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Abstract

My thesis consists of three parts. The first part covers ageing phenomena. In the first
project I measured the mobility of two DNA repair proteins. Contrasting diffusion co-
efficients from literature I was able to classify DNA repair protein into either "scanners"
or "responders". In a second project we constructed a mathematical model and showed
that if DNA damage is primarily caused by geno-toxic agents, it would be advantageous
for cells to have a fragile DNA repair mechanism.

The second part of my Ph.D. thesis covers gene regulation. In the first project we
show how RNA polymerase can be used as a transcription factor. This requires that
promoter regions overlap, which 15% of promoters in E.coli do. In the second project
I analyse a negative auto regulated transcription motif coupled to a positive auto reg-
ulation transcription motif. I find that a general feature of this motif is that unstable
activation and stable repression is a requirement for the motif to produce oscillations.

The last part of this thesis studies the emergence of communication networks. In
this study we constructed a simple e-mail game. E-mails from two session with 16 play-
ers, who had never met before, showed how players develop favourite communication
partners. We observed how this dynamic caused a communication network to form. By
quantifying the information flow in this network, we were able to shown how that the
network functions as an anti-exploration mechanism against "information leeches".
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Resumé

Min afhandling består af tre dele. Den første del omhandler aldringsfænomener. Her har
jeg målt mobiliteten af to DNA reparationsproteiner. Ved at sammenligne diffusionsko-
efficienter fra tidligere studier, var det muligt at klassificere DNA reparationsproteiner
som enten "scanners" eller "responders". I et andet projekt lavede vi en matematisk
model, og viste at hvis DNA skade primært stammer fra omgivelserne, kan det være en
fordel for celler at have en skrøbelig DNA reparationsmekanisme.

Den anden del af min Ph.D. omhandler gen-regulering. I det første af mine projekter
viste vi hvordan RNA polymerase kan fungere som en transskriptionsfaktor. Et krav er
at promoterområder overlapper med hinanden, hvilket 15 % af promotorne i E.coli gør.
Mit andet projekt omhandler et negative selvregulerende transskriptionsmotiv, koblet
til et positivt selvregulerende transskriptionsmotiv. Jeg fandt at et generelt krav for at
oscillationer opstår, er at motivet har ustabile aktivatorer og stabile repressorer.

Den sidste del af min Ph.D. beskæftiger sig med, hvordan kommunikationsnetværk
opstår. Vi opfandt et simpelt e-mail spil for at undersøge opbyggelsen af kommunika-
tionsnetværk i tid. E-mails fra to forsøg med 16 personer, der aldrig havde mødt hi-
nanden før, viste hvordan spillerne udviklede foretrukne kommunikationspartnere. Vi
observerede hvordan denne dynamik med tiden fik et stabilt kommunikationsnetvær-
ket til at opstå. Ved at kvantificere mængden af information på netværket, viste vi at
netværket var et redskab til at undgå informationssnyltere.

x



Chapter 1
Ageing

1.1 Introduction to ageing

The ageing process in humans is the gradual deterioration of physiological functions.
The physiological function can be thought of as an emergent phenomenon originating
from the interactions between multiple cells. It is believed that cellular senescence pro-
motes ageing in humans [1, 2]. Senescent cells are cells which, after several divisions,
have lost their ability to further proliferate [3] (see Figure 1.1). Mammalian cells have a
finite number of cell divisions, roughly 50 in vitro; this limit is called the Hayflick limit
[4]. The molecular reason for replicative senescence is that the chromosome ends, named
telomeres, shorten after each division. When the telomeres have reached a critical length
a DNA damage response is triggered causing permanent cell cycle arrest (senescence)
[2].

...

Cell divisions
1 2 Hayflick limit

Senescent cell

Figure 1.1: Hayflick limit: The chromosome ends are called telomeres. After each cell
division the telomere lengths are reduced. When a cell has gone through roughly 50
division, cell proliferation is inhibited. The inability of the cells to further proliferate is
called senescence. The number of divisions, that a cell can undergo before it becomes
senescent is called the Hayflick limit.

It has been shown that senescent cells accumulate in humans with age [3]; for pri-
mates the accumulation has been shown to be exponential [5]. The fraction of senescent
cells in old tissue has been estimated to be 1-15% [3]. Thus, as tissues have a fairly
constant number of cells, the increased fraction of senescent cells in the tissues compro-
mises the tissue’s ability to renew and repair regions of damage. Another way senescent
cells might promote ageing is through the secretion of proteins, which alters the micro
environment of the tissue[3].

A 2007 study by Xue et al. has shown that the immune system removes senescent
cells [6]. It is still not known why senescent cells accumulate. Is it because the immune
system clearance becomes less effective? Or because the rate of cells becoming senescent
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2 Ageing

increases? [3].
Besides cellular senescence induced by the shortening of telomeres, premature senes-

cence can be triggered by DNA damage [2].
Both mitochondrial DNA (mtDNA) and nuclear DNA have been shown to be linked to
the ageing process [7, 8]. DNA damage can be induced either by intrinsic factors (e.g.,
reactive oxygen species (ROS)) or by external factors (e.g., exposure to UV-light or toxic
chemicals) [9]. ROS is primarily produced in the mitochondria as a by-product of ATP
synthesis [2]. Damaged and dysfunctional mitochondria have been thought to create a
vicious circle where dysfunctional mitochondria create more ROS, which creates more
damage both to DNA and mtDNA, which again creates more dysfunction [7].

Yet another candidate for promoting ageing is the decline of stem cell function [10].
The capacity for regeneration and renewal of tissue is dependent on the population
of somatic stem cells. Somatic stem cells have activated telomerase, a protein which
elongates the telomeres [11]. However, the level of telomerase is not high enough to
completely eliminate telomere shortening [12], and thus somatic stem cells have larger -
although still limited - proliferation capacity [13, 14].

In order to reduce ROS and thereby DNA damage somatic stem cells are in a low-
activity quiescent state. The low-activity state minimizes the use of ATP and thereby re-
duces the production of ROS [15]. Reactive oxygen species production is further reduced
in quiescent stem cells by synthesizing ATP in an anearobic fashion [15]. The downside
of the anearobic ATP synthesis is that it is less efficient than the aerobic/mitochondria
pathway. When tissue renewal is needed to maintain the tissue, stem cells transition
from the quiescent state into the proliferating state, thereby allowing renewal; but at the
same time, however increasing the risk of acquiring DNA damage is increased [16, 15]
(see Figure1.2).

Accumulation of senescent cells and decline of stem cells are probably not the only
mechanisms that contribute to ageing. Neither of the two mechanisms seem to account
for ageing in a slow turnover tissue. The turnover rate of a tissue is a measure of how
fast a tissue renews its cells. For example, heart cells (cardiomyocytes) are replaced 11
times during a human life (100 years), giving the heart cells a turnover rate of roughly 10
years [17]. In neurons, which are also a slow turnover tissue, it seems that accumulation
of damage to either nuclear or mitochondrial DNA causes functional decline of the brain
[18]. A proliferating cell with persistent DNA damage is programmed to go apoptotic.
However, neurons and other slow turnover cells seem to simply silence the gene affected
by the DNA damage [7]. Thus, for slow turnover tissue, the idea seems to be that it is
better to have less functional cells than fewer cells.

A commonality between the three causes of ageing mentioned above (namely senes-
cence, stem cell depletion and gene silencing) is DNA damage. Damage to both mtDNA
and nuclear DNA plays a major role in the process of ageing. Further evidence of DNA
damages as a cause of ageing is that several diseases where DNA repair is compromised
cause premature ageing. Such diseases include Werner syndrome, ataxia telangiectasia,
and Bloom syndrome [19, 20]. In Figure 1.3 I have summarized some of the causes of
ageing and the links between them. However, ageing is a very complex phenomenon,
and the simple schematic presented here does not capture all of the causes of ageing.

In the following chapters I present three projects in which we have investigated
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Quiescent stem cell Proliferating stem cell

ZZ
Z

Z

Low metabolism 
Anearobic ATP production

High Metabolism 
Aerobic ATP production

Less DNA damage Efficient ATP production

Tissue renewal

Figure 1.2: Quiescent stem cells: In order to reduce the level of DNA damaging agents,
stem cells are in a quiescent state. Both the reduced need for ATP synthesis and using
a anaerobic pathway reduce the production of ROS. When tissue renewal is needed the
stem cells transition from the quiescent state into the proliferating state. The prolifer-
ating state requires a higher metabolism and therefore increases the risk of acquiring
DNA damage.

parts of the ageing process either via phenomenological models or through mechanistic
models and biological experiments.



4 Ageing

Ageing

Stem cell depletion Senescence Gene silencing

Apoptosis

Faster tissue renewal

DNA damage

Fa
st

 tu
rn

ov
er

Slow
 turnover

Figure 1.3: Schematic summary of ageing: DNA damage can cause cells to go into
damage-induced senescence. Increased levels of DNA will result in more cells going
apoptotic, which will require either stem cells or tissue cells to proliferate. The increased
demand for divisions will result in either a faster deterioration of the stem cell pool
or increased number of senescent cells. For slow turnover tissue (e.g., neurons) DNA
damage induces gene silencing and thereby less functional cells.
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1.2 Possible advantages of fragile DNA repair mechanisms

Deleterious mutations to certain DNA repair proteins have severe effects on the expected
lifespan. Consider, for example, proteins involved in the base excision repair (BER)
pathway. These proteins can be classified into either completely non-essential ones that
have no phenotypical effect (no decrease in life expectancy when mutated) or completely
essential ones that are embryonically lethal [21]. The lack of gradual worsening in the
BER pathway is puzzling and suggests that if complete redundancy is not possible, then
the second best "strategy" is no redundancy at all. In addition, research has shown
that in several organisms the capacity of DNA repair declines with age [2] and as a
consequence the mutation frequency increases [22]. This decline in DNA repair capacity
could be caused by damage to the DNA repair genes. We propose that a fragile DNA
repair mechanism where a decline in repair capacity is drastic instead of gradual could
be beneficial for an organism. The reason is that cells with compromised DNA repair
will go apoptotic faster than healthy cells.

To investigate this process we constructed a simple mathematical model in which
DNA damage leads to mutations that impair the ability to repair future genotoxic dam-
age. Since ageing is a phenomenon that involves a whole tissue, we simulated a pop-
ulation of highly proliferating cells exposed to genotoxic damage. In our model, cells
continuously acquire DNA damage. The result of the damage is modelled by three pos-
sible outcomes:
a) Repair, b) Apoptosis or c) Mutation (see Figure 1.4). For simplicity we chose not to
model senescence or the influx of new cells from the stem cell pool explicitly. However,
senescence and influx of new cells are considered implicitly by monitoring the number
of cell replications and the total number of cells at any point in time.

1.2.1 Simulation steps

First a random cell out of N acquires DNA damage. After damage there are three
possible outcomes (see Figure 1.4):

1. The damage can be fully repaired with probability R. The repair rate R is specific
to the individual cell.

2. If the cell is unable to repair the damage, it can go apoptotic with probability a.
In this case another cell divides to replace it, keeping the total number of cells
constant.

3. Otherwise, the cell accumulates the damage through a mutation in the DNA,
which reduces its ability to repair future genotoxic damage from R to R−∆.

When a cell divides to take the place of a cell that has gone apoptotic, the daughter cell
inherits the repair rate from the parent cell (see Figure 1.5). When investigating two- or
three-dimensional systems, the cells are located on a square lattice and apoptotic cells
can only be replaced by neighbouring cells dividing.

One time step is when N cells have received damage. Therefore on average each
cell will acquire one damage per time step, regardless of the system size. All cells are
initiated with the same repair rate R0. The parameter ∆ can be interpreted as the fragility
of the DNA repair mechanism. If ∆ is large, cells with unrepaired DNA damage will
have a greatly reduced ability to repair future genotoxic damage (see Figure 1.4).
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(1- R)a

R

(1- R)(1-a)

Complete repair

Apoptosis + Replacement

Accumulation of damage

Figure 1.4: Fragile DNA repair mechanism model: When a cell acquires DNA damage,
there are three possible outcomes: i) Complete repair of the damage with probability
R, ii) Apoptosis with probability (1− R)a, in which case another cell divides to keep
the number of cells constant; or iii) Accumulation of the damage through a mutation,
reducing the rate of repair to R−∆.

Apoptosis Replacement Increased functionality

Figure 1.5: Schematics of the simulation: In every time step N cells acquire damage. If a
cell goes apoptotic, another cell is chosen to replicate. In the well-mixed system any cell
can replicate, but in the spatial models only neighbouring cells are allowed to replicate.
When a cell gets a mutation, the repair capability of that cell decreases. Cells are not
allowed to revert the mutations. The average tissue repair rate is effectively maintained
by the fact that the cells with impaired repair capability have a higher probability of
going apoptotic. They are then replaced by a random cell, which might have a higher
repair rate, thereby effectively increasing the average repair rate of the tissue.
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1.2.2 Existence of a temporal steady state

To determine the functionality of the tissue we monitored the average repair rate of the
system, 〈R〉. It starts out at the maximum value R0 (no cells with mutations) and then
decreases as cells accumulate mutations. Since mutations are irreversible, the mean
repair rate of each cell will inevitably drop to zero. Surprisingly, a temporary steady
state exists where the repair rate of the system fluctuates around an average value of
R∗ (see Figure 1.6). The temporary steady state is maintained because cells with a low
repair rate are more likely to go apoptotic, and when they do they are replaced by cells
with a higher repair rate. The system leaves the temporary steady state after a time τ,
at which point the average rate of repair decreases to zero very fast.

The biological interpretation of τ is the time a tissue can self-sustain as a functional
tissue. After time τ, an introduction of new cells from the stem cell pool is needed
to maintain a high rate of repair. To link τ with the ageing of the tissue we need to
remember the link between ageing and fast turnover tissue. A higher τ means less
introduction of stem cells, which means less metabolic activity of the stem cells, which
again means less accumulation of damage in the stem cell pool and consequently fewer
mutations [3, 23]. From this rather convoluted argument a large τ corresponds to a slow
ageing of the tissue.

60 100 1400

0.4

0.8

1 100 cells
2500 cells
5000 cells

τN=2500

τN=5000

Av
er

ag
e 

re
pa

ir 
ra

te

Average cell division

R*

Figure 1.6: Temporal steady state: The average repair rate of the system drops as cells
irreversibly accumulate mutations. Since cells with a low rate of repair are more likely
to go apoptotic, a temporary steady state exists where the repair rate of the system
fluctuates around an average value of R∗. The length of time, τ, before the system
leaves this temporary state increases drastically with the size N of the system. If τ is
large, a high rate of repair may be maintained without renewal from the stem cell pool,
and consequently the organism will age more slowly. The simulation is carried out with
parameters R0 = 0.99, a = 0.05, ∆ = 0.0056. The median of 20 simulation runs is shown.
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1.2.3 High probability of repair, apoptosis and a fragile mechanism is
beneficial

When the initial rate of repair R0 is high, both the steady state rate of repair R∗ and the
time spent in this state τ increases (see Figure 1.7 A). Since new, undamaged cells are
produced by somatic stem cells, the initial rate of repair can be thought of as the stem cell
repair rate. Thus, the repair rate of stem cells is not only important for avoiding DNA
damage in the stem cell pool, but also for retaining a high level of function in tissue cells.

Another parameter that we tried varying was the rate of apoptosis, a. An increase in
the rate of apoptosis a decreases the risk of accumulating damage and thereby increases
both R∗ and τ (see Figure 1.7). This is not that surprising since apoptosis is thought
of as a fail-safe mechanism to hinder mutation accumulation, which in the worst case
leads to cancer [24]. What is surprising, though, is that increasing the rate of apoptosis
does not cause more cells in the system to go apoptotic. The increase of the average rate
of repair in the steady state exactly balances out the increased risk of apoptosis when
the repair fails. Put in another way, a higher apoptosis rate does not increase the rate
at which cells need to divide in order to keep tissue homeostasis. Consequently, the
Hayflick limit in the tissue is not reached faster for a higher apoptosis rate.

Varying the last model parameter, the fragility (∆), shows that a more fragile repair
mechanism increases the self-sustaining time τ (see Figure 1.7). The reason for the
increase in τ is that the repair rate decreases drastically when a cell accumulates a
mutation. A second DNA damage will therefore often cause the cell to go apoptotic
and become replaced. This means that cells with mutations are quickly removed from
the system and healthy cells take their place. Thus even though fragile DNA repair is
disadvantageous for the individual cell, the tissue as a whole is better off.

1.2.4 More neighbouring cells is beneficial

In addition to the three parameters shown in Figure 1.6, we also investigated how the
size and dimension of the system would affect the stability of the tissue. For a well-
mixed system, the time τ increases fast with the number of cells N, but in a two- or
three-dimensional system, where apoptotic cells can only be replaced by neighbouring
cells dividing, the time τ increases linearly with increasing N (see Figure 1.7 B).

1.2.5 The fragile DNA repair model

We investigate the well-mixed system analytically. Here, well-mixed means that each
cell interacts with all of the other cells. The state of the system can be characterized
by the number of times i each cell has accumulated DNA damage. Each time a cell
accumulates damage, the cell will decrease its repair rate with ∆. The number of cells
with the repair rate Ri = R0 − i∆ is denoted Ni. When the cells fail to repair after being
exposed to DNA damage, Ni will decrease. Conversely, Ni will increase when these
cells replicate after another cell has gone apoptotic. The rate that a cell with repair rate
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Figure 1.7: Effect of parameters: A) The time τ spent in steady state increases with
the initial repair rate R0, rate of apoptosis a, and fragility of the repair mechanism ∆.
(Parameters that are not varied are set to the values given in the caption of Figure 1.6)
B) For the well mixed system, the time spent at steady state, τ, increases drastically with
system size N. For spatially structured systems the increase is linear. (Parameters used:
R0 = 0.99, a = 0.05, ∆Well mixed = 0.01,∆2dimension = 0.01, ∆3dimension = 0.008, N = 5000.

Ri goes apoptotic is given by:

Rate of apoptosis = a (1− Ri)︸ ︷︷ ︸
P not repairing

,

Average rate of apoptosis = ∑
i

a(1− Ri)
Ni
N

= a(1−∑
i

Ri
Ni
N

) = (1− R∗)a.

