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Abstract 

An accurate chronology is of fundamental importance for the interpretation of a 
paleoclimatic record. The high temporal resolution of the Greenland ice cores has 
allowed the construction of an annual layer counted chronology for these reaching back 
to 60 ka BP, the oldest part of which is based on the NGRIP ice core. But as the annual 
layers become thinner towards the bed, the annual signal in most components weakens, 
and the subjectivity involved in manual layer interpretation increases. To extend the 
layer counted chronology beyond 60 ka BP, a more objective methodology of layer 
detection is needed.  

For this purpose, an automated layer detection algorithm has been developed. It is based 
on the statistical framework of Hidden Markov Models (HMMs), originally developed 
for use in speech recognition. Meticulously based on statistical considerations, the 
algorithm is able to determine the most likely annual layering in an entire data section at 
once. The fundamental strength of the algorithm lies in the way that it is able to imitate 
the manual procedures, while being based on purely objective criteria for annual layer 
recognition.  

The algorithm has been implemented for the visual stratigraphy data from NGRIP, in 
which the annual signal is covered in noise, but maintained to great depths. The 
algorithm is tested for three sections: A cold period (GS-13), a warm period (GI-12), 
and the transition between the two. The algorithm has not yet been tuned to provide an 
accurate chronology, but the results look promising. The algorithm was e.g. able to 
obtain a good result when passing over the transition period with a corresponding 
halving in annual layer thicknesses over merely five meters. 

 



 

  



 

Resumé 

Det er vigtigt for fortolkningen af en palæoklimatisk tidsserie også at have en nøjagtig 
tidsskala. Den høje tidslige opløsning af de grønlandske iskerner har gjort det muligt for 
disse at danne en årlagsoptalt tidsskala, der går 60.000 år tilbage. Den ældste del af 
denne er dannet på baggrund af data fra NGRIP iskernen. Men efterhånden som 
årlagene bliver tyndere nedefter i iskernen, bliver årlagssignalet i de fleste komponenter 
svagere, og den manuelle optælling bliver mere og mere subjektiv. Det er derfor ikke 
muligt manuelt at føre tidsskalaen længere tilbage i tiden. 

Til dette formål er der blevet udviklet en algoritme, der automatisk kan finde årlagene. 
Algoritmen er baseret på et statistisk grundlag kaldet Hidden Markov Model (HMM), 
som oprindeligt er blevet udviklet til talegenkendelse. Baseret på grundige statistiske 
overvejelser er algoritmen i stand til at finde de mest sandsynlige årlag i en hel 
datasektion på een gang. Algoritmens styrke ligger i den måde, hvorpå den er i stand til 
at efterligne en manuel tilgang til årlagsgenkendelse, men samtidig er baseret på 
objektive kriterier. 

Algoritmen er udviklet til brug på data fra den visuelle stratigrafi fra NGRIP. I denne 
dataserie er det årlige signal ganske vist meget påvirket af støj, men det har forblevet 
intakt ned til en stor dybde. Algoritmen er afprøvet for 3 sektioner: En kold periode 
(GS-13), en varm periode (GI-12), og overgangen mellem de to. Algoritmen er endnu 
ikke færdigudviklet, men resultaterne er lovende. Algoritmen var f.eks. i stand til at 
opnå et godt resultat for overgangen mellem den kolde og den varme periode, hvor der 
skete en halvering af årlagstykkelserne over blot fem meter. 
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 1. Introduction 

The value of a paleoclimatic record ultimately depends on the acquired knowledge on its 
associated timescale. A timescale is needed for comparing different paleoclimatic proxies 
as well as for answering questions on e.g. periodicities and rapidity of shifts in the climate 
system, both of which may help to improve our knowledge on the involved climatic 
processes. It is therefore a general challenge, relevant to all climatic proxies, to obtain a 
timescale as accurate as possible.  

Among the most precise are chronologies based on paleoclimatic archives containing 
annually laminated data. Such archives include tree rings, varves (seasonally laminated 
organic lake deposits), corals – and ice cores. The subannual resolution of these records 
provides an opportunity to count annual layers back in time. The ease with which such 
counting can be carried out, and hence the accuracy of the resulting chronology, depends 
on the data record in question. In this respect, dendrochronology (tree ring counting) is 
probably the most famous, possibly providing an almost perfect chronology several thou-
sand years back. Greenland ice cores follow right after. The Greenland Ice Core 
Chronology 2005 (GICC05) is an annually counted chronology based on a composite of 
Greenland ice cores, which goes back to 60.000 years BP with an estimated total uncer-
tainty of 2600 years.  

In a textbook on dendrochronology, it has once been stated that “two or three cores should 
be taken from each tree and at least 20-30 trees sampled at an individual site” [Bradley, 
1985, p. 334-335]. In this way, questions arising on layers which are difficult to interpret 
can to a large extend be resolved. When dealing with ice cores, practical difficulties and 
costs associated with core recovery does not allow for such practice to take place. In its 
place, a multi-parameter method can be applied. A range of chemical impurities, as well 
as the stable water isotopes, display a seasonal signal, and by combining the information 
in as many of these as possible, an accurate chronology can be achieved as far down as 
data quality allows.  

In this chapter, I will first outline the different methodologies which are used for dating 
the Greenland ice cores. I will then touch on why the NGRIP ice core provides an excep-
tional opportunity to construct a high-resolution layer counted chronology far back in 
time, and describe in more details how this annual layer counting was carried out. Howev-
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er, the subjectivity involved in layer interpretation is increasing with depth, and to extend 
the GICC05 beyond 60 ka BP, a more objective methodology of layer detection is needed. 
The remaining part of the thesis describes the development of a statistical framework 
which in the future might be used for such purpose.  

1.1 Greenland ice core timescales  

Many different approaches can be used for dating ice cores, the applicability of each 
depending on the specific situation and the amount of data available. The most precise 
timescales are stratigraphically based. However, if data for constructing such timescales is 
not available, more or less elaborate ice flow models can be used to estimate the age-depth 
relationship.  

 Modeled timescales 1.1.1
Knowledge derived from ice flow models on stress and strain rates in the ice sheet can be 
used for predicting the rate at which annual layers are thinning with depth, and hence for 
constructing a timescale for an ice core. The employed ice flow models span from simple 
1D models [Dansgaard and Johnsen, 1969] to much more elaborate ones [Parrenin et al., 
2004].  

