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Abstract
Mechanical resonators constitute an essential element in emerging quantum
technologies. Since such resonators can couple to a range of different degrees
of freedom, they are particularly promising in interfacing disparate quantum
systems. The recent developments in the design of mechanical resonators with
ever decreasing dissipation and quantum-coherent optical control of their dis-
placement has cemented them as a principal element in the toolbox of hybrid
quantum systems.

In this thesis, we report the demonstration of a long-lived and efficient
memory for light based on an optomechanical cavity, operating at a wave-
length in the telecom C-band. We study the storage and retrieval of coherent
fields at room temperature, and demonstrate long life-times and reasonable
efficiencies, T1 ≈ 23ms and η ≈ 40% respectively, converting optical informa-
tion to mechanical excitations by the phenomenon of optomechanically induced
transparency.

We extrapolate the demonstrated room-temperature performance to cryo-
genic conditions, with cautious estimates indicating the feasibility of ground
state cooling and the associated quantum-coherent storage of light with less
than one added noise quantum. Lastly, we show that modest improvements to
our platform can enable observing the effects of injecting single photons, as a
step towards quantum repeater applications.
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Resumé
Mekaniske resonatorer udgør et essentielt element i nye kvanteteknologier.
Eftersom sådanne resonatorer kan koble til et bredt udvalg af andre friheds-
grader, er de særligt lovende til at sammensætte forskelligtartede kvantesys-
temer. De nylige udviklinger indenfor design af mekaniske resonatorer med
støt formindskende dissipation og kvantekohærent optisk kontrol over deres
forskydning har cementeret dem som et fremstående element i værktøjskassen
af kvantehybridsystemer.

I denne afhandling rapporterer vi demonstrationen af en langlivet og ef-
fektiv lyshukommelse baseret på en optomekanisk kavitet, som opererer ved
en bølgelængde i telekom C-båndet. Vi studerer opbevaring og genudlæsning
af kohærente felter ved stuetemperatur, og demonstrerer lang levetid og for-
nuftig effektivitet, T1 ≈ 23ms og η ≈ 40% respektivt. Oversættelsen mellem
optisk information of mekaniske eksitationer er muliggjort af fænomenet op-
tomekanisk induceret gennemsigtighed.

Vi ekstrapolererer de demonstrerede egenskaber fra stuetemperatur til et
kryogenisk miljø. Forsigtige estimater indikerer muligheden for grundtilstand-
skøling og den dertilhørende kvantekohærente opbevarelse af lys med mindre
end ét støjkvant tilføjet. Slutteligt viser vi hvordan små forbedringer af vores
platform kan muliggøre at observere effekterne af at gemme enkelte fotoner,
som et trin på vejen mod kvantenetværk.
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1 Introduction
Pursuing a Ph.D. degree a century after the foundations of quantum mechanics
[2, 3, 4, 5] in the same field might at first glance seem like a poor career choice;
indeed one might ask: ”what’s really left to discover?”.

Luckily for budding quantum physicists, in my opinion this question can
legitimately be answered: ”quite a lot as a matter of fact!”.

As an example, out of the past ten Nobel prizes awarded in physics, no less
than half have been given for research in various areas of quantum physics, and
a further two in the related field of laser physics, enabled by quantum theory.

The past century of research in quantum physics is too extensive to faith-
fully summarize in an introduction such as this. Rather than quantum theory
as a whole, we can hone in on the sub-field studied in this thesis: quantum
cavity optomechanics [6, 7], describing the current state of the field.

1.1 Context
The subject matter of this research field is the quantum physics of light in-
teracting with a mechanical oscillator. The field originates in the pursuit of
detecting gravitational waves, whose existence were originally proposed by
Einstein [8]. Throughout the 1960’s to 1980’s, pioneering research elucidated
the promise of optical precision measurements of mechanical displacement for
gravitational wave detection [9, 10, 11, 12, 13]. The realization that the quan-
tum fluctuations of light would eventually limit the precision of an optome-
chanical gravitational wave detector due to optomechanical backaction effects
[14, 15, 16] and the contemporary first observation of said effects in the optical
domain [17] can then be viewed as the birth of quantum cavity optomechanics
as its own field of research. Instead of viewing these effects as a detrimental
limitation, quantum cavity optomechanics takes the complementary perspec-
tive and instead investigates this interaction in its own right.

Throughout the 1990’s extensive theoretical research in the new field was
carried out. Examples include radiation pressure-enabled quantum non-demolition
measurements of an intracavity field [18], mechanically mediated (called pon-
deromotive) squeezing of light [19, 20], as well as schemes for generating a
mechanical state like that of Schrödinger’s thought experiment involving a
(perhaps) ill-fated cat [21, 22].

This theoretical wave was followed by an experimental one, since the turn
of the millennium. Progress in the fabrication of micro- and nanomechani-
cal devices, enabled rapid diversification of the range of systems available for
cavity optomechanical experiments, with examples such as toroidal cavities
[23, 24], microspheres [25], optomechanical crystals [26], mechanically compli-
ant capacitors in a superconducting LC-circuit [27], and membranes [28, 29]

1



among the many explored approaches.
Utilizing these new experimental platforms, exciting results such as strong

[30, 27] and quantum-coherent [31] coupling. Furthermore ground state cooling
by dynamical backaction [32] and measurement-based feedback [33, 34] with
cryogenic pre-cooling, and recently even from room temperature [35, 36, 37]
using levitated systems, with larger oscillators steadily approaching the ground
state [38, 39, 40]. Moreover, non-classical states of motion [41], displacement
measurements approaching [42] and even surpassing [43] the standard quantum
limit [15] were demonstrated.

Of particular interest from a quantum network perspective, mechanically
mediated entanglement of two optical fields [44] and optically mediated entan-
glement of two mechanical resonators [45] as well as violation of a Bell-type
inequality in an optomechanical system [46, 47] have all been demonstrated.

In the wake of the myriad impressive experimental results, an emerging
trend in the field is the development of optomechanical quantum technologies
[48, 49]. Cavity optomechanics are not alone in this regard - a host of other
quantum systems that can be interconnected are currently being explored as
hybrid quantum systems [50]. Quantum-coherent coupling of quanta such as
phonons and photons with atomic or spin systems holds great technological
promise for quantum sensing [51, 52], computation [53, 54, 55], transduction
[56], communication [57], and cryptography [58]. Due to the multitude of
coupling mechanisms between mechanical and other quantum systems, these
constitute an ubiquitous element in emerging quantum technologies.

A unifying vision based on these prospects is the quantum internet [59, 60].
In a nutshell, the idea is to interconnect remote quantum computers in a
quantum-coherent manner. Apart from requiring quantum computers to in-
terconnect in the first place, transduction from the quantum computer signal
to an optical carrier is necessary for long-range communication. A further re-
quirement for long-range quantum communication and networks is to overcome
the exponential scaling of loss with distance. One approach is the quantum al-
ternative to standard telecommunication amplification stations: the quantum
repeater [61].

A prerequisite for a functioning quantum repeater is quantum memory for
light [62]. By quantum memory we mean a quantum system, which can ac-
cept the state of another quantum system (writing a memory register), store
it faithfully and eventually return the stored state (reading the stored infor-
mation).

Typically the case of interest is a stationary, long-lived memory system,
storing the state encoded on a traveling optical field, such as a coherent state
or a single photon.

2



Such work was pioneered in the atomic physics community, where in par-
ticular the phenomenon of electromagnetically induced transparency (EIT) was
studied for its quantum memory prospects [63, 64, 65, 66, 67, 68, 69]. During
the aforementioned tidal wave of progress in experimental cavity optomechan-
ics, an optomechanical analogue of EIT was discovered, namely optomechani-
cally induced transparency (OMIT) [70, 71, 72].

The versatility of the optomechanical interaction, and in particular its
largely wavelength-independent nature, presents an inherent advantage over
atomic EIT systems, that are natively tied to particular transition wavelengths
(though this in principle can be ameliorated by non-linear optical frequency
conversion [73]). Since mechanical resonators these days also can be fabricated
with exquisitely slow energy decay [74, 33, 75, 76, 77, 78], the prospect of long
coherence times is indeed promising.

The application of this phenomenon for light storage was studied in a range
of experimental platforms such as silica microspheres [79], diamond microdisks
[80], with micro-second, and without quantifying the storage efficiency of such
mechanical memory platforms, or in phonon waveguides [81], with reported
efficiencies, but even shorter storage times.

Storage times in the milli-seconds have only been demonstrated for devices
cryogenically cooled to milli-Kelvin temperatures, with prominent examples in-
cluding a microwave (rather than optical) experiment [82], that thus however
is unsuited for long-range networks [83], and a telecom-wavelength experiment
employing the DLCZ protocol [66, 84].

In this thesis we report on a telecom wavelength optomechanical memory
device, based on a high-Q membrane resonator embedded in a high-finesse op-
tical Fabry-Pérot cavity [74, 85].

To this end, we introduce new mechanical resonator designs, suited to the
practical requirements of such an membrane-based optomechanical memory.

We thoroughly experimentally study and theoretically model the achievable
efficiency in such a device in a range of storage experiments with coherent input
fields. With a view to quantum repeater applications, we discuss the prospects
of applying our platform for the storage and retrieval of single-photon input
fields.

In addition to the mechanical memory experiments, we report on high-Q
and low-mass mechanical resonator designs, intended for force sensing appli-
cations.
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1.2 Thesis Structure
In section 2, we develop the necessary understanding of optical cavities. We
describe the spectral response of a cavity, as well as the geometry of the intra-
cavity field. Lastly we give a quantum description of a single cavity mode.

In section 3 we derive the equation of motion for a thin, tensioned mem-
brane, and map it to an effective 1D resonator. We then cover relevant sources
of dissipation in such resonators and again lastly describe such a single me-
chanical mode quantum mechanically.

The design of our resonators is motivated in section 4, introducing the
physics of dissipation dilution and soft clamping. In addition we give a few
rules of thumb for the practical design of high-quality mechanical resonators.

We put optics and mechanics together in section 5. Here we describe cav-
ity optomechanics, covering radiation pressure coupling in the canonical end-
mirror model and the membrane-in-the-middle scheme we practically employ.
We discuss the connection between the two implementations and how to map
the coupling constant appropriately.

Section 6 covers the practicalities of characterizing mechanical resonators
and conducting cavity optomechanics experiments. Additionally we describe
the process of assembling a membrane-in-the-middle cavity.

In section 7 we report on the characterization of a range of different me-
chanical resonator designs.

The experiments on optomechanical light storage and retrieval is covered in
section 8. We first detail our implemented cavity and surrounding experimental
setup, before covering the storage experiments, with a focus on the efficiency.
We also discuss the prospects of single-photon experiments in this section, and
lastly conclude in section 9.
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2 Optical Cavities

“When God said, ‘Let there be light,’ he surely must have meant perfectly
coherent light.”

Charles Townes

Optical cavities are ubiquitous throughout our experiments, notably con-
stituting the optical element of our opto-mechanical system. We begin our
description of these in a classical picture, in order to develop a number of
experimentally relevant quantities. Anchored in these concepts, we switch to
a complementary, more abstract model of the intra-cavity electric field as a
quantum mechanical harmonic oscillator, coupled to an external environment.

Figure 2.1: Sketch of an optical Fabry-Pérot cavity. An incident optical field
Ein is either reflected or coupled into the cavity, comprised of two highly-
reflective mirrors with reflection and transmission coefficients ri, ti, a distance
Lcav apart.

Two highly reflective mirrors 1 and 2, each with a field reflectivity r and
transmissivity t, placed a fixed distance Lcav apart, form the archetypal ex-
ample of an optical cavity, known as the Fabry-Pérot resonator, illustrated in
figure 2.1.

If an electric field E(r, t) at a point in space r at time t oscillates with a
period T that divides into the roundtrip time τrt := 2Lcav/c an integer number
q, it can be resonantly enhanced by the cavity, and a strong field can build
up inside, as we shall see in the following. To give an example of its utility,
this strong field can enhance the interaction between light and a system placed
inside the cavity.

For simplicity we presently assume the mirrors to be ideal, in the sense
that all light which is not reflected must be transmitted,

|ri|2 + |ti|2 = 1, (2.1)
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where i ∈ (1, 2) indexes the mirrors. Light inside the cavity will eventually
be transmitted by either mirror at a rate κi given by the product of the prob-
ability of transmission, |ti|2, and the rate at which the circulating light strikes
the mirror in question, namely the inverse roundtrip time:

κi := |ti|2/τrt. (2.2)

The total loss rate of the cavity κ is then given by the sum of the individual
loss rates,

κ = Σiκi. (2.3)

With identical mirrors, we can now see that the intra-cavity light will leak
out of either mirror at equal rates. Oftentimes in quantum optics experiments,
where detection efficiency is paramount, it is advisable to make the light exit
the cavity preferentially through one mirror, by choosing its transmission co-
efficient larger than its partner. The degree to which the light decays through
the preferred mirror j is quantified by the cavity coupling parameter,

ηc := κj/κ. (2.4)

Last but not least, we introduce the finesse F of a cavity. This handy
number describes the average number of roundtrips a resonant photon makes
inside the cavity in question and is defined

F :=
2π∑
i δi

=
2π

κτrt
. (2.5)

Any excess energy loss in the cavity, for instance due to scattering or ab-
sorption of light by dirt particles on a mirror face, will reduce F and can be
accounted for by including a term δexc in the sum of losses, eq. (2.3).

With the nomenclature in order, let us investigate the intra-cavity field. By
tallying up the effect of the two mirrors illustrated in figure 2.1 on an incident
beam of laser light Ein with wavelength λ and corresponding wavenumber k :=
2π/λ, one can write a set of equations for the right- and leftward propagating
components of the intra-cavity field, E1 and E2, as well as the experimentally
accessible reflected and transmitted fields ER and ET:

E1 = it1Ein + r1E2e−ikLcav , (2.6a)

E2 = r2E1e−ikLcav , (2.6b)

ER = r1Ein + it1E2e−ikLcav , (2.6c)

ET = it2E1e−ikLcav . (2.6d)

Noting that ER and ET are given in terms of E1, and that a photodetector
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is sensitive to the intensity impinging upon it, we proceed to solve the system
of equations (2.6) for the circulating intracavity intensity1 |E1|2, normalized to
the input intensity |Ein|2,∣∣∣∣ E1

Ein

∣∣∣∣2 = |t1|2

1 + |r1|2|r2|2 − 2|r1||r2| cos(2kLcav + φ)
, (2.7a)

φ = arg(r1) + arg(r2). (2.7b)

We make two important and related observations about the intracavity
intensity. Firstly it exhibits strong resonant enhancement when λ is an integer
q multiple of the roundtrip length 2Lcav (ignoring the arbitrary phase φ), which
alternatively can be stated in terms of the frequency ν := c/λ as

νq = q
c

2Lcav
, q ∈ Z. (2.8)

Additionally, the cavity response is periodic in frequency, supporting resonant
modes characterized by the number of nodes of the intracavity intensity, labeled
by the longitudinal mode number q. These modes have frequencies equally
spaced by the free spectral range (FSR) of the cavity νFSR,

νFSR := νq+1 − νq =
c

2Lcav
, (2.9)

which we note is precisely the inverse roundtrip time τrt. The FSR allows us
to recast the finesse as

F = 2π
νFSR

κ
. (2.10)

Restricting our treatment to high-finesse F � 1 cavities, and honing in on a
particular longitudinal mode j, looking only at small frequency excursions ∆ :=
ω − ωj from (angular) resonance frequency ωj = 2πνj, we can by expanding
the cosine of equation 2.7 and dropping terms ∝ (1/F) derive a line shape for
a cavity mode ∣∣∣∣ E1

Ein

∣∣∣∣2 = 2η1F
π

(κ/2)2

(κ/2)2 +∆2
. (2.11)

Equations (2.7) and (2.11) are plotted in figure 2.2, in the vicinity of a
single cavity mode.

We see that the Lorentzian approximation holds very well for the relevant
high-finesse (F ≈ 2 × 104 here) case we usually work with. In the following
we prefer the Lorentzian description, as it has the advantage of being easier
to interpret in terms of cavity parameters. For example from inspecting eq.
(2.11) we learn that the intra-cavity intensity is amplified proportionally to

1We take a normalization convention such that |E|2 denotes the optical energy flux hitting
the mirror.
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Figure 2.2: Intracavity intensity. In solid blue we plot the Lorentzian approx-
imation (eq. (2.11)) to the Airy function (eq. (2.7)), near a single resonant
mode. The dotted black line indicates the resonant enhancement factor 2η1F/π
from eq. (2.11).

the finesse, and that a given cavity mode exhibits a peaked spectrum with
a full-width-half-max κ, lending credence to its identification as the cavity
linewidth.

2.1 Shape of the Intracavity Field
So far we have implicitly assumed the field inside the cavity to consist of plane
waves, reflecting back and forth between plane mirrors, which it in fact does
not. In the following, we remedy the situation, discussing how mirror geometry
determines the transverse shape of the intracavity field, and how it varies along,
and orthogonal to, the cavity axis. We will review a number of relevant results
from a detailed analysis of how the width and angle of divergence of an optical
beam is transformed by various optical elements, as given in eg. [86]. In this
discussion we assume perfect alignment of the cavity mirrors, i.e. the mirrors
are centered on the axis joining them, and not tilted with respect to it.

2.1.1 Cavity Stability

The configuration of plane mirror faces cannot support stable modes in prac-
tice - any deviation from absolutely perfect normal incidence will never be
corrected, causing the beam to wander off and leave the cavity. On the con-
trary this is not the case for mirrors with a concave reflective face. Such mirrors
can support beams with a spatial profile determined by the geometry of the
cavity mirrors, whose stability also is governed by the curvature of the mirror
faces and the distance between them. One can derive a stability condition,
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which determines whether a given configuration can sustain stable modes [86]

0 ≤ g1g2 ≤ 1, (2.12)

where the cavity geometry is encoded in the g-parameters

gi = 1− Lcav

Ri

, (2.13)

Ri denoting the radius of curvature of the mirrors. There exists a range of
configurations that satisfies eq. 2.12, and in our experiments we make use of
two: a plano-concave design comprised of a flat mirror and a concave one for
the optomechanical cavity and a concave-concave design with two identical
concave mirrors for our filter cavities. In these two cases, stable resonances
can be obtained provided 0 < Lcav < R and 0 < Lcav < 2R respectively.

2.1.2 Gaussian Beams

Determining the intra-cavity field profile boils down to finding a solution to
Maxwell’s equations, obeying the relevant boundary conditions. In the present
case, we consider monochromatic light, which propagates unidirectionally and
has a finite cross-section, that obeys the Helmholtz equation. As outlined
in [milleber], the simplest electric field obeying these conditions has to the
following spatial dependence:

E(r) = A

w(z)
ei(kz−arctan z/zR)eik

x2+y2

2R(z) e−
x2+y2

w2(z) . (2.14)

Equation 2.14 decribes a so-called gaussian beam, propagating along the
z-direction, named for its transverse (x, y) dependence. A handful of new
concepts are introduced here, so their definitions and names are summarized
in table 1 and detailed in the following. Such gaussian beams are solutions for
the intra-cavity field.

Symbol Definition Name

w(z) w0

√
1 + (z/zR)

2 Beam width

w0

√
λL
π

(
g1g2(1−g1g2)

(g1+g2−2g1g2)2

)1/4
Beam waist

zR πw2
0/λ Rayleigh range

R(z) z + z2R/z Radius of curvature

Table 1: Geometric properties of a Gaussian beam.

The beam width describes the radius of the beam as it propagates, while
the beam waist defines its minimal radius. The Rayleigh range zR gives a
measure for the length over which the beam remains mostly collimated,i.e.
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w(zR) =
√
2w0.. Finally the radius of beam curvature R(z) is not to be con-

fused with the mirror radii of curvature Ri, though they are related - for a
beam to be supported by a given set of mirrors, R(z) must match the curva-
ture of the mirrors.

These modes have resonance frequencies that also are determined by the
cavity geometry and can be found by requiring the phase change upon a
roundtrip of the intra-cavity field be an integer multiple of 2π. This gives
an equation for the q’th mode:

νq =
c

2Lcav

(
q +

1

π

√
g1g2

)
, (2.15)

from which we also can recover our previous statement of the cavity FSR,
νFSR = c/2Lcav, even in the case of non-flat mirrors as required by a stable
cavity.

2.1.3 Higher-order modes

The gaussian beams of equation 2.14 correspond to our previous description of
equidistant modes with frequencies separated by the FSR. They are however
not the only stable solutions.

There exists a range of higher-order transverse modes associated with each
longitudinal cavity mode. By allowing for a more complex (x, y)-dependence

−2

0

2
(0, 0) (0, 1) (1, 1)

−2.5 0.0 2.5

−2

0

2
(2, 0)

−2.5 0.0 2.5

(2, 3)

−2.5 0.0 2.5

(5, 1)

x/w0

y
/w

0

Figure 2.3: Intensity profile of higher order transverse cavity modes. For
different (n,m), we plot |En,m(x, y)|2 for z = z0, according to eq. (2.16).
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of the mode shape, one finds so-called Hermite-Gaussian modes, with field
profiles:

En,m(r) = E(r)w0Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
e−i(n+m) arctan z/zR . (2.16)

Here E(r) is the fundamental mode of eq. 2.14 and (n,m) ∈ N are trans-
verse mode indices labelling the number of nodal lines. The modes described
by eq. 2.16 are referred to as the n,m’th transverse electromagnetic mode,
often abbreviated TEMn,m. The frequencies of these resonances can be found
in a similar manner to the fundamental case,

νq,n,m = νFSR

(
q +

1 + n+m

π

√
g1g2

)
. (2.17)

We learn that each longitudinal mode is accompanied by another set of
spectrally equidistant, more densely spaced transverse modes, with increas-
ingly spatially broader mode profiles, as seen in figure 2.3.

2.2 Quantized Cavity Modes

In the preceding classical treatment we have seen that a cavity supports a range
of distinct longitudinal and transverse modes. In this section we are interested
in the quantum properties of such a single mode, and how it is coupled to the
environment outside the cavity mirrors. The standing electric and magnetic
fields can be written [87]

E(z, t) = q(t)

√
2Ω2

cav
ε0V

sin (kz), (2.18a)

B(z, t) =
q̇(t)

c2k

√
2Ω2

cav
ε0V

cos (kz). (2.18b)

Here q(t) encodes the amplitude of the electric field, Ωcav is the frequency
of the particular cavity mode, ε0 is the permittivity of vacuum, V the mode
volume and c is the speed of light.

The Hamiltonian H describing the energy stored in the fields can be found
by integrating the electromagnetic energy density over the cavity mode volume

H =
1

2

∫
V

ε0E
2(z, t) +

1

µ0

B2(z, t)dV =
1

2

(
Ω2

cavq
2(t) + q̇2(t)

)
, (2.19)
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where µ0 is the vacuum permeability. Equation 2.19 describes a unit-mass
harmonic oscillator

H =
1

2

(
Ω2

cavq(t)
2 + p(t)2

)
(2.20)

with momentum p(t) := q̇(t). The Hamiltonian of eq. 2.20 can be quantized
in terms of the annihilation operator a and its Hermitian conjugate creation
operator a†, which satisfy the commutation relation

[
a, a†

]
= 1 [87]. Position

and momentum can be restated using the these

q(t) =

√
h̄

2Ωcav

(
a(t) + a†(t)

)
, (2.21a)

p(t) =

√
h̄Ωcav

2

(
a(t)− a†(t)

)
, (2.21b)

[q(t), p(t)] = ih̄. (2.21c)

Substituting q and p, the quantized cavity Hamiltonian becomes

H = h̄Ωcav

(
a†a+

1

2

)
. (2.22)

Phrasing the physics in terms of the ladder operators gives us the intra-
cavity field as

E(z, t) =

√
h̄Ωcav

ε0V
sin (kz)(a(t) + a†(t)), (2.23)

revealing that the temporal evolution is determined solely by the evolution
of a and its conjugate.

In the Heisenberg picture, time evolution of an operator O of the system
described the Hamiltonian H is given by the Heisenberg equation of motion

Ȯ =
i

h̄
[H,O] . (2.24)

In our case, eq. 2.24 gives us ȧ = −iΩcava, that is, in a Hamiltonian descrip-
tion, devoid of coupling between the single cavity mode and its surroundings,
the intra-cavity electric field simply oscillates at the cavity frequency.

To incorporate the physics of shining light into the cavity and measuring
its reflection and transmission, the theoretically stringent approach would be
to introduce the formalism of open quantum systems [6]. Rather than going
into detail on this subject we review the results and relevant assumptions.

