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Abstract

Biological membranes in living organisms play the fundamental role of acting as
boundaries and facilitate compartmentalization. From a structural perspective
they are essentially constituted by an amphiphilic lipid membrane in which sug-
ars, peptides and proteins are incorporated. These quasi-2-dimensional layers
are literally vital for the cell, as membranes work as catalysts for some of the
main chemical reactions involved in cell survival and homeostasis and govern
all communication between a cell and its surroundings. The focus of the work
presented in this thesis is to understand how the physical properties of lipid
membranes relate to the behavior and functional properties of biological mem-
branes, with special attention to the role of biological membranes in nerve signal
propagation.

We start by exploring the properties of polar lipid membranes in order to tackle
the problem of the coupling between the membrane and the electrical field within
a universal thermodynamic framework. Within this framework, known electrical
phenomena associated with lipid membranes such as offset voltage, electrostric-
tion, piezoelectricity and flexoelectricity can be captured and viewed as special
cases of a more general treatment. This purely thermodynamical treatment only
describes the equilibrium properties of the membrane, however biological pro-
cesses are of course dynamical in nature. A clear understanding of the dynamical
behavior of lipid membranes is therefore essential when we aim at unraveling
the functional behavior of membranes in biological systems. In order to do so
we apply linear response theory and non-equilibrium thermodynamics to lipid
membranes and propose a new approach: we investigate the relaxation behavior
of lipid membranes in the vicinity of their lipid melting transition, taking into
account the coupling between thermodynamical fluctuations and the available
heat reservoir. The next step is to combine the knowledge on lipid membranes
subjected to an electrical field with the knowledge on their relaxation behav-
ior and use our understanding to attempt to re-evaluate the results of common
electrophysiological methods such as “jump experiments” and impedance spec-
troscopy performed on lipid membranes. By doing so we observe that a number
of non-linear phenomena previously thought to be associated with the presence
of proteins embedded in the membrane can just as well be produced by a ’pure’
lipid membrane.

As mentioned before, ultimately we aim at deepen the understanding of physi-
cal properties of lipid membranes in connection with the role of membranes in
nerve signal propagation, in general and within the framework of the relatively
recently proposed Soliton Model. The Soliton Model is at present the main
alternative to the Hodgkin-Huxley model, the latter is currently the only widely
accepted theoretical explanation of nerve signal propagation but fails at captur-
ing several phenomena associated with nerve signals. In order to do so, first of
all we focus on the implications of the relaxation properties of lipid membranes
for the propagation of solitons in the membrane. By including relaxation effects
in the theory of solitons propagation we find not only that soliton solutions are
possible, but also that they are fully characterized by the thermodynamical and
fluid-dynamical properties of the membrane. At last, we experimentally test the
predictions of the soliton model regarding signal propagation in nerves. Our ex-
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perimental observations validate the main predictions of the soliton model, that
are not captured by other theoretical frameworks. More specifically, we observe
that nerve signal propagating in the same axon penetrate upon collision and
that nerve signals, beyond the commonly appreciated electrical component, ex-
hibit a mechanical component, which is in-phase with the electrical one, thus
dismissing the possibility of it being caused by the propagating electrical signal.
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Dansk resume

Biologiske membraner i levende organismer har den grundlæggende rolle, at de
definerer grænser og muliggører opdeling af celler. Fra et strukturelt synspunkt
er de en amfifil lipidmembran, hvori sukkermolekyler, peptider og proteiner er
inkorporeret. Disse kvasi-2-dimensionelle lag er afgørende for cellen, da mem-
braner virker b̊ade som katalysatorer for vigtige kemiske reaktioner, der er in-
volveret i celle overlevelse og homeostase, og regulerer al kommunikation mellem
en celle og dens omgivelser. Fokus for arbejdet præsenteret i denne afhandling er
at forst̊a, hvordan de fysiske egenskaber af lipidmembraner er forbundet med bi-
ologiske membraners adfærd og funktionelle egenskaber. Vi lægger særlig vægt
p̊a den rolle, som biologiske membraner spiller i nerve signaludbredelse.

Vi starter med at udforske egenskaberne af polære lipidmembraner vha. en
termodynamisk fremgangsm̊ade, for at forst̊a koblingen mellem membranen og
elektriske felter. Vha. denne termodynamiske fremgangsm̊ade ses det, at kendte
elektriske fænomener associeret med lipidmembraner, som offsetspænding, elec-
trostriction, piezoelektricitet og flexoelektricitet er specialtilfælde af en mere
generel beskrivelse. Termodynamik beskriver udelukkende ligevægts egenskaber
af membranen, men biologiske processer er naturligvis dynamiske i naturen. En
klar forst̊aelse af den dynamiske adfærd af lipidmembraner er derfor vigtig, n̊ar
vi sigter mod at udrede den funktionelle adfærd af membraner i biologiske syste-
mer. For at gøre dette anvender vi lineær respons teori og ikke-ligevægts termo-
dynamik, og vi foresl̊ar en ny beskrivelse af den dynamiske adfærd af membraner.
Vi undersøger, hvordan relaksations adfærden af lipidmembraner tæt p̊a deres
faseovergang er koblet med dets tilgængelige varmereservoir. Det næste skridt er
at kombinere vores viden om hvordan lipidmembraner er koblet til elektriskfelter
med vores viden om deres dynamiske adfærd. Ved at kombinere disse, forsøger
vi at reevaluere resultaterne af typiske elektrofysiologiske metoder s̊asom “jump
eksperimenter” og impedans spektroskopi udført p̊a lipidmembraner. Vi be-
mærker, at en række ikke-lineære elektriske fænomener tidligere forbundet med
tilstedeværelsen af membranproteiner kan forkomme i en “ren” lipidmembran.

Som nævnt før, sigter vi i sidste ende mod at uddybe forst̊aelsen af de fysiske
egenskaber af lipidmembraner for at forst̊a rollen af membraner i nervesignalers
udbredelse, i almindelighed og i den nyligt fremlagte Soliton model. Soliton
modellen er i øjeblikket det vigtigste alternativ til Hodgkin-Huxley modellen,
hvor sidstnævnte i øjeblikket er den bredt accepterede model, som dog ikke
form̊ar at forklare flere fænomener forbundet med nervesignaler. For at gøre
dette, har vi først og fremmest fokusere p̊a konsekvenserne af de dynamiske
egenskaber af lipidmembraner p̊a udbredelsen af solitoner i membraner. Ved at
inkludere membranens relaksations adfærd i Soliton modellen, finder vi ikke kun
at soliton løsninger er mulige, men ogs̊a at de fuldt ud er karakteriseret af de
termodynamiske og fluid-dynamiske egenskaber af membranen. Foruden dette
har vi eksperimentelt testet forudsigelser af Soliton modellen vedrørende sig-
naludbredelse i nerver. Vores eksperimentelle observationer validerer de testede
forudsigelser af Soliton modellen, forudsigelser som ikke er inkluderet i Hodgkin-
Huxley modellen. Vi har, mere specifikt, set at nerve signaler i et axon g̊ar
igennem hinanden ved sammenstød og at nerve signaler, ud over det almin-
deligt elektrisk signal, har et mekanisk signal, som er i fase med det elektriske.
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Dermed vi kan afvise, at det mekaniske signal følger efter det elektrisk signal,
som tidligere antaget.
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Preface

The main motivation behind the work presented in this thesis is the ambition to
describe the physical macroscopic properties of biological membranes and un-
ravel especially how these properties connect to the propagation of nerve signals.
Biological membranes are fascinating structures which have features that are vi-
tal to life on all scales, from nanometers (protein activity) to centimeters (nerve
signals). Research on these structures conventionally focuses on the nanometer
scale and the large scale properties have often been marginalized. However, with
the introduction of the Soliton model for the propagation of nerve signals and
its success in describing a number of previously unexplained aspects of nerve
propagation, the importance of the macroscopic properties of membranes has
been emphasized. It is this model and its foundation in the macroscopic prop-
erties of biological membranes that has been the central motivation throughout
this thesis.
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Chapter 1

Introduction

The primary role of biological membranes is to define boundaries and enable
compartmentation, a basic requirement for the existence of life. Membranes
surround living cells as well as many of their inner components. It is these semi
permeable structures that enable up-concentration of molecules and also gen-
erate gradients, fueling the activity of the cell. Biology is a vastly complicated
field whose radius of action spans from chemical signal pathways, on intercellu-
lar and extracellular level, to macroscopic signaling as the propagation of nerve
signaling and the behavior of life. Membranes and their function are central in
understanding the impact of the environment on the cell and in unraveling com-
plex behavior as in the case of nerve signal propagation. Studying properties of
these structures is therefore vital for understanding cells as the unit of life, at a
single cell level as well as organism level.

Figure 1.1: A illustration of a mammalian cell, showing the outer membrane and the
inner organelles. Taken from [1].

1



1.1. Lipid membranes Chapter 1. Introduction

1.1 Lipid membranes

Overton [2] in 1899 suggested that cells are surrounded by a “fatty oil”. In 1925
Gorter and Grendel [3] extended this, by finding that cells “are covered by a layer
of fatty substances that is two molecules thick”. It became clear in 1935, from
experiments conducted by Danielli and Harvey [4], that the fatty layer is consti-
tuted of both lipids and proteins. These discoveries lead to years of speculation
about the organization of these fatty layers. In 1972 Singer and Nicolson [5]
proposed the Fluid Mosaic model. The Fluid Mosaic model describes the struc-
ture of the fatty layer as a homogeneous bilayer of lipids (“a two-dimensional
oriented viscous solution” [5]), wherein proteins and other macro-molecules can
be anchored or immersed due to mainly hydrophobic interactions, see Fig. (1.1),
left, for visualization. The idea of the Fluid Mosaic model was extended in 1984
by Mouritsen and Bloom [6] in the Mattress model. In the Mattress model the
bilayer is viewed as a pseudo 2-dimensional heterogeneous solution, where mis-
matching between the hydrophobic regions of the lipids and the proteins induces
inhomogeneities in the bilayer, see Fig. (1.1), right.

Figure 1.2: Patches of membrane in accordance with; left, the Fluid Mosaic model,
right, the Mattress model. Bottom, modern veiw of the membrane, where the mem-
brane is considered to be a highly heterogeneous and dynamic structure. The illustration
has been provided by Andreas Blicher.

Both models describes the membrane as a dynamic structure. Already before
the introduction of the Mattress model it became evident that the mechanical
and fluid dynamical properties of natural occurring membranes are crucial for
cellular activity and several biological functions [7]. In the efforts of under-
standing these properties, it became apparent that membranes can be found
in a number of smectic phases and that the phase transitions between these,
are often close to physiological conditions. These phases, the transitions and
their mechanical and dynamical implications for the physical properties of mem-
branes have been the focus of both intense experimental and theoretical studies.

2



1.1. Lipid membranes Chapter 1. Introduction

The lipid composition of biological membranes can vary a lot, depending for
example on the tissue type and the growth conditions. It has been shown that
when E. coli is grown at different temperatures the lipid composition of its
membrane is altered so that the membrane show similar physical properties
across different growth conditions [8]. Similar lipid composition changes have
also been observed for trouts. Specifically, changes in lipid composition of liver
tissue of trouts raised at different temperatures [9]. It has further been observed
that lipid composition changes take place in deep-sea bacteria grown at differ-
ent pressure [10]. All these experimental findings indicate that the physical
properties of biological membranes are tightly controlled, further underlining
the importance of these properties for the functionality of the membrane and
therefore biology.

1.1.1 Introduction to Lipids

A variety of lipids is found in biological membranes, these can be divided up into
sterols (e.g. cholsterol), sphingolipids and phospholipids. In cell membranes the
majority of lipids are phospholipids, these have, as the majority of all lipids in
membranes, a polar and non-polar region making them amphiphilic molecules.

The non-polar region is, in phospholipids, composed of two hydrocarbon
chains typically containing 16 or 18 carbons molecules [11]. The length can
though vary from 12 to 22 molecules and the chain can be either saturated, un-
saturated (containing double bonds) or one of each, which is the most common.
The hydrocarbon chains are linked through ester bonds to adjacent carbons of
a glycerol backbone. The last carbon in the glycerol backbone is, in the case
of a phospholipid, linked to a negatively charged phosphate group via another
ester bond. The head group is attached to this phosphate group, making up the
polar region of the lipids. The head group can be a number of different biolog-
ical compounds such as choline, ethanolamine, serine and glycerol. Both serine
and glycerol head groups will result in a net negative charge of the polar region,
whereas with choline and ethanolamine the region will be zwitterionic, all at
neutral pH. Zwitterionic head groups carries no net charge but present spatially
separated charges which render the head group very polar. Zwitterionic lipids
commonly display a large dipole moment pointing towards their tail, amounting
to a monolayer surface potential of 300− 500 mV [12, 13]. Additionally, in the
majority of biological membranes about 10− 20% of the lipids are charged and
this percentage can go up to 40% in the case of mitochondrial membranes [14].
It is known that charged lipids are often asymmetrically distributed between the
two leaflets of the membrane, the inner leaflet carrying more charges [15, 16].
This asymmetry means that biological membranes can be polarized structures
(see section 2.3).

The naming convention for phospholipids is based on the lipid chains and on the
head group. For example, two palmitic acids linked to a choline group is called
dipalmitoylphosphatidylcholine (DPPC). DPPC is depicted in Fig. (1.1.1) (a).

3



1.1. Lipid membranes Chapter 1. Introduction

Figure 1.3: A: Illustration of a 1,2-dipalmitoylphosphatidylcholine (DPPC) lipid. B:
A patch of a bilayer. C: Unilamellar vesicle. The illustration has been provided by
Andreas Blicher

Due to the amphiphilic nature of the majority of lipids, when mixed with
a polar solvent (e.g. water), they will self-organize to minimize unfavorable
polar-nonpolar interactions. This self-organization will result in the formation
of macroscopic structures, such as micelles, planar bilayers (see Fig. (1.1.1) B)
or vesicles (see Fig. (1.1.1) C). In general other non-lamellar structures can be
formed, but they are rarely observed in excess water. Vesicles in particular are
interesting in the context of biological membranes. These energetically favorable
bilayer structures are identical in structure to native biological membranes - thus
represents a valuable model system for studying physical properties of biological
membranes. Throughout this thesis large unilamellar vesicles of DPPC will
commonly be used as a general model system for biological membranes.

1.1.2 Membrane Phases

Lipid bilayers can be found in a number of smectic phases1 varying with lipid
composition. Common for these phases is that they are neither crystalline nor
fluid, they share properties from both classes.

Lipid bilayers are considered to have four smectic phases. The customarily des-
ignated procedure for the lipid bilayer phase is the following: To describe the
long-range ordering an upper-case letter is used; L for one-dimensional lamellar,
and P for two-dimensional oblique. A lower-case subscript is used to describe
the short-range ordering of the lipid chains; α disordered (fluid); β ordered - not
tilted with respect to the normal of the bilayer; β′, ordered - tilted (gel) [17].
The four phases are presented below in the generalized sequence of thermotropic
transitions [18]:

• Lc (Lβ): Crystalline phase, in which the lipids are ordered in three dimen-
sions.

• Lβ′ : Crystalline molecular order. Chains are mostly “all-trans” 2 ordered
and tilted. Lipids are in this phase is packed in a distorted quasihexagonal
lattice. This phase is often called the solid phase or simply the gel phase.

• Pβ′ : So called “ripple” phase. The membrane is partially solid, partially
fluid organized in a periodic structure in the plane of the lamellae. The

1By a phase is meant a state of a medium that share physical properties.
2Spatial orientation of the two chains.

4



1.1. Lipid membranes Chapter 1. Introduction

lipid chains are tilted but packed in a regular hexagonal lattice. This
phase forms prior to chain melting.

• Lα: Lipid chains are disordered. Order of lattice is lost. This phase is
often called the liquid-disordered phase or simply the fluid phase.

The main lipid melting transition between Lβ′ and Lα is the most biologically
relevant, whereas the ripple phase will be ignored. The ripple phase has been
shown to be easily abolished by the presence of various biomolecules in the
membrane, and is rarely seen in biological membranes [19]. The topology of the
gel and fluid phases is illustrated in Fig. (1.4).

Figure 1.4: Top, illustrates the lateral ordering of the gel phase (left) and the fluid
phase (right). The bottom depicts the ordering of the lipid chains. The illustration
is provided by Andreas Blicher.

1.1.3 Membrane Phase Transition

A phase transition is defined as a transformation from one phase of a system to
another, e.g. ice to water. Depending on the nature of the transition, a system
undergoing a phase transition can display a number of extraordinary properties,
such as drastic changes in the susceptibilities and in the relaxation behavior of
the system.

The lipid melting transition has been found to take place just under the physio-
logical growth temperature in naturally occurring membranes, see Fig. (1.1.3)3.
As previously mentioned, organisms have been found to adjust their lipid com-
position so that their membranes conserve their physical properties at different
growth condition, this includes the lipid melting transition. Organisms shift
their membranes lipid melting transition point to conserve the relation between
the transition and their growth conditions (i.e. the relation between transi-
tion temperature and growth temperature), even under extreme conditions [8].

3A similar behavior has be shown to be true for the lipid melting transition in the lipid
membrane from rat brain, not shown.

5
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The close coupling between the lipid melting transition and growth conditions
indicates the importance of the transition for the function of biological mem-
branes and therefore biology in general. This has motivated extensive research
of the nature of the main lipid melting transition between the gel- and fluid-
phase [17,20,21].

Figure 1.5: The calorimetric profile of a intact E. coli membrane. The red shaded
region is associated to the lipid transition, whereas the blue region is associated to
protein unfolding. Notice that the lipid transition is immediately below the growth
temperature. The figure is adopted from [8].

The lipid melting transition4 is a exothermic transition occurring over a
narrow but finite temperature range, which is driven by the entropy gain of col-
lective melting of lipid chains. The exothermic transition is easily monitored by
differential scanning calorimetry (DSC), where the heat capacity show a spike
of finite extend during the transition. The transition associated heat capacity
is referred to as the excess heat capacity. During the transition a number of
other susceptibilities likewise display spikes, e.g. the compressibility and lat-
eral compressibility. The topography of the membrane during the lipid melting
transition is dominated by the formation of domains of various sizes and com-
positions, though phase separation is not observed5. The domains are stabilized
by the interplay between configuration entropy and interfacial associated free
energy. The fluctuations of these cooperative domains display very slow relax-
ation times in the transition region [22,23], see chapter 3.

The main lipid melting transition is found consistently close to physiological
conditions and represent a potentially powerful means for biology to respond to
environmental changes and to regulate behavior of the membrane, which plays
a central role in a vast number of biological functions.

4A systematic classification of the lipid melting transition is difficult, however it has been
described as a weak first order transition [7,20].

5This observation is at odds with a true first order phase transition, which display complete
phase separation that renders interface phenomenas unimportant.

6
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1.2 Nerve models

For larger organisms like humans, fast and long-range signaling is essential for
the organism to respond to the environment or to act coherently. This signal-
ing is done through the nervous system which allow the brain, in the span of
few milliseconds, to send and receive signals to and from the entire organism.
Understanding how signals propagate through the nervous system is vital for
understanding the phenomenon itself but represents also the first step towards
understanding the brain and has, therefore, been the subject of vast research
and a crucial point of interest in the history of medicine.

There is two types of models that aim at explaining the propagation of nerve
signals. The first is the textbook electrical model of the propagation of nerve
signal of Hodgkin and Huxley [24]6. The second type proposes that the propa-
gation of nerve signals is facilitated by solitons (electro-mechanical waves) and
has been proposed by Heimburg and Jackson [26].

1.2.1 Hodgkin & Huxley Model

In 1791 Luigi Galvani discovered that he could get the legs of dead frogs to
move by stimulating the spine electrically. This finding, paved the way for a
description of nerve signaling as being electrical in nature. In 1952 Hodgkin and
Huxley [24] presented a mathematical model for the initiation and propagation
of nerve pulses in giant squid axons. Their effort was originally only intended as
an empirical description of the experimentally found transient voltage change of
a nerve signal (or action potential) by Cole and Curtis [27]. Their description
however gained widespread acceptance throughout the neural field, resulting in
them receiving the Nobel prize in medicine in 1963 for their work.

The giant squid axon was early on found to have a significantly higher potas-
sium concentration inside the nerve compared to outside and a higher sodium
concentration outside than inside. These concentration differences give rise to
a voltage difference (through the Nernst potential) over the nerve membrane,
assuming that a selective permeability is present. Hodgkin and Huxley [24] as-
sumed that the cell membrane acts like a barrier, in which trans-membrane ion
channels are embedded. These ion channels are assumed to be voltage gated
and specific in their conduction of ions – either conducting sodium or potas-
sium. In their purely electrical view, the membrane is considered impermeable
to ions and is assumed to be equivalent in function to a capacitor with constant
capacitance. This is schematically depicted in Fig. (1.2.1) A.

Hodgkin and Huxley proposed the concept that a local depolarization will
lower the potential difference over the membrane causing a local flux of ions
through the channels. This will result in further depolarization of the mem-
brane which in turn will cause additional channels to conduct ions, hereby cre-
ating a cascade effect through which the nerve signal is propagated. The beauty
of their model is that the axon membrane can be depicted as a rather simple
basic electrical circuit unit. The equivalent circuit can be seen in Fig. (1.2.1)
B. Though the basic equivalent circuit seem quite straightforward, the detailed

6Extensions of this model have been made to describe specific nerves type but these are
all based on the framework of Hodgkin and Huxley, i.e. [25].
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Figure 1.6: A: Illustration of the axon membrane in view of the Hodgkin-Huxley
model. B: The equivalent electrical circuit of the membrane, where the ion channels
are replaced with resistors and the membrane acts as a capacitor. The figure has been
adopted from [8]

dynamics of the ion channels is rather complicated. The ion channels have a
complex time and voltage dependence which have to be empirically fitted for
any system under consideration.

Hodgkin and Huxley proposed the following differential equation (cable equa-
tion) for describing the propagation of the voltage pulse in a nerve (giant squid
axon),

a

2Ri

∂2V

∂x2
= Cm

∂V

∂t
+ σK(V − EK) + σNa(V − ENa) + σL(V − EL), (1.1)

where V is the voltage, which is a function of time and position, Ri is the re-
sistivity along the interior of the nerve, Cm is the capacitance of the membrane
and a is the radius of the axon. Here the geometry of the axon has been assumed
to be a perfect cylinder. EK and ENa are the respective resting potentials as-
sociated with potassium and sodium, with EL being the leak potential. σK ,
σNa are conductance of potassium and sodium respectively, and σL is the leak
conductance, all being complicated functions of voltage and time.

As pointed out by Hodgkin and Huxley, their model is an empirical model
specifically made for the action potential in giant squid axon [24]. No explana-
tion is provided for the time- and voltage-dependence of the involved ion-channel
proteins on which the model is based. This mean that in principle these depen-
dencies have to be measured for any new nerve system. The empirical nature of
the model strongly limits its predictive power. The general predictions that can
be made by the Hodgkin and Huxley model and akin models are that the nerve
signal is generated by a tightly regulated ionic currents through the membrane
of the axon and that any disruptance of these currents will affect the nerve signal.

The assumptions made by Hodgkin and Huxley imply that the lipid membrane
is a constant structure with no drastic changes in geometry or any other phys-
ical property. These assumption seem in conflict with the dynamic nature of
lipid membrane, especially in the vicinity of the lipid melting transition. Ex-
perimental findings even indicates the occurrence of a phase transition during
the nerve pulse [28, 29]. Furthermore, the very complex and selective gating of
the ion channels can in itself be questioned. Tasaki et al. [30] showed that the
axon of a giant squid can still accommodate propagation of nerve pulses with no

8
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monovalent cations in the exterior solution (e.g. Na, K). Further, new studies of
the conduction of pure lipid membrane have shown voltages gating along with
a number of behavioral traits previously associated to proteins [31–33]. In the
literature these contradicting observations have been attributed to secondary
selectivity of the ion channels, which seems somewhat of an unsatisfactory ex-
planation, or have simply been ignored.

In the equivalent circuit terminology, the ion channels are viewed as resistors
through which ion (charges) flow. This is a strictly dissipative process indepen-
dent of flow direction. The HH-model describes the action potential as being
produced mainly by ion flows, making the propagation of nerve signals a strin-
gently dissipative process. Hill et al. [34] published in 1958 a review on the
heat production of a nerve pulse, showing that during a nerve pulse heat is first
release and then entirely reabsorbed, following the profile of the electrical pulse
within experimental errors. This fundamental finding has later been confirmed
in great detail for nerves pulses originating from a number of different myeli-
nated [35] and non-myelinated [36,37] nerves. The re-absorption of the produced
heat strictly classifies the nerve pulse as an adiabatic process (see Fig. (1.2.1),
B), which is very much at odds with the dissipative nature of the HH-model.

Figure 1.7: During the nerve pulse the thickness and the heat of the nerve axon
changes. A: Shows that thickness change scales with the electrical nerve pulse. Ex-
periment was conducted on giant squid axons. The figure has been adopted from [38].
B: Shows the integral of the heat released during a nerve pulse, showing no net produc-
tion of heat. Experiments were conducted on non-myelinated fibers of the pike olfactory
nerve. The figure has been adopted from [36].

The Hodgkin-Huxley model solely describes the electrical aspect of a nerve
pulse. It have been shown that the electrical pulse is coupled with a swelling of
the membrane [36,38,39] (see Fig. (1.2.1), A). The adiabatic nature of the nerve
pulse combined with the mechanical changes and the physical size of the pulse,
indicates that the nerves pulses could be a type of sound wave. This deduction
lead to the proposal of the Soliton model by Heimburg and Jackson in 2005 [26].
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1.2.2 Soliton Model

In a series of recent publications Heimburg and Jackson have proposed an alter-
native thermodynamical model for the propagation of nerve pulses [26, 40]. In
this model nerve signals are described as a class of localized sound waves known
as solitons. Solitons are self-reinforced waves that propagate with constant
velocity without attenuating7. This description address a number of poorly
understood experimental observation, the adiabatic nature of nerve pulses, the
electrical and mechanical nature of the nerve signal and the effect of anesthet-
ics. Observations that are hard to reconcile with models which are based on the
framework of electrical circuits.

Heimburg and Jackson [26] relaying their theory on thermodynamics and hydro-
dynamics proposed that nerve signals are localized electro-mechanical density
waves (solitons). For the existence of solitary waves both non-linearity and dis-
persion have to be present. For the Soliton model the non-linearity is in the
speed of sound which is a function of lateral density and dispersion is the fre-
quency dependency of the speed of sound. In the vicinity of the lipid melting
transition the lipid membrane meet both of these requirements, see Fig. (1.2.2).

Figure 1.8: The speed of sound as a function of lateral density, for large unilamellar
vesicles of DPPC at T = 318.15 K. The speed of sound is shown for the theoretical
low frequency limit (0 Hz) and for 5 MHz, from ultra-sonic experiments. [26].

The Soliton model is based on the equation of sound. Using that the nerve
axon is a long approximately homogeneous cylinder we can restrict ourself to
consider the 1-dimensional equation of sound,

∂2

∂t2
∆ρA =

∂

∂x

(
c2
∂

∂x
∆ρA

)
, (1.2)

7Recently experiments have verified the existence of lateral density solitons in quasi 2-
dimensional sheets [41].
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where ∆ρA(x, t) = ρA(x, t) − ρA0 8 is the change in lateral density of the nerve
membrane and c is the speed of sound. As illustrated in Fig. (1.2.2), the speed
of sound in plane of the lipid membrane is a non-linear function of density and a
function of frequency in the vicinity of the lipid melting transition. To capture
the non-linear dependency on lateral density, Heimburg and Jackson expand the
speed of sound squared into a power series to second order

c2(∆ρA) = c20 + p∆ρA + q(∆ρA)2 + . . . , (1.3)

where c0 is the phase velocity in the fluid phase, far from the transition. p < 0
and q > 0 are the taylor expansion coefficients which are determined from the
density dependent speed of sound of membrane9.

Having no detailed data on the frequency dependence of the speed of sound
at low frequencies, Heimburg and Jackson chose the dispersion term to take the

simplest possible form (−h ∂4

∂x4 ∆ρA), resulting in the final formulation of the
Soliton model

∂2

∂t2
∆ρA =

∂

∂x

((
c20 + p∆ρA + q(∆ρA)2

) ∂

∂x
∆ρA

)
− h ∂4

∂x4
∆ρA, (1.4)

where h > 0 is the dispersion constant which sets the width of the pulse (see
chapter 5). By considering the low-amplitude periodic solution of Eq. (1.4),
∆ρA(x, t) = ∆ρA0 exp(iω(t − x/c0)) using that c(ρA) ≈ c0 we see the nature of
the assumed dispersion term,

c2(ω) = c20 + hk2 ≈ c20 + h
ω2

c20
. (1.5)

We see that the dispersion constant acts as the taylor expansion coefficient of
the second order term of the frequency dependent speed of sound, around ω = 0.
The sign of the frequency is of no importance since it is only represents a phase
shift, meaning that the speed of sound must be an even function of frequency.
By this argument the chosen dispersion term truly poses the simplest mean-
ingful choice, as the lowest order, non-trivial, expansion of the speed of sounds
frequency dependence.

Assuming that the general solution to Eq. (1.4) propagates with a constant
velocity (z = x−vt, where v ≤ c0), is localized and vanishes for |z| → ∞, it can
be solved analytically [42]:

∆ρA(z) =
p

q

1−
(
v2−v2min
c20−v2min

)

1 +
(

1 + 2
√

v2−v2min
c20−v2min

cosh
(
c0
h z
√

1− v2

c20

)) , (1.6)

where vmin =
√
c20 − p2

6q is the minimum group velocity. This type of localized

solution is referred to as solitary wave or simply soliton and is the namesake

8ρA0 is the lateral density of the membrane in the fluid phase and is used as the zero point
for the lateral density.

9For LUV of DPPC at T = 318.15 K the parameters takes the values ρA0 = 4.035 ·
10−3 g/m2, c0 = 176.6 m/s, and the expansion coefficients: p = −16.6 · c20/ρA0 and q =
79.5 · c20/(ρA0 )2.
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of the model. From Eq. (1.6) it can be seen that the solution is symmetric
around the peak, and that the width of the soliton scales with the dispersion
constant. Heimburg and Jackson chose h = 2 m4/s2, based on the physical
length (distance) of measured nerve pulses. Using this value, the Soliton model
predicts a minimum velocity of solitons in DPPC membranes to be vmin ≈
0.65·c0 = 115 m/s – a number which is very close to the pulse velocity measured
in myelinated nerves. The minimum velocity corresponds to the maximum
amplitude or density change of ∆ρAmax/ρ

A
0 ≈ 0.21. Soliton profiles for a number

of different propagation velocities are presented in Fig. (1.2.2).
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Figure 1.9: Soliton profiles for LUV of DPPC calculated for velocities between the
lower limit v = 0.65 · c0 and v = 0.95 · c0.

Lautrup et al. [42] have shown that the Soliton model is stable over ranges of
physical relevance (several meters) with respect to noise and heterogeneities in
the membrane – which is essential for a model that attempts to describe a bio-
logical system. They further showed that the soliton can be produced (excited)
by arbitrary localized non-solitonic excitation, meaning that any perturbation
of a sufficient amplitude should be able initialize a soliton, and hereby a nerve
pulse.

The soliton is locally pushing the lipid membrane into its lipid melting transi-
tion as it propagates. As we will see in the next chapter (2.2) the state of the
membrane is coupled to thickness, charge density, etc. and that these change
drastically during the transition. This means that during the propagation the
soliton will display a number of secondary effect such as geometric changes and
changes in electrical properties. Beyond the fact that biological membrane often
are polarized, one has to consider that nerves present a voltage drop across the
membrane such that the membrane acts like a charged capacitor. A change in
thickness will therefore produced an electrical signal [43]. The propagation of
the soliton will result in changes in thickness of the membrane and also have
an electrical component, both observed during the propagation of nerve signals.
The most important feature of the Soliton model is its ability to predict the
reversible heat changes in phase with the action potential. It should however
be emphasized that the present form of the Soliton model only describes nerve
pulses in myelinated nerves where all propagation is kept in 1-dimension.

12
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The essential feature of the membrane that makes propagation of solitons pos-
sible, is the existence and the vicinity of the lipid melting transition to the
physiological conditions. Any change to the membrane system which acts upon
the melting transition will therefore influence the propagation of a nerve signal.
Among these are anesthetics which are known to lower the lipid melting tem-
perature significantly. Based on this Heimburg and Jackson made a number of
prediction about the nature of anesthetics [40]. Predictions that answer ques-
tions previously unanswered in anesthesiology.

The Soliton model still has unanswered details, some of which will be addressed
here: The electromechanical coupling and properties of membranes which link
the mechanical nature of the soliton to the electrical component of the nerve
signal and the nature of dispersion in membranes. However, unlike the Hodgkin
and Huxley model the Soliton model provides testable predictions, and some of
these will also be addressed experimentally in the present thesis.
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Chapter 2

Thermodynamical
description of lipid
membranes

We will in this chapter brush-up thermodynamics, introduce the reader to a
thermodynamical description of lipid membranes around the main lipid melting
transition and show how we can include electrostatics in this description.

2.1 Introduction to thermodynamics

Problems in the field of biology are often tackled with a bottom-up approach and
from single molecules properties the sophisticated behavior of biological systems
is believed to emerge. The membranes surrounding cells are mesoscopic layers
covering areas of several 100 µm2 and contain a number of molecules of the
order of 1010. Given the size and complexity of biological membranes, through-
out this thesis we will take the other approach, top-down. We will understand
the physical and biological features of membranes using a thermodynamical ap-
proach where membranes are described in terms of the set of molecules that
they are composed of and their ensemble properties. Thermodynamic is used
throughout the thesis and we will introduce the first two thermodynamical laws
and key thermodynamical relations in the following section.

First law of thermodynamics which is a conservation law, stating that the
changes in the internal energy (U) is given by sum of the change in heat (Q)
and the work (W ) done by/of the system,

dU = δQ+ δW. (2.1)

The change in internal energy is a perfect differential (denoted by d), where the
change in heat and work are not (denoted by δ). The change in internal energy
is a state function and only depends on the start and end point, therefore dU
is a perfect differential, whereas the change in heat and work dependent on the
path, e.g. on how they change. Thermodynamics was developed to fully de-
scribe the equilibrium state of a system through a state function. To describe
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the system we need to describe both the change in heat and work. We will first
consider thermodynamical work: We assume that any equilibrium state can be
reached through processes going only through equilibrium states. This assump-
tion is equivalent to assuming that any equilibrium state can be reached through
reversible processes. Using this assumption we consider work done on/by the
system by a infinitesimal and reversible change. In thermodynamics textbooks
the thermodynamical work is exemplified by the mechanical work (δW = −pdv)
needed to change a volume (v) against a pressure (p). In general the work term
in the internal energy (Eq. (2.1)) is the sum of reversible infinitesimal work
contributions,

δW = −pdv − πdA+
∑

i

µidni + . . . , (2.2)

where A is area and π is lateral pressure, these constitute the mechanical work
needed to change the area. The third term is the work done to change the
number of particles, where µi is the chemical potential and ni is the number of
particles of species i. We will see in the next section (2.3) that in the presences
of an electrical field an additional term is added to add the work done by the
electrical field.

The second law of thermodynamics states,

dS = dSr + dSi ≥
δQ

T
, (2.3)

where dS is the change in entropy. The change in entropy can be split up in
two parts dSr being the reversible part and dSi being the irreversible part.
Irreversible processes are the spontaneous processes (like heat conduction or
diffusion) that seek to equilibrate the system, these processes will always produce
entropy (dSi ≥ 0) whereas the reversible term can both be positive and negative.
In other words, the reversible term of the entropy is due strictly to exchange
with the outside, and the irreversible term is due strictly to processes inside the
system 1 [46]. For a reversible process the state of the system is the same before
and after the process, so that

∮
δQ

T
= 0⇒ dSr =

δQ

T
. (2.4)

From Eq. (2.4) we see that the reversible change in entropy is a perfect differ-
ential 2, and a thermodynamical state function. From Eq. (2.4) the heat can
be written as the change in entropy due to reversible processes. Having defined
the change in heat and the work done on the system we can rewrite the internal
energy (Eq. (2.1)), as

dU = TdSr − pdv − πdA+
∑

i

µidni + . . . (2.5)

1In modern thermodynamics the concept of irreversible processes is artificial since it strictly
dependents on the choice of system, which mean that with an appropriate choice of system
one can describe reversible processes as irreversible and vise a versa. For a discussions on
this [44–46].

2We will not in this thesis discuss the differentiability of the irreversible part of the entropy,
which would dependent on detailed interpretation of the system.
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Again, using the assumption that any equilibrium state can be achieved through
reversible processes we can drop the reversible notation on the entropy and write
the internal energy as,

dU = TdS − pdv − πdA+
∑

i

µidni + . . . . (2.6)

Each term in Eq. (2.6) is constituted by what is referred to as “conjugated
variables”, the one variable being extensive (additive with system size) and the
other being intensive (independent on system size). Using these properties we
see that the internal energy (Eq. (2.6)) is a homogeneous first order function,
so for any λ, we have

U(λS, λv, λA, . . . ) = λU(S, v,A, . . . ). (2.7)

Differentiating with respect to λ, we can show

U = TS − pv − πA+
∑

i

µini + . . . , (2.8)

from which one can show that each product on the right hand side also is a state
function [47]. For the sake of simplicity of notation we in the following omit all
work terms but the pv term. From Eq. (2.8) we can then construct a new set
of useful state functions,

F ≡ U − TS Helmholtz free energy (2.9)

H ≡ U − vp Enthalpy (2.10)

G ≡ H − TS Gibbs free energy (2.11)

The construction of these new state functions is done through Legendre trans-
formations. By preforming a Legendre transformation we change the natural
coordinate system of the state function, as it can be illustrated by considering
the differential of Eq. (2.10) and Eq. (2.11) as follows

dH = dU − d(pv) = TdS + vdp, (2.12)

dG = dH − d(TS) = −SdT + vdp. (2.13)

The internal energy is a function of entropy, volume, etc. (these being the in-
dependent variables), whereas, the enthalpy is a function of pressure instead
of volume, and the Gibbs free energy is now a function of temperature instead
of entropy, and pressure instead of volume. Any constructed state function
represents an allowed Legendre transform for which the choice of independent
variables is free. This enables a thermodynamical description of any system,
independent of its constrains, with an appropriate state function. As an ex-
ample, throughout this thesis, an appropriately modified Gibbs free energy is
used to describe the equilibrium state of the lipid membrane given constraint of
constant temperature and pressure.
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2.2 Thermodynamics of lipid melting transition

Biological cell membranes are known to display a lipid melting transition close
to physiological conditions. As mentioned in the introduction (2.2) this vicinity,
and biologys effort to conserve this vicinity have motivated the belief that the
melting transition is vital to the functioning of the membrane. We will through-
out this thesis focus on the material property implications of this transition and
its implications for our understanding of biological functions.

We consider the lipid melting transition as a two state phase transition where
each lipid in the membrane can be found in a gel-state (Lβ′) or a fluid-state
(Lα)3. We will further assume that changes outside the transition region are
small (negligible). The transition temperature or melting temperate (Tm) is
defined as the temperature where the two states are equally likely:

Pfluid(Tm)

Pgel(Tm)
= exp

(
− ∆G

RTm

)
= 1 (2.14)

where ∆G = Gfluid − Ggel is the difference in Gibbs free energy between the
two states. From Eq. (2.14) and using Eq. (2.11)

∆G = ∆H − Tm∆S = 0⇔ Tm =
∆H

∆S
. (2.15)

The difference in enthalpy (∆H) and entropy (∆S) between the two states
can be found experimentally for a given membrane using Differential Scanning
Calorimetry (DSC), which measures the heat capacity at constant pressure. The
heat capacity at constant pressure is defined as

cp ≡
(
∂Q

∂T

)

p

= T

(
∂S

∂T

)

p

=

(
∂H

∂T

)

p

, (2.16)

using Eq. (2.11) under constrains of constant pressure. Integrating over the
heat capacity signal from the transition we find ∆H (see Fig. (2.1), right) and
integrating over the heat capacity divided with the temperate we find ∆S. For
pure Large Unilamallar Vesicles (LUV) of DPPC one finds ∆H ≈ 39 kJ/mol,
∆S = 124.14 J/mol ·K and Tm = 314.15 K [8]. We are interested in the lipid
melting transition and its associated thermodynamical implications. Changes
associated to the transition are referred to as excess quantities often denote
with a ∆, e.g. ∆H and ∆S are respectively the excess enthalpy and the excess
entropy.

The lipid melting transition is known to be affected by changes in other
parameters than temperature, these can be changes in pH, ions [48–50], pres-
sure, lateral pressure [51], electrical fields [52], lipid composition, presence of
proteins and peptides [53] and various chemicals (among the most interesting
are anesthetics, neurotransmitters, cooling and heating agents like menthol and
capsaicin [31,54]). Using the assumption that changes outside the transition are
small, the difference in free energy between the two states takes the form

∆G = ∆H0 − T∆S0 + δp∆v + δπ∆A+ . . . , (2.17)

3See section 2.2 for definition of lipid states.
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Figure 2.1: Left: Heat capacity of DPPC large unilamellar vesicle [26]. Right:
Enthalpy of DPPC large unilamellar vesicle. The jump in the enthalpy is the lipid
melting transition which have a excess enthalpy ∆H.

where the subscript 0 indicate the melting enthalpy and melting entropy values
measured using DSC and the additional terms represent changes in free energy
due to changes (δ) in regard to the DSC conditions. From Eq. (2.17) it is
sufficient to know the difference in the state variables between the two states,
to calculate the difference in free energy, e.g. the change between the two states
in volume, area or thickness. The volume change is ∼ 4%, the area change is
∼ 25% and the thickness change is ∼ −16% going from the gel to the fluid state
(see values in appendix A.1) [51,55]. It has additionally been shown throughout
the transition region, both for pure lipid membrane and biological membranes,
that the change in volume is proportional to the change in enthalpy

∆v(T ) = γv∆H(T ), (2.18)

where the proportionality constant of LUVs of DPPC is γv = 8.599·10−10 m3/J
[51, 55]. Additionally, Molacular Dynamics (MD) simulations have shown that
this relation holds beyond the transition region [56]. Heimburg [51] proposed
that a similar proportionality relation should hold between change in enthalpy
and change of area

∆A(T ) = γA∆H(T ), (2.19)

where the proportionality constant for LUV of DPPC is γA = 8.93 · 10−1 m2/J
[51]. This prediction has been justified indirectly by lipid monolayer experiments
[57] and by elasticity experiments [58]. The proportionality coupling stated in
Eq. (2.18) and Eq. (2.19) holds not only for average quantities, also for all higher
moments (statistical), so that their respective susceptibilities4 are proportional

4Thermodynamical susceptibilities are quantities describing a extensive variables depen-
dent on its conjugated variable, e.g. heat capacity, compressibilities.
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(see appendix A.2),

∆κvT =
γ2
vT

v
∆cp (2.20)

∆κAT =
γ2
AT

A
∆cp (2.21)

where ∆κvT is the excess volume compressibility, and ∆κAT is the excess area
compressibility5. The coupling between the geometry of the membrane and its
excess enthalpy drastically reduce the complication of the lipid membrane melt-
ing transition. From this, using an experimentally found heat capacity we can
predict the mechanical behavior of the membrane.

The lipid melting transition is a cooperative transition. This means that lipids
do not change state independently, but that several lipids changes state simul-
taneously in a cooperative fashion. The cooperativity of the transition can be
visualized by the presence of macroscopic domains (gel domains in a fluid phase
or visa versa), in which the lipids will fluctuation together, see Fig. (2.2). The
melting transition should though be considered subcritical with finite correlation
lengths.

Figure 2.2: Simulated snapshots of lipid membrane at different stages through the
lipid melting transition. Red indicates lipid gel state and green is for lipid in fluid state.
The simulation have been carried out as described in [59].

We will for simplicity model the transition as a two-state transition governed
by a van’t Hoff law. We will write the equilibrium constant between the gel and
fluid states as,

K(T ) = exp

(
−n∆G

RT

)
, (2.22)

where n is the cooperative unite size which describes the number of lipids that
change state cooperatively. For LUVs of DPPC the cooperative size is nDPPC ≈
170 whereas biological membranes are less cooperative nbio ≈ 40, see Fig. (2.3).
From the equilibrium constant (Eq. (2.22)) we can calculate the fluid fraction,
the fraction of the lipids in the system that are in the fluid state,

ffluid = Pfluid =
K(T )

1 +K(T )
, (2.23)

5The volume compressibility is defined as κvT = − 1
v

(
∂v
∂p

)
T

. The area compressibility is

defined in a similar fashion.
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from which the average extensive properties can be found (e.g. ∆H(T ) = ffluid ·
∆H0). From Eq. (2.23) and Eq. (2.16) we can calculate the excess heat capacity

∆cp =
K(T )

(1 +K(T ))
2

∆H2
0

RT 2
n (2.24)
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Figure 2.3: The excess heat capacity for different cooperative unit sizes using van’t
Hoff law. Values for melting enthalpy and entropy are from LUV of DPPC.

The van’t Hoff law approach is a simplification of the transition and for more
accurate and thorough investigation other tools, e.g. Monte Carlo simulations,
can be used [22, 59–61]. However for simple predictions we will use van’t Hoff
law to approximate the behavior of the lipid melting transition.

2.3 Including electrical fields

Biological membranes are often subject to an applied voltage and it is therefore
essential to understand how an applied voltage influences the membrane. This
will be the topic of the following section. 6

The voltage drop across biological membranes is attributed to Nernst poten-
tials. The Nernst potential is generated by the interior and the exterior of
the membrane having different ion concentrations. For instance, the concen-
tration of potassium is about 400 mM inside and only 20 mM outside the
giant squid axon. If one assume that the membrane is selectively permeable
to potassium, an electrical gradient will build up due to the chemical gradient.
Biological membranes are commonly subject to a voltage of around 100 mV .
The non-conducting nature of the hydrophobic core of the membrane results
in biological membranes acting like a charged capacitor. The membrane being
pseudo 2-dimentional allows for approximating the membrane as a homogenous
planar capacitor (Cm = εA/d). We assume that only the component of the elec-
trical fields or polarization orthogonal to the membrane are contributing. We
hereby simplify the electrical considerations to a 1-dimensional problem so that
vector notation can be dropped. We will use these simplifying approximation

6The development presented below has been done in collaboration with Karis A. Zecchi.
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throughout this thesis.

The applied voltage (ψ) across the membrane is facilitated by a respective up
and down concentration of either positive or negative ions in the electrolytic
solution on the two sides of the membrane, effectively acting like charges on the
capacitor, see Fig. (2.4). The electrolytic solution surrounding the membrane
acts as conductors and hereby the “plates” of the capacitor.

Figure 2.4: A charge capacitor displays an internal field different from zero, while the
field outside the capacitor is zero. Black arrows indicated field from positive charges
and gray indicates field from negative charges.

The charges on a charged capacitor generate a compressing force on the ca-
pacitor. For ordinary capacitors, the capacitor plates are mechanically locked
and the dimensions of the capacitor are constant, which has also often been
assumed for the membrane (e.g. Hodgkin and Huxley model). However, lipid
membranes are deformable structures and the compressive force can therefore
change the dimensions of the membrane, changing both area and thickness,
see Fig. (2.5). Generally one can therefore not assume the capacitance of the
membrane to be constant, since the capacitance increases upon a decrease in
membrane thickness. This effect is known as “electrostriction” and have re-
cently been described by Heimburg [43]. As we discussed in the previous sec-
tion, the force needed to deform the membrane is intimately connected to the
lipid melting transition. In the transition region the compressibilities of the
membrane drastically increases, meaning that little force is needed to deform
the membrane. In the vicinity of the lipid melting transition the membrane
should therefore be considered as a non-linear capacitor (a voltage dependent
capacitor)7.

As we mentioned previously, not only are biological membranes often charged
but they are often also polar structures. This means that membranes can be
polarized in the absence of an applied electrical field8. The potentially polar
nature of membranes can originate from the often found asymmetric distribution
of charged lipids [15, 16] or other molecules on the two sides of the membrane,
resulting in a net polarization of the membrane. Due to the large dipole moment
of lipids (including non-charged species) [12, 13] any asymmetry between the
two layers of the membrane can also result in a substantial net polarization
orthogonal to the membrane surface. The asymmetry can be of both chemical

7The non-linear capacitive properties of lipid membranes is extensively discussed in chapter
4.

8Throughout this thesis applied field (or applied voltage) refers to a electrical field which is
controllable from outside the membrane. Meaning that a field generated by a Nernst potential
and applied by electrodes are both considered applied.
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Figure 2.5: Illustration of the electrostriction effect. The compressive force generated
by the applied voltage (ψ) deforms the membrane to a state with larger area and lower
thickness.

or geometrical nature. Flexoelectricity is an example of geometric asymmetry
generating polarization in lipid membrane [13,62] (see 2.3.2). This polarization
of the membrane will be referred to as “offset polarization” or “spontaneous
polarization”. A spontaneous polarized membrane will, in the absence of an
applied electrical potential or field, be charged such that the electrical field
inside and outside the membrane is zero, see Fig. (2.6) (left). To discharge a
spontaneously polarized membrane a potential difference of ψ = −ψ0 has to be
applied, see Fig. (2.6) (right). We will refer to ψ0 as the “spontaneous membrane
potential”, “offset potential” or “voltage offset”. The offset potential (ψ0) is the
voltage which would have needed to be applied to the non-polarized membrane
to generate the spontaneous polarization (P0).

Figure 2.6: Illustration of polarization by chemical asymmetry. Left: A spontaneously
polarized membrane is charged in the absence of an applied field, to cancel the electrical
field both inside and outside the membrane. Right: To discharge a membrane with a
spontaneous polarization a potential of ψ = −ψ0 has to be applied.

In the next section we will carry out a careful theoretical treatment of both
the capacitive and polarization effect of lipid membranes in a thermodynami-
cal framework. We will see that capacitance, polarization, flexoelectricity, and
piezoelectricity are all aspects of the same electrostatic description. Will ap-
ply our generalized electrostatic description to understand the effect of applied
electrical fields on the membrane and on its lipid melting transition.
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2.3.1 Framework

A dielectric material in an electric field will arrange itself so as to minimize the
free energy of the system. In ordinary dielectric materials this means induc-
ing dipoles to counteract the applied field. For more sophisticated dielectric
materials, mechanical changes can be observed as a response to an applied
electric field (e.g. piezoelectric crystals). To deal with these effects, authors
like Frank proposed to treat an applied electric field within a thermodynami-
cal framework [63]. He included the energetic contribution of an electric field
by considering the electrical work done on a fluid during any infinitesimal and
reversible change. The internal energy including the electrical work term takes
the form

dU = TdS − pdv + Ed(vD), (2.25)

where the last term is the electrical work done on the fluid, E is the electri-
cal field and vD is the electrical displacement in a volume v. Frank assumed
a plate capacitor geometry and that the dielectric fluid was isotropic allowing
for dropping the vector notation for the electrical displacement (D)9 and the
electrical field, since all but the component perpendicular to the flat surface is
non-zero. We, following Frank’s approach, assume a plate capacitor geometry
and isotropy for the lipid membrane.