In advance of obtaining an ice core, modeled timescales constructed by ice flow models 
may be used for selecting the best location for the ice core to be drilled [Dahl-Jensen et 
al., 1997]. But after retrieval of the core, information gained from the ice core data may be 
incorporated into the model. Studies have e.g. shown a strong correlation between past 
accumulation rates and the relative concentration of stable water isotopes (δ��O) in the ice 
core [D Dahl-Jensen et al., 1993], and such information may be incorporated into the 
model. Ice flow models may also be combined with age markers found from the ice core 
data. This combination has been used for establishing timescales for several of the Antarc-
tic ice cores [Parrenin et al., 2001; Parrenin et al., 2007]. 

The Dansgaard-Johnsen model is a simple ice flow model commonly used to provide 
timescales for the Greenland ice cores. In this model, the vertical strain rates as a function 
of depth are derived based on mass conservation and a predefined horizontal velocity 
profile [Dansgaard and Johnsen, 1969]. Despite its simplicity, and in so far that the 
adjacent flow regime is relatively simple, it often yields quite satisfying results. It pro-
vides the basis for the ss09sea timescale [S J Johnsen et al., 2001], which originally was 
constructed for the GRIP ice core, and later modified to account for basal melting and 
applied to the NGRIP ice core (see map in figure 1.3.1). The model integrates knowledge 
on past accumulation rates, and the resulting timescale turned out to be in good agreement 
with the later constructed annual layer counted chronology GICC05 [Svensson et al., 
2006]. The model can also be used to convert from annual layer thicknesses in a given 
depth to an estimate of past accumulation rates, a relationship referred to in section 4.1.  

In some cases, a modeled time scale is indeed the only option for obtaining a timescale for 
an ice core. This is almost always the case for the lower part of an ice core, where annual 
layers are thin and difficult to identify. In Antarctica, the often very low accumulation 
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rates to a high degree eliminate the possibilities of stratigraphic dating. At such places, 
dating by ice flow modeling is one of the only means for producing a timescale for the ice 
cores.  

 Stratigraphic dating of ice cores  1.1.2
Stratigraphic dating of ice cores covers both the use of reference horizons to link particu-
lar features in the ice core record to a fixed chronology, and the use of annually resolved 
data to count annual layers.  

Numerous events can create reference horizons in the ice core. All that is needed is the 
event to somehow stand out in the ice core data. The reference horizons most commonly 
used are layers of high concentrations of sulphuric acid, which often are related to volcan-
ic events. For layers corresponding to well-known volcanic events during historical times, 
such layers can be used as fix points in the timescale [Hammer, 1980]. But even when the 
volcanic event has not been independently dated, such reference horizons can be used to 
link individual paleoclimatic records [Vinther et al., 2006].  

Due to the regularity with which snow is deposited on the ice sheet surface and gradually 
compressed into ice and thinned during ice flow, ice has the ability to preserve a very 
reliable climate record. Provided that the accumulation rate is sufficiently high, there is 
low risk of missing years in the record, and if indeed an annual layering has been pre-
served, it can be used to establish a counted chronology down the ice core.  

Such counted chronologies have mainly been constructed for the upper part of ice cores, 
where annual layers not yet have been thinned too much [Hammer et al., 1978; S J 
Johnsen et al., 1992]. This methodology for providing a timescale is particularly useful at 
high-accumulation sites.  The annual layers here maintain a reasonably large layer thick-
ness for the longest time interval, thereby allowing these layers to be detectable. A 
frequently applied timescale is the Meese-Sowers timescale [Alley et al., 1997; Meese et 
al., 1997], a counted chronology established for the GISP-2 ice core from Central Green-
land (see a further description in section 2.4). 

Because of the way uncertainties are introduced in an annually counted chronology, such 
timescales provide good estimates on the relative timing of two events, whereas the abso-
lute dating uncertainties may be rather large.  

Other methods than those mentioned above can also be used for establishing a chronology 
for ice core records. This includes e.g. wiggle-matching to existing ice cores and/or ocean 
cores. And very often a timescale for an ice core is established based on a combination of 
all of the above. A very comprehensive example of this is found in Lemiuex-Dudon 
[2010], where flow modeling, age markers from several ice cores etc. are utilized to make 
a consistent timescale for several ice cores at a time.  

1.2 Ice core data of subannual resolution  

The isotopic composition and impurity content of snow deposited in the inner part of an 
ice sheet is depending on climate as well as time of the year. Both of these variations are 
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recorded in the deposited ice, where the signal may remain unchanged over long time 
periods. With the high temporal resolution of the Greenland ice cores in particular, these 
can therefore be used not only for inferring past changes in climate, but they may also 
allow seasonal information to be inferred.  

To obtain an ice core record of subannual resolution as required for establishing a counted 
chronology, the chemical impurities in the ice must be measured in high resolution. The 
resolution necessary depends on the thickness of the annual layers in question. With 
depth, the annual layers are thinned, and higher demands are imposed on the measurement 
techniques. 

High-resolution impurity profiles of ice cores can be measured using the method of Con-
tinuous Flow Analysis (CFA). The basic idea behind CFA-measurements is to 
continuously melt a rod of the ice core on a melt head. The melt stream from the inner 
uncontaminated part of the ice is then let through a multitude of analytical lines, each of 
which measures the concentration of a specific chemical component in the ice core melt 
water [Rothlisberger et al., 2000].  

The resolution of a set-up of the CFA system depends on the number of chemical species 
being measured, in combination with the melt speed and the mixing volumes of the sam-
ple stream when being transported through the system. By minimizing mixing volumes, 
reducing the number of components being measured, and using a slow melt speed, the 
chemical concentrations can be measured in very high details. Presently, the highest 
resolution obtained in a CFA system is able to resolve annual layers down to 1 cm in 
thickness  [Bigler et al., 2011], potentially allowing annual layers to be resolved in both 
Greenland and Antarctic ice cores throughout the last glacial cycle.  