The core idea is to make a mental distinction between what we care about,
called the system, and everything else, which we call the reservoir. The isolated
evolution of the system is described by equation 2.24, whereas the reservoir
can be modeled as a large number of independent harmonic oscillators aR,j,
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with a bi-linear coupling between the system and reservoir ∝ a†R,ja + aR,ja
†

(”a photon is created in a reservoir mode when one is destroyed in the system
mode and vice versa”). One furthermore assumes that the reservoir is large
enough that it can be considered ”memory-less”. Formally this is called the
Markov approximation and means that the bath oscillators at different times
are uncorrelated, 〈

a†R,j(t1)aR,j(t2)
〉
= n̄δ(t1 − t2) (2.25a)〈

aR,j(t1)a
†
R,j(t2)

〉
= (n̄+ 1)δ(t1 − t2). (2.25b)

Here n̄j denotes the average number excitations, related to the temperature
of the bath T via Bose-Einstein statistics

n̄j =
1

eh̄Ωj/kBT − 1
, (2.26)

where kB is the Boltzmann constant. For lasers with typical frequencies around
1014 Hz, the mean occupation of such modes are all essentially zero, even at
room temperature. By finally changing frame of reference to one rotating at
the laser frequency, and neglecting fast-oscillating terms (invoking the rotating
wave approximation), only looking at small detunings from resonance ∆ =
ΩL − Ωcav, one finds the time-evolution from the quantum Langevin equation
(QLE) for the cavity mode a

ȧ =
(
i∆− κ

2

)
a+

√
κsin. (2.27)

Here sin describes the input photon flux2, containing a vacuum contribution
from the reservoir as well as any laser light we send to the cavity. When the
cavity is coupled to the environment through multiple distinct channels, such
as two mirrors with different reflectivity, we can modify eq. 2.27 accordingly

ȧ =
(
i∆− κ

2

)
a+

√
η1κsin,1 +

√
η2κsin,2, (2.28)

where η1,2 are the cavity coupling parameters previously introduced and sin,1/2
is the flux impinging on either mirror. Considering for simplicity eq. 2.27,
a solution for a is easily found in the Fourier domain in terms of the cavity
susceptibility χcav(Ω) defined such that

2Often in the literature this quantity is given the symbol ain. Since (the norm square of)
a and sin describe an energy and a flux respectively, the chosen notation emphasizes this
difference, and avoids seemingly identical quantities a and ain with different units.
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a(Ω) = χcav(Ω)
√
ηκsin, (2.29a)

χcav(Ω) =
1

κ/2− i(∆ + Ω)
. (2.29b)

The experimentally accessible quantities for probing the cavity field are
the output fluxes sout,j emanating from either mirror. These are given by the
input-output relation for the j’th channel,

sout,j = sin,j −
√
ηjκa. (2.30)

For example a photodetector, giving an output proportional to |sout|2, will
depend on a, as described in more detail in section 6.1.2.
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3 Mechanical Oscillators

“I love it when things bend out of shape.”

Kevin Shields

Here we introduce the dynamics of our mechanical resonators. Starting
from the core concepts of linear elasticity theory, namely strain and stress,
and their relation, we derive the equation of motion for the out-of-plane dis-
placement of a membrane. For illustrative purposes we first study modeshapes
for plain, square membranes. Then we apply Galerkin’s model to reach a 1D
description with any geometric dependence lumped into an effective mass and
spring constant. Lastly we discuss mechanical dissipation, first modelling its
origin with Zener’s model and then the practicalities of different dissipation
channels and their means of mitigation. The description will at times closely
follow [88, 89, 90, 91]

3.1 Linear Elasticity: Mechanical Equation of Motion

Elasticity is the theory of mechanics of extended solid objects, large enough to
be considered continuous bodies, with any granularity absorbed into macro-
scopic material constants such as density or stiffness [92, 93]. Such a solid
body, subject to some external force, will undergo deformation. We can de-
scribe this in terms of the displacement vector u, defined through its entries
as

ui = r′i − ri, (3.1)

where i ∈ (x, y, z) denotes the coordinates of a point r′ in the deformed
body relative to the equilibrium position r, as illustrated in figure 3.1 (left).
We can recast the deformation in terms of the strain tensor ε := {εij},

εij =
1

2
(∂jui + ∂iuj + ∂iuk∂juk) (3.2)

where summation over indices repeated in a term is implied, a convention we
keep in the following, and ∂i is the partial derivative with respect to the ith
spatial coordinate.

As the body undergoes deformation, new internal forces arise, tending to
restore the body to equilibrium. We call these internal stresses and describe
them by considering a volume element of the body. Letting F denote the
external force per unit volume, we introduce the Cauchy stress tensor σ :=
{σij} by means of the Cauchy stress hypothesis:

σij =
dFi

dSj

(3.3)
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Figure 3.1: Sketch of displacement and stress. Left: the coordinate vector
before and after, r and r′, are connected by the displacement vector u. Right:
The components of the stress tensor is drawn on the y face of a solid body.

In this manner, σij denotes ith component of force per unit area, acting on the
face of the volume element normal to the jth axis (see figure 3.1, right).

When considering small elastic deformations the relationship between stress
and strain is linear and given by Hooke’s law

σij = Cijklεkl =
E

1 + ν

(
εij +

ν

1− 2ν
δijεkk

)
, (3.4)

where Cijkl is the elastic modulus tensor, E denotes Young’s modulus and ν
the Poisson ratio of the particular material, while δij is the Kroenecker delta.

We can simplify the problem considerably by making a series of approxi-
mations in accordance with the geometry of the membranes in question, and
the type of displacement they undergo. We assume:

1. The in-plane components of the displacement are small compared to the
out-of-plane component ux, uy � uz.

2. The thickness of the membrane h remains constant during deformation.

3. The out-of-plane displacement component is small relative to the thick-
ness of the membrane, uz � h.

4. The thickness is small compared to the lateral size of the membrane,
h� L.

By the first assumption we disregard in-plane motion of the membrane,
and instead only consider the out-of-plane component, which we shall re-label
w := uz. The second assumption implies that w cannot have a z dependence,
i.e. w = w(x, y). Additionally the thinness of the membrane means that it
is more susceptible to bending due to forces applied on the surface, than to
extension and compression, meaning

σijnj = 0, (3.5)
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where nj denotes the j’th component of the membrane normal vector n. Using
the third assumption we can approximate the normal vector of the membrane
surface n as remaining oriented along the z direction, n||̂z. Together with
eq.3.5, this parallelity implies σiz = 0 on the upper and lower faces on the
membrane, which we extend to the entire body of the membrane, again by
virtue of its thinness.

The upshot of the preceding reasoning is that we can restrict the treat-
ment to in-plane strain and stress tensors obtained from equations 3.2 and 3.4
respectively (here we emphasize the switch to a 2D treatment using Greek,
rather than Roman indices),

εαβ = ε0δαβ − z∂αβw +
1

2
∂αw∂βw, (3.6a)

σαβ =
E

1− ν2
((1− ν) εαβ + νδαβεγγ) . (3.6b)

The first term in eq.(3.6)a independent of w, represents a static in-plane
strain ε0 which is known to occur during the fabrication process of the mem-
branes we study. As we shall see when discussing dissipation of mechanical
energy, this strain and its associated stress is in fact a salient feature of our
devices. Evaluating the stress tensor gives

σαβ = σ0δαβ − z
E

1− ν2

(
(1− ν)∂αβw + νδαβ∂γγw

)
+

E

2(1− ν2)

(
(1− ν)∂αw∂βw + νδαβ∂γw∂γw

)
,

(3.7)

where we identify the static pre-stress σ0 := Eε0/(1 − ν). The equations of
motion comes about from a lengthy calculus of variations of the stored elastic
energy density V of the membrane. We will not go into detail here, but they
can be found in [92]. It is however instructive to just calculate V at this point,
since we need this later in our discussion of dissipation.

Since w is independent of z, we can integrate out any z-dependence and
instead consider an in-plane potential energy density Vip =

∫ h/2

−h/2
V dz, which

means any term linear in z will not contribute. With this in mind, some algebra
gives

Vip =
1

2
σαβεαβ = hσ0ε0 +

1

2
hσ0∂αw∂αw +

hE

1− ν2
∂αw∂αw∂βw∂βw

+
h3E

6(1− ν2)

[
(1− ν)∂αβw∂αβw + ν∂ααw∂ββw

]
.

(3.8)
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The first constant term represents an arbitrary offset associated with the
static strain. The second term contains the energy stored in the pre-stress,
while the third describes the non-linear effect of elongation, which is negligible
for small oscillations. The last term contains the energy stored in bending of
the membrane.

To derive the mechanical equation of motion from σαβ and εαβ, one then
needs to do a calculus of variations of eq. (3.8). This is a fairly involved
and lengthy procedure, so instead we jump to the outcome, namely the Von
Kármán plate equations [94]:

∂αβMαβ + ∂α (Nαβ∂βw) = ρhẅ (3.9a)

∂αNαβ = 0. (3.9b)

These have been stated in terms of the shear stresses Nαβ and bending mo-
menta Mαβ, known collectively as the stress resultants, which can be evaluated
using eq. 3.7:

Nαβ =

∫ h/2

−h/2

σαβdz = hσ0δαβ +
hE

2(1− ν2)
((1− ν)∂αw∂βw + νδαβ∂γw∂γw)

(3.10a)

Mαβ =

∫ h/2

−h/2

zσαβdz = −D ((1− ν)∂αβw + νδαβ∂γγw) , (3.10b)

where we identify the flexural rigidity D := h3E/(12(1− ν2). Since the second
term in Nαβ is non-linear in w it can safely be neglected for small vibration
amplitudes. Taking eqs. 3.9 and 3.10 together, we find the equation of motion
for the out-of-plane displacement as

hσ0∂ααw −D∂ααββw = ρhẅ. (3.11)

By identifying ∂αα as the transverse Laplacian ∇2, eq. 3.11 might look more
familiar.

The time dependence of equation 3.11 is all on the right-hand side, and
is thus separable from the spatial left-hand side. Therefore we can look for
eigenmode solutions like

wn,m(x, y, t) = ψn,m(x, y)qn,m(t), (3.12)

where n,m are mode indices, labelling a given eigenmode by its number of
antinodes along the x, y directions respectively. Galerkin’s method is our tool
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of choice for approaching the problem of finding such solutions.

3.2 Galerkin’s Method: 1D Effective Resonator
The core idea of the Galerkin method is to reduce the dimensionality of the
problem at hand, by deriving an effective mass and spring constant wherein
the static effects of the resonator geometry are lumped. When we only are
concerned with the time evolution of a single mode, this is a useful simplifica-
tion.
In practice one assumes an orthogonal set of eigenfunctions {ψn,m(x, y)} of the
equation at hand, multiplies the equation by an eigenfunction and integrates
the variables to be aggregated into effective parameters over their domain, in
this case the membrane surface S. Applying this algorithm to equation 3.11
gets us:

ρh

∫
S
ψn,mẅn,mdA = hσ0

∫
S
ψn,m∇2wn,mdA−D

∫
S
ψn,m∇4wn,mdA,

q̈n,m ρh

∫
S
ψ2
n,mdA︸ ︷︷ ︸

meff

= −qn,m
∫
S

[
Dψn,m∇4ψn,m − hσ0ψn,m∇2ψn,m

]
dA︸ ︷︷ ︸

keff

.
(3.13)

Having managed (in a sensible manner) to reduce the unwieldy three-
dimensional deformation problem to simple, harmonic motion we can celebrate
an intermediate victory at this point!
The two terms in the effective spring constant distinguish two regimes of defor-
mation: we say the dynamics are either rigidity- or stress-dominated depending
on whether the first or second contribution is the largest. To quantify which
regime a certain resonator is in, we first consider the limit of the fundamen-
tal mode of a purely stress-dominated square membrane as a benchmark. In
this case equation 3.11 reduces to the two-dimensional wave-equation, with
eigenmodes and frequencies:

w(0)
n,m(x, y, t) = An,mφ

(0)
n,m(x, y) sinΩ(0)

n,mt,

φ(0)
n,m(x, y) = sin nπx

L
sin mπy

L
,

Ω(0)
n,m =

π

L

√
σ0
ρ
(n2 +m2),

(3.14)

where the superscripts remind us that we neglected the rigidity term. For
such a fundamental mode, we can gauge the ratio of the stress and rigidity
contributions through the dimensionless stress parameter3 λ [95]:

3For modeshapes similar to those of equation 3.14, the spatial derivatives pick up a factor
1/L per order.
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λ :=

√
D/L4

hσ0/L2
=

√
Eh2

12(1− ν2)σ0L2
. (3.15)

At the edges where the membrane is clamped, it must fulfill the boundary
condition w = ∂αw = 0, which the simplified sinusoidal modeshapes of equa-
tion 3.14 do not, i.e. the membrane is not supported by a perfect hinge, but
rather has to bend over a length scale determined by its rigidity. A refined
model, valid for λn� 1, finds such a correction term near the edges [95]:

wn,m(x, y, t) = An,mφn(x)φm(y) sinΩn,mt,

φn(x) =

ψn(x) if 0 ≤ x < L/2

(−1)n+1ψn(L− x) if L/2 ≤ x ≤ L
,

ψn(x) = sin nπx
L

+ nπλ
(

e−x/λL − cos nπx
L

)
,

Ωn,m = Ω(0)
n,m

√
1 + π2λ2 (n2 +m2).

(3.16)
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Figure 3.2: Left: comparing modeshapes neglecting (dashed black line) and
including (red solid line, λ = 0.01) rigidity. Right: Zoom in near edge, where
the increased rigidity-induced curvature for finite λ is apparent.

A 1D slice of the modeshapes predicted by equations 3.14 and 3.16 is plot-
ted in figure 3.2. Here one indeed sees good agreement between the models at
the global scale, but discrepancy near the edges as expected. As we shall see in
the coming section, this edge-bending effect implies that clamping conditions
have profound impact on the dissipation rate of a resonator.
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3.3 Mechanical Dissipation
Our description of mechanical motion has solely considered conservative, non-
dissipative processes so far. In this section we expand our model to encompass
dissipation. The description of dissipation will stand on two legs, like the
preceding sections: firstly introducing a damping term at the abstract level of
the effective 1D harmonic oscillator we just derived, and secondly describing
and categorising the actual loss mechanisms our samples are subject to, as well
as means to alleviate these where possible.

To motivate our chosen approach, let us start by looking at a toy model.
Following Schmidt, Villanueva, and Roukes [88], we consider a body undergo-
ing harmonic motion, with a phase lag ϕ between the strain and stress fields:

ε(t) = ε0 sin (ωt), (3.17a)

σ(t) = σ0 sin (ωt+ ϕ). (3.17b)

By trigonometric identities, the stress field can be split into two components

σ(t) = σ0
(

cosϕ sinωt︸ ︷︷ ︸
in-phase

+ sinϕ cosωt︸ ︷︷ ︸
out-of-phase

)
, (3.18)

the former oscillating in phase with the strain field, and the latter out of
phase. When assessing energy loss in a resonator, the quality factor is a useful
quantity. We denote it Q and define it as the ratio of stored energy W to lost
energy ∆W during one oscillation cycle:

Q := 2π
W

∆W
. (3.19)

Within our toy model we can compute W and ∆W as integrals of the
stress-strain product over a quarter and full period respectively, only keeping
the in-phase stress term when evaluating the stored energy [88]:

W =

∫ π/2ω

0

σε̇ dt = 1

2
σ0ε0 cosϕ, (3.20a)

∆W =

∫ 2π/ω

0

σε̇ dt = πσ0ε0 sinϕ, (3.20b)

which combines to give

Qint = (tanϕ)−1. (3.21)

From equation 3.21 we see the importance of this phase delay between stress
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and strain - its tangent determines in the (inverse) Q factor. For this reason
tanϕ is also referred to as the loss tangent of a resonator (ϕ being the loss
angle). Furthermore, we call this quantity the intrinsic quality factor in the
sense that we only are considering the resonator itself in these considerations.

3.3.1 Anelasticity: Zener’s Model

This relation between Q and stress-strain lag was studied by Clarence Zener,
within his eponymous model [96]. By including a finite response time for a
changing stress under constant strain τε and vice versa τσ, Hooke’s law can be
extended to

σ + τεσ̇ = ER(ε+ τσε̇), (3.22)

where ER denotes the Young’s modulus under relaxed stress and strain. Solv-
ing eq. 3.22 in the Fourier domain reveals an effective, complex-valued Young’s
modulus Eeff:

σ = ER
1 + iΩτσ
1 + iΩτε︸ ︷︷ ︸
Eeff

ε, (3.23a)

Eeff =
1 + Ω2τστε
1 + Ω2τ 2ε

+ iΩ
τσ − τε
1 + Ω2τ 2ε

. (3.23b)

The real and imaginary parts of Eeff are analogous to the in- and out-of-
phase strain components that we studied in the preceding section. From their
ratio we can re-express Qintr in terms of a relaxation time scale τ̄ and strength
∆E:

Q−1
intr =

Im (Eeff)

Re (Eeff)
= ∆E

Ωτ̄

1 + Ω2τ̄ 2
, (3.24a)

τ̄ =
√
τστε, (3.24b)

∆E = (τσ − τε)/τ̄ . (3.24c)

This is a very powerful approach that allows us to treat different physical
dissipation mechanisms, provided we can identify the relevant τ̄ and ∆E.

Considering again the tensorial description, we can now study the con-
sequences of a fast but finite response time τ̄ at a quantitative level. From
Hooke’s law (eq. 3.4) we have

σij(t) = Cijklεkl(t− τ̄) ≈ Cijklεkl(t)︸ ︷︷ ︸
σcon
ij

−Cijklτ̄ ε̇kl(t)︸ ︷︷ ︸
σdis
ij

, (3.25)

22



where we also approximated the time derivative in order to separate the
stress field into components σcon

ij in-phase with and σdis
ij delayed from the strain

field. The first term of eq. 3.25 is what we studied so far, culminating in
the conservative equation of motion (eqs. 3.11 and 3.13), and for the present
discussion, the elastic potential energy of eq. 3.8. The second term gives rise to
a damping term, when processed through the stress resultants and only keeping
the linear terms. The equation of motion including dissipation becomes

hσ0∂ααw −D∂ααββW + τ̄D∂ααββẇ = ρhẅ. (3.26)

As expected from the preceding toy model we indeed find that the mag-
nitude of the dissipative term ∝ ẇ grows with the stress-strain lag τ̄ and
interestingly that it is independent of the tensile pre-stress σ0.
Applying Galerkin’s method to the new term allows us to summarize the pre-
ceding considerations in the effective, damped harmonic oscillator equation for
a mode of interest, subject to some external force Fext:

q̈ + Ω2
mq − Γmq̇ =

1

meff
Fext, (3.27)

with the effective oscillator parameters summarized in table 2.

Symbol Definition Name
meff ρh

∫
S ψ

2
n,mdA Mass

keff
∫
S Dψn,m∇4ψn,m − hσ0ψn,m∇2ψn,mdA Spring constant

Γm −m−1
eff τ̄D

∫
S ψn,m∇4ψn,mdA Damping rate

Ωm
√
keff/meff Frequency

Table 2: Effective oscillator parameters.

Solving eq. 3.27 is most conveniently done in the Fourier domain, in terms
of the mechanical susceptibility for the displacement4 q(Ω) = χq(Ω)Fext(Ω),
that quantifies the mechanical response to a given force:

χq(Ω) = m−1
eff

1

−Ω2 + Ω2
m + iΩΓm

. (3.28)

The mechanical oscillator is always coupled to a thermal bath, which gives rise
to a thermal force noise.

Having derived a damped harmonic oscillator model for resonators, we turn
the attention to the origins of the damping processes in the following.

4Distinct from the mechanical susceptibility χm used in the quantum-mechanical descrip-
tion in terms of ladder operators b, b†.
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3.3.2 Dissipation Mechanisms

Unfortunately, loosing energy is typically easier than keeping it stored. There
exists a multitude of means by which a mechanical oscillator can dissipate
energy, and to keep track we group them into extrinsic and intrinsic loss
mechanisms. In this way we can express the Q factor as

Q−1 = Q−1
ext +Q−1

int. (3.29)

The extrinsic mechanisms cover the impact of the environment, whereas the
intrinsic pertain to the oscillator itself. In terms of extrinsic loss channels, we
consider specifically gas damping and coupling to substrate modes, so-called
clamping losses.

Extrinsic Mechanisms

Gas Damping covers how anelastic collisions between the resonator and
ambient gas molecules can give rise to dissipation. This effect can be described
in two regimes; viscous gas damping when the atmosphere of the experiment
is so dense that it effectively can be considered fluidic, contrasted to ballistic
gas damping which describes the interaction between a dilute gas, whose effect
can be understood as collisions of individual particles and the resonator. The
relevant regime for a given experiment is described by the Knudsen number,
Kn.5 This is a dimensionless number relating the mean free path Λf of the gas
to the characteristic size Lcar of the resonator:

Kn =
Λf

Lcar
=

1

p

kBT√
2πd2kLcar

. (3.30)

Here p is the pressure of the gas and dk is the typical diameter of gas molecules,
called the kinetic diameter [97]. A small Knudsen number Kn � 1 then is
characteristic of the viscous regime, whereas a large Knudsen number Kn� 1
describes the ballistic regime when collisions are less frequent. From the point
of view of an experimentalist that would like to study low-loss mechanical os-
cillators, the pragmatic approach is simply to operate in a high vacuum, that is
at a low pressure. To understand how low pressures are required to not be lim-
ited by gas damping, we can describe the ballistic regime in some more detail.
The ballistic regime can be described for a resonator far from any surfaces, and
for one in close proximity to surfaces where gas molecules can bounce, and thus
interact more frequently with the oscillator. These two contributions are called
drag-force damping and squeeze-film damping. Restricting our treatment to
the ballistic regime, we can then express the gas-damping limited Q factor as

5A rare example in physics where the conventional notation for a quantity is a compound
of several letters.
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Q−1 = Q−1
df +Q−1

sf , (3.31)

where the drag-force contribution is [98]

Qdf =
1

p

ρhΩm

4

√
πRT

2mmol
(3.32)

and the squeeze-film contribution is [98]

Qsf =
(2π)3/2

p
ρhΩm

d0
Lcar

√
RT

mmol
= 16π

d0
Lcar

Qdf. (3.33)

In equations 3.32 and 3.33 R is the ideal gas constant and mmol is the
molar mass of the ambient gas. In equation 3.33 d0 describes the distance to
the nearest surface. Combining equations 3.32 and 3.33 then gives the ballistic
gas damping limited Q-factor as

Qgas =
1

p

ρhΩm

4

√
πRT

2mmol

(
1 +

Lcar

16πd0

)−1

. (3.34)

Typically our membranes are sufficiently far from the nearest surfaces such
that Lcar � 16πd0 and the squeeze film contribution is negligible.

Clamping Losses can arguably be considered either an intrinsic or an ex-
trinsic damping mechanism, since it pertains to the interface between the res-
onator and the substrate to which it is clamped. If resonance modes of the
substrate and of the resonator overlap in space and in frequency, they can
then couple. Since the substrate modes uS(r,Ω) typically are more lossy than
the resonator modes uR(r,Ω), this coupling can manifest as added damping
of the resonator mode. This intuition has been mathematically described by
considering the resonator a ”phonon cavity” which can leak to substrate modes
[99, 100, 101]. When the coupling is weak, an expression for the clamping loss
limited Q factor can be found as

Q−1
clamp =

π

2ρSρRΩ3
m

∫
q

∣∣∣∣∫
A

dA(uR · σq − uq · σR) · n̂
∣∣∣∣2 δ (Ωm − Ω(q)) . (3.35)

In equation 3.35 ρS/R are the substrate/resonator mass densities, A describes
the area of the interface between the resonator and the substrate (with normal
vector n̂) and q is an index labeling substrate modes. Experiments corrobo-
rating the hypothesis of hybridization of the resonator of interest with lossy
substrate modes have indeed been reported [101, 102, 103].

The mode-overlap integrals are tricky to evaluate analytically, but as a de-
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sign guide, we see that one can try to isolate the resonator spatially and/or
spectrally from the substrate modes to minimize clamping losses. In our sam-
ples we do both, by means of a phononic crystal, which will be detailed in the
following phononic engineering section 4. In short such a phononic crystal can
be designed to create a bandgap around the mechanical frequency, alleviating
the spectral component of equation 3.35. The phononic crystal can either be
engineered in the substrate or the resonator itself, and either way reduces the
spatial overlap integral of equation 3.35.

Intrinsic Mechanisms

In terms of intrinsic loss mechanisms we discuss thermo-elastic damping, bend-
ing losses and surface losses. As the name suggests these all pertain to intrinsic
processes of the resonator, necessitating a thorough understand to be mitigated
at the design level, since the experimentalist in the lab only has the knobs of
pressure and temperature to turn.

Thermo-elastic Damping During an oscillation cycle, the mechanical os-
cillator is dilated and compressed inhomogenously. To understand this, one can
consider two unit volumes, one in the top half along the oscillation direction,
and one in the bottom. Since such dilations and compressions are associated
with a local change in temperature, described by the Thompson effect, a heat
gradient can occur cf. figure 3.3. The thermal reequilibration then invariably
leads to energy loss, which we term thermo-elastic damping (TED). This effect
can be exasperated if the mechanical period is comparable to the characteristic
equilibration time.

Figure 3.3: Picture of thermo-elastic damping. As an oscillator moves along the
z direction, volume elements towards the positive z direction expands, whereas
ones towards the negative z direction are compressed. By the Thompson effect
(3.36) this leads to a heat gradient across the resonator, indicated by blue and
red coloring encoding local cooling and heating respectively.

For oscillations occurring in one well-defined direction, the local heating
and cooling is determined by the linear coefficient of thermal expansion αL of
the material in question. In our case of out-of-place oscillations this then takes
the form:

αL = −1

h

∂h

∂T
. (3.36)
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Thermoelastic damping has been treated with the Zener model both by
Zener himself [96] and later in more detail by Lifshitz and Roukes [104], iden-
tifying a relaxation strength and time scale:

∆TED =
Eα2

LT0
CV

, (3.37a)

τTED =
h2

π2χth
, (3.37b)

where CV = Cpρ is the heat capacity per unit volume at constant volume
(Cp is the specific heat capacity) and χth = κth/CV is the thermal diffusivity
of the resonator, κth being the thermal conductivity.
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Figure 3.4: TED-limited Q factor. The Zener model prediction eq. (3.24)
subject to the TED relaxation strength and time of eq. (3.37) is plotted in
red, with the dashed black line indictating the characteristic rate 1/τTED. At
the mechanical frequency Ωm/2π = 2.4MHz of the mode we later utilize in
our mechanical memory experiments (blue), the TED-limited Q ≈ 250 × 106

(gray).

For the material parameters of our SiN membranes, the thermo-elastic
damping-limited Q factor QTED is plotted according to eqs. (3.24) and (3.37)
in figure 3.4, with parameters given in table 3.