Choosing the pressure (p), temperature (T ) and applied electric field (E) as
independent variables we can write the appropriate Gibbs free energy,

dG = −SdT + vdp− (vD)dE + ... (2.26)

The electrical contribution to the free energy due to an applied electric field
comes from the third term, which we will refer to as the electrical enthalpy
(Hel). The electric displacement is, from electrostatics, given by

D = ε0E + Ptot, (2.27)

where ε0 is the vacuum permittivity and Ptot is the total polarization. Most
materials have zero polarization at zero electric field, and polarization only
happens due to electrically induced dipoles. For a linear dielectric material
the electrically induced polarization is given by Pinduced = ε0χelE, χel being
the electric susceptibility. We are interested in extending our considerations
to a dielectric material which can have an intrinsic polarization, a spontaneous
polarization, of the form

Ptot = ε0χelE + P0. (2.28)

The spontaneous polarization or offset polarization (P0) considered is due to
an asymmetry in the lipid bilayer, of either geometrical or chemical nature.
Considering both the polarization offset and the electrically induced polarization
in the membrane, the electric displacement takes the form

D = εE + P0, (2.29)

9Frank originally only considered the polarization effect on the fluid but we will here
consider the full electric displacement since we do not have a fixed capacitor surrounding the
membrane. The membrane itself acts as the mechanical separation between the capacitor
plates (i.e. the surrounding electrolytic solution) and as the dielectric material.
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where ε is the dielectric constant (ε = ε0(1 + χel)). The electrical enthalpy is
from Eq. (2.29) given by

Hel = −
∫ E

0

(vD)dE′ = −εv
2
E2 − vP0E, (2.30)

where we have assumed the volume of the lipid membrane (v) and the offset
polarization to be constant. Assuming that the dielectric properties of the
medium are homogeneous over the thickness (d), we can use Ed = ψ (ψ being
the electrical potential difference, or the applied voltage) to rewrite the electrical
enthalpy,

Hel = −ε
2

A

d
ψ2 −AP0ψ (2.31)

Alternatively, we can express the offset polarization as the voltage offset (ψ0).
The voltage offset is give by the voltage at which a membrane would have
D = P0 assuming only electrically induced polarization

ψ0 =
P0d

ε
(2.32)

We recognize the pre-factor in Eq. (2.31) as the capacitance of a planar capacitor
(C = εA/d). Using this and Eq. (2.32) we write an alternative form of Eq. (2.31),

Hel = −C
2

(
ψ2 + 2ψ0ψ

)
(2.33)

For both Eq. (2.31) and Eq. (2.32) the electrical enthalpy is zero for no applied
potential or field.

Note that choosing ψ0 or P0 involve different assumptions, since ψ0 is geometry
dependent and P0 is not. The choice throughout this thesis will depend on the
experimental conditions assumed.

Influence of applied potential on the state of the lipid membrane

Assuming that the lipids can only exist in a ground state (gel) and an excited
state (fluid), the difference in enthalpy (Eq. (2.31)) due to an applied voltage
between the two states can be written as

∆Hel = Hel
fluid −Hel

gel = −∆C

2
ψ2 −∆AP0ψ. (2.34)

We have here assumed that the offset polarization is independent of the state
of the membrane. Note that Eq. (2.34) is a generalization of the electrical con-
tribution to the melting enthalpy described by Heimburg [43].

We see that the difference in electrical enthalpy (Eq. (2.34)) can favor the gel
or the fluid state of the membrane depending on the sign of the change in ca-
pacitance and on the polarization offset. For DPPC10 the capacitance in the
fluid state is ∼ 1.5 times greater then in the gel and the differences in capac-
itance is positive. We can assume similar differences for other lipid species.

10For DPPC the area is ∼ 25% larger and the thickness ∼ 16% thinner in the fluid state
compared to the gel, see appendix A.1.
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We have assumed the dielectric constant to be independent of the state of the
membrane. From the difference in the electrical enthalpy (Eq. (2.34)) between
the gel and the fluid state of lipid membranes we can calculate the effect of an
applied electric field on the lipid melting temperature using Eq. (2.15), as shown
in Fig. (2.7).
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Figure 2.7: The lipid melting temperature as a function of applied voltage for different
offset polarizations. Value used are from LUV of DPPC, where ∆C ≈ 656 J/(mol ·V 2)
for ε = 4 · ε0.

We use the lipid melting temperature as a proxy for the state of the mem-
brane and see from Fig. (2.7) that an applied voltage can influence the state of
the membrane both towards the gel and fluid state depending on the applied
voltage and the offset polarization.

Loosening the assumption of the polarization offset being independent of the
state of the membrane, we get the general expression for the difference in elec-
trical enthalpy,

∆Hel = −∆C

2
ψ2 −∆(AP0)ψ. (2.35)

We see in Fig. (2.8) that we allowing the polarization offset to be dependent on
the state of the membrane can have great influence on the coupling between the
applied voltage and the state of the lipid membrane.
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Figure 2.8: The lipid melting temperature as a function of applied voltage assuming
the offset polarization is different in the two lipid states. Value used are from LUV of
DPPC, where ∆C ≈ 656 J/(mol · V 2) for ε = 4 · ε0.

2.3.2 Polarization effect

Above we introduced the appropriate general thermodynamical framework to
describe electrostatics in membranes. We will here show how this framework
relates to known electrostatic properties of membranes, covering electrostriction,
capacitive susceptibility, piezoelectricity and flexoelectricity, and how these can
be generalized.

Electrostriction

The charges on the two sides of a charged capacitor attract one another exerting
a compressive force on the capacitor. We can from Eq. (2.33) calculate the
electrostrictive force on the capacitor (membrane). The compressive force (F)
acting on the membrane is given by,

F =
∂H

∂d
=
∂Hel

∂d
+ const. (2.36)

= −1

2

(
∂C

∂d

)
ψ2 −

(
∂(Cψ0)

∂d

)
ψ + const. (2.37)

Assuming that A ≈ const., ψ0 ≈ 0 and ψ = const. we recover the electrostriction
force as given in the literature, e.g. [43],

∆F(ψ) =
1

2

C

d
ψ2. (2.38)

Allowing for a constant but non-zero offset voltage the electrostrictive force get
an offset,

∆F(ψ) =
1

2

C

d

(
ψ2 + 2ψ0ψ

)
. (2.39)

The electrostrictive force is a quadratic function of the applied voltage and
can, for polar capacitors, display an additional linear term. Note, that for a
polar capacitor the compression force exerted on the capacitor can be negative.
Considering only small change in thickness (∆d << d) and constant area, the
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change in capacitance can be approximated as ∆C ≈ −C/d∆d. We can likewise
linearize the electrostrictive force to be proportional to the change in thickness
(ordinary spring). Doing this we see that the change in capacitance can be
approximated as being proportional to the electrostrictive force,

∆C ∝
(
ψ2 + 2ψ0ψ

)
, (2.40)

where the proportionality constant depends on the elastic properties of the mem-
brane. Note that the assumptions leading to Eq. (2.40) are not satisfied in the
vicinity of the lipid melting transition.

Electrostriction in pure lipid membranes and biological membranes has been
investigated by various authors [64, 65]. Alvarez and Latorre [64] investigated
the voltage dependence of the capacitance in both symmetric and asymmetric
black lipid membrane, see Fig. (2.3.2). They found the same functional depen-
dence as in Eq. (2.40) with an offset voltage of respectively 47 mV and 116 mV
for two different salt concentrations, for an asymmetric membrane with zwitteri-
onic lipids one side and charge lipids on the other. They found no offset voltage
for the symmetric membrane. In their findings, we observe that the quadrating
dependence of the capacitance of the two asymmetric membranes is conserved
and only the offset is affected by changing the salt concentration, indicating a
salt dependence of the offset voltage.

Figure 2.9: The change in capacitance as a function of applied voltage in a black lipid
membrane. Solid cycles: Two symmetric layers of zwitterionic lipids constitutes the
membrane in 1 M KCl. Open cycles: Asymmetric membrane, one layer of zwitte-
rionic lipids, and one of charged lipids in 1 M KCl. Open squares: Assymmetric
membrane as for open cycles in 0.1 M KCl. The membrane capacitance at ψ = 0 is
approximately 300 pF . Adapted from [64].

The change in capacitance observed by Alvarez and Latorre [64] is only about
∼ 0.5% of the membrane capacitance for an applied voltage of 300 mV . Ferrell
et al. [65] observed in biological membranes an offset of about 70 mV and a
change in capacitance of ∼ 0.5% due to an applied 200 mV . Both of these
experiments are carried out outside the transition region. The dependence on
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the elastic properties of the membrane in Eq. (2.40) indicates that we can expect
large voltage dependence of the capacitance in the vicinity of the lipid melting
transition. The non-linear behavior of the membrane capacitance in the vicinity
of the lipid melting transition is the topic section 4.2.

Dependencies of the charges on the capacitor

When measuring the electrical properties of a capacitor, a common approach is
to perturb the capacitor and measure the change in charges (q), by measuring
the current (I = dq/dt)11. Here the perturbation is applied through changes in
the applied voltage (ψ), the area (A) and curvature (c)12

dq =

(
∂q

∂ψ

)

A,c

+

(
∂q

∂A

)

ψ,c

+

(
∂q

∂c

)

ψ,A

. (2.41)

This corresponds to a experiment where the applied voltage, area and curvature
can be controlled. From Gauss law and using the pseudo 2-dimensional nature
of the lipid membrane the charge on the membrane is given by,

q = A ·D = A (εE + P0) = ε
A

d
(ψ + ψ0) = Cm (ψ + ψ0) . (2.42)

Inserting Eq. (2.42) in Eq. (2.41) we get the expression for the change in charge
on the membrane,

dq =

[
(ψ + ψ0)

(
∂Cm
∂ψ

)

A,c

+ Cm + Cm

(
∂ψ0

∂ψ

)

A,c

]
dψ

+

[
(ψ + ψ0)

(
∂Cm
∂A

)

ψ,c

+ Cm

(
∂ψ0

∂A

)

ψ,c

]
dA

+

[
(ψ + ψ0)

(
∂Cm
∂c

)

ψ,A

+ Cm

(
∂ψ0

∂c

)

ψ,A

]
dc (2.43)

We can construct a similar expression for any choice of controlled variables, e.g.
instead of controlling the area we could control the lateral pressure (π).

Capacitive susceptibility

The first term in Eq. (2.43) describe the change in charge on the membrane
capacitor upon a changes in applied voltage. Assuming the area and the cur-
vature are constant and taking the partial derivative in regard to the applied
voltage we get the differential capacitance or, as defined by Heimburg [43], the
capacitive susceptibility (Ĉm ≡ ∂q/∂ψ),

Ĉm = (ψ + ψ0)

(
∂Cm
∂ψ

)

A,c

+ Cm + Cm

(
∂ψ0

∂ψ

)

A,c

. (2.44)

11This will be explored in chapter 4.
12The curvature c = 2/R, where R is the principle radii of curvature. We assume spherical

geometric.
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Assuming the offset voltage is zero and constant, we recover the expression for
the capacitive susceptibility given by Heimburg [43],

Ĉm = Cm + ψ

(
∂Cm
∂ψ

)

A,c

. (2.45)

Direct piezoelectric effect

The second term in Eq. (2.43) describe the change in charge on the membrane
capacitor upon a change in area. Considering no applied voltage and curvature
this corresponds to a variant of the classical direct piezoelectrical effect

dq =

[
ψ0

(
∂Cm
∂A

)

ψ,c

+ Cm

(
∂ψ0

∂A

)

ψ,c

]
dA, (2.46)

where a mechanical change generates a electrical response. Considering small
change in area such that Eq. (2.44) can be linearized and assuming ψ0(∆A =
0) = 0 we recover the piezoelectric formulation of Petrov [66],

q(∆A) ≈ Cm
(
∂ψ0

∂A

)

ψ,c

∆A or ψ0(∆A) ≈
(
∂ψ0

∂A

)

ψ,c

∆A. (2.47)

Petrov writes (∂ψ0/∂A)ψ,c as es/(εA0) where es is a constant which is estimated
to be es ∼ ε0 and A0 is the area before perturbation. Note that Eq. (2.47) is a
special case of the general Eq. (2.46).

Inverse piezoelectric effect

The elastic free energy density13 of a lateral compression (gA) is given by,

gA =
1

2
KA
T

(
∆A

A0

)2

, (2.48)

where KA
T is the isothermal lateral compression modulus and A0 is the area

before compression. Including the electrical enthalpy contribution to the free
energy density we get,

gA =
1

2
KA
T

(
∆A

A0

)2

− 1

2

Cm
A0

(
ψ2 + 2ψ0ψ

)
. (2.49)

Equilibrium will be established so that ∂gA/∂A = 0. Assuming constant lat-
eral compression modulus and constant applied voltage the change in area that
satisfy this is given by

∆A(ψ) = A0

(
Cm
KA
T

(
∂ψ0

∂A

)

ψ,c

ψ +
1

KA
T

(
∂Cm
∂A

)

ψ,c

(
ψ2 + 2ψ0ψ

)
)

(2.50)

This expression describes the inverse piezoelectric effect, e.g. the mechanical
response on a change in the applied voltage, of a polar lipid membrane.

13The free energy is recovered from the free energy density by integrating over the surface
of the membrane.

30



2.3. Including electrical fields Chapter 2. Thermodynamics

Direct flexoelectric effect

The last term in Eq. (2.43) describe the change in charge on the membrane
capacitor upon curving or flexing the membrane. Considering constant applied
voltage and constant area this corresponds to the direct flexoelectric effect

dq =

[
(ψ + ψ0)

(
∂Cm
∂c

)

ψ,A

+ Cm

(
∂ψ0

∂c

)

ψ,A

]
dc, (2.51)

where, like in the case off the piezoelectric effect, a mechanical change (cur-
vature) generates an electrical response. Assuming the membrane capacitance
is independent of the curvature and that (∂ψ0/∂c)ψ,A = const. we recover a
flexoelectric description equivalent to that of Petrov [62] whom pioneered the
field,

q(c) ≈ Cm
(
∂ψ0

∂c

)

ψ,A

c or ψ0(c) ≈
(
∂ψ0

∂c

)

ψ,A

c. (2.52)

Petrov introduced a flexoelectric coefficient (f) which in this special case Eq. (2.52)
is give by f = ε(∂ψ0/∂c)ψ,A. Petrov and collaborators have conducted extensive
work experimentally finding f ∼ 10−18 C, which corresponds to (∂ψ0/∂c)ψ,A ∼
3 · 10−8 V ·m assuming ε = 4 · ε0 [13].

Inverse flexoelectric effect

In a similar fashion as in Eq. (2.49), we can write the elastic free energy density
of bending (gB), assuming no spontaneous curvature, as

gB =
1

2
KBc

2 −−1

2

Cm
A0

(
ψ2 + 2ψ0ψ

)
, (2.53)

where KB is the bending modulus and we have included the electrical con-
tribution. Again, equilibrium is established so that ∂gB/∂A = 0. Assuming
that the capacitance and the bending modulus are independent of curvature
and constant applied voltage, we find the voltage dependence of the membrane
curvature as

c(ψ) =
1

KB

Cm
A0

(
∂ψ0

∂c

)

ψ,A

ψ. (2.54)

This is known as the inverse flexoelectric effect, e.g. curvature induced by an
applied voltage. We see that we have recovered an expression for the inverse
flexoelectric effect equivalent to the one given by Petrov [13].
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2.4 Discussion of thermodynamic approach

Nerve membranes are known to be both polar structures and to be subject to
an applied field (Nernst potential). To understand the properties of these struc-
tures it is vital to understand how polarization influences the system and how
both polarization and electrical field couples to the membrane. To this end we
have provided a general thermodynamical framework for treatment of polariza-
tion effects on the properties of lipid membranes. The framework unifies and
generalizes a multitude of known electrical material properties, including piezo-
electric and flexoelectric properties, offset potentials and non-linear capacitance.
Additionally the thermodynamical framework allows for a detailed treatment of
the coupling between electrical field and the membrane state.

In the case of a non-polar membrane applying an electric field will charge the
membrane which in turn will lead to a compression of the lipid membrane,
the so-called electrostriction. This compression will shift the state of the lipid
membrane towards its thinnest state, the fluid state. This has been shown by
Heimburg in [43], who calculated a quadratic decrease of the melting tempera-
ture as a function of voltage. However, when dealing with a membrane with an
offset polarization, an applied field can result in a discharging of the membrane
(see Fig. (2.6)) and hereby a reduced compression of the membrane. This leads
to the possibility of an applied field shifting the state of the lipid membrane to-
wards its thicker state, the gel state. The offset polarization, both for constant
offset polarization and lipid state dependent offset polarization, introduces a
linear dependence on voltage of the free energy of the membrane, which is il-
lustrated by the linear shift in the lipid melting temperature in Fig. (2.7) and
Fig. (2.8). Antonov et al. [52] showed in their experimental investigation of the
effect of an applied voltage on the lipid melting temperature that the melting
temperature approximately followed a linear dependence of voltage. Results
that can be understood as the membrane investigated by Antonov et al. [52]
being polar. Likewise, for permeability studies of pure lipid membranes, an off-
set voltage in the current voltage relationship is observed, notably in membrane
formed at the tip of glass pipettes [31]. The offset voltage can be explained by
the membrane being polar, likely due to curvature [32], see 4.3 for details. We
saw in 2.3.2, that chemically asymmetric membranes displaye an offset voltage
and that a similar offset was observed in biological membranes, both of which
can be explained by the polar nature of the membrane.

The offset polarization of membranes can originate from various polarization
asymmetries between the two lipid leaflets, both chemical and geometrical asym-
metries. For biological membranes, polarization asymmetries can originate from
any constituting element of the membrane, not only asymmetries in lipid compo-
sition. An obvious example could be the presence of membrane proteins which
can result in the membrane showing a net polarization. We can also speculate
that other membrane adhesive molecules with large dipoles can be used to create
an asymmetric membrane, fluorophores could be an example. Depending on the
nature of the offset polarization, the system can display i.e. piezoelectric prop-
erties, an area dependence of the polarization offset14. Even electro-mechanical

14Note that also electrostriction couples the area of the membrane to voltage.
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response of a lipid membrane can been recorded upon addition of “chemicals”,
as calcium [67]. The details of the polarization offset depends not only on its
origin but also on external conditions as salt concentration [64], pH and the
presence of divalent ions.

2.4.1 Electrolyte solution

In our treatment (2.3.2) the electrolyte solution surrounding the membrane is
considered as perfect conductor. This view is an oversimplification and the elec-
trolytic surroundings can have strong effects on the membrane. To fully capture
the effect of electrical fields on the lipid melting transition we need to under-
stand the effect of the electrolyte on the membrane and the electrical behavior
of the total system, electrolyte and membrane. Ions can interact with the mem-
brane hereby changing polarization properties of the membrane and they can
affect lipid-lipid interactions, and ion gradients across the membrane leads to
the generation electrical potentials (Nernst potential).

Monolayer experiments have shown that surface polarization of charge lipid
monolayers change significantly with changing concentration of NaCl or pH [12],
and we can expect divalent ions to have an even stronger effect. The ion concen-
tration on the two sides of biological membranes is different and in experiments
on artificial membranes different ion concentrations on the two sides can eas-
ily be achieved. For asymmetric ion concentrations, one need to consider that
changing the ion concentration affect the polarization of each leaflet of the mem-
brane, beyond the effect of Nernst potential.

Beyond changing the polarization of the lipids, ions also affect the lipid-lipid
interaction as illustrated by the experimental evidence that the ionic solutions,
especially divalent cations ions and hydrogen ions, can drastically affect the
state of the lipid membrane [48, 50, 68–71]. The magnitude and nature of the
effect of ions on the lipid melting transition depends strongly on the lipids, for
especially charged lipid species the effect is large, but also on the ions. Both
“diffusive” shielding of lipid group electrostatic interactions and also “binding”
or association has been observed [72]. For charged lipids changing the concen-
tration of monovalent cations 0.1 M to 0.5 M at physiological pH result in a
decrease in the lipid melting temperature of more the then 5 K [48]. For DPPC
(zitterionic lipid) a change from no salt to 1 M decreases the melting temper-
ature of about 1.5 K [73]. For divalent ions the effect is much stronger. For
charge lipids, an increase in the melting temperature of more then 10 K, due
to the addition of one divalent ion per two lipids (∼ 1 mM) at physiological
monovalent ion concentration, have been reported. Likewise, a lowering of the
pH result in drastic increase in the melting temperature [48]. For non-charged
lipids the effect of divalent ions and pH much smaller than for charged lipids
but still significant at physiological concentrations.

All effects of ions on the membrane, both on polarization and the state, depends
on ion concentration, independently on the underlying interaction mechanism,
diffusive shielding or binding. The charged nature of the ions means that they
are compliant to electrical fields, including applied electrical fields. This can
result in a local down or up concentration of respectively anion and cations
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near an interface (membrane) depending on the local electrical field. Following
calculations done by Ambjörnsson et al. [74] we can calculate the change in
concentration of anion and cations (monovalent), due to an applied electrical
field, close to a flat membrane using the Debye-Hückel approximation15. This
calculation is naive, as it does not takes into account the advanced electrostatic
effects close to the membrane, but it serves to illustrate the electrical effect on
the ion concentration close to the membrane, see Fig. (2.10).
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Figure 2.10: The change in concentration of anions (red) and cations (blue) relative
to bulk close to a flat membrane (light gray box) due to an applied electrical potential
(ψ = 0.1 V ). The electrical potential is shown in gray, left y-axis. The Debye length
used for the electrolyte solutions (monovalent ions, 100 mM) is κ−1 = 1 nm and
dielectric constants are εelectrolyte = 80 · ε0 and εmembrane = 4 · ε0. The electrodes are
assumed to be far alway (L→∞) and the membrane thickness is d = 4 nm.

In the naive example illustrated in Fig. (2.10) we see that going from an
applied electrical potential of 0.1 V to no applied potential changes the ion
concentration experienced by the membrane by ∼ 5%. We see from this exam-
ple that an applied electric potentials effectively can act as a regulator of the
ion-membrane interaction, and hereby affect the state and the polarization of
the membrane. Traüble [70] showed that for electrically asymmetric lipid mem-
branes changes on one side, like the absorption of divalent ions, can change the
local electrical field on the other side, effectively leading to electrical signaling
across the a globally neutral membrane.

One can imagine that in the case of nerve membranes, which are highly asym-
metric and have very different ion concentrations on the two sides (including
divalent ions), a depolarization, which effectively is a redistribution of the ions,
can lead to significant changes in both the polarization and the state of the mem-
brane and even an asymmetric release of ions absorbed on the membrane surface.
A thorough treatment of the ion-membrane interactions is therefore necessary
for understanding the electrical properties of cells and especially nerves and
their action potential.

15The Debye-Hückel approximation is valid under the conditions that the electrical energy is
small compared to the thermal energy, which is viable when considering high salt concentration
or low electrical fields.
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2.4.2 Electro-mechanical coupling

Based on the framework we presented for polarization effects in lipid membrane
and taking into account the possible effects of the electrolytic solution we see
that membranes can display a significant electro-mechanical coupling. Not only
can an applied electrical field affect the state of the membrane and hereby its
thickness and area but a state change of the membrane can lead to significant
electrical signal from the membrane. From Eq. (2.43) we see that the change in
the charge on the membrane depends on the area of the membrane as

dq =

[
(ψ + ψ0)

(
∂Cm
∂A

)

ψ,c

+ Cm

(
∂ψ0

∂A

)

ψ,c

]
dA. (2.55)

Here we assume that the applied voltage and curvature is constant. Considering
a nerve membrane which is both polar and subjected to an “applied” voltage of
around 100 mV we can expect substantial piezoelectrical response to a change in
area. The Soliton model proposed that the nerve signal is a lateral density soli-
ton propagating in the cylindrical nerve membrane. The soliton locally pushes
the membrane from its native fluid state in to the gel state. Considering this
the soliton will produce a biphased electrical current response with amplitudes
around 80 µA/cm2 assuming no offset polarization [8]. Including polarization
effects we can then expect a significant increase in the electrical response. Inter-
estingly this yields results not far from the electrical current signal calculated by
Hodgkin and Huxley model for the squid giant axon [75]. A common method for
stimulating a nerve signal (see chapter 6) is to apply an electrical pulse to the
membrane, both voltage and current stimulation is possible. Interestingly the
inverse piezoelectrical effect means that an electrical change has a mechanical
response, allowing for a coupling between electrical stimulation and the excita-
tion of a soliton.

The electrical properties of the membrane is the topic of chapter 4, where we
will explore the electrical implications of the polar and non-constant nature of
membranes.
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Chapter 3

Response behavior of lipid
membranes

In the previous chapter (2) we introduced and further developed the thermo-
dynamics description of the lipid melting transition, with which we can find
equilibrium properties of the lipid membrane in the vicinity of its transition.
The beauty of a thermodynamical description is its ability to describe vastly
complex systems by relative few macroscopic variables (temperature, volume,
pressure, etc.). However, classical thermodynamics only describes the equilib-
rium and contains a priori no insight on the dynamics of the system around equi-
librium. With the development made over the last century by non-equilibrium
thermodynamics, predictions regarding the dynamic behavior of thermodynam-
ical systems can be made [45]1.

In this chapter we will first describe the dynamics of a thermodynamic sys-
tem close to equilibrium, formally known as linear response theory. We will
do this by considering the response of a system subject to perturbations. In
describing the response we are introduced to dynamical susceptibilities which
act as transfer functions. In the second part of the chapter we will discuss the
nature of dynamical susceptibilities and specifically we will discuss the appro-
priate transfer function for the relaxation behavior of the lipid membrane in the
vicinity of the lipid melting transition.

3.1 Response theory

To illustrate the response of a thermodynamical system to perturbations we
choose to consider a system subject to temperature perturbations. Thermo-
dynamically, changes in temperature are coupled to changes in the dependent
thermodynamical variables. Here we consider the enthalpy of the system as the
only dependent variable,

dH =

(
∂H

∂T

)

p, ...

dT = cp(T )dT. (3.1)

1Other authors whom have contributed greatly are Einstein, Callen, Green, Prigogine,
Jarzynskis, Crooks.
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Considering small changes in temperature, such that the system is kept close-to-
equilibrium, a linear relation between the perturbation (change in temperature)
and response (change in enthalpy) can be assumed. Using this assumption and
writing the change in temperature as a rate (Ṫ (t) = ∂T (t)/∂t),

∆H(t) =

∫ t

−∞
cp(t− t′)Ṫ (t′)dt′. (3.2)

In Eq. (3.2) the heat capacity has been written as a transfer function. The
transfer function depends on the time difference rather then the absolute time
so that Eq. (3.2) assumes the form of a convolution. The time difference depen-
dence of the transfer function originates from the consideration that if changes
happen faster than the transfer rate (or relaxation rate), the energy transferred
during the change will only be partial. We write the transfer function (dynamic
heat capacity) as

cp(t− t′) = cp,0 + ∆cp
(
1−Ψcp(t− t′)

)
, (3.3)

where ∆cp is the equilibrium excess heat capacity and Ψcp is the relaxation
function which describes the dynamical properties of the transfer function. The
relaxation function is a decaying function such that as the system approaches
equilibrium the relaxation function approaches zero (0 ≥ Ψcp ≥ 1). Last, cp,0
is the part of the dynamic heat capacity which relaxes much faster than the
perturbation under consideration. For the lipid membrane this would be the
relaxation of the lipid chains. We can using Eq. (3.3) write Eq. (3.2) as

∆H(t) =

∫ t

−∞

(
cp,0 + ∆cp

(
1−Ψcp(t− t′)

))
Ṫ (t′)dt′. (3.4)

∆H(t) is the dynamic change in enthalpy as a response to a imposed dynamic
change (perturbation) in temperature. From the response function (Eq. (3.4))
we can calculate the response of the system to a perturbation2.

Perturbations

In perturbation experiments mainly two types of perturbations are used to probe
the relaxation behavior of a system, jump and sinusoidal perturbations. In our
example, jump perturbations are preformed by changing the temperature from
an initial value to a target value in an ”instantaneous” jump, such that

Ṫ (t) = ∆Tδ(t), (3.5)

where ∆T is the magnitude of the temperature perturbation and δ(t) is the
Dirac delta3 which represent the rate ([1/s]). Eq. (3.5) leads to the common
form of the response,

∆H(t)jump =
(
cp,0 + ∆cp

(
1−Ψcp(t)

))
∆T. (3.6)

This perturbation approach has a number of issues: performing the jump as
a step and measuring reliably the response over course of the relaxation is ex-
perimentally difficult and non-linear response behavior can occur, for which the

2From the fluctuation-dissipation theorem [76, 77] the perturbation considered above can
be both spontaneous fluctuations of the system or externally imposed.

3We assumed the jump to be a perfect step at t = 0.
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relaxation is not governed by linear response theory. This led Manfred Eigen to
develop the sinusoidal perturbation technique circumventing the bulk of issues
of jump techniques and for which he received the Nobel prize in chemistry [78].
Sinusoidal perturbation is performed by perturbing the system in a sinusoidal
fashion,

T (t) = ∆T exp(iωt), (3.7)

such that Eq. (3.4) takes the form

∆H(ω)sin =

(
cp,0 + ∆cp

∫ ∞

0

exp(−iωt)Ψ̇cp(t) dt

)
T (ω). (3.8)

where ω is the angular frequency of the perturbation and T (ω) is the Fourier
transform of T (t). Derivation is carried out in the appendix in Mosgaard et
al. [79].

We see that the response to both jump and sinusoidal perturbations can be
calculated knowing the transfer function. The nature of the thermodynamical
transfer functions or dynamic susceptibilities is the focus of the next section.

3.2 Dynamic susceptibilities

We introduced thermodynamical susceptibilities in chapter 2. The thermody-
namical susceptibilities are quantities describing the dependence of an extensive
variables on their conjugated intensive variables. The enthalpy dependence on
temperature is expressed by the heat capacity at constant pressure. The heat
capacity describes the new enthalpy at equilibrium after a change in tempera-
ture from a prior equilibrium state. Hence, with knowledge of the heat capacity
we know the equilibrium enthalpy after a change in temperature. The gener-
alized or dynamic susceptibilities generalizes this concept, to hold also out of
equilibrium (though close), such that we know the trajectory of the enthalpy
between the two equilibrium states through the dynamic heat capacity. From
non-equilibrium thermodynamics we can describe the dynamics of fluctuations
in enthalpy and hereby the dynamics of the dynamic heat capacity.

Einstein [44] inspired with his 1910 paper authors like Onsager [45] to develop
linear non-equilibrium or close to equilibrium thermodynamics which deals with
the nature of irreversible processes. Following Einstein, we consider the entropy
(which is a state function) around equilibrium,

S − S0 =
1

2

∑

ij

(
∂2S

∂ξiξj

)

0

ξiξj +O(ξ3), (3.9)

where the subscript 0 indicates equilibrium values, and ξ is the change from
equilibrium of an extensive thermodynamical variable. Note that this change
from equilibrium will be referred to as a perturbation. We assume that we are
close to equilibrium so that we can drop higher order terms and all odd terms
are zero since we expand around equilibrium. This is equivalent to assuming
that fluctuations of a free extensive variable are Gaussian around its equilib-
rium value. In the picture of Einstein the entropy is a potential, for which the
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maximum is the equilibrium. This analogy means that any perturbation out of
equilibrium will experience a force proportional to the gradient of the entropy
potential. We consider here only changes of a single extensive thermodynamical
variable4. The flux of the free extensive variable (J) back to equilibrium is given
by,

J(ξ, t) =
dξ

dt
= LX(ξ, t) = L

∂S

∂ξ
= L

(
∂2S

∂ξ2

)

0

ξ, (3.10)

where X is the restoring force and L is the proportionality constant. Note, that
Eq. (3.10) is a Taylor expansion around small forces, and we will throughout
this chapter assume that thermodynamical forces are small. Solving Eq. (3.10)
the common single exponential relaxation dynamics is recovered with additional
insight into the nature of the characteristic relaxation time, τ .

ξ(t) = A exp

(
tL

(
∂2S

∂ξ2

)

0

)
= ξ0 exp

(
− t
τ

)
, (3.11)

where A is the integration constant, ξ0 is the target change and the characteristic
relaxation time τ = −(L(∂2S/∂ξ2)0)−1. We continue with the example from
section 3.1 with the enthalpy as the free extensive variable (ξ = H). From
Eq. (2.12) and assuming constant pressure the change in entropy can be written
as

dS =
1

T
dH. (3.12)

From Eq. (3.12) we can write the characteristic relaxation time from Eq. (3.11)
as

τ = −(L(∂2S/∂ξ2)0)−1 = cpT
2/L, (3.13)

using cp = (∂H/∂T )p. Comparing Eq. (3.11), using Eq. (3.13), with Eq. (3.4)
we see that

Ψ(t) = exp

(
−t L

T 2cp

)
. (3.14)

We see from Eq. (3.14) that under the assumptions of Gaussian fluctuation of
the free extensive thermodynamical variable the characteristic relaxation time is
proportional to the appropriate susceptibility, here the heat capacity. Knowing
the proportionality constant (L), for systems where the Gaussian assumption
holds, we can predict the full dynamic behavior of the system from an equilib-
rium DSC experiment.

Using pressure jump calorimetry, Grabitz et al. [22] tested the applicability
of Eq. (3.14) for the relaxation of lipid membranes in the vicinity of their
lipid melting transition. They found within their available resolution remark-
able agreement between the predicted proportionality between the character-
istic relaxation time and the excess heat capacity throughout the transition
region. For LUV of DPPC they found a proportionality constant of L =
13.9 · 108 J · K/(s · mol), corresponding to a maximum relaxation time of
τmax ∼ 3 s at Tm . This proportionality is remarkable. It makes predic-
tions about the dynamics of the membrane, spanning characteristic time scales
from milliseconds outside the transition to seconds close to the melting tem-
perature. The proportionality found between fluctuations in enthalpy, volume

4For a full derivation see treatment [45,80]
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(Eq. (2.18)) and area (Eq. (2.18)) further indicates that the membrane in the
transition region only have a single free state variable and therefore a single
relaxation behavior describing the enthalpy, area and volume of the lipid mem-
brane.

The above linear non-equilibrium treatment illuminates the fundamental na-
ture of single exponential relaxation behavior which is exhibited by many sim-
ple systems. We see from Eq. (3.9) that single exponential relaxation is a low
order approximation for the dynamics of thermodynamical systems in general.
Exotic materials and especially systems exhibiting a phase transition are how-
ever known to display advanced relaxation behavior often in the form of power
law relaxation spanning several timescales. This is different from exponen-
tial relaxation which is a very rapid decaying function with an amplitude of
practically zero for t > 5τ . Experiments measuring the relaxation behavior
of lipid membranes in the transition region show relaxation behavior beyond
single exponential relaxation, which at Tm spans from sub milliseconds to sec-
onds [7, 81–85]. Authors deal with the multi-scale nature of the membranes
relaxation either by fitting multiple exponential relaxation terms as a empirical
approach [81,82,84,85] or attempting to adopt a Ginzburg-Landau free energy
approach from liquid-crystals [83]. The latter mentioned has been somewhat
successful in describing ultrasound (> 100 kHz) attenuation data5 from lipid
vesicles but its applicability seems mainly to be empirical and it offers little
insight on the underlying mechanism.

We will in the following take a different approach to understand the relaxation
behavior of lipid membrane. We will look at heat exchange between a system
and its environment as a potential underlying mechanism for abnormal relax-
ation. To understand this we consider the relation between thermodynamical
fluctuations of a system and the size of its associated heat reservoir.

3.3 Finite heat reservoir

We are motivated to consider the relationship between the thermodynamical
fluctuations of a system and its associated heat reservoir by the work of Hal-
stenberg et al. [86]. Halstenberg et al. measured the speed of sound in a suspen-
sion of lipid vesicles and were able to predict this speed of sound at ultrasonic
frequencies by considering the coupling between the membrane and the sur-
rounding water. In describing their measurement they considered the sound
velocity (c2 = 1/ρκS), which is a function of the density (ρ) and the adiabatic
compressibility,

κS ≡ −
1

v

(
∂v

∂p

)

S

= κT −
T

v csystemp

(
∂v

∂T

)2

p

, (3.15)

where csystemp is the heat capacity of the total considered thermodynamical
system. Considering a suspension of lipid vesicles the total thermodynamical
system is the lipid membrane and the surrounding water. The above relation has

5Attenuation of sound in the vicinity of a phase transition is dominated by the slow relax-
ation in the system and is therefore connected to the relaxation of the membrane [79].
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been derived using Maxwell’s relations, following Wilson [87]. From Eq. (2.20)
and assuming that (∂v/∂T )p in the lipid melting transition region is dominated
by the volume changes in the membrane associated to the transition [86] one
can rewrite Eq. (3.15) as,

κS ≈ κT,0 +
γ2
vT

v
∆cp −

γ2
vT

v

∆c2p

csystemp

(3.16)

= κT,0 +
γ2
vT

v
∆cp

(
1− ∆cp

csystemp

)
, (3.17)

where κT,0 is the part of the isothermal compressibility which is not related to
the lipid melting transition, and ∆cp is the excess heat capacity of the lipid
melting transition. Eq. (3.17) implies that the adiabatic and isothermal com-
pressibilities of the membrane are related through the size of the thermodynam-
ical system accessible (csystemp ) and we see that for an infinite total system they
are the same. Arguing that at ultrasonic frequencies the membrane and its sur-
rounding have no time to exchange energy, meaning that the total system is only
the membrane, Halstenberg et al. [86] correctly predicted their measured speed
of sound from Eq. (3.17). We note that Eq. (3.17) is functionally analogous to
Eq. (2.20),

κS ≈ κT,0 +
γ2
vT

v
∆ceffp , (3.18)

by writing

∆ceffp = ∆cp

(
1− ∆cp

csystemp

)
, (3.19)

which we will refer to as the effective heat capacity. The correctly predicted
ultrasonic speed of sound by Halstenberg et al. [86] assuming that the total
accessible system is only the membrane indicates that for the lipid membrane
system the dynamic heat capacity depends on the coupling to the aqueous sur-
rounds. This takes into account that the dynamic susceptibility can be viewed
as an effective susceptibility, as the part of the equilibrium susceptibility acces-
sible within the time available [88]. To understand the nature of the dynamics
of the lipid membrane we need to understand the nature of this coupling and
fundamentally how a thermodynamical system acts in a finite heat reservoir.
Specifically, we are here interested in understanding the nature of the thermody-
namical fluctuations which define both susceptibilities and dynamic timescales
in a subsystem of a total system which is adiabatically shielded, following [89].

3.3.1 Modeling a finite heat reservoir

In an adiabatically shielded system the total enthalpy is strictly constant. How-
ever, the enthalpy of arbitrary subsystems contained within the total system
can fluctuate by exchanging heat with the rest of the system, which we call
“the reservoir”. An example could be enthalpy and temperature fluctuations
in a small water volume that is embedded into a larger water reservoir of finite
size. One can also consider cases where the subsystem is of different physical
nature than the reservoir. Such a subsystem could be a ice crystal that couples
to surrounding water that serves as a reservoir. It could also, as considered
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here, be a subsystem that is spatially separated from the reservoir and of dif-
ferent chemical nature than the reservoir, e.g., macromolecules or membranes
suspended in an aqueous buffer.

When measuring the heat capacity using DSC, the instrument controls the tem-
perature by removing or supplying heat to the system, effectively acting as an
infinite heat reservoir with a constant temperature. In finite adiabatic systems
(with constant total enthalpy), however, the temperature of the reservoir is not
constant as a consequence of fluctuations in the subsystem. The restriction that
the total enthalpy is constant means the any fluctuation in the subsystem (here,
the membrane) will result in an appropriate fluctuation of the reservoir tem-
perature. Thus, the temperature of the reservoir is only constant on average,
with fluctuations that depends on the size of the reservoir. Furthermore, as a
consequence the change in free energy of a fluctuation will have to include the
free energy change of the reservoir. The change in free energy associated with
a state change in the subsystem is given by,

∆Gs = ∆Hs − T∆Ss, (3.20)

where the s subscribe denote subsystem and T is the temperature of the total
system. The change in enthalpy of the subsystem has to be buffered by the
heat reservoir (∆Hs = −∆Hr) and the change in the free energy associated to
reservoir buffering is given by,

∆Gr = ∆Hr − T∆Sr, (3.21)

where the r denotes heat reservoir and ∆Sr is the change in entropy of the
reservoir associated to buffering. We can calculate the change in entropy of
the reservoir upon buffering from the resulting temperature fluctuations of the
reservoir using,

crp = T

(
∂Sr
∂T

)

p

⇒ ∆Sr =

∫ T br

Tar

crp
T

dT, (3.22)

where crp is the heat capacity of the reservoir and T ar and T br denotes respectively
the reservoir temperature before and after the buffering6. Assuming that the
heat capacity of the reservoir is constant, the change in the reservoir entropy
(Eq. (3.22)) takes the form,

∆Sr = crp ln

(
T br
T ar

)
. (3.23)

The change in the temperature of the reservoir upon buffering (∆Hs) is

T br = T ar +
∆Hr

crp
= T ar −

∆Hs

crp
, (3.24)

using ∆Hr = crp(T
b
r − T ar ) and ∆Hs = −∆Hr. From Eq. (3.23) and Eq. (3.24)

the change in free energy of the reservoir (Eq. (3.21)) associated with buffering
a state change in the subsystem is given by,

∆Gr = ∆Hr − Tcrp ln

(
T br
T ar

)
= ∆Hr − Tcrp ln

(
1− ∆Hs

T ar c
r
p

)
. (3.25)

6With 〈Tar 〉 = 〈T br 〉 = T , where the average is over time and T is the constant temperature
of the total system which enters the Boltzmann factors.
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We see that for an infinite heat reservoir (crp →∞) the change in free energy of
the reservoir upon buffering goes to zero for any finite ∆Hr. The total change in
free energy (∆Gt) associated with a change of state in the subsystem in a finite
adiabatic system is given by the change of the free energy of the subsystem
(Eq. (3.20)) plus the free energy change of the reservoir upon buffering this
change (Eq. (3.25)),

∆Gt = ∆Gs + ∆Gr (3.26)

= −T (∆Ss + ∆Sr) (3.27)

= −T
(

∆Ss + crp ln

(
1− ∆Hs

T ar c
r
p

))
. (3.28)

We see that the change in the total free energy is entirely governed by the
changes in entropy and we note that for crp → ∞, ∆Gt → ∆Gs. In this limit,
the fluctuations of the subsystem are independent of the nature of the reservoir.
From Eq. (3.28) we also see that for finite crp there is a maximum fluctuation
that is possible for the system: ∆Gt → ∞ for ∆Hs → crpT

a
r . That means that

for vanishing reservoir size, no enthalpy fluctuations in the subsystem are pos-
sible. For finite adiabatic systems the fluctuations of a subsystem are coupled
and limited by its surrounding heat reservoir.

The above considerations are general but we are here interested in under-
standing the coupling between the lipid melting transition and the surrounding
aqueous medium. The membrane system is distinct from many other phys-
ical systems, being an approximate 2-dimensional subsystem embedded in a
three-dimensional heat reservoir. Furthermore, the enthalpy difference between
a lipid in the fluid and gel state (∼ 40 kJ/mol) is substantially larger than the
energy available in the lipid molecule itself (cchainp ≈ 1600 J/mol ·K [90]), which
means that almost the entire buffering of a state change must be facilitated by
the aqueous surroundings. Underlining the key importance of the coupling be-
tween the membrane and its aqueous surrounding in the vicinity of the lipid
melting transition. To explore the implications of a finite heat reservoir on the
lipid melting transition we perform Monte Carlo simulations.

3.3.2 Monte Carlo simulation

The simulation performed is Metropolis Monte Carlo simulations. The core step
of Metropolis Monte Carlo simulations is that a proposed state change is ac-
cepted with an acceptance probability so that the simulation effectively explore
the systems phase space and converges towards equilibrium. The acceptance
probability (based on the Glauber rejection algorithm) of a change in the state
of the subsystem in a finite adiabatic system, is given by,

α =
K

1 +K
; K = exp

(
−∆Gt
RT

)
, (3.29)

which obeys detailed balance. A change is accepted if α ≥ x, where x is a
random number drawn from a uniform distribution (x ∈ [0 : 1]).

Monte Carlo simulations have frequently been used to explore the properties
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of the lipid melting transition [22, 91–94]. We will here use the model used by
Ivanova et al. [60] for the lipid membrane. The model is Ising model inspired,
considering the lipids to be in two states, fluid and gel, where only nearest
neighbor interactions are included (last term in Eq. (3.30)). The free energy of
each configuration of the lipid subsystem consisting of N lipids is given by,

Gs = Gg +Nf (∆H0 − T∆S0) +Nfgωfg, (3.30)

where the Gg is the free energy of the gel state, Nf is the number of lipids in
the fluid state, Nfg is the number of fluid-gel neighbor interactions and ωfg is
the free energy cost of a fluid-gel interaction. ωfg effectively plays the role of
setting the cooperative nature of the lipid melting transition, like n in Eq. (2.22).
To model the aqueous medium surrounding the membrane we associate to each
lipid Nwater water molecules acting as a shared heat reservoir for the membrane.
Furthermore, we include the heat capacity of the lipid chains (cchainp ) as being
part of the available heat reservoir. The total heat capacity of the shared heat
reservoir (crp), is given by,

crp = N(Nwater · cwaterp + cchainp ). (3.31)

See appendix A.3 for further details of the simulations.

We carried out Monte Carlo simulations throughout the lipid melting tempera-
ture (Tm = 314.05 K) region for different water reservoir sizes. To monitor the
enthalpy fluctuations of the membrane subsystem we introduce a measure for
the fluctuation strength,

∆cs =
σHs
RT 2

=
〈∆H2

s 〉 − 〈∆Hs〉2
RT 2

. (3.32)

In Fig. (3.1) are shown the ∆cs-profiles around the lipid melting transition for
five different sizes of the aqueous reservoir: 500, 1000, 2000, 4000, and an infinite
number of water molecules per lipid. We see from Fig. (3.1) and Fig. (3.2) that
a reduction of the size of the available heat reservoir reduces the fluctuation
strength ∆cs of the lipid membrane. This lowering is due to the suppression
of large enthalpy fluctuations in the lipid membrane. In the limit of infinite
reservoirs we recover the isothermal limit, i.e., the excess heat capacity ∆cp of
the membrane. We see further from Fig. (3.1) that the center and width of the
cs-profiles for different reservoir sizes is unaltered, meaning that the damping of
fluctuation with smaller reservoirs does not broaden the lipid melting transition.

Note that the excess enthalpy integrated over the melting transition is given
by ∆H0 =

∫
∆cpdT . However, for finite reservoir ∆H0 >

∫
∆csdT and we see

that the fluctuation strength is not a heat capacity.

In Eq. (3.18) we introduced the effective heat capacity (Eq. (3.19)), we called it
effective heat capacity under the ansatz that it described the apparent/effective
heat capacity of a system in a finite heat reservoir. Based on the simulations we
test the validity of this ansatz by comparing the fluctuation strength (∆cs) with
the effective heat capacity, which can be done directly since both the heat ca-
pacity of the total system and the excess heat capacity (isothermal) are known.
Fig. (3.2) shows the calculated effective heat capacity with the simulated fluctu-
ation strength as a function of reservoir size for four different temperatures. We
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Figure 3.1: Fluctuation strength, ∆cs, of the lipid membrane for five different sizes of
associated water reservoirs. The isothermal limit corresponds to an infinite number of
water molecules per lipid. The curves have been smoothed by cubic spline fitting. Error
bars have been omitted for clarity. [89]

see within the estimated error of the simulation (symbols) perfect agreement
with the effective heat capacity (solid line). This indicates that the fluctuation
strength of a subsystem in a finite heat reservoir is identical to the effective heat
capacity: ∆ceffp = ∆cs.

Figure 3.2: Verification of the analytical ansatz. The effective heat capacity as a
function of reservoir size calculated from Eq. (3.19) (solid lines) and the fluctuation
strength, ∆cs, from the simulations (symbols) at four different temperatures. [89]
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3.3.3 Dynamic heat capacity

The success of Halstenberg et al. [86] in using the effective heat capacity to
predict the dynamic heat capacity indicated that they might be identical for the
lipid membrane system. This is further underlined by the fluctuation strength
based on the fluctuation-dissipation theorem [88]. Effectively, this suggests that
the time dependence of the dynamic heat capacity is governed by the size of
the accessible heat reservoir which is time dependent. A possible form for the
dynamic heat capacity of the lipid membrane in the vicinity of the lipid melting
transition is,

∆ceffp (t) = ∆cp

(
1− ∆cp

csystemp (t)

)
, (3.33)

where csystemp (t) is the time dependence of the heat capacity of the total system
and we assume that the underlying time dependence is due to a time dependence
of the size of the accessible heat reservoir (csystemp (Nwater(t))). The simplest
time dependence of the size of the accessible heat reservoir is diffusion. Consid-
ering the cooperative and pseudo 2-dimensional nature of lipid membranes we
assume that the heat from and to the membrane is governed by 1-D diffusion
(Nwater(t) ≈

√
4DQt)

7 so that,

csystemp (t) ≈ cmembranep + α · t 1
2 , (3.34)

where α is a proportionality constant containing a measure for the heat dif-
fusion constant and the heat capacity of water. cmembranep = ∆cp + cchainp is
the heat capacity of the membrane. For low frequencies (ω << 1 MHz) and
close to the lipid melting transition, we approximate cmembranep ≈ ∆cp. Using
Eq. (3.34) considering low frequencies the here proposed dynamic heat capacity
(Eq. (3.33)) of the lipid membrane in the vicinity of the lipid melting transition
takes the form,

∆ceffp (t) ≈ ∆cp

(
1− ∆cp

∆cp + α · t 1
2

)
(3.35)

= ∆cp

(
1− 1

1 + α
∆cp
· t 1

2

)
. (3.36)

We note that this proposed dynamic heat capacity, like single exponential re-
laxation (Eq. (3.11)), only contains an amplitude and a free parameter, here α
and for single exponential relaxation the τ .

Little low frequency relaxation data covering several decades reliably is avail-
able. Blume and collaborators have done a of number jump perturbation ex-
periments with various lipid state recording methods [81, 82, 84, 85, 95]. They
found systematically relaxation behavior spanning the full experimental avail-
able time spectra, using techniques covering from sub millisecond to seconds.
In Fig. (3.3) we show the natural logarithm of the recorded optical density8 as
a function of time (red dots) after pressure jump for DPLA vesicles just above

7Assuming 1-D diffusion is equivalent to assuming that the diffusion length-scale is smaller
then the area of the region of the membrane involved in a state change.

8The optical density is a proxy for the state of the lipid membrane.
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the melting temperature (T = 305 K) [81], along with a fit of Eq. (3.36) to
the data (black line). We see that there is a quite good agreement between
the proposed expression (Eq. (3.36)) for the dynamic susceptibility9 especially
noting the logarithmic y-axis. We find α/∆cp ≈ 12 s−1/2 10.
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Figure 3.3: The time dependence of the optical density A (red dots) after pressure
jump for DLPA vesicles just above the melting temperature (T = 305 K). The solid
black line is the best fit using Eq. (3.36), estimating α/∆cp ≈ 12 s−1/2. The data is
taken from [81].

Van Osdol et al. [96] used sinusoidal pressure perturbation to probe the
frequency dependence of the dynamic heat capacity. As it is illustrated in
Eq. (3.8), the frequency dependence of the dynamic heat capacity is given by
the Laplace transform of the derivative of the time dependent dynamic heat
capacity as

∆ceffp (ω) =

∫ ∞

0

d∆ceffp (t)

dt
e−st dt (3.37)

where s = iω is the complex argument of the Laplace transform. From Eq. (3.37)
the frequency dependent dynamic heat capacity corresponding to Eq. (3.36)
can be calculated using Mathematica. We have fitted Eq. (3.37) to the abso-
lute value of the dynamic heat at Tm = 314.15 K of DPPC LUV, for four
different perturbation frequencies 0.01 Hz, 0.1 Hz, 1 Hz and 10 Hz (red dots,
Fig. (3.4)), from [96]. We find excellent agreement between fit and data, es-
timating α/∆cp ∼ 3 s−1/2 11, see Fig. (3.4). The full dynamic heat capacity
profiles measured by Van Osdol et al. [96] are shown in Fig. (3.5), B. Using
the estimated value for α we have calculated the dynamic heat capacity profiles
based on the equilibrium heat capacity profiles generated using Eq. (2.24) (see
Fig. (3.5), A) for comparison. We see again excellent agreement between the
experimentally obtained dynamic heat capacity throughout the transition and
the proposed form (Eq. (3.36)).

