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A B S T R A C T

Over the last forty years, nanomechanical resonators have gained a
central role in widespread fields in science and technology. More recently,
the invention of techniques like dissipation dilution and soft clamping led
to the fabrication of nanomechanical resonators, in particular strings and
membranes, with higher and higher quality factors. The corresponding
long coherence time together with the low effective mass and the high
resonance frequency place these systems at the forefront in force sensing
applications. Moreover, the possibility of interfacing these resonators
with disparate systems such as electromagnetic cavities, spin ensembles,
atoms and superconducting qubits, makes them promising building
blocks for the next generation of quantum technologies.

In this thesis, we focus our attention on several nonlinear phenom-
ena arising in dissipation-diluted nanomechanical resonators. The high
quality factor featured by soft-clamped membranes allows us to enter
the regime of large displacement amplitude for the out-of-plane modes,
in which a linear description of the motion fails. In this regime, we
observe both conservative and dissipative nonlinearities, which mani-
fest respectively as Duffing frequency shift and amplitude-dependent
damping. We model these nonlinearities as geometric, and we derive
formal expressions to predict them starting from a continuum elastic
theory. We test our model by comparing the predicted nonlinear pa-
rameters with the measured ones on a vast selection of geometries of
both single and double defect membranes. By further extending this
model, we predict that the in-plane modes of the membrane couple to
the out-of-plane ones. This coupling modulates the resonance frequency
of the out-of-plane modes, thus realizing a parametric modulation. We
perform preliminary experimental investigations of this phenomenon.

The theoretical and experimental results in this thesis add new evi-
dences which can shed light on the geometric origin of nonlinear phe-
nomena in dissipation-diluted membrane resonators. Understanding
and controlling these nonlinearities is important for several applica-
tions. In force sensing experiments, for instance, one needs to reduce
nonlinearities, which may otherwise limit the lowest achievable sen-
sitivity. In contrast, quantum experiments trying to access genuine
nonclassical features of motion will benefit from enhancing nonlinear-
ities. Our model, which proved successful to describe nonlinearities
in disparate membrane geometries, will be an asset to engineer new
nanomechanical resonators with controlled strengths of nonlinearity for
the above-mentioned applications.
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S A M M E N FAT N I N G

I løbet af de sidste fyrre år har nanomekaniske resonatorer opnået en
central rolle i vidt forskellige felter indenfor videnskab og teknologi.
For nyligt har opfindelsen af teknikker som dissipationsfortyndelse
og blød hæftning ledt til fabrikationen af nanomekaniske resonatorer,
især strenge og membraner, med højere og højere kvalitetsfaktorer. De
tilsvarende lange kohærenstider sammen den lave effektive masse og høje
resonansfrekvens placerer disse systemer forrest indenfor kraft-sensor
anvendelser. Ydermere gør muligheden for at integrere disse resonatorer
med vidt forskellige systemer såsom elektromagnetiske kaviteter, spin
ensembler, atomer og superledende qubits, dem til lovende byggeklodser
for den næste generation af kvanteteknologier.

I denne afhandling retter vi vores opmærksomhed imod flere ikke-
lineære fænomener der opstår i dissipationsfortyndede nanomekaniske
resonatorer. Den høje kvalitetsfaktor fremvist af blødt hæftede mem-
braner lader os tilgå regimet af stor forskydningsamplitude for ude-af-
planet resonanser, hvor en lineær beskrivelse af bevægelsen slår fejl.
I dette regime observerer vi både konservative og dissipative ikkelin-
eariteter, der respektivt optræder som Duffing frekvensskift og am-
plitudeafhængig dæmpning. Vi modellerer disse ikkelineariteter som
geometriske og vi udleder formelle udtryk til at forudsige dem fra en
kontinuum elastisk teori. Vi tester vores model ved at sammenligne de
forudsagte ikkelineære parametre med de målte på et stort udvalg af
geometrier af enkelt- og dobbelt-defekt membraner. Ved yderligere at ud-
vide modellen, forudsiger vi at i-planet resonanser af membraner kobler
til ud-af-planet resonanser. Denne kobling modulerer resonansfrekvensen
af ud-af-planet resonanser, og realiserer således en parametrisk mod-
ulation. Vi udfører indledende eksperimentelle undersøgelser af dette
fænomen.

De teoretiske og eksperimentelle resultater in denne afhandling til-
føjer nye beviser der kan kaste lys over den geometriske oprindelse af
ikkelineære fænomener i dissipationsfortyndede membranresonatorer.
Forståelse af og kontrol over disse ikkelineariteter er vigtigt for flere
anvendelser. I kraft-sensor eksperimenter, for eksempel, skal man re-
ducere ikkelineariteter, der ellers kan begrænse den højest opnåelige
sensitivitet. I modsætning, vil kvanteeksperimenter der forsøger at tilgå
ægte uklassiske egenskaber ved bevægelse, have gavn af forstærkede
ikkelineariteter. Vores model, der har vist sig succesfuld til at beskrive
ikkelineariteter i forskellige membrangeometrier, vil være en værdifuld
ressource til at designe nye nanomekaniske resonatorer med kontrollerede
grader af ikkelinearitet til ovenstående anvendelser.
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I N T R O D U C T I O N

The harmonic oscillator is perhaps the simplest and yet the most ubiq-
uitous model in physics. Despite its simplicity, it is able to describe
the behavior of a huge variety of systems of all sizes. The equations
describing the motion of a mass attached on a spring are the same that
describe the wiggle of electrons in nuclear orbits, the electric current
some electronic circuits, the swing of a pendulum, the vibration of
drums or strings in musical instruments, but also mechanical vibrations
of a bridge. A particularly important application of the harmonic os-
cillator description is modeling systems with one or more dimensions
below a micrometer, a lengthscale especially important for the field of
nanoscience.

Since the breakthrough of the scanning tunneling microscopy (STM)
in 1981 and of the atom force microscopy (AFM) only few years later,
nanomechanical objects attracted significant interest in science and
technology. Characterized by an effective mass ranging from picogram
to nanogram and a quality factor ranging from few thousands to few
millions, nanomechanical resonators have been used to sense different
physical quantities such as force [Rei+16], mass [Cha+12], radiation
[Yi+13; Pil+21] and temperature [Sad+20]. Simultaneously, the recent
technological progresses in fabricating these nanomechanical resonators
enable to achieve higher and higher quality factor, thus coherence time.
This is desirable for quantum technologies, such as microwave-to-optical
quantum transducer [MSF18; Bru+21; Sah+21], spin-phonon entangle-
ment [Kar+20] or quantum memories [Wal+20], in which nanomechani-
cal resonators are starting to be employed more frequently.

A milestone for a new generation of resonators was the implementa-
tion of the dissipation dilution technique. Originally introduced by the
LIGO collaborations [HS98; Gon00], it consists in introducing a lossless
potential to increase the energy stored in the oscillator. In nanomechani-
cal systems, such a lossless potential is given by the presence of a tensile
energy [Ver+07; UFPK10; Sch+11; Fed+19]. After the introduction
of dissipation dilution, a considerable effort has gone into designing
mechanical resonators characterized by lower and lower dissipation. Soft
clamping, first introduced in [Tsa+17], is an example of such efforts.
This approach consists in fabricating nanomechanical resonators pat-
terned with a phononic crystal structure. A properly engineered defect
embedded in this structure can support localized vibrational modes,
which are shielded from the environment by the phononic crystal. At
the same time, these localized vibrations are greatly suppressed at
the clamping region, rendering negligible one of the largest sources of
dissipation, the bending losses. The isolation from the environment
provided by the phononic crystal and the reduction of bending losses
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2 introduction

allow these nanomechanical resonators to have quality factors about
hundreds of millions at room temperature for MHz-resonance frequen-
cies. The soft-clamped approach is now widely used in different types
of nanomechanical resonators [Gha+18; Ree+19; Ber+21], and it has
been complemented with the new ideas of strain engineering [Bec+21b]
and structural hierarchy [Bec+21a]. All this led to the fabrication of
nanomechanical resonators with quality factors exceeding one billion at
room temperature with resonance frequencies which can be tuned from
about 100 kHz up to few MHz.

Nanomechanical resonators with such a high quality factors allow one
to easily access regimes of motion previously precluded, or hard to reach,
in standard room temperature operation. A regime particularly interest-
ing is when the displacement amplitude becomes large and comparable
with the smallest resonator dimension, usually its thickness. In this
case, the simple description of a nanomechanical resonator as a linear
damped harmonic oscillator fails. To properly predict the dynamics
in the large displacement regime, we need to account for anharmonic
forces arising from the material deformation. The simplest model is
the so-called Duffing oscillator [Nay93], which represents a harmonic
oscillator with an extra force cubic in the position, the main effect of
which is to introduce an amplitude-dependent shift of the resonance
frequency. Duffing oscillators are widely studied by the community,
as witnessed by the vast literature [AC05; FPT12; Def+12; Hoc+14;
Dav+17]. Another signature of the large displacement regime is the
appearance of nonlinear viscous forces, which gives rise to the phe-
nomenon of nonlinear damping. In contrast to the Duffing nonlinearity,
the nonlinear damping is less studied. It has been observed on a vari-
ety of structures [Eic+11; Zai+11; Ant+12; IWM13; Vil+13; Pol+16;
CTS20; Cat+21] and some models have been put forward, attributing
the source of nonlinear damping to geometric effects [Vil+13; SVR16;
Ama18; Gus20; Cat+21] or intermodal coupling [Ata+16]. The dispute
about the origin of nonlinear damping has not been resolved, and it
remains still an open question as of today.

The large displacement regime affects the dynamics not only of a
single mechanical mode, i. e. the one which is strongly driven, but
also of other undriven modes via nonlinear coupling with the largely
displaced mode. Such cross-nonlinear phenomenon has been observed
in systems constituted by coupled harmonic oscillators [KCR09] or
within modes with opposite symmetry [Wes+10], and are particularly
relevant in dimer resonators [MIC14; CTS20; Ber+21]. The latter system
can intuitively be described as two nanomechanical resonators coupled
by the common substrate. The tunability of the resulting frequency
splitting and the large working area ensured by the presence of two
defects make them ideal for force sensing applications. In this scenario,
dissipative cross-nonlinear contributions can represent a limiting factor
for the force sensitivity [Koš+20].
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Dissipation-diluted nanomechanical resonators with high quality fac-
tor in the nonlinear regime are also especially suited for parametric
driving and amplification experiments. An interesting case is when the
mechanical resonance frequency is modulated at twice its value: in this
case, the mechanical resonator turns into an amplifier with controllable
gain [RG91]. When the resonance frequency modulation equals the
mechanical damping rate, the gain diverges and the system becomes
unstable. For this reason, high-quality resonators require less modu-
lation strength to reach this threshold. In particular, this parametric
driving can be arranged to reduce (’squeeze’) the thermal fluctuations
of a mechanical quadrature, resulting in a thermomechanical squeezed
state. [RG91].

Although the parametric driving has been implemented in experi-
mental settings on nanomechanical resonators through both mechanical
[Mah+14; Pat+15; Wu+18] and electrostatic [RG91; H+̈21a] actuation,
a model which is able to derive the parametric driving from a continuum
elastic perspective has not been discussed yet. A deeper understanding
of the mechanism behind the parametric modulation in soft-clamped
resonators would be beneficial for force sensing experiments, such as
magnetic resonance force microscopy experiment (MRFM) where an
advanced parametric protocol has been recently proposed to satisfy the
particularly demanding requirements for the experimental realization
[Koš+20]. Moreover, enhancing the parametric driving finds applications
also in quantum experiments, especially in the generation of quantum
squeezed states of motion [Wol+15; Pir+15].

The study of dissipation-diluted nanomechanical resonators in the
large displacement regime and under parametric driving is at the heart
of this research work. We developed both experimental and theoretical
tools to measure and quantify but also model and predict the geometric
nonlinearities in membrane resonators.

structure of the thesis

The thesis is divided in two parts. In the first one, we give an overview
of the theory used to model the experimental results presented later
in this thesis, as well as the experimental methods employed. In the
second part, we present our main results, which consist both of the
measurements of nonlinear phenomena as well as of a microscopic model
used to explain the data. Most of these results have been published in
Ref. [CTS20; Cat+21].

In Chapter 1, we provide a full description of the motion of a thin
membrane resonator, starting from a continuum elastic model, then
recovering a lumped-element description. In this derivation we introduce
the building blocks for all the theoretical work developed during the
thesis. We give an overview of the most important sources of dissipation
generally affecting our system and we describe the common methods
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we use to remove, or at least mitigate, them. In Chapter 2, we give
an overview of the interferometric techniques and their application
in displacement measurements. Then, we describe the most common
noise sources affecting the interferometric measurements and the cor-
responding optimal working conditions. In Chapter 3, we introduce
the experimental setup and techniques used throughout the various
measurements.

The successive three chapters form the second part of the thesis. In
Chapter 4, we report the observation, quantification, and modeling
of Duffing nonlinearity and nonlinear damping in dissipation-diluted
nanomechanical resonators. In Chapter 5, we introduce and characterize
a new membrane design comprising two defects embedded in the same
phononic crystal. We investigate the dynamics of such oscillators in
the nonlinear regime using the results of the previous chapters, with
emphasis on the cross-nonlinear phenomena. Finally in Chapter 6, we
report on the preliminary measurements of parametric effects in soft-
clamped membranes. Using the theoretical tools developed so far, we
propose a model which predicts the coupling between in-plane and
out-of-plane modes as the source of parametric excitation.



Part I

O P T O M E C H A N I C A L S Y S T E M





1
M E C H A N I C A L S Y S T E M

Simple pendulum.

The harmonic oscillator is one of the funda-
mental model in physics. It is utilized to model
various systems of all sizes. In this first chapter
we show how the harmonc oscillator model is
able to describe the vibrations of the nanome-
chanical system studied in this thesis. It consists
of a membrane resonator, e. g. a thin plate sub-
jected to a high time-independent in-plane stress.
Starting from the fundamental elastostatic con-
cepts, we present a continuum elastic model to
describe the deformation of a thin membrane,
and we reduce it to a damped harmonic oscillation. Such model con-
stitutes the backbone of the theoretical contents of this research work.
Then, we introduce the different types of losses relevant for the system
under study, and we describe the two techniques we use to remove or
mitigate them. Finally, we give an overview of the membrane designs
investigated in this thesis.

1.1 basic elastostatics

Every solid body subjected to an external force experiences a transfor-
mation. Under particular circumstances this transformation can result
in a deformation. Depending on the strength of the force and on the
solid body properties, such deformation can be temporary (elastic defor-
mation) or permanent (plastic deformation). Elasticity theory describes
the deformation of a solid body and the force applied to (or produced
by) the body in the former case. For the purpose of this thesis, we
restrain ourselves to the elastic domain. All the contents of this section
represent a summary extrapolated from the treatments done in [LL70;
Lau11; TK87] and constitute the starting point for the modeling derived
in sec. 4.2 and 6.3.

In a continuum object, the position of each point is described by
its radius vector r⃗, which defines its distance from the origin of the
coordinate system. By applying an external force, all the points in the
medium are displaced. The magnitude of the displacement experienced
by each point is described by the displacement vector,

d⃗ = r⃗ ′ − r⃗, (1.1)

7



8 mechanical system

Displaced radius vec-
tors.

where r⃗ ′ represents the displaced radius vec-
tor. Despite the information contained in the
displacement vector, the latter is not the most
straightforward quantity to describe a deforma-
tion. Although all the points are displaced, not
all the displacements result in a deformation.
Rotation or translation of a continuum object
can displace all the points of body without in-
troducing any type of deformation. We are only
interested in the physics describing the reaction
of a solid body to a deformation, condition veri-
fied every time the distance between two points
changes.

To give a complete description of the deformation we need to introduce
a tensorial quantity, the so-called strain tensor ⇒

ε , which is expressed in
terms of the displacement vector components as [LL70]

εij =
1
2 (∂jdi + ∂idj + ∂idk∂jdk) , (1.2)

where the Latin indexes represent the three directions x, y, z and the
repeated indexes are summed over. The linear components in Eq. (1.2)
represent the deformation associated with the bending of the body
(εbend

ij ) while the second order terms represent the stretching or the
elongation (εelong

ij ).
An external force deforms the body by changing the distance between

the molecules. The molecules react by generating a repulsing/attracting
force within the body. We quantify the internal forces through a new ten-
sorial quantity, the internal stress ⇒

σ [LL70].

Stress tensor compo-
nents.

It is expressed as a force per unit area and its
magnitude depends on the direction in which
the external force acts and on the orientation
of the surface upon which the force is acting.
Let us called df⃗ = (fx, fy, fz) a force per unit
volume acting on an arbitrary surface element
dS⃗ = (dSx, dSy, dSz). The external force gen-
erates an internal stress which satisfies the so-
called Cauchy’s stress hypotesis [Lau11]

dfi = σijdSj , (1.3)

where the repeated indexes are summed over.
In the elastic domain, the relation between the

deformation introduced by an external force and the generated internal
stress is linear and takes the name of Hooke’s law. For isotropic material
it has the following form [LL70]

σij =
E

1 + ν

(
εij +

ν

1 − 2ν εkkδij

)
, (1.4)
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where E and ν are the Young modulus and the Poisson’s ratio, respec-
tively, and δij is the Kronecker delta. E and ν are material properties.
For Si3N4 resonators E = 270 GPa and ν = 0.27.

In the majority of the cases, we are interested only in small deforma-
tions which can be fully described only by the first order terms in Eq.
(1.2), hence we usually consider a strain tensor written as

εij =
1
2 (∂jdi + ∂idj) . (1.5)

Eq. (1.5) is also called Cauchy’s strain tensor [Lau11]. In this thesis
we always refer to Eq. (1.5) as strain tensor and we use its definition
unless specified otherwise.

1.2 linear membrane resonator

Once defined the basic equations to derive the fundamental tenso-
rial quantities ⇒

σ and ⇒
ε , we derive the equation of motion of an

oscillating object. Let us consider a thin square membrane, i. e. a
square plate of side L subjected to a time-independent in-plane stress,
called tensile stress (σ0). The reference frame is defined in Fig. 1.1.

Figure 1.1: Reference frame of membrane’s oscillation. w(x, y) represents the
out-of-plane deformation, h is the membrane thickness, and L is
the side length.

Membrane cross sec-
tion.

The advantage of introducing a tensile stress
will be discussed in sec. 1.3.2. We consider high-
aspect ratio membrane of uniform thickness
h ≪ L, with the middle plane, i. e. the plane
at a distance h/2 from both the surfaces, co-
inciding with the xy−plane. Here and within
all the thesis we assume that the cross sections
of the plate does not change during the oscilla-
tion. This condition leads to imposing all the
stress components along the out-of-plane direc-
tion equal to zero, e. g. σiz = 0 [TK87]. Within these conditions, the
displacement vector components take the form:

dx = vx(x, y) − z∂xw(x, y) (1.6a)
dy = vy(x, y) − z∂yw(x, y) (1.6b)
dz = w(x, y), (1.6c)
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where w(x, y) is the out-of-plane displacement already introduced in Fig.
1.1, while vx(x, y) and vy(x, y) describe the two in-plane components
of the displacement. In most of this thesis we assume that we are in the
regime where vx and vy are negligible compared with the in-plane dis-
placement induced by the out-of-plane motion, i. e. −z∂iw. We confirm
such assumption through finite element modeling (FEM) simulationS.
Where not specified otherwise, we perform the so-called out-of-plane
approximation [AIK08] and we neglect the in-plane displacement com-
ponents vx and vy. Within this condition, it can be proven that the
in-plane components of the strain and stress tensor can be written in
terms of the out-of-plane displacement as [LL70]

εαβ = ε0δαβ − z∂αβw, (1.7a)

σαβ =
E

1 − ν2 [(1 − ν)εαβ + νεγγδαβ ] , (1.7b)

where the Greek indexes denote the in-plane directions x and y. ε0
represents an in-plane static strain giving rise to the tensile stress σ0.
Notice that both the static deformation and the static tensile stress
have a spatial dependence in x and y. The Kroneker delta in front
of ε0 ensures that the static deformation does not include any shear
component. We confirmed such assumption through FEM simulations.

In the discussion above we only considered a static deformation de-
pending on the x, y position on the membrane surface. More generally,
we are interested in the time dependent deformation due to the mem-
brane vibrations induced by an external driving force or the thermal
Brownian motion of the membrane itself. In this scenario, we need to
include a time dependence in the out-of-plane displacement w(x, y, t).
The dynamics of this system can be described through the following
equations [TK87]

ρhẅ− ∂αβMαβ − ∇ · n⃗ = F ext, (1.8a)
∂βNαβ = 0, (1.8b)

where ρ is the material density, F ext is an external driving force applied
only in the out-of-plane direction, and n⃗ is defined as follow

n⃗ =

Nxx∂xw+Nxy∂yw

Nxy∂yw+Nyy∂yw

 . (1.9)

In Eqs. (1.8) we introduced the so-called stress resultants Nαβ and Mαβ

which are defined as

Nαβ =
∫ h

2

− h
2

σαβdz, (1.10a)

Mαβ =
∫ h

2

− h
2

zσαβdz. (1.10b)

The first (Nαβ) describes the shear forces, while the second (Mαβ) the
bending momenta.
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1.2.1 Introducing losses

In the model introduced in the previous section, we do not include any
type of dissipation. This would lead to an equation of motion without
any damping term, which is not able to describe the dynamics of real
systems. To build a complete model we need to find a way to include
dissipation channels in our system.

The loss channels affecting the dynamics of nanomechanical resonators
can be generated by different sources, both internal and external (see sec.
1.3.1). Here we assume that the dominant source of losses are intrinsic
to the resonator. To include the contribution of this loss channel in the
model presented in the first part of the section, we assume there is a
small time lag τ in the stress-strain relation. This delay time introduces
a phase difference between the two quantities, which is described by the
loss angle θlin = τΩi. For small time delays we can approximate the
stress tensor as [Cat+21]:

⇒
σ= H(

⇒
ε (t+ τ )) ≈ H(

⇒
ε (t)) + τH(

⇒̇
ε (t)), (1.11)

where H(
⇒
ε ) is a linear function of ⇒

ε . Writing the stress tensor compo-
nents substituting Hooke’s law to the linear function in Eq. (1.11) we
find

σαβ ≈ E

1 − ν2 [(1 − ν)εαβ + νεγγδαβ ] +
Eτ

1 − ν2 [(1 − ν)ε̇αβ + νε̇γγδαβ ]

= σcons
αβ + σdiss

αβ ,
(1.12)

where the first term (σc
αβ) is the conservative stress component con-

tributing to the conservative energy, while the second term (σd
αβ) is the

dissipative stress component giving rise to the damping term in the
equation of motion. For small time delays, this approach corresponds
to introducing an imaginary term in the Young modulus [SVR16].

1.2.2 Energy contributions

Before entering into details of the resonator dynamics, let us discuss the
different energy components in a body subjected to a deformation. The
work performed by the external force is converted into an energy in the
deformed body. In the ideal case, where stress and strain are perfectly
in phase, all this energy is stored in the body. However, the presence of
a dephasing term in the stress-strain relation implies that part of this
energy is dissipated within the body.

In the elastic domain, we can define the instantaneous energy density
stored (δw) and dissipated (δ(∆w)) in the system as [Lau11; SVR16]

δw =
1
2σ

cons
αβ εαβ, (1.13a)

δ(∆w) =
1
2σ

diss
αβ εαβ. (1.13b)
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The total instantaneous deformation energy stored (w) and dissipated
(∆w) are then obtained by integrating the above equations over the
whole volume V

w =
∫

V
δwdV , (1.14a)

∆w =
∫

V
δ(∆w)dV . (1.14b)

For periodic deformations, like the ones considered in this thesis, we
can estimate the total energy stored in the system (W ) and the energy
dissipated in a cycle of oscillation (∆W ) through the following time
integrals [SVR16]:

W =
2π
Ω

∫ 2π/Ω

0
wdt, (1.15a)

∆W =
2π
Ω

∫ 2π/Ω

0

∫
V

∆wdt. (1.15b)

1.2.3 Reduction to effective harmonic oscillator

Equations (1.8) describe the dynamics of the total displacement field
w(x, y, t). However, most of the time we are interested in the dynamics
of a single membrane mode of oscillations. Thus we want to simplify
Eqs. (1.8) to an equation describing the motion of a point-like mass
system associated with the motion of a single eigenmode.

We start by writing the stress resultants, defined in Eqs. (1.10),
including the dissipative stress component introduced in Eq. (1.11).
Then we plug the obtained stress resultants into Eqs. (1.8). After some
algebra, we reduce to:

ρhẅ+Dτ∂ααββẇ+D∂ααββw− ∇ · n⃗ = F ext, (1.16)

where we introduced the flexural rigidity D = Eh2/12(1 − ν2) and

n⃗ = hσ0

∂xw

∂yw

 , (1.17)

with σ0 = Eε0/(1 − ν2). We can separate the temporal and the spatial
contribution in the out-of-plane displacement field w(x, y, t), and we can
expand the latter over a basis of normalized modes ϕn(x, y) and their
associated out-of-plane displacement un (w(x, y, t) = ϕn(x, y)un(t)).
We choose as normalization condition (ϕn)max = 1. Within this condi-
tion, the out-of-plane displacement un(t) represents the displacement at
the mode’s maximum displacement point. By performing this expansion
the equation of motion becomes

ρhϕnün + τ (D∂ααββϕn)u̇n +D∂ααββϕnun − ∇ · n⃗ = F ext, (1.18)

where the repeated indexes are summed over. Finally, we apply a
discretization method, which allows us to describe the dynamics of a
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single mode in terms of effective parameters. We choose to apply the
so-called Galerkin method [You11]. It consists on multiplying by a test
function (ϕi) each term of Eq. (1.18) and integrating over the surface
S. The resulting equation is

ρhün

∫
S
ϕiϕndS+D(τ u̇n +un)

∫
S
ϕi∂ααββϕndS−

∫
S
ϕi∇ · n⃗dS = f ext

i ,

(1.19)

where fext
i =

∫
S ϕiF

extdS. We use the eigenmode of interest as test
function. We can apply the divergence theorem to write the last term
on the left hand side of the Eq. (1.19) as∫

S
ϕi∇ · n⃗dS =

∮
∂S
n⃗ · n̂dS −

∫
S
n⃗ · ∇ϕidS, (1.20)

where n̂ is the unit vector normal to the surface, and the first integral on
the right hand side vanishes because w = ẇ = 0 at the boundaries. Then,
we apply the property of the normalized modes that

∫
S ϕnϕidS ∝ δin,

and we perform a single-mode approximation to neglect intermodal
coupling. Within this approximation, Eq. (1.19) reduces to the effective
equation

üi + Γiu̇i + Ω2
iui =

fext
i

mi
, (1.21)

with the following effective parameters:

mi =
∫

S
hρϕ2

i dS, (1.22)

Γi =
Dτ

mi

∫
S
ϕi∂ααββϕidS, (1.23)

Ω2
i =

1
mi

∫
S
ϕi

[
D∂ααββϕi + hσ0 (∂xϕi + ∂yϕi)

2
]
dS. (1.24)

It is important to notice that the same model can be applied in the
simple case of σ0 = 0. In this case, we recover the case of a square plate,
where Γi and Ωi share the same spatial dependence on the eigenmodes
and they only differ for the time delay.

As the reader probably already recognized, Eq. (1.21) is the equation
of motion of a damped, driven harmonic oscillator. It means that, if we
focus on the motion of a single mechanical mode, we can imagine it as a
spring-mass system. For the purpose of this thesis, we are interested in
both the free evolution and in its driven response. For completeness, in
the following sections, we show the solution of the equation of motion
in the two mentioned cases. From these solution we find the laws we use
in the experimental section to estimate the damped harmonic oscillator
parameters, and to derive the calibration method.



14 mechanical system

1.2.4 Free evolution

We first consider the free evolution of a damped harmonic oscillator.
We assume that the membrane is initially displaced to an amplitude
ui(0) = A0, and that no force is applied, e. g. f ext

i = 0. We can classify
the damped harmonic oscillator accordingly to the ratio between the
linewidth Γi and the resonance frequency Ωi. We can distinguish between
three different cases:

• overdamped, Γi ≫ Ωi;

• critically damped, Γi = 2Ωi;

• underdamped, Γi ≪ Ωi.

All the resonators studied in this thesis fall in the last category. In
the underdamped case, the solution takes the following form:

ui(t) = A0e
− Γi

2 t sin(Ωit+ ϕ). (1.25)

An underdamped harmonic oscillator initially displaced from its equilib-
rium point is ringing down to its rest position with a decay rate equal
to Γi/2. The displacement amplitude Ai(t) decays exponentially to its

Figure 1.2: Free evolution of an initially displaced underdamped harmonic
oscillator. The resonator decays to its rest position oscillating
around it. The light, green, solid line represents the decay of the
displacement ui, while the dark, green, dashed line represents only
the displacement amplitude decay A0e

− Γi
2 t.

rest position with a rate defined by the damping

Ai(t) = A0e
− Γi

2 t. (1.26)

Thus, by monitoring the displacement amplitude A(t) during the ring-
down time, and by using Eq. (1.26) as fitting function, we can extract the
damping rate Γi decay. This is what we define a ringdown measurement
and it is widely used throughout this thesis.

In the underdamped regime, the larger the number of oscillations
the membrane resonator performs before reaching the steady state, the
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lower the dissipation. At this point, we can introduce a very significant
quantity associated with the nanomechanical resonators, the so-called
quality factor (Q). It is a dimensionless parameter associated with the
amount of damping in the system. Here we give two definitions of the
quality factor, which are almost equivalent in the limit of low damping
rate. Physically, it represents the ratio between the total energy stored
in the system (W , see Eq. (1.15a)), over the dissipated by the system
during one cycle of oscillation (∆W , see Eq. (1.15b), that is [SVR16]

Q =
W

∆W
. (1.27)

Thus having a high quality factor means having low dissipation. The
quality factor can be also defined in terms of measurable parameters as
[SVR16]

Q =
Ωi

Γi
. (1.28)

1.2.5 Driven response

To study the membrane response in the presence of an external driving
force, e. g. either an external harmonic force or the thermal Langevin
force [Kub66], it is convenient to move to the frequency domain. We
define the Fourier transform:

F(f(t))(Ω) =
∫ ∞

−∞
f(t)e−itΩdt. (1.29)

The frequency domain significantly simplifies Eq. (1.21). Moreover,
it allows us to distinguish the contribution of different modes and
eventually focus on a single normalized mode at the time.

We move to the frequency domain by applying Eq. (1.29) on both
sides of Eq. (1.21), which becomes

−Ω2ui(Ω) − iΓiΩui(Ω) + Ω2
iui(Ωi) =

fext
i (Ω)

mi
, (1.30)

where f ext
i is the Fourier transform of the driving force and we applied

the property of the Fourier transform F(∂n
t f(t)) = (−iΩ)nF(f(t)).

The solution of the above equation, and of Eq. (1.21), is

ui(Ω) = χfext
i (Ω), (1.31)

where we introduced the mechanical susceptibility

χ =
1

mi(−Ω2 + Ω2
i − iΓiΩ)

. (1.32)

In the underdamped regime, where the susceptibility can be approxi-
mated by a Lorentzian function centered at Ωi, the solution takes the
form

ui(Ω) =
fext

i (Ω)

2miΩi

(
Ωi − Ω − iΓi

2

) . (1.33)
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Notice that ui(Ω) is a complex number describing a harmonic motion
A sin(Ωit+ φ). From the magnitude and the phase of Eq. (1.33), we
find the amplitude and phase response of a harmonic oscillator to an
external drive, see Fig. 1.3.

(a) (b)

Figure 1.3: Frequency response of a driven, damped harmonic oscillator. (a)
Displacement amplitude against the frequency detuning between
the external force frequency and the resonance frequency. (b) Dis-
placement phase against the frequency detuning between the ex-
ternal force frequency and the resonance frequency.