E 270GPa
αL 2.8× 10−6 K−1

T0 294K
Cp 656 J kg−1 K−1

ρ 3200 kg m−3

h 20 nm
κth 3.2W m−1 K−1

Table 3: Parameters used in evaluating eqs. (3.24) and (3.37) as depicted in
fig. 3.4.
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From this plot we can see that we are actually not very far off being limited
by TED, given that we typically reach Q ≈ 90 × 106 for the particular mode
(more details on the design characterization of these resonators are given in
section 7.3). As such we are less than a factor 3 below, despite being far
off-resonant ΩmτTED � 1. Seeing as we are close to being TED-limited, we
conducted an experimental study of varying membrane geometries, which is
reported in section 7.1, to assess the limitations of our high-Q oscillators.

Bending Loss Before the advent of soft-clamped membrane resonators (see
the following phononic engineering section 4), a major limitation to the achiev-
able Q factors in micromechanical resonators was losses due to the strong
bending stemming from the rigid clamping of the resonator to a substrate, as
discussed in section 3.2. Here we dig into these bending losses.
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Figure 3.5: Mean curvature from eq. (3.39) of the (1D) modeshape given by
eq. (3.16) for λdil = 10−5 (black solid), contrasted with a simplistic sinusoidal
mode (dashed red).

Returning to the tensorial description of mechanical dissipation, we can
calculate the bending losses by considering the instantaneous dissipated in-
plane power as

pip = σαβ ε̇αβ. (3.38)

This has two contributions, one due to bending pb and a non-linear part due
to elongation pe. Neglecting non-linear term (again, valid for small oscillation
amplitudes), we find

pb = τ̄D

(
∂ααẇ∂ββẇ︸ ︷︷ ︸

mean curvature

+(1− ν)

(
∂αβẇ∂αβẇ − ∂ααẇ∂ββẇ

)
︸ ︷︷ ︸

Gaussian curvature

)
. (3.39)
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The bending losses have here been grouped into mean and Gaussian cur-
vatures. For a flat plane, the Gaussian curvature is identically zero, so we
focus on the mean curvature in the following (though we take the Gaussian
curvature into account when simulating real devices).

In figure 3.5 we illustrate the importance of bending near the clamped
edges. The large spikes near x ≈ 0 and x ≈ L indicates a large amount
of bending-induced dissipation. To alleviate this, we localize the mechanical
mode away from the edges by means of a phononic crystal. This approach is
what we call soft clamping and is a crucial concept of the phononic engineering
section 4.

Surface Loss Since we work with very thin oscillators, with thicknesses in
the tens of nanometers, the quality of the material surface becomes important.
The bulk material properties are typically more well-behaved than those of
the surface, and thus imperfections here can degrade the achievable Q factors.
The precise physical and chemical reasons are myriad and difficult to model,
hence we lump them together into phenomenological surface losses.

100 101 102 103 104

h (nm)

102

103

104

Q
in

tr
(h

)

Figure 3.6: Surface-limited intrinsic Q factor. In solid black we plot eq. (3.40)
for the mean values of βsurf and Qvol, with the shaded area indicating ± the
uncertainty. The red dashed vertical line indicates our typical membrane thick-
ness h = 20 nm.

We base our description on the meta-study by Villanueva and Schmid [105],
where the authors compiled reported intrinsic Q factors for a range of thick-
nesses - in effect varying the contribution of surface effect relative to the en-
tire body. Based a wide range of designs such as membranes, strings, and
cantilevers, the authors found good agreement between reported Qintr and a
model of surface losses scaling linearly with thickness, Qsurf(h) = hβsurf and a
constant volumetric loss:

Q−1
intr(h) = Q−1

surf(h) +Q−1
vol, (3.40)
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with βsurf = 60(40) nm−1 and Qvol = 28(2)× 103. In figure 3.6 we illustrate
eq. (3.40). Indeed for our typical thicknesses in the tens of nanometers, we
see that surface losses play a dominant role, giving rise to an intrinsic Q factor
approximately linear in thickness.

3.4 Quantized Mechanical Oscillators

Having established the validity of modeling a particular mode of interest as a
harmonic oscillator in the preceding text, we can quantize said mode much in
the same way as for the cavity modes of section 2.2.

We choose the symbol b to represent a mechanical harmonic oscillator lad-
der operator, reserving a for optical ones. The operators b and b† represents
the annihilation and creation of a quantum of mechanical energy h̄Ωm. We
call such quanta phonons, in analogy to the optical photons. We can write the
mechanical position q and momentum p in terms of b and b† as

q = xzpf(b+ b†), (3.41a)

p =
h̄

2xzpf
(b− b†), (3.41b)

where xzpf =
√
h̄/(2meffΩm) denotes the mechanical zero-point fluctuations.

We describe the evolution of a quantized mechanical mode with quantum
Langevin equations. These can either be written for b and b† or q and p, with
the conversion given by eqs. (3.41). In contrast to the optical case, thermal
noise is important for most mechanical oscillators, due to their comparatively
smaller frequencies. In terms of q and p, the quantum Langevin equations for
the mechanical oscillator are:

q̇ = p/meff, (3.42a)

ṗ = Γm −meffΩ
2
mq + Fth, (3.42b)

where Fth is a stochastic thermal Langevin force, characterized by its first
and second moments

〈Fth(t)〉 = 0, (3.43a)

〈Fth(t1)Fth(t2) + Fth(t2)Fth(t1)〉 = 4meffΓmkBTδ(t1 − t2). (3.43b)

In the following section, we study mechanical oscillators subject to optical
forces, and the interplay between a mechanical and optical degree of freedom.
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4 Phononic Engineering

“What happens to the hole when the cheese is gone?”

Bertold Brecht

Grounded in our modelling of mechanical loss mechanisms, this section
describes our approaches to mitigate them through the resonator design. These
design principles are what we call phononic engineering.

4.1 Dissipation Dilution
From the discussion of mode shapes of a square membrane in section 3.2, we
learned the relevance of tensile stress, through the dimensionless stress param-
eter λ (eq. 3.15). Dissipation dilution describes how tensile stress furthermore
increases the stored mechanical energy, without substantial increase in the dis-
sipated, thus ”diluting” the dissipation. To see this effect, we can compare
the energy stored in the in-plane potential energy density Vip calculated in eq.
(3.8), neglecting the non-linear term, with the in-plane dissipated energy per
cycle ∆Vip =

∮
pbdt (cf. eq. 3.39). By writing out the index-summations and

integrating over the area and neglecting the Gaussian curvature, the stored
and dissipated V and ∆V energies are then given by:

V =

∫
A

hσ0
2

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]
+
D

2

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2
]

dA, (4.1a)

∆V =

∫
A
τ̄D

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2
]

dA. (4.1b)

We see that increasing the tensile pre-stress σ0 increases the stored elonga-
tion energy without affecting the stored and lost energy due to bending, which
is precisely the dilution of loss by more energy, stored in the pre-stress.

Recalling that the dimensionless stress parameter λ quantifies the relative
contribution of elongation and bending, we see that λ � 1 is desirable for
high-Q oscillators. This is achievable by engineering the membrane stress and
its aspect ratio h/L. In figure 4.1 we illustrate the scaling of λ and a typical
value we achieve λ ≈ 3 × 10−4. In fabrication increasing the stress beyond a
certain level becomes untenable, leaving one with the aspect ratio. However,
this also determines the mechanical frequency, where a large Ωm ∝ 1/L usually
is desirable, eg. for sideband resolution in a cavity optomechanical experiment,
or to avoid low-frequency technical noise.

The insight that pre-stress dilutes loss has been taken even further, in what
has been termed strain engineering [106]. Here the idea is to taper the res-
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Figure 4.1: Dimensionless stress parameter λ as a function of pre-stress σ0
normalized to the Young’s modulus E and aspect ratio. The lower the λ the
more dissipation dilution. The yellow star indicates our typical λ ≈ 3× 10−4,
for E = 270GPa, σ0 = 1.27GPa, ν = 0.27, h = 20 nm, L = 250 µm.

onator so as to co-localize a locally increased strain (and thus stress) with the
mechanical mode, leading to further Q-factor increase. A practical downside
to this approach is that one ends up with a smaller device, which can prove
tricky to couple to an optical cavity without degrading the optical Q-factor.
Recently other materials than the conventional Silicon Nitride has been ex-
plored. Employing the crystalline material Silicon under tensile stress enabled
Q > 1×1010 of MHz frequency modes in a cryogenic environment [76]. Silicon
Carbide, that has high yield-strength polytypes, has also recently been studied,
achieving high Q factors, already for amorphous SiC [107]. Crystalline mate-
rials such as III-V semiconductors are also being explored with the motivation
of easier fabrication of integrated mechanical devices [108, 109, 110].

4.2 Soft Clamping & Phononic Crystals
Having considered plain, rectangular membranes so far, we turn to the actual
type of membrane resonators employed in our experiments. These devices have
a more complicated geometry, that the Galerkin method allows us to accom-
modate. Considering the square membrane as a benchmark, we can evaluate a
Q-factor for its fundamental mode, Qsq.. In terms of the dimensionless stress
parameter, we find

Q−1
sq. = (2λ+ 2π2λ2)Q−1

int, (4.2)

where we suppress the h dependence of Qint for brevity. Since λ� 1 in the
dissipation-diluted regime, the first term dominates the losses. The first term,
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linear in λ, comes about from the clamping-induced bending, while the second,
quadratic in λ, originates in the sinusoidal contribution to the modeshape.

The principle of soft clamping is then to engineer the resonator such that
the mode shape has gradually decayed before reaching the clamped boundary.
In this manner we can eliminate the linear term of eq. (4.2), and boost the
Q-factor by a factor λ−1 � 1.

The original method of soft clamping relies on a phononic crystal, engi-
neered in the resonator itself [74], which is also how we design the devices
throughout this thesis, with a typical sample shown in 4.2. Interestingly,
recent work has demonstrated the similar outcome by different means such
as self-similar ”fractal” resonators [77] and ”perimeter mode” resonators that
have periodic boundary conditions [111, 112]. In fact, computer-guided design
methods are starting to be applied to the design of high-Q resonators [112, 113].

Figure 4.2: Photograph of a soft-clamped membrane resonator, lying in a
sample holder for a cavity optomechanics experiment. The distance between
the centers of the square alignment holes in the substrate is 15mm. Photo
courtesy of Julian Robinson-Tait.

Phononic crystals describe a periodic modulation of the sonic velocity of
a material. Like the perhaps more established photonic crystals (where the
speed of light in the material is modified [114]), these are metamaterials whose
salient feature is a (acoustic or optical) bandgap - a range of frequencies where
waves cannot propagate in the material. Earlier work at NBI first explored
phononic crystals in the substrate, rather than the resonator itself. These were
realised by etching a periodic cross-shaped pattern into the Silicon substrate.
Such designs successfully mitigated the effect of clamping losses, evidenced by
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Figure 4.3: Unit cell construction. Left: the original design, constructed purely
in terms of holes of radius r. Right: the newer design, with two parameters
defining the unit cell, a tether width w and fillet radius r.

Q factors largely independent of clamping conditions [115]. Most prominently
they were used in hybrid atom-mechanics experiments, demonstrating back-
action evasion by measuring joint quadratures of the coupled system of an
atomic spin ensemble and a mechanical resonator, with reduced variance [116].

The insight that embedding the phononic crystal in the resonator itself,
rather than the substrate, had the potential to mitigate the edge-bending losses
spurred such designs. An exhaustive list of scientific achievements enabled by
the dramatically reduced mechanical dissipation of such membranes is beyond
the scope of the present text, but include ground state cooling by measurement
and feedback [33], sub-SQL displacement measurements [43] and entanglement
of atomic spins with mechanical motion [117]. This importance of boundary
conditions for the dissipation rate of a resonator has curiously previously been
discovered in the context of nanophotonic cavities [118].

In our group we employ a range of phononic crystal designs, that are each
optimized for different applications. They are parameterized in one of two
ways depending on their construction: either by a lattice constant a defining
the unit cell size and a hole radius r, or a lattice constant a, tether width w
and fillet-radius r, as seen in figure 4.3. In some sense the main difference
between the designs is the trade-off between simplicity and tweakability. With
a single parameter defining the phononic crystal, the circle based design is easy
to optimize for a desired frequency range, albeit a little limited. On the other
hand the tether-based design allows much greater tailoring, at the cost of a
now two-dimensional parameter space to explore.

To assess a given phononic crystal design, we simulate it using the finite-
element-method software COMSOL Multiphysics. The details of such simu-
lations are decribed meticulously in the thesis of Yeghishe Tsaturyan [119],
who pioneered the development of phononic crystals in our group. In short,
the idea is to consider the unit cell subject to periodic boundary conditions,
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Figure 4.4: Simulated band diagram. Left: In black, the mechanical frequen-
cies versus k vector, as simulated. The colored bands indicate two bandgaps,
in red around ≈ 1.4MHz and green around ≈ 2.4MHz. Right: An example of
bandgap optimization. In hollow green circles, we plot the width ∆BG of the
≈ 2.4MHz relative to the center frequency f0. The black dashed line indicates
the optimum around r/a = 0.22.

to imitate a perfect infinite crystal, and then simulating a dispersion relation,
as illutrated in figure 4.4. One can then vary the unit cell parameters, for
instance to find the widest bandgap around the desired center frequency, also
shown in 4.4.

4.3 Defect Design
Having settled on a phononic crystal design, the next step is to break it. A
perfectly periodic crystal has little utility as a resonator, precisely since it
cannot resonate at the design frequency. Therefore we break the periodicity
of the crystal in its center. We refer to this central alteration of the phononic
crystal as the ”defect” of the phononic crystal. By carefully designing the
geometry of this defect, one can engineer it to host modes with frequencies
that lie in the bandgap of the crystal, thus leveraging soft clamping. At times
this procedure is more art than science, yet we review some principles and
methods for designing and simulating phononic crystal defects.

Firstly one needs to prioritize which properties of a resonator are the most
important. Examples of features one might optimize for include high Q or
frequency, low meff, a large working area (defined as the largest inscribed circle
of the defect before hitting a hole), or spectral ”cleanliness”, i.e. the spacing
between the mode of interest and the nearest neighbouring mode (or bandgap
edge), with a few different defect designs shown in figure 4.5.

Other noteworthy defect designs than those of fig.4.5 are the ”dandelion”,
a design with low meff, high Q but at the cost of a small working area. These
advantages has been leveraged in a fiber-cavity based cavity room-temperature
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Figure 4.5: Soft-clamped membrane designs. Here we show three types of
membrane designs, mainly distinguished by the central defect, which are high-
lighted as insets. From left to right we have the ”generation 3 Dahlia”, ”gen-
eration L”, and ”generation K”.

laser cooling experiment, approaching the quantum ground state, in a room
temperature environment [40]. Here the small waist of the short fiber cavity
means that the small working area is less problematic. Another design of note
is the ”lotus”, which was used in an electromechanical ground-state cooling
experiment [78]. This design has the advantage of being ”single mode”, in the
sense that there only is one mode inside the bandgap, and being more robust
to metalization as required in electromechanical experiments.

The dahlia design is split in generations 1, 2, and 3, with generation 3 shown

Figure 4.6: Von Mises stress, normalized to the pre-stress, with the colors
logarithmically scaled, to highlight the inhomogeneities, zoomed on the defect.
Blue regions have reduced stress and red ones increased (up to about 3.3GPa <
σyield).
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in figure 4.5(left). Generation 1 is the design reported in [74], generation 2 is
used in [33, 43, 120, 44], and generation 3 is introduced in [119] and studied
in 7.1. The differences pertain mainly to the small holes on the defect, with
details given in [119]. The other two designs shown in figure 4.5(middle and
right) are new designs that are optimized to have a large working area and
high frequency, without compromising Q too much.

Figure 4.7: Simulated modeshape of the Ωm/2π ≈ 2.4MHz mode of a gen-
eration ”K” membrane. Left the full membrane is shown, highlighting the
localized nature of the mode, with the details near the defect shown to the
right.

With an idea for a design, we again do simulations using COMSOL. Having
implemented our chosen design, the first simulation calculates how the in-plane
stress redistributes, after we perforate the membrane as our design dictates (cf.
figure 4.6). We calculate the Von Mises stress, which is used in mechanical
engineering to predict yielding. Since the yield stress of Silicon Nitride is
around σyield ≈ 6.4GPa [121] and the stress of the deposited film prior to
perforation is around σ̄ ≈ 1.27GPa [119], it is not inconceivable to locally
exceed the yield stress. Such designs are then not feasible for fabrication.

The next step is then an eigenmode solver, looking for modes around the
frequency of interest (typically the center of the bandgap is a good starting
point). The output of such a simulation is displacement profiles for the iden-
tified modes, with an example shown in figure 4.7.

With these modeshapes, and our understanding of how modeshape curva-
ture impacts mechanical dissipation, we can then assess, to a fair degree of
accuracy [74], the expected Q-factor of a given design. This vastly speeds up
the whole engineering process, as the iteration time now only depends on your
computing power, and not the time it takes to actually fabricate a wafer with
the new design, pump it down to a good vacuum, measure each device, which
easily totals weeks.
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5 Cavity Optomechanics

“Provide ships or sails adapted to the heavenly breezes, and there will be some
who will brave even that void.“

Johannes Kepler

Having developed a separate understanding for our optical and mechanical
systems, we proceed to study their mutual coupling in this section. The chapter
structure is as usual: we develop the basics in a simplified model, in this case
that of end-mirror coupling, and move to the more complicated reality of a
membrane inside a cavity.

5.1 Radiation Pressure Coupling

Light carries momentum. This simple fact implies that it can exert a force on
a reflective body, proportional to the transferred momentum. This radiation
pressure force was first hypothesized by Johannes Kepler to explain his comet
tail observations in the 17th century [122] and demonstrated in so-called light-
mill experiments at the start of the 20th century [123, 124, 125].

This phenomenon is the underpinning physics in our cavity optomechanical
experiments, where a cavity field of sufficient intensity can push the cavity
mirrors. In the case of a Fabry-Perot cavity, the radiation pressure Frad force
is given as [7]

Frad = h̄
Ωcav

Lcav︸︷︷︸
G

a†a, (5.1)

where we have identified the frequency pull parameter G, whose naming will
become apparent in the following.

The force pushes the mirrors apart, increasing the cavity length and cor-
respondingly decreasing the cavity resonance frequency. If we consider the
Hamiltonian for such a mechanically compliant cavity, we find

H = h̄Ωcav(q)a
†a+ h̄Ωmb

†b, (5.2)

where a and b are annihilation operators for the optical and mechanical modes
respectively. For displacements small relative to the cavity length, Ωcav(q) is
well-described by a first-order Taylor expansion,

Ωcav(q) = Ωcav + q
∂Ωcav

∂q︸ ︷︷ ︸
−G

+O(q2), (5.3)
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where the identification of G can be verified by straight-forward computation.
The naming now makes sense: G describes the shift in frequency for a given
displacement, and the negative sign accounts for the fact that we take a pos-
itive displacement to increase the cavity length. Under these conditions the
Hamiltonian becomes

H = h̄Ωcava
†a+ h̄Ωmb

†b−h̄Gxzpfa
†a(b+ b†)︸ ︷︷ ︸

Hint

. (5.4)

We denote the product g0 := Gxzpf as the vacuum optomechanical coupling
rate, describing the frequency shift induced by one quantum of displacement.

The evolution of a and b and their conjugates is described by quantum
Langevin equations, encompassing the Hamiltonian evolution and noises en-
tering the system. For the mechanical oscillator we prefer a description in
terms of position q and momentum p:

q = xzpf(b+ b†) (5.5a)

p =
h̄

2xzpf
(b− b†) (5.5b)

The QLEs for the system described by eq are given as

ȧ =
(
−κ
2
+ i∆+ iGq

)
a+

√
ηcκsin +

√
(1− ηc)κfin (5.6a)

ȧ† =
(
−κ
2
− i∆− iGq

)
a† +

√
ηcκs

†
in +

√
(1− ηc)κf

†
in (5.6b)

q̇ = p/meff (5.6c)

ṗ = −Γmp−meffΩ
2
mq + h̄Ga†a+ Fth (5.6d)

The optical fin and mechanical Fth noise terms have zero mean and the
following second moments:

〈
f †

in(t1)fin(t2)
〉
= 0, (5.7a)〈

fin(t1)f
†
in(t2)

〉
= δ(t1 − t2), (5.7b)

〈Fth(t1)Fth(t2) + Fth(t2)Fth(t1)〉 = 4meffΓmkBTδ(t1 − t2). (5.7c)

Here we again assume the optical field to be at zero occupancy, which we
however cannot justify for the thermo-mechanical noise6. The non-linear equa-

6It should be noted that the δ-correlated mechanical noise is the limiting case relevant for
mechanical coherence times τcoh longer than the characteristic ”thermal time” τT = h̄/kBT .
Since τT (1mK) ≈ 7ns, we are always in the regime τcoh � τT [126].
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tions 5.7 are cumbersome to deal with, but reveal important static phenomena.
Looking for steady state solutions we find

q̄ = − h̄G

meffΩ2
m
|ā|2 , (5.8a)

|ā|2 = ηcκ

(κ/2)2 + (∆ +Gq̄)2
|sin|2 . (5.8b)

Equation 5.8a alone shows that the mean intra-cavity intensity leads to
a static displacement of the membrane. It is possible to eliminate one of
the variables and solve the resulting cubic equation, but we choose instead
a simpler description. If we assume the radiation-pressure interaction to be
purely conservative (that is to say, assume an instantaneous response without
lag, valid for Ωm � κ), we can approximate the radiation pressure force as the
derivative of a potential Vrad

Frad ≈ −∂Vrad(q)

∂q
. (5.9)

The total potential of the mechanical oscillator now contains its intrinsic
harmonic potential and the modification due to the radiation pressure inter-
action. By combining equations 5.1 and 5.8b to find Vrad, we find the total
potential

V = VHO + Vrad =
1

2
meffΩ

2
mq

2 − h̄Gηcκn̄max arctan
(
Gq +∆

κ/2

)
, (5.10)

where n̄max denotes the peak intracavity average photon number. As can
be seen in figure 5.1, the radiation pressure interaction modifies the mechan-
ical potential, leading to three regime as the optical power increases: (i) the
radiation-pressure potential is weak compared to the intrinsic mechanical po-
tential, so the equilibrium position is only shifted slightly. (ii) The static
bistability regime, where the two potential contributions are comparable, lead-
ing to two stable solutions. (iii) The optical potential dominates the intrinsic,
effectively ”trapping” the mechanical oscillator optically. In practice the static
bistability imposes a bound how much light we can pump our cavity with, be-
fore the lower order modes of our membranes enter static bistability, rendering
the cavity impossible to lock.

Typically the interaction described by the third term of equation 5.4 is
weak, g0 � Ωcav,Ωm. However the factor a†a allows us to boost the interac-
tion strength by driving the cavity with a strong coherent field α (that is, a
laser). In this case we can linearize the non-linear three-wave mixing process
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Figure 5.1: Optomechanical static bistability. The optically modified mechan-
ical potential of eq. (5.10) is plotted for (dashed black) the bare case and (from
light to dark red) increasing n̄max. Since potentials only are defined up to a
constant, the red curves are offset vertically to overlap with the bare potential.
Hollow circles indicate the stable positions, determined by potential minima.

by considering field fluctuations around the field average α as,

a = α + δa

From this point, we switch notation such that a 7→ δa denotes the fluctuations.
To proceed further we transform to a reference frame rotating at Ωcav by

introducing the detuning ∆ = ΩL − Ωcav between an incident laser and the
cavity. Futhermore we choose the incident field as the phase reference, in
effect choosing α purely real. Finally, we only keep terms up to linear order in
a and a† which all together give us the interaction Hamiltonian as

Hint = −h̄ g0α︸︷︷︸
g

(a+ a†)(b+ b†). (5.11)

Equation 5.11 describes a pair of harmonic oscillators, coupled at the field
enhanced optomechanical coupling rate g. Multiplying out the parentheses
yields four terms that in pairs describe two different physical processes, as well
as the static displacement:

Hint = −h̄g(ab+ a†b† + ab† + a†b)− h̄g0α
2(b+ b†). (5.12)

The first two terms is the Hamiltonian of a parametric amplifier7, while

7In a quantum optics context, this is also frequently called the spontaneous parametric
downconversion (SPDC) or two-mode squeezer Hamiltonian.
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the two last terms is a state-swap Hamiltonian8. The static displacement
term is conventionally absorbed into the detuning such that ∆ 7→ ∆ + Gq̄.
Interestingly, these two different processes are resonant at different detunings,
which is highlighted by explicitly writing out the time-dependence:

Hint(t) = −h̄g(a0b0 e−i(Ωm−∆)t + a†0b0 e−i(Ωm+∆)t + h.c.), (5.13)

where h.c. is shorthand for Hermitian conjugate. Choosing ∆ = Ωm then
prefentially enhances the parametric amplification and ∆ = −Ωm the state-
swap interaction. These two processes are analogous to Stokes and anti-Stokes
Raman scattering, and produce two sidebands on the strong coherent field
α, that respectively are Ωm above and below in frequency. In fact within a
rotating-wave approximation (valid in the sideband-resolved regime where κ�
Ωm, expanded in the following), one can neglect the fast oscillating process, in
effect tailoring the interaction for a given experiment.

The QLEs subject to the linearized interaction can be found as

ȧ =
(
i∆− κ

2

)
a+ ig(b+ b†) +

√
ηcκ sin +

√
(1− ηc)κfin, (5.14a)

ḃ =

(
−iΩm − Γm

2

)
b+ ig(a+ a†) +

√
Γmξin. (5.14b)

All the optomechanical experiments described in this thesis are conducted
within the linearized regime described by eqs. (5.14).