9Remember that the found proportionality relations between the different extensive vari-
ables (Eq. (2.20) and Eq. (2.21)) of the membrane lead to a single common dynamic suscep-
tibility.

1095 % confidence bounds: 8.1 s−1/2, 15.7 s−1/2.
11Note, that there is significant impact of the baseline correcting, resulting in an uncertainty

on the determined α/∆cp value.
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Figure 3.4: The absolute value of the dynamic heat at Tm = 314.15 K of DPPC LUV
(red dots), for four different perturbation frequencies (0.01 Hz, 0.1 Hz, 1 Hz, 10 Hz),
taken from [96]. Zero order baseline corrections have been preformed on the data,
assuming common baseline. Black line shows the best fit of Eq. (3.37) to the data,
estimating α/∆cp ≈ 3 s−1/2.
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Figure 3.5: A: Calculated dynamic heat capacities from Eq. (3.37) for four different
perturbation frequencies, using the estimated α/∆cp from Fig. (3.4). The equilibrium
heat capacity profiles are generated using Eq. (2.24). B: The absolute value of the dy-
namic heat of DPPC LUV, as a function of temperature, for four different perturbation
frequencies, taken from [96].
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3.4 Discussion of response behavior

In describing the response behavior of lipid membranes we introduced general
linear response theory for the example of the enthalpy response to temperature
perturbation. We saw that the response behavior is governed by the response
function and the dynamic susceptibility of the system. The dynamic suscep-
tibility is a generalization of the thermodynamical susceptibilities, describing
the part of the susceptibility which is accessible within the time available.
We showed that assuming Gaussian thermodynamical fluctuations, a system
will show single exponential relaxation with the characteristic relaxation time
being proportional to the appropriate equilibrium susceptibility. Grabitz et
al. [22] showed that this assumption was sufficient to describe the relaxation
of lipid membranes around the lipid melting transition in the long time relax-
ation limit, observing characteristic relaxation time around ∼ 3 s at Tm. Sev-
eral authors have however reported significant relaxation at smaller timescales
than observed by Grabitz et al. spanning from seconds down below millisec-
onds [7, 81, 82, 84, 85, 95]. This indicates relaxation behavior beyond single ex-
ponential relaxation. We will however for simple examples in the proceeding
chapters approximate the relaxation behavior of lipid membranes in the vicin-
ity of the lipid melting transition by single exponential relaxation (Eq. (3.14))
as proposed by Grabitz et al. [22].

In attempting to describe the observed relaxation behavior, spanning several
timescales, Blume and collaborators often use several exponentials (often 3)
effectively aiming at parameterizing the relaxation (this approach is used con-
sistently within the field). Beyond this, Halstenberg et al. [83] have successfully
used a phenomenological description originally intended for describing ultra-
sonic attenuation in liquid crystals around their isotropic-to-nematic transition
to describe ultrasonic attenuation in lipid membrane dispersions. Despite their
success, the phenomenological nature of their approach does not illuminate the
underlying physical mechanism and its applicability to a lower (biologically rel-
evant) frequency regime is unknown. In earlier work, Halstenberg et al. [86]
(different collaborators) succeeded in describing the ultrasonic attenuation in
lipid membranes throughout the lipid melting region by considering the ther-
modynamical coupling between the membrane and the surrounding water. Mo-
tivated by this, we studied the fluctuations of a membrane surrounded by a finite
amount of water (a finite heat reservoir) aiming to understand the underlying
physical mechanism governing relaxation behavior in the transition region of
lipid membranes [89]. We found through Monte Carlo simulations that the fluc-
tuation strength (Eq. (3.32)) of the membrane in a finite reservoir is identical to
the effective heat capacity (Eq. (3.19)) derived from the expression for the adi-
abatic compressibility (Eq. (3.18)). The previous success of using the effective
heat capacity to describe ultrasonic attenuation in membranes [86] along with
the coupling between the fluctuation strength and the effective heat capacity,
indicates that the governing physics behind the observed relaxation behavior
is through the size of the heat reservoir accessible in the available time. We
assumed that the underlying time dependence of dynamic heat capacity is the
time dependence of the size of the accessible heat reservoir. We assumed further
that the size of the accessible heat reservoir is governed by 1-D heat diffusion.
We found excellent agreement between the observed relaxation, from both jump
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and sinusoidal experiments over the full available range, and the proposed dy-
namic heat capacity (Eq. (3.36)). Note, that proposed dynamic heat capacity
fits the available data excellently with only a single free parameter. From the
data of Van Osdol et al. [7] (Fig. (3.3)) we estimated α/∆cp ≈ 3 s−1/2 at
T = Tm. These experiments was done on DPPC LUV and knowing the excess
heat capacity of DPPC (see Fig. (2.3)) we can estimate α ∼ 120 kJ/(K · s1/2)
per mol lipid. The experiment by Elamrani et al. [81] (Fig. (3.3)) was only
available at one temperature, just above the lipid melting transition, and we
estimated α/∆cp ≈ 12 s−1/2. We can again from the known excess heat capac-
ity (for DLPA vesicles) estimate α, and we find a value similar to one found
for the Van Osdol et al. data set. That the only free parameter in the pro-
posed dynamic heat capacity (α) is conserved cross different lipid membrane
systems indicates that there is a universal role of the water-membrane interface,
which underlines the potential generality of the proposed relaxation mechanism.

More experimental data spanning several timescales are though needed to fur-
ther test our proposed form for the dynamic heat capacity. However, based
on available data it seems to describe the advanced relaxation behavior of the
lipid membrane close to the lipid melting transition excellently. Contrary to
other efforts to understanding this behavior, our proposal have a clear under-
lying mechanism, being that the enthalpy of melting far exceeds the thermal
energy available within the membrane and therefore needs the surrounding wa-
ter to buffer the fluctuation. We note the similarity between the lipid melting
transition and certain glass transitions [56], which could indicate that similar
mechanisms can be important for the relaxation behavior of glasses.
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Chapter 4

Lipid membranes as an
electrical component

In chapter 2 we introduced the thermodynamical framework to describe the state
of a lipid membrane. Our description targeted specifically a lipid membrane in
the vicinity of the lipid melting transition, where we included the formalism
to consider the effect of electrical fields across the membrane. In chapter 3 we
extended the thermodynamical framework to include the dynamic properties of
the lipid membrane. This enabled a description not only of equilibrium states
of the membrane but also how the system dynamically progresses between these.

The foundation of electrophysiology, ion channels and also our understanding
of the propagation of nerve signals rely on the techniques of current clamp and
voltage clamp. By either clamping the current or the voltage across a cell mem-
brane or artificial membrane, the electrical properties of the membrane as a
whole can be investigated. The voltage clamp technique enabled Huxley and
Hodgkin to characterize the electrical properties of the giant squid axon and
from this derive their electrical model of nerve pulse propagation [24,75]. They
assumed, as it is common in the field, that the lipid membrane acts a simple ca-
pacitor (constant in value) and that the observed non-linear currents are due to
protein ion-channels which can have sophisticated opening and closing mecha-
nisms and be selective towards specific ions. In general, in the present paradigm,
almost all sophisticated (non-linear) behaviors are assigned to specific proteins
or protein classes and the membrane is believed to be inert.

4.1 Equivalent circuit of the membrane

The pure lipid membrane is commonly assumed to be permeable to small
molecules like water and close to impermeable to larger molecules or ions1.
In an electrolyte solution current is conducted by movement of ions rather then
electrons. This means that the pure lipid membrane can be considered approxi-
mately as an insulator separating two electrically conductive compartments, the

1Ions atoms are very small but are in water always surrounded by a number of water
molecules shielding the electrical field of the ion, effectively making the ion considerable in
size.
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electrolytic solution on the two sides of the membrane. The membrane is how-
ever not a perfect insulator and low conduction through it can be expected. The
pure lipid membrane equivalent circuit therefore takes the form of a capacitor
in parallel with a resistor, see Fig. (4.1)).

C
R

m

m

Outside

Inside

Figure 4.1: The equivalent circuit of the lipid membrane, containing a resistor (Rm)
and a capacitor (Cm) in paralel.

In this chapter we will, based on our understanding of the lipid membrane,
describe a appropriate equivalent circuit of pure lipid membranes. First, we
will consider the lipid membrane as a capacitor based on our thermodynami-
cal understanding of the membrane subject to electric fields. Secondly, we will
describe the permeability to ions displayed by pure lipid membranes, so the
lipid membrane as a resistor. We will for both the capacitance and the conduc-
tance of the membrane consider the electrical experiments commonly performed
within the field of electrophysiology. We will consider two types of experiments,
namely impedance spectroscopy and voltage jump experiments. We will see
that the common approximation that the conductance and capacitance of the
lipid membrane are constant, is far from valid in the vicinity of the lipid melting
transition, and its validity is even questionable beyond this region.

4.2 Non-linear capacitor

In electrophysiology it is commonly assumed that the membrane acts as a simple
capacitor, meaning that the capacitance is constant. As it will be shown here
and has been shown by other authors, the membrane behaves rather as a non-
linear capacitor [43,64,65], which changes the expected electrical response (of the
membrane) significantly as we will see below. In voltage clamp experiments one
makes a voltage perturbation and records the current response. Disregarding
conduction for the moment, for a constant capacitance (C = εA/d) the current
response to a change in the applied voltage will be

IC(t) =
dqC
dt

=
d(C · ψ(t))

dt
= C

dψ(t)

dt
, (4.1)

which is the charging or discharging of an ordinary capacitor (indicated by
subscript C). Eq. (4.1) is based on Gauss’s law which for a planar capacitor
filled with a homogeneous dielectric takes the form,

qC = v (∇ ·D) = AD. (4.2)
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Assuming a linear dielectric medium, no offset polarization and constant geom-
etry we recover Eq. (4.1). However, as we showed in section 2.3.2, the geometry
of lipid membranes depends on the applied electric field and the membrane can
furthermore display offset polarization such that D = εE + P0. Therefore, in
the general case, the charges on the membrane capacitor takes the form

qCm = A(εE + P0) = ε
A

d
ψ +AP0 = Cmψ +AP0, (4.3)

where the capacitance (Cm), area (A), thickness (d) and offset polarization (P0)
of the membrane can all depend on the applied voltage (ψ)2. We will often refer
to the last term in Eq. (4.3) as offset charges (qoffset = AP0).

In chapter 2 we introduced a thermodynamic description of the lipid membrane
melting transition including the thermodynamical implications of membranes
being subject to applied electrical fields. Using the van’t Hoff law based model
for the lipid melting transition (see Eq. (2.22) and Eq. (2.23)) and the known
expression for the free energy difference (Eq. (2.35)), we can calculate the change
in charges on the membrane capacitor given a change in voltage (Eq. (4.3))3.
Fig. (4.2) shows the number of charges on the membrane capacitor relative to
the number of charges on a constant membrane capacitor (qCm,0) for different
temperatures as a function of the applied voltage.
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Figure 4.2: The relative number of charges on the membrane capacitor as a function
of applied voltage, shown for different temperatures above the lipid melting transition.
Value used are from LUV of DPPC, where ∆C ≈ 656 J/(mol · V 2). No offset polar-
ization is assumed.

We see from Fig. (4.2) that the non-linearity of the charges on the mem-
brane capacitor (the capacitance) around the lipid melting transition is highly
dependent on temperature.

Biological membranes commonly display a voltage difference between the in-
side and outside (Nernst potential) of around ∼ −100 mV . The inside electrode

2We used ψ = E · d.
3Values used are from LUV made of DPPC, and can be see in appendix A.1.
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is in electrophysiology conventionally defined as the positive electrode. Further-
more, experiments probing the electrical properties are commonly performed
around a holding voltage (ψh). We see from Fig. (4.2), that experiments cen-
tered around a non-zero holding voltage will result in an asymmetric non-linear
capacitance contribution. To illustrate this we consider the change in non-linear
charges on the membrane capacitor which we define as

qnonCm ≡ (qCm(ψe)− qCm(ψh))− Cm(ψh)∆ψ (4.4)

where qCm(ψe) and qCm(ψh) is the charges on the membrane at respectively end
voltage (ψe) and holding voltage (ψh), Cm(ψh) is the capacitance at the holding
voltage and ∆ψ = ψe − ψh is the change in voltage. We will consider changes
in the end voltage while the holding voltage is fixed. In Fig. (4.3) we see the
change in non-linear charges as a function of change in voltage from different
holding voltages. The holding voltage result in asymmetry and we see for large
changes in voltage that the change in non-linear charges can be against the the
voltage change. In Fig. (4.2) and Fig. (4.3) no offset polarization was assumed.
In Fig. (4.4) we consider the influence of offset polarization on the change in
non-linear charges on the membrane capacitor in response to changes in end
voltage (ψe). We see that the effect of the offset polarization can be very large
especially for the case were the offset polarization is dependent on the state of
the membrane and herby on the applied voltage (Fig. (4.4), right).
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Figure 4.3: The change in non-linear charges on the membrane capacitor as a function
of changes in voltage, shown for three different fixed holding voltages (ψh). Values used
are from LUV of DPPC, where ∆C ≈ 656 J/(mol · V 2). No offset polarization is
assumed and the temperature is T = 314.5 K.

We showed (in Fig. (4.2-4.4)) that change in non-linear charges on the mem-
brane capacitor upon a voltage change are dependent on the state of membrane,
holding voltage and the offset polarization. Note that the state of the membrane,
specifically the vicinity to the melting transition, can affect the change in non-
linear charges on the membrane capacitor by orders of magnitudes.

In this chapter we are interested in exploring the current response of membranes
due to voltage perturbations. The capacitive current is the rate of change in the
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Figure 4.4: The change in non-linear charges on the membrane capacitor as a function
of end voltage (ψe). No holding voltage (ψh = 0) is assumed and the temperature is T =
314.5 K. Values used are from LUV of DPPC, where ∆C ≈ 656 J/(mol·V 2). Left, the
change in non-linear charges on the membrane capacitor is shown for different offset
polarizations, where the offset polarization is independent on the state of the membrane.
Right, the change in non-linear charges is shown for different offset polarizations were
the polarization is membrane state dependent.

charges on the membrane capacitor. For the membrane the capacitive current
response to a change in the applied voltage takes the form,

ICm(t) =
dqCm
dt

=
d(Cmψ +AP0)

dt
, (4.5)

where the capacitance, applied voltage, area and offset polarization can depend
on time.

4.2.1 Applied to common experiments

As is was discussed in section 3.1, perturbation experiments are mainly carried
out by jump or sinusoidal perturbations. This is also the case for experiments
probing the electrical properties of membranes. First we will consider the case
of low amplitude sinusoidal perturbation experiments (referred to as impedance
spectroscopy) and after we will consider jump experiments. We will consider
voltage clamp experiments, originally introduced by Kenneth Cole [97], where
the voltage across the membrane is locked (or clamped) and the current needed
to keep the voltage is monitored.

Electrical impedance

The first type of electrical perturbation experiments we consider is electrical
impedance spectroscopy, where the membrane is perturbed by a low amplitude
sinusoidal applied voltage and the amplitude and the phase of the response
current is measured to determine the impedance (Z).

Z(ω) ≡ ψ(ω)

I(ω)
= R(ω) + iX(ω), (4.6)
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where real part (R) is the resistance and the imaginary part (X) is the reactance.
Only low amplitude perturbations are applied in impedance spectroscopy to
linearize the response. To estimate the response of a lipid membrane to this
type of perturbation we Taylor-expand the change in charges on the membrane
capacitor (Eq. (4.3)) to the first order around the holding voltage:

∆qCm ≈
(
Cm,0 + ψh

(
∂Cm
∂ψ

)

ψh

+

(
∂(AP0)

∂ψ

)

ψh

)
∆ψ, (4.7)

where Cm,0 is the constant part of the capacitance for the given state of the
membrane, ψh is the fixed holding voltage, (∂Cm/∂ψ)ψh and (∂(AP0)/∂ψ)ψh
are respectively the voltage dependence of the membrane capacitance and of
the offset charge, both evaluated around the holding voltage (ψh).

In chapter 3 we introduced linear response theory, which describes the dynamics
of a thermodynamic system between two equilibrium states. Using linear re-
sponse theory we can estimate the time dependence of changes in the membrane.
For simplicity, we assume that the change of offset charges and of the membrane
capacitance follow the dynamics of the membrane directly. We further assume
that the lipid membrane is well approximated by the single exponential response
function of the form Eq. (3.14) 4. Based on these assumptions, the time depen-
dent change in the charges on the membrane capacitor, assuming low amplitude
sinusoidal perturbations, takes the form,

∆qCm(t) = Cm,0∆ψ(t) +

∫ t

−∞
C0 (1−Ψm(t− t′)) dψ(t′)

dt′
dt′ (4.8)

where Ψm(t) is the response function of the membrane (Eq. (3.14)) and C0 ≡
ψh(∂Cm/∂ψ)ψh + (∂(AP0)/∂ψ)ψh . Taking the time derivative of Eq. (4.8) we
find the linear current response to a voltage perturbation. Including the sinu-
soidal nature of the applied voltage perturbation (∆ψ(t) = ∆ψ exp(iωt)) and
using the assumption of single exponential relaxation, the frequency dependent
current response of the membrane capacitor (ICm) takes the form,

ICm(ω) = iωCm,0∆ψ(ω) +
iωC0

1 + iωτ
∆ψ(ω), (4.9)

where ω is the angular frequency of the perturbation, ∆ψ(ω) is the Fourier
transform of the applied voltage perturbation and τ is the characteristic relax-
ation timescale. For derivation see appendix A.4. From Eq. (4.9) the impedance
of the membrane capacitor takes the form,

ZCm(ω) =

(
iωCm,0 +

iωC0

1 + iωτ

)−1

(4.10)

Note that the impedance of the membrane capacitor takes the form of a capac-
itor in parallel with a so-called lossy capacitor, which is a capacitor in series
with a resistor, see Fig. (4.5).

4The area, thickness and offset polarization of the membrane can all be expected to follow
the dynamics of the membrane. Furthermore, we saw in the previous chapter that lipid
membranes display ”abnormal” relaxation behavior. However, we are here interested in the
general behavior and the detailed dynamics is beyond our scope.
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Cm,0

C0

Cm

Figure 4.5: Equivalent circuit representation of the impedance of the membrane ca-
pacitor, a capacitor in parallel with a lossy capacitor, see Eq. (4.10).

This configuration of a capacitor (the membrane) in parallel with a lossy ca-
pacitor is often used in electrophysiology to fit the impedance of biological mem-
branes [98, 99]. Interestingly, in electrophysiology, the phenomenological lossy
capacitor is speculated to originate from voltage dependent capacitive compo-
nents which is due to charge movement within the membrane (the movement of
gating charges in protein channels). We predict the lossy capacitive term like-
wise from voltage dependent capacitive components originating however from
geometrical and offset polarization changes of the membrane, no protein being
considered. As it is indicated by considering the change in non-linear charges
on the membrane (Fig. (4.4)), C0 depends on the nature of the offset polar-
ization, on the state of the membrane and on the holding voltages. We see in
Fig. (4.6) that C0 is positive and can have amplitudes of around 10 % of Cm
(∼ 1 µF/cm2 ∼ 1600 F/mol).
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Figure 4.6: The first order term of the voltage dependence of the membrane capacitance
(C0), including offset polarization, as a function of holding voltages shown for different
offset polarizations. Values used are from LUV of DPPC, where ∆C ≈ 656 J/(mol·V 2)
and the temperature is T = 314.5 K.

As will be discussed in detail in the next section (4.3), the lipid membrane
is not entirely impermeable to ions. The conduction of ions through the mem-
brane is, like the capacitance, not constant in the vicinity of the lipid melting
transition. However, we here assume that the conduction is constant to illus-
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trate the effect of the non-linearity of the membrane capacitance. Including a
resistor in parallel with the membrane capacitor the impedance takes the form,

Zm =

(
1

ZCm
+

1

ZΩ

)−1

(4.11)

=

((
iωCm,0 +

iωC0

1 + iωτ

)
+

1

Rm

)−1

, (4.12)

where we have used that the impedance of a resistor is given by ZΩ = R. Using
values for the resistance of a membrane estimated from the literature [75, 100]
and C0 from Fig. (4.6) we can calculate the impedance of the membrane, which
is shown in a Nyquist plot in Fig. (4.7).
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Figure 4.7: Nyquist plot of the impedance of a lipid membrane. Red, shows the
impedance profile assuming C0 ≈ 0.5 · Cm,0 and black shows the impedance profile as-
suming C0 = 0. We have assumed a resistance of the membrane of Rm = 100 Ω · cm2,
membrane capacitance is Cm,0 = 1 µF/cm2 and a characteristic relaxation time
τ = 1 ms.

We have assumed a characteristic relaxation time constant of τ = 1 ms,
which is based on the characteristic timescales observed in biological membranes.
We have in Fig. (4.7) assumed C0 = 0.5 ·Cm,0 which is high compared to values
shown in Fig. (4.6) but within achievable values for a pure lipid membrane.

We see that the non-linearity of the membrane capacitor takes the form of
an additional capacitive term which is known in electrophysiology as a lossy
capacitor. Interestingly, this could indicate that the common experimentally
found lossy capacitive term can originate from the non-linearity of the mem-
brane capacitor and not, as commonly speculated, from gating currents.
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Voltage jump

The second type of electrical perturbation experiments commonly performed is
jump experiments. Using voltage jump experiments Hodgkin and Huxley [75]
characterized the electrical response of the squid giant axon, enabling them to
propose their model for its action potential [24]. The voltage jump technique
is widely used especially in characterizing the functionality of protein ion chan-
nels, and understanding the response of the membrane is therefore essential for
correctly associating function to specific proteins.

A voltage jump experiment is carried out by performing a fast jump in voltage,
from a holding voltage (ψh) to end voltage (ψe) and measuring the current re-
sponse of the system. We assume the jump to be performed at t = 0 and that any
change in the applied voltage is instantaneous. In dealing with the impedance
spectroscopy we could apply linear response theory since only small perturba-
tions were considered and we could linearize the response. Here, however, we
are not limited to small perturbations and the response of the membrane is not
guarantied to be linear. By assuming that the applied voltage jump is instanta-
neous, the problem of the non-linear response can be simplified to considering
the equilibration of the system from the initial equilibrium charges on the mem-
brane to the new equilibrium after the jump. We assume that equilibration of
the membrane, its capacitance and polarization charges, follow single exponen-
tial relaxation as for the impedance calculations. Using these assumptions we
can calculate the current response using Eq. (4.3) and Eq. (3.5) for t > 05,

ICm(t) =
d

dt

(
qnonCm (t)

)
=

d

dt
((∆Cmψe + ∆(AP0)) (1−Ψm(t)))

= (∆Cmψe + ∆(AP0))
exp

(
− t
τ

)

τ
, (4.13)

where ∆(AP0) and ∆Cm is respectively the change in offset charges and the
change in membrane capacitance associated with the change in applied voltage
(∆ψ = ψe − ψh). We see that the non-linear capacitive current is set by the
change in non-linear charges on the membrane. From Fig. (4.8) we see that
the non-linear current response of a membrane may not follow the change in
voltage.

The current in Fig. (4.8) is given in the units [A/mol] (mol of lipid) which
is equivalent to 1 A/mol ∼ 2/3 nA/cm2, assuming an area per mol lipid of
A ∼ 1.5 · 105 m2/mol 6 [51]. From this and Fig. (4.8) we can expect current
responses of up to 20 µA/cm2 after a voltage jump which originate from the
non-linearity of the lipid membrane. Note that these values highly depend on
the vicinity of the lipid melting transition and at the center of the transition we
can expect responses up to 60 µA/cm2 and that the current response is inversely
proportional to the characteristic relaxation time. We see from this that the
capacitive non-linear current response to a voltage jump can be significant on the

5The derivative of a step function is a Dirac delta function at the point of the step. We
consider t > 0 to ignore the part of the capacitive current which is associated to the linear
part of the membrane capacitor. In experiments compensation circuits are commonly used to
remove the linear capacitive spike and it is not shown in recordings.

6We are considering a constant number of lipids which changes their size and direct conver-
sion can therefore not be done. However, we can consider the conversion valid in equilibrium,
such that units are [µA/cm2] in equilibrium.
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Figure 4.8: The capacitive current response to a change in applied voltage from a
holding voltage ψh = −100 mV to respectably ψe = −60 mV and ψe = 60 mV . Left,
shown for membrane with no offset polarization assumed. Right, shown for a polar
membrane with P0,f = 1 mC/m2 and P0,g = 0 mC/m2. Values used are from LUV of
DPPC, where ∆C ≈ 656 J/(mol · V 2), the temperature is T = 314.5 K and τ = 1 ms
is assumed.

level of electrophysiological recordings, especially compared to gating currents
which will be considered in the discussion.

4.3 Lipid ion channels

Lipid membranes are electrically modeled as a resistor in parallel with a capac-
itor (see Fig. (4.1)). In the previous section (4.2) we described the behavior of
the charges on the membrane capacitor, which is non-linear due to the softness
of the membrane and its potential offset polarization. In subsection 4.2.1 we
assumed that the resistance of the membrane was constant. In this section we
describe the nature of the membrane conductance, especially in regard to the
lipid melting transition, and consider its implications for electrophysiological
experiments.

Lipid membranes have been shown to be able to conduct ions in a fashion
similar to the conduction of protein ion channels. The similarity spans sev-
eral aspects of protein conduction: quantized conduction events, gating due to
drugs, temperature, pH and ions (especially calcium) and voltage [31–33]. The
lipid ion channels can be seen as defects in the membrane through which ions
can pass. In the literature two types of lipid ion channels have been proposed:
hydrophobic pores and hydrophilic pores. Hydrophobic pores are defect in the
membrane where the hydrophobic chains of the lipids are exposed to the pore.
On the other hand, in hydrophilic pores lipids rearrange themselves within the
pore to shield the hydrophobic lipid chains by lining the pore 7. The conduction

7For further details on lipid pores see [33].
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of pure lipid membranes has been shown to follow the magnitude of the fluc-
tuations of the membrane. Hence, conduction follows the excess heat capacity
profile of the membrane [101, 102]. There can be two mechanisms behind this,
which are internally coupled: area fluctuations can directly lead to defects and,
secondly, the large fluctuations also mean that the thermodynamical suscep-
tibilities are high, including the various compressibilities (thickness, area and
volume), so the work needed to form a pore (defect) is low. The direct con-
nection between the lipid melting transition and permeability of the membrane
has been confirmed by Andersen et al. [103]. They showed that the membrane
becomes highly permeable in the regions which are in the transition and have
very low permeability outside this region (both for gel and fluid regions).

The simplest way of modeling the voltage dependence of the creation of a pore
in the membrane is through electrostriction. The charges on the membrane
capacitor squeeze the membrane until a pore is created and the tension can
be relieved, which can be seen as local dielectric breakdown of the membrane.
From these considerations the free energy for forming a pore must dependent
on the voltage squared [32],

∆Gpore = ∆Gpore,0 + αψ2, (4.14)

where ∆Gpore,0 is the free energy of forming a pore at no applied electric field
and α describes the coupling between the applied field and the formation of a
pore. Both ∆Gpore,0 and α must depend on the state of the lipid membrane due
to the relation between the conduction of the membrane and the excess heat
capacity. We note the similarity between the last term in Eq. (4.14) and the
electrical enthalpy described in Eq. (2.35). As we showed for the free energy of
the lipid membrane (Eq. (2.35)), an offset polarization leads to an additional
term in Eq. (4.14),

∆Gpore = ∆Gpore,0 + αψ2 + βψ, (4.15)

where β describe the difference in offset charges between a closed and an open
pore. Blicher and Heimburg [32] assumed that the “voltage offset” (ψ0, given
in Eq. (2.32)) is constant. Using this assumption we can rewrite Eq. (4.15)

∆Gpore = ∆Gpore,0 + αψ2 + 2αψ0ψ. (4.16)

The form of Eq. (4.16) is different from the form proposed by Blicher and He-
imburg [32], however the two forms are equivalent.

We assume that a conducting pore through the membrane can be found only in
two states, either closed (not existing) or open. From Eq. (4.16) the probability
of an open pore can be calculated in a Boltzmann fashion,

Popen =
Kpore

1 +Kpore
=

exp
(
−∆Gpore

kT

)

1 + exp
(
−∆Gpore

kT

) (4.17)

where Kpore is the equilibrium constant between an open and a closed state of
one pore. The quantized nature of single channel recordings, from both lipid
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and protein ion channels, show that conduction through a single open channel
is constant [32]. Using that the conductance of a single channel is constant, the
current through such a channel takes the form,

IΩ = γpψPopen (4.18)

where γp is the conductance of a single pore. The subscript Ω is used to indicate
resistive current. Note that ψ is the total applied voltages which include the
Nernst potential, if present. Blicher and Heimburg [32] used Eq. (4.18) to very
successfully describe the current-voltage relationship in membranes made of
DMPC:DLPC (10 : 1), see Fig. (4.9) (left). In Fig. (4.9) (right) is shown the
current-voltage relationships for two types of TRP channels (Transient Receptor
Potential channels) for which Eq. (4.18) likewise describes the relationship very
well. We will discuss this further in the discussion section of the present chapter.

Figure 4.9: Current-voltage relationships. Left, for a pure lipid membrane of
DMPC:DLPC (10 : 1) at T = 303.15 K. Insert shows the calculated probability of
a pore being open. Right: (top) is for TRPM8 channels, and bottom is for TRPM5
channels both from HEK cells. Solid lines represent fits to data using Eq. (4.18). The
figure is taken from [33]

In fitting the current-voltage relationship in Fig. (4.9) (left) we allowed for
a voltage offset, which was fitted to 110 mV . As was argued by Blicher and
Heimburg [32] the voltage offset could originate from curvature of the mem-
brane, as discussed in 2.3.2. The experiments were done using the patch pipette
method where small pressure differences between the pipette and the outside
can result in significant curvature. Note that by releasing the assumption of a
constant offset voltage (Eq. (4.15)) the initial offset voltage can be smaller than
the estimated 110 mV , since β can be bigger than 2α.

The conductance of lipid membranes depends both on the state of the mem-
brane, especially in regard to the lipid melting transition, and is a non-linear
function of the applied voltage. The permeability of the membrane has been
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shown to be approximately proportional to the excess heat capacity profile of
membrane. However, the detailed dependence of the non-linearity of the con-
duction on the state of the membrane has yet to be worked out. We are here
interested in exploring the electrical response of lipid membranes and assume
therefore for simplicity that the non-linearity of conduction of lipid membranes
is well represented by the non-linearity of the current-voltage relationship shown
in Fig. (4.9) (left). The main feature of interest, as we shall see below, for the
electrical response of the non-linearity of the conduction of the membrane orig-
inates from the non-linearity having a time dependence. The time dependence
results in a temporal separation between the linear and non-linear components
in the electrical response. That the conduction of pure lipid membranes follows
the magnitude of the membrane fluctuations, the excess heat capacity profile,
indicates, through the Fluctuation-Dissipation theorem, that the dynamics of
the pores must follow the relaxation/fluctuation dynamics of the membrane.

4.3.1 Applied to common experiments

We will again address two types of perturbation methods, impedance and volt-
age jump experiments, for conduction of lipid membranes.

Electrical impedance

The current response due to low amplitude sinusoidal perturbation (first order
Taylor expansion around ψh), using linear response theory, takes the form,

IΩ ≈
∫ t

−∞

(
σm,ψh +

(
∂σm
∂ψ

)

ψh

(1−Ψm(t− t′))
)
dψ(t′)
dt′

dt′ (4.19)

=

(
σm,ψh +

(
∂σm
∂ψ

)

ψh

1

1 + iωτ

)
ψ(ω), (4.20)

where σm,0 is the conductance of the membrane at ψh, (∂σm/∂ψ)ψh is the
voltage dependence of the conduction evaluated around ψh and ψ(ω) = ψh +
∆ψ(ω). For simplicity of notation (∂σm/∂ψ)ψh ≡ ζh. Note that for a linear
(constant) membrane conductance the last term in Eq. (4.20) is zero. From
Eq. (4.20) the impedance of the membrane considering only conduction takes
the form

ZΩ =

(
σm,ψh +

ζh
1 + iωτ

)−1

. (4.21)

Note that the conductance is defined as σ ≡ 1/R, R being the resistance.

The impedance of the full equivalent circuit (see Fig. (4.1)) of the lipid mem-
brane in the vicinity of the lipid melting transition, using Eq. (4.10) and Eq. (4.21),
takes the form,

Zm =

(
1

ZΩ
+

1

ZCm

)−1

=

((
σm,ψh +

ζh
1 + iωτ

)
+

(
iωCm,0 +

iωC0

1 + iωτ

))−1

(4.22)
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Based on the experimentally found current-voltage relationship (Fig. (4.9), (left))
we can estimate ζh/σm,ψh ≈ 2 for ψh = −0.1 V 8. Assuming as before that
1/σm,ψh = Rm = 100 Ω/cm2 and using the values for the membrane capacitance
from Fig. (4.7) we can estimate the impedance profile of the lipid membrane in
the vicinity of its lipid melting transition, see Fig. (4.10).
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Figure 4.10: Nyquist plot of the impedance of a lipid membrane (Eq. (4.22)) shown
for different degrees of non-linearity: black, ζh = 0 and C0 = 0, red, ζh = 2 · σm,0
and C0 = 0, blue, ζh = 2 · σm,0 and C0 = 0.5 · Cm,0. We have assumed a resistance
of the membrane of 1/σm,ψh = Rm = 100 Ω/cm2, a membrane capacitance of Cm,0 =
1 µF/cm2 and a characteristic relaxation time τ = 1 ms.

From Fig. (4.10) and Eq. (4.21) the impedance of the non-linear membrane
conduction interestingly takes the form of a resistor in parallel with an inductor
and a resistor in series. A similar point was made by Mauro [104] in connection
to the anomalous spiraling impedance profile of nerve membranes recorded by
Cole and Baker [100]. He showed, similarly to our derivation, that a resistor
going from low conducting state to a high conducting state with a finite relax-
ation time will produce a spiraling impedance profile characteristic of circuits
containing a inductor. We see that for the impedance profile of the total equiv-
alent circuit (Fig. (4.10)) of a membrane the non-linearity of the capacitor plays
a minor role which could be overlooked in analyzing experimental data.

Voltage jump

As for the capacitive response to a voltage jump, we assume that the jump is
instantaneous and that we can consider the dynamics of the conduction through
the lipid membrane as a relaxation between two equilibrium states. We also
assume that the equilibration follows the equilibration dynamics of the lipid
membrane. Using these assumptions the current response to a voltage jump
takes the following form,

IΩ(t) =
(
σm,0 + ∆σm

(
1− e− t

τ

))
ψ (4.23)

8ζh/σm,0 is strongly dependent on the holding voltage (ψh) and can for the lipid ion
channels shown in Fig. (4.9) range from ∼ 2− 20.
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where σm,0 is the background conduction or background leak, ∆σm is the change
in conduction as a response to the voltage jump (∆ψ = ψe − ψh) and ψ =
ψe−ψNernst is the potential felt by the ions, accounting for a Nernst potential.
From Eq. (4.23) and Eq. (4.13) we can write the current response of the lipid
membrane in the vicinity of the lipid melting transition to a voltage jump (for
t > 0) as,

Im(t) =
(
σm,0 + ∆σm

(
1− e− t

τ

))
ψ

+ (∆Cmψe + ∆(AP0))
exp

(
− t
τ

)

τ
(4.24)

Notice the functional similarities between conduction and the non-linear capaci-
tance contribution. From the literature we find that biological membranes have
a background conductance of around σm,0 ∼ 1 mS/cm2 and open channel con-
ductance of around ∆σm ∼ 0.01 S/cm2 [75,100]. The resistive current through
the membrane (Eq. (4.23)) is shown in Fig. (4.11), where we have assumed a
characteristic relaxation time τ = 1 ms.
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Figure 4.11: The resistive current response to a voltage jump from ψh = 0 to respec-
tively ψ = 100 mV and ψ = −100 mV . The assumed conductance is σm,0 = 1 mS/cm2

and ∆σm = 10 mS/cm2, and the characteristic relaxation time is τ = 1 ms. No po-
larization or holding voltage is assumed.

We see from comparing Fig. (4.8) and Fig. (4.11) that the resistive current
is around 500 times greater then the peak of the capacitive current. We note
though that the capacitive current is inversely proportional to the relaxation
time and hence if we assume a characteristic relaxation time of τ = 0.1 ms we
see a ten-fold increase in the capacitive current.
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4.4 Discussion of the electrical response

The treatment of the electrical response of lipid membranes has been carried
out utilizing a number of simplifying assumptions, especially in regard to the
ideal nature of the jump experiments and the assumed relaxation behavior of
the membrane. We have used these assumptions to illuminate the consequences
of the known non-linear nature of both the membrane capacitance and conduc-
tion, on common electrophysiological experiments.

We have shown that in the vicinity of the lipid melting transition the commonly
made assumptions that the electrical properties of the lipid membrane are con-
stant is an oversimplification. The capacitance is non-linear and additionally
the offset polarization of membranes introduces an extra level of non-linearity,
both of which are time dependent. The conduction through lipid membrane
is likewise non-linear, where the non-linearity also is time dependent. Interest-
ingly, the capacitive currents are strikingly similar to gating currents and the
conduction shows great similarities with the conducting properties commonly
associated with protein ion channels, both will be the focus of the following
paragraphs.

4.4.1 Gating currents

In their model for the propagation of nerve signals in giant squid axons Hodgkin
and Huxley [24] had predicted that the ion channels driving the signal must have
a voltage-dependent gating mechanism. This gating mechanism must originate
from a charged part of the protein which feels electric fields and effectively
gates the channels. The gating should therefore produce a current signal, how-
ever small. Applying various experimental tricks, mainly involving lowering the
conductive currents of the nerve membrane, a small capacitive current after a
voltage jump have in fact experimentally been found, showing maximum height
of about 30 µA/cm2 and temporal width of around 0.1 ms [105, 106]. These
findings greatly supported the nerve model of Hodgkin and Huxley.

We showed that the impedance of the non-linear part of the membrane capaci-
tance takes the electrophysiologically familiar form of a so-called lossy capacitor.
The lossy capacitor is commonly associated with the capacitive response of gat-
ing charges in membrane associated proteins (mainly protein ion channels). This
indicates a similarity between the response of the non-linearity of the lipid mem-
brane and gating currents. We further showed that the non-linear capacitance
can lead to a variety of current responses to a voltage jump, depending on the
state of the membrane and the offset polarization. These non-linear capacitive
currents are temporally separable from the current of the constant part of the
capacitance, due to the relaxation time of the membrane. We predict non-linear
capacitive peak currents of between 1 − 60 µA/cm2, where the high currents
only are achievable close to Tm, assuming a characteristic relaxation time of
τ = 1 ms. That the measured gating current could be due to the non-linearity
of the membrane capacitor rather then the movement of gating charges was ex-
plored by Blatt [107]. Blatt considered only the electrostrictive effect, and found
that the non-linear capacitive current was of the same order of magnitude as the
gating current. However, he predicted the non-linear capacitive current to be in
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the opposite direction of the gating current, which was already pointed out by
Keynes and Rojas [106]. Only considering electrostriction we predict the same
direction for the non-linear capacitive current as Blatt. However, considering a
membrane with an offset polarization, excluding the possibility of the recorded
gating current being due to non-linear capacitive current of the membrane is no
longer possible and a detailed investigation is needed. The biological relevance
of our predictions is underlined by the experiments by Farrell et al. [65], which
show significant non-linearity of the capacitance of HEK cells (human embry-
onic kidney) including offset polarization effects following our predictions (see
2.4).

We should note that in our treatment of the non-linearity of the electrical prop-
erties of lipid membranes, we have implicitly assumed that the compressibilities
goes to zero far from the lipid melting transition. This assumptions is acceptable
since we have only considered the membrane in the vicinity of the transition.
However, the compressibilities are not zero outside the transition, especially in
the fluid phase, and we therefore expect non-linear capacitive currents outside
the transition region.

4.4.2 Conduction effects

As was shown by among others Blicher and Heimburg [32] (see Fig. (4.9), left)
lipid membranes show high conductivity close to the lipid melting transition.
Furthermore, the membrane ion channels show similar conduction features as
those commonly associated to specific ion channel proteins, including strongly
voltage dependent conductance, response to chemical species, notably anesthet-
ics [101] and temperature dependent conduction. Any factor which influences
the lipid melting transition will influence the membrane conduction [102]. Argu-
ing that the membrane conduction must follow the dynamics of the fluctuations
of the lipid membrane, we showed that the temporal conduction behavior of
lipid ion channels is similar to the behavior of voltage-gated proteins such as
the potassium channel from Hodgkin and Huxley [75]. We see that we can ex-
pect lipid ion channels not only to show amplitude of conduction similar to that
of proteins but also their dynamical properties mimics the protein ion chan-
nel dynamics, both on macroscopic level (discussed here) and on a microscopic
level [32]. The similarity between the conduction of lipid channels and protein
channels fundamentally complicates the association of conduction properties
with a specific protein9. As shown in Fig. (4.9) (right), we see that the pro-
posed model for the non-linear conduction of lipid ion channels describes the
conduction of two groups of TRP channels. One can thus argue that a lipid
membrane is capable to reproduce their conduction behavior, underlining the
complication of differentiating protein conduction from lipid conduction. We
see that lipid ion channels conduction behavior can encompass a great number
of protein channels behavior, however the behavior of lipid channels seems far
less regulated and is mainly prevalent in the vicinity of the lipid melting tran-
sition. Interestingly, commonly used artificial lipid membranes to successfully
reconstitute channel proteins10 have a lipid melting transition in the vicinity of

9We should however note that selective conduction of lipid ion channels is not expected.
10Successfully reconstituted means that they show conduction.
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room temperature [108], indication a mutual influence between the membrane
and proteins.

4.4.3 Protein-membrane interactions

It is well known that the electrical properties of a biological membrane can
be disrupted by the misfolding or mutation of the proteins. An example of
this is that targeted mutations of the gating groups, of a protein ion channel,
can disrupt the gating of the conduction of the protein. This type of experi-
ments strongly underlines the supposed protein gating mechanism and the cen-
tral role of the protein in conduction through the membrane. Furthermore,
when studying reconstituted protein ion channels, it is common procedure to
measure the conduction of the used pure lipid membrane to reliably associate
any change in conduction or function to the reconstituted protein. However,
as it has been shown by several authors, membrane proteins affect their sur-
rounding lipid membrane and vice versa (the membrane affects the associated
proteins) [53,108,109]11. This naturally also means that removing the proteins
from a biological membrane can change the properties of the lipid part of the
membrane. We have shown in our lab (unpublished12), that the heat capacity
profile of a extracted membrane from a rat brain displays a shift in its heat
capacity profile after denaturing the membrane proteins. This shows that the
proteins influence the bulk properties of the membrane. Likewise, the coupling
also means that the activity of a protein can be tuned by the physical properties
of the surrounding membrane [108].

We have explored on a more local (though still thermodynamical) level the
influence of a protein on the lipid membrane by Monte Carlo simulations13. In
the simulations, a protein was modeled as a circle of the size of 7 lipids which is
interacting with the surrounding lipids through nearest neighbor interactions.
The protein is assumed to only have one state which has an energy penalty for
neighbor lipids being in the fluid state of ωp,f = 1326 J/mol and no penalty
for the neighbor lipids being in the gel state (interacting as a gel-lipid). This
corresponds to a low interaction gel-loving protein. We see in Fig. (4.12) that
the protein (black) above Tm induces local high fluctuations (yellow) and below
acts by stabilizing the membrane (lowering fluctuations, red). The protein acts
on the membrane by promoting the gel state locally. Hereby, inducing high
fluctuations locally above Tm and stabilizing below Tm.

We have quantified the fluctuations14 induced by the presence of a gel-loving
protein as a function of distance from the protein in Fig. (4.13). We see that
the influence of the protein close to the melting transition spans several layers
of lipids in a decaying fashion. Similar effects were predicted by Jähnig [109].

We see from our simulation results (Fig. (4.12) and (4.13)) that even for
a weak interacting protein which only has one state, the local lipid membrane
can be affected substantially. We see that locally induced fluctuation levels can

11Furthermore, membrane proteins are very tedious to purify and will almost always bring
with them a bit of their native membrane

12Experiments done by S. B. Madsen.
13The simulation is carried out using the model lipid model described in 3.3.3.
14The fluctuations are quantified by the variance of the probability of a state change of the

lipid (〈s〉2 − 〈s2〉, s being the probability of a state change), which takes maximum value of
0.25 for the state changing in each Monte Carlo cycle.
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Figure 4.12: Visualization of lipid state fluctuations, yellow indicates high fluc-
tuation and red indicates low fluctuations, shown for different temperature around
Tm = 314.15 K. In the center of each panel is the protein shown in black.
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Figure 4.13: The fluctuations of lipid state as a function of distance from the protein
shown for different temperatures around Tm. The fluctuations are defined as 〈s〉2−〈s2〉,
where s is the probability of a state change.

be similar to those in the transition even if the bulk membrane is far from the
transition. This indicates that proteins could harness the transition properties
of the lipid membrane without the bulk membrane being in the transition. This
could potentially explain the similarity between the conduction of some class of
proteins and the pure lipid membrane [33], by proposing that the protein locally
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induces a transition in a region and the conduction is through this region rather
than actually through the protein. We have only considered a minimalistic
protein model, with low interactions and one state. Many membrane proteins,
however, are known to have several states and to contain charged regions for
which one can expect strong electrostatic interaction with their surrounds. For
such proteins one can expect much more dramatic effects on the surrounding
membrane including the possibility of drastic responses due to state changes of
the protein.

From these considerations, assuming that the properties of the lipid membrane
before and after reconstituting proteins can be highly speculative. To correctly
associate a property to a specific protein one needs to know the detailed inter-
action between the given protein and the membrane, in practice rendering this
very difficult. Likewise, we can not expect the interactions between protein and
membrane to be unaffected by mutations. This means that mutation essays
mapping the functions of different groups of proteins again becomes difficult.

We have mainly considered the implication of proteins for conduction how-
ever their interaction with the lipid membrane indicate implications also for the
membrane capacitance. We have seen that membrane proteins can acts as con-
trollers of the surrounding membrane and we could speculate if it is possible that
they can even acts as property amplifiers. Additionally one can speculate how
proteins influence the ionic environment close to the membrane and how this
influences the state of the membrane and its properties. The implications of the
interactions between membrane and proteins is interesting and can potentially
solve an number of questions within cell biology.
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Chapter 5

Dispersion in the Soliton
model

The studies presented in this thesis have been motivated by the recently pro-
posed alternative model for the propagation of nerve signals, the Soliton model.
The Soliton model describes the nerve signals as a consequence of the thermo-
dynamical/mechanical macroscopic properties of nerve membranes, rather than
the properties of individual constituents of the membrane. In the framework of
the Soliton model a nerve signal can be viewed as a lateral density soliton, a
localized pulse.

Solitons are self-reinforced waves that propagate with constant velocity without
attenuating. The prerequisite for propagation of solitons is that the non-linear
and dispersive effects in the medium counteract each other. Systems display-
ing solitons require a source of non-linearity, this non-linearity can be due to
a wide spectrum of phenomena, e.g. the Kerr effect in optics. In the soli-
ton description of nerve pulse propagation the nonlinearity originates from the
empirically known lipid melting transition, which results in a non-linear rela-
tionship between the speed of sound and the lateral density, see section 1.2.2.
The second prerequisite for the propagation of solitons is dispersion. For the
soliton description of nerve pulses the relevant dispersion effect is the frequency
dependence of the speed of sound. Dispersion in lipid membranes is a rarely
treated problem and little work has been done on it. As a consequence, in the
present formulation of the Soliton model dispersion is included as an ad hoc
term. In this chapter we will address the frequency dependence of the speed of
sound in lipid membranes and show that it depends on the relaxation behavior
of the membrane [79]. From the found frequency dependence of the speed of
sound we will estimate the dispersion and consider the implications of the found
dispersion for the Solition model. First we address the role of dispersion in the
present formulation of the Soliton model [26].
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Soliton model

The Soliton model, as described in section 1.2.2, is based on longitudinal sound
propagation in a cylindrical medium. We remind the reader that the Soliton
model is described by the following PDE (Eq. (1.4))

∂2∆ρA

∂t2
=

∂

∂x

((
c2(∆ρA)

) ∂∆ρA

∂x

)
− h∂

4∆ρA

∂x4
, (5.1)

where ∆ρA is the change in the lateral density, c2(∆ρA) is the lateral speed of
sound1, the last term is the dispersion term and h is the dispersion coefficient.
The lateral speed of sound is a non-linear function of the lateral density and in
the Solition model it is approximated by (Eq. (1.3))

c2(∆ρA) ≈ c20 + p∆ρA + q(∆ρA)2, (5.2)

where c0 is the speed of sound in the fluid phase, far from the transition, p
and q are the Taylor expansion coefficients2. If we consider the low-amplitude
periodic solution of Eq. (5.1) (∆ρA(x, t) = ∆ρA0 exp(iω(t − x/c0))), assuming
c(∆ρA0 ) ≈ c0, the nature of the dispersion term (last term in Eq. (5.1)) becomes
apparent from the consequent dispersion relation

c2(ω) = c20 +Aω2 ≈ c20 +
h

c20
ω2 . (5.3)

We see that the dispersion constant (or coefficient) acts as the second order
Taylor expansion coefficient of the frequency dependent speed of sound, around
ω = 0. The first order term in Eq. (5.3) is zero due to the symmetry of the fre-
quency dependence of the squared speed of sound. Heimburg and Jackson [26]
made the conservative assumption of using a dispersion term in Eq. (5.1) which
represents the lowest order expansion of the frequency dependence of the speed
of sound and assumed the dispersion to be independent of the state of the mem-
brane. They made these assumptions since little insight on the propagation of
low frequency sound in lipid membranes was available.

Under the assumptions used to derive Eq. (5.1), the sole role of the disper-
sion coefficient (h) is to set a linear scale for the solitons. This is illustrated
in Fig. (5.1) where the Soliton model has been solved for different dispersion
coefficients assuming constant propagation velocity. The chosen value of the
dispersion coefficient by Heimburg and Jackson corresponds to a width of the
soliton of ∼ 10 cm (h = 2 m4/s2) [26].

1Lateral speed of sound and speed of sound is used interchangeably in this chapter.
2For LUV of DPPC: c0 = 176.6 m/s, p = −16.6 · c20/ρA0 and q = 79.5 · c20/(ρA0 )2.
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Figure 5.1: Solitons calculated for different dispersion constants using Eq. (1.6). Pa-
rameters are from LUV of DPPC and the propagation velocity is v = 0.7 c0.

In the present formulation of the Soliton model the dispersion is considered
independent of the state of the membrane and the non-linearity and the dis-
persion are completely decoupled. However, as we will justify below, dispersion
depends strongly on the state of the membrane and it is tightly coupled to the
non-linearity of the speed of sound. The freedom in estimating dispersion and
thereby regulation of the width of predicted solitons is therefore limited.