Whether or not annual layers can be resolved in ice core data does not only depend on the 
measurement technique. In the upper part of an ice core, a very clear annual signal is often 
observed in the δ��O-record of the ice, caused by the large temperature differences be-
tween summer and winter. With depth, this signal is slowly obliterated. A large degree of 
diffusion during the firnification process, but also molecular diffusion in the ice, causes 
the annual layering to slowly dissolve. To some extent, the annual signal can be recon-
structed in the deeper ice using back-diffusion methods [S Johnsen, 1977], but at some 
point, the seasonal variations will have disappeared. 

Similarly holds for the remaining chemistry in the ice core. With depth, diffusion slowly 
diminishes their annual signal, which at some point will have disappeared. Only a few 
records are not much affected by this process. These records are generally records which 
are somehow connected to the existence of larger particles, such as e.g. dust particles, for 
which diffusion generally is negligible.  

1.3 The NGRIP ice core: A chronologist’s delight  

The North Greenland Ice core Project (NGRIP) took place in Northern Greenland (figure 
1.3.1) during the years 1995-2003 as a joint international deep ice core drilling project. 
The NGRIP ice core is 3085 m long and goes back approximately 123.000 years to the 
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Figure 1.3.1: Locations of Greenland deep ice core drill sites. 

start of the last interglacial, the Eemian (115-130 ka BP) [D Dahl-Jensen et al., 2002; 
North Greenland Ice Core Project Members, 2004]. Presently, the accumulation rate at 
the location is 0.195 cm ice equivalent per year, and the mean annual temperature is -32°C 
[D Dahl-Jensen et al., 2002]. 

Originally, the main purpose of the NGRIP ice core was to retrieve a full and undisturbed 
sequence of ice from the last interglacial. The ice core records from two previous deep-
drilling ventures located at the summit of the Greenland ice sheet (GRIP and GISP-2) both 
contain Eemian ice. However, the stratigraphy in the lower part of the two cores turned 
out to be dissimilar, and both of the records were folded at depth, probably due to ice flow 
over a bedrock topography known to have relatively large undulations [D Dahl-Jensen et 
al., 2002]. For this reason, the degree of climate variability in Greenland during the 
Eemian was still a puzzle, and the NGRIP drill site was selected to yield an answer to 
exactly that: From radio-echo sounding (RES), the bedrock was found to be flat in the 
area, and the internal layering in the ice seemed to promise a good spot for retrieving 
Eemian ice [D Dahl-Jensen et al., 2002].  

Yet, at the NGRIP site, the existence of unexpectedly high basal melt rates in the area 
turned out to have a major effect on the stratigraphy of the ice core. Basal melting had 
simply removed the oldest ice, and the ice core only reached into the first part of the 
Eemian. Although disappointing at first, the high basal melt rates turned out to provide a 
unique possibility for developing an accurate ice core chronology for the Greenland ice 
cores.  

NEEM 
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In the upper part of the NGRIP ice core, the relatively small accumulation rate cause the 
annual layers to be relatively thin in comparison to e.g. the Dye-3 ice core in Southern 
Greenland. But the high basal melt rates result in a much lower thinning rate of the annual 
layers, giving rise to a high time-resolution at depth. In combination with a concurrent 
development of sensitive and high-resolution CFA measurement techniques, it was possi-
ble to distinguish seasonal variation in the different chemical species even at great depths.  
Consequently, the NGRIP ice core provides the optimal conditions for carrying out high-
resolution analyses, and hence to resolve annual layers in the ice core data.  

1.4 Development of GICC05 

Due to their high temporal resolution, Greenland ice cores can be dated very precisely by 
annual layer counting. A several year-long effort of manual annual layer counting using 
multiple chemical components has resulted in the Greenland Ice Core Chronology 
(GICC05), a composite and independent chronology common to three Greenland ice 
cores: Dye-3, GRIP and NGRIP. At each depth interval, the ice core with the highest 
resolution was used to count the annual layering, and the separate sections of timescales 
were subsequently pieced together using marker horizons [Vinther et al., 2006]. The 
oldest part of the chronology is exclusively based on data from the NGRIP ice core.  

 A multi-parameter approach 1.4.1
The chronology is based on a multi-parameter approach, which make use of the range of 
high-resolution data sets available: Electrical Conductivity Measurements (ECM) of the 
solid ice [Hammer, 1980], melt water conductivity, concentrations of the impurities Na
, Ca�
, SO���, NO�

�, NH�

, and the visual stratigraphy of the ice core (see chapter 2). In the 

upper part of the ice core, also the seasonal variation in the stable water isotopes δ��O was 
used. In sections of data loss, layer boundaries were interpolated based on the layer thick-
nesses above and below. 

The above mentioned components represent a diversity of environments. Ammonium 
(NH�


) is e.g. related to biological processes and biomass burning, while sodium (Na
) to 
a first order has a marine source. The electrolytic conductivity of the melt water is a bulk 
signal of all the ionic constituents in the ice. These chemical components have different 
patterns of seasonality, and are affected differently by non-seasonal events. 

However, even with many data records, the layering is sometimes ambiguous. After 
deposition, the seasonality of the signal can be altered due to e.g. melt events, wind scour-
ing or snow drifting, thereby disrupting the signal in the stratigraphy. In regions of low 
accumulation rates, this may give rise to missing layers. Fortunately, accumulation rates 
are too high at the NGRIP site for this to have a major impact [Andersen et al., 2006b], 
and periods of melt does not happen very often. Furthermore, non-annual features may 
exist, which may mistakenly be interpreted as annuals, or alternatively, they may obscure 
an underlying annual signal. In general, the annual signal is quite variable in most of the 
data series, hence complicating the interpretation, and emphasizing the need to use more 
than just a single data series.  
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The inclusion of many data series, which peak at different times of the year, and are 
affected differently by events of non-annual nature, such as e.g. volcanic events, results in 
a much more robust counting approach than if based on a single data series alone. By 
continuously examining the evolution in the annual layer signal, and learning their signal 
characteristics, the annual layers could be recognized with high certainty. Within the 
warm periods, the different species were peaking at different times during the year, and 
this knowledge was used when counting the annual layers. During the cold periods, the 
species were observed to peak more or less simultaneously [Andersen et al., 2006b].   