Therefore the average rate that a cell goes apoptotic is given by: (1− R∗)a. Where R∗ is
the average repair rate of the temporary steady state. Cells with i > 0 mutations will,
in addition, increase in numbers when cells of repair rate Ri−1 mutate one more time.
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These considerations lead to the dynamical equations of the system:

Ṅ0 =(1− R∗)aN0 − (1− R0)N0, (1.1)

Ṅi =(1− R∗)aNi − (1− Ri)Ni + (1− Ri−1) (1− a)Ni−1. (1.2)

In order to investigate the temporal steady state of our simulation, we solve the steady
state equations. We set the time derivatives to zero and solve for the average repair rate
R∗ in equation (1.1).

R∗ = 1− 1− R0

a
(1.3)

R∗ can then be inserted into (1.2) and using Ri = R0 − i∆ we get the recurrence relation
for the temporary steady state.

Ni =
1
i

(
1− R0

∆
− 1 + i

)
(1− a)Ni−1. (1.4)

This recurrence relation can be solved, using Wolfram-Alpha:

Ni = N0(1− a)i
( 1−R0

∆ − 1 + i
i

)
(1.5)

where the last factor is a binomial coefficient and N0 is the number of undamaged cells.
Summing all Ni gives the total number of cells in the system N, and using the identity
∑∞

x=0(1− a)x(b+x
x ) = a−(b+1) we get a relationship between all cells N and the number

of unmutated cells N0:

N =N0

∞

∑
i=0

(1− a)i
( 1−R0

∆ − 1 + i
i

)
,⇔ (1.6)

N =N0a−
1−R0

∆ −1+1,⇔ (1.7)

N0 =Na
1−R0

∆ . (1.8)

Notice that we here have summed over all i. However the sum should have been trun-
cated at imax = R0/∆, since there are only R0

∆ repair states that the system can be in. For
small ∆’s, states with i > R0/∆ contain virtually no cells, so the truncated sum and the
infinite sum becomes roughly the same (see Figure 1.8 A).

1.2.6 Collapse of system due to fluctuations

The steady state mean repair rate R∗ (equation (1.3)) is in perfect agreement with sim-
ulations for the well-mixed system (see Figure 1.8). In addition to the mean repair rate,
the theoretical steady state distribution (equation (1.5)) shows a perfect overlap with the
actual distribution of the simulation, shown for two time points in Figure 1.8 A. Figure
1.8b shows the development of the distribution over time. Note the drastic collapse of
the distribution. For this simulation the population of cells (N) was 5000; the other pa-
rameters are given in Figure 1.6.
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We can show that the steady state distribution is attractive by introducing the pertu-
bation Ñi = Ni + δ in (1.2):

˙̃Ni =(1− R∗)a (Ni + δ)− (1− Ri) (Ni + δ) + (1− Ri−1) (1− a)Ni−1,

=(1− R∗)aNi − (1− Ri)Ni + (1− Ri−1) (1− a)Ni−1

+ (a(1− R∗)− (1− Ri)) δ,

=Ṅi +

(
a(

1− R0

a
)− (1− Ri)

)
δ,

=Ṅi + (Ri − R0)δ.

Since R0 > Ri the perturbation will be reduced, making the steady state attractive for
all states except i = 0.

The reason the distribution collapses is the finite size of the system. The number of
cells that have accumulated damage i times will fluctuate around the distribution given
by equation (1.5). If the number of undamaged cells randomly fluctuates to zero, new
undamaged cells can never be reintroduced.

The time τ the system spends in the temporary steady state can be understood as
the time passing before random fluctuations cause the number of undamaged cells to
go to zero. After this, a new steady state with a lower maximum repair rate can be
found, corresponding to the substitution R0 → R0 − ∆ in equation (1.8). From Figure
1.6, however, we see that this steady state will be even more unstable than the previous.
This results in a fast collapse of the system to the absorbing state where all cells have
accumulated the maximum amount of DNA damage (see Figure 1.8).

If the dynamics of the undamaged cells were a Poisson process the standard devi-
ation of undamaged cells would be

√
N0. However, in our simulation we saw larger

fluctuation, although we were not able to quantify the magnitude of them. What we
were able to show was that τ increases with system size N. The relative fluctuations of
the undamaged cells decreases when the system size increases. Since the relative fluctu-
ations decrease, so does the probability that the number of undamaged cells fluctuates
to zero. That is, if N0 is high, the time spent in the steady state τ increases drastically
(see Figure 1.7 A). From equation (1.8) we see that N0 increases with both R0, a, ∆, and
N, which explains figure 1.7 A.

1.2.7 Turnover rate of an average cell

From a biological point of view, an interesting measure is the time an average cell lives
in the system, which is denoted by 〈tC〉. The lifespan of a cell in our simulation is the
number of time steps the average cell has gone through at the time it goes apoptotic.
Remember that a time step is when N cells have acquired damage (see section Simulation
steps Simulation steps). On average a cell acquires one damage per time step and has
the probability (1− R∗)a of going apoptotic. Thus, the average cells will be alive for

〈tC〉 =
1

a(1− R∗)
=

1

a(1−
(

1− 1−R0
a

)
)
=

1
1− R0

. (1.9)

Notice that the average lifetime only depends on the initial repair rate R0, meaning that
increasing the rate of apoptosis a does not increase the number of cells going apoptotic.
This is in agreement with our simulations.
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Figure 1.8: Steady state distributions A) The theoretically predicted distributions of
repair rates in the well mixed systems, given by (1.5), is seen to agree well with the
actual distribution during the temporary steady state. B) The distribution of repair rates
as a function of time. (All parameters are set to the values given in the caption of Figure
1.6.)

1.2.8 Discussion

Ageing in fast turnover tissue of a multicellular organism can be seen as the progressive
deterioration of cell function caused by wear and tear on somatic stem cells. Therefore,
tissue that can maintain its function for a long time without renewal from stem cells will
have a slower ageing process.

We have made a simple mathematical model to investigate how damage that compro-
mises DNA repair capacity in single cells might affect a whole tissue. The model in its
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present form captures two important experimental observations, namely the decreased
repair rate and increased mutation frequency with age [2].

There are two interesting and non-intuitive predictions resulting from our model.
Firstly, the model predicts that an initial rapid decline in repair capacity should be fol-
lowed by a rather long period of persistently high repair capacity R∗. In this temporary
steady state, the average number of mutations to genes coding for DNA repair should
remain approximately constant. Experimental studies on mutation frequencies in mice
by Busuttil et al. [22] seem to suggest similar temporal behaviour; the initial rapid in-
crease in mutation frequencies (young mice) is followed by constant, or nearly constant
mutation frequencies (older mice).

Secondly, the time of high repair capacity is longer when the repair mechanism is
fragile. This could explain why a repair pathway such as the BER pathway has com-
pletely essential proteins [21]. Essential proteins are proteins that, when deleted, cause
the mice to die as a fetus. In our model essential proteins, is modelled as a high ∆,
since mutation to those proteins would severely decrease the repair rate. Therefore we
would interpret the BER repair pathway as fragile. A congenital DNA repair mutation
would in our model reduce the initial repair rate R0 → R0 − ∆. A lower initial repair
rate drastically reduces τ (see Figure 1.6 A), which means faster ageing and eventual
death. The evidence that BER mutations are embryonically lethal therefore supports
our model. Other premature ageing diseases (e.g. Werner syndrome and Cockayne
syndrome) could also be interpreted this way.

We find that the average lifetime of cells in the model is independent of the rate
at which damaged cells go apoptotic. It should be noted that since our model only
takes DNA damage affecting the DNA repair mechanism into account, it is not able to
distinguish a successful repair from damage to the genome that does not directly or
indirectly influence DNA repair pathways. If the rate of apoptosis is increased when
damages occur to other parts of the DNA, the average lifetime of cells will decrease. It
is still an open question to what extent apoptosis affects the process of normal ageing
[25].

It should be pointed out that the model completely neglects DNA damages that
occur during the replication process. The number of DNA damages inflicted in every
cell every day may be as high as 100,000 [26]. However, it was not possible for us to
find a number for the ratio of DNA damages occurring between DNA replication and
DNA damages caused during the replication process. If a large amount of the DNA
damage is due to the replication process, then keeping a highly functioning tissue by
a high apoptosis rate will be impossible, simply because each replication would cause
large amounts of DNA damage to the dividing cell.
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1.3 Telomere shortening

Telomeres are the noncoding ends of chromosomes that prevent loss of genomic infor-
mation during DNA replication [27]. Each cell division leads to a telomere shortening of
50–100 base pairs, partly due to what is known as the end-replication problem [28, 29].
When the telomeres reach a critical length the cell goes senescent, which refers to a state
of permanent replication arrest that prohibits any further proliferation [3]. As explained
in the introduction this number is called the Hayflick limit [1].

Short telomeres have been linked to increased mortality and age-related diseases
[30] and accumulation of senescent cells is seen as one of the causes of aging [1, 31, 32].
However, the proliferation limit associated with telomere attrition is thought to work as
a fail-safe mechanism against cells that divide in an uncontrolled fashion, particularly
cancer cells [33]. It has therefore been suggested that telomere shortening is a trade-off
between oncogenesis (onset of cancer) and physiological ageing [34, 35, 36].

Telomerase, which mainly consists of the two components TERT and TERC, elon-
gates the telomeres such that the telomere length of cells is maintained during replica-
tion [37]. Telomerase is also found in stem cells and germ line cells [12]. The amount
of telomerase in germ line cells is sufficient to maintain telomere length [27]. For stem
cells, however, the level of telomerase is lower and the telomeres are therefore shortened
after each cell division, but at a lower rate than for somatic cells [38]. Somatic cells are
all of the cells that are not germ or stem cell. Here we particularly think of somatic cells
as tissue cells, which are the cells performing the physiological function.

It is an open question why stem cells express telomerase, and why the level of telom-
erase is not high enough to avoid a shortening of the telomere length throughout life.
The capability of cells to tune their telomere shortening rate by varying the expression
of telomerase suggests the possibility of optimal telomere shortening strategies.

In the following sections we present a stochastic model that tries to answer if and
why shortening of stem cell telomeres could increase the lifespan.

1.3.1 The simplistic oncogenesis versus ageing trade-off model

The goal of this model is not to describe every detail in the biology behind renewal
of somatic cells by stem cells. The complete cell renewal process is very complicated,
involving multiple biochemical signalling pathways [39], spatial distribution of stem cell
niches and their mobility [10], several differentiation steps ( stem cell→ progenitor cell
→ ... → somatic cell) [40], and the interplay between immune system (clearance of
senescence cells) and stem cell division [36].

Instead we create a higher level, coarse-grained and simplistic model to describe the
trade-off between oncogenesis and physiological ageing in a multicellular organism. In
our simplistic model the organism consists of cell types, stem cells and tissue cells.

The stochastic model describes the accumulation of cancerous mutations in the whole
organism. Each cell division causes the telomeres to shorten, thereby decreasing the
proliferation potential, while at the same time a cell division has the potential to cause
mutations. Mutations can arise both in somatic cells and in stem cells.

The model is initialized by an unmutated stem cell dividing, and thereby creating a
somatic cell and a daughter stem cell. The somatic cell then proliferates H0 times, where
the Hayflick limit is reached and the cell undergoes senescence. Each cell division, either
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somatic or stem, has a probability of acquiring a cancerous mutation. For somatic cells
this probability is denoted p, and for stem cells psc. Mutations acquired by somatic cells
are lost when that lineage reaches its Hayflick limit HG and the somatic cell goes senes-
cent (see Figure 1.9). Mutations acquired in the stem cells are, however, permanent and
inherited by all daughter stem cells. Note that in order to maintain homeostasis (i.e.m
same tissue size), only one daughter cell survives after each replication. Each stem cell
division causes the telomeres to shorten, which we model by the Hayflick limit HG that
declines after each stem cell division with a constant amount α ≥ 0. The constant reduc-
tion of the Hayflick limit will eventually cause the stem cell pool to go senescent. Since
the somatic cells cannot be renewed from a senescent stem cell pool, this sets an upper
limit to the lifespan. Reaching this upper limit could be considered as "dying due to
ageing". We define oncogenisis as accumulation of more than a fixed number of cancer-
ous mutations Cm in any cell. The trade-off is then between the maximal lifespan set by
the stem cells going senescent versus the probability of accumulating more than Cm in
either stem cells or somatic cells. The lifespan is measured as the total number of cell
divisions that the system undergoes before the onset of cancer or stem cell senescence.
A schematic illustration of the model is shown in Figure 1.9.

Please note that in order for us to analytically analyse the system, we have a stem
cell population of one and a somatic cell population of one, which of course is very
unrealistic. In the appendix to our paper we expand the model and computationally
explore the case where a larger somatic cell population is maintained by a smaller stem
cell pool; the results are qualitatively similar to those of this simpler model [41].
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Figure 1.9: Schematic illustration of the model: The flow of time follows the dashed
arrows. Starting at the bottom left corner, initially a stem cell divides. One daughter
cell specializes into a somatic cell, which proliferates until it reaches the Hayflick limit
and goes senescent (first vertical column). In order to keep a constant number of so-
matic cells, the daughter stem cell then divides to produce a new daughter stem cell
and a new generation of somatic cells (subsequent vertical column). For each genera-
tion the Hayflick limit HG is reduced by a constant amount α. At every cell division,
somatic cells and stem cells have the probabilities p and psc, respectively, to acquire can-
cerous mutations. Mutations in stem cells are permanent, while mutations in somatic
cell lineages are lost when the cell line reaches the Hayflick limit. When the system has
accumulated more than Cm mutations (which in this illustration is two), the organism
will have developed cancer. The total cancer-free lifespan is thus the sum of all somatic
divisions.
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1.3.2 Theoretical analysis

In this section we derive a mathematical expression for the average cancer-free lifespan
obtained for different telomere shortening strategies.

Each time a stem cell divides its telomeres shorten. This decreases the Hayflick limit
of the somatic cell by α. The initial Hayflick limit is H0 so after G stem cell divisions
(generations), the Hayflick limit HG is given by:

HG = bH0 − αGe (1.10)

Cell divisions are integers, so be denotes rounding to the nearest integer. As explained
before, stem cell telomere shortening (α > 0) sets the upper limit for the lifespan of the
system. The upper limit is simply H0−0.5

α generations.
The somatic cells can divide HG times, and each time the somatic cells have a proba-

bility p of acquiring a cancerous mutation. The mutations are for simplicity considered
independent, which makes each mutation event equivalent to a biased coin toss. Since
the sequence of mutations are unimportant, the probability F(x) that the somatic cell
lineage acquires x or fewer mutations before it reaches the Hayflick limit is given by the
cumulative binomial distribution.

F(x) =
x

∑
i=0

(
HG

i

)
pi(1− p)HG−i. (1.11)

With each stem cell division there is a risk psc of acquiring a permanent mutation
in the stem cell lineage. The probability for the organism to have j mutations in the
stem cells after G generations, but still be cancer-free, is denoted SG,j. Since the number
of mutations only increases, two events can lead to the state SG+1,j. First, if the stem
cell in generation G has j mutations, no mutation occurs during stem cell division and
no oncogenesis happens during somatic cell division. Second, the stem cell in genera-
tion G has j− 1 mutations, a mutation occurs during stem cell division, and again no
oncogenesis happens during somatic division.

The probability SG+1,j to survive to generation G+1 with j stem cell mutations is
therefore given by the recurrence relation:

SG+1,j =

Probability for j mutation in SC︷ ︸︸ ︷[
SG,j(1− psc) + SG,j−1 psc

]
F(Cm − j), (1.12)

where the expression in square brackets is the probability of having j mutations in the
stem cell, and F(Cm − j) is the probability of not exceeding the critical number of Cm

mutations during the somatic divisions.
The initial stem cell is unmutated, S0,0 = 1, so in terms of the Kronecker delta the

starting condition is

S0,j = δ0j (1.13)

Using Eqs. (1.12) and (1.13), the system can be solved numerically. The overall
probability that the organism will not have developed cancer at a given generation is
defined as:

SG =

∑j SG,j for G ≤ H0−0.5
α

0 for G > H0−0.5
α

(1.14)
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F(Cm − j) is zero for j > Cm. The average cancer-free lifespan 〈L(H0, α)〉 is the mean
number of cell divisions the organism will undergo before exceeding the critical number
of mutations. It can be found by multiplying the probability of getting cancer at each
generation with the number of somatic cell divisions it takes to reach that generation.

〈L(H0, α)〉 =
∞

∑
G=1

P(G)
G

∑
G′=1

HG′−1

Probability P(G) of oncogenesis in generation G is given as (SG − SG+1). Inserting this
and substituting HG′−1 with equation 1.10.

〈L(H0, α)〉 =
∞

∑
G=1

(SG − SG+1)
G

∑
G′=1

H0 − α
(

G
′ − 1

)
Using the identity ∑n

n′=1 n′ = n(n+1)
2 yields.

〈L(H0, α)〉 =
∞

∑
G=1

(SG − SG+1)GH0 − α
G(G + 1)

2
− G

=
∞

∑
G=1

(SG − SG+1)G
(

2H0

2
− α

G + 1− 2
2

)
=

∞

∑
G=1

(SG − SG+1)G
(

2H0

2
− α

G− 1
2

)
Rewriting using equation 1.10.

〈L(H0, α)〉 =
∞

∑
G=1

(SG − SG+1)G
H0 + HG−1

2
(1.15)

When α = 0 the Hayflick limit H0 is constant

〈L(H0, α)〉 =
∞

∑
G=1

(SG − SG+1)GH0

The sum written out is (S1 − S2) + 2(S2 − S3) + 3(S3 − S4) + ... rearranging the terms
yields S1 + S2 + S3 + S4 + .... so eq. (1.15) becomes:

〈L(H0, 0)〉 = H0

∞

∑
G=1

SG (1.16)

Note that for this case SG will never reach 0 and a cut-off is necessary. This is made when
SG < 10−5 and has negligible influence on the cancer-free lifespan. A simpler way of
calculating ∑G

G′=1 HG′−1 the number of somatic division when reaching generation G,
is by using elementary school geometry. The number of divisions can be interpreted as
the area under the curve up until generation G in Figure 1.10. By calculating the area
of the squares and triangles we recover the same expression as in equation 1.15. This
serves as a good sanity check.

1.3.3 Results

Interestingly, the mutation rate in stem cells seems to be a roughly a factor 100 lower
than in somatic cells [42, 43]. This fixes the ratio of mutation rates between stem cells
and somatic cells p

psc
= 100 and we set p = 10−2. The number of mutations necessary
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Figure 1.10: Geometric sanity check Part of the average lifespan equations can be de-
rived by noticing that the number of cell divisions is simply the area under the curve.
The blue and green area until G is the lifespan without telomere shortening after G gen-
erations. The green area is with telomere shortening and using simple geometry we can
calculate part of equation 1.15.

to develop cancer and the mutations interplay is an active topic of research, but a recent
study using sequencing data from roughly 3000 different cancer types estimates the
number to be between two-six mutations [44], which matches the estimate before [45].
We set the number of mutations high: Cm = 6. The choices of p, psc and Cm have
quantitative but not qualitative influence on the results (see the appendix to our paper
[41]). These parameters were chosen such that the optimal lifespan found was close to
the experimentally observed Hayflick limit of 50 [4]. The average cancer-free lifespan is
then calculated from Eqs. (1.15) and (1.16).