5.1 Sound propagation in membranes

The propagation of sound is the propagation of a low-amplitude adiabatic den-
sity wave. The adiabatic nature of sound means that the density wave is ac-
companied by a temperature wave. Sound propagation is a macroscopic phe-
nomenon which is governed by the equation of sound3

∂2ρA

∂t2
= ĉ2

∂2ρA

∂x2
, (5.4)

where ĉ = (ρAκAS )−1/2 is the speed of sound. Ideally, the speed of sound is a
constant. However, for sound propagation in any real medium, the speed of
sound is a complex quantity, whose real part causes a phase shift (resulting
in dispersion) and the imaginary part leads to a decrease of the amplitude (or
intensity) of the sound as it propagates (attenuation) [79]. We note that, for
non-ideal propagation of sound, the effective speed of sound (i.e. the speed of
sound that one would measure) is different from the real part of the speed of
sound (ĉ). The effective speed of sound is given by [79],

c =

(
Re(ĉ)

|ĉ|2
)−1

. (5.5)

We see that for ideal propagation of sound, where the imaginary part of the
speed of sound is zero, the effective speed of sound (c) is equal to the speed of
sound (ĉ). In fact, even for non-ideal propagation, the effective speed of sound is

3For the case of 1-dimensional longitudinal sound propagation
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often referred to as just the speed of sound, which is also the case i.e. in Eq. (5.3).
The non-ideal propagation of sound can be caused by a number of effects such as
internal friction, heat conduction and finite relaxation times of the system. The
latter will cause hysteresis and dissipation of heat due to the internal degrees of
freedom being unable to keep up with the external propagating wave. We saw in
chapter 3 that, in the vicinity of the lipid melting transition, the characteristic
relaxation time of thermodynamical fluctuations is drastically extended. The
magnitude of the slow-down allows us to assume it to be the main contributor to
dispersion and attenuation in the vicinity of the transition in the lipid membrane
system [79]. In other words, we consider the dispersion in lipid membranes to
be caused by the slow relaxation in vicinity of the lipid melting transition. From
this we investigate the response of the membrane to a sound wave. We start by
considering how changes in lateral pressure (π) and temperature (T ) couples to
the change in entropy of the membrane.

dS =

(
∂S

∂T

)

π

dT +

(
∂S

∂π

)

T

dπ. (5.6)

Considering only small changes in lateral pressure and temperature and writing
the changes as rates (e.g. Ṫ ), we can write the time dependent change in entropy
(as in Eq. (3.4)),

∆S(t) =

∫ t

−∞

[
cp0 + ∆cp

(
1−Ψcp(t− t′)

)]
(
Ṫ (t′)
T0
− γAπ̇(t′)

)
dt′, (5.7)

where we have used the proportionality between changes in area and enthalpy
(Eq. (2.21)), and we assumed that perturbations in temperature are small so
that T0 can be considered a constant. The transfer function is the dynamic heat
capacity, where cp0 is the part of the heat capacity which relaxes much faster
than the considered perturbation, ∆cp is the excess heat capacity, which is the
part of the heat capacity that we assume to relaxe slowly, and Ψcp is the relax-
ation function. We used that the extensive thermodynamical variables for the
lipid membrane system are proportional to each other during the lipid melting
transition to justify that the transition is well described by a single relaxation
function Ψcp . We will here again assume for simplicity, that the thermodynam-
ical fluctuations of the lipid membrane in the vicinity of the melting transition
are well described by a single exponential relaxation

Ψcp(t) = exp

(
−t L

T 2∆cp

)
,

where the characteristic relaxation time (τ = T 2∆cp/L) is proportional to the
excess heat capacity (Eq. (3.14)) and L is a phenomenological proportionality
constant. Sound is sinusoidal in nature, so the transfer function (dynamic heat
capacity), can be written as a Debye term (following Eq. (3.8))

∆cp(ω) = ∆cp

(
1− iωτ

1 + (ωτ)2

)
. (5.8)

Considering how changes in lateral pressure and temperature couple to change
in the entropy of the membrane we found that the appropriate transfer function
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is the dynamic heat capacity (Eq. (5.8)). Using Eq. (3.18)4, which couples
the adiabatic compressibility with the effective heat capacity, and the fact that
the dynamic heat capacity can be identified with the available (or effective)
heat capacity at a given frequency (see 3.3.3), we can calculate the frequency
dependent adiabatic lateral compressibility,

κAS (ω) = κA,0T +
γ2
AT

A
∆cP (ω) = κA,0T +

γ2
AT

A
∆cp

(
1− iωτ

1 + (ωτ)2

)
, (5.9)

where κA,0T is the part of the isothermal lateral compressibility which is inde-
pendent of the melting transition and we have used the dynamic heat capacity
from Eq. (5.8). From the adiabatic lateral compressibility (Eq. (5.9)) the effec-
tive speed of sound (Eq. (5.5)) takes the form

c2(ω, ρA) = (ρA)−1 2

Re(κAS (ω, ρA)) + |κAS (ω, ρA)| , (5.10)

Note that the effective speed of sound is a function of both the lateral density
and the frequency. The non-linearity in Soliton model is contained within the
lateral density dependence of the effective speed of sound, and the dispersion is
contained within its frequency dependence.

We see that the frequency dependence of the speed of sound is strictly cou-
pled to the variance of the thermodynamical fluctuations (the heat capacity)
of the lipid membrane through the characteristic relaxation time. This means
that the dispersion and non-linearity of the speed of sound are tightly coupled
through their dependency on the state of the lipid membrane.

5.1.1 Dispersion

The dispersion describes the frequency dependence of the speed of sound. By
Taylor expanding the effective speed of sound (Eq. (5.10)), around ω = 0, up
to second order, we find that we can write the expansion in the same form as
Eq. (5.3) where the dispersion coefficient is now given by

h(ρA) = c6(0)
3c21 + 4c22

4c22(c21 + c22)
τ2 , (5.11)

where

c21 ≡ c2(ω →∞, ρA) ≡
(
ρAκA,0T

)−1

, (5.12)

c22 ≡
(
ρA
γ2
AT

A
∆cp

)−1

, (5.13)

c2(0) ≡ c2(ω → 0, ρA) ≡
(
c−2
1 + c−2

2

)−1
. (5.14)

Here, c1 is the high frequency limit for the speed of sound, c2 is the component
of the speed of sound related to the lipid melting transition and c(0) is the low
frequency limit of the speed of sound, see Fig. (5.2). Note that c1, c2 and c(0)
are all dependent on the lateral density but not on frequency.

4The functional form of the volume and area compressibility is the same.
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Figure 5.2: The speed of sound squared as a function of lateral density, shown for the
high (Eq. (5.12)) and low (Eq. (5.14)) frequency limit calculated from the heat capacity
of LUV of DPPC (dashed lines) [79], along with the corresponding approximations for
the high (red solid line) and low (black solid line) frequency limits using respectively
Eq. (5.2) and Eq. (5.16).

We see from Eq. (5.11) that the dispersion coefficient is no longer a constant
but depends on the lateral density through the dependency of the speed of sound
and the characteristic relaxation time on lateral density. Using the coupling
between the heat capacity and the characteristic relaxation time (τ = T 2∆cp/L)
and Eq. (5.13) we can write the relaxation time as

τ(∆ρA) =
mlT

γ2
AL(ρA)2

1

c22
, (5.15)

where ml is the mass of a lipid pair. Using the strict coupling between the heat
capacity, the relaxation time and the speed of sound we can fully describe the
dispersion coefficient (Eq. (5.11)) from the low frequency and the high frequency
limits of the speed of sound. Instead of considering the explicit dependence of
c1 on the lateral density (Eq. (5.12)) we approximate it, by a second order
polynomial (like the low frequency limit in Eq. (5.2) for the formulation of the
Soliton model), for simplicity

c21(∆ρA) ≈ k · c20 + f∆ρA + g(∆ρA)2. (5.16)

Appropriate parameters of unilamellar vesicles of DPPC are f = 2.3 c20/ρ
A
0 ,

g = 20.9 c20/(ρ
A
0 )2 and k = 1.225. In Fig. (5.2) the high and low frequency

limits of the speed of sound squared for unilaminar vesicles of DPPC are shown
along with their approximated forms (Eq. (5.2) and Eq. (5.16)). Using the
approximated forms for the high and low frequency limits we can calculate the
dispersion coefficient as a function of lateral density, which is shown in Fig. (5.3).

5The low and high frequency limits are taken from [79]
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Figure 5.3: The dispersion coefficients (h), as a function of lateral density for LUV of
DPPC, calculated using Eq. (5.11) for different values of the phenomenological constant
(L), which is given in units of 1012 J ·K/(s ·mol).

5.2 Extending the Soliton Model

We have in the above shown that nonlinearity and dispersion in lipid mem-
branes both originate from the lipid melting transition and are strictly coupled.
This puts strong constrains on the dispersion coefficient. In the following, we
extend the soliton model by including the found density dependent dispersion
coefficient. We will show that the extended model can lead to solitons and that
the timescale of thermodynamical fluctuations sets the scale for these solitons.

We can exchange the original constant dispersion coefficient with the found
density dependent dispersion coefficient (Eq. (5.11)) without further assump-
tions in Eq. (5.1).

∂2∆ρA

∂t2
=

∂

∂x

((
c20(∆ρA)

) ∂∆ρA

∂x

)
− h(∆ρA)

∂4∆ρA

∂x4
. (5.17)

Considering solitonic solutions that propagate with constant velocity of the form
∆ρA(z) with z = x− vt, we can simplify Eq. (5.17) to

v2 ∂
2∆ρA

∂z2
=

∂

∂z

((
c20(∆ρA)

) ∂∆ρA

∂z

)
− h(∆ρA)

∂4∆ρA

∂z4
. (5.18)

This non-linear fourth order ordinary differential equation can be solved numer-
ically assuming that soliton is exponentially localized as in [26]. We used the
numerical ODE solver in Mathematica. The solution is shown in Fig. (5.4) for
different values of the phenomenological constant (L).
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Figure 5.4: Solitons predicted based on the coupling between non-linearity and dis-
persion (Eq. (5.18)), using different phenomenological constant (L), which is given in
units of 1012 J ·K/(s ·mol). The predicted propagation velocity is set to v ≈ 171 m/s
for all three solitons.

5.3 Discussion

In our treatment of solitons facilitated by the lipid melting transition we see
that the coupling between heat capacity (the variance) and the characteristic
relaxation time of thermodynamical fluctuation both define and set the scale
for the soliton. This shows that solitons in lipid membranes are fully described
by the close to equilibrium thermodynamical properties of the system. We have
shown the coupling assuming a single exponential relaxation behavior. As was
discussed in chapter 3, the relaxation behavior of the lipid membrane in the
vicinity of the lipid melting transition is rather complicated, spanning several
timescales. For all timescales, the characteristic relaxation times scales with the
magnitude of the thermodynamical fluctuations of the system (the excess heat
capacity). We therefore expect the relaxation behavior to still be coupled to
the magnitude of the thermodynamical fluctuations. The conclusion that the
membrane can facilitate solitons and that these are fully defined by the thermo-
dynamical properties of the membrane in the transition is general and should
not be specific to the chosen single exponential relaxation.

Relaxation experiments on lipid membranes using calorimetry have shown that
relaxation is a single exponential with a phenomenological constant of L =
1.39 109J ·K/(s ·mol) for LUV of DPPC. This corresponds to relaxation times
around ∼ 3 s which predict solitons with a width of the order of z ≈ 125 m.
These values represent the slow limit of the experimentally found relaxation
timescales. Timescales found for the dynamics of pores in lipid membranes
are rather on the millisecond regime which predict solitons with a width of
z ≈ 10 cm for L = 1.39 1012J ·K/(s ·mol). Nerve pulses in myelinated axons
have a width of the order of z ≈ 10 cm which seems within the predicted range.
Note that biological membranes have a much less pronounced lipid transition
which, in turn, will lower the width further without drastically changing other
properties of the predicted solitons.
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The relaxation behavior of lipid membrane along with the behavior of biological
membranes is still an open field. Further insight into the relaxation behavior of
lipid membranes will allow us to make detailed predictions regarding the prop-
agation of solitons in lipid membranes and nerve membranes. The relaxation
behavior of the thermodynamical fluctuations sets the scale for solitons which
can propagate in the lipid membranes.
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Chapter 6

Nerve experiments

The central motivation for investigating the properties of lipid membranes is
that they represent a good model system for biological membranes. More specif-
ically, within the context of this thesis we are interested in understanding the
properties of the excitable membrane of nerve cells.

The current general understanding of nerve signal (action potential) genera-
tion and propagation in nerves is based on the Hodgkin and Huxley model [24].
However, there are a number of experimental findings in the literature, which
are either not included in the Hodgkin and Huxley framework or which are
directly contradicting it (see section 1.2). Examples of these findings are the
measured mechanical component of nerve signals and the reversible nature of
nerve signals heat signature. These findings lead Heimburg and Jackson [26] to
propose the Soliton model as an alternative model for the propagation of nerve
signals. The two theories are fundamentally different, the Hodgkin and Huxley
model being entirely electrical and the Soliton model being fundamentally me-
chanical in nature. The Soliton model predicts that a nerve signal results in a
thickness change of the axon membrane in-phase with the electrical nerve signal
whereas Hodgkin and Huxley predict only an electrical nerve signal. Further-
more, within the Hodgkin and Huxley framework it is assumed that two nerve
pulses annihilate upon collision. The Soliton model on the other hand predicts
that two colliding nerve pulses penetrate each other [110].

The experimental effort described in this chapter aims at testing the predic-
tions of respectively the Soliton model and the Hodgkin and Huxley model. In
order to do so we have built a neurophysiology lab and preformed two types of
experiments: The first type involves measurements of the electrical nerve signal,
preformed to investigate the effect of collision of two nerve pulses in the same
axon. The second type instead involves simultaneous measurements of both the
electrical and mechanical components of a nerve signal. 1

1The experiments presented in this chapter have been done in close collaboration with Dr.
Alfredo Gonzalez-Perez, Dr. Rima Budvytyte and Prof. Edgar Villagran Vargas.
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6.1 Nerve samples

Establishing a neurophysiology lab involves several aspects: sample preparation,
recording of the nerve signal and data analysis. As a model system we used dif-
ferent nerve samples from invertebrates. The nervous system of invertebrates
are well described in the literature and they are easily attainable.

We worked mainly with nerve samples from earthworms (Lumbricus terrestris)
and from lobsters (Homarus americanus). Specifically we worked mainly with
the ventral cord of the earthworms (see Fig. (6.1), a-c) and the thorax and the
abdominal part (see Fig. (6.1), d-f) of the ventral cord of the lobster.

Figure 6.1: (a) Schematic representation of the ventral cord of a earthworm, (b) ven-
tral cord with and without muscular tissue of a earthworm and (c) schematic represen-
tation of cross-section of the ventral cord of earthworm. (d) Schematic representation
of abdominal part of lobster ventral cord with six ganglia, (e) extracted abdominal ven-
tral cord from lobster tail, and (f) cross-section of abdominal ventral cord of lobster.
Median and lateral giant axons are marked with M and L. Figure is adopted from [110].

The ventral cord of an earthworm is segmented along the length of the worm,
each segment being 1−1.5 mm and electrotonically2 connected. The earthworms
ventral cord contains three giant axons, two lateral axons which are connected
and behave as one, and one median axon, see Fig. (6.1). The abdominal part of
the ventral cord from lobster has four giant axons which are divided in two (ide-
ally) identical parts, each containing a median and a lateral axon. The two parts
are connected electrotonically at the ganglia, see Fig. (6.1). In the abdominal
part of the ventral cord the signals from the two parts can be almost identical,
if the two parts similar enough. In the thorax part, the two parts of the ventral
cord splits in two separate nerves, each containing a median and a lateral giant
axon. This part is called the circumesophageal connective (or connective) and
is the part that connects the brain and the first ganglia in the ventral cord of a
lobster. The giant axons in the earthworm is partially myelinated3, whereas the

2Directly electrically connected.
3As a course grain division there exist myelinated and non-myelinated nerves. Myelin is

a supporting tissue which is wrapped around the length of the axon of myelinated nerves.
Myelinated nerves have higher signal propagation velocities than non-myelinated nerves.
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giant axons in the lobster are non-myelinated. Methods of extraction of nerve
samples can be found in [110].

The giant axons are experimentally interesting due to their size, allowing for
“easy” identification and manipulation. Furthermore, the electrical strength of
the nerve signal in giant axons is particularly strong, allowing for easier electrical
detection. The strong electrical signal is due to the large circumference of the
axon. This connection between strong electrical signal and axon circumference
is both in the Hodgkin and Huxley model and in the Soliton model attributed
to a coupling between surface area and electrical signal.

6.2 Electrical measurement

In this section the measurement of the electrical signal from nerves is described.
We are interested in recording the nerve signals from giant axons. The electrical
signal strength from giant axons varies greatly, depending on the nerve but also
on the individual preparation4. The common signal range is between 20 µV
and 2 mV in external recordings. We measured the nerve signal as a potential
difference between two spatially separated electrodes on the surface of the nerve
(purple and blue in Fig. (6.3))5. This is referred to as external recording, oppose
to intercellular recording where one electrode is inside the axon. Note that by
measuring the potential difference between two spatially separated electrodes,
one effectively measure a proxy for the “derivative” of the nerve signal, we will
therefore record a bi-phased pulse for a mono-phased nerve signal.

In our experiments, the signal propagating along the nerve, that we aim at de-
tecting, is produced by external stimulation rather than the nerve self-stimulating.
We can externally stimulate the nerve by applying a short (5 − 20 µs) square
voltage pulse6 between two spatially separated electrodes on the surface of the
nerve (see stimulation electrodes in Fig. (6.3), shown in red and black). For
self-stimulation the nerve is firing (nerve signal) spontaneously, this however
can only occur for certain preparations. By using external stimulation we can
control when the nerve is firing, which allows for easy detection and for averaging
of the nerve signal. All used nerves contained several axons and the association
of a signal with an axon can be complicated. However, it has been shown ex-
perimentally that the propagation velocity, like the signal strength, scales with
the thickness of the axon7, so that action potentials in thicker axons propagates
faster. This allows one to associate signals to axons in simple nerve prepara-
tions, when using external stimulation, by the arrival time after stimulation at
the recording electrodes, see Fig. (6.2). For self-stimulations, determining the
origin of a signal is complicated and it has to be done by grouping signals using
signal strength and shape (see i.e. [111]).

4Here preparation is used as synonym for sample.
5A recording can also be done with a single electrode and using ground as reference. Using

ground as reference can however result in substantial electrical noise since electrical noise is
not uniform in a setup.

6Also current pulses can be used for stimulation.
7This is true under physiological conditions, when comparing non-myelinated nerves with

non-myelinated nerves and myelinated nerves with myelinated nerves. Propagation velocities
for the used samples are between 2− 20 m/s
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Figure 6.2: Example of a nerve signal (external recording) from ventral cord of a
earthworm (Lumbricus terrestris) using external stimulation. First pulse from the left
is the stimulation artifact, the second pulse is from the median axon, and the last pulse
is from the lateral axons.

External stimulation has two disadvantages: it requires a long nerve and
stimulations artifacts. For external stimulation the nerve preparation has to
be of a certain length since both the two stimulation electrodes and the two
recording electrodes have to be spatially separated and the stimulation site has
to be away from the recording site, see Fig. (6.3). The second disadvantage
of external stimulations is the possibility of a stimulation artifact, which is the
stimulation pulse propagating in the surface water of the nerve to the recording
electrodes. To limit the extent of the stimulation artifact, a ground electrode
is placed between the stimulation site and the recording site, see Fig. (6.3) in
green.

6.2.1 Electrical recording instrumentation

To record the voltage signal from the nerve we used a pre-amplifier with a low
and a high-pass filter. The used differential amplifier is DP-304 from Warner
Instruments. The amplification settings commonly used are: AC-mode, gain
x1000, 10 Hz high-pass filter and 10 kHz low pass filter8. Alternatively a
300 Hz high-pass filter can be used to lower the noise, though this might result in
filtering distortion of the action potential profile. As can be seen from Fig. (6.2)
the recorded nerve pulses are usually bi-phased with an approximate width of
1 − 3 ms. The power spectrum of the action potential spans 200 − 2000 Hz9.
This means that any filtering in the vicinity of this range can distort the pulse
and lead to artifacts depending on the type of filter.

The pre-amplified signal is fed to a PowerLab 8/35 unit, see Fig. (6.3), from
ADInstruments. The PowerLab unit is used as a analog-to-digital converter
(16 bit, max. sampling 200 kHz) acting as a digital oscilloscope. The used
PowerLab unit features software (LabChart) controlled filters (both hardware
and software), AC-coupling, adjustable bit resolution and sampling frequency

8Both filters are −3 dB.
9A wider frequency range can in some experiments be relevant due to action potentials

from different axons overlapping.
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Figure 6.3: Schematic representation of electrical neurophysiology setup, where the
nerve is depicted as a thick pink line in the nerve chamber.

(commonly using 40 kHz) on 8 independent channels. The PowerLab unit also
includes software controlled output channels used for external stimulation. All
data acquisition is done in LabChart using a self-build template, which includes
the possibility of averaging nerve signals. The 8 channels allows for multiple
simultaneous action potential recordings which can be used to accurately deter-
mine pulse propagation velocity and can also be used to acquire analog input
from additional instrumentation. As we see in section 6.3, we have connected
an Atomic Force Microscopy (AFM) unit to measure the mechanical compo-
nent of a nerve signal simultaneous with electric measurements. Alternatively,
a PowerLab 26T unit (ADInstruments) which is an easy-use unit with in-build
bio-amplifier has been used. The protocol and the software template used for
the 26T unit are as described above. The 26T unit was used for the collision
experiments.

The nerve chambers we used are build after our specification in plexiglass and
include a lid for minimizing dehydration of the nerve sample. The electrodes
are stainless steel pins with a width of 0.5 mm spaced 2.5 mm apart. The nerve
chambers are shown in Fig. (6.3) and Fig. (6.7) (bottom) for, respectively, the
setup where only electrical recordings were preformed and for the electrical and
mechanical recordings setup.

6.2.2 Collision of action potentials

The Soliton model, unlike the Hodgkin and Huxley model, predicts that nerve
signal propagating down the same axon can pass through one another without
annihilation [42, 110]. Assessing whether colliding nerve pulses annihilate or
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penetrate each other is a crucial point in understanding the nature of nerve
pulses. Despite its relevance for understanding nerve signals, collision of nerve
pulses have received surprisingly little attention. Tasaki [112] showed in 1949
that two nerve pulses annihilated upon collision, which followed the predictions
of the Hodgkin and Huxley framework. Little work have been done since, that
explores collision though annihilation is what is generally assumed to occur in
neuroscience.

We have conducted collision experiments to test the hypothesis that nerve pulses
annihilate upon collision. We have preformed collision experiments in the ven-
tral cord of earthworms, in the thorax and abdominal part of the ventral cord
of lobsters and in walking legs of lobsters.

Nerve pulses are under physiological conditions generally believed to propa-
gate from the nerve cell body down the axon to the nerve terminals, so-called
orthodromic propagation. However, nerve pulses can be stimulated at any point
throughout the axon (or in the dendrites) and nerve signals can also propagate
in the opposite direction, called antidromic propagation. We can therefore, by
simultaneously applying stimulation in the two ends of the nerve, produce both
an orthodromic and an antidromic nerve pulses hereby enforce a collision. We
place the recording electrode off center10 where the orthodromic pulse arrives
first, so that we can determine if the pulses annihilate or penetrate each other.
In case of annihilation only the orthodromic pulse will be recorded whereas if
the pulses penetrate each other both the orthodromic and the antidromic pulse
is going to be recorded, see Fig. (6.4) for schematic representation.

The nerves we used for the collision experiments, contain several axons.
The ventral cord of earthworms contains many small axons, however only two
pulses, one from the median and one from the lateral giant axons, give distinct
and strong electrical signal. Likewise, the abdominal part of the ventral cord
from the lobster contain multiple small axons and four giant axons. Here, we
will only discuss the collision experiments done in earthworms. For details on
collision experiments done in the abdominal ventral cord of lobster see Gonzalez-
Perez et al. [110]. The multiple axons in the investigated nerves makes it more
complicated to ensure that the nerve pulses from the two sides propagate in
the same axon. To rule out this possibility we needed to identify the various
stimulation thresholds for all axons (e.g. the median and the lateral giant ax-
ons in earthworms) for both antidromic and orthodromic propagation, so to
make sure to work in a stimulation regime that allows for ready identification
of the axon the pulse is propagating in. We did so by increasing the stimulus
by small voltage steps11 and using the fact that above the stimulation threshold
the nerve pulses are stable and unchanged in shape and position (time of arrival
at recording site). We saw that threshold is slightly higher for the antidromic
side. For the ventral cord in earthworms the median giant axon is larger then
the laterals giant axons throughout the full length of the worm. The median
giant axon therefore has a lower threshold, a stronger electrical signal and a

10Recording electrode is place approximately 1/3 of the distance between the two stimulation
sights from the orthodromic side.

11The stimulation threshold is determine by applying a low stimulation voltage, often 0.5 V
for 5 µs, and increasing the amplitude until the nerve fires at each stimulation. This voltage
is referred to as the stimulation threshold.
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Figure 6.4: A schematic representation of the outcomes of the collision experiments at
t0, t1, t2 and t3. The nerve pulses are generated simultaneously in both ends of the nerve
at t0. At t1 the orthodromic pulse reaches the recording electrodes. At t2 the pulses
collide. At t3 the antidromic pulse potentially reaches the recording electrodes depending
on penetration or annihilation. In the top a earthworm ventral cord is schematically
shown along with electrodes. [110]

higher propagation velocity and can be distinguished from the lateral giant ax-
ons [113]. Having identified the axons from both sides and lowering the stimulus
to just above the median thresholds the collision experiment can be carried out
following the scheme in Fig. (6.4), see Fig. (6.5).

For our interpretation to be valid, identification of the median and lateral
axons in both directions is necessary. To rule out any possibility of misinter-
pretation, we carried out the collision experiment at higher voltages, were both
the median and lateral axons are firing in the orthodromic direction whereas
only one axon is firing in the antidromic direction. All three nerve pulses ar-
rive at the recording electrodes, unambiguously showing penetration of nerve
pulses [110]. Collision experiments were carried out on more then 30 samples all
showing penetration. Stimulation close to the ends of the nerve seemed like it
could lead to apparent annihilation, however through repositioning of the nerve
sample penetration was recovered. Similarly, we showed that nerve pulses in the
abdominal part of the ventral cord of a lobster also does not annihilate upon
collision [110]. Additionally, we showed the same results for the walking leg
nerve bundle and connective from lobster (unpublished).
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Figure 6.5: Pulse collision experiment in the ventral cord of an earthworm. Top:
Nerve pulse from orthodromic stimulation. Center: Nerve pulse from antidromic
stimulation. Bottom: Simultaneous stimulation, both orthodromic and antidromic,
showing penetration. The sum of the orthodromic and antidromic signal is shown in
blue for comparison. The stimulation artifact is shaded gray. [110]

We demonstrated that nerve pulses can penetrate each other in both myeli-
nated preparations (earthworms) and in non-myelinated preparations (lobster).
Penetration is predicted by the Soliton model, whereas it seems contradictory
with respect to the prediction of the Hodgkin and Huxley model.

6.3 Mechanical nerve signal

The Soliton model proposes that nerve signals are lateral density pulses in
the membrane of the nerve axon, which due to the piezoelectric nature of the
membrane have an electrical component. Several studies have shown, using
both optical and mechanical methods, that nerve fibers swell during the nerve
pulse [37–39, 114, 115]. However, these mechanical changes are though to be a
product of the electrical signal, being a secondary effect. On the other hand in
the Soliton model the mechanical changes are the one that cause the electrical
signal and they represent two aspects of the same pulse.

We are going to measure the thickness change of the axon associated with a
nerve pulse. Our goal is to confirm the mechanical component of the nerve
signal in a direct measurement, while simultaneously measuring the electrical
component, in order to explore the mechanical nature of the nerve signals and
the coupling between its electrical and mechanical components.

The Soliton model predicts a mono-phased change in the membrane thickness,
with a maximum change in thickness of 0.5−1 nm and a temporal width of the
nerve signal (1− 3 ms). Both the spacial and temporal size of the nerve signal
are challenging to measure directly. Kim et al. [115] used an AFM to measure
the mechanical changes accompanying an action potential at a nerve terminal.
The mechanical change at the nerve terminal is the combined signal from a large
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number of axons resulting in a broad signal (∼ 5 ms) with a large change in
thickness (∼ 10 nm). This is more then 10 times the signal amplitude we can
expect from a single axon but the temporal width is close to that of the signal
from a single axon. Zhang et al. [116] showed that a HEK (Human Embriodic
Kidney) cell display deflection of an AFM cantilever of ∼ 0.5 nm upon changing
the voltage across the cell membrane. This shows that an AFM can achieve the
spacial accuracy needed on a biological sample. These experiments motivated
us to used AFM to measure the mechanical component of nerve signals.

6.3.1 Mechanical measurement instrumentation

The working principle of an AFM is the following: a spring like cantilever is
placed in the close vicinity of the surface of a sample; interactions with the
sample cause a deflection of the cantilever which is detected. The deflection
is detected by a laser beam being reflected of the back of the cantilever on to
a photodetector, see Fig. (6.6). From the displacement of the laser beam on
the photodetector, the height of the sample can be measured. The cantilever is
mounted on a “head” which can move up and down perpendicular to the plane
where the sample is arranged. The head is moved up and down using a feedback
loop which ensures that cantilever is constantly in contact with the surface of
the sample. This mode of operation is referred to as contact mode. There are
several alternative modes of operations of an AFM, depending on the actual
AFM setup, an example is tapping mode where a vibrating cantilever is used
to tap the sample. We however exclusively used contact mode.

Position-sensitive 
photodetector

Laser

Sample

Cantilever

Figure 6.6: Schematic representation of the working principle of an AFM. A cantilever
interacts with the surface of the sample and is deflected. The deflection is detected by
a laser beam which reflected onto a photodetector.

The standard use of an AFM is to move the cantilever along the surface of
the sample, so to scan the topography of the sample surface. We are interested
in measuring the thickness change of a axon during a nerve pulse. We therefore
used a slightly different configuration: we placed the cantilever on the surface
of the axon in a fixed position and measured the change in height at the fixed
position as the nerve signal propagates down the axon, see Fig. (6.7).
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Figure 6.7: The nerve chamber for simultaneous electrical and mechanical recording.
Top, AFM cantilever touching the surface of the nerve, the axons are colored glassy
red. Bottom, the full nerve chamber including AFM head and nerve (shown in light
pink).

Our AFM is a NanoWizard II from JPK Instruments which has a direct
analog output from the Z-sensor (height). The output signal is in the range
−8 V to 8 V which scales linearly with the height, with a scaling factor of
−904.35 nm/V , corresponding to a ∼ 15 µm range. The height signal from the
AFM was given as an input to the PowerLab 8/35 unit (described in 6.2.1), so
that we could simultaneously record both the electrical and mechanical signal.
Note that the A/D in the PowerLab is 16 bit, so that the effective bit resolution
on the height measurement (using ±10 V range) is about 0.27 nm. Applying a
low frequency high-pass filter we can filter out slow baseline movements allow-
ing us to use a narrower voltage range, commonly between ±0.5 V and ±2 V ,
hereby increasing the bit resolution to below 0.06 nm. Beyond the issue of bit
resolution, the mechanical noise, even using an anti-vibration table, is around
2 nm on the soft axon. This poses a problem since the mechanical component
of the nerve signal has an expected maximum amplitude of about 1 nm. In
order to overcome the high noise levels, between 100 and 200 nerve signals have
been averaged, which is possible due to the controlled external stimulation of the
nerve and the simultaneous electrical recording. By averaging the recordings we
achieved a mechanical noise level around 0.1 nm. We use tip-less cantilevers12 to
avoid interaction with specific molecules on the surface of the axon, but rather
get an average response of a larger area of the membrane. The experiments
were done using two types of tip-less cantilevers from µmash (Nanoworld) with
force constants of 0.3 N/m (HQ:CS37) and 0.03 N/m (HQ:CS38).

Beyond the fact that change in membrane thickness due to the nerve signal
is small, the nerve signal will pass a recording site in the span of 1 − 3 ms

12For scanning the surface of samples usually a cantilever with an atomic fine tip is used
for accurate interaction with the sample.

92



6.3. Mechanical nerve signal Chapter 6. Nerve experiments

(so it is temporally short). The analog output from the AFM is sampled by
the PowerLab unit at 40 kHz, however the feedback loop adjusting the height
position of the AFM cantilever can only keep up with frequencies up to around
∼ 300 Hz (according to JPK Instruments). This mean that the AFM, when
using the feedback loop, has issues keeping up with changes that occur on a
smaller scale than around 3 ms. This is slightly slow compared to the temporal
width of nerve signals. However, given that the height measurement is continu-
ous the speed of the feedback loop should effectively not limit the measurement
of small changes in height, although a slight smoothing of the mechanical signal
can be expected. In conclusion the nerve signal is within the measurement range
of the AFM but close to both the height measurement accuracy limit and the
temporal accuracy limit. This means that any sources of of noise and artifacts
needs to be minimized, see appendix A.5.

The nerve signals are temporally short but extend over a long distance, of the
order of mm to cm, meaning orders of magnitude larger the the thickness of
the axon, even for giant axons. It is therefore irrelevant if the cantilever is posi-
tioned with an angle with respect to the length of the axon. On the other hand,
the AFM cantilever is smaller than thickness of the investigated giant axons,
and therefore the correct positioning of the cantilever on the surface of the axon
is important. The positioning of the nerve sample in the nerve chamber is done
as shown in Fig. (6.7), bottom, where the central section of the chamber (for
the AFM) is lifted to support the nerve. The stimulation is done on one side of
the mechanical measurement site (distance ∼ 1 cm) and the electrical recording
is done on the other (again distance ∼ 1 cm). This allow for a simultaneous
mechanical and electric measurement of the nerve signal. The nerve is grounded
right after the stimulation site to limit stimulation artifacts.

6.3.2 Electro-mechanical measurements

The mechanical measurements were preformed on circumesophageal connectives
(or simply connectives) from lobster. The connective is chosen due to its rather
simple structure, two easily distinguishable giant axons, and its robustness.
The axons of connectives are surrounded by protective sheaths. The sheaths is
opened, around the area of the mechanical measurement, to expose the median
giant axon (diameter 150 − 200 µm) using micro-scalpels under a microscope.
The connective is placed in the nerve chamber with the exposed axon facing
the AFM cantilever, see Fig. (6.7). The chamber is closed with a lid (with an
opening for access of the AFM head) to limit dehydration. Before approaching
the axon with the AFM, the nerve preparation is tested electrically in order to
determine the stimulation thresholds for both axons. The median giant axon of
the connective is thicker and has a lower stimulation threshold, higher propa-
gation velocity and stronger electrical signal. In the mechanical measurements
we only stimulated the median giant axon to identify the mechanical signal
from a single axon. The AFM is positioned manually above the exposed axon
and the approach (engagement) is done using a routine in the control software
of the AFM13. After a successful approach the AFM reports the height of the

13The nerve sample is soft and fragile so much care have to be made in the approach, to
avoid damage of the sample and the cantilever.
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nerve/axon to the PowerLab unit. The stimulation threshold of the median gi-
ant axon is reconfirmed and any needed adjustment is done. The electrical and
mechanical signal associated with a change in height of the nerve is recorded
simultaneously and averaged over 100 or 200 stimulations cycles.

We found a height change of between 0.2 − 1.2 nm in the form of a mono-
phase pulse of temporal width around 2 − 4 ms from the median giant axon.
An example of the measured electrical signal, the “true” electrical signal14 and
the mechanical signal is shown in Fig. (6.8).
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Figure 6.8: Top: Electrical recording of the action potential from the median giant
axon in the circumesophageal connective of a lobster, shown in black. Shown in red is
the integrated electrical signal, which approximate the true electrical signal. Bottom:
The height change due to the nerve signal (the mechanical signal). The mechanical
signal has been temporally aligned and digitally filtered (50 Hz high-pass and 3 kHz
low-pass).

Three additional examples of the measured mechanical signal, from three
different lobster samples, are shown in Fig. (6.9). We also observed higher
amplitude mechanical signals for samples where more than one axon was firing
(data not shown).

We show that the presence of a mechanical component is a consistent prop-
erty of nerve signals. Within the available accuracy we observed no obvious
causality between the electrical and mechanical signal. The mechanical and
electrical signal seems to be contemporary. Note that there may be a slight
smearing of the mechanical signal do to the instrumentation. Furthermore, we

14The measured electrical signal is the potential difference at two specially separated elec-
trodes. The spacing being smaller than the spacial width of the pulse allow us to approximate
with a differential. The “true” signal is therefore the integral of the measured electrical signal.
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Figure 6.9: The measured mechanical nerve signal from three different connective
preparations from lobster. The mechanical signals have been digitally filtered (50 Hz
high-pass and 3 kHz low-pass).

can not exclude that there is a small amount of tissue between the axon and
the cantilever which also can distort the mechanical signal. Considering these
limitations we found strong similarity between the “true” electrical signal and
the mechanical signal. Note that we found no mechanical signal accompanying
the stimulation artifact, ruling out an electrical interaction between the sample
and the cantilever.

6.4 Discussion of nerve experiments

The motivation for the presented experiments on nerves was to understand the
mechanism underlying the propagation of nerve signals. More specifically, we
wanted to address the two mechanisms that have been proposed so far: the
Hodgkin and Huxley framework and the Soliton model by Heimburg and Jack-
son. To be able to identify the underlying mechanism of propagation of nerve
signals, rigorous testing of the prediction of the models are needed. The Soliton
model proposes the nerve pulse to be an adiabatic electro-mechanical density
pulse, which is characterized by a thickening of the membrane, a reversible heat
signature and an electrical signal. The framework based on the Hodgkin and
Huxley model is, a priori, entirely electrical in nature and does not explicitly
contain mechanical or temperature changes. However, the Hodgkin and Huxley
model is based on resistive currents, therefore one would assume an intrinsic
dissipative nature of nerve signal propagation. This contradicts the measured
reversible heat release associated with a nerve signal [34, 36, 117]. The goal of
the experiments described in this chapter was to further test the predictions of
Hodgkin and Huxley model and the Soliton model.
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6.4.1 Mechanical experiment

Iwasa and Tasaki [39] were the first to report thickness changes associated to
nerve pulses. Tasaki and collaborators proposed that the thickness change as-
sociated to nerve pulses is caused by ion fluxes, which facilitated the uptake of
water in a gel surrounding the axon and hereby a swelling [37]. Tasaki based
his proposal on the framework of Hodgkin and Huxley and assumes that the
mechanical signal is caused by the electrical signal. This is opposite to what is
stated by the Soliton model, where it is the electrical component that is caused
by the mechanical pulse. We have confirmed the thickness change associated
to a nerve signal experimentally and, within the available accuracy, observe no
phase difference between the mechanical and electrical signal. This observa-
tion indicate that the swelling does not occur through a secondary mechanism,
like the uptake of water. Additionally we found that the measured changes in
thickness fits with the changes expected within the Soliton model, whereas an
estimation can not be made in the Hodgkin and Huxley framework.

From an experimental perspective, our measurement of the changes in height
of the nerve sample (a proxy for the change in the thickness of the axon mem-
brane) are direct and the only limitation is the temporal resolution due to the
feedback loop of the AFM. To overcome this limitation the feedback loop can be
removed and the height can be measured without temporal limitation beyond
the vibrational limitation of the used cantilever (> 10 kHz). However, this
was not done since this would constrain the height position of the AFM head
and limit the active height range of the cantilever (a few µm) which could be
problematic in case of slight movement of the sample. Our results show that the
characteristic time of the mechanical signal was similar to one of the electrical
signal. However, we can not exclude that the mechanical signal is narrower than
what we can measure. Furthermore, although we have used low force feedback
settings to minimize perturbation of the membrane, we can not fully exclude
that the observed change of height associated with nerve signal is due to changes
in surface tension, rather than changes in membrane thickness [116].

6.4.2 Collision experiments

The Soliton model predicts that two colliding nerve pulses penetrates one an-
other without major distortions in shape and propagation velocity [110]. On
the other hand the properties of neurons in the Hodgkin and Huxley frame-
work cannot easily generalized, since no general theory for the function of the
involved protein ion channels exits. We can therefore not exclude that there is
a possibility for penetration upon collision within this framework. However, for
nerve which has a refractory period15 Hodgkin and Huxley predicts annihilation.
We showed that nerve pulses in the ventral cord of earthworms penetrates each
other upon collision. This finding contradicts the prediction of the Hodgkin
and Huxley model, since the giant axons in ventral cord of earthworm has a
refractory period of about 1 ms [113]. We should however note that the ventral

15The refractory period is the delay between two successive nerve pulses in the same axon.
In the Hodgkin and Huxley model the refractory period originates from the relaxation of
protein ion-channels and in the Soliton model it originate from the conservation of lateral
density in the axon.
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cord of the earthworm is often considered slightly special, since it is segmented
in connected segments of 1 − 1.5 mm along the length of the ventral cord. In-
terestingly, the segments are significantly shorter then the spacial extension of
the nerve pulse (∼ 10 mm), underlying the macroscopic nature of nerve signals.
We showed additionally that nerve pulses penetrated each other upon collision
in non-segmented single axons in various lobster samples, contradicting the pre-
vious notion that all nerve pulses annihilate upon collision. We showed this
in both myelinated and non-myelinated nerves indicating that penetration of
colliding nerve signals is not a special case but could be a more generic feature.

Our experimental efforts in testing the prediction of nerve propagation, both
the mechanical component of the nerve signal and the penetration upon col-
lision, shows results compatible with what is predicted by the Soliton model.
However, we can not fully dismiss the Hodgkin and Huxley framework since the
generalized predictions possible within this framework is so limited.
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Chapter 7

Concluding remarks

During the three years of my PhD I have had the chance to work on quite
different projects within the field of lipid membranes, that are presented in this
thesis. Despite the differences they are all motivated by the attempt to produce
a description of the functional behavior and biological role of membranes, that
would stem naturally from a deep understanding of the physical properties of a
lipid membrane.

With this idea in mind in chapter 2 we developed a general thermodynamical
framework that allows us to deduce commonly observed electrical properties of
membrane, such as the existence of an offset voltage, electrostriction, flexoelec-
trical and piezoelectrical effects, as special cases of our general description.

We then expanded our horizon in chapter 3, where we attempt to extend
this thermodynamical description in order to address non-equilibrium properties
of lipid membranes. More specifically, we built a description of the relaxation
behavior of lipid membranes in the vicinity of the lipid melting transition using
linear response theory. We concluded that the multi-scale relaxation behav-
ior observed in the vicinity of the lipid melting transition is governed by heat
exchange between the membrane and the surrounding water.

In chapter 4 we finally combined the insights we gained on dynamical proper-
ties of a lipid membranes with our thermodynamical description of its electrical
properties so that we could provide an alternative interpretation for several
non-linear electrical behavior observed in biological membranes. These behav-
iors are commonly assumed to be due to the action of proteins embedded in the
membranes, but we show that this non-linear effects can be fully explained for a
“pure” lipid membrane as well, once we abandon the vision of the membrane as
an inert electrical structure and instead view it as a non-linear electrical com-
ponent.

Ultimately, our efforts to address the biological functionality of membranes from
a physical perspective, aims at contributing to the open discussion regarding the
nature of nerve signals. Currently the most widely accepted interpretation of
the propagation of signals in nerves assumes the signals to be purely electrical
in nature and is due to the Hodgkin-Huxley model. However several existing
experimental findings cannot be explained within this framework, such as the
measured mechanical component of nerve signals. The Soliton Model, proposed
by Heimburg and Jackson [26], is the main alternative model for nerve signals
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Chapter 7. Concluding remarks

propagation and identifies nerve pulses with a localized density wave (soliton).
We use the results of the efforts made to address the dynamical properties

of lipid membranes in the vicinity of the lipid melting transition to extend the
Soliton model. In chapter 5 we show how the relaxation behavior in the lipid
melting transition couples to the dispersion in lipid membranes. We then include
this coupling in the Soliton model and show that we can then characterize
the solitonic solution in lipid membrane in the vicinity of the lipid melting
transition uniquely from the close-to-equilibrium thermodynamical properties
of the membrane.

Finally in chapter 6 we address experimentally a number of the predictions
of the Soliton model on the nature of nerve signals. We established a neurophys-
iology lab and performed experiments that show that nerve signals propagating
in the same axon penetrate each other upon collision, rather than annihilate,
as it is commonly believed and suggested by the Hodgkin-Huxley model. We
furthermore show that nerve signal is both electrical and mechanical in nature,
without an obvious causality, which is particularly important, as we discard
the common argument that the mechanical signal is caused by the propagating
electrical signal.

So far we have taken crucial steps towards understanding how the properties
of lipids relate to the function of biological membranes in living organisms and
with the experimental efforts we made, we have improved the way we under-
stand the nature of nerve signals. However several problems remain open. The
relaxation behavior of lipid membranes in the vicinity of their melting tran-
sition, for example, is still not fully understood and at this point collecting
more experimental data is one of the crucial challenges for achieving substan-
tial progress on this topic. Furthermore, in order to deepen our comprehension
of the functional behavior of “real” biological membranes we need to face two
challenges in the understanding of the model system of lipid membranes: we
need to explore in detail the coupling between the membrane and ions as well
as the thermodynamical coupling between proteins embedded in the membrane
and the lipid membrane itself, focusing on the implications of the presence of
these proteins for the membrane.
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[70] Träuble, H., M. Teubner, P. Woolley, and H. Eibl. 1976. Electrostatic
interactions at charged lipid membranes. 1. Effects of pH and univalent
cations on membrane structure. Biophys. Chem. 4:319–342.
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Appendix A

Supplementary notes

A.1 List of values of variables

List of commonly used values. Values are taken from DPPC LUV.

Tm Melting temperature (Tm = 314.15 K)
∆S0 Melting entropy (∆S0 = 124.14 J/mol ·K)
∆H0 Melting enthalpy (∆H0 = 39 kJ/mol)
vg Volume of lipid in gel state (vgel = 0.947 cm3/g [51])
vf Volume of lipid in fluid state (vfluid = 0.999 cm3/g [51])
Ag Area of lipid in gel state (Agel = 0.474 nm2 pr. lipid [51])
Af Area of lipid in fluid state (Afluid = 0.629 nm2 per lipid [51])
dg Thickness of lipid in gel state (dgel = 4.79 nm [51])
df Thickness of lipid in fluid state (dfluid = 3.92 nm [51])
n Cooperative unite size (n = 170)
γv Proportionality constant (v −H) (γv = 8.6 · 10−10 m3/J [51])
γA Proportionality constant (A−H) (γA = 0.89 m2/J [51])
ε Dielectric constant (ε = 4 · ε0)
∆C Capacitance difference (∆C = 656 J/(mol · V 2))

A.2 Thermodynamical susceptibilities

At equilibrium the extensive variables of a system will fluctuate around their
equilibrium value. From these fluctuations the susceptibilities of the system can
be found, e.g. the heat capacity. At constant pressure, the heat capacity, cp, is
given by (Eq. (2.16))

cP =

(
dH

dT

)

P

. (A.1)

Using the statistical mechanical approach to thermodynamics, the thermody-
namics variables can be considered as average values.

〈H〉 =

∑
iHi · e−Hi/RT∑
i e
−Hi/RT =

∑
iHi · e−Hi/RT

Z
, (A.2)
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where R is the gas constant, T is the temperature and Z is the partition sum.
The sums are over all possible states of the system. Using Eq. (A.2),

cp =

(
d

dT

∑
iHi · e−Hi/RT

Z

)

p

=

∑
iH

2
i · e−Hi/RT
RT 2 · Z − 1

RT 2

∑
iHi · e−Hi/RT

Z

∑
j Hj · e−Hj/RT

Z

=
〈H2〉 − 〈H〉2

RT 2
. (A.3)

A similar derivation can be carried out for the isothermal lateral compressibility:

κAT = −
(

1

〈A〉 ·
d 〈A〉
dπ

)

T

, 〈A〉 =

∑
iAi · e−Hi/RT∑
i e
−Hi/RT

= − 1

〈A〉

(
d

dπ

∑
iAi · e−Hi/RT

Z

)

T

=

〈
A2
〉
− 〈A〉2

〈A〉RT , (A.4)

where π is the lateral pressure.

Using the proportionality relation, ∆A = γA ·∆H (Eq. (2.19)), between changes
in area and changes in enthalpy, the excess isothermal lateral compressibility
can be found from the excess heat capacity:

∆κAT = − 1

〈A〉

(
d

dπ

∑
i ∆Ai · e−Hi/RT

Z

)

T

=

∑
i(γA∆Hi)

2 · e−Hi/RT
〈A〉RT · Z − 1

〈A〉RT

(∑
i γA∆Hi · e−Hi/RT

Z

)2

= γ2
A

〈
∆H2

〉
− 〈∆H〉2

〈A〉RT =
γ2
AT

〈A〉 ∆cP . (A.5)

This relation is “unique” to the lipid membrane, where the proportionality re-
lation holds. Note that similar relations can be made using the proportionality
relation between volume and enthalpy.

A.3 Monte Carlo simulation specifics

In the Metropolis Monte Carlo simulations carried out in this thesis, a lipid
membrane patch is simulated as a 100 × 100 triangular grid with periodic
boundary conditions. Each grid point represent one lipid which can be in either
a gel or fluid state. All simulations have been equilibrated for more the 30 times
the correlation time of the simulation before sampling, corresponding to more
then 6 · 104 Monte Carlo cycles in the transition maximum. For the finite heat
reservoir simulations the equilibration was done assuming constant temperature
(infinite reservoir). After the initial equilibration temperature fluctuations was
allowed and the equilibration was repeated.
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In the simulations, we used the following parameters for modeling the heat ca-
pacity profiles of DPPC large unilamellar vesicles (LUV): ∆H0 = 36400 J/mol
(melting enthalpy), ∆S0 = 115.9 J/mol · K (melting entropy), and ωfg =
1326.0 J/mol [89] leading to a melting temperature of Tm = 314.05 K and a
transition half width of about 1 K. The heat capacity of water was taken to be
cwaterp = 75 J/K ·mol which corresponds to the value of 1 cal/g · K for bulk

water. The heat capacity of the lipid chains was set to cchainp = 1600 ·J/K ·mol
which was determined experimentally for gel state DPPC [90]. The total heat
reservoir is shared by all lipids in the lipid membrane. The minimum number
of water molecules per lipid considered in any simulation is 100. The simulated
heat capacity profiles have been smoothed using cubic spline fits and the error
is estimated using the Jackknife method.