However, due to a decrease in annual layer thickness, it is not possible to continue the 
annual layer counting further back than 60 kyr BP based on the CFA multi-parameter data 
sets. Diffusion of the chemical species in the ice core as well as during the measurement, 
combined with an annual layer thickness dropping below 1 cm at this depth, effectively 
obliterates the annual signal in most of the ice core chemistry data [Svensson et al., 2008]. 
Only the visual stratigraphy of the ice core maintains an annual signal in the deepest part 
of the ice core [Svensson et al., 2005].  

 Uncertainty of GICC05 1.4.2
Given that some layers were ambiguous, the GICC05 chronology was made with an 
uncertainty estimate. When encountering an ambiguous layer (judged to be between 25-
75% certain), such layer was counted as ½�½ year [Rasmussen et al., 2006]. In this way, 
an estimate of the maximum counting error (abbreviated MCE) was produced. The MCE 
may be regarded as the 2�-uncertainty band [Andersen et al., 2006b]. This is a conserva-
tive uncertainty estimate, which acknowledges that the layer counting might be slightly 
biased, and it gives rise to an approximately linear increase in uncertainty with depth.  

 

Figure 1.4.1: Examples of the counting strategy. Grey bars are certain layers, white bars are con-
sidered uncertain layers and counted as ½ �½ year. Figure reproduced from Andersen et al. 
[2006b]. 
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The upper part of the GICC05 chronology could be reconstructed very precisely, and with 
an uncertainty of only 87 years at a depth of 1400m, approximately corresponding to the 
onset of the Holocene. Further down, the uncertainties increase to around 4% during the 
warm periods, and 7% during the cold periods [Andersen et al., 2006b]. The difficulties of 
recognizing layers increased with depth, and at a depth of 2426m, corresponding to 60 ka 
BP, the uncertainty estimate on the chronology is 2601 years.  

In an attempt to eliminate as much as possible the subjectivity involved in layer interpreta-
tion, the annual layers were always counted multiple times, and by at least two 
experienced investigators. At first, each investigator counted a section by him/herself, and 
subsequently the two counting outcomes were compared. In case of large differences, the 
counting was redone in collaboration between the two investigators to reach consensus.    

As the annual layers get thinner towards the bed, the annual signal in most components 
weakens. Diffusion of the different chemical species with depth in the ice core slowly 
causes the number of parameters containing an annual signal to become fewer. With their 
decreasing annual layer thicknesses, decreased resolution due to mixing during the meas-
urement line also became more influential. In sections with small layer thicknesses, such 
as during the stadials in the deep ice, only a few parameters were left which had main-
tained their annual layer signal. These were the visual stratigraphy, the conductivity and 
ECM. To a first order, all of these are related to the dust content in the ice core.  

At depths below 2430m, corresponding to an age of 60 ka BP, the annual layer thickness-
es reach below 1 cm. At this point, only the annual layering in the visual stratigraphy is 
still intact. However, the annual layer signal in this data series is difficult to identify: At 
some years no peak is present, while several peaks may occur during others. Furthermore, 
with only a single data series, the subjective interpretation of the layering sequence tends 
to become an influential factor. At this depth, objective annual layer counting was consid-
ered impossible, and it was therefore decided not to carry on with the counting. 

However, it has proved possible to recognize annual layers further down the NGRIP ice 
core, where annual layer thicknesses again reach above the 1 cm limit. Annual layers have 
e.g. been identified during sections of 120 ka old Eemian ice from the deepest part of the 
NGRIP ice core [Svensson et al., Submitted 2011]. Likewise, annual layers may also be 
distinguishable during the warmer periods of the last glacial.  

 The resulting timescale 1.4.3
In figure 1.4.2 the resulting GICC05 timescale is compared to other independently dated 
records (ice cores and cave records) covering the same time period. The gray band is the 
1�-uncertainty band on the GICC05 timescale. When considering smaller sections, the 
individual chronologies may differ, but the overall agreement is good. The cave records 
are absolute dated with high precision. The agreement between the absolute dated Hulu 
cave [Wang et al., 2001] and the relative dated GICC05 throughout the depth interval 
signifies that neither has a significant dating error.  
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Figure 1.4.2: Comparing GICC05 to other independently dated records: three ice core timescales 
(ss09sea, Meese-Sowers, SFCP04) and two cave records (Kleegruben, Hulu). The gray band is the 
1�-uncertainty band on the GICC05 timescale. Positive value means that the record is younger 
than GICC05. Figure reproduced from Svensson et al. [2008]. 

1.5 Outline of thesis 

In chapter 2, I will describe in more details the visual stratigraphy of an ice core as it has 
been measured on the NGRIP ice core, what these data are believed to be a record of, and 
describe the annual signal in this data series. Furthermore, it will be described how the 
data series here has gone through an extensive treatment to adjust for defects in the meas-
urement device, something which turned out to be an absolute prerequisite for the further 
analysis.  

The subsequent chapters deal with the development of a statistical framework that in an 
objective and robust manner is able to detect the annual layering in data where only a 
noisy annual layer signal is present. It has been developed with the NGRIP visual stratig-
raphy data in mind, but a similar method may also be useful for layer detection in many 
other kinds of data with annual laminations.  

Chapter 3 deals with the development of an algorithm to detect the annual layering in a 
small data section, in which layers can be assumed uniform with respect to thickness and 
expression in the data series. This chapter provides the general probabilistic framework, 
which reduces the complex question of performing an overall pattern matching of multiple 
successive layers at a time, to the much simpler question of determining whether or not a 
particular data segment is likely to represent an annual layer. The development of a prob-
abilistic description of an annual layer in the visual stratigraphy data is taken up in chapter 
4.  

A layer detection algorithm must be allowed to adapt to the constantly changing character-
istic of an annual layer with depth. In chapter 5, equations are derived for a scheme of 
iterations, which enable the algorithm to adapt to such changes by using the data itself to 
make an appropriate choice of parameters describing e.g. the mean layer thickness. In 



Outline of thesis  10 

principle, this eliminates the need for including any knowledge based on previous data 
sections, and each batch of data can be processed independently. Hence, while maintain-
ing the assumption of fixed parameter values within a batch, the layering in each of these 
is allowed to be described by its own set of parameters.  