In practice, the motion fluctuates, e. g., due to a fluctuating force,
thus we cannot extract much information from a single realization
ui(Ω). Instead, we need to estimate statistical quantities, in particular
we measure the quantity ⟨|ui(Ω)|2⟩, where ⟨·⟩ denotes the average
over several experimental repetitions and it coincides with the Fourier
transform of the autocorrelation function, i. e. the power spectral density
(PSD)

Suu(Ω) = ⟨|ui(Ω)|2⟩, (1.34)

where we defined the PSD as

Suu(Ω) =
∫ +∞

−∞
⟨u(t)u(0)⟩e−iΩtdt. (1.35)

By using Eq. (1.34) and Eq. (1.33), we find that the PSD of for a driven
oscillator displacement is

Suu(Ω) = |χ|2SF F , (1.36)

where SF F is the PSD of the driving force. When the driving force is the
thermal Langevin force, we can evaluate SF F by using the fluctuations
dissipation theorem. In doing so, we find that it takes the form [Kub66]:

SF F = 2mikBTΓi, (1.37)
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where kB is the Boltzmann constant. From the definition of PSD and
the relation presented in Eq. (1.34), we can derive the following prop-
erty [AKM14]∫ ∞

−∞
Suu

dΩ
2π = ⟨u2⟩, (1.38)

meaning that the area under the mechanical noise spectrum coincides
with the variance of the mechanical displacement.

Alternatively, we can solve Eq. (1.21) in the time domain through
the ansatz

u(t) = X1(t) cos(Ωit) +X2(t) sin(Ωit), (1.39)

where X1(t) and X2(t) represent the time-dependent amplitudes of the
cosine and sine components of the oscillation. They are often called
mechanical quadratures and they are related to the amplitude and phase
of the signal through the following relations:

A(t) =
√
X2

1 (t) +X2
2 (t), (1.40a)

φ(t) = arctan
(
X2(t)

X1(t)

)
. (1.40b)

Substituting Eq. (1.39) in Eq. (1.21), and writing the driving force as
fi,c(t)ext cos(Ωit) + f ext

i,s (t) sin(Ωit), the equation of motion expressed
in terms of the two quadratures coincides with the two following equa-
tions [VF13]:

Ẋ1 +
Γi

2 X1 =
f ext

i,s
2Ωi

, (1.41a)

Ẋ2 +
Γi

2 X2 = −
f ext

i,c
2Ωi

, (1.41b)

where we neglected all the terms proportional to XiΩ−1
i . The above

equations are two linear differential equations of the first order that we
can easily solve finding:

X1 = e− Γi
2 t

[
c1 +

∫ t

t0

f ext
i,s

2Ωi
e

Γ
2 sds

]
, (1.42a)

X2 = e− Γi
2 t

[
c1 −

∫ t

t0

f ext
i,c

2Ωi
e

Γ
2 sds

]
. (1.42b)

In Fig. 1.4 (a), (b) we show the two interesting situations of f ext
i,c =

f ext
i,s = constant, and f ext

i = 0, ui(0) = A0. In the particular case of
a thermally-driven oscillator, where f ext

i,s and f ext
i,c are two stochastic

random processes, we can solve Eqs. (1.41) in the frequency domain.
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(a) (c)(b)

Figure 1.4: Solution of the equation of motion in terms of the two mechanical
quadratures. (a) X1 against X2 when an external driving force is
applied to the oscillator. The angle φ is the phase of the oscillation
and it is defined by the phase of the resonant drive, i. e. the
relative weight of fext

i,s and fext
i,c . The length of the vector A0 is

the amplitude of the oscillation (b) X1 against X2 for a damped
harmonic oscillator during its free decay. The two quadratures
evolves in time and decay towards the center, i. e. the rest position.
Each point represent a different time. (c) X1 against X2 for a
harmonic oscillator subjected to the thermal Langevin force. Each
point represents a different time and it is characterized by a random
magnitude and a random phase.

Applying again the properties of the Fourier transform we find the
solutions

X1(Ω) =
Fext

i,s

2Ωi

(
Γi
2 − iΩ

) , (1.43a)

X2(Ω) = −
Fext

i,c

2Ωi

(
Γi
2 − iΩ

) , (1.43b)

where F represents the Fourier transform of the random force compo-
nents. Already from Eqs. (1.43), we recognize that the two quadratures
are fluctuating randomly with the stochastic force describing the motion
of an oscillations with random amplitude and phase as expected, see
Fig. 1.4 (c). The amplitude of these oscillations depends on the strength
of the thermal force. It is interesting to evaluate the variance of the
thermal fluctuations, representing the mean square radius of the random
distribution in Fig. 1.4 (c). We first need to evaluate the PSD of the two
quadratures. Applying the same properties of the PSD outlined in the
first part of the section, from Eqs. (1.43) we estimate

SX1X1(Ω) =
mikBT

2ΩiQ

(
Γ2

i
4 + Ω2

) , (1.44a)

SX2X2(Ω) =
mikBT

2ΩiQ

(
Γ2

i
4 + Ω2

) , (1.44b)
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where we use Eq. (1.37) to express the PSD of the thermal force. Substi-
tuting the above PSDs in Eq. (1.38) we evaluate the variances

⟨X2
1 ⟩ = ⟨X2

2 ⟩ = kBT

2miΩ2
i

. (1.45)

1.3 enhancing the resonator’s quality

A resonator at a temperature T is always subjected to a random thermal
force. This stochastic force induces random fluctuations of the resonator
motion, and generates a noise characterized by the noise spectrum
defined in Eq. (1.37). This thermal noise set a lower bound on the
forces that can be detected on a nanomechanical resonator. We refer
to it as the force spectral sensitivity, and to its square root as force
sensitivity. A large number of nanomechanical resonators have been
operated with a very low effective mass and a very high quality factor
[Tsa+17; Gha+18; Bec+21a; Bec+21b; Ber+21]. Moreover, the current
technologies allow us to operate them at temperatures of only a few
mK. These features enabled force sensitivities of the order of aN/

√
Hz,

or lower, making nanomechanical resonators interesting platforms for
force sensing experiments.

To reduce the force sensitivity of a nanomechanical resonator two
main paths can be followed. On one hand, we can engineer our resonator
to reduce its effective mass. On the other hand, we can search for a
method to increase its quality factor. In this section we will focus on
the latter by presenting the most common source of losses in suspended
nanomechanical resonators and the two main techniques applied to
increase the quality factor in the devices studied in this thesis.

1.3.1 Loss channels

We can divide the sources of dissipation affecting the nanomechanical
resonators studied in this thesis into three groups: external source of
dissipation, dissipation due to the clamping and internal friction. The
rate at which the resonator dissipate energy is determined by the sum
of all the loss channels. Recalling the definition of quality factor in Eq.
(1.27), we can write the total losses as

Q−1 = Q−1
ext +Q−1

clamp +Q−1
intr + ..., (1.46)

where we wrote explicitly only the contributions constituting the three
sources mentioned at the beginning. Understanding the origin of these
three loss channels is important to mitigate the amount of energy dissi-
pated through them. Several mechanisms can fall in these three groups.
In the following we describe only the loss channels relevant for the
treatment performed in this thesis.
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Gas damping losses

The gas damping losses constitute one of the most common sources
of external dissipation in nanomechanical resonators operated in air or
in vacuum environment. When a mechanical resonator is surrounded
by gas molecules, the interactions between the gas molecules and the
resonator lead to a loss channel. We can define this source of losses as
an external effect and we can mitigate it by reducing the amount of
gas molecules surrounding the resonator, i. e. placing it in a vacuum
environment.

The gas damping losses are determined by the pressure and the
nanomechanical oscillator geometry, in particular the ratio between
surface and volume. We distinguish two regimes associated with this loss
channel, the fluidic regime and the ballistic regime. We can determine
if we are in the ballistic or fluidic regime by evaluating the so-called
Knudsen number [SVR16], Kn, which is defined as the ratio between
the mean free path of the gas λf (associated with the pressure) and the
representative physical length scale Lc. For Kn < 1 we are in the fluidic
regime, while for Kn > 1 we are in the ballistic regime.

We mostly work in a vacuum environment characterized by a pressure
of the order of ≈ 10−7 mbar. Such pressure is associated with the ballistic
regime in our membrane resonators. In this pressure regime, the density
of gas molecules is so low that we can assume they are not interacting
with each other, and that the gas losses are produced by elastic collisions
between the gas molecules and the resonator. The law describing the
gas damping losses in the ballistic regime is the following [Bia+06]

Q−1
gas =

[
ρhΩ

4

√
π

2

√
RT

Mm

1
P

]−1

, (1.47)

where ρ, h and Ω are the density, the thickness and the resonance
frequency of the resonator respectively, R is the gas constant, T is the
absolute temperature, Mm is the mass of the gas molecules expressed
in g/mol and P is the pressure.

Clamping losses

The clamping losses represent the losses due to the radiation of elastic
waves into the substrate through the supports of the resonator, i. e. the
clamping points [AKM14]. A resonator suspended on a solid frame, and
vibrating at a frequency Ω, produces a shear wave propagating into
the solid frame with a wavelength λs = cs/Ω [Jud+07]. cs is the shear
waves propagation speed which depends on the material properties
of the substrate. If the substrate thickness is larger than λs, we can
model the clamping losses considering the frame having a semi-infinite
thickness. For the system considered in this thesis, we are always in
this limit. In the past years, analytic modelings of anchor loss contri-
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butions have been proposed for cantilevers and doubly-clamped beams
[Jud+07], square membranes and disk resonators [WR+11]. We reduce
the clamping losses contribution by preventing the shear wave propaga-
tion, therefore we usually neglect them. For further details see Sec. 1.3.3.

Intrinsic losses

Under this name we summarize all those mechanisms happening inside
the material itself. They include friction due to phonon-phonon interac-
tion [KI08], anharmonicity due to thermoelastic damping [Duw+06] and
material induced losses such as two-level system losses happening at the
surface [RBT09]. Differently from the other two types of dissipation, we
cannot act on the source of the intrinsic losses to reduce them. Moreover,
we cannot easily distinguish between the different contribution giving
rise to them. Nevertheless, a phenomenological description of the magni-
tude of the intrinsic losses for SiN membrane of different thicknesses has
already been provided in [VS14]. In that work, the authors compared
the intrinsic quality factors measured on several SiN membranes with
different thicknesses h and dimensions L. The first observation they
make is that the intrinsic quality factors, and therefore the intrinsic
losses, do not depend on the side length L. Then they notice that
for small thicknesses the intrinsic losses increase linearly. The authors
attribute the thickness-dependent losses with losses happening at the
surface. As the thickness increases the intrinsic losses grow linearly
until they reach a saturation which coincides with the regime where the
volume losses dominate over the surface losses. We can summarize this
dependence of the intrinsic losses on the membrane thickness with the
following phenomenological formula [VS14]:

Q−1
intr = Q−1

surf(h) +Q−1
vol, (1.48)

where Qsurf(h)
−1 = (αh)−1. Q−1

surf represents the thickness-dependent
surface losses, while Q−1

vol represents the volume losses. Due to the phe-
nomenological origin of the description, the uncertainty on the intrinsic
loss value is large. In particular, in [VS14] the authors estimated the
values α = (6 ± 4) × 1010 m−1 and Qvol = 28000 ± 2000.

From the discussions above, we realize that we can mitigate or remove
the contribution of the first two sources of dissipation by acting on the
experimental environment, i. e. placing the membrane resonator in ultra
high vacuum (UHV) environment, or through designing a resonator such
that we prevent the shear waves propagation (see Sec. 1.3.3). On the
contrary, we cannot act directly on reducing the intrinsic losses. Thus,
the intrinsic losses determine the ultimate limiting factor for the losses
in our nanomechanical resonators, and they usually represent the main
source of dissipation in our experiments.
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1.3.2 Dissipation dilution

Despite the lack of information regarding their origin, the intrinsic
losses set a lower limit to the dissipation in the system. A number
of alternative techniques have been developed to increase the quality
factor circumventing this limit. One of the most famous and used is the
dissipation dilution technique.

The dissipation dilution technique has been introduced in the first
place by the LIGO collaborations [Gon00; Cag+00], and later has
been applied to nanomechanical resonators [Ver+07; UFPK10; Sch+11;
Fed+19]. The basic idea consists in introducing a purely conservative
energy term in the system. In clamped resonators, such as strings and
membranes, this is achieved introducing an in-plane, time-independent
tensile stress during the fabrication process.

To understand how the dissipation dilution works, we start evaluating
the different energy terms in a deformed membrane (or string) without
a tensile stress involved. We can evaluate the instantaneous deformation
energy stored and dissipated by knowing the stress and the strain in
our resonator (see Eqs. (1.14)). Generally, an oscillating string or mem-
brane experienced two types of deformations: bending and elongation.
The former is described by the first order terms in the strain tensor
components which coincide with in Eq. (1.2), the elongation by the
second order terms. For a thin membrane satisfying the condition listed
at the beginning of Sec. 1.2, the bending strain coincides with Eq. (1.7a)
and we can include the elongation as an additional term with the form
∂αw∂βw/2. More details regarding the contribution of the elongation
term will be discussed in Chapter 4. Using the definitions in Eqs. (1.14)
we identified two contributions for both the stored and dissipated energy,
one due to the bending and the other to the elongation. We analyze
them one at the time. We start with the instantaneous bending energy
term, which has the following form

wbend =
Eu2

i

2(1 − ν2)

∫
V
z2(∂xxϕi + ∂yyϕi)

2dV+

− Eu2
i

(1 + ν)

∫
V
z2(∂xxϕi∂yyϕi − (∂xyϕi)

2dV ,
(1.49)

where the argument of the first integral is the mean curvature squared
and the second one is the Gaussian curvature. It can be proven that for
a clamped membrane the latter is zero [YPR12; SVR16]. The dissipated
bending energy has a similar expression

∆wbend =
Eτuiu̇i

2(1 − ν2)

∫
V
z2(∂xxϕi + ∂yyϕi)

2dV , (1.50)
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where we neglected the Gaussian curvature. Similarly, we can write the
instantaneous elongation energy stored and dissipated as

welong =
Eu4

i

8(1 − ν2)

∫
V

[
(∂xϕi)

2 + (∂yϕi)
2
]2
dV , (1.51)

∆welong =
Eτu3

i u̇i

8(1 − ν2)

∫
V

[
(∂xϕi)

2 + (∂yϕi)
2
]2
dV . (1.52)

Any other instantaneous energy terms coming form the product between
stress and strain have been neglected since their contribution average
to zero when we evaluate the total energy and the energy dissipated
per unit cycle.

Substituting the expressions for the instantaneous stored and dissi-
pated energies in Eqs. (1.15), we find all the energy contributions. We
can use them to write the quality factor of a membrane in absence of a
tensile stress as

Q =
Wbend +Welong

∆Wbend + ∆Welong
. (1.53)

Let us now include the contribution of the tensile stress σ0. The main
property of this tensile stress is that it does not evolve in time, therefore
it does not introduce losses due to the dephasing in the stress-strain
relation. We refer to the purely conservative energy associated with σ0
as tensile energy. Including σ0 in the expression for the stress, we can
evaluate the instantaneous tensile energy stored in the system which
has the following expression

wtensile =
σ0u

2
i

2

∫
V

[
(∂xϕi)

2 + (∂yϕi)
2
]
dV . (1.54)

Substituting the above expression in Eq. (1.15a) we can evaluate the
tensile energy (Wtensile). With this additional energy term the quality
factor defined in Eq. (1.27) becomes

Q =
Wtensile +Wbend +Welong

∆Wbend + ∆Welong
. (1.55)

In this thesis we assume the condition Wtensile ≫ Wbend,Welong is always
satisfied. Within this condition we can write

Q =

(
1 + Wtensile

Wbend +Welong

)
Wbend +Welong

∆Wbend + ∆Welong
≈ DQQintr, (1.56)

where we introduced the dissipation dilution factor

DQ =

(
1 + Wtensile

Wbend +Welong

)
, (1.57)

which is always larger than 1. We want to highlight that the quality
factor increases because of this extra lossless tensile energy term, but
the losses are not reduced. They are diluted by the presence of the
tensile stress.
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1.3.3 Soft clamping

Indeed the presence of a tensile stress σ0 allows us to increase a quality
factor adding a purely conservative energy term. However, the increase
we can get is limited by the amount of tensile stress we can introduce
in the system. In order to have a further improvement on the quality
factor we need to understand the limiting factors on the dissipation
side.

For simplicity we consider the case of a doubly-clamped beam. The
boundary conditions imposed by the two clamping points require that
the beam does not move at the edges, and that it is parallel to the
frame at the clamping points. Imposing these boundary conditions,
the modeshapes follow a sinusoidal function around the maximum
displacement point but they show a strong bend at the edges (see Fig.
1.5).

Figure 1.5: First modeshape of a doubly-clamped beam showing a strong
bend at the edges. The light green dashed line represents the ideal
sinusoidal modeshape for comparison.

The dominant losses in strings and membrane are introduced by the
bending. By evaluating ∆Wbend, it arises that the main contribution
to this loss channel comes from the strong bend that the membrane
experiences at the clamping points [SVR16]. The amount of losses at the
edges represents the main limitation to the quality factor on a highly-
stressed resonator. To beat this limit, the concepts of soft clamping has
been introduced [Tsa+17]. It consists in engineering the modeshapes
such that the displacement gradually reduces from the center to the
edges allowing an increment of the quality factor due to bending loss
reduction [Tsa+17; Gha+18].

The type of membrane resonators studied in this thesis are realized
using both the dissipation dilution and the soft clamping techniques.
They consist on highly-stressed Si3N4 thin (h ranging from 14 nm to
100 nm, L ≈ 3 mm) membrane suspended on a Si frame. The tensile
stress σ0 introduced during the fabrication process is approximately
1.3 GPa. The membrane is patterned with a honey comb lattice which
open a phononic bandgap in the mechanical spectrum (see Fig. 1.6 (a)).
By breaking the periodicity of the phononic crystal we can insert a
defect in the center of the structure. We can design it such that it
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can sustain strongly localized modes with frequencies lying inside the
bandgap. The first order localized mode is shown in Fig. 1.6 (b). First
of all, the phononic bandgap provides an isolation from the environment
and it contributes to reduce the loss channels associated with clamping
losses. Moreover, it changes the boundary conditions such that the
out-of plane defect motion exponentially decays from the center to the
clamping points. Thus the membrane is almost not moving at the frame
(see Fig. 1.6 (c)). The membrane resonators fabricated with this process
have been measured to have a quality factor of the order of 108 at room
temperature [Tsa+17] and up to 109 at moderate cryogenic temperature
[Ros+18].

(a)

(c)

(b)

Figure 1.6: Soft-clamped membrane resonator. (a) Measured PSD of a soft-
clamped membrane resonator. The light green area highlight the
phononic bandgap. (b) Simulation of the first-order bandgap mode.
The colors, from light to dark, represents the magnitude of the
out-of-plane displacement. (c) Cross section of the simulated mode-
shape. The points are the simulation, the grey solid and light green
dashed lines are two superimposed models meant to highlight the
exponential decay of out-of-plane oscillation from the center to the
frame.

1.3.4 Defect designs

The concept of soft-clamped membrane resonator has been further de-
veloped in recent years. By modifying the defect design or the phononic
crystal structure we can obtain membrane resonators with different
properties. The experiments conducted in this thesis have been realized
on a selection of different soft-clamped membrane designs. To distin-
guish the different types of geometries we gave specific names to the
membrane resonators which are associated with the defect shapes. In
the following we introduced the three different soft-clamped membrane
resonators used to conduct the experiments in this thesis.
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Dahlia - generation 1

Dahlia - generation 1. It is the first generation of
soft-clamped membranes realized [Tsa+17]. The
phononic crystal consists of circles with a honey
comb lattice configuration. Choosing a lattice
constant a ≈ 160µm, a holes raddii r = 0.26 a
and a sidelength of approximately 3 mm, this
design shows a ≈ 200 kHz wide bandgap cen-
tered at 1.4 MHz. It features 5 bandgap modes
and a defect dimension corresponding to approx-
imately 2 lattice constants. The central pad, i. e.

the defect area useful for optical readout, has a dimension of ≈ 200µm.
The effective mass of the first bandgap mode for a thickness of 15 nm is
≈ 1ng. Building upon this membrane design we realize the phononic
dimer geometry which we will discuss in Chapter 5.

Dahlia - generation 2

Dahlia - generation 2. Second generation soft-
clamped resonators. It maintains the same
phononic crystal structure of the first generation.
The main difference consists in the presence of
six smaller holes on the defect. This modifica-
tion on the defect design shifts the frequency
of the 5 bandgap modes, however the bandgap
itself is not affected since it is only character-
ized by the phononic crystal geometry. The 5
bandgap modes have a very similar modeshape

with respect to the Dahlia generation 1 design, but the mode order
changes, see appendix A for all modeshapes. It has been first utilized in
[Ros+18] to circumvent a mirror noise problem and it has been used for
several interesting works in quantum science [Ros+18; Ros+19; Mas+19;
Che+20; Tho+20].Considering the wide use of this geometry, we decided
to perform the characterization of the geometric nonlinearities presented
in Chapter 4 on these devices.



1.3 enhancing the resonator’s quality 27

Lotus

Lotus. New generation of soft-clamped mem-
branes where both the defect and the phononic
crystal have been modified from the initial gen-
eration. The phononic crystal is a honey comb
lattice formed by rounded triangles instead of
circles. It is characterized by a wider bandgap
(≈ 300 kHz) centered around 1.5 MHz. It fea-
tures a single bandgap mode and the defect de-
sign can be tailor in order to shift the localized
mode frequency within the bandgap. It is char-

acterized by a higher quality factor than the Dahlia designs (between
4% and 40%). The defect corresponds to approximately 3 unit cells and
the central pad is usually fabricated with a dimension varying from
60µm to 135µm. The higher frequency together with the higher quality
factor and the wider bandgap makes this membrane design robust to
added masses at the center. Consequently, it has been first utilized
for electromechanics applications [Sei+21]. However, the robustness to
mass deposition makes it interesting for sensing application as well. Its
potential for force sensing experiments through parametric protocols
has been explored with a dimer configuration in [H+̈21a].





2
O P T I C A L S Y S T E M

The optical interferometers are very versitile instruments which can be
used for different applications, such as refractive index sensing [Fen82],
spectrometry [Cor+15], vibrometry [PHW86] or astronomical applica-
tions [WPM80]. We are interested in their application as displacement
sensors. The most famous of this application is the gravitation wave
detector [Abb+09]. The simplest optical interferometer we can think
of is the Michleson interferometer. In this chapter we introduce the
working principle of a Michelson interferometer, and we discuss how we
can use it to measure a small displacements. In doing so, we introduce
an alternative interferometer geometry which fits best our experimental
requirements discussing two possible detection configurations. At the
end of the chapter we present the possible noise sources and the best
noise condition we can reach in the setup presented.

2.1 michelson interferometer

A Michelson interferometer is a common optical setup constituted by
one beam splitter (BS) and two mirrors, which uses as measurement
tool the interference fringes generated between two light beams. It has
been first introduced by A. A. Michelson in 1880 and the basic scheme
is sketched in Fig. 2.1. It consists of a light source S characterized

+

Figure 2.1: Sketch of a Michelson Interferometer. S = light source, M =mirror,
BS =beam splitter, E⃗i = electric field, Li = distance of Mi from
the BS, I = light intensity, ∆L = L2 −L1.

29
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by a wavelength λ, which generates an electric field E⃗(t) = E⃗0e
iΩLt.

The latter travels towards a 50 : 50 BS placed at a distance L from the
source. After the BS the initial electric field is divided into two fields with
same intensities E⃗1(t) = −E⃗0e

i(ΩLt)/
√

2 and E⃗2(t) = E⃗0e
i(ΩLt)/

√
2.

Here ΩL is the frequency of the light source and k = 2π/λ is its wave
number. The two fields travel through the two interferometer arms and
are reflected back. They recombine on the BS and they are detected
on a photodetector placed after it. The two beams travel through two
different path lengths 2L1 and 2L2, respectively, hence they are phase
shifted. The resulting field at the detector is the sum of the two electric
fields and the light intensity is

I =

∣∣∣∣∣− E⃗0√
2
ei(ΩLt+2kL1) +

E⃗0√
2
ei(ΩLt+2kL2)

∣∣∣∣∣
2

=
I0
2 − I0

2 cos(2k∆L),
(2.1)

where I0 = |E0|2 and 2k∆L represents the phase shift due to the path
difference. The last term represents the interference term between the
two beams. We can move from purely constructive interference (white
fringes) to purely destructive interference (dark fringes) by varying the
path difference between the two interferometer arms. The interference
fringes are shown in the contour plot in Fig. 2.1.

In the treatment above we assumed a perfectly coherent, monochro-
matic light source with a constant amplitude. In a real experiment these
three conditions are not always perfectly satisfied. Imperfections in the
light source quality and in the beam alignment result in a worse quality
of the fringes. The intensity oscillates between a maximum (Imax) and
a minimum (Imin) and the difference between this two values defines
the fringe visibility V [Fow89]

V =
Imax − Imin
Imax + Imin

, (2.2)

where the case of a perfect interferometer coincides with the case of
V = 1.

2.2 homodyne detection scheme

The homodyne detection scheme is a method to extract information on a
phase modulated signal by mixing it with a reference signal characterized
by the same carrier frequency.1 In an optics framework, we talk about
homodyne detection every time we have an interference signal between
a reference signal and a phase modulated signal, both characterized by
the same frequency. Usually the reference beam has an intensity larger
than the phase modulated one. On one hand the reference beam allows
us to extract the information embedded as a phase modulation in the

1 From greek ’homòs’=same.
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signal, on the other hand it amplifies it. A Michelson interferometer
where we replace one of the two mirrors with a moving object can always
be seen as an homodyne scheme.

One could use the setup described in Fig. 2.1 to measure small dis-
placements, in particular the motion of a thin membrane oscillating
in time δu(t). To do so, it is enough to replace one of the interfer-
ometer mirrors with the moving membrane. Usually the membrane
is characterized by a low reflectivity (R ∼ 1 − 10%). The membrane
motion modulates the arm length, while R < 1 reduces the electric
field amplitude. We write the electric field in the membrane arm as
E⃗2 =

√
RE⃗0e

i(ΩLt+2kL2+2kδu(t))/
√

2. We refer to the beam on the mem-
brane arm as the probe beam (PB) and to the one on the mirror arm
as the local oscillator (LO). The interference beam is described by Eq.
(2.1), but in this case the path difference is modulated by the membrane
motion ∆L+ δu(t).

The membrane motion is transduced into a phase modulation of
the PB. On the detected field, the phase modulation information is
contained only in the interference term. Since the only information
we are interested in is the membrane displacement which is mapped
in the phase modulation, we can get rid of the constant contribution
of the intensity field in Eq. (2.1). To remove it we can use the so-
called balanced homodyne detection scheme. An easy way to realize it is
through a different interferometer geometry, the so-called Mach-Zehnder
interferometer. A conceptual sketch with one of the mirror replaced
with a membrane is reported in Fig. 2.2 (a). In this configuration, the
intensities in front of the two detectors are:

I+ =
I0
4 (R + 1) +

√
RI0

2 cos(k∆L+ 2kδu(t)), (2.3a)

I− =
I0
4 (R + 1) −

√
RI0

2 cos(k∆L+ 2kδu(t)). (2.3b)

The two light intensities are then converted into two photocurrents, I+

and I−, and they are subtracted. Assuming to have two photodetectors
with identical responsivity Rλ, the resulting photocurrent after the
subtraction is

I = Rλ(I+ − I−) = Rλ

√
RI0 cos(k∆L+ 2kδu(t)). (2.4)

From the discussion presented in 1.2.3, we know the membrane displace-
ment can be described by a set of mechanical modes vibrating with
harmonic motion A sin(Ωit), where A is the displacement amplitude
and defines the strength of the phase modulation generated by given
mode. We only focus on one mode at the time. Varying the arm length
difference ∆L we can modify how the phase modulation affects the
photocurrent.
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(a) (b)

0

Figure 2.2: Balanced homodyne detection. (a) Scheme of a Mach-Zehnder
interferometer with a balanced homodyne detection where one of
the mirror has been replaced with a membrane. S =laser source,
BS = 50 : 50 beam splitter, M = mirror, LO =local oscillator,
PB = probe beam, δu = membrane displacement, Pi = i-th port
of a circulator. I = photocurrent.(b) Photocurrent after the sub-
traction (orange line). The grey lines represent the transduction of
a small modulation around the two positions k∆L = (2n+ 1)π/2
and k∆L = nπ, with ∆L the path difference between the LO and
the PB arm. In the former case the small phase modulation is
linearly transduced into a modulation of the intensity, in the latter
the small modulation does not affect the value of the intensity.

We now describe the two limiting cases where the effect of the phase
modulation on the photocurrent is zero and maximum. Before moving
forward we recall the properties of the Bessel functions [Arf85]

cos(x sinϕ) = J0(ξ) + 2
∞∑

m=1
J2m(ξ) cos(2mϕ)) (2.5a)

sin(x sinϕ) = 2
∞∑

m=1
J2m−1(ξ) sin((2m− 1)ϕ) (2.5b)

We first consider the case k∆L = 0 and 2kA ≪ 1. We can express the
phase modulation cos(2kδu(t)) in terms of Bessel functions Jm using
Eq. (2.5a), with x = 2kA and ϕ = Ωit. In the limit of small modulations
the zeroth order Bessel function is the dominant contribution of the
expansion, therefore we can write

I = Rλ

√
RI0 cos(2kA sin(Ωit)) = Rλ

√
RI0J0(2kA)

≈
2kA≪1

Rλ

√
RI0, (2.6)

where in the last step we performed the approximation J0(2kA) ≈ 1.
From the equation above we immediately understand that the phase
modulation does not affect the photocurrent. A visual example is repre-
sented by the grey modulation centered around the maximum point in
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Fig. 2.2 (b), which is transduced in a constant intensity signal. We get
the same result for all the maxima and minima, i. e. k∆L = nπ with n
an integer number.

Let us now consider the case k∆L = π/2 and 2kA ≪ 1. In this case
we can apply the property of the Bessel functions in Eq. (2.5b). For
small modulations the dominant term coincides with the first term in
the expansion, hence we write

I = Rλ

√
RI0 sin(2kA sin(Ωit)) = 2Rλ

√
RI0J1(2kA) sin(Ωit)

≈
2kA≪1

2Rλ

√
RI0kA sin(Ωit),

(2.7)

where in the last step we performed the approximation J1(2kA) ≈
kA. Within these conditions, the photocurrent is proportional to the
membrane displacement amplitude and is amplified by the light intensity,
a visual representation of the amplified transduction is showed in Fig.
2.2 (b) in the modulation around k∆L = π/2. We obtain the same result
for all the odd multiples of π/2. If we analyze the signal in the frequency
domain, the mechanical displacement appears as a peak centered at Ωi

in the PSD. In the measured signal we have an additional contribution
to the height of the peak due to the interference term Rλ

√
RI0.

In the above discussion we assumed the path difference to be constant
in time. Mechanical vibrations, thermal drifts or other noise sources
might induce a variation in the arm length difference ∆L, modifying our
position in the interference fringes. These drifts are normally produced
by slow sources (< 2 kHz) while the phase modulations generated by the
bandgap modes is happening at MHz frequencies. In an interferometer
with a homodyne detection scheme, the path difference can be actively
stabilized at the desired value by varying the length of the LO arm. We
refer to such active stabilization as homodyne lock.

