of peaks in the differential conductance as a function of the gate voltage
Vg. This is illustrated in Fig. (a). The position of the peaks corresponds
to gate voltages where a chemical potential p of the island aligns with the
Fermi energy of the source and drain electrodes. The situation is sketched
in Fig. (b) for an arbitrary gate voltage. Consequently, at zero-bias con-
ditions, only at these so-called charge degeneracy points will the island be
able to change its charge and conduct a current between the source-drain
electrodes. In between the degeneracy points current is blocked and the
number of electrons N on the island remains fixed. The distance between
consecutive peaks is termed the addition energy because it corresponds to
the energy needed to add another electron to the island.

A common approximation is to characterize the island with a capacitance
C. Within this approximation the Coulomb charging energy E. becomes that
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Figure 1.3: Differential conductance and level alignment of a single-electron
transistor. (a) Differential conductance dI/dVyq as a function of the gate voltage
V. Between the charge degeneracy points which are characterized by a peak in the
differential conductance, the Coulomb blockade suppresses the current and leaves
the island with a constant number of electrons. (b) Alignment between the Fermi
energies of the electrodes and the chemical potentials of the island. The chemical
potentials of the island can be shifted with a gate voltage.

of a classical capacitor

e2

This is the essence of the constant-interaction model which will be introduced
in more detail in the following section. Depending on the nature of the island
quantum mechanical size quantization may become significant resulting in
a level spacing A between the island states. This leads to the following
expression for the addition energy

Bogq = A+ 2E.. (1.2)

Notice that only when A small compared to E. will the charge degeneracy
peaks be equally spaced as illustrated in Fig.

In order to be in the Coulomb blockade regime a necessary condition is
that the charging energy or the level spacing must be considerably higher
than the temperature,

E., A> kgT,T. (1.3)

If this condition is not fulfilled thermal fluctuation will smear out the peaked
structure in the differential conductance with the result that N becomes
undefined for all values of the gate voltage. Also the tunnel couplings to the
electrodes, which are here represented by a broadening I' of the electronic
levels, must be small compared to the charging energy and level spacing.
In the opposite limit, i.e. T' > FE. A, where quantum mechanical charge
fluctuations dominate, the sequential tunneling picture no longer applies.
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In this regime the electrons travel phase-coherently between the source and
drain contacts. This is the situation in e.g. gate-defined quantum point
contacts, where the conductance jumps in units of the conductance quantum
Go = €*/h every time a new electron channel in the contact enters the bias
window.

SETs have so far been realized in a wide range of different nanostructures.
This includes metal nanoparticles, gate defined quantum dots in semiconduc-
tor structures, carbon nanotubes [21], 22], semiconducting nanowires [23, 24]
and more recently single graphene sheets [25]. As the source-drain current
is highly sensitive to overall changes in the island potential, SETs can be
operated as ultra sensitive electrometers and have been used for e.g. real-
time detection of individual electron tunneling events [26].

1.2.1 Constant-interaction model

The basic features in the IV-characteristics of different types of SETs can all
be understood from the constant-interaction model. This model is analogous
to the capacitance model illustrated in Fig. [L.2(b) where the island is coupled
capacitively to the source, drain and gate electrodes with capacitances Cj,
Cq and Cy. The potential V; of the island is left floating. The integer charge
on the island is represented by the sum of the charges ); on the individual
capacitor electrodes, i.e. —eN = ). Q;. Each of the charges @; follows from
the usual relation between charge and voltage on a capacitor, Q; = C;(V;—V}),
where V; denotes the voltage applied to the ¢’th electrode. With N electrons
on the island the energy of the system is given by the sum of the electrostatic
energy and the single-particle energies [27]

E(N) = [N - ]\;0(); eVl > en (1.4)

where Ny is the number of electrons on the neutral island at V, = 0, C' =
Cs+Cq+Cy is the total capacitance and €, are the discrete energy levels of the
island arising due to size quantization. The term C,V, is a continuous variable
that represents the gate induced charge on the island. The name constant-
interaction model stems from the fact that the capacitances which account
for the Coulomb repulsion on the island are considered to be independent of
the applied voltages and the number of electrons N on the island. This is
only a good approximation when the quantum states in which electrons are
inserted have similar spatial distributions on the island and do not change
with the applied voltages. As the present work will demonstrate, this is
questionable when the island is a single molecule.
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Figure 1.4: Charge stability diagram for a single-electron transistor showing
schematically the current as a function of bias and gate voltage. Inside the black
diamonds the current is blocked. The diamond edges corresponds to a situation
where a chemical potential of the island passes through the Fermi energy of one of
the electrodes. As indicated, values for the addition energy F,qq4 and gate coupling
«a can be extracted from the diamonds.

At the charge degeneracy points discussed in the previous section the
chemical potential of the island uy = E(N) — E(N — 1) is aligned with the
Fermi energies of the source and drain electrodes. With the energy given by
Eq. the chemical potential of the island can be written

pn = (2N —1)E. —eaVy + ey (1.5)

The change of the chemical potential with an applied gate voltage carries
a prefactor a = C,/C. This is the gate coupling which depends on the
geometry of the sample. Due to the screening from the source and drain
electrodes the gate coupling will always be less than unity, i.e. a < 1. As
the addition energy corresponds to the difference between adjacent chemical
potentials,

Eaqa = UN+1 — N (1.6)

the expression in Eq. readily follows with A = en,1—en. It is important
to note that the distance between the charge degeneracy peaks on the gate
voltage axis in Fig. does not correspond to the actual addition energy.
Due to the screening of the gate potential it is instead given by the addition
energy scaled with the inverse of the gate coupling, F.qq/(eq).

As a function of both gate and source-drain voltage the regions in which
the current is blocked forms a diamond-shaped structure as illustrated in
Fig.[1.4] These so-called diamond plots, or charge stability diagrams, are very
useful when studying the properties of a given device. As indicated in the
figure, quantitative information about the gate coupling and addition energy
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GaAs 10 nm 500 nm single
quantum dot  metallic island ~ carbon nanotube  molecule
A ~ 0.1 meV 1 meV 3 meV > 0.1eV
E. ~ 1 meV 25 meV 3 meV > 0.1eV

Table 1.1: Typical level spacing and charging energies for different types of
single-electron transistors [2§].

can be inferred from these plots. When the bias is applied symmetrically to
the source and drain electrodes, the slopes of the diamond edges are given
by +2a. The addition energy can be obtained both from the width and the
height of the diamonds. For the latter, this relies on the assumption that
the applied source-drain voltage does not change the energy of the island —
i.e. only the Fermi energies of the electrodes are shifted by the applied bias.
In order for this to hold, the source and drain electrodes must have equal
capacitive couplings to the island.

1.3 Single-molecule SET's

During the past decade there has been a significant progress in the experimen-
tal techniques for the fabrication of three-terminal single-molecule devices.
This has allowed for the realization of the molecular version of the single-
electron transistor. A major difference between single-molecule SETs and
conventional SETs based on gate defined quantum dots in semiconductors
structures and metallic nanoparticles is the size of the level spacing and
charging energy. In Tab. typical level spacing and charging energies for
various SETs are summarized. Due to the relative small sizes of molecules
both their levels spacings and charging energies of single-molecule SETS are
considerably higher than those of other SET types. This, in principle, allows
for room temperature operation since F., A > kg1 ~ 26 meV. At present,
however, the stability of single-molecule SETs at non-cryogenic temperatures
is still an open issue [4].

In the following sections a brief overview of fabrication techniques and
experimental results for single-molecule SETs will be given. Moreover, some
consideration relevant for the present work are presented. Further insight into
the field is provided by the numerous review papers which have appeared over
the recent years [4, 28] 29| 30], 31} [32].
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1.3.1 Fabrication techniques

The experimental realization of a single-molecule SET relies on the fabrica-
tion of a three-terminal junction with a molecule bridging a nanoscale gap
between the source and drain electrodes and a gate electrode placed close
enough to the gap that it couples capacitively to the molecule. In Fig. 1.5
various techniques for this purpose are illustrated schematically. They mainly
differ in the way the electrodes and the nanogap between them are created.
In single-molecule SETs it is important that the gap is neither too long for
the molecule to connect to both electrodes, or too small in which case a good
gate coupling to the molecule becomes difficult to obtain. The three standard
methods are (i) electromigration, (ii) angle evaporation, and (iii) mechanical
break junction techniques.

In electromigrated nanogap fabrication the electrodes are constructed by
passing a high current density through predefined metallic electrode struc-
tures [11,133]. The scattering of the conduction electron results in a significant
momentum transfer to the atomic lattice which eventually leads to a collapse
of the metallic structure and the formation of a nanogap. One drawback of
this method is that the geometry and size of the resulting nanogap is uncon-
trollable. In order to obtain gate control, the electrode structure is defined
on top of a insulating oxide layer that separates the electrodes from a gate
electrode. The resulting nanojunction is depicted in Fig. (a). Often, the
high-x dielectric Al;Og3 is used as gate dielectric. This ensures a reasonable
gate coupling to the molecule.

In angle evaporation illustrated in Fig. [L.5(b), the electrodes are fabri-
cated by deposition of gold vapor on a ~ 5 nm thick layer of insulating
substrate through a shadow mask [20]. The deposition is performed at low
temperatures (~ 4.2 K). The size of the generated nanogap can be adjusted
by varying the deposition angle. By monitoring the source-drain conductance
during the gold deposition high control of the created nanogap is obtained.

The fabrication of three-terminal nanojunctions using mechanical control-
lable break junctions has recently been reported [34]. So far, this technique
has been restricted to two-terminal junctions (see e.g. [35]). The gap between
the electrodes is generated by bending a metallic wire until it breaks into two
pieces. The situation is illustrated in Fig. [1.5[c). The break junction tech-
nique has the major advantage that is allows for a very high control over the
electrode spacing which can be tuned with picometer resolution. However,
the large thickness (~ 40 nm) of the insulating gate dielectric required for
this fabrication technique, results in a very low gate coupling as compared
to the other techniques.

The introduction of the molecule into the fabricated nanogaps can be
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Figure 1.5: Illustration of different single-molecule junction fabrication tech-
niques. (a) Electromigrated thin metal wire on top of a Al/Al;O3 gate electrode.
(b) Angle evaporation technique to fabricate planar electrodes with nanometer
separation on top of a Al/AlyO3 gate electrode. (c) Gated mechanical break junc-
tion. (d) The dimer contacting scheme in which the molecule is attached to gold
particles. Figure taken from Ref. [31].

accomplished in different ways. One option is to subject the junction to
a solution containing the molecule either prior to gap formation or after-
ward and then hope that a molecule will be caught in the gap between the
electrodes. Alternatively, the molecules can be deposited on the electrodes
by quench condensation [20]. By subsequent annealing the sample at low
temperature (below 70 K), the molecules are allowed to diffuse. The pres-
ence of a molecule in the nanogap is detected by monitoring the source-drain
conductance. When it changes markedly, the sample is cooled to cryogenic
temperatures and IV-characteristics on the single molecule can be carried
out.

In order to control the chemical coupling between the source and drain
electrodes, the molecules are often prepared with chemical groups that either
facilitates or prevents bonding to the metallic electrodes. It has recently
been demonstrated that this approach allows to obtain a high control of the
electrode-molecule coupling [36] which is essential for the device characteris-
tics. With a large metal-molecule coupling I' the Coulomb blockade require-
ments in Eq. are not necessarily fulfilled. Indeed, it was demonstrated
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that in this strong coupling regime the conductance showed no significant
dependence on the gate voltage, and consequently, no Coulomb blockade
characteristics were observed. On the other hand, when molecules are pre-
pared with for example passivated thiol groups [20] or no chemical groups at
all, only the weak van der Waals force binds the molecule to the electrodes.
As a result, the device acquires SET functionality. This is the observed
behavior of the majority of single-molecule junctions fabricated as described
in the present section.

Another approach for controlling the electrode-molecule coupling is the
dimer contacting scheme illustrated in Fig. [1.5(d) [37]. Here, the molecule is
prepared with two gold particles which are connected to the molecule with
thiol bonds. The gold particles allows to trap the dimer structure between
the electrodes electrostatically. This approach has the inherent disadvantage
that the gate coupling is low due to efficient screening in the gold particles.

From the present section it is clear that the techniques for fabrication
of single-molecule SETs are highly statistical in nature. Therefore, no two
devices will show exactly the same results and technological applications
of single-molecule transistors should not be expected within the foreseeable
future. Nevertheless, single-molecule SETs give the opportunity to study
exciting physics and chemistry at the single-molecule level. Compared to
single-molecule experiments using electrochemical gating at room tempera-
ture [38], [39] 40], the cryogenic solid-state environment of a single-molecule
SET seems to be better suited for studying the fundamental role of the molec-
ular degrees of freedoms on the charge transport through the molecule. For
example, recent developments doing simultaneous conduction measurements
and Raman spectroscopy on a single-molecule junction provides detailed in-
formation about the vibrational modes that play an active role in the electron
transport [41], 42].

1.3.2 Addition energy

In single-molecule SETs the chemical potentials associated with the removal
and addition of an electron from the neutral molecule are given by the molec-
ular ionization potential (IP) and electron affinity (EA). They are defined by
the total energy difference between the two charge states involved in the elec-
tron transfer, i.e. IP = EVN~! — B and EA = EY — EN*L where N denotes
the number of electrons in the neutral molecule. The difference between the
IP and EA defines the fundamental gap Ej,;, of a molecule

Egp =P — EA = Nt 4 pN-1 2N, (1.7)
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Figure 1.6: Schematic illustration of a nanojunction with a Cgp molecule placed
between the source and drain electrodes. In a simple approximation the effect of
the junction environment can be described by a dielectric material with &, ~ 10
enclosing the molecule. In a capacitor description of the Cgy molecule (see text)
the capacitance is given by C' = 47megRe,. Hence, the charging energy E. = e?/2c
of the molecule is strongly reduced in the junction.

In the SET framework the molecular gap corresponds to the addition energy
in Eq. of the neutral molecule. In a simplified single-particle description
of the electronic structure of the molecule, the addition energy of a single-
molecule SET takes a form equivalent to that of the constant interaction
model in Eq. (L.2). The level spacing A is replaced by the HOMO-LUMO
gap Apyy, of the molecule, where HOMO and LUMO refers to the highest occu-
pied and lowest unoccupied molecular orbital, respectively, and the charging
energy F, is the Coulomb energy it costs to remove (add) an electron to the
HOMO (LUMO). Typical values for Agy, and E,. for isolated molecules are
on the order of several electron-volts.

The following example consider the addition energy of the Cgy molecule in
terms of a simple capacitor model for the charging energy. The Cgy molecule
has an ionization potential and electron affinity of IP = 7.6 eV and EA =
2.65 eV [43], respectively. This results in a gap of Eg,, = 4.95. In a simplified
description of the Cgy molecule the charging energy can be approximated by
that of a metal sphere with capacitance

C =4neR, (1.8)

where €y is the vacuum permittivity and R is the radius of the sphere. Set-
ting R =4 A, corresponding to the radius of the Cgy molecule, the charging
energy in Eq. amounts to E. ~ 1.8 eV, leaving 1.35 eV for the HOMO-
LUMO gap. It should be noted that these consideration are only valid for
the isolated molecule. When placed in a three-terminal nanojunction as illus-
trated in Fig. the molecule is surrounded by metallic electrodes and gate
dielectric which increases the capacitance and leads to a smaller charging
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energy. A rough estimate of the effect can be obtained by approximating the
junction environment with a dielectric material enclosing the Cgy molecule
as illustrated in Fig.[1.6l The presence of the dielectric increases the capac-
itance of the metallic sphere by a factor of €., C = 4meyRe,.. Taking the
average dielectric constant of the junction constituents to be €, ~ 10, the
charging energy of the molecule is reduced to 180 meV. The addition energies
of single-molecule SETs must therefore be expected to differ markedly from
the molecular gap in gas phase.

1.3.3 The junction polaron

To give a clear physical picture of the underlying physics, the role of the
junction environment is here discussed in further detail. In single-molecule
SETs a current can run when for example the electron affinity aligns with
the chemical potentials of the electrodes. In this situation an additional elec-
tron can tunnel onto the molecule resulting in a net negative charge. The
electric field from the additional electron will tend to polarize the junction
environment before it tunnels off the molecule again. Lending the quasi-
particle picture from Fermi liquid theory, this results in charge carriers that
are no longer bare electrons, but rather electrons dressed with a polarization
cloud located in the junction environment. To complete quasi-particle anal-
ogy, the resulting quasi-particle could be called a junction polaron similar to
the ordinary polaron (an electron surrounded by a cloud of phonons). For
metals and dielectrics the main polarization effect, i.e. the polaron cloud,
comes from electronic and ionic polarization. In order to have a well-defined
junction polaron, the time 7,0, an electron spends on the molecule must be
significantly larger than the time 7,4 it takes to polarize the junction envi-
ronment. The latter is given by the plasmon (~ 10 eV) and phonon energy
(~ 0.1 eV) corresponding to a polarization time of 1076 — 10~ s. The
residence time on the molecule can be inferred from typical current values
in single-molecule SETs which range from I ~ pA — nA. This results in a
residence time of 7,0 = I/e ~ 1071 s. Hence, the criteria for well-defined
junction polarons is met.

As demonstrated with the Cgy example above, the effect of the junction
polarization is to lower the energy of the charged N +1 states of the molecule.
This is a consequence of the attractive interaction between the electron and
its oppositely charged polarization cloud. From Eq. this is seen to result
in a smaller gap compared to the case of the isolated molecule (gas phase).
The corresponding shifts of the ionization potential and electron affinity will
be referred to as the polarization energies P, /P_ in the present work. The
situation is summarized in Fig. which shows the level alignment of a
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vacuum

Figure 1.7: Energy level alignment in a single-molecule transistor. The polariza-
tion of the junction renormalizes the molecular ionization energy (IP) and electron
affinity (EA) by the polarization energies P, ,_, respectively. The alignment be-
tween the Fermi energy of the source and drain electrodes and the molecular levels
determine the threshold for electron transport through the junction.

single-molecule SET.

As the threshold for electron transport through the molecule is deter-
mined by the alignment between the molecular levels and the Fermi energy
of the electrodes, the properties of single-molecule SETs are highly depen-
dent on the size of the polarization energies. In order to obtain quantitative
estimates for the polarization energies in single-molecule SETSs, a quantum
mechanical calculation of the total energies in Eq. including the effect
of junction polarization is required. A theoretical framework for this purpose
is presented in Chap. 2]

Other polarizable environments

The effect of environmental polarization on molecular levels is well known
from other fields. In electrochemistry charging processes of single molecules
take place under potential control in ionic solutions at room temperature.
Here, the analog of the polarization energies P, is the solvation free energy
which describes the effect of solvent polarization [44]. The measured redox
potentials of a given molecule are equivalent to the charge degeneracy points
of a single-molecule SET. However, due to the different environmental situa-
tion, direct comparison between the two are not possible. For example, both
response time and screening length are expected to differ markedly for the
polarization of a ionic solvent and solid state environment. Fig.|1.§illustrates
the various contributions to the dielectric response and their characteristic
frequencies. While solvent screening is characterized by orientational polar-
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Figure 1.8: Characteristic frequencies of various polarization mechanisms show-

ing their contribution to a generic dielectric function &, = &/ + ie!. Taken from
Ref. [2].

ization with relatively low frequencies, the electronic and ionic solid state
screening have significantly higher frequencies. This implies that screening
of dynamical electron transfer processes will in general be more efficient in
solid state environments.

Polarization is also an important factor for electron transport in organic
semiconductor crystals. Due to the weak van der Waals bonds between the
molecular units the electronic structure of organic semiconductors is charac-
terized by narrow bands (~ 0.1 eV). This renders a band description with
delocalized Bloch states inappropriate. As a consequence, charge transport
in these materials is better characterized by incoherent hopping between
localized states on the molecular units. Due to the relatively long residence
time on the individual molecular units (given by the bandwidth), the polaron
picture also applies here. In this case, however, the polaron cloud is formed by
electronic polarization of the neighboring molecular units. The polarization
energies in organic semiconductors are on the order of Py ~ 1 — 2 eV [45],
leaving the band gap of the crystal significantly smaller than the gap of the
isolated molecule.

1.3.4 Experimental overview

Due to the weak coupling between the electrodes and the molecule, single-
molecule SETs allows to study electron transport through well-defined states
of the molecule. For excited states this gives rise to additional features
in the charge stability diagram apart from the Coulomb diamonds. From
these features the nature and the energy of the excitations can be inferred.
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Single-molecule SETs therefore provides a means of doing single-molecule
spectroscopy in solid-state environments.

Over the past decade this has led to interesting observations of both the
transport mechanism and molecular properties in single-molecule SETs. For
example, in a pioneering work on the Cgy molecule, it has been demonstrated
that the tunneling of electrons can excite vibrational modes associated with
the center-of-mass motion of the molecule [II]. In the charge stability di-
agram such excitations shows up as lines parallel to the diamond edges.
In experiments on single-molecule magnets the magnetic properties of the
molecules has been addressed [46] 147, 48]. From the charge stability diagram
the different spin excitations of the molecule could be identified showing
that the molecules remain magnetic in the solid-state junction environment.
Moreover, the molecular spin degree of freedom was found to play an impor-
tant role for the transport through the molecule.

A series of experiments have studied the properties of single-molecule
SETSs based on the conjugated oligo-phenylene vinylene molecule OPV5 [20,
49, 50]. The structure of the OPV5 molecule, which consists of alternating
phenylene and vinylene groups, is illustrated in Fig. [1.9(a). The delocal-
ized m-electron system of the molecule is intended to provide a pathway for
electron transport between the electrodes. The experiments have provided
detailed information about the molecular excitations in the junction. The
following sections give a brief overview of the experimental results.

Access to several redox states

The experiment published in Ref. [20] was the first to report access to several
charge states of a molecule in a single-molecule SET. The stability diagram in
Fig.[1.9(b) show no less than eight well-defined charge states of the molecule.
With such a large number of charge states one should be concerned that it
really is a single molecule that has been trapped in the gap between the
electrodes, and not a metal particle or more than one molecule. There are,
however, several indications that the charge states in the stability diagram
belong to one and the same molecule. First of all, the Coulomb diamonds
are seen to vary significantly in size. This means that the level spacing A
contribution to the addition energy in Eq. is significant. Therefore, the
possibility that the charge states belong to a metal particle is unlikely. Sec-
ondly, the slope of the diamond edges which correspond to the gate coupling
is seen to be the same for all the diamonds. Since it must be regarded as
relatively unlikely that two molecules trapped in the nanogap would end up
with exactly the same gate coupling, this also supports the picture of a single
molecule.
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Figure 1.9: Molecular structure and stability diagram showing access to sev-
eral charge states of the OPV5 molecule [20]. (a) Molecular structure of a thiol-
terminated OPV5 molecule. (b) Charge stability diagram showing access to several
charge (redox) states of OPV5. The polarization of the junction environment most
likely plays an important role for the stability of the large number of observed
charge states (see text).

From the complete diamonds corresponding to the charge states Q) £ 1
of the molecule, a gate coupling of ~ 0.2 can be inferred. As the width
of the diamonds are given by FE,qq/(e), the addition energy of the neutral
molecule which corresponds to the gap of the molecule in the junction, can
be estimated to ~ 200 — 300 meV. As discussed in Secs. [1.3.2] and [1.3.3],
molecular gaps are expected to be reduced significantly in polarizable junc-
tion environments. This is also the interpretation of Ref. [20], which ascribes
the origin of the small gap to image charges, i.e. polarization, in the metal
electrodes. For reference, the electrochemical gap of the OPV5 molecule was
reported to be ~ 2.5 eV. Independent density functional calculation using
the B3LYP exchange-correlation functional yields a gap of ~ 4.5 eV for the
isolated molecule. Based on the considerations from the simple capacitor
model of the Cgy molecule in Sec. [.3.2) the reduction of the sum of the
HOMO-LUMO gap and the charging energy to a few hundreds of electron-
volts seems drastic.

The large difference between the gap of the molecule in the SET envi-
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ronment and the electrochemical gap has fueled a discussion whether the
interpretation of this experiment is correct [4, 29]. In electrochemical mea-
surements the compensating ions that stabilize the non-neutral redox states
of the molecule are only a few A distant from the molecule. Accordingly, the
screening should be more efficient than in a nanojunction. However, the small
gap observed in the single-molecule SET suggests the opposite. As pointed
out in Sec.[1.3.3] the screening properties of a ionic solution at room tempera-
ture and a solid-state environment cooled to cryogenic temperatures are very
different. This makes a direct comparison between them difficult. Another
argument against the single molecule interpretation of the stability diagram
in Fig. [1.9(b), is the large number of observed charge states which must pose
a serious challenge for the chemical stability of the molecule. However, the
efficient screening of the junction environment play a stabilizing role for the
charge states of the molecule. This could be a decisive factor for the chemical
stability of the molecule in the large number of charged states observed.