A.4 Capacitive current response function

Derivation of the frequency dependent response function used in Eq. (4.9).

r(t) =
d

dt

(∫ t

−∞
g(t− t′)dψ(t′)

dt′
dt′
)

= g(t− t)dψ(t)

dt
+

∫ t

−∞

dg(t− t′)
dt

dψ(t′)
dt′

dt′,

(A.6)
where r(t) is the response function to a perturbation (ψ(t)) and g is the relax-
ation function. We assume that the relaxation function can be described by
single exponential relaxation.

g(t− t′) = a
(

1− e t−t
′

τ

)
. (A.7)

For simplicity of notation we write,

h(t− t′) =
dg(t− t′)

dt
. (A.8)

Using these we can write Eq. (A.6),

r(t) =

∫ t

−∞
h(t− t′)dψ(t′)

dt′
dt′ (A.9)

Using partial integration,

r(t) =

[
h(t− t′)

∫
dψ(t′)
dt′

dt′
]t

−∞
−
∫ t

−∞

dh(t− t′)
dt′

ψ(t′)dt′ (A.10)

= h(0)ψ(t)− h(∞)ψ(−∞)−
∫ t

−∞

dh(t− t′)
dt′

ψ(t′)dt′ (A.11)

=
a

τ
ψ(t)−

∫ t

−∞

dh(t− t′)
dt′

ψ(t′)dt′ (A.12)

We continue the derivation with the last term which we name r′(t). Change
variables t′′ = t− t′ 1

r′(t) = −
∫ t

−∞

dh(t− t′)
dt′

ψ(t′)dt′ =

∫ ∞

0

dh(t′′)
dt′′

ψ(t− t′′)dt′′ (A.13)

1note: d
dt′ = d

dt′′
dt′′

dt′ = − d
dt′′ , dt′′ = −dt′
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Preforming a Fourier transform on Eq. (A.13)

r′(ω) =

∫ ∞

−∞

∫ ∞

0

dh(t′′)
dt′′

ψ(t− t′′)dt′′e−iωtdt (A.14)

=

∫ ∞

0

dh(t′′)
dt′′

∫ ∞

−∞
ψ(t− t′′)e−iωtdtdt′′ (A.15)

Changing variables again t′ = t− t′′.

r′(ω) =

∫ ∞

0

dh(t′′)
dt′′

∫ ∞

−∞
ψ(t′)e−iω(t′+t′′)dt′dt′′ (A.16)

=

∫ ∞

0

dh(t′′)
dt′′

e−iωt
′′
dt′′

∫ ∞

−∞
ψ(t′)e−iωt

′
dt′ (A.17)

=

∫ ∞

0

dh(t′′)
dt′′

e−iωt
′′
dt′′ψ(ω) (A.18)

= −a
τ

1

1 + iωτ
ψ(ω) (A.19)

From Eq. (A.19) and the Fourier transform of the first term in the last line of
Eq. (A.12) we get,

r(ω) =
a

τ
ψ(ω)− a

τ

1

1 + iωτ
ψ(ω) = a

iω

1 + iωτ
ψ(ω) (A.20)

A.5 Sources of artifacts and noise

The main source of noise in our electrical and mechanical measurement of nerve
signals is the electrical noise at 50 Hz from the power cables and sockets. Addi-
tional electrical noise comes from light and other electrical devices. To limit the
electrical noise all cables and instrumentation have to be carefully grounded2.
Even with careful grounding removing all electrical noise is difficult, especially
the substantial 50 Hz noise and its higher harmonics. Non-periodic noise can be
cancelled by averaging. However, periodic noise is not cancelled if the frequency
of the noise is a harmonic of the repetition frequency when averaging. To insure
cancellation by averaging we choose a repetition frequency which does not have
50 Hz or its higher harmonics as higher harmonics. Due to the maximum suc-
cession rate for stimulation of nerves being around 10 Hz we used 6.28 Hz as
repetition frequency. This becomes important since we do averaging over min.
100 repetitions, to achieve the desired mechanical accuracy. Failing to do this
leads to structured artifacts in the recording.

Beyond noise issues, instrumental cross-talk can also lead to artifacts. When
using a common interface, like the PowerLab, cross-talk between the different
channels is possible, especially when the voltage signal in the different channels
are of different order of magnitude. For our setup the pre-amplified electrical
recording of a nerve signal can be around 1 V (remembering the gain x1000)
whereas the voltage output of the mechanical nerve signal is of the order of 1 mV
or smaller. Cross-talk often show up as similar signals showing up in multiple

2Then grounding is done using the same ground and avoiding creating any grounding loops.
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channels. The mechanical and electrical nerve signal should in our setup be tem-
porally separated since the point of measurement is spatially separated, which
help ruling out cross-talk issues.
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Abstract

In the recent years, we have shown that cylindrical biological membranes such as nerve
axons under physiological conditions are able to support stable electromechanical pulses
called solitons. These pulses sharemany similarities with the nervous impulse, for example,
thepropagationvelocityaswell as themeasured reversibleheatproductionandchanges in
thickness and length that cannot be explained with traditional nerve models. A necessary
condition for solitary pulse propagation is the simultaneous existence of nonlinearity and
dispersion, that is, the dependence of the speed of sound on density and frequency. A pre-
requisite for the nonlinearity is the presence of a chain-melting transition close to physio-
logical temperatures. The transition causes a density dependence of the elastic constants
which can easily be determined by an experiment. The frequency dependence is more
difficult to determine. The typical timescale of a nerve pulse is 1 ms, corresponding to a
characteristic frequency in the range up to 1 kHz. Dispersion in the sub-kilohertz regime
is difficult to measure due to the very long wave lengths involved. In this contribution,
weaddress theoretically thedispersionof thespeedof sound in lipidmembranesand relate
it to experimentally accessible relaxation times by using linear response theory. This
ultimately leads to an extension of the differential equation for soliton propagation.

Advances in Planar Lipid Bilayers and Liposomes, Volume 16 # 2012 Elsevier Inc.
ISSN 1554-4516 All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-396534-9.00002-7
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ABBREVIATIONS
DPPC dipalmitoyl phosphatidylcholine

DSC differential scanning calorimetry

1. INTRODUCTION

Biological membranes are ubiquitous in the living world. Despite

their diversity in composition, membranes of different cells or organelles

are remarkably similar in structure and exhibit similar thermodynamic

properties. They exist as thin, almost two-dimensional lipid bilayers whose

primary function is to separate the interior of cells and organelles (subcellular

compartment) from their external environments. This separation leads in

turn to the creation of chemical and biological gradients which play a pivotal

role in many cellular and subcellular processes, for example, adenosine

triphosphate production. A particularly important feature of biomembranes

is the propagation of voltage signals in the axons of neurons, which allows

cells to communicate quickly over long distances, an ability that is vital for

higher lifeforms such as animals [1,2].

Biological membranes exhibit a phase transition between an ordered and

a disordered lipid phase near physiological conditions [3]. It has been shown

that organisms alter their detailed lipid composition in order to maintain the

temperature of this phase transition despite different growth conditions [4–6].

The biological implications of membrane phase transitions continue to be an

area of active research. Near a phase transition, the behavior of the

membrane changes quite drastically: The thermodynamic susceptibilities,

such as heat capacity and compressibility, display a maximum, and the

characteristic relaxation times of the membrane show a drastic slowing

down [7–11].

The melting transition in lipid membrane is accompanied by a significant

change of the lateral density by about !20%. Thus, the elastic constants are

not only temperature dependent, but they are also sensitive functions of

density. Together with the observed frequency dependence of the elastic

constants (dispersion), this leads to the possibility of localized solitary pulse

(or soliton) propagation in biomembrane cylinders such as nerve axons.

With the emergence of the soliton theory for nerve pulse propagation,

the investigation of sound propagation in lipid membranes close to the lipid

melting transition has become an important issue [2]. The soliton model
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describes nerve signals as the propagation of adiabatic localized density pulses

in the nerve axon membrane. This view is based on macroscopic thermo-

dynamics arguments in contrast to the well-knownHodgkin–Huxleymodel

for the action potential that is based on the nonadiabatic electrical properties

of single protein molecules (ion channels).1 Using this alternative model, we

have been able to make correct predictions regarding the propagation veloc-

ity of the nerve signal in myelinated nerves, along with a number of new

predictions regarding the excitation of nerves and the role of general anes-

thetics [12]. In addition, the solitonmodel explains a number of observations

about nerve signal propagation, which are not included in the Hodgkin and

Huxley model, such as changes in the thickness of the membrane, changes in

the length of the nerve, and the existence of phase-transition phenomena

[13]. The solitary wave is a sound phenomenon which can take place in me-

dia displaying dispersion and nonlinearity in the density. Both of these

criteria are met close to the main lipid transition. However, the magnitude

of dispersion in the frequency regime of interest for nerve pulses (up to

1 kHz) is unknown [2]. Exploring sound propagation in lipid membranes

is thus an important task for improving our understanding of mechanical

pulse propagation in nerves. All previous attempts to explore sound prop-

agation in lipid membranes have focused on the ultrasonic regime

[9,14–16], and it has clearly been demonstrated that dispersion exists in

this frequency regime. Furthermore, the low-frequency limit of the

adiabatic compressibility of membranes (which determines the sound

velocity) is equal to the isothermal compressibility, which is significantly

larger than the compressibility in the megahertz regime. With the

additional knowledge that relaxation times in biomembranes are of the

order of milliseconds to seconds, it is quite plausible to expect significant

dispersion effects in the frequent regime up to 1 kHz.

Theoretical efforts to describe sound propagation in lipid membranes

near the lipid melting transition in the ultrasonic regime have been based on

scaling theory, which assumes critical relaxation behavior during the transition

[16,17]. However, a number low-frequency experiments, pressure jump

experiments [10,18], and stationary perturbation techniques [11,19] all show

noncritical relaxation dynamics. These findings have led us to propose a

noncritical thermodynamical description of sound propagation in lipid

membranes near the lipid melting transition for low frequencies based on

linear response theory.

1 For a comparison of the Hodgkin–Huxley model and the soliton theory, see Chapter 9.
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In this chapter, we present a theoretical derivation of the magnitude of

dispersion for membranes close to lipid melting transitions. The goal is to

modify the wave equation for solitons in biomembranes. This will ultimately

lead to a natural timescale for the pulse length, which we will explore in

future work.

2. THE PROPAGATING SOLITON IN NERVE MEMBRANES

In the following, we present the hydrodynamic equations that govern

the propagation of density waves in cylindrical membranes, in general, and

in nerve membranes close to the chain-melting transition, in particular.

In it simplest formulation, the wave equation for compressible fluids

assumes the form2:

@2r
@t2

¼rðc2rrÞ; ð2:1Þ

where

c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
@p

@r

" #s

S,0
¼ 1

ffiffiffiffiffiffiffiffi
kSr

p ð2:2Þ

is the speed of sound for low-amplitude waves (Dr%r0), kS is the adiabatic
compressibility, and r(x, t) is the density. If the speed of sound is roughly

independent of density, this equation simplifies to

@2r
@t2

¼ c2r2r: ð2:3Þ

The wave equation in one dimension is then given by

@2r
@t2

¼ @

@x
c2

@

@x
r

" #
: ð2:4Þ

For low-amplitude sound, we further assume that there is dispersion of

the form

c2¼ c20 þh0o2þ'' '; ð2:5Þ

2 A derivation of the equation of sound, based on fluid dynamics, can be found in Ref. [20]. There are

two basic assumptions in the derivation of the equation of sound: Perturbations are small, and sound

propagation is an adiabatic process.
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which corresponds to a Taylor expansion of the sound velocity with respect

to frequency. The parameter h0 indicates the magnitude of the dispersion.

Due to symmetry arguments, only even power terms appear in this expan-

sion. One way to generate this frequency dependence is to add a dispersion

term to the wave equation

@2r
@t2

¼ @

@x
c2

@

@x
r

" #
!h

@4

@x4
r: ð2:6Þ

The density of a small amplitude plane wave can be written as

rðx, tÞ¼ r0þDr with Dr¼A sinðkx!otÞ
(A sinðkðx! ctÞÞ: ð2:7Þ

The amplitude of this plane wave is A, and its velocity is c¼o/k.
Inserting this into Eq. (2.4) yields the dispersion relation in Eq. (2.5) with

h0¼h/c20. We have shown experimentally that the sound velocity close to

melting transitions in lipid membranes is a sensitive nonlinear function of

density. Thus, we expand

c2¼ c20 þpDrþ qðDrÞ2þ''': ð2:8Þ

The parameters p and q describe the nonlinear elastic properties of mem-

branes. At temperatures slightly above the melting transition, lipid mem-

branes have negative values for the parameter p and positive values for

the parameter q. The final wave equation is given by

@2r
@t2

¼ @

@x
ðc20 þpDrþ qðDrÞ2Þ @

@x
r

" #
!h

@4

@x4
r: ð2:9Þ

We have shown that this equation possesses analytical solitary solutions

that in many aspects resemble the nerve pulse (see Fig. 2.1).

While the above equation makes use of the fact that the speed of sound is

a known function of density, the dispersion constant hmust be regarded as an

adjustable parameter due to the absence of quantitative empirical data

regarding dispersion in the low-frequency regime. The magnitude of h sets

the width and the timescale of the mechanical pulse. In previous publica-

tions, it was adjusted to h¼2m4/s2 in order to match the observed width

of the nerve pulse, which is about 10 cm. However, we will argue below

that h is expected to be density dependent and that its functional form

can be approximated using experimental knowledge about relaxation time-

scales and elastic constants. This will ultimately lead to a wave equation for
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the mechanical pulse in nerve axons that is free of adjustable parameters and

has a timescale that is fixed by the thermodynamics of the system.

3. BRIEF OVERVIEW OF SOUND

Sound is a propagating low-amplitude density wave in compressible

mediumwhich,due to its adiabaticnature, is accompaniedbyacorresponding

temperature wave. The equation governing sound propagation is universal.

This generality implies that sound propagation is determined solely by the

macroscopic thermodynamical properties of the system.

As mentioned above, the equation of sound for low-amplitude waves has

the following form:

@2p

@t2
¼ c2r2r:

The general solution has the following form:

r¼Aexpðioðt!x=ĉÞÞ; ð2:10Þ

Time (ms)
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Figure 2.1 The propagating soliton using parameters appropriate for unilamellar DPPC
vesicles and a dispersion constant h¼2m4/s2 (from Ref. [21]). The soliton has a width of
about 10 cm and a duration of about 1 ms, which is very similar to action potentials in
myelinated nerves.
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which is merely Eq. (2.7) in complex notation. Due to dispersion and the

absorption of sound in a real medium, the effective speed of sound, ĉ, is a

complex quantity. The real part of the speed of sound will cause a phase shift

(as a result of dispersion), and the imaginary part will lead to a decrease in the

amplitude or intensity of the sound as it propagates (attenuation). This can be

seen by inserting the complex speed of sound into Eq. (2.10).

r¼Aexpðioðt!xReðĉÞ=ĵcj2ÞÞexpð!xoImð̂cÞ=ĵcj2Þ; ð2:11Þ

where

u¼ Reð̂cÞ
ĵcj2

 !!1

ð2:12Þ

is the effective speed of sound which would be measured in an experiment.

In 1928, Herzfeld andRice extended the theory of sound by arguing that

internal vibrational modes of polyatomic molecules require time to ap-

proach thermal equilibrium with translational degrees of freedom [22]. If

the timescale of the density (or pressure) perturbation is similar to or less than

the timescale of these internal relaxation times, the temperature response of

the system will lag behind that of the perturbation. This will prevent the in-

ternal degrees of freedom from taking up all the heat and will result in a de-

crease in the effective heat capacity.3 This decrease in the effective heat

capacity results in hysteresis and in dissipation of heat.

In 1962, Fixman applied the basic ideas of Herzfeld and Rice to describe

the viscosity of critical mixtures [23]. He was motivated by the intimate

relation between viscosity and attenuation. Critical mixtures of fluids display

a second-order transition which is indicated by a critical slowdown of the

relaxation rates of the order parameters. In contrast to Herzfeld and Rice,

Fixman did not limit his attention to the rates of translational and internal

degrees of freedom but rather considered a continuum of long-wavelength

fluctuations in the order parameter. With this change of perspective, he

made the connection between the transfer rates and relaxation rates of order

parameters in viscous systems. The slowdown during a transition means

large changes in the dynamic heat capacity of the system and thereby in

the speed of sound.

Following the argument of Fixman, the slowing down of the character-

istic relaxation rate during the lipid melting transition will cause hysteresis

3 Note that the effective heat capacity will be referred to as the dynamic heat capacity.
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and dissipation of heat. Even in the absence of critical phenomena, internal

friction and heat conduction as introduced by Stokes [24] and Kirchhoff

[25], respectively, can cause hysteresis and dissipation. However, within

cooperative transitions, these are secondary effects and we will disregard

them for low frequencies.

4. SYSTEM RESPONSE TO ADIABATIC PRESSURE
PERTURBATIONS

Sound is the propagation of a pressure wave that is followed by a

temperature wave as a consequence of its adiabatic nature. Thermodynam-

ically, changes in pressure (dP) and temperature (dT) couple to a change in

the entropy (dS) of the system:

dS¼ @S

@T

" #

p

dT þ @S

@p

" #

T

dp; ð2:13Þ

where cp¼T(@S/@T)p is the heat capacity at constant pressure. Using

a well-known Maxwell relation, (@S/@p)T can be rewritten as (@S/
@p)T¼! (@V/@T)p,

@S

@p

 !

T

¼! @V

@T

 !

p

¼! @S

@T

 !

p

@V

@S

 !

p

¼!
cp

T

@V

@S

 !

p

:

ð2:14Þ

Another Maxwell relation, (@V/@S)p¼ (@T/@p)S, allows us to write

Eq. (2.14) as

@S

@p

" #

T

¼!
cp

T

@T

@p

" #

S

: ð2:15Þ

Constant entropy implies that no heat is dissipated into the environment

but only moved between different degrees of freedom within a closed

system. At transitions, the Clausius–Clapeyron relation4 can be used:

4 The use of the Clausius–Clapeyron relation can be justified by the weak first-order nature of the lipid

melting transition [26].
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@p

@T

" #

S

¼ DH
TDV

; ð2:16Þ

where DH and DV are the enthalpy (or excess heat) and volume changes

(excess volume) associated with the transition [11]. Note that these are con-

stant system properties for a given transition that can be determined

experimentally.

The change in entropy (Eq. 2.13) can now be written as

dS¼ cpðT ,pÞ dT

T
! DV

DH

" #
dp

" #
: ð2:17Þ

It is clear from Eq. (2.17) that the heat capacity acts as a transfer function

that couples adiabatic changes in pressure to changes in entropy.

Equation (2.17) governs the equilibrium properties of the thermodynam-

ical system. However, here we consider the propagation of sound, which is a

nonequilibrium process. The theory of sound considers the limit of small

changes in pressure and temperature for which close-to-equilibrium dynamics

can be assumed. This implies linear relations between perturbations and sys-

tem responses. For this reason, it is also called linear response theory.

In any real system, transfer rates are finite and changes happen in finite

time. Thus, the changes in pressure and temperature can be represented as

rates, and Eq. (2.17) can be rewritten as

DS¼
ð
dS¼

ð
cpðtÞ

_TðtÞ
T0

! DV
DH

" #
_pðtÞ

" #

dt; ð2:18Þ

where _T ¼ @T=@t and _p¼ @p=@t are rates. Note that T0¼Tequilibrium,

which holds if absolute changes in temperature upon pressure changes are

very small.

If changes in pressure or temperature happen faster than the transfer rate

(or relaxation rate), the energy transferred during this change will be only a

part of the amount otherwise transferred. Considering Eq. (2.17), the finite

transfer rate will lower the effective transfer function, in this case the heat

capacity. This means that also the heat capacity must contain a relaxation

term, (1!Ccp
), with 0)Ccp

)1. This function describes the equilibration

of the system. As the system approaches equilibrium, (1!Ccp
) approaches

unity. Below, we will assume that the function Ccp
is an exponentially

decaying function of time. Equation (2.18) must then be written as a

convolution:
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DSðtÞ¼
ðt

!1
cpð1ÞþDcpð1!Ccpðt! t0ÞÞ
% & _Tðt0Þ

T0
!DV
DH

_pðt0Þ

 !

dt0;

ð2:19Þ

whereDS(t) is the time-dependent change in entropy, cp(1) is the part of the

heat capacity that relaxes more rapidly than the changes in the pressure and

temperature considered. In the lipid bilayer system, cp(1) is the heat capacity

contribution from lipid chains, which we consider as a background contri-

bution. Dcp is the part of the heat capacity which relaxes on timescales of a

similar order or longer than the perturbation timescale. In the lipid mem-

brane system this is the excess heat capacity. In Eq. (2.19), it has been

assumed that the mechanisms of relaxation are the same for pressure

and temperature. This assumption has been justified experimentally and

numerically in the literature [10,14,27,28].

After partial integration of Eq. (2.19), subsequent Fourier transformation

and the use of the convolution theorem, Eq. (2.19) can be transformed into

(see Appendix)

DSðoÞ¼ cpðoÞ
TðoÞ
T0

!DV
DH

pðoÞ
" #

: ð2:20Þ

T(o) and p(o) can be regarded as periodic variations of temperature and

pressure, respectively. We have also now introduced the frequency-

dependent heat capacity,

cpðoÞ¼ cpð1Þ!Dcp
ð1

0

e!iotC_ cpðtÞdt: ð2:21Þ

From Eq. (2.21), the frequency-dependent transfer function (dynamic

heat capacity)5 can be found, giving a full description of how a lipid bilayer

responds to adiabatic pressure perturbations. Both cp(1) and Dcp are exper-
imentally available using differential scanning calorimetry (DSC). The only

unknown is the relaxation function, Ccp
.

5 It is important note to the difference between the dynamic heat capacity (frequency dependent) and the

normally known equilibrium heat capacity. The equilibrium heat capacity is a constant system prop-

erty, whereas the dynamic heat capacity is an effective heat capacity that can be less than or equal to the

equilibrium heat capacity as a consequence of the finite transfer rates in real systems.
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4.1. Relaxation function
The relaxation function of the heat capacity is related to the rate of energy

transfer from the membrane to the environment. The fluctuation–dissipation

theorem ensures that the rate of energy transfer is equivalent to the relaxation

behavior of energy fluctuations. Since the heat capacity is a measure of en-

thalpy fluctuations, the relaxation function of the heat capacity must be the

relaxation function of the enthalpy fluctuations [11].

The relaxation behavior of the fluctuations of enthalpy in pure lipid

vesicles has been considered theoretically, numerically, and experimentally,

showing that the relaxation of enthalpy is well described by a single expo-

nential function [10,18]:

ðH! Hh iÞðtÞ¼ ðH! Hh iÞð0Þexp ! t

t

' (
; ð2:22Þ

where (H! hH i)(0) serves only as a proportionality constant and t is the

relaxation time. For various pure lipid membranes close to melting transi-

tions, it was further found that relaxation times are proportional to the excess

heat capacity,

t¼T2

L
Dcp; ð2:23Þ

whereL is aphenomenologicalcoefficient.For largeunilamellarvesicles (LUV)

of dipalmitoyl phosphatidylcholine (DPPC), L¼13.9*108 JK/(s mol) [10].

4.2. Response function
Using the relaxation function of the enthalpy fluctuation as the relaxation

function of the dynamic heat capacity,

Ccp ¼ exp ! t

t

' (
: ð2:24Þ

Equation (2.21) can be solved and the dynamic heat capacity can be

determined as

cpðoÞ¼ cpð1Þ!Dcp
Ð1
0 e!iot !1

t

 !

e!t=tdt

¼ cpð1ÞþDcp
1! iot
1þðotÞ2

0

@

1

A:

ð2:25Þ
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Note that the above derivations can be carried out with lateral pressure

instead of pressure; the choice of using pressure is entirely for notational

convenience.

5. ADIABATIC COMPRESSIBILITY

In estimating the speed of sound in the plane of a lipid membrane

during the melting transition, the response of the membrane to sound (the

dynamic heat capacity)must be related to the lateral adiabatic compressibility.

The adiabatic lateral compressibility is defined as

kAS ¼! 1

A

@A

@P

" #

S

; ð2:26Þ

where P is the lateral pressure. The adiabatic lateral compressibility can be

rewritten in the following form [29]:

kAS ¼ kAT !
T

Ac
system
p

@A

@T

" #2

P
; ð2:27Þ

where

kAT ¼! 1

A

@A

@P

" #

T

¼ kATð1Þþg2AT
A

Dcp ð2:28Þ

is the isothermal lateral compressibility, kTA(1) is the part of the isothermal

lateral compressibility that relaxes faster than changes in the pressure and

temperature considered, and cp
system is the heat capacity of the total thermo-

dynamical system, that is, the lipid membrane plus the accessible surround-

ing aqueous medium that serves as a buffer for heat transfer. In the last

equality, the empirical proportionality DA¼gADH has been used [2,27],

with gA¼0.893m2/J for a lipid bilayer of DPPC.

In the literature on attenuation and dissipation of sound in critical media,

a different form of Eq. (2.27) is often used to relate the dynamic heat capacity

and the adiabatic compressibility, using the dynamic heat capacity as the heat

capacity of the total system [17,30]. This can be done in a straight forward

manner by employing the Pippard–Buckingham–Fairbank relations [31,32].

The main difference between this approach and the one adopted here is that

their compressible medium is three dimensional, and the system heat

capacity is that of this medium. In contrast, the lipid membrane system is
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a pseudo-two dimensional (the bilayer) embedded in a three-dimensional

aqueous medium that serves as a heat reservoir (see Fig. 2.2). Therefore,

the aqueous medium contributes significantly to the features of the

membrane in a frequency-dependent manner.

Imagine a standing temperature wave in the bilayer. The transfer of

heat from the wave to the surrounding water will be time dependent,

see Fig. 2.2 for visualization. In the limit of o!0, the amount of water

(heat reservoir) participating will effectively go to infinity. In the other

extreme, (o!1), no heat will be transferred to the surrounding heat

reservoir. Evidently, the heat capacity of the total system is frequency

dependent:

csystemp ðoÞ¼ clipidp þ creservoirp ðoÞ ð2:29Þ

where cp
lipid¼Dcpþ cp(1) is the complete heat capacity (in equilibrium) of

the lipid membrane and cp
reservoir(o) is the heat capacity of the participating

heat reservoir. In this approach, it is the size of the contributing heat reservoir

that is frequency dependent.

Using the proportionality relation DA¼gADH in Eq. (2.27) and assum-

ing that (@A/@T)P in the chain-melting transition region is completely

dominated by the transition-associated change in area, the following

approximation can be made [14]:

Figure 2.2 Visualization of temperature wave in the plane of a lipid bilayer. The coloring
indicates heat penetrating into the surrounding water.
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kAS + kATð1Þþg2AT
A

Dcp!
g2AT
A

ðDcpÞ2

c
system
p

¼ kATð1Þþg2AT
A

Dcp!
ðDcpÞ2

c
system
p

 !
:

ð2:30Þ

The parenthesis has the units of a heat capacity and is frequency depen-

dent through the frequency dependence of the size of the associated heat

reservoir. We pose as an ansatz here that this parenthesis is the effective heat

capacity of the lipid membrane in a finite adiabatically isolated heat reservoir,

which is equivalent to the dynamic heat capacity of the lipid membrane

following the above argument:

DcpðoÞ¼Dcp!
ðDcpÞ2

c
system
p

: ð2:31Þ

Numerical justification of this ansatz will be published at a later point.

Using this ansatz, the dynamic heat capacity can be related directly to the

adiabatic lateral compressibility through Eq. (2.30):

kAS ¼ kATð1Þþg2AT
A

DcpðoÞ; ð2:32Þ

where the Dcp(o) is the dynamic heat capacity without background. In this

equation, we use the area of the lipid bilayer.

6. RESULTS—THE SPEED OF SOUND

The goal is to estimate the speed of sound and its frequency depen-

dence in the plane of a lipid membrane. From the estimated dynamic heat

capacity equation (2.25), the adiabatic lateral compressibility can found using

the proposed relation (Eq. 2.32). The lateral speed of sound can then be

estimated using Eq. (2.2) as

cA¼ 1ffiffiffiffiffiffiffiffiffiffiffi
kASrA

p ;

where kS
A is a function of the frequency, o. The effective speed of sound is

given by Eq. (2.12)
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u¼ ReðcAÞ
jcAj2

 !!1

:

Using the previous two equations, one can show that

u2ðoÞ¼ ðrAÞ!1 2

ReðkAS Þþ jkAS j
: ð2:33Þ

Inserting the estimated adiabatic lateral compressibility from Eqs. (2.32)

and (2.25) into Eq. (2.33), the effective speed of sound squared takes the

analytic form:

u2ðoÞ¼ 2

1
c21
þ 1

c22

1
ð1þðotÞ2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
c21
þ 1

c22

1
ð1þðotÞ2Þ

' (2

þ 1
c22

ot
ð1þðotÞ2Þ

' (2
r ; ð2:34Þ

with the notation

c21 ( rAkAT ð1Þ
* +!1 ð2:35Þ

and

c22ðoÞ( rA
g2AT
A

DcpðoÞ
" #!1

: ð2:36Þ

Here, c1 is the lateral speed of sound of the membrane outside the tran-

sition, and c2 is the component of the lateral speed of sound related to the

lipid melting transition.

All variables in Eq. (2.34) can be found from the excess heat capacity of

the lipid melting transition and the fluid fraction,6 which can be obtained

using DSC. The area, the lateral density, and the background isothermal

compressibility are all directly related to the fluid fraction [28]. The relax-

ation time can be estimated from its phenomenological proportionality

relation to the excess heat capacity, Eq. (2.23). The proposed analytic ex-

pression for the effective speed of sound (Eq. 2.34) is shown in Fig. 2.3,

where the excess heat capacity and the fluid fraction are taken from Monte

Carlo simulations of the lipid melting transition in LUV of DPPC. The

simulation has been carried out in a manner similar to that described in

Ref. [33].

6 The fluid fraction is the fraction of a considered lipid system that is in the fluid phase.
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The frequency dependence of the speed of sound is described by the

function, f(ot) with 0) f(ot))1, defined by

u2ðotÞ¼ u20þðu21!u20Þf ðotÞ ð2:37Þ

where u0(u(ot!0) and u1(u(ot!1). From Eq. (2.34) we see that

u20¼
1

c21
þ 1

c22

 !!1

u21¼ c21 :

ð2:38Þ

See Fig. 2.3 (right). The generic function fwas chosen to be a function of

the dimensionless quantity ot rather than o in order to render it indepen-

dent of the lateral density.

6.1. Dispersion relation
In the soliton model described by Eq. (2.4), dispersion was assumed to be

small and independent of the lateral density due to the lack of detailed in-

formation of the frequency dependence of the speed of sound as a function
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Figure 2.3 Left: The effective lateral speed of sound squared as a function of density at
different angular frequencies alongwith the limiting cases:o!0 ando!1. Right: The
generic function, f(ot), that takes the effective lateral speed of sound squared, at a given
lateral density, from the low-frequency limit (f(ot!0)¼0) to the high-frequency limit
(f(ot!1)¼1).
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of density. Using the considerations of the previous sections, we can now

estimate the dispersion in lipid membranes. In the soliton model, the extent

of dispersion is described by the parameter, h. Assuming that dispersion is

small, h can be related to the lateral speed of sound as

u2+ u20þ
ho2

u20
þ'' ': ð2:39Þ

Equation (2.39) corresponds to a Taylor expansion of the lateral speed of

sound squared to second order.7 Expanding Eq. (2.34) to second order,

u2+ u20þu40
3c21 þ4c22
4c22ðc21 þ c22Þ

o2t2; ð2:40Þ

we see that the dispersion parameter has the following form:

h¼ u60
3c21 þ4c22
4c22ðc21 þ c22Þ

t2: ð2:41Þ

Using the excess heat capacity and the fluid fraction for large unilamellar

vesicles of DPPC as used in Fig. 2.3, we can estimate the density dependence

of the dispersion parameter h(rA) as shown in Fig. 2.4.

Here, the density of the fluid phase is approximately 4*10!3 g/m2, the

maximum of the dispersion parameter corresponds to the chain-melting

rA (g/m2) ! 10-3

! 107

h
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m
4 /
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Figure 2.4 The dispersion parameter, h, as a function of lateral density for LUV of DPPC,
based on the proposed expression for the lateral speed of sound.

7 The first-order term is zero since the speed of sound squared is symmetric around o¼0.
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transition maximum, and the density of the gel phase is 5*10!3 g/m2. It is

clear that the dispersion parameter is strongly dependent on the lateral den-

sity of the membrane.

The density-dependent dispersion parameter, h(rA), will finally enter the
differential equation (Eq. 2.4) for the propagating nerve pulse. In the original

treatment, hwas considered an adjustable constant that determined the time-

scale of a solitary pulse in nerve axons. In the present extension, h(rA) is fully
determined by the cooperative nature of the membrane system and does not

contain adjustable parameters. Preliminary calculations indicate that this dis-

persion parameter will yield a natural timescale for the propagating soliton in

nerve axons.

7. DISCUSSION

The response of lipid membranes to adiabatic periodic pressure pertur-

bations (sound) is closely related to the relaxation behavior of the system

[22,23]. Using thermodynamics and linear response theory, we have

described the response of the lipid membrane to a perturbation with the

assumption that the relaxation function has a simple exponential dependence

on time. We obtain a form for the dynamic heat capacity which can be

understood as the effective heat capacity when the lipid membrane is subject

to periodic adiabatic pressure perturbations. The dynamic heat capacity was

then related to the adiabatic lateral compressibility using the idea that

the size of the associated water reservoir is frequency dependent [14]. The

adiabatic lateral compressibility was then used to obtain an expression for

the effective speed of sound as a function of frequency.

The major assumption in our approach concerns the nature of the relax-

ation function. We have previously studied the relaxation behavior of the

lipid membrane in the vicinity of the melting transition at low frequencies.8

This means that the lipid melting transition is assumed to be noncritical. The

single exponential relaxation behavior should, however, only be considered

as a low-frequency approximation. In a number of ultrasonic experiments,

it has been shown that a single exponential is insufficient to describe the

dynamics of the cooperative processes involved in lipid melting in the

ultrasonic regime [9,14–16]. In these ultrasonic experiments, some phase-

transition phenomena are even apparent in the megahertz regime. Single

8 The time resolution of experiments from our group is 0.3 s corresponding to 3.3 Hz. Relaxation

profiles on longer time scales are well approximated by a single exponential decay [10,18].
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exponential relaxation behavior, and thereby the validity of the estimated

speed of sound, is thus limited to frequencies comparable to the

relaxation rate or lower.

van Osdol et al. [19] have made adiabatic pressure perturbation experi-

ments on unilaminar and multilaminar vesicles of DPPC. They studied re-

laxation behavior of the lipid membrane by measuring the frequency

dependence of the effective heat capacity and the compressibility as a func-

tion of frequency. Although the data available for unilamellar vesicles are

very limited and have large errors, it can still serve to illustrate qualitative

tendencies of the effective heat capacity, see Fig. 2.5, that are similar to

the theoretical results reported here. The effective frequency dependence

of the speed of sound shown in Fig. 2.3 is dominated by the cooperative

properties of the lipid melting transition of DPPC. In this model system,

the relaxation time during the transition is as slow as seconds. In biological

membranes such as membranes of nerves, realistic characteristic relaxation

times can be assumed to be of the order of 1–100 ms. This change in
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Figure 2.5 Left: The calculated dynamic heat capacity for LUV of DPPC at different
frequencies. Right: The effective heat capacity profiles for LUV of DPPC at different fre-
quencies, measured by van Osdol et al. [19]. The measured effective heat capacities
have not been corrected for contributions from the experimental setup, and a direct
comparison is therefore not possible. The theoretical dynamic heat capacity shows
the same qualitative features as the measurements—a dramatic decrease in the height
of the excess heat capacity with increasing frequency and a relatively constant width.
The difference in frequency scales seen in the two panels is due to an estimated differ-
ence of more than a factor of 10 in the characteristic relaxation time. Frequencies are
given in units of Hz¼ (1/2p) rad/s.
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relaxation times between the model system and biological membrane ex-

pands the upper limit of the frequency range for which our approach is

likely to be valid from the hertz to kilohertz regime, assuming that the gen-

eral behavior of pure lipid and biological membranes is otherwise similar.

Since the duration of a nerve pulse is roughly 1 ms, the relevant frequency

components contained in a nerve pulse can be estimated to be 1 kHz or less.

The relevant frequency range for nerve pulses is thus covered by our

proposed expression for the effective speed of sound. The present results

may thus provide useful insights regarding sound propagation in an other-

wise inaccessible regime and can extend our understanding of the nature of

nerve signals.

In future studies, the linear response theory described in this chapter

will help to define an intrinsic length scale of the electromechanical soliton

proposed by us as an alternative description for the nervous impulse.

APPENDIX A. DERIVATION OF THE DYNAMIC HEAT
CAPACITY USING THE CONVOLUTION
THEOREM

The purpose of this appendix is to provide additional details in the der-

ivation of the frequency-dependent heat capacity given in Eq. (2.25) starting

from Eq. (2.19). The change in entropy is a convolution of the applied

perturbation and the relaxation of the transfer function—the effective heat

capacity. The perturbation is well defined at all times and can safely be as-

sumed to be zero for t!!1. The relaxation function is only defined from

[0,1], where t¼0 is the time at which the system starts to equilibrate. The

relaxation function, C, is chosen such that C(t!0)¼1 and C(t!1)¼0.

To accommodate the chosen form of the relaxation function, the convolu-

tion can be written as follows:

DSðtÞ¼
ðt

!1
ðcpð1ÞþDcpð1!Cðt! t0ÞÞÞ

_Tðt0Þ
T0

!DV
DH

_pðt0Þ

 !

dt0; ðA:1Þ

DSðtÞ¼
ðt

!1
gðt! t0Þ_f ðt

0Þdt0; ðA:2Þ

where g(t! t0) is the transfer function and _f ðt0Þ is the perturbation. Note that
_f ðtÞ¼ df ðtÞ=dt, cp(1) is the component of the heat capacity not associated

with the melting transition, and T0 is the equilibrium temperature.
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Integration by parts allows us to rewrite Eq. (A.2) to the following form:

DSðtÞ¼ gðt0Þ
ð
_f ðt0Þdt0

, -t

!1
!
ðt

!1

ð
_f ðt00Þdt00

" #
_gðt! t0Þdt0: ðA:3Þ

The first term in Eq. (A.3) takes the form:

gðt0Þ
Ð _f ðt0Þdt0

h it
!1

¼ gðt0Þf ðt0Þ½ -t!1

¼ gðtÞf ðtÞ! gð!1Þf ð!1Þ;
ðA:4Þ

where

f ðt0Þ¼ ðTðt0Þ!T0Þ
T0

!DV
DH

ðpðt0Þ!p0Þ:

Assuming that the system is in equilibriumas t0!!1 and f(t0!!1)¼0,

simplifies Eq. (A.4):

gðtÞ f ðtÞ! gð!1Þ f ð!1Þ¼ cpð1Þ f ðtÞ: ðA:5Þ

The second term in Eq. (A.3) can be rewritten by changing the variable

to t00¼ t! t0

ðt

!1

ð
_f ðt0Þdt0

" #
_gðt! t0Þdt0¼!

ð1

0

f ðt! t00Þ _gðt00Þdt00; ðA:6Þ

where the integration limits have been changed accordingly.

Since we are interested in sinusoidal perturbations, we consider the Fou-

rier transform of Eq. (A.1) and find:

DŜðoÞ¼
ð1

!1
DSðtÞe!iotdt; ðA:7Þ

DŜðoÞ¼
ð1

!1
cpð1Þf ðtÞþ

ð1

0

f ðt! t00Þ _gðt00Þdt00
" #

e!iotdt: ðA:8Þ

The Fourier transform of the first term in Eq. (A.8) can be carried out

without complications:

cpð1Þ
ð1

!1
f ðtÞe!iotdt¼ cpð1Þf̂ ðoÞ: ðA:9Þ

The second term of Eq. (A.8) can be rewritten as follows:
ð1

!1

ð1

0

f ðt! t00Þ _gðt00Þe!iotdt00dt¼
ð1

0

_gðt00Þ
ð1

!1
f ðt! t00Þe!iotdtdt00:

ðA:10Þ
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Changing variables again, t0¼ t! t00, the Fourier transform of the second

term in Eq. (A.8) can be split into two terms:
Ð1
0 _gðt00Þ

Ð1
!1 f ðt! t00Þe!iotdt00dt¼

Ð1
0 _gðt00Þ

Ð1
!1 f ðt0Þe!ioðt0þt00Þdt0dt00

¼
Ð1
0 _gðt00Þe!iot00dt00

Ð1
!1 f ðt0Þe!iot0dt0

¼ f̂ ðoÞ
Ð1
0 e!iot _gðtÞdt: ðA:11Þ

This is known as the convolution theorem. From Eqs. (A.11) and (A.9),

Eq. (A.7) can be written as

DŜðoÞ¼ cpð1Þþ
ð1

0

e!iot _gðtÞdt
" #

f̂ ðoÞ; ðA:12Þ

where

f̂ ðoÞ¼ T̂ðoÞ
T0

!DV
DH

p̂ðoÞ and _gðtÞ¼!Dcp _CðtÞ:

The Fourier transform of Eq. (A.2) takes the final form:

DŜðoÞ¼ cpð1Þ!Dcp
ð1

0

e!iot _CðtÞdt
" #

T̂ðoÞ
T0

!DV
DH

p̂ðoÞ
" #

ðA:13Þ

DŜðoÞ¼ cpðoÞ
T̂ðoÞ
T0

!DV
DH

p̂ðoÞ
" #

: ðA:14Þ

UsingC(t)¼exp(! t/t), the dynamic heat capacity, cp(o), is found to be

cpðoÞ¼ cpð1Þþ
Dcp
t

ð1

0

e!iote!t=tdt ðA:15Þ

cpðoÞ¼ cpð1ÞþDcp
1! iot
1þðotÞ2

 !

; ðA:16Þ

which has the form of a Debye relaxation term.
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CONS P EC TU S

I n the absence of proteins, synthetic lipid membranes can display quantized conduction events for ions that are virtually
indistinguishable from those of protein channels. The phenomenological similarities between typical conductances are striking:

they are of equal order and show similar lifetime distributions and current histograms. They can include conduction bursts,
flickering, and multistep conductance. Lipid channels can be gated by voltage and blocked by drugs. They respond to changes in
lateral membrane tension and temperature. Thus, they behave like voltage-gated, temperature-gated, and mechano-sensitive
protein channels, or like receptors.

The similarity between lipid and protein channels poses an important problem for the interpretation of protein channel data.
For example, the Hodgkin�Huxley theory for nerve pulse conduction requires a selective mechanism for the conduction of sodium
and potassium ions. To this end, the lipid membranemust act both as a capacitor and as an insulator. Nonselective ion conductance
by mechanisms other than the gated protein channels challenges the proposed mechanism for pulse propagation. Nevertheless,
textbooks rarely describe the properties of the lipid membrane surrounding the proteins in their discussions of membrane models.

These similarities lead to important questions: Do these similarities in lipid and protein channels result from a common
mechanism, or are these similarities fortuitous? What distinguishes protein channels from lipid channels, if anything?

In this Account, we document experimental and theoretical findings that show the similarity between lipid and protein
channels. We discuss important cases where protein channel function strongly correlates with the properties of the lipid. Based on
statistical thermodynamics simulations, we discuss how such correlations could come about. We suggest that proteins can act as
catalysts for lipid channel formation and that this hypothesis can explain some of the unexplained correlations between protein
and lipid membrane function.

1. Introduction
The observation of channel-like conduction events in pure

lipid membranes is not new but has not received appro-

priate attention. Yafuso et al. described them in oxidized

cholesterol membranes as early as 1974. Further evidence

was provided by Antonov and collaborators and by

Kaufmann and Silman in the 1980s. It was shown that

channel formation is influenced by temperature and pH.

Goegelein and Koepsell showed in 1984 that one can block

such lipid channels with calcium, and Blicher et al. showed

that one can block lipid membrane channels with general

anesthetics. Theymay bemildly selective for ions following the

Hofmeister series (theabove is reviewed inHeimburg1). Further,

lipid channels can be gated by voltage.2 In the past decade,

Colombini and collaborators described channel-like events

in membranes containing ceramides and sphingolipids.3

Synthetic lipid membranes can display melting transi-

tions of their chains.4 The transition is accompanied by an

absorption of heat, and a change in entropy due to the

disordering of the lipid chains. Biological membranes pos-

sess such melting transitions, too, typically at temperatures

about 10 degrees below physiological temperature.4 Chain
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melting has been described for several bacterialmembranes

but also for lung surfactant and nerve membranes. Electro-

physiological experiments on synthetic membrane suggest

that the spontaneous appearance of pores in membranes is

related to thermal fluctuations, which are known to ap-

proach a maximum in the transition regime. The likelihood

of pore opening and the respective open lifetimes are

characterized well by the well-known fluctuation�dissipation

theorem (FDT)5 and its applications to membrane pores.1 In

essence, the FDT establishes connections between the fluc-

tuations of extensive variables such as enthalpy, volume and

area, and the conjugated susceptibilities: heat capacity, iso-

thermal volume and area compressibility, respectively. For

instance, wherever the heat capacity is high, the fluctuations

in enthalpy are large. Similarly, large volume and area

fluctuations imply a high volume or lateral compressibility.

Volume and area fluctuations are strongly coupled to the

enthalpy fluctuations.4 Therefore, the membrane becomes

highly compressibly (i.e., soft) close to transition, and the

formation of defects is facilitated. For this reason, close to

transitions one expects the spontaneous formation of pores

in the lipid membrane, and a significant increase of the

permeability for ions and small molecules. Such changes in

permeability close to transitions were in fact observed

experimentally.1 The presence of melting transitions in bio-

logical membranes therefore makes it highly likely that lipid

ion channels are also present in living cells. An important

implication of the FDT is that fluctuations are directly

coupled to fluctuation lifetimes,6 which implies that the

open lifetime of lipidmembrane pores ismaximumclose to

the transition.

Changes in experimental conditions can shift the melting

point. For instance, drugs suchas the insecticide lindaneor the

anesthetic octanol lower transition temperatures and there-

fore influence the permeability of membranes.1 Due to their

effect on the physics of membranes, such drugs can “block”

lipid channels without binding to any particular receptor.

Similarly, hydrostatic pressure shifts transitions upward.4

It seems to be increasingly accepted that the composition

of lipid membranes can influence the channel activity of

proteins.7 Interestingly, critical phenomena such as the ones

described above for synthetic membranes have also been

found for protein channels embedded in synthetic lipid

membranes. The characteristics of some of these channels

are highly correlated with the chainmelting transition in the

surrounding membrane. For instance, the KcsA potassium

channel when reconstituted into a synthetic membrane

displays a mean conductance that exactly reflects the heat

capacity profile of the membrane.8 Simultaneously, the

open lifetime of the channel is maximum in the membrane

transition. Thus, the properties of membranes containing

this channel protein accurately reflect the physics of the

fluctuations in the lipidmembrane. Very similar phenomena

were found for the sarcoplasmic reticulumcalcium channel.9

FIGURE1. Lipid ion channels in a syntheticmembrane (DMPC/DLPC=10:1 in150mMKCl, 30 �C). (A) Characteristic current trace recordedat 50mV. It
was stable for more than 30 min. (B) The single-channel I�V profile is linear, resulting in a conductance of 330 pS. (C) Lifetime distribution of the
channels. Adapted from from ref 10, Copyright 2012,with permission from Elsevier. (D) Ceramide channels in soybean lipids (asolectin) in 1MKCl.3,11

From refs 3 and 11, Copyright 2002 and 2003, with permission from The American Society for Biochemistry and Molecular Biology and Elsevier,
respectively.
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2. Lipid Ion Channels
2.1. Single Channels in Protein-Free Membranes.

Figure 1A shows a typical channel event in a synthetic lipid

membrane (DMPC: DLPC = 10:1, 150 mM NaCl) recorded

around 30 �C.10 These channels display a conductance of

about 330 pS and lifetimes on the order of 1�100 ms. Such

conductances and lifetimes are not untypical for protein

channels, too. In fact, it would be difficult to distinguish the

traces in Figure 1 from protein channels in the absence of

independent information available. Further examples were

reviewed in Heimburg.1 Figure 1D shows recordings from

so-called ceramide channels. Such channels have been

investigated in much detail by the Colombini group from

the University of Maryland. Channel events in protein-free

membranes containing a small amount of ceramide lipids

look similar to the lipid pores in Figure 1. Ceramide channels

seem to be distinct from other lipid membrane pores since

they display much larger conductances and much longer

lifetimes than the data in Figure 1A�C.

2.2. Comparisonof Lipid andTRPProtein IonChannels.

The literature contains copious examples for protein chan-

nel conductance. As mentioned, many of these data are

similar in appearance to the lipid channels. This is demon-

strated in the following for TRP channels that were over-

expressed in human embryonic kidney (HEK) cells.10

Figure 2 (left) shows short but representative time-segments

of channel recordings from a synthetic lipid preparation (top

trace), HEK cells containing the TRPM2 (center trace) and

TRPM8 (bottom trace) channels (data from Laub et al.10). The

order of magnitude of the conductance and the current

histograms are very similar. Equally similar traces were

found for conduction bursts, flickering traces and other

phenomena typical for protein conductance.10 On the

right-hand side of Figure 2, a conduction burst in a synthetic

membrane (top) is compared to a burst of the TRPM8

channel activity. The current histogram of the two bursts is

very similar, both in absolute currents and in the peak areas.

It is again difficult to distinguish the data from the synthetic

and cell membranes without independent experimental

evidence. It is likely that this statement is generally true.

2.3. Pore Geometries. Lipid pores are transient in time

and probably due to area fluctuations in the membrane.

There exists no experimental evidence for a well-defined

pore geometry and size from electron microscopy or other

nanoscopic techniques. Glaser and collaborators12 pro-

posed two kinds of pores: the hydrophobic pore shown in

Figure 3A (left) and the hydrophilic pore shown in Figure 3A

(right). The hydrophobic pore is a area density fluctuation

without major rearrangement of its lipids. Water in the pore

is in contact with hydrophobic hydrocarbon chains. The

hydrophilic pore (Figure 3A, right) is linked to a rearrange-

ment of the lipids so that contact with water is avoided. Such

pores are thought to be more stable and long-lived. Based

on elastic considerations, the pore diameter was estimated

to be of order 1 nm,12 suggesting a well-defined channel

conductance. Both, hydrophilic andhydrophobic pores have

been found in MD simulations13 (Figure 3B). Application of

voltage across the membrane initially forms a hydrophobic

pore which subsequently develops into a hydrophilic pore.

Due to the lack of direct observation, these geometries must

be regarded as tentative. The proposed structure of cer-

amide channels consists rather of a stable geometry with

well-defined molecular order. Considering their longer life-

times and larger conductance, it is not clear whether these

FIGURE 2. Comparison of channel events from synthetic lipid membranes (top) and from protein-containing cell membranes (center, TRPM2;
bottom, TRPM8) demonstrate the phenomenological similarity of both stepwise conductance and probability distribution of current events.10

Conduction burst in a synthetic membrane (top) and in a HEK cell membrane containing the TRPM8 channel (bottom).10 The current histograms are
nearly identical. Reprinted from ref 10, Copyright 2012, with permission from Elsevier.
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events are comparable to the lipid ion channel events

described in Figure 1.

3. Transitions in the Membrane and
Permeability Maxima
Lipidmembranes displaymelting transitions. In these transi-

tions, the membranes remain intact, but enthalpy ΔH and

entropy ΔS change at a defined temperature Tm = ΔH/ΔS.

This is schematically displayed in Figure 4a, b. One can

investigate such transitions in calorimetry by recoding the

heat capacity, cp = (dH/dT)p. The heat capacity profile shown

in panel (c) is from synthetic vesicles of dipalmitoyl phos-

phatidylcholine (the lipid in panel a) with amelting tempera-

ture of∼41 �C. Panel (d) (shaded area) shows the cp-profile of

FIGURE 3. Hydrophobic and hydrophilic pores in lipidmembranes. (A) Schematic drawingwith hydrophobic pore on the left and hydrophilic pore on
the right. (B) Molecular dynamics simulation of a membrane subject to a voltage difference of 2 V.13 Reprinted from ref 13, Copyright 2008, with
permission from Elsevier. Here, the hydrophobic pore (left) consists of a file of water molecules spanning through the membrane. Such pores are
thought to be dynamic structures caused by fluctuations in the lipid bilayer. (C) Hypothetical structure of a ceramide channel.14 Reprinted from ref 14,
Copyright 2011, with permission from Elsevier.