2.3 heterodyne detection scheme

The heterodyne detection scheme differs from the homodyne detection
scheme because the LO and the PB are characterized by two different
frequencies.2 It is usually realized by introducing a frequency shift in
the LO arm. The resulting electric fields before recombining them on
the last BS of a Mach-Zehnder interferometer are

E⃗LO = E⃗0/
√

2ei((ΩL+ΩC)t+kL1), (2.8a)
E⃗PB = −

√
RE⃗0/

√
2ei(ΩLt+kL2+2kδu(t)), (2.8b)

where ΩC is the frequency offset of the LO. We refer to ΩC as the
carrier or the carrier beat note frequency interchangeably. The resulting
photocurrent can be written as

I = Rλ

√
RI0 cos(ΩCt+ k∆L+ 2kδu(t)). (2.9)

2 Again from greek ’héteros’=different
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As in the homodyne case, the membrane motion is transduced into
a phase modulation of the signal. In contrast with the homodyne,
the heterodyne signal has an oscillating component at the frequency
of the carrier modulation. The presence of the frequency offset does
not allow us to measure the phase modulation and the photocurrent
intensity separately by simply fixing ∆L. For now we consider k∆L as
a constant term, while we write again δu(t) as an oscillating term. The
resulting signal in the time domain is a curve oscillating at the carrier
frequency ΩC which expands and compresses at a rate defined by the
phase modulation frequency Ωi, see Fig. 2.3 (a). To understand the
contribution of the carrier frequency shift and of the phase modulation,
it is instructive applying the properties of the trigonometric functions
to separate the different terms in the cosine

I =Rλ

√
RI0[cos(ΩCt+ k∆L) cos(2kA sin(Ωit))+

− sin(ΩCt+ k∆L) sin(2kA sin(Ωit))],
(2.10)

where we wrote explicitly δu(t) as a sinusoidal function. We can use
again the properties in Eq. (2.5a) and (2.5b). Keeping only the first
term of the expansions and after some mathematical manipulation, Eq.
(2.10) reduces to

I =Rλ

√
RI0[J0(kA) cos(ΩCt+ k∆L)+

+ 2J1(2kA) cos((ΩC + Ωi)t+ k∆L)+

− 2J1(2kA) cos((ΩC − Ωi)t+ k∆L)].
(2.11)

If we analye it in the frequency domain, the mechanical modulation
will appear as two sideband peaks with frequencies ΩC ± Ωi around a
carrier peak centered at ΩC, see Fig. 2.3 (b).

(a) (b)

Figure 2.3: Heterodyne signal. (a) Example of a heterodyne signal in the time
domain. The orange line is the phase modulated signal, the grey line
is the phase modulation introducing an expansion and compression
of the oscillation on the orange line. (b) Heterodyne signal in the
frequency domain. The spectrum of the phase modulated signal is
formed by a central peak at the carrier frequency and two sideband
peaks generated by the mechanical phase modulation.

Notably the interferometer arm difference ∆L constitutes a common
phase term in all the frequency components. By measuring the phase
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the carrier frequency component and of the mechanical sidebands si-
multaneously, we can use the phase information of the former to cancel
the phase drifts on the mechanical sidebands. This approach is the
equivalent of stabilizing the interferometer phase. The absence of an
active stabilization, replaced by a noise cancellation performed in post
processing, is one of the main advantages of the heterodyne with respect
the homodyne detection scheme. Moreover, the three frequencies carry
the information related to both the situation k∆L = 0 and k∆L = π/2
which we can access simultaneously.

2.4 noise sources

In the above, we only talked about the signal produced by the membrane
motion without considering any type of noise beside the interferometer
phase drifts. In a real experiment, we always have additional noise
sources introducing noise terms δI in the photocurrent. We distinguish
between three noise sources: electronic noise, classical noise and shot
noise. In the following we give a description of these three sources.
Notice that this three source of noise are uncorrelated with each other.

2.4.1 Electronic noise

The electronic noise is a source of noise added to the signal by all the
electronic components of the setup, such as photodetectors, oscilloscopes,
power supplies, lock-in amplifiers etc. We can have many types of
electronic noise; thermal noise of resistive elements [KK80] and the flicker
noise [Bah08] are two examples of those. Accordingly with the specific
source, it can show a frequency dependence but it is not affected by the
laser power. Therefore, the PSD of the electronic noise (Sel) at a given
frequency is constant as a function of laser power. This independence
from the laser power makes it detectable also when there is no light
impinging the photodetectors. In our system we are not applying any
technique to reduce or optimize the electronic noise, although we ensure
to use electronic components introducing a sufficiently small amount
of noise. However, once all the instruments are connected and turned
on, we consider the electronic noise as a constant background. We can
include the electronic noise in the photocurrent as an extra term δIel
completely independent from the optical power.

2.4.2 Classical noise

We classify the noise sources associated with imperfections of the laser
as classical noise. We can distinguish between Intensity noise and Phase
noise of the laser.
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The intensity noise is introduced by fluctuations in the optical power
emitted by the laser. There are several mechanisms associated with
this noise such as relaxation oscillations, vibrations of the laser cavity
mirrors or imperfections in the pump medium, to mention only a few
examples [ME10]. We can include the intensity noise contribution as a
random fluctuation δP around an average emitted power P̄ . Therefore,
the laser intensity presents random fluctuations around an average
value, that we can write as Ī0 + δI0. Such random fluctuations are
frequency-dependent and they are usually more pronounced around
the relaxation oscillation frequency [ME10]. Additionally, the intensity
noise is proportional to the average laser power emitted [Fox06]. To
measure the amount of intensity noise in our laser source, we can detect
directly the laser light on a photodiode and analyze the signal in the
frequency domain by varying the emitted power. The expected PSD for
the intensity noise is characterized by a dependence which goes with
P 2 [Fox06].

To understand the intensity noise contribution on the interference
signal, we substitute I0 with Ī0 + δI0 in Eqs. (2.3). We simplify the
discussion by substituting the membrane with a perfectly reflective and
static mirror. The two photocurrents before the subtraction become

I+ = Rλ
(Ī0 + δI0)

2 +Rλ
(Ī0 + δI0)

2 cos(k∆L), (2.12a)

I− = Rλ
(Ī0 + δI0)

2 −Rλ
(Ī0 + δI0)

2 cos(k∆L). (2.12b)

The intensity fluctuations generated in the the by the intensity noise
fluctuations are common in the two equations above. Thus, by imple-
menting a balanced detection we can cancel out the contribution of the
intensity noise to the first components of the above photocurrents. More-
over, actively stabilizing the interferometer arm lengths at k∆L = π/2
removes the noise contribution in the interference term. By including
the phase modulation of the membrane and locking the interferometer
arm difference at k∆L = π/2, we get the photocurrent

I = 2RλRĪ0δu+ 2RλRδI0δu. (2.13)

As long as the condition Ī0 ≫ δI0 is satisfied, the second term on the
right hand side is negligible.

The second type of classical noise we discuss is the laser phase noise. It
is generated by phase fluctuations of the laser beam due to, for instance,
spontaneous emission [ME10]. We can describe the fluctuations as
φ̄L + δφL(t), where δφL(t) is the random phase fluctuations we get at
the emission time t. In contrast with the intensity noise, we can measure
phase noise only by interfering photons generated at different times. To
understand the phase noise contribution it is instructive to write the
electric field emitted by the laser by adding the fluctuating phase. We
include this extra term in Eqs. (2.3) assuming R = 1 and δ(u) = 0.
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Within these conditions, the two photocurrents before the subtraction
are

I+ = Rλ
I0
2 +Rλ

I0
2 cos(k∆L+ δφ(t2) − δφ(t1)), (2.14a)

I− = Rλ
I0
2 −Rλ

I0
2 cos(k∆L+ δφ(t2) − δφ(t2)). (2.14b)

The delay time ti coincides with ti = Li/c, with c the speed of light, and
it represents the time the electric field Ei needs to travel the distance
Li. The balance detection cannot cancel the phase noise contribution.
However, if the arm lengths are balanced the phase noise is negligible.

2.4.3 Shot noise

The last type of noise we discuss is the shot noise, sometimes called
quantum noise because it originates from the discrete nature of the
measured quantity, in particular photons and photoelectrons. In the limit
of high intensity beam, the photons’ arrival time at the photodetector
can be described as a random process following a Poissonian distribution
[ME10]. Such randomness results in a time-dependent number of photons
arriving at the detector

Nph(t) = N̄ph + δNph, (2.15)

where N̄ph is the average number of photons and δNph represents the
fluctuations around that value. Therefore, the intensity of the light can
be written as an average value Ī0 plus a fluctuating term δIsn. The
generated photocurrent is then equal to

I = Rλ(Ī0 + δIsn). (2.16)

To evaluate the PSD of the shot noise component of the photocurrent
we need to evaluate the following integral

Ssn = R2
λ

∫ +∞

−∞
⟨δIsn(t)δIsn(t+ τ )⟩e−iΩtdt (2.17)

The shot noise is a white noise source characterized by a Poissonian
distribution, hence the variance of the number of photon is ⟨δN2

ph⟩ =
N̄ph [ME10]. Thus the fluctuations of the photocurrent also follow the
same statistic [Fox06]. The resulting PSD is then equal to:

Ssn = R2
λĪ0. (2.18)

As expected by definition of white noise, the PSD of the shot noise is
frequency independent. In contrast with the classical noises, neither the
balance detection nor balancing the arm length can remove the shot
noise from the signal due to its uncorrelated nature.
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2.4.4 Optimal signal-to-noise ratio

We now discuss the optimal noise condition to perform our experiments.
As already highlighted, we can remove the classical noises through
a balance homodyne detection scheme and balancing the length of
the interferometer arms. To understand the contribution of the two
remaining noise sources, it is instructive to understand how the laser
power affect the total PSD. Neglecting the classical noise, the total PSD
has three contributions [Fox06]

Stot = SI + Ssn + Sel, (2.19)

where SI is the PSD generated by the interference signal, Ssn is the
PSD of the shot noise and Sel is the PSD of the electronic noise. Sel
does not depend on the optical power. The shot noise is characterized
by a linear dependence on the optical power, Ssn ∝ I ∝ I0 ∝ P .
Finally, the interference signal depends quadratically on the optical
power SI ∝ I2

0 ∝ P 2. The first (trivial) requirement is to choose
an optical power such that the signal is larger than both the noise
contributions. This condition can coincide with both the following
situations: Ssn < Sel < SI and Sel < Ssn < SI . At a first look we could
think that the first condition is optimal, since it is the one characterized
by the smaller amount of noise. However, such situation does not coincide
with the best signal-to-noise ratio. In Fig. 2.4 we show the three PSDs as
a function of laser power. Comparing the noise PSDs with the signal PSD,

Figure 2.4: PSDs of the noise contributions compared with the PSD of the
interference signal. The orange line is the interference signal, the
grey line is the shot noise, the black line is the electronic noise.

we recognize that the best signal-to-noise-ratio corresponds to the shot
noise as a dominant noise source in the system. One could be tempted
to use as much power as possible. That could lead to saturation of the
photodetectors and a contribution of the classical noises too large to be
corrected.
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E X P E R I M E N TA L T E C H N I Q U E S

In this chapter we discuss all the experimental techniques and procedures
we apply within this thesis work. We start describing the experimental
setup we use to detect the membrane displacement and illustrating
the different configurations we can choose. We give an introduction
to the working principle of the lock-in amplifier, the main instrument
we employ in all the measurement protocols, and we describe the two
main calibration techniques we adopt to map from measured voltages to
membrane displacement. In the second half of the chapter we present how
the largest displacement can introduce a nonlinear optical transduction
and how we can remove such effect from our data when needed. Moreover,
we show how we can extract the instantaneous frequency shift from the
phase information. Finally, we show the presence of unwanted thermal
frequency drifts and three different techniques we use to mitigate them.

3.1 experimental setup

The optical setup used to measure the membrane displacement is shown
in Fig. 3.1 (a). It consists of a fiber-based Mach-Zehnder interferometer.
The membrane motion is mapped into a phase modulation of one the
PB by varying the arm-length. A good visibility is guaranteed by the
use of single mode polarization maintaining (PM) fibers. The only two
non-PM fiber components are the fiber polarization controller and the
input of the first polarizing beam splitter (PBS). The laser source is
a fiber-based Koheras Basik E15 laser, from NKT photonics, with a
wavelength of 1545 nm. The use of fibers reduces the alignment time,
and it gives us the possibility of changing or adding optical components
in the interferometer arms without loosing the alignment. In particular,
we can switch between two different LO configurations. In the first
configuration (Fig. 3.1 (b)) the light travels through an acousto-optic
modulator (AOM) introducing a 40 MHz frequency shift in the LO arm.
In the second configuration (Fig. 3.1 (c)) the light travels through a
fiber stretcher that we can use to adjust the path length. Therefore, we
can choose between a heterodyne and a homodyne detection depending
on the experimental requirements.

The only free space optics part of the setup is in the PB arm. Here
the output light from the port 2 of the fiber circulator is collimated
and focused on the membrane with an expected waist of ≈ 20µm. The
fiber collimator is mounted on a movable stage outside the vacuum
chamber. We refer to the movable free space optical components as the
probe head. In everyday operation, we load multiple membranes into the

39
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(a)

(b) (c)

Figure 3.1: Experimental setup. (a) Scheme of the experimental setup. PBS
= polarizing beam splitter, AOM = acoustooptic modulator, BS
= beam splitter, WDM = wavelegnth division multiplexer, λ/2=
half wave plate, PZT = piezoelectric actuator, Pi = circulator
port number, LO = local oscillator. The membrane is placed in a
vacuum chamber at room temperature. Black lines represent fiber
connections, grey lines the electrical connections, red and blue
lines the optical paths. By switching two fiber connections, we can
change the optical components on the LO path in order to move
from a heterodyne (b) to a homodyne (c) detection scheme.

vacuum chamber, which we can then probe and characterize by moving
the probe head on different positions without breaking the vacuum.
The probe head is equipped with a polarizer and a half-wave plate to
optimize the coupling of the reflected light into the fiber collimator.
The membrane vibrations modify the length of one interferometer arm
and are translated into a phase modulation of the interference field
as described in Chapter 2. In contrast with the simplified treatment
performed in the previous chapter, the membrane vibrations features
several vibrational modes with different spatial profiles, which can be
distinguished analyzing the interference signal in the frequency domain.

The SiN membrane is characterized by a side length of few mm but
the mode of interest is strongly confined in a central region with a
diameter of 60 − 200µm, see sec. 1.3.3 and 1.3.4 for more details on the
membrane designs. Therefore we need to align our beam spot in the
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region of interest. We use a torch light and a CCD camera to image the
membrane. A second laser beam at 1310 nm is introduced in the system
to monitor the beam spot position, given that the 1545 nm laser light
is not visible on the CCD camera. We ensure a good spatial overlap
between the two lasers by sending them through the same optical path.
The mechanical actuation is realized through a piezo actuator clamped
below the membrane. Alternatively, the membrane can be actuated
through radiation pressure force by modulating the intensity of the
1310 nm beam. For the experiments presented in this thesis we need a
driving strength too large to be provided by the optical excitation. In
the experiments discussed in the next chapters we always use the piezo
actuation.

The DC and the RF components of the photocurrent are separated
by a bias tee circuit. The DC part is only relevant in the homodyne case.
We send both the DC and the RF part to a HF2 lock-in amplifier (HF2LI)
from Zürich Instruments. Using the HF2LI output we can extract the
amplitude and the phase information of a mechanical mode from the RF
signal. The DC component is fed into a proportional–integral–derivative
controller (PID) integrated to the HF2LI. The output of the PID is used
to lock the LO arm length. The HF2LI is used to read and generate
all the signals within the setup, e. g. the 40 MHz AOM driving voltage
and the piezo driving tones. The only additional instrument used is an
oscilloscope to monitor the intensities of the LO arm and of the PB after
the membrane reflection.

3.2 principle of lock-in detection

A lock-in amplifier is a device capable of extracting the amplitude (A)
and the phase (φ) information of a periodic signal of known frequency
in a noisy environment [Hf2]. A scheme of the working principle is rep-
resented in Fig. 3.2. Let us analyze the working principle by considering

Figure 3.2: Scheme of the working principle of a lock-in amplifier. Vs = measure-
ment signal, Vd = demodulation signal, A = measurement signal
amplitude, φ = measurement signal phase, Ωd =demodulation
signal frequency, φd = demodulation signal phase, X = amplitude
electronic quadrature, Y = phase electronic quadrature.

a measurement signal (Vs) with a given amplitude A, oscillating at
frequency Ωs, and characterized by a phase φ:

Vs = A cos(Ωst+ φ). (3.1)
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We generate a reference signal (Vd), that we call demodulation signal,
with fixed amplitude 1/

√
2, a controllable phase and oscillating at a

frequency Ωd:

Vd =
√

2e−iΩdt. (3.2)

We usually set the demodulation phase to zero. In our setup the de-
modulation signal is generated within the lock-in amplifier itself. Then
we mix the measurement with the demodulation signal. The resulting
mixed signal takes the form

z(t) = Vs × Vd

=
A√
2

[
e−i((Ωs+Ωd)t+φ) + ei((Ωs−Ωd)t+φ)

]
.

(3.3)

After the mixing, we apply a low pass filter H(t) to remove the fast
oscillating components

H(t) ∗ z(t) = A√
2
ei((Ωs−Ωd)t+φ)

=
A√
2

cos((Ωs − Ωd)t+ φ) + i
A√
2

sin((Ωs − Ωd)t+ φ),

(3.4)

where ∗ represents the convolution operator. To extract the information
relative to the signal of interest, we choose a demodulation frequency
Ωd = Ωs. Within this condition the demodulated signal represented by
Eq. (3.4) becomes

H(t) ∗ z(t) = A√
2
eiφ = X + iY , (3.5)

where X and Y are the electronic quadratures, also called amplitude
and the phase electronic quadrature respectively. A lock-in amplifier
outputs the two electronic quadratures from the final filtered signal. We
can convert those into amplitude and phase information through the
relations

A√
2
=
√
X2 + Y 2, (3.6a)

φ = arctan Y

X
. (3.6b)

Notice that the extracted displacement amplitude at the output is in
units of Vrms.

3.3 calibration

In Chapter 1 we discuss how we model the motion of a thin membrane
linking its motion to the dynamics of a damped harmonic oscillator. In
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Chapter 2 we describe how the membrane motion generates a phase
modulation in an interference signal and how we can convert it into
a measurable signal. Finally in Sec. 3.2 we show how we can extract
the amplitude and the phase information from the generated signal at
the frequency of interest. The last piece of information we need is how
we can convert the measured displacement amplitude, expressed in V
(or Vrms in our case), in real displacement amplitude expressed in m.
Therefore, we need to define a calibration procedure to realize such
conversion.

In this thesis we use two types of calibration. Accordingly with the
type of information we want to extract, we apply one or the other. We
call them absolute displacement calibration and relative displacement
calibration. In the following subsections we describe the derivation and
the limits of both methods.

3.3.1 Absolute displacement calibration

We named this calibration absolute displacement calibration because it
always returns the displacement amplitude at the maximum displace-
ment point, no matter where we place our beam spot on the modeshape
profile. To derive the calibration constant through this procedure, we
start from the PSD of a membrane resonator in its thermal equilibrium.
From Eq. (1.38) we know that the area under the signal PSD coincides
with its variance. Substituting Eq. (1.36) in Eq. (1.38) and using the
Langevin force PSD, defined in Eq. (1.37) as SFF, we find that [Sch09]
the variance of a normalized mode in its thermal equilibrium is

⟨u2⟩ = kBT

miΩ2
i

. (3.7)

Notice that to evaluate the variance we need to integrate the mechanical
susceptibility over all the frequencies, therefore we cannot perform the
approximation in Eq. (1.32). We refer to Eq. (3.7) as thermal area (Ath)
and is expressed in unit of m2. On the other hand, we can estimate
the variance evaluating the area under the measured PSD. We refer to
the latter as the measured area Ameas and is expressed in units of V2

rms.
The two areas are related through the following

Ameas = g2Ath, (3.8)

where g is a conversion factor expressed in unit of V2
rms/m2. From Eq.

(3.8) we recognize that the conversion factor can be written as the
ratio between the measured and the thermal area and could be used
as a calibration constant. By writing it explicitly the conversion factor
squared

g2 =
AmeasmiΩ2

i

kBT
(3.9)
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we observe that all the terms on the right hand side can be determined
either experimentally or with simulations. kB is the Boltzmann constant,
T is the ambient temperature, Ameas can be numerically evaluated from
the measured PSD, Ωi can be evaluated from the peak position of the
measured PSD, while mi can be simulated through FEM simulations using
Eq. (1.22). Since the effective mass is simulated using the normalized
mode with the convention ϕmax

i = 1, the calibration constant evaluated
through this procedure returns the displacement we expect to measure
at the point of maximum displacement and not the one at the laser spot,
unless the laser spot is align with the maximum displacement point.

We now describe the calibration protocol. To extract ⟨u2
i ⟩, we choose

a demodulator frequency Ωd ≈ Ωi and we save the two electronic
quadratures X and Y for ≈ 2 min. Then, we perform the discrete Fourier
transform (FFT) [PM06]. From the computed spectrum we extract the
resonance frequency of the mode of interest and compute the numerical
area under the thermal peak after subtracting the background noise.
Finally, we evaluate the calibration constant through Eq. (3.9). A new
calibration constant is measured before each set of measurements. The
amount of light reflected from the membrane can change because of
polarization drifts or other fluctuations in the beam spot position due
to mechanical instabilities. In the heterodyne detection scheme, we use
the carrier beat note information to correct for such fluctuations . The
height of both the sideband peaks and of the carrier beat note increases
and decreases in the same way with the intensity of the reflected light.
By measuring the amplitude of the carrier beat node demodulating
the signal at Ωd = Ωc, we can use the ratio between the height of
the carrier beat note saved during the calibration process and the one
saved during the measurement as a correction factor for light intensity
fluctuations. In the homodyne detection scheme the same procedure
could be applied by introducing a modulation on the fiber stretcher.
Unfortunately in the current homodyne setup we are not able to include
such modulation because of electronics limitation.

This calibration procedure relies on an accurate simulation of the
effective mass. From the modeshape measurement realized in [Bar+16]
we are confident that the simulated effective mass is accurate. This
calibration procedure cannot be used on the measurements where the
effective mass is an unknown which needs to be estimated from the
calibrated spectrum, or when the simulated effective mass is uncertain.

3.3.2 Relative displacement calibration

We now describe a second calibration procedure which does not require
prior knowledge of the effective mass. We implement this type of cal-
ibration only with the heterodyne detection scheme, hence we give a
description of the protocol only in this experimental configuration. A
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similar calibration procedure for the homodyne detection scheme is
described in [Bar14].

In the heterodyne detection scheme, the brownian motion of the
membrane displacement is transduced in two mechanical sidebands at
the frequencies ΩC ± Ωi in the heterodyne signal (see Sec. 2.3), with ΩC
the frequency of the carrier beat note. As we can see in Eq. (2.11), the
displacement amplitude relative to the sideband peaks is proportional
to the Bessel function of the first order J1(ξ), where ξ is the modulation
depth and it is proportional to the membrane displacement. To perform
the calibration we need to relate the measured sideband spectrum (SVV)
with the phase modulation realized by the membrane motion. First we
extract the modulation depth by comparing the area under the sideband
peak and the carrier beat note which satisfy the relation [Hf2]∣∣∣∣J0(ξ)

J1(ξ)

∣∣∣∣2 =

∫
SVVcar

dΩ
2π∫

SVVmech
dΩ
2π

. (3.10)

Knowing the modulation depth, we can express the area under the peak
calibrated in radians (Aφφ) using the first order Bessel function

Aφφ =
|J1(ξ)|2

2 ≈ ξ2

2 . (3.11)

The last approximation is true in the limit of small phase modulation
and we included a factor 2 to account for rms ampliudes. Similarly to
the absolute calibration procedure, we say that Aφφ is related with the
measured area through by the equality

Aφφ = cAmeas, (3.12)

where c is a conversion factor expressed in rad2/V2. Ameas is the nu-
merical area of one measured sideband peak. The conversion factor c
is the ratio between the two evaluated areas, hence we can map V2 to
rad2 through the following transformation:

Sφφ = cSVV =
ξ2

2Ameas
SVV. (3.13)

The last step is to convertrad2 into m2. From the discussion in Sec.
2.2 we know that the membrane displacement δu produces a phase
modulation

δφ = 2kδu =
4π
λ
δu, (3.14)

where λ is the laser wavelength. We can use the above relation to
perform the last calibration step by writing

Suu =

(4π
λ

)2
Sφφ. (3.15)

We correct for fluctuations in light intensity following the same procedure
described at the end of Sec. 3.3.1.
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This calibration procedure is based on the extraction of the modula-
tion depth at the measurement point. If our probe beam is not perfectly
aligned with the maximum displacement point, or the optical beam
profile is not perfectly gaussian or perfectly perpendicular with the
mechanical modeshape, the measured displacement is smaller than the
displacement at the maximum. In other words, this calibration proce-
dure gives the maximum displacement point only if the overlap integral
between the optical and the mechanical mode, i. e. the optomechanical
coupling, is equal to one or if we can correct for it. In our experimental
setup we do not have a way of measuring the overlap integral and the
alignment procedure does not allow us to reach the required precision,
hence we rarely perform this type of calibration.

3.4 carrier correction

In the above, we have always considered that the membrane displacement
is linearly transduced into a phase modulation, i. e. the demodulated
displacement signal is proportional to the amplitude. However, when
we enter into the large displacement amplitude regime (Chapter 4) the
phase modulation induced by the membrane motion is so large that a
nonlinear transduction mechanism needs to be included. We discuss
this situation in the heterodyne detection scheme, where we use the
information contained in the carrier beat note to recognize the presence
of such an effect and correct for it.

We start noticing that when J1(ξ) enters in the nonlinear region
(mechanical modulation depth ξ ≈ 1), J0(ξ) is not comparable to the
unity anymore, solid lines in Fig. 3.3 (c). Therefore, in a ringdown
measurement, where ξ varies in time because of the amplitude decay,
a feature of the nonlinear transduction is the reduction of the carrier
beat note amplitude at the beginning of the ringdown. After some time
the modulation depth decays back to the linear regime and the carrier
amplitude goes back to its constant value, Fig. 3.3 (a). There are two
methods to apply a correction to the data and remove the effect of the
nonlinear transduction.

In the first we start normalizing the carrier’s amplitude to the value
obtained in the linear regime (|z̄carr|), i. e. at the end of the ringdown.
This provides us with a measurement of the Bessel function of the zeroth
order |z̄carr| = J0(ξ), where zcarr(t) is the filtered time trace we obtain
from the HF2LI with demodulation frequency Ωd = Ωc. We fit the time
evolution of the carrier signal with the function 1 − be−t/τ (dashed line
in Fig. 3.3 (a)). From that, we can invert the Bessel function to obtain
the modulation depth ξ = J−1

0 (|z̄carr|). We use the modulation depth
to find a correction factor

gcorr =
ξ/2
J1(ξ)

, (3.16)
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Figure 3.3: Correction for interferometer nonlinear transduction. (a) Reduction
of the carrier amplitude due to the large modulation depth. The
red line is the amplitude of the demodulated carrier signal. During
the driving time (grey area) the modulation depth increases and
the carrier amplitude reduces revealing the presence of a nonlinear
transduction. During the ringdown time (white area) the carrier
rings-up to the constant value characteristic of the linear transduc-
tion. The black dashed line is the exponential fit. (b) Amplitude
of the demodulated mechanical sideband signal. The light blue
line represents the raw data. The dark blue line represents the
ringdown data when we add a correction factor to remove the non-
linear optical transduction effect. After the correction, we notice
the presence of an excess nonlinear damping at the beginning of
the ringdown. (c) Bessel functions against the modulation depth.
The solid red (blue) line is the zeroth (first) order Bessel function.
The dashed red (blue) line is the approximation to the third order
of the zeroth (first) order Bessel function. In the regime we apply
the correction (ξ ≤ 1) the Bessel functions and the approximations
are superimposed.

where ξ/2 corresponds to the linear approximation of the first order
Bessel function. We remove the nonlinear transduction effect by multi-
plying the mechanical mode displacement amplitude by the correction
factor gcorr. An example of ringdown with this correction is shown in
Fig. 3.3 (b).

To derive the second method to perform the carrier correction, we
start noticing that our experiments are always in the regime where
ξ ≤ 1. Within this condition the first two Bessel functions are always
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positive and invertible. Moreover, they can be approximated by the
expansion to the third order (dashed lines in Fig. 3.3 (c)),

J0(ξ) = 1 −
(
ξ

2

)2
+ o(ξ4), (3.17a)

J1(ξ) =
ξ

2 − 1
2

(
ξ

2

)3
+ o(ξ5) =

ξ

2

√
J0(ξ) + o(ξ4), (3.17b)

where in Eq. (3.17b) we performed the approximation√
J0(ξ) ≈

√
1 − (ξ/2)2 ≈ 1 − (ξ/2)2/2. (3.18)

By using the relation between the first two Bessel functions in Eq. (3.17b)
we can remove the nonlinear transduction effect using the following
relation

|zi,corr| =
|zi|√
|z̄carr|

, (3.19)

with zi the filtered time trace we obtain from the HF2LI with demodula-
tion frequency Ωd = Ωi.

We find that the two methods produce data in excellent agreement
with each other. In the data presented in this thesis we mostly use the
first method. However, we recognize the advantages of the approximated
one since it does not require any additional processing of the carrier
data.

3.5 instantaneous resonance frequency shift

We now describe another experimental technique we often use: the mea-
surement of the instantaneous resonance frequency shift. It is relevant
every time the resonance frequency of our membrane resonator can be
described by a time-dependent shift Ωi + ∆Ωi(t). We can include the
time-dependent frequency component in the photocurrent generated by
the locked homodyne balanced detection by writing

I = Rλ

√
R
I0
2 J1(A(t)) sin((Ωit+ ∆φ(t) + φ0) (3.20)

where ∂t∆φ(t) = ∆Ωi(t). Feeding the photocurrent to the HF2LI and
choosing Ωd = Ωi, we can extract the phase information φ(t) = ∆φ(t)+
φ0 through Eq. (3.6b). In the heterodyne detection case we obtain the
same information choosing Ωd = ΩC ± Ωi. Notice that the latter
requires the additional step of measuring the interferometer phase drifts
information performing a second demodulation at the frequency Ωd =

ΩC to remove phase fluctuations due to drifts in the interferometer arms-
length. The measured carrier phase is then subtracted to the measured
sideband phase. Finally we extract the instantaneous frequency shift
∆Ωi(t) by performing the numerical derivative of the measured phase
∆φ(t).
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3.6 mitigating thermal frequency drifts

The frequency stability of our system is limited. This is due to thermal
drifts happening in the room, heating due to the piezo or other source
of frequency noise. The rate at which the frequency drifts can vary
with the sample, the time of the day, the voltage sent to the piezo, the
mounting procedure, etc. An example of frequency drifts is shown in
Fig. 3.4 (a) in the particular case of a 50 nm-thick Lotus membrane. In
this particular measurement the membrane frame has been glued on a
ring piezo. The radial expansion of the piezo applies an in-plane force
stretching membrane mediated by the gluing process (see Chapter 6).
The piezo introduces extra heating increasing the magnitude and the
velocity of the thermal frequency drifts. The magnitude of the thermal
drifts becomes relevant for all those measurements requiring to apply a
perfectly resonant driving force for a time long enough that δΩ ≈ Γi. To

(a) (b)

Figure 3.4: Thermal frequency drifts. (a) Thermal frequency drifts during 2
minutes measurement time. Each line is a spectrum performed with
two averages. We perform a linear fit extracting the peak central
frequencies from the maximum point of each spectrum. From the
best fit (dashed line) we find that the thermal drift in this case is
5 Hz/min. (b) Frequency stability mitigating the thermal drifts.

reduce the impact of such drifts on our measurement we can either try
to mitigate them, or we can reduce the sensitivity of our measurement
protocol to frequency shifts increasing the mechanical linewidth. Often
both the methods need to be applied simultaneously. In the rest of the
section we describe both the approaches.