It should be noted that the stability diagram in Fig. [1.9(b) is the only
observation of such a large number of charge states in a single-molecule SET
so far. This, in conjunction with the fact that weakly coupled molecules in
solid-state environments held at cryogenic temperatures is still a relatively
unexplored field, must leave the correct interpretation of this experiment as
an open question. There is, however, no question that polarization plays
an important role for the position of the molecular levels in single-molecule
SETs. In experiments where full Coulomb diamonds have been measured,
small addition energies have been observed consistently. In Chap. |4 a quan-
titative estimate of the effect in a realistic OPV5 single-molecule SET is
presented.

Spin excitations and Kondo effect

The stability diagram from another experiment on the OPV5 molecule is
shown in Fig. [1.10(a) [49]. The schematic drawing in Fig. [1.10] gives an
overview of the important information in the stability diagram and the charge
states of the diamonds. Similar to the stability diagram in Fig. [I.10] the di-
agram here consists of diamonds with varying size. As discussed in the pre-
vious section this is an indication of the molecule being the active transport
pathway for electron tunneling between the electrodes. Another similarity is
the small addition energies associated with the charged states. The addition
energy for the ) = +1 state is ~ 50 meV which is in good agreement with the
value for the same charge state in Fig.[1.10(a). Thus, also in this experiment
does junction screening seem to be pronounced.

The horizontal features inside the Coulomb diamonds originate from
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Figure 1.10: Kondo effect and singlet-triplet excitation [49]. (a) Charge stabil-
ity diagram for the OPV5 molecule showing features from higher-order tunneling
processes inside the Coulomb diamonds. (b) Schematic drawing showing the im-
portant information contained in the stability diagram. The Kondo effect shows
up as a zero-bias feature inside the Q = +1,+3 diamonds. The two parallel
lines inside the ) = 42 diamond are due to inelastic cotunneling that leaves the
molecule in the excited triplet state (see text).

higher-order tunneling processes. An example is the Kondo effect which
manifests itself in a zero-bias resonance inside the Coulomb diamonds in the
stability diagram [511,[52]. In Fig. this gives rise to the horizontal lines at
zero bias inside the () = +1, +3 diamonds. The Kondo resonance arises from
a correlated many-body state between a single electron spin on the molecule
and the conduction electrons of the leads. Since it requires an unpaired
electron spin on the molecule, the zero-bias Kondo resonance appears only
in diamonds with odd number of electrons. Hence, the presence of a Kondo
resonance can be used to identify the charge states of the measured diamonds.

The two parallel lines inside the @ = +2 diamond come from inelastic
cotunneling processes which are next-to-leading order in the tunnel coupling
between the molecule and the leads. Cotunneling describes processes in which
an electron is transferred between the electrodes via an intermediate state of
the molecule that can have a higher energy than the initial state. In inelastic
cotunneling the molecule is left in an excited state which is why it shows up at
finite bias values. In the present case a splitting of the inelastic cotunneling
lines in a magnetic field allowed to connect them with the excited triplet
state of the doubly charged OPV5 molecule. The energy splitting between
the singlet ground state and the excited triplet state can be inferred from
the distance between the zero-bias axis and the cotunneling lines. It here
amounts to ~ 1.7 meV. The singlet-triplet splitting can be accounted for
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by an effective antiferromagnetic exchange coupling J between two spatially
separated single-particle states A and B holding the unpaired electrons of
the doubly charged molecule,

H=JS, S, (1.9)

where S,/p denotes the spin operators. The spatially separated states A
and B were ascribed to image charge stabilized localizations of the unpaired
spins at the terminating phenylene units in each end of the molecule. This
serves to illustrate that the junction polarization not only affects the size of
the Coulomb diamonds but also the excitation spectrum of the molecule.

Vibrational excitations

In a last example, the fine structure from the vibrational excitations of the
OPV5 molecule was observed [50]. This is shown in the stability diagram
in Fig. [1.11[a), where the vibrational excitations shows up as lines running
parallel to the edge of the Coulomb diamonds.

The energies of the vibrational excitations correspond to the vertical dis-
tance between the zero-bias axis and the point where the excitation lines
intersect with the Coulomb diamonds. Excitation energies in the range
1 — 125 meV could be identified from the stability diagram (a zoom of
the stability diagram is show in Fig. [1.11). Furthermore, an overall good
agreement with the vibrational modes from Raman and IR spectroscopy was
obtained confirming the vibrational nature of the observed excitations. In
case the vibrational excitations are equidistant in energy they can be as-
cribed to different number of phonons created in the same vibrational mode.
However, as the excitation energies extracted from Fig.[1.11[a) do not form
a harmonic spectrum, they must be attributed to different vibrational modes
of the molecule.

It is important to note that due to selection rules between the different
vibrational states, not all vibrational excitations will show up in the stability
diagram. These selection rules are dictated by the Franck-Condon factors
which are essentially overlap integrals between the vibrational states of the
molecule. In the case of a strong electron-phonon coupling, i.e. where there is
a large displacement of the nuclei upon charging of the molecule, the overlap
between the vibrational ground states can become vanishingly small. This is
illustrated in Fig. [1.11|b) where the two parabolas correspond to potential
energy surfaces of the molecule in two charge states. As a result the ground
state to ground state transition is drastically suppressed which in turn leads
to a blocking of the current at low bias. This phenomenon is known as the
Franck-Condon blockade [53], 54].
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Figure 1.11: Vibrational excitations of the OPV5 molecule [50]. (a) Stability
diagram with a detailed fine structure from the vibrational excitations of the OPV5
molecule. The excitations appears as lines parallel to the diamonds edges. (b)
Potential energy surfaces as a function of a general nuclei coordinate g for two
charge states of a molecule. For a strong electron-phonon coupling the horizontal
displacement between the energy surfaces is large resulting in a suppression of the
transition indicated by the green arrow. This gives rise to the Franck-Condon
blockade (see text).

1.3.5 Theoretical descriptions

Theoretical descriptions of single-molecule SETs are typically based on a
two-step procedure. In the first step the molecular states which are involved
in the electron transport are determined. In a second step, the current is
calculated from a stationary solution to the so-called Master equations. The
following section gives a brief overview of this approach together with some
considerations on different methods for the determination of the molecular
states.
The starting point is the following generic junction Hamiltonian

H = Hmol + Hleads + Ht (110)

where H,,, denotes the Hamiltonian of the molecule, Hjeaqs the Hamiltonian
of the electrodes and H; the tunnel coupling between the two. Due to the
weak tunnel coupling the states of the molecule are assumed to be unaffected
by the tunnel coupling. Hence, they can be obtained as the many-body states
of H,,, which are characterized by the number of electrons N on the molecule
and a general index ¢ referring to some excited state of the molecule. Under
finite bias conditions the occupations of the |N,i)-states are given by a non-
equilibrium probability distribution Py, for the states. Treating H; as a
perturbation, the transition rates I' between the molecular states can be
described using Fermi’s Golden rule.
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Knowing the transition rates, the probability for being in the i’th excited
N-electron can be found from the equation

%PN7i = Z [— (FN;}Z_J + FN@J) Py + FNII’f,j Pniij+ FNIX’f,j Pn_i1jl,
J
(1.11)
which gives the time-derivative of the probability in terms of the rates for
tunneling in and out of the state. The set of equation formed by the prob-
abilities for all the considered states are usually referred to as the master
equations. From a stationary solution for the probabilities, i.e. d/dtPy,; =0,
the current from the sequential tunnel processes can be obtained [55].
The molecular states |N,i) enter the transition rates. The rates for in-

creasing the number of electrons by one are given
2 N
Tvow =5 > Tifa(By), (1.12)

where f, is the fermi distribution of the electrodes, E;; = EJN T EN s
the total energy difference between the molecular states. In the case of ¢
and j referring to ground states of the N and N + 1 electron molecules,
E;j corresponds to the electron affinity (see (|1.7])). The alignment between
the Fermi energy of the electrodes and the molecular levels are therefore
contained in the Fermi function. The factor I'}; is given by

« . N2
%5 = po[tal® (N +1,5]c/|N,8)|". (1.13)

Here, t, denotes the tunnel matrix element to the electrodes and p, is the
density of states of the electrodes. It is the matrix element between the
states |N,7) and | N +1, j) that determines the selection rules for the current-
induced transitions between two molecular states. For vibrational excitations
the Franck-Condon factors constitute the part of the overlap that deals with
the vibrational degrees of freedom.

Since the master equation approach is based on a perturbative treatment
to lowest order in the tunneling Hamiltonian H;, the width of the resonances
is determined solely by the temperature. Therefore,

B, A > kT >T (1.14)

in order for the master equation approach to be correct.

Theoretical descriptions of single-molecule SETs most often rely on a
model Hamiltonian description that includes the essential physics needed to
describe the molecular states of interest. This approach has been extremely
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successful in explaining experimentally observed features in the stability di-
agram and how different molecular degrees of freedom affect the transport
through the molecule.

Part of the present work examines the effect of junction polarization on
the molecular states and their energetic positions. This requires the total
energies of the neutral and charged states of the molecule which are needed to
determine the ionization potential and electron affinity. For this purpose first-
principles methods which yields accurate total energies are to be preferred
instead of a model Hamiltonian approach. Furthermore, as the polarization
response of the junction must be expected to be highly dependent on the
spatial charge distribution of the molecule, an atomic description taking into
account the 3-dimensional structure of the molecule is required to obtain a
quantitative estimate of the polarization effects.

1.4 Thesis outline

The present work can be divided up into two parts. The first part, which deals
with polarization effects and general characteristics of single-molecule SETSs,
covers chapters 2[4l The second part which covers chapters [5 and [6] addresses
the accuracy of the many-body GW method for describing charge excitations
in small molecules. The relevance of this study is connected to the increased
use of the GW approximation for the description of the electronic structure
of isolated systems. Furthermore, the GW approximation is also applied
to describe the electronic structure of metal-molecule interfaces with a sig-
nificant hybridization between the metal and the molecule. Such interfaces
occur for instance in molecular self-assembled monolayers and single-molecule
junctions in the strong coupling regime. Their electronic structure is difficult
to describe. Factors like hybridization and dipole formation at the interface
complicate things considerably as compared to the situation in e.g. single-
molecule SETs where the molecule can be treated as an isolated system.
As the GW approximation has been demonstrated to take into account the
effect of surface polarization on the molecular levels, first-principles GW cal-
culations could be a candidate for an accurate descriptions of metal-molecule
interfaces. It is therefore of relevance to known how the GW approximation
describes the electronic structure of the isolated molecule.

The following paragraphs give an overview of the contents of the remain-
ing chapters of this thesis. Equations in these chapters are given in atomic
units (see App. [A).

In Chap. 2| a general Hamiltonian describing the molecular states that
enter the master equations via the rates in Eq. is given. Most im-
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portantly, this Hamiltonian takes into account the interaction between the
charge carriers on the molecule and their polarization cloud in the junction
environment. This framework allows to study the effect of junction polariza-
tion on the molecular levels.

Chap. [3| gives an introduction to Poisson’s equation and the electrostatic
Green’s function which plays an important role in the framework presented
in Chap. 2] Furthermore, a brief overview of the finite element method which
has been used to solve Poisson’s equation in the present work is given.

Chap. {4 presents a study of a OPV5-based single-molecule SET. Most
of the results presented here were published in the attached Paper 1. The
effect of junction polarization on the molecular levels, the gate coupling to
the molecule, and the behavior of the molecular states at non-zero bias is
addressed. The properties of the OPV5-SET described in this chapter can
be expected to be relevant for single-molecule SETs in general.

Chap. 5| introduces the many-body GW approximation and gives a brief
account of first-principles GW calculations. Recent calculations studying
single molecules physisorbed on metallic surfaces are discussed. These cal-
culations have demonstrated that the GW approximation takes into account
the shift of the molecular levels due to the polarization of the surface.

Finally, Chap. [6] presents GW benchmark calculations for a range of small
conjugated molecules described with the semi-empirical Pariser-Parr-Pople
Hamiltonian. By comparing to exact results an unbiased estimate of the per-
formance of the GW approximation is obtained. The results in this chapter
have been collected in Paper II, which at the time of writing has not yet been
published.



Chapter 2

Electrostatics of
single-molecule SETs

In single-molecule SETs where the molecule is surrounded by metallic elec-
trodes and a gate dielectric, the molecular states and their energetic positions
can not be assumed to be those of the isolated molecule. For example, the
electric field from an applied source-drain voltage may polarize the molecule
and thereby alter the molecular states [56]. Another important factor is the
polarization of the metallic electrodes and the gate dielectric that accom-
panies the charging of the molecule when a current is running through the
junction. Due to the short distance between the molecule and the junction
environment the Coulomb interaction with the induced polarization/image
charge can be on the order of eV leading to significant shifts of the molecular
levels. As the threshold for electron transport through the SET is determined
by the positions of the molecular levels with respect to the Fermi levels of the
electrodes, this is an important effect to include in theoretical descriptions
of single-molecule SETs.

The following chapter presents a general framework that allows to study
the effect of polarization in realistic single-molecule SET geometries. It is
based on general considerations on the macroscopic electrostatic energy of
the junction environment for a given charge on the molecule. From these
considerations an effective Hamiltonian for the single-molecule SET that in-
cludes the polarization effects is derived. It should be noted that similar
approaches have been reported previously in the literature [57, [58].

Alternative DFT approaches addressing the effect of polarization in
molecular junctions in the weakly coupled regime has recently been pub-
lished [59, [60]. However, since they rely on an atomic description of both
the molecule and the polarizable environment simulations of realistic single-
molecule SETs are numerically intractable.
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Despite the focus being on single-molecule SETSs here, the method pre-
sented in the following applies equally well to other nanostructures in macro-
scopic dielectric environments. The discussion is therefore kept general in
the following section.

2.1 Junction Hamiltonian

The starting point for the following analysis is a nanojunction consisting of a
nanoscale system S, e.g. a molecule, and the junction environment E which
usually consists of a number of metallic electrodes and a gate dielectric sep-
arating the system from gate electrode. The situation is sketched in Fig. [2.1
which illustrates the polarization and charge distribution of the junction for
a positive gate voltage and charge () = —e on the system S. In order to
calculate the position of the electronic levels of the system, the total energy
of the system plus junction must be evaluated as a function of the charge () on
the system. This is a consequence of long ranged Coulomb interaction which
couples the system charge with the polarization charge in the junction. With
all the microscopic degrees of freedom of the junction environment, this of
course posses an unsolvable problem. However, if the junction environment
is described with classical macroscopic electrostatics the problem simplifies
considerably. Within this approach the metallic electrodes are represented
by equipotentials with their potentials given by the applied voltages V;. It
is assumed that there is no net accumulation of charge in the junction envi-
ronment, i.e. p, = 0, when the junction is considered without the system S
and in the absence of applied voltages.

Figure 2.1: Schematic illustration of the charge distribution and polarization
P of the junction with a positive voltage applied to the gate electrode and the
source (s) and drain (d) electrodes grounded. The positive gate voltage has left
the system S in the charge state Q4 = —e. The positive charges on the surface of
the source and drain electrodes illustrates the polarization charge induced by the
extra electron on the system.
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The full junction Hamiltonian can be written as a sum of the following

four terms,
H=H,+H,,+H,+H,. (2.1)

The first term is the Hamiltonian of the nanoscale system .S, which in general
will be a quantum mechanical many-body Hamiltonian. For now, H will
not have to be specified further.

The second term H, accounts for the interaction between the system
S and the environment E. With the assumption of a weak tunnel coupling
between the system and the electrodes, the tunneling part of H_, can be
neglected. Only the Coulomb interaction between the system charge and the
charge of the environment remains, i.e.

Hoy = [do [ p,0)Vole = x)p, ). (2:2)

Here V,(r —1’) = 1/|r — 1’| denotes the Coulomb interaction and p; . the
charge distributions of the system and the environment. Both p, and p, are
considered to be the total charge distribution having contributions from both
the electrons and the ions of the system and the junction environment.

The third term H, in Eq. describes the polarization of the junc-
tion environment and accounts for the energy associated with the build-
up of the induced polarization charge of the environment. In electrostatics
there is a qualitative difference between the polarization of a metal and that
of a dielectric. In the former the polarization is caused by free electrons
which accumulates on the surface until the external electric field causing the
polarization has been completely expelled from the bulk of the metal. In
dielectrics the situation is different. Here the polarization is generated by
small dipoles p; in the bulk of the dielectric. This gives rise to a macroscopic
polarization P = ). p; which only partially screens an external field. The
net bound charge p, that resides in the dipoles is related to the polarization
via p, = —V - P. With the polarization of the environment characterized
by (i) the free electrons in the metallic electrodes, and (ii) the macroscopic
polarization of the dielectric, the energy of the environment is written as [61]

1
1, = [dr [a p,0)Vele =3, )
1
+5 /dr /dr' P(r)K(r,r")P(r'), (2.3)
where the kernel K = 47x. ! is related to the inverse of the electric suscep-

tibility x.. The first term in Eq. (2.3) accounts for the Coulomb interaction
between net accumulations of charges in the electrodes and dielectric. The
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second term describes the elastic polarization energy of the dipoles p; which
is dominated by short ranged interactions. The polarization of the dielectric
is connected to the electric field E via P = y.E. Since the energy of the
polarized dielectric is specified in terms of its macroscopic polarization, no
assumption about the microscopic origin of the polarization is here required.
However, it should be noted that an electrostatic description of the dynam-
ical response of the junction environment relies on certain assumptions on
the time scale of the polarization response. A comment on this will follow in
Sec. 2.3

In order to write the Hamiltonian of the environment in Eq. as
an interaction between the environmental charges p,, the second term in
Eq. is recast in the form of a density-density interaction between the
bound polarization charges py,

%/dr/dr'pb(r)vb(r,I‘/)Pb(r,)~ (24)

The interaction V}, between the bound charges is related to the kernel K
in Eq. H For the present purpose a further specification of V, is not
necessary. With this rearrangement the sum of the two terms in Eq.
can now be written

1, =5 [ [ 0,0V 5, @), (2.5)

where V' is either V,, or V,, +V}, depending on whether r and r’ belong to the
metallic and/or the dielectric parts of the environment.

Finally, the last term of the junction Hamiltonian in Eq. is the
energy it costs to place a charge ); on the i’th electrode which is held at the
potential V;,

H, = ZQ@V; (2.6)

!Expressing the polarization in terms of the bound charge density via

r—r

P(r) =~ [ (e

the interaction between the bound charges Vj, can be written as the following double
integral over the extend of the dielectric,

—

V( /)_ d// d/// r—r" K " ///)
b\, T ) = r r —m——— (I‘ ,r W

|r —r”|?
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The charge on the ¢'th electrode is given by the spatial integral of p, over
the extend of the electrode, Q; = [ _, dr p,(r). With the different parts of
the junction Hamiltonian in Eq. (2.1]) specified it now takes the form

H=H+pVipps + %pEVEEpE +) Qv (2.7)
where the shorthand notation Vi,,p, = [dr'V(r,r')p(r') with m,n = S, E
has been introduced for brevity. The subscripts in Eq. indicate which
part of the junction the spatial variable belongs to. In the following it is
shown how an explicit treatment of the degrees of freedom of the environment
can be avoided.

For a given charge distribution p. of the system and applied voltages V;
to the electrodes, the environment will polarize in order to lower the total
energy. Since the part of the Hamiltonian involving p, is treated classically
here, the solution for p, can be found by minimizing the Hamiltonian in
Eq. with respect to p,. This yields the following expression for charge
distribution of the junction environment

Pe = _[VEE]_l (VESpS + Z V;)
= Pind T Pext- (28)

Two contributions are here identified. The first denoted p;.q, represents the
polarization charge induced by the system charge p,. In linear response the-
ory the response function y relates the induced charge density to an external
potential,

Pind(T) = /dr’X(r,r’)fI)(r’). (2.9)

In Eq. (2.8)) above, the potential from the system charge ®, =V, p, takes
the role of the external potential. Therefore, the inverse of the interaction V,,
can be identified as the linear response function of the junction, y = —VE_EI.
The second contribution pey; to the charge distribution of the environment
in Eq. , represents the charge induced in the junction when external
voltages V; are applied to the electrodes. This consists of the charge that is
supplied by an external battery in order to maintain the applied voltages,
plus the charge that results from the polarization of the dielectric that follows
a finite voltage applied to one or more of the electrodes (see e.g. Fig. [2.1)).
With the expression for p,, in Eq. inserted back into the Hamiltonian
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in Eq. (2.7)), the following effective junction Hamiltonian is obtained,

]
1 -
=H,+ 5 /dr/dr/ ps(r)V(r,v")p, (r)) + /dr Ps (1) Py ()
1
t3 > ViCyV;
j
= Hg+ Hpol + Hew + H... (2.10)

The elimination of the charge density of the environment p, has resulted
in the appearance of new quantities in the Hamiltonian. These are defined
by the second equality where the real space notation has been reintroduced.
Firstly, an effective interaction

V==V, [VEE]_IVES (2'11>
between the system charges has been identified. As will be discussed in
Sec. [2.1.2] this interaction is mediated by the induced polarization charge.
Secondly, the electrostatic potential ®(r)ex; = [dr'V,,(r —1’)pext (r') from the
charge distribution pey in Eq. has been introduced. Last, the elements
C;; of the capacitance matrix are identified as

Cij = —/ dr/ dr’ V= (r, 1), (2.12)
red r'ej

where the integration extends over the volume of the i’th and j’th electrode
and V is the interaction in the environment from Eq. . As the inverse
V=1 of the interaction is related to the response function, the capacitance
matrix is fully determined by the geometry of the junction and its dielectric
properties.

Each of the terms in the effective Hamiltonian in Eq. accounts for
well defined contributions to the total energy. Starting with the last term,
H_ is the electrostatic energy of the junction in the absence of the system
S and with voltages V; applied to the electrodes. This part of the electro-
static energy is provided by a battery and has no influence on the electronic
levels of the system. The term Hey, is the energy of the system charge pg
in the potential from the applied voltages. The capacitive coupling to the
gate electrode is described by this term. The polarization Hamiltonian H
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accounts for the interaction between the system charge and the polarization
charge. Assuming for a moment that p, is a classical charge distribution (a
quantum mechanical treatment will follow in the next section), this term can
be expressed in terms of the potential ®(r)ia = [dr'V, (r — 1')pina(r’) from
the induced polarization charge pi,q in Eq. ,

Hya = 5 0:Vaspma = 5 [ dr p,(5) i), (2.13)
This term is exactly half of the Coulomb interaction between the system
charge and the polarization charge in Eq. . The factor of one half arises
because the energy from Eq. required to build up the polarization charge
in the environment is included in this term. In other words, this means
that the energy associated with building up the polarization charge in the
environment is exactly half of the Coulomb interaction between the system
charge and the polarization charge.

The polarization Hamiltonian in Eq. can be regarded as a gen-
eralization of the classical image charge problem illustrated in Fig. It
considers a point charge g placed in front of a perfect conducting surface.
The potential from the induced surface charge at the position z of the charge
q is identical to the potential ®@ip.ee(2) = —¢/2z from a fictitious image
charge ¢’ = ¢ located behind the surface. The total energy of the surface

plus charge,
B() = 2qBimagel) = —L
Z)= = image\%) = ——/,
9% imag 4z

is only half of this [62]. The reason for this can be understood by considering
the energy stored in the electric field E,

(2.14)

1
E=— [dr|E] 2.1
S [wE 2.15

For the situation illustrated in Fig. the field from the charge ¢ is only
different from zero for z > 0 due to the perfect screening from the conducting
surface. However, if both charges ¢ and ¢’ are considered to be real charges,
the field is different from zero also for z < 0. Due to symmetry the energy
of the former situation is therefore exactly half of the energy of the latter
situation. As the energy of the two real charges is F(z) = —¢*/(22), the
result in Eq. follows directly. With the result for the polarization
Hamiltonian in Eq. , this has been generalized to an arbitrary geometry
of the polarizable environment.

To summarize the present section, it has been shown how an effective
junction Hamiltonian in Eq. can be derived from general consideration
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Figure 2.2: The classical image charge problem with a charge ¢ = —e located at
a distance z from a perfect conducting surface. The effect of the positive surface
charge is equivalent to a fictitious image charge ¢’ = —¢q behind the metal surface.

on the electrostatic energy of the junction. In the resulting Hamiltonian
the charge distribution of the junction environment has been replaced by
macroscopic quantities describing the mutual interaction between the charges
of the environment and their interaction with the system. These include an
effective interaction V' between the system charges, the potential @ from
the charge pexy which is added to the electrodes to maintain the applied
voltages V;, and the elements C;; of the capacitance matrix of the junction.

2.1.1 Quantum mechanical version

For systems where the electronic degrees of freedom are governed by the
Schrédinger equation, a quantum mechanical version of the effective junction
Hamiltonian in Eq. is required.

In its most general form the Hamiltonian of the system will be a many-
body Hamiltonian consisting of a non-interaction part Hy including the ki-
netic energy of the electrons and the potential from the ionic cores of the
system, and an interacting part Hi,; which describes the Coulomb interaction
between the electrons,

H, = Hy+ Hint
__ % / dr ¢ (£) V22 (x) + / dr " ()0 (1) Vign (r)
4 [ far eV - e, 2a0)

Here 9! and 7 denote the creation and annihilation field operators and
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Vien(r) = — [dr V_ (r—1’) pion(r’) is the energy of the electrons in the potential
from the ionic cores. To ease the notation, the electronic spin variable has
been suppressed in Eq. and in the remainder of this chapter.