By excluding all information based on previous data, a direct implementation of the above 
mentioned iterative scheme is generally not very robust, especially not for data where the 
annual layering is disguised by many other types of variability. In chapter 5.4, it is there-
fore described how these iterations can be modified to take prior information on the 
appropriate parameter values into account.   

Chapter 6 deals with the assemblage of sequential batches of data. It covers the practical 
aspects of joining the results from individual data sections, as well as a discussion on how 
the parameters employed here are expected to vary with depth. Also, it is outlined how the 
above mentioned iterative scheme can be taken yet another step further to allow the pa-
rameter values to continually be adjusted with depth in a proper sequential manner.  

The theoretical part of the thesis ends in chapter 7 with a discussion on how the similarity 
between two independent annual layering sequences covering the same depth interval can 
be assessed. The here developed measures of similarity are later used for evaluating the 
performance of the algorithm.  

In chapter 8, the results of a series of sensitivity studies of the algorithm are presented and 
discussed. Finally, in chapter 9, the algorithm has been employed on a representative 
section of the visual stratigraphy data from the NGRIP ice core. The selected section 
covers a warm period, the Greenland Interstadial 12 (GI-12) (depth: 2200-2220 m), and 
the preceding cold period (depth: 2225-2240 m). The associated time interval is approxi-
mately 45.9 to 48.3 ka BP. The inferred layering is compared to that of the GICC05 
chronology. Also the performance of the algorithm over the transition from warm to cold 
period will be presented and discussed.  

According to the GICC05 timescale, the entire section considered spans 2333�121 years. 
This only represents a small part of the data available for tuning and testing an automated 
layer detection algorithm. Future adjustments in the description of an annual layer signa-
ture in the data series may also be considered. For these reasons, the inferred timescale 
should not (yet) be considered a final chronology, but rather an illustration of the powerful 
principles behind the annual layer detection algorithm developed here.  

 



 2. Visual	stratigraphy	of	ice	cores	

The perhaps most basic information to obtain from an ice core is a recording of its visual 
stratigraphy (VS). But despite early recognition of the existence of a visible physical 
layering in ice cores [Benson, 1962; Gow, 1968; Langway, 1967], scientific use of such 
data proved difficult. Early studies were based on drawings of the core, and later com-
bined with a few analog photographs [Alley et al., 1997; Meese et al., 1997], neither of 
which providing data of sufficient quality and resolution for an in-depth analysis. Fur-
thermore, the acquired data was observer dependent, and with no opportunity to later 
verify the results. 

With the development of relatively low-cost digital imagery equipment and increasingly 
large data storage media, high-resolution digital recording of the visual stratigraphy of ice 
cores became a possibility. The first high-resolution measurements of the visual layering 
of an ice core were carried out at the NGRIP ice core during the field season in 2000 [D 
Dahl-Jensen et al., 2002; Svensson et al., 2005]. Since then, similar measurements have 
become widely used when processing ice cores [Faria et al., 2010; McGwire et al., 2008b; 
Takata et al., 2004]. Their popularity is mainly a result of the relative ease of obtaining 
the data, along with the measurements being non-destructive for the ice core. Yet, the 
extremely high level of details in such records combined with ambiguities regarding their 
precise interpretation, have so far limited their scientific use as paleoclimatic data series.  

In this chapter, I will describe the line-scanning instrument used to record the visual 
stratigraphy of the NGRIP ice core, and discuss the physical origin of the visible layers 
seen herein. Furthermore, the chapter includes a description of how I have processed the 
resulting image data in order to produce a coherent gray-tone intensity curve down the ice 
core. Data covering the depth interval between 1866 and 2930 meters (approx. 28 to 108 
ka BP) have been treated, as this depth interval contains the data of the best quality. Final-
ly, the annual signal in the resulting data curve is discussed.  
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2.1 Image acquisition and quality 

 The line-scanner 2.1.1
At a first glance, an ice core is transparent. The ice consists of almost pure water, and only 
low amounts of impurities. Yet, bands of cloudy and clear ice can be observed in the 
glacial ice of all deep ice cores [Alley et al., 1997; Faria et al., 2010; Hammer et al., 1978; 
Svensson et al., 2005]. In order to obtain a high-resolution record of this faint physical 
layering of ice cores in much higher contrast and details than possible to see by eye, an 
instrument called a line-scanner was designed at the Alfred Wegener Institute for Polar 
and Marine Research (AWI), Bremerhaven, Germany, and later modified at the Niels 
Bohr Institute, Copenhagen, Denmark [Nielsen, 2005]. This instrument was carried to the 
field and used for recording the visual stratigraphy of e.g. the NGRIP ice core.  

The line-scanner works using the principles of dark field microscopy: A dark field is 
placed below the ice core, and the core is illuminated by two light sources, whose beams 
are sent through the ice core at an angle of 45° from below (figure 2.1.1). A Charge-
Coupled Device (CCD) in the scanning apparatus mounted above the core measures the 
amount of scattered light received. Clear ice allows most of the light beam to pass through 
the ice core unaffected, in which case the CCD camera records the dark field below. Areas 
of the ice core with a high concentration of micro-inclusions will scatter more light, and 
will be recorded as a bright band. This is a very efficient way to enhance the contrast of 
the otherwise rather subtle physical layering of an ice core.   

Camera as well as light sources are mounted on trolleys. In synchrony, these move down 
the ice core while recording the amount of scattered light. Measurements are performed 
for a single line of pixels transverse to the ice core at a time, hence the name of the in-
strument.  

In general, line-scan images from NGRIP were recorded based on 1.65 m long, 3 cm thick 
and 8-9 cm wide slabs of ice core. Before imaging, the surface of the ice was carefully 
polished on both sides with a microtome knife in order to remove the rugged surface 
resulting from prior cutting of the ice slab. The resolution of the line-scanner employed at 
NGRIP was 118 pixels per centimeter transverse to the ice core, and roughly the same 
along the core. The camera was an 8-bit CCD color camera. Images were labeled accord-
ing to bag-number1 of the upper part of the core section. Further description of the set-up 
of the line-scanning system at NGRIP can be found in Nielsen [2005] and Svensson 
[2005]. Examples of line-scan data from different depths in the NGRIP core are found in 
figure 2.2.1. 