Sometimes it is intructive to consider the Langevin equations in terms of
quadrature rather than the ladder operators for the light and mechanics. To
this end we define these quadrature operators as:

XL =
a+ a†

2
, YL =

a− a†

2
, (5.15a)

Xm =
b+ b†

2
, Ym =

b− b†

2
. (5.15b)

Additionally we can describe the input terms in a similar manner. Here we
distinguish with a superscript indicating the signal whose quadratures we are
writing:

8Called the beam splitter Hamiltonian in quantum optics.
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X in
L =

sin + s†in
2

, Y in
L =

sin − s†in
2

, (5.16a)

Xex
L =

fin + f †
in

2
, Y ex

L =
fin − f †

in
2

, (5.16b)

Xex
m =

ξin + ξ†in
2

, Y ex
m =

ξin − ξ†in
2

, (5.16c)

(5.16d)

such that intentionally applied signals are labeled by ”in” and unavoidable
noise terms by ”ex”. Rewriting the Langevin equations in these terms then
gives:

ẊL = −κ
2
XL + i∆YL +

√
ηcκX

in
L +

√
(1− ηc)κX

ex
L , (5.17a)

ẎL = −κ
2
YL + i∆XL + 2igXm +

√
ηcκY

in
L +

√
(1− ηc)κY

ex
L , (5.17b)

Ẋm = −Γm

2
Xm − iΩmYm +

√
ΓmX

ex
m , (5.17c)

Ẏm = −Γm

2
Ym − iΩmYm + 2igXL +

√
ΓmY

ex
m . (5.17d)

A flicker of intuition about the optomechanical coupling can now be gar-
nered from eqs. (5.17). We can see that the mechanical displacement Xm ∝ q
only shows up in the equation for the optical YL quadrature, proportional to the
optical phase. In the same way, the optical amplitude quadrature ∝ XL only
shows up in the equation for Ym, proportional to the mechanical momentum.

In the quadrature language the cavity output, with operators analogous to
eq. (5.16a), can again be found from the input-output relation (2.30)

Xout
L = X in

L −√
ηcκXL, (5.18a)

Y out
L = Y in

L −√
ηcκYL. (5.18b)

The mechanical signal can then be measured in two ways: either by mea-
suring the phase ∝ YL of a resonant ∆ = 0 field, or the intensity ∝ XL of
a detuned ∆ 6= 0 field that has interacted with the cavity. Details of such
measurements are expanded in section 6.1.2.
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5.1.1 Dynamical Backaction

To study the consequences of the equations developed in the preceding beyond
static phenomena, we consider the consequences of a delay between the ra-
diation pressure force, and the mechanical oscillations. Such a delay can be
induced the cavity susceptibility: when detuned from resonance, the cavity
imparts a detuning-dependent phase-shift on the incident field. The physics
can also be pictured by noting that a detuned cavity correlates the amplitude
and phase of an incident field. Since the position of the mechanical oscillator
is encoded in the optical phase, and the amplitude of the intra-cavity field
couples to the momentum of the mechanics, the correlations between optical
amplitude and phase induced on a detuned field manifests as a backaction on
the mechanics. We call this important effect dynamical backaction.

Quantitatively the consequences of dynamical backaction can be studied
solving equations 5.14 in the Fourier domain. One finds that the mechanical
susceptibility χ−1

q (Ω) = meff(Ω
2
m − Ω2 − iΓmΩ) gets optically modified to an

effective mechanical susceptibility χeff, which contains changes in the apparent
resonance frequency and linewidth of the mechanics, ∆Ωm and Γopt:

χ−1
eff (Ω) = χ−1

q (Ω) +meffΩ (2∆Ωm − iΓopt) . (5.19)

In this way, the effective oscillator parameters are Ωeff = Ωm + ∆Ωm and
Γeff = Γopt + Γm. The modifications to frequency and decay rate are referred
to as the optical spring effect and optomechanical dampening respectively, and
are given as

∆Ωm(Ω) = g2
Ωm

Ω

(
∆+Ω

(κ/2)2 + (∆ + Ω)2
+

∆− Ω

(κ/2)2 + (∆− Ω)2

)
, (5.20a)

Γopt(Ω) = g2
Ωm

Ω

(
κ

(κ/2)2 + (∆ + Ω)2
− κ

(κ/2)2 + (∆− Ω)2

)
. (5.20b)

Since we work with high Q mechanical oscillators, and the modifications
(depending on detuning) are of the same order, the most important effect is
the optomechanical dampening. Usually we are in the situation ∆Ωm � Ωm,
Γopt � Γm, since Ωm/2π > 1MHz whereas Γm/2π ≈ 10mHz. In figure 5.2, we
plot eqs. (5.20).

In cavity optomechanics, we typically distinguish two regimes of the nature
of the interaction, and thus the modifications of eqs. (5.20). When the cavity
linewidth κ is broader than the mechanical frequency Ωm we cannot to a good
degree distinguish the two processes of the interaction Hamiltonian (5.13). We
hence call the condition Ωm � κ the unresolved sideband regime. Conversely,
when the cavity is narrowband relative to the mechanical frequency, it’s sus-
ceptibility allows the distinction between the Stokes and anti-Stokes processes,
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Figure 5.2: Dynamical backaction modifications to the mechanical suscepti-
bility. For Ωm = 2κ and g/2π = 30 kHz we plot the optical spring (teal)
and optomechanical damping (purple) as given by eqs. (5.20), evaluated for
Ω = Ωm and varied ∆.

enhancing one and suppressing the other. Accordingly we call the condition
κ � Ωm the resolved sideband regime. The optomechanical dampening can
in fact be viewed as the competition of Stokes and anti-Stokes scattering: the
former is associated with the negative term of equation (5.20b) (compare the
frequency dependence to that of eq. (5.13)), and the anti-Stokes process cor-
responds to the first, positive term.

In the resolved sideband regime, with the strong coherent field detuned
below resonance ∆ = −Ωm, the optical modifications evaluated at Ω = Ωm
simplify considerably

∆Ωm(Ωm) ≈ 0, (5.21a)

Γopt(Ωm) ≈
4g2

κ
. (5.21b)

.
Equation (5.21b) motivates the introduction of the classical coorperativity,

C which compares the rates of coherent interaction and energy decay:

C =
4g2

κΓm
=

Γopt

Γm
. (5.22)

Interestingly the resolved sideband regime, in principle, allows ground-state
cooling of the mechanical oscillator, in contrast to the unresolved regime. To
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see this, we can consider how the optomechanical interaction changes the av-
erage number of excitations populating the mechanical oscillator. We have
already noted how the two terms of eq. (5.20b) describe the rates A± of in-
creasing or decreasing the average phonon number:

A± =
g2κ

(κ/2)2 + (∆∓ Ωm)
, (5.23a)

Γopt = A− − A+. (5.23b)

The up- and downward transition probabilities Γn→n+1 and Γn→n−1 are
then given as

Γn→n+1 = (n+ 1)A+ (5.24a)

Γn→n−1 = nA−. (5.24b)

.
Together with the definition of the mean phonon number n̄ = Σnnpn and

it’s time derivative ˙̄n, in the steady state ˙̄n=0, one finds a minimum occupation,

n̄min =
A+

A− − A+
, (5.25)

known as the back-action limit for sideband cooling of mechanical motion.
Minimizing n̄min by varying ∆ in the resolved and unresolved regimes gives

n̄RSB
min =

(
κ

4Ωm

)2

� 1, (5.26a)

n̄URSB
min =

κ

4Ωm
� 1. (5.26b)

In the resolved sideband regime, the minimal occupation is found for ∆ =
−Ωm. Apart from back-action heating due to the Stokes process, the equation
of motion for mechanical oscillator (5.14b), also contains coupling to a ther-
mal bath, with mean occupation n̄th, at the mechanical decay rate Γm. The
presence of this additional coupling yields a final occupation

n̄final =
n̄minΓopt + n̄thΓm

Γopt + Γm
. (5.27)

In the regime of strong classical coorperativity C � 1, the final occupation
can be re-expressed in terms of the quantum coorperativity Cq = C/n̄th:
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n̄final = n̄th + 1/Cq, (5.28a)

Cq =
4g2

κΓmn̄th
=

Γopt

Γmn̄th
. (5.28b)

The quantum coorperativity describes the rate of coherent interaction rel-
ative to the decoherence (rather than energy decay) rate. Evidently Cq > 1
is required for cooling to an average final occupation n̄final < 1, which in the
cavity optomechanics community is the criterion for ground-state cooling.

5.1.2 Optomechanically Induced Transparency

The conditions of red-detuning by the mechanical frequency, high coorperativ-
ity and sideband resolution also give rise to another interesting phenomenon:
optomechanically induced transparency (OMIT). This is a close analog of the
atomic physics phenomenon of electromagnetically induced transparency (EIT).
As such, OMIT facilitates the same applications as EIT, such as coherent stor-
age of light in a stationary system, with applications in quantum networks.

The basis of a mathematical description of OMIT is the Langevin equations
of eqs. (5.14). If we consider an input flux sin with an optical frequency ΩL,
phase-modulated at a small modulation depth β � 1, at a frequency Ωmod,

sin(t) = s0ei(ΩLt+β sin(Ωmodt)) = s0eiΩLt (1 + iβ sin(Ωmodt) , (5.29)

we can investigate its interaction with the optomechanical cavity. The trans-
mitted flux |sout,T|2 from the cavity, within the linearization of the optome-
chanical interaction and assuming no excess cavity loss and α ∈ R, is given as
by the input-output relation

|sout,T|2 = (1− ηc)κ |α + a|2 ≈ (1− ηc)κ
(
α
(
a+ a†

))
. (5.30)

Here we only kept terms ∝ a+a† and disregarded components at DC and (a+
a†)2. Solving the Langevin equations for a, b and their Hermitian conjugates
in the Fourier domain and dropping the noise terms then yields

a(Ω) = χcav(Ω)
(
ig(b+ b†) +

√
ηcκsin

)
, (5.31a)

a†(Ω) = χ∗
cav(−Ω)

(
−ig(b+ b†) +

√
ηcκs

†
in

)
, (5.31b)

b(Ω) = igχm(Ω)(a+ a†), (5.31c)

b†(Ω) = −igχm(−Ω)(a+ a†). (5.31d)

Because the relecant output signal (5.30) is determined by (a + a†) and
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Figure 5.3: Magnitude of OMIT response from equation (5.34). In dashed
black the cavity response for g = 0 and in red for g/2π = 100 kHz is plotted.
Parameters: Ωm/2π = 2.4MHz, Γm = 20mHz, ηc = 0.9, κ/2π = 2MHz,
∆ = −Ωm.

(b+ b†) we can readily find these from (5.31):

a+ a† = ig(b+ b†) (χcav(Ω)− χ∗
cav(−Ω)) +

√
ηcκ (χcav(Ω)sin + χ∗

cav(−Ω)s∗in) ,

(5.32a)

b+ b† = ig(a+ a†) (χm(Ω)− χm(−Ω)) . (5.32b)

Since we have taken the carrier α to be real, the modulation sidebands are
in general not so. We have to account for the complex cavity transfer function,
giving

sin = iβs0
|χcav(0)|
χcav(0)

, (5.33a)

s†in = −iβs0
|χcav(0)|
χ∗

cav(0)
. (5.33b)

We can now solve (5.32) for a+ a†, subject to the input (5.33a), and find:

a+ a† = i
√
ηcκ

|χc(0)|
(

χcav(Ω)
χcav(0)

− χ∗
cav(Ω)

χ∗
cav(0)

)
1 + g2(χcav(Ω)− χ∗

m(Ω))(χm(Ω)− χ∗
cav(Ω))

βs0. (5.34)

Interestingly, the mechanical response only shows up in the second term of
the denominator. This means OMIT is also a useful spectroscopic technique
for easily determining cavity parameters such as detuning and linewidth.
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In figure 5.3 we show the magnitude of eq. (5.34) for zero and large cou-
pling g. Traces like the black dashed line can acquired from a fast, coarse scan
over the cavity lineshape, and robustly fitted the extract ∆ and κ. To obtain
data like the red line requires a slower, more fine-grained scan, since the time
between steps cannot exceed the mechanical response time and also must be
able to resolve the sharp mechanical transparency dip.

5.1.3 Transient OMIT

In our mechanical memory experiments, we rely on OMIT to convert an optical
input to mechanical excitations for later retrieval. For these storage experi-
ments, the Fourier domain description is insufficient, since we in this case are
studying transient effects of OMIT. In particular we are interested in describ-
ing how the optomechanical system responds to input fluxes with time-varying
amplitudes sin(t) = s0(t)eiΩLt. Within the weak coupling regime g � κ the
cavity responds fast such that we can adiabatically eliminate the it and write
the output it terms of either b and b† or the mechanical quadratures.

Adiabatic elimination is a mathematical technique often employed in quan-
tum optics when dealing with a system described by fast and slow variable,
that we briefly review following [87]. Considering the pair of coupled dissipa-
tive equations of motion for the two variables x1 and x2, we write them in a
general form

ẋ1 = −γ1x1 + f1(x1, x2), (5.35a)

ẋ2 = −γ2x2 + f2(x1, x2). (5.35b)

Taking x1 as the fast variable then implies γ1 � γ2. In this case x2 is es-
sentially constant over the timescale defined by γ−1

1 which then can be utilized
to write:

x1 ≈
1

γ1
f1(x1, x2), (5.36)

that can be solved for x1, to obtain x1(x2) in terms of x2. With an alge-
braic, rather than differential, equation for the fast variable we can state the
differential equation for the slow variable in these terms:

ẋ2 ≈ −γ2x2 + f2
(
x1(x2), x2

)
, (5.37)

thus obtaining a only single differential equation for the system dynamics.
This can then be written to the form:

ẋ2 = φ(t)x2 + ψ(t). (5.38)
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One can then solve eq. (5.38) by formally integrating to get:

x2(t) = e−
∫
φ(t′)dt′

[∫ t

t0

e+
∫
φ(t′′)dt′′ψ(t′)dt′ + C0

]
, (5.39)

with C0 an initial value determined constant.

In the present case, we can consider the cavity mode a the fast variable
and the mechanics b the slow, κ � Γeff. If we furthermore move to a frame
rotating at −Ωm and apply a rotating wave approximation, dropping the b†
term, applying the adiabatic elimination result eq. (5.39) to b then yields

b(t) = e−
(

Γeff
2

+iδ
)
t

[
b(0) + i

∫ t

t0

e+
(

Γeff
2

+iδ
)
t′
(√

ηcΓoptsin(t
′) +

√
(1− ηcΓopt)fin

)
dt′
]
,

(5.40)
where δ = ∆ − (−Ωm) defines the two-photon detuning such that δ = 0

when ∆ = −Ωm. Equation (5.40) is a bit involved at a first glance, so it merits
an attempt at unpacking before proceeding.

Firstly we can consider the case of no driving, and two-photon resonance.
Then the first term simply predicts mechanical decay at the optically broad-
ened decay rate Γeff, which is in line with expectations.

If we now consider a coherent input and and disregard the vacuum noise
fin, the second term predicts the mechanics ringing up at the same rate. As
an example of this, we can consider initially having the mechanics in thermal
equilibrium and subject to a strong drive. Then the presence of the optical
drive simply tells us that the mechanical amplitude will grow, again in line
with expectations.

In a similar manner, the optical output (in reflection) from the cavity sout
can be determined

sout(t) = sin(t)− i
√
ηcΓoptb(t). (5.41)

These equations (5.40,5.41) from the mathematical basis of the mechanical
memory experiments, detailed in section 8.
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5.2 Membrane in the Middle
The optomechanical system we work with in the lab differs from the canonical
optomechanics picture of an optical Fabry Pérot cavity with a mechanically
complaint end mirror. Rather, we work with a mechanical resonator placed
inside a cavity. This so-called membrane in the middle (MIM) design inher-
its the abstract description of the canonical system, albeit with a frequency
pull parameter G that now depends on the properties and alignment of the
membrane.

In a cursory sense, the coupling comes about from the fact that the re-
fractive index of the membrane is different from that of vaccum. For certain
positions of the membrane relative to the intracavity standing wave, the me-
chanical vibrations can then modulate the cavity length in a manner remi-
niscent of the canonical case. As such the mapping from canonical to MIM
optomechanics lies in accounting for these effects appropriately, which will be
the topic of the following section.

The main advantage of the membrane in the middle approach is that the
design of the optical and mechanical resonators now can be separated. For
our optical resonator we stay close the canonical picture, relying on a high-
finesse Fabry Pérot cavity comprised of highly reflective dielectric mirrors. We
buy these from specialized coating companies and focus our attention of the
engineering of the mechanical resonator as described in section 3.

5.2.1 Transfer-Matrix Method

We follow the transfer-matrix method of [85] to decribe the effect of a mem-
brane inside a cavity, cf figure 5.4.

Figure 5.4: Membrane in the middle. We tally up the effects of reflection and
transmission through the optical components (the cavity mirrors are drawn
thick, in light gray, the membrane thin, in dark gray) by tracking the field
components traveling in the positive and negative z direction in either sub-
cavity E±

j .

The cavity is comprised of two mirrors, each with a field reflection and
transmission coefficient indexed by j, rj and tj. The membrane is modelled
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as a dielectric slab of thickness h and refractive index n, placed a distance
zm from the incoupling mirror. Such a slab has reflection and transmission
coefficients [85]

rm =
(n2 − 1) sinnkh

2in cosnkh+ (n2 + 1) sinnkh
, (5.42a)

tm =
2n

2i cosnkh+ (n2 + 1) sinnkh
, (5.42b)

for a monochromatic field with wavenumber k = 2π/λ. The intracavity mode
is approximated by plane waves, which is a good approximation as long as
the cavity length Lcav is shorter than its Rayliegh range zR. We follow the
phase convention of [...] and write up equations for electric field travelling
in the positive and negative z direction in the two sub-cavities E±

j as well as
reflected and transmitted fields:

E+
1 = it1Ein + r1E

−
1 eikzm , (5.43a)

E−
1 = rmE

+
1 eikzm + itmE

−
2 eik(Lcav−zm), (5.43b)

E+
2 = itmE

+
1 eikzm + rmE

−
2 eik(Lcav−zm), (5.43c)

E−
2 = r2E

+
2 eik(Lcav−zm), (5.43d)

ER = r1Ein + it1E
−
1 eikzm , (5.43e)

ET = it2E
+
2 eik(Lcav−zm). (5.43f)

We write equations (5.43) here to elucidate their origin in the physics pic-
tured in figure 5.4, but in practice solve them in a matrix form:


E+

1

E−
1

E+
2

E−
2

 =


0 r1eikzm 0 0

rmeikzm 0 0 itmeik(Lcav−zm)

itmeikzm 0 0 rmeik(Lcav−zm)

0 0 r2eikzm 0


︸ ︷︷ ︸

M


E+

1

E−
1

E+
2

E−
2


︸ ︷︷ ︸

E

. (5.44)

Defining the matrix T = I−M, where I denotes the identity matrix means
we can calculate the vector of field components E, driven by an input Ein
through the first mirror as

E = T−1
(
it1Ein 0 0 0

)T
. (5.45)

Having obtained a solution for the intra-cavity field components, we then
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proceed numerically since the analytical expressions quickly get unwieldy. Op-
erationally we first solve the matrix equation (5.45) analytically and then con-
struct |ET|2 and |ER|2, using eqs. (5.43e-f) and evaulate them for a large range
of wavenumbers. Then we numerically identify and fit resonances in the trans-
mission or reflection, using a peak-finder algorithm. This allows us to extract
how the linewidth, transmission peak height and reflection dip depth, as well
as resonant frequency all depend on k.

In the MIM model, this k dependence is periodic (deviations can be ob-
served for membranes very close a mirror - the so-called membrane at the
edge design [127]). As either the membrane is translated along the cavity axis
or different longitudinal cavity modes with different resonant k are probed,
the membrane position relative to the standing intensity pattern is varied.
Therefore we usually discuss the modulation of cavity parameters due to the
membrane in terms of the ”2kzm” position, since both tuning mechanisms are
described by this number. In figure 5.5 we plot the numerically calculated pa-
rameter modulations, obtained by the produce outlined above. In the caption
we introduce ∆λ which defines the wavelength range we evaluate the model
over, and N which is the number of points used in the numerical calculation.
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Figure 5.5: 2kz modulation cavity parameters. Input parameters: |t1|2 = 280×
10−6, |t2|2 = 10 × 10−6, h = 20 nm, zm = 1.902 72mm, Lcav = 5.503 14mm,
λ0 = 1550.013 74 nm, ∆λ = 6 nm, N = 2 × 107. The hollow circles indicate
values extracted from fits to reflection and transmission peaks, and the solid
lines are in turn sinusoidal fits to the extracted values.

For the shown configuration, we learn that we can achieve simultaneous
narrowing of the linewidth κ and large G = −∂∆Ωcav/∂z, given by the deriva-
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tive of the cavity frequency modulation, around 2kz ≈ 4.5. We note that
seemingly absurd numerical precision given for eg. zm and Lcav do not indicate
that we know these quantites to such precision. Rather, they are chosen so
that they do not divide nicely into one another, since in this case the sinusoidal
modulations only are sampled at a few points when taking mod (2kz, 2π).

5.2.2 Modified Effective Mass

In section 3.2 we introduced the effective mass for a given mode. Implicit in the
given definition is the assumption of an ideal point-like probe of the point of
maximum displacement. In real membrane-in-the-middle cavity optomechan-
ics experiment this is never truly the case and the validity of the approximation
depends on the relative size of the cavity waist w0 and the mechanical wave-
length Λ. Outside of the regime w0 � Λ, the cavity field probes significant
portions of the membrane, that by definition has smaller out-of-plane displace-
ment than the (typically centered) point of maximal displacement. As such,
in a loose sense, the membrane ”appears” heavier, with a smaller apparent
displacement, despite being driven by the same eg. thermal force noise or ra-
diation pressure force.

We can quantify these ideas by modifying the definition of the effective
modal mass to account for the overlap of the optical probing field and me-
chanical displacement field. For the fundamental longitudinal Gaussian cavity
mode (cf. eq. 2.14), the normalized intensity, evaluated at the membrane
position, is given by

Ī(x, y) =
I(x, y, zm)

I0
=

2

πw(zm)2
e−2(x2+y2)/w(zm)2 . (5.46)

Using eq. (5.46) as the shape of the optical mode probing the membrane
motion with modeshape wmech, we can define its peak-normalized version ψw =
|wmech|/max |wmech|, and then modify the effective mass as an weighted average
of the displacement field over the optical mode

meff = ρh

∫
A
(ψw)

2 dA, (5.47a)

=⇒ meff,MO = ρh

∫
A

|wmech|2

(
∫
A |wmech|Ī(x′, y′)dA′)2

dA, (5.47b)

=

(∫
A
ψwĪ(x, y)dA

)−2

︸ ︷︷ ︸
mode overlap penalty η−2

MO

ρh

∫
(ψw)

2 dA︸ ︷︷ ︸
original meff

. (5.47c)

This new effective mass that accounts for mode overlap, meff,MO, in turn
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leads to a modified g0 = xzpfG, since xzpf ∝ m−1
eff . The reduction in g0 due

to non-ideal mode overlap is given by ηMO, which we evaluate numerically for
a simulated displacement profile of the membrane mode used in the memory
experiments, see figure 5.6.
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Figure 5.6: Optical-mechanical mode overlap for finite waist size. Left: We
numerically evaluate ηMO according to eq. (5.47) (hollow black circles) for the
normalized mode profile shown to the right, by sweeping w0 of the cavity mode.
In orange we plot a simple guiding line ηMO = (1 + (2w0/Λ)

2)
−1, that follows

the overall trend of the numerical points, apart from the dip when the cavity
mode also probes negative displacement around 2w0/Λ ≈ 2. The vertical red
line is indicative of the cavity used in the memory experiments.

The same numerical machinery can be applied to study the effects of a
small enough, but misaligned beam. Instead of varying w0, we can translate
the center of the probing Gaussian beam, such that (x, y) 7→ (x+ δx, y + δy).

In figure 5.7 we plot numerically evaluated ηMO for a fixed waist w0 =
89 µm, sweeping the center δx, δy of the gaussian beam along the diagonal,
indicated by the red arrow overlaid on the modeshape insets (cf. figure 5.6).
Here the relative flatness near δx = 0 tells us that for the given cavity and
membrane modes, we have a roughly 50 µm wide band centered on the middle
of the defect, where the mode overlap penalty is small for the radially symmet-
ric (top) mode, and comparatively large for the (1, 1)-like mode (bottom). In
this way one can attempt to quantify when an optomechanical cavity is aligned
”well enough”, which otherwise can be tricky to gauge, since perfect alignment
only exists on paper.
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Figure 5.7: g0 penalty from misalignment, for two defect modes. Hollow black
circles are numerical calculations of eq. (5.47), for a probing beam, misaligned
by a varying

√
δx2 + δy2 along the diagonal indicated by the red arrow. The

vertical black dashed lines indicate a 50 µm wide region, centered on the middle
of the defect. The horizontal black dashed line indicates the maximal value of
ηMO.
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6 Experimental Methods

“The struggle itself toward the heights is enough to fill a man’s heart. One must
imagine Sisyphus happy.”

Albert Camus

To connect the theoretical concepts henceforth discussed with the actual
experiments conducted, we review some practicalities in this section. We
discuss how we actually measure the mechanical oscillators using light, var-
ious feedback-stabilization schemes, and our procedure for putting together a
membrane-in-the-middle optomechanical cavity.