3.6.1 Frequency stabilization

The first method we describe is the frequency stabilization. It is based
on the dependence of the resonance frequency from the in-plane stress.
From Eq. (1.24) we observe that the resonance frequency squared
depends on the pre-stress σ0. By increasing or reducing the in-plane
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stress we can increase or reduce the resonance frequency. To act on
the in-plane stress we glue the membrane frame on a ring piezo in
four points. Every time we apply a DC voltage to the piezo, the axial
expansion generates a radial contraction and vice versa. Thanks to the
gluing process, the radial expansion (contraction) of the piezo induces
a stretching (relaxation) of the SiN membrane resulting in a variation
of the resonance frequency. Although the maximum shift we get from
the piezo is highly dependent on the gluing process, we always have a
range large enough to counteract the amount of frequency drifts that
the mode of interest experiences during the measurement time. Further
details about the frequency shift induced by the gluing process are
discussed in Chapter 6.

The stabilization procedure is realized in the following way. We drive
resonantly a mode and by monitoring the measured phase on the HF2LI
we identify the phase which corresponds to its resonant frequency. From
Fig. 1.3 we know that the phase of a damped harmonic oscillator
at resonance is π/2-shifted with respect to the driving force phase.
Nevertheless, the measured resonant phase is often at a different angle
due to phase delays introduced by cables or instruments response. The
difference between the measured phase and the resonant phase defines
an error signal which is fed into a PID controller. The voltage output of
the PID controller is applied to the piezoelectric actuator. The resulting
contraction (expansion) decreases (increases) the resonance frequency
to counteract the thermal drifts. We generate the error signal with the
PID option of the HF2LI. We perform this stabilization procedure on a
mode, hereby defined as thermometer mode, which does not coincide
with the mode of interest. This is based on the assumption that all the
out-of-plane modes share the same dependence on thermal drifts and
on the tensile stress. An example of the frequency stability reached by
bandgap mode with the frequency stabilization applied on an out-of-
bandgap thermometer mode is shown in Fig. 3.4 (b). Notice that this
method can only be applied when the interferometer drifts are actively
canceled. In our setup this condition is satisfied only in the homodyne
configuration.

3.6.2 Broadening the mechanical linewidth

The frequency stabilization method described in the previous section
is effective but often it does not provide sufficient protection against
drifts during sensitive measurements, especially for localized bandgap
modes. These modes are characterized by a linewidth of only few tens
of mHz and the frequency stabilization would require a precision we are
not able to reach. In these situations, we act on the linewidth of the
mode of interest by broadening it to reduce the effects of the frequency
drifts. We implement two methods to broaden the linewidth. The first
one is based on the introduction of an additional gas damping source;
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the second one is based on active feedback cooling of the mechanical
mode.

In standard operating conditions, the membrane resonators are placed
in a vacuum environment at a pressure of 10−7mbar. At such a pressure,
the contribution of gas damping is either negligible or very small (for
thinner membranes). One method we can apply to broaden the me-
chanical linewidth consists in introducing additional damping, thereby
increasing the gas damping contribution. This is something we can
achieve by reducing the rotational speed of the turbo pump. We can
estimate the amount of gas damping losses (Q−1

gas) as as a function
of pressure from Eq. (1.47). We characterize the quality factor of our
membrane at different pressures to verify the quality factor reduction
we can achieve with this approach. We start the measurement from the
lower possible pressure after few days of pumping. Then we reduce the
rotational speed gradually. For each point we wait 20 minutes for the
pressure to stabilize. The pressure is read through a pressure gauge
placed at a distance of ≈ 20 cm from the membrane. An example of the
reduction of the quality factor due to increased pressure is shown in
Fig. 3.5. We use as a fit function

Q−1
meas = Q−1

p=0 +Q−1
gas(p), (3.21)

where the first term is the dissipation diluted Q in absence of any gas
damping contribution, while the second term represents the gas damping
losses in the ballistic regime defined in Eq. (1.47). This particular set
of data has been realized on a 17 nm-thick Lotus membrane. To take
into account pressure differences between the membrane and the gauge
location we introduce a correction factor αp [Tsa19].

Figure 3.5: Quality factor as a function of pressure. We extract the quality
factor from a ringdown measurement. Each point is the result over
three repetitions averaged within each other. The dashed line is
the best fit. The extracted correction factor for this particular
measurement is αp = 1.57.

This method does not require any additional tool and it is fast to
realize. However, the reduction we can get is limited by the minimum
rotational speed allowed by the pump (20% of the maximum rota-
tional speed). Furthermore, operating the turbo pump below 50% of its
rotational speed increases the mechanical noise in the system.
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The last method we introduce to broaden the mechanical linewidth
consists in introducing an external damping force through the piezo. To
damp the motion, we need to exert a force on the membrane proportional
and opposite to the velocity [AKM14], i. e. we want to realize a negative
feedback loop on our membrane resonator. This method has been
successfully implemented in cavity optomechanics experiments to cool
a soft-clamped membrane motion down to the quantum regime using
an optical feedback force [Ros+18]. We implement a similar electronic
system to realize a feedback loop. However, we apply the feedback
force through our piezo actuator with a configuration similar to the one
implemented in [Pog+07].

A scheme of the feedback configuration is shown in Fig. 3.6 (a). We

(b) (c)

(a)

Figure 3.6: Feedback cooling. (a) Scheme of the feedback loop. The feedback
signal is applied to the same piezo used to resonantly drive the
membrane. (a) Thermal spectra at different gains of the feedback
loop (increasing from dark to light blue). (b) Measured damping
rates at different feedback loop gains. The damping rate is extracted
from a single ringdown measurement. The blue horizontal line is
the natural damping rate, that is in absence of feedback cooling.

measure the membrane motion through a Mach-Zehnder interferometer.
The generated photocurrent is then sent to a digital processing unit
which performs the time derivative of the signal (this estimates the
velocity from the measured position), applies an electronic gain and
generates the signal that we drive the piezo with. The generated signal is
proportional to −u̇, therefore it acts as an additional damping force. The
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digital processing is implemented with a RedPitaya, a system-on-a-chip
equipped with a field programmable gate array (FPGA). The firmware
to implement the digital filter has been developed and interfaced with
Python in the PyRpl module [Neu+17]. We want to generate a damping
force only to the mode of interest. For this purpose, we apply a bandpass
filter to the measured signal. We choose a filter which is approximately
600 Hz-wide and placed about 1.5 kHz above resonance. On the one
hand, this filter removes all the contributions but from the mechanical
mode of interest. On the other hand, it acts as a derivator for frequency
below its central frequency. As a consequence of the derivative operation
it applies a −π/2 phase shift to the input signal. We compensate for
additional phase shifts due to phase delays by adding a phase offset to
the generated signal. In Fig. 3.6 (b), we show a set of spectra acquired
with different gains of the feedback loop. For the lowest gain, we cannot
resolve the mechanical linewidth within a short measurement time.
Therefore we perform a series of ringdowns (see Sec. 1.2.4) to estimate
the damping rate as a function of the gain. An example is shown in Fig.
3.6 (c). The data shown in Fig. 3.6 (b), (c) are acquired on a 50 nm-thick
Lotus membrane. The maximum amount of broadening we can obtain
with the feedback is currently limited by the output voltage provided
by the RedPitaya.
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G E O M E T R I C N O N L I N E A R I T I E S

Nonlinear simple pen-
dulum.

In this chapter we discuss the dynamics of a
nanomechanical resonator under large deflec-
tions, that is when the amplitude of the oscil-
lation becomes comparable with the smallest
dimension of the resonator. In our case the small-
est dimension coincide with the membrane thick-
ness. In this regime, the model describing the
resonator as damped harmonic oscillator fails to
predict the resonator dynamics. We start with an
overview of the observed nonlinear phenomena
in micro- and nanomechanical resonators in the
large displacement amplitude regime, consisting
of a Duffing shift of the resonance frequency and an amplitude-dependent
damping term. We attribute these nonlinear phenomena to a geometric
origin, and we extend the model presented in Chapter 1 to include
them. We derive analytic expressions capable of predicting such nonlin-
earities on resonators with arbitrary geometry. Then we describe the
measurement protocol that we developed starting from the solution of
the equation of motion of a nonlinear oscillator initially displaced from
its rest position. We measure the nonlinear parameters on a significant
number of geometries and we compare them with FEM simulations.
Finally, we derive a non-trivial relation between the nonlinear parame-
ters and the intrinsic losses which gives us the possibility to measure
otherwise inaccessible information in highly-stressed nanomechanical
resonators.

4.1 duffing oscillator

The damped harmonic oscillator model is a good approximation to
describe the dynamics of a single eigenmode of a micro- or nanomechan-
ical oscillator in most of the cases (see Sec. 1.2). However, when the
displacement amplitude becomes comparable with the resonator thick-
ness, nonlinear phenomena starts to appear and the damped harmonic
oscillator description is not enough anymore.

The first nonlinear phenomenon we expect to observe is a dependence
of the resonance frequency on the displacement amplitude. We can
include this source of nonlinearity through simple energy considerations.
In the small oscillation regime the potential energy associated with a
single mode of oscillation can be simply written as a harmonic potential
W = miΩ2

iu
2
i /2, which can also be seen as the bending energy (for
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unstressed resonator) or the tensile energy (for pre-stressed resonators)
both introduced in Sec. 1.3.2 (see Eq. (1.49) and Eq. (1.54)). When the
displacement becomes large, we need to expand the potential energy
including higher order terms in the displacement [Hoc+14; CTS20].
By symmetry considerations, the odd terms do not give any energy
contribution, hence the next term in the potential energy is ∝ u4

[Hoc+14; CTS20], consistent with the energy contribution associated
with the elongation energy (see Eq. (1.51)). A fourth order term in
the potential energy introduces a contribution ∝ u3 in the equation of
motion, which takes the form

üi + Γiu̇i + Ω2
iu+

αi

mi
u3 =

f ext
i

mi
, (4.1)

referred to as Duffing equation [LL70; NM95; SVR16]. The parameter
αi is called the Duffing parameter and has unit of N/m3. Eq. (4.1)
is a third order equation and presents three solutions, two stable and
one unstable. The frequency response is depicted in Fig. 4.1 (a). It

(a) (b)

Figure 4.1: Expected driven response of the Duffing resonator. (a) Analytical
solution of the Duffing equation in the driven case. Each solid line
represents a realization with a fixed driving strength. The lighter
the color the stronger the force applied. The dashed line represents
the backbone equation (Eq. (4.2)). (b) Expected driven response
for a real measurement. Sweeping the driving frequency from left
to right the amplitude jumps from one stable solution to the other.

consists of a deformed Lorentzian curve where the peak tilts to the
right (hardening) or to the left (softening), depending on the source
of nonlinearity and the consequent sign of αi. For geometric Duffing
nonlinearity in membrane resonators the sign of α is always positive
(therefore we are only interested in the hardening). Notice that in Fig.
4.1 (a) the amplitude goes through all the three solutions. In a real
experiment when we perform a driven measurement we observe a jump
from one stable solution to the other [FPT12; Def+12; Hoc+14; SVR16]
without going through the unstable solution, see Fig. 4.1 (b). If we
invert the sweep direction the jump happens at different frequency. In
both the directions the jump point coincides with the transition between
the stable and unstable solutions [SVR16]. In Fig. 4.1 (b) we only show
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the up direction. To be able to reconstruct the full solution an active
control of the oscillator phase is required [Cua+21]. The positions of
the maxima in Fig. 4.1 (a) follow the so called backbone curve [NM95]:

Ωmax
i = Ωi +

3
8
α

Ωi
Amax

i . (4.2)

The above equation coincides with the time derivative of the phase
we get from the solution of the Duffing equation in the time domain
[NM95].

A second effect that has been observed often in presence of Duffing
nonlinearity is the so-called nonlinear damping. Unlike the former,
it is a dissipative type of nonlinearity and introduces an amplitude
dependence in the damping component. It has been observed in SiN
membrane [CTS20; Cat+21], diamod nanoresonators [IWM13], carbon
nanotubes and graphene sheets [Eic+11]. Despite the large number of
observations of this nonlinear phenomenon, a clear explanation of its
origin is still missing. On one hand, a theoretical modeling of nonlinear
damping as an anharmonic coupling between different vibrational modes
has been proposed in [Ata+16], on the other hand analytic expressions of
nonlinear damping starting from purely geometrical considerations has
been derived for string resonator [SVR16], rectangular plate [Ama18]
and highly-stressed membrane [Cat+21]. In particular in [Cat+21] we
compared the theoretical expectation with the experimental results on
a wide number of membrane resonators with different geometries. The
details of such theoretical modeling and the experimental results are
discussed in the next sections.

4.2 continuum elastic modeling

In Chapter 1 we use the fundamental concepts of elasticity theory
to derive the equation of motion of a thin membrane starting from
the stress-strain relations. Using a discretization method we find that
the dynamics of a single normal mode can be described by a damped
harmonic oscillator model. However, the experimental evidence discussed
in, for instance, [FPT12; Def+12; Hoc+14; Cua+21] suggests that this
description fails when we enter in the large displacement regime. We
now extend the derivation presented for a linear membrane resonator to
include the nonlinear parameters. Notice that the same derivation can
be applied for resonators of different shapes as long as the condition
L ≫ h is satisfied.

We start again with a thin square membrane in the reference frame
shown in Fig. 1.1. Here we want to investigate the large displacement
amplitude regime, defined by the condition w ≈ h. When this condition
is fulfilled, the elongation that the membrane experiences during the
oscillation becomes relevant. We can understand this by comparing
the bending (∆Wbend) and the elongation (∆Welong) dissipated energies.
The latter becomes relevant when the ratio between the two approaches
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one. We estimate the energy dissipated per unit cycle in the simple
case of a string with the modeshape approximated by the expression
sin(nπ

L x), with L the length of the string and n the mode number. We
assume a time-dependent out-of-plane displacement associated with the
mode n can be described by a harmonic oscillation un(t) = un cos(Ωnt).
To evaluate the bending and the elongation dissipated energy we insert
Eq. (1.52) and Eq. (1.50) in Eq. (1.15b). Using the string modeshape
the resulting dissipated energies per unit cycle are

∆Wbend =
Eτu2

0h
3L

48(1 − ν4)

(
nπ

L

)4
, (4.3a)

∆Welong =
3EτLhu2

0
128(1 − ν4)

(
nπ

L

)4
. (4.3b)

We are interested in the ratio between the two above expressions. After
some algebra the ratio between the two energies reduces to

∆Welong
∆Wbend

=
9
8
u2

0
h2 , (4.4)

meaning that we expect to see nonlinear effects when u0 ≈ h, consistent
with the assumption w ≈ h.

To include the contribution of the elongation due to a large oscillation
in the out-of-plane direction we include a second order term in the
strain components which takes the form [LL70]:

εij =
1
2 (∂jdi + ∂idj + ∂idz∂jdz). (4.5)

Furthermore, we assume that the membrane thickness is constant during
the oscillation, e. g. σiz = 0, and that the material satisfies Hooke’s law.
Within these conditions, the displacement vector components have the
same expression derived for the linear case and reported in Eqs. (1.6).
If we insert the displacement vector components in Eq. (4.5) we find
the nonlinear strain tensor components can be expressed as following:

εαβ(x, y) = ε0δαβ − z∂αβw+
1
2∂αw∂βw. (4.6)

Notice that the Greek indexes stand for the x and y directions, ε0
is a static in-plane deformation and we performed the out-of-plane
approximation. The relation between the strain and the stress tensor
components is not affected by the large displacement amplitude regime
and is still described by Eq. (1.12). However the nonlinear contributions
enter in the stress tensor through the nonlinear term in Eq. (4.6).

We want to derive the equation of motion for w(x, y, t). First we need
to derive the stress components substituting Eq. (4.6) into Hooke’s Eq.
(1.12). From the stress components we can derive the shear forces (Nαβ)
and the bending momenta (Mαβ) substituting the stress expressed as
a function of w in Eq. (1.10a) and Eq. (1.10b), respectively. In the
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bending momenta, the only non-zero terms are the one associated with
the bending stress

Mαβ = D [(1 − ν)(∂αβw+ ∂αβẇ+ ν(∂γγw+ ∂γγẇ)δαβ ] , (4.7)

with D the flexural rigidity. The above expression coincides with the
one we obtain in the linear case. Let us now evaluate the shear forces.
In the linear case, the only stress components contributing to the shear
forces are the ones related to the tensile stress. In the large displacement
amplitude regime, also the elongation stress contributes to the shear
forces which has the following form

Nαβ = k1

[
ε0δαβ +

∂αw∂βw

2 + ∂αw∂βẇ+ ν

(
(∂γw)2

2 + ∂γw∂γẇ

)
δαβ

]
,

(4.8)

with k1 = Eh/(1 − ν2). To estimate the equation of motion we need to
substitute Nαβ and Mαβ in Eqs. (1.8a). By using the above expressions,
we notice that we can write −∂αβMαβ = D∂ααββMαβ . Then we use Eq.
(1.8b) to write ∂β(Nαβ∂αw) = Nαβ∂αβw, where the first term on the
left hand side of the latter coincides with ∇ · n⃗. By substituting the
above equalities in Eq. (4.8), we find the following equation of motion

ρhẅ+ τ (D∂ααββẇ− G(w)) +D∂ααββw−hσ0∂ααw− O(w) = F ext,
(4.9)

where G(w) and O(w) are two functions of the out-of-plane displacement
and they represent the contribution of the elongation to the damping
and the harmonic part of the equation of motion, respectively. They
can be written explicitly as follows:

G(w) = k1 (∂αβw∂αẇ∂βw+ k2∂ααw∂βẇ∂βw) , (4.10a)

O(w) =
k1
2 (∂αβw∂αw∂βw+ k2∂ααw∂βw∂βw) (4.10b)

with k2 = ν/(1 − ν).
Now we want to move from an equation of motion for the overall

displacement field, e. g. Eq. (4.9), to an equation of motion describing
the dynamics of a single mode. In the linear case, we expand the out-of-
plane displacement over a set of normalized modes ϕn(x, y) by writing
w(x, y, t) = un(t)ϕn(x, y), where un is the out-of-plane displacement
associated with the nth normalized mode. We perform the same ex-
pansion assuming that the normalized mode ϕn(x, y) evaluated in the
linear case form a basis for the out-of-plane displacement also in the
nonlinear regime. For nonlinearities as small as the ones considered in
this work such approximation is always valid. After performing this
expansion the equation of motion becomes

ρhϕnün + τ (D∂ααββϕn − τG′u2
n)u̇n + (D∂ααββϕn − hσ0∂ααϕn)un+

− O′u3
n = F ext,
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(4.11)

where the repeated index are summed over and we introduced the two
functions G′ and O′ expressed by

G′ = k1 (∂αβϕn∂αϕn∂βϕn + k2∂ααϕn∂βϕn∂βϕn) , (4.12a)

O′ =
k1
2 (∂αβϕn∂αϕn∂βϕn + k2∂ααϕn∂βϕn∂βϕn) . (4.12b)

We then apply the Galerkin method and perform the single-mode
approximation to move from Eq. (4.11) to the equation of motion for a
single mode

üi + Γiu̇i + γnl
i u

2
i u̇i + Ω2

iui + βiu
3
i =

f ext
i

mi
, (4.13)

where f ext
i =

∫
S ϕiF

extdS and we find the following effective parameters

mi =
∫

S
hρϕ2

i dS, (4.14a)

Ω2
i =

1
mi

∫
S
ϕi (D∂ααββϕi − hσ0∂ααϕi) dS, (4.14b)

Γi =
Dτ

mi

∫
S
ϕi∂ααββϕidS, (4.14c)

βi = − k1
2mi

∫
S
ϕi[∂αβϕi∂αϕi∂βϕi + k2∂ααϕi∂βϕi∂βϕi]dS,

(4.14d)

γnl
i = − k1

mi
τ

∫
S
ϕi[∂αβϕi∂αϕi∂βϕi + k2∂ααϕi∂βϕi∂βϕi]dS.

(4.14e)

The linear effective parameters mi and Γi coincide with the one obtained
in Sec. 1.2.3. If we follow the steps in Sec. 1.2.3 applying the divergence
theorem, the nonlinear effective parameters and the resonance frequency
squared simplify to

Ω2
i =

1
mi

∫
S
ϕi

[
D∂ααββϕi + hσ0 (∂xϕi + ∂yϕi)

2
]
dS, (4.15a)

βi =
Eh

2mi(1 − ν2)

∫
S

[
(∂xϕi)

2 + (∂yϕ
2
i )
]2
dS, (4.15b)

γnl
i =

Ehτ

mi(1 − ν2)

∫
S

[
(∂xϕi)

2 + (∂yϕ
2
i )
]2
dS, (4.15c)

where Ω2
i has now the same form as for the linear case.

Eq. (4.13) represents the equation of motion of a damped harmonic
oscillator including now two nonlinear terms, one of the two giving rise
to a dissipative contribution. βi is the Duffing nonlinearity normalized
by the effective mass and γnl

i is the so-called nonlinear damping. We
want to highlight here that the two nonlinear parameters come from the
same source, which is purely geometric and coincides with the elongation
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that the membrane experiences during the oscillation. For this reason,
we generally refer to them as geometric nonlinearities. Moreover, we
notice that the two nonlinear terms share the same spatial dependence
from the modeshape, consistent with their common geometric source.

4.3 nonlinear dynamics

In the previous section we derive a model for the Duffing and the
damping nonlinearities starting from geometric considerations. The
effective parameters we get at the end of the derivation allow us to
predict the value of those parameters as long as we can evaluate the
eigenmodes of the resonator. In our case we can always obtain this
information through FEM simulations. To evaluate the validity of the
model, we want to measure the values of the nonlinear parameters and
compare them with the simulated ones. The standard way of measuring
the Duffing nonlinearity [Hoc+14; FPT12; Dav+17] and the nonlinear
damping [Ant+12; Zai+11] is through a driven approach. We need to
apply an external excitation force and sweep the driving frequency across
the resonance. Then the same procedure has to be repeated at different
driving forces. The very small linewidth (few tens of mHz) featured by
our membrane resonators imposes an extremely long measurement time
to perform this type of measurement with a resolution small enough to
resolve the mechanical peak. On the time scale needed to perform such
measurement, unwanted frequency drifts due to thermal fluctuations or
other source of frequency noise will affect the measurement results. In the
linear case we avoid this problem by performing ringdown measurement
where we initially displaced the membrane from its rest position and
we monitor the amplitude decay (see Sec. 1.2.4 for further details).
The ringdown measurement allows us to extract the information in a
considerably shorter time, usually few minutes for the higher quality
factors at room temperature. To implement a similar measurement
procedure we need to find how the nonlinear parameters affect both the
amplitude and the frequency during the ringdown time, an approach
already implemented in [Pol+16].

We now solve the equation of motion for the nonlinear Duffing oscil-
lator in the presence of a nonlinear damping term during the free decay
[CTS20]. We solve Eq. (4.13) assuming f ext

i = 0 and that the oscillator
is initially displaced from its equilibrium position to a given amplitude

ui(0) = Ai,0. (4.16)

We already mention that we are in the low dissipation regime and our
system is characterized by small nonlinearities. It is useful to highlight
the small terms with an ϵ

üi + ϵΓ̃iu̇i + ϵγ̃nl
i u

2
i u̇i + Ω2

iui + ϵβ̃iu
3
i = 0, (4.17)

where we performed the substitutions ϵΓ̃i = Γi, ϵγ̃nl
i = γnl

i and ϵβ̃i = βi.
We solve the above equation performing the same derivation reported
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in [Nay93] for a Duffing oscillator. We extend the solution including the
presence of the nonlinear damping term.

We apply the so-called multiple-scales method. It consists in intro-
ducing a new time variable t1 = ϵt, defining a slow time scale. The
natural time variable defines a fast time scale t0 = t. The harmonic
oscillation is associated with t0, the two damping terms and the Duffing
nonlinearity with t1. We write the general solution as a function of the
two new time scales as

ui(t) = ui(t, ϵt) = ui(t0, t1). (4.18)

We can express the time derivatives in terms of the new time variables.
Using the chain rules, the first and second order time derivatives becomes

d

dt
= ∂t0 + ϵ∂t1 , (4.19a)

d2

dt2
= ∂t0t0 + 2ϵ∂t0t1 . (4.19b)

Substituting Eq. (4.19) in Eq. (4.17) we find the equation of motion as
a function of the new time scales

(∂t0t0 + ϵ∂t0t1) ui + ϵ
(

Γ̃i + ϵγ̃nl
i u

2
i

)
∂t0ui + Ω2

iui + ϵβ̃iu
3
i = 0, (4.20)

where we neglected all the higher order terms in ϵ. To solve the above
equation we need to introduce an uniform approximate solution writing
ui(t0, t1) as

ui(t0, t1) = ui,0(t0, t1) + ϵui,1u(t0, t1). (4.21)

Using the above approximate solution, the equation of motion in Eq.
(4.20) takes the following form

∂t0t0ui,0 + Ω2
iui,0 + ϵ

[
∂t0t0ui,1 + 2∂t0t1ui,0 + Γ̃i∂t0ui,0+

+ γ̃nl
i u

2
i,0∂t0ui,0 + Ω2

iui,1 + β̃iu
3
i,0

]
= 0,

(4.22)

where again we kept only the terms up to the first order in ϵ and
neglected the higher order terms. To find the solution of Eq. (4.22) we
can divide the problem in solving two separate equations, one for the
slow terms (the one proportional to ϵ) and one for the fast terms. This
corresponds to solve the following two equations:

∂t0t0ui,0 + Ω2
iui,0 =0, (4.23a)

∂t0t0ui,1 + Ω2
iui,1 = − 2∂t0t1ui,0 − Γ̃i∂t0ui,0+ (4.23b)

− γ̃nl
i u

2
i,0∂t0ui,0 − Ωiβ̃iu

3
i,0.

The first equation is the equation of a simple harmonic oscillator in t0.
We can write its solution as

ui,0 = Ai(t1) cos
(

Ωit0 + φi(t1)
)
, (4.24)
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where the unknown constants Ai(t1) and φi(t1) depend on the boundary
conditions and on the solution of the second equation.

Then we move to find the solution for the slow terms equation. By
inserting Eq. (4.24) in Eq. (4.23b), and after applying the trigonometric
identity cos(3t) = 4 cos3(t) − 3 cos(t), Eq. (4.23b) becomes

∂t0t0ui,1 + Ω2
iui,1 = ΩiF1 sin

(
Ωit0 + βi(t1)

)
+

+ ΩiF2 cos
(

Ωit0 + φi(t1)
)
+

+ ΩiF3 sin
(
3Ωit0 + 3φi(t1)

)
+

+ ΩiF4 cos
(
3Ωit0 + 3φi(t1)

)
,

(4.25)

where we introduced

F1 = 2∂t1Ai(t1) + Γ̃iAi(t1) +
1
4 γ̃

nl
i A

3
i (t1), (4.26a)

F2 = 2Ai(t1)∂t1φi(t1) − 3
4
β̃i

Ωi
A3

i (t1), (4.26b)

F3 =
1
4 γ̃

nl
i A

3
i (t1), (4.26c)

F4 = −1
4
β̃i

Ωi
A3

i (t1). (4.26d)

Limiting ourselves to solve the above equation would introduce the
so-called secular terms in the solution, e. g. terms proportional to
t0 cos(Ωit0) or t0 sin(Ωit0) which would lead to a solution growing
without any bound. The presence of these terms does not have any
physical meaning, it is just an artifact introduced by the perturbation
[IOS18]. To avoid the secular terms, we need to impose the condition that
the coefficients in front of sin(ΩiT0 + φi(T1)) and cos(ΩiT0 + φi(T1))

are equal to zero, e. g. F1 = F2 = 0. By imposing these conditions we
obtain the two following equations for Ai and φi:

2∂t1Ai(t1) + Γ̃iAi(t1) +
1
4 γ̃

nl
i A

3
i (t1) = 0 (4.27a)

2Ai(t1)∂t1φi(t1) − 3
4
β̃i

Ωi
A3

i (t1) = 0. (4.27b)

We solve Eq. (4.27a) and Eq. (4.27b)separately. We start with Eq.
(4.27a). It is a differential equation in Ai of the first order that we can
easily solve. The solution describes the evolution of the displacement
amplitude in terms of the slow varying time scale t1:

A2
i (t1) =

ce−Γ̃it1

1 − c
γ̃nl

i

4Γ̃i
e−Γ̃it1

. (4.28)

To determine the value of the parameter c we need to impose the initial
condition defined in Eq. (4.16). Next, we need to find the time evolution
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of φi(t1). We substitute the expression we found for the amplitude, Eq.
(4.28), in Eq. (4.27b) which becomes:

φi(t1) =
3
8
β̃i

Ωi

4
γ̃nl

i

log
(

1 − c
γ̃nl

i

4Γ̃i
e−Γ̃it1

)
+ Φ. (4.29)

Again Φ is a constant whose value depends on the initial conditions.
Substituting the derived expressions for Ai(T1) and φi(T1) in Eq. (4.24)
we obtain the zeroth order term of the solution ui,0(t0, t1).

The problem of finding the first order solution reduces to solving the
following equation

∂t0t0ui,1 + Ω2
iui,1 = ΩiF3 sin

(
3Ωit0 + 3φi(t1)

)
+

+ ΩiF4 cos
(
3Ωit0 + 3φi(t1)

)
,

(4.30)

with F3 and F4 are defined in Eqs. (5.27). However, we decide to keep
only the zeroth order terms in ϵ, e. g. the full solution is represented by
ui(t) ≈ ui,0(t0, t1). Within this condition we only need to substitute the
expression for Ai(t1) and φi(t1) into Eq. (4.24) and impose the initial
condition in Eq. (4.16). Finally, we write the solution in terms of the
initial parameters and the natural timescale t, which coincides with the
experiment timescale. After imposing the initial condition in Eq. (4.16)
we obtain the solution

ui(t) = Ai(t) cos(Ωit+ φi(t) + Φ), (4.31)

where

Ai(t) =
Ai,0e

− Γi
2 t√

1 + γnl
i

4Γi
A2

i,0 (1 − e−Γit)

, (4.32a)

φ(t) =
3
8

4βi

γnl
i

log
(

1 + γnl
i

4Γi
A2

i,0

(
1 − e−Γit

))
+ Φ. (4.32b)

The constant Φ is still unknown. Defining it would require an additional
initial condition on u̇i(0). Since we are interested only in the resonance
frequency shift, knowing its value does not give us any additional
parameter as we show in the next steps.

From Eqs. (4.32) we are able to describe the time evolution of the
displacement amplitude and phase in the presence of geometric nonlin-
earities during the ringdown. As expected, the amplitude decay is only
affected by the nonlinear damping term. From Eq. (4.32a) we observe
few things. We notice that from the amplitude decay we can extract
both the linear and the nonlinear damping term. Then we observe that
the contribution of the nonlinear damping is relevant only at the begin-
ning of the ringdown. When the exponential term at the denominator
becomes ≈ 1, the displacement amplitude decay can be approximated
by the standard exponential decay.
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Differently, the Eq. (4.32b) describing the time evolution of the phase
shift is affected by both the nonlinear damping and the Duffing nonlin-
earity and, at a first look, it is hard to associate with the description
of a Duffing oscillator given in Sec. (4.1). Nevertheless, if we perform
the time derivative of the phase we find a time-dependent shift of the
resonance frequency with the following form:

Ω′
i(t) =

dφi

dt
= Ωi +

3
8βi

A2
i,0e

−Γit

1 + γnl
i

4Γi
A2

i,0 (1 − e−Γit)︸ ︷︷ ︸
A2

i (t)

. (4.33)

Importantly the above equation has the same form of the backbone
equation (Eq. (4.2)). The only difference is that Eq. (4.33) describes the
instantaneous frequency shift as a function of the instantaneous ampli-
tude instead of the maximum frequency shift in terms of the maximum
displacement amplitude associated with a given driving strength. This
result confirmed that we can extract the nonlinear Duffing parameter
from a ringdown measurement if we are able to monitor the instanta-
neous frequency shift and the displacement amplitude simultaneously.