FIGURE 4. Melting of lipid membranes and permeability changes. (a, b) Schematic representation of the melting process in a lipid membrane.4 (c)
Calorimetricmelting profile of a dipalmitoyl phosphatidylcholine (DPPC)membrane. (d)Melting profile of native E. colimembranes.4 The peak shaded
in red is the lipidmelting peak, situated about 10�15degrees belowgrowth temperature (dashed line). (e) Permeability of a synthetic lipidmembrane
for a fluorescence dye compared to its heat capacity.15 Reprinted from ref 15, Copyright 2009, with permission from Elsevier. (f) Conductance of a
synthetic lipid membrane for ions compared to the heat capacity.16 Reprinted from ref 16, Copyright 2009, with permission from Elsevier.
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native E. coli membranes with a lipid melting peak close to

physiological temperatures (Tm ≈ 22 �C). This has also been

reported for other bacterialmembranes, for lung surfactant,4

and for nerve membranes from rat brains, where the heat

capacity maximum is always found in the range from 20 to

30 �C. It seems likely that chain melting close to physiologi-

cal conditions is a generic property of cells. The integrated

heat capacity yields bothΔH and theΔS. Simultaneously, the

volume of the membrane changes by about 4% and the

area by about 24%.17 The fluctuation�dissipation theorem

(FDT) states that heat capacity cp, volume and area compres-

sibility κT
V and κT

A are given by

cp ¼ ÆH2æ � ÆHæ2

RT2 ; KV
T ¼ ÆV2æ � ÆVæ2

ÆVæRT
;

KA
T ¼ ÆA2æ � ÆAæ2

ÆAæRT
(1)

that is, they are related to enthalpy, volume, and area

fluctuations.
Empirically, it was found that

KV
T ¼ γVcp; KA

T ¼ γAcp (2)

where γV ≈ 7.8 � 10�10m2/N and γA ≈ 0.89 m/N are

material constants.17�19 As a consequence, membranes

become very soft in transitions. The application of the FDT

to lipid membranes is discussed in detail by Heimburg.1

Several previous studies reported that membranes be-

come more permeable in the transition regime.1 In order to

create a pore, work ΔW(a) has to be performed:

ΔW (a) ¼ 1
2KA

TA0
a2 (3)

where a is the area of the pore and A0 is the area of the

overall membrane. Here, the line tension of the pore

circumference12,20 is not explicitly contained for reasons

discussed in Blicher et al.15 Since κT
A has a maximum in

the transition, the likelihood of finding a pore is en-

hanced and the permeability is high. This is shown for

fluorescence dyes and ions in Figure 4e and f.
3.1. Relaxation Time Scales and Lipid Channel Life-

times. The lifetime of fluctuations is also described by the

fluctuation�dissipation theorem.5 Generally, larger fluctua-

tions are associated with larger time scales. In the case of

single lipid membranes close to transitions, it has been

shown that relaxation times are reasonably well described

by an single-exponential process with a time constant of

τ ¼ T2

L
Δcp (4)

where L is a phenomenological coefficient with L = 6.6�
108 J K/mol s for multilamellar lipid vesicles (MLV) of

synthetic lipids.6 In nonequilibrium thermodynamics, it is

assumed that the relaxation and the fluctuation time

scales are identical. Therefore, the time scale τ is inti-

mately related to the mean open time of lipid channels.

Figure 5 (left) shows that DPPC MLV display a Δcp max-

imum of about 400 kJ/(mol K), leading to a relaxation

time τ of 45 s. The half width of this transition is of the

order of 0.05�0.1 K.
The half width of the heat capacity profile of lung surfac-

tant is much broader (order 10 K). The heat capacity at

maximum is about 300 times smaller than for DPPC, and

one expects a maximum relaxation time on the order of

100 ms. Similar numbers are expected for the transitions in

E. coli and other bacterial membranes, and the membranes

of nerves. Interestingly, 1�100ms is the time scale of theopen

lifetime of protein channels as well as that of lipid channels.

The right-hand panel of Figure 5 shows the distribution of lipid

channel lifetimes within and above the melting range of a

synthetic lipid mixture.16 It can be seen that the lifetime

FIGURE5. Left: Relaxation time scale of DPPCMLV compared to the heat capacity.6 Right: Open lifetimes of channel events in aD15PC: DOPC=95:5
mixture in the fluid phase and in the phase transition.16 Reprinted from ref 16, Copyright 2009, with permission from Elsevier.
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increases 5- to 10-fold in the transition range, which is

consistent with the above considerations. Below, we will

show that the KcsA potassium channel displays similar

dependence on the melting transition in the surrounding

membrane.

3.2. Gating of Lipid Channels. The likelihood of finding

lipid pores depends on experimental conditions due to the

dependence of the melting point on all intensive thermo-

dynamic variables.

The permeability must be considered as primarily due to

pore formation. Therefore, the likelihood of finding chan-

nels is correlated with changes in the intensive variables. In

analogy with the nomenclature of protein channels, we will

call this effect “gating”. Gating implies that the open prob-

ability of lipid channels depends in a very general sense on

the intensive thermodynamic variables. It has been shown

experimentally that lipid channels can be gated by1

• temperature (temperature-sensing)

• lateral pressure or tension (mechanosensitive-gating)

• general anesthetics (gating by drugs)

• calcium and pH, i.e., chemical potential differences of

calcium and protons

• voltage (voltage-gating), discussed below

Note that these variables have also been reported to

control protein channels, for example, the temperature

sensitive TRP channels,21 mechanosensitive channels,22

the effect of general anesthetics on the nicotinic acetyl

choline receptor,23 calcium channels,9 and the pH-

dependent8 and voltage-gated7 KcsA potassium channels.

3.3. The Effect of Voltage. At suitable voltages, one can

induce single channel events in the synthetic membrane

(Figure 6). In contrast to the conductance of the overall

membrane, the single channel conductance is constant

and leads to a linear current�voltage relation. The open

probability increases as a function of voltage.

The phase diagram of a membrane as a function of

voltage was recently given by Heimburg.24 If one regards

the membrane as a capacitor, one can calculate the force

on the membrane due to electrostatic attraction. This force

can reduce the thickness of the membrane. It can thus

change the melting temperature and potentially create

holes above a threshold voltage.20,25 The electrostatic

force, F , exerted by voltage on a planar membrane is

given by

F ¼ 1
2
CmVm

2

D
(5)

where Cm is the membrane capacitance, Vm is the

transmembrane voltage, and D is the membrane

thickness.24 This force reduces the thickness of

the membrane.2 The electrical work performed on the

membrane by a change in thickness from D1 to D2 is

ΔWel ¼
Z

D2

D1

F dD�Vm
2 (6)

It can thus be assumed that the free energy of pore

formation, ΔG, is related to the square of the voltage and

to the elastic constants of the membrane2 with

ΔG ¼ ΔG0 þRVm
2 (7)

where ΔG0 is the free energy difference between open

and closed pores in the absence of voltage and R is a

constant. ΔG0 reflects the elastic properties of the

membrane that depend on composition, temperature

and pressure. For asymmetric membranes one

obtains

ΔG ¼ ΔG0 þR(Vm � V0)
2 (8)

where the offset voltage V0 is due to membrane cur-

vature or to a different lipid composition in the two

membrane leaflets.27 The probability, Popen(Vm), of

FIGURE 6. Voltage-gating in a DMPC/DLPC = 10:1 membrane at 30 �C
in 150mMKCl. Top: Current traces at four voltages showing an increase of
single-channel conductance with voltage and an increased likelihood of
channel formation. Bottom, left: The corresponding linear single-channel
current�voltage relation indicating a single-channel conductance of γ =
320 pS. Bottom, right: Open probability as a function of voltage.
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finding an open pore in the membrane at a fixed

voltage is given by

Popen(Vm) ¼
K (Vm)

1þK (Vm)
; K (Vm) ¼ exp �ΔG

kT

� �
(9)

where K(Vm) is the voltage-dependent equilibrium con-

stant between open and closed states of a single pore.
The current�voltage relation for the lipid membrane is

proportional to the likelihood of finding an open channel for

a given voltage:

Im ¼ γpPopen(Vm � E0) (10)

where γp is the conductance of a single pore and E0 = is

the Nernst potential. While the voltage V0 reflects the

asymmetry of the membrane, E0 reflects the asymmetry

of the ion concentrations of the buffer solution. If the

aqueous buffer is the same on both sides of the mem-

brane, the Nernst potential is zero.
Figure 7 (left) shows the I�V profile of a lipid membrane

made of a mixture of DMPC and DLPC10 and a fit given by

the formalism given by eqs 8�10 (V0 = �110 mV, γm =

6.62 nS,ΔG0 = 5.2 kJ/mol, and a =�248 kJ/mol 3V
2). This fit

reproduces the experimental profile. For comparison, the

right-hand panel of Figure 7 shows the current�voltage

relationships of two proteins from the TRP family. Members

of this family of ion channels have been reported to respond

to environmental stimuli such as temperature, membrane

tension, pH, and various drugs.28 No particular structure for

these channels is known, and no very well-defined selectiv-

ities for ions have been reported. Figure 7 (right panels) show

data for the current�voltage relationship of TRPM8 at two

temperatures and TRPM5 adapted from publications of

Nilius' group.21,26 The I�V profiles look quite similar to that

obtained from the synthetic membrane. The solid lines in

Figure 7 (right panels) are fits to the above formalism using

parameters of similar order of magnitude as used for the

synthetic membrane. The quality of these fits indicates that

the TRP channel conductance is well described as unspecific

pore formation in an asymmetric membrane caused by the

charging of the membrane capacitor.

4. The Role of Proteins
Here, we consider several cases where proteins and lipid

pores display similar dependences on intensive variables.

4.1. Temperature Dependence of Lipid Pores, Tem-

perature Sensing Protein Channels, and van't Hoff Law.

Sensitivity to temperature is one of the most prominent

properties of the TRP channels.26 Such channels display a

temperature sensitivity over a temperature range of 10 K

that is similar to the width of melting transitions in many

biomembranes. For instance, the TRPM8 channel is activated

at temperatures about 10 degrees below body temperature,

FIGURE 7. Current�voltage relations. Left: A synthetic membrane (DMPC/DLPC = 10:1). The inset is the open probability of a membrane pore. The
solid line represents a fit to eq10with E0=0V. Right: I�Vprofiles of TRPM8channels inHEK cells, adapted fromVoets et al.21 (toppanel) andof TRPM5
in HEK cells, adapted from Talavera et al. 2005.26 The solid lines are fits to eq 10.
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just where the maximum of the melting profile of many cell

membranes is found. While this may be coincidental, the

assumption of temperature-sensing macromolecules is prob-

lematic as we discuss below.

Assume a channel protein with open and closed states as

shown in Figure 8A. These states correspond to distinct

protein conformations. The equilibrium constant between

the two states is K = exp(�ΔG/RT) with ΔG = ΔH� TΔS. The

likelihood for finding open and closed states is

Popen ¼ K
1þK

and Pclosed ¼ 1
1þK

(11)

respectively (van't Hoff's law). On this basis, Talavera et

al. reported activation enthalpies on the order of 200 kJ/

mol for TRPM4, TRPM5, TRPM8, and TRPV1 channels.26

Figure 8B shows a fit of the conductance of a TRPM8

channel21 to eq 11. The corresponding transition enthalpy

isΔH=�250kJ/mol, and theentropyΔS=�856 J/mol 3K.

Figure 8C displays the corresponding heat capacity of the

transition in the protein with a maximum at 18.9 �C. It is
given by the derivative of the fit in Figure 8B multiplied

with the van't Hoff enthalpy. These numbers are compara-

ble to the total heat of protein unfolding. Typical values

are: about 350 kJ/mol for staphylococcal ribonuclease,

200 kJ/mol for lysozyme, and 200�500 kJ/mol for met-

myoglobin. However, such transition enthalpies seem

highly unlikely for the small conformational change from

an open to a closed state. The conformational change

from closed to open state of a protein should have amuch

smaller enthalpy change and should thus have a much

smaller temperature dependence. Similarly, the claimed

difference in the entropy of closed and open states is

too large. According to Boltzmann's equation, S = k ln Ω

(with Ω being the degeneracy of states), an entropy

difference of �856 J/(mol K) corresponds to a change of

the number of states by a factor ofΩ=5� 1044. A change

of this magnitude is plausible for protein denaturation

where there is no well-defined unfolded structure but

onewell-defined native conformation. It is not reasonable

for a transition between two states with well-defined

function and geometry. Due to cooperative behavior,

FIGURE 8. (A) Schematic drawing of a possible equilibrium between an open and a closed state of a channel protein. The equilibrium is defined by
Gibbs free energy, enthalpy, andentropydifferences (ΔG,ΔH, andΔS, respectively). (B) Van't Hoff analysis of the temperature dependent conductance
of a TRPM8 channel in HEK cells at�80mV (adapted from ref 21). It leads toΔHof�250 kJ/mol andΔS=�859 J/mol 3K for the two-state equilibrium.
(C) From the analysis in panel B one obtains a heat capacity profile of the transition with a midpoint at 18.9 �C. (D) For comparison, the lipid melting
profile of native E. coli membranes is shown. It displays similar transition width and midpoint.
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however, themelting of the lipidmembrane caneasily have

enthalpies and entropies of the above order. Figure 8D

shows theexperimentalmeltingprofileofE. colimembranes.

The activation profile of TRPM8channels is apparently quite

consistent with the melting profile of a cell membrane.
4.2. Channel Proteins and Phase Transitions in the

Lipid Membrane. The KcsA potassium channels are pH-

and voltage-gated. In order to measure their properties they

are frequently reconstituted into syntheticmembranes such as

POPE/POPG = 3:1 mol/mol.8 It is unclear why this particular

lipid mixture is often chosen. Measurement of the heat capac-

ity reveals that this lipid mixture has a melting profile with a

maximum close to room temperature (blue line in Figure 9,

left). Interestingly, themeasurement of themean conductance

of the KcsA channel reconstituted into this membrane (blue

symbols) exactly follows the heat capacity profile. This is not

accidental, since a change in the lipid composition to POPE/

POPG=1:1 reveals that the conductanceprofile of the channel

shifts in the same manner as the heat capacity curve (black

symbols). A similar observation can be made for the KcsA

channel open times. Typically, the open time distribution is

fitted with a biexponential yielding two time constants. These

two time constants are plotted in Figure 9 (right) for the POPE/

POPG = 3:1 mixture as a function of temperature and com-

pared with the respective heat capacity profiles. It was found

that the lifetimes also follow the heat capacity profile. Very

similar behavior was found for the sarcoplasmic reticulum

calcium channel reconstituted into POPE/POPC mixtures at

different ratios.9 Close to the largest heat capacity events of the

lipidmixture, the channel displayedmaximumactivity (highest

conductance) and the longest open times.

The behavior described above is expected from the

fluctuation dissipation theorem for the lipid transition itself.

Both mean conductance and the lifetimes of conduction

events accurately reflect the physics of the lipid membrane.

Interestingly, in the case of the KcsA channel the conduc-

tance (and thus channel activity) is related to the total

amount of protein in the membrane and is still inhibited

by the potassium channel blocker tetraethylammonium

(TEA). Channel conductance in these systems is apparently

a property of the lipid�protein ensemble. In the following,

we suggest one possible description for this behavior.

4.3. A Possible Catalytic Role of Membrane Proteins.

There is ample evidence in the literature that membrane

proteins can influence the thermodynamic properties of

lipidmembranes. This is true for both integral and peripheral

proteins. Figure 10 (center, top) shows the calorimetric

profiles of the band 3 protein of erythrocytes, and of

cytochrome b5 (Figure 10, center bottom) reconstituted into

synthetic lipid membranes.29,30 While band 3 protein in-

creases the temperature regime of membrane melting in

membranes, cytochrome bb lowers it. Similar observations

have been made with other proteins. E. coli membranes

display a lipid transition around 22 �C (Figure 4d) while the

extracted lipids (in the absence of proteins) display a transi-

tion around 12 �C. Since proteins influence melting points,

they must also affect lipid membrane fluctuations and the

occurrence of lipid channels. The influence of an integral

protein onmembranemelting is partially dictated by the so-

called hydrophobic matching.31 If the hydrophobic part of

the protein ismore extended than the hydrocarbon core of a

fluid membrane, it will match better with ordered lipids. As a

consequence, lipids tend to be more gel-like at the interface

of the protein.32 If theproteins have short hydrophobic cores

(e.g., gramicidin A), it will favor fluid lipids in its vicinity

(Figure 10, left). The first class of proteins will shift melting

events toward higher temperatures, while the second class

FIGURE 9. Dependence of KcsA channels on the phase transition of its host membrane. Left: The conductance of the channel in two lipid mixtures
(symbols) compared to the respective heat capacity profile of the lipids (lines). Right: Open lifetimes of the KscA-channel (symbols) compared to the
heat capacity profile (line).8 Adapted from ref 8, Copyright 2010, with permission from Elsevier.
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will shift it toward lower temperatures. This is shown for the

experimental examples band 3 protein and cytochrome b5
(Figure 10, center). Peripheral proteins can shift transitions,

for instance by shielding electrostatic charges on the surface.

If a protein that matches the gel state of the membrane is

located in a fluid membrane, it tends to surround itself by a

gel lipid layer. As a consequence, there is a regime of high

fluctuations near the protein32,33 meaning that both heat

capacity and compressibility can be altered close to a protein.

For this reason, the presence of a protein has the potential to

locally induce lipid pores in its proximity. Another way of

stating this is that proteins can catalyze lipid pores at their

outer interface. Figure 10 (right) shows Monte Carlo simula-

tions of such a simulation.32,33 The simulations show a protein

(black) in a membrane at temperatures below and above the

melting regime. Dark red shades indicate small fluctuations,

while bright yellow shades display large fluctuations. It can be

seen that aprotein that favors the fluid lipid statewould tend to

create regimes of large fluctuations in its environment at

temperatures below the melting temperature (top panels).

It thus seems likely that proteins can catalyze channel

activity without being channels themselves. This is due to

the effect of the proteins on the cooperative fluctuations in

the lipid membrane. It should generally be possible to

estimate this effect from the influence of the protein on

melting transitions.

5. Summary
The aim of this Account has been to characterize lipid ion

channels and to illustrate the similarity of ion conduction

events andprotein channel activity.Wehave shown that the

appearance of lipid channels is rooted in the fluctuation

dissipation theorem. It is thus strictly coupled to the thermo-

dynamics of the membrane and influenced by changes in

the thermodynamics variables such as temperature, pres-

sure, voltage, and so forth.

Many (but not all) properties of protein channels are practi-

cally indistinguishable from lipid channels. These include:

• Single channel conductances and lifetimes.

• The current�voltage relations of some proteins such as

TRPM8 and the synthetic membrane.

• The activation of TRP channels by temperature.

• The conductance and the lifetimes of KcsA and calcium

channels embedded in membranes with transitions.

However, a few important properties are difficult to

reconcile with the pure lipid membrane:

• The effect of mutations in the protein.

• The action of strong poisons such as tetrodotoxin or

tetraethylammonium. Tedrodotoxin in high concentra-

tions (mM regime) only displays a very minor influence

on the melting profiles of zwitterionic membranes

(unpublished data fromMaster's thesis of S. B. Madsen,

NBI 2012).

FIGURE 10. Interaction of proteinswith lipidmembranes and hydrophobicmatching. The top row refers to a protein that favors the solid state, while
the bottom row refers to a protein favoring the liquid state. Left: Schematic drawing of the lipid arrangement around proteins. Center: The influence of
proteins on the heat capacity profile of a syntheticmembrane (top, band 3 protein of erythrocytes in DMPC shifts heat capacity profiles toward higher
temperatures; bottom, cytochrome b5 in DPPC shifts cp profiles toward lower temperatures). Right: Monte Carlo simulations of the local fluctuations
(yellow indicates larger fluctuations) of the lipid membrane close to the protein. Top: Fluctuations are enhanced at the protein interface above the
melting temperature Tm and unaffected below. Bottom: Fluctuations are enhanced below Tm and unaffected above the transition.
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• The selectivity of the ion conduction, for instance, of the

potassium channel (about 10000 times higher conduc-

tance for potassium over sodium). Lipid channels seem

to display a mild selectivity only, following the Hofmeister

sequence.34

Nevertheless, there exist a number of cases where one

can demonstrate clear correlations of protein behavior with

the lipid membrane physics, in particular the KcsA channels

and calcium channels.

It seems likely that a viewwill eventually emerge inwhich

the conductance of biomembrane is seen as a feature of a

lipid�protein ensemble rather than as a feature of single

proteins. This implies a strong coupling to the macroscopic

thermodynamics of the biological membrane as a whole.
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In an adiabatically shielded system, the total enthalpy is conserved. Enthalpy fluctuations of an ar-
bitrarily chosen subsystem must be buffered by the remainder of the total system which serves as a
heat reservoir. The magnitude of these fluctuations depends on the size of the reservoir. This leads
to various interesting consequences for the physical behavior of the subsystem. As an example, we
treat a lipid membrane with a phase transition that is embedded in an aqueous reservoir. We find
that large fluctuations are attenuated when the reservoir has finite size. This has consequences for the
compressibility of the membrane since volume and area fluctuations are also attenuated. We com-
pare the equilibrium fluctuations of subsystems in finite reservoirs with those in periodically driven
systems. In such systems, the subsystem has only finite time available to exchange heat with the sur-
rounding medium. A larger frequency therefore reduces the volume of the accessible heat reservoir.
Consequently, the fluctuations of the subsystem display a frequency dependence. While this work is
of particular interest for a subsystem displaying a transition such as a lipid membrane, some of the
results are of a generic nature and may contribute to a better understanding of relaxation processes
in general. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821837]

INTRODUCTION

The enthalpy fluctuations of an adiabatically shielded
system are zero by definition. The enthalpy of arbitrary sub-
systems contained within the total system can only fluctuate
by the exchange of heat with the rest of the system which
we call “the reservoir.” In a simple homogeneous system, this
leads to temperature fluctuations in both the subsystem and
the “reservoir” that are trivially related and that depend only
on the size of the two parts of the system. An example would
be enthalpy and temperature fluctuations in a small water vol-
ume that is embedded into a larger water reservoir of finite
size. One can also consider cases where the subsystem is of
different physical nature than the reservoir. Such a subsystem
could be a particular vibrational mode in a macromolecule
that couples to the rest of the molecule that serves as a reser-
voir. One may also consider subsystems that are spatially sep-
arated from the reservoir, e.g., macromolecules or membranes
dissolved in an aqueous buffer. The purpose of this paper is to
treat this problem in all generality and apply it to the par-
ticularly interesting case of a subsystem that can undergo a
phase transition while embedded in a homogeneous medium
that displays no transition. In particular, we discuss the case
of a lipid membrane with a melting transition when the mem-
brane is in contact with a finite aqueous volume that serves as
a heat reservoir.

When varying temperature, lipid membranes display co-
operative melting transitions in which both enthalpy and en-
tropy of the individual molecules change at a melting tem-
perature, Tm.1 At this temperature, the heat capacity has a
maximum. According to the fluctuation-dissipation theorem,

a)theimbu@nbi.dk. URL: http://membranes.nbi.dk.

at constant temperature the heat capacity is proportional to the
enthalpy fluctuations of the membrane and closely related to
the fluctuation time-scales.

Heat capacity is typically measured in a differential scan-
ning calorimeter (DSC). A DSC controls the temperature very
precisely and records the heat absorbed by the sample when
the temperature is changed. Therefore, the temperature of the
reservoir is fixed by the instrumental setup, which is intended
to behave like an infinite reservoir with constant temperature.
In finite adiabatic systems (with constant total enthalpy), how-
ever, the temperature of the reservoir is not constant because it
exchanges heat with the subsystem due to fluctuations. Conse-
quently, there are fluctuations of the reservoir temperature that
are completely correlated with the enthalpy fluctuations of the
subsystem (here, the membrane). Thus, the temperature of the
reservoir is only constant on average with fluctuations that can
be either large or small depending on the size of the reservoir.
In this publication, we show that the size of the (water) reser-
voir has a significant effect on the magnitude of the fluctua-
tions and the relaxation time scales of the subsystem (the lipid
membrane).

There have been very few attempts to model systems in
a finite reservoir,2, 3 and these are of limited generality and
not applicable to the lipid membrane system. The lipid mem-
brane is distinct from many other systems due to its pseudo
two-dimensional nature. While the membrane is effectively
two-dimensional, it is embedded in a three-dimensional reser-
voir with which it can exchange heat. The overall system thus
consists of two coupled systems with a total enthalpy that
is constant but fluctuating for each of the two sub-systems.
Here, we present a statistical mechanics framework for mod-
eling the lipid melting transition in a finite heat reservoir, i.e.,

0021-9606/2013/139(12)/125101/8/$30.00 © 2013 AIP Publishing LLC139, 125101-1

Downloaded 25 Sep 2013 to 130.225.212.4. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



125101-2 Mosgaard, Jackson, and Heimburg J. Chem. Phys. 139, 125101 (2013)

a membrane in a very small water volume. This problem is of
more than academic interest.

The heat capacity cp is an equilibrium property of a
system and therefore does not possess a timescale. When
a system is probed for finite times (or when the system is
driven by an external periodic force), it may not be possi-
ble to establish equilibrium with the entire reservoir. Such
non-equilibrium systems can be approximated by an equi-
librated adiabatic system consisting of the membrane and a
reservoir of finite size. Adiabaticity ensures that the total en-
thalpy fluctuations of this combined system are precisely zero.
The fluctuation-dissipation theorem cannot be used to calcu-
late the heat capacity, and other methods must be used. It is,
however, possible to calculate the enthalpy fluctuations for the
membrane alone. In the limit of large reservoirs, these fluctua-
tions describe the usual equilibrium heat capacity. For smaller
reservoirs unable to support large enthalpy fluctuations, the
fluctuations in the enthalpy of the membrane will necessarily
be reduced. Such effects should be most pronounced near the
maximum of the equilibrium heat capacity. It is very impor-
tant to point out that this argument holds for all fluctuations
of extensive quantities such as volume and area of the sub-
system, which are closely related to the enthalpy fluctuations.
Therefore, our considerations can be extended to the elastic
properties of the subsystem that are determined by the volume
and area fluctuations. Our analysis contains a reinterpretation
of the adiabatic compressibility.

We note that some authors4 have performed calculations
in systems driven externally at a well-defined frequency to
determine a “dynamic heat capacity” or “frequency depen-
dent heat capacity.” The authors (Nielsen and Dyre4) suggest
that the frequency dependent heat capacity can be understood
as an equilibrium property of the system. In the limit of an
arbitrarily small frequency, which corresponds to an infinite
reservoir, this dynamic heat capacity is identical to the usual
equilibrium heat capacity. For finite frequencies, it is closely
related to the enthalpy fluctuations of membranes in finite
size reservoirs studied here using Monte Carlo simulations.
We discuss our finding of reservoir-size dependent membrane
fluctuations in the context of the frequency dependence of
the heat capacity of membranes determined in periodic per-
turbation experiments5,6 and with the frequency dependence
of sound.7,8 Our findings suggest a close connection between
the frequency dependence of both the compressibility and the
sound velocity of membranes and the size of the available wa-
ter reservoir.

THEORY

Fluctuations in finite reservoirs

Enthalpy is strictly conserved in an adiabatically insu-
lated system. Any heat released or absorbed by a subsystem
must be exchanged with the surrounding system which we
call the reservoir. Consequently, the properties of the reser-
voir will also fluctuate. Typically, one considers the fluctua-
tions of a small system in an infinite heat reservoir (for the
example of a membrane embedded into an aqueous reservoir,
see Fig. 1, left) that effectively keeps the temperature of the

FIG. 1. Three scenarios for a lipid membrane subsystem in an aqueous reser-
voir: (Left) The membrane is embedded in an infinite water reservoir with
constant temperature. (Center and right) The membrane is embedded in a fi-
nite size water reservoir. The total system consisting of membrane and water
is adiabatically shielded. Thus, enthalpy fluctuations of the membrane now
are coupled to both fluctuations in enthalpy and temperature of the water
reservoir.

reservoir constant. This is also the situation in calorimetric ex-
periments. In such an infinite system, temperature fluctuations
of the reservoir vanish. This is not the case for a finite system
(Fig. 1, right), where care is required to guarantee that the en-
thalpy is strictly conserved. As shown below, this implies that
the temperature of the reservoir fluctuates in correlation with
fluctuations of the subsystem.

The Gibbs free energy change associated with a state
change in the subsystem is

�Gs = �Hs − T �Ss, (1)

where the index “s” denotes the subsystem. During this
change in state, heat is transferred from the subsystem to the
reservoir.

The free energy change of the reservoir �Gr (the index
“r” denoting the reservoir) upon the absorption of the heat
�Hr = −�Hs is given by

�Gr = �Hr − T �Sr, (2)

where �Hr is the change in enthalpy of the reservoir and �Sr

is the associated entropy change in the reservoir. T is the tem-
perature, and �G = �Gs + �Gr the free energy change of the
total system. If the reservoir absorbs heat from a fluctuation
of the subsystem, the change in the enthalpy of the reservoir
is naturally fixed to exactly this amount since the total system
conserves enthalpy.

From the local fluctuations of temperature, the change in
the reservoir’s entropy associated with the transfer of enthalpy
internally between the two sub-ensembles can be calculated
as follows:

cr
p = T

(
∂Sr

∂T

)
P

⇒ �Sr =
∫ T b

r

T a
r

cr
p

T
dT , (3)

where cr
p is the heat capacity of the reservoir and �Sr is the

corresponding change in entropy. The heat capacity of the
reservoir is assumed to be constant. The reservoir temperature
Tr before the change in the state of the subsystem is defined as
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T a
r and after the change as T b

r (with 〈T a
r 〉 = 〈T b

r 〉 = T , aver-
aged over time, T is the constant temperature of the total sys-
tem that enters the Boltzmann factors). The entropy change of
the reservoir is then given by

�Sr = cr
p ln

T b
r

T a
r

, (4)

where (T b
r − T a

r ) is the temperature change of the reservoir
associated to absorbing a given amount of heat, �Hr. Since
cr
p(T b

r − T a
r ) = �Hr for constant cr

p, the temperature T b
r of

the reservoir after absorbing �Hr is given by

T b
r = �Hr

cr
p

+ T a
r . (5)

Using Eq. (4), Eq. (2) can be rewritten as

�Gr = �Hr − T cr
p ln

T b
r

T a
r

= �Hr − T cr
p ln

(
�Hr/c

r
p + T a

r

T a
r

)
. (6)

Note that in the limit cr
p → ∞ the free energy �Gr → 0 in-

dependently of the magnitude of �Hr.

The probability of a state change in a finite reservoir

We can now determine the acceptance probability of a
change in the state of the subsystem in a finite adiabatic sys-
tem. It is given by

p = K

1 + K
; K = exp

(
−�Gs + �Gr

RT

)
, (7)

which obeys detailed balance. If it is decided to allow a
change of state of the subsystem during a Monte Carlo simu-
lation, the enthalpy associated with this change is absorbed or
supplied by the reservoir. T a

r of the reservoir is updated to the
value of T b

r .
Since �Hs + �Hr = 0, the equilibrium is completely

governed by entropy differences

�G = −T (�Ss + �Sr ) = −T

(
�Ss + cr

p ln

(
1 − �Hs

cr
pT a

r

))
.

(8)

In the limit of cr
p → ∞, �G → �Gs, as expected. In this

limit, the fluctuations of the subsystem are independent of the
nature of the reservoir. It is also obvious that for finite cr

p there
is a maximum fluctuation that can be carried by the system:
�G → ∞ for �Hs → cr

p · T a
r . For vanishing reservoir size,

no enthalpy fluctuations in the subsystem are possible.
It is important to point out that the results of these con-

siderations are general. In any physical system, the probability
of heat transfer from any arbitrarily chosen subsystem “s” to
a reservoir “r” consisting of the rest of the total system is a
function of the heat capacity of the reservoir.

MODELING LIPID MEMBRANE FLUCTUATIONS IN A
FINITE AQUEOUS RESERVOIR

Below, we apply these concepts to the fluctuations in
lipid membranes embedded into an aqueous reservoir. In par-
ticular, we consider the case of the cooperative melting tran-
sition from an ordered gel to a disordered fluid membrane.

Monte Carlo simulations have frequently been used to
analyze the cooperative behavior of membranes. Some early
applications can be found in Refs. 9–12. Enthalpy fluctuations
are the central element in such simulations. The parameters
for the simulation are the melting enthalpies and entropies of
the lipid components and the nearest neighbor interactions.
The overall temperature is assumed to be constant and iden-
tical to that of the aqueous reservoir. The enthalpy fluctuates
during the simulation. The heat capacity at constant pressure
can be calculated from the enthalpy fluctuations and yields cp

= (〈 H2 〉 − 〈 H 〉2)/RT2, where 〈. . . 〉 denotes the statistical av-
erage and T is the (constant) temperature of the reservoir. The
fluctuation relation can easily be calculated from a canonical
ensemble of N identical systems that are allowed to exchange
heat. Due to ergodicity, the time evolution of a single sys-
tem at absolutely constant temperature leads to the same dis-
tribution of states. The latter can be studied in Monte Carlo
simulations, and it is meaningful to determine the heat ca-
pacity of a membrane from the fluctuations observed in such
simulations.

The assumption of constant reservoir temperature and the
resultant neglect of reservoir temperature fluctuations are only
permissible if the size of the reservoir is infinite. In a finite
reservoir, the separation of the membrane from its surround-
ings is not permissible because the enthalpy fluctuations of
the membrane and of the reservoir are correlated. Neverthe-
less, considering the fluctuations of the membrane alone can
provide meaningful insights into the behavior of a membrane.
The Gibbs free energy of each configuration of the lipid sub-
system consisting of N lipids is given by

Gs = Gg + Nf (�H − T �S) + Ngf ωgf , (9)

where Gg denotes the Gibbs free energy of the ground state
(with all lipids in the ordered gel state). �H and �S are the
molar excess enthalpy and entropy of the melting transition,
which can be obtained from the calorimetric experiment. Nf

is the number of lipids in the fluid state, Ngf is the number
of unlike nearest neighbor contacts associated with an inter-
facial enthalpy contribution. The parameter ωgf describes un-
like nearest-neighbor interactions and is typically positive. It
is responsible for the cooperativity of the transition, i.e., the
half width of the melting transition and the size of domains in
the transition regime.

We further assume that each lipid is associated with
Nwater water molecules with which the membrane exchanges
heat during the simulation. Further, the lipid chains possess
a heat capacity, cchain

p , which is due to vibration within the
molecular bonds. This heat capacity is also part of the heat
reservoir. Thus, the total heat capacity per lipid of the reser-
voir, cr

p, is given by

cr
p = Nwater · cwater

p + cchain
p . (10)
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This number has to be multiplied by the total number of lipids
to obtain the total heat capacity of the reservoir. For more de-
tails and parameter values, see Appendix A.

RESULTS

Simulations of a lipid membrane in a finite
heat reservoir

We first consider the effect of the finite heat reservoir on
the lipid melting transition. In order to illustrate the coupling
between the membrane enthalpy Hs and the reservoir temper-
ature Tr, we performed a Monte Carlo simulation at the melt-
ing temperature (314.05 K) with 1000 water molecules per
lipid. This is shown in Fig. 2. Due to Eq. (5), Hs and �Tr are
exactly proportional functions.

Subsequently, we calculated the fluctuations of the
enthalpy of the membrane and determined the function
�cs = (〈�H 2

s 〉 − 〈�Hs〉2)/RT 2, which we call the fluctua-
tion strength of the membrane. In Fig. 3, it is shown close to
the transition temperature. We show the cs-profiles for five
different sizes of the aqueous reservoir: 500, 1000, 2000,
4000, and an infinite number of H2O molecules per lipid. The
latter case corresponds to the isothermal limit, i.e., to the heat
capacity �cp of the membrane. It can be seen that a reduc-
tion of the size of the available heat reservoir also reduces the
fluctuation strength �cs of the lipid membrane. This lower-
ing is due to the suppression of large enthalpy fluctuations in
the lipid membrane. In the limit of infinite reservoirs, the ex-
cess heat integrated over the melting transition is given by �H
= ∫

cpdT. For finite reservoirs, however,
∫

csdT < �H. For
this reason, we do not call cs a heat capacity.

The dependence of the fluctuation strength on reservoir
size is also shown in Fig. 5 for 4 different temperatures close
to the transition temperature. Fig. 3 shows that the position
and width of the fluctuation function profile in the melting
transition are unaltered, meaning that the depletion of the

FIG. 2. Traces of membrane enthalpy, Hs, and reservoir temperature, Tr,
from Monte Carlo simulations (100 × 100 matrix). (Top) Fluctuations in
enthalpy Hs of a lipid membrane with 1000 water molecules associated to
each lipid. The enthalpy is given for the total lipid matrix (molar units). (Bot-
tom) Temperature fluctuations in the aqueous reservoir. The water molecules
serve as a reservoir for the heat released from the membrane. The membrane
enthalpy and the temperature are correlated due to the adiabatic boundary
conditions. �Hs and �Tr are exactly proportional functions.

FIG. 3. Fluctuation strength, �cs, of the lipid membrane for five different
sizes of associated water reservoirs. The isothermal limit corresponds to an
infinite number of water molecules per lipid. The curves have been smoothed
by cubic spline fitting. Error bars have been omitted for clarity (cf. error bars
in Figs. 6 and 5). The inset shows frequency dependent heat capacities, cp(ω),
measured by van Osdol et al. Adapted from Ref. 6.

fluctuation strength with smaller heat reservoirs occurs with-
out broadening the transition. For comparison, the inset of
Fig. 3 shows experimental data for frequency-dependent heat
capacities from van Osdol and collaborators adapted from
Ref. 6. The relation between finite size systems and frequency
dependence is considered in the Discussion section.

In order to demonstrate the robustness of our approach,
we show in Appendix B that these results are independent
of the overall system size as long as the number of water
molecules per lipid is constant.

Fluctuation timescales in finite systems

Fig. 4 shows the probability distribution of enthalpy
fluctuations close to the transition temperature for vari-
ous reservoir sizes. It can be seen that the distributions

FIG. 4. Probability distribution of enthalpy states close to the transition max-
imum for different reservoir sizes. The simulated distribution (symbols) is
well described by a Gaussian distribution (solid gray lines) with a half width
that is closely related to the fluctuation strength.
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are Gaussian,

P (Hs) = 1√
2πσ 2

exp

(
− (Hs − 〈Hs〉)2

2σ 2

)
, (11)

where the variance of the fluctuations, σ 2 = 〈
H 2

s

〉 − 〈Hs〉2, is
directly related to the fluctuation strength (cs = σ 2/RT2). Fol-
lowing Einstein,13 this implies that entropy fluctuations of the
system are harmonic with

S(Hs) ≈ −R
(Hs − 〈Hs〉)2

2σ 2
+ const. (12)

with an entropy maximum at Hs = 〈Hs〉. The use of linear
response theory allows us to conclude that, for a fixed reser-
voir size, the relaxation behavior of enthalpy fluctuations is
described by a single exponential with a relaxation time con-
stant, τ , given by Refs. 14 and 15

τ = T 2

L
�cs, (13)

where L is a phenomenological coefficient setting the abso-
lute time scale of the cooperative processes. This relation im-
plies that the relaxation times in our simulations are directly
proportional to the magnitude of the fluctuations. We also find
this in a direct correlation analysis of the cooperative enthalpy
fluctuations in the simulation (not shown, see Ref. 14, for
examples). Smaller reservoir sizes result in a reduced fluc-
tuation strength with a smaller fluctuation time constant, i.e.,
fluctuations are faster. We will discuss this feature in the con-
text of frequency dependent heat capacities in the Discussion
section.

Linking the effective heat capacity to the adiabatic
compressibility

We now consider some consequences of the above re-
sults concerning the magnitude of volume or area fluctua-
tions of the membrane in finite reservoirs, and their relation
to the adiabatic compressibility. The results are especially in-
structive if the reservoir is a nearly incompressible medium
such as water while the subsystem displays large volume or
area fluctuations such as those shown by membranes close to
transitions.

The specific isothermal area compressibility (i.e., infinite
reservoir) is given by

κA
T = − 1

A

(
∂A

∂	

)
T

, (14)

where 	 is the lateral pressure and A is the membrane area.
Close to the melting transition, the isothermal compressibility
can be approximated by

κA
T ≈ κA

T,0 + γ 2
AT

A
�cp, (15)

where �cp is the excess heat capacity.16, 17 In Eq. (15), we
used the experimentally found relation �A = γ A�H, with γ A

= 0.89 m2/J for a lipid bilayer of dipalmitoyl phosphatidyl-

choline (DPPC).16,18 The adiabatic area compressibility is re-
lated to the isothermal compressibility and is given by Ref. 19

κA
S ≡ − 1

A

(
∂A

∂	

)
S

= κA
T − T

A c
system
p

(
∂A

∂T

)2

	

. (16)

This relation has been derived for equilibrium systems using
the Maxwell relations.19 Here, c

system
p is assumed to be the

heat capacity of the total thermodynamic system, i.e., the ex-
cess heat capacity of the lipid membrane, �cp, plus the heat
capacity of the reservoir, cr

p (lipid chains and aqueous buffer),

csystem
p = �cp + cr

p. (17)

Assuming that (∂A/∂T)	 in the lipid melting transition region
is completely dominated by the change in area associated with
the transition, we obtain20

κA
S ≈ κA

T,0 + γ 2
AT

A
�cp − γ 2

AT

A

�c2
p

c
system
p

= κA
T,0 + γ 2

AT

A
�cp ·

(
1 − �cp

c
system
p

)
. (18)

It is easily seen that the term in brackets approaches unity
when the heat capacity of the total system is much larger
than the excess heat capacity of the lipid membrane. This im-
plies that the adiabatic and isothermal compressibilities of the
membrane are equal for a very large reservoir.

Following Halstenberg et al.,20 we postulate that the ef-
fective heat capacity of the lipid membrane in a finite size
reservoir is given by

�ceff
p = �cp ·

(
1 − �cp

c
system
p

)
(19)

with an associated adiabatic compressibility of

κA
S = κA

T,0 + γ 2
AT

A
�ceff

p , (20)

which is formally similar to Eq. (15). The treatment for the
isothermal and adiabatic volume compressibilities is abso-
lutely analogous.

In order to test whether this is a reasonable definition
of the membrane heat capacity, it is therefore interesting to
compare the above heat capacity with the fluctuation strength
of the membrane, �cs, obtained from the Monte Carlo sim-
ulations (Fig. 3). In the Monte Carlo simulation, the heat
capacity of the total heat reservoir, cr

p, is an input parame-
ter. The excess heat capacity of the lipid melting transition
in the isothermal case is known, because it corresponds to
the standard Monte Carlo simulation with constant reservoir
temperature.11 We can therefore calculate the effective heat
capacity analytically from Eq. (19) and compare it with the
simulation results. Fig. 5 shows the fluctuation strength of
the membrane from Monte Carlo simulation as a function of
reservoir size (symbols) at four different temperatures. Due to
the linear relation between fluctuation strength and fluctuation
time scales discussed above, the time scales display the same
dependence on reservoir size. The solid lines show the ana-
lytical calculation from Eq. (19). Within the estimated error,
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FIG. 5. Verification of the analytical ansatz. The effective heat capacity cal-
culated as a function of reservoir size calculated from Eq. (19) (solid lines)
and the fluctuation strength, �cs, from the simulations (symbols) at four dif-
ferent temperatures. The analytical formalism yields a very good approxima-
tion of the simulated data.

perfect agreement between Eq. (19) and the simulated fluc-
tuation strength was found, indicating that these are identical
functions: �ceff

p = �cs .
Our results also indicate that the isothermal and the adi-

abatic compressibility are not fundamentally different func-
tions. They merely reflect different sizes of the available heat
reservoir. They are equally related as the heat capacity and the
fluctuation strength in finite reservoirs as seen from Eqs. (18)
and (19).

DISCUSSION

Here, we have shown that the enthalpy fluctuations of an
arbitrary part (subsystem) of an adiabatically insulated total
system (total enthalpy is constant) depends on the entropy of
the total system, i.e., it depends on the combined entropy of
the subsystem and the reservoir. This entropy can be regarded
as a harmonic potential which depends on the relative size
of subsystem and reservoir (i.e., the rest of the total system).
Linear response theory then leads to interesting connections
between enthalpy fluctuations of the subsystem, its fluctua-
tion lifetimes, and its adiabatic compressibility. While many
of our considerations are general, we have applied them to
the special case of lipid membranes surrounded by an aque-
ous reservoir. The fact that enthalpy, volume, and area fluctu-
ations of lipid membranes are proportional functions16 allows
us to find very simple relations between seemingly different
thermodynamic response functions.

In calorimetric experiments, membranes (in the form of
a dispersion of vesicles) are coupled to an aqueous reser-
voir and the calorimeter itself. It is generally assumed that
the calorimeter serves as an infinite heat bath guaranteeing
a constant temperature of the reservoir. If the temperature
of the reservoir is absolutely constant, it is meaningful to
assign a heat capacity cp to a subsystem, and the integral∫ T2

T1
cpdT = �H yields the enthalpy change of the subsys-

tem upon a variation of the temperature. We have shown that
this is not the case for a finite reservoir that necessarily has
temperature fluctuations that are intimately coupled to the en-
thalpy fluctuations of the subsystem.

The mean square fluctuations of two systems cannot be
added when they are correlated, and it is not meaningful to
assign heat capacities to individual parts of the total system.
However, one can consider enthalpy fluctuations of subsys-
tems that we called the “fluctuation strength” �cs of the mem-
brane. For finite size reservoirs, it is generally true that �cs

< �cp. The integral of cs over temperature does not yield the
enthalpy difference of the system at different temperatures.
For this reason, we do not call cs a heat capacity.

Frequency dependent heat capacity and the relation
to the finite reservoir

Experimentally, it is hard to test the dependence of the
membrane fluctuations on the aqueous volume directly be-
cause at very low water content the phase diagrams of lipid
membrane dispersions change. However, one can consider
frequency-dependent processes where only a short time is
available for the membrane system to exchange heat with the
buffer. Under such circumstances, only a small volume of the
aqueous buffer can contribute as a reservoir. As a result, the
size of the volume that communicates with the membrane is
frequency-dependent.

In periodic perturbation experiments, one can determine
the amplitude of the periodic heat uptake. This function has
often been called the “frequency-dependent” or “dynamic
heat capacity,” cp(ω). This term has been coined in analogy
with the definition of the equilibrium heat capacity dQ/dT.
However, in periodic perturbation experiments both dQ and
dT display a dependence on frequency. cp(ω) is a complex
function with an amplitude and a phase shift between dQ(ω)
and dT(ω). This phase shift is absent at zero frequency. There
are basically two ways of determining the frequency depen-
dent heat capacity. The first consists of a periodic temperature
variation imposed on the system from the outside, which is
linked to a periodic uptake and release of heat, such as de-
scribed by Ref. 21. The second method consists of a periodic
variation of pressure of an adiabatically shielded volume. The
observable is the periodic variation in reservoir temperature.22

The frequency dependent heat capacity is determined indi-
rectly using the Clausius-Clapeyron equation. What is actu-
ally observed in the case of lipid membranes is the transfer
of heat from the membrane to the reservoir.5, 6 This situation
is in fact comparable to our case that considers temperature
fluctuations in the reservoir generated by enthalpy fluctua-
tions in the membrane. For this reason, we compared the fre-
quency dependent heat capacity by Ref. 6 with the fluctuation
strength in finite reservoirs (Fig. 3). The inset of Fig. 3 shows
the results of these experiments on DPPC vesicles for four
frequencies between 0.01 and 10 Hz. They display a strik-
ing similarity to our simulations when varying reservoir size
in two respects: 1. The half width of the excess heat capac-
ity profile is unchanged but its amplitude decreases when in-
creasing frequency or decreasing reservoir size. 2. The effect
on amplitude is most pronounced in the transition, because the
fluctuation time scales are much larger due to critical slowing-
down.

In contrast to the enthalpy fluctuations, the equilibrium
heat capacity does not possess an intrinsic time scale. Nielsen
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and Dyre4 have thoroughly analyzed the frequency dependent
heat capacity and its coupling to fluctuation relations. They
define cp(ω) as the fraction of the equilibrium fluctuations
with time scales shorter than τ = 1/2πω. Clearly, cp(ω) cap-
tures only those equilibrium fluctuations that are faster than
the characteristic time scale of the oscillation. In other words,
it captures those heat transfer processes that have equilibrated
within the time t < τ . In the limit of ω → 0, the frequency de-
pendent heat capacity cp(ω) therefore approaches the equilib-
rium heat capacity, cp. Our present simulation considers heat
transfer into a finite reservoir in an equilibrium situation. The
reduction in reservoir size attenuates the large fluctuations.
By demonstrating the Gaussian nature of the fluctuations, we
have also shown that fluctuation relaxation is single expo-
nential with a time scale related to the size of the reservoir
(Fig. 4). Thus, relaxation of heat into a finite reservoir resem-
bles the relaxation of heat in finite time as discussed above.

Consider a membrane embedded in an infinite water
reservoir (Fig. 1, left) that is subject to periodic variation of
the lateral pressure applied to the membrane. It is reasonable
to assume that this will lead to an exchange of heat with an ad-
jacent layer of water that is finite due to the finite time scale
for heat transport in water. In the first phase of the pertur-
bation, heat is released into the aqueous layer; in the second
phase, it is reabsorbed. The volume of the contributing wa-
ter layer is likely to be directly related to the timescale of the
oscillation.

In the past, we have demonstrated for lipid membranes
that the equilibrium volume and area fluctuations are directly
proportional to the enthalpy fluctuations16,23 as are the re-
laxation times following temperature and pressure perturba-
tions. This suggests a proportionality between equilibrium
heat capacity and isothermal volume or area compressibil-
ity. The adiabatic compressibility is also an equilibrium prop-
erty that can be derived from isothermal properties by us-
ing Maxwell relations. It is not intuitive why the concept of
an adiabatic compressibility can successfully be used for de-
scribing dynamic or frequency dependent phenomena. While
the frequency dependent heat capacity is not a thermody-
namic function, we have shown here that one can nevertheless
draw a reasonable analogy between a properly defined “fre-
quency dependent heat capacity” and a “frequency dependent
compressibility” and suggest a proportional relationship for
the two. In analogy to Eq. (19), one can also postulate that
the frequency dependent excess heat capacity of the mem-
brane assumes the following form:

�ceff
p (ω) = �cp ·

(
1 − �cp

c
system
p (ω)

)
, (21)

where c
system
p (ω) is the reservoir size accessible in the finite

time τ = 1/2πω. The excess adiabatic compressibility is then
given by

�κS(ω) = γ 2
AT

A
�ceff

p (ω). (22)

If c
system
p → ∞, the frequency dependent heat capacity ap-

proaches the equilibrium excess heat capacity, and the adi-
abatic compressibility approaches the isothermal compress-

ibility. Understanding the timescale of heat transfer from the
membrane subsystem into the aqueous reservoir might help
formulating dispersion relations.

While Eq. (22) expresses a tentative rather than a derived
form of the frequency dependence of the compressibility, it
has been used successfully in describing the ultrasonic fre-
quency dependence of the three-dimensional sound velocity
of lipids in the MHz regime. Halstenberg et al.20 performed
experiments on DPPC vesicles using a resonator with a fre-
quency of 7.2 MHz, which corresponds to a timescale that is
much faster than that of the cooperative domain size fluctua-
tion in equilibrium. The speed of sound in the volume is given
by

c =
√

1

κV
S ρV

, (23)

where κV
S is the adiabatic volume compressibility and ρV

is the mass density. The experimentally measured speed of
sound of lipid dispersions was correctly predicted by assum-
ing that the heat capacity of the lipid chains is dominant at
such high frequencies. Again, the rationale is that there is in-
sufficient time for heat to diffuse into the aqueous volume at
these frequencies.