The goal of this model is to investigate the trade-off between ageing processes and
oncogenesis. Setting α to zero means no telomere shortening during stem-cell division,
and in the context of our model no ageing. Under the assumption of no ageing (α = 0)
the initial Hayflick limit/telomere length can be optimized for maximal average cancer-
free lifespan 〈L(H0, 0)〉. We denote this set of parameters, that is, the optimal lifespan
in a non-ageing organism, as strategy 1 (see point 1 in Figure 1.11),

We scan the model in the parameter space H0 and α, contrasting with strategy 1 (see
Figure 1.11), picking the following three strategies for further study:

1. Optimal non-ageing: The strategy where stem cells express a telomerase activity,
such that the telomere length of stem cells is constant over time (α = 0). The initial
Hayflick limit is chosen such that the cancer-free lifespan is maximized.

2. Optimal ageing: The strategy that gives the longest cancer-free lifespan when
allowing stem cell telomeres to shorten at each division (α > 0). Again, the ini-
tial Hayflick limit is chosen such that the cancer-free lifespan is maximized. This
results in a larger initial Hayflick limit than for strategy 1.

3. Evolutionary optimal: The strategy that combines the initial Hayflick limit from
strategy 1 and the stem cell telomere shortening rate from strategy 2. Note that
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Figure 1.11: Three strategies: Deviation in average cancer-free lifespan for different ini-
tial Hayflick limits and shortening factors α compared to the longest possible cancer-free
lifespan for a constant Hayflick limit (strategy 1). The overall longest cancer-free lifespan
(strategy 2) is obtained for a higher initial Hayflick limit, which is then slowly reduced
through telomere shortening in stem cells. Strategy 3 has the same initial Hayflick limit
as strategy 1 and the same telomere shortening rate as strategy 2. Black arrows show
how different experimental setups can change the position in parameter space through
modifications of the initial Hayflick limit of stem cells and the telomere shortening rate.
A low initial Hayflick limit and high telomere shortening rate cause premature ageing
due to increased accumulation of senescent cells. The parameters are Cm = 6, p = 10−2,
psc = 10−4.

this strategy yields a similar cancer-free lifespan as obtained for strategy 1.

First off, note that either increasing α or decreasing H0 increases the turnover of stem
cells thereby accelerating ageing (decreasing the maximal lifespan). Second, the faster
turnover of stem-cells increases the risk of accumulating permanent mutations in the
stem cells. On the other hand, this decreases the number of somatic cell divisions,
thereby decreasing the risk of mutations arising in the somatic cells.

1.3.4 Optimal ageing

Our model predicts that the optimal ageing strategy (e.i., strategy 2) balances the risk
of accumulating mutations and the ageing process by having longer initial telomeres
(higher H0) than strategy 1 but decreasing the telomere length of stem cells (HG < H0).
The mechanism behind strategy 2 is that the decreased proliferation potential later in
life balances the increased risk of accumulating the last fatal mutation.
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Figure 1.12: Comparison of the three strategies: Probability of not yet having developed
cancer as a function of time for different telomere shortening strategies. A) For all
three strategies, the probability slowly decreases with time. Only very few individuals
will develop cancer later than twice the mean cancer-free lifespan of the population.
B) Probability of not yet having developed cancer for strategies 2 and 3 compared to
strategy 1. Strategy 2, which has the longest average cancer-free lifespan, will have a
higher probability of cancer development early in life. Strategy 3, which has a low initial
Hayflick limit, is able to postpone cancer until later in life.

1.3.5 Evolutionary optimal ageing

Investigating the probability of being cancer-free as a function of time for the three
strategies (see Figure 1.12), we find that even though strategy 2 is the optimal strategy for
an average cancer-free lifespan, strategy 3 (which has the same average life expectancy
as strategy 1) has a lower probability of oncogenesis early in life. We speculate that from
an evolutionary point of view it is advantageous to keep the reproductive population
cancer-free. The negative effect on the old portion of the population is however not
optimized for. Therefore, strategies that solely optimize cancer-free lifespan may not be
advantageous from an evolutionary point of view if they increase the risk of cancer early
in life when reproduction takes place, as seen with strategy 2.

1.3.6 Temporal regulation

Since the trade-off seems to be between optimizing against early life oncogenisis versus
slow ageing in late life, we investigate what would happen if telomerase is upregulated
later in life. We compare strategy 3, the evolutionary optimal strategy with strategy 3*.
Strategy 3* has the same initial conditions as strategy 3, but will, when reaching HG =
39, double its telomerase production (halving α) for the remaining cancer-free lifespan.
With this up-regulation in telomerase production, longevity can be increased (see Figure
1.13). The increased average cancer-free lifespan relies solely on the ability to postpone
stem cell senescence by up-regulating telomerase. The steep peak in Figure (1.13), which
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is seen after a time that is 2.1 longer than the mean cancer-free lifespan, is caused by the
stem cells of strategy 3 going senescent so SG immediately drops to 0.
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Figure 1.13: Temporal telomerase regulation Increased probability to be cancer-free for
two strategies with same initial conditions but with strategy 3* having an up-regulation
of telomerase in stem cells later in life. The up-regulation (lower α) leads to a slightly
increased cancer risk, but the strategy turns advantageous later on, as the increased
telomerase production postpones the time at which the stem cells go senescent. The
stem cells of strategy 3 go senescent shortly after a time 2.1 times longer than the mean
cancer-free lifespan, whereas this is postponed for strategy 3*.

1.3.7 Discussion and conclusion

The effect of optimizing the initial telomere length (H0) and stem cell telomerase ac-
tivity α seems very small, namely a 2.5% increase in average lifespan or roughly two
years. Both the simplicity of our model and lack of directly measured parameters limit
the credibility of the model’s quantitatively predictions. However, for comparison, the
effect on increased average lifespan if all cancers were eradicated is estimated to be two-
and-a-half years [46], also when introducing population sizes the advantage of limited
telomerase activity increases (see appendix of our paper [41]). The advantage of the
simplicity/abstraction level of the model is that it can easily connect several otherwise
disconnected experiments.

Assuming that strategy 3 is the evolutionary optimal strategy, the model predicts
that removing telomerase, which is the same as increasing α, will increase risk of cancer
because of increased turnover of stem cells and cause faster ageing because of stem cell
senescence (see Figure 1.11). Indirectly the model also predicts that the effect is most
pronounced in highly proliferating tissue, since the turn-over of stem cells would also be
faster. In telomerase (TERC) deficient mice, González et al. (2000) [47] showed a slight
increase in oncogenesis in highly proliferating tissue. Also in TERC deficient mice, Liu et
al. (1998) showed premature ageing symptoms, especially in highly proliferating tissue
[48].

In our model, up-regulating telomerase activity means that α decreases, which corre-
sponds to less telomere shortening during stem cell division. However, since the telom-
erase would also be up-regulated in somatic cells, the proliferation potential would
increase, which means H0 would increase (see Figure 1.11). Our model predicts that an
increase in telomerase activity will cause the organism to be more prone to cancers. This



1.3 Telomere shortening 23

effect was experimentally observed by González et al. (2002) [49]. However, the model
also predicts slower ageing, which was not checked for in the study.

Our model predicts that decreasing H0 leads to a faster attrition of the stem cell pool
and therefore faster ageing. Comparing two types of telomerase deficient mice - one
with initially shorter telomeres (low H0) and one with normal initial telomere length -
the mice with shorter telomeres show decreased viability [50, 51]. The lower viability
was not due to increased cancer incidents, and premature aging signs such as graying
of hair were noticed. However, the studies also showed that several ageing signs such
as increase in osteoporosis were not observed.

Lastly, the model predicts that a temporal induction of telomerase in stem cells could
increase cancer-free lifespan (see Figure 1.13). If the organism starts with a moderate
telomerase activity and then increases the activity in stem cells later in life, the organism
could thereby prevent cancer onset at an early stage of life and postpone ageing, thereby
increasing longevity. A recent study by Bernandes de Jesus et al. (2012) supports this
result. By inducing telomerase activity in adult mice via a virus treatment, they were
able to increase longevity without increasing the risk of cancer [52].

The major discrepancy between our model and data is the shape of the survival
curve. When contrasting real survival curves with our model it is clear that the shape
of the curves only show a very slight resemblance to each other (see Figure 1.14).

Su
rv

iv
al

 ra
te

Trends in scale and shape of survival curves
Byung Mook Weon & Jung Ho Je (2012)
Scienti�c Reports

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 to

 b
e 

ca
nc

er
-fr

ee strategy 1 
strategy 2
strategy 3

Fraction of mean cancer-free lifespan of strategy 1

Figure 1.14: Survival curves for swedish females over six decades (1950-2010) figure
published by Byung Mook Weon and Jung Ho Je [53]. When contrasting the survival
curves from real data and our model there is a clear discrepancy between the shape
of the curves. This Indicates that our model does not capture overall survival in a
satisfactory way.

In conclusion, not all phenomena of physiological ageing can be attributed to telom-
ere length and stem cell turn-over rates, and our model unfortunately does not capture
the shape of real survival curves. Our model simply tries to give a rationale as to why
moderate telomerase activity in stem cells might be advantageous, and at the same
time capture some aspects of physiological ageing observed in otherwise disconnected
experiments.
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1.4 Dynamics of DNA repair proteins

DNA repair proteins are crucial for maintaining genomic stability through a variety of
pathways [54]. DNA repair is a term that covers several distinct biochemical pathways;
among these are the homologue and non-homologue DNA repair pathways, both of
which are capable of repairing double-stranded breaks (DSB). DNA repair can be visu-
alized as a biochemical cut and paste mechanism, where the DNA damage is cut out of
the DNA strand and a new piece of DNA is synthesized and glued back into the DNA
strand. All of the DNA repair processes involve multiple steps and several classes of
proteins. For each pathway most of the proteins can be classified as follows [55]:

1. Endo/exo-nucleases and glycosidases (cutting DNA)

2. DNA helicases (unwinding DNA)

3. DNA ligases (glueing DNA backbone)

4. DNA polymerases and nucleotidyltransferases (adding nucleotides)

5. Adaptors (Protein–protein interactions)

Mutations in these proteins lead to devastating diseases with symptoms that include
premature ageing [20] and increased risk of cancer [56]. Individuals who lack either
Werner syndrome helicase (WRN) or Bloom syndrome helicase (BLM) show symptoms
of accelerated ageing [20].

Most DNA repair proteins (e.g., WRN and BLM) tend to accumulate at the site of
DNA damage caused by genotoxic stresses. While extensive research has been done on
the functions of DNA repair proteins, the process of DNA repair protein recruitment to
the site of DNA damage is not well understood. The repair of DNA damage is a se-
quential process and the recruitment of DNA repair proteins is thought to be somewhat
hierarchical [57]. This means that a subset of DNA repair proteins detects the damage
and promotes recruitment of other proteins that then again could promote recruitment
of yet other proteins and so on. A minimal requirement for a DNA repair protein to de-
tect damage is that the protein interacts with the DNA. Most DNA repair proteins have
DNA binding domains and can therefore potentially interact directly with the DNA [55].
However, it is possible that a structural change is needed for the DNA binding domain
to be exposed and thereby to allow for protein-DNA binding.

Following this logic we expect that proteins where the DNA binding domain is al-
ways exposed will constantly participate in binding/unbinding reactions to exposed
stretches of DNA and therefore have the potential to scan for DNA damages. The bind-
ing/unbinding events of the DNA damage scanning proteins will hamper the diffusion
of these proteins. Oppositely, if the protein’s DNA binding domain is only exposed
during the DNA repair process, the accumulation at the DNA damage site will be in
response to the detection of damage by the scanner. We expect that these proteins will
have higher mobility in the nucleoplasm.

The classification of DNA repair proteins into either scanners or responders has pre-
viously been suggested by Houtsmuller et al. [58]. Here we try to use their mobility to
classify them. Performing Fluorescent Recovery After Photobleaching (FRAP) experi-
ments, we have investigated the spatial dynamics of two DNA repair proteins (namely
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WRN and BLM). The dynamics allowed us to classify the two proteins as either (possi-
ble) scanners or responders. Comparison of diffusion coefficients for other DNA repair
proteins (obtained from literature) shows a separation of proteins into either scanners
or responders.

Another question that we tried to answer is whether the accumulation of WRN and
BLM at DNA damage is limited by the time it takes the proteins to find the damage
(i.e., the search time) or if the accumulation is due to reaction steps of other DNA repair
proteins. In order to answer this question I created regions of DNA damage in cells and
monitored the accumulation of WRN and BLM in these regions (illustrated in Figure
1.15). Lastly, since neither WRN nor BLM are uniformly distributed throughout the nu-
cleus but highly concentrated at nucleoli (nucleus sub-compartment) [59, 60], we also
measured the diffusion coefficient at the nucleoli. WRN and BLM are both involved
in the repair of double-stranded breaks [61], therefore, unless specified otherwise, all
mentions of DNA damage in this section refer to DSBs.

1.4.1 Experiments

WRN and BLM proteins were fused with Green Fluorescent Protein (GFP). All measure-
ments and theoretical calculations where the abbreviations WRN and BLM are used to
refer to the fusion proteins WRN-GFP and BLM-GFP, respectively. To examine the dy-
namics of WRN and BLM we used FRAP. In a FRAP experiment fluorescent molecules
in a small area of the nucleus become irreversible photobleached [62] (see Figure 1.15).
The photobleaching was induced by a focused (micropoint) laser. The surrounding flu-
orescent proteins then diffuse into the small area. The mobility of the fusion protein can
be obtained from the recovery of fluorescent intensity.

If the observed proteins are very mobile the intensity is quickly recovered; however,
for immobile proteins no recovery will occur [63]. In FRAP experiments where the inten-
sity is not completely recovered, the proteins are separated into: "the mobile fraction"
and "the immobile fraction". The immobile fraction is the fraction of proteins that is
stably bound to immobile (or almost immobile) cellular components (e.g. DNA) [63].
Immobile means stably bound within the timespan of a measurement (usually a cou-
ple of minutes): as such, "slow exchanging protein fraction" would have been a more
correct phrase. The mobile fraction, on the other hand, is the fraction of proteins that
exchanges position with the surrounding fluorescent proteins within the timespan of a
measurement.

We performed FRAP in the nucleoplasm and nucleoli, both for WRN and BLM. FRAP
at the site of DNA damage was performed when the recruitment of WRN and BLM to
the site of damage had saturated. This took roughly two hours. The low laser power
used for FRAP did not induce damage (see Figure A.4 in the appendix). For details
on the microscope setup and cell culture preparation,s see the Material and methods
section of our paper [64].
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Figure 1.15: Flourescent Recovery After Photobleaching and Damage induction exper-
iments:
A) FRAP: Fluorescent molecules are irreversibly photobleached in a small area by a fo-
cused laser with a low laser power (0.6 µW). Because fluorescent molecules diffuse into
the bleached area, the fluorescence in the small area is recovered. Mobility of the fluo-
rescent molecule can be estimated from fitting the FRAP curve. Intensity for both WRN
and BLM were recovered within a couple of minutes. B) Damage Induction: A high
power (1.8µW) focused laser is used to generate DNA damage in a small region. DNA
repair protein assemble at the site of damage and we monitored the GFP-tagged WRN
and BLM that accumulated at the damage site. Accumulation of WRN and BLM at the
damage site saturated after roughly two hours.
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1.4.2 FRAP models

The spatio-temporal dynamics of proteins in a cell are often well described by the
reaction-diffusion model (R-D model) [65]. By fitting solutions of the R-D model to
fluorescent recovery curves, we can identify whether there are rate-limiting steps in
the dynamic of interest; furthermore if there is a rate limiting step, we can distinguish
whether the dynamics are dominated by diffusion or reaction.
To establish the nature of the dominant dynamics, we compared three different mathe-
matical models: a full R-D model, a model limited by diffusion and a model limited by
reaction.
Reaction-diffusion model:

∂F
∂t

= D∇2F− k∗onF + ko f f B (1.17)

dB
dt

= k∗onF− ko f f B (1.18)

Where F and B are the concentration of free and bound protein, respectively. ko f f is the
off-rate and k∗on = konS is the pseudo on-rate where S is the number of binding sites. D
is the diffusion coefficient. We have assumed here that the bound proteins are spatially
fixed. The fluorescent signal (Frap(t)) is given as the total fluorescent intensity inside
the bleach spot of both free and bound proteins:

Frap(t) = T(t) = F(t) + B(t) (1.19)

Where T is the total amount of protein, T = F + B. Since intensity is normalized prior
to bleaching, we assume that in equilibrium Feq + Beq = 1. For the derivations in this
thesis we assume that the equilibrium after FRAP bleaching is the same (see appendix
A), the correction to this is described in the FRAP analysis: Correction for initial bleaching
profile and finite geometry section. We further assume rotational symmetry. There is no
closed form for the Frap(t) given the R-D model; however, for the Laplace transform the
solution is:

L (Frap(t)) =
1
s
− Feq

s
(1− K1(qrc)I1(qrc))

(
1 +

k∗on
s + ko f f

)
− Beq

s + ko f f
(1.20)

Where L (Frap(t)) is the Laplace transform of the intensity signal Frap(t). s is the com-
plex frequency. rc is the radius of the bleaching spot. I1 and K1 are modified Bessel
functions of respectively the first and second kind. q is given by q2 = s

D

(
1 + k∗on

s+ko f f

)
.

We obtained the intensity signal Frap(t) by numerically inverting the Laplace transform.

Effective diffusion model: In the limit where the dynamics of binding/unbinding are
fast, B(r,t) can be considered in equilibrium. The dynamics are then dominated by
diffusion and the model then becomes.