4.4 measuring nonlinearities

In the previous section we derived the time evolution of the amplitude
and of the instantaneous resonance frequency shift. In this section, we
apply those laws to extract the nonlinear parameters from a real mea-
surement. The requirement to perform the measurement is being able
to monitor the displacement amplitude and the instantaneous resonance
frequency shift simultaneously. To measure the displacement we use a
fiber based Mach-Zehnder interferometer described in Sec. 3.1. We then
feed the interferometric signal to a lock-in amplifier which returns the
amplitude and the phase of the signal (see Sec. 3.2). Finally, from the
time derivative of the phase we extract the instantaneous resonance
frequency shift (more details in Sec. 3.5). Notice that to express the
nonlinear damping and the Duffing parameter in their standard units
(Hz/m2 and Hz2/m2) we need to calibrate the displacement in unit
of m. For this set of measurements we apply an absolute calibration
method. Details regarding the calibration procedure are reported in Sec.
3.3.1.

We perform this sets of measurements using the heterodyne detection
scheme. The measurement protocol does not require an active stabiliza-
tion of the resonance frequency since the Duffing resonance frequency
shift is happening at a faster timescale than the thermal drifts discussed
in Sec. 3.6. Moreover, we expect the geometric nonlinearities to become
relevant when the condition w ≈ h is satisfied. For the thicker mem-
branes (100 nm-thick) the resulting phase modulation is so large that we
need to correct for nonlinear optical transduction of the interferometer
signal, what we call the carrier correction. To perform such correction



68 geometric nonlinearities

the heterodyne detection is advantageous. Details about the carrier
correction can be found in Sec. 3.4.

The measurement procedure consists in driving the membrane res-
onator through piezoelectric excitation up to an amplitude where we
expect to observe nonlinear effects. Then, we stop driving and we moni-
tor the amplitude and the phase during the ringdown time. From the
amplitude decay we derive the linear and the nonlinear damping pa-
rameter using Eq. (4.32a) as fitting function. An example of a nonlinear
amplitude decay for the first bandgap mode of a Dahlia generation
2 membrane 19 nm-thick is reported in Fig. 4.2 (a). It is interesting

(a) (b) Data
Best fit

Data
Best fit
Lin. dec.

Figure 4.2: Displacement amplitude and instantaneous resonance frequency
shift during the ringdown. (a) Nonlinear ringdown of the displace-
ment amplitude. The dark green solid line represents the real data,
the light green dashed line is the best fit. The grey dot line is the
linear ringdown with Γi extracted from the best fit of the non-
linear decay. (b) Instantaneous resonance frequency shift against
the displacement amplitude. The dark blue solid line represents
the real data, the light blue dashed line is the best fit. We use
the amplitude obtained from the best fit in (a) as displacement
amplitude.

to notice that the amplitude decay starts to deviate from the linear
exponential one when the displacement amplitude is comparable with
the membrane thickness as expected.

To measure the Duffing parameter we extract the instantaneous fre-
quency from the measured phase and we plot it against the displacement
amplitude. As a fit function we use Eq. (4.33) including an additional
correction term ∝ A4. An example of a measured resonance frequency
shift is reported in Fig. 4.2 (b). From these two measurements we
are able to extract the nonlinear parameters and the linear damping.
The only parameter missing to have a complete characterization of a
membrane resonator is the mechanical frequency. We assume that the
resonance frequency coincide with the demodulator frequency Ωd that
we always use to set the frequency of the driving force. Therefore, from
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a nonlinear ringdown we not only get the nonlinear parameters but also
the linear decay rate and the resonance frequency. From the last two
parameters we estimate the quality factor.

To confirm that the Duffing parameter measured during the ring-
down and the one extracted from the standard driven measurement
coincide, we superimposed the instantaneous resonance frequency shift
to a sweep measurement. First we perform a ringdown and extract
the instantaneous frequency shift. Then we move to perform a set of
sweep measurements. To reduce the measurement time we broaden the
mechanical linewidth increasing the vacuum chamber pressure up to
3 × 10−3 mbar. Since the Duffing parameter is a purely geometric term,
it should not be affected by the presence of the gas damping. In Fig. 4.3

Low pressure frequency shift

High pressure sweeps

Figure 4.3: High pressure sweeps. For each color we use a different driving
strength. Each curve is obtained averaging 5 different curves mea-
sured with the same condition. The grey dotted line represents the
fit of the frequency shift measured on the same membrane at low
pressure through the ringdown technique.

we plot the fit of the instantaneous frequency shift measured during low
pressure ringdown on top of the high pressure sweeps. The low pressure
frequency shift is superimposed to the maximum frequency shift point
of each curve and is following the backbone curve as expected. We
are not performing any resonance frequency stabilization but, before
each sweep, we measure the central mechanical frequency and we use it
to center all the curves. We attribute the small discrepancy between
the ringdown shift and the maximum shift point to residual thermal
drift happening during the driven frequency sweep. The sweeps are
performed using the network analyzer sweeper function of the HF2LI.

Next we want to prove the consistency of the model we derived in sec
4.2. To do so, we need to measure the nonlinear parameters and compare
them with the simulated values evaluated through Eq. (4.14d) and Eq.
(4.14e). We choose as geometry of interest the Dahlia generation 2
membrane design. The presence of several bandgap modes characterized
by high quality factor, e. g. easy to drive in the nonlinear regime also
at room temperature, together with our knowledge about the accuracy
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of our simulated modeshapes [Bar+16] makes them the ideal samples
for this type of measurements. We characterize the first 4 bandgap
modes. The simulated modeshapes and the simulated frequencies are
reported in Fig. 4.4 (a). For each modeshape we perform 5 nonlinear

M
ode 1

M
ode 2

M
ode 3

M
ode 4

(b) (c)

(d) (e)

Mode 1 Mode 2 Mode 3 Mode 4

(a)

Figure 4.4: Nonlinear parameters. (a) Simulated modeshapes and frequencies of
the four bandgap modes considered. (b)-(e) Nonlinear parameters
as a function of membrane thickness. Blue squares are Duffing
per unit displacement while the green diamonds are the measured
nonlinear damping terms. Each point is the median over the fit
results of an ensemble of nominally identical membranes. The data
on each panel are related to the modeshape listed at the right of
the panel. The dashed lines are the nonlinear parameters obtained
from FEM simulation.

ringdowns and we average the fit results. As relative errors on the
resulting parameters we use the 95 % confidence interval. We discard
the fits if the confidence interval exceeds 10 % of the parameter value. We
repeat the measurement on ensembles consisting of 6 to 12 nominally
identical membranes. Each ensemble is characterized by a different
thickness. The complete set of measured nonlinear parameters is shown
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in Figs. 4.4 (b)-(e), where instead of βi we plot the Duffing shift per
displacement ωD

i = βi/2Ωi expressed in unit of Hz/m2 as the nonlinear
damping [CTS20]. Each point is the median of all the extracted values
measured on the same mode of all the membranes of a given ensemble.
The error bars are estimated through the median absolute deviation.
This type of analysis guarantees a more robust estimation due to the
presence of few outliers [PGH01]. For the third bandgap mode on two
membranes 100 nm-thick we measured a negative Duffing shift. Since
we do not understand yet the source of these softening phenomena and
we observed some damages on the phononic crystal as well, we decided
to discard those data.

Notice that according to Eq. (4.14d) and Eq. (4.14e), βi and γnl
i are

independent of thickness. The thickness dependence in γnl
i comes from

the time lag τ . Recall that the time delay is related with the intrinsic
losses through the loss angle Q−1

intr = θlin = τΩi which depends on the
resonator thickness. Such dependence can be found in the phenomeno-
logical formula in Eq. (1.48). The relation between nonlinear parameters,
time lag and intrinsic losses is discussed in more detail in Sec. 4.5.

We compare the measured geometric nonlinearities plotted as green
(nonlinear damping) and blue (Duffing shift per displacement) points
with the simulated ones plotted as dashed lines is Fig. 4.4 (b)-(e), re-
spectively. To predict the nonlinear parameters we simulate the modes
transverse profile using FEM simulations. Then we evaluate ωD

i and γnl
i

through Eq. (4.14d) and Eq. (4.14e) using the simulated modeshapes.
For the first two modes, which we refer to as low-order bandgap modes,
we observe a good agreement between measured and simulated values
for all the thicknesses. In the high-order bandgap modes, e. g. modes 3
and 4, we observe a good agreement for the Duffing nonlinearity, while
the nonlinear damping matches the predictions only for the thinner
membranes. For the thicker membranes we observe an excessive nonlin-
ear damping which cannot be modeled through this simple geometrical
discussion. We have not understood yet the source of this excessive
nonlinear damping. One of our hypotheses is that excessive nonlinear
damping is generated by a nonlinear energy exchange mediated by
vibrational modes of the supporting frame [Pat+15] or other membrane
modes [Ata+16]. In particular, the first hypothesis is supported by the
fact that the shielding provided by the phononic crystal is worse for the
two high-order bandgap modes [Tsa+17].

4.5 nonlinear losses and dissipation dilution

The whole model presented in Sec. 4.2 is based on geometrical consider-
ations. Both the damping and the nonlinear damping are a geometrical
manifestations of the same dissipation source. In this chapter we want
to look more closely at the relation between the source of dissipation,
e. g. the intrinsic losses, and its connection with the nonlinear terms.
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The dissipation channel enters in our modeling as a dephasing term in
the stress-strain relation (θlin = Ωiτ = Q−1

intr). From Eq. (1.23) and Eq.
(4.14e), we observe that both the linear (Γi) and nonlinear (γnl

i ) damping
terms are proportional to the lag time τ . This proportionality matches
the expectation, since the two terms are two geometrical expressions
of the same dissipation channel. At the same time we notice that, in
the context of dissipation dilution (see Sec. 1.3.2 for more details), the
linear dissipation is commonly expressed as

Γi =
1

DQ,i

Ωi

Qintr
, (4.34)

where DQ,i ≫ 1 is the dissipation dilution factor and is determined
by the geometry of the mode i [Gon00; Ver+07; UFPK10; Sch+11;
Tsa+17; Fed+19]. Notice that Qintr coincides with the quality factor
of the resonator in the absence of a tensile stress if the intrinsic losses
constitutes the dominant source of dissipation. Including a tensile stress
in the system we introduce a dissipation dilution factor which leads to
a higher measured quality factor:

Qmeas =
Ωi

Γi
= DQ,iQintr = DQ,iθ

−1
lin . (4.35)

The price to pay to get this increase in the quality factor is that we can-
not access the information related to the dissipation dilution factor and
the Qintr separately. However, if we look at the nonlinear parameters we
notice that neither the Duffing nor the nonlinear damping show a depen-
dence from the tensile stress and, as a consequence, from the dissipation
dilution factor. Moreover, we notice that they are characterized by the
same dependence on the mode pattern. Therefore, the ratio between
the two nonlinear parameters is independent from the mode pattern
and is proportional to the time delay τ . In principle such time delay
is the same between the linear and the nonlinear damping parameter
and the associated loss angles should coincide as well. Because of the
uncertainty of such assumption we introduce the so-called nonlinear loss
angle θnl, a dephasing term associated with the time delay extracted
from the nonlinear parameters, which is expressed as

θnl = Ωiτ =
γnl

i Ωi

2βi
. (4.36)

Notably the nonlinear loss angle is expressed in terms of quantities we
can all measure experimentally. Moreover, we want to highlight that,
despite the dependence of βi and γnl

i on the displacement calibration,
their ratio is independent of that. The final remark we want to make is
that, if the intrinsic losses are our only source of dissipation, the time
delay inducing the linear and the nonlinear damping is the same, e. g.
the linear and the nonlinear loss angle should coincide

θlin = Ωiτ = θnl. (4.37)
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Therefore, the knowledge of the nonlinear parameters would allow us
to indirectly measure the intrinsic losses. Furthermore, by knowing the
value of the diluted quality factor we would be able to estimate the
dissipation-dilution factor experimentally.

To be able to use the relation between nonlinear parameters and time
delay, we need to prove the validity of Eq. (4.37). From our measurement
protocol we are able to extract all the parameters needed to evaluate
both Qmeas and θnl. Additionally, from Eq. (4.35) we know the relation
between Qmeas and θlin. To prove our hypothesis we use the parameters
measured through a nonlinear ringdown to plot Qmeas against θ−1

nl
(yellow points in Fig. 4.5). From Eq. (1.48) we can deduce the intrinsic
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Figure 4.5: Measured quality factors against measure nonlinear loss angles. In
each panel we report the data of a single mode listed at the right
of the panel. The yellow points are Qmeas against θ−1

nl obtained
from 5 ringdown repetitions performed on the same membrane. We
are plotting only the data related to the ensemble of 19 nm-thick
membranes. The vertical grey line is the expected linear loss angle
for SiN membranes of the considered thickness, while the grey area
represents the uncertainty associated with the expected value as
reported in [VS14] (for this thickness the grey area corresponds
to the uncertainty θ−1

lin (19 nm) ± 700). The black line represents
the equality Qmeas = DQθ

−1
nl , with the dissipation dilution factor

obtained from simulation. The hatched area is the region incom-
patible with the model presented.

linear losses expected for a given sample (vertical line in Fig. 4.5). Due
to the phenomenological origin of this formula the uncertainty on that
value is large and we represent it as a grey area. We expect the inverse
of nonlinear losses to coincides with the inverse of the linear one with
fluctuations we can attribute to the variation of the material quality
between different fabrication runs. Therefore, if our hypothesis is correct,
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the relation Q−1
meas = DQ,iθ

−1
nl should hold. We plot this relation as a

diagonal line and it represents an upper bound for the measured quality
factor defined by the simulated dissipation dilution factor [Tsa+17].

The ideal situation is represented by all the points falling at the
intersection between the simulated dilution factor (diagonal line) and
the expected intrinsic quality factor θ−1

lin (vertical line). Extra losses due
to worse material properties or improper handling result in larger loss
angle, however the abscissa of those points should move towards the left
following the oblique black line. Reduction of the dissipation dilution
properties due to imperfections or damages during the fabrication pro-
cess or additional losses, e. g. gas damping, would reduce the measured
quality factor without affecting the intrinsic losses. Hence we expect
the measured points to fall in a well-defined region. We highlight the
areas where the presence of points cannot be explained by any of those
mechanisms as hatched. If the points fall in those areas the relation
between Qmeas and θnl does not hold. For the set of membrane 19 nm-
thick reported in Fig. 4.5, almost all the points of the ensemble are
falling in the expected region. We want to point out that the majority
of the points measured for the two low-order bandgap modes lie at the
intersection between the grey and the black line, suggesting the validity
of our hypothesis.
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Figure 4.6: Measured nonlinear loss angle as a function of the membrane
thickness. In each panel we plot the data from a single modeshape
listed at the right of the panel. The grey solid lines represent the
expected linear loss angle as a function of membrane thickness
and the grey areas is the uncertainty on that value. Each point
is the median over all the nonlinear losss angle measured for a
single mode on all the membranes of an ensemble with a given
thickness. The error bars are the median absolute deviations. The
stars represent the median of the points shown in Fig. 4.5.
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Next we analyze how the measured nonlinear loss angle changes
with the membrane thickness (Fig. 4.7). Each point is the median of
all the nonlinear loss angles measured for the same mode on all the
membranes of a given ensemble and the error bars are the median
absolute value. We compare the data with Eq. (1.48) which describes
how the linear loss angle evolves as a function of the thickness. For
the two low-order bandgap modes the measurement points follow the
phenomenological formula within the uncertainty, corroborating our
hypothesis. On the other hand, the two high-order bandgap modes show
a dependence on the membrane thickness which we cannot justify with
our model. In particular, on the thicker membranes, the two higher-order
bandgap modes consistently show high measured nonlinear loss angles
corresponding to high measured quality factors, i. e. for those samples
the majority of the points fall in the hatched area above the dilution
factor line. We attribute this inconsistency with the model to the excess
nonlinear damping we discussed in the previous section. In appendix A
we show the measured quality factors against θ−1

nl for all the membranes
in each ensembles.

Despite the inconsistency observed in the high-order bandgap modes,
the data match the prediction for the two low-order bandgap modes
suggesting that the proposed relation between geometric nonlinearities
and intrinsic losses is valid for those two geometries. We now discuss
the last set of measurements performed to support our hypothesis. It
consists in characterizing the intrinsic losses at different temperatures.
We realize it only on the first bandgap mode of a 19 nm-thick membrane.

(a) (b)

Figure 4.7: Nonlinear loss angle as a function of temperature. (a) Measured θ−1
nl

as a function of the dilution fridge temperature, Tmxc. The grey line
is a polynomial fit, roughly showing the behavior. (b) Measured
quality factors against measured nonlinear loss angle, taken at
room temperature (yellow) and cryogenic temperatures (blue). The
grey line is the expectation value of θ−1

lin at room temperature, and
the grey area reflects uncertainty on this value. The black line is
the simulated dissipation dilution factor. Error bars are the mean
absolute deviation among 3 repetitions.

We place one of the membranes belonging to the ensemble of the selected
thickness in a dilution refrigerator. With a similar setup working at
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a wavelength of 830 nm we perform a set of ringdown measurements
varying the temperature from 20 mK to 1 K. Details on the type dilution
fridge are not relevant for this thesis work, but are reported in [Sei21]. We
observe that the membrane experiences a heating process due to optical
absorption [Pag+21; Ros20]. To minimize the heating process we use an
optical power of 100 nW. In Fig. 4.7 (a) we plot the measured quality
factor against the mixing chamber temperature. As it is also reported in
[YCS15; Fau+14; Fis+16; Pag+21], the quality factor increases as the
temperature decreases until it reaches a plateau. The measured quality
factor saturates around 109 suggesting the presence of additional linear
undiluted losses. In Fig. 4.7 we plot the measured quality factors against
the measure nonlinear loss angles. The yellow point has been measured
at room temperature. We observe that the nonlinear loss angle decreases
with the temperature reduction, however the ratio between Qmeas and
θnl is constant, consistent with our hypothesis.
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C O U P L E D H A R M O N I C O S C I L L AT O R S

Coupled simple pen-
dula.

Coupled micro- and nanomechanical resonators
attract a lot of attention in a variety of techno-
logical applications. The high quality factors of
nanomechanical devices and the possibility of
interface them with different types of systems
make them promising platform for force sensing
experiment and mechanically mediated trans-
duction. In this chapter we discuss how to imple-
ment the concepts of coupled harmonic oscilla-
tors with all the advantages of the soft-clamped
resonators. We start discussing the simple case
of two point-like harmonic oscillators coupled
with each other. Then we introduce a new phononic dimer geometry,
consisting of soft-clamped membrane with two defects embedded in the
same phononic crystal. This geometry can be intuitively described as
two defect oscillators coupled through the common substrate. We char-
acterize the geometrical dependence of the normal mode splitting and
the force sensitivity, both essential for force sensing applications. Finally
we use the theoretical results and the experimental protocol developed
in the previous chapter to study the dynamics of this new geometry in
the large displacement amplitude regime. We measure the Duffing non-
linearity and the nonlinear damping for different dimers resonator and
we compare them with the simulated values. Additionally, we observe
the presence of cross-nonlinear phenomena that we phenomenologically
model starting from the equation of motion of two damped harmonic
oscillators in the large displacement amplitude regime.

5.1 linear coupled harmonic oscillators

We define two harmonic oscillators to be coupled with each other when
they are connected in such a way that there is an energy transfer
between them. To mention a few examples, they can be constituted by
two simple pendula connected by a spring, two extended objects, such
as cantilevers or doubly clamped beams elastically coupled through a
common mechanical ledge [KCR09], or magnetically coupled through
external fields [LLA10], or even resonators consisting of vacancies in
phononic structures coupled by the common substrate [MIC14; CTS20;
Ber+21]. We want to start the discussion of coupled harmonic oscillators
already in the lumped-element description.

77



78 coupled harmonic oscillators

Let us consider two linear oscillators coupled with each other. We
call un (um) the displacement of the first (second) mode with respect
to its equilibrium position. We assume the two harmonic oscillators to
be identical with same mass m, elastic constant k and damping rate Γ.
The equation of motion describing the two oscillators is

müm + Γmu̇m + kum − kcun = 0, (5.1a)
mün + Γmu̇n + kun − kcum = 0, (5.1b)

where kc is the coupling constant and the last term on the left hand
side of the equation is the strength of the coupling force. For simplicity
we are not considering any external force applied to the resonators. We
can decouple the two equations considering the sum and difference of
Eqs. (5.1a) and (5.1b) moving to the new coordinate system:

uS = um + un, (5.2a)
uA = um − un. (5.2b)

After applying the transformation above we obtain the following:

üS + Γu̇S + Ω2
SuS = 0, (5.3)

üA + Γu̇A + Ω2
AuA = 0, (5.4)

where Ω2
S = (k − kc)/m, and Ω2

A = (k + kc)/m. The oscillations
of the individual oscillators hybridize when we include the coupling
constant. As a result, the coupled systems start a joint harmonic motion
characterized by two new modes. From Eqs. 5.2 we recognize that the
new modes are constituted by the in-phase uS and the out-of-phase uA
motion of the coupled oscillators. We refer to them as the symmetric and
the antisymmetric mode, respectively. The two modes are characterized
by different resonant frequencies, ΩS and ΩA, that we can resolve only
if the difference between the two, i. e. the normal mode splitting, is
larger than the modes damping rate Γ.

In the more general case of two oscillators with different masses mm,n
and elastic constants km,n the equations of motions are not as easy
to decouple. Nevertheless we can still find a solution to the problem
using a slightly different approach. To simplify the problem, we do not
include the contribution of the damping terms. Within these conditions
Eq. (5.1) can be written in matrix form as:mm 0

0 mn

üm

ün

+

 km −kc

−kc kn

um

un

 = 0, (5.5)

where the first matrix is the mass matrix M and the second is the spring
matrix K. To find the solution of Eq. (5.5) we substitute un and um

with the harmonic test functions Ane
iΩt and Ame

iΩt, respectively. We
find the frequencies of the new modes by solving the eigenvalue problem

K

um

un

 = Ω2M

um

un

 . (5.6)
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Notice that for identical masses and elastic constants we recover the
solution obtained through the first method.

5.2 soft-clamped phononic dimers - linear case

We want to realize a device analogous to two coupled harmonic oscillators
with all the advantages provided by the dissipation dilution and the soft
clamping techniques [CTS20]. We implement this idea by introducing
a second defect in the phononic crystal structure. We use as starting
membrane design a Dahlia generation 1. In this section we give a
phenomenological description of this design where we treat the two
defects as two individual oscillators and we use the elastic equation
to derive the coupling constant between the two. Then we discuss the
device characterization and the measurement of the linear properties.

5.2.1 Device principle and dimerization

To understand what enables the coupling mechanisms in our highly
stressed resonator we start writing the simplified elastic equation of
motion for the out-of-plane displacement field:

σ0∇ · ∇w = ρẅ, (5.7)

which coincides with Eq. (1.8a) when we neglect the damping term, we
keep only the dominant conservative term proportional to the tensile
stress, and we do not include any external force. Similarly to the
procedure described in Sec. 1.2.3, we expand w(x, y, t) on a basis of out-
of-plane eigenmodes ϕn associated with the out-of-plane displacement
un

σ0un∇ · ∇ϕn = ρünϕn, (5.8)

where the repeated indexes are summed over. At this point we apply
the Galerkin method [You11] on the above equation and we obtain the
following equation:

σ0un

∫
S

∇ϕm∇ϕndS = ρün

∫
S
ϕmϕndS. (5.9)

ϕm is the test function and usually corresponds to an eigenmode, and
to write the first term on the left hand side we used the divergence
theorem (Eq. (1.20)). To simplify the calculation we consider a spatial-
independent tensile stress. From Eq. (5.8) we write the effective spring
and mass matrices for a highly stressed membrane:

Knm = σ0⟨∇ϕm|∇ϕn⟩, (5.10a)
Mnm = ρ⟨ϕm|ϕn⟩, (5.10b)

where ⟨·⟩ represents the integral over the surface. Substituting Eq. (5.10)
we recover the eigenvalue problem that we can use to determine the
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resonance frequencies of the various membrane modes. In the particular
case of a soft-clamped membrane we can think of ϕn and ϕm as the
eigenmodes of the central defect. Usually we derive the spatial profile
of this modes through FEM simulations [Tsa+17].

Phononic dimer.

Let us now introduce a second defect in the
phononic crystal. The new system is character-
ized by a new set of eigenmodes delocalized on
both the defects. The frequencies of the normal-
ized mode can be predicted through Eq. (1.24)
by using the new, hybridized modeshapes. How-
ever, to give an intuitive description on how the
bandgap modes are modified with respect to the
single defect case, we build a phenomenological
model treating the two defects as two separate
oscillators vibrating one next to the other. We

call ϕ1 a mode of one defect in the absence of the second and we associate
it with the time dependent displacement u1, while we call ϕ2 a mode of
the second defect in the absence of the first associated with the time
dependent displacement u2. We assume the two defects to be identical,
therefore the mode ϕ1 and ϕ2 vibrates with the same frequency Ω. Then
we assume that the effective spring and mass matrices of the system
are described by Eq. (5.10). Within this assumptions the eigenvalue
problem reduces to

K11u1 +K12u2 = Ω2(M11u1 +M12u2), (5.11a)
K21u1 +K22u2 = Ω2(M21u1 +M22u2). (5.11b)

For two identical defects and ϕ1 and ϕ2 describing the same bandgap
mode, we have that K12 = K21, K11 = K22, M12 = M21 and M11 =

M22. Within these conditions Eq. (5.11) coincides with the eigenvalue
problem of the system described in Eq. (5.1). The coupling term is
represented by:

K12 = σ0⟨∇ϕ1|∇ϕ2⟩. (5.12)

The only difference with respect to the simple case in Sec. 5.1 is the
presence of non-zero off-diagonal elements in the effective mass matrix
which coincides with the overlap integral between the two defects modes.

We can decouple Eq. (5.11) performing the transformation in Eq. (5.2).
After some algebra we find two equations for the new displacements uS
and uA associated with two hybrid modes ϕS and ϕA, describing the
out-of-plane displacement profiles of the two coupled defects. From the
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solution of the eigenvalue problem for the new variables we find the
new frequencies:

ΩS =

√
K11 +K12
M11 +M12

(5.13a)

ΩA =

√
K11 −K12
M11 −M12

(5.13b)

In the limit of weak coupling (K12 ≪ K11 and M12 ≪ M11) we can
approximate the modeshapes of the double-defect structure with the
following expressions [MIC14]:

ϕS ≈ ϕ1 + ϕ2, (5.14a)
ϕA ≈ ϕ1 − ϕ2. (5.14b)

Hence the presence of the coupling term between the two defects motion
generates two hybrid modes delocalized on both the defects oscillating
in-phase (ϕS) and out-of-phase (ϕA). The frequency splitting between
the two hybrid modes in the weak coupling approximation can be
predicted from the modeshape of the single defect using the following
expression

ΩA − ΩS
Ω

≈ M12
M11

− K12
K11

, (5.15)

where we performed an expansion to the first order in K12/K11 and
M12/M11.

A similar linear combination approach is often used to describe the
combination of atomic orbitals in dimer molecules, therefore we named
this geometry a phononic dimer.

5.2.2 Linear characterization

In this section we experimentally characterize the phononic dimer struc-
ture. At first, we want to verify the accuracy of the simulated eigen-
functions. We are only interested in the symmetric and antisymmetric
modes generated from the first bandgap mode of a single defect. On a
14 nm-thick membrane we realize a raster scan to image the symmetric
and antisymmetric mode (Fig. 5.1 (a)). The x-y map of the two mode-
shapes has been realized with a free space Mach-Zehnder interferometer
with a homodyne detection scheme operated at 1064 nm, similar to the
one described in Sec. 3.1. Details about the measurement procedure can
be found in [Bar+16]. We compare the measured modeshapes with the
one obtained through FEM simulations (see Fig. 5.1 (b)) finding a good
agreement. Finally, we show the parity of the two modes by plotting
the cross-section of the simulated modeshapes (Fig. 5.1 (c)).

One of the main advantages of this structure is that we can tune
the coupling, and the frequency splitting between the symmetric and
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(a)

(b)

(c)

Figure 5.1: Soft-clamped phononic dimer. (a) Measured out-of-plane displace-
ment of the phononic dimer symmetric (left) and antisymmetric
(right) modes. The left mode is the symmetric, the right mode is
the antisymmetric. (b) Simulated out-of-plane desiplacement of the
symmetric (left) and antisymmetric (right) mode. (c) Simulated
cross-section of the symmetric (left) and antisymmetric (right)
mode. The red (blue) points represent the simulated displacement
for the symmetric (antisymmetric) mode, the grey line is the ad-
dition (subtraction) of two exponential decays with an oscillating
component.

antisymmetric mode, by changing the overlap between the two single
defect mode curvatures (see Eq. 5.12). We can act on the curvature
superposition by varying the relative positions of the defects within the
phononic crystal. We have two main parameters we can change: the
relative distance between the defects (dsep) and their relative angle with
respect to the phononic crystal (θ). The two parameters are depicted
in Fig. 5.2. The angles and the dimer separations cannot be varied
continuously. The phononic crystal symmetry allows us to realize dimer
structures with orientations θ = [0◦, 13.91◦, 30◦, 46.1◦] and separations
corresponding to dsep = [0, 1, 2, 3] unit cells. We could explore weaker
coupling and maybe reach a distance so large that the two defects do
not interact anymore increasing the number of unit cells. This requires
to increase the membrane side length. To guarantee a good isolation
from the frame, we usually fabricate the membrane in such a way that
there are 9 unit cells between the defect and the frame. To maintain
this distance on all the sides of each defect we need to increase the
membrane size. However, the larger the size gets, the more fragile the
membrane becomes, i. e. the fabrication yield reduces. We report a table
with the corresponding outer dimension in Appendix B.
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Figure 5.2: Micrograph of a soft-clamped phononic dimer. In black and red
we highlight the orientation θ and the dimer separation dsep, re-
spectively.

We fabricate a set of membranes 14 nm-thick, with the orientations
and separations listed above. For each geometry we fabricate three
samples. We then measure the frequency splitting on all of the fabricated
devices through the FFT of the photocurrent and we compare them
with the simulated values (see Fig. 5.3 (b)). Within the geometries
under study, we measure a normal mode splitting varying from 2 kHz
to 100 kHz. Interestingly, we observe a consistent effect due to the
orientation. In particular in Fig. 5.3 (a) we show the spectra measured
on different membranes characterized by dsep = 1 unit cell with varying
orientations θ.

It is interesting to notice that for some of the measured geometries
the frequency of the symmetric and antisymmetric mode is inverted,
i. e. the antisymmetric mode is associated with the lower frequency.
This phenomenon takes place for all the geometries characterized by
an orientation θ = 30◦ as well as in the geometry characterized by the
orientation θ = 0◦ and dimer separation dsep = 3 unit cells. Looking
at the derivation performed in Sec. 5.1 this might be counter-intuitive.
To understand this observation, it is instructive to compare the dis-
placement profiles of two configurations showing opposite behavior. In
particular we consider the geometry θ = 0◦ and dsep = 1 unit cell,
where the lower frequency mode coincides with the symmetric mode,
and the geometry θ = 30◦ and dsep = 1 unit cell, where the lower
frequency mode coincides with the antisymmetric. We first simulate the
modeshapes for the two individual defects in the two cases, Fig. 5.4 (a)
and Fig.5.4 (c). Then, we plot the out-of-plane displacement along the
line representing the orientation of interest, black dashed line in Fig.
5.4 (a) and Fig.5.4 (c). Comparing the normalized displacement profile
of the left mode with the the normalized displacement profile of the
right mode with opposite signs, we observe that for θ = 0◦ the left and
the right defect displacements are largely in-phase for the symmetric
combination (see Fig. 5.4 (b)). Recall that we define ϕi as normalized
mode satisfying the condition ϕmax

i = 1. On the other hand, for θ = 30◦

the left defect and the right defect displacements are largely in-phase
for instead the antisymmetric combination (see Fig. 5.4 (d)). Therefore
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(b)

    

(a)

Figure 5.3: Geometrical dependence of the normal mode splitting. (a) Thermo-
mechanical wide spectra for the four possible orientations of the
phononic dimers characterized by dsep = 1 unit cell. The red peaks
are the symmetric modes, the blue peaks the antisymmetric ones.
The dashed lines are a guide to the eye to emphasize the order swap
between symmetric and antisymmetric mode. The satellite peaks
around the modes are induced by the turbo pump vibrations. (b)
Frequency splitting for all the orientations and all the separations.
The filled symbols are the measured values, the empty symbols
the simulated ones. The same number of unit cells separation on
different orientations can correspond to a slightly different distance
between the two defects. The different colors highlight the range
of distances corresponding a given number of unit cells.

we are naming the two modes as symmetric and antisymmetric based
on the maximum displacement point symmetry, however the frequency
order is defined by the overall modeshapes superposition.