The quantum mechanical version of the effective junction terms in
Eq. follows by replacing the charge distribution of the system by its
contributions from the ionic cores and the electrons with the latter repre-
sented by the electronic field operators, i.e. pg = pion — i), The term He
accounting for the applied voltages takes the form

Hey = /dr [pion(r) — wT(r)w(r)} Doyt (). (2.17)

Under the assumption that the ionic cores of the system S remain fixed as
a function of applied voltages and number of electrons on the system, the
first term affects only the zero point of the total energy and can hence be
neglected. The single-particle contribution in the other term adds to the
non-interaction part Hy of the system Hamiltonian. It affects the eigenstates
and hence also the electronic charge distribution of the system when voltages
are applied to the electrodes. Furthermore, this term accounts for the shift
of the electronic levels due to an applied gate voltage.

The quantum mechanical version of the polarization Hamiltonian H, is
given by

Hyo = %/dr/dr’ pion(r)\7(r, ') pion (1)
- [ [’ 0l w0 V1))
w5 [ far P e eee). @)

where V is the effective interaction between the system charges from
Eq. . Again, the term involving the ionic charge distribution p;,, can
be neglected under the assumption that the ionic cores remain fixed. The
second term contains the interaction between the electrons and the image
charges of the ions and visa versa. This is a single-particle term that adds to
Hy as above. The last term, which in the following will be denoted H2j, de-
scribes the interaction between the electrons and their image charges. Except
for the ordering of the field operators and the substitution of the Coulomb
interaction V,, with the effective interaction V', this term is equivalent to the
interaction part Hiy of the system Hamiltonian in Eq. (2.16). Due to the
different ordering of the field operators in Hggﬁ, this term includes contribu-
tions where the electrons interact with themselves. This self-interaction is a
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consequence of the fact that an electron can interact with itself via its own
image charge. By reordering the field operators, the self-interaction of the
electrons can be separated out in an extra single-particle term

=5 [ v w0V
+%/@/W¢mwuﬂmnﬂwﬂwn (2.19)

The last term now has the same ordering of the field operators as the Coulomb
interaction term Hj, in the system Hamiltonian. Consequently, the polariza-
tion of the environment modifies the interaction on the system by replacing
the bare Coulomb interaction with a screened interaction Vi, = V,, +V. On
top of this, the polarization Hamiltonian introduced two new single-particle
terms (the second term in Eq.(2.18) and the first term in Eq. (2.19)). Ex-
cept for the self-interaction term in Eq. , all terms in the polarization
Hamiltonian have equivalent counterparts in the system Hamiltonian H
in Eq. with V replaced by the Coulomb interaction V.. They can
therefore be joined and expressed in terms of the screened interaction V.

The full quantum mechanical version of the effective junction Hamiltonian
in Eq. (2.10)) then takes the form

== [l 9(e) + [ de ol (0)()Voa(r
— /dr/dr’ @/}T(r)@/)(r)vgcr(r,r’)pion(r’)
+ %/dr/dr’ wT(r)wT(r')Vscr(r,r/)w(r')w(r)
+%/mw@m@Vmw, (2.20)

where the terms not depending on the electronic degrees of freedom have
been neglected. This Hamiltonian provides a general starting point for a
description of the electronic structure of a system which is weakly coupled
to the metallic electrodes of a nanoscale junction. Since it is merely a modi-
fication of the terms contained in the Hamiltonian of the isolated system in
Eq. , the junction Hamiltonian can be tackled with existing methods
for many-body eigenvalue problems. These range from exact diagonalization
to mean-field treatments in the Hartree and Hartree-Fock approximation. In
Sec. the version of the junction Hamiltonian suitable for effective single-
particle descriptions such as e.g. density functional theory, is presented.
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2.1.2 The screened Coulomb interaction

The screened Coulomb interaction of the system introduced above consists of
two parts, (i) the direct Coulomb interaction V,, between the system charges,
and (ii) the effective interaction V that arises from the interaction with polar-
ization charge in the junction environment. Utilizing the connection between
the response function and the inverse of the interaction V,, in the junction
environment, the screened interaction can be illustrated diagrammatically
as

‘/scr<r7 I‘/) = Vc (I‘ - I'/) + ‘7(1‘7 I‘/)
= Vss + VSEXEEVES

The wiggly lines represent the Coulomb interaction and the bubble diagram
represents the response function of the junction. Since the present approach
has not made any assumptions on the nature of junction polarization, the
response function must in general be considered to include both the electronic
and ionic responses of the junction environment. The full diagram in the last
term that represents the effective interaction V' has the following physical
interpretation. With a unit point charge placed in r’, V' is the potential from
the polarization charges in r that another point charge would feel. Adding
to this the direct Coulomb interaction between the two point charges, the
screened interaction V. represents the total potential in r due to a point
charge in r’. This corresponds to the general definition of a screened Coulomb
interaction which takes into account the combined potentials of the bare
charge and the polarization charge.

In the case of a macroscopic dielectric environment the screened interac-
tion is given by the electrostatic Green’s function [57]

Vier(r,¥') = G(r, 7). (2.22)
The screened interaction can therefore be obtained from a solution to Pois-
son’s equation. The electrostatic Green’s function is introduced in Sec. [3.2
Since the electrostatic Green’s function can be separated in two contributions
equivalent to those of the screened interaction in Eq. (2.21)), it also provides
the electronic self-interaction V in the last term of Eq. .

2.2 Effective single-particle Hamiltonian

First-principle methods based on density functional theory (DFT) and
Hartree-Fock are among the most widely used for the calculation total en-



36 Electrostatics of single-molecule SET's

ergies of molecules. Therefore, a reformulation of the junction Hamiltonian
in Eq. to an effective single-particle Hamiltonian is of high practical
relevance.

In effective single-particle descriptions the electrons are treated as non-
interacting moving in an effective potential that accounts for the electron-
electron interactions at the level of mean-field theory. The difference between
various single-particle descriptions lies in their approximation to the effective
single-particle potential Vig.

Without loss of generality an effective single-particle Hamiltonian can be
written as

1
Heg = —§v2 + Vest(r) (2.23)
with the effective potential given by the sum of the following contributions
Vesr(r) = Vion(r) 4 Vi (r) 4 Vie(r) + Vina(r) + Vese (r). (2.24)

The first three terms of the effective potential originate from the molecule
itself. They include the potential Vi,, from the ionic cores, the Hartree
potential from the electron density n.,

Via(r) = / dr' V. (r — ¥')ng (), (2.95)

and the exchange-correlation potential V.. which accounts for the part of
the electron-electron interactions not included in the Hartree potential. This
could be e.g. the exchange-correlation potential from the Kohn-Sham Hamil-
tonian in DFT or the non-local exchange potential of Hartree-Fock [63]. The
fourth term describes the interaction with the polarization charge through the
induced potential Vi,q. It follows from a Hartree approximation to the image
charge mediated electron-electron interactions in the polarization Hamilto-
nian in Eq. . Since self-interactions are included in this interaction, the
Hartree approximation captures the essential physics of this term. It should
be noted that Ving = Vind,e + Vind,ion 1 the sum of the potentials induced by
the electrons and the ionic cores of the molecule. The last contribution to
the effective potential in Eq. accounts for the potential from applied
voltages.

The electron density is obtained by occupying the lowest lying eigenfunc-

tion ¢; of the effective Hamiltonian in Eq. (2.23))
ne(r) = ) o)l (2.26)
i€occ

As the effective potential depends on the electron density, the eigenfunctions
and their corresponding energies €; must be determined self-consistently by



2.3 Validity of an electrostatic approach 37

updating the effective potential from the electron density in each iteration.
The self-consistent scheme allows the electron density of the molecule to
relax in response to the junction polarization and applied voltages which are
represented by the induced potential V4 and the external potential V.,
respectively. As a consequence, the molecular orbitals ¢; might change qual-
itatively compared to those of the isolated molecule.

From the eigenvalues of the effective Hamiltonian the total energy can be
obtained as

E = Z i — %/dr Ne(r) [Vi(r) + Ving,e(r)] + Axe. (2.27)

1€0cc

Here the second term prevents double counting contributions to the total
energy which are included twice in the sum of the eigenvalues. Notice that
this term includes only the induced potential Vj,q from the electronic charge
and not the full induced potential Vi,q. The last term A,., which accounts
for the exchange-correlation part of the total energy, depends on the different
single-particle descriptions.

The results presented in this thesis are based on the semi-empirical
method outlined in App. [B] It is based on the extended Hiickel scheme which
for the present purpose has been extended with a self-consistent field tak-
ing into account electron-electron interactions at the level of Hartree theory.
The potentials Vi,q and V. are obtained from a finite element solution to
Poisson’s equation. The next chapter introduces Poisson’s equation and the
finite element method.

2.3 Validity of an electrostatic approach

The derivation of the effective junction Hamiltonian in Eq. relies on
the assumption that the junction environment can be described by a classi-
cal electrostatic Hamiltonian. Below it is discussed which requirements this
imposes on the size of the junction constituents and the time scales of the
junction polarization.

First of all, the classical treatment is based on the macroscopic dielectric
properties of the junction environment. Therefore, the dimensions of the elec-
trodes and dielectric must be sufficiently large that these can be defined. For
the metallic electrodes which are assumed to be equipotentials, this implies
that their size must be larger than the metallic screening length. With typical
metallic screening lengths being on the order of 1 — 2 A [62], this is readily
fulfilled. The macroscopic polarization P of a dielectric follows by averaging
the microscopic fluctuations over a suitable volume. For a crystalline solid
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this is the unit cell. Hence, the dimensions of the dielectric components of the
junction must be larger than the unit cell dimensions. As the gate dielectric
in single-molecule SETSs is on the order of nanometers, this is also fulfilled.

Secondly, the assumption of an electrostatic environment neglects dynam-
ical polarization effects. For this to hold the dynamics of the polarization
response need to be the fastest time scale in the problem such that the
environment can be assumed to responds instantaneously to changes in the
number of electrons on the molecule. Based on the time-scale discussion in
Sec. which introduced the junction polaron concept, this seems to be
well justified. An electrostatic approach is therefore a good starting point
for studying polarization effects in single-molecule SETs.

There is another time scale associated with the electron dynamics inter-
nally on the molecule. It is given by the energy of the molecular gap which is
on the order of ~ eV. For time scales faster than the one set by the molecu-
lar gap the molecular orbitals of an effective single-particle approach are not
well-defined. As the time scale given by the inverse of the plasmon frequency
is also on the order of eV, this implies that a single-particle description of
the polarization effects does not necessarily give a correct description of the
molecular wavefunction. Alternatively, the problem should be attacked in its
many-body form in Eq. which takes into account the image charges
of the electronic point charges instead of the image charge of the molecular
orbitals. However, as a first iteration of the study of polarization effects in
single-molecule SETS, the effective single-particle description adopted in the
present work can be expected to give the order of magnitude of the effect on
the molecular levels.



Chapter 3

Poisson’s equation

The spatial profile of the electrostatic potential in the nanoscale gap of a
single-molecule SET is an important factor for its transistor related proper-
ties. Therefore, the solution of Poisson’s equation in a realistic 3-dimensional
geometry is a compulsory part in the characterization of the electrostatic
properties of single-molecule SETs. The following chapter discusses the dif-
ferent contributions to the electrostatic potential in a single-molecule junc-
tion. Furthermore, the numerical finite element method for the solution of
Poisson’s equation is introduced.

3.1 Junction potential
The electrostatic potential ® in a nanojunction is given Poisson’s equation
— V- [e(r) VO(r)] = dmp, (r) (3.1)
with boundary conditions given by the voltages applied to the electrodes
D(1)|res, = Vi (3.2)

Here S; denotes the surface of the i’th electrode with potential V;. The screen-
ing properties of the junction are included via the spatially dependent dielec-
tric constant ¢, and p, is the charge distribution of the system/molecule.

Due to the superposition principle the total potential of the junction can
be split up in a part ®, describing the part of the potential that stems from
the presence of the charge distribution p, and a part ®.y, associated with
the applied voltages V;,

O(r) = P (r) + Pexe(r). (3.3)
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The potential ®, obeys the Poisson equation in Eq. with boundary
conditions ®(r) = 0 for r € S;. The remaining part of the total potential is
the potential from the applied voltages in the absence of the system charge
ps which can be expressed by the sum

Dy (1) = Z oy (r)V; (3.4)

where the characteristic electrode functions «; are determined by Laplace’s
equation
Ve (r)Va(r)] =0 (3.5)

with boundary conditions a;(r) = d;; for r € S;. The characteristic functions
a; represent the electrostatic potential of the junction with a unit potential
applied to electrode ¢ and all other electrodes grounded.

The potential @, arising due to the presence of the system charge is
the sum of the potential ® from the system charge itself when considered
without the junction and the potential ®;,4 from the induced polarization
charge pinq in the junction

Dy (r) = O (r) + Pipa(r). (3.6)

Each of the potentials on the right-hand side follows from their corresponding
charge distributions

d(r) = /dr’ V,(r —1")p(r'). (3.7)

In the following two sections methods for solving Poisson’s equation are in-
troduced. While a formal solution can be obtained with the aid of the elec-
trostatic Green’s function, in practice, one must often resort to numerical
methods such as the finite element method.

3.2 Electrostatic Green’s function

The electrostatic Green’s function solves Poisson’s equation with a d-function
source term

-V [e(r)VG(r,r")] = 47w (r — 1) (3.8)

and boundary conditions
G(r,r')|res, = 0. (3.9)

Its interpretation is that it gives the potential at position r due to a unit point
charge in r’. Consequently, the Green’s function is fully determined by the
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screening properties and the geometry of the junction. As the potential @ in
Eq. (3.6)) the Green’s function can be written as the sum of two contributions

1
fr—r]

G(r,1') +G(r,r). (3.10)
The first term is the bare potential from the point charge in r’ and the
second term is the induced junction potential. Notice that the contribution
G is equivalent to the effective interaction V' in Eq. .

The Green’s function gives a formal solution to Poisson’s equation for the
potential ® via

D (r) = /dr’ G(r,r")p,(r'). (3.11)

That this is in fact a solution can be readily confirmed by inserting in Pois-
son’s equation and utilizing that the Green’s function is the solution to
Eq. (3.8]). Also, the characteristic electrode functions «; can be expressed in
terms of the Green’s function as [64]

ai(r) = — /S A4S () V'G(r ), (3.12)

7

where 0 is an outward pointing normal to the electrode surface S;.

3.2.1 Analytical solution in simplified junction

In the following an analytic solution for the Green’s function in the simplified
junction geometry shown in Fig. is given. Despite its simple appearance,
this junction resembles the screening properties of more realistic junction
geometries rather well. The electrodes are represented by infinite parallel
metal surfaces with the dielectric material filling the lower half of the spacing
between them.

Consider a unit point charge located in r' = (2/,¢/,2’) in the spacing
between the electrodes and dielectric. The presence of the point charge in-
duces a polarization in the junction. At the surface of the metallic electrodes
the potential from the induced charge cancels the potential from the point
charge. This results in the boundary condition in Eq. for the Green’s
function at the electrode surfaces. At the dielectric interface the cancellation
of the point charge potential is only partial. The potential can be obtained
by solving Eq. (3.8) where the dielectric constant €, describes the screening
of the dielectric. Alternatively, the induced charge of the dielectric can be
treated as a source term on equal footing with the point charge. With the
induced charge included explicitly as a source term, Poisson’s equation must
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x=0 x=L

Figure 3.1: Simplified junction geometry for which an analytic solution to the
electrostatic Green’s function G' can be obtained. The junction consists of two
infinite metal surfaces modeling the source and drain electrodes and a material
with dielectric constant ¢, filling the lower half of the spacing between them. The
image charge solution in Eq. is illustrated by the empty and filled circles.

be solved with €, = 1 everywhere. For a homogeneous dielectric the induced
charge resides at the interface as a surface charge 0. The Green’s function
can therefore be obtained from the following Poisson equation

— V2G(r,v") = 4x [0(r — 1) + o(r)], (3.13)

where the surface charge is located in the xz-plane o(r) = o(z, 2)d(y). The
surface charge is given by the normal component of the polarization on the
interface,

s=P-fi=(s—1)E- q (3.14)

Here the normal component (in this case the y-component) is evaluated im-
mediately below the interface, i.e. y = 07. Expressing the electric field by
the gradient of the Green’s function, the following relation between the latter
and the surface charge is obtained

1
e — 1

—n-VG(r,1r') = o(r). (3.15)

The Egs. (3.13) and (3.15) can be solved for the surface charge and the
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Green’s function resulting in the following intuitive image charge solution

Glex)=2, 3 o (iiD T{\/(x —ow)? + (yl— T+ (z— )

- 1
* nZ:; (\/(2nL —(z—0x))?+(y—1Y)2+ (2 —2')?

1
-+ \/(271[/ -+ (m — o'g;’))Q + (y _ Ty/)Q n (Z — Z,)2>:| 5 (316)

which is illustrated in Fig. [3.1. Here, L is the electrode spacing and the
sums run over all repeated images of the point charge in r’ in the metallic
electrodes and the dielectric surfaces. The strength of the image charges is
seen to be given by the factor (s, + 7)/(¢, + 1) in Eq. (3.16)). This implies
that the image charges located below the dielectric interface (corresponding
to 7 = —1) have a strength of

e —1
B

This is also the image charge strength of an infinite surface with dielectric
constant £, [62]. The strength of the remaining image charges (7 = 1) is
unity corresponding to the screening from a metallic surface.

By leaving out the contribution from the point charge itself in Eq. ,
only the induced potential G in Eq. remains. The analytic solu-
tion therefore provides a mean of obtaining the image charge mediated self-
interaction V' of an electron in Eq. .

e, (3.17)

3.3 Finite Element Method

The finite element method (FEM) is a widely used method for the solution
of boundary value problems in various disciplines of science and engineering.
One of its major strengths is its ability to handle solution domains with
complex shapes. This is accomplished by decomposing the solution domain
into a set of discrete sub-domains referred to as elements which together
define the so-called mesh. Fig. illustrates such a mesh for the single-
molecule junction studied in the present work. The nonuniform mesh allows
for the use of a coarse discretization in the regions close to the boundaries
of the solution domain where the potential is smooth. As a consequence, the
errors introduced by the non-physical boundaries of a finite solution domain
can be minimized using a large simulation cell. In the present work the open
source FEM code from the FEniCS project [65] has been used.
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In general, the boundary value problem for Poisson’s equation in the
solution domain 2 defined by the junction geometry can be formulated as

—V-[eVu = f, reQ (3.18)
u = g, reilp (3.19)
n-Vu = h, redy (3.20)

In the more general notation introduced here, u denotes the electrostatic
potential, f = 4mp is the source term, and g and h are scalar functions
specifying the value of the potential and its normal derivative on the Dirichlet
and Neumann parts of the boundary, respectively.

Instead of the differential form above, the finite element method takes its
starting point in the variational formulation of the boundary value problem.
To rewrite the differential boundary value problem to its variational form,
Eq. is multiplied with an arbitrary test function v belonging to the
function space V' in which the solution is sought. Subsequently, the equation
is integrated over the solution domain €2 and using integration by parts the
variational form follows

/draTVv-Vu—/drvf—l—/dSarv(ﬁ~V)u. (3.21)
Q Q o0

The boundary integral on the right-hand side is handled by inserting the
Neumann boundary condition from equation . The fact that only first
order derivatives appears, ensures that the variational formulation is well-
defined as long as v and u are continuous piecewise differentiable functions.
Since such functions do not have continuous first derivatives as required by
the differential form of Poisson’s equation, the variational formulation is also
referred to as the weak form and its solution a weak solution. Introducing
the bilinear form

a(v,u) = /dr e Vv -Vu (3.22)
Q

and linear form
b(v) = /dr vf (3.23)
9]

on V, then for u to be a solution

a(v,u) =bv) YveV. (3.24)

From the variational form of the boundary value problem, the next step
is the discretization in the finite element space which is composed of basis
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Figure 3.2: Boundary mesh of the 3-dimensional simulation cell for a single-
molecule junction. The nonuniform mesh allows to obtain an accurate representa-
tion of the potential in the relevant region near the molecule while at the same time
minimizing the errors due to non-physical boundaries by using a large simulation
cell.

functions ¢; with compact support. The most simple basis is the linear basis
function which for each node (element vertex) of the mesh connects to the
neighboring nodes with a linear function with value one at the node itself
and zero at the neighboring nodes (hence the compact support). In the finite
element basis the solution u is expanded as

where {¢;}Y, is the global basis of the finite element space. The expansion is
then substltuted into the weak formulation and the test function v is chosen
to coincide with a basis function ¢;. This particular approach is often referred
to as Galerkin finite element discretization. The resulting algebraic system
can be written in matrix form as

Ku=f (3.26)

where u is a vector holding the expansion coefficients in Eq. , K;; =
a(¢i, ¢;) and the elements of the right-hand side are given by f; = b(¢;)
where a and b are the bilinear and linear forms defined above in Egs.
and . The assembly and the solution of the matrix equation in
Eq. are the time-consuming parts of a FEM calculations. Depending
on the size N of the linear system it can be tackled with either direct or
iterative methods [66].






Chapter 4

Characterization of an OPVS5
SET

Single-molecule SETs based on the conjugated oligo-phenylene vinylene
(OPVs) molecules have been subject to a number of studies over the recent
years [20], 36, 49, 50]. The experiment published in Ref. [20] was the first
to report access to several charge states of a molecule in a single-molecule
SET. The measured stability diagram (see Fig. showed diamonds of
varying size. This serves as a fingerprint of the quantization of the molecu-
lar levels. Interestingly, the gap of the OPV5 molecule extracted from the
stability diagram was strongly reduced (~ 300 meV) compared to its value
in electrochemical experiments (~ 2.5 eV). This effect, which has been ob-
served consistently for various single-molecules SETs, been ascribed to image
charges in the metallic electrodes [58]. So far, however, no satisfactory ex-
planation of the effect in single-molecule SETs has been given. As the image
charge effect is strongly dependent on the geometry of the junction and the
position of the molecule in the junction, a quantitative estimate requires a 3-
dimensional simulation of the junction combined with an atomic description
of the molecule.

To date, only a few theoretical studies of single-molecule SETs based
on an atomic description of the molecule and a realistic junction geometry
have been reported in the literature. They have focused on the vibrational
properties of the OPV5 molecule in the junction [67] and image charge effects
in a simplified junction geometries [58, [60]. The purpose of the present
chapter is to study the effect of image charges/junction polarization in a
realistic OPV5-based single-molecule junctions with the formalism developed
in Chap. 4l Furthermore, some general aspects such as the gate coupling to
the molecule and the effect of a finite source-drain voltage will be addressed.



48 Characterization of an OPV5 SET

4.1 OPV5 SET

The simulated OPV5 SET is illustrated in Fig. 4.1} It has the molecule
stretched out between the source and drain electrodes which are separated
by a ~ 3.2 nm gap. Without the molecule, the junction is taken to be
translation invariant in the direction parallel to the electrode edges. In order
to resemble the experimental settings [20], the molecule is separated from
the gate electrode by a 5 nm thick gate dielectric with dielectric constant
e, = 10. This corresponds to the high-x dielectric Al;O3 [2]. The relatively
high dielectric constant of the gate dielectric ensures a reasonable capacitive
coupling between the gate and the molecule. The source and drain electrodes
in Fig. have been cutoff in the vertical direction for visual reasons. In
the numerical simulations they are modelled by infinitely high metal blocks
with potentials given by the applied voltages. The molecule is positioned
flat on top of the gate dielectric with a distance of 1 A to the surfaces of the
source/drain electrodes and the gate dielectric. With the electrostatic image
plane located outside the atomic surfaces [68], [69], this effectively corresponds
to a distance on the order of a van der Waals distance (~ 3 A) between the
molecule and the surface atoms.

The molecular structure of the OPV5 molecule is shown in the right side
of Fig. together with the HOMO and LUMO orbitals. To resemble the
molecule used in experiments [20], a thiol group (SH) is attached to the
terminating phenylene units. The thiol group localizes the HOMO on the
terminating phenylene unit. Furthermore, it donates electrons the m-system
on the carbon backbone of the molecule, which result in a net positive charge
of the thiol group. In all calculations presented in the following the molecule

Figure 4.1: OPV5-SET and molecular orbitals. (left) Geometry of the simulated
OPV5-SET. The OPV5 molecule is stretched out between the electrodes which
are separated by ~ 3.2 nm. (right) Structure and HOMO/LUMO orbitals of the
thiol-terminated OPV5 molecule.
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will be considered in neutral state geometry.

In this chapter the positions of the molecular levels are studied as a
function of different junction properties and applied voltages to the source,
drain and gate electrodes. For this purpose the total energy is evaluated
for the different charge states of the molecule, i.e. with varying number
of electrons on the molecule. The molecular ionization potential (IP) and
electron affinity (EA) are given by the difference in total energy between the
neutral and singly charged states of the molecule, i.e.