Frap(t) = F(t) + B(t) = F(t) + Beq (1.21)

Where the equation governing the fluorescent signal can be written as (see appendix A.2
for derivation):

∂Frap(t)
∂t

= De f f∇2F (1.22)
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The effective diffusion is given by De f f = D 1
1+ k∗on

ko f f

. Solving for the bound proteins in

equilibrium and using that T = F + B, we find that in equilibrium F = T
1+ k∗on

ko f f

. This

gives an intuition about the effective diffusion coefficient since it can be rewritten as
De f f = D F

T so intuitively the reduction of the diffusion coefficient is simply proportional
to the fraction of free proteins. The solution to 1.22 is given as:

Frap(t) =

[
I0

(
r2

c
2tDe f f

)
+ I1

(
r2

c
2tDe f f

)]
exp

(
− r2

c
2tDe f f

)
(1.23)

r2
c is the radius of the bleach spot. I0 and I1 are modified bessel functions of the first

kind. From this we get that if the data is best fitted by the diffusion model, we can
estimate the fraction of free proteins based on the fraction between the theoretically ex-
pected diffusion coefficient Dtheoretical and the measured effective diffusion coefficient
De f f .
Reaction model: In the other limit where the dynamics are dominated by the bind-
ing/unbinding events, the equations reduce to (see appendix A.3 for derivations):

Frap(t) = F(t) + B(t) = Feq + B(t) (1.24)

= 1− Beq exp
(
−ko f f t

)
(1.25)

When the data can be fitted by the reaction model the unbinding rate (ko f f ) can be
calculated directly from the fit.

The two simpler models, namely diffusion and reaction, are approximations of the
full model. This means that for any dataset the full R-D model will give the best fit, but
at the cost of an extra parameter. Models are therefore chosen based on their Akaike
Information Criteria value, (see 1.4.3 Model selection criteria for details.)

1.4.3 Model selection criteria

We use the Akaike Information criteria (AIC) to differentiate between the three models.
AIC is a measure that evaluates a model based both on the goodness of fit and the
number of variables. The AIC is given as [66]:

AIC = 2k− ln(L) (1.26)

Where k is the number of variables and L is the maximum likelihood of the model. The
likelihood of a non-linear fit is given as[67]:

ln(L) = −n
2
· (ln(2π) + 1 + ln(〈RSS〉)) (1.27)

Where 〈RSS〉 = ∑n
i=1(yi− f (xi))

2)
n is the average sum of squares of the residuals, n is the

number of data points, yi is the i-th data point and f (xi) is the predicted value of the
model. Taking small sample size into account, the corrected AIC is given as [68]:

AICc = AIC +
2k(k + 1)
n− k− 1

(1.28)
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The model with the lowest AICc is the preferred model. AICc can be considered a
correction of the log-likelihood for a model. This also means that the relative likelihood
between models can be calculated[68, 67].

pi = exp
(

AICc,min − AICc,i

2

)
(1.29)

Where pi is the probability that the i-th model is as good as the preferred model. A
similar model selection criteria is the Bayesian Information Criteria (BIC), which is given
as:

BIC = k · ln(n)− 2 ln(L) (1.30)

It should be noted that neither BIC nor AIC is an absolute measure since they only
evaluates the models relative to each other. The 〈RSS〉 is an absolute measure, but it
does not take number of variables into account and therefore does not penalize for over
fitting. We therefore indicate, the AIC, BIC and 〈RSS〉 which shows that the choice of
selection criteria does not affect the preferred model, and allows us to have an "absolute"
value for how good the models are.

1.4.4 FRAP analysis: Correction for initial bleaching profile and finite
geometry

Circular spots were bleached in the nucleoplasm, nucleolus and damage site. The spot
diameter was 1µm in all cases except for WRN in the nucleoplasm where it was 2 µm.
The size of the spot is a trade-off between a good signal to noise ration and recording
the first time points. At least five cells were used to create the recovery curves. The
images were background corrected and the intensity of the FRAP region was divided
by the average intensity of the nucleus to correct for photobleaching. The derivation
of the models (as seen in appendix A), assumes that the bleaching spot is cylindrical
and that the nucleus is infinite. As work by Mueller et al. [69] has shown that these
two assumptions can affect the estimation of the diffusion constant, we therefore correct
for these two. First the initial bleaching profile is taken into account by fitting it to a
modified Gaussian, as described by Mueller et al. [69].

I0(r) =

θ r < rc

1− (1− θ) exp
(
− (r−rc)2

2σ2

)
r ≥ rc

(1.31)

The shape of the profile is a "flat-headed" Gaussian profile, where rc determines the size
of the flat (constant) part.

Second, the finite geometry of the nucleus is taken into account. We assume that the
nucleus is circular and need to estimate the radius of the nucleus. This radius R is an
effective radius based on the final recovery level φ and the initial bleaching profile I0(r).
The total fluorescent intensity of the nucleus after bleaching is given as:

FA = 2π
∫ R

0
rI0(r)dr

Since the images are corrected for photo bleaching, FA is constant over time. Because the
images were normalized before bleaching, the total intensity inside the nucleus before
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bleaching FB is simply the area of the nucleus.

FB = 2π
∫ R

0
rI(r)dr = 2π

∫ R

0
r1dr

= πR2

The ratio between the intensity after (FA) and before bleaching (FB) is then given as:

φ =
FA
FB

2π
∫ R

0 rI(r)dr
πR2 (1.32)

φ the loss of intensity from FRAP can be directly measured in the images and I0(r) is
found by fitting equation 1.31 to the data. Using equation 1.32 allows us to find the
effective radius R of the nucleus. The initial profile I0(r) and the effective radius of the
nucleus R is then used to correct the FRAP models as described in Mueller et al. [69].

1.4.5 Diffusion coefficient of fusion proteins

Given the relation between molecular weight and hydrodynamic radius[70]:

Rh ∝ M
1
3 . (1.33)

and the "Stokes-Einstein" equation:

D =
kBT

6πηRh
. (1.34)

We get that the diffusion coefficient D scales with the mass M as:

D ∝ M−
1
3 . (1.35)

Using the scaling relationship of the corresponding molecular weights
Dfusion protein

DGFP
=

3
√

MGFP
Mfusion protein

. With MGFP = 27 kDa [71], MWRN = 165 kDa [72] and MBLM 170 kDa
[73] and DGFP = 28 [74]. We can estimate the corresponding diffusion constants of the

fusion protein: DWRN−GFP = 14.7 µm2

s and DBLM−GFP = 14.4 µm2

s
This assumes spherical shapes of the proteins, which can be corrected for according to
Erickson (2009) [70]. The deviation from a spherical confirmation to a globular protein
structure corresponds to a 20% reduction of the diffusion coefficient.

Dtheoretical =
D f usion

1.2
(1.36)

This results in DWRN,theoretical = 12.2 µm2

s and DBLM,theoretical = 12.0 µm2

s .

1.4.6 WRN and BLM undergo fast binding/unbinding reactions in
nucleoplasm and nucleoli with at least 90% of proteins bound to DNA
at any time

We analysed the WRN mobility in the nucleoplasm. The results are shown in Figure
1.17. Using the AIC we find that the diffusion model is the best model among the three

we tested (see table 1.16). From the diffusion coefficient of GFP (28 µm2

s ) [74], the size of
WRN [72] and shape corrections [70] we calculated the theoretical diffusion coefficient
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of the fluorescent fusion protein WRN-GFP to be 12.2 µm2

s . Note that this method where
we use GFPs measured diffusion in nucleoplasm and scale by protein size accounts for
the viscosity inside the nucleoplasm. The shape corrections are used when converting
between protein mass and size. The calculations are shown in the Methods subsection
1.4.5 diffusion coefficient of fusion proteins.

The experimental WRN diffusion coefficient in nucleoplasm obtained from the FRAP

data is much slower (DWRNe f f = 1.62 µm2

s ) than the theoretical one (12.2 µm2

s ). Using the
slower diffusion coefficient with the fact that the best model is the diffusion model,
we can calculate the fraction of free protein from the effective diffusion constant (ex-
perimentally measured) and the theoretical diffusion constant. Surprisingly we find
that 90% of WRN is bound to chromatin at any time. Since the FRAP data shows full
recovery of intensity (see Figure 1.17 C), this large bound fraction must undergo fast
binding/unbinding events.

From similar calculations we find that the fluorescent fusion protein BLM-GFP is

expected to have a diffusion coefficient of 12.0 µm2

s (see Methods diffusion coefficient of
fusion proteins). However, from our experimental data we find that BLM also has a much

lower effective diffusion coefficient DBLMe f f = 1.34 µm2

s . The data is shown in appendix
A.1. Both WRN and BLM are constantly and very rapidly binding and unbinding to the
chromatin, and at all times 90 % is bound.
We performed the same analysis in the nucleoli and found similar results (see Fig-
ure1.18). For both proteins FRAP dynamics were best described by diffusion. A large

reduction of the diffusion coefficients (DWRNe f f ,nucleoli = 0.12 µm2

s and DBLMe f f ,nucleoli =

0.13 µm2

s ) is expected to stem from roughly 99 % of the proteins being bound to DNA
but undergoing fast binding/unbinding events.
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Figure 1.16: Summary of model selection: The models highlighted in blue are the
optimal models. The optimal model is based on the lowest AICc value. Both AICc and
BIC give similar predictions about the optimal model. PAIC or PBIC indicated among the
three models the probability that the less optimal model could be the better model. The
diffusion model is the optimal model for both WRN and BLM in nucleoplasm and in
nucleoli. Our data on the dynamics at DNA damage is not able to discriminate between
the three models. Since the amount of data is the same, this could be interpreted as the
dynamics at DNA damage being more complicated than the dynamics in nucleoplasm
and at nucleoli. Both AIC and BIC are only relative measures between models; a more
absolute measure is 〈RSS〉, although it does not take the number of parameters into
account.



1.4 Dynamics of DNA repair proteins 33

I0(r)

FRAP of GFP-WRN in nucleoplasm

1 2 3 4 50

0.2

0.4

0.6

0.8

1

M
ea

su
re

d 
ar

ea

N
or

m
al

iz
ed

 In
te

ns
ity

Radius [μm]

Reaction
Diffusion
Reaction-Diffusion

Bleaching profile

Best model fits

Nucleoplasm

0 5
0.3

0.9

50 100 150 200 2500

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 In
te

ns
ity

Seconds

5µm 5µm
A) B)

C)

Nucleolus

Figure 1.17: In the nucleoplasm the dynamics of WRN are governed by effective

diffusion with DWRN−e f f = 1.62 µm2

s A) In cells expressing EGFP-WRN, a 2µm spot
is bleached in the nucleoplasm, as indicated by the orange arrow. B) To identify the
shape of the initial loss of intensity, I0(r), a Gaussian profile (blue line) is fitted to the
measurements of the initial intensity at a given radius from the centre of the bleached
region (circles). C) Fluorescence recovery curves (circles) and corresponding best fits
using: Reaction (solid green line), Diffusion (dashed blue line) and Reaction-Diffusion
(solid black line) models. The inset is a zoom-in of the first five seconds. Data points
show the averages of five cells and the error bars represent the standard deviations. For

BLM we also found that the diffusion model gave the best fit with DBLM−e f f = 0.07 µm2

s
(see appendix A.1).
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Figure 1.18: In the nucleoli the dynamics of WRN are governed by effective diffusion

with DWRN−e f f = 0.12 µm2

s A) In cells expressing EGFP-WRN, a 1µm spot is bleached
in the nucleoli, as indicated by the orange arrow. B) To identify the shape of the initial
loss of intensity,I0(r), a Gaussian profile (blue line) is fitted to the measurements of
the initial intensity at a given radius from the centre of the bleached region (circles).
C) Fluorescence recovery curves (circles) and corresponding best fits using: Reaction
(solid green line), Diffusion (dashed blue line) and Reaction-Diffusion (solid black line)
models. The inset is a zoom-in of the first five seconds. Data points show the averages
of five cells and the error bars represent the standard deviations.
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1.4.7 WRN and BLM dynamics at the damage site have two different
timescales

A distinct feature of the data for both WRN and BLM at the site of DNA damage is that
the fluorescent recovery curves reach saturation at 80% of the original fluorescent signal.
This means that for both WRN and BLM, 20% of the proteins are so tightly bound in the
region of DNA damage that they do not unbind within the 1 1/2 minute we imagined.
The immobile fraction could represent proteins that are actively involved in DNA repair.
The mobile fraction (80%) reaches saturation within less than a minute. This indicates
that the time it takes a protein to localize at the site of damage (e.i., the search time) is
less than a minute.
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Figure 1.19: Analysis of WRN dynamics at the site of damage. At the site of DNA
damage WRN (and BLM) have at least two distinct binding modes. We performed the
FRAP measurements after the accumulation at the damage sites had saturated, which
is roughly two hours (see Figure 4). A) In cells expressing EGFP-WRN, a 1 µm spot is
bleached in the DSB, as indicated by the orange arrow. B) To identify the shape of the
initial loss of intensity, I0(r), a Gaussian profile (blue line) is fitted to the measurements
of the initial intensity at a given radius from the centre of the bleached region (circles).
C) Fluorescence recovery curves (circles) and corresponding best fits using: Reaction
(solid green line), Diffusion (dashed blue line) and Reaction-Diffusion (solid black line)
models. The inset is a zoom-in of the first five seconds. Data points show the averages
of five cells and the error bars represent the standard deviations. We were not able to
discriminate between the three models (see table 1.16).
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So far we have found two dynamics at the damage site with different time scales:
the immobile fraction of WRN and BLM that indicates there are dynamics on the scale
of minutes or longer, and a diffusion time scale of seconds. In addition to these two
dynamics, there is also the accumulation of WRN and BLM at the site of damage.

After DNA damage induction we monitor the accumulation of WRN and BLM to
the site of DNA damage. From our data we find that it takes WRN and BLM roughly
two-three hours to saturate at the site of damage (see Figure 1.20 A).

The time it takes for WRN and BLM to accumulate cannot be explained by the pro-
teins diffusing and binding directly to DNA damage. The DNA damage is created
rapidly after laser irradiation, and our FRAP measurements show that the search time
is less than one minute (see Figure 1.19 D). Since the accumulation at damage sites does
not saturate after roughly one minute, a gradual creation of additional binding sites for
WRN and BLM at the damage site could be dominating the accumulation dynamics.
The additional binding sites are in such close proximity to the target of irradiation that
they are indistinguishable at the resolution of our microscope (≈250 nm).

Possible biological scenarios for the production of binding sites could be either hi-
stone modification or complex formation of repair proteins assembling at the damage
site. WRN has already been shown to bind to γH2AX, a stretch of 2000 histones that
get phosphorylated upon DSBs [75]. While the histone phosphorylation occurs on a
timescale of minutes, other slower histone modifications could be a possible mechanism
for the recruitment to the DSBs [76].
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Figure 1.20: Accumulation of WRN and BLM at DNA damage. A) Accumulation of
WRN and BLM at the site of damage takes two-three hours to saturate. The data is
from 21 WRN cells and 9 BLM cells, and the error bars indicate standard deviation. B)
Our FRAP data (Figure 1.19) show that binding events are rapid at the site of damage
and can therefore be neglected. The production of active binding sites is mathematically
described by [B-WRN] = m(1− exp(−rt)). The half-lives obtained by fitting the math-
ematical model are: t 1

2 WRN = 1152± 58s and t 1
2 BLM = 2310± 154s which is roughly 20

and 40 minutes.
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We created a simple mathematical model for the accumulation of WRN and BLM.
Upon induction of damage B∗ potential binding sites are created. These potential bind-
ing sites are then converted at a constant rate r into active binding sites for WRN and
BLM. WRN and BLM bind rapidly to these new binding sites (B) (see figure 1.20 B). Ne-
glecting the second step, the accumulation can therefore be mathematically described as
the conversion of potential binding sites B∗ to binding sites B:

[B-WRN] = m(1− exp(−r · t)). (1.37)

Here m is just a factor to scale the saturation level. The rates are rWRN = 0.6± 0.03ms−1

and rBLM = 0.3± 0.02ms−1, corresponding to "half lives" of 20 minutes and 40 minutes.

1.4.8 Classification of DNA repair proteins into either scanners or
responders

When comparing DNA repair protein data from the literature, we find that purely from
their mobility they could be classified into two groups (see Figure 1.21). In one group
where the experimental measured diffusion coefficient is only slightly smaller than the
theoretically estimated free diffusion coefficient. This slight decrease can be explained
by complex formations, polymerization or a crowded environment in the nucleoplasm.

However, a second group of DNA repair proteins was shown to have diffusion coef-
ficients five times smaller than the theoretically estimated diffusion coefficient. A five-
fold difference in diffusion coefficient would correspond to a 100-fold increase of mass.
Complex formation and polymerization thus cannot explain the difference between the
theoretical and experimental diffusion coefficients. Since proteins of roughly the same
size (measured in nucleotides) do not show the same decrease in mobility, crowding in
the cell does not seem to explain the large difference in mobility.
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Figure 1.21: DNA repair proteins can be classified into two major categories: scanners
and responders. Plotted are the theoretical, Dtheoretical , and measured effective, De f f ective,
diffusion coefficients for respective DNA repair proteins (for exact values and references,
see table in appendix A.1). When proteins do not bind to chromatin or other static cel-
lular components, the ratio between the theoretical diffusion coefficient based on mass
and shape (Dtheoretical) and the effective diffusion coefficient determined experimentally
(De f f ective) approaches 1.
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We find that a reasonable explanation for the large difference in theoretical diffu-
sion coefficients and measured diffusion coefficients is that these DNA repair proteins
are mostly bound to chromatin or other static cellular components. We classify DNA
repair proteins into two groups, scanners or responders, based on their reduced mobil-
ity. We compare the estimated theoretical diffusion coefficient with the experimentally
measured effective diffusion in Figure 1.21 and categorize the proteins as follows:

1.
De f f

Dtheoretical
< 0.2 (Scanners regime, see Figure 1.21) The reduced mobility is due to

binding/unbinding with DNA. A ratio of 0.2 or lower would otherwise require a
complex formation of ≈100 or more proteins. These proteins can potentially scan
the DNA for damage

2.
De f f

Dtheoretical
> 0.4 (Responders regime, see figure 1.21) The reduced mobility could

be due to complex formations of 15 or fewer proteins (of same size), or it could
be due to imperfect theoretical assumptions (e.g., the shape correction). These
proteins accumulate at DNA damage and interact with DNA when other proteins
have detected the damage.

1.4.9 Discussion and conclusions

Previous research has noted the difference in diffusion coefficients of DNA repair pro-
teins [77]; however this is the first time they are combined with an expected diffusion
coefficient (theoretical diffusion coefficient). The exact regions for when a protein is a
potential scanner or responder, are set arbitrarily in our analysis. However, the rationale
behind, that is that when a protein scans the DNA for damage its mobility decreases,
and that this effect on mobility can be investigated when the theoretical diffusion coef-
ficient is known, is independent on the threshold for the classification.