6.1 Optical Detection of Mechanical Motion
Measurements of interfering optical fields can produce signals that are sensitive
to very small fluctuations in the phase difference of the interfering fields. We
utilize this fact to measure the small vibrations of our mechanical oscillators,
both when characterizing new designs of resonators as well as the “proper”
cavity optomechanical experiments. Here we explain the principles of optically
measuring mechanical displacement in two cases: with the membrane forming
one mirror of a Mach-Zehnder interferometer, and the case of the membrane
inside a cavity.

Before carrying on, we must note that this is a vast topic that has been
studied meticulously both theoretically and experimentally for more than half
a century. The present description does not do this body of work justice in the
slightest, but is simply intended as a practical explanation of the techniques
we employ in our experiments.

6.1.1 Interferometry

The Mach-Zehnder interferometer is comprised at the most basic level of an
input beamsplitter that splits an input field into the two ”arms” of the in-
terferometer, that separately each propagate the distances L1 and L2, before
recombining on a second output beamsplitter, cf. figure 6.1. We call the arm
that reflects off the membrane the probe arm and the other the reference arm.

To calculate the intensity at the two outputs |E±|2, we consider the prop-
agation of Ein = E0eikx through the optical components. We find for the two
fields impinging on the output beamsplitter

E1 = t1E0eikL1 , E2 = r1rmE0eikL2 , (6.1)

with rm given by eq. (5.42). Taking the output beamsplitter to be equally
reflective and transmissive, r2 = 1/

√
2, t2 = i/

√
2 (consistent with the conven-
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Figure 6.1: Sketch of a Mach-Zehnder interferometer for measuring membrane
displacement. An input electric field Ein is divided at an input beamsplitter
into two beams, one of which reflects on the mechanical resonator whose mo-
tion we want to measure. The two beams interfere at a second beamsplitter
such that the intensity of the two output modes |E±|2 encode the path length
difference, containing a contribution from mechanical oscillations q(t).

tion used in the transfer matrix calculation), we find the output intensities

|E±|2 =
|E0|2

2

(
|t1|2 + |rm|2|r1|2 ± 2|r1||t1||rm| cos (2k∆L+ φm)

)
, (6.2)

where we define the arm length difference ∆L = L2−L1 and an ultimatively
irrelevant membrane reflection phase φm = arg rm.

Since L2 7→ L2 + q(t) depends contains q(t), the mechanical displacement
can be extracted from such an interferometric phase-sensitive measurement.
We do so in two different ways, balanced homodyne and balanced heterodyne
detection, each used in different characterization inteferometers. Since mechan-
ical signal is proportional to the geometric mean of the arm powers, it is often
advantageous to operate with an unbalanced input beamsplitter |r1| � |t1|, to
avoid excessive powers on the membrane, but rather boosting the signal with
a stronger reference arm.

Figure 6.2: Transduction of mechanical displacement to an optical signal. At
certain k∆L = −π/2 mod 2π, small amplitude mechanical vibrations q � λ
are linearly transduced to intensity fluctuations which a photodiode can detect.
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Balanced detection refers to measuring the difference of two optical signals
with equal (balanced) DC level, such as |E+|2 and |E−|2. Two nice features of
balanced detection is cancellation of common mode noise (eg. classical laser
intensity noise), since it is subtracted, as well as the option to operate the
photodetector with higher gain without fear of saturation, since the strong DC
component is cancelled.

Homo- and heterodyne refers to the optical frequencies of the probe and
reference fields.

Homodyne is when these are the same, i.e. what is pictured in figure
6.1. Then the only amendments necessary for balanced homodyne detection
is a detector with two photodiodes and a subtraction circuit, as well as active
path-length stabilization to keep k∆L = −π/2 mod 2π cf. figure 6.2.

For heterodyne, the frequencies are different, usually by a RF modula-
tion frequency. We realise this by placing an acousto-optic modulator in the
reference arm. This component shifts the optical frequency by an externally
applied modulation frequency. Thus the interference fringe is quickly scanned
over, dispensing with the need for active path length stabilization, but with the
overhead of the modulator in the first place and higher bandwidth electronics
that can resolve the modulation frequency.

In our group we have two different characterization interferometers. One
is largely free space optics and always homodyne, with details given in [128,
129]. The other setup is fiber-based, where the ”plug-and-play” nature of
fiber optics eases switching between homo- and heterodyne balanced detection.
More details on the fiber-based interferometer can be found in [90, 130].

6.1.2 Cavity-based

Strictly speaking an optical cavity is an interferometer, yet the transduction
is more complicated, as described in section 5. Hence we distinguish the two
approaches and expand the cavity-based approach in more detail here. For
our experiments we almost exclusive measure in reflection9, so we restrict the
present discussion to such measurements.

From the quadrature formulation of the optomechanical Langevin equations
(5.17) we already noted two ways of measuring displacements of mechanical
resonator in a cavity: phase-sensitive measurements of a resonant probe field
and intensity-sensitve measurements of a detuned probe, sketched in figure 6.3.

Resonant probing For simplicity we start by treating the case of resonant
sin, where the mechanical information is purely in the optical phase quadrature.

9We conduct two types of transmission measurements: fast OMIT scans to determine ∆
and κ and measurements of the transmitted DC power, to determine the intra-cavity photon
number.
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Figure 6.3: Sketch of cavity-based mechanical displacement measurements.
An optical input with sin reflects off an optomechanical cavity. For a resonant
input ∆ = 0, an optional reference beam αref (dashed red) and output beam-
splitter can be added. For a detuned input ∆ 6= 0, these are not required. The
optomechanical interaction as described by eq. (5.17) imprints the mechanical
quadratures Xm, Ym on the quadratures Xout

L , Y out
L , of the output flux sout.

Then the Langevin equation in the Fourier domain and input-output relation
in reflection gives us:

Y out
L = −2ig

√
ηcκ

κ/2− iΩ
Xm︸ ︷︷ ︸

mechanical signal

+

(
1− ηcκ

κ/2− iΩ

)
Y in

L −
√
ηc − η2c

κ/2− iΩ
Y ex

L︸ ︷︷ ︸
imprecision noise

. (6.3)

This phase-encoded signal is readily measured interferometrically using bal-
anced homodyne detection as described above. For an ideal laser source, with
no excess classical noise, the input quadratures are those of a coherent state, i.e.
independent of the amplitude of the probing field. Then eq. (6.3) suggests one
can achieve arbitrarily precise displacement measurements by increasing the
field-enhanced coupling rate g, proportional to the amplitude of the probing
field sin, making the mechanical signal dominate the imprecision noise.

What makes this assertion break down is how the mechanics gets perturbed
by the light. The mechanical Langevin equations (5.17c-d) tells us that the
momentum of the mechanics gets driven by the radiation pressure force ∝ XL,
which after a quarter period gets rotated to a perturbed displacement, an
effect we call quantum backaction noise. This tradeoff between imprecision and
quantum backaction noise implies an optimal strength of the probing field, and
gives rise to the standard quantum limit of displacement measurements.

61



Detuned probing As we already saw eg. in the discussion of OMIT, a
detuned cavity correlates the amplitude and phase quadratures of the light.
Thus an intensity-sensitive (direct) detection of a detuned probe picks up me-
chanical information since it partially measures the phase quadrature of the
intracavity field.

To describe this more rigorously we first consider this amplitude-phase
correlation for an empty cavity. Sticking to the convention of a purely real
intra-cavity mean field implies ȲL = 0, which enforces a detuning-dependent
phase-space rotation of the input quadratures by an angle φ such that

(
X in

L,φ

Y in
L,φ

)
=

(
cosφ sinφ
− sinφ cosφ

)
︸ ︷︷ ︸

R(φ)

(
X in

L

Y in
L

)
, φ(Ω) = arctan

(
2(∆ + Ω)

κ

)
. (6.4)

We can then write the Fourier domain Langevin equations for optical
quadratures in a matrix form as(

κ
2
− iΩ −i∆
−i∆ κ

2
− iΩ

)
︸ ︷︷ ︸

A

(
XL

YL

)
= 2ig

(
0

Xm

)
+
√
ηcκ

(
X in

L,φ

Y in
L,φ

)
+
√

(1− ηc)κ

(
Xex

L

Y ex
L

)
.

(6.5)

From the input-output relation we find the output quadratures:

(
Xout

L

Y out
L

)
= −2ig

√
ηcκA

−1

(
0

Xm

)
+(I−ηcκA

−1)

(
X in

L,φ

Y in
L,φ

)
−
√
ηc − η2cκA

−1

(
Xex

L

Y ex
L

)
.

(6.6)

Like in the resonant case, we find one term with the mechanical informa-
tion and imprecision noise terms proportional to the inputs. For clarity and
brevity’s sake, we explicitly write out how the mechanical displacement shows
up in the output amplitude quadrature:

Xout
L = 2g

√
ηcκ∆

(κ/2− iΩ)2 +∆2
Xm + imprecision noise. (6.7)

For our mechanical memory experiments, we rely on direct detection of a
detuned probe since we anyway want the dynamical backaction effects associ-
ated with ∆ ≈ −Ωm, in particular the optical broadening Γopt.
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6.2 Feedback Techniques

Conducting a systematic physics experiment requires precise knowledge of the
relevant system parameters. Apart from appropriate calibrations, controlling
the system parameters is paramount. Since ambient conditions, such as tem-
perature or air pressure, can cause drifts and sudden shocks, such as a dropped
screwdriver on the optical table (or even the neighbouring one) or the door to
the lab being opened, we actively stabilize many critical parameters of our
experiment. To do so we rely on feedback techniques, where the general idea is
to measure some signal proportional to the disturbances from a desired value
(the error signal), and after appropriate filtering and amplification, apply the
filtered error signal to the system one wishes to stabilize. These principles
are illustrated in figure 6.4. Conventionally the mathematical description of
feedback takes place in the Laplace domain, which has the advantage over
the Fourier domain of handling transient phenomena. The Laplace domain
representation of a time domain function f(t) is

f(s) =

∫ ∞

0

f(t)e−stdt. (6.8)

Another nice feature is the fact that cascaded systems (such as a controller
and a system to control) have a transfer function which is simply the product
of the individual transfer functions.

+
‐

Figure 6.4: Principle of feedback control. The behaviour of a system G can be
stabilized with a controller K by feeding the output of the system y back and
comparing to a setpoint r, generating an error signal e.

Again referring to figure 6.4, the output y(s) of the system G(s) that we
wish to stabilize is subtracted from a setpoint value r(s), thus generating the
error signal e(s). The error signal is fed to the controller K(s), whose output
is sent to G(s), again producing an output y(s), hopefully closer to the desired
value r(s). As a general rule of thumb, a good error signal is anti-symmetric
around the desired setpoint.

In the following we outline the basics of the various techniques we employ.
The intention is to explain the underlying principles and motivate our ex-
perimental setup, rather than provide a comprehensive discussion of feedback
and control theory, though more such details can be found in [131]. A more
in-depth discussion of our concrete implementations follows in section 8.
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6.2.1 Cavity Locking

To stabilize a laser to a specific detuning with respect to a given cavity mode,
we rely on three different techniques for deriving an error signal: slope locking,
Pound-Drever-Hall (PDH) locking, and its little brother, dither locking, which
are discussed in turn. They share the common requirement of generating an
optical signal from the cavity response, which is sensitive to excursions around
the desired detuning.

Slope Locking Slope locking is the simplest of our cavity-locking techniques.
It is applicable to locking away from resonance, but still within the cavity band-
width 0 < |∆| < κ. It simply relies on the fact that the cavity transmission or
reflection, for detunings in the appropriate range, has a finite first derivative
and thus directly can transduce detuning fluctuations to fluctuations of the
reflected or transmitted optical power that readily can be measured.

The advantage of slope locking is its simplicity and low experimental over-
head: the error signal comes directly from the photodetector, and only the
controller is required (which is always the case for feedback control). On the
other hand the simplicity has the drawback that it is not robust against drifts
in incident power. In a nutshell, the controller cannot distinguish if the reason
for a change in power impinging on the photodetector is due to detuning drift
(eg. more or less light being transmitted) or simply to power drift. As such
it can be used either as an initial “catching” step in a bigger lock sequence,
or for less sensitive applications. Another disadvantage is that slope locking
cannot lock on cavity resonance, where the susceptibility is flat.

Pound-Drever-Hall Locking Locking on cavity resonance is quite impor-
tant for many applications (eg. optomechanical displacement measurements,
or maximal transmission through a filter cavity) so we need to go beyond slope
locking. Our preferred such method is the Pound-Drever-Hall technique. It
requires a means of modulating the frequency (or the phase) of the laser one
desires to lock, and relies on the interference between the optical carrier and
the modulation sidebands. Typically the modulation is done with an external
electro-optic modulator, but directly modulating eg. the laser current also
works. We consider an incident flux sin, at an optical frequency ΩL, phase-
modulated by small modulation depth β � 1 at a modulation frequency Ωmod:

sin = s0ei(ΩLt+β sin(Ωmodt)) ≈ s0
(
J0(β)eiΩLt + J1(β)

(
ei(ΩL+Ωmod)t − ei(ΩL−Ωmod)t

))
,

(6.9)
where we applied the Jacobi-Anger expansion and neglected higher har-

monics, due to the small modulation depth. Here Jn denotes the n’th Bessel
function of the first kind. Directly detecting the reflection of eq. (6.9) off the
cavity we wish to lock can be modelled by our Langevin equation and input-
output relation toolbox. In this case we neglect the quantum noise and simply
write, in the Fourier domain:
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a(Ω) =

√
ηcκ

κ/2− i(∆ + Ω)
sin(Ω), (6.10a)

sout(Ω) = sin(Ω)−
√
ηcκa(Ω) = (1− χcav(Ω))sin(Ω). (6.10b)

−20 −10 0 10 20

Normalized detuning ∆/κ

−1.0

−0.5

0.0

0.5

1.0

n
or

m
al

iz
ed

er
ro

r
si

gn
al

Re(R)

Im(R)

−1 0 1

Detuning (a.u.)

Figure 6.5: Normalized PDH error signal. Left: theory curves according to eq.
(6.11) for Ωmod = 12.5κ. Right: Measured error signal for the optomechanical
cavity with κ/2π ≈ 2MHz with Ωmod/2π = 45MHz.

Our photodetector is sensitive to |sout|2. The full calculation of |sout|2 is
fairly verbose, but since we anyway only are interested in frequency components
around Ωmod, we only keep these terms. Some algebra then gives

|sout(Ω)|2 = 2s0J0(β)J1(β)

(
Im [R] sin(Ωmodt) + Re [R] cos(Ωmodt)

)
, (6.11)

where R is given as

R =
(
1−χcav(Ωmod)

)(
1−χ∗

cav(0)
)
−
(
1−χ∗

cav(−Ωmod)
)(
1−χcav(0)

)
. (6.12)

The real and imaginary parts of the complex reflection coefficient R thus be
accessed by demodulating the measured optical signal around the modulation
frequency with the appropriate phase, as illustrated in figure 6.5.

Here one sees the imaginary part of R providing a good error signal for res-
onant cavity locking, essentially probing the derivative of the cavity response.
The sensitivity (the slope of the error signal around the setpoint) improves with
higher modulation frequency, Ωmod � κ, so typically it is desirable to increase
this, to a frequency limited by the bandwidth of the rest of the signal process-
ing chain. The error signal is linear roughly in the range −κ/2 < ∆ < κ/2,
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which defines the accessible detunings. Apart from the ability to lock reso-
nantly, PDH locking is also less sensitive to drifts in the average laser power,
since it is an AC signal. Thus power drifts only change the amplitude of the
signal, but not the location of the zero-crossing, which in the end is what we
want to stabilize.

Dither locking PDH locking is a powerful technique, but requires a bit of
experimental overhead in terms of fast modulation. For less stringent appli-
cations, one can alternatively employ dither locking, where either the laser or
the cavity is modulated at a slow frequency Ωmod � κ.
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Figure 6.6: Normalized dither locking error signal. Left: theory curves accord-
ing to eq. (6.11), for Ωmod = 0.125κ. Right: measured data for a cavity with
κ/2π ≈ 1MHz, Ωmod/2π = 30 kHz.

Here the modulation does not manifest as sidebands, but rather a detuning
that is periodically scanned back and forth. The slower modulation frequency
required practically means piezo actuators in a cavity can do the modula-
tion, thus eliminating a expensive electro-optic modulator. The mathematical
framework for PDH locking also applies to dither locking.

In the regime of Ωmod � κ the good error signal is encoded in the opposite
quadrature of the PDH case, as seen in figure 6.6. Due to the low modulation
frequency, a limitation of dither locking is the correspondingly smaller feedback
bandwidth possible.

6.2.2 Frequency-Offset Locking

In the sideband-resolved regime, Ωm � κ, stabilizing a laser at the red or blue
sideband ∆ = ±Ωm is not possible by any of the above techniques. There
are several ways of circumventing this, involving either increasingly complex
modulation schemes or using two lasers with a definite frequency difference.
We follow the latter approach, locking the cavity on resonance with one laser,
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that in turn is locked at a frequency offset from a second laser, whose detuning
now can be chosen freely.

Figure 6.7: Offset-locked beat note. The measured spectrum (purple) is fitted
with a Lorentzian (orange) yielding a linewidth Γoffset/2π ≈ 2Hz.

For this lock we derive the error signal from an initial measurement of the
beat note of the two lasers. This measurement is done with a high-bandwidth
(≈ 35GHz) photodiode, and the voltage measured over a 50Ω termination
is down-mixed to baseband. Sending this downmixed beatnote to a digital
phase-frequency detector (PFD) essentially allows us count the difference in
fringes between the beatnote and a reference oscillator [132]. Utilizing the
phase-response of a delay line can be used to similar effect, where the fre-
quency of the downmixer needs to changed to choose a setpoint [133, 134] The
PFD output is now proportional to the frequency difference between our mea-
surement and a setpoint, which is to say an error signal. This error signal is
then fed back to the more noisy of the two lasers, effectively stabilizing it at a
fixed frequency offset from the quieter one.

An exemplary measurement of the locked beatnote is shown in figure 6.7.
We learn that we really can stabilize the lasers well in this way, evidenced by
the narrow linewidth of the beatnote Γoffset/2π ≈ 2Hz, limited by the spec-
trum analyzer resolution.

6.3 Optomechanical Cavity Assembly

Putting anything inside a high-finesse optical cavity is a potentially hazardous
endeavour - it is very easy increase optical losses, as a single speck of dust
in the wrong place can ruin an otherwise pristine assembly. Since this means
cavity assembly can be very time consuming to get right, we here report our,
dearly bought, assembly procedure.
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6.3.1 Handling and Cleanliness Practices

To minimize the risk of dirt contaminating either the membrane, cavity mirrors
or the inside of the sample holder, the most important maxim is to do as little
handling as possible. In practice this means that the order of operations is
important.

The first step is to don the appropriate protection equipment. We wear
dust-free nitrile gloves, a hair net and surgical facemask during the assembly
process.

Then, collect all the needed tools, such as tweezers and screwdrivers, and
clean these. This cleaning is done by a series of sonications, first in acetone
and then in isopropanol, for 15 − 20 minutes each. The cleaned tools can
then be stored wrapped in aluminum foil. Clean the sample holder pieces in a
similar manner. Instead of aluminum foil, we usually store the cleaned pieces
in cleaned plastic boxes until needed.

Next, one should clean the working area thoroughly, which can be done
while the tools are sonicated. Tidy the area and remove anything not needed
during assembly. Then clean all surfaces by wiping them with isopropanol and
lint-free tissues.

A

B

C D

Figure 6.8: Assembly of a membrane-in-the-middle cavity. A: Insertion of
alignment rods. In the photograph one sees the membrane placed in the mem-
brane holder piece with two of four alignment rods inserted in the top holes,
with the alignment holes visible for the two bottom positions. B: The mem-
brane holder lid is added and partially fixed with two of four screws in place.
C: The cavity is transferred to the alignment station, ready for alignment of
the cavity mode to the membrane defect. D: A well-aligned cavity is mounted
on the cryostat cold finger, ready for experiments.
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The first real handling then is to mount the membrane in the membrane
holder piece. We pick the membrane up with a Teflon-tipped pair of tweezers
and gently place it in the sample holder.

Then we add alignment rods to ensure it stays fixed, cf. figure 6.8a. We
found these necessary, since the cryostat we mount the assembled cavity hangs
vertically, meaning gravity can pull the membrane down, off the cavity axis,
resulting in a different alignment, when transferred from the assembly station
to the experiment (compare fig. 6.8C-D). The alignment rods are simply short
segments of welding wire, with a gauge that snugly fits the alignment holes in
the membrane holder piece.

To hold the membrane in place we first add an o-ring before adding the lid
of the membrane holder, which is tightened in place with four screws cf. figure
6.8b. With the membrane in place, it is time to add the first cavity mirror.
Since we work with a plano-concave cavity we first add the flat mirror, so that
we can test whether the flat mirror and the membrane are parallel.

6.3.2 Parallelity

To gauge the angle between the plane of the membrane and that of the flat
mirror surface, we manually scan a focused laser spot in two directions across
the membrane defect, and record the reflected DC optical power. A too large
angle will firstly and most benignly lead to reduced optomechanical coupling,
since the cavity mode now only probes a projection of the mechanics. More
problematically, a misaligned membrane can couple different cavity modes by
scattering out of a TEM00 into a higher order mode with lower longitudinal
mode number, rendering locking close to impossible. An example of this mode-
coupling phenomenon is shown in figure 6.10. Here we are sweeping a phase-
modulated laser across cavity resonance, giving rise to peaks associated with
the carrier and two sidebands, as seen in the transmission measurements (see
fig. 6.10), that are vertically offset for clarity.

As we increase the voltage applied to one of the cavity piezos, we see two
effects. First, the resonance moves, as expected from a different cavity length,
but also the peaks are distorted. As we increase the piezo voltage (from orange
through purple to blue), the hybridized peak changes from being dominated
by the high-frequency partner, to roughly equal in height, over to dominated
by the low-frequency peak.

Clearly such a cavity is problematic to work with, so here we describe
our process for quantifying the tilt of the membrane. From the period of the
interference pattern one can then extract the angle between the two reflective
surfaces as

θ = arctan (λ/∆x), (6.13)

where ∆x is defined in figure 6.9. Ideally the tilt angles should then be as
small as possible. We rely on a simulation of how a given tilt angle induces
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Figure 6.9: Measuring the membrane tilt angle θ. Left: Sketch of the principle.
When scanning a focused spot across the open half-cavity comprised of the
membrane and flat mirror, one can observe an interference fringe (illustrated
in green). The period of this fringe is determined by θ according to eq. (6.13).
Right: Measured scans along orthogonal X, Y directions in purple and green,
with sinusoidal fits. We extract ∆x from the period of such fits.

optical mode-coupling (explained in appendix B), which tells us that angles
θ < 1mrad are adequate. A measurement of a tolerable level of tilt is shown
in figure 6.9 (right).

In practice we found the best way of ensuring good parallelity is a thorough
cleaning regimen and relying of the flatness of the sample holder pieces, since
it is hard to manually adjust at the sub-mrad level.

6.3.3 Transverse Alignment

The final step is then to close the cavity and properly align the cavity axis to
the membrane defect by manipulating the position of the curved mirror. Before
adding the curved mirror we align the back-reflected light, so that it reflects off
the center of the membrane defect and couples back into the optical fiber it is
launched from. Then we know that the beam is orthogonal to the flat mirror,
and centered where we want it. Since our working wavelength λ ≈ 1550 nm
is not visible on a CCD camera and require expensive, specialized cameras,
either with a phosphorus-based coating or InGaAs detector, we instead inject a
second laser through the same fiber. The wavelength of this laser λ ≈ 1310 nm
is chosen low enough such that a focused spot shows up on the CCD camera,
and long enough that it is not too different from our actual working wavelength.

With the incoming light well-aligned we fix it and do not touch it for the
remainder of the alignment procedure. Rather we translate the piece holding
the curved mirror, with the first goal to see any cavity modes. When modes
show up when we scan the cavity length, we try to land on the TEM00 mode
that we want to work with. With the proper mode identified, the task is now
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to fine-tune the mirror position, so that the mode lands on the middle of the
defect. Our approach for gauging this alignment is from the interference that
shows up in reflection, when one scans fast over a cavity resonance. For a fixed
slew-rate, the magnitude of the over-shoot above the off-resonant DC level is
then a monotonic function of the cavity linewidth.

If we disregard the small ≈ 10% modulation due to the 2kz position, a
bigger ”overshoot” spike tells us we have a more narrow cavity linewidth, cf.
figure 6.11 for exemplary measurements.

This interference phenomenon can be understood in terms of the Doppler
effect [135, 136]: if the cavity resonance frequency is changed on a time-scale
comparable to κ, the intra-cavity field that used to be resonant can now beat
with the newly resonant light, giving rise to a chirped interference fringe su-
perimposed on the usual reflection dip.

When we find an overshoot comparable in magnitude to the dip we can start
to carefully tighten the screws of the curved mirror holder to the membrane
holder, taking care not to misalign by uneven tightening.

Penultimately we can then measure the cavity linewidth using a phase-
modulated laser, using the sideband for frequency calibration of the time axis
of the scans (see section A.2). In this measurements we reduce the slew rate
such that we only measure a clean Lorentzian that can be robustly fitted. If
we do not end with an acceptably narrow cavity, we can iterate the procedure
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Figure 6.10: Transmission of a misaligned MIM cavity. Left: Cavity transmis-
sion scans for a range of piezo bias voltages, different scans vertically offset for
clarity. The small sideband (see e.g. first and last traces) are externally ap-
plied with a phase modulator, driven at Ωmod/2π = 30MHz. Right: Zoom-in
on a few selected scans without offset, highlighting the split resonance.
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Figure 6.11: Doppler-interference in reflection. We plot two scans over the
same cavity resonance, left for a moderately aligned cavity mode and right for
a well aligned mode, evidenced by the higher overshoot, ≈ 1.3 compared to
≈ 1.2 relative to the DC level and narrower linewidth.

for the curved mirror until we do.
As a last check, once we find a nice and narrow linewidth, we can turn

the 1310 nm alignment laser on again and use it as a proxy for the cavity
mode position relative to the membrane. Figure 6.12 illustrates this, showing
a white-light image with the 1310 nm spot reasonably centered on the defect.
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Figure 6.12: White light image of the membrane inside a cavity after the
transverse alignment procedure. The central bright spot is the 1310 laser. The
black specks are on the imaging optics, not the membrane or cavity mirrors.
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7 Mechanical Characterizations
“What’s the frequency, Kenneth?”