IP=FE""'—EY and EA=EY - ENTL (4.1)

Here, N denotes the number of electrons in the neutral state of the molecule.
The charged states with one electron added (N + 1) and removed (N — 1),
correspond to the anion and cation, respectively. The molecular gap is given
by the difference between the ionization potential and electron affinity,

E

gap

=1IP —EA = BNt ENtE _2EN, (4.2)

In the following the effect of junction polarization is quantified in terms of
the polarization energy P which gives the reduction of the gap relative to its
gas phase (g) value, i.e. Egup = Egap(g) — P. It can be regarded as a sum
of the polarization energies of the negatively and positively charged states
of the molecule, P = P, + P_ (see Fig. . The physical interpretation of
the polarization energies P, ,_ is that they give the total gain in energy upon
introducing the charged molecule in the junction.

In the present work a self-consistent Hiickel implementation of the effec-
tive junction Hamiltonian in Eq. is used to calculate the total energies.
The details of the Hiickel implementation is outlined in App. Bl It should be
noted that the self-consistent Hiickel method underestimates the molecular
gaps as compared to DFT. However, since the change in the gap due to the
interaction with the polarization charge is relatively independent on the size
of the gap, this should not have any significant influence on the conclusions
drawn here.

4.2 Polarization effects

The present section studies the effect of junction polarization in the ab-
sence of applied voltages. The polarization of the junction is illustrated
in Fig. [£.2) which shows contour plots of the induced potential ®;,q for the
neutral molecule and the negatively charged anion. From the induced po-
tential it is clear that the negative charge of the anion results in a significant
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Potential (V) Potential (V)

Figure 4.2: Illustration of the polarization response of the junction showing
contour plots of the induced potential ®;,q at the surfaces of the electrodes and
gate dielectric. (left) Neutral OPV5 molecule. (right) Negatively charged anion.

polarization of the junction. The polarization due to the neutral molecule
is less pronounced. However, the positively charged thiol groups induces a
negative potential in their vicinity which results in an increased polarization
of the molecule during the self-consistent cycle of the electronic structure
calculation. The junction polarization must therefore be expected to affect
both the neutral and charged state of the molecule.

In order to address the size of the polarization effects for different molecule
sizes and electrode spacing, the analysis has been carried out for the molecules
OPV2 to OPV5. The geometry of the different junctions is equivalent to the
one for OPV5 in Fig. with the molecule stretched out between the elec-
trodes and the electrode spacing adjusted accordingly. Tab. summarizes
the calculated gaps for the following three cases (i) gas phase, (ii) OPV-
SET, and (iii) molecule placed between two parallel metal surfaces with the
same spacing as the source and drain electrodes in the SET. The polarization
energies due to the presence of the junction environments are seen to result
in significant reductions of the molecular gaps relative to their gas phase
values.

For further analysis, it is instructive to use the following simplified in-
terpretation of the molecular gap: starting with two neutral molecules then
the gap in Eq. is the energy cost of transferring an electron from one
molecule to the other. Since this process involves the promotion of an electron
from the HOMO in one of the molecules to the LUMO in the other molecule,
it is suggestive to write the molecular gap as the HOMO-LUMO gap of the
neutral molecule, Ayy,, plus two times the Coulomb energy, E., required to
charge the molecule

Egap = A, + 2E,. (4.3)

It should be noted that this is equivalent to the expression for the addition
energy of conventional quantum dots SETs when the size quantization of the
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Gas phase SET Surfaces
FEgap Agr, Egap Agr, P Egap Agr, P
OPV2 4.84 1.64 1.28 1.10 3.56 2.95 1.55 1.89
OPV3 4.01 1.34 0.90 0.75 3.11 2.49 1.22 1.52
OPV4 3.56 1.20 0.75 0.60 2.81 2.24 1.04 1.32
OPV5 3.27 1.12 0.68 0.53 2.59 2.08 0.92 1.19

Table 4.1: Calculated gaps, Egap, single-particle HOMO-LUMO gaps, Agp,, and
polarization energies, P, (all in eV) for thiol-terminated OPV molecules in the
three environments: gas phase (isolated molecule), SET, and Surfaces (molecule
placed in the gap between two infinite parallel metal surfaces).

dot is taken into account [27].

In a naive first guess one would expect the reduction of the gap to be
mainly a consequence of screening of the charging energy FE.. However, the
values listed in Tab. show that also the HOMO-LUMO gaps are reduced
in the environments. The origin of this reduction is illustrated in Fig. for
OPV5. The combination of the localization of the HOMO on the thiol groups
and the negative induced potential in their vicinity, shifts the HOMO level
to a higher energy. A similar reasoning for the negatively charged carbon
backbone and the LUMO leads to a lowering of the LUMO level and hence
a closing of the HOMO-LUMO gap. The charging energy obtained from
Eq. is for OPV5 in gas phase E. = 1.08 eV. The screening response
of the junction, which is shown for the OPV5 anion in Fig. .2 reduces this
value considerably to E,. = 75 meV. To summarize, the reduction of the gap
can be understood as a consequence of two parallel effects: (i) a reduction of
the HOMO-LUMO gap and (ii) screening of the Coulomb repulsion on the
molecule which lowers the charging energy.

Returning to Tab. [4.1] the polarization energy is seen to increase with
decreasing molecule size. Since the reduction of the HOMO-LUMO gap is
similar for all the molecules, this trend must be related to the Coulomb inter-
action between the molecules and their polarization charge. For the junctions
considered here two things play a role in this respect. First of all, the extend
of the polarization charge in the dielectric is to a good approximation given
by the size of the molecule. Since the Coulomb energy associated with the
interaction between two charge distributions increases with their degree of
localization (assuming that their center distances are kept fixed), the smaller
molecules interact more strongly with their polarization charge. Secondly,
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with the electrode spacing given by the length of the molecules, the average
distance between the polarization charge in the electrodes and the molecular
charge increases with decreasing molecule size. As above this results in a
higher Coulomb energy and hence also a larger polarization energy. The
latter effect is clearly demonstrated by the last column in Tab. where
the dielectric is absent. The polarization energy for the shortest molecule
OPV2 is 0.7 €V larger than the one for OPV5. In the SET geometry this
difference is 0.97 eV, indicating that the latter effect dominates the increase
of the polarization energy for the smaller molecules.

In the following the different contributions to the polarization energy of
OPV5 in the SET environment will be discussed. Due to its relatively high
dielectric constant, the gate dielectric must be expected to have a large in-
fluence on the polarization energy. For example, assuming that the gate
dielectric is equivalent to an infinite dielectric surface, the image charge
strength is given by ¢., = (¢, — 1)/(e, + 1). For €, = 10 this results in an
image charge strength of almost unity corresponding to metallic screening
properties. The important role of the gate dielectric is clearly demonstrated
by the large difference between the polarization energies for the SET and
Surfaces environments in Tab. A1l For OPV5 the value for the latter of
1.19 eV is less than half the value for the SET environment which is 2.59 eV.
The reduction of the molecular gap in the OPV5 SET has thus equivalent
contributions from the source/drain electrodes and the gate dielectric. Note,
however, that the contribution from the gate dielectric is highly dependent on
its dielectric constant. With a dielectric constant of €, = 3.9 corresponding
to SiO, the polarization energy for OPV5 was reduced to 2.11 eV.

The contribution from the gate electrode was found to be negligible. The
reason for this is twofold. First, the dielectric screens the molecular charge.
Therefore the net charge seen by the gate electrode is ¢ — ¢., and not the
bare charge of the molecule. Second, due to the relatively large distance
between the gate electrode and the molecule the Coulomb interaction with
the polarization charge in the gate is small. A simple image charge estimate
shows that the thickness of the gate dielectric must be ~ 1 nm in order to see
a contribution of ~ 0.1 eV to the polarization energy from the gate electrode.

4.3 Gate coupling

The gate electrode and its capacitive coupling to the molecule is fundamental
for the functionality of single-molecule SETs. It allows to shift the molecular
levels by simple electrostatic means and thereby turn the current on and off.
The following section addresses the gate coupling in the OPV5 SET and its



4.3 Gate coupling 53

Potential (V) Potential (V)
o 1.00 o 1.00
0.75 050
050 0.00
/\
0.25 A -0.50

.0.00

— .

Figure 4.3: Spatial profiles of the electrostatic junction potential. (left) 1 V
applied to the gate electrode. (right) +1 V applied to the left and right electrodes,
respectively. The thickness of the gate dielectric has here been set to 2.5 nm for
visual reasons.

dependence on the thickness and dielectric constant of the gate oxide.

The small size of the gap between the source and drain electrodes in single-
molecules SETs makes it hard to modulate the position of the molecular
levels with a gate electrode. Screening in the source and drain electrodes
drastically reduces the value of the gate potential in the gap. This effect is
demonstrated in the left hand side plot of Fig. which shows the spatial
profile of an applied gate voltage in the OPV5 SET. Apart from reducing the
gate potential, the screening by the electrodes also results in a gate potential
that varies significantly over the extend of the molecule. With the HOMO
located at the thiol groups close to the electrodes and the LUMO on the
carbon backbone of the OPV5 molecule, the gate coupling to the different
charge states of the molecule must therefore be expected to differ. This is
in contrast to conventional quantum dot SETs where the gate coupling to a
good approximation can be assumed to be independent on the charge on the
dot [27].

When an voltage V; is applied to the gate electrode the resulting shift
of the molecular ionization potential and electron affinity is given by the
corresponding changes in the total energies in Eq. . In an effective single-
particle description as e.g. Hartree-Fock or the semi-empirical approach used
in the present work, the total energy must be determined self-consistently as
a function of the gate potential for each of the charge states. However, under
the assumption that the self-consistent changes in the electron density can be
neglected, the situation simplifies considerably. This essentially means that
the polarization of the molecule due to perturbations is neglected. With
this approximation the shift of the molecular ionization energy and electron
affinity can be expressed by

AEIP/EA =V ay, (4'4)
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where «,, is the gate coupling to the molecular orbital n from which the
electron is added or removed. With the assumption above the gate couplings
can be obtain from the first order change Ag; in the molecular single-particle
levels,

an, &~ Ag, = (n|ag(r)|n). (4.5)

Here ay is the characteristic potential that results from applying a unit volt-
age to the gate electrode.

In the following the gate couplings to the HOMO and LUMO, and thereby
also the shift of the IP and EA with an applied gate voltage, are considered.
Their dependence on the thickness and the dielectric constant of the gate
dielectric is shown on the left and right plots of Fig. respectively. Fur-
thermore, the line denoted Mean shows the average of the gate couplings to
the atomic sites of the molecule.

As expected, the gate couplings to the HOMO and LUMO orbitals differ
markedly with the latter being approximately twice as large as the former.
The mean gate coupling to the atomic sites of the molecules is close to the
LUMO gate coupling. This can be attributed to the fact that the LUMO is
distributed more uniformly on the molecule as compared to the HOMO (see
Fig. |4.1]).

The left plot clearly shows the effect of using a thin dielectric layer. A
significant increase in the gate coupling can be obtained by decreasing the
layer thickness to a few namometers. From a practical point of view this is
however not as straight forward as it sounds since varying material properties
and leakage currents to the gate electrode play an important role for ultrathin
oxide layers [2].

Alternatively, a higher dielectric constant of the gate oxide can help to
increase the gate coupling. However, as the right plot shows, increasing the
dielectric constant beyond ~ 10 does not result in any significant increase of
the gate coupling. The saturation of the gate coupling is due to screening
in the metallic source and drain electrodes. The same screening is respon-
sible for a decreasing gate coupling when the molecule is elevated from the
dielectric surface. This effect is illustrated by the spatial profile of the gate
potential in Fig. [£.3] which decreases rapidly as a function of the distance to
the gate dielectric.

Similar conclusions as the above have been drawn in a recent theoretical
study on gate coupling in nanoscale junctions [70]. This work also studied
the effect of changing the geometry of the source and drain electrodes. A
junction with tapered electrodes having a triangular shape was found to have
a substantially greater gate coupling than the one with infinite electrodes
considered in the present work. This, in particular, when the molecule was
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Figure 4.4: Gate couplings a,, to the HOMO and LUMO orbitals in the OPV5
SET. The line denoted Mean is the average of the gate couplings on the atomic
positions of the OPV5 molecule. (left) Gate coupling as a function of gate oxide
thickness with e, = 10. (right) Gate coupling as a function of the dielectric
constant &, with an oxide thickness of 5 nm.

elevated from the surface of the gate dielectric. The screening effect due to the
electrode geometry is therefore another significant parameter in determining
the gate coupling of a nanoscale junction.

4.4 Stability diagram

The charge stability diagram for the OPV5 SET has been calculated by
evaluating total energies of the neutral, singly charged and doubly charged
molecule as a function of gate and source-drain voltage. The assumption
that the molecule remains chemically stable in the considered charge states
is in agreement with experimental findings [20] [49]. The Fermi energy of the
metallic source and drain electrodes is treated as a parameter and placed
in the gap between the ionization potential and the electron affinity. The
resulting stability diagram is depicted in Fig. where the colour indicates
the number of levels that are located in the bias window. The source-drain
bias has been applied symmetrically to the electrodes as illustrated in the
right plot of Fig. for Viq = 2 V. It should be noted that the voltage drop
across the junction is non-linear close to the dielectric interface where the
majority of the drop occurs close to the electrodes.

Like the experimentally observed stability diagram [20], the calculated di-
agram is characterized by a big central diamond corresponding to the neutral
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Figure 4.5: Stability diagram and molecular orbitals at finite bias. (left) Calcu-
lated charge stability diagram for the OPV5-SET. The color indicates the number
of levels located inside the bias window (black: 0, red: 1, yellow: 2) (right) Molec-
ular orbitals of the OPV5 molecule at Viq = 0.5 V. The non-linear diamond edges
on the left site of the central diamond is a consequence of the localization of the
HOMO at the right electrode.

state of the molecule surrounded by two small diamonds corresponding to
the positively and negatively charged molecule. Since only the ground states
of the neutral and charged molecule are considered, the stability diagram
contains no lines due to excited states of the molecule. This could e.g. be vi-
brational excitations which have been observed experimentally with energies
ranging from a few meV to ~ 100 meV. A recent theoretical study has shown
that some of the vibrational excitations are expected to involve the gold
atoms to which the molecule binds [67]. Electronic excitations of the OPV5
molecule with electrons/holes occupying higher /lower molecular orbitals have
energies on the order of the single-particle level spacings (~ 100 meV). These
are therefore harder to observe experimentally.

The addition energy given by the height of the central diamond is equal
to the gap of the molecule under finite bias conditions. Compared to the zero
bias gap of 0.68 eV from Tab. a substantial decrease of the gap under
finite bias is found. From Fig. [4.5]a value of ~ 0.50 eV is read off. The lower
value of the addition energy stems from the non-linear edges on the left side
of the central diamond which indicates that the single-particle levels are bias
independent. Indeed, it was found that HOMO localizes at the negatively
biased electrode as illustrated in Fig.[1.5] As a consequence, the HOMO level
moves upwards with the applied source-drain voltage making the state with
only one electron in the HOMO energetically favourable compared to the
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neutral state which has a doubly occupied HOMO. The fact that the energy
of the neutral molecule increases more than the energy of the cation as a
function of the source-drain bias, reduces the ionization energy and hence
also the threshold for pulling out an electron from the molecule. With a
source-drain voltage of Vg = 0.5 V corresponding to the top of the central
diamond in Fig. [£.5 the shift of the HOMO level was ~ 0.15 eV, in good
agreement with the discrepancy between the zero bias and finite bias gaps
discussed above.

The height of the two smaller diamonds correspond to the addition ener-
gies of the positively and negatively charged cation and anion, respectively.
For these states the addition energy is given by the difference between the first
and second ionization potential/electron affinity. In terms of total energies
this is

ENT = BN 4 pNE2 o pNEL (4.6)
The small addition energies associated with these states is due to their half
filled frontier orbitals. Therefore, only the charging energy in Eq. con-
tributes when adding/removing an electron to/from the anion/cation. The
resulting charging energies are ~ 50 meV and ~ 85 meV, respectively. The
difference in charging energies of the anion and cation is a consequence of
the different spatial distributions of the HOMO and LUMO.

As expected from the considerations in the previous section the gate cou-
plings to the ionization potential and electron affinity differ markedly. In
Fig. these are given by the left and right slopes of the central diamond
edges, respectively. Similar variations in the gate couplings have also been
observed in a recent experiment [49]. The slopes of the diamond edges in
Fig. [4.5) agree well with the calculated gate couplings in Fig. [£.4] where we
read off the values ay,,, ~ 0.12 and «,,,, ~ 0.25 for an oxide thickness
of 5 nm. This is also in good agreement with the value ~ 0.2 reported ex-
perimentally [20]. Often, the exact position of the molecule in experiments
is relatively unknown. However, the good agreement between the gate cou-
plings suggests that the molecule also in the experiment is positioned directly
on the gate oxide.

4.5 Conclusion and outlook

In conclusion, the present chapter has demonstrated that polarization plays
an important role in single-molecule SETs. For the junction considered
here, a gap renormalization of ~ 2.6 eV was found for the OPV5 molecule.
The renormalization could be attributed to both a reduction of the HOMO-
LUMO gap and a reduction of the Coulomb interaction. It should be noted
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that the semi-empirical method applied in the present work, leaves some
uncertainty on the calculated gap of 680 meV for OPV5 in the junction. As
mentioned, this is likely to be an underestimation. Nevertheless, the experi-
mentally reported value of ~ 300 meV is considerably lower than this. Differ-
ent effects not considered in the present work can help to explain this discrep-
ancy. For example, the formation of polarons upon charging of the molecule
is known to result in relaxation energies on the order of ~ 200 — 300 meV for
OPV-molecules [71]. Furthermore, a larger polarization energy is obtained if
the molecule is positioned closer to the metallic electrodes where the screen-
ing is more pronounced. Taking into account these additional effects, the
observed gap of ~ 300 meV might not seem that unlikely after all.

In order to address the effect of junction polarization on electronic and
spin excitations of the molecule, model Hamiltonians based on the effective
many-body Hamiltonian in Eq. must be developed. The Pariser-Parr-
Pople Hamiltonian, which is considered in Chap. [f] in a different context
(see Eq. , is an example of a simple model Hamiltonian description for
conjugated molecules. Here, the Hamiltonian is expressed in a basis of p,
orbitals localized on each carbon atom in molecule. Taking into account the
screening of the Coulomb interaction in Eq. leads to a renormalization
of the Coulomb matrix elements in the Pariser-Parr-Pople Hamiltonian and a
modification of the onsite energies of the p, orbitals. Since an exact treatment
of the Pariser-Parr-Pople Hamiltonian is limited to models with relative few
basis orbitals, models using the molecular orbitals of the molecular subunits
as basis orbitals have been developed [72]. The impact of junction screening
on the molecular excitations of such model Hamiltonians is subject for further
studies. With the inclusion of image charge effects at the level of the basis
functions, it can be addressed to which extend the picture of image charge
stabilized states in Ref. [49] is correct.



Chapter 5

Surface polarization and the
GW approximation

Understanding the electronic structure of metal-molecule interfaces is a fun-
damental challenge in molecule-based electronics. The electronic transport
properties of a metal-molecule interface are determined by the alignment
between the molecular levels and the Fermi energy of the metal substrate.
Factors like hybridization with the metal substrate, dipole formation at the
interface as well as the polarization of the substrate in response to charge
carriers on the molecule play an important role in this respect [73]. It has
been demonstrated by several experiments that study the electronic structure
of individual molecules, self-assembled monolayers and organic thin films
on metal surfaces using photoemission techniques and scanning tunneling
spectroscopy, that the molecular electronic structure is modified at the in-
terface [16, 43 74, [75].

Due to the hybridization with the metal substrate, first-principles studies
of the interface are based on an atomic description of both the molecule
and the metal. The electronic structure is most often obtained within the
framework of density functional theory (DFT). In this context the eigenvalues
of the effective single-particle Kohn-Sham Hamiltonian are interpreted as
excitation energies. As DFT is a ground state theory this interpretation is
questionable. In particular, the intriguing many-body effects associated with
the polarization of the metal substrate and its effect on molecular levels are
completely missing from DFT as well as other mean-field descriptions.

Recently, theoretical studies of single molecules physisorbed on metallic
and dielectric surfaces have demonstrated that the Green’s function based
GW method captures the dynamical screening effects from the surface po-
larization. As a consequence, the molecular gaps were reduced by several
eV [76] [77, [78]. Similar effects have been observed in GW calculations on
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a simple model Hamiltonian for the interface [79]. Other GW studies of
polarization effects at interfaces have demonstrated band-gap narrowing at
metal-semiconductor interfaces [80, 8I] and state localization in metal em-
bedded semiconductor nanorods [82]. Also, the GW approximation have
been demonstrated to describe the internal polarization of bulk polymer ma-
terials [83] and molecular self-assembled monolayers [84].

5.1 The GW approximation

The GW approximation originates from the so-called Hedin equations [85], [86]
which form a closed set of equations for the many-body Green’s function.
Despite being formally exact, the complexity of the self-consistent frame-
work provided by Hedin’s equations necessitates the use of approximations
in practical calculations. The simplest approximation to Hedin’s equations
is the GW approximation which neglects the so-called vertex corrections to
the electronic self-energy.

In the GW approximation the electronic self-energy ¥ is given by the
product of the Green’s function G and the dynamically screened interaction
W, and can be written symbolically as [

2(1,2) =iG(1,2)W(1,2), (5.1)

where the short-hand notation 1 = (r1,¢) has been introduced. The Green’s
function obeys the usual Dyson equation

G(1,2) = Go(1,2) + /d3d4 Go(1,3)5(3,4)G(4,2) (5.2)

with Gy denoting the Hartree Green’s function. The screened interaction W
is given by the Dyson-like equation

W(1,2) = V(1,2) + /d3d4 V(1,3)I1(3,4)W (4,2), (5.3)

where V is the bare Coulomb interaction and

1(1,2) = —iG(1,2)G(2,1) (5.4)

!The equations given here are for the time ordered (zero temperature) Green’s function

G(1,2) = —(T[p()w'(2)])-
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Figure 5.1: Diagrammatic representation of the GW self-energy. The single and
double wavy lines denotes the bare (V') and the screened Coulomb interaction (W),
respectively. The polarization function II is represented by the bubble diagrams.

is the polarization function in the random-phase approximation (RPA) which
contains the response of the system to an added hole or electron. The di-
agrammatic representation of the GW self-energy in Eq. is illustrated
in Fig. It can be regarded as a generalization of the exchange potential
Y« = 1GV in Hartree-Fock (represented by the first diagram in the second
equality) which does not take into account screening effects.
In fully self-consistent GW the set of coupled equations for ¥, G, II, and
W are solved iteratively until the Green’s function has converged. However,
due to the computational requirement of a fully self-consistent GW scheme,
first-principles GW calculations are usually carried out non-selfconsistently.
This approach, which is referred to as GoW,, starts from an approximate
Gp from which a single self-energy iteration is carried out to obtain the
final Green’s function. In contrast to fully self-consistent GW, this has the
disadvantage that the final result depends on the starting Green’s function.
A self-consistent GW scheme has another advantage that it obeys the
macroscopic conservation laws. For example, the conservation of particle
number guaranteed by a self-consistent GW scheme means that the continu-
ity equation
Onp(1)+V1-j(1)=0 (5.5)

is satisfied when the electronic charge density p and the current density is
obtained from the self-consistent Green’s function. This is due to Kadanoff
and Baym [87, 88] who proved that an approximation for the self-energy ¥ is
conserving when it can be obtained as a functional derivative of a so-called
®-functional with respect to G

(1,2) = ——+, (5.6)
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Such approximations to the self-energy are called ®-derivable approxima-
tions. An extra bonus of this procedure for the self-energy is that the value
for the total energy evaluated in terms of the self-consistent Green’s func-
tion is independent of the method used to evaluate it. Apart from the
GW approximation, other self-energy approximations of this type include
the Hartree-Fock approximation, the second Born approximation and the
T-matrix approximation [89)].

As a final remark, it is noted that the RPA approximation to the po-
larization function II does not represent a conserving approximation to the
response function in the Baym-Kadanoff sense when evaluated with the self-
consistent GW Green’s function. This is substantiated by the fact that it
violates the f-sum rule which must be fulfilled for a physical meaningful
response function [90, O1]. Therefore, in a self-consistent GW scheme the
polarization function IT must be regarded as an auxiliary quantity needed to
construct the screened interaction.