This membrane design is particularly interesting for force sensing
applications due to the large working area represented by the two defects.
As a matter of fact, the presence of two defects simplify the spatial
separation between the region where we apply the force we want to
detect and the optical readout of the induced vibration [H+̈21b]. For
such applications the quality factor and the effective mass are two crucial
parameters. Therefore, we move to characterize them. We measure the
quality factor through a ringdown technique introduced in Sec. 1.2.4.
We perform the measurement on all the geometries extracting the value
over 5 ringdown repetitions. We average the results obtained from all
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(a)

(b) (d)

(c)

Figure 5.4: Comparison of the simulated out-of-plane displacements of the two
individual defects for different geometries. (a) Simulated out-of-
plane displacement of two individual defects (one for each panel) for
the geometry θ = 0◦ and dsep = 1 unit cell. The black dashed line
connects the two defects center and represents the orientation. (b)
Cross-sectional view of the defects displacement along the dashed
line in (a). The black line is the left defect cross-section. The
red and blue lines are the right defect cross-section with opposite
signs. (c) Simulated out-of-plane displacement of two individual
defects (one for each panel) for the geometry θ = 30◦, dsep = 1 unit
cell. The black dashed line connects the two defects center and
represents the orientation. (d) Cross-sectional view of the defects
displacement along the dashed line in (c). The black line is the
left defect cross-section. The red and blue lines are the right defect
cross-section with opposite signs.

the nominally identical membrane fabricated. In Fig. 5.5 we report
the measured quality factors for all the geometries of interest and we
compare them with FEM simulation. Details on the simulation of the
quality factor can be found in [Tsa+17].

We then move to evaluate the effective masses. We use the simulated
eigenmodes and we use them to calculate the effective mass through Eq.
(1.22). In Table 5.1 we report simulation results for all the geometries
studied in this section. As expected, for the majority of the geometries
the effective mass of the hybridized modes is approximately twice the
effective mass associated with a single defect [Tsa+17], consistent with
Eq. (5.14). However, when the dimer separation becomes small, the
simulated effective masses deviates from the ones expected from Eq.
(5.14), suggesting a stronger mixing in the modeshapes. We try to
validate the simulations performing a measurement of the effective mass.
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Figure 5.5: Quality factor for all the orientation as a function of the dimer
separation. Filled red (blue) points represent the measured quality
factor for the symmetric (antisymmetric) mode. The empty red
(blue) points the simulated value for the symmetric (antisymmetric)
mode. Each symbol coincides with the orientation listed above the
panel.

θ 0 unit cells 1 unit cell 2 unit cells 3 unit cells
meff,S meff,A meff,S meff,A meff,S meff,A meff,S meff,A

0◦ 2.6 1.8 1.9 1.7 1.7 1.9 1.9 1.8
13.91◦ – – 1.7 2.0 – – 1.8 1.9

30◦ – – 1.7 2.0 1.8 1.8 1.9 1.8
46.1◦ – – 1.7 2.0 – – 1.8 1.9

Table 5.1: Simulated effective masses for all the fabricated geometries. The
numbers are expressed in nanograms. For the simulation we assume
a membrane 14 nm-thick and a material density of ρ = 3200 kg/m3.

We accurately align our interferometer with the expected maximum
displacement point. We leave the mode of interest in its thermal state
and we acquire the two mechanical quadratures for approximately 15
minutes. We divide the time-trace in shorter traces of 1 minute and we
perform the FFT on the acquired data. To evaluate the effective mass we
need to calibrate the measured spectra. In this particular case, since the
effective mass is the parameter to be measured, we perform the relative
displacement calibration described in Sec. 3.3.2. Once we obtain the
calibrated spectra, we numerically evaluate the areas under them. Then
we use the relation in Eq. (3.7) to evaluate the effective mass on each
spectrum and we average the results. Simultaneously, we save the two
quadratures of the carrier beat note to compensate for interferometer
phase drifts and fluctuations in the light intensity. We perform the
measurement only on the geometry characterized by θ = 13.91◦, dsep = 1
unit cell. We identify this configuration as the most interesting for
force sensing applications because it is characterized by a frequency
splitting of the order of 7 kHz. This frequency match the possible spin-
flip frequencies and is particularly interesting for the implementation of
a parametric protocol for an MRFM experiment [Koš+20] involving the
use of our phononic dimer geometry. The measured effective masses for
the two modes are mS = 3 ng and mA = 4 ng. The discrepancy between
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the simulated and the measured values is probably due to an imperfect
overlap between the optical and the mechanical mode. Considering the
accuracy with which we can simulate the frequency, and the limited
control on beam spot dimension and alignment in our setup, we believe
the simulated data are more accurate for this type of information.

From the linear properties of our devices, we can estimate the force
sensitivity

√
SFF using Eq. (1.37). Using the measured quality fac-

tor and the simulated effective mass, we evaluate the force noise at
room temperature for the symmetric,

√
SFFS = 28.2 aN/

√
Hz, and the

antisymmetric mode,
√
SFFA = 29.9 aN/

√
Hz, of the geometry with

θ = 13.91◦ and dsep = 1 unit cell. To reduce the force noise contribu-
tion, the force sensing experiments are usually performed at cryogenic
temperature. Beside the temperature reduction we observe an increase
in the quality factor at cryogenic temperature, see Fig. 4.7 or [Ros20;
Pag+21; Sei21]. Assuming an increase of a factor 3 on the quality factor
and a temperature of 4 K, the projected force sensitivities for the two
modes are

√
SFFS = 1.9 aN/

√
Hz and

√
SFFA = 2.0 aN/

√
Hz.

5.3 nonlinear coupled harmonic oscillators

In the first section we opened the discussion with two harmonic oscil-
lators interacting through a coupling term (kc) and explained how we
decouple them by moving to the new coordinate system of the symmet-
ric and antisymmetric mode. In this section, we want to perform the
same derivation by including the contribution of the geometric nonlinear
terms introduced in Chapter 4.

We start writing the equation of motion for two nonlinear oscillators
coupled together through a coupling term kc. We assume two identical
oscillators with the same mass, frequency, damping and nonlinear pa-
rameters. Following the formalism in Sec. 5.1, we use the subscript n
for one oscillator and m for the other. The two new coupled equations
take the form:

üm + (Γ + γnlu2
m)u̇m + (Ω2 + βu2

m)um − kc
m
un = 0, (5.16)

ün + (Γ + γnlu2
n)u̇n + (Ω2 + βu2

n)un − kc
m
um = 0. (5.17)

We want to write the two equations of motion in term of the new
variable uS and uA derived in the linear case. To do so, we substitute
un and um through the transformation in Eqs. (5.2). Then we sum and
subtract the resulting equations. After some algebra we end up with
the following equations of motion for the new variables:

üi + Γu̇i +
γnl

4
(
u2

i + u2
j + 2uiuj

)
u̇i + Ω2

iui +
β

4 (u
3
i + 3uiu

2
j ) = 0,

(5.18)

where i, j ∈ [S, A] with i ̸= j and Ωi = (k∓ kc)/m.
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From the above equation we immediately notice that the change
of variables doesn’t lead to decouple equations. Additionally, the new
cross-terms are connected with the nonlinear parameters we introduced
in chapter 4. To distinguish between the nonlinear terms depending
only on the mode of interest and the one resulting from a correlation
between the two modes we will refer to them as self-nonlinear terms
(βs

i and γsnl
i ) and cross-nonlinear terms (βx

i and γxnl
i ), respectively.

The derivation above is a simplistic description giving an intuitive
explanation of the presence of cross-nonlinear terms in the equation
of motion. More formally, we could derive these extra nonlinear terms
for a membrane resonator starting from elasticity equations including
an intermodal coupling contribution. This can be generalized to all
the combination of modes in a membrane resonators. Nevertheless, for
dimer resonators we expect an overlap between the symmetric and
antissymmetric mode leading to cross-nonlinearities more pronounced
with respect to other pairs of modes. Examples of cross-nonlinearities in
pairs of modes with opposite symmetry have been observed in a variety
of resonators [MIC14; KCR09; Wes+10].

We describe the dynamics of the pairs of modes with opposite sym-
metry with the following generalized equations of motions:

üi + (Γi + γsnl
i u2

i + γxnl
ji u

2
j + γxnl

ij ujui)u̇i + (Ω2
i + βs

iu
2
i + βx

jiu
2
j )ui = 0

(5.19)

where we included two phenomenological cross-nonlinear terms. ΩS and
ΩA coincide with Eqs. (5.13), and βS

i and γsnl
i can be evaluated knowing

the modeshapes using Eq. (4.14d) and Eq. (4.14e), respectively. On one
hand, we want to understand how the nonlinearities affect the dynamics
of the system. On the other, we want to quantify the strength of such
nonlinear effects in our structure.

To simplify the problem we distinguish two regimes where we can
characterize the self-and the cross-nonlinearities separately. From the
the model in Sec. 4.2 we know that the contribution of the geometric
nonlinearities start to be relevant for displacement comparable with the
membrane thickness. From the simplistic model above, we can deduce
that the contribution of the cross-nonlinear terms starts to be relevant
under the same condition. If we apply an external driving force such
that we only drive one of the two modes in the nonlinear regime, we can
remove the contribution of only one type of nonlinearities at the time.
In the following we analyze the solution of the equations in two limit-
ing cases: negligible cross-nonlinearities and negligible self-nonlinearities.
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Nl. Dampings Value (2πHz) Duffings Value (4π2 Hz2)
γsnl

i u2
i 10−1 βs

iu
2
i 107

γxnl
ji u

2
j 10−7 βx

jiu
2
j 10

γxnl
ij uju

2
i 10−4

Table 5.2: Self- and cross-nonlinear components contribution in the equation
of motion for uj ≪ uj . We assume ui ≈ 10 nm and uj ≈ 10pm. On
the left side hand side of the table we write the values of the terms
proportional to the self- and the cross- nonlinear damping terms,
on the right hand side we write the values of the terms proportional
to the self- and cross-duffing nonlinearities.

Case 1: self-nonlinearities

In the first case, we resonantly drive the mode i up to the nonlinear
regime, we leave the mode j in its thermal state, i. e. uj ≪ ui. We focus
on the dynamics of the mode i. We consider a displacement of the mode
i and of the mode j to be ui ≈ 10 nm and uj ≈ 10 pm. Then we assume
the cross-nonlinearites to be of the same order of magnitude of the
simulated self-nonlinearities, i. e. γsnl

i ≈ γxnl
ij ≈ γxnl

ji ≈ 2π 1014 Hz/m2,
and βs

i ≈ βx
ji ≈ 4π2 1022 m−2s−2. Within these conditions, the order of

magnitude of the different components of the equation of motion are
reported in Table 5.2.

We remark that all the cross-terms ∝ uj are negligible with respect
to the self-nonlinear terms. By neglecting the contribution of the cross-
nonlinear terms, the new equation does not include any coupling term
with the mode j and coincides with Eq. (4.13). From the discussion in
Sec. 4.3, we know that the self-nonlinearities introduce an amplitude-
dependent damping term in the amplitude decay, and a resonance
frequency shift proportional to the displacement amplitude squared.
Using the laws describing the nonlinear amplitude decay and the reso-
nance frequency shift, we can measure the self-nonlinear parameters in
these samples as well.

Case 2: cross-nonlinearities

In the second case, we resonantly drive the mode j up to the nonlinear
regime, and we leave the mode i in its thermal state (or in the linear
regime), i. e. uj ≫ ui. We again focus on the equation of motion describ-
ing the dynamics of the mode i. This time we consider a displacement
of the mode i and of the mode j to be ui ≈ 10 pm and uj ≈ 10 nm
respectively, and we assume the self- and cross-nonlinearities to be of
the same order of the previous case. The order of magnitude of the
different components of the equation of motion are reported in Table
5.3. From the values reported in Table 5.3, we notice that all the terms
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Nl. Dampings Value (2πHz) Duffings Value (4π2 Hz2)
γsnl

i u2
i 10−7 βs

iu
2
i 10

γxnl
ji u

2
j 10−1 βx

jiu
2
j 107

γxnl
ij uju

2
i 10−4

Table 5.3: Self- and cross-nonlinear components contribution in the equation
of motion for uj ≫ ui. We assume ui ≈ 10 pm and uj ≈ 10nm. On
the left side hand side of the table we write the values of the terms
proportional to the self- and the cross- nonlinear damping terms,
on the right hand side we write the values of the terms proportional
to the self- and cross-duffing nonlinearities.

∝ u2
i , u3

i are negligible. The equation of motion reduces to:

üi + (Γi + γxnl
ji u

2
j )u̇i + (Ω2

i + βx
jiu

2
j )ui = 0. (5.20)

The term γxnl
ji uiuj u̇i is negligible in both the regimes. It starts to be

relevant when both the modes are strongly driven. Given the complexity
of distinguishing between the various nonlinear terms in that case, we
do not consider it.

As in the self-nonlinear case, we want to solve the equation of motion
for the free evolving oscillator to understand how the cross-nonlinear
terms affect the displacement amplitude and the mechanical frequency
during the ringdown. First, we impose that the mode of interest (ui) is
initially displaced from its rest position, Eq. (4.16). Moreover we assume
that the displacement of the strongly driven mode (uj) is oscillating
with fix amplitude Aj

uj = Aj cos(Ω′
jt), (5.21)

where Ω′
j is the resonance frequency shifted according to Eq. (4.33).

Since the displacement amplitude is fixed, we assume that Ω′
j is constant.

Following the procedure implemented in Sec. 4.3, we solve the equation
through the multiple-scales method. At first, we highlight the small
terms with an epsilon

üi + (ϵΓ̃i + ϵγ̃xnl
ji u

2
j )u̇i + (Ω2

i + ϵβ̃x
jiu

2
j )ui = 0, (5.22)

where Γi = ϵΓ̃i, γxnl
ji = ϵγ̃xnl

ji and βx
ji = ϵβ̃x

ji. Then, we assume that the
solution can be expressed in terms of a fast (t0) and a slow (t1 = ϵt)
time scale. First we write the displacement as a function of the two new
time-scales, ui(t0, ϵt1) and we write the equation of motion writing the
time derivatives using the transformations in Eqs. (4.19). The resulting
equation of motion is

(∂t0t0 + ϵ∂t0t1) ui + ϵ
(

Γ̃i + γ̃xnl
ji A

2
j cos2(Ω′

it0)
)
∂t0ui+

+
(

Ω2
i + β̃x

jiA
2
j cos2(Ω′

it0)
)
ui = 0,

(5.23)
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where we neglected all the higher order terms in ϵ. Then we substitute
ui(t, ϵt) with an uniform approximate solution defined in Eq. (4.21).
The equation of motion becomes

∂t0t0ui,0 + Ω2
iui,0 + ϵ

[
∂t0t0ui,1 + 2∂t0t1ui,0 + Γ̃i∂t0ui,0+

+ γ̃xnl
ji A

2
j cos2(Ω′

jt0)∂t0ui,0 + β̃x
jiA

2
j cos2(Ω′

jt0)ui,0 + Ω2
iui,1

]
= 0,

(5.24)

where we explicitly wrote uj using Eq. (5.21). Finding a solution for
this equation corresponds to solving the following system

∂t0t0ui,0 + Ω2
iui,0 =0 (5.25a)

∂t0t0ui,1 + Ω2
iui,1 = − 2∂t0t1ui,0 − Γ̃i∂t0ui,0+ (5.25b)

− γ̃xnl
ji Aj

2 cos2(Ω′
jt0)∂t0ui,0+

− β̃x
jiAj

2 cos2(Ω′
jt0)ui,0.

The solution of Eq. (5.25a) coincides with the solution of Eq. (4.23a).
Therefore we substitute Eq. (4.24) in Eq. (5.25b) which becomes

∂t0t0ui,1 + Ω2
iui,1 = F1 sin(Ωit0 + φi(t1)) + F2 cos(Ωit0 + φi(t1)),

(5.26)

where we performed the following substitutions:

F1 =2Ωi∂t1Ai(t1) + ΩiΓ̃iAi(t1) +
γ̃xnl

ji

2 Aj2Ai(t1)
[
1 + cos(2Ω′

jt0)
]
,

F2 =2ΩiAi(t1)∂t1φi(t1) +
β̃x

ji

2 A2
jAi(t1)

[
1 + cos(2Ω′

jt0)
]
.

Importantly, all the coefficients in Eqs. (5.27) are functions of the slow
time scale t1. The only two terms showing a dependence on the fast
scale are the oscillating terms. We notice that those terms are oscillating
faster than all the other terms in the system. Therefore we can assume
that they average to zero and the above equations reduce to

F1 = 2Ωi∂t1Ai(t1) + Γ̃iA(t1)Ωi +
γ̃xnl

ji

2 A2
jAi(t1) (5.28a)

F2 = 2ΩiAi(t1)∂t1φi(t1) +
β̃x

ji

2 A2
jAi(t1). (5.28b)

Next, we impose F1 = 0 and F2 = 0 to avoid secular terms. Solving
Eq. (5.28a) imposing the former condition allows us to find the time
evolution of the displacement amplitude which is described by the
following expression:

Ai(t1) = ce
−
(

Γ̃i
2 +

γ̃xnl
ji
4 A2

j

)
t1

. (5.29)
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We determine the constant c from the initial condition. Substituting
Eq. (5.29) in Eq. (5.28b) with the above condition for F2, we find the
time evolution of the phae ϕi to be

φi(t1) =
1
4 β̃

x
jiA

2
j t1 + Φ, (5.30)

with Φ being a constant determined by the initial condition. We sub-
stitute Eq. (5.29) and Eq. (5.30) in the zeroth order solution u0(t0, t1).
Similarly to the self-geometric nonlinearities case, Sec. 4.3, we only keep
the zeroth order term in ϵ, therefore the solution ui(t0, t1) coincides
with u0(t0, t1). Finally we apply the inverse transformation to write the
solution as a function of the natural time scale t. The solution of the
equation of motion after applying the initial condition reads

ui(t) = Ai(t) cos(Ωit+ φi(t)), (5.31)

where the displacement amplitude and the phase take the following
forms

Ai(t) = Ai,0e
−
(

Γi
2 +

γxnl
ji
4 A2

j

)
t

, (5.32a)

φi(t) =
βx

ji

4 A2
j t+ Φ. (5.32b)

Notice that Ai,0 is the initial displacement. The constant Φ is still
unknown, but it is not relevant for our analysis.

Let us discuss the solution we obtain for the cross-nonlinearities
case. Both the amplitude and the phase show a dependence which is
quadratic with the displacement amplitude of the strongly driven mode.
In particular, from Eq. (5.32a) we observe that for a constant oscillation
of the mode j, the mode i decays linearly with an increased decay rate
which depends on the amplitude Aj

Γ′
i = Γi +

γxnl
ji

2 A2
j . (5.33)

On the other hand, from the time derivative of Eq. (5.32b) we can
derive the instantaneous resonance frequency shift. As expected, the
cross-duffing term introduces a shift of the resonance frequency which
depends quadratically on Aj with the following expression:

Ω′
i = Ωi

(
1 +

βx
ji

4 A2
j

)
. (5.34)
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5.4 soft-clamed phononic dimers - nonlinear case

We now discuss how we experimentally measure both the self- and the
cross-nonlinear parameters in the phononic dimer geometries, already
linearly characterized in Sec. 5.2.2. In Sec. 5.3 we identified two regimes
where we can measure the two nonlinear contributions separately and
we derived the laws we can use to extract the relevant information
through a ringdown measurement. Similarly, we proceed with an exper-
imental characterization in two steps, where we measure the two types
of nonlinearities independently.

5.4.1 Measuring self-nonlinearities

We start by characterizing the self-nonlinearities, i. e. the geometrical
nonlinearities entering in the dynamics of the mode of interest when its
displacement amplitude is comparable with the membrane thickness.
To perform this measurement, we monitor the displacement amplitude
and the frequency shift of the mode of interest while we are leaving
the other mode in its thermal state. In this way we can neglect the
cross-nonlinearities. The measurement procedure coincides with the one
described in Sec. 4.4.

Figure 5.6: Self-nonlinear damping in phononic dimers. In each panel we plot
the self-nonlinear damping against the dimer separation for a
given orientation, represented by a different symbol. Each filled
symbol represents the measured self-nonlinear damping of a single
membrane. We extract the self-nonlinear damping averaging the fit
result from 5 ringdowns. The error bar is one standard deviation.
The empty symbols are the simulated values. Red (blue) symbols
are associated with the symmetric (antisymmetric) mode. The
orientations are listed at the right of each panel.
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Let us first consider the self-nonlinear damping terms. The measured
parameters for both the symmetric and antisymmetric modes of all
the samples are reported in Fig. 5.6 (red and blue filled points). We
simulate the nonlinear damping by substituting the eigenfunctions
estimated through FEM simulations in Eq. (4.14e). The simulation
outcomes coincide with the measurement results within the experimental
scattering.

Then we move to discuss the self-Duffing terms. To express the
measurement results in the same unit used in Chapter 4, we consider
the self-Duffing shift per displacement ωsD

i = βs
i /2Ωi. In Fig. 5.7 we

report all the measured self-Duffing parameters for the symmetric (blue
filled points) and the antisymmetric (red filled points) for all the samples.
We compare the measured self-Duffing terms with the simulated values
obtained from Eq. (4.14d) normalized to twice the resonance frequency.
The experimental and simulated results agree within the experimental
scatter.

Figure 5.7: Self-Duffing in phononic dimers. In each panel we plot the self-
Duffing shift per displacement as a function of dimer separation
for a given orientation. Each symbol is associated with a different
dimer separation. The filled red (blue) points are the measured
values for the symmetric (antisymmetric) mode. Each point is the
self-Duffing shift per displacement measured on a single membrane.
We extract it by performing 5 ringdown repetitions, then we average
the fit results. The error bars correspond to one standard deviation.
The empty red (blue) points correspond to the simulated value for
the symmetric (antisymmetric) mode. The orientations are listed
on the right of each panel.
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5.4.2 Measuring cross-nonlinearities

We now characterize the cross-nonlinear terms in the fabricated devices.
In contrast to the self-nonlinear case, we cannot measure the cross-
Duffing and the self-nonlinear damping simultaneously. We need to
implement two separate measurement procedures where we need to
monitor the vibration of both the symmetric and the antisymmetric
mode.

We start with the estimation of the cross-Duffing parameters. For
this measurement procedure we leave the mode of interest (ui) in its
thermal state. Simultaneously we drive the second mode (uj) to an
amplitude where we expect to observe nonlinear phenomena. Then,
we turn off the drive and we monitor both the modes ui and uj using
two separate demodulators in the lock-in amplifier. To extract the

(a) (b)

Figure 5.8: Example of a cross-Duffing measurement. (a) Lorentzian fit per-
formed at different times on the FFT of the thermally-driven mode.
We only show the fit of the symmetric mode. Each panel shows a
Lorentzian fit extracted from a different time interval. (b) Example
of a frequency shift of the thermally-driven mode as a function of
the amplitude of the strongly driven mode. The frequency shift
is extracted from the fit shown in (a). The red (blue) points cor-
responds to the case where the antisymmetric (symmetric) mode
is strongly driven. The solid lines are the quadratic fit. The data
are extracted from a membrane with θ = 13.91◦ and dsep = 1 unit
cell.

instantaneous frequency shift Ω′
i(t)/2π of the mode left in the thermal

state, we perform an FFT every 0.28 s of acquired data. We fit the
obtained spectrum with a Lorentzian peak. Then, we assume that
the peak center frequency corresponds to the instantaneous resonance
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frequency Ω′
i(t)/2π. During the ringdown we observe the peak shifting

towards lower frequencies. An example of a Lorentzian peak position
at different times is shown in Fig. 5.8 (a). Simultaneously, in each
time interval we measure the calibrated amplitude Aj and we take its
mean value for the 0.28 s period. We apply the absolute calibration
method described in Sec. 3.3.1. To extract the cross-Duffing term we plot
the instantaneous resonance frequency Ω′

i/2π against the calibrated
amplitude Aj measured in the same time interval. We plot an example
of the frequency shift of the mode ui against the amplitude of the mode
uj in Fig. 5.8 (b). We use Eq. (5.34) as the fitting function. We repeat
the measurement for all dimer separations and orientations. The fit
results are reported in Fig. 5.9.

Figure 5.9: Cross-Duffing nonlinearity in phononic dimers. In each panel we
plot the measured cross-Duffing nonlinearity against the dimer sep-
aration for all the samples of a given orientation. Each orientation
is associated with a different symbol. The orientation is listed at the
right of each panel. The filled red (blue) points are the measured
values for the symmetric (antisymmetric) mode estimated from
an average over 5 ringdown repetitions performed on the same
membrane. The error bars correspond to one standard deviation.

We use a phenomenological model to introduce the cross-nonlinear
terms, therefore we do not have a rigorous derivation that we can use to
simulate the cross-nonlinear terms from the modeshapes, yet. However,
it is interesting to compare the measured self-Duffing and the cross-
Duffing parameters to have an idea of the relation between the two. In
Fig. 5.10 we plot the cross-Duffing against the self-Duffing measured on
the same sample for all the geometries. We extract the ratio between
the two values using a linear fit (black dashed line in Fig. 5.10). From
the linear fit we obtain a ratio between the nonlinear terms given by
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Figure 5.10: Self-Duffing against cross-Duffing. Each symbol represents a dif-
ferent angle. The red (blue) points are the data relative to the
symmetric (antisymmetric) mode. Each point represents the pa-
rameters associated with a single membrane. The black dashed
line is a linear fit.

ωxD
ji /ωsD

i = 2.6 ± 0.5. The error on the linear fit corresponds to a 95%
confidence interval. Interestingly, the factor we get is compatible with
the factor of 3 predicted by the phenomenological model, see Eq. (5.18).

Finally, we measure the cross-nonlinear damping in our structure.
For this particular type of measurement we need to drive both modes
simultaneously. First we choose a driving voltage for the mode of interest
(ui) small enough to avoid any type of self-nonlinear effects. Then, we
apply a second driving tone at the frequency Ωj/2π with a strength
large enough to drive second mode (uj) in the nonlinear regime. We
turn off the drive of the weakly driven mode (ui) and we monitor
simultaneously the amplitudes Ai(t) and Aj . Notice that the drive on
the mode uj is on and constant during the whole measurement. From
the exponential decay of the weakly driven mode we extract the effective
linear damping Γ′

i which is related to the amplitude Aj through Eq.
(5.33).

We repeat the measurement varying the driving strength on the mode
j, i. e the amplitude Aj . The larger the amplitude of the nonlinear mode,
the faster the decay. An example of a set of amplitude decays of the
linear symmetric mode i measured for different driving strengths applied
on the antisymmetric mode is reported in Fig. 5.11 (a). If we plot the
measured effective decay rate Γ′

i against the calibrated displacement
amplitude Aj , we can extract the cross-nonlinear damping term using
Eq. (5.33) (see Fig. 5.11 (b)). We calibrate the amplitudes Aj in unit of
meters applying by applying an absolute calibration method (see Sec.
3.3.1).

We characterized the cross-nonlinear damping term for the geometry
θ = 13.91◦ and dsep = 1 unit cell because this parameters is particu-
larly interesting for force sensing applications. As a matter of fact, the
cross-nonlinear damping has been identified as a limiting factor for the
force sensitivity of phononic dimers in the MRFM protocol proposed in
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(a) (b)

Figure 5.11: Measured cross-nonlinear damping in phononic dimers. (a) Ring-
down of the weakly driven mode AS(t) for growing amplitude
of the strongly driven mode AA (from light to dark red). AA is
constant during the ringdown time. The grey line is the ringdown
in absence of the strong drive in the antisymmetric mode for
comparison. (b) Effective linear damping measured from the expo-
nential decay of the weakly driven mode against the amplitude of
the strongly driven one. Red (blue) points coincide with the case
where the antisymmetric (symmetric) mode is strongly driven.
The solid lines are the quadratic fits from which we extract the
cross-nonlinear damping parameter. The red (blue) dashed line
represents the damping rate in absence of any cross-nonlinear
effect for the symmetric (antisymmetric) mode.

[Koš+20]. The cross-nonlinear damping values extracted for the sym-
metric and antisymmetric modes are γxnl

AS /2π = 1 × 1013Hz/m2 and
γxnl

SA/2π = 1 × 1013Hz/m2, respectively. Notably, the cross-nonlinear
terms coincide, as suggested from the phenomenological model. However,
if we compare the cross-nonlinear damping with the self-nonlinear damp-
ing term we observe a big discrepancy between the two, suggesting a
more complicated mechanism behind the presence of the cross-nonlinear
damping term.



6
PA R A M E T R I C A L LY - D R I V E N H A R M O N I C
O S C I L L AT O R

Parametrically excited
simple pendulum.

In this chapter we show some preliminary results
of our research work on parametric effects in
dissipation-diluted nanomechanical resonators.
By modulating the in-plane stress we can model
our membrane resonator as parametric oscillator,
i. e. a harmonic oscillator with one of the system
parameter modulated in time. We start with a
general description of a parametric harmonic
oscillator where the modulated parameter is the
resonance frequency, then we show that in this
situation the harmonic oscillator turns into a
mechanical amplifier. We describe how we can
modulate the elastic constant of a soft-clamped membrane resonator and
we compare the parametric gains obtained on different bandgap modes.
From the parametric characterization we deduce that the parametric
driving strength has a non-trivial geometric dependence. We extend
the linear continuum elastic model presented in Sec. 1.2 to explain the
observed geometric dependence of the parametric driving strength. At
the end of the chapter we describe how we can interpret and verify the
model, and we show the preliminary results.

6.1 degenerate parametric oscillation

We define a parametric oscillator as a harmonic oscillator where the
motion is driven by the time modulation of a system parameter. Here
we focus on the case of a parametric oscillator where the modulated
parameter is the elastic constant. In particular, we are interested in
the degenerate parametric oscillator, i. e. a parametrically-driven har-
monic oscillator where the modulation happens at twice the resonance
frequency. Examples of parametric oscillators are a simple pendulum
with a length varying during the oscillation or with a support moving
harmonically along the vertical direction or beam subjected to a periodic
modulation of its elastic constant. [RG91].