R.E.M.

In this section we report on different studies of mechanical resonators.
These different investigations are all compilations of data for many membranes,
characterized interferometrically as described in section 6.1.1. Typically we
record frequency and Q factor for a particular mode, occasionally augmented
by spectral measurements.

7.1 TED Investigation
As mentioned in section 3.3.2, theoretical considerations suggests that ther-
moelastic damping is not far off from limiting our Q factors. Therefore we
fabricated a range of membranes with the intention of making TED more ap-
parant. To this end, we made thick h ≈ 250 nm membranes, to move the
thermalization rate 1/τTED down closer to Ωm. Fabricating membranes with
decreasing lateral size, and thus increasing frequency, also should bring the
product ΩmτTED closer to unity.
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Figure 7.1: Q factor for h ≈ 250 nm thick membranes. We record Q factors
for first bandgap (teal circles) and second bandgap (burgundy diamonds) for
51 membranes, varying the lateral membrane size. The measurements exhibit
good agreement with a dissipation-dilution model (solid black).

For this investigation, we used generation 3 dahlia membranes, that have
localized modes in two bandgaps. Over 51 samples with varying lateral size,
we measured Q factors for the two radially symmetric modes.
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The result of the measurements are reported in figure 7.1. The teal circles
are the Q factors measured for the first bandgap mode, and the burgundy dia-
monds are for the second bandgap mode. Remarkably, the measured Q-factors
are largely consistent predictions for a simulated dilution factor (indicated in
black) across decade in frequency, for both modes.

The model is derived from the expected scalings for soft-clamped mem-
branes, i.e. [74]

Q(h, L) = DQ(h, L)Qint(h), (7.1a)

DQ(h, L) = DQ,0

(
L

L0

)2(
h0
h

)2

, (7.1b)

where the dilution factor DQ is rescaled from an achoring simulation giving
DQ,0 = 75×103. We reiterate that the approximately linear increase of Qint(h)
with higher thickness (and thus less prominent surface loss), modifes the overall
Q factor scaling to Q ∝ L2/h.

Encouragingly, the measurements are well-explained solely by dissipation
dilution, and thus seemingly not limited by thermoelastic damping. For the
theoretically inclined reader, more details of TED in dissipation-diluted soft-
clamped membranes is given in [119].
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7.2 Low-mass String Resonators
As already hinted in section 4, the design of phononic crystal membranes is
fairly versatile. Here we present an effort towards low-mass devices, with a
string, rather than a membrane embedded in a phononic crystal. Such low-
mass devices are interesting from a sensing perspective, due to their reduced
thermal noise ∝ meff.

Our study of phononic crystal string resonators has been a long and mean-
dering investigation, and as such has been partially reported on in my Master’s
thesis [130] and the Bachelor’s thesis of Simon Krarup Steensen [137]. In the
following we collect and summarize all our string-related findings.

Figure 7.2: Soft-clamped string resonator. An exemplary 1 µm thin ribbon-like
string crosses the central big hole where the membrane-like defect usually is.
Micrograph courtesy of Yeghishe Tsaturyan.

This idea of embedding a string is shown in practice in figure 7.2, showing
a micrograph of a fabricated device, the string being 1 µm wide.

The first characterization step is to model and measure the spectral prop-
erties. The band diagram and eigenmodes are simulated in COMSOL (see 4),
the band diagram being shown on the left of figure 7.3. We then proceed to
measure thermally driven mechanical noise spectra, with a spectrum averaged
over many probing positions shown in figure 7.3 right. In the measurements we
clearly see the bandgap, evidenced by a greatly suppressed mechanical density
of states, and a dense ”forest” of modes outside it.

The five peaks inside the bandgap are all well understood: the black peak
is an externally injected piezo calibration tone, and the A-D labelled red peaks
are the same mechanical modes we find in simulation (cf. fig. 7.4).

Using the raster-scanning modality of one of our characterization interfer-
ometers [128], we image the displacement profiles of the modes A-D, as shown
in figure 7.4. The excellent agreement between measurements and simulations
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Figure 7.3: Simulated Band diagram and measured normalized thermal spec-
trum of a string resonator. The gray shaded area indicates the bandgap. Inside
the bandgap five peaks are apparent. Four are mechanical modes, labelled A-
D, and the last (black) is an injected calibration tone. The shown spectrum is
an average of spectra acquired over many probing positions (cf. fig. 7.4).

Figure 7.4: String modeshapes. The top row shows simulations, with corre-
sponding measurements below, of the modes inside the bandgap, sorted by
frequency.

allows us to hone in on the fundamental string mode, which is the second mode
from the lower bandgap edge. The ringdowns and Q factors in the following
are always of this string fundamental. Additionally the corroboration lends
trust to our simulation techniques in general; if they predict a mode at given
frequency, we seemingly can measure them in fabricated devices.

The Q factor and frequency for all the measured devices is shown in figure
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Figure 7.5: Summary of string Q factors. In orange we show samples fabri-
cated from SiN films with our usual high stress σ̄ ≈ 1.27GPa, while purple
represents low stress samples with σ̄ ≈ 160MPa. We measured samples of
varying thickness, indicated by the marker type as explained in the legend.
The solid lines are Q ∝ 1/Ω2

m soft-clamping guides to the eye, offset by a
factor σ̄high/σ̄low. The measurements of 20 nm and 35 nm thick samples are
reported in [137].

7.5. We fabricated samples with high and low pre-stress, σ̄ ≈ 1.27GPa and
σ̄ ≈ 160MPa, shown in orange and purple respectively. The various sample
thicknesses are denoted by different marker types, and explained in the legend
of fig. 7.5. The data shows an indication of the expected soft-clamping scaling
Q ∝ 1/Ωm, though there is a fair level scatter. This is partially explained by
the different thicknesses, since Q ∝ 1/h for soft-clamped devices.

We normalize out the thickness dependence by plotting Q × h as shown
in figure 7.6, which does reduce the observed scatter, though not eliminate it
entirely. Since we still observe scattered Q factors, we investigated if it could
be explained by variations in the deposition stress.

To check this we compare mechanical frequencies against the lattice con-
stant a for the measured devices. Here one expects a Ωm ∝

√
σ̄ (cf. eq. 3.16).

This is displayed in figure 7.7, where we observe a greater degree of consistency
than for the Q factors. From this observation we conclude that we can trust
the film stress, and that the scatter in the Q must be due to factors.

In figure 7.8 we summarize geometric scalings of our string resonators.
The Q factors are scaled by h/a2 and the frequencies by a, to take out the
previously discussed geometric dependence [74], shown in figure 7.8 left. As
expected the measurements fall into two well-demarcated clusters, separated
by the stress, highlighted by the histograms of geometry-normalized Q factors
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Figure 7.6: Q× h for string resonators. To better compare devices of different
thicknesses, we account for the expected Q ∝ 1/h scaling by plotting Q × h,
rather than Q. The solid guiding lines are still indicate ∝ Ω−2

m scaling and
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Figure 7.7: Ωm/2π against a. We plot the mechanical frequencies versus the
lattice constant a of each sample, observing very self-consistent frequencies
at each a. The guidelines indicate Ωm ∝ 1/a and are offset by a factor√
σ̄high/σ̄low.

in figure 7.8 right. Still the scatter in Q-factors for the high-stress samples
is apparent from the large standard deviation, while the low-stress samples
however seemingly more well-behaved. The observation that our devices tend
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Figure 7.8: Geometric scalings of string resonators. Left: We plot Q × h/a2

against a× Ωm/2π, collapsing the measurements into two domains, separated
by σ̄. The overlaid crosses represent the means and standard deviations of the
low- and high-stress samples. Right: Histograms of the geometry-normalized
Q factors.

to follow the scalings expected for soft-clamped resonators, yet retain a large
Q scatter is a little puzzling.

One speculative hypothesis that could explain this observation is that the
more ”directional” nature of the string mode, compared to a radially symmetric
membrane mode, might lead to a longer decay length that in turn implies the
risk of insufficient suppression of the mode at the resonator-substrate interface.
If this is the case, one would expect to suffer more from clamping losses (see
section 3.3) which is a well-known source of scattered Q factors [115].

We attempted to study this in two ways: firstly the defect design was
slightly modified such the string mode was less confined to the string, by
changing the fillet-radius where string is anchored to the phononic crystal,
and secondly to try a larger phononic crystal with more unit cells.

In figure 7.9 we show the results of varying the size of the phononic crystal.
For a fixed lattice constant, we vary the number of unit cells. Despite the
sparsity of the data, an overall trend of Q increasing with the number of unit
cells is observed. From the data we cannot determine an optimal number
of unit cells, but certainly we can conclude that the usual 8 unit cells is not
sufficient, as there still is large scatter for 10, while 16 unit cells almost gives an
order of magnitude increase in Q. Since 8 unit cells is enough to get consistent
Q’s for membranes [74], we stick with the hypothesis that the string mode
shape is not sufficiently suppressed at the substrate interface.
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To further investigate our hypothesis, we redesigned the string to make the
mode less localized in the string itself, by doubling the width of the string.
In figure 7.10 we show ringdown measurements of the less localized design,
for h = 20 nm thickness. The increase in Q-factor is striking: at a frequency
of Ωm/2π = 1.573MHz we measure Q = 132.9(8) × 106, compared to the
Q ≈ 40× 106 for the previous design at the same frequency.

Proceeding with this new design in the pursuit of a mechanical resonator
with low thermo-mechanical noise, we placed the same sample shown in figure
7.10 in a cryostat (see [129] for details on the setup). The thermo-mechanical
noise defines a noise-floor for how weak signals the resonator can sense. To this
end, reducing the temperature is beneficial in two ways. Firstly the thermal
noise is itself proportional to temperature and secondly the mechanical Q also
increases at low temperature.

Such low-temperature (T ≈ 12K) ringdown measurements are shown in fig-
ure 7.11. We observe an increased mechanical quality factor of Q = 634(20)×
106, a factor ≈ 5 increase over the room-temperature measurement. To esti-
mate a force sensitivity of our measured device, we need a value for the effective
mass, cf. eq. (3.43). We rely on simulations for this, and thus need to take the
extracted value with a grain of salt. From simulations of displacement profiles,
we can numerically evaulate the effective mass. Since this is not a measured
quantity, we assume a 30% errorbar on the mass.

The thermalization of the string with the cryostat is also not well-quantified.
We did not conduct thorough mechanical thermometry, so again we assume a
conservative precision of measured temperature, taking a 3K uncertainty. The
uncertainty on Γrm is calculated by standard error-propagation of the standard

Figure 7.9: Q factor for varying number of unit cells. For a fixed lattice
constant, we measure Q factors for an increasing number of phononic crystal
unit cells, 8 being the standard value. Reformatted reproduction of figure 7.5
from [130].
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Figure 7.10: Room-temperature ringdown of the less localized string design
for a Ωm/2π = 1.573MHz. Normalized ringdowns of the string mode, offset
vertically for clarity, with exponential fits to get Q. The noise spike at 20 s is
due to the auto-relock of the interferometer.
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Figure 7.11: Cryogenic string ringdowns. Normalized ringdowns of the string
mode in a cryogenic environment, offset vertically for clarity. Each measure-
ment is fitted with an exponential decay from which we extract Q. The noisy
interruptions in the measurements stems from the interferometer re-locking.

deviation of the Q measurements. In the end we land on√
SFF =

√
4kBTΓmmeff = 770(290) zN/

√
Hz. (7.2)
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Quantity Value
meff 230(70) pg
T 12(3)K

Γm/2π 2.5(5)mHz√
SFF 770(290) zN/

√
Hz

Table 4: Estimated force sensitivity of a cryogenic string. See text for expla-
nation of uncertainties.

Based on the calculation detailed in eq. (7.2) and table 4, we cannot
conclude that we observed a sub-aN force sensor, partially because this is
an inferred value and not a measured force noise and partially due to the
large uncertainty, stemming mainly from the temperature and effective mass,
contributing roughly equally to the uncertainty on

√
SFF .
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7.3 High-frequency, Large Defect Membranes
In the pursuit of a sideband-resolved optomechanical system, we modifed the
defect design to on the one hand increase the mechanical frequency and the
other to simultaneously increase the physical size of the defect, to mitigate to
potential for excess optical losses due to clipping.

These two design goals might seem contradictory at first glance (larger
objects tend to have lower frequencies), but we have two knobs to turn. Firstly
for a highly stressed and perforated membrane, geometry is not the full story.
Due to the perforations, there will be local variations in the stress field, eg.
the tethers pulled taut by neighbouring pads, cf. figure 4.6. Secondly, we have
learned that we can work with higher order modes in a higher bandgap. Here
we are still paying the price of a reduced acoustic wavelength, and thus being
more susceptible to mode-matching effects (cf. figure 5.6), but gaining a factor
≈ 2 in frequency for the same defect size.

Figure 7.12: Large working area defect designs. From left to right we show the
defects of a generation 2 Dahlia, the generation L design, and the generation
K. Overlaid on each is the largest circle that can be inscribed on the defect
before touching a hole, defining the defect sizes. Relative to the Dahlia design,
generation L is larger by a factor rL/rD ≈ 1.28, and for generation K rK/rD ≈
1.42.

We explored both approaches, and call the new designs generation ”L” and
generation ”K” membranes respectively, with the defects of these designs shown
in figure 7.12, with the generation 2 Dahlia design for reference. We learn that
for the same lattice constant, the two new designs encouragingly have defects
with radii larger by factors rL/rD ≈ 1.28 and rK/rD ≈ 1.42 respectively. With
promising new designs, characterize them in terms of Q and Ωm. In figure
7.13 we plot ringdown measurements for the first and second bandgap modes
of a generation K membrane, in green and purple respectively, both exhibiting
Q ≥ 10× 108.

We summarize the performance of the new designs, by showing Q and Ωm
for membranes fabricated according to both designs, with a thickness h =
20 nm and varying lateral size in figure 7.14 . The green diamond markers are
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Figure 7.13: Generation K ringdowns. In green and purple respectively, we
plot ringdown data with exponential fits (dark and light hues) from which we
extract Q factors.

the generation ”L” design, showing typical Q > 100 × 106 around Ωm/2π ≈
1.6MHz. The circle markers are the generation ”K” design, with burgundy
points representing the first bandgap mode and blue the second. In terms of
Q factor, the first bandgap mode performs the best. Interestingly the second
bandgap mode is however not much worse, in terms of Q factor. If one imagines
re-scaling a membrane to reach a desired higher mechanical frequency, the
second bandgap mode will have a higher Q for the same frequency, since Q ∝
Ω−2

m for soft-clamped resonators.
This is seen more clearly when considering the Qf product, i.e. the product

of the Q factor and mechanical frequency Ωm/2π. We present the Qf products
for our measured devices in figure 7.15, with the same design encoding as
in figure 7.14. Here the advantage of the second bandgap mode of the ”K”
design is apparent. It consistently achieves simultaneously higher mechanical
frequency Ωm and Qf product.

Honing in on the ”K” design, we can also illustrate the advantage provided
by the second bandgap mode by plotting the ratios of Q’s and frequencies, as
in figure 7.16. Here we have removed low Q outlier modes with Q < 10× 106,
(these are few but enough to bias averages considerably, cf. figure 7.14). Along
with the Q and Ωm ratios (teal circles), we indicate the mean and twice the
standard error on the mean for each, with the black dashed lines and dark
blue cross. We observe very consistent frequency ratios Ω2/Ω1 = 1.8380(8)
and reasonably consistent Q ratios Q2/Q1 = 0.70(5). At this point it is also
instructive to compare our observed scaling quantitatively to the expectations
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Figure 7.14: Q factors versus mechanical frequency Ωm for large working area,
high-frequency membranes. The circular points are the ”K” design, optimized
for the second bandgap mode with burgundy indicating the first bandgap mode
and blue the second bandgap mode. The ”L” design, optimized for the first
bandgap is shown as green diamonds.
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Figure 7.15: Qf products for large working area, high-frequency membranes.
The circular points are the ”K” design, optimized for the second bandgap
mode with burgundy indicating the first bandgap mode and blue the second
bandgap mode. The ”L” design, optimized for the first bandgap is shown as
green diamonds.
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from rescaling a soft-clamped membrane. For a soft-clamped mode, Q(s.c.) ∝
Ω−2

m , implying

Q
(s.c.)
2 =

(
Ω2

Ω1

)−2

Q
(s.c.)
1 , (7.3)

For our observed frequency ratio, the soft-clamping scaling only permitsQ2/Q1 =
(1.838)−2 ≈ 0.296, more than a factor two worse than our observations.
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Figure 7.16: Ratios of Q factors and frequencies for the second and first
bandgap modes of the ”K” design, plotted as teal circles, after removing
low-Q < 10 × 106 outliers. The dashed lines shows the mean of each ra-
tio, with the dark blue cross indicating twice the standard error on the mean.

Hence we decide to work with the second mode of the ”K” design for the
cavity optomechanics experiments described in the following section, where
simultaneous high Ωm and Q are desirable.
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8 Optomechanical Memory for Light

“It was then that I embarked on my investigations. I wasn’t short of material:
rather, the excess of it drove me to distraction in my darkest hours”

Franz Kafka

In this section we cover our experiments of storage of light in a high-Q
mode of a phononic crystal membrane, which is the subject of the manuscript
[1]. To this end, we study the efficiency of storing an input coherent optical
field and retrieving it again. The physical basis for these experiments is the
OMIT phenomenon, which under a dynamical, red-detuned pump field allows
interconversion of optical and mechanical excitations.

To begin we describe the details of the experimental platform. This includes
the optomechanical cavity, the locking scheme involving two lasers detuned by
≈ ΩFSR of the cavity and the optical setup interrogating the cavity.

8.1 Optomechanical Cavity
In section 5.2 we learnt the importance of the membrane position relative
to the optical standing wave - the 2kz position. In our cavity we can tune
this by moving the cavity mirrors. These are piezo-actuated, such that an
applied differential voltage pushes one mirror and retracts the other. With
the membrane rigidly fixed, this translates the standing wave relative to the
membrane, tuning 2kz, while keeping the overall cavity length fixed.

This design is based on developments in one of our sister group at NBI, the
optomechanics lab of professor Eugene Polzik’s Quantop group. The develop-
ment of this cavity design is described in great detail in the thesis of Christoffer
Østfeldt [138].

As mentioned, our design is greatly influenced by but not identical to theirs,
a key difference being the mirror geometry. Quantop works with a bi-concave
cavity with the membrane strictly at middle, whereas we work with a plano-
concave design with the membrane closer to the flat mirror. A description of
our cavity mirrors can be found in appendix C. This choice is in turn influenced
by previous optomechanics experiments in SLAB that were carried out using
a monolithic, short cavity. In such designs, the 2kz position was tuned by
tuning the laser frequencies and sampling many longitudinal modes. This is
untenable for us, since the telecom fiber laser we work with only has a tuning
range of ≈ 0.5 nm compared to the ≈ 200 nm of the Titanium:Sapphire laser
used in these other experiments.

Instead we tune 2kz with piezo-actuated cavity mirrors, as illustrated in
figure 8.3. Any voltage applied to the Y input of the sum- and difference
amplifier will result in a translation of the standing wave of the cavity, relative
to the membrane, thus tuning 2kz. The mechanical design of the used cavity
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Figure 8.1: Optomechanical cavity assembly (more details in appendix E).The
cavity mirrors are held in ”barrels” (schematic in fig. E.1) along with a piezo.
The barrels are fitted in a SM-05 threaded holder piece which is tightened to
the membrane holder piece. The membrane lies in the holder piece (see figure
4.2) and is then clamped with a ”coin” piece.

is shown in figure 8.1.
The length of the cavity Lcav ≈ 5.5mm is chosen as a compromise between

the scalings of a range parameters with the cavity length. The most impor-
tant system parameters in this consideration are the optomechanical coupling,
G ∝ 1/Lcav, cavity waist w0 ∝ L

1/4
cav, and cavity linewidth κ ∝ 1/Lcav. For

our ideal system we simultaneously would like as large G as possible, while
keeping w0 small compared to the mechanical wavelength and κ compared to
the frequency. An additional practical limitation is imposed by our locking
scheme (see the following), that relies on two longitudinal cavity modes. Then
the cavity free spectral range should also be small enough such that we can
detect an optical beat note around ΩFSR ∝ 1/Lcav.

Regarding the mechanical side, for the memory experiments we work with
one of the new designs, described in section 7.3, namely the higher-order mode
of the generation K design, optimized for the second bandgap.

8.2 Locking Scheme
To use transient OMIT for storage of an optical signal as a mechanical one,
the laser facilitating the interconversion should only be switched on when the
optical signal impinges on the cavity. If it remains on, then one simply reads
out the mechanical state right away, rather than storing it. Since the conversion
process is detuning-dependent and the cavity can drift if not actively locked,

90



we employ a scheme with two lasers. The first we call the ”science” laser, as it
provides the strong, red-detuned pump field that enables OMIT. The second
is called the ”lock” laser, since its purpose is to keep the cavity locked, even
when the science laser is off.

Figure 8.2: Relevant frequencies for the offset lock. The science laser at Ωsci
is detuned Ωm below one cavity mode, with linewidth κ. This is achieved by
locking the adjacent longitudinal cavity mode on resonance with the lock laser
at Ωlock, which in turn is locked at a frequency offset of Ωm+ΩFSR with respect
to the science laser.

This is possible if we stabilize the cavity length to the lock laser, and
the lock laser at a frequency offset from the science laser. At a first glance
one might think choosing the frequency offset as the mechanical frequency is
enough. This is however problematic for a storage experiment, since the two
lasers will beat in a manner indistinguishable from how the optical signal and
the science laser will beat. In other words, we will essentially always ”store”
some part of the lock laser, which upon readout will manifest as uncorrelated
noise on top of the retrieved signal.

To address this issue, we firstly operate with the two lasers in orthogonal
polarizations and secondly have them addressing two different longitudinal
cavity modes, see figure 8.2. In this way, the beat note between the two lasers
is far off-resonant with any relevant mechanical modes. Our implementation is
illustrated in figure 8.3. A small fraction of the two lasers is split off, combined
in a fiber beamsplitter, and detected with a high bandwidth photodiode. With
the combination of a microwave-frequency synthesizer (ValonRF 5015) and a
programmable mixer and amplifier (Analog Devices EVAL-ADAR2004), we
mix the beat note down to tens of MHz, that we can measure with a spectrum
analyzer and process for the feedback with a Red Pitaya, as described in section
6.2.2 and shown in figure 8.3. The feedback loop is then closed by actuating
on the injection current and temperature of the Lock laser. The temperature
actuation is to mitigate slow, long-term drifts, enabling high gain on the current
feedback.

The cavity lock is a PDH lock, again implemented on a Red Pitaya which
modulates the lock laser injection current and processes the reflected lock beam
as described in section 6.2.1, where a typical error signal is also shown.

Using an analog PI-controller (Vescent Photonics D2-125), a homebuilt
sum and difference pre-amplifier, and a variable gain multichannel high voltage
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Figure 8.3: Schematic of the mechanical memory experiment. The optome-
chanical cavity (rightmost) is placed inside an evacuated LHe flow cryostat,
with electrical feedthroughs for piezo actuation, and optical viewports for free-
space interrogation in both reflection and transmission. We couple two lasers
to the cavity, the ”science” laser, responsible for the optomechanical interac-
tion (beampath drawn in purple) and the ”lock” laser (beampath in orange),
used to stabilize the science laser detuning, even when it is off. A small fraction
is split off from each laser and the inference between the two is detected with a
fast ≈ 35GHz bandwidth photodiode. The measured beatnote is downmixed
and processed for the frequency offset lock of the lock to the science laser.
The cavity reflection of each laser is independently measured, kept separate
using polarization optics, and directly detected. The lock laser reflection is
processed for the cavity PDH lock, with the feedback actuating the cavity
length. The science laser reflection is analyzed by lock-in detection around the
mechanical sideband frequency. An AOM allows us to switch off the science
laser, as required for memory experiments, and an EOM lets us perform OMIT
spectroscopy and in a memory experiment send an optical input signal with
programmable properties. See main text for details.

piezo amplifier (Piezo Mechanik SVR150/3), we actuate on the cavity piezos.
We stabilize the cavity length using the X input shown in figure 8.3 and the
membrane 2kz position with the Y input. In the end this scheme enables
us to freely choose the detuning of the science laser, which is necessary for
sideband-resolved cavity optomechanics.

8.3 Optical Setup
As mentioned we use two lasers, the science laser that is responsible for the
conversion of an optical signal field to mechanical excitations, and the lock
laser to keep track of the cavity, when the science laser is off. We switch
the science laser off using a fiber-coupled acousto-optic modulator (AOM, AA
Opto Electronics MT80-IIR30-Fio-PM0,5-J1-A-lc2), such that we can turn the
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conversion process on and off with the AOM drive.
For the storage experiments, we generate signals to store using an electro-

optic phase modulator (Thorlabs LN53S-FC). We drive the modulator with
gated exponentially rising sinusoids, whose final amplitude, rise-time (and thus
bandwidth), and frequency can be programmed.