5.2 The spectral function

Within a Green’s function approach the charged excitations of a metal-
molecule interface can be obtained from the spectral function (see App. .
The spectral function is given by the imaginary part of the (retarded) Green’s

function )
Ae) = —;ImG(e). (5.7)

The quantities A and G are here assumed to be energy dependent matrices
in a suitable set of basis functions {¢;} where the i-index refers to a set of
quantum numbers that characterizes the electronic excitations. The Green’s
function follows from the matrix inversion

Gle) = e — Hy — X(e)] 7, (5.8)

where Hy denotes the Hartree Hamiltonian. In general, the spectral function
is a strongly peaked function with narrow main peaks at the quasi-particle
energies € = ¢;. The quasi-particle energies which correspond to well defined
electron-like excitations coincide with the poles of the Green’s function. In a
diagonal approximation they are given by the real part of the self-energy via
g; = €0 + ReX;(g;). If the self-energy is expanded around the quasi-particles
energies the spectral function takes the form of a Lorentzian

1 Zil;

Az(g) = ;(6 _ 51‘)2 + 1—\227

(5.9)
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where the width of the quasi-particle peak I'; = Z;Im¥;(¢;) corresponds to
the inverse lifetime of the quasi-particle and

0ReZz
Oe

—1
Zi=|1- ] <1 (5.10)

is the spectral weight of the quasi-particle.

5.2.1 First-principles calculations

As mentioned in the introductory part of this chapter, first-principles calcu-
lations are often based on DFT. For the Green’s function this amounts to
approximating the non-local and energy dependent self-energy ¥ by the lo-
cal and energy independent exchange-correlation potential V,.. In real-space
notation this is

Y(r, 1’ e) = Vie(r)o(r — 1'). (5.11)
The corresponding Kohn-Sham (KS) DFT Green’s function
Grs(e) = [e — Hy — Vi * (5.12)

has poles at the eigenvalues X5 of the effective single-particle Kohn-Sham
Hamiltonian. From a pragmatic point of view this assigns the meaning of the
quasi-particle energies to the Kohn-Sham eigenvalues. From the variational
derivation of DFT, there is, however, no reason why the Kohn-Sham eigen-
values should correspond to excitation energies. In particular, the exchange-
correlation potential is constructed to give the correct ground state energy
and not excitation energies. The so-called bandgap problem of DFT i.e. the
empirical fact that DFT systematically underestimates bandgaps of solids
and molecules, is a consequence of this [92, [93].

In first-principles GW calculations, the quasi-particles energies are usually
obtained in a perturbative manner from the eigenvalues of the Kohn-Sham
Hamiltonian in DFT [94]. Based on the assumption that the Kohn-Sham
eigenvalues X5 are good approximations to the quasi-particle energies, the
GW quasi-particle energies can be obtained in first order perturbation theory
as

Here AY; = (¢K5]3(eX%) — Vie|¢XS) is the matrix element of the difference
between the GW self-energy and the exchange-correlation potential from the
DFT calculation evaluated with the eigenfunction ¢X® of the Kohn-Sham
Hamiltonian. This procedure for the calculation of the quasi-particle energies

is in the spirit of GoW, approach with the self-energy calculated from the
Kohn-Sham Green’s function in Eq. (5.12)).
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5.3 Renormalization of molecular levels

The effect of surface polarization on molecular levels has recently been ad-
dressed in a number of studies based on first-principles GW calculations of
molecules physisorbed on various metallic and dielectric surfaces 76, [77, [7§].
With an atomic description of both the molecule and the surface these studies
address the polarization effects from the surface from a microscopic point of
view. This makes them complementary to the study of polarization effects in
single-molecule junction presented in the previous chapter which was based
on a macroscopic description of the junction.

For benzene physisorbed flat 3.25 A above a metallic graphite surface the
gap of the molecule was found to be ~ 3.2 eV smaller than the calculated
gas phase value [76]. Due to the weak hybridization between the molecular
orbitals and the surface states this reduction of the molecular gap was as-
cribed to the polarization of the surface. In contrast, the gap obtained from
Kohn-Sham DFT eigenvalues did not show any change in the presence of the
surface environment.

Fig. illustrates the Feynmans diagrams from the GW self-energy that
contributes to the renormalization of the molecular levels. The infinite sum
of diagrams with the polarization bubbles located in the surface and the base
line Green’s function on the molecule represents the interaction between an
electron added/removed to/from the molecule and the induced polarization
charge of the surface. The response function given by the polarization bub-
bles contains the full dynamical response of the surface. In general, dynam-
ical effects are only important when the life-time of the excitations on the
molecule is comparable to the response time of the surface. For the weakly
coupled benzene molecule this is not the case. Here, dynamical effects were
found to make a negligible contribution to the level renormalization. As a
consequence, the majority of the polarization induced shifts of the HOMO
and LUMO levels of the benzene molecule could be accounted for by the
static polarization integral

R=; [d [ar ome ) sWe e wem, G

where ¢, is a molecular orbital of the isolated molecule and AW is the change
in the screened interaction on the molecule due to the presence of the surface.
The latter was approximated by the classical image potential from a metallic
surface, AW (r,r) = 1/2(z — z), where 2y is the image plane position of
the surface. The classical image potential has been shown to account for the
static polarization response of a jellium surface [05]. For this metallic surface
the image plane position was found to lie 0.5 — 0.9 A outside the surface.
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Figure 5.2: Physical picture and diagrammatic representation of the surface
polarization and its interactions with the molecule. The infinite sum of Feynman
diagrams with the polarization bubbles located in the surface gives the dynamical
RPA response of the surface due to added/removed electrons on the molecule.

e i

The resulting reduction of the gap is given by the sum of the polarization
integrals for the HOMO and LUMO orbitals,

AEgp = Promo + PLumo. (5.15)

The polarization integral is equivalent to the polarization energies P, ,_ which
were used to characterize the shifts of the molecular ionization potential and
electron affinity in the previous chapter. Indeed, it has the same physical
interpretation — it corresponds to the interaction between an electron in the
molecular orbital ¢, and its image charge in the surface.

The simplified description of the surface provided by the polarization
integral in Eq. has certain limitations. Since it is based on the or-
bitals for the isolated molecule it does not account for the polarization of
the molecule in response to the surface polarization. For the symmetric case
where the benzene molecule is physisorbed flat on the surface this effect is
not important. However, if the benzene molecule is considered in an upright
position with the molecule plane perpendicular to the surface, the part of
the molecule which is closest to the surface will experience a stronger image
potential as compared to the rest of the molecule. The resulting polarization
of the molecule will cause a larger renormalization of the levels than expected
from the polarization integral in Eq. [59].

This is illustrates for the benzene/surface interface in Tab. It lists
the gap renormalizations for the flat and upright case as obtained with GW
and the polarization integral P from Ref. [76]. Also listed, are the renormal-
izations obtained from total energy calculations of the gap in Eq. using
the Hiickel implementation of the self-consistent framework in Sec. [2.2] For
this purpose the classical image potential was used for the induced surface
potential Vi,q = 1/2(z — 2z). In the calculations the distance between the
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Position SC Hiuckel P GW
Flat 2.84 2.93 3.2
Upright 2.10 1.93 2.41

Table 5.1: Calculated reductions of the molecular gap Fga;, = EA—IP for benzene
on a metallic surface relative to its calculated gas phase value. The molecule is
considered in a flat position and in an upright position on a metallic surface. For
the two configurations the distance between the surface and the closest atom on
the molecule was 3.25 A and 2.21 A, respectively. The first column is the gap
reductions obtained with the self-consistent method of Sec. 2.2l The second and
the third columns give the gap reductions resulting from the polarization integral
P in Eq. and GW calculations, respectively. Both of these have been taken
from Ref. [76]. In the GW calculation the surface was described by an atomic
graphite surface. For the two other cases a simple image charge potential was
used to describe the polarization response of the surface. The position of the
image plane is zp = 1 A from the outermost atomic layer of the surface. For
reference, the experimental gap phase gap for benzene is 10.42 eV.

molecule and the image plane of the surface was taken to be 2.25 A for the
flat case and 1.21 A for the perpendicular case. This corresponds to an image
plane position zy = 1 A outside the atomic surface plane in agreement with
Ref. [76].

For the flat case, the gap reductions from the total energy calculations
and the polarization integral are in good agreement. This is to be expected
since both results are based on a classical image potential description of the
surface potential. The reduction obtained with GW is ~ 0.3 eV larger. A
better agreement is obtained if the image plane of the surface is placed at
2o = 1.25 A outside the atomic surface. This yields a reduction of 3.12 eV
with the self-consistent method. The gap is thus very sensitive to the distance
between the molecule and the image plane implying that an accurate value
for the latter is important. For atomic surfaces the image plane position
must be determined in a separate calculation [6§].

With the molecule is placed in an upright position on the surface the good
agreement between the gap reduction from the self-consistent method of the
present work and the polarization integral is lost. In contrast to the flat case,
the self-consistent method here gives the largest reductions of the gap. This
is a consequence of the polarization of the molecule which is not accounted
for in the polarization integral P. In the self-consistent method the charge
distribution of the charged molecule relaxes towards the surface where the
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potential due to the oppositely charged image charges is lower. This lowers
the total energy of the charged molecule, and in turn also the gap, more
compared to the case where the molecular charge distribution is not allowed
to relax. Again, a better agreement with the GW result is obtained with the
position of the image plane equal to zo = 1.25 A. This gives a gap reduction
of 2.30 eV.

In the next chapter, the GW approximation is applied to study the molec-
ular levels of isolated conjugated molecules described with a semi-empirical
model Hamiltonian. This study is intended to address the quality of the GW
spectral function for isolated systems.






Chapter 6

Assessment of the GW
approximation for molecules

With the entry of nanoscience the use of the GW method for studying
electronic structure has been extended to low-dimensional systems such as
molecules, fullerenes, carbon nanotubes, graphene [96], 97, 08, 99| 100} 101,
102]. One strength of the GW method is that it accounts for the screening of
the long range Coulomb interaction which is essential in finite systems. The
metal-molecule interface discussed in the previous chapter is a good example
of this. Here, the finite extended of the molecular orbitals results in a surface
polarization which in turn screens the Coulomb interaction on the molecule
when an electron is added or removed from the molecule.

As the range of systems to which the GW approximation is being applied
continues to expand, critical investigations of the performance of GW for
other systems than the crystalline solids become important. For example,
with the application of GW to metal-molecule interfaces, knowledge on the
performance of GW on isolated molecules is of relevance. Different first-
principles works have reported that the GW values for the ionization poten-
tial and electron affinity of benzene are in good agreement with experimental
values [70, [I0I]. A more systematic study is, however, still missing.

So far, benchmark studies of the GW approximation have focused on
Hubbard models with local interactions [103], 104, 105, T06]. The general
conclusion from these works is that the GW approximation works well for
small interaction strengths but fails for larger interactions strength. The
use of GW in systems with local interactions is in fact unfortunate because
the importance of electronic screening, which is the main effect described by
GW, is weak in comparison to correlation effects.

In the following chapter benchmark GW calculations for m-conjugated
molecules based on the semi-empirical Pariser-Parr-Pople (PPP) model [107,
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108, 109] are presented. By comparing with exact results a direct and unbi-
ased estimate of the quality of the GW approximation in molecular systems
is obtained.

6.1 Quasi-particle energies

The excitation spectrum of a system is contained in the spectral function
which has the following Lehmann representation (see App.

Aie) =) [!<‘I'£V“!CH‘1’<§V>I25(€ —en) + (T ;[ W) [*o(e —en) | (6.1)

n

The peaks of the spectral function are positioned at the quasi-particle en-
ergies ¢, = ENT' — FlV and ¢, = E} — EN™! corresponding to electronic
addition and removal energies, respectively. Here EY denotes the total en-
ergy of the N-electron excited state |U%) with N referring to the neutral
state of the system. For molecules the first addition and the first removal
energy, i.e. n = 0, corresponds to the electron affinity and the ionization
potential. In Hartree-Fock theory Koopman’s theorem [63] states that these
are equal to the energies of the highest occupied orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) of the Hartree-Fock Hamiltonian. In
the remaining of this chapter the HOMO and LUMO abbreviations will be
used to refer to the ionization potential and electron affinity also outside
Hartree-Fock theory. When the ionization potential and electron affinity
are obtained from Koopman’s theorem, two important effects are neglected.
One is the relaxation of the molecular orbitals when an electron is removed
from or added to the molecule. The other is the correlation energy which
by definition is omitted in Hartree-Fock theory. With the generalization
of Koopman’s theorem to excited states it is instructive to write the exact
quasi-particle energies as the sum of the three contributions

En = EEF + Arelax + Acorra (62)

where £ denotes the n’th eigenvalue of the single-particle Hartree-Fock
Hamiltonian. The relaxation contribution is the correction that follows
by calculating the quasi-particle energy from self-consistently determined
Hartree-Fock energies of the neutral and the charged states N + 1. The
last term A, is the remaining contribution from the correlation energy.

In extended systems the potential due to a single delocalized electron /hole
decreases with the size of the system. Hence, in such systems there will be no
or little relaxation of the states due to the addition/removal of an electron,
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and the majority of the correction to the quasi-particle energy will come
from the correlation part A,. In molecules, nanostructures, molecules at
surfaces, and disordered systems with finite localization lengths, this is not
the case. Here, the introduction of an additional electron or hole will lead
to a relaxation of the single-particle orbitals corresponding to a screening of
the additional charge. As a consequence, the relaxation correction A, qax to
the quasi-particle energy cannot be neglected in such systems.

6.2 Pariser-Parr-Pople Hamiltonian

The Pariser-Parr-Pople (PPP) model is an effective m-electron description of
conjugated molecules that includes electron-electron interactions explicitly.
The PPP-Hamiltonian is given by

H = Z gl — Z tijcj-o_cja
i (ij)o

1 . . .
+3 > Vij(hi — Zi)(hy — Z;) + > Uiy, (6.3)
i#] i
where ¢, (c!) creates (annihilates) an electron in the p, orbital ¢; on atom i

of the molecule, n; = 71 + ;) is the number operator, 7,, = CL;CW Z; is the
valence (i.e. the number of m-electrons) of atom ¢, and (ij) denotes nearest
neighbor hopping. In the interacting part of the Hamiltonian only the direct

matrix elements of the Coulomb interaction
V= [dr [ 6,00V = )0, )650) (6.4

are included. This is only a good approximation when the basis orbitals
are localized as is the case here. As the PPP-model only treats the m-
electrons explicitly, the screening effects from the o-electrons are usually
included within a semi-empirical parametrization for the matrix elements of
the Coulomb interaction in Eq. (6.4). A common approximation for the long
ranged Coulomb interactions is the Ohno parametrization [110]

14.397

\/(28.794/(Ui +U;))* + Ry,

where R;; is the inter-atomic distance (in A) and U; is the onsite Coulomb
interaction (in eV). For large distances the Ohno parametrization recovers
the 1/r behavior of the Coulomb interaction while it for small distances
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Thiophene Pyridine Benzene Biphenyl/OPV2
s tS US EN IfN UN g t U ts td
-7.8 -3.0 5.0|-3.0 -205 12.06 |0 -2.539 10.06 | -2.22 -2.684

Table 6.1: PPP-parameters (in eV) for the molecules studied in the present work.
For thiophene and pyridine only the parameters for the heteroatoms (S and N) are
listed. Except for the transfer integral (see Eq. ), the C parameters for these
two molecules are identical to the parameters for benzene. The benzene parameters
have also been used for the conjugated parts of biphenyl, OPV2, naphthalene and
anthracene. For biphenyl and OPV2 ¢s and tq denote the transfer integrals for the
single and double bonds.

represents a screened interaction that interpolates to the onsite Coulomb
interaction U; for R;; = 0. The onsite energy ¢;, the hopping element ¢;;
and the onsite Coulomb interaction U; are treated as fitting parameters. In
the present work these parameters have been taken from the literature [111]
112l 113, 114, [1T5]. Their values for the molecules studied here are listed in
Tab. [6.1
In the molecules with heteroatoms, here thiophene (S) and pyridine (N),
the transfer integral for the C-C bonds are calculated from the empirical
formula [T11]
tc.c=14+ 3.2 (Rc_c — 1.397) , (66)

where Rc.c is the C-C distance (in A) and t is the transfer integral (in eV)
for the conjugated bonds of benzene with Re.c = 1.397 A.

It should be noted that the parameters used here have been fitted to
optical excitation spectra of the molecules. An exact agreement with exper-
imental values for the molecular gaps is therefore not obtained.

6.3 Exact diagonalization

Exact diagonalization refers to an approach where the diagonalization of a
many-body Hamiltonian is carried out directly in the Fock space spanned
by many-particle states (Slater determinants). Since the dimensionality of
the Fock space grows exponentially with the number of basis orbitals L, it
is important to exploit symmetries of the Hamiltonian. This can help to
reduce the dimensionality of the matrix to be diagonalized considerably. For
the Pariser-Parr-Pople Hamiltonian in Eq. the number of up and down
electrons, Ny and N, are good quantum numbers since their corresponding
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L dimension memory
2 4 32 B
6 400 3 kB
8 4900 38 kB
10 63504 0.5 MB
12 853776 6.5 MB
14 11778624 90 MB
16 165636900 1.2 GB

Table 6.2: Dimensionality and memory requirements for a state vector of the
half-filled subblock of the Fock space for different values of the number of basis
orbitals L. The state vector is assumed stored in double floating point precision.

operators commute with the Hamiltonian. This implies that the diagonaliza-
tion can be carried out in each of the (N, N|)-subblocks of the Fock space
independently. The dimensionality d of each (NNVy, N|)-subblock is given by
the number of ways N; spin up electrons and N| spin down electrons can be
distributed over L basis orbitals,

L L
TNIL N NN - N

Most often the ground state is located in the half-filled subblock, i.e.
Ny = N, = L/2. The dimensionality of this subblock together with the
memory requirements for a single state vector belonging to this subblock are
listed in Tab. for different values of L. Already at L = 16 the memory
requirements for a single state vector is on the order of the amount of RAM
memory available in modern computers. With such memory requirements a
full diagonalization of the Hamiltonian is of course out of reach. However, if
only the ground state and a few low lying excited states are needed, iterative
methods can be employed. Even with iterative methods one is restricted to
a relatively small number of basis orbitals. To put things in perspective, the
current world record in exact diagonalization using iterative methods is a 22
site Hubbard model with 9 and 8 up and down electrons. This corresponds to
a Hilbert space dimension of ~ 159 billion resulting in a memory requirement
of ~ 1 TB per state vector [116].

The following sections give a brief overview of some of the technical as-
pects and algorithms of an exact diagonalization scheme. Apart from an
iterative diagonalization method, a scheme for the calculation of the Green’s
function is also presented.

d(Ny, Ny) (6.7)
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6.3.1 Representation of the basis states

In the language of second quantization the basis states of the Fock space are
specified in terms of the occupation numbers n;, (= 0 or 1) of the single-
particle basis orbitals

@) = |nag - npg,nay - -ongg) = [ ()™ 10). (6.8)

i

The exact meaning of this short hand notation is given by the expression
in terms of the creation operators on the right-hand side. The order in
which the creation operators are applied to the vacuum state |0) is a matter
of convention, but due to the anti-commutation relations for the fermionic
creation and annihilation operators nevertheless important.

In order to make the implementation of the basis states memory efficient it
is convenient to map the sequence of occupation numbers n;, onto a sequence
of bits. If the number L of basis orbitals is smaller than or equal to 16, the
bit representation of a 32-bit unsigned integer I can be used to represent the
occupation numbers of each basis state. Denoting by I} and /| the integers
with bit representations corresponding to the individual spin up and spin
down configurations of a basis state, the integer representation of this state
is obtained as

I=1+2"I,. (6.9)

The restriction to the (N, NV|)-subblocks of the Fock space implies that only
integers whose binary representations have exactly N, bits set represent valid
spin configurations. In practice, the integers corresponding to allowed spin
configurations can be found by looping over the 2” possible candidates and
checking the number of set bits. If an integer meets the criterion it is stored in
separate arrays for the up and down configurations. Subsequently, the integer
representations of the product basis states in Eq. are constructed and
stored in an array of length d(Ny, N|). The index position of the integer in
this array can be used as a label for the corresponding state.

The multiplication of the Hamiltonian with a general state vector |¥) is
a central part of the iterative Lanczos method which will be introduced in
the next section. In terms of the basis states the multiplications is

H|W) = ¢ H|n), (6.10)

where |n) = |®,) and ¢, = (n|¥) are the expansion coefficients of the state in
the targeted subblock of the Fock space. The application of the Hamiltonian



6.3 Exact diagonalization 75

\ \
N \ N\

Figure 6.1: 400 x 400 matrix representation of the PPP-Hamiltonian for benzene
in the half-filled subblock of the Fock space with Ny = N| = 3.

to a basis state |n) can be carried out using bitwise operations on the binary
representation of the corresponding integer. This generates a new vector

Hin) =) (n/|H|n)|n), (6.11)

n/

where the number of nonzero terms depends on the sparsity of the Hamil-
tonian. For states |n') where the matrix element (n'|H|n) is different from
zero, the integer representation of the state must be mapped back to its
index in the subblock basis in order to update the coefficients of the product
state H|W). If the basis states are stored in increasing order of their integer
value, a binary search of the basis array can be used to find the index of a
given state in the basis. With this approach the memory requirements of
an additional look-up table that tabulates the correspondence between the
integer representation and the index is avoided.

In the Pariser-Parr-Pople Hamiltonian in Eq. only the hopping terms
give rise to off-diagonal elements. The Coulomb interaction only reads off
the occupations numbers without modifying the basis states and is therefore
diagonal. The inclusion of only nearest neighbor hopping results in highly
sparse matrix representations. This is illustrated in Fig. for the Hamil-
tonian of benzene (L = 6) in the half-filled subspace. Due to the long range
Coulomb interaction included in the PPP-Hamiltonian, all the diagonal ele-
ments are of the same order of magnitude. This is in contrast to Hubbard
Hamiltonians which only includes the onsite part of the Coulomb interaction



76 Assessment of the GW approximation for molecules

in Eq. (6.3). In this case the diagonal is dominated by states with doubly
occupied sites which results in eigenstates that are qualitative different from
those of the PPP-Hamiltonian.

6.3.2 Calculating the ground state - Lanczos algorithm

The basic idea of iterative methods is to project the Hamiltonian onto the
Krylov subspace KC generated by repeated applications of H on an arbitrary
initial state |¢g), i.e.

K= span{|¢o>, H|¢0>7 H2|¢0>’ T 7HM_1|¢0>}' (6'12>

In the Krylov subspace the extreme eigenvalues of the Hamiltonian converge
fast with respect to the size M of the subspace, thus reducing the full diago-
nalization to a manageable diagonalization of a M x M matrix with M < d.
In the Lanczos algorithm E| the Hamiltonian is projected onto a specially
constructed orthogonalised Krylov basis in which the Hamiltonian has a tridi-
agonal representation [I18]. The basis vectors are generated recursively as

|Pni1) = H|dn) — an|dn) — bi|¢n—1>7 (6.13)

where the coefficient are given by
n=—""" d b =+——"7"—"— 14
"= e T Galen) (614

with initial conditions by = 0 and |¢_;) = 0. At any point during the Lanczos
iterations only three Lanczos vectors need to be kept in memory, which makes
the algorithm memory efficient. In the basis of the normalized vectors (the
basis vectors above are not normalized) the Hamiltonian has the following
tridiagonal representation

a b 0 -+ 0
by a; by :
H=[0 b a - 0 (6.15)
: S by
0 --- 0 by am

which can be readily diagonalized with methods for tridiagonal matrices
yielding the ground state energy Ey. In practice the Lanczos iterations are

!The present work has used the implementation from the IETL project [117].
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continued until the desired eigenvalues have converged to a given tolerance.
For the ground state energy, typical values for M range from a few to ~ 200
depending on the system size.

The ground state resulting from a diagonalization of the tridiagonal
Hamiltonian in Eq. is provided in the Lanczos basis, i.e. |¥Uq) =
> n nlon). In order to be able to calculate the Green’s function, its rep-
resentation in the original many-body basis is required. Since the Lanczos
vectors are not stored, the Lanczos iterations must be repeated (starting from
the same initial vector) to obtain the expansion coefficients in the original
many-body basis, ¢; = Y a,(P;|¢n).

The most time consuming part of the Lanczos algorithm is the matrix-
vector multiplication H|¢,). An efficient implementation of this part is there-
fore crucial for the performance of the Lanczos algorithm. If the Hamiltonian
can be stored on sparse form in memory, fast matrix-vector multiplication
routines can be used. However, for large systems where the whole memory
is used by the Lanczos vectors this is not possible. In this case the matrix
elements of the Hamiltonian, or rather its action on the basis states, must
be recalculated on the fly in each iteration. With the basis states coded as
unsigned integers, this can be done efficiently using bitwise operations.

6.3.3 Calculating the Green’s function

Having obtained the ground state, the Green’s function can now be calcu-
lated. From the Lehmann representation of the Green’s function it follows
that it can be written as

T e h
with the electron and hole Green’s functions defined by

1
e—H+ E) +in

Giie) = (7' c; cHey) (6.17)

and

1
h _ Ny T N
Gile) = (Wle) =gy 9), (6.18)

respectively. The electron Green’s function is the matrix representation of
the resolvent operator (z — H)~' in the basis spanned by the |i) = ¢/|@})
vectors. To obtain the i'th diagonal element,

Gii(e) = (il(= — H) i), (6.19)

where z = ¢ — E}Y + in, again the Lanczos algorithm is used to put H on a
tridiagonal form, but this time the Lanczos iterations are started from the



78 Assessment of the GW approximation for molecules

normalized initial state |¢g) = |i)/by where b = (i|i). In the generated
Krylov subspace the diagonal element of the Green’s function corresponds to
the matrix element b3[(e — H + E{ + in)~']11, which can be obtained as the
continued fraction [119]

b6

Gi(e) = (6.20)

bt

Z— ag —
2
b2
zZ—ay —
Z — a9 —

Again the Lanczos iterations are continued until the frequency dependent
Green’s function element has converged. The elements of the hole Green’s
function can be calculated similarly by starting the Lanczos iterations from
the vector |i) = ¢, |VU]).