                                                      
1 The NGRIP ice core is divided into bags, with each bag having a length of 55 cm.  
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Figure 2.1.1: The measuring principles of the line-scanner is schematically illustrated in the bot-
tom figure: Light is being transmitted through the ice core at an angle, such that only light 
scattered by obstacles in the ice reaches the camera mounted above the ice core. At the top is 
shown the line-scanner in operation during the NGRIP field campaign. Figure reproduced from 
Svensson [2005]. 

 Quality of line-scan images from the NGRIP ice core 2.1.2

Image quality depending on storage and time 

The line-scanner was first deployed at the NGRIP ice core during the 2000 field season, 
where the analysis was carried out on ice from the depth interval 1330-2930 m.  

The upper part of the core (down to 1750 m) had been drilled during the previous field 
season, which only had allowed for very few scientific investigations to be carried out. For 
the depth interval 1330-1750 m, the core had therefore overwintered in camp for one year 
previous to analysis, which turned out to be a significant factor for the quality of the 
resulting VS data set. The extended time exposed to surface pressure had led to relaxation 
of the ice core, with a general evolution of air bubbles in the ice matrix originating from 
decomposing clathrate hydrates in originally bubble-free ice [Pauer et al., 1996; Svensson 
et al., 2005]. Scattering from these air bubbles partly obscure the overall pattern of alter-
nating bright and dark bands in the glacial part of the VS record. The difference in image 
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quality from ice drilled before and during the 2000 field season 
is illustrated in figure 2.1.2. 

Warm basal ice provided difficulties for the remaining drilling 
operation down to bedrock. For this reason, the visual stratigra-
phy of the lowest part of the NGRIP ice core (2930-3085 m) 
was not measured in the field but in a cold room at AWI, Brem-
erhaven. The measurements took place only a few months after 
recovery. Yet, also the VS data in these sections suffer from 
degradation due to the extended stay at the surface as well as 
temperature fluctuations during transportation.  

Oversaturation of images 

Due to lack of sufficient time to properly test the line-scanner 
before the field season, the prototype of the instrument used for 
recording the NGRIP VS record, turned out to suffer from a 
serious defect: The highest bit in the 8-bit (256 colors) CCD 
camera was dysfunctional. As a result, each of the three color 
channels restarted when reaching above the 7th bit limit (128 
colors).  

Due to limited data storage capacities in camp (each color 
image took up 58MB, a gigantic file size at the time), the color 
images were converted to gray-scale images by taking the mean 
of the color channels. Apart from a few, the original images 
were deleted immediately after their recording.  

In combination with the faulty bit in the camera, this gray-tone 
conversion has given rise to spurious effects in the resulting VS 
images. As the saturation of each of the three color channels did 
not happen concurrently, and each of them restarting above a 
saturation level of 127, the averaging process gave rise to a 
wide range of gray-tone intensity values being incorrectly 
attributed. On the original images, most of the affected areas 
were easily distinguishable as areas of strange coloring (figure 
2.1.3A). However, such information was lost during the conver-
sion to gray-scale images.  

 

 

 

 

Figure 2.1.2: 55 cm of line-scan data from cold glacial ice in the NGRIP 
ice core (1751.20-1751.75 m), illustrating the degradation in image 
quality caused by storage of the ice core previous to analysis. The upper 
part had been stored for a year after drilling before the scan was carried 
out. The lower section was scanned few weeks after core recovery. 
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Figure 2.1.3: A defect in the line-scan camera made it prone to oversaturation. In the original col-
or images (A), areas of oversaturation are recognizable as being strangely colored. The gray-scale 
images (B) were produced by simple averaging of the three color channels. Progressive oversatu-
ration gives rise to a lot of pixels with “intermediate grey” values. An image containing 
information on the location of “strangely colored pixels” (C) was produced before deleting the 
original color images.  

As soon as the problem was recognized, several precautions were taken in order to let this 
defect of the camera inflict as little as possible on the resulting data. In order to best avoid 
reaching saturation, the aperture of the line-scanner was repeatedly adjusted according to 
the changing characteristics of the ice core [Nielsen, 2005; Svensson et al., 2005]. Despite 
these efforts, the VS data are for some depth intervals still severely affected by artifacts 
caused by saturation. Starting from a depth of 1866 m, it was furthermore recorded for 
which pixels in the line-scan images the coloring was abnormal, and data therefore not 
reliable. An example of such data is shown in figure 2.1.3C.  

I will later return to the issue of oversaturation in the VS images. In section 2.3, it will be 
described how I have utilized the existing information to treat the VS images and have 
managed to recover almost flawless 8-bit gray-scale images.  

Imprecise adjustment of light source 

Another issue affecting the quality of the line-scan images within smaller sections was an 
imprecise adjustment of one of the light sources illuminating the ice core.  

To fully make use of both two planar light sources, their two beams must pass through the 
ice core in such a way that they cross each other in the focus of the camera. In this way, 
they are able to supplement each other if for any reason the light from one of sources is 
blocked. However, one of the light sources in the line-scanner was poorly adjusted. Con-
sequently, the uppermost couple of centimeters of every piece of core appear obscured 
(figure 2.1.4A), as most of the light from the active light source here was reflected by the 
end face of the core piece.  

For similar reasons, a darkened area is often also observed around breaks in the ice core 
(figure 2.1.4B). The degree of shading around these regions depends on the angle of the 
fracture relative to the light beam. 

Selected data interval 

In the following, focus will be on the visual stratigraphy data from the depth interval 
between 1866 and 2930 meters (approx. 28 to 108 ka BP), as this is the depth interval for 

A C B 
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which the line-scan images are of the best quality. These images were scanned under 
optimal conditions, namely in the field and shortly after core recovery, and furthermore 
care was taken to ensure that oversaturation was not too disruptive for image quality. Yet, 
in several sections within this interval, more than 7% of the core data are oversaturated 
(see also figure 2.3.1).  

2.2 Visual stratigraphy as a climate record 

 What do line-scan images record? 2.2.1
The physical layering of the ice core as recorded in line-scan images is caused by varying 
amounts of microscopic impurity inclusions in the core, which are responsible for scatter-
ing the incoming light. Changes in size and/or concentration of the inclusions give rise to 
different amounts of scattered light [Faria et al., 2010], and are seen as individual hori-
zons in the line-scan images. The high resolution of these images makes even very thin 
strata (less than 1 mm) easily detectable. Most likely, each of these strata corresponds to a 
single deposition event. 