The frequency dependence of sound is called “disper-
sion” and is of considerable importance for sound propagation
phenomena in matter. We have previously proposed that elec-
tromechanical solitons with strong similarities to the action
potential can propagate in biomembranes and nerves.18, 24–27

Such solitons are a consequence of the simultaneous presence
of nonlinear elastic constants and dispersion close to melting
transitions. Although many details remain to be understood,
we have also shown that the dispersion relation is related to
the thermodynamic behavior of membranes.8 In particular, the
dispersion relation sets a natural timescale for the propagating
nerve pulse. Similarly, the fluctuation time scales correspond
to the typical open-time of lipid channels.28, 29 It seems likely
that the time scale of fluctuations is of significant biological
relevance.

CONCLUSION

We have constructed a framework for modeling the fluc-
tuations of arbitrary subsystems embedded in an adiabatically
shielded reservoir. This method was applied to the lipid melt-
ing transition in a finite adiabatically insulated aqueous reser-
voir. We show that the magnitude of the cooperative fluctua-
tions of the membranes depends on the size of the associated
reservoir. As a consequence, the elastic constants of the mem-
brane also depend on reservoir size. It seems plausible to com-
pare this effect to frequency dependent measurements where
only parts of the environment of a membrane can contribute
as a reservoir for the heat transfer. We believe that the present
considerations may contribute to the better understanding of
relaxation processes in general and the dispersion relation of
lipid membranes that is important for setting the time scale of
dynamic processes such as nerve pulse propagation.
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APPENDIX A: MONTE CARLO SIMULATIONS

We have modeled the melting transition of a single lipid
membrane using the Doniach model,9 which is a modified
version of the Ising model with two lipid states, gel and fluid,
instead of two spins. This differs from the Ising model in that
the two lipid states are not only different in enthalpy but also
in entropy. This is due to the higher degeneracy of states of
each lipid molecule in the fluid phase. We used Monte Carlo
simulations employing the Glauber algorithm for the individ-
ual simulation steps.30 Such simulations are described in de-
tail by Refs. 11 and 12.

Simulations were typically carried out on a triangular
lattice with 100 × 100 sites with periodic boundary condi-
tions. Each lattice point represents one lipid which can either
be in the gel or the fluid state. All simulations were equili-
brated for at least 30 times the correlation time before sam-
pling, effectively meaning more than 6 × 104 Monte Carlo
cycles at the transition maximum. The equilibration was car-
ried out by assuming a constant water bath temperature in
the first step. In a second step, we considered finite reser-
voir size using an algorithm described below. In analogy to
the heat capacity, we defined the excess fluctuation strength
�cs = (〈

�H 2
s

〉 − 〈�Hs〉2
)
/RT 2 that we calculated from the

excess enthalpy fluctuations of the lipid membrane (enthalpy
Hs) embedded into the finite reservoir. The statistical error
was estimated using the Jackknife method. We emphasize that
the fluctuation strength �cs is identical to the equilibrium ex-
cess heat capacity defined as �cp = (dQ/dT)p only in the limit
of infinite reservoirs and constant reservoir temperature.

In the present simulation, we used the following pa-
rameters for modeling the heat capacity profiles of DPPC
large unilamellar vesicles (LUV): �H = 36 400 J/mol (melt-
ing enthalpy), �S = 115.9 J/mol K (melting entropy), and
ωgf = 1326.0 J/mol31 leading to a melting temperature of
Tm = 314.05 K and a transition half width of about 1 K. The
heat capacity of water was taken to be cwater

p = 75 J/K mol
which corresponds to the value of 1 cal/g K for free water. The
heat capacity of the chains was set to cchain

p = 1600 J/K mol
which was determined experimentally by Blume32 for gel
state DPPC. The total heat reservoir is shared by all lipids
in the lipid membrane. The minimum number of water
molecules per lipid considered in any simulation is 100.

The simulated heat capacity profiles and the estimated
statistical errors were smoothed using cubic spline fits.

APPENDIX B: SYSTEM SIZE DEPENDENCE

Fig. 6 shows that the calculated fluctuation strength (per
mole of lipid) is independent of the total number of lipids
assuming a fixed reservoir size per lipid (here, 1000 H2O
molecules per lipid) within statistical error. This behavior was
demanded in the Theory section and demonstrates the robust-
ness of our approach.

FIG. 6. Fluctuation strength, �cs, at the transition temperature Tm of the
lipid membrane in a finite system with 1000 water molecules per lipid. The
simulation was performed for different sizes, n, of the lipid membrane. A
system size of n denotes a n × n matrix. The fluctuation strength per lipid is
independent of system size within the error of the calculation.
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The collisions of two simultaneously generated impulses in the giant axons of both earthworms and
lobsters propagating in orthodromic and antidromic direction are investigated. The experiments have been
performed on the extracted ventral cords of Lumbricus terrestris and the abdominal ventral cord of a
lobster, Homarus americanus, by using external stimulation and recording. The collision of two nerve
impulses of orthodromic and antidromic propagation did not result in the annihilation of the two signals,
contrary to the common notion that is based on the existence of a refractory period in the well-known
Hodgkin-Huxley theory. However, the results are in agreement with the electromechanical soliton theory
for nerve-pulse propagation, as suggested by Heimburg and Jackson [On Soliton Propagation in
Biomembranes and Nerves, Proc. Natl. Acad. Sci. U.S.A. 102, 9790 (2005).].
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I. INTRODUCTION

The action potential in nerves consists of a transmem-
brane voltage pulse of approximately 100 mV that prop-
agates along the neuronal axon. In 1952, Hodgkin and
Huxley (HH) proposed that this pulse results from a
selective voltage-dependent breakdown in membrane re-
sistance for potassium and sodium [1]. Ions flow along the
concentration gradients through channel proteins modeled
as electrical resistors, and the HHmodel is thus intrinsically
dissipative. Hodgkin compared the action potential to
“a burning fuse of gunpowder” [2]. Time scales in the
model, intended to describe relaxation processes in the
proteins, are contained in the parametrization of the protein
conductances. They lead to a refractory period following a
pulse during which the nerve is not excitable. Thus, it is
expected that nerve pulses traveling from opposite ends of a
neuron will annihilate upon collision [3].
Because of its dissipative nature, the action potential in

the Hodgkin-Huxley model should be accompanied by heat
production. However, investigations of the initial heat
resulted in the finding that, within experimental error, no
such heat is released during the action potential [4–7]. A
first phase of apparent heat release is followed by a second
phase of heat absorption [8]. The emission and reabsorption
of the initial heat is exactly in phase with the observed
voltage changes, and the integrated heat associated with the

action potential is zero within experimental accuracy.
The data thus indicate that the action potential is an
adiabatic (nondissipative) phenomenon such as, e.g., a
sound wave. This finding is in conflict with the HH model,
as acknowledged by Hodgkin (Ref. [2], p. 70).
The absence of net heat release combined with the

experimental finding of mechanical dislocations during
the action potential [9,10] provided the motivation for
attempts to explain the action potential as a propagating
electromechanical pulse [11–13]. Because of the presence
of lipid-chain-order transitions just below physiological
temperature, the elastic constants of biomembranes display
a nonlinear dependence on both lateral density and
dispersion [11], i.e., frequency dependence of the sound
velocity. This was shown to result in solitary mechanical
waves with properties surprisingly similar to those of the
action potential. For instance, they propagate with a
velocity of about 100 m=s (which is similar to the velocity
of the action potential in the myelinated nerves of verte-
brates) and display a reversible heat release as found in
experiments. The change in nerve thickness associated with
such solitary waves is approximately 1 nm, in agreement
with the changes in membrane thickness associated with a
phase change. Given the known capacitive properties of
lipid membranes, this thickness change and the associated
decrease in membrane area can produce voltage changes on
the order of 100 mV without any transverse flow of charge.
It was shown [11] that the thermodynamic properties of
biological membranes support the propagation of solitary
waves that display electric, thermal, and mechanical
changes consistent with those found in experiments. In
contrast to the Hodgkin-Huxley view, an electromechanical
theory would not lead to annihilation of colliding pulses
but rather to near-lossless penetration [14]. Given the
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difference between these predictions of the fate of colliding
nerve pulses, it is important to investigate whether they
annihilate or simply pass through each other.
It is generally believed that the action potential is

generated in the neuron at the axon hillock [15]. Pulse
propagation in the direction of the axon, the so-called
orthodromic propagation, occurs from the soma towards
the end of the synapses. However, in vertebrate and
invertebrate nerve cells, the action potential can also be
stimulated in regions remote from the axon hillock, e.g.,
ectopic sites located in axons or dendrites [16]. Pulse
propagation in the opposite direction, called antidromic
propagation, can occur [16]. In fact, orthodromic and
antidromic impulse propagation in neurons and other
excitable tissues can be induced by electrical stimulation
in the vicinity of the soma or in the distal part of the axon,
respectively.
The simultaneous stimulation of orthodromic and anti-

dromic pulses can lead to collision events. As suggested
above, such events can provide important information
regarding the nature of signal transmission of information
in neurons. In spite of its relevance for understanding
neuronal function and behavior, surprisingly little attention
has been given to such phenomena. The collision between
two impulses was first investigated by Tasaki in 1949 [3]
using the motor fibers innervating the sartorious muscle of
the toad. From his experiments, Tasaki concluded that
the collision of two impulses results in their mutual
annihilation. Since this experiment was performed, little
further work was done to confirm or to reject its finding.
This may be due in part to the fact that the outcome of
Tasaki’s experiment is in agreement with the predictions of
the HH model [1]. The importance of further investigation
is emphasized by the fact that collision experiments,
supplemented by the assumption that impulses always
annihilate each other, are often used to identify axonal
destinations of single cells in the central nervous
system [17–19].
In the current work, we report on collision experiments

using the ventral cords of earthworm Lumbricus terrestris
and the abdominal ventral cord of a lobster Homarus
americanus and show that the collision of two impulses
generated simultaneously in orthodromic and antidromic
directions does not result in their mutual annihilation.
Instead, they penetrate each other and emerge from the
collision without material alterations of their shape or
velocity. The earthworm was chosen because of the
properties of the median giant fibers (MGF) and because
of the possibility of making simultaneous orthodromic and
antidromic stimulation [20]. The electrotonic connections
of the synapses and the neuronal syncytia permit the
bidirectional propagation of the action potential along
the array of giant neurons that form the MGF [21]. A
similar situation is found in the median giant axons of the
ventral cord of a lobster [22]. We compare these findings

with simulations of the action potential, as suggested by the
electromechanical soliton theory.

II. MATERIALS AND METHODS

Materials.—Earthworms (Lumbricus terrestris) were
obtained from a local supplier. We used an earthworm
saline solution adapted from Drewes et al. [23] consisting
of 75 mM NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2,
10 mM Tris, and 23 mM glucose, adjusted to pH 7.4 with
8 mmol=l HCl. All the chemicals used in the preparation
were purchased from Sigma-Aldrich.
Lobsters (Homarus americanus) were obtained from a

local supplier. We used a lobster saline solution adapted
from Ref. [24], with the following composition: 462 mM
NaCl, 10 mM KCl, 25 mM CaCl2, 8 mM MgCl2, 10 mM
Tris, and 11 mM Glucose, adjusted to pH 7.4 with NaOH.
Hardware and software.—The PowerLab 26 T data

acquisition hardware was purchased from ADInstruments
Europe (Oxford, UK). The instrument contains an internal
bio-amplifier that allows us to record small electrical
potential on the order of microvolts. The bio-amplifier
contains two recording channels (see Ref. [25]). The
Labchart software from ADInstruments was used to control
the PowerLab 26 T sending the stimulation and recording
the signals coming from the ventral cord.
Nerve chamber.—The self-built nerve chamber is com-

posed of an array of 21 stainless-steel electrodes in a
longitudinal cavity covered by a lid in order to protect the
nerve once extracted. The lid also allows maintenance of a
saturated water-vapor atmosphere in order to keep the
moisture in the ventral cord. The nerve chamber is a
7 × 2.5-cm block of 1-cm height made on Plexiglas that
contains a longitudinal channel of 6-cm length (depth of
0.5 cm and width of 0.5 cm). In the longitudinal aperture,
an array of 21 perforations was created to place stainless-
steel electrodes. The array was located about 0.25 cm from
the top of the chamber. The distance between consecutive
electrodes is 0.25 cm. The stainless-steel electrodes have a
length of about 3.4 cm and a diameter of 0.5 mm and were
fixed in the perforation along the chamber by using
Reprorubber Thin Pur by Flexbar (Islandia, NY). A scheme
of the nerve chamber is shown in Fig. 1.
Nerve preparation of an earthworm.—The earthworms

(Lumbricus terrestris) were anesthetized by immersing
them in a solution of 10% ethanol in tap water. The
earthworm was left between 5 and 10 min in the anesthetic
solution depending on its size. Once removed from the
anesthetic solution, the earthworm was washed with tap
water to remove remains of the anesthetic solution and
fixed longitudinally in a dissecting pan using pins. The
earthworm was pinned laterally with the ventral side facing
the dissection pan. A small incision in the dorsal side was
made by using a scalpel or small scissors. Subsequently, the
incision was elongated along the entire length of the
earthworm body. Using micro-scissors with a straight
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blade, we cut each septum to liberate the internal organs
and pin down the loose skin with muscular tissue. Using
curved micro-scissors, we removed the crop, gizzard,
intestine, and the first 20 segments of the ventral cord
including the brain. After this step, we cleaned the
preparation with the saline solution, leaving the ventral
cord and median ventral blood vessel exposed. In the final
step, we cut each segment below the ventral cord, taking
care to avoid damaging the sample. The blood vessels were
removed before extracting the ventral cord. The extraction
and all experiments were performed at room temperature
(about 22 °C). A scheme of the internal and external
structure of the ventral cord is shown in Fig. 2.
Electrical stimulation can be used to excite the median

and lateral giant fibers (LGF) of intact anesthetized earth-
worms [27]. The signals coming from the small giant axons
of the ventral side of the ventral cord cannot be detected
using our setup. The signal from the three small giant axons
require higher stimulation voltages and probably higher
amplification. Note that even in the intact earthworm, the
signals from the median and lateral axons can be detected in
external recordings. This is not the case for the small giant
axons [27].
However, earthworms can move during the experiment

after several electrical stimulations. Additionally, an exces-
sive amount of anesthetic preventing movements during
the experiment will affect the excitation properties of
the ventral cord as well as the propagation velocity. For
this reason, we performed experiments on the extracted
ventral cord.
The ventral cord from Lumbricus terrestris was used

right after extraction, and special care was taken to remove
any remaining tissue that did not belong to the ventral cord
itself. The ventral cord was left in Ringer’s solution for
about 30 min, to relax. We proceeded to the next step after
the ventral cord had reached a stable size. The ventral cord
is very flexible and can be stretched without damaging
its internal structure as a consequence of the trilaminar
layer that protects the neurons filling the inside. After
the equilibration period, the ventral cord was placed in
the nerve chamber over the electrode array, and a few

microliters of Ringer’s solution were deposited at the
bottom of the chamber. The nerve chamber was closed
with a glass lid, allowing an atmosphere of saturated water
vapor to accumulate. This prevented the loss of moisture by
the ventral cord and the subsequent death of the nerve for
several hours. The ventral cord was placed with the ventral
side facing the electrode array, and the preparation was
ready for the collision experiment. Two pairs of stimulation
electrodes were placed close to the two ends of the
extracted ventral cord. A single pair of recording electrodes
was placed at about 1=3 of the distance between the
stimulation sites. As an initial step, we determined the
voltage threshold for the generation of an action potential
propagating orthodromically. We followed the conven-
tional protocol by increasing the voltage in small intervals.
The same protocol was followed by stimulating the ventral
cord from the tail side to generate an action potential
propagating antidromically. In all the experiments, we
found that slightly higher voltages were needed to initiate
antidromic action potential propagation. At voltages higher
than the voltage threshold, the spike was stable and
unchanged in shape and position. The observed differences
in threshold voltage can be due to variations in diameter of
the giant neurons along the MGF. The MGF becomes
smaller in diameter towards the posterior end of the
earthworm, and the LGF becomes smaller towards the
anterior end of the animal [20]. According to Coggeshall
[26], the diameter of lateral giant axons ranges between
4 μm in the anterior regions and 50 μm in the posterior
regions of the nerve cord, while the diameter of the median

FIG. 2. (a) Schematic representation of an earthworm ventral
cord with the segments and three pairs of roots, (b) ventral cord
with and without muscular tissue, and (c) internal structure of the
ventral cord redrawn from Ref. [26]. Median and lateral giant
fibers are marked with M and L.

FIG. 1. The design of the recording chamber. The nerve is
placed on top of 21 electrodes located slightly above an aqueous
buffer. The chamber is closed with a lid to avoid drying of the
nerve. The electrodes at the end are used for stimulation, while
the center electrodes are used for recording the signal.
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giant fiber in the posterior end is of the order of 100 μm. In
order to have a relatively uniform diameter in the median
giant axons, we used a fragment of the ventral cord starting
at segment 20 with a total length of about 4 to 6 cm.
Because the two LGFs are physically connected and fire in
a synchronous way, we used only the MGF for the collision
experiment [27]. We should note that voltage values higher
than those used for the antidromic action potential for the
MGF will generate an antidromic action potential for the
LGF, which we wanted to avoid. The median giant axon
has a larger diameter than the lateral giant axon over the full
length of the ventral cord fragment used in our experiments.
This results in faster signal propagation in the median giant
axon [28] and makes it possible to distinguish the action
potentials from the median and the lateral giant axons. In all
cases, we verified for orthodromic and antidromic propa-
gation that at higher voltages we could get a second signal
with a bigger latency (corresponding to the LGF), ruling
out any uncertainty in the spike identification.
Nerve preparation of lobster.—The lobster (Homarus

americanus) was anesthetized by keeping the animal in the
freezer for about 30 minutes. Once removed from the
freezer, the animal was placed on the dissecting table and
the head was severed in order to remove the brain. In a
second step, a cut was made at the onset of the abdomen in
order to separate the tail. The abdominal part of the ventral
cord can be extracted by cutting both laterals of the ventral
side of the animal and removing the soft shell. The
abdominal ventral cord is attached to the soft shell and
is easily removed with tweezers after cutting the nerves
branching from the six ganglia. The ventral cord contains
four giant axons. Two median giant axons run, as a single
neuron, all the way through the abdominal ventral cord, and
two lateral giant axons are formed by six neurons con-
nected at the level of each ganglia [29]. In the abdominal
part, the lateral giant axons display a larger diameter than
the median giant axons [22]. They are excited at the lowest
stimulation voltage. A cross section of the ventral cord is
shown in Fig. 3. The giant axons of the ventral cord of the
lobster are considered nonmyelinated [30].

III. RESULTS

A schematic description of key steps in the collision
experiment is shown in Fig. 4. We stimulate the axon with
two pairs of electrodes at the two ends of the nerve (shown
in red and green). Two recording electrodes (shown in blue)
are located at about 1=3 of the total length of the axon in the
orthodromic direction. Since the difference in potential
between these two electrodes is recorded, the resulting
signal is approximately the first derivative of the true
pulse shape. If two pulses are generated simultaneously
at opposite ends of the nerve, the orthodromic pulse is
recorded by these electrodes before the collision of
the pulses, while the antidromic pulse is detected after
the collision. If the two pulses penetrate each other, the

recorded signal will show both the orthodromic pulse and
the subsequent antidromic pulse (see Fig. 4, bottom left). If
the two pulses annihilate, only the initial orthodromic pulse
will be recorded (see Fig. 4, bottom right). The results for
simultaneous stimulation at both ends can be compared
with experiments in which only the orthodromic or only the
antidromic pulse was stimulated. Although the schematic
drawing in Fig. 4 suggests that orthodromic and antidromic

FIG. 3. (a) Schematic representation of a lobster ventral cord at
the abdominal (tail) site with six ganglia, (b) abdominal ventral
cord extracted from the lobster tail, and (c) internal structure of
the ventral cord showing four giant axons.

FIG. 4. A schematic representation of the different steps of the
collision experiment at times t0, t1, t2, and t3. The action
potentials (AP) are generated at t0 by simultaneous stimulation
in both ends of the ventral cord; the orthodromic AP reaches the
recording electrodes at t1; the APs collide at t2; the antidromic AP
reaches the recording electrodes at t3.
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pulses have the same shape, their shapes can differ in real
nerves because the thickness of the axon is not constant
along its full length.

A. Theory

Biological membranes display lipid-chain-melting tran-
sitions slightly below body temperature. In these transi-
tions, the lateral compressibility of the membrane changes
as a nonlinear function of the lateral mass density. The
compression modulus is also a function of frequency. These
two facts lead to the possibility of propagating mechanical
solitons (or solitary pulses) [11]. The mathematical expres-
sion for a propagating soliton in such a membrane cylinder
is given by

∂2

∂t2 Δρ ¼ ∂
∂x

�
ðc20 þ pΔρþ qðΔρÞ2Þ ∂

∂xΔρ
�
− h

∂4

∂x4Δρ;
ð1Þ

where x is the spatial coordinate along the membrane
cylinder and t is time. Here, we use parameters appropriate
for dipalmitoyl phosphatidylcholine (DPPC) membranes at
45 °C as given in Ref. [11]. The density variation,
Δρ ¼ ρ − ρ0, is the difference between the lateral mass
density of the membrane and its empirical equilibrium
value of ρ0 ¼ 4.035 × 10−3 g=m2. The low-frequency
sound velocity is c0 ¼ 176.6 m=s. The coefficients p
and q were fitted to measured values of the sound velocity
as a function of density. For the simulations here,
p ¼ −16.6c20=ρ0 and q ¼ 79.5c20=ðρ0Þ2, as found in
Ref. [11]. If the membrane is slightly above the melting
transition of the lipid chains, it is to be expected that p < 0
and q > 0. The dispersion coefficient h must be positive.
The above equation possesses exponentially localized
solutions of a fixed shape which propagate with an arbitrary
constant velocity v that is smaller than c0 and larger than a
minimum limiting velocity vmin. Equation (2) possesses
analytic solutions given in Ref. [14].
The pulse amplitude reaches a maximum amplitude of

Δρmax ¼
jpj
q

ð2Þ

as the velocity approaches the limiting value [11] of

Δvmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c20 − p2

6q

s

: ð3Þ

Thus, different velocities are associated with different pulse
amplitudes and energies. For synthetic DPPC large uni-
lamellar vesicle membranes slightly above their melting
temperature, the minimum pulse velocity is vmin ¼ 0.65c0
and the maximum amplitude change is Δρmax=ρ0 ¼ 0.209.

This corresponds to passing from the liquid to the solid
phase of the membrane.
We have solved Eq. (1) numerically using the above

parameters for DPPC and a velocity of v ¼ 0.7c0. The solid
lipid phase has a maximum density that is 24.6% higher
than that of the liquid state. In order to prevent densities
higher than that of the solid lipid phase during pulse
collision, we have introduced a soft barrier at Δρ=ρ0 ≈ 0.25
(see Ref. [14] for details). The results are shown in Fig. 5.
The top panel shows the pulses propagating before and
after the collision at five different times t. The collision
process leads to some dissipation of energy in the form of
small amplitude noise that propagates with the speed of
sound c0 (i.e., faster than the velocity of the solitary pulse).
The shape, velocity, and energy of the pulses are largely
unaltered. During pulse collision, the density changes of
both pulses do not have to add together, as one might
intuitively assume. Instead, one finds a broadened inter-
mediate collision state, which is wider than the individual
solitons. In the soliton theory, collision obviously does not
lead to annihilation of the colliding pulses. The fact that the
individual pulses suffer a minor loss of energy during the
collision merely indicates that we are considering solitary
pulses rather than true solitons. The generation of small
amplitude noise with very low energy content is mostly a
consequence of not allowing the density change to
exceed Δρ=ρ0 ¼ 0.25.
Biomembranes can be regarded as charged capacitors

[31]. Voltage changes are directly related to the density
changes. Assuming that Δρ is proportional to a change in
voltage, we can determine the voltage signal recorded by
two hypothetical electrodes that are placed as shown in
Fig. 4. These electrodes are shown as blue lines in Fig. 5
(top panel) and, in our simulation, they are separated by
1.6 cm (which is to be compared with the total pulse width
of about 5 cm). Figure 5 (bottom panel) shows the
recording by these electrodes for a single pulse from the
left, a single pulse from the right, and for the calculated
collision experiment. The dashed blue line is the sum of the
two single pulses shown as a guide for the eye. It is clear
that the second pulse is distorted by the collision process, as
is expected from the analysis in the top panel.
The results of soliton theory described above can be

compared with the well-known Hodgkin-Huxley model.
Originally designed to describe a squid axon containing
sodium and potassium channel proteins, the differential
equation for the Hodgkin-Huxley model is given by

r
2Ri

∂2

∂x2 V ¼ Cm
∂
∂t V þ gKðV; tÞðV − EKÞ

þ gNaðV; tÞðV − ENaÞ; ð4Þ

where the transmembrane voltage V is the observable
(instead of Δρ), r is the radius of the axon, Ri is the
resistance of the cytoplasm in the axon, Cm is the
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membrane capacitance, and EK and ENa are the Nernst
potentials of potassium and sodium reflecting the
differences in ion concentrations inside and outside of
the neuron. The conductances of potassium and sodium
ions, gKðV; tÞ and gNaðV; tÞ, are complicated functions of
voltage and time. If additional channel proteins are present,
more conductance terms must be added to Eq. (4).
Equation (4) has a structure similar to thewave equation (1).
However, no general theory exists for the conductances

giðV; tÞ. Their dependence on time and voltage must be
determined empirically from voltage-clamp data [1]. This
introduces many parameters into the above equation.
Furthermore, not all nerves are as simple as the squid
axon, and they may contain more than just two channel
proteins. More terms containing the conductances of other
proteins must be introduced, further increasing the number
of parameters. In the literature, one finds models with up to
66 parameters [32]. Since different nerves contain different
ion channels, it is not generally possible to make a generic
statement about the pulse collision process. However, on
the basis of numerical simulations for the squid axon, it is
generally believed that the Hodgkin-Huxley model results
in the annihilation of colliding pulses. Qualitatively, this is
due to a refractory period introduced by time-dependent
changes in protein structure during the nerve pulse that
render the nerve unexcitable for a short period after the
pulse. This will be explained further in the Discussion
section.

B. Experimental results

1. Earthworm experiments

After confirming that we could stimulate the ventral cord
from both ends independently, we performed a collision
experiment by simultaneously stimulating both ends of the
ventral cord. We proceeded by increasing the stimulating
voltage in small intervals up to the values necessary to
generate action potentials at both ends of the ventral cord
fragment simultaneously. The recording electrodes are
located closer to the site where the orthodromic pulse is
generated. It is therefore necessary for the antidromic pulse
to pass through the orthodromic pulse before it can reach
the recording electrodes (cf. Fig. 4). Thus, if both the
orthodromic and the antidromic pulse can be recorded, the
two pulses must have passed through each other. If only
the orthodromic pulse (but not the antidromic pulse) can be
recorded, this is evidence for pulse annihilation.
A representative result is shown in Fig. 6. The top two

traces show the orthodromic and antidromic pulses after
individual stimulation. The antidromic signal arrives at the
electrodes about 1.5 ms later than the orthodromic pulses.
This interval is comparable to the width of the pulses.
Therefore, one can recognize both pulses as separate
events. The bottom trace shows the experiment where both
orthodromic and antidromic pulses were generated simul-
taneously. We find that both pulses can be recorded and that
they are unchanged in shape. As a guide to the eye, we
show the sum of the individual orthodromic and antidromic
pulses in the absence of a collision (dashed blue line). This
signal is very similar to that recorded in the collision
experiment, indicating that pulse collision does not gen-
erate much distortion of the signal. This experiment was
reproduced in at least 30 different worm axons, and we
always found pulse penetration. We observed infrequent
events (less than 15%) in which we recorded only the

FIG. 5. Top panel: The collision of two pulses in the soliton
theory of nerves for v ¼ 0.7c0. Parameters are given in the text.
After collision, the shape of the solitary pulses is virtually
unchanged. The two blue lines indicate the positions of two
hypothetical recording electrodes with a distance of 16 mm.
Bottom panel: The calculated voltage difference between the two
electrodes shown in the top panel. The top trace shows the single
orthodromic AP, the center trace shows the antidromic AP, and
the bottom trace (solid) shows the recording of the two colliding
pulses. The dashed blue line is the sum of the orthodromic and
antidromic without a collision. It is added as a guide to the eye.
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orthodromic pulse. This typically happened when the axon
was moved such that the stimulation electrodes were close
to the extreme ends of the axon. In all of these cases,
relative movement of the same axon with respect to the
electrodes reestablished pulse penetration.
In Table I, we report the results of a selection of ten

different samples (out of the 30 different nerves) for which
there was little or no overlap between the orthodromic and
antidromic pulses. In these cases, the velocities of the
individual pulses could be determined easily. The con-
vention is to determine the velocities from the first
extremum in each pulse recording. For completeness, we
also give the velocities for the nodal point in each trace
corresponding to the pulse maximum (values in brackets).
These values are somewhat smaller but are also comparable
for single pulses and pulses in the collision experiment. We
show the velocities of both the orthodromic and the
antidromic pulses in the case of single and of simultaneous
stimulation. In general, the velocities of the antidromic
pulses are lower. This lower velocity could be a result of
diameter changes along the median giant axon. Pulse
velocities range between 2.8 and 9.7 m=s. The earthworm
MGF and LGF axons are considered myelinated (with
varying degrees of myelin packing). The conduction speed
is a few fold higher than that of nonmyelinated fibers of the
same diameter [30]. Since the temporal width of the pulses
is about 2 ms, this corresponds to a lateral extension of the

pulse of 4–17 mm. Thus, the pulse width is larger than the
distance between the electrodes. It is also larger than the
average neuron in the segmented giant axons which has a
length of about 1–1.5 mm [21]. In Fig. 7, we plot both
orthodromic and antidromic pulse velocities in the collision
experiment versus the velocities in the single stimulation
experiment. Within experimental error, we find that the
propagation velocities are unaltered by the collision.
Similarly, as can be seen in Fig. 6, the pulse shapes are
unaltered by a collision. The pulse velocities are typically
smaller in the antidromic direction as compared to the

FIG. 6. Example of the pulse collision experiment in the ventral
cord of an earthworm (sample #7 in Table I). Top: Action
potential propagating orthodromically after stimulation at the top
end of the nerve. Center: Action potential propagating antidromi-
cally after stimulation at the bottom end of the nerve. Bottom:
Both action potentials generated by simultaneous stimulation at
both ends (solid line). For comparison and a guide for the eye, the
dashed line represents the sum of the individual pulses. This
signal is similar to the observed trace. The region shaded in grey
shows the stimulation artifact.

FIG. 7. Pulse velocities obtained in the collision experiment in
the earthworm (simultaneous stimulation) versus the velocities of
the single stimulation (using the first extremum of each pulse
recording). Top panel: Orthodromic pulses. Bottom panel:
Antidromic pulses. The same symbols in both panels indicate
identical nerve preparation. The open square corresponds to the
traces in Fig. 6 (sample #7). The experimental temperature
was 22� 1 °C.

PENETRATION OF ACTION POTENTIALS DURING … PHYS. REV. X 4, 031047 (2014)

031047-7



orthodromic direction. We believe that this is due to the
change in diameter of the fibers along the worm axis.
The interpretation of the collision experiments shown in

Fig. 6 and Table I rests on the assumption that in both the
orthodromic and antidromic directions, the same fiber was
stimulated. Early experiments from Refs. [33,34] on the
neural cord of an earthworm show that the MGF displays a
lower threshold voltage than the LGF. However, there is a
finite possibility that in our collision experiments, we
stimulate the MGF in one direction and the LGF in the
other direction. Under such circumstances, the action
potentials would trivially pass by each other and never
collide at all. As a consequence, this would lead to a
misinterpretation of the experiment.
To rule out this possibility, we performed another set of

experiments using double stimulation of both MGF and
LGF. In Fig. 8 (top left), we show the stimulation of the
earthworm axon at two different stimulation voltages. At
0.25 V, one only observes an action potential in one of the
fibers. According to the literature, this is likely to be the
pulse in the MGF. At 0.45 V, one sees the pulse in both
the MGF and the LGF. Both voltages are directly above
threshold for single and double stimulation. Thus, in order
to stimulate both fibers, nearly twice the stimulation voltage
is required. A similar observation is made for the anti-
dromic signal (Fig. 8, bottom left). Here, too, one nearly
needs twice the voltage to stimulate both pulses. Next, we
performed an experiment in which both fibers were
stimulated in the orthodromic direction (Fig. 8, right, top
trace), and only one fiber was stimulated in the antidromic
direction (Fig. 8, right, center trace) [35]. After collision,
one can still observe both action potentials in the ortho-
dromic direction and the single action potential in the
antidromic direction. Independent of which fiber was

stimulated in the antidromic direction, it was unavoidable
that it had collided with one of the two action potentials in
the orthodromic direction. This demonstrates that the
antidromic pulse did not annihilate upon collision.
From Figs. 6–8 and the data in Table I, we conclude that

action potentials in the giant axons pass through each other
without significant distortion.

2. Experiments on giant axons from the abdominal
part of the ventral cord of a lobster

In contrast to the earthworm, the ventral cord of a lobster
possesses two median and two lateral giant axons (Fig. 3).
The median axon is not segmented as in the ventral cord of
the earthworm. It has been described in the literature that
in the abdominal part of the ventral cord, the first (i.e., at the
lowest stimulus) and largest electrical signals correspond to
the LGFs [22]. The MGF pulse (which displays a slower
velocity than the LGF) appears as a next electrical signal
after an increase in stimulus voltage. The small fibers in the
ventral cord generate small signals and require high
stimulation voltage. Figure 9 (left) shows that an increasing
number of giant axons is stimulated after an increase in
voltage. Figure 9 (right) shows an experiment with one
major orthodromic signal (top) and two antidromic signals

TABLE I. Conduction velocity estimates in m/s from ten
different collision experiments on the ventral cord of an earth-
worm. All measurements were carried out at 22� 1 °C. The
convention is to calculate the velocities by using the first
extremum in each pulse recording. Values in parentheses corre-
spond to velocities calculated for the nodal point in each pulse
that corresponds to the pulse maximum. The recordings belong-
ing to sample #7 are shown in Fig. 6.

Single Simultaneous
Sample Orthodromic Antidromic Orthodromic Antidromic

1 6.60 (5.43) 2.78 (2.32) 6.25 (5.01) 2.68 (2.23)
2 6.29 (5.52) 3.54 (3.03) 6.12 (5.12) 3.16 (2.78)
3 8.12 (7.76) 6.23 (5.39) 7.99 (7.03) 5.83 (5.61)
4 8.46 (7.06) 6.97 (5.69) 8.23 (6.83) 6.71(5.41)
5 7.89 (6.63) 5.43 (4.82) 7.77 (6.48) 5.44 (4.91)
6 7.29 (6.65) 5.45 (4.71) 7.37 (6.77) 5.58 (4.91)
7 9.67 (7.81) 7.50 (6.66) 9.57 (7.77) 7.13 (6.69)
8 7.76 (6.46) 3.98 (3.28) 7.45 (6.21) 4.04 (3.38)
9 7.51 (7.01) 4.02 (3.59) 7.79 (7.35) 4.12 (3.79)
10 8.37 (7.36) 6.13 (5.27) 8.18 (7.16) 6.01 (5.10)

FIG. 8. Simultaneous stimulation of both MGF and LGF in an
earthworm. Left, top: Single and double stimulation in the
orthodromic direction only. Left, bottom: Single and double
stimulation in the antidromic direction only. Right: Collision
experiment with stimulation of both the MGF and LGF in the
orthodromic direction. In the antidromic direction, only the MGF
is stimulated. One can recognize that the antidromic signal is still
present in the recording after collision. The grey-shaded regions
mark the stimulation artifact. The left and right panels were from
different axons.
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(center). Figure 9 (bottom right) shows the collision
experiment. The dashed line is the sum of the orthodromic
and antidromic pulses from the single-side stimulation
experiments. It can be seen that the summed individual
signals are nearly identical to the signal in the collision
experiment. It is most likely that the three signals in this
experiment correspond to the lateral giant fibers of the
ventral cord. Thus, one can conclude that pulses in one of
the lateral fibers have passed through each other and did not
annihilate. However, one cannot fully exclude the possibil-
ity that different neurons were stimulated in the two
directions, e.g., one signal in the LGF in one direction
and two signals in the MGFs in the other direction. Under
such conditions, pulses would actually never collide. For
this reason, we repeated the experiment in the ventral cord
of a different preparation at higher stimulation voltage
(Fig. 10). Now, more action potentials are excited in both
the orthodromic and antidromic directions (at least four in
each direction). The antidromic signal displays some
signals with slow velocity that probably correspond to
the MGF fibers. Thus, all giant fibers are stimulated. The
bottom trace in Fig. 10 shows the collision experiment. It
shows that all signals in the collision experiment are
conserved compared to the summed signals of orthodromic

and antidromic stimulation. None of the signals was
annihilated upon collision. We take this as convincing
evidence that annihilation upon collision is not observed in
the abdominal part of the ventral cord of a lobster. This
experiment was reproduced in eleven different prepara-
tions. Additionally, we repeated these experiments in other
nerves from lobsters, including nerves from the legs and the
connectives close to the lobster brain. In total, the above
experiments were confirmed in 30 different nerve bundles
from the walking legs, 16 preparations of the thorax ventral
cord, and 12 samples from lobster connectives. Those
results will be reported independently.

IV. DISCUSSION

We investigated the collision of action potentials in giant
axons of the earthworm both experimentally and theoreti-
cally. Orthodromic and antidromic pulses were stimulated
at both ends of the isolated axon. We showed, in at least 30
independent nerve preparations, that colliding action poten-
tials pass through each other without significant perturba-
tion. In less than 15% of the preparations, we found
annihilation of pulses. In all of these cases, penetration
could be reestablished by slight changes in the position of
the axon on the electrodes. We believe that these cases
reflect effects related to the extreme ends of the axon. We
confirmed these findings in preparations from the ventral

FIG. 9. Left: Action potentials after stimulation in the ortho-
dromic direction show the successive generation of action
potentials in the giant axons when increasing the stimulation
voltage. Right: The collision experiment in the abdominal part of
the ventral cord of a lobster at a stimulation voltage of 2 V. Top:
Stimulation in the orthodromic direction only. Center: Stimula-
tion in the antidromic direction only. Bottom: Collision experi-
ment (solid line) compared with the sum of the top (orthodromic)
and the center (antidromic) traces (dashed line). The two traces
are virtually superimposable.

FIG. 10. Same as in Fig. 9 (right) but with higher stimulation
voltage (3 V, different preparation). More axons are stimulated,
and all giant fibers are active. The bottom trace shows the
collision experiment (solid line) compared with the sum of the
top (orthodromic) and the center (antidromic) traces. Again, the
two traces are virtually superimposable, indicating that no
annihilation of any of the signals took place.
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cord of a lobster. When exciting all giant axons at large
stimulation voltage at both ends of the nerve, all signals in
the orthodromic and antidromic directions were maintained
after collision without major perturbation. No evidence for
pulse annihilation was found. In nonlinear hydrodynamics
simulations, we further studied the penetration of pulses
using the soliton theory [11,14]. As expected, this theory
indicates that solitary pulses pass through each other with
the production of minor amounts of small amplitude noise.
This is consistent with our experimental finding. However,
it is seemingly in conflict with expectations based on
electrophysiological models such as the Hodgkin-Huxley
model [1], where a refractory period is expected to lead to
pulse annihilation.
Indeed, it is widely believed that action potentials do

annihilate upon collision. However, pulse annihilation is
not well documented in the experimental literature. The
most relevant report by Tasaki from 1949 [3] discussed
annihilation in myelinated nerve fibers in the Sartorius
muscle of a toad. Tasaki reported pulse annihilation in this
preparation. The analysis of the results involved saltatory
conduction between the nodes of Ranvier in the myelinated
nerve. To our knowledge, Tasaki’s experiments were never
reproduced. In 1982, Tasaki and Iwasa reported the
mechanical response of colliding pulses in squid axons
[36]. They found a slight modification of the mechanical
pulse at the site of the collision, but pulse annihilation was
not examined. We have not succeeded in finding further
original publications on pulse annihilation, and it is not
certain that the common notion of the existence of pulse
annihilation is well rooted in experiment. However, within
the context of the Hodgkin-Huxley model, it seems natural
to expect pulse annihilation on theoretical grounds. The
refractory period is a brief period after stimulation of an
action potential during which the nerve is not excitable. It
has been found in many nerves. Talo and Lagerspetz [37]
reported refractory periods of 1.2–1.5 ms around room
temperature, both for median lateral fiber and for lateral
giant fiber of earthworms. Kladt et al. [27] reported
refractory periods of 0.7–2.8 ms in intact earthworms.
These numbers are comparable to those found by us
(≈2 ms, data are not shown). Thus, empirically short
refractory periods exist in earthworms and many other
nerves. As our experiments show, the existence of a
refractory period does not automatically imply the annihi-
lation of colliding action potentials. It seems plausible to
postulate that two colliding pulses annihilate because they
are expected to enter into unexcitable regions of the neuron
immediately after their collision. In the context of the HH
model, the existence of refractory periods is a consequence
of relaxation processes in channel proteins after firing. The
original model considers only sodium and potassium
channels. However, neurons from other sources may
contain many different Na and K channels, as well as
many other channel proteins, such as calcium channels.

Thus, one cannot easily generalize the properties of a
particular neuron such as the squid axon for which the HH
model was designed. Since there exists no general theory
for the voltage-dependent and temporal behavior of channel
proteins, the properties of such proteins are typically
parametrized from experiment. The model by Bostock
and collaborators for the myelinated axons in humans
contains 66 parameters describing five different channels
that display different concentrations in different regions of
the nerve [32]. The Fitzhugh-Nagumo model [38–40] is a
simplification of the Hodgkin-Huxley model. It has been
shown that this model (using only sodium and potassium
channels) possesses parameter regimes in which pulses can
penetrate [41]. Thus, it seems that the Hodgkin-Huxley
model does not necessarily exclude the possibility of
penetrating pulses. Interestingly, Tasaki dismissed the idea
that the refractory period is responsible for pulse annihi-
lation in his original publication from 1949 [3]. He rather
believed that during pulse collision, the currents inside and
outside of the nerve add up to zero such that the condition
for regenerating the pulse is not met during collision.
The experiment by Tasaki [3] on toad nerves indicates

that there may be examples for pulse annihilation (even
though reproducing this experiment would be helpful).
However, we can falsify the general belief that annihilation
must always occur because of the presence of a refractory
period. Here, we have demonstrated penetration of pulses
in myelinated (earthworm) and nonmyelinated (lobster)
giant axons.
The notion of penetrating pulses is not consistent with

the Hodgkin-Huxley model if there is a refractory period
(such as earthworm axons). It is, however, in agreement
with the assumption of the existence of mechanical pulses
in nerves. Mechanical dislocations in various nerves have
been experimentally confirmed in squid axons, and nerves
from crab and garfish [9,10,36,42–47]. Thus, it is clear that
action potentials possess a mechanical component.
To simulate colliding pulses, we applied the soliton

theory that considers the nerve pulse as an electromechani-
cal compressional pulse. It makes use of the hydrodynamic
theory of sound propagation in the presence of nonlinear
materials and dispersion. The nonlinearity in the elastic
constants is generated by a phase transition in the lipid
chains that influences the elastic properties of the mem-
brane. The soliton theory has the following features: It
describes an adiabatic pulse in a membrane cylinder (the
axon) in which, by necessity, no heat is dissipated. Thus,
the temperature of a nerve would be the same before and
after the pulse [11]. This has, in fact, been observed in
numerous experiments [4,5,7]. During the pulse, a change
in both nerve area and thickness is predicted. This has been
confirmed in early experiments that find both a contraction
of the neuron and a slight dislocation of the membrane by
about 1 nm (see, e.g., Refs. [9,10]). In contrast, the
Hodgkin-Huxley model is of a dissipative nature and
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should result in measurable changes in heat that are not
found in experiments. Furthermore, since neither mechani-
cal dislocations or temperature changes are explicitly
contained in the Hodgkin formalism, it cannot be used
to describe them. It is interesting to note that the soliton
theory also contains a feature comparable to a refractory
period [48]. It is the consequence of mass conservation.
The action potential in the soliton theory consists of a
region of higher area density of the neuronal membrane. To
obey mass conservation, each pulse must be accompanied
by a dilated region that prevents pulses from being
arbitrarily close. However, the existence of such a feature
does not prevent colliding pulses from penetrating nearly
without dissipation.
The earthworm axon consists of many single neurons

connected by gap junctions, and one may not consider it as
representative for single axons of other species. We note,
however, that the action potential in the earthworm is larger
than the dimension of the individual neurons in the axon.
Thus, the pulse is a property of the axon as a whole and not
of the individual neurons. Furthermore, we provided
evidence for the giant axons of the ventral cord of a lobster
that suggests that the observation of undistorted penetration
of action potentials is more generic.
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Abstract. Lipid membranes are insulators and capacitors, which can be charged by an
external electric field. This phenomenon plays an important role in the field of electrophysiology,
for instance when describing nerve pulse conduction. Membranes are also made of polar
molecules meaning that they contain molecules with permanent electrical dipole moments.
Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice
versa, mechanical forces on membranes lead to changes in the membrane potential. Associated
effects are flexoelectricity, piezoelectricity, and electrostriction.

Lipid membranes can melt from an ordered to a disordered state. Due to the change of
membrane dimensions associated with lipid membrane melting, electrical properties are linked
to the melting transition. Melting of the membrane can induce changes in trans-membrane
potential, and application of voltage can lead to a shift of the melting transition. Further, close
to transitions membranes are very susceptible to piezoelectric phenomena.

We discuss these phenomena in relation with the occurrence of lipid ion channels. Close
to melting transitions, lipid membranes display step-wise ion conduction events, which are
indistinguishable from protein ion channels. These channels display a voltage-dependent open
probability. One finds asymmetric current-voltage relations of the pure membrane very similar to
those found for various protein channels. This asymmetry falsely has been considered a criterion
to distinguish lipid channels from protein channels. However, we show that the asymmetry can
arise from the electromechanical properties of the lipid membrane itself.

Finally, we discuss electromechanical behavior in connection with the electromechanical
theory of nerve pulse transduction. It has been found experimentally that nerve pulses are
related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse
travels along the nerve. Due to electromechanical coupling it is unavoidable that this pulse
generates a trans-membrane voltage. In the past, we have proposed that this electromechanical
pulse is the origin of the action potential in nerves.

1. Introduction
Biological membranes are thin quasi-twodimensional layers mainly consisting of proteins and
lipids. While research mostly focusses on the properties of individual macromolecules, e.g.,
on ion channel proteins or ion pumps, the total membrane possesses macroscopic cooperative
features such as melting transitions and curvature fluctuations that cannot be understood on
the molecular level. These properties are expressed in susceptibilities such as heat capacity,
lateral compressibility, bending elasticity or capacitive susceptibility. Lipid membranes can
melt from a solid to a liquid phase. In these transitions, the order of the lipids changes.
Thus, the melting is associated to both, enthalpy and entropy changes. Such transitions can
also be found in biological membranes under physiological conditions. As an example, a heat
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Figure 1. Heat capacity pro-
file of E. coli membranes. The
grey-shaded region below growth
temperature represents the mem-
brane melting transition. The
peaks above growth temperature
show protein unfolding. From [5].

capacity profile of E. coli membranes is shown in figure 1. In the melting transition, the spatial
dimensions of the membrane change. For instance, upon melting the synthetic lipid dipalmitoyl
phosphatidylcholine (DPPC) increases its area by about 24% and reduces its thickness by 16%.
The heat absorbed in the transition is about 35 kJ/mol.

Membranes are very thin. They possess a thickness of about 5nm in their solid state. The
core of the membrane is composed of hydrocarbon chains. Therefore, the membrane interior can
be considered an insulator. Consequently, the biomembrane has the properties of a capacitor.
Typically, the capacitance of a membrane is of the order of 1 μF/cm2. In biological cells,
the membrane is exposed to voltage differences of the order of 100 mV. Thus, the biological
membrane is charged under physiological conditions.

The dimensional changes in the melting transitions have a number of consequences. Among
those are [1]:

• both hydrostatic and lateral pressure changes influence the phase state of the membrane
and are intrinsically coupled to heat absorption or release.

• hydrostatic and lateral pressure changes voltage across the membrane, and the charge on
the membrane capacitor can change. Thus, the membrane is piezoelectric.

• voltage changes can induce membrane melting.

These features are important for various properties of biological membranes. For instance, it
was shown that biomembranes slightly above a melting transition can support electromechanical
solitons that resemble nerve pulses [2]. Further, in the transition one finds density fluctuations
that result in the spontaneous formation of pores in the membrane [3]. These pores display
open-close characteristics very similar to those reported for protein ion channels [4].

The thermodynamics of biological membranes putatively explains many properties of
excitatory cells on the level of macroscopic physics rather than on the level of molecular biology.
This review will introduce into some of these phenomena.

2. Membrane capacitors
The capacitance, Cm, of a planar membrane is given by

Cm = εε0
A

D
, (1)

where ε0 is the vacuum permittivity, ε is the dielectric constant, A is the membrane area and D
is the membrane thickness. The charge, q, on a capacitor is given by

q = Cm · Vm , (2)
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where Vm is the transmembrane voltage. Since in the transition the area changes by about 24%

Figure 2. During the melting
transition of a membrane both its
area and thickness changes. This
implies that the capacitance of the
membrane varies as a function of
phase state. It is higher in the
liquid state.

and the thickness by -16%, one finds an increase in capacitance upon melting from a solid to a
liquid membrane phaseof approximately 50%.

2.1. Capacitive susceptibility
The capacitance solely depends on the dimensions of the membrane, if ε = constant. However,
the opposite charges on the two plates of a capacitor attract each other and generate a force on
the membrane. This effect is called ’electrostriction’. If the voltage across a membrane increases,
the forces on the membrane also increases. Therefore the capacitance changes as well. For a
symmetric membrane, the capacitance always increases upon increasing the voltage. This effect
can be taken into account by considering the capacitive susceptibility, Ĉm:

Ĉm =
dq

dVm
= Cm + Vm

∂Cm
∂Vm

, (3)

where the charge, q, is given by equation (2). The second term in this equation could be
considered an excess capacitance. It assumes a maximum in the melting transition (see figure
3).

3. Fluctuations
Due to the fluctuation-dissipation theorem, all response functions (susceptibilities) are related
to the mean square fluctuations of extensive variables. For instance, the heat capacity,
cp = (∂H/∂T )p, is given by

cp =

〈
H2
〉− 〈H〉2
kT 2

, (4)

while the isothermal volume compressibility, κVT = −(∂V/∂p)T , is related to volume fluctuations

κVT =

〈
V 2
〉− 〈V 〉2
kT

, (5)

and the capacitive susceptibility is given by

Ĉm =

〈
q2
〉− 〈q〉2
kT

. (6)

Similarly, fluctuations in area are related to the isothermal area compressibility and fluctuations
in curvature to the bending elasticity. The heat capacity assumes a maximum in the melting
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Figure 3. Increase in voltage re-
duces thickness and increases area.
As a consequence, membranes can
be moved through their melt-
ing transition by voltage changes.
The capacitive susceptibility, Ĉm,
reaches a maximum at the melting
temperature. The voltage-induced
transition is associated to an excess
charge. From [1].

transition and thus the fluctuations are at maximum. Similarly, compressibility, bending
elasticity and capacitive susceptibility all assume maxima in the transition regime.