We directly detect the reflection of each laser independently using a com-
bination of polarizing beamsplitters and Faraday rotators. The two beams
are then combined on another polarizing beamsplitter and then co-propagate
towards the cavity. The cavity is placed in a liquid Helium flow-cryostat (Ja-
nis ST-100). The flow cryostat has the disadvantage compared to closed-cycle
systems that the length of a cooldown is limited by the helium content of our
dewar, but the advantage of minimal vibrations, since there is no pulse tube,
recondenser or pumps for the cryogen. Since we work with high-finesse opti-
cal cavities, whose mechaninal noise we try to conduct controlled experiments
with, operating these is much easier in the less mechanically shaky environment
of the flow cryostat.

We digitize the reflected and transmitted DC photocurrents using an oscil-
loscope (PicoScope 5442D), and measure the mechanical signal with a Lock-In
amplifier (Zürich Instruments HF2-LI). Knowing the mirror transmissivities
and detector gain allows us to infer the intra-cavity photon number from the
voltage recorded by the transmission detector. The transmission detector is
also useful for OMIT spectroscopy of the cavity parameters.

8.4 Dynamical Backaction Characterization
Before conducting storage and retrieval experiments, we always first test how
strongly we can couple the light and mechanics. We do so by characterizing
the dynamical backaction effects on the mechanics, in particular the optically
broadened linewidth Γeff. We can extract the effective linewidth from spectral
measurements. These measurements are done using the Lock-In, demodulating
around the mechanical frequency in a wide bandwidth, such that we see the
mechanical bandgap.

Of special interest is the vacuum optomechanical coupling rate g0, that
can be extracted from measurements of Γeff, provided one has simultaneous
knowledge of the intra-cavity photon number n̄cav, optical linewidth κ and the
laser detuning ∆. Knowing g0 and the largest Γeff tells us which experiments
we are able to conduct. For instance, ground state cooling using dynamical
backaction requires Γeff > Γmn̄th.

As such, a complete measurement of a particular configuration entails mea-
suring: a fast OMIT sweep, to get κ and ∆, the transmitted DC power, to
infer n̄cav, and a measurement of the mechanical noise, from the sidebands of
the reflected science laser. Typically we characterize g0 by keeping the input
power fixed and varying the detuning, by changing the offset-lock setpoint. In
figure 8.4 we show the OMIT scans for such a detuning series. Using a coarse
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Figure 8.4: Fast OMIT sweeps to extract κ and ∆. Approaching the cavity
resonance from below, we measure the cavity linewidth and laser detuning by
fitting (solid lines) measured coarse OMIT scans (hollow circles).

frequency step for the sweep δsweep ≈ 49 kHz � Γeff we are very unlikely to
hit any mechanical modes, and can thus easily fit only the cavity lineshape
(efffectively setting g = 0 in equation 5.34), enabling robust and quick cavity
spectroscopy.

After the OMIT sweep, we record a time-trace of the transmitted power.
The means of such traces are plotted against the detunings determined via
OMIT in figure 8.5, where the color coding indicates the same measurement
between OMIT, power and mechanical spectra. The measured transmitted
powers (blue circles) are well-fitted by the cavity line shape (gray solid line),
with κ determined from the OMIT measurements, and only a single free am-
plitude parameter, giving the input power. Knowing the input power then
allows us to determine the circulating intra-cavity photon number for a given
detuning.

We then measure a mechanical noise spectrum on the lock-in amplifier, with
an example of such measurements given in figure 8.6. With a wide demodu-
lation bandwidth, the can record the full mechanical bandgap, evidenced by
densely packed modes outside and sparse peaks inside it. Inside the bandgap we
find three main mechanical peaks around 2.38MHz, 2.4MHz and 2.43MHz,
and an externally applied peak stemming from a phase modulation of the
laser at 2.36MHz. For our storage experiments, we choose the work with the
2.4MHz because of its displacement profile. It is rotationally symmetric and
has maximal displacement in the center of the defect, in contrast to the other
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Figure 8.5: Determining the input power. From measurements of the transmit-
ted power for each detuning, we can extract the input power with knowledge of
mirror transmissivities and excess loss (determined from the cavity linewidth,
see sec. A). Then the input power is found from a 1-parameter fit to a fixed
cavity lineshape with a variable amplitude (solid gray).

Figure 8.6: Broadband mechanical spectrum with far-detuned science laser,
|∆| > Ωm, κ. The sparsely populated mechanical bandgap is apparent between
≈ 2.32MHz and ≈ 2.48MHz. Inside the bandgap we find three dominant
mechanical modes, annotated by their simulated displacement profiles near the
defect. The peak at 2.36MHz is generated externally with a phase modulator.
For our experiments, we work the the radially symmetric ≈ 2.4MHz mode.

two modes. The fact that we even are seeing these other modes in the first
place suggests a certain misalignment of the cavity mode on the membrane,
which is corroborated by the increased cavity linewidth κ/2π ≈ 2.1MHz, cor-
responding to excess optical losses δex ≈ 120 × 10−6, much larger than what
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can be explained purely from 2kz modulation (cf. figure 5.5). From the me-
chanical spectra, we can extract the effective linewidth Γeff with a Lorentzian
fit to the mechanical mode of interest, as shown in figure 8.7. These measure-
ments constitute a complete characterization at one detuning. We can then
iterate the procedure; measuring corresponding values of detuning, transmit-
ted power, and effective mechanical bandwidth, eg. for a range of detunings.
The result of such a detuning series is also shown in figure 8.7. Here we plot
paired values of ∆ and Γeff, and fit them according to

Γeff(∆) = Γm + n̄cav(∆)g20κ

(
1

(κ/2)2 + (∆ + Ωm)2
− 1

(κ/2)2 + (∆− Ωm)2

)
,

(8.1a)

n̄cav(∆) =
Pin

h̄ΩL

ηcκ

(κ/2)2 +∆2
, (8.1b)

where eq. 8.1a is based on the equation for the optomechanical damping
5.20b, modified with a constant term representing the intrinsic damping Γm
and a detuning-dependent intracavity photon number, given by 8.1b. With
all other experimental parameters, namely κ, Ωm, ηc, ΩL, Pin, independently
determined, we can restrict the fit to only two free parameters, Γm and g0.
From the experiment shown in figure 8.7, we extract a value g0/2π = 1.0(1)Hz
using this method.
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Figure 8.7: Extracting g0 from dynamical backaction. From a series of different
detunings, at fixed power, we fit mechanical noise spectra (left) to extract the
optically broadened mechanical linewidth. Right: knowing our experimental
parameters then allows determining g0/2π = 1.0(1)Hz, from a fit to a dynam-
ical backaction model, eq. (8.1).
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8.5 Pulsed Optomechanical Light Storage

The salient feature of a memory device is the ability to leave a stored signal
undisturbed for later retrieval. Since the optomechanical beamsplitter inter-
action is bidirectional (photons are converted to phonons and vice versa), we
need the ability to switch the interaction off, once we are satisfied we have
captured the input optical signal.

We implement a controllable conversion process by switching the science
laser on and off. Since the optomechanical processes happens at a rate g = g0α,
turning the laser on and off has the effect of switching the interaction on and
off at different points in time, such that g(t) = g0α(t), where α again is the
amplitude of the science laser.

A

B

Figure 8.8: Pulsed mechanical storage of an optical field. A: Pulse diagram
for the EOM and AOM. We drive the AOM with a TTL square wave, setting
the readout delay time Tdelay with the TTL frequency. Every other period we
drive the EOM with programmable exponentially rising sinusoidal waveforms,
characterized by their amplitude Vmax, bandwidth Γsig and frequency Ωsig. B:
Typical measured optical signals for such a pulse sequence. In blue we plot the
reflected science laser, demodulated around Ωsig. Initially we see an exponential
rise, stemming from the EOM drive, interrupted by the AOM being switched
off and followed by a readout of the mechanics, when the AOM is switched
back on. From light to dark blue we increase Γsig, with the legend indicating
Γeff/Γsig.
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Figure 8.9: Programmable signal field. Left: a measured timetrace of an
exemplary exponentially rising sinusoidal drive signal is plotted in blue, with
dashed black indicating the exponential envelope. Right: zoom-in of the same
data around 15ms (indicated by red bar) reveals the sinusoidal behaviour.

A measurement demonstrating this pulsing of the science laser is shown
in figure 8.8. In the B panel, we show the reflection of the science laser,
demodulated by the lock-in amplifier. In addition to the AOM pulsing, we
also send an optical signal field ssig

in (t), that is generated by driving the EOM,
with a waveform sketched in figure 8.8a, and measured as shown in figure 8.9.

Measurements such as those shown in figure 8.8 form the basis of our op-
tomechanical memory experiments. By systematically varying the properties
of the optical input signal ssig

in we quantitatively study the efficiency of our
optomechanical platform as a memory for light, comparing to theory based on
section 5.1.3.

8.6 Efficiency
The total efficiency of the optomechanical memory for light is comprised of
multiple factors. These can be broken down into ”retrieval” and ”detection”
contributions ηtotal = ηηdet, pertaining to the optomechanical conversion from
light to mechanics and back again, and detection efficiency respectively.

The detection efficiency is given by the detector quantum efficiency ηQE =
83% and the collection efficiency, given by optical losses in the beam path
ηloss = 60%, such that

ηext = ηQEηloss = 50%. (8.2)

On the other hand, the retrieval efficiency η depends on how well the signal
field is matched to the memory and cavity in- and out-coupling η2c , such that
η ≤ η2c . The fact that ηc occurs squared accounts for the fact that light has to
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traverse the desired coupling port twice - once when injected and once when
read out. To study η we store and retrieve input signals of the form

ssig
in (t) = iβs0 sin(Ωsigt)eΓsigt/2H(−t), (8.3)

where s0 is the flux of the science laser impinging on the cavity, β is the
modulation depth of the applied phase modulation and H(t) is the Heaviside
step function. We define the retrieval efficiency η as the ratio of the retrieved
energy Ein to the input energy Eout, η = Eout/Ein. These are, respectively,
proportional to

Ein ∝
∫ 0

−T

|ssig
in (t)|2dt, (8.4a)

Eout ∝
∫ T

0

|ssig
out(t)|2dt, (8.4b)

where T is the duration of the write pulse (which in turn is equal to the
read-write delay Tdelay for the 50% duty cycle square wave shown in figure
8.8A and used in the following experiments). To compare these two in order
to extract η, we can then record traces like shown in figure 8.8B, and analyze
them according to eq. (8.4). When estimating the input energy, it is crucial
that the signal is not resonant with the mechanics, as it otherwise is (partially)
absorbed by the mechanics, much like in steady state OMIT (cf. figure 5.3).

Following the treatment of transient OMIT (section 5.1.3), we can compare
measurements with theoretical expectations as we vary the properties of the
experiment. We study the effect of varying the readout-delay Tdelay, the signal
bandwidth relative to that of the mechanical memory Γeff/Γsig, and the two-
photon detuning δ between the signal field and the mechanics.

For increasing readout delay, we expect exponential decay of the mechanics.
This is essentially what happens when we measure ringdowns: the mechanics
is excited to some amplitude, which decays with time. It can also be seen
from equation 5.40, where the mechanical amplitude evolves as exp (−Γmt/2),
in the absence of the science laser, i.e. Γeff = Γm, during storage.

Indeed, after the delay time, the retrieved amplitude Aout divided by that
of the input Ain should follow

Aout

Ain
= e−ΓmTdelay/2. (8.5)

The result of such an experiment is shown in figure 8.10. Our measurements
seem to follow the predicted exponential decay, albeit with a decay rate faster
than Γm/2π ≈ 20mHz. Our hypothesis for this increased mechanical damping
is that the lock laser, which remains on during storage, also does some dy-
namical backaction, despite being weak and close to resonance. For stability

99



0 5 10 15 20 25

Tdelay (ms)

0.0
0.1
0.2
0.3
0.4
0.5

A
o
u

t/
A

in

Figure 8.10: Mechanical decay during storage. In blue circles, the initial ampli-
tude of the retrieved mechanical signal Aout, normalized to the end-amplitude
a detuned drive signal Ain, for increasing storage times Tdelay. The solid black
line is an exponential fit, which is extrapolated in dashed black. The gray
shaded area indicates the offset of the fit, determined by the thermomechani-
cal background noise.

reasons, we do not lock exactly on resonance, but red-detuned ≈ −0.05κ, to
avoid accidentally drifting to the blue side and exciting a mechanical mode. In
the reported experiments we operate with a power of the lock laser, immedi-
ately before the cryostat of ≈ 2 µW. With a far detuned science laser, we saw
the linewidth of the mode increase with lock laser power, corroborating the
hypothesis. We therefore call this modified damping the ”dark” decay rate,
Γdark, in the sense of the science laser being off. From the experiment reported
in figure 8.10, we find Γdark/2π = 6.7Hz, at our typical operating lock power
Plock ≈ 2 µW.

The next focus of our attention is the effect of bandwidth matching. In the
limit of large classical coorperativity Γopt � Γm, we can approximate effective
mechanical linewidth as being dominated by the optical broadening Γeff ≈ Γopt.

Then, for signal fields like eq. (8.3), on two-photon resonance and for imme-
diate readout δ = Tdelay = 0 we can evaluate eqs. (8.4) under these conditions,
to isolate the effect of bandwidth matching. We find for the retrieval efficiency

η = η2c
4ΓeffΓsig

(Γeff + Γsig)
2 . (8.6)

In figure 8.11 we show the results of such an experiment. We read out
without a storage delay, and tune the signal to mechanical resonance, such
that Tdelay = δ = 0. Varying the signal bandwidth and keeping the mechan-
ical bandwidth fixed, we the plot measurements of the ratio of the retrieved
energy to the input energy, Eout/Ein. To gauge how efficiently we retrieve the
input energy, we fit eq. (8.6) to our data, with ηc a single free multiplicative
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Figure 8.11: Efficiency due to bandwidth matching. Measurements of retrieved
energy relative to the input, Eout/Ein, are plotted as blue points. The red
shaded area indicates the expected limit due to our cavity over-coupling. The
dashed gray curve shows the ideal bandwidth scaling, given by eq. (8.6). The
black curve is a 1-parameter fit of our data to eq. (8.6), giving a retrieval
efficiency of η = 45%, in fair agreement with the overcoupling limit. The
shaded black error indicates ± twice the fit error.

constant. The fit is shown as the black curve, with twice the fit uncertainty
shown as a black shaded band. The unity-over-coupling case is shown as a
dashed gray line for comparison. From the fit we extract a retrieval efficiency
η = 45%. We compare this to what we ought to be able to get, as dictated by
the finite overcoupling of the cavity. This is shown as the red area in figure
8.11. Here we see fair agreement between the fit and the expected limitation,
suggesting retrieval efficiencies of 45% and 40% respectively.

Next we studied the effect of two-photon detuning, with a fixed readout
delay Tdelay. In the case of matched bandwidth, the retrieval efficiency as a
function of two-photon detuning is

η = η2c
Γ2

eff
δ2 + Γ2

eff
e−ΓdarkTdelay/2. (8.7)

In figure 8.12 we investigate eq. (8.7). For a matched signal bandwidth,
Γsig = Γeff and fixed, but non-zero, readout delay Tdelay = 4.48ms, we mea-
sured Eout/Ein for varying signal frequency Ωsig (and accordingly two-photon
detuning δ). We fit the Lorentzian response given by eq. (8.7) to our measure-
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ments, shown in black, and find good agreement between the model and our
data. In particular the quantitative agreement between the observed efficiency
and expectations based on cavity overcoupling (as discussed above) and me-
chanical decay is striking, as highlighted in the inset. The red area indicates
the overcoupling limitation, while the gray area shows the mechanical decay at
the rate Γdark for a duration Tdelay = 4.48ms, limiting the efficiency to 82.8%.
The product of the overcoupling and decay effects limits the retrieval efficiency
to 33.1%. For comparison we extract 32.4% from the fit to eq. (8.7), exhibiting
excellent agreement. Using our established scaling of the mechanical decay, we
find the retrieval efficiency at zero delay η ≈ 40%.

The measurements presented in figures 8.10, 8.11, and 8.12 collectively
demonstrate a good understanding of the efficiency of our mechanical memory
for light. The highest possible retrieval efficiency, for a matched signal field
Γsig = Γeff, δ = 0, and immediate readout Tdelay = 0 we find to be η ≈ 39%.
Crucially this number is not limited by the optomechanical conversion, but
rather limitations imposed by experimental practicalities, in particular excess
intracavity optical losses diminishing the overcoupling. Indeed the transmissiv-
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Figure 8.12: Efficiency due to two-photon detuning. Varying the two-photon
detuning by changing the signal frequency Ωsig, we show measurements of
Eout/Ein as blue circles. This experiment was done with Γsig ≈ Γeff and Tdelay ≈
4.48ms. The gray area indicates the mechanical decay during the storage
time, limiting the retrieval efficiency to 83%. The red area again indicates the
penalty from sub-ideal overcoupling. The data is well-fitted by a Lorentzian
(black line). In the inset we highlight the good quantitative agreement between
our measured efficiency and expectations based on the aforementioned effects.
Errorbars on the measurements are twice the standard error on the mean, but
too small to discern.
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ities of the mirrors (see appendix C) suggests η2c = 93% is possible in absence
of excess loss. We also successfully model how the retrieval efficiency decreases
with non-ideal input fields and long storage time, enabling the extrapolation
of the efficiency to experiments using input fields that cannot be tailored, e.g.
spontaneously emitted single photons, with a frequency and bandwidth fixed
by the emitter.

In addition to the efficiency, the phase coherence of a memory is also of in-
terest. At the time of writing, this is an ongoing study. We however note that
our membrane resonators previously have been employed in cavity optome-
chanical experiments without showing dephasing in excess of that associated
with heating from a thermal bath [33, 120].

8.7 Prospects for Single-Photon Storage
Having demonstrated storage of coherent fields in section 8, we discuss the
prospects for an experiment with single-photon input. Such an experiment
would be interesting from the perspective of a quantum repeater [61] as a
quantum memory, a key resource in large scale quantum networks [60].

For an actual quantum repeater, storage efficiencies approaching unity are
required. This is already is challenging for coherent fields, but as a first step
towards the goal, we can consider observing the radiation-pressure-induced
heating due to a single photon of a ground-state cooled mechanical oscillator.
The signal-to-noise ratio (SNR) for a given all-in efficiency η and number of
experimental runs to average over N for such an experiment is calculated in
appendix D, and in the limit of large N , one finds

SNR ≈
√
2N

η

1 + 2η
. (8.8)

In figure 8.13 we plot eq. (8.8) for different efficiencies η, with the green
area indicating a SNR > 1, indicating a measurable effect of the single photon
input on the mechanics. In this way one can estimate the required number of
measurements to average N , for a given all-in efficiency η.

For most single-photon sources [139, 140], achieving narrow bandwidths is
an ongoing challenge. For instance, ideal spontaneous emission-based nanopho-
tonic sources are limited by the carrier lifetime [141, 142], whereas schemes
based on Raman-scattering potentially can suffer from charge and nuclear spin
noise [143], although progress in controlling these recently has been made [144].
This poses a difficulty for interfacing them with our narrowband mechanical
memory, since the associated penalty in efficiency scales as Γmemory/Γsignal, in
the regime Γmemory � Γsignal, as found in section 8.

As an alternative to generating narrowband single photons, one can con-
sider compressing the bandwidth of otherwise high quality single photons. Var-
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Figure 8.13: Single-photon SNR. We visualize equation (8.8) for varying η (see
legend), to gauge how much averaging is necessary to achieve SNR > 1, as
indicated by the green area.

ious schemes to this end have been explored [145, 146, 147, 148, 149, 150, 151]
with great progress in recent years.

To estimate the running time of such an experiment, given current param-
eters, we can first estimate an all-in efficiency, as done in table 5. Taking
the recent example of a frequency converted quantum dot source as an exem-
plary telecom wavelength single-photon source [152], we can estimate the total
efficiency of such an experiment, giving η = 1.6× 10−7.

η contribution Description Value
ηmemory All-in memory efficiency 20%
ηsource All-in source efficiency 40.8%
ηBW Bandwidth contribution 1 kHz

500MHz = 2× 10−6

η Total single-photon efficiency 1.6× 10−7

Table 5: Single-photon experiment efficiency contributions, for the mechanical
memory reported in section 8 and telecom single-photon source of [152].

From these considerations we can consult figure 8.13 and find that N ≈
1014 averages are required for SNR > 1 given the estimated efficiency. As
the time to conduct a single shot Tsingle ≈ 10ms, we estimate the total time
Ttotal = NTsingle > 30× 103 years, which is clearly untenable.

Since the dominant contribution is the bandwidth penalty ηBW, this ought
to be the focus of attention if such an experiment is to be conducted. On the
mechanical side we have seen larger Γeff/2π > 6 kHz in previous assemblies,
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which might optimistically be extended to Γmemory/2π = 10 kHz. Employing
a bandwidth compressed source (recently bandwidth compression by a factor
≈ 400 was demonstrated [151]) then reduces the bandwidth ratio to ≈ 8×10−3,
which (for the efficiencies considered above) in turn implies N ≈ 1 × 106

repetitions are required.
Since the time required to run a single shot of the experiment also scales

with the now increased effective mechanical bandwidth Γeff, the total time in
this case would rather be Ttotal = 1× 106× 1ms ≈ 16 minutes, which certainly
is possible.

Nevertheless, due to the severity of the
√
N scaling of eq. (8.8) and the

currently low ηBW conspiring to give unfeasibly long run times, we are cur-
rently exploring various methods for bandwidth compression. One approach
described in [153] is to conduct the frequency conversion of [152] inside a cav-
ity which is resonant for the converted wavelength. In such a scheme, the
prediction is to compress the bandwidth by a factor limited by the finesse of
the employed cavity. Alternatively one can envision an optomechanical photon
bandwidth compressor. Here the idea is to design an optomechanical system
that can achieve a very large Γopt, efficiently read the broadband photon in,
and then slowly read out the stored excitation over a timescale limited by the
mechanical coherence time.
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9 Final Remarks

To wrap up the thesis, we summarize the presented findings and discuss them in
the context of related research. After understanding where we were and where
we have gone, we comment on future pathways where this line of research
might venture in the future.

9.1 Summary and Discussion of Results

The main scientific result presented in this thesis is the study of light storage
using a cavity optomechanical system, enabled by the new resonator designs
developed. For the first time we simultaneously present long T1 = 1/Γdark >
20ms energy storage times, respectable efficiency η ≈ 40% for a telecom wave-
length system - a system of great interest for emerging quantum network ap-
plications [60, 154].

Both T1 and η are presently limited for technical reasons. For η the limiting
factor is excess optical losses outside and inside the cavity. For the extra-cavity
loss we trust a thorough investigation of the beampath will tell us where we
loose the light, and consequently how to amend it. For the intra-cavity loss the
culprit is suspected to be imperfect transverse alignment of the cavity to the
mechanical mode, which either could be addressed through a more strenuous
alignment regimen, or using larger membranes. Regarding the latter point,
the hope would be that the reduction in intra-cavity losses scales faster than
linearly with the resonator size, since the overlap is an area effect. Following
our mode-overlap simulations we expect this to be the case, thus hopefully
remaining sideband-resolved as the mechanical frequency also decreases for
larger membranes.

Regarding T1, this is ideally only limited by the intrinsic mechanical decay
rate. Reaching this limit would give a T1 = 1/Γm ≈ 6.6 s, with futher improve-
ments expected in a cryogenic environment, recalling the factor ≈ 5 seen for
the string resonators. If our hypothesis of residual dynamical back-action from
the lock laser is correct, a more sensitive photodetector such as an avalanche
photodiode or photomultiplier tube would enable running the experiment with
lock powers Plock < 1 µW.

In the context of optomechanical memories for light, recent work demon-
strated energy decay time T1 ≈ 2ms, and efficiency η ≈ 16% (disregarding
the low heralding probability) of a GHz frequency mechanical mode, held at
15mK, in a dilution refridgerator [84]. Our results compare favorably, already
at room temperature, with an order of magnitude longer T1 (with prospects
for improvement as discussed) and higher η, that also can be improved with
reduced losses. From a more strictly optomechanical perspective, our current
system demonstrates a large classical coorperativity Cclass > 4× 104.
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9.2 Future Work
The next step for the mechanical memory project is going cryogenic. We have
had encouraging preliminary cooldowns, with a optomechanical cavity that
remained well-aligned (evidenced by the fact that we could reach comparable
Γopt at room and cryogenic temperatures) using a ”L” design membrane.

If we are to cautiously extrapolate our current system performance to a
cryogenic environment, we firstly expect a reduced bath temperature, with a
conservative estimate for the thermalization temperature being T = 10K in
our LHe flow cryostat. Additionally we have seen Q factors increase when
cooling down, so again erring on the side of caution we can assume a 3-fold
improvement in Q. In such conditions, our demonstrated performance is suf-
ficient to reach a quantum coorperativity Cq = Cclass/n̄th ≥ 1, which is the
criterion for quantum-enabled performance. Such performance would enable
a sideband-cooling experiment with the ground state within reach. With a
ground state cooled membrane, performing storage experiments with less than
a single quantum of added noise is a tantalizing prospect.

Another object of study to continue is the phase coherence of our mechan-
ical memory. Indeed previous work has shown our membranes to be devoid
of excess dephasing [120, 78], which we need to verify in our concrete imple-
mentation. Under the assumption of no excess dephasing, the coherence time
of our mechanical memory will rather be limited by the thermal decoherence
rate Γdec = Γmn̄th. Under the previously explained extrapolations, we expect
to contend with Γdec/2π ≈ 750Hz, or equivalently T ∗

2 = 1/Γdec ≈ 200 µs. Al-
ready this expectation compares favorably with the ≈ 10− 100 µs reported for
a three orders of magnitude lower bath temperature [84].