The distinct difference between individual layers reflects the changing chemical and 
physical conditions on the surface of the ice sheet at time of deposition. However, the 
inclusions causing the scattering can either be in the form of solid impurities or air bub-
bles enclosed in the ice matrix, and the resulting scattering depends on their size 
distribution as well as quantity. Hence, the information recorded in the line-scan images is 
not unambiguous. Furthermore, as mentioned earlier, the signal in the core stratigraphy 
changes over time and according to storage conditions.  

In figure 2.2.1 is found a schematic drawing of the evolution with depth of the NGRIP 
visual stratigraphy.  

Upper part of ice core: Air bubbles 

Air bubbles are very efficient scattering agents, and their variations in number and size 
dominate the visual stratigraphy in the uppermost bubbly part of the ice core [Faria et al., 
2010]. In the bubbly ice, depth-hoar sequences can be recognized based on their grain and 
bubble structure. Depth-hoar develops by high radiative heating of the ice sheet surface, 
and is hence believed to be a clear summer signal, which can be used for counting annual 
layers in the ice core. The Holocene part of the GISP2 time scale predominantly relies on 
data from visual inspection of the core, with annual markers based on a designation of 

Figure 2.1.4: Poor adjustment of 
one of the light sources in the line-
scanner caused upper end faces (A) 
and breaks (B) to obscure parts of 
the line-scan images. Here is 
shown an example from a depth of 
1933 m. 
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depth-hoar sequences in the ice core [Alley et al., 1997; Meese et al., 1997]. However, no 
line-scan data is available from this upper part of the NGRIP ice core.  

Bubble Hydrate Transition Zone 

At 900 m depth in the NGRIP ice core, the Bubble Hydrate Transition Zone (BHT) is 
reached. Below this depth, the steadily increasing overburden pressure causes the bubbly 
ice slowly to be converted into clathrate hydrates, with the air bubbles being integrated 
into the water molecule structure. As the refractive index of clathrate hydrates is similar to 
that of pure ice, this change brings about much lower scattering levels, and a distinct 
evolution in the visual stratigraphy is observed. At 1600 m, the last air bubbles have 
disappeared, hence marking the end of the BHT [Kipfstuhl et al., 2001].  

The evolution towards bubble-free ice does not take place uniformly. In the EPICA-DML 
ice core, Antarctica, it was observed that non-scattering bands devoid of air bubbles 
appeared in increasing number with depth in the otherwise bubbly ice. Although resem-
bling melt layers, most of these were layers for which the transition into clathrate hydrates 
had taken place faster than in the adjacent ice [Kipfstuhl et al., 2001]. It has been speculat-
ed that the enhanced stage of transition of these layers may be related to high impurity 
content, giving rise to small grain sizes and smaller air bubbles, which are disposed to a 
faster clathrate conversion [Faria et al., 2010; Shimada and Hondoh, 2004]. If so, these 
layers – observed as dark bands in the line-scan images – may present a first step in the 
development towards a bright “cloudy band” as those observed deeper in the core.  

Below the BHT: Cloudy bands 

With the obscuring air bubbles removed, a well-defined layering consisting of dark and 
bright bands (so-called cloudy bands) emerges. It is widely recognized that there is a clear 
relation between “cloudiness” and the amount of enclosed impurities, as the cloudy bands 
generally correlate well with peak dust concentrations and low levels of electrical conduc-
tivity ([ Hammer et al., 1978; Ram et al., 1995; Svensson et al., 2005; K C Taylor et al., 
1993]). In figure 2.2.2 is shown a microstructure image of a cloudy band from the EPICA-
DML ice core, Antarctica, which in details shows the increased amount of impurities in a 
cloudy band [Faria et al., 2010].  

Yet, consensus has not been reached on whether the visual banding is caused by scattering 
off the dust particles themselves. Some studies point to the scattering agent being a large 
number of microscopic air parcels (microns in diameter) which have emerged around dust 
grains [Shimohara, 2003], possibly due to relaxation of the ice core immediately after its 
recovery. However, other studies seem to contradict this, pointing to the actual particu-
lates themselves being responsible: When carefully studying the melting of ice from a 
cloudy band under a microscope, there are no indications of small explosions formed by 
the release of gasses from high-pressure air bubbles [Svensson et al., 2005].  

In the NGRIP ice core, the end of the BHT coincides in depth with the uppermost ice from 
the last glacial. The distinct banding in this part of the ice core is therefore attributed to the 
combined effect of high dust concentration levels in glacial ice along with the disappear-
ance of air bubbles.  
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Figure 2.2.1: Evolution with depth of the visual stratigraphy of the NGRIP ice core. In the sche-
matic drawing, gray lines are cloudy bands, dots are air bubbles, and the bottom features are large 
ice crystals. Stratigraphic features are not drawn to scale. The quality of line-scan images from dif-
ferent sections of the ice core is marked. To the very left is shown the ���� record from the NGRIP 
ice core. Examples of line-scan images from different depths are shown to the right. A: Scattering 
from air bubbles in upper part of core. B: Sometimes a melt layer or layer of clathrate hydrates is 
visible as a dark band among the bright air bubbles. C: The ‘Vedde’ ash layer. Ice from Younger 
Dryas. D: Very regular horizontal banding exists for a large section of the core. E: Small-scale 
waviness of the dark and bright banding becomes more pronounced with depth. F: Appearance of 
microfolding, in places also z-folds. G: White areas resulting from crystal faces in core. H: Sec-
tions of layers with high tilt occur at great depths. I: Reflections from crystal boundaries dominate 
the VS in the bottom of the core. All images shown are 6.5x6.5 cm. 
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Down to great depths, the visual stratigraphy of the NGRIP ice core seems undisturbed, 
with nicely flat and parallel bandings. Small variations in individual layer thickness in the 
upper part of the core may result from sastrugi on the ice sheet surface during deposition, 
whereas the more evolved disturbances in the lower part of the core is due to deformation 
caused by ice flow. Around a depth of 2400 m, the layering starts to display a slightly 
wavy structure. Although continually increasing and decreasing, the degree of disturbance 
generally increases with depth. The first tiny z-folds appear around 2650 m. Around 2800 
m, the strata in general have become rather fuzzy. At this depth, also interfaces between 
individual ice crystals contribute to scatter light, hereby forming slightly whitish regions 
in the images that disguise the underlying layering. 