It has been shown that in melting transitions, excess volume changes are proportional to
excess enthalpy changes, i.e., ∆V (T ) = γV ∆H(T ). Here, γV is a material constant. This implies
that excess volume and enthalpy fluctuations are also proportional functions. A consequence is
that excess heat capacity and isothermal volume compressibility are proportional functions of
temperature, pressure, etc. I.e.,

∆cp ∝ ∆κVT (7)

Similarly one can directly or indirectly conclude from experiment that the excess heat capacity
is proportional to other response functions of lipid membranes close to transitions [6, 7, 1], f.e.,

∆cp ∝ ∆κAT (area compressibility)

∆cp ∝ ∆κB (bending elasticity) (8)

∆cp ∝ ∆Ĉm (capacitive susceptibility)

These relations are not based on first principles and should be taken as empirical correlations
found to be true for membranes. The proportionality constants depend on the dimensions of the
solid and liquid membrane. The heat capacity is easy to measure in a calorimeter. The other
response functions can readily be calculated from the calorimetric experiment.

4. The nervous impulse
The nerve pulse consists of a propagating voltage pulse with typical velocities of 1-100 m/s that
last about 1 ms. It follows that the typical dimension of a nerve pulse is about 1 mm to 10 cm.
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Figure 4. Thickness change of a squid axon
during the action potential as a function of time
(solid line). The dashed line represents the voltage
change. The two functions are within error
proportional. Adapted from [8].

Thus, it is of macroscopic dimension. In the biological literature, the nerve pulse is considered
a purely electrical phenomenon involving capacitors (the membrane), resistors (ion channel
proteins) and electrical currents (ion flows). However, during the nerve pulse one also finds
changes in nerve dimensions (thickness and length [8, 9], see figure 4) and in temperature [10].
Thus, the nerve pulse should be considered a thermodynamic or hydrodynamic phenomenon.
Below, we show that the nerve pulse can be seen as a localized density pulse related to the
propagation of sound.

4.1. Sound velocity
The above relations (equation (8)) help to determine other membrane properties that are related
to the response functions. The lateral sound velocity, c, in membranes is defined as

c2 =

(
∂ρA

∂p

)

S

=
1

κASρ
A

(9)

Thus, it depends both on the lateral density and on the adiabatic compressibility, κAS . The
adiabatic compressibility is a function of frequency because it depends on the translocation
of heat from the membrane to the membrane environment. The smaller the frequency, the
larger is the aqueous volume that contributes as a heat reservoir and the larger is the adiabatic
compressibility [11]. In the limit of zero frequency on obtains the isothermal limit and the
adiabatic compressibility, κAS is equal to the isothermal compressibility, κAT . The frequency
dependence of the sound velocity is called ’dispersion’. The sound velocity in membranes is
generally higher at higher frequencies

Using the above thermodynamic relations between heat capacity and compressibility, on can
calculate the low frequency sound velocity as a function of temperature (or as a function of
density). Since the compressibility displays a maximum in the melting transition, the lateral
sound velocity displays a minimum (shown in figure 5, left. From [2]). In this figure, small density
corresponds to the liquid membrane phase while high density corresponds to the solid membrane
phase. The membrane in the liquid phase is thus a spring with interesting spring properties:
upon compression of the liquid phase the spring first becomes softer (in the transition) and then
becomes stiffer (in the solid phase).

The lateral density of the membrane shall be given by ρA = ρA0 +∆ρA, where ρA0 is the density
of the liquid membrane. The sound velocity is a non-linear function of the lateral density change,
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Figure 5. Left: The sound velocity in a lipid membrane close to a transition is a function of
density [2]. Small density corresponds to a liquid membrane whereas high density corresponds
to a solid membrane. The pronounced minimum is found in the chain melting regime. It is
caused by the maximum of area fluctuations in the membrane at the transition. Right: Density
soliton in a membrane cylinder using the sound velocity profile shown in the left hand panel [2]

Figure 6. Schematic representa-
tion of a density soliton in a cylin-
drical membrane. The pulse con-
sists of a traveling solid segment
(dark shade) traveling in a liquid
membrane environment.

∆ρA, which can be Taylor-expanded into

c2 = c20 + p∆ρA + q(∆ρA)2 + ... (10)

4.2. Solitons in nerve axons
The non-linearity of the sound velocity and the presence of dispersion give rise to the possibility
of soliton propagation. Below, we show as a quasi-one-dimensional example a long cylindrical
membrane comparable to the axon of a nerve. The wave equation for one-dimensional sound
propagation is given by [12]

∂2

∂t2
∆ρ =

∂

∂x

(
c2
∂

∂x
∆ρ

)
. (11)

By inserting equation (10) into this equation, we obtain

∂2

∂t2
∆ρ =

∂

∂x

(
(c20 + p∆ρ+ qρ2 + ...)

∂

∂x
∆ρ

)
− h ∂

4

∂x4
∆ρ (12)

The second term is an ad hoc dispersion term that describes the frequency dependence of the
elastic constants. Its introduction into the wave equation is justified in [2]. When inserting the
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parameters p and q obtained from fitting equation (10) to the experimental sound velocity profile,
one finds that the above equation possesses solitary solution, i.e., localized density pulses that
travel along the membrane cylinder without dissipation and without changing shape. A typical
solution of equation (12) is shown in figure 5 (right). The pulse possesses a maximum amplitude
and a minimum velocity when increasing the overall energy of the pulse. The maximum
amplitude corresponds to the density change between liquid and solid membrane phase. Thus,
the solitary pulse consists of a solid region traveling in a liquid membrane environment. This is
schematically shown in figure 6.

The soliton described above shares many similarities with the nervous impulse:

• It displays a velocity similar to those of myelinated nerves.

• It is associated to transient changes in membrane thickness.

• It is associated to a reversible release and re-uptake of heat.

However, the physical principles underlying soliton propagation are very different from the
mechanisms considered for nerve pulse propagation in the field of electrophysiology.

5. Ion channels
The textbook description for nerve pulse conduction is the Hodgkin-Huxley model [13]. It
suggests that the nerve pulse is generated by ion currents through channel proteins. These
currents charge the membrane capacitor. According to the model, channel proteins conduct ions
in a voltage-dependent manner. Thus, they are considered being ”voltage-gated”. Combined
with cable theory, this generates the possibility of propagating electrical pulses called ’action
potentials’. The opening and closing of channels can be experimentally observed in electrical
recordings [14]. To the contrary, in the soliton theory described above no ion channel proteins
are required.

It is an interesting fact that membranes in the complete absence of proteins can form voltage-
gated pores that display properties indistinguishable from protein channels [15, 4]. An example
is given in figure 7 where one can see an increase in channel open-likelihood upon increase in
voltage. These ion channel events result from area fluctuations in the membrane, as described by
equation (8). In the melting transition, the fluctuations are large and the membrane permeability
displays a maximum. Every change in a thermodynamic variable that potentially changes the
membrane state can alter the permeability of the membrane [16, 3].

Figure 7. Quantized current
events through a synthetic lipid
membrane. One finds channel-like
events in the complete absence of
proteins. The open likelihood of of
pore displays a pronounced voltage
dependence. [4].
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Due to the increase in channel open-probability shown in figure 7, the current-voltage relation
is not linear. In particular, if the membrane displays a net polarization, V0, in the absence of
an external field, the current-voltage relation may be asymmetric and different for positive and
negative voltages. A spontaneous membrane polarization could originate from an asymmetric
distribution of lipids on the two sides of the membrane, or from membrane curvature. The
latter effect is called ’flexoelectricity’. Its investigation was pioneered by A. G. Petrov [17].
Flexoelectricity is caused by the different dipole density on the two monolayers in curved
membranes. Membrane curvature could possibly originate from slight pressure difference on
the two sides of the membrane due to suction on the recording pipette. An example for an
asymmetric non-linear current-voltage relation is shown in figure 8.

Figure 8. The current-voltage
relation of the permeability of a
synthetic lipid membrane is not
generally symmetric even though
the composition of the membrane
itself is symmetric [4]. This
could be caused by a permanent
polarization of the membrane due
to flexoelectricity [17, 18] - see
insert.

In the absence of spontaneous polarization V0 of the membrane, the electrostatic force, F ,
exerted on a planar membrane by external voltage is given by

F =
1

2

CmV
2
m

D
(13)

where Cm is the membrane capacitance, Vm is the transmembrane voltage and D is the
membrane thickness [1]. This force potentially reduces the thickness of the membrane [19].
The electrical work performed on the membrane by a change in thickness from D1 to D2 is

Wel =

∫ D2

D1

FdD ≡ αV 2
m (14)

where α is a constant. In the presence of a spontaneous polarization associated to a
transmembrane voltage V0, the electrical work instead assumes the form Wel = α(Vm − V0)2.
Since electrostatic work leads to membrane thinning, it is generally assumed that the work
necessary to form a pore is proportional to the work necessary to reduce membrane thickness
membrane [20, 21].

Therefore, the free energy for pore formation is given by

∆G = ∆G0 + α(Vm − V0)2 , (15)
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where ∆G0 is a constant.
The probability, Popen(Vm), of finding an open pore in the membrane at a fixed voltage is

given by

Popen(Vm) =
K(Vm)

1 +K(Vm)
; K(Vm) = exp

(
−∆G

kT

)
, (16)

where K(Vm) is the voltage-dependent equilibrium constant between open and closed states of
a single pore.

The current-voltage relation for the lipid membrane is proportional to the likelihood of finding
an open channel for a given voltage:

Im = γp · Popen · Vm (17)

where γp is the conductance of a single pore (or N identical pores). Eqs. 15-17 contain the
theoretical description for the I-V curves of lipid channels. The solid line in figure 8 is a fit
using the above description. It fits the experimental data nearly perfectly. Thus, a description
based on the concept of forces induced by charging the membrane capacitor is very well able to
describe experimental data of membrane permeability.

6. Summary
In this review, we summarized the evidence for electromechanical behavior of the biological
membrane. The membrane can be seen as a capacitor with a spontaneous polarization. Due
to forces on the capacitor, changes in transmembrane voltage can change the physical state of
the membrane. E.g., it can induce membrane melting or freezing. Vice versa, lateral pressure
changes in the membrane can alter the voltage on a membrane. Thus, the membrane displays
piezoelectric features.

In a melting transition, the membrane displays a non-linear response to lateral pressure
changes. This fact leads to the possibility of propagating density solitons in cylindrical
membranes that share many similarities with the action potential in nerves. For instance,
thickness and temperature changes in the nerve membrane are correctly described by the
soliton approach. Further, the presence of melting transitions enhances the probability of
area fluctuations in the membrane. These fluctuations lead to ion-channel-like events that are
practically indistinguishable from protein ion channels. These protein channels are believed to be
responsible for the nerve pulse in traditional theories. However, an electromechanical approach
towards the physics of biological membranes intrinsically contains all these phenomena using
the language of thermodynamics.
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Electrical properties of polar membranes
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ABSTRACT Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges
on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is
quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However,
this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative
voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is
different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called ’flexoelectricity’. As
a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to
interesting electrical phenomena such as outward or inward rectification of membrane permeability.
Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity and piezoelectricity
in the same language.
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Introduction
Many signaling processes in biology involve electrical phenom-
ena. These processes are related to the movement of ions and
the orientation of polar molecules. Biological molecules typ-
ically contain charged groups that are at the origin of electri-
cal fields and dipole moments. Furthermore, membranes and
macromolecules are surrounded by electrolytes containing char-
ged ions. At physiological ionic strength, the Debye length of
electrostatic interactions in the aqueous medium is about 1 nm.
It is caused by the shielding of charges by ions. However, in
the hydrophobic cores of membranes and proteins, the dielec-
tric constant is small, and no ions that could shield electrostatic
interactions are present. Thus, the length scale of electrostatic
interactions is significantly larger. Generally, under physiolog-
ical conditions the range of the electric fields is similar to the
size of biological macromolecules. In this publication we will
focus on the electrostatics of membranes that determines ca-
pacitance, polarization, piezoelectricity and flexoelectricity.

There exist large concentration differences of ions across
the membranes of biological cells. For instance, the concen-
tration of potassium is about 400 mM inside and only 20 mM

Figure 1: Illustration of capacitive effects. The field in-
side a charged capacitor can be obtained by the superposi-
tion of the fields of a positively and a negatively charged
plate at distance d. The charged capacitor displays an
internal field different from zero, while the field is zero
outside of the capacitor.

outside of a squid axon. If the membrane is selective for potas-
sium, this results in a Nernst potential across the biological
membrane. The combination of the Nernst potentials of dif-
ferent ions yields a resting potential, which for biological cells
is in the range of ±100 mV. The central core of a membrane
is mostly made of hydrophobic non-conductive material. Thus,
the biomembrane is considered a capacitor, e.g., in the Hodgkin-
Huxley model for the nervous impulse (1). During the nerve
pulse, currents are thought to flow across ion channel proteins
that transiently charge or discharge the membrane capacitor.
Within this model, the membrane is assumed to be a homoge-
neous planar capacitor with constant dimensions. The capaci-
tance can be calculated from the relation

Cm = ε · A
d

(1)

where ε is the dielectric constant, A is the membrane area and
d is the membrane thickness.

Let us assume that the membrane is surrounded by a con-
ducting electrolyte solution. In the presence of an applied volt-
age, the charged capacitor consists of one plate with positive
charges and one plate with negative charges at distance d. The
field inside the capacitor can be determined using the superpo-
sition of the fields of the two plates (illustrated in Fig. 1). The
field inside a charged capacitor is different from zero, while it is
zero outside of the capacitor. If no field is applied, the capacitor
is not charged.

The charges on a capacitor generate mechanical forces on
the two membrane layers (2). These forces can change the di-
mensions of the capacitor such that both the area and the thick-
ness of the membrane change (see fig. 2). As a result, the capac-
itance is not generally a constant (2). The capacitance increases
upon charging the membrane by an applied field because the
membrane thickness decreases and the area increases. This ef-
fect is known as electrostriction. Close to phase transitions in
the membrane (in which the compressibility of the membrane
is large (3)), the membrane should be considered as a nonlinear
capacitor. A small change in voltage can result in large changes
in thickness and capacitance. The coupling between the mem-
brane voltage and its dimensions renders the membrane piezo-
electric, i.e., mechanical changes in the membrane can create a
membrane potential and vice versa.
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Figure 2: Illustration of the electrostriction effect upon
charging the membrane capacitor. The potential differ-
ence, Ψ, results in a force on the membrane that leads
to a compression of the membrane to a state with larger
area, A, and lower thickness, d.

On average, about 80% of the lipids are zwitterionic. Zwit-
terionic lipids possess permanent electrical dipole moments.
Examples of such lipids are phosphatidylcholines and phos-
phatidylethanolamines. About 10% of biological lipids carry
a net negative charge, including phosphatidylinositol and phos-
phatidylserine. It is known that biomembranes often display
asymmetric distributions of lipids such that charged lipids are
mostly found in the inner leaflet of the bilayer (4). Biomem-
branes also contain integral and peripheral proteins with asym-
metric distribution (or orientation ) between inside and outside,
which carry both positive and negative charges. Due to such
compositional asymmetries, a spontaneous electrical dipole mo-
ment of the membrane can be generated in the absence of an ex-
ternally applied field. A redistribution or reorientation of polar

Figure 3: Illustration of polarization by chemical asym-
metry. Left: If the membrane contains permanent elec-
trical dipoles, it is charged even if the applied potential
is zero. Both, the fields inside and outside of the capaci-
tor are zero. Right: In order to discharge the capacitor, a
potential of Ψ = −Ψ0 has to be applied.

molecules in an external field resembles the charging of a ca-
pacitor. If the membrane possesses a spontaneous polarization,
the membrane capacitor in equilibrium can be charged even in
the absence of an external field (illustrated in Fig. 3). In or-
der to discharge this capacitor, a potential of Ψ = −Ψ0 has
to applied. We call Ψ0 the spontaneous membrane potential, or
the offset potential. In a theoretical treatment one has to be very
careful to correctly account for both capacitive and polarization
effects.

The polarization effects described above rely on an asym-
metric distribution of charges or dipoles on the two sides of
a membrane. Interestingly, even a chemically symmetric lipid
membrane made of zwitterionic (uncharged) lipid may be po-
larized. The individual monolayers of zwitterionic lipids dis-
play trans-layer voltages on the order of 300 mV (5, 6). Any

Figure 4: Illustration of polarization by curvature. a. The
two monolayers of the symmetric membrane display op-
posite polarization. b. upon bending (flexing) the mem-
brane, the polarization in the two layers changes. c. ef-
fective polarization of the membrane. d: In order to dis-
charge the capacitor, a potential of Ψ = −Ψ0 has to be
applied.

geometric deformation that breaks the symmetry between the
two monolayers of a membrane results in a net polarization if
these distortions alter the relative dipole orientation on the two
layers. In particular, curvature induces different lateral pres-
sure on the two sides of a membrane. Thereby, curvature can
induce polarization in the absence of an applied field. This con-
sideration was introduced by Meyer in 1969 (7) for liquid crys-
tals. It was applied to curved lipid bilayers by Petrov in 1975
(8). He called this effect ’flexoelectricity’. Upon bending (or
flexing) the membrane, both area, A, and volume, V , of the
opposing monolayers change in opposite directions. If the po-
larization is a function of area and volume the polarization of
the outer monolayer is given by Po ≡ Po(Ao, Vo) and that of
the inner monolayer is given by Pi ≡ Pi(Ai, Vi), respectively.
Therefore, curvature can induce a net polarization across the
membrane. This is illustrated in Fig. 4. This polarization is
counteracted by opposing charges adsorbing to the membranes
(Fig. 4b and 4c). In order to discharge the membrane, a po-
tential Ψ = −Ψ0 has to be applied. As in the case of chemical
asymmetry, at zero applied field, the field inside the capacitor is
zero. The cases of a chemically asymmetric planar membrane
and a chemically symmetric curved membrane are conceptually
similar.

Charged capacitors, polarization, flexoelectricity and piezo-
electricity all involve the spatial separation of charges. Thus,
they all represent aspects of the same electrostatic phenom-
ena. However, in the literature they are often treated as dif-
ferent things and they are described by a different language. In
this communication we formulate a general thermodynamical
description of the electrostatics of lipid membranes, which rep-
resents a generalization of a study on the capacitance of mem-
branes previously published by our group (2). It will be used
to generalize the effect of an externally applied electric field
on the lipid melting transition. We will introduce the thermo-
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dynamics of a polarized lipid membrane in an electric field,
which then results in a generalization of electrostriction effects
on lipid membranes. 1

Theory
When the molecules of dielectric materials are placed in an ex-
ternal electric field, they orient themselves to the free energy.
In capacitors, net macroscopic dipoles are induced in the di-
electric medium and tend to counteract the applied field. As a
response to an applied electric field, mechanical changes can be
observed, e.g., in piezoelectric crystals. To deal with these ef-
fects, authors like Frank treated the electrostatic effects within
a thermodynamical framework (9). He considered the electri-
cal work performed on a fluid during any infinitesimal and re-
versible change, dWel = Ed(vD). This type of consideration
leads to expressing the electric displacement, D, in a volume,
v, as an extensive variable with the electric field, E, as its con-
jugated intensive variable. Vector notation has been dropped
assuming planar geometry.

When we consider a membrane capacitor, its hydrophobic
core separates the two capacitor plates and acts both as a com-
pressible and dielectric material. Choosing hydrostatic pressure
(p), lateral pressure (π), temperature (T ) and applied electric
field (E) as intensive variables, we can write the differential of
the Gibbs free energy as

dG = −SdT + vdp+Adπ − (vD)dE + ... (2)

where the conjugated extensive variables are S (entropy), v
(volume), A (area) and vD (electric displacement). The elec-
trical contribution to the free energy due to an applied electric
field comes from the final term, which we will refer to as the
electrical free energy, Gel.

The electric displacement is related to the total polarization,
Ptot by

D = ε0E + Ptot. (3)

where ε0 is the vacuum permittivity. Most materials have zero
polarization at zero electric field, and polarization is only in-
duced by an external field. For a linear dielectric material the
induced polarization is Pind = ε0χelE, where χel is the elec-
tric susceptibility. We are interested in extending our consid-
erations to a dielectric material which can display spontaneous
polarization, P0, in the absence of an applied field such that

Ptot = ε0χelE + P0. (4)

The spontaneous polarization, P0, can originate from asymmet-
ric lipid bilayers, e.g., from curvature (flexoelectricity) or from
different composition of the two monolayers. The electric dis-
placement takes the form

D = ε(E + E0), (5)

where ε is the dielectric constant, ε = ε0(1 + χel) and E0 ≡
P0/ε is the electric field related to the spontaneous polariza-
tion, P0, at E = 0.

Using eq. (5), we can determine the the electrical free energy:

Gel = −
∫ E

0

(vD)dE′ = −εv
(
E2

2
+ E0E

)

= −ε
2
v
(
(E + E0)2 − E2

0

)
, (6)

where we have assumed the volume of the lipid membrane to be
constant. Assuming that the dielectric properties of the medium
are homogeneous across a membrane with thickness d, we can
define Ed = Ψ where Ψ represents the applied electric poten-
tial difference. This leads to

Gel = −ε
2

A

d

(
(Ψ + Ψ0)2 −Ψ2

0

)
, (7)

where Ψ0 is the offset potential related to E0 (E0d = Ψ0).
The pre-factor contains the capacitance of a planar capacitor
(Cm = εA/d). Thus, the electric free energy is given by

Gel = −1

2
Cm

(
(Ψ + Ψ0)2 −Ψ2

0

)
. (8)

At Ψ = 0 the electrical contribution to the free energy is zero.

Electrostriction
The charges on a capacitor attract each other. These attractive
forces can change the dimensions of the membrane and thereby
change the capacitance. If Ψ0 = 0, the electric contribution to
the free energy according to eq. (8) is Gel = − 1

2CmΨ2. For
A ≈ const. and Ψ = const., the force F acting on the layers is

F =
∂Gel

∂d
= −1

2

(
∂Cm
∂d

)
Ψ2 =

1

2

CmΨ2

d
. (9)

This is the force acting on a planar capacitor given in the litera-
ture (e.g., (2)). If there exists a constant offset potential Ψ0, we
find instead (eq. (8))

F =
1

2

Cm
d

(
(Ψ + Ψ0)2 −Ψ2

0

)
. (10)

Thus, one expects that the force on a membrane is a quadratic
function of voltage which displays an offset voltage when the
membrane is polarized. This force can reduce the membrane
thickness and thereby increase the capacitance of a membrane.
Note, however, that for (Ψ + Ψ0)2 − Ψ2

0 < 0, the force F is
negative. As a consequence, capacitance will be decreased.

Let us assume a membrane with constant area and small
thickness change, ∆d << d. Then the change in capacitance,
∆Cm, caused by a change of thickness, ∆d, is given by

∆Cm = −ε A
d2

∆d (11)

Thus, the change in capacitance is proportional to the change
in thickness. If the thickness is a linear function of the force
(F ∝ ∆d), one finds that the capacitance is proportional to the
force F . Therefore, it is a quadratic function of voltage with an
offset of Ψ0,
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∆Cm ∝
(
(Ψ + Ψ0)2 −Ψ2

0

)
. (12)

The magnitude of the change in capacitance depends on the
elastic constants of the membrane.

Relation (12) was studied by various authors. Using black
lipid membranes, Alvarez and Latorre (10) found a quadratic
dependence of the capacitance on voltage (Fig. 5). In a sym-
metric membrane made of the zwitterionic (uncharged) lipid
phosphatidylethanolamine (PE), the offset potential Ψ0 in a 1
M KCl buffer was found to be zero. In an asymmetric mem-
brane with one monolayer made of PE and the other made of
the charged lipid phosphatidylserine (PS), a polarization is in-
duced. In a 1 M KCl buffer, the offset potential is Ψ0 = 47
mV, while it is Ψ0 = 116 mV in a 0.1 M KCl buffer. It is ob-
vious from Fig. 5 that within experimental error the shape of
the capacitance profile is unaffected by the nature of the mem-
brane. Only the offset potential is influenced by composition
and ionic strength. This suggests that the offset potential has
an ionic strength dependence. In this publication, we do not
explore the theoretical background of this experimental fact.

In a range of ±300mV around the minimum capacitance,
the change in capacitance, ∆Cm, is of the order of < 1.5 pF,
while the absolute capacitance, Cm,0, at Ψ = 0 is approxi-
mately 300 pF (10). Thus, the change in capacitance caused
by voltage is very small compared to the absolute magnitude of

Figure 5: The change in capacitance as a function of po-
tential in a black lipid membrane. Solid circles: Symmet-
ric membrane in 1 M KCl. Both monolayers are made
from zwitterionic bacterial phosphatidyl ethanolamine
(PE). Open circles: Asymmetric membrane in 1 M KCl.
One monolayer is consists of bacterial PE, while the other
monolayer consist of the charged bovine brain phos-
phatidylserine (PS). Open squares: Same as open circle,
but with smaller salt concentration (0.1 M KCl). The ab-
solute capacitance, Cm,0 at Ψ = 0 V is approximately
300 pF. Raw data adapted from (10).

the capacitance.

Influence of the potential on the capacitance close
to a melting transition
As discussed above, the influence of voltage on the capacitance
is small in the gel and in the fluid phase because membranes are
not very compressible in their pure phases. However, close to
the phase transition between gel and fluid, membranes become
very compressible. In this transition, the thickness of the mem-
brane, d, decreases by about 16% and the area, A, increases
by about 24% (3) for the lipid dipalmitoyl phosphatidylcholine
(DPPC). Therefore, the capacitance of the fluid membrane is
about 1.5 time higher than the capacitance of the gel phase (2).
According to eq. (8), the Gibbs free energy difference caused
by an external electric field can be written as

∆Gel = Gelfluid−Gelgel = −∆Cm
2

(
(Ψ + Ψ0)2 −Ψ2

0

)
, (13)

where ∆Cm is the difference between the capacitance of gel
and fluid phase. Here, we assumed that both the offset potential
Ψ0 and the dielectric constant ε do not change with the state.
We have confirmed the latter in experiments on the dielectric
constant in the melting transition of oleic acid using a parallel
plate capacitor (data not shown). We found that the changes
of the dielectric constant caused by the melting of oleic acid
(Tm ≈ 17◦C) are very small.

It has been shown experimentally that in the vicinity of the
lipid melting transition changes of various extensive variables
are proportionally related (3, 11, 12). For instance, changes in
enthalpy are proportional to changes in area, in volume and we
assume that a similar relation holds for changes in thickness.

Figure 6: The relative change in capacitance of a lipid
membrane as a function of applied voltage at three differ-
ent temperatures above the melting temperature. Parame-
ters are for LUV of DPPC, where ∆C ≈ 656 J/(mol·V2)
and Ψ0 was chosen to be 70 mV.
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Further, close to transitions the elastic constants are closely
related to the heat capacity. For instance, the temperature-
dependent change of the isothermal compressibility is propor-
tional to heat capacity changes. Thus, membranes are more
compressible close to transitions, and it is to be expected that
the effect of potential changes on membrane capacitance is en-
hanced. This will be calculated in the following.

We assume that the lipid melting transition is described by
a two-state transition governed by a van’t Hoff law, so that the
equilibrium constant between the gel and the fluid state of the
membrane can be written as (2, 13)

K(T,Ψ) = exp

(
−n∆G

RT

)
(14)

where n is the cooperative unit size which describes the number
of lipids that change state cooperatively (for LUVs of DPPC
we used n = 170 (14)). The free energy difference between
gel and fluid membranes is given by

∆G = (∆H0 − T∆S0) + ∆Gel , (15)

where ∆H0 = 35 kJ/mol and ∆S0 = 111.4 J/mol K (for
DPPC). From the equilibrium constant we can calculate the
fluid fraction, the average fraction of the lipids that are in the
fluid state,

ff (T,Ψ) =
K(T,Ψ)

1 +K(T,Ψ)
. (16)

For DPPC LUV, the thickness in the gel and fluid state is given
by dg = 4.79 nm and df = 3.92 nm , respectively. The area
per lipid is Ag = 0.474 nm2 and Af = 0.629 nm2 (3). We
assume a dielectric constant of ε = 4 · ε0 independent of the
state of the membrane. The area is described by A(T,Ψ) =
Ag +ff ·∆A, and the membrane thickness by d(T,Ψ) = dg−
ff · ∆d, respectively. The temperature and voltage-dependent
capacitance, C = εA(T,Ψ)/d(T,Ψ) is shown in fig. 6. For
small variations in the potential, the change in capacitance is
a quadratic function of voltage. For large potentials, one finds
the capacitance of the fluid phase which is assumed being con-
stant. One can recognize that the sensitivity of the capacitance
to voltage changes close to the transition is much larger than
that of the pure phases (Fig. 5). It is also a sensitive function of
the temperature. Fig. 6 shows Cm(Ψ) for three different tem-
peratures above the melting temperature of DPPC at 314.15 ◦C.
At T = 314.5 K, the change in capacitance at Ψ − Ψ0 = 300
mV is approximately 3% compared to the about 0.5% experi-
mentally measured in the absence of a transition (Fig. 5). Due
to the presence of a melting transition, the curve profile in Fig.
6 is only a quadratic function of potential close to Ψ = −Ψ0.

The dependence of the melting temperature on the applied
potential

The total free energy difference between gel and fluid phase,
∆G, consists of an enthalpic and an entropic contribution,

∆G = ∆H0 − T∆S0 + ∆Gel , (17)

Figure 7: The lipid melting temperature as a function
of applied potential with three different offset potentials,
Ψ0=0.1 V, Ψ0=0V, and Ψ0=-0.1 V. The parameters are
taken from LUV of DPPC, where ∆C ≈ 656 J/(mol ·
V 2) for ε = 4 · ε0.

At the melting temperature, Tm, the Gibbs free energy differ-
ence ∆G is zero, so that

Tm = Tm,0

(
1 +

∆Gel

∆S0

)
(18)

= Tm,0

(
1− 1

2

∆Cm
∆S0

(
(Ψ + Ψ0)2 −Ψ2

0

))
,

where Tm,0 = ∆H0/∆S0 is the melting temperature in the
absence of an external field (for DPPC: ∆H0 = 35 kJ/mol,
Tm,0 = 314.15 K and ∆S0 = 111.4 J/mol· K (3)). This result
describes the effect of electrostriction on the lipid melting tran-
sition in the presence of spontaneous polarization. It is a gen-
eralization of the electrostriction effect described by Heimburg
(2) who treated this phenomenon in the absence of polarization
effects. Fig. 7 shows the dependence of Tm on an applied volt-
age for three different offset potentials, Ψ0. It can be seen that
in the presence of an applied filed, the spontaneous polarization
and its sign influences that melting temperature.

Generalization for Ψ0 6= const

The orientation of lipid dipoles can change upon lipid melting.
It seems to be obvious from lipid monolayer experiments that
the polarization of liquid expanded and solid condensed layers
is different. We assume the same to be true for bilayers. Let us
assume that the net offset potentials originating from membrane
polarization in the gel and the fluid phase are given by Ψg

0 and
Ψf

0 , respectively. The free energy is now given by
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Figure 8: A polar membrane with different lipid com-
position on the top and bottom monolayer undergoing a
melting transition from gel to fluid. The gel state pos-
sesses an area Ag and a capacitance Cg , while the fluid
state displaysAf andCf . The net offset potentials caused
by membrane polarization are Ψg

0 and Ψf
0 , respectively.

The differences in area and capacitance between the two
states are given by ∆A and ∆C.

∆Gel = −Cf
2

(
(Ψ + Ψ0,f )2 −Ψ2

0,f

)

−Cg
2

(
(Ψ + Ψ0,g)

2 −Ψ2
0,g

)

= −∆C

2
((Ψ + Ψ0,g)

2 −Ψ2
0,g)

−CfΨ(Ψ0,f −Ψ0,g) (19)

This can be inserted in eq. (17) to obtain the change in melting
temperature due to an applied field.

The dielectric susceptibility

In (2) we defined a capacitive susceptibility, Ĉ = (∂q/∂V ) =
C + V (∂C/∂V ). This susceptibility has a maximum at the
melting temperature, which is a consequence of the fact that
the capacitance of gel and fluid lipid phases differ. By analogy,
we now introduce a dielectric susceptibility, ε̂ = (∂D/∂E),
which is given by:

ε̂ ≡
(
∂D

∂E

)
=

(
∂(εE + P0)

∂E

)
= ε+ E

(
∂ε

∂E

)
+

(
∂P0

∂E

)

(20)
Thermodynamic susceptibilities are linked to fluctuation rela-
tions. For instance, in (2) we showed that the capacitive suscep-
tibility is given by Ĉ = (

〈
q2
〉
−〈q〉2)/kT , i.e., it is proportional

to the fluctuations in charge. This fluctuation relation is valid
as long as the distribution of states is described by Boltzmann
statistics and the area and thickness are kept constant. Analo-
gously, for constant volume, v, the dielectric susceptibility, ε̂,
is given by

ε̂ = v

〈
D2
〉
− 〈D〉2
kT

. (21)

Since this is a positive definite form, ε̂ is always larger than
zero. The mean displacement, 〈D〉, always increases with an
increase in the electric field, E. If either ε or the permanent
polarization P0 are different in the gel and the fluid state of a
membrane, one can induce a transition. In this transition, the
dielectric susceptibility displays an extremum.

Capacitive susceptibility, piezoelectricity
and flexoelectricity
As mentioned above, the polarization of a membrane can chan-
ge by compressing, stretching or bending the membrane. The
corresponding electrostatic phenomena are called electrostric-
tion, piezoelectricity and flexoelectricity. In the past, some sim-
ple relations were derived by A. G. Petrov (15). For instance,
piezoelectricity was described as the area-dependence of po-
larization. Correspondingly, flexoelectricity was described as
the curvature-dependence of the polarization assuming that po-
larization is zero in the planar state of the membrane. How-
ever, upon changing the membrane area, its capacitance also
changes. Thus, in the presence of a field not only the polariza-
tion but also the charge on the capacitor can change. In the case
of membrane curvature, the polarization may be different from
zero in the planar state. Further, if there exists an applied po-
tential, the capacitance of the membrane plays a role. In the fol-
lowing, we derive general equations for electrostriction, piezo-
electricity and flexoelectricity. We will find that some relations
previously derived by Petrov are special cases of our more gen-
eral description.

The charge on a capacitor
The dependence of the charge on a capacitor on potential, Ψ,
surface area, A, and curvature, c is given by

dq =

(
∂q

∂Ψ

)

A,c

dΨ +

(
∂q

∂A

)

Ψ,c

dA+

(
∂q

∂c

)

Ψ,A

dc . (22)

Here, we assume that Ψ, A and c are variables that can be con-
trolled in the experiment. The charge on a capacitor is given
by

q = A ·D = A(εE + P0) = ε
A

d
(Ψ + Ψ0) = Cm(Ψ + Ψ0) .

(23)
Thus, the change of the charge on a capacitor as a function of
potential, lateral pressure, and curvature is given by:

[
(Ψ + Ψ0)

(
∂Cm
∂Ψ

)

A,c

+ Cm + Cm

(
∂Ψ0

∂Ψ

)

A,c

]
dΨ

dq = +

[
(Ψ + Ψ0)

(
∂Cm
∂A

)

Ψ,c

+ Cm

(
∂Ψ0

∂A

)

Ψ,c

]
dA(24)

+

[
(Ψ + Ψ0)

(
∂Cm
∂c

)

Ψ,A

+ Cm

(
∂Ψ0

∂c

)

Ψ,A

]
dc

or in abbreviated form as

[(Ψ + Ψ0)αA,c + Cm + CmβA,c] dΨ

dq ≡ + [(Ψ + Ψ0)αΨ,c + CmβΨ,c] dA . (25)
+ [(Ψ + Ψ0)αΨ,A + CmβΨ,A] dc

The first term describes the change of charge on a capacitor
allowing for the possibility that both capacitance and polariza-
tion can depend on voltage. The second term describes piezo-
electricity, i.e., the change of charge by changing area, taking
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into account the area dependence of both capacitance and polar-
ization. The last term describes flexoelectricity, which relates
to the change of charge caused by changes in curvature. Here,
both dependence of capacitance and polarization on curvature
are considered.

One could write similar equations, if the lateral pressure, π,
were controlled instead of the area, A.

Capacitive susceptibility

The capacitive susceptibility is given by Ĉm = ∂q/∂Ψ. It was
discussed in detail in (2). In contrast to the capacitance, it can
have a maximum in a melting transition. If lateral pressure and
curvature are constant, we find from eq. (26) that

Ĉm =

(
∂q

∂Ψ

)

A,c

= (Ψ + Ψ0)αA,c + Cm + CmβA,c (26)

If the spontaneous polarization is zero at all voltages, this re-
duces to

Ĉm = Cm + Ψ

(
∂Cm
∂Ψ

)

A,c

(27)

which is the relation given by Heimburg (2012).

Piezoelectricity
Let us assume that in eq. (25) Ψ and c are constant. We then
obtain

dq = [(Ψ + Ψ0)αΨ,c + CmβΨ,c] dA . (28)
This effect is the ’piezoelectric effect’. It corresponds to the
charging of a capacitor by changing the surface area of the
membrane. At Ψ = 0, we obtain for a small change in area,
∆A,

∆q ≈ (Ψ0αΨ,c + CmβΨ,c) ∆A . (29)
If Ψ0(∆A = 0) is zero, the capacitor is uncharged for Ψ = 0.
Then the charge on the capacitor after a change in area of ∆A
is given by

q(∆A) = CmβΨ,c∆A or Ψ0(∆A) = βΨ,c∆A .
(30)

A similar relation was given by Petrov and Usherwood (19).

Inverse piezoelectric effect: The elastic free energy density
of membrane compression is given by g = 1

2K
A
T (∆A/A0)2,

where KA
T is the lateral compression modulus and A0 is the

equilibrium area prior to compression. In the presence of an
applied potential, the free energy is given by

g =
1

2
KA
T

(
∆A

A0

)2

− 1

2

Cm
A0

(
(Ψ + Ψ0)2 −Ψ2

0

)
(31)

In order to obtain the free energy, G, this has to be integrated
over the surface area of the lipid membrane. At constant com-
pression modulus,KA

T , and constant potential Ψ, the area change
∆A equilibrates such that

∂g

∂A
= KA

T

∆A

A2
0

− Cm
A0

(
∂Ψ0

∂A

)

Ψ,c

Ψ (32)

− 1

2A0

(
∂Cm
∂A

)

Ψ,c

(
(Ψ + Ψ0)2 −Ψ2

0

)
= 0

Therefore,

∆A(Ψ) = A0

[
CmβΨ,c

KA
T

Ψ +
αΨ,c

KA
T

(
(Ψ + Ψ0)2 −Ψ2

0

)]
.

(33)
Here, the first linear term is due to the area dependence of the
membrane polarization, while the second quadratic term origi-
nates from the area dependence of the capacitance.

Flexoelectricity
Let us assume that in eq. (25) Ψ and π are constant. Then we
find

dq = [(Ψ + Ψ0)αΨ,A + CmβΨ,A] dc . (34)
This is the (direct) ’flexoelectric effect’. It describes the charg-
ing of a capacitor by curvature. If we further assume that the
capacitance does not depend on curvature and that the coeffi-
cient βΨ,A is constant, we obtain

q(c) = Cm (Ψ + Ψ0(0)) + CmβΨ,Ac , (35)

whereCm (Ψ + Ψ0(0)) is the membrane charge at c = 0. If the
applied potential, Ψ, is zero and the polarization in the absence
of curvature is also assumed being zero, we obtain

q(c) = CmβΨ,Ac or Ψ0(c) = βΨ,Ac . (36)

Thus, the offset potential Ψ0 is proportional to the curvature.
This relation is a special case of the flexoelectric effect de-
scribed in eq. (34). It was previously discussed by Petrov (15).
He introduced a flexoelectric coefficient, f , which is given by
f ≡ ε ·βΨ,A. Petrov found experimentally that f = 10−18 [C],
or βΨ,A = 2.82 · 10−8 [m] for ε = 4ε0, respectively.

Inverse flexoelectric effect: In the absence of a spontaneous
curvature, the elastic free energy density of bending is given
by g = 1

2KBc
2, where KB is the bending modulus. In the

presence of an applied potential and assuming that Cm does
not depend on curvature, the free energy density is given by

g =
1

2
KBc

2 − 1

2

Cm
A

(
(Ψ + Ψ0)2 −Ψ2

0

)
(37)

In order to obtain the free energy, G, this has to be integrated
over the surface area of the lipid membrane. At constant poten-
tial Ψ, the curvature c equilibrates such that

∂g

∂c
= KBc−

Cm
A

(
∂Ψ0

∂c

)

Ψ,A

Ψ = KBc−
Cm
A
βΨ,AΨ = 0

(38)
Therefore,

c(Ψ) =
Cm
A

βΨ,A

KB
Ψ =

ε

d

βΨ,A

KB
Ψ (39)

This effect is called the ’inverse flexoelectric effect’. It de-
scribes how curvature is induced by an applied potential. It
depends on the bending modulus. In melting transitions, the
curvature-induction by voltage is enhanced because KB ap-
proaches a minimum (3). This implies that in the presence of
an applied field, the curvature of a membrane changes upon
changing the temperature - in particular close to transitions.

Both, the investigation of flexoelectric and inverse flexo-
electric effects have been pioneered by Petrov (15). In Petrov’s
nomenclature, eq. (39) assumes the form c(Ψ) = (f/d·KB)Ψ.
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Discussion
In this publication, we have provided a general thermodynamic
treatment of polarization effects on the properties of lipid mem-
branes. When applied to a membrane in an electrolyte, these
electric effects can all be related to the charging (or discharg-
ing) of capacitors by either potential, curvature or area (or lat-
eral pressure) changes. The latter two effects can lead to an
offset potential or a spontaneous polarization. This is impor-
tant because biological membranes are known to be polar and
changes in voltage are generally considered to be central to
the understanding of the functioning of cells. We show that
a permanent or spontaneous polarization of a membrane in-
fluences the properties of a membrane capacitor such that it
is discharged at a voltage different from zero. We relate this
voltage to an ”offset potential”. The existence of this potential
has the consequence that membrane properties even of chemi-
cally symmetric membranes are controlled differently for posi-
tive and negative voltages. We derived equations for the piezo-
electric and inverse piezoelectric effect. The first considers the
change in the offset potential when changing the membrane
area. The second considers the change in membrane area by
an applied field, which depends on the elastic modulus of the
membrane. Finally, we derived general relations for the flex-
oelectric and the inverse flexoelectric effect. The flexoelectric
effect is the change in the offset potential by changing curva-
ture. The inverse flexoelectric effect is the change in curvature
induced by an applied potential. We showed that in some sim-
ple limiting cases, our derivations lead to relations identical to
those of Petrov (15). Petrov pioneered the field of membrane
flexoelectricity (e.g., (8, 15–21)).

An electric field applied across a lipid membrane generates
a force normal to the membrane surface due to the charging
of the membrane capacitor. The resulting reduction in mem-
brane thickness is called electrostriction (2). For fixed mem-
brane dimensions, the electrostrictive force is a quadratic func-
tion of voltage. Due to membrane thinning induced by the
forces, one finds an increase in membrane capacitance. This
has been demonstrated for symmetric black lipid membranes
made from phosphatidylethanolamines (Fig. 5, (10). However,
for an asymmetric membrane made of charged lipids on one
side and zwitterionic lipids on the other side (thus displaying
polarity) the minimum capacitance is found at a voltage differ-
ent from zero (Fig. 5, (10)). This indicates that a permanent
electric polarization of the membrane influences the capacitive
properties of a membrane. This has also been found in biolog-
ical preparations. Human embryonic kidney cells display an
offset potential of −51 mV (22). This indicates that the ca-
pacitance in electrophysiological models such as the Hodgkin-
Huxley model (1) is incorrectly used because offset potentials
are not considered. However, it is very likely that the offset
potentials are closely related to the resting potentials of mem-
branes. It should also be noted that the capacitance is typically
dependent on the voltage. This effect has also not been consid-
ered in classical electrophysiology models. We treat that here
in terms of a ’capacitive susceptibility’ (eq. (26), cf. (2)).

Electrostrictive forces also influence melting transitions of
lipid membranes. Since the fluid state of the membrane dis-
plays a smaller thickness than the gel phase, an electrostric-
tive force will shift the state of the membrane towards the fluid

state. Heimburg (2) calculated a decrease of the melting tem-
perature, Tm, which is a quadratic function of voltage. Since
the membrane was considered being symmetric, the largest Tm
is found at Ψ = 0. Here, we showed that a membrane which
displays a spontaneous polarization in the absence of an ap-
plied electric field possesses an offset potential, Ψ0, in the free
energy (eq. (13)). The respective equation contains the term
((Ψ + Ψ0)2 − Ψ2

0) = Ψ2 + 2ΨΨ0, which is approximately
linear for Ψ � Ψ0 (eq. (8). In fact, Antonov and collab-
orators found a linear dependence of the melting temperature
on voltage (23). This indicates that the membranes studied by
Antonov and collaborators (23) were polar.

Antonov’s experiment determined the voltage-dependence
of the melting temperature by measuring the permeability chan-
ges in the transition. It is well known that membranes display
maximum conductance in lipid phase transitions (24, 25). Fur-
thermore, it has been found that membranes can form pores
that appear as quantized conduction event upon the application
of potential difference across the membrane (25–29). The like-
lihood to form a pore is thought to be proportional to the square
of the applied electric potential (30, 31). This is based on the
assumption that an increase in voltage thins the membrane and
eventually leads to an electric breakdown linked to pore for-
mation. Laub et al. (32) found that the current-voltage (I-V)
relation for a chemically symmetric phosphatidylcholine mem-
brane patch formed on the tip of a glass pipette was a non-linear
function of voltage which was not symmetric around Ψ = 0,
but rather outward rectified. Blicher et al. (14) proposed that a
voltage offset can explain the outward-rectification. They pro-
posed that the free energy difference between an open and a
closed pore, ∆Gp, can be expressed by

∆Gp = ∆Gp,0 + α(V − V0)2 , (40)

where ∆Gp,0 and α are coefficients and V0 is a voltage offset.
This equation has the same analytic form as used here for the
electrostatic free energy (G = −(Cm/2)((Ψ + Ψ0)2 − Ψ2

0)).
Assuming that the equilibrium constant between an open and a
closed form of a membrane pore is given by Kp =
exp(−∆Gp/kT ) and the likelihood of finding an open pore
is given by Popen = Kp/(1 + Kp), Blicher and collaborators
concluded that the I-V relation could be expressed as

I = γpPopenV (41)

This relation perfectly fitted the experimental current-voltage
data. Thus, inward and outward rectified I-V profiles can be
found in pure lipid membranes in the complete absence of pro-
teins. They find their origin in the polarization of the mem-
brane.

Here, we investigated two possible mechanisms that can
give rise to spontaneous polarization in the absence of an ap-
plied field, which both break the symmetry of the membrane.
The first (flexoelectricity) acts by allowing the membrane to be
curved (thus introducing a curvature, c) and a difference of the
lateral tension within the two monolayers. The second mecha-
nism acts by assuming a chemically or physically asymmetric
lipid composition on the two leaflets. An example for a phys-
ically asymmetric membrane is a situation where one mono-
layer is in a fluid state while the other monolayer is in a gel
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state. Chemical asymmetry assumes a different lipid compo-
sition on the two sides of the membrane. The magnitude of
the resulting offset, Ψ0, is strongly influenced by experimen-
tal conditions such as the lipid composition, salt concentration,
pH, or the presence of divalent ions. Permanent polarization of
the lipids can not only lead to an electrical offset but also to an
enhanced dielectric constant. For biological membranes, po-
larization asymmetries can originate from any constituting el-
ement of the membrane including integral membrane proteins.
We can also speculate that other membrane adhesive molecules
with large dipoles can be used to create an asymmetric mem-
brane, e.g., soluble proteins or lipid-associated molecules such
as long-chain sugars. Depending on the nature of the asymme-
try, the system can display piezoelectric properties.

The offset potential can have interesting consequences for
capacitive currents. The charge on a capacitor is given by q =
Cm(Ψ+Ψ0). Therefore, for constant Ψ0 the capacitive current
is given by

Ic(t) =
dq

dt
= Cm

dΨ

dt
+ (Ψ + Ψ0)

dCm
dt

(42)

For a positive change in potential, the first term in eq. (42) is
positive and leads to a positive current. If the change in volt-
age happens instantaneously, the corresponding current peak is
very short. The second term describes the temporal change in
capacitance induced by the voltage change. It depends on the
relaxation time of the membrane capacitance, which close to
transitions can range from milliseconds to seconds. Thus, it
can be distinguished from the first term. Let us consider the
situation shown in Fig. 6 (Ψ0 = 70 mV, T=314.5 K) with
a membrane capacitance of ≈ 1 µF/cm2. Here, a jump from
Ψ = −70 mV to Ψ = −10 mV yields a positive change in
capacitance of ∆Cm = 2.6 nF/cm2. If the offset potential were
Ψ0 = −70 mV instead, the same jump would change the ca-
pacitance by ∆Cm = −7.8 nF/cm2. Therefore, the second
term in eq. (42) is positive in the first situation but negative in
the second situation. For this reason, depending on the offset
potential and holding potential, the capacitive current associ-
ated to the second term in eq. (42) can go along the applied
field or against the applied field. Similarly, for a jump in po-
tential of +60 mV, the capacitive current would depend on the
holding potential before the jump. For Ψ0 = 70 mV, the change
in capacitance is ∆Cm = −2.6 nF/cm2 for a jump from −130
mV to −70 mV. It is ∆Cm = +8.9 nF/cm2 for a jump from
+70 mV to +130 mV. The typical time-scale of processes in
biomembranes is a few milliseconds to a few ten milliseconds.
It can be different for different voltages. Thus, slow currents
on this time-scale against an applied field can originate from
voltage-induced changes in lipid membrane capacitance. If the
offset-potential also depends on voltage, this situation is more
complicated.

Flexoelectric and piezoelectric phenomena have also be con-
sidered to be at the origin of an electromechanical mechanism
for nerve pulse propagation (33). In 2005, Heimburg and Jack-
son proposed that the action potential in nerves consists of an
electromechanical soliton. The nerve pulse is considered as a
propagating local compression of the membrane with a larger
area density. According to the piezoelectric effect treated here
(eq. (28), a change in membrane area can lead to the charging
of the membrane capacitor. Alternatively, due to the inverse

piezoelectric effect a change in the applied membrane poten-
tial can induce area changes (eq. (33) and thus induce a density
pulse. The inverse piezoelectric effect is very dependent on the
lateral compressibility of a membrane. Thus, is is largely en-
hanced in the melting transition where the compressibility is
high. Further, these effects will largely depend on membrane
polarization.

Finally, it should be mentioned that some of the polariza-
tion effects on artificial membranes are not very pronounced
because changes in polarization due to changes in area are not
very large. For instance, a voltage change of 200 mV changes
the transition temperature by only 0.12 K. However, the abso-
lute magnitude of the effect largely depends on offset polariza-
tions. These could be influenced by lipid-membrane-associated
molecules (such as proteins) with large dipole moments.

Conclusion
Here, we provided a unified thermodynamic framework for ca-
pacitive changes, piezoelectricity and flexoelectricity. It treats
all of these effects in terms of the electric field, E, and the
electric displacement, D. We show that a spontaneous mem-
brane polarization leads to offset potentials that form the ori-
gin for a number of interesting membrane phenomena, includ-
ing voltage-dependent changes in capacitance, voltage-induced
curvature, rectified current-voltage relations for membrane con-
ductance, and capacitive currents against the applied field.
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