We start the discussion already writing the equation of motion of a
single vibrational mode associated with an out-of-plane displacement ui.
In the presence of a modulation of the elastic constant, this equation

99
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takes the form of a parametrically-driven harmonic oscillator which is
usually written as follow

üi + Γiu̇i + Ω2
iui +

kpi(t)

mi
ui =

f ext
i

mi
cos(Ωit+ φr) (6.1)

where kpi(t) represents the modulation of the elastic constant and we
include the presence of an external resonant force characterized by a
phase φr. We are interested in a degenerate parametric modulation.
Hence we can write the modulated component of the elastic constant
as

kpi(t) = kpi sin(2Ωit) (6.2)

where kpi is the strength of the modulation.
Eq. (6.1) is also known as damped Mathieu equation [Cle03]. To solve

it, we need to use a different approach with respect to the one in Sec. 4.3
and Sec. 5.3. Following the mathematical derivation in [RG91; Cle03],
we introduce the complex variables

ai = u̇i + iω∗
i ui, (6.3a)

a∗
i = u̇∗

i − iωiu
∗
i , (6.3b)

where ∗ represents the complex conjugate, i is the imaginary unit and
the complex frequency ωi is defined as

ωi = Ωi

[√
1 − 1

4Q2 +
i

2Q

]
, (6.4)

with Q the quality factor of the linear harmonic oscillator. We can invert
Eqs. (6.3) to get an expression for ui and u̇i as a function of the new
variables

ui =
ai − a∗

i

i(ω∗
i + ωi)

, (6.5a)

u̇i =
ωiai + ω∗

i a
∗
i

ω∗
i + ωi

. (6.5b)

We want to express the equation of motion in terms of the new variables.
To perform the transformation we still need to find an expression for üi.
Writing u̇i from Eq. (6.3a) and performing the time derivative we get

üi = ȧi − iω∗
i u̇i = ȧi − iω∗

i

(
ωiai + ω∗

i a
∗
i

ω∗
i + ωi

)
, (6.6)

where we use Eq. (6.5b) in the last step. Substituting Eqs. (6.5) and
Eq. (6.6) in Eq. (6.1) and after some algebraic manipulations we obtain
the following equation of motion in the new variables

ȧi = iωiai + i
kpi(t)

mi

ai − a∗
i

ωi + ω∗
i

+
f ext

i

mi
cos(Ωit+ φr). (6.7)
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We assume now that the equation above has a solution with the general
form ai = Aie

iΩit, where Ai is a complex number. Inserting the general
solution and factoring out the terms proportional to eiΩit, the problem
of finding the solution for Eq. (6.7) reduces to solving the following
equation

i
Ωi

2QAi +
kpi

4miΩi
A∗

i − f ext
i

2mi
eiφr = 0, (6.8)

where we dropped out all the fast oscillating terms and we canceled
the time dependent term eiΩit. Moreover, we made the approximations
ω∗

i + ωi ≈ 2Ωi and ωi − Ωi = i Ωi
2Q , which are valid when we are in the

low dissipation regime (Q ≫ 1). This condition is always satisfied in
our system. We can solve Eq. (6.8) writing the complex variable Ai as
ℜ(Ai) + iℑ(Ai). After some algebra we find the solution

Ai =
f ext

i Qmi

Ωi

 cos(φr)

1 + Qkpi
2ki

+ i
sin(φr)

1 − Qkpi
2ki

 . (6.9)

The above equation represents the amplitude of the general solution in
the complex variable Ai. To derive the solution in the initial variable ui

we need to substitute the general solution Aie
iΩit in Eq. (6.5a), where

we use Eq. (6.9) to express the amplitude:

ui = ℑ(Ai) cos(Ωit) + ℜ(Ai) sin(Ωit), (6.10)

with ℜ(Ai) and ℑ(Ai) the real and imaginary part of Ai respectively.
To understand the effect of the parametric drive it is convenient to
look at the displacement amplitude (|ui|). From Eq. (6.10) it coincides
with |ui| =

√
ℑ(Ai)2 + ℜ(Ai)2. We notice that with kpi = 0, i. e. no

parametric force applied, we recover the displacement amplitude for a
simple harmonic oscillator driven at resonance.

When the parametric force is applied, the displacement amplitude
increases or decreases accordingly with the phase of the resonant drive.
Therefore, the parametric drive acts on the displacement amplitude
of a driven harmonic oscillator as a mechanical amplifier. The gain G

of the amplification is defined as the ratio between the displacement
amplitude when a parametric modulation is applied and the amplitude
when only the resonant force is applied. From Eq. (6.10) and Eq. (6.9)
we find the following expression for the gain

G =
|ui|

|ui|kpi=0
=

 cos2(φr)(
1 + Qkpi

2ki

)2 +
sin2(φr)(
1 − Qkpi

2ki

)2


1/2

. (6.11)

Here we highlight that the gain is a periodic function of the phase
and we can move from amplification to deamplification by varying the
resonant phase. The phase dependence of the gain is shown in Fig. 6.1 (a).
Moreover, by choosing a well defined phase, the parametric gain increases
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(a) (b)

Figure 6.1: Theoretical amplitude gain. (a) Amplitude gain against the reso-
nant drive phase (blue line), the gain in absence of any parametric
drive is shown for comparison (red line). The dotted line repre-
sents the minimum gain G → 0.5 corresponding to kpi /kthi

→ 1.
(b) Amplitude gain against the kpi /kthi

in the two limiting cases
of maximum (solid blue) and minimum (dashed light blue) am-
plification. The grey dotted line represents the minimum gain
corresponding to kpi /kthi

→ 1. The solid red line is the gain with-
out any parametric drive.

as the ratioQkpi /2ki approaches 1. In Fig. 6.1 (b) we show the amplitude
gain as a function of the Qkpi /2ki ratio in the two limiting case of φr = 0
(maximum deamplification) and φr = π/2 (maximum amplification).
We introduce the parametric threshold kthi = 2ki/Q representing the
maximum modulation we can apply. When the parametric modulation
approaches the threshold the gain approaches infinity and we enter in
the instability regime. We highlight that while the amplification goes
to infinity for kpi /kthi → 1, the maximum deamplification is limited to
G → 0.5. In this thesis we are only interested in the stable regime.

The amplitude gain can be generalized to include a varying phase φp

of the parametric drive

G =

cos2(ϕr − ϕp
2 )

(1 + kp
kth

)2
+

sin2(ϕr − ϕp
2 )

(1 − kp
kth

)2

1/2

. (6.12)

We show how the gain varies as a function of both the phases in the
contour plot in Fig. 6.2.

In our system we decide to vary the parametric phase φp so we move
on horizontal lines in Fig. 6.2. The resonant phase can vary due to phase
delays introduced by instruments and cables. Therefore our horizontal
line is characterized by an offset determined by the effective resonant
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Figure 6.2: Phase dependence of the amplitude gain. The two axes represent
the two phases while the colors represent the gain. We choose a
parametric strength kpi /kthi

= 0.98, close to threshold. The black
dashed line coincides with the case reported in Fig. 6.1 (a).

phase. The experimental maximum amplification and deamplification
phase are defined by this offset.

We now discuss the effect of a parametric drive applied to a harmonic
oscillator driven by the stochastic thermal force. Intuitively we expect
the fluctuating phase of the thermal force to span all the possible
relative phases between resonant and parametric drive, producing both
amplification and deamplification. However, to understand the effect
of the parametric drive on a thermal state, it is convenient to look
at the mechanical quadratures X1 and X2, already introduced in Sec.
1.2.5, substituting the out-of-plane displacement ui with the ansatz
ui(t) = X1 cos(Ωit) +X2 sin(Ωit). Following the same approach used
in the linear oscillator, we substitute Eq. (1.39) in Eq. (6.1) writing
the external force as the sum between a sine (f ext

i,s ) and a cosine (f ext
i,c )

component. After this transformation, we can divide the equation of
motion in two equations, one for X1 and one for X2

Ẋ1 +X1

(
Γi

2 − kpi

2miΩi

)
= −

f ext
i,s

2Ωi
, (6.13a)

Ẋ2 +X2

(
Γi

2 +
kpi

2miΩi

)
=
f ext

i,c
2Ωi

, (6.13b)

where we neglected all the terms proportional to ΩiXi (except for
the one containing the elastic constant modulation) and the fast terms
oscillating terms at ±3Ωit and ±2Ωit. From Eq. (1.45) we know that the
two quadratures of a linear oscillator subjected to a random stochastic
force are fluctuating with a variance defined by the thermal energy. We
are interested in deriving how the parametric drive affects the stochastic



104 parametrically-driven harmonic oscillator

thermal fluctuations. We first solve Eqs. (6.13) in the frequency domain

X1(Ω) = −
Fext

i,s (Ω)

2Ωi

1(
Γi
2 − kpi

2miΩi
− iΩ

) , (6.14a)

X2(Ω) =
Fext

i,c (Ω)

2Ωi

1
Γi
2 +

kpi
2miΩi

− iΩ
. (6.14b)

The solution for the two quadratures has the same form as the one for
a linear oscillator except for a term proportional to the elastic constant
modulation. This term acts with opposite sign on the two quadratures,
meaning that the response to a sinusoidal resonance force (φr = π/2)
is amplified while the response to a cosine force (φr = 0) is deamplified.
Knowing the solution in the frequency domain we can evaluate the two
following PSDs using Eq. (1.36)

SX1X1 =
mikBT

2ΩiQ

1(
Γi
2 − kpi

2miΩi

)2
+ Ω2

, (6.15a)

SX2X2 =
mikBT

2ΩiQ

1(
Γi
2 +

kpi
2miΩi

)2
+ Ω2

, (6.15b)

where we use Eq. (1.37) to express the PSD of the thermal force. Finally,
applying Eq. (1.38) we can estimate the variances using the PSD in Eq.
(6.15), which have the following expressions

⟨X2
1 ⟩ = kBT

2miΩ2
i

1
1 − kpi

kthi

, (6.16a)

⟨X2
2 ⟩ = kBT

2miΩ2
i

1
1 + kpi

kthi

. (6.16b)

(6.16c)

From the equations above we see that the presence of the parametric
drive does not affect the two quadratures symmetrically. One of the two
variances is amplified while the other is deamplified below the thermo-
mechanical noise. Thus a parametric modulation applied on a thermally-
driven harmonic oscillator generates a thermomechanical squeezed state
[RG91], that is a thermal state with a quadrature fluctuations below
the thermomechanical noise. In particular, the maximum amount of
squeezing we can get with the parametric modulation before reaching
the instability regime coincides with a variance of ⟨X2

2 ⟩ = kBT
2miΩ2

i

1
2 .

6.2 measuring parametric strength

We are interested in generating and quantifying the parametric effects in
our soft-clamped SiN membrane. From an independent work conducted
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by D. Halg et al. [H+̈21a] on dimer membranes constituted by two Lotus
defects, we already have an indication of the parametric driving strength
we can reach for our soft-clamped devices. In particular they quantified
the non-degenerate parametric coupling between the symmetric and
antisymmetric mode in a parametric upconversion scheme and with an
electrostatic parametric drive. Here we are interested in investigating
the strength of the degenerate parametric drive when we apply a purely
mechanical modulation and the role played by the mode geometries.

The first set of parametric measurements has been realized on a
Dahlia generation 2 membrane. The presence of multiple bandgap
modes allows us to compare the strength of the parametric phenomena
on different modeshapes, thus geometries, with comparable mechanical
properties within the same experiment run. We introduce the purely
mechanical parametric modulation by gluing the membrane frame on
a piezoelecric ring actuator. Every time we apply a voltage to the
ring piezo it experiences an expansion (contraction) along the vertical
axis and consequently the ring radius contracts (expands). As the ring
radius changes, the membrane in-plane stress varies thanks to the gluing
process.

To understand the amount of modulation the gluing process can
introduce in the system, the first measurement we perform consists of
applying a DC voltage to the ring piezo and monitoring the resonance
frequency. We repeat the measurement for several voltages. The strength
of such a frequency shift is strongly dependent on the gluing process and
is not well reproducible from sample to sample. We observe frequency
shifts from 50 Hz/V up to 500 Hz/V. Nevertheless, once the gluing
process has been realized, we do not observe any relevant difference
in the generated frequency shift among different modes. Examples of
frequency shift measured on the first and the third bandgap mode of
the same membrane are shown in Fig. 6.3. A comparable frequency shift
between different modes of the same membrane has been consistently
observed from sample to sample.

The frequency shift measured by applying a DC voltage determines
the upper bound for the modulation we can produce with the piezo ex-
pansion. For the parametric protocol we operate the piezo at a frequency
> 2MHz, well above the resonance frequency of the ring piezo. Thus
we expect a reduction of the piezo expansion during the parametric
drive due to the above-resonance operation. However, the parametric
modulation generated by a given voltage between different modes should
experience the same attenuation. From this preliminary measurement
we do not expect any influence of the geometry on the elastic con-
stant modulation. To verify this expectation we quantify the parametric
driving strength on the first and third bandgap modes.

We quantify the parametric strength through the gain relations pre-
sented in Sec. 6.1. In particular we want to extract the parametric
threshold from Eq. (6.12). The parameters we can vary are φr, φp and
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Mode 1 Mode 3

Figure 6.3: Frequency shifts produced by a DC voltage applied to a ring piezo.
For each point we extract the peak frequency position from an
FFT. Then we subtract it from the frequency peak position when
no DC voltage is applied to derive the frequency shift. The solid
line is a linear fit to extract the shift per unit voltage. On the left
panel we report the data related to the first bandgap mode, on the
right panel the data related to the third bandgap mode.

kpi . We can control the phase of both the resonant and the parametric
drive through the lock-in amplifier. Currently, we do not have a way to
directly quantify kpi . We set the amplitude voltage of the modulation,
but we cannot directly translate it into an elastic constant modulation.
We assume that the voltage applied is linearly transduced into an elastic
constant modulation, meaning that kpi /kthi = Vpi /Vthi , where Vpi is
the voltage amplitude of the parametric drive and Vthi is the voltage
we need to apply in order to get a modulation of the elastic constant
comparable with kthi .

In the measurement protocol, we need to drive the mechanical mode
both resonantly and parametrically. Unwanted frequency detunings
happening during the measurement time between the driving frequency
and the mechanical frequency have to be smaller than the mechanical
linewidth, only few tens mHz in our bandgap modes. Within the mea-
surement time for the parametric measurement (> 2min), the frequency
fluctuations due to the instability of the ambient temperature and other
sources of frequency noise introduce a frequency detuning larger than
the mechanical linewidth (see Fig. 3.4 (a)).

To reduce the effects of frequency instability we mainly apply two
techniques. First, we take advantage of the control we have on the
in-plane stress to stabilize the frequency. We drive resonantly a second
mode that we call thermometer mode, usually an out-of-bandgap mode.
Monitoring the thermometer mode phase we generate an error signal
that we send to a PID controller. The PID output is sent to the piezo
to counteract the effect of the frequency drifts modifying the in-plane
stress. To implement this method we need to have the interferometer in
a homodyne detection scheme. Therefore, all the measurements in this
chapter are realized in this configuration.
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The second method we apply is a feedback scheme. We realize a
mechanical feedback cooling scheme to broaden the linewidth of the
mechanical mode and increase the tolerance to frequency fluctuations.
The mechanical damping force is applied through the axial expansion
of the piezo. Further details on the implementation and effectiveness of
these two techniques can be found in Sec. 3.6. These two methods reduce
the frequency drift to tens of mHz per minute. With a measurement time
of ≈ 2 min we need to broaden the linewidth to at least Γ1/2π = 1Hz.
We usually set the feedback in order to reach a quality factor Q ≈ 106.
If the feedback force is not enough to reach this value we increase the
pressure in the chamber by reducing the rotational speed of the turbo
pump, that is introducing an additional source of gas damping. More
detail about the effect of gas damping can be found in Sec. 1.2.1 and
3.6. All the measurement discussed in this chapter are realized using
the frequency stabilization methods, see Sec. 3.6.1. The feedback and
the gas damping are introduced only if we need an additional damping
to reduce the quality to Q ≈ 106.

To estimate the parametric modulation on the modes of interest, we
reproduce the theory curves presented in Fig. 6.1 for the more general
case represented in Fig. 6.2. We can do so by recording the signal
amplitude while sweeping either the phase or the amplitude of the
parametric drive. We perform two types of measurement, the first of
which we refer to as parametric phase sweep. We apply both a resonant
and a parametric drive. The strength of the driving forces is constant
throughout the whole measurement. We monitor the displacement
amplitude while sweeping the phase of the parametric drive. The sweep
is repeated for several parametric drive amplitudes. For each parametric
drive amplitude we repeat the measurement 3 times and average the
curves. We fit the curves using Eq. 6.12 multiplied by a pre-factor A0i

that represents the amplitude without the parametric drive. During
the sweep, we move along a horizontal line in Fig. 6.2. The phase of
the resonant drive determines the height of the horizontal cut, i. e.
changes the phase relative to the maximum amplification (φmax

p ) and
deamplification (φmin

p ). The strength of the parametric drive defines the
contrast. From the fit we extract A0i and Vthi . From the latter we can
extract kthi knowing the quality factor and the mechanical frequency.
Then, comparing Vthi and kthi , we can calculate the conversion factor
to derive the applied kpi .

The measurement of the displacement amplitude is subjected to
fluctuations due to variation in the light intensity caused by polarization
drifts or instabilities in the system. To correct for such fluctuations we
save the amplitude of the thermometer mode during the sweep and use
its fluctuations to extract a correction factor. In Fig. 6.4, we show the
parametric phase sweeps for the first and third bandgap mode. Each
curve is normalized with A0i extracted from the fit. From Fig. 6.4,
we notice that the phase relative to the maximum amplification and
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Mode 1 Mode 3(a) (b)

Figure 6.4: Parametric phase sweeps on the first (a) and third (b) bandgap
mode. Each color represents a different driving strength. The points
are the measured gains at a given phase, the solid lines are the best
fit. The dotted grey lines represent the minimum gain (G = 0.5)
we can reach before the instability regime.

deamplification are different in the two modes investigated. We attribute
this phenomenon to different phase delays experienced by the resonant
signal at two different frequencies. Furthermore, we notice a large
difference between the parametric effects. After applying the feedback
cooling, both the modes are characterized by Q = 106. From the
measured the quality factor, the measured resonance frequency, and the
simulated effective mass we can estimate the parametric threshold for the
two modes kth1 =

(
0.26 × 10−3) N/m and kth3 =

(
0.56 × 10−3) N/m.

From the predicted parametric threshold and the measured frequency
shift in Fig. 6.3, we expect the parametric strength on the first mode
to be around twice that of mode 3. Comparing the curves for 1.5 V
parametric driving voltage, we observe that the gain for mode 3 is less
than 1/2 the gain of mode 1.

To confirm the different magnitude of the parametric effects, we
extract the voltage needed to reach the parametric threshold for the two
modes. A more accurate measurement to extract Vthi is one we named
parametric amplitude sweeps. As with the parametric phase sweeps,
we drive a mechanical mode both resonantly and parametrically and
monitor the displacement amplitude while we sweep one parameter. In
this measurement, we sweep the amplitude of the parametric drive. For
each measurement setting we perform two sweeps and we average the
curves. For each mode we perform the amplitude sweeps at two phases
of the parametric drive, one coinciding with the maximum amplification
and the other with the maximum deamplification. We select these two
phases from the phase sweeps in Fig. 6.4. We fit the two curves using
Eq. (6.12). The measurement time for this sweep is shorter, and hence
is less sensitive to frequency fluctuations. Therefore, we believe this
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measurement is more robust for the estimation of Vthi . The results are
reported in Fig. 6.5.

Mode 1 Mode 3(a) (b)

Figure 6.5: Parametric amplitude sweeps for the first (a) and third (b) bandgap
mode as a function of the parametric drive amplitude. The dark
(light) blue points (squared) are the measured gains for the para-
metric phase corresponding to the maximum amplification (deam-
plification), the solid lines are the best fits. From the best fit we
derive Vth1 = 2.5 V and Vth3 = 19.8 V.

From the best fit of the parametric amplitude sweeps in Fig. 6.5,
we extract Vthi . From the measured Vthi and the estimated kthi , we
derive a conversion constant in N/m · V that we use to estimate the
resonance frequency modulation we generate by applying a given voltage
(kp/2Ωimi). In particular for the first mode with a Vp1 = 1.5 V, we
derive a parametric modulation kpi /2miΩi ≈ 1.2 rad s−1 with a quality
factor of 106. The authors in [H+̈21a] report a non-degenerate parametric
strength kpi /2miΩi ≈ 1.3 rad s−1 for a dimer Lotus membrane with
Q ≈ 108 and an electrostatic drive of Vp = 10 V

Interestingly, we find that the voltage needed to reach the threshold
for mode 3 is almost 8 times higher than the one needed for mode
1, though we were expecting only a factor 2. Probably one of the
assumptions we made in the above discussion is not correct. Our first
hypothesis, the one that we investigate in the rest of the chapter, is
that the modulation of the elastic constant kpi is not simply a linear
transduction of the voltage as suggested by Fig. 6.3, but has a geometric
source. From a parallelism with the optical spontaneous parametric
down conversion [Fox06], we can describe a parametric amplification
as a 3-wave mixing process where the energy of a pump mode (ωp) is
transferred to a signal (ωs) and an idler mode (ωi), which satisfies the
frequency relation ωp = ωs + ωi. This modeling is particularly popular
in the context of non-degenerate parametric oscillator (ωs ̸= ωi) both in
electro- and optomechanical [Del+19; Bur+19] and purely mechanical
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system [Mah+14; Pat+15; H+̈21a]. To our knowledge, only in [Pat+15]
a modeling and indirect measure of a mechanical pump mode has been
provided. However, in our specific case, we cannot attribute the transfer
of energy to the same source. Patil et al. in [Pat+15] attribute the
energy transfer to a frame mode. We believe that the strong localization
of the defect modes prevents an energy transfer between them and the
frame. Moreover, if we monitor the displacement around the frequency
of the parametric drive we do not see any mode excited or affected by
the parametric motion. Instead we hypothesize that the pump mode is
an in-plane membrane mode driven by the radial expansion of the piezo.
Although they cannot be measured through standard interferometric
techniques, we predict them through FEM simulation. In the following
sections we first derive a continuum elastic modeling which includes the
effect of the in-plane drive. In the last part of this chapter, we present
the preliminary measurements carried out to prove the model.

6.3 continuum elastic modeling

We now derive a continuum elastic model to understand the effects
of an in-plane force on the out-of-plane membrane motion. In Sec.
1.2 we derive the equation of motion when an out-of-plane force is
applied by starting from the displacement vector and the stress-strain
relation. Here, we generalize the model to include the contribution
of an additional external force applied in the in-plane direction, and
the contribution of the in-plane modes. The first key difference from
the linear model can be found in the the displacement vector. In the
linear case we perform the out-of-plane approximation and neglect the
contribution of the in-plane displacement components vx and vy in
Eq. (1.6). Instead, in the present case we assume the presence of an
in-plane force stretching the membrane in the in-plane direction. Hence,
the in-plane displacement components cannot be neglected. Using the
displacement vector defined in Eq. (1.6) and imposing σiz = 0, we find
that the strain tensor components defined in Eq. (1.7a) in the presence
of the in-plane displacement contribution become

εαβ = ε0δαβ +
1
2 (∂αvβ + ∂βvα) − z∂αβw, (6.17)

where the Greek indexes represent the two in-plane direction x and
y. Notice that we are not including the elongation due to a large out-
of-plane oscillation. Inserting Eq. (6.17) into Eq. (1.7b) we obtain the
conservative stress tensor components

σcons
xx =

E

1 + ν
ε0 +

E

1 − ν2 (∂xvx − z∂xxw+ ν∂yvy − νz∂yyw) ,

σcons
yy =

E

1 + ν
ε0 +

E

1 − ν2 (ν∂xvx − νz∂xxw+ ∂yvy − z∂yyw) ,

σcons
xy =

E

2(1 + ν)
(∂xvy + ∂yvx − 2z∂xyw) .

(6.18)
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Following the approach presented in Sec. 1.2.1, we include the dissipative
stress tensor through a time lag τ in the stress-strain relation, leading
to the following dissipative stress tensor components:

σdiss
xx =

Eτ

1 − ν2 (∂xv̇x − z∂xxẇ+ ν∂yv̇y − νz∂yyẇ) ,

σdiss
yy =

Eτ

1 − ν2 (ν∂xv̇x − νz∂xxẇ+ ∂yv̇y − z∂yyẇ) ,

σdiss
xy =

Eτ

2(1 + ν)
(∂xv̇y + ∂yv̇x + 2z∂xyẇ) .

(6.19)

From these stress components we can determine the stress resultants
defined in Eq. (1.10), yielding to the equation of motion. In the situ-
ation we are describing there are two forces acting on the membrane
resonator, one in the out-of-plane direction and one acting on both
in-plane directions. With this condition, the equations of motion in
terms of stress resultant takes the following form [TK87]:

ρhẅ− ∂αβMαβ − ∇ · n⃗ = F res cos(Ωrt+ φr), (6.20a)
ρhv̈1 − ∂xNxx − ∂yNxy = F par cos(Ωpt), (6.20b)
ρhv̈2 − ∂xNxy − ∂yNyy = F par cos(Ωpt), (6.20c)

where n⃗ is defined in Eq. (1.9). We assume that the parametric force
has the same intensities in both the in-plane directions.

The bending momenta are not affected by the in-plane displacement
terms. In contrast, the shear forces include such terms. We first find
explicit expressions for Mαβ and Nαβ by substituting Eq. (6.18) and
Eq. (6.19) in Eqs. (1.10). The resulting equation of motion is

ρhẅ+D(τ∂ααββẇ+ ∂ααββw) − ∇ · n⃗ = F res cos(Ωrt). (6.21)

The vector n⃗ can be written in matrix form as

n⃗ =

k1∂xw (ε0 + ∂x(Vx) + ν∂yVy) + k2∂yw (∂xVy + ∂yVx)

k1∂yw (ε0 + ∂yVy + ν∂xVx) + k2∂xw (∂xVy + ∂yVx)

 , (6.22)

where k1 = Eh/(1 − ν2), and k2 = Eh/2(1 + ν). Moreover we per-
formed the following substitution:

Vx = vx + τ v̇x, (6.23a)
Vy = vy + τ v̇y. (6.23b)

Looking at Eq. (6.22), we recognize that it contains coupling terms
between in-plane and out-of-plane displacement proportional to wvx

and wvy. To write the equation of motion for the out-of-plane modes
in a more familiar form, we need to find an expression for the in-plane
displacement components. To do this, we write Eq. (6.20b) and Eq.
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(6.20c) in terms of the in-plane displacement components. After some
algebraic manipulation we obtain the following equations:

ρhv̈x − (k1∂xx + k2∂yy)Vx + (−k1ν∂xy + k2∂yy)Vy+ (6.24a)
− h∂xσ0 = F par cos(Ωpt),

ρhv̈y − (k1ν∂xy + k2∂xx)Vx − (k1∂yy − k2∂xx)Vy+ (6.24b)
− h∂yσ0 = F par cos(Ωpt).

The above equations are not trivial to solve. However, we notice that they
are two linear differential equations in vx and vy. Similarly to the out-of-
plane displacement field w, we can separate the spatial and the temporal
dependence of the in-plane displacement and expand the former over
a basis of in-plane normalized mode vx(x, y, t) = ψxm(x, y)νxm(t) and
vy(x, y, t) = ψymνxm(t). Then we can apply the Galerkin method and
the single mode approximation [You11] choosing as a test function
the normalized mode ϕd with the mechanical frequency closer to Ωp.
We use the subscript d to refer to the excited in-plane mode. After
this transformation, the Eqs. (6.24) can be interpreted as two linear
coupled harmonic oscillators. Without de-coupling and solving the two
equations, we can say that vx and vy are the two components of an
in-plane vector v⃗ = (vx, vy) = (ψxmνxm ,ψymνym) whose dynamics is
described by the coupled harmonic Eqs. (6.24). Therefore, we can write
the displacement vector v⃗ as following

v⃗(x, y, t) = ψ⃗d(x, y) ν⃗d,0 cos(Ωpt+ Φ)︸ ︷︷ ︸
ν⃗d(t)

(6.25)

where we assume only one mode ψ⃗d gives a non-negligible contribution to
the in-plane displacement. ν⃗d,0 represents the displacement amplitude of
the driven in-plane mode. It depends on the parametric force applied and
we assume it to be constant constant. The two x and y components can
be written as vdx = ψdxνd,0 cos(Ωpt+ Φ) and vdy = ψdyνd,0 cos(Ωpt+

Φ). For simplicity, we assume the displacement amplitude in the two
in-plane directions coincides. In principle, we could also include the
possibility of having multiple in-plane modes excited at the driving
frequency by considering a superposition of modes vi with weights ci,
i. e.

v⃗ = ν⃗i,0 cos(Ωpt+ Φ)ciψ⃗i(x, y),

where the repeated indexes are summed over. We decide to neglect the
influence of multiple in-plane modes. For the current treatment we write
v⃗ as expressed in Eq. (6.25).

We can use Eq. (6.25) to describe the in-plane displacement. Now
we go back the equation of motion for the out-of-plane modes, i. e.
Eq. (6.21). At first we expand w in the latter equation over a basis
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of normalized modes,w = ϕn(x, y)un(t). Similar to the modeling in
Chapter 1 and Chapter 4 we use the convention ϕmax

n = 1. Then, we
apply the Galerkin method choosing as a test function the normalized
mode ϕi

ρhün

∫
S
ϕiϕndS +Dτu̇

∫
S
ϕi∂ααββϕndS +Dun

∫
S
ϕi∂ααββϕndS+

−
∫

S
ϕi∇ · n⃗dS =

∫
S
ϕiF

res cos(Ωrt+ φr)dS.

(6.26)

On the last term on the left hand side of the equation we can apply the
divergence theorem, see Eq. (1.20).

ρhün

∫
S
ϕiϕndS +Dτu̇

∫
S
ϕi∂ααββϕndS +Dun

∫
S
ϕi∂ααββϕndS+∫

S
nx∂xϕidS +

∫
S
ny∂yϕidS = f res

i cos(Ωrt+ φr)

(6.27)

Finally, we substitute all the vx and vy in nα with the two components
of Eq. (6.25), and we perform the single mode approximation. After
some algebraic manipulation, we obtain an effective equation describing
the dynamics of the system when we are introducing an in-plane force

üi + Γiu̇i + Ω2
iui + νi,0λiui cos(Ωp + Φ)+

+ νi,0λiτΩpui sin(Ωpt+ Φ) = f res
i cos(Ωrt+ φr),

(6.28)

with f res
i =

∫
S ϕiF

resdS. The symbol λi represents the spatial overlap
between the in-plane and the out-of-plane modes and has the following
form

λi =
k1
mi

∫
S

[
(∂xϕi)

2
(
∂xψdx + ν∂yψdy

)
+ (∂yϕi)

2
(
ν∂xψdx + ∂yψdy

)]
dS+

+
k2
mi

∫
S

[
∂xϕi∂yϕi

(
∂xψdy + ∂yψdx

)]
dS,

(6.29)

while all the other effective parameters coincide with the ones evaluated
in Sec. 1.2. We can manipulate Eq. (6.28) further to combine the last
two terms on the left hand side. We notice that if we choos Ωp = 2Ωi,
we can write τΩp = 2τΩi = 2θlin, where θlin is the linear loss angle we
discussed at the end of Chapter 4. In the case of a SiN membrane with
thickness h ≤ 100 nm we set θlin ≪ 1, as seen from Eq. (1.48) and as
confirmed by the measurements presented in Sec. 4.5. Therefore, we
can make the following approximations:

sin(2τΩi) ≈ 2τΩi, (6.30a)
cos(2τΩi) ≈ 1. (6.30b)
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Using Eqs. (6.30) and the trigonometric identity cos(α−β) = cos(α) cos(β)+
sin(α) sin(β) in Eq. (6.28), we obtain the effective equation

üi + Γiu̇i + Ω2
iui + vi,0λi cos(Ωpt+ Φ − 2τΩi︸ ︷︷ ︸

φp

)ui = f res
i cos(Ωrt).