The decrease of WRN and BLM mobility in nucleoli compared to nucleoplasm is
probably due to WRN and BLM participating in ribosomal RNA transcription. The
reasons are that ribosomal RNA is transcribed in the nucleoli[78] and WRN that has
been show to interact with RNA polymerase [59].

Investigation of the WRN and BLMs dynamics at DNA damage suggest that at least
two types of interactions take place. An interesting experiment could be to investigate
the dynamics of WRN and BLM in a γH2AX free context, asking whether γH2AX will
change the immobile fraction or accumulation time.

Please note that our classification of WRN and BLM as scanners suggests that both
proteins should be among the first proteins at the site of DNA damage. However,
the accumulation of WRN and BLM at DNA damage saturates after two-three hours.
Speculating on this, a possible explanation of these two different observations could
be that WRN and BLM have multiple roles. First, WRN and BLM scan the DNA for
damage and get recruited to the DNA damage; however, because of the low number
of DNA damages, the initial recruitment of WRN and BLM is not detected. Second,
WRN and BLM are recruited later in the DNA repair process due to some biochemical
reactions, possibly mediated by γH2AX.



Chapter 2
Transcription Regulation

2.1 Introduction to Transcription Regulation

Cells respond to environmental stimuli by changing their gene expression profile. Tran-
scription, the first step in the central dogma, is a process in which the RNA polymerase
(RNAP) binds to the DNA at a specific sequence called the promoter site. Transcription
is a unidirectional process, so from the promoter site the RNAP transcribes the down-
stream gene. The process of transcription maps the DNA code to the RNA code, which
afterwards becomes translated into a protein by the ribosomes.

The logic of regulatory-protein-mediated transcription depends upon whether the
regulatory protein is an activator (positive control) or a repressor (negative control).
Proteins called transcription factors control expressions of genes. Transcription factors
are usually classified as either activators or repressors (see Figure 2.1).

Conditioning the regulation of genes on the activation (or deactivation) of another
gene allows allowing for a whole zoology of different conditioned gene expression pat-
terns. These conditioned expression patterns are usually represented by an interaction
network where activation is indicated by a normal arrow and repression is represented
by a flat-headed arrow (see Figure2.1 B). The whole regulatory network is built up
by smaller regulatory networks called motifs. The emergence of many complex cellu-
lar functions (such as regulation of metabolism, decision making, memory, biological
rhythm, and homeostasis) are emerging from motifs that have feedback loops [79]. A
positive feedback in a transcriptional motif typically promotes bi- or multistability [80],
allowing cells to be in two or more states. Negative feedbacks are widely used to induce
stability; however, with a time delay it can result in stable oscillations [81].

In the first chapter we investigated the trancription regulatory effects that RNA poly-
merase has when two promoters are overlapping. In the second chapter I have inves-
tigated the effect of combining the two simplest regulatory motifs, namely a negative
auto regulatory (NAR) motif with a positive auto regulatory (PAR) motif.

40
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Figure 2.1: Network representation of transcription regulation: A) RNA polymerase
can transcribe the genes, thereby producing mRNA. The mRNA is then exported to the
ribosomes where the mRNA is translated into proteins, the central dogma in biology. If
the proteins are transcription factors they can regulate the transcription of other proteins
(or themselves). If the transcription is up regulated the protein is called an activator and
conversly if the transcription is down regulated, the protein is called a repressor. B) A
simplified network representation of the biological processes in A) where the red protein
is a repressor performing self-repression and the green protein is an activator of the red
protein.
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2.2 Regulatory effects of RNA polymerase for overlapping promoters

As explained in the introduction, transcription factors are usually classified as either:
activators or repressors. However some transcription factors are dual functioning reg-
ulators, meaning they can act both as activators and repressors. Opposite regulation of
two promoters can be achieved when two promoters share a common regulatory region
in such a way that one of the two promoters is subjected to positive regulation by the
very same protein that represses the activity of the second promoter [82]. In principle,
the binding of RNAP to a promoter that overlaps a second promoter can inhibit RNAP
binding to the overlapping promoter [83, 84] or interfere with open complex formation
at a nearby promoter [85]; RNAP itself can therefore act as a transcriptional regulator
for overlapping promoters.

We were interested in finding out if promoters in E.coli are actually overlapping;
since the position of the promoter regions in the E. coli genome [86] has recently been
mapped this is now possible. Using the promoter positions and the fact that RNAPs oc-
cupy 75 basepairs when bound to DNA [87], it is possible to find which promoters are
overlapping. Szabolcs Semsey used a slightly more conservative estimate for the over-
lap (50 basepairs) but still identified 314 promoters that were overlapped by a second
promoter. The number of promoters that have overlaps corresponds to 14% of the total
number of promoters in the E. coli genome. The orientation of overlapping promoters
can be, either head-to-head or tail-to-tail (see Figure(2.2)), but in both cases the overlap
would be the same.

From analysing the E.coli transcription unit database we found three different pro-
moter arrangements:
1) Both promoters transcribe a gene and at least one is regulated by a transcription fac-
tor.
2) Both promoters transcribe a gene but there is no known transcription regulation by
transcription factors.
3) Only one of the promoters transcribes a known gene.
In the last case, since the overlapping promoter does not transcribe a gene, the RNAP
seems only to act as a regulator. Further supporting the case for RNAP as a regulator is
the fact that a significant proportion of promoters in E. coli are bound by RNAP, which
has no transcriptional activity [88].

Because overlapping promoters are common in E.coli we have built a mathematical
model to investigate how the level of interference depends on the characteristics of the
promoters involved. Additionally, Szabolcs Semsey built a synthetic regulatory region
to demonstrate how regulation of one of the promoters can affect the activity of the
other.

Traditionally, promoters are classified by strength. The strength is measured by the
amount mRNA produced per time. That is, a strong promoter has a higher rate of
mRNA production than a weak promoter. The most striking result from this research is
that the strength of a promoter does not determine how strongly it will interfere with
an overlapping promoter. The promoter characteristic that determines the level of inter-
ference, is the amount of time that a RNAP spends bound to the promoter. To capture
this property, we introduce a new way of classifying promoters, which we call aggres-
siveness. This means that promoters can be classified both by their mRNA production
(strength) and by their aggressiveness (magnitude of interference).
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In addition to this work, a previously related phenomenon namely interference of elon-
gating RNAP, has been modelled [89, 90].

2.2.1 Results and discussion

Figure 2.2: Arrangement of overlapping promoters: Promoters can be arranged head-
to-head (right) or tail-to-tail (left). A promoter occupies 75 bp (from -55 to +20) when
bound to the promoter [87]. We consider an overlap between promoters to be from -
80 to +20 (indicated by red). Note that this is a more conservative estimate, since this
means that a RNA polymerase only occupies 50 bp (from -40 to +10), as indicated by
gray boxes. The transcription start of the forward promoter (+1) is used to enumerate
the base pair positions. Even with the conservative estimate, Szabolcs Semsey found
that 14% of the E.coli promoters overlap.

2.2.2 Mathematical model

If two promoters overlap, a RNAP bound to the promoter of one DNA strand could
inhibit the binding of a second RNAP on the opposite DNA strand. We have investi-
gated this process in order to quantify how much interference might be expected by this
mutual inhibition. Mathematically the dynamics of the RNAPs’ mutual exclusion can
be described by a master equation. The system can be in one of three states:
(1) The RNAP is bound to promoter 1, which happens with probability Θ1

(2) The RNAP is bound to promoter 2, which happens with probability Θ2

(3) Both promoters are free, which happens with probability 1−Θ1 −Θ2

The system is shown in Figure 2.3.
For this particular system, the master equations governing are as follows:

Θ̇1 = k1
on(1−Θ1 −Θ2)− k1

f Θ1, (2.1)

Θ̇2 = k2
on(1−Θ1 −Θ2)− k2

f Θ2. (2.2)

Θ1 and Θ2 are probabilities of the RNAP being bound respectively to promoter 1 (P1)
or promoter 2 (P2). k1,2

f are the firing rates of the promoters and k1,2
on is the pseudo on-

rate of the RNAP. These equations are the dimensionless equivalent of the biochemical
reactions shown in appendix B.2. In our model we assume that RNAP concentration is
constant and that RNAP does not dissociate from the DNA when bound. We call the
probability of being in state 1 or 2 (Θ1 or Θ2) the occupancies.

We measure the interference between the RNAPs as the repression of promoters 1
compared to an equivalent but isolated promoter. For the isolated promoter system
there are only two states; either the promoter is bound by RNAP or it is free.

Θ̇0
1 = k1

on(1−Θ0
1)− k1

f Θ0
1.
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Figure 2.3: Schematic of the mathematical model: Spatially the two promoters cannot
be occupied by RNAPs at the same time. This creates a situation where one RNAP might
repress the other. From a mathematical point of view the simplest model to describe this
phenomenon is a three-state Markov chain with transitions between the states as shown
in the figure. The probability of being in state one, two and three is given by (Θ1, Θ2,
1−Θ1−Θ2), the rate for RNAP to bind to the promoter is k1,2

on and the rate of the RNAP
to elongate (or the promoter to fire) is given by k1,2

f .

Solving for steady state we get that:

Θ0
1 =

k1
on

k1
on + k1

f
=

α1

1 + α1
. (2.3)

Note that the only parameter that determines the occupancy is the aspect ratio α1 = k1
on

k1
f

.

The rate of mRNA production, or the strength of the promoter P1 is given as:

Ω0
1 = k1

f Θ0
1 =

k1
f k1

on

k1
on + k1

f
.

Solving (2.1) and (2.2) for steady state(Θ̇1 = Θ̇2 = 0), the steady state solutions for the
overlapping promoters become:

Θ1 =
α1

1 + α1 + α2
,

Θ2 =
α2

1 + α1 + α2
.

From the occupancies of the overlapping promoter and the isolated promoter (2.3) we
can calculate the relative promoter activities of both promoters. Here I only show it for
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promoter 1 (P1):

Ω1

Ω0
1
=

k f Θ1

k f Θ0
1

,

=

α1
1+α1+α2

α1
1+α1

,

=
1 + α1

1 + α1 + α2
.

Ω1

Ω0
1
=

1 + α1

1 + α1 + α2
(2.4)

Using (2.3)
(

α1 =
Θ0

1
1−Θ0

1

)
these equations can be reformulated in terms of the isolated

occupancy (Θ0
1,2):

Ω1

Ω0
1
=

1

1 + Θ0
2

(1−Θ0
2)
(1−Θ0

1)
(2.5)

In Figure 2.4 the interference of promoter 1 is show both as a function of aspect ratios
and the occupancies.
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Figure 2.4: Simulation results for interference of overlapping promoters: Left panel:
Interference of promoter (P1) activity as a function of its own aspect ration(α1) vs. over-
lapping promoter (P2) aspect ratio (α2). Right panel: Interference as a function of the
promoter’s basal occupancy. Interference is measured as the the activity ratio between
a non-repressed promoter and the repressed promoter. The four circles shows different
examples of promoter pairs: Ranging from almost complete repression (white) to almost
no repression (green) with blue and red as intermediates.

Our model predicts that mutual interference of overlapping promoters is indepen-
dent of the intrinsic strength (Ω0); it only depends on the aspect ratios. It might be
somewhat surprising that a strong promoter and a weak promoter can be equally in-
hibiting. To account for the capacity of a promoter to inhibit an overlapping promoter
we introduce the term called the promoter aggressiveness. The aggressiveness is a mea-
sure of the time the RNAP spends at the promoter site.
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Our model predicts that the activity of overlapping promoters depends on:
1) The intrinsic activity of the individual promoters.
2) Promoter interference (aggressiveness).
3) The effect of regulatory proteins.

Naturally, this means that the overlapping promoter activities can be regulated in
any of these three ways. The simplest case is when there are no regulatory proteins. In
this case the promoters are regulated by the RNAP affinity to the promoters. In the case
of regulatory proteins, the overlapping promoter complex enables indirect regulation.
For example, when a regulatory protein affects only one promoter directly, there will be
an indirect effect on the overlapping promoter. Whether the indirect effect activates or
represses the overlapping promoter depends on whether the promoter becomes more or
less aggressive and not whether it becomes stronger or weaker.

An example could be an activator. The activator can act in two different ways: it
can either increase the rate of RNAP binding to the promoter or it can increase the rate
of elongation when the RNAP is bound to the DNA. In the first case it would increase
aggressiveness of the promoter, hence down-regulate the overlapping promoter. In the
second case it would decrease the aggressiveness and therefore effectively up-regulate
the overlapping promoter.
Similarly, repressors can decrease the rate of promoter loading by inhibiting RNAP
binding or by trapping the RNAP on the promoter. Both would decrease transcription
but in the first scenario the aggressiveness is decreased, whereas in the latter scenario
the aggressiveness is increased.

We explored these scenarios by simulating how repression or activation changes tran-
scription of overlapping promoters of different nature. Repression of strong promoters
was simulated by a ten-fold reduction of the RNAP binding rate (k1

on) or by a ten-fold
decrease of firing rate (k1

f ) (see Figure2.5).
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Figure 2.5: Examples of simulated regulation responses of overlapping promoters:
The bars show the relative activity of promoters labelled with green arrows. The activi-
ties are measured as relative to the activity of the strong promoter that is either P1A, P1B
or P2C . Black bars show intrinsic promoter activities, which mean no overlap. White
bars show promoter activities when the promoters overlap. Red bars indicate regulation
in different direction (one promoter is up-regulated, while the other is down regulated):
the down regulated promoter is indicated by an repression arrow. Blue indicates reg-
ulation in the same direction. The parameters for the unregulated promoters were:
P1A = P2C(10s, 75%), P2A(200s, 15%), P1B(10s, 15%), P2B(200s, 75%), where the first pa-
rameter is the inverse firing rate ( 1

k f
) measured in seconds. The second parameter is the

occupancy (Θ0), the fraction of time spent on the promoter. Note that k f regulation gen-
erally changes activities in the same direction, whereas kon regulation changes activities
in opposite directions.
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In general, changing the RNAP binding rate (kon) has an opposite effect on the activ-
ities of the two promoters, whereas both promoters activities are changed in the same
direction when the firing rate is altered. Opposite regulation obtained by direct and
indirect regulatory effects can result in a transcriptional switch. However, a successful
transcriptional switch requires a strong effect of the opposite regulation on both pro-
moters combined with a large difference in activity for the overlapped promoters in the
absence of the regulatory protein. Put in another way: without regulation, promoter
1 could be "on" and promoter 2 could be "off", while the situtaion is completely oppo-
site when the regulatory protein is bound; that is promoter 1 should now be "off" and
promoter 2 should be "on". There are several ways to obtain high activity differences
(on/off behaviour), including:
1) Overlapping a strong aggressive promoter (P1A) with a weak non-aggressive promoter
(P2A)
2) Overlapping a strong non-aggressive promoter (P1B) with a weak non-aggressive pro-
moter (P2B)
3) Overlapping a strong non-aggressive promoter (P1B) with a strong aggressive pro-
moter (P2C)

In the first case, repressing the on-rate by a regulatory protein directly decreases the
activity and aggressiveness of the strong promoter (P1A), thus allowing transcription of
the overlapping non-aggressive promoter (see Figure 2.5 A rows 5 and 6).

In the second case, increasing the on-rate (kon) of the weak promoter (P2B) increases
its activity and makes the promoter more aggressive, thus repressing the overlapping
strong and non-aggressive promoter (see Figure 2.5 B rows 8 and 9). However, in this
setup repressing the strong promoter P1B by decreasing the on-rate does not affect the
activity of the overlapping weak promoter. Hence, individual regulation can be achieved
through indirect regulation.

In the third case, reducing the on-rate of the aggressive promoter (P2C), cause the ag-
gressive promoter to decrease two-three fold, and the overlapping strong non-aggressive
promoter to increase roughly three-fold.

These examples show that direct and indirect regulation can affect promoter activ-
ities to different extents, and allow practically independent regulation of one of the
promoters. In certain cases the regulated promoter remains unchanged while the indi-
rect effect on the overlapping promoter is significant (see Figure2.5B row 7, 8 and 9).
This independent regulation could happen, by increasing the RNAP binding rate (kon)
for a weak promoter, which is limited by the firing rate. The increase of kon has little
effect on the activity of the promoter. However, it increases the time RNAP spends on
the DNA, which increases the promoter’s aggressiveness, (see Figure 2.5 B). The possi-
bility of independent regulation of overlapping promoters can contribute to the compact
genome organization of prokaryotes.

In this model we have neglected the time it takes the RNAP to clear the overlapping
region. Since the promoter overlaps can be arranged in two different ways, either head-
to-head or tail-to-tail (see Figure 2.2), the time it will take to clear the overlapping region
will be different. For a tail-to-tail configuration, this clearance time is effectively zero. A
larger discrepancy will be when the promoters are in a head-to-head configuration. It
will take roughly two seconds to clear a head-to-head configuration assuming a speed
of 50 nucleotides/s [91]. The clearance time will increase the aggressiveness of the pro-
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moter, so head-to-head configurations will be more aggressive than our model predicts.
Another detail that has not been included in this model is the distinction between bind-
ing to the DNA and formation of an open complex. These details could be included in
the model, but it would be at the expense of introducing more parameters.

2.2.3 Synthetic regulation

Our simulation suggested that overlapping promoters can provide indirect gene regula-
tion, which can be explored by construction of synthetic genetic circuits. For example, a
non-aggressive promoter can be inhibited when overlapped by a strong and aggressive
promoter. Furthermore the non-aggressive promoter can be activated (de-repressed) by
a repressor, which inhibits RNAP binding to the strong promoter. The potential advan-
tage of this setup is that practically any DNA binding protein can be used for repression
of the aggressive promoter, and no direct action is required for the activation of the
non-aggressive promoter.

Figure 2.6: In vitro and in vivo regulation of overlapping promoters: Schematic draw-
ings of regulatory regions are shown on top. The results of in vitro transcription from
the promoter P and PREV in the present and absence of LacI are shown below each draw-
ing. The RNA1 transcript, which is not affected by LacI binding, was used as an internal
control between lanes. The regulatory regions were inserted into the E.coli chromosome
in such orientation that the promoter P transcribes the uidA reporter gene, that encodes
for β-glucuronidase. Expression of the reporter gene in the presence and absence of
IPTG is indicated by the blueish-coloured colonies, which result from degradation of
X-gluc by the β-glucuronidase enzyme.