6.3.4 Correlation measure - von Neumann entropy

The following section demonstrates how a quantitative measure of the level
of correlations in a system can be obtained by considering the von Neumann
entropy of the single-particle density matrix p. The entropy is defined by

S = —Tr[plog p] = an 10 pn, (6.21)

where in the last equality p has been expressed in its diagonal representation,
p=3, paln)(nl.

In the basis of the atomic p, orbitals of the PPP-Hamiltonian the matrix
elements of the reduced density matrix of the ground state |Vy) are given by
(with the spin index suppressed)

pij = (\Ifo|c;ci |Wy). (6.22)

The diagonal elements p;; of the density matrix correspond to the site oc-
cupations n; of the ground state |Wy). When expressed in its diagonal rep-
resentation p, represents the occupation of the eigenstate |n) of the density
matrix.

In the half-filled subblock of the Fock space the ground state entropy
is limited to 0 < S < Llog2, where 2L is the dimension of the single-
particle Hilbert space including spin. Here, S = 0 corresponds to a state
with no correlations, while the maximum value S, = L log 2 for the entropy
corresponds to a maximally correlated state. This follows from the natural
diagonal representation of the density matrix in the two extreme cases (see
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below). Therefore, the number 0 < S/Sp,.x < 1 represents a natural measure
of the degree of correlation in the state |¥y).

By definition, Hartree-Fock theory is exact if the ground state in uncor-
related. Hence, the ground state is given by the Slater determinant

W) =[] el 10), (6.23)

where ¢]_ are the creation operators for the single-particle Hartree-Fock or-
bitals ¢,. Due to the mutual orthogonality of the HF orbitals, the density
matrix is diagonal in this basis with eigenvalues equal to one for the occupied
and zero for the unoccupied (virtual) orbitals. As a consequence, S = 0 for
an uncorrelated state as stated above.

Hubbard models where only onsite interactions are included give rise to
strongly correlated states. The singlet ground state |¥g) of the two-site
Hubbard model in the limit U > t is an example of a maximally correlated
state. Due to the high U/t-ratio, the energy cost of having two electrons
at the same site becomes prohibitly high. The ground state is therefore
completely dominated by the two states with singly occupied sites

1
V) = —= C;TCMO) - C&CH@ ; (6.24)
V2

where the positions of the spins refer to the site index. The corresponding
density matrix is diagonal in the site basis with site occupations n;, = 1/2
from which S = S follows. In general, maximally correlated states have
dominating weight on small subsets of orthogonal determinants correspond-
ing to the energetically most favorable basis states. In Hubbard models where
the onsite Coulomb repulsion dominates over the kinetic energy these are the
basis states with no doubly occupied sites.

6.4 Results

The following two sections present the benchmark results for the seven con-
jugated molecules in Tab. In the first section the accuracy of the GW
ground state energies for the neutral molecules is represented in terms of the
correlation energy. The second section focus on the spectral properties and
the different contributions from Eq. to the quasi-particle energies in GW.
The GW results reported here have been obtained with a fully self-consistent
GW scheme without any further approximations to the electronic self-energy
apart from the GW approximation itself (see Ref. [120] for details).
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6.4.1 Total energies

A good starting point for the following analysis is the von Neumann entropies
of the density matrices which establish the degree of correlation and the
qualitative nature of the exact ground states. The ground state entropies are
listed in Tab. [6.3] For all molecules the entropy is ~ 10% of the maximum
value Spax corresponding to weakly correlated systems. For comparison, the
ground state entropy for a Hubbard description of benzene with U/t ~ 4 is
50% of its maximum value. The Hamiltonian of the Hubbard description
of benzene is identical to the PPP-Hamiltonian in Eq. except for the
long range Coulomb interactions in the third term which are left out. The
finite values of the ground state entropies for the molecules reveal that none
of the ground states are single determinants implying that the Hartree-Fock
ground state energies will be larger than the exact ones.

Following the usual convention, the correlation energy is here defined as
the part of the total energy not included in Hartree-Fock, i.e.

Ecorr — Liexact — EHF (625)

The HF energies are obtained via a self-consistent solution to the single-
particle HF Hamiltonian which for the PPP-Hamiltonian reads

HHF = Z ézﬁz — Z tijC;raCjU
i (ij)o

+D 185 D> Vienk = Vigpigo | oo (6.26)
ijo k

Formula L S/ Smax Egap
Thiophene C4H,4S 5 0.08 11.19
Pyridine CsHsN 6 0.11 10.61
Benzene CeHg 6 0.10 11.39
Biphenyl Ci2Hip 12 0.10 9.24
Naphthalene CioHg 10 0.11 8.65
Anthracene CisHyo 14 0.12 7.06
OPV2 Ci4Hyo 14 0.10 8.30

Table 6.3: Chemical formula, number of p, orbitals (L) included in the PPP-
model, ground state entropies relative to maximum entropies (S/Smax) and exact
gaps (in eV) for the listed molecules.
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Figure 6.2: Exact and GW correlation energies of the neutral ground states for
the seven molecules. Both are calculated as the difference in total energy with
respect to the Hartree-Fock energy, i.e. Feorr = E — Enrp.

where &; = ¢; — Zk# Vi 2, and V;; = U;. The last term contains the Hartree
potential which is diagonal in the site indices and the exchange potential
which has off-diagonal contributions. The resulting eigenfunctions ¢, are the
canonical molecular orbitals from which the ground state Slater determinant
in Eq. is constructed. The total energy Eyxr then follows by taking the
expectation value of the PPP-Hamiltonian with respect to the ground state
Slater determinant. The expectation value of the non-interacting part can be
expressed directly in terms of the reduced density matrix. For the interacting
part of the PPP-Hamiltonian, the expectation value can be evaluated by ap-
plying Wick’s theorem to the product of creation and annihilation operators
hidden in the site occupation operator n;. The resulting expression for the
total energy can be written as

10 ijo
1
+ B Z Vij [/)ii,a/)jj,a’ - 5a,o/pij,ﬂpﬁ,0] : (6.27)
I

oo’

The second term in the last sum is the exchange energy whose diagonal
contribution removes the self-interactions included in the first Hartree term.
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The GW total energy is identical to the HF energy above with the excep-
tion that the exchange-correlation energy [121]

Be= o [ TG E) + 2506 ()] de (6.28)
replaces the exchange energy in HF and the GW density matrix obtained
from the GW Green’s function (see App.|C) replaces the HF density matrix.

Fig. shows the exact correlation energies of the neutral ground states
together with those obtained from the GW approximation. For the series of
molecules considered here the correlation energy constitute less than 0.5%
of the total energies. Furthermore, as expected, it increases (in absolute
size) with the number of atoms in the molecule. The GW approximation
performs reasonably well for all the molecules capturing on average 66% of
the correlation energy.

6.4.2 Spectral properties

For isolated systems such as molecules, true quasi-particles resembling single-
particle excitations are characterized by having a weight close to unity (for
non-degenerate levels) in the spectral function, i.e.

Zo =Y WGP ~ 1. (6.29)

This is equivalent to the existence of a molecular orbital ¢, which allow the
excited state |[UNF1) to be written as the single-particle excitation cf,|¥{').
Fig. |6.3| shows the single-particle density of states (DOS),

D(e) = Z Ay(e) (6.30)

for the OPV2 molecule on a logarithmic scale. The height of the peaks reflects
the value of Z,, (modulo degeneracies). The HF and, in particular, the GW
approximation reproduce the lowest lying excitations quite well while higher
excitations are poorly described. All the peaks in the HF spectrum have Z,, =
1 while GW shifts some spectral weight from the main peaks to tiny satellite
structures (at higher energies than shown on the plot). This is in agreement
with the exact results. For example, the exact spectral weight of the LUMO
is Zromo ~ 0.92 and ~ 0.97 in GW. However, the GW satellites do not
correspond to features in the exact spectrum. This shows that excitations
with Z, < 1, i.e. excitations which do not have single-particle character, are
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Figure 6.3: Single-particle DOS of the OPV2 molecule. The curves have been
shifted vertically for clarity. Note the logarithmic axis.

not well described within GW whose main effect is to improve the position
of the HF single-particle peaks.

In the following the relative contributions of Aiq.x and Aeo, from
Eq. to the HOMO and LUMO energies of the molecules are addressed.
Fig. [6.4] shows the difference between the exact gaps, which are listed in
Tab. [6.3] and the gaps obtained from (i) the eigenvalues of the Hartree-Fock
Hamiltonian in Eq. which correspond to the quasi-particle energies
of the HF spectral function, (ii) Hartree-Fock total energy differences which
includes self-consistent relaxations in the N + 1 Slater determinants, and
(iii) the distance between the HOMO and LUMO peaks in the GW spectral
function. Using the expression for the quasi-particle energies in Eq. ,
the exact gap gy = eLumo — €nomo can be expressed as

Eap = €10M0 — E1toMO T Doy + AZP (6.31)

relax corr?

where A%P and A8 are the gap equivalents of the corresponding quantities

relax corr

in Eq. (6.2) and efoyno JLUMO 8Te the Hartree-Fock HOMO/LUMO eigenval-
ues. By definition A% is difference between the gaps obtained from the HF

relax
eigenvalues and relaxed HF total energy differences. In Fig. this is given
by the vertical distance between the (red) squares and (blue) circles. The
correlation contribution A8 can be read off as the difference between the

exact gap (solid horizontal line) and the relaxed HF total energy gap (red
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Figure 6.4: The molecular gaps Egp = cLumo — €omo relative to the ex-
act values in Tab. [6.3] In addition to the HF and GW single-particle gaps, the
gaps obtained from relaxed Hartree-Fock total energy differences, i.e. FEgu, =
Eé\f}:r Ty EI]{VF_ T 2EIJ{VF are also shown. The excellent results of HF for the three
smallest molecules is a result of error cancellation between relaxation and correla-
tion contributions.

squares). The relaxation effects included in the total energy based HF gaps
leads to reduced gaps as compared to the HF eigenvalue gaps, implying that
AEP < 0. This reduction is due to the screening from the orbital relaxation
which reduces the Coulomb interaction with the added hole or electron and
hence also the gap.

It should be noted that the HF eigenvalues give excellent gaps for the
small single-ring molecules thiophene, pyridine and benzene. The good agree-
ment with the exact levels for these systems is not a result of HF giving a
correct description of the many-body states and their energies — this was
already clear from the entropy analysis above which showed that the eigen-
states are not single Slater determinants and hence the excitation energies
in Eq. have contributions from both A gax and Agor. The good agree-
ment must therefore be ascribed to cancellations between the relaxation and
correlation contribution to the exact quasi-particle energies.

In contrast to the HF (eigenvalue) gaps for which the agreement with the
exact gap worsens as a function of the size of the molecules, the GW gaps
follow more consistently the same trend and underestimates the exact gaps
with 0.05 — 0.35 eV for all the molecules. The close resemblance between
GW and the relaxed HF result indicates that the effect of GW is mainly to
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account for the screening effects that are given by orbital relaxations A cjax
in HF.

6.4.3 Lattice DFT

To demonstrate the shortcomings DF'T when it comes to the interpretation
of the Kohn-Sham eigenvalues X5 as excitation energies, the spectrum of
the benzene molecule as obtained with the lattice formulation of DFT [122]
is here inspected.

The lattice version of DFT follows by extending the fundamental concepts
of normal DFT, such as the Hohenberg-Kohn theorem and the Kohn-Sham
equations, to model Hamiltonians as e.g. the PPP-Hamiltonian. In this
reformulation of DFT the site occupations n; replaces the continuous electron
density n(r) as the fundamental variable that determines the ground state
properties. The lattice version of the single-particle Kohn-Sham Hamiltonian
Hgs is given by the sum of the hopping terms (the kinetic energy) and a
site dependent Kohn-Sham potential V;X5 which is constructed to yield the
correct site occupations of the ground state,

Hgs = — Z tijcl e, + Z Vi, (6.32)

(if)o

For the present purpose the explicit form of the site potential VXS is not
important. The fact that the lattice version of the Kohn-Sham potential is an
onsite potential, is equivalent to the restriction of the Kohn-Sham potential
Vie(r) in the real-space formulation of DFT to a local potential.

Due to the high symmetry of the benzene molecule all sites in the PPP-
Hamiltonian are equivalent implying that VXS has the same value for all sites.
Except for a constant shift, the eigenvalues of the Kohn-Sham Hamiltonian
are therefore given by those of the hopping part of the Hamiltonian. The
HOMO-LUMO gap calculated from the Kohn-Sham eigenvalues is Eé{a% =
5.08 €V which is a severe underestimation of the true gap of 11.39 eV.

To illustrate why the Kohn-Sham eigenvalues in general seem to consis-
tently underestimate molecular gaps, a closer look at the Hartree-Fock Hamil-
tonian in Eq. is instructive. As Fig. showed, HF gave relatively
good values for the gaps reproducing the exact gaps to within ~ 0.50 eV.
The Hartree-Fock Hamiltonian is diagonal in the basis {¢,} of molecular
orbitals

HHF = Zguaﬁuaa (633)

vo
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with the diagonal elements (eigenvalues) given by

o =ty + Z Voultuor — Viule. (6.34)

po’

Notice that only the direct elements V,,,,, of the Coulomb interaction have
been included here. Due to the delocalized nature of the molecular orbitals
this is in general not a good approximation. For the present purpose, how-
ever, this suffices to illustrate the point made below.

The exchange contribution to the eigenvalue in the last term removes the
self-interaction contribution to the eigenvalue included in the Hartree part
in the second term. However, since it depends on the occupation of the
molecular orbital itself which is 1 for occupied and 0 for (virtual) unoccu-
pied orbitals, only the occupied orbitals are affected by this self-interaction
correction. This illustrates the orbital dependence of the single-particle HF
potential — i.e. the fact that the HF Hamiltonian differs for occupied and
unoccupied orbitals. This distinction between occupied and unoccupied or-
bitals, which is a consequence of the non-locality of the HF potential, cannot
be obtained with a local site dependent potential in lattice DF'T. The under-
estimation of the gap thus seems to be a intrinsic property of the Kohn-Sham
formulation of DFT.

For benzene, the molecular orbitals from the non-interacting Hamiltonian
and the HF Hamiltonian are identical implying that t,,, = X5, The difference
between the Kohn-Sham gap and HF gap is thus given by the self-interaction
correction of the HOMO level.

6.5 Conclusion and outlook

The present chapter has demonstrated that the GW approximation gives
consistently good quasi-particle energies and gaps for the range of molecule
considered here. In contrast the gaps obtained from the eigenvalues of the
single-particle Hartree-Fock Hamiltonian which showed large variations in
the errors, the GW approximation systematically underestimated the molec-
ular gaps. The GW results were found to agree well with HF total energy
calculations of the gaps in which relaxation of the molecular orbitals for the
charged molecule is taken into account.

Furthermore, the failure of the interpretation of the Kohn-Sham DFT
eigenvalues as excitation energies was demonstrated with a simple example.
From the lattice version of DFT the gap of the benzene molecule was found
to be severely underestimated by more than a factor of two.
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The GW approximation has recently been extended to non-equilibrium
situations within the framework of the non-equilibrium Green’s function for-
malism. It has been applied to quantum transport calculations on single-
molecule junction in the strong coupling regime [120, 123, 124], i.e. where
the hybridization between the molecule and metal contacts is significant. As
this results in extended states and decreased life-times of molecular states,
dynamical polarization effects can be expected to be important in these junc-
tions.

So far, first-principles calculations on single-molecule junctions in the
strong coupling regime have almost exclusively been based on DFT descrip-
tions of the electronic structure of the junction (see e.g. [125], 126, [127]). How-
ever, the zero bias conductance resulting from this approach does typically
not agree with experimental values and is sometimes orders of magnitudes
larger [128, [129]. The uncertainty connected with the atomic structure of the
junction and the position of the molecule in the experiments is one possible
reason for this discrepancy. Since the conductance of a single-molecule junc-
tion is highly dependent on the position of the molecular levels, the use of
DFT in these calculation could be another possible reason for the observed
discrepancies. Indeed, it has been demonstrated that better agreement with
experiment is obtained by correcting the DFT levels of the molecule to rep-
resent true excitation energies [130, 131]. The corrections applied to the
DFT levels in these works include (i) a shift of the HOMO level to fit known
experimental ionization potentials, and (ii) a polarization shift of the levels
equivalent to the polarization integral in Eq. (5.14).

With GW giving a good description of both excitation energies of
molecules and polarization effects, it will be interesting to follow its devel-
opment with respect to transport calculations in the strong coupling regime.
Due to the computational requirements of a fully self-consistent GW calcu-
lation, such calculations are presently limited to simple junctions with small
molecules.






Appendix A

Atomic units

The atomic unit system is often used in condensed matter physics and
quantum chemistry which deals with the electronic properties of solids and
molecules. Its three fundamental units which are set to unity is the elec-
tronic mass, the elementary charge and Planck’s constant divided by 27, i.e.
me, = e = h = 1. They are listed in table together with some of the
derived units.

In atomic units the Coulomb interaction simplifies to

2

e 14.4

VC (7") — % ~ T eV A, (Al)

4megr

where ¢, is the permittivity of vacuum. The last equality provides a good
figure of merit to keep in mind when considering electron-electron interaction
in molecules and nanostructures.

Atomic Units

Quantity Symbol SI value

mass Me 9.109 x 1073 kg
charge e 1.602 x 107Y C
angular momentum h 1.054 x 1073+ J s
length ag 5.291 x 10~ m
energy B}, 4.359 x 10718 ]
permittivity 4dreq 1.113 x 10719 C2 N"! m—2

Table A.1: The atomic unit system which follows by setting me =e =h = 1.






Appendix B

Self-consistent Huckel scheme

In this appendix a semi-empirical treatment of the effective single-particle
junction Hamiltonian in Eq. is presented. It is based on the extended
Hiickel method [132] which has been developed to describe electronic struc-
ture of organic molecules. As this method is not self-consistent it is here
extended within the framework of self-consistent Hartree theory. The result-
ing self-consistent scheme is similar to the one presented in Ref. [133].

For completeness the single-particle version of the junction Hamiltonian

in Eq. (2.23) is given here once more,

1
Heff - _§v2 + ‘/ion(r> + VH(I’) + ‘/XC(I.) + ‘/;nd(r> + ‘/ext(r)
= Hpol + Hjunc' (Bl)
Here, the first four terms, which are described together as H,,,.1, stem from the
molecule itself. The last two terms included in Hjy, describe the potential
in the junction (see e.g. Chap. [3)).

In the self-consistent Hiickel scheme the molecular part of the Hamiltonian
is written as a sum of a constant term Hy and a self-consistent term Hgc

Hmol = HO + HSC- <B2)

The constant term H, accounts for the effective Hamiltonian of the isolated
molecule. It is approximated by the non-interacting Hiickel Hamiltonian

H(] = Z €Z‘C;~rCz‘ —+ Z tijC;er, (Bg)

i#]

where the sums runs over atomic valence orbitals {¢;} and 7 is a collective
index referring to atom, orbital and spin index. Within Hiickel theory the
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onsite energies €; and transfer integrals t;; are described with the Hoffman
parametrization [132]

1
tij = 5]{?5” (82‘ + €j> . (B5>

Here, V; is associated with the ionization energy of the valence orbital ¢;, k is
a fitting parameter usually set to k = 1.75 and S;; = (¢;|¢;) is the overlap be-
tween the non-orthogonal atomic orbitals. Notice that Hartree and exchange-
correlation effects are implicitly included in Hy due to its parametrized form.

The self-consistent term Hgc of the molecular Hamiltonian takes into
account electron-electron interactions at the level of Hartree theory. It ac-
counts for rearrangement of the molecular charge distribution due to addi-
tional charges on the molecule and external potentials from the junction.
Since the Hartree potential of the isolated molecule is indirectly included in
Hy, only changes in the Hartree potential due to variations in the electron
density from its value ng in the isolated molecule are considered,

on(r)

v —r'|

OVa(r) = /dr' (B.6)
Here dn = n—ny. Since the Hartree potential depends on the electron density,
this posses a self-consistent problem that must be iterated to convergence.

To simplify the numerics, the Hartree potential in equation is ap-
proximated by a sum over atomic point charges given by the Mulliken pop-
ulations n; = Tr[pS],. The trace is taken over the orbitals on atom 7 and
p denotes the single-particle density matrix. The matrix elements of the
density matrix can be expressed in terms of the expansion coefficients ¢ to
the molecular orbitals ¢, as

pi = (Ve (B.7)

With the above approximation the Hartree potential reads

SVi(r) = Z ons (B.8)

r—1|

To avoid problems with the diverging point charge potential when evaluated
at the atomic positions, r;, the onsite contribution to the sum is replaced by a
species dependent Hubbard U taking into account the energy cost of adding
an electron to the atom. These parameters are taken from the quantum
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chemical CNDO method [63, [134]. In order to keep consistency between the
onsite and the offsite interactions, the Magata-Nishimoto [I35] interpolation

formula is used ]
U= —— . B.9

The final form of the Hartree potential in equation becomes

J#i

The matrix elements of the Hartree potential in the atomic Hiickel basis are
approximated as follows

Va(r:)

~ oV
1 H H
5% (v +vH). (B.11)
The matrix elements of the potentials Vinq and Viy in the junction part Hjync
of the Hamiltonian are approximated similarly. The potentials are obtained
from a finite element solution to Poisson’s equation.

In the basis of atomic orbitals the effective single-particle Hamiltonian in

Eq. (B.1) can now be written

eff - Zgzc ¢+ thg G, Cj + Z V;jczcj’ (B12)

i#j 1,3

where V' = Vi + Ving + Vixe- The total energy can be evaluated from the
eigenvalues ¢, to the effective Hamiltonian as

E=> e, - % > naVa(rs) + (n; — Zi) Vina(rs)] (B.13)

%

The last term subtracts contributions to the total energy that are doubled
counted in the eigenvalues. Here Z; denotes the valence of atom i.

The accuracy of the self-consistent Hiickel scheme has been addressed by
comparing the calculated gap (see Eq. ) of the OPV5 molecule with that
obtained from a more accurate DFT calculation using the B3LYP exchange-
correlation functional. The comparison showed that the self-consistent
Hiickel scheme underestimated the gap by 1.2 eV compared to the DFT.
The majority of this difference was found to stem from an underestimation
of the single-particle HOMO-LUMO gap in the Hiickel calculations.






Appendix C

Green’s function primer

Single-particle Green’s functions (GFs) are very useful when considering the
electronic structure of systems. The most important properties of the re-
tarded and lesser Green’s functions relevant for the present work are pre-
sented here.

The retarded and lesser functions have the following real-space definitions

G"(vt,v't') = —if(t — ') ({(rt), P! (x't)}) (C.1)
and
G=(rt,v't") = i(pT ('t )b (rt)), (C.2)
respectively. For systems in equilibrium the GFs depend only on the time
difference ¢t — t'. Therefore, their Fourier transforms depend on only one
energy argument €.

In practical calculations it is often more useful to express the GFs in
some convenient basis. Depending on the problem this could be e.g. the
momentum-state basis of translationally invariant systems, the Bloch states
of a periodic system, or molecular and atomic orbitals for molecules. In these
basis the GF's can be written generally as

Gii(t —t) = =ib(t — ') ({ei(®), ¢} (t)}) (C.3)

and
G5t —t) = i{ch(t)ei(t)) (C.4)
where the creation and annihilation operators create and annihilate electrons
in the generic set of basis orbitals {¢;}. They are connected to the real-space
representations above by a simple change of basis.
Being the expectation value of a creation followed by an annihilation

operator, the lesser function contains the single-particle density matrix

. , [ de
= {cley) = ~iG5(t—¢ =0) = =i [ 2G50 (€
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The occupations n; of the basis orbitals are given by the diagonal elements
pii of the density matrix.

A very useful quantity is the spectral function A which is defined by the
imaginary part of the retarded Green’s function

Afe) = —%Im ar(e). (C.6)

In equilibrium the lesser function can be expressed in terms of the spectral
function and the Fermi distribution ng as

G=(e) = 2miA(e)np(e). (C.7)

This relation is the fluctuation-dissipation theorem for the single-particle
Green’s function. Using this relation, the total number of electrons N =
>, n; of a system follows as

From this expression the density of states D is seen to be given by the sum
over the elements of the spectral function

D(e) = Z Ay(e). (C.9)

A useful representation of the retarded Green’s function can be obtained
by a spectral decomposition with respect to a complete set of many-body
eigenstates

H|U,) = E,|U,). (C.10)

This so-called Lehmann representation follows by inserting the identity 1 =
Y ul¥n)(¥,| in the definition of the retarded Green’s function in Eq. (C.3))

and Fourier transforming,

o L I A R A R I )
ij(e)_zn: e — (EN+1 — EN) 4+ in e— (BN — EN-1) +ip
(C.11)
For an N-electron system the sum over many-body states |U,,) is restricted
to the states |[UN*1) of the N + 1-electron system. From the Lehmann repre-
sentation the poles of the retarded GF are seen to coincide with the electron
addition &, = EN*! — EJ and removal energies ¢, = E) — EN~!. Using the




97

identity 1/(e + in) = P(1/e) — ind(e) with P denoting the principal value,
the Lehmann representation of the spectral function follows as

Ae) = 3 || eidtod  ote - o) + e e o - 2.)