(6.31)

By choosing Ωp = 2Ωi and Ωr = Ωi and including a resonant phase
to the out-of-plane force φr, we recover the equation of motion of the
parametrically-driven harmonic oscillator presented in Eq. (6.1). The
modulation of the elastic constant is kp = νi,0λi. It is constituted by
two components: one is the displacement amplitude of the in-plane
mode, while the other is the spatial overlap between in-plane and
out-of-plane motion. The result above can be further generalized to
the nondegenerate parametric case. If we assume a parametric drive
Ωp = Ωi + Ωs and include intermodal coupling term between the idler
and the signal, we get two equations of motion, one for the idler and
one for the signal, including a parametric modulation which depends
on the spatial overlap between the three modes

λis =
k1
mi

∫
S
∂xϕi∂xϕs

(
∂xψdx + ν∂yψdy

)
dS+

+
a1
mi

∫
S
∂yϕi∂yϕs

(
ν∂xψdx + ∂yψdy

)
dS+

+
k2

2mi

∫
S

[
(∂xϕi∂yϕs + ∂yϕi∂xϕs)

(
∂xψdy + ∂yψdx

)]
dS.

(6.32)

A more detailed analysis of the nondegenerate situation will be investi-
gated in future works.

6.4 resonantly-enhanced parametric strength

We now investigate the meaning of the model presented in the previous
section and we show the preliminary measurements made to confirm it.
As in the rest of the chapter, we focus on the degenerate parametric
case.

The treatment above suggests that the modulation of the elastic
constant is generated by a coupling term between the in-plane and
the out-of-plane motion. When the in-plane mode driving frequency
coincides with twice the resonance frequency of the out-of-plane mode,
such modulation enables a parametric drive. This means that the modu-
lation of the elastic constant does not depend directly on the amplitude
of the parametric force applied, as we thought at the beginning. The
modulation of the elastic constant is determined by both the spatial
overlap between the in-plane and the out-of-plane mode (λi), and by
the displacement amplitude of the in-plane mode (νi,0). Let us ana-
lyze how these two contributions affect the elastic constant modulation
separately.
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We consider the effect of the spatial overlap λi. The presence of this
term implies that some combination of modes may introduce a stronger
modulation than others. For instance, we expect an in-plane mode
translating the defect along an in-plane axis will generate a smaller
parametric modulation compared to an in-plane mode stretching the
defect radially. To measure λi and compare it with FEM simulation,
we need to separate it from νi,0. This would require the possibility
of measuring a calibrated displacement amplitude νi,0. However, the
detection of in-plane mode displacement is currently not possible in our
system. Moreover, the validity of the in-plane mode simulation is still
to be verified. One of the future development of this project consists
in implementing an alternative detection scheme sensible to in-plane
displacements.

We now clarify the role played by νi,0. As we discussed in Sec. 6.1, we
recognize that for a given parametric force the amplitude response of the
in-plane mode depends on the proximity between the parametric drive
frequency and the mode resonance frequency. In particular, the closer
the drive frequency to the resonance, the larger the displacement. The
response has a Lorentzian shape and is shown in Fig. 6.6 (a). We usually
work with an out-of-plane mode linewidth Γi/2π < 10 Hz. Although we
expect a broader resonance for the in-plane mode, the probability of
having an in-plane mode with a resonance frequency coinciding with
2Ωi is extremely low. Let us call the resonance frequency of the in-plane
mode Ωin. If we can act on one or both the frequencies of interest in
order to match the condition Ωin = 2Ωi = Ωp, we should observe an
increase of the elastic constant modulation for the same applied force
(see Fig. 6.6 (a)). Conversely, increasing the frequency mismatch should
reduce the modulation.

Due to the frequency dependence of the modulation, we do not know
how the voltage Vpi output from the instrument is translated into
a modulation kpi for different detunings. In contrast, the parametric
threshold constant should not be affected by the resonance condition.
Therefore, we can say that as we go closer to resonance the ratio
kpi /kthi = Vpi /Vthi increases and vice versa. Using the voltage output
by the instrument as Vpi in Eq. (6.12), an increment of the elastic
constant modulation is translated into a smaller effective Vthi , while a
reduction of the modulation into a larger Vthi (see Fig. 6.6 (b)). We
could collect a first evidence of the presence of the νi,0 contribution
to the parametric mechanism by observing a variation of the effective
threshold voltage as we pass through the resonance of the in-plane
mode.

To hit the resonance condition, we need to act on the resonance
frequency of the modes involved. One method is to tailor the membrane
design, so that the desired in-plane mode resonances are obtained. This
would require accuracy of the predictions of the out-of-plane and in-plane
mode frequencies comparable with the required tolerance of 10 Hz, which
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(a) (b)

Figure 6.6: Resonantly enhanced parametric strength. (a) Driven response
of the in-plane mode amplitude. The grey arrow represents the
frequency corresponding to twice the resonance frequency of the
out-of-plane mode, i. e. the parametric drive frequency Ωp. If we
tune the latter such that we match the resonance condition of the
in-plane mode resonance, the amplitude νi,0 (and the parametric
modulation kpi) increases without applying a larger parametric
force. (b) Effective threshold response. As the frequency 2Ωi enters
the resonance condition the ratio kpi /kthi

increases, hence the
ratio Vpi /Vthi

increases as well. Using the driving voltage Vpi

output by the instrument as measurement variable, the effect is
translated into a reduction of Vthi

.

is beyond our fabrication control. We routinely measure fluctuations of
the order of few kHz around the simulated values of the out-of-plane
modes frequencies due to variations during the fabrication process.
Moreover, we are still missing the information about the accuracy
of the in-plane mode frequencies, and the membrane handling and
gluing process can reduce the frequency in an unpredictable way. For
all of the above reasons, our control on the in-plane and out-of-plane
mode frequencies currently is not good enough to observe the expected
resonant enhancement optimizing membrane design.

To have first evidence of the validity of the model, we need to tune
the resonance frequencies of either the in-plane or the out-of-plane
mode within the same sample. If this was the case, we would observe a
correlation between threshold voltage and resonance condition proving
the correctness of our model. Once again, we use the control we have of
the in-plane stress through the glued frame. From Eq. (1.24) and Fig. 6.3,
we know that the mechanical frequency of the out-of-plane mode varies
with the in-plane stress. On the other hand, in Eqs. (6.24) we observe
that the in-plane stress is acting as a constant displacement-independent
force, therefore it should not affect the mechanical frequency. We confirm
this observation through FEM simulation. A 10% variation in the tensile
stress modifies the out-of-plane modes resonance frequencies by ≈ 60kHz
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while the in-plane modes resonance frequencies are shifted by ≈ 100 Hz.
Therefore by applying a DC voltage to the piezo we change the resonance
frequency of the out-of-plane mode, i. e. the parametric drive frequency,
without changing the in-plane mode frequency. If the model in Sec. 6.3
is correct and we are close enough to the in-plane mode frequency, we
should observe a variation of the extrapolated threshold voltage as we
change the DC voltage.

We verify the variation of the threshold voltage with the tuning of the
mechanical frequency of the out-of-plane mode. We shift the resonance
frequency of the out-of-plane mode by applying a DC voltage on a range
going from −25 V to 25 V. Since the maximum voltage allowed by the
HF2LI is ±10 V, we use a piezo amplifier to increase the voltage range.
In principle we could apply a higher voltage, but the heating induced by
the piezo makes the system too unstable to perform the measurement.
For each DC voltage, we measure the frequency shift by comparing
the peak position on the FFT with and without any voltage applied
and we perform an amplitude sweep measurement as described in Sec.
6.2 to extract Vthi . Moreover, we perform a ringdown measurement to
verify that the quality factor is not affected in a significant way by the
in-plane stress variation (see Sec. 1.2.4 for the definition of the ringdown
measurement). We perform this set of measurements on the first and
the third bandgap mode.

The results are shown in Fig. 6.7. For the first bandgap mode (Fig.

Mode 1 Mode 3(a) (b)

Figure 6.7: Resonantly enhanced parametric effects. We show Vth against
frequency detuning on the first (a) and third (b) bandgap mode.
Each point is the measured Vthi

extracted from two repetitions of
amplitude sweeps.

6.7 (a)) we observe a variation of Vthi . It increases for increasing
frequencies, while the data suggests that the parametric threshold does
not decrease for negative detunings. We do not have enough data to
confirm the model, but this might indicate that we are close to the
resonance condition. In the third bandgap mode (Fig. 6.7 (b)), we do
not measure any significant variation in Vthi suggesting that for this
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mode we are far away from the resonance condition. The suggested
resonance conditions are consistent with the different magnitude of the
two parametric strengths between the two modes reported in Fig. 6.4
and Fig. 6.5.

The detuning range we can reach through the DC voltage is limited
and we have not yet succeeded in finding a membrane where the frequen-
cies are such that we can see Vthi crossing an in-plane mode resonance.
However, we recognize a second feature suggesting the mechanism be-
hind this parametric drive is the one presented in Sec. 6.3. Assuming
the phase of the parametric drive coincides with the one we defined
on the HF2LI, during the phase sweep measurement the φmax

p and φmin
p

position depends only on the constant resonant phase. However, from
the model presented in Sec. 6.3, the phase set on the instrument defines
only the phase of the in-plane drive. The parametric force phase is then
determined from the phase response of a harmonic oscillator. Following
the same argument as the one advanced for νi,0, φp should change as we
enter in resonance with the in-plane mode drive, accordingly with the
trend reported in Fig. 1.3 (b). In our phase sweep measurements, this is
translated into a shift of φmax

p and φmin
p . Therefore, by monitoring the

minimum (or maximum) phase position as a function of the frequency
detuning we should recover the phase response reported in Fig. 1.3 (b).

(a) (b)

Figure 6.8: Resonantly enhanced parametric strength on Dahlia generation 2
membrane nominally identical to the one used in Fig. 6.7. (a)Vthi

against the frequency detuning of the first bandgap mode. Notice
that the Vthi

decreases going towards smaller frequencies consis-
tently with the previous sample where the resonance frequency was
slightly smaller. (b) Measured phase shift against the frequency
detuning on the first bandgap mode.

Unfortunately, we do not have the phase information on the membrane
used for the previous data in this chapter. We attempt to confirm our
hypothesis by repeating the measurement on other two membrane
resonators. The first one is a Dahlia generation 2 membrane, nominally
identical to the one used in this chapter and fabricated during the same
fabrication run. During the membrane handling the quality factor of
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this sample reduces to Q = 1.8 × 106 and the gluing results in frequency
shift of only ±20 Hz/V. In Fig. 6.8, we show Vthi (left panel) and the
phase shift of φmin

p (right panel) against the frequency detuning. Notice
that the mechanical frequency of this membrane is ≈ 100 Hz larger than
the one used for the data in Fig. 6.7.

The second membrane we characterize is a 50 nm-thick Lotus mem-
brane with a quality factor of Q = 39 × 106 (with both feedback and
gas damping applied). For this sample we manage to get a frequency
shift of 500 Hz/V. In Fig. 6.9 we show Vthi (left panel) and the phase
shift of φmin

p (right panel) against the frequency detuning.

(a) (b)

Figure 6.9: Resonantly enhanced parametric strength on a Lotus membrane.
(a) Vth1 against the frequency detuning of the only bandgap mode.
(b) Measured phase shift against the frequency detuning on the
only bandgap mode.

We want to mention that the measurement procedure for the am-
plitude and the phase sweeps used to extract the data in Fig. 6.8 and
Fig. 6.9 have been realized with a slightly different procedure. To min-
imize the effect of the residual frequency drifts instead of using the
sweeper option of the HF2LI, we extract the amplitude at different phases
(or driving strength) from the electronic quadratures. Between each
phase (driving) steps, we turn off the drive and optimize the resonance
condition.

Overall, the set of data presented we observe some indication that the
model presented is describing the parametric mechanism in a qualitative
way. In all the studied samples, the variation of the measured Vthi

as a function of the frequency detuning suggests different resonant
conditions. This observation is corroborated by the measured phase
shift and is consistent with comparison between different parametric
strength within modes of the same membrane. However, to confirm the
model, a larger frequency tuning range is required. In Appendix C we
show the first attempt toward a wider temperature mediated frequency
tuning.





C O N C L U S I O N & O U T L O O K

Nanomechanics is a young yet very active research field, which is of
interest for both technological applications and fundamental research.
The work presented in this thesis collocates itself at the intersection
between the two interests.

We now summarize the main results presented in this thesis. Building
on a continuum elastic model, we formulate a theory for the motion of
a thin membrane under large deflections. In this regime, the structural
elongation generates both conservative and dissipative nonlinear terms
in the dynamics. These terms, of common geometric origin, appear in the
equations of motion as a Duffing frequency shift and a nonlinear damping
term. The solution of the equations of motion guided us to developing an
experimental protocol to measure the nonlinear parameters. We perform
these measurements on various soft-clamped membrane geometries, and
we find good agreement with FEM simulations. Our theory predicts
that the above-mentioned geometric nonlinearities are simply related
to the linear loss angle. We compare the predicted loss angle from the
measured nonlinear parameters to a phenomenological model, finding
an overall good agreement.

Then, we perform a similar study in a novel geometry of membranes,
called soft-clamped phononic dimers, characterized by two identical
defects embedded in the same phononic crystal. Intuitively, the modes
of the two defects couple to each other through the common substrate,
thus leading to a mode frequency splitting. This splitting can be widely
tuned acting on the geometry without affecting the quality factor. We
measure the Duffing nonlinearity and the nonlinear damping with the
tools we developed with the single-defect membrane. In addition, we
model and measure the cross nonlinearities between the two defects, a
new effect peculiar to dimeric resonators.

Nonlinearities are also responsible for parametric effects, such as a
modulation of resonance frequencies which finds its use in parametric
amplification. We investigate the strength of a parametric modulation
of the resonance frequency realized through an in-plane force exerted
by the radial expansion of a ring piezo. Comparing the parametric
amplification on two bandgap modes, we observe a geometric dependence
of the in-plane force actuated frequency modulation. To explain this
geometric dependence, we extend the continuum elastic model to include
in-plane modes as well. We predict that in-plane modes can resonantly-
enhance the paramtric driving done with the piezo. From preliminary
measurements, we collect some evidence that tuning the in-plane mode
resonance frequency indeed enhances the modulation strength. This is
a promising way to achieve strong parametric modulation, and will be
the subject of future studies.
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In conclusion, we developed a set of measurement tools we can use
to characterize different types of nonlinear phenomena on dissipation-
diluted nanomechanical resonators. We showed different ways to gener-
alize a linear continuum elastic model to describe and simulate different
types of nonlinear phenomena and we prove it on a vast number of
geometries, different modeshapes on both single- and double-defect
designs, and thicknesses. This thesis adds experimental and theoretical
evidences about the origin of geometric nonlinearities in dissipation-
diluted nanomechanical resonators and give some insight on the perfor-
mances of these resonators which can contribute to the realization of
new geometries. Understanding the source of nonlinearities is important
to control them. For instance, one could minimize the nonlinearities in
force sensing application [Koš+20], where they limit the force sensitivity,
or enhance them in quantum experiments, where the enhanced nonlin-
earities could enable the generation of genuine nonclassical features of
motion [Ros19].

The thesis results presented are interesting for future developments
for both classical and quantum applications. We elaborate now on some
of the continuation of the work initiated within this thesis.

nanomechanical oscillators for force sensing appli-
cations

The high quality factor achieved in the soft-clamped membranes makes
these resonators studied a very promising platform for force sensing
experiments. The typical force sensitivity is of the order of tens of
aN/

√
Hz at room temperature, in spite of a large effective mass in

the range of ng. As a matter of fact, the projected force sensitivity at
cryogenic temperature for the geometries currently employed in our
research group is approaching the force sensitivity of the state-of-the art
nanomechanical oscillators currently used in force sensing experiments
[MR01; Tao+14; Hér+18].

In Table 6.1, we compare the mechanical properties of different
nanomechanical resonators. In particular, we compare state-of-the art
nanomechanical resonators routinely used for force sensing applications
with the new generation of soft-clamped nanomechanical resonators
developed during the recent years. From Table 6.1 it is evident that
the main advantage of our mechanical resonators is the large working
area. Additionally our resonators, similarly to all the new generation
of nanomechanical resonators developed in the last years, feature a
resonance frequency in the range of MHz, higher than the one of state-
of-the-art resonators normally used for sensing applications. Working
with a higher frequency is advantageous because it is less subjected to
technical noises and it introduces lower non-contact friction.
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Table 6.1: Overview of the state-of-the-art nanomechanical oscillators for force
sensing applications. We compare the force sensitivity for the mem-
brane resonators developed in our group (highlighted in red) with
the ones normally used in force sensing applications (highlighted
in blue). For comparison, we include the force sensitivity of the
new generation of nanomechanical oscillators promising for force
sensing applications. We use Eq. (1.37) to express the force sen-
sitivity. The force sensitivities highlighted in green are projected
assuming an increment of a factor three of the quality factor. We
report only the highest force sensitivity values stated in litera-
ture. The snowflake symbol next to the quality factors identify
the quality factor measured at cryogenic temperature. (*) The
cryogenic temperature for this particular device is 30mK. The
superscript coincides with the following references: a=[Tsa+17],
b=[Ros+18], c=[CTS20], d=[Sei+21], e=[Hér+18], f=[Tao+14],
g=[MR01], h=[Gha+18], i=[Ree+19], l=[Bec+21a], m=[Bec+21b],
n=[Ber+21].

.
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Dandelion [H+̈21b].

The membrane design can be optimized to
improve the force sensitivity. We are now devel-
oping new designs which features a low effective
mass for the defect modes [H+̈21b]. We refer to
this particular type of resonators as dandelion
membranes. Its defect supports two bandgap
modes. Notably, the bandgap mode relevant for
sensing application, i. e. the one where the max-
imum displacement point is on the pad, is centered within the bandgap.
The central defect pad has a diameter which can be tuned in the range
18 − 36µm. We successfully fabricated a 50 nm-thick membranes. The
defect mode has an effective mass of 0.1 ng and a mechanical frequency
of 1.6 MHz. At room temperature we measure a quality factor of 15.1 M,
corresponding to

√
SFF = 23 aN/

√
Hz [H+̈21b]. The projected force

sensitivity for dandelion membrane with a thickness of 15 nm at 4 K is√
SFF = 330 zN/

√
Hz for the smaller defect and

√
SFF = 500 zN/

√
Hz

for the larger one.
Let us now discuss about the possibilities associated with a large

working area. It gives us the option to separate the position where the
force is applied and where the motion is the readout. This precaution
would help to avoid damages on the structure producing the force,
e. g. biological samples or superconducting chips. This configuration
has already been tested successfully in a force microscopy experiment
involving a phononic membrane device as a force sensor by D. Hälg, et
al. in [H+̈21b]. In Fig. 6.10 (a),(b) we report the experimental setup the
authors used, while in Fig. 6.10 (c) we show the main results, that is a
topographic imaging of a set of gold nanoparticles and tobacco mosaic
viruses (TMV) deposited on the membrane surface. Moreover, having a
large working area makes easier the integration of an optical cavity to
measure the motion with higher sensitivity.

Among all our devices, the phononic dimers are promising for partic-
ularly demanding force sensing experiments such as MRFM. Here the
resonance frequency of the nanomechanical resonator needs to match
the spin inversion frequency [Deg+09]. For the magnetic field routinely
used in MRFM experiments, the spin inversion happens at a frequency
in the kHz range, as can be observed from Table 6.1, well below the
resonance frequency of the soft-clamped membranes. Nevertheless, the
presence of multiple high-Q bandgap modes enables the possibility of
implementing non-degenerate parametric sensing protocol where the
pump mode frequency can be matched to the spin inversion frequency.
The performance of this protocol with phononic dimer membranes has
been evaluated in a theoretical work by J. Kos̆ata et al. in [Koš+20],
and initial experimental results on the strength of an up-conversion
non-degenerate parametric protocol has been presented by D. Hälg et
al. in [H+̈21a].
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(a)

(b)

(c)

Figure 6.10: Topographic imaging through membrane based force microscopy.
(a) Conceptual scheme of the experimental setup. A soft-clamped
phononic dimer membrane is used as a force sensor. One defect
acts as a mirror of an interferometer, while on the other defect gold
nanoparticles and tobacco mosaic virus (TMV) samples have been
deposited. A metallic scanning tip interacts with the samples and
modifies the membrane vibrations. (b) Scheme of the experimental
setup. The mechanical vibration are transduced into a phase
modulation of one of the arm of an interferometric system. (c)
Tomographic imaging of the samples deposited on one of the two
defects. The gold nanoparticles have a nominal average diameter
of 50 nm, the TMV samples a diameter of 18 nm. The bottom
panels show a high resolutions scan over the area highlighted by
the white square in the top panel. The membrane vibrations have
been driven through electrostatic force or radiation pressure. The
excitation used is listed on the top right of each panel. Figure
reproduced from Ref. [H+̈21b].

Interestingly, one of the limiting factor for the sensitivity of the
proposed parametric protocol is represented by the cross-nonlinear
damping discussed in Chapter 5. The experimental realization of this
parametric protocol within an MRFM experiment will benefit by the
understanding and reduction of this nonlinearity.

nonlinear damping through in-plane mode coupling

In Chapter 4, we give a description of the nonlinear damping starting
from geometric considerations. The model discussed in Sec. 4.2 shows a
good agreement with the experimental results for a various of thicknesses
and modeshapes. However, it fails to describe all the measurement
performed. Comparing the model presented in Sec. 4.2 with the one
proposed in Sec. 6.3, we identify a possible way to generalize the model.

We introduce the geometric nonlinearities including higher order terms
in the strain tensor components, see Eq. 4.6. Such extra terms in the



126 conclusion and outlook

strain generate a stress tensor characterized by both conservative and
dissipative higher-order terms. This leads to the presence of nonlinear
components in the shear forces expression, Eq. (1.10a),

Nnl
αβ =

Eh

2(1 + ν)

[
(1 − ν)(∂αw∂βw+ ∂αẇ∂βw)+

+ νδαβ((∂γw)
2 + ∂γw∂γẇ)

]
+N lin

αβ,
(6.33)

from which we obtain the Duffing and the nonlinear damping term in
the equation of motion for w 8Eq. (1.8a)9. N lin

αβ is the linear contribution
to shear forces as is described by the following expression

N lin
αβ =

Eh

1 − ν2 ε0δαβ. (6.34)

Importantly, the nonlinear damping modeling discussed in this thesis has
been realized neglecting the contribution of the in-plane displacement
components vx and vy.

Then in Sec. 6.3 we model the parametric drive generated on a
membrane driven along the in-plane direction, including the in-plane
displacement terms contribution. Here we neglect the elongation, there-
fore we do not have any nonlinear terms coming from the strain, but
the stress definition changes due to the presence of the terms vx and vy,
see Eq. (6.17). In this case, the shear forces components are described
by

N in−plane
αβ =

Eh

2(1 − ν2)

[
(1 − ν)(∂αvβ + ∂βvα + ∂αv̇β + ∂β v̇β)+

+ 2νδαβ(∂γvγ + ∂γ v̇γ)

]
+N lin

αβ.
(6.35)

Due to the presence of the in-plane displacement terms, the equations of
motion of the overall displacement fields is constituted by 3 equations,
one for each direction, described in Eqs. (6.20). We immediately notice
that using Eq. (6.35) to express the shear forces introduces coupling
terms ∂αwvx and ∂αwvy in the Eq. (6.20a), while Eq. (6.20b) and Eq.
(6.20c) depends only on the in-plane displacement components. Before
moving forward, we want to point out that in both the discussions the
expression for the bending moment remains unchanged.

Piecing together the two descriptions, we could build a general model
including the contribution of both the in-plane displacement components
and the higher order terms in the strain. The resulting shear forces
component is described as:

N full
αβ = Nnl

αβ +N in−plane
αβ +N lin

αβ. (6.36)

If we substitute Eq. (6.36) in Eq. (6.20), we recognize that Eq. (6.20a)
contains both the standard geometric nonlinear terms and the coupling.
Moreover we notice that also Eq. (6.20b) and Eq. (6.20c) include higher
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order term in w. The solution of the new set of equations is not trivial
and we have not investigated it yet. However we deduce that the
coupling terms in the two equations describing the dynamics of the
in-plane motion might lead to an energy transfer from out-of-plane to
in-plane modes, similarly to the energy transfer from in-plane to out-of-
plane enabling the parametric drive in Sec. 6.3. Due to the nonlinear
nature of these new coupling terms, we believe that such energy transfer
introduces an additional nonlinear damping source.

Merging the two models could lead to a broader description of
the mechanism behind the nonlinear damping in dissipation-dilution
nanomechanical resonators introducing an additional intermodal cou-
pling contribution with a geometric origin.

mechanical quantum squeezed states through para-
metric amplification

Nanomechanical resonators in the quantum regime experienced a grow-
ing interest in the last years [AKM14]. The great amount of efforts in
this field led to the preparation of mechanical states close to or at the
ground state in both room temperature [GNG19; Del+20; Whi+21] and
cryogenic environment [O’C+10; Cha+11; Teu+11; Wil+15; Ros+18;
Sei+21; Bru+21] on various nanomechanical systems. Preparing the
quantum ground state is the basis for more advanced protocols to
manipulate the quantum state of mechanical modes. An example of
particular interest is the preparation of mechanical mode in a quantum
squeezed state [Wol+15; Pir+15], that is, a state with a quadrature
fluctuations below the zero-point ones, which is the basis for improving
the precision of quantum measurements [Bur+19].

A common technique used to generate mechanical squeezed states,
valid in both the classical and the quantum domains, is through a
parametric drive [RG91; Wu+18] modulating the resonance frequency.
The parametric modulation amplifies one quadrature and squeezes the
other, see Eq. (6.16). In Chapter 6, we implemented such a technique
in the classical domain and we realized a thermomechanical squeezed
state for our membrane mode. In Fig. 6.11, we show the typical phase
space distribution for a bandgap mode characterized by linewidth of
≈ 40 Hz. Exploiting this technique on a mechanical resonator close to its
ground state is capable of generating a mechanical quantum squeezed
state. Despite its simplicity, to our knowledge a quantum squeezing of
mechanical motion via direct parametric driving has not been reported
to date.

Parametric driving can only reduce one quadrature variance by a
factor of 2, that is it can generate at most a squeezing of 3 dB. This
implies that to squeeze the variance of one quadrature below the zero
point motion we need to initially prepare the mechanical mode in a
thermal state with an average phonon occupancy n̄ < 0.5. This is within
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Figure 6.11: Thermomechanical squeezed state of a Dahlia generation 2 mem-
brane at room temperature. The mechanical linewidth of this
particular sample is ≈ 40 Hz. The red points represent the thermal
state in absence of parametric driving, for comparison. The black
solid (dashed) line is three times the covariance ellipse of the red
(blue) points. From the ellipses’s axes, we estimate a squeezing of
≈ 0.36 dB and an amplification of ≈ 2 dB.

reach of our soft-clamped membrane resonators with feedback cooling,
as demonstrated by M. Rossi et al. [Ros+18]. Feedback cooling reduces
the effective temperature of the addressed mechanical mode by adding
damping, which results in broadening of the mechanical linewidth. In ref.
[Ros+18] a Dahlia generation 2 membrane, at cryogenic temperature
(4 K) and in an unresolved-sideband optical cavity, was prepared in
a state with a phonon occupancy n̄ ≈ 0.29 applying both sideband
and feedback cooling simultaneously, corresponding to an effective
mechanical linewidth of ≈ 2 kHz.

To reach the 3 dB limit, we need to modulate the elastic constant
near the parametric threshold kth defined in Sec. 6.1. This condition
coincides to apply a modulation to the mechanical frequency comparable
to the mechanical linewidth Γi. It means that the frequency modulation
required will be 50 times larger than the one required in Fig. 6.11
with the additional complication of the reduced range of piezo actuator
operated at cryogenic temperature.

One promising outcome of the model discussed in Chapter 6 (and still
under test) is the possibility of increasing the strength of the parametric
drive simply by acting on the resonance condition between out-of-
plane and in-plane motion. Moreover, implementing a measurement
protocol able to detect in-plane modes and engineering them could
lead to the realization of a new generation of devices where the mode
superposition between in-plane and out-of-plane mode is optimized to
reach a stronger parametric modulation. Investigating the parametric
resonant-enhancement presented in this thesis, and eventually combining
it with feedback controls to go beyond the 3 dB limits [Szo+13; Szo+14;
PFT15], are the next steps towards the generation of a mechanical
squeezed state through parametric driving.
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Looking further, a parametric driving protocol can also be applied to
a non-degenerate pair of mechanical modes. In this configuration, large
enough modulation strengths and initially cooled modes close to their
ground states could lead to the preparation of a two-mode squeezed
state, the prototypical example of entanglement between two distinct
systems.





Part III

A P P E N D I X





A
C O M P L E T E S E T O F M E A S U R E D N O N L I N E A R
L O S S A N G L E S

Here we report all the measured quality factors against the measured
nonlinear loss angles for all the modes and all the thicknesses studied
in Chapter 4, Fig. A.1. Each point represents the measured values for
a single membrane and it is the average over 5 measurements. The
red points represents the two membrane where we measured negative
Duffing nonlinearities. The nonlinear loss angle has been evaluated using
the absolute values of the measured Duffing.

We recognize that for the low-order bandgap modes the majority of
the points fall close to the cross section between the linear loss angle and
the dissipation dilution or in the region that we can justified with some
type of damage on the samples. Instead, the high-order bandgap modes
consistently present points in the forbidden region. The quality factor is
consistent with the simulated one. However they are characterized by a
higher nonlinear losses due to the excess nonlinear damping term we
discussed in Sec. 4.4
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Figure A.1: Complete set of nonlinear loss angles. In the top rows we show all
the modeshapes considered. Each panel shows all the measured
values associated with the mode plotted above the column. The
thickness is listed at the right of the rows.



B
S O F T - C L A M P E D P H O N O N I C D I M E R S :
C O M P L E T E S E T O F G E O M E T R I E S

In the study of the soft-clamped phononic dimers we analyze the linear
and nonlinear properties of 11 different dimer geometries. They are
characterized by varying dimer separation dsep and relative orientation
θ. We fabricate the device in such a way between all sides of the defects
and the frame we always have at least 9 unit cells, distance that usually
guarantees a good isolation from the environment. Since the dimer
separation changes between different samples, also the outer membrane
dimension changes from membrane to membrane. We show all the
geometries studied listed with the outer dimension in Fig. B.1

Figure B.1: Micrographs of all the device geometries studied in Chapter 5.
Below each geometry we report the outer dimensions.
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C
W I D E F R E Q U E N C Y T U N I N G

From the discussion in Sec. 6.4, we believe that the limiting factor to
observe a resonantly-enhanced parametric effect is a limited control
on the frequency detuning of the out-of-plane mode frequency. In this
appendix we show the preliminary attempts to increase the frequency
tuning through temperature control.

In the approach we are currently using, we glue the membrane frame
on a ring-piezo and we tune the resonance frequency applying a DC
voltage to it. The static voltage results in a piezo radial expansion
(contraction) which increases (decreses) the tensile stress σ0. The relation
between tensile stress and angular frequency squared is shown in Eq.
(1.24). The amount of frequency shift we can generate varies from sample
to sample due to a lack of control on the gluing process. We observed a
frequency shift per volt ranging from 50 Hz/V to 500 Hz/V.

To increase the resonance frequency tuning, we need an alternative
way to modify the resonance frequency. To do that, we want to use the
temperature dependence of the resonance frequency [Sad+20] that we
observe in our modes as unwanted frequency drifts (see sec. 3.6). In the
next generation of parametric measurement we are going to implement
a thermal control of the resonance frequency. We realized a membrane
sample holder which hosts a ring heater placed on top of a copper clamp.
A sketch of the membrane assembly is reported in Fig. C.1 (a).

(a) (b)

Figure C.1: Temperature frequency tuning. (a) Sketch of the sample holder
cross section. The temperature variation is measured through a
thermistor placed on the copper clamp. (b) Measured frequency
shift against temperature variation. The yellow point corresponds
to a room temperature measurement.

From the a set of preliminary measurements we observe that a tem-
perature variation of approximately 22 K introduced a frequency shift of
about 10 kHz (see Fig. C.1 (b)). The preliminary measurements suggest
that the gluing is not affected by the added heat.
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