To test this, Szabolcs Semsey constructed the synthetic systems shown in Figure
2.6. The promoter sequences with most influence on promoter activity are positions
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-8 to -13 and -32 to -37, which are also known as the -10 and -35 hexamers. The -
10 and -35 hexamers are indicated respectively by blue and yellow. Szabolcs Semsey
overlapped a promoter (P) that has a weak -35 and a consensus -10 element (weak,
non-aggressive) with a reverse promoter PREV , that has consensus -10 and -35 elements
and the extended -10 element (strong, aggressive). The transcription start site of PREV

overlaps with a symmetric LacI operator site (O). The position of the operator site was
chosen to be neutral for the transcription of P [92]. This synthetic construct corresponds
to the simulations in figure 2.5 A.

As a first step, activity of P was assayed qualitatively in vivo using a P promoter-
uidA (encoding for β-glucuronidase) transcriptional fusion in the presence and absence
of IPTG (see Figure2.5). LacI is a repressor for the Lac-operon, and since IPTG binds
to LacI, it effectively activates the Lac-operon. For the construct with no overlapping
promoter, we observed a decrease in P activity in the presence of IPTG (see lanes 1 and
2). For the second construct, where P is overlapped by PREV and PREV is regulated
directly by LacI, we show that P is inactivated in the presence of the inducer IPTG (see
lanes 5 and 6).

To understand the system more quantitatively, we measured activities of both P and
PREV in the presence and absence of LacI in vitro. Figure 2.6 shows that PREV inhibits P
activity, and that this inhibition depends on having an accessible transcription start site
in PREV by binding to the overlapping lac operator site (see lanes 5 and 6). We expect
a four-fold higher activity of P in the presence of LacI (figure 2.5 A), which is roughly
what we get. This demonstrates that the repressor LacI can indeed function an activator
of P through the repressing of PREV .

Szabolcs Semsey further found that a single base pair mutation in the -10 sequence
PREV∗ or a two base-pair mutation in the -35 element P∗REV of PREV results in loss of
repression of P (compare lanes 3 and 4, and lane 7 and 8).

2.2.4 Summary

We have introduced a new term for promoters, namely the aggressiveness. The more
aggressive a promoter is, the more capable it is of inhibiting an overlapping promoter.
From our experimental results we conclude that given a proper sequence, RNAP binding
to one promoter can repress an overlapping promoter P. Inhibition of RNAP binding to
PREV by a DNA binding protein (LacI) can activate the transcription of P, resulting in a
compact and simple activation-repression switch (which was expected by our model).
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2.3 Regulation of oscillations and stability by coupled positive and
negative feedback systems

From previous work it is known that a negative autoregulation motif with a time delay
can cause protein levels to oscillate [93, 94, 95]. Additionally, the frustrated bistability
motif (FBM), a transcriptional motif consisting of a positive autoregulation motif cou-
pled with a repressor, has also been shown to produce oscillations [96, 97].

These two motifs can be combined into a motif we dub the Negative Autoregulated
Frustated bistability motif, or for short the NAF motif (see Figure 2.7 A). The NAF motif
occurs in biology in both memory formation [98], and cell differentiation [99, 100]. The
simplicity and biological relevance of the NAF motif makes it interesting to investigate.
Previous theoretical work on the NAF motif has only considered protein levels, thereby
course-graining transcription and translation events into a single-step process [98, 99,
100].

In the following sections we include mRNA levels in our model, but course-grain
mRNA import and export events with an explicit time delay. Experimentally the NAF
motif can be engineered using tetracycline transcriptional regulatory (TET) elements.
Most of the interactions between the TET system components have been characterized
and the dynamics of various TET-based synthetic networks have been recently simulated
[101]. Closely following the biochemical restrictions of the TET system allows our model
to have predictions that are easy to test with experiments.

The dynamics originating from a motif are often parameter-dependent. Thus, esti-
mating the dynamics caused by the motif without knowing the exact value of the param-
eters is often not possible. However, using recent data on half-lives and transcription-
and translation-rates from 5000 different proteins [102], allows us to make reasonable
guesses about expected dynamics.

Surprisingly, we find that the dynamics of the motif only produces sustained oscil-
lations in a limited parameter regime, where both the activator mRNA and activator
protein are short lived. However, the vast majority of transcription factors do not meet
these requirements.
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2.3.1 The NAF-model

The dynamics of the system are given by the following equations:

dmRNAA
dt

= 〈r1(τ)〉(A,R) − γ1,A ·mRNAA

dmRNAR
dt

= 〈r1(τ)〉(A,R) − γ1,R ·mRNAR

dAtot

dt
= r2 ·mRNAA − γ2,A · Atot

dRtot

dt
= r2 ·mRNAR − γ2,R · Rtot

Where mRNAA,R are the activator and repressor mRNA levels, and Atot, Rtot are the total
amounts of activator and repressor. r2 is the translation rate (assumed equal for activator
and repressor). γ is the degradation rate and 〈r1(τ)〉(A,R) is the transcription rate which
is a non-linear function of the repressor Rtot and the activator Atot. τ represents the time
delay between production of mRNA, its modification and export [103, 104]. We chose
not to include a similar delay in the protein equations because protein import is very
fast [105] The derivation of the model can be found in appendix C.2.3.

The following assumptions were used for deriving the model:

1. The binding/unbinding of transcription factors to operator sites and dimerization
occurs on a timescale much faster than other processes [106] and is therefore as-
sumed to be in quasi-equilibrium.

2. There is no cooperativity in binding to operator sites [107].

3. RNA polymerase (and Ribosome) levels do not become a limiting factor even at
high expression rates.

2.3.2 Classifying dynamical behaviour of the NAF model

We distinguish between three types of dynamics: sustained oscillations, damped oscilla-
tions and no oscillations. We used a modifying version of the matlab function findpeaks
to find peaks in the time series of the repressor. To ensure that peaks originating from
numerical errors were discarded, we only included peaks with at least a two-fold am-
plitude. Simulations were run such that the length of each time series corresponded to
50 days. The dynamics were classified as follows:

• Sustained oscillations: 10 or more oscillations

• Damped oscillations: 9 or fewer oscillations

• No oscillations No peaks

There is agreement between this classification and the linear stability of the fixed points
(compare Figures 2.9 A, C.). The fixed points for the linear stability analysis were nu-
merically computed using Mathematica.
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Figure 2.7: Schematic overview of the NAF model
A) The NAF motif consist of an autoregulated repressor coupled with an autoregulated
activator. B) The biologically realistic system involves several steps. Which we simplify
the system as follows. Starting from the top left, mRNA at ribosomes are translated into
proteins with a rate r2, the import of proteins is very fast, so it is neglected [105]. Second,
the chemical reactions are fast and both dimerization and protein-DNA binding is there-
fore treated as in an equilibrium [106]. The last step, in the simple model is transcription
of mRNA. This step covers transcription of mRNA, as well as modification and export
of mRNA from the cell nucleus to the ribosomes. The transcription rate is regulated by
dimers (activator-activator, repressor-repressor, activator-repressor) binding to the oper-
ator sites and the modification and export of mRNA is simplified by a 30-minute time
delay (τ) [103, 104]. The simplified system can be schematically repressed by the NAF
motif in A).
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2.3.3 Parameters for the NAF model

The applied transcriptional rates, translational rates and half-lives of mRNA and pro-
tein are based on a previously reported measurements for about 5000 mammalian genes
[102]. Dissociation constants for dimerization and for protein-DNA binding were based
on previous estimates for TET elements [101] (see appendix C.1). We assumed a maxi-
mum of a 100-fold decrease (or increase) in transcription for saturating levels of repres-
sors (or activators).

2.3.4 Time delay from mRNA export has a limited effect on dynamics

Scanning the four dimensional parameter space of half-lives, we find that there is no
effect of a 30-minute time delay within biological realistic parameters (see Figure 2.8).
The biologically relevant half-lives range from 0.01 to 1000 hours [102]. For each scan the
repressor and repressor mRNA half-lives were fixed and the half-lives of the activator
and mRNA activator were varied. The parameter ranges were as follows:

PARAMETER RANGES: Lower limit Upper limit Fixed
[hours] [hours] [hours]

Fast mRNA/Protein 0.01 1 0.5
Medium mRNA/Comparable Protein 1 25 12.5
Slow mRNA/Medium Protein 25 100 50
Slow Protein 100 1000 500

Table 2.1: Half-life parameter ranges: The repressor and repressor mRNA were kept
fixed, while the activator and activator half-lives were scanned.

A previous estimate is that a delay should be roughly twice as long as the time scale
for protein degradation before the time delay has an effect [95]. It is thus only surprising
that for the very short-lived proteins and mRNAs the time delay does not have any effect
for the NAF motif.

This does not mean that an explicit delay has no effect at all. If activation is removed
(e.i., the transcription of the activator is set to zero) and the repressor (and mRNA) are
short-lived (four minutes), the explicit time delay can cause oscillations (see Figure 2.12
A). The equations are different but the motif is the same as the Hes Oscillator analysed
by Jensen et al. [93], where oscillations were also caused by an explicit time delay.

From the large parameter scan (see Figure 2.8) it is clear the NAF motif produces
oscillations that only in a very limited parameter range. In the following sections we
closely investigate the NAF motif within the following parameter range: repressor and
repressor mRNA half lives fixed to 9 hours and activator and activator mRNA half lives
ranging from 0.2 to 50 hours. This corresponds to (Medium, Medium, Comparable,
Comparable) in Figure 2.8 .

2.3.5 Unstable activators and mRNAs are needed for sustained oscillations

The half-life range for the activator and its mRNA, that produces oscillations is roughly
from half an hour to one-and-a-half hours. It is interesting to note that since the half-
lives that produce oscillations are bound both from the top and the bottom, activation is
needed for oscillations, although it needs to have fast dynamics. In other words a pure
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Figure 2.8: Half-life parameter scans in the interval 0.01 - 1000 hours:
Scanning the half lives shows that areas with oscillations (orange) and the regimes with
no oscillations (blue) are the same for no delay and for 30min time delays. The innermost
ring is the activator mRNA half-life, the middle ring is the repressor mRNA half-life and
the outermost ring is the activator half-life.
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Negative Autoregulation motif with dimer repression would not produce oscillations in
a biological realistic parameter regime.

As stated previously we find agreement between the linear stability of the fixed
points and the numerical simulation (see Figure 2.9 A, C.) Since the amplitude of the os-
cillations change continuously, this indicates that the bifurcation is a supercritical Hopf
bifurcation.

We find that the system in the non-oscillatory regime is monostable (see Figure C.6).
This is interesting from a biological point of view, since it means that the NAF motif
with our equations, within biological relevant parameters cannot function as a switch
(This requires bistability).

2.3.6 Intermediate repressor stability needed for oscillations

We observe that oscillations can only occur in an intermediate range of repressor and
repressor mRNA half-lives (see Figure 2.10A). Both the repressor and mRNA need to
have half-lives between 5 and 25 hours. The majority of proteins have longer half-
lives than 25 hours [102], which makes it less plausible that the NAF motif, would
produce oscillations in nature. We also scanned transcription rates and again found that
oscillations only appears within a limited parameter range (see appendix C.2).

2.3.7 Experimental data for regulatory proteins suggest NAF is not
oscillatory

Identifying transcription factors in the data set from Schwanhausser et al. [102] and
overlaying the transcription factors and their corresponding mRNA half-lives on our
parameter scan shows that most transcription factors fall into the non-oscillatory regime
(see Figure 2.11). The function of transcription factors is often context-dependent [108];
therefore we did not discriminate between activators and repressors. The lack of tran-
scription factors falling into the oscillatory (or even damped oscillatory regime, and the
fact that the non-oscillatory regime is monostable strongly suggest that the NAF motif
with our equations predominantly promotes stability.

2.3.8 NAF motif; the combination of the negative autoregulation and
frustrated bistability motif

We previously showed that for certain parameter sets, the NAF motif reduces to the
NAR motif (Hes oscillator) and shows similar dynamics (see Figure 2.12 A). However
when we introduced activators (even unstable ones), the activators cancel the oscillations
(see appendix Figure C.3). This means that in the regime where the NAR part of the
NAF motif can oscillate on its own the NAF motif cannot; conversely in the regime
where the NAF motif can oscillate, the NAR motif cannot.

The NAF motif can be reduced to the NAR motif simply by changing a parameter;
however, it is not possible to reduce the NAF motif to the frustrated bistability motif
(FBM) in the same way. As an alternative I constructed a version of the NAF motif using
the same equations as Krishna et al. used for the FBM[96], but with a self-repression
term (see appendix C.2.4). These equations only take protein levels into account. When
contrasting the two motifs we find that the parameter space where the NAF motif os-
cillates is substantially smaller than the parameter space for FBM (see Figure 2.12 B).
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Figure 2.9: Dynamics of the coupled NAF system:
A) A parameter scan of the asymmetry where the repressor protein and mRNA half-
lives are fixed at nine hours and the activator protein and mRNA half-lives are varied
from 12 minutes to 50 hours. The effect of a 30-minute time delay is negliglible, since
the delay actually changes the behaviour only in a very limited range of parameters (W).
B) (X) For the symmetrical case, we find no oscillations as expected from Figure C.1. We
find that the delay influences the period, increasing it by about 10%. C). There is good
agreement between the linearized analysis C) and the simulations A).
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Figure 2.10: Effect of repressor mRNA and protein half-lives on oscillations
Scanning for half-lives from two to 35 hours shows that the system oscillates for half-
lives above two hours and below 30 hours. We see that the parameters for oscillations
are completely symmetrical for protein A) and mRNA B) half-lives. Note that the pa-
rameter range that allows oscillations is bigger for the repressor (5-25 hours) than for
the activator (0.5-1-5 hours). These ranges are of biological interest; since the median of
protein half-lives is 46 hours, it suggests that the system is not prone to having sustained
oscillation.

This further supports that our NAF motif might not be a good motif for producing
oscillations.

2.3.9 Comparison with previous studies

Even though the NAF motif is a combination of two motifs that are known to produce
oscillations, we show that in a biologically realistic parameter range our NAF motif,
promotes stability. Since a motif does not uniquely describe protein interactions, we
can only state that the NAF motif governed by our equations promotes stability within
biologically relevant parameters.

The NAF motif has been previously explored theoretically [98, 110, 111, 100]. None of
the dynamical equations for these NAF motifs are the same, but qualitative comparison
should still be possible. Common to all of the papers except that of Suel et al. is that
the degradation is passive. Interestingly except for Suel et al. all of the NAF motifs
require the repressor to be more stable than the activator to produce oscillations. This
is in agreement with our findings. The two studies that explore the effect of half-lives
[98, 110] also find that for oscillations to occur, the repressor half-life needs to be in a
bounded regime, not too low nor too high. Again this is in agreement with our findings.

Song et al. find that in addition to producing oscillations, their NAF motif is bistable,
although only in a very limited regime [98]. On the contrary Hasty et al. only find their
NAF motif to be in a steady state when not oscillating [110]. Like Hasty et al. we did not
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Figure 2.11: Biological regime
When plotting the half-lives for transcription factors reported by Schwanhausser et al.
[102], we find that almost none fall into the oscillatory regime. Since repressors and
activators often are context-dependent we do not discriminate between repressors or
activators. Plotting the half-life of Hes1, (a negatively autoregulated repressor having
oscillatory behaviour), shows that some transcription factors actually fall into the regime
of (damped) oscillations [109]. However, CREB1, an activator involved in a NAF motif
falls into the regime of no oscillations (green star) [98]

find any bistable regime (see appendix Figure C.6). However, since the regime found by
Song et al. that produces bistability seems rather small, it could simply be that we have
not found this regime. A notable difference between the equations behind Song et al.
and our NAF motif is that our proteins both interact at the transcriptional level and form
heterodimers. That is activators and repressors bind to each other and form dimers. In
contrast the proteins described by Song et al. only interact at the transcriptional level
[98]. Since our transcription rate is a function of number of repressors and activators
bound, the heterodimer formation effectively causes the transcription to depend on the
monomer levels. This effectively reduces the non-linearity of the system. If the logic is
changed such that repressors are dominant, the non-linearity is recovered and we see
that this can produce oscillations (see appendix Figure C.5). Changing the equations
such that heterodimers are not formed also increases the previous range of sustained
oscillations from 0.5 hours to 1.5 hours to roughly 0.5 to 3 hours (see appendix Figure
C.4). However, we still did not find a bistable region in the parameter space we checked.

2.3.10 Conclusions

We find that the NAF motif with our equations has the ability to oscillate, however
within biological relevant parameter ranges this probably does not happen. Contrasting
our study with previous theoretical NAF motif studies indicates that a general require-
ment for all the NAF motifs to produce oscillations is that the activator (and activator
mRNA) needs to be more unstable than the repressor. Additionally we found that the
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Figure 2.12: Motif Comparison
A) The Negative Autoregulation motif (NAR), can be recovered by setting activator
transcription to zero r2,A = 0. We find that when half-lives of repressor and repressor
mRNA are short lived a 30 minute explicit timedelay can produce oscillations. Param-
eters changed r2,A = 0, β3 = 0.16min−1,β4 = 160min−1. This is qualitatively similar
to dynamics of the Hes oscillator[93]. B) We modified the previous frustrated bistabil-
ity motif (FBM) equations to allow for autorepression, thereby creating a protein level
NAF motif. When contrasting the original FBM with the protein level NAF we find the
regime with oscillations is smaller for the NAF motif. See parameters and equations in
supplementary C.2.4

repressor needs to been in an intermediate range of stability. Although experimentally
constructing the NAF motif using TET elements should produce interesting dynamics,
it would offer limited insight into other NAF motifs found in biology. The reason is that
the dynamical regime is far away from the biologically relevant parameters.



Chapter 3
Communication Networks

3.1 The Expert Game

There is increasing interest in the formation of communication and social networks.
This is partly driven by access to large digitalized datasets [112, 113, 114]. Interesting
conclusions have been derived from these large datasets, such as that the limit of emails
sent per person saturates slightly above 100 emails per day [112]. How these commu-
nication networks emerge is however inherently difficult to infer from these datasets.
The two primary reasons are that first, usually only a subset of communication chan-
nels are monitored (e.i., email communication is monitored but face-to-face or phone
communication is not), and second that the network is never monitored from the very
beginning, (e.i., a network always exists prior to the first measurement). In this study
we investigate the initial formation of a communication network, starting from a com-
pletely blank sheet. As a complementary approach to the big data sets, we constructed a
tool called "The Expert Game". "The Expert Game" is a simplistic game where N players
send standardized email to each other. The game is a repeated game in our case it was
played roughly 25 times per session. Using this tool we were able not just to monitor
the emergence of a communication network, but also to quantify the information flow
and generation of social capital within the network.