(C.12)
Thus, the peaks of the spectral function correspond to the charge excitations
of the system.

Perturbation series in the electron-electron interactions for the GF can be

formulated in terms of the time-ordered (zero temperature) Green’s function

Giy(t —t') = =i(Tle(t)c) (1)) (C.13)

where T" denotes the time-ordering operator. With the aid of Feynman dia-

grams the following Dyson equation for the time-ordered GF can be derived
from the perturbation series

Gt —t")=Go(t —t') + /dtl/dtz Go(t; — ) (ta — t))G(t — t2). (C.14)

Here, the quantities are considered as matrices in the basis indices ¢ and j
and matrix-multiplication is implied. > is the irreducible self-energy which
contains all Feynman diagrams that cannot be split into two separate parts
by cutting a single Green’s function (Gg) line. Depending on the definition
of Gj, the exact definition of the self-energy varies. In the present work
Gy denotes the Hartree GF implying that the Hartree self-energy diagram
should not be included in the definition of 3.

From the Dyson equation it follows that the full diagrammatic represen-
tation of the time-ordered GF is given by all possible combinations of Green’s
function lines (Gy) and self-energy diagrams. In self-consistent schemes like
the GW approximation the self-energy is defined by the full GF G and not
Gp. Self-consistent schemes therefore include additional diagrams where the
Green’s function lines themselves have self-energy insertions.

The retarded Green’s function obeys a Dyson equation identical to the
one above with the time-ordered quantities replaced by their retarded counter
parts. In Fourier space this leads to the following solution for the retarded
Green’s function

G'(e) =[e— Hy—X"(e)] ", (C.15)

where H, denotes the single-particle Hartree Hamiltonian.
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ABSTRACT

We address polarization-induced renormalization of molecular levels in solid-state based single-molecule transistors and focus on an organic
conjugate molecule where a surprisingly large reduction of the addition energy has been observed. We have developed a scheme that combines
a self-consistent solution of a quantum chemical calculation with a realistic description of the screening environment. Our results indeed
show a large reduction, and we explain this to be a consequence of both (a) a reduction of the electrostatic molecular charging energy and
(b) polarization induced level shifts of the HOMO and LUMO levels. Finally, we calculate the charge stability diagram and explain at a qualitative

level general features observed experimentally.

The recent experimental progress in single-molecule elec-
tronics has resulted in the realization of the three-terminal
molecular single-electron transistor (SET)!~! shown sche-
matically in Figure la. The experimental realizations have
been based on a variety of techniques including junctions
made by electromigration, mechanical break junctions, and
cryogenic nanogap fabrication. Many indications of the
molecule being part of the active transport pathway through
the junction has been observed. An example is the observa-
tion of the molecular vibrational excitations, which serve as
a fingerprint for the molecule.>!' However, there remain
several unresolved issues in single-molecule transport both
in the strong coupling limit, where coherent transport theories
seems to strongly overestimate the current level, as well as
in the weak coupling regime, where the observed energy gaps
are much smaller than expected. Experiments on organic
molecules have shown that the so-called addition energy,
which is the difference between the molecular ionization
potential (IP) and the electron affinity (EA), is heavily
reduced compared to its gas phase value in single-molecule
SETs.?>8

Reductions of the excitation gaps are well known from
other situations. Theoretical studies of semiconductor/metal
interfaces have shown that the band gap of the semiconductor
is narrowed near the interface by the screening in the
metal.'>!3 Experiments using photoemission techniques and
scanning tunneling spectroscopy to study the electronic
structure of single molecules, self-assembled monolayers, and
organic thin films on dielectric and metal surfaces have
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Figure 1. (a) Schematic illustration of a three-terminal single-
molecule transistor. (b) Energy level alignment in the molecular
junction showing the position of the molecular ionization potential
(IP) and electron affinity (EA) levels with respect to the work
functions of the metallic leads. Also the gate electrode with voltage
V, which couples to EA and IP is schematically shown. The
polarization shifts P+ and P- of the levels due to the junction
environment are indicated.

shown similar effects.!*~!” The experimental settings of a
single-molecule SET is to some degree analogous to the
situation in electrochemical measurements where the equiva-
lent of the addition energy, the electrochemical gap, is well
known to depend on the dielectric properties of the sur-
rounding media.”’ However, the screening environments are
rather different for the electrochemical setup and the single-
molecule transistor geometry with one being in ionic
solutions or organic solvents and the other in solid state low
temperature environment. A direct comparison is therefore
not possible in general.

It has been suggested that the reduction of the addition
energy seen in single-molecule SETs is caused by polariza-
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Figure 2. (a) Illustration of the simulated OPV5-SET with the molecule lying flat on the Al,O; gate oxide between the source and drain
electrodes. (b) Molecular structure of OPV5 and isosurface plots (blue, negative; red, positive) of the HOMO and LUMO orbitals for the
isolated molecule. (c,d) Polarization response of the nanojunction illustrated by contour plots of the induced potential from the polarization
charge at the dielectric and electrode interfaces for the neutral molecule (panel c¢) and for the anion (panel d). Because of its partially
positive-charged thiol groups the overall neutral OPV5 molecule induces a negative potential in the nearby electrodes and dielectric that
reduces the HOMO—LUMO gap (see text). The additional electron of the anion results in a significant polarization of the gate dielectric

which reduces the charging energy of the molecule.

tion/image charges in the metallic electrodes,>?' giving rise
to a localization of the charges near the metallic electrodes.
Theoretically only a few other studies have addressed the
polarization-induced renormalization of the molecular levels
in solid state environments and its implications for the
electron transport in molecular junctions,?> > and the situ-
ation is still very much debated. Therefore, a more realistic
and quantitative theoretical description of the surprisingly
large effect is called for. The purpose of the present letter is
to fill out this gap and study the influence of the junction
environment on the positions of the molecular levels in a
realistic single-molecule SET. We have developed a scheme
that includes the polarizable environment in a quantum
chemical calculation, in which the polarization response of
the environment and the molecular charge distribution is
determined self-consistently. Our calculations on the con-
jugated organic molecule used in experiments®> show that a
large part of the reduction of the addition energy can be
accounted for by polarization of the environment. By using
a simplified expression for the addition energy, the reduced
addition energy can be understood in terms screening of the
charging energy of the molecule and a closing of the
HOMO-LUMO gap.

For a single-molecule SET operating in the Coulomb
blockade regime, that is, with a weak tunnel coupling
between the molecule and the source/drain electrodes,
sequential tunneling is the dominating transport mechanism.
In this regime, charge transfer through the molecule is
possible when either the IP or the EA is positioned within
the bias window. If on the other hand no levels are present
in the bias window, current is blocked and the molecule
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remains in a fixed charged state. To reach the regime where
transport is possible, one can either shift the IP and EA levels
with the gate-voltage or apply a sufficiently large source-
drain bias. This results in a so-called charge stability diagram
that maps out the molecular charged states as a function of
source-drain and gate voltage (see, e.g., Figure 4). The
addition energy U can be extracted from this diagram by
measuring the height of the central diamond. Since the
ionization potential and the electron affinity are given by
the difference in total energy between the neutral molecule
(with N electrons) and the cation (N — 1) and anion (N +
1), respectively

P=E""'—E' and EA=E"-E""! (1)
the addition energy can be expressed as

U=IP-EA=E""+E""'—2F" )

When the molecule is placed in a nanojunction, charging
of the molecule induces polarization charge in the junction
environment. The formation of the polarization charge is
associated with stabilizing polarization energies Py (added
hole) and P- (added electron) for the cation and anion,
respectively,!> which shifts the IP and EA relative to their
gas phase values as illustrated in Figure 1b. The resulting
reduction of the addition energy is given by the sum P =
P, + P_,ie, U = 1P(g) — EA(g) — P. Naturally, the
polarization energy P depends on the screening properties
and response times of the environment. In single-molecule
SETs where the typical current level is on the order of 1 ~
PA — nA, the polarization response of the metallic electrodes
and gate dielectric (given by the plasmon frequency ~10'
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s~! and the phonon frequency ~10' s™!, respectively) is
orders of magnitudes faster than the tunneling rate I' = I/e
~ 107 — 10" s~ for electrons, implying that the polarization
energy is given by the full static response of the environment.

In the Supporting Information, we have provided a general
framework for evaluating total energies of nanoscale systems
in the presence of a polarizable environment. The main
assumption of our approach is that the polarizable environ-
ment responds instantaneously to changes in the charge state
of the molecule, which according to the above consideration
is a reasonable assumption for single-molecule SETs. An
electrostatic treatment of the environment hence suffices and
we derive the following effective Hamiltonian for the
nanojunction

H=H+H,,

+H,, 3)
where H, is the Hamiltonian of a general nanoscale system

(in our case a molecule),

Hyy= [ 4 p @) =3 [Ir pO@) @)

describes the interaction between the molecular charge
distribution p, and the polarization charge through the
induced potential ®;,q, and

Hy = [ dr p ()@, () 5)

accounts for external voltages applied to the gate, source,
and drain electrodes. The external potential @y, satisfies
Laplace equation with boundary conditions given by the
applied voltages on the electrodes. The induced potential ®iyq
can be obtained via a solution to Poisson’s equation

— 0+ [e(n T D] =4mpy(r) (6)

for the potential ® = D + D;,q, where ¢, is the dielectric
constant of the environment and @ the potential from the
molecular charge distribution. The present approach thus
allows for a continuum description of the environment
combined with a quantum chemical treatment (e.g., DFT or
Hartree—Fock) of the molecule. In order to account for the
molecular charge redistribution due to the polarization
response of the environment the induced potential must be
included in the usual self-consistent cycle of e.g. DFT
calculations.

In the present work a semiempirical method has been
combined with a finite element treatment of Poisson’s
equation (see Supporting Information for details). We note
that the addition energy we calculate for the isolated OPV5
molecule (see below), is underestimated with 1.2 eV as
compared to the DFT value using the B3LYP exchange-
correlation functional. Despite this fact, we still expect the
polarization energies to be accurate, since the interaction with
the polarization charge is treated correctly in our approach.
That this is indeed the case has been confirmed by com-
parison with other methods.??

We apply here our method to a single-molecule SET based
on the thiol-terminated OPVS5 molecule, which is an organic-
conjugated molecule consisting of alternating phenylene and
vinylene groups (see Figure 2b). In experimental realizations
of OPV5-based SETs both heavily reduced addition energies,
access to several redox states, molecular vibrational excita-
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Table 1. Calculated addition energies, U, single-particle
HOMO-LUMO gaps, Agr, and polarization energies, P,
(all in eV) for the thiol-terminated OPV5-molecule in the
three geometries: gas phase (isolated molecule), SET
(geometry as in Figure 2a), and gap (molecule placed in
the gap between two infinite parallel metal surfaces)

environment U AHL p
gas phase 3.27 1.12
SET 0.68 0.53 2.59
gap 2.08 0.92 1.19

tions and Kondo effect have been observed.*>¢ The simulated
OPVS5-SET is illustrated in Figure 2a with the molecule lying
flat on the gate dielectric between the source and drain
electrodes, which are separated by a 3.2 nm gap. To resemble
experimental settings® the gate electrode is separated from
the molecule by a 5 nm thick layer of gate oxide with
dielectric constant & = 10, corresponding to the high-«
dielectric Al,Os3. The relatively high dielectric constant of
AlL,O; ensures a reasonable capacitive coupling between the
molecule and the gate electrode. We model the gold
electrodes by infinitely high metal blocks. The molecule is
placed at a distance of 1 A from the surfaces of the source/
drain electrode and the gate oxide. Since the electrostatic
image plane of atomic surfaces is located outside the atomic
surface plane,?®?’ this effectively corresponds to a distance
between the molecule and the surface atoms on the order of
van der Waals distance (~3 A). In all calculations presented
in the following, the molecule has been considered in its
neutral-state geometry. Hence, the formation of polarons, i.e.,
relaxation of the nuclear configuration due to charging of
the molecule, is not accounted for.

Table 1 summarizes our findings for the addition energy,
the gap between the highest occupied and the lowest
unoccupied molecular orbital (HOMO-LUMO gap) and
finally the polarization energy in the following three environ-
ments: (i) gas phase, (ii) as in Figure 2a, and (iii) molecule
placed in the gap between two parallel metal surfaces
separated by 3.2 nm. The polarization energies due to the
presence of the junction environments results in significant
reductions of the addition energies relative to their gas phase
values.

For further analysis, we shall use the following simplified
interpretation of the addition energy: starting with two neutral
molecules then U is the energy cost of transferring an
electron from one molecule to other (see eq 2). Since this
process involves the promotion of an electron from the
HOMO in one of the molecules to the LUMO in the other
molecule, it is suggestive to write the addition energy as the
HOMO-—LUMO gap of the neutral molecule, Ay;, plus two
times the Coulomb energy, E., required to charge a molecule

U=Ay +2E, )
This is similar to the expression for the addition energy in
the constant-interaction model, which has been used suc-
cessfully for conventional quantum dot SETs.?

In a naive first guess, one would expect the reduction of
U to be mainly a consequence of screening of the charging
energy E.. However, Table 1 shows thatalsothe HOMO—LUMO
gaps are reduced in the polarizable environments. The origin
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Figure 3. (a) Contour plot of the gate potential for an oxide thickness of 2.5 nm and with 1 V applied to the gate electrode. The metallic
electrodes, which are held at 0 V, screen the gate potential significantly which results in a stronger coupling to the central part of the
molecule. (b) Gate couplings as a function of oxide thickness. The gate couplings have been calculated as follows: by averaging the
potential over the atomic positions of the molecule (Mean); by calculating how much the HOMO and LUMO levels move with 1 V applied
to the gate electrode (HOMO and LUMO). The localization of the HOMO on the thiol groups results in a much lower gate coupling
compared to the LUMO, which is delocalized over the carbon backbone of the molecule. For an oxide thickness of 5 nm the gate coupling
(Mean) of ~0.2 is in good agreement with the value reported experimentally.?

of this reduction is illustrated in Figure 2c. Because of the
positively charged thiol groups of the overall neutral OPVS,
a negative electrostatic potential is induced in the nearby
electrodes and dielectric. This, combined with the localization
of the HOMO on the thiol groups (see Figure 2b), shifts the
HOMO level to higher energy. Similar reasoning for the
negatively charged carbon backbone and the LUMO leads
to a lowering of the LUMO level and hence a closing of the
HOMO—LUMO gap. The charging energy obtained from
eq 7 is for OPVS5 in gas phase E. = 1.08 eV. The screening
response of the nanojunction, which is shown for the OPV5
anion in Figure 2d, reduces this value to E. = 75 meV. To
summarize, we can understand the reduction of the addition
energy as a consequence of two parallel effects: (i) a
reduction of the HOMO—LUMO gap and (ii) screening of
the Coulomb repulsion on the molecule which lowers the
charging energy. Since the majority of the reduction is due
to the latter effect, which is purely electrostatic in nature,
the reduction for other molecules of the same size of OPV5
will be comparable. For smaller molecules we have found
that the closer proximity of the polarization charge enhances
the screening of the charging energy, resulting in larger
absolute reductions.

The important role of the gate oxide in the reduction of U
is clearly demonstrated by the large difference in the
polarization energy between the SET and gap environment
in Table 1. More than half of the polarization energy of 2.59
eV in the SET environment is due to the gate oxide. As the
molecule is lying flat on the oxide which has almost metallic-
like screening properties (the image charge strength of a
dielectric surface is g, = (& — 1)/(&: + 1)), this should come
as no surprise. Note that the polarization energy in the SET
environment is highly dependent on the dielectric constant
of the gate oxide. With a SiO, oxide layer (&, = 3.9), the
polarization energy is reduced to 2.11 eV. We also find that
the contribution to the polarization energy from the gate
electrode is negligible. The reason for this is its large distance
to the molecule together with the fact that the gate electrode
only sees the screened charge of the molecule. Even for an
oxide thickness of 2—3 nm the gate electrode contributes
less than 0.05 eV to the polarization energy.
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As mentioned in the introductory part, the molecular levels
can be probed by shifting them with the gate voltage or
opening the source-drain bias window. Single-molecule SET's
therefore provide a useful tool for measuring the energy
differences between the molecular levels through the charge
stability diagram, albeit in an unnatural environment. We
have calculated the charge stability diagram for the OPV5
device (see Figure 4) by evaluating total energies of the
neutral, singly charged and doubly charged molecule as a
function of gate and source-drain voltage. Our assumption
that the molecule remains chemically stable in the considered
charge states is in agreement with experimental findings.>°
Since we are considering only the ground states of the neutral
and charged molecule, the stability diagram contains no lines
due to excited states of the molecule. These could be, for
example, vibrational excitations which, as mentioned in the
introductory part, have been observed experimentally with
energies ranging from a few to ~100 meV. Electronic
excitations with electrons/holes occupying higher/lower
molecular orbitals have energies of hundreds of meV and
are therefore harder to observe experimentally. Like the
experimentally observed stability diagram,® the calculated
diagram is characterized by two small diamonds enclosing
a big central diamond. The height of the central diamond is
seen to be ~0.50 eV instead of 0.68 eV as we found for the
zero bias value of the addition energy in Table 1. This is
because the HOMO level moves downward with the applied
source-drain voltage, and hence decreases the threshold for
pulling out an electron from the HOMO. The nonlinear edges
on the left side of the central diamond is a result of this
effect. The origin of the bias dependent HOMO level can
be traced back to a localization of the HOMO near the low
energy electrode. The heights of the two smaller diamonds
correspond to the addition energies of the anion and cation
of the OPV5 molecule, that is

UNil — N_,’_ENiZ _ 2ENj:1 (8)

The small addition energies associated with these states
stem from their half-filled frontier orbitals. Therefore, when
adding/removing an electron to/from the anion/cation only
the charging energy in equation contributes. The resulting

Nano Lett., Vol. 8, No. 11, 2008
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Figure 4. Charge stability diagram for the OPV5-SET. The color
indicates the number of levels positioned in the bias window (black,
0; red, 1; yellow, 2) and is hence an indirect measure of the current
level for a given gate and source-drain voltage. The Fermi levels
of the gold electrodes have been placed in the gap of the molecule
as illustrated in Figure 1b. In each of the black diamonds, current
is blocked leaving the molecule in the indicated charge states. The
addition energies of the charge states of the molecule can be read
off from the heights of the respective diamonds.

charging energies are ~50 and ~85 meV, respectively,
showing that due to the different spatial distributions of the
HOMO and LUMO, the charging energy of the cation and
anion are not equal, which is implicitly assumed in eq 7.

One important ingredient in understanding the stability
diagram is the gate coupling, oo = 9En,/0V,, that is, how
much the energy landscape on the molecule changes when
a voltage is applied to the gate electrode. For usual quantum
dot devices this is characterized by a single number, which
assumes that all states couple equally to the gate. For the
OPVS5-SET considered here this is not the case. As shown
in Figure 3a, the gate potential varies significantly over the
extend of the molecule due to screening in the metallic
electrodes, which results in a higher gate coupling to the
LUMO compared to the HOMO. In the stability diagram
this is reflected in the different slopes of the diamond edges,
which are given by the gate couplings to the different charged
states of the molecule. This has also been observed in a recent
experiment.® The slopes of the diamond edges agree well
with the calculated gate couplings in Figure 3b, where we
read off the values o, ~ 0.12 and o, ~ 0.25 for an
oxide thickness of 5 nm. The gate coupling of ~0.2
calculated by averaging the gate potential over the atomic
positions of the molecule (denoted Mean in Figure 3b) is in
good agreement with the value reported experimentally,’
indicating that the molecule is positioned directly on the gate
oxide as in our simulation. In a situation where the molecule
is elevated from the gate oxide, screening of the gate potential
due to the source and drain electrodes (see Figure 3a) results
in a significantly lower gate coupling.>®

In conclusion, by using a method where a continuum
description of the polarizable junction environment is
combined with a quantum chemical calculation for the
molecule, we have studied the effect of polarization in an
OPVS5 single-molecule SET. Our results show a significant
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modification of the addition energy caused by both a closing
of the HOMO—LUMO gap and screening of the intramo-
lecular Coulomb interactions. Since the majority of the
reduction is due to the latter effect, the reduction obtained
here for OPVS5, should be general for other molecules of
same size. From the calculated charge stability diagram we
explain at a qualitative level the origin of alternating diamond
sizes, state dependent gate couplings and nonlinear diamond
edges, which all have been observed experimentally.

Our calculations explain a large part of the reductions
observed experimentally, but certainly not all. Other effects
not accounted for in the present work that can reduce the
addition energy even further could be (i) a geometry where
the molecule is closer the metallic electrodes as compared
to our idealized setup, (ii) polaron formation upon charging
of the molecule, which is associated with relaxation energies
on the order of ~200—300 meV,? and (iii) a correlation-
induced localization of the added charge near the metallic
electrodes beyond what can be captured by a mean-field
approach.
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exact diagonalization
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We calculate groundstate and single-particle excitation energies of seven pi conjugated molecules
described with the semi-empirical Pariser-Parr-Pople (PPP) model using fully self-consistent many-
body perturbation theory at the GW level and exact diagonalization. For the total energies, GW
captures around 65% of the groundstate correlation energy while the lowest lying excitations, i.e. the
electron affinity and ionization potentials, are slightly underestimated with a mean absolute error
of 0.15 eV corresponding to 2.5%. We find that the effect of the GW self-energy on the molecular
excitation energies is similar to inclusion of orbital relaxations that follows by changing the number
of electrons in Hartree-Fock theory. Finally, we discuss the break down of the GW approximation
in systems with short range interactions (Hubbard models) where correlation effects domainate over

screening/relaxation effects.

PACS numbers: 31.15.bu,33.15.Ry,31.15.V-

I. INTRODUCTION

For more than two decades the many-body GW ap-
proximation of Hedin' has been the state of the art for
calculating band structures of metals, semiconductors,
and insulators? ®. With the entry of nanoscience the use
of the GW method has been extended to low-dimensional
systems such as molecules, carbon nanotubes, graphene
and molecule-surface interfaces® 2. In these systems
the interplay between quantum confinement (in one or
more dimensions) and electronic correlation effects leads
to novel phenomena like the renormalization of molec-
ular electronic levels at surfaces by dynamical polar-
ization in the substrate!''4. Very recently, the non-
equilibrium version of the GW approximation has been
applied to quantum transport and dynamics in molecu-
lar junctions!® 22 where dynamic correlations seems to
be particularly important.

As the range of systems to which the GW approxima-
tion is being applied continues to expand, critical inves-
tigations of the performance of GW for other systems
than the crystalline solids become important. Here we
report on benchmark GW calculations for 7-conjugated
molecules based on the semi-empirical Pariser-Parr-Pople
(PPP) model?* 2. By comparing with exact results we
obtain a direct and unbiased estimate of the quality of
the GW approximation in molecular systems.

Previous benchmark model studies of the GW approx-
imation have all focused on Hubbard models with local
interactions?’26-2% with the conclusion that GW works
well for small interaction strengths but fails for larger
interactions strength. The use of GW in systems with
local interactions is in fact unfortunate because the im-
portance of electronic screening, which is the main effect
described by GW, is weak in comparison to correlation
effects. In contrast to Hubbard models, the PPP descrip-

tion includes long range interactions and its parameters
have been fitted to yield realistic excitation energies of
conjugated molecules. It therefore provides a better and
more natural starting point for a study addressing the ac-
curacy of GW for real molecules and nanostructures. We
mention that in a related work we have performed first-
principles GW calculations for a series of 33 molecules
arriving at very similar conclusions regarding the perfor-
mance of GW as those reported here.??

Ab-initio GW calculations typically involve a number
of "technical” approximations such as the plasmon pole
approximation, the neglect of off-diagonal matrix ele-
ments in the GW self-energy, or analytic continuations.
Moreover they are usually performed non-selfconsistently
and are subject to basis set errors. In the present work
the GW calculations are carried out fully self-consistently
without any further approximations apart from the GW
approximation itself.