At this point studying storage of retrieval of single photons becomes a
plausible prospect, provided the bandwidth question can be adressed in some
of the manners discussed in section 8.7.

Apart from our implemented membrane-in-the-middle memory experiment,
a related project in our lab, spearheaded by Ph.D. student Sho Tamaki, studies
using the large-bandgap semiconductor Gallium Phosphide for two-dimensional
optomechanical crystals, in a collaboration with the group of professor Remi
Braive at C2N in Paris. Gallium Phosphide has recently garnered interest in
the optomechanics community [155, 156], and two-dimensional optomechani-
cal crystals have been shown to have more favorable laser-heating properties
when compared to the conventional one-dimensional designs [157]. By com-
bining the two approaches, the hope is to realize an optomechanical system
that can be driven strongly enough to faithfully capture a broadband photon,
that then ideally can be read out slowly, without being polluted by excess
thermo-mechanical noise.
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At this point I wish to sincerely thank any reader that made it to the end.
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A Cavity Finesse Characterization

The most important characterization of an assembled cavity is to quantify the
optical losses, determining the cavity finesse. In the ideal case this is given by
the mirror transmissivities, though in practice excess loss is always present.
To measure the finese one needs to know both the cavity free spectral range
and linewidth, see eq. (2.5), so here we describe our methods for determining
both.

A.1 FSR Measurement

To measure the free spectral range, we utilize our ability to lock our two lasers
at a controlled frequency offset. By then scanning over the cavity resonance
and monitoring their joint reflection, we know the two lasers are detuned by
the FSR, when the two reflection dips coincide, see figure A.1.
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Figure A.1: Determination of the cavity free spectral range. We vary the
setpoint of the downmixed beatnote of the two offset-locked lasers, while mon-
itoring the cavity reflection. When the reflection dips coincide, the lasers are
detuned by the free spectral range.

From the frequency of the downmixing synthesizer and the setpoint, we
can then extract the cavity FSR. An alternative, but similar approach that
one needs a single laser is to sweep the frequency of a phase modulation of
said laser. If one scans more than one FSR over the cavity, the half-FSR can
be identified when the upper and lower sidebands from each longitudinal mode
overlap spectrally.

127



A.2 Linewidth Measurement

Our favourite approach to measure the cavity linewidth again involves a phase-
modulated laser. In a scan over the resonance, one can use the fact that the
two sidebands have a very well-defined frequency spacing from the carrier (or
each other) to calibrate the abcissa from time to frequency. Alternatively,
one can measure a cavity ringdown by recording the transmitted light as the
cavity is tuned close to resonance and the input light is abruptly switched off,
eg. with an intensity modulator.
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Figure A.2: Cavity linewidth from phase-modulated scans. Left: an expem-
plary trace of the normalized reflection in black with a fit to a model of three
Lorentzian reflection dips in orange. Right: By repeating such measurements
(black points, errorbars indicates ± twice the fit uncertainty) we can extract
a mean value and standard error on the mean, indicated by the blue line and
shaded area respectively.

The sideband calibration has the advantage of being simpler to repeat
quickly, as is desirable in a characterization technique, since one scans over the
resonance, rather than having to carefully approach it.

From a fit to three Lorentzian dips, we can extract the linewidth κtime

and spacing of the sidebands ∆time
SB in time units. Knowing the modulation

frequency Ωmod, we can find the cavity linewidth κ in frequency units as

κ = 2Ωmod
κtime

∆time
SB

, (A.1)

where ∆time
SB defines the distance between the sidebands. In figure A.2 we illu-

trate this method, showing a reflection measurement and the extracted average
linewidth from series of such measurements. In addition to this approach, used
during cavity assembly, we also extract in-situ cavity linewidths from OMIT
spectroscopy (as described in section 5.1.2).
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A.3 Extracting the Excess Loss
With measurements of the FSR and linewidth, and knowledge of mirror trans-
missivities, we can now extract the excess loss of the cavity. This is an impor-
tant number, since it tells us how well-aligned a membrane is, and misalignment
typically manifests as additional loss. Additionally this excess loss leads to a
reduced overcoupling, which translates to a reduced measurement efficiency.
Figure A.3 illustates this approach. We plot the finesse as a function of ex-
cess loss, and extract the excess loss for our particular measurement from the
measured finesse, as shown in figure A.3. With the excess loss determined,
we can infer the overcoupling corresponding to the measured excess loss. In
practice we never find excess-loss below ≈ 10×10−6 and more typically around
≈ 20 × 10−6, even for an empty cavity. This is roughly consistent with the
specifications from the manufacturer of 5 × 10−6 per mirror, with measure-
ments erring slightly on the higher side, which most likely is due to imperfect,
though still good, cleanliness of the mirror faces.
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Figure A.3: Extraction of excess loss from finesse meaurements. In red we plot
the finesse (solid red) for increasing excess loss and fixed mirror transmissivities
(|t1|2 = 280 × 10−6, |t2|2 = 10 × 10−6) and identify the intersection of our
measurement (dashed red). Simultaneously, we plot the overcoupling ηc in a
similar manner, and infer the corresponding value, given the excess loss.
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B TMM With a Misaligned Membrane
In this appendix we describe the principles of the membrane tilt simulations.
The treatment will not be thorough, with the eager reader referred to the thesis
of Christoffer Østfeldt [138].

The core idea is to extend the transfer-matrix method calculation of section
5.2 to encompass multiple optical modes. Additionally the multiple optical
modes (that are eigenmodes for the cavity field and hence orthogonal) are
coupled by scattering off the membrane. This scattering can either come about
from tilt of the membrane, such that its normal is no longer parallel with the
optical axis of the cavity, or from transverse misalignment of a phononic-crystal
membrane, where light can diffract of phononic crystal holes, cf. figure B.1.

Figure B.1: TMM with a misaligned membrane. In contrast to the ideal case
studied in 5.2, we now implement two tilt-angles θX and θY of the membrane
with respect to the cavity axis.

At a glance, the mathematical approach for treating these effects (again:
details in [138]) is to first expand the propagating intra-cavity fields on a
truncated eigenbasis. Then various coupling mechanisms can be included. For
the present case we only consider the consequences of a tilted membrane, to
benchmark which tilt angles can be tolerated. We present simulation results
from the numerical model, for different angles of tilt. From the simulations
(figures B.2-B.9), we identify θ = 1mrad as the transition point for whether
or not tilt couples the fundamental cavity mode to a higher order transverse
mode from the lower longitudinal family in our cavity. The transverse mode
order is encoded from (dark) blue over green through yellow to red representing
increasingly higher order modes.
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Figure B.2: Tilt-induced modecoupling for θ = 2mrad.
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Figure B.3: Tilt-induced modecoupling for θ = 2mrad zoomed on critical
region.
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Figure B.4: Tilt-induced modecoupling for θ = 1mrad.
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Figure B.5: Tilt-induced modecoupling for θ = 1mrad zoomed on critical
region.
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Figure B.6: Tilt-induced modecoupling for θ = 0.8mrad.
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Figure B.7: Tilt-induced modecoupling for θ = 0.8mrad zoomed on critical
region.
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Figure B.8: Tilt-induced modecoupling for θ = 0.5mrad.

−0.300 −0.275 −0.250 −0.225 −0.200 −0.175 −0.150 −0.125 −0.100

2kz/2π

0.00

0.02

0.04

0.06

0.08

0.10

Ω
ca

v
m

o
d

u
lo

Ω
F

S
R

fundamental mode

Figure B.9: Tilt-induced modecoupling for θ = 0.5mrad zoomed on critical
region.
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C Cavity Mirrors
Here we describe the mirrors comprising the optomechanical cavity introduced
in section 8.

Our mirrors are dielectric coatings of quarter-wave bi-layer stacks with
alternating low- and high index materials [158], on fused Silica substrates.
The substrates are from LayerTec and the coatings are done by Five Nine
Optics.

We have a set of highly-reflective, plano-plano mirrors, with a specified
power transmission TP = 10 × 10−6 and slightly transmissive plano-concave
with a radius of curvature ROC = 50mm with transmission TC = 280× 10−6.
The backside of each mirror is anti-reflection coated (specified R < 0.01%).
The specified transmission coefficients are for a wavelength λ = 1550 nm. The
mirror transmissions for a range of wavelengths is shown in figure C.1, as
measured by Five Nine Optics.
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Figure C.1: Cavity mirror transmission curves. Data from Five Nine Op-
tics. The plano-plano high-reflector coating curve is shown in blue, with
TP = 10 × 10−6 indicated by the dark blue dashed line. The data for the
slightly transmissive curved mirror is plotted in orange with TC = 280× 10−6

indicated by the dark red dashed line.
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D Single-Photon Experiment SNR Estimate
In this appendix we detail a calculation of the expected signal-to-noise ratio
(SNR) in a single-photon input optomechanical quantum memory experiment.

D.1 Density matrix
We model loss and inefficiency as a beamsplitter and write the single photon
state |ψ〉 to be detected after storage as

|ψ〉 := a† |0〉 −→ √
ηa†‖ |0〉+

√
1− ηa†⊥ |0〉 , (D.1)

i.e. we detect the mode a†‖ with probability η and loose a fraction 1− η to
the mode a†⊥ that we don’t detect. We describe this through a reduced density
matrix where we trace over the ⊥ subspace. To do so, we first calculate the
full density matrix

ρ = |ψ〉 〈ψ| =
(√

ηa†‖ |0〉+
√

1− ηa†⊥ |0〉
)(

〈0| a‖
√
η + 〈0| a⊥

√
1− η

)
=η |1‖0⊥〉 〈1‖0⊥|+ (1− η) |0‖1⊥〉 〈0‖1⊥|+√

η(1− η)
(
|1‖0⊥〉 〈0‖1⊥|+ |0‖1⊥〉 〈1‖0⊥|

)
.

(D.2)

Then we trace over the ⊥ subsystem,

ρ‖ =Tr⊥ [ρ] = 〈0⊥| ρ |0⊥〉+ 〈1⊥| ρ |1⊥〉

=η |1‖〉 〈1‖|+ (1− η) |0‖〉 〈0‖|
(D.3)

Since we only consider the ‖ subsystem from now on, we will omit the
subscripts.

D.2 Variance of quadratures
We will measure the variance some phase-space quadrature of the field de-
scribed be the above density matrix. First we brush up a few basic equations.
We define a general phase-space quadrature X(θ) as

X(θ) = σ0
(
a†eiθ + ae−iθ

)
. (D.4)

Here σ2
0 is the variance of the ground state. We recall the variance of an

operator A
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var(A) =
〈
A2
〉
− 〈A〉2 , (D.5)

and expectation values

〈A〉 = Tr [ρA] . (D.6)

We can now calculate var(X (θ)) using eq.D.5. We first find

〈X(θ)〉 = Tr [ρX(θ)]

= σ0 〈0| (η |1〉 〈1|+ (1− η) |0〉 〈0|)
(
a†eiθ + ae−iθ

)
|0〉+

σ0 〈1| (η |1〉 〈1|+ (1− η) |0〉 〈0|)
(
a†eiθ + ae−iθ

)
|1〉

= 0.

(D.7)

The second moment,

〈
(X(θ))2

〉
= σ2

0

(
〈0|
(
a†a†e2iθ + aae−2iθ + 2n+ 1

)
(η |1〉 〈1|+ (1− η) |0〉 〈0|) |0〉+

〈1|
(
a†a†e2iθ + aae−2iθ + 2n+ 1

)
(η |1〉 〈1|+ (1− η) |0〉 〈0|) |1〉

)
= σ2

0 ((1− η) + η(1 + 2))

= σ2
0 (1 + 2η) .

(D.8)

From eq.D.5 we now find

var(X(θ)) = σ2
0(1 + 2η) (D.9)

The two terms in this result can be interpreted as vacuum noise plus the
signature of the single single photon.

D.3 Variance of the variance
As eq.D.9 shows, the actual quantity we want to measure is itself a variance.
In order to estimate the uncertainty on our measurement we thus need a mean-
ingful way of talking about variance as a fluctuating quantity, and in particular
”the variance of the variance”.

One approach is to consider the sample variance s2. Consider N samples
from a distribution with central moments µk. Then the sample variance is
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s2 =
1

N

N∑
i=1

(Xi − X̄)2, (D.10)

where X̄ is the sample mean. Using eq. D.5 we can write the variance of
s2 as

var(s2) =
〈
s4
〉
−
〈
s2
〉2
. (D.11)

We thus have to calculate 〈s2〉 and 〈s4〉. Starting with 〈s2〉:

〈
s2
〉
=

〈
1

N

∑
i=1

(Xi − X̄)2

〉

=
1

N

〈∑
i=1

(
Xi −

1

N

∑
j=1

Xj

)2〉

=
1

N

〈∑
i=1

(
X2

i −
2

N
Xi

∑
j=1

Xj +
1

N2

∑
j=1

Xj

∑
k=1

Xk

)〉

=
1

N

∑
i=1

(〈
X2

i

〉
(1− 2

N
)− 2

N

〈
Xi

∑
j 6=i

Xj

〉
+

1

N2

∑
j=1

〈
X2

j

〉
+

1

N2

∑
j 6=k

〈XjXk〉

)
(D.12)

where we have used the linearity of the expectation value and written out
the square of a sum in two terms, one containing matching indices i = j and
one containing different indices i 6= j. Evaluating the sums gives:

〈
s2
〉
=
〈
X2
〉 N − 2 + 1

N
+ 〈X〉2 2(N − 1)

N
(1− 2)

=
N − 1

N

(〈
X2
〉
− 〈X〉2

)
=
N − 1

N
µ2.

(D.13)

Which gives us the second term in eq.D.11. Writing out 〈s4〉
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〈
s4
〉
=
〈(
s2
)2〉

=

〈 1

N

∑
i

(
Xi −

1

N

∑
j

Xj

)2
2〉

=

〈
1

N2

∑
i

X2
i −

2

N

∑
i

Xi

∑
j

Xj +
1

N2

∑
i

(∑
j

xj

)2
2〉

=

〈 1

N

∑
i

X2
i −

(
1

N

∑
i

Xi

)2
2〉

=
1

N2

〈(∑
i

X2
i

)2〉
− 2

N3

〈∑
i

X2
i

(∑
j

Xj

)2〉
+

1

N4

〈(∑
j

xj

)4〉
.

(D.14)

It is now convenient to transform to a central variable Xi −→ Xi − 〈X〉.
This will allow us to drop any terms ∝ 〈X〉 and does not affect the variance:

var(y − 〈y〉) =
〈
(y − 〈y〉)2

〉
− 〈y − 〈y〉〉2

=
〈
y2 + 〈y〉2 − 2y 〈y〉

〉
− (〈y〉 − 〈y〉)2

=
〈
y2
〉
− 〈y〉2 = var(y)

(D.15)

We attack one term at a time. The first term:

〈(∑
i

X2
i

)2〉
=

〈∑
i

X4
i

〉
+

〈∑
i

∑
j 6=j

X2
iX

2
j

〉
= N

〈
X4
〉
+N(N − 1)

〈
X2
〉2
.

(D.16)
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The second term:〈∑
i

X2
i

(∑
j

Xj

)2〉
=

〈∑
i

X2
i

(
Xi +

∑
j 6=i

Xj

)(
Xi +

∑
k 6=i

Xk

)〉

=

〈∑
i

X4
i +

∑
i

X3
i

∑
k 6=i

Xk +
∑
i

X3
i

∑
j 6=i

Xj +
∑
i

X2
i

(∑
j 6=i

Xj

)2〉

=

〈∑
i

X4
i

〉
+ 2

〈∑
i

X3
i

〉〈∑
j 6=i

Xj

〉
+〈∑

i

X2
i

(∑
j 6=i

X2
j +

∑
k 6=j 6=i

XjXk

)〉
= N

〈
X4
〉
+N(N − 1)

〈
X2
〉2

(D.17)

where we have dropped any terms ∝ 〈X〉, like discussed.

The third term:

〈(∑
i

Xi

)4〉
=

〈∑
i

Xi

(
Xi +

∑
j 6=i

Xj

)(
Xi +

∑
k 6=i

Xk

)(
Xi +

∑
l 6=i

Xl

)〉

=

〈∑
i

X4
i

〉
+ 3

〈∑
i

X3
i

∑
j 6=i

Xj

〉
+

3

〈∑
i

X2
i

(∑
j 6=i

Xj

)2〉
+

〈∑
i

Xi

(∑
j 6=i

Xj

)3〉

= N
〈
X4
〉
+ 3

〈∑
i

X2
i

(∑
j 6=i

X2
j +

∑
k 6=j 6=i

XjXk

)〉

= N
〈
X4
〉
+ 3

〈∑
i

X2
i

∑
j 6=i

X2
j

〉
= N

〈
X4
〉
+ 3N(N − 1)

〈
X2
〉2
.

(D.18)

Inserting the final line of eqs.D.16,D.17,D.18 into eq.D.12:
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〈
s4
〉
=

1

N2

(
N
〈
X4
〉
+N(N − 1)

〈
X2
〉2)

− 2

N3

(
N
〈
X4
〉
+N(N − 1)

〈
X2
〉2)

+
1

N4

(
N
〈
X4
〉
+ 3N(N − 1)

〈
X2
〉2)

=
〈
X4
〉( 1

N
− 2

N2
+

1

N3

)
+
〈
X2
〉2(N − 1

N
− 2(N − 1)

N2
+

3(N − 1)

N3

)
=
〈
X4
〉 N2 − 2N + 1

N3
+
〈
X2
〉2 N2(N − 1)− 2N(N − 1) + 3(N − 1)

N3

=
N − 1

N3

(〈
X4
〉
(N − 1) +

〈
X2
〉2

(N2 − 2N + 3)
)

=
N − 1

N3

(
µ4(N − 1) + µ2

2((N − 1)2 + 2)
)

(D.19)

where we have substituted the central moments µn for the raw moment
〈Xn〉 of the central variable. All together now thee variance from eq.D.11
becomes:

var(s2) =
〈
s4
〉
−
〈
s2
〉2

=
N − 1

N3

(
µ4(N − 1) + µ2

2((N − 1)2 + 2)
)
−
(
N − 1

N
µ2

)2

= µ4

(
(N − 1)2

N3

)
+ µ2

2

(
(N − 1) ((N − 1)2 + 2)

N3
− (N − 1)2

N2

)
= µ4

(
(N − 1)2

N3

)
+ µ2

2

(
(N − 1)3 + 2(N − 1)−N(N − 1)2

N3

)
=
N − 1

N3

(
µ4(N − 1) + µ2

2

(
(N − 1)2 + 2−N(N − 1)

))
=
N − 1

N3

(
µ4(N − 1) + µ2

2

(
N2 + 1− 2N + 2−N2 +N

))
=
N − 1

N3

(
µ4(N − 1)− µ2

2 (N − 3)
)
.

(D.20)

If we assume N � 1 such that N ≈ N − 1 ≈ N − 3, we note that eq.D.20
reduces to a 1/N scaling:

var(s2) ≈ N

N3
(µ4N − µ2

2N) =
1

N
(µ4 − µ2

2) (D.21)
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If we make the further simplification of assuming Gaussian statistics with
well-known moments µ4 = 3σ4 and µ2 = σ2, where σ2 is the population
variance (and in this case the quantity we actually want to measure, σ2 =
σ2
0(1 + 2η)) we find:

var(s2) ≈=
1

N
(3σ4 − σ4) =

1

N
2σ4

0(1 + 2η)2. (D.22)

We are now in a position to estimate a signal-to-noise ratio as,

SNR :=
signal - background

noise
=
σ2
0(1 + 2η − 1)√

var(s2)

=
σ2
02η√

2/Nσ2
0(1 + 2η)

=
√
2N

η

1 + 2η

(D.23)

D.4 Moments for the probability distribution describing
our state

Following Yurke and Stoler PRA 1987, we can calculate the moments of the
probability distribution describing a mixture of a single photon and vacuum.
In their language they introduce a variable

q = x+

(
1− η

η

)1/2

y, (D.24)

where x is a quadrature of the ”signal” mode, i.e. the single photon, and y
is the same quadrature, but of the ”noise” mode, i.e. vacuum. They note that
q is ”proportional to” the measurement outcome, so if we take their result for
the moments of q, and rescale q to fit our convention, i.e. introduce

q′ := η1/2q = η1/2x+ (1− η)1/2 y, (D.25)

which resembles our density matrix to a great deal. Now since the ex-
pectation value operator is linear, we can simply rescale the result of their
calculation, i.e.

〈(q′)n〉 =
〈
(η1/2q)n

〉
= ηn/2 〈qn〉 (D.26)

where 〈qn〉 denotes the n’th moment of q. They find an expression for 〈qn〉
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as

〈qn〉 =
∫ ∞

−∞
dq

1

π1/2
qn(1− η + 2η2q2)e−ηq2 (D.27)

We can now calculate the moments required for finding the actual scaling
of the SNR with η:

µ2 =
1

2
(1 + 2η) (D.28)

µ4 =
3

4
(1 + 4η) . (D.29)

Here the shot noise level is implicitly chosen to be σ2
0 = 1/2, and we see

that we recover our previous calculation of the variance (µ2) from eq. D.9.
The SNR calculation becomes:

SNR =
signal - bkg.

noise
(D.30)

=
η√

N−1
N3

((
3
4
(1 + 4η)

)
(N − 1)−

(
1
2
(1 + 2η)

)2
(N − 3)

) (D.31)

In figure D.1 I show the results of the full calculation, eq. D.31 as well as
the approximation of eq. D.23, which for high N shows good agreement for a
low value of η, like we will have in first experiments.

Figure D.1: Plot of SNR predictions of eq. D.23(D.31) in dashed orange (full
blue) as well as a green line highlighting SNR = 1. For N > 100, the full
calculation is well-reproduced by the Gaussian approximation.
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E Optomechanical Cavity Schematics
In this appendix we show technical drawings of the pieces comprising the op-
tomechanical cavity.
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Figure E.2: Cavity assembly schematic. The assembly is comprised of three
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to accomodate the membrane. The membrane is clamped with a ”coin” lid.
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145



F Tables of Symbols

Symbol Definition Description
ri - Field reflection coefficient of i’th optic
ti - Field transmission coefficient of i’th optic
Lcav - Cavity length
c 299 792 458m s−1 Speed of light in vacuum
τrt 2Lcav/c Cavity roundtrip time
κi eq. (2.2) Cavity energy decay rate through port i
κ eq. (2.3) Total cavity energy decay rate
ηc eq. (2.4) Cavity overcoupling
F eq. (2.5) Cavity finesse
δexc - Excess cavity loss
νFSR eq. (2.9) Cavity free spectral range
Ωcav,n nΩFSR Resonant frequency of n’th longitudinal cavity mode
ΩL - Laser frequency
∆ ΩL − Ωcav Detuning from a cavity mode
gi eq. (2.13) Cavity g-parameter
Ri - Radius of curvature of i’th optic
w(z) table 1 cavity beam radius
w0 table 1 cavity waist
zR table 1 Rayleigh range
R(z) table 1 cavity beamfront radius of curvature
a, a† - Annihilation, creation operator for a cavity mode
sin/out - Input/output photon flux from a cavity
χcav(Ω) eq. (2.29) Susceptibility of a cavity

Table 6: Summary of used notation for the selected physical quantities de-
scribing optical cavities (section 2).
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Symbol Definition Description
ui eq. (3.1) Displacement vector
εij eq. (3.2) Elastic strain tensor
σij eq. (3.3) Elastic stress tensor
E - Young’s modulus
ν - Poisson’s ratio
w uz Out-of-plane displacement
h - Membrane thickness
εαβ eq. (3.6) In-plane elastic strain tensor
σαβ eq. (3.6) In-plane elastic stress tensor
ρ - Mass density
D h3E/(12(1− ν2)) Flexural rigidity
λ eq. (3.15) Dimensionless stress parameter
Q eq. (3.19) Quality factor
Q eq. (3.21) Intrinsic quality factor
ϕ eq. (3.21) Loss angle
Eeff eq. (3.23) Effective (complex) Young’s modulus
τ̄ eq. (3.24) Zener model relaxation time
∆E eq. (3.24) Zener model relaxation strength
σcon
ij eq. (3.25) Conservative component of elastic stress tensor
σdis
ij eq. (3.25) Dissipative component of elastic stress tensor
meff table 2 Effective mass
Ωm table 2 Mechanical frequency
Γm table 2 Mechanical energy decay rate
χq(Ω) eq. (3.28) Dimensioned mechanical susceptibility
q - Dimensioned mechanical position coordinate
p - Dimensioned mechanical momentum coordinate
a - Phononic crystal lattice constant
b, b† - Annihilation, creation operators for a mechanical mode

Table 7: Summary of used notation for the selected physical quantities de-
scribing mechanical resonators and phononic engineering (sections 3, 4).
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Symbol Definition Description

G −∂Ωcav/∂q Frequency pull parameter
g0 Gxzpf Vacuum optomechanical coupling rate
α - Strong coherent field amplitude
XL, YL eq. (5.15) Dimonsionless optical quadrature operators
Xm, Ym eq. (5.15) Dimonsionless mechanical quadrature operators
χeff(Ω) eq. (5.19) Effective mechanical susceptibility
∆Ωm eq. (5.20) Optical spring shift
Γopt eq. (5.20) Optomechanical damping
Γeff Γm + Γopt Effective mechanical bandwidth
C eq. (5.22) Classical coorperativity
n̄final eq. (5.27) Final sideband cooled phonon occupation
Cq eq. (5.28) Quantum coorperativity
2kz - Membrane position relative to cavity standing wave
ηMO eq. (5.47) Mechanical-optical mode overlap

Table 8: Summary of used notation for the selected physical quantities de-
scribing cavity optomechanics (section 5).
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