3.1.1 Rules of The Expert Game

"The Expert Game" is a game played by N players, each of whom is assigned a task and
an expertise. Tasks and expertises are matched such that each task is uniquely matched
with an expertise. The goal of the game is then for each player to find and get help
from their expert. This can only be achieved through sending standardized electronic
messages. In each round of the game, every player can at most send one message. The
four types of standardized messages are as follows:

• (I) Inquiry: A request for help that contains the sender’s task and expertise.

• (C) Confirmation: Confirms that the sender’s expertise matches the receiver’s task.

• (R) Referral: The sender tells the receiver the name of the expert for the receiver’s
task

• (N) Negation: The sender does not know who the expert for the receiver’s task is.

The last three (C,R and N) are replies to an inquiry and can only be sent in reply to such.
Lies are not possible, which makes the replies mutually exclusive. A game consists of on
average six rounds, but the number of rounds is chosen randomly for each game, which
makes it impossible for the players to predict the number of rounds in a given game. A
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monetary reward (roughly three euros) is only given to the receiver of a confirmation.
The round limitation mimics real life time constraints, and forces players to prioritize
between communication partners and types of messages. An example of a game with
four players is shown in Figure 3.1.

Inquiry

Inquiry

Inquiry

Expertise:
Programming
Task:
Law

Expertise:
Economics
Task:
Programming

Expertise:
Law
Task:
Sociology

Expertise:
Sociology
Task:
Economics

Inquiry

Con�rmation

Referral 

Expertise:
Programming
Task:
Law

Expertise:
Economics
Task:
Programming

Expertise:
Law
Task:
Sociology

Expertise:
Sociology
Task:
Economics

+$$

Inquiry

Inquiry

ROUND 2

ROUND 1

Figure 3.1: Example of "The Expert Game". All message sending is synchronized so
that during each round players can send at most one message.
Round 1: In the first round only inquiry messages can be sent. After round 1 the black
player now knows that he is the expert of the red player. The red player knows that the
black player’s expert is the blue player.
Round 2: The black player sends a confirmation to the red player, the red player thereby
earns money. At the same time the red player sends a referral to the black player, which
means that the black player now knows that the blue player is the expert he is looking
for. Additionally, the blue player knows his expert is the green player and the black
player knows that the green player is seeking the red player. If the game ended after
two rounds, only the red player would have earned money.



3.1 The Expert Game 63

3.1.2 Expert game: Experimental setup

We used the facilities at Copenhagen University’s Centre for Experimental Economics.
They provided players randomly chosen from a database and computer facilities where
the computer screens were shielded such that players could not look at each other’s
screens. We conducted two sessions. one session where players’ identities were kept
between games (ID) and one where players were given new randomly chosen names
between games (NO-ID), which thereby prevented the identification of players between
games. A player’s identity was a randomly chosen common last name, thereby elimi-
nating possible gender bias. Each session lasted four hours which covered introduction,
playing, answering a survey and payment. In each session roughly 25 games were
played, each lasting on average six rounds. The possibility of perturbing the system
(having a NO-ID session) is an advantage of the game approach as opposed to the big
data approach.

3.1.3 Cooperative behaviour increases when communication partners can be
identified

"The Expert Game" imitates real life communication is several aspects. First, the time
constraint forces prioritization of communication partners [112]. Second, information
has been shown to spread at most over two links, meaning a person at most knows
what his "friends of friends" are working with [115]. Referrals in "The Expert Game"
allow players to have knowledge about the expertise of their "friends of friends". Third,
there is no immediate benefits for helping others with their tasks [116].

When contrasting our two experiments we find that overall players are more efficient
in finding their expert in the ID session (see Figure 3.2 C). The reason for the increased
efficiency is the increased rate of referrals sent (see Figure 3.2 A). Since referrals have no
immediate benefit for the sender, we interpret this increase in referrals as an increase in
cooperative behaviour.

From simulations we know that the increased efficiency due to cooperation increases
with system size, and 16 players is actually close to the minimal system size where the
effect can be observed (see appendix D.1).

Previous work on cooperative behaviour in networks includes experimental and the-
oretical research on cooperative dilemmas such as prisoner’s dilemma played on net-
works [117, 118, 119, 120, 121]. An interesting result from these studies is that coopera-
tion is only promoted in networks that are dynamic, meaning that links can be rewired
[117, 119]. We find similar results where the NO-ID session corresponds to a well-mixed
population and the ID session allows for a dynamical network to form, thereby promot-
ing cooperation.

There are two main differences between previous research on cooperation in net-
works and "The Expert Game". First, the games played in previous studies have digital
choices, a player chooses to either cooperate or defect. "The Expert Game", on the other
hand allows for nuanced choices that have a closer resemblance to real life. Second,
the network formation in previous studies is restricted by the rules. In those studies,
players are initialized on a network and after each game asked whether they want to
rewire links [117, 119]. Conversely, in "The Expert Game" each player can interact with
all other players; a network is only observed afterwards as a consequence of the players’
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interactions, which means that communication partners are never forced on players.
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Figure 3.2: More cooperation when identification is allowed:
A) Cumulative message rate as a function of rounds. When identities are kept between
games a higher reply rate is observed. C An increase in efficiency (confirmations re-
ceived per round) is seen when identities are kept between games. This is due to the
increase of knowledge B. The increase in players that can be excluded as not being the
expert increases efficiency. This increase is due to the higher reply rate

3.1.4 Emergence of a communication network

In the ID session, the identities are kept between games. This allows for preferential
treatment of players due to previous interactions. Analysing the data we find that indeed
some communication links are heavily favoured over others (see Figure 3.3 A,D). This
is quantified by conditional probabilities; what is the probability that player A sends a
non-redundant message to player B given that player A can send a non-redundant mes-
sage. Because of the time constraint (e.i., limited number of messages sent), preferring
some links, causes other links to be neglected more than at random. This polarization
of communication partners creates a network (see Figure3.3 D). When analysing the
information flow across these links, we find that favoured links do not just have more
messages, but even the information per message increases (see Figure 3.3 B). That more
information is transferred across strong links is in agreement with experimental work by
N.E. Friedkin [122]. This increase of information is due to a higher fraction of messages
being referrals (see Figure 3.3 B). When contrasting with a random network, we find
that favoured links are reciprocal (see Figure 3.3 C).

Since there is no immediate benefit for a player to send referrals we interpret these
reciprocal high-information links as a display of trust between two players. A referral
is sent because the player trusts that the recipient will reciprocate later by sending a
referral when that is possible.

That cooperation can emerge because of repeated interactions, and reciprocal trust is
in agreement with previous research of repeated prisoner’s dilemma [123].

The polarization of preferences can be quantified as an entropy, where the entropy
for each player’s preference distribution is calculated and averaged. A uniform distri-
bution of preference between players would mean no polarization and a high entropy
− log2(

1
15 ) ≈ 3.9 bit. Note that plotting a histogram of preferences where all players

have a uniform distribution would result in a peaked histogram, with peak at 1
15 . On
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the other hand, highly polarized players would have distributions that are far from a
uniform distribution, which results in a lower entropy. Using the average entropy of
player preference as a measure of polarization and splitting the data into three sec-
tions, we show that the polarization increase over time (see Figure 3.3 E). This means
that players find favoured communication partners. This is in agreement with survey
data, where players answered that they "had friends" after 5-10 games. A more preferred
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Figure 3.3: Emergence of communication network. (A) Distributions of preference for
all links corresponding to experiments ID and NO-ID as labelled in plot. Spread in the
NO-ID distribution is due to sample size, for infinite data the NO-ID distribution would
be a sharp peak at 1

15 (indicated by vertical gray line). (B) Average information per
message (circles) and referral frequency (triangles) as a function of preference. Informa-
tion is measured in bits: "Is player A my expert (Yes/No)" (C) Average link reciprocity
for all links with preference larger than a threshold (horizontal axis). (D) Overall trust
network, corresponding to the preference distribution. (E) Preference or trust network
emergence as a function of games played. (F) Quantifying the network emergence using
average entropy of the players’ preference distributions, entropy measured in bits.

player gets more information; this player should generate more confirmations ergo more
wins. However the randomness of the game and the size of our data does not allow us
to make that claim (see appendix D.2).
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3.1.5 Mathematical model for the Expert Game

In order to generate predictions we constructed a mathematical model. The model is an
agent-based model, which for each agent computes which messages type to send and to
whom. Our most likely model was selected among several models that all had the same
overall equation:

Pi→j(t) = f (Ti→j, pt) (3.1)

Where Pi→j(t) is the probability that agent i sends message type t to agent j. pt is
the priority of message type t and Ti→j is agent i’s trust in agent j. The best model is
selected based on the likelihood that it reproduces the ID data. Among the models was
one where the message priorities were based on the information content and agents were
trusted based on the amount of information they provided. A second model was based
on the reply probability, where each agent was trusted based on the probability that they
would send a reply. The best model turned out to be a simple model where trust in a
agent was a simple weighted sum of incoming messages. Weights and message priority
were based on data fitting. For all of the models the best combination of message priority
and player trust was the two values multiplied. The best model is therefore given as:

Pi→j(t) ∝ (T0 + Ti→j) · pt , (3.2)

Ti→j = 4.5 · C + 5.8 · R + 1.5 · N + I + 4.8 , (3.3)

Where C is the number of confirmations i has received from j, R is number of referrals,
N is negations and I is inquires. We find that these value qualitatively corresponds
to survey data where players where asked to rank messages types according to how
much they values them as a sign of "friendship" (see Figure 3.4 D). In addition to these
parameters, all models had in common that the priority of inquiries was dropped by
roughly a factor of 2 after an agent had sent an inquiry to his expert. This effect was
also seen in the data (see appendix D.3).

Since the model mimics an "average" player, it does not capture the extremes (tails)
of the preference distribution (see Figure 3.4 A). However, the model clearly captures
most aspects of the data. It shows the same increase of information across preferred
communication links, and the same qualitatively reciprocal behaviour, found in the data
(compare Figure 3.4 B, C with Figure 3.3 B, C).

3.1.6 Model predictions: Anti-exploitation and social capital

It is interesting to investigate what would happen if an agent who employs a very egois-
tic (defection) strategy is introduced into a game where the rest of players play according
to our "average" player. We introduce an egoist agent who only sends inquires into a
session where the rest of the agents play as the average players. We find that at first the
egoist wins more than the "average" player, but as the games progress the average play-
ers pick up on the egoist and lowers their trust in him, thereby sending fewer messages
his way. This means that the trust network that we found players building functions an
anti-exploitation mechanism. Introducing more egoists into the system shows that the
system is actually bistable, when there are few egoists in the system, on the long run it is
not beneficial to be egoistic. However, when there are several egoistic players it becomes
beneficial to become egoistic as well (see Figure 3.5 D).
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Figure 3.4: The best model’s reproduction of data A), Distributions of preference for
all links corresponding to experiments NO-ID and model. The model is clearly broader
than the NO-ID data. When comparing with fig. 3.3 A the model does not capture
the extreme behaviours, very high preference and neglection of the ID session. B) In
comparison with Figure 3.3 B the model captures the increase of information across
preferred communication links. C), The model also captures the reciprocity of players,it
is more reciprocal than the NO-ID session, but it does not have the extreme preferences
as compared with Figure 3.3 C. D) Qualitatively our model parameters are similar to
survey data (compare first and second column). E) When we compare the entropy of
the model, with the entropy of the model where agent identities are shuffled between
games we find that the entropy indeed does decrease. However, the model is faster at
establishing communication partners that in our ID session (see Figure 3.3 F). The model
data is an average over 10 simulations.

An interesting observation is that monetary gain is not just due to the strategy a
player plays, but also to how trusted the player is. In our models preference is simply
normalized trust. Therefore more trust means higher preference, which means receiving
more information, which again increases the probability of getting a confirmation.

The term social capital (SC) has many definitions [124], but the original definition
that covers some of the other definitions can be rephrased as follows: SC is the eco-
nomic benefits a person gains due to preferential treatment [116]. Roughly speaking this
means that the number of ones friends and acquaintances and how "useful" they are
have a monetary value. In "The Expert Game" a player can build up social capital by
playing a non-egoistic strategy, which increases other players’ trust in him. The com-
plexity of social capital makes it notoriously difficult to measure, and often experiments
opt to measure indicators of SC instead of actually SC [124]. Our mathematical model
allows us to measure the social capital in "The Expert Game" as the difference in capital
gain between two agents playing the same strategy (parameter set) but differing in how
trusted they are. In practice this is done by simulating 15 agents following the "average"
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Figure 3.5: Model predictions. (A) Comparing the wins of an egoist (red line) with aver-
age players (blue line) we find that after roughly 30 games it becomes disadvantageous
to have an egoistic strategy. Comparing games where no egoist is present (blue dashed
line) with the wins of average player in the present of an egoist (blue line) shows that
the egoist has an effect of the wins of the other players. (B) Others players preference
of the egoist declines as time progresses. Meaning that players catch on the to egoist
being egoistic, and thereby sending less messages his way. (D) In the long run it is not
beneficial to play the complete egoistic strategy, unless there is atleast 3 egoists. Note
that this is only beneficial in relative wins, but not in absolute wins. (C) Social capital
difference between an egoist and an average player increases as time progresses

strategy and one additional agent who switches from an "average" strategy to the egois-
tic strategy after t0 games. During the time period τ we then compare this agents capital
gain with that of an agent who immediately employs the egoistic strategy (t0 = 0). We
can thereby measure the social capital that the switching player has built during the first
t0 games. The difference in social capital (∆SC) between two agents is:

∆SCτ(t0) =
t0+τ

∑
t=t0

C(t, Tt0,egoist)− C(t, Tt0,normal) . (3.4)

Here, C(t, T ) is the capital gained by an agent in game t, with T representing the agent’s
social situation in terms of trust, with the subscripts denoting the time leading up to the
measurement t0 and the strategy the agent used during that time. Figure 3.5 C shows
how this social capital difference ∆SCτ=10 between an egoist and a normal player during
the first 25 games.
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3.1.7 Conclusions

Using "The Expert Game" it was possible for us to quantify the emergence of a commu-
nication network. We were able to quantify the flow of information in this network and
to measure the relationship between trust and information flow. Constructing a mathe-
matical models that mimics the average player, we could predict that players could not
be exploited by a very egoistic player. Lastly using our mathematical model we were
able to quantify the construction of social capital. Speculating further, we propose that
our results could be used to circumvent the difficulty of measuring social capital directly
in real life. We propose that this could be done in a setting where communication and
information can be measured. Social capital of an individual could be quantified using
the response rate to questions and associated information gain. Further work could be
done to address the adverse effects of social capital and trust network. This could be
done by modelling the disadvantage a new player would have when he is introduced to
an already existing network. Experimentally I see three further studies being of interest.
One is simply having triplets of our current 16-player sessions to solidify or dismiss
our current conclusions. A second (and more interesting) direction would be to scale
the experiment to 64 players, since we predict that the effects of collaborative behaviour
would be more significant with more players. Lastly, it would be interesting to exper-
imentally introduce an egoist into a system and to see how the other players would
behave towards him.
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Appendix DNA repair proteins

A.1 Derivation of Full RD model:

I want to stress that these derivations follow Sprague et al. [65] and I have simply used
these equations for my work. The reason these derivations are featured in my thesis is
simply to make it easier for the reader to find them.
First off is changing variables from F and B to u = Feq − F and v = Beq − B. Where
dF
dt = dF

du
du
dt = − du

dt . Using this, the fact that Feq is constant in space ∇2Feq = 0 and that
k∗onF− ko f f Beq = 0. We get that

∂u
∂t

= D∇2u− k∗onu + ko f f v (A.1)

dv
dt

= k∗onu− ko f f v (A.2)

Using the Laplace transform ū = ū(s, r) =
∫ ∞

0 e−stu(t, r)dt and integration by part∫ b
a u(x)v′(x)dx = [u(x)v(x)]ba −

∫ b
a u′(x)v(x)dx: Solving the second equation for v:

v̄ =
k∗onū + v(r, 0)

s + ko f f
(A.3)

Insert into the first equation.

sū = D f∇2ū− k∗onū + ko f f
k∗onū + v(r, 0)

s + ko f f
+ u(r, 0) (A.4)

Isolating ū on the left hand side and using that u(r, 0) = Feq and v(r, 0) = Beq for r ≤ rc

where rc is the radius of the bleaching spot.

s

(
1 +

k∗on
s + ko f f

)
ū− D f∇2ū = ko f f

v(r, 0)
s + ko f f

+ u(r, 0) (A.5)

= ko f f
Beq

s + ko f f
+ Feq =

k∗onFeq

s + ko f f
+ Feq (A.6)

Cleaning this up we get:

−q2ū +∇2ū = − Feq

D f

(
1 +

k∗on
s + ko f f

)
= −V (A.7)

(A.8)

Where q2 = s
D f

(
1 + k∗on

s+ko f f

)
and V =

Feq
D f

(
1 + k∗on

s+ko f f

)
for r ≤ rc and zero elsewhere.

The solutions are:

ū =


V
q2 − α1 I0(qr) r ≤ rc

α2K0(qr) r > rc

(A.9)

70
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We require the solution is continous and differentiable across r = rc. Using the identities
for modified bessel functions. I′0 = I1 and K′0 = −K1. We can write the two requirements
as:

α2K0(qrc) =
V
q2 − α1 I0(qrc) (A.10)

−α2K1(qrc) = −α1 I1(qrc) (A.11)

Since we are only interested in the intensity inside the bleaching spot, we only solve for
α1. Using the identity I1(x)K0(x) + K1(x)I0(x) = 1

x .

α1 =
V
q2 qrcK1(qrc) (A.12)

Since the intensity is both from bound and free proteins, f rap(t, r) = F + B = 1− u− v.
The Laplace transform is then:

L ( f rap(t, r)) =
1
s
− ū− v̄ (A.13)

Since we are measuring the average across the bleaching spot we calculate this. Remem-
ber that only u varies in space, so the average of ū is given as:

Avg(ū) =
1

πr2
c

∫ 2π

0
dθ
∫ rc

0

(
V
q2 − α1 I0(qr)

)
rdr (A.14)

=
V
q2 −

2α1

qrc
I0(qrc) (A.15)

Using the average of ū, inserting v̄ and α1. Having that V
q2 = Feq

s the Laplace transform
of the intensity inside the bleaching spot becomes.

L ( f rap(t, r)) =
1
s
− 2I1(qrc)K1(qrc)

(
1 +

k∗on
s + ko f f

)
Feq

s
− Ceq

s + ko f f
(A.16)

There is no known closed form for the inverse Laplace transform for this function. So
following Sprague et al. [65] we use the invlap.m matlab function to numerically calculate
the inverse and get f rap(t).