We shall be interested in the total energies and exci-
tation spectra of the seven conjugated molecules listed
in Tab. I. The excitation spectrum of a system can be
obtained from the spectral function

A =22y [|<%<N D)l W (V) P5(e — )

+ [ W (N = 1)le; [To(N))[*6(e — en)|,
(1)

which has peaks at the quasiparticle (QP) energies &,, =
E,(N+1)— E¢(N) and ¢, = Eo(N) — Ep(N — 1) cor-
responding to electronic addition and removal energies,
respectively. Here E,(N) denotes the energy of the nth
excited N-electron state, |¥,(N)), with N referring to
the neutral state of the system. For molecules the first
addition and the first removal energy, i.e. n = 0, cor-



responds to the electron affinity and the ionization po-
tential. In Hartree-Fock theory Koopman’s theorem?’
states that the eigenvalues of the Hartree-Fock Hamil-
tonian equal the addition/removal energies calculated
without orbital relaxations in the charged states, i.e.
eflF = (el WEIF (N)|H|c] WEF (N)) — EFF(N) for a virtual
orbital n. In particular, the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied orbital
(LUMO) represent well defined approximations to the
ionization potential and electron affinities, respectively*2.
This approximation neglects two important effects. One
is the relaxation of the single-particle HF orbitals when
an electron is removed from or added to the molecule.
The other is the correlation energy which by definition is
omitted in HF theory. It is instructive to write the exact
QP energies as the sum of the three contributions

En = €EF + Avelax + Acorr, (2)

The relaxation contribution is the correction that follows
by calculating the QP energy from self-consistently deter-
mined HF energies of the neutral and the charged states
N £ 1. The last term Aoy is the remaining contribu-
tion from the correlation energy. For the addition of an
electron, i.e. an unoccupied orbital, the relaxation and
correlation contributions are given by

Avelax = BT (N +1) = BgT (N) — 5" (3)

n

and

Acorr = [En(N +1) — EYF(N +1)] — [Eo(N) — EFF (]\E)]).
4

In extended systems the potential due to a single de-
localized electron/hole decreases with the size of the sys-
tem. Hence, in such systems there will be no or little
relaxation of the states due to the addition/removal of
an electron, and the majority of the correction to the
QP energy will come from the correlation part Acorr.
In molecules, nanostructures, molecules at surfaces, and
disordered systems with finite localization lengths, this
is not the case. Here, the introduction of an additional
electron or hole will lead to a relaxation of the single-
particle orbitals corresponding to a screening of the ad-
ditional charge. As a consequence, the relaxation cor-
rection Arelax to the QP energy cannot be neglected in
such systems. In fact, we find that Ayeax is larger than
Acorr for all the molecules studied here, and that the GW
excitation energies correspond roughly to including only
Arelax in Eq (2)

The paper is outlined as follows. In Sec. II the PPP
model Hamiltonian for conjugated molecules is intro-
duced. In Secs. IIT A and ITII B we provide an overview of
the theory and numerical implementation of the GW and
exact calculations, and in Sec. IIIC we discuss the use
of the von Neumann entropy as a measure of correlation.
The results for total energies and spectral properties of
the PPP model are presented in Secs. IV A and IV B, and
a comparison is made to short ranged Hubbard models
in Sec. IV C. The conclusions are given in Sec. V.

II. PARISER-PARR-POPLE HAMILTONIAN

The Pariser-Parr-Pople model is an effective -
electron description of conjugated molecules that in-
cludes electron-electron interactions explicitly. The PPP
Hamiltonian is given by

H :Zfiﬁi — Z tijcj»acjg
4 (ij)o

+ % ij' (i = Zi)(y — Z5) + Z Uiiyiy, (5)
i#£] i

where c;[ (¢;) creates (annihilates) an electron in the p,

orbital on atom ¢ of the molecule, 7; = 71 + 7, is the

number operator, 7;, = cjgcw, Z; is the valence (i.e. the

number of 7 electrons) of atom 4, and (i) denotes nearest

neighbour hopping. The Ohno parametrization®! is used

for the long range interactions

14.397
Vij = (6)

\/(28.794/(Ui +U))?+RY

where R;; is the inter-atomic distance (in A) and U, is the
onsite Coulomb interaction (in eV). For large distances
the Ohno parametrization recovers the 1/r behavior of
the Coulomb interaction while it for small distances rep-
resents a screened interaction that interpolates to onsite
Coulomb interaction U; for R;; = 0. The onsite energy
€;, the hopping element ¢;; and the onsite Coulomb inter-
action U; are treated as fitting parameters. In the present
work values for these parameters have been taken from
the literature323%. Since existing parameters have been
optimized to optical excitation spectra, an exact agree-
ment with experimental values for the molecular gaps is
not to be expected.

III. METHODS
A. GW approximation

Hedin’s equations' provides a formally exact frame-
work for the determination of the single-particle Green
function in a self-consistent manner. In the GW approx-
imation, which follows by neglecting the so called vertex
corrections, the electronic self-energy 3 is given by the
product of the Green function G and the screened inter-
action W, and can be written symbolically as

Y = iGW, (7)

where the Green function obeys the usual Dyson equation
G = Go + GoXG. The screened interaction W is given
by the bare Coulomb interaction V and the polarization
in the random-phase approximation (RPA) P = —iGG
through the Dyson-like equation

W =V + VPW. (8)



In fully self-consistent GW the set of coupled equations
for ¥, G, P, and W are solved iteratively until the
Green function has converged. Due to the computa-
tional requirement of a fully self-consistent GW scheme,
ab-initio GW calculations are usually carried out non-
selfconsistently. This approach, which is referred to as
GoW,, starts from an approximate Gy, typically the non-
interacting Kohn-Sham Green function, from which a sin-
gle self-energy iteration is carried out to obtain the final
Green function.

1. Numerical details

The GW calculations have been performed following
the method described in detail in Ref. 37. Here we give
a brief overview of the method for completeness.

The retarded and advanced single-particle Green func-
tions are given by

G/ e) = (e tin— Hy— Vi — Saw(e)™" (9)

where 7 is a small positive infinitesimal, Hy contains
the first two terms in Eq. (5), and Vi is the Hartree
potential. We represent the Green functions and all
other energy-dependent quantities on a uniform grid,
—En,—E,, +de,...,E,. The Fast Fourier Transform
is used to switch between the energy and time rep-
resentations. Since 1 determines the minimum width
of features in the Green function’s energy dependence,
the energy grid spacing should obey de < n. All re-
sults presented here have been converged with respect
to n,de, Ep,. Typical converged values are (in eV) n =
0.02,de = 0.005, E,,, = 50.
The lesser/greater Green functions are given by

G=(e) = —fle—wIG" =G (10)
G7(e) = (1= fle—w)IG" - G (11)

where f(e—p) is the Fermi-Dirac function. The chemical
potential p is adjusted to yield the desired number of
electrons in the system. The formulation in terms of
a fixed chemical potential rather than a fixed particle
number is reminiscent of the fact that the method has
been developed for quantum transport. The one-body
density matrix is given by

Pij = fi/ij(e)de. (12)
From p the Hartree and exchange potentials follow
=2 Vikprr) (13)
k
= —Vijpij, (14)
where we have defined V;; = U;, see Eq. (5).

The retarded/advanced and lesser/greater components
of the quantities needed to construct the GW self-energy

Vi,

Va,ij

read3”

Sats(t) = G5 WS (1) (15)

Ws'Z(e) = Y Wh(e)Py” (e)Wi(e)  (16)
kl

ij

Wi = SR -VPel (1)
k

PSP (0) = 65706 <(-) (18)

The GW equations have been expressed in the time or en-
ergy domain according to where they are simplest. This
also reflects the practical implementation.

The retarded components of Yqw and P are obtained
using the fundamental relation

FU(t) = —if()[F~ (t) — F=(t)] (19)

which is the Kramers-Kronig relation in the time domain
relating the imaginary and real parts of F.

Since the GW self-energy depends on the Green func-
tion and vice versa, the equations must be iterated until
self-consistency. To speed up converence we use the Pu-
lay mixing scheme®® as described in Ref. 37.

2. Total energy

The total energy can be split into kinetic (and ex-
ternal), Hartree, and exchange-correlation energy E =
Ey + Eyg + Ey.. In terms of the Green function we have

1
Eo + By = Tr[Hpp] + §Tr[VHp] (20)
For the exchange-correlation energy we have
1
Bu= 5 [ BEEGE) + 5506 @) (21)

where ¥ is the exchange-correlation self-energy. In this
work 3 is either the bare exchange, ¥, yielding the HF
approximation, or the GW self-energy, ¥gw. The expres-
sion (21) follows by expressing (V') in terms of the two-
particle Green function, Gs, and then using the defining
equation for the self-energy in terms of G3°.

B. Exact diagonalization

The most direct way to the spectral properties of a
system is via the Lehmann representation of the Green
function in Eq. (1). However, since this requires the full
set of eigenstates and eigenvalues of the Hamiltonian,
it is of limited practical use and other routes must be
taken. The following section gives a brief overview of
the Lanczos method for iterative diagonalization of large
matrices.



1. Calculating the ground state - Lanczos algorithm

In exact diagonalization the given many-body Hamil-
tonian is diagonalized directly in the Fock space which is
spanned by many-particle states (Slater determinants).
Since the dimensionality of the Fock space grows expo-
nentially with the number of basis orbitals, symmetries
of the Hamiltonian can help to reduce the dimensionality
considerably. For the Pariser-Parr-Pople Hamiltonian in
Eq. (5) the number of up and down electrons, N; and
Ny, are good quantum numbers since their correspond-
ing operators commute with the Hamiltonian. This im-
plies that the exact diagonalization can be carried out
in each of the (N7, N} )-subblocks of the Fock space inde-
pendently. The dimensionality of each (Ny, N|)-subblock
is given by the number of ways Ny spin up electrons and
N spin down electrons can be distributed over L basis
orbitals,

L L
TN N NN

d(Np, Ny) (22)

Very often the ground state is located in the half-filled
subblock, i.e. Ny = N| = L/2 where L is the number of
basis orbitals. For L = 16 the dimensionality of this sub-
block is d = 165636900, implying that storing a vector in
double floating point precision requires ~ 1 Gb of mem-
ory. With such memory requirements a full diagonaliza-
tion of the Hamiltonian is of course out of reach. If only
the ground state is needed, iterative methods can be em-
ployed. The basic idea of iterative methods is to project
the Hamiltonian onto the Krylov subspace K generated
by repeated applications of H on an arbitrary initial state

|¢0>, 1e
’C:Span{|¢0>7H|¢0>7H2|¢0>7 7HN|¢0>} (23)

In the Krylov subspace the extreme eigenvalues of the
Hamiltonian converge fast with respect to the size N of
the subspace, thus reducing the full diagonalization to
a manageable diagonalization of a NV x N matrix, with
N < d.

In the Lanczos algorithm*® the Hamiltonian is pro-
jected onto a specially constructed orthogonalised Krylov
basis in which the Hamiltonian has a tridiagonal repre-
sentation. The basis vectors are generated recursively
as

|bn+1) = H|bn) — anldn) — 0 ¢n-1), (24)

where the coefficient are given by

<¢n|¢n> " <¢n—1|¢n—1>

with initial conditions by = 0 and |¢p_1) = 0. At any
point during the Lanczos iterations only three Lanczos
vectors needs to be kept in memory, which makes the al-
gorithm memory efficient. In the basis of the normalized

(25)

vectors (the basis vectors above are not normalized) the
Hamiltonian has the following tridiagonal representation

Qg b1 o --- 0
b1 aq bg :

H=10 by ay . 0 (26)
0o --- 0 bN an

which can be readily diagonalized with methods for tridi-
agonal matrices. In practice the Lanczos iterations are
continued until the desired eigenvalues have converged to
a given tolerance. For the ground state energy FEy, typi-
cal values for NV range from a few to ~ 200 depending on
the system size.

The ground state resulting from a diagonalization of
the tridiagonal Hamiltonian in Eq. (26) is provided in
the Lanczos basis, i.e. [Wo) =" cu|dn). In order to be
able to calculate the Green function, its representation
in the original many-body basis is required. Since the
Lanczos vectors are not stored, the Lanczos iterations
must be repeated (starting from the same initial vector)
to obtain the expansion coefficients a; = >, cn(®s|én)
in the original many-body basis {|®;)}%_;.

The most time consuming part of the Lanczos algo-
rithm is the matrix-vector multiplication H|¢,). An ef-
ficient implementation of this part is hence crucial. For
this purpose it is convenient to use the bit representation
of an unsigned integer to code the basis states. Denoting
the integers with bit representations corresponding to the
spin up and spin down occupations of a given basis state
with Iy and I}, respectively, the integer representation of
the basis state is I = I} + 2F1). With the binary rep-
resentation of the basis states, the multiplication of the
Hamiltonian can be done efficiently using bitwise opera-
tions.

2. Calculating the Green function

Having obtained the ground state, the Green function
can now be calculated. From the Lehmann representa-
tion it follows that it can be written as

_ h
Gij(e) = Gjj(e) + Gij(e) (27)
with the electron and hole Green functions defined by

1

GS.(¢) = (UN]e.
Z](E) <0|Cl€*H+E(J)V+Z'77

cilwg)  (28)

and

1
e+ H—E) +in

Gly(e) = (¥} 1), (29)

respectively. In the following we focus on the electron
Green function which is the matrix representation of the



resolvent operator (z — H)~! in the basis spanned by
the i) = cj|\Il(])V> vectors. To obtain the ¢’th diagonal
element,

Gii(e) = (il(= — H)7'i), (30)

where 2 = ¢ + E} + in, again the Lanczos algorithm is
used to put H on a tridiagonal form, but this time the
Lanczos iterations are started from the normalized initial
state |¢o) = |i)/bo where b3 = (i|]i). Hence, in the gen-
erated Krylov subspace the diagonal element in Eq. (30)
corresponds to the matrix element b3[(c — H + EY +
in)~Y11 of a tridiagonal matrix, which can be obtained
as the continued fraction’

Gie) = = SNCH

g —ag—

e—a — ——
E_a/2—...

Again the Lanczos iterations are continued until the fre-
quency dependent Green function element has converged.

C. Von Neumann entropy

The following section demonstrates how a quantitative
measure of the degree of correlations in a system can be
obtained by considering the von Neumann entropy of the
reduced single-particle density matrix p. The entropy is
defined by

Slpl = —Tr[plogp] = = > palogpn,  (32)

where in the last equality p has been expressed in its
diagonal representation, p = > pn|n)(n|.

In the basis of the atomic p, orbitals the matrix ele-
ments of the reduced density matrix are given by (with
the spin index suppressed)

pij = (olcle; |Wo), (33)

with the diagonal elements equal to the site occupations.
In the diagonal representation p,, thus represents the oc-
cupation of the eigenstate |n) of the density matrix.

We note that 0 < § < Llog2, where 2L is the di-
mension of the single-particle Hilbert space including
spin. The expression for Sp,ax follows because the num-
ber of electrons equal L in all the systems, i.e. half filled
“band”. When |¥y) is a single Slater determinant (cor-
responding to zero correlation) we have S = 0, and when
|¥o) has equal weight on a complete set of orthogonal
Slater determiants (corresponding to maximal correla-
tion) we have p, = 1/2 for all n and thus S = Llog2.
Thus the number 0 < S/Spax < 1 represents a natural
measure of the degree of correlation in |Uy).

IV. RESULTS
A. Total energies

We first address the degree of correlation in the ex-
act ground states by considering the von Neumann en-
tropies of the corresponding density matrices. The cal-
culated entropies are listed in Tab. I. Except for the
Hubbard description of benzene (see Sec. IV C) which
clearly presents strong correlations, the entropies of the
ground states are ~ 10% of their maximum value Spax
corresponding to weakly correlated systems. The finite
values of the entropies reveal that none of the ground
states are single Slater determinants implying that the
Hartree-Fock ground state energies will be larger than
the exact ones.

We here follow the usual convention and define the
correlation energy as the part of the total energy not
included in Hartree-Fock, i.e.

Ecorr = Fexact — Pur. (34)
Fig. 1 shows the exact correlation energies of the neu-
tral molecules together with those obtained by evaluat-
ing the total energy from Egs. (20) and (21) with the
self-consistently determined Green function and GW self-
energy.

For the series of molecules considered here the correla-
tion energy constitute less than 0.5% of the total energies.
Furthermore, as expected it decreases (in absolute size)
with the number of atoms in the molecule. Clearly, the
GW approximation performs reasonably well for all the
molecules capturing on average 66% of the correlation
energy.

B. Spectral properties

For isolated systems such as molecules, true quasi-
particles resembling single-particle excitations are char-

Formula L  S/Smax Egap (eV)
thiophene C4H4S 5 0.07 11.19
pyridine CsHsN 6 0.11 10.61
benzene CeHg 6 0.10 11.39

benzene (Hubbard) - - 0.50 -

biphenyl CHio 12 0.10 9.24
naphthalene Ci0Hs 10 0.11 8.65
anthracene Ci14Hio 14 0.12 7.06
OPV2 C1aHi2 14 0.10 8.30

TABLE I: Chemical formula, number of p. orbitals (L) in-
cluded in the PPP model and exact ground state entropies
(S) for the listed molecules.
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FIG. 1: (Color online) Exact and GW correlation energies of
the neutral groundstate of the seven molecules.

acterized by having a weight close to unity (for non-
degenerate levels) in the spectral function, i.e.

Zn =Y (U el wg) P ~ 1. (35)
%

This is equivalent to saying that there exists an orbital
|v) so that the excited state (UN*1| can be written as
the single-particle excitation ¢}, |¥}’). In Fig. 2 we show
the single-particle density of states (DOS),

D(e) = Z_ Ai(e) (36)

for the OPV2 molecule on a logarithmic scale. The height
of the peaks reflects the value of Z,, (modulo degenera-
cies). The HF and, in particular, the GW approximation
reproduce the lowest lying excitations quite well while
higher excitations are poorly described. All the peaks
in the HF spectrum have Z, = 1 while GW does shift
some spectral weight from the main peaks to tiny satelite
structures (at higher energies than shown on the plot).
However, the GW satelites do not correspond to features
in the exact spectrum. This shows that excitations with
Zn, < 1, 1.e. excitations which do not have single-particle
character, are not well described by GW whose main ef-
fect is to improve the position of the HF single-particle
peaks.

In the following we consider the lowest lying single-
particle excitations of the molecules as obtained with
Hartree-Fock, GogWo and self-consistent GW. In the
GoWj calculations the starting Green function Gg is
taken to be the self-consistently determined Hartree-Fock
Green function. Fig. 4 gives an overview of the calculated
excitation energies relative to the exact ones. Energies
corresponding to electron removal and electron addition
are located on the negative and positive half of the z-axis,
respectively. From this plot clear trends in the calculated
excitation energies emerge.
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FIG. 2: (Color online) Single-particle DOS of the OPV2

molecule. Note the logarithmic axis.

Starting with HF, the occupied (unoccupied) levels are
systematically overestimated (underestimated). The de-
viation from the exact values worsens for the higher lying
excitations.

A close inspection of the figure reveals a few HF en-
ergies at ~ £5.0 eV and ~ £5.7 eV that more or less
coincide with the exact energies. These are the HOMO
and LUMO levels of the small single-ring molecules thio-
phene, pyridine and benzene. The good agreement with
the exact levels for these systems is not a result of HF
giving a correct description of the many-body states and
their energies — this was already clear from the analysis
above which showed that the eigenstates are not single
Slater determinants and hence the excitation energies in
Eq. (2) have contributions from both Ajelax and Acopr.
The good agreement must therefore be ascribed to can-
cellations between the relaxation and correlation contri-
bution to the exact energies (this is discussed further in
connection with Fig. 4).

Both the GgW( and the GW give consistently better
energies than HF — in particular for the higher lying ex-
citations where the absolute errors are reduced to less
than ~0.4 eV as compared to ~1 eV for HF. For the low-
lying excitations GW slightly overestimates (underesti-
mates) the occupied (unoccupied) levels corresponding
to an overcorrection of the HF energies.

In order to address the relative contributions from
Avelax and Agorr to the excitation energies in Eq. (2),
we plot in Fig. 4 the difference between the exact gaps
and the gaps obtained from the (i) Hartree-Fock eigen-
values, (ii) Hartree-Fock total energy differences with
self-consistent relaxations in the N + 1 Slater deter-
minants taken into account, and (iii) the distance be-
tween the highest occupied and lowest unoccupied peaks
in the GW spectral function. By using the expression
for the quasi-particle energies in Eq. (2), the exact gap
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FIG. 3: (Color online) Energy of the 3 highest occupied and
3 lowest unoccupied molecular orbitals relative to the exact
values. While Hartree-Fock underestimates the occupied and
overestimates the unoccupied levels, self-consistent GW shows
the opposite trends but deviates on average less from the exact
result.

Eqap = eLuMo — €Homo can be expressed as

__ _HF HF gap gap
Egap = eLumo — oMo T Alopax T Alotr (37)

where AP and AP are the gap equivalents of the cor-

responding quantities in Eq. (2) and 5EEMO/LUMO are

the Hartree-Fock HOMO/LUMO eigenvalues. By defini-
tion AP is difference between the gaps obtained from
the HF eigenvalues and relaxed HF total energy differ-
ences. In Fig. 4 this is given by the vertical distance
between the (blue) squares and circles. The correlation
contribution A83P can be read off as the difference be-
tween the exact gap (dashed horizontal line) and the re-
laxed HF total energy gap (blue squares). Inclusion of
relaxation effects clearly reduces the HF gaps consider-
ably implying that A%%’ < 0. This reduction is due to
the screening from the orbital relaxation which reduces
the Coulomb interaction with the added hole or electron
and hence also the gap.

We note that the HF eigenvalues give excellent gaps
for the small single-ring molecules thiophene, pyridine
and benzene. The good agreement with the exact lev-
els for these systems is not a result of HF giving a cor-
rect description of the many-body states and their en-
ergies — this was already clear from the analysis above
which showed that the eigenstates are not single Slater
determinants and hence the excitation energies in Eq. (2)
have contributions from both A;elax and Agorr. The good
agreement must therefore be ascribed to cancellations be-
tween the relaxation and correlation contribution to the
exact energies

In contrast to the HF (eigenvalue) gaps for which the
agreement with the exact gap worsens as a function of
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FIG. 4: (Color online) The HOMO-LUMO gap relative to the
exact values. In addition to the HF and GW single-particle
energies, the relaxed Hartree-Fock total energy differences,
E&(N +1) 4+ ENF (N — 1) — 2EF™ (N) are also shown. The
excellent results of HF for the three smallest molecules is a
result of error cancellation between relaxation and correlation
contributions.

the size of the molecules, the GW gaps follow more con-
sistently the same trend and underestimates the exact
gaps with 0.05 — 0.35 eV for all the molecules. The close
resemblance between GW and the relaxed HF result in-
dicates that the effect of GW is mainly to account for the
screening effects included in HF via orbital relaxations,
Arelax~

C. Long- versus short-range interactions

To demonstrate the shortcomings of the GW approx-
imation for strongly correlated systems, we consider a
Hubbard model description of the benzene molecule. It
should be noted that this Hubbard description of benzene
is not intended as a realistic description of the benzene
molecule, rather it serves to illustrate the limitations of
the GW approximation. The Hamiltonian is identical to
the PPP-Hamiltonian in Eq. (5), except that the long
range Coulomb interactions in the third term have been
omitted. The values for the hopping elements and the
onsite Coulomb interaction are t = 2.539 and U = 10.06,
respectively. With a U/t-ratio of ~4 this obviously repre-
sent a strongly correlated system. The latter is reflected
in the ground state entropy in Tab. I which is 50% of its
maximum value.

From the calculated total energies we find that the cor-
relation energy (not included in Fig. 1) constitutes 10%
of the ground state energy which is a considerably higher
fraction as for the PPP descriptions of the molecules.
The GW total energy captures 88% of the correlation
energy compared to 66% on the average for the PPP de-
scriptions. However, from an absolute point of view, the



GW approximation misses the exact ground state energy
by 0.48 eV. This should be compared to 0.16 eV which
is the difference between the exact and the GW ground
state energy for the PPP description of benzene.

The poor performance of both Hartree-Fock and GW
for the spectral properties of the Hubbard benzene is il-
lustrated in Fig. 5 which shows the spectral function as
calculated with the two methods together with the exact
one. Both Hartree-Fock and GW severely underestimates
the position of the LUMO level and completely misses the
details of the spectrum at higher energies.

This clearly demonstrates that GW is of limited rele-
vance when considering systems where correlation effects
(Acorr) dominates over screening, or relaxation, effects
(Arelax)'
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FIG. 5: (Color online) Single-particle DOS for the Hubbard
description of the benzene molecule (only on-site interactions
from the PPP model are kept). Note the logarithmic axis.

V. CONCLUSION

We have presented calculations for the total energy
and charged single-paticle excitations in seven conju-
gated molecules described by the semi-empirical PPP
model within fully self-consistent GW and exact diago-
nalization. The results show that the GW approximation
gives a consistently good description of both total ener-
gies and electronic excitations with a slight tendency to
overestimate (underestimate) the position of the latter
for occupied (unoccupied) levels. We have found that
the effect of the GW self-energy is similar to the inclu-
sion of orbital relaxations in the N £ 1 final states in
Hartree-Fock theory. On the other hand the contribu-
tion to the excitation energies coming from correlations
in the ground- and excited states is less well described
by GW. This explains why GW tend to reduce electron
addition/removal energies relative to the HF eigenval-
ues. Finally, we showed that GW does not perform well
for systems with short range interactions (Hubbard mod-
els) where correlation effects are dominating over screen-
ing/relaxation effects.
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