A.2 Effective diffusion model:

Using τe f f =
r2

c
De f f

= r2
c

D f

(
1 + k∗on

ko f f

)
as the correct time scale and following [65], equation

A.16 can be reduced to:

L ( f rap(t, r)) =
1
s′
− 1

s′
(
1− 2I1(s′)K1(s′)

)
(A.17)

Which has the solution:

Frap(t) =

[
I0

(
r2

c
2tDe f f

)
+ I1

(
r2

c
2tDe f f

)]
exp

(
− r2

c
2tDe f f

)
(A.18)

Where De f f is the effective diffusion coefficient and rc is the radius of the bleaching spot.
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A.3 Reaction model:

When free protein diffusion is fast compared to binding/unbinding events. This means
that the free proteins are in equilibrium Feq. The equation governing the dynamics is
then:

dB
dt

= k∗onFeq − ko f f B (A.19)

This is a first-order linear equation with the solution:

B(t) =
k∗onFeq

ko f f
+ K exp(−ko f f t) (A.20)

Using that k∗onFeq = ko f f Beq and that there is ideally no intensity when bleached, B(t =
0) = 0 we get.

B(t) = Ceq − Ceq exp(−ko f f t) = Ceq

(
1− exp(−ko f f t)

)
(A.21)

The total intensity Frap(t) is then:

Frap(t) = Feq + Ceq

(
1− exp(−ko f f t)

)
= 1− Ceq exp(−ko f f t) (A.22)

Where in the last step we use that Feq + Ceq = 1 since the intensity is normalized.
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A.4 BLM datasets
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Figure A.1: Analyses of the BLM diffusion dynamics in the nucleoplasm. A) Initial
Bleaching profile I0(r) fitting. B) Fitting of FRAP, the best model is the diffusion model

with a effective diffusion coefficient of 1.34 µm2
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we find that both BLM have a fraction of 15% bound very strongly to the damage.
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A.5 No recruitment for low laser power
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Figure A.4: . No double stranded breaks were created with the low laser power(0.6µW).
As a control to see if the FRAP experiment induced double stranded breaks we bleached
cells and monitored them for roughly 2 and a half minute, but no recruitment was seen
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Measured Diff Coeff. Theoretical Diff. Coeff. References
De f f Dtheo

RAD 54 14 14.6 Hamster ovary cell [125]
RAD 52 8 14.6 Hamster ovary cell [125]
RAD 51 7 17.5 Hamster ovary cell [125]

NBS1 3 14.6 Human U2OS [126]
MDC1 2 11.7 Human U2OS [126]
Ku70 0.35 15.2 HeLa cells [127]
Ku86 0.35 14.7 HeLa cells [127]

Table A.1: Theoretical and measured diffusion coefficients

A.6 Table for diffusion coefficients



Appendix B

Appendix for regulatory effects of
RNA polymerase

First of all the total promoter complex concentration is the sum for the free promot-
ers, the promoters where the first promoter is bound by an RNA polymerase and the
promoters where the second promoter is bound by RNA polymerase:

[P]tot = [P] + [P1R] + [P2R]

1 =
[P]
[P]tot

+
[P1R]
[P]tot

+
[P2R]
[P]tot

Note that the fractions is equivalent to the probability of being in that state e.g. Θ2 =
[P2R]
[P]tot

.
Second the biochemical differential equation governing the dynamics are given as:

˙[P1R] = k̃1
on [P] [RNAP]− k1

f [P1R]

˙[P2R] = k̃2
on [P] [RNAP]− k2

f [P2R]

We now define the pseudo on-rate as k1
on = k̃1

on [RNAP], which is a dimensionless quan-
tity. We here assume that for all intent and purposes the RNA polymerase concentration
is constant. Since the RNA polymerases greatly outnumber number of promoter sites
this is a fair assumption. Now if the concentrations are measured as concentrations rel-
ative to the total concentration, the equations become dimensionless and we recover the
master equation.

˙[P1R]
[P]tot

= k1
on

(
1− [P1R]

[P]tot
− [P2R]

[P]tot

)
− k1

f
[P1R]
[P]tot

(B.1)

˙[P2R]
[P]tot

= k2
on

(
1− [P1R]

[P]tot
− [P2R]

[P]tot

)
− k2

f
[P2R]
[P]tot

(B.2)

Θ̇1 = k1
on(1−Θ1 −Θ2)− k1

f Θ1

Θ̇2 = k2
on(1−Θ1 −Θ2)− k2

f Θ2
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Appendix C

Appendix for NAF motif

C.1 Tuning the transcription rates for oscillation

The production rates for repressor and activator mRNAs (transcription rates) can be
tuned by mutations in the promoter sequences. We explore the effects of decreasing the
maximal transcription rate, keeping the ratios between the maximal production rates of
activator and repressor mRNAs. The top right corner in Figure C.2 (X,Y,Z) corresponds
to the parameters used for points (X,Y,Z) in Figure 2.9. Starting from either damped
oscillations (Y) or sustained oscillations (Z) we show that only a certain range of tran-
scription rates can produce damped/sustained oscillations. Note that starting from (X)
(the completely symmetric system), inducing an asymmetry in transcriptional rates does
not produce oscillations. Which was the case for an asymmetry in half-lives (Figure 2.9).

Minimum Median Maximum

mRNA Degradation
[

mRNA
min

]
[102] 3.7 · 10−4 1.3 · 10−3 2.3 · 10−2

Protein Degradation
[

Protein
min

]
[102] 5.7 · 10−5 2.4 · 10−4 2.3 · 10−2

mRNA half life
[

1
hour

]
[102] 0.5 9 31

Protein half life
[

1
hour

]
[102] 0.5 46 200

Translation
[

Protein
mRNA min

]
[102] 1.6 · 10−2 2.3 16

Transcription
[

mRNA
min

]
[102] 1.6 · 10−3 0.03 1.6

Transcription rate when activated
[

mRNA
min

]
[102] - 1.6 -

Repressed Transcription rate
[

mRNA
min

]
- 1.6 ·10−4 -

Unregulated Transcription rate
[

mRNA
min

]
[128] - 1.6 ·10−2 -

KDimer
D [nM] [101] - 10 -

KDNA
D [nM] [101] - 0.18 -

Table C.1: Parameters for the model: Parameters are taken from Schwanhausser et al.
2011 [102] and transcription rates are chosen so they mapped to the mRNA and protein
abundances measured in [102] .

78



C.1 Tuning the transcription rates for oscillation 79

A)

R A

7.6 7.64
x106

4320

4300

4280
7.62

N
um

be
r o

f m
RN

A
s

Number of proteins

R/A

B)

0

2000

4000

6000

8000

100 000

200 000

300 000

400 000

0

100

200

300

Number of ActivatorsNumber of Repressors

N
um

be
r o

f m
RN

A
 R

ep
re

ss
or

s

Protein Nullcline
mRNA Nullcline

R A

Sy
m

m
et

ry

Figure C.1: Dynamics of the coupled NAF system both symmetrical and asymmetric
degradations:
A) The Tet two-dimensional symmetric NAF motif, where the repressor and activator
are collapsed into one protein, cannot oscillate. The system will always settle at a stable
node. This two-dimensional system will have the qualitative same behaviour as a four-
dimensional system where the activator/repressor parameters are identical. B) When
the mRNA and protein half-life of the activator is reduced by a factor 10 (to 0.9 hours)
the system undergoes a Hopf bifurcation and a stable limit cycle occurs. We show the
transient behaviour which settles at the limit cycle which is highlighted in orange.
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Figure C.3: Adding Activator
Adding an activator to the Hes Oscillator quench the oscillations. All half-lives are set
to 4 minutes

C.2 Effect of hetereodimers

C.2.1 Transcription rate 〈r1(τ)〉(A,R):

〈r1(τ)〉(A,R) =
N

ZKDNA
D∗

(β∗1 AA∗tot + β∗2 AR∗tot + β∗3RR∗tot) + Nβ∗4

here AA∗tot is the total number of dimer-activators, RR∗tot is the total of dimer-repressors,AR∗tot

is the total of hetero-dimers, KDNA
D∗ is the dimensionless dissociation for the protein-

DNA binding. β1 is activated transcription rate, β2 is heterodimer transcription rate,
β3 is repression transcription rate and β4 is unregulated(basal) transcription. N is the
number of regulator sites. Z is the partition function Z = 1 + AA∗tot

KDNA
D∗

+
RR∗tot
KDNA

D∗
+

AR∗tot
KDNA

D∗
.
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The transcription rate where hetereodimer are not allowed is very similar.

〈r1(τ)〉(A,R) =
N

ZKDNA
D∗

(β∗1 AA∗tot + β∗3RR∗tot) + Nβ∗4

However the AA∗tot and RR∗tot can be found analytically:

AA∗tot =
−KDimer

D∗ +
√

KDimer
D∗

2
+ 16A2

tot

8

Where Atot is the total amount of activators, the equation for repressors is equivalent.
Note that when hetereodimers are not allowed the partition function Z, becomes Z =

1 + AA∗tot
KDNA

D∗
+

RR∗tot
KDNA

D∗
.

C.2.2 Mono stable non-oscillatory regime

We find two fixed points of the system, analyzing the stability of these we find that the
system is monostable in the non-oscillatory regime, see figure C.6.

Figure C.6: The no-oscalilation regime is monostable:
We plot the fixed points for the repressor within the same regime as scanned in figure
2.9. B) The system has two fix points, the yellow and the blue. A) Testing for stability,
we see that only the blue solution is stable.
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C.2.3 Deriving the transcription rate 〈r1(τ)〉(A,R):

Dimerization
We have the following equation for dimerization of TetR and TetA:

d [RR]
dt

= k1
on [R] [R]− k1

o f f [RR]

d [AR]
dt

= k2
on [A] [R]− k2

o f f [AR]

d [AA]

dt
= k3

on [A] [A]− k3
o f f [AA]

Due to biochemical identities we have that: kon = k1
on = k2

on = k3
on and ko f f = k1

o f f =

k2
o f f = k3

o f f . Solving for steady state we get that:

[R]2 = KDimer
D [RR] (C.1)

[A]2 = KDimer
D [AA] (C.2)

[A] [R] = KDimer
D [AR] (C.3)

In addition we have that the total activator and repressor concentration is conserved on
short timescales:

[A]tot = [A] + 2 [AA]tot + [AR]tot = [A] + 2 [AA] + 2 [AAO] + [AR] + [ARO]

[R]tot = [R] + 2 [RR]tot + [AR]tot = [R] + 2 [RR] + 2 [RRO] + [AR] + [ARO]

Where [AAO] is the amount of activators (or repressors) bound to the operator sites.
Since the number of operator sites is small (roughly 7), we assume that the majority of
dimers are free. [TF]tot ≈ [TF].
We then get:

[A]tot = [A] + 2 [AA]tot + [AR]tot

[R]tot = [R] + 2 [RR]tot + [AR]tot

and

[R]2 = KDimer
D [RR]tot (C.4)

[A]2 = KDimer
D [AA]tot (C.5)

[A] [R] = KDimer
D [AR]tot (C.6)

We are interested is an algebraic relation which gives us the free dimer concentrations
when we consider the total concentrations:

[A] + 2
[A]2

KDimer
D

+
[A] [R]
KDimer

D
− [A]tot = 0

[R] + 2
[R]2

KDimer
D

+
[A] [R]
KDimer

D
− [R]tot = 0

Solving the first equation with respect to [A], we obtain:

[A] =
1
4

(√
8 · [A]tot · KDimer

D + KDimer
D

2
+ 2KDimer

D [R] + [R]2 − KDimer
D − [R]

)
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Inserting into the second equation:

[R] + 2
[R]2

KDimer
D

− [R]tot +

1
4

(√
8 · [A]tot · KDimer

D + KDimer
D

2
+ 2KDimer

D [R] + [R]2 − KDimer
D − [R]

)
[R]

KDimer
D

= 0

The solution to this equation is so cumbersome that it is easier to solve numerical for
each time step using the Newton method with tolerance of 10−3.
For the later equations we denote the solutions for R and A as A∗ and R∗, and the
dimers as:

AA∗tot =
A∗2

KDimer
D

RR∗tot =
R∗2

KDimer
D

AR∗tot =
A∗R∗

KDimer
D

The concentration equations can be changed to equations for protein numbers by chang-
ing the dissociation so they are dimensionless (by multiplying with the nucleus volume
and Avogado’s number). KDimer

D · Vnucleus · CA = KDimer
D∗ . For mammalian cells the nu-

clear volume is 1650 · 10−18 m3

DNA binding
In addition to the dimerization the dimers bind to the operator sites on the DNA.
The total concentration for a single operator site is the sum of free and bound operator
site.

[O]tot = [O] f ree + [RRO] + [ARO] + [AAO]

The differential equation governing a single operator site binding is:

d [AAO]

dt
= kDNA

on [AA] [O]− kDNA
o f f [AAO]

d [ARO]

dt
= kDNA

on [AR] [O]− kDNA
o f f [ARO]

d [RRO]

dt
= kDNA

on [RR] [O]− kDNA
o f f [RRO]

Note, that the biochemical "symmetries" mean that every dimer interacts in the same
way with the DNA and the on rates and the off rates are therefore equal for dimers. The
total transcription factor concentration is both the concentration of transcription factor
bound to the operator site and free transcription factor.

[RR]tot = [RR] + [RRO]

[AR]tot = [AR] + [ARO]

[AA]tot = [AA] + [AAO]
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However we previously assumed that the bound fraction is small compared to the free
fraction. Which means that the free concentration is almost the total concentration,
[TF]tot ≈ [TF]. Using this assumption, solving the DNA binding for steady state we
find that:

[AAO] =
[AA]tot
KDNA

D
[O] =

AAtot

KDNA
D∗

[O]

[ARO] =
[AR]tot
KDNA

D
[O] =

ARtot

KDNA
D∗

[O]

[RRO] =
[RR]tot
KDNA

D
[O] =

RRtot

KDNA
D∗

[O]

Where the dissociation constants are made dimensionless
Using the steady states and conservation of operator sites we can calculate the probabil-
ity for a single promoter to be free, bound by activator dimers AA, activator-repressor
dimers AR, or repressor dimers RR.

[O]tot = [O] +

(
AAtot

KDNA
D∗

+
RRtot

KDNA
D∗

+
ARtot

KDNA
D∗

)
[O]

P( f ree) =
[O]

[O]tot
=

1

1 + AA∗tot
KDNA

D∗
+

RR∗tot
KDNA

D∗
+

AR∗tot
KDNA

D∗

=
1
Z

P(AA) =
[AAO]

[O]tot
=

AA∗tot
KDNA

D∗

1

1 + AA∗tot
KDNA

D∗
+

RR∗tot
KDNA

D∗
+

AR∗tot
KDNA

D∗

=
AA∗tot
KDNA

D∗

1
Z

P(AR) =
[ARO]

[O]tot
=

AR∗tot
KDNA

D∗

1

1 + AA∗tot
KDNA

D∗
+

RR∗tot
KDNA

D∗
+

AR∗tot
KDNA

D∗

=
AR∗tot
KDNA

D∗

1
Z

P(RR) =
[RRO]

[O]tot
=

RR∗tot
KDNA

D∗

1

1 + AA∗tot
KDNA

D∗
+

RR∗tot
KDNA

D∗
+

AR∗tot
KDNA

D∗

=
RR∗tot
KDNA

D∗

1
Z

Transcriptional probability
From the probabilities for the states of the operator sites we can calculate the proba-
bilities of transcription, which for a single operator site gives the rate of transcription
as:

r1 = β1P(AA) + β2P(AR) + β3P(RR) + β4P( f ree)

We assume there is a linear relation between occupancy and transcription probability,
so for N operator sites the average rate is given as:

〈r1〉 = β1〈nAA〉+ β2〈nAR〉+ β3〈nRR〉+ β4〈 f ree〉

We have that 〈nAA〉 = N · P(AA) where again N is the number of operator sites and
P(AA) is the probability the activation dimer has bound. Since P( f ree) = 1− P(AA)−
P(AR)− P(RR) we get that

〈r1〉 = (β1 − β4)〈nAA〉+ (β2 − β4)〈nAR〉+ (β3 − β4)〈nRR〉+ β4N
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〈r1〉 = Nβ∗1P(AA) + Nβ∗2P(AR) + Nβ∗3P(RR) + Nβ4 (C.7)

This can be written using the total number of dimer proteins AA∗tot, AR∗tot and RR∗tot.

〈r1〉 =
N

ZKDNA
D∗

(β∗1 AA∗tot + β∗2 AR∗tot + β∗3RR∗tot) + Nβ∗4

Where AA∗tot, AR∗tot and RR∗tot are numerically calculated from the total concentration
of activator and repressor Atot and Rtot

˙Atot = r2mRNAA − γ2 Atot (C.8)
˙Rtot = r2mRNAR − γ2Rtot (C.9)

˙mRNAA = 〈r1〉 − γ1mRNAA (C.10)
˙mRNAR = 〈r1〉 − γ1mRNAR (C.11)

C.2.4 Frustrated bistability motif and simplified NAF equations:

I constructed simplified NAF equations modifying the frustrated bistability equations:

dA
dt

= α
1

1 + R
K

2
b + A

K
2

1 + A
K

2 − γ1 A

dR
dt

= α

NAR︷ ︸︸ ︷
1

1 + R
K

2
b + A

K
2

1 + A
K

2 − γ2R

Here A is the activator, R is the repressor, b=0.0016 is leakages of the promoter, α=2.3
is translation rate, K=55 is the ratio of dimerization dissociation constant to DNA disso-
ciation constant, and γ is the degradation rates. The NAR term (indicated by the curly
bracket) is set equal to 1 for the frustrated bistability motif.
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Appendix for The Expert Game
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Figure D.1: Effect of cooperation is more pronounces in larger systems
We contrast two strategies. Never send referrals versus always send referrals. It is clear
that the large the system size becomes the more important referrals become. Note that
we have a system size of 16, where the effect exists but is small.

87



88 Appendix for The Expert Game

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0.8 0.9 1.0 1.1 1.2 1.3 1.4

10
12

14
16

18

Preference versus Wins

Incoming Preference

W
in

s

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

ID
NO−ID

Figure D.2: Preference versus wins
We do not see a correlation between the preference of players and wins. Also the spread
in incoming preference is comparable between the NO-ID and ID game. This is probably
due to the time constraint in both games. Meaning that the players who are strongly
preferred spend too much time helping.
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Figure D.3: Message distribution before and after an inquiry was send to the expert
For both sessions there is a clear tendency to send more inquiries before the expert is
found. This is not a surprise since the goal of the game is to get a confirmation from
their respective experts.
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