Bottom part: Huge crystals 

In the bottom 80 m of the NGRIP ice core, high basal temperatures close to the pressure 
melting point have formed huge ice crystals. In this section, the line-scan images are 
dominated by light scattered by suitably inclined interfaces formed by crystal boundaries, 
and cloudy bands are no longer visible.  

In the EPICA-DML ice core, similar observations were made. A more detailed analysis 
here revealed that it was not just that the scattering from crystal boundaries was obscuring 
an underlying dark and bright banding pattern. The micro-inclusions previously forming 
the cloudy bands was aggregating at grain boundaries and hydrates, gradually leaving the 
ice in between cleaner and cleaner [Faria et al., 2010]. Such impurity migration may have 
high impact on the details of the paleoclimatic data series from the ice core. However, it 
seems that a similar redistribution of impurities does not take place at NGRIP. Here, high-
resolution impurity measurements revealed the existence of annual layering even in the 
very bottom part of the ice core [Svensson et al., Submitted 2011].  

 

 

 

Figure 2.2.2: A microstructure-mapping mosaic image of 
a 5 mm thick cloudy band from the EPICA-DML ice core, 
Antarctica. Depth: 1093 m. White objects are hydrates, 
small dark dots are micro-inclusions, and larger black ar-
eas decomposing air hydrates. Thin dark lines are crystal 
boundaries. Within the cloudy band, the content of impuri-
ties is larger and grain sizes are significantly reduced. The 
scale bar in the bottom is 1 mm. Figure reproduced from 
Faria et al. [2010]. 
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 Information on layer disturbance 2.2.2
Besides from information contained in the varying brightness of the banding pattern, the 
visual stratigraphy also reveals the variations in layering across the core diameter.  

For most ice core measurements (this is e.g. the case for CFA data), a single value is 
assigned to each depth, hereby assuming such variations to be negligible. The reported 
value constitutes an average of a cross-section of the core, with an averaging width de-
pending on the specific instrument. However, as mentioned earlier, although the banding 
pattern is consistently flat and regular for the upper part of the NGRIP ice core, waviness 
and z-folds of individual layers is a reoccurring phenomenon in the lower 500 m of the 
core. In this case, a reported average value across the core may have smeared out the 
variability in the high-resolution signal of the data set.  

In this context, however, it should be emphasized that also the visual stratigraphy in the 
line-scan images constitutes an averaging. After all, the images are only two-dimensional, 
and during scanning, the line-scanner focuses over a small depth interval within the pre-
pared ice core slab. As a consequence of this averaging, the layer boundaries gradually 
becoming less distinct with depth and increased waviness of the general layering structure.  

It should also be noted that the observed folding and waviness of the layering depends on 
the surface of core which was prepared for analysis. During extraction of an ice core, 
information on its absolute orientation in the bore hole is not preserved, and the surface to 
be prepared for scanning is selected more or less arbitrarily. Hence, the disturbance in the 
visible layering in consecutive sections of the core may not be similar, each of them 
providing a lower limit on the degree of disturbance only.  

Information contained in the degree of small-scale disturbance of the layering may indeed 
have more far-reaching implications than simply a decrease in resolution of the individual 
ice core records. A substantial degree of small-scale disturbances may signify disturbances 
on much larger scales, and may warn about disruptions in the stratigraphic continuity of 
the paleoclimatic records. The divergence in the lower part of the climate records from the 
GRIP and GISP2 ice cores coincide with an increase in small-scale disturbance of the 
layering in both cores, and similarly was observed for the EPICA-DML ice core in Ant-
arctica [Faria et al., 2010]. Despite the general increase in layer inclination and waviness 
with depth of the NGRIP ice core, however, the NGRIP record seems to be undisturbed all 
the way to the bedrock [North Greenland Ice Core Project Members, 2004].   

2.3 Processing of line-scan images 

To facilitate the subsequent analysis, a gray-tone intensity profile was extracted from the 
line-scan images. However, to retain as much as possible of the highly detailed data record 
contained in these images, several issues must be kept in mind when constructing such 
intensity curves. As discussed in McGwire et al [2008b] and Katsuta et al [2003], averag-
ing image intensities over several pixels reduce the noise level of the resulting intensity 
profile. But ideally, in order to preserve the high data resolution, only intensities belong-
ing to the exact same horizon should be averaged.  
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Another key consideration concerns the relative calibration between intensity profiles 
obtained from line-scan images recorded with different apertures. For the performance of 
the automated annual layer counting routine (chapter 3), it is crucial that the character of 
the data series does not change too abruptly with depth – and indeed; not as a result of 
technicalities in the measurement procedure.  

Additionally, the NGRIP line-scan images must be corrected for artifacts caused by the 
malfunctioning CCD in the line-scan camera. Data quality may otherwise be significantly 
degraded by oversaturation, the degree of which depending on data characteristics as well 
as the employed aperture value (figure 2.3.1A).  

Other data treatment includes dealing with breaks in the ice core, and the construction of a 
depth scale for each core section scanned.  

 Selecting image data areas 2.3.1

Locating edges of ice core 

First of all, we need to be able to distinguish the actual ice core on the line-scan images 
from the background. For this purpose, an image-processing tool was developed which 
automatically could locate the core boundaries.  

Figure 2.3.1: A) and B): Applied aperture values for line-scan images within the selected depth 
interval, and the resulting percentage of saturated pixels observed. Only areas occupied by ice 
core in the images are considered. The percentage of saturated pixels provides a lower bound 
only, as pixels experienced full saturation in all color channels are not included. Not surpris-
ingly, a change in aperture is most often associated with a sharp decrease/increase in 
saturation. C) Percentage of line-scan image data which had to be masked out due to breaks in 
the ice core, overexposure etc. When looking in details, a regular zigzag pattern emerges. This 
is due to stable drilling conditions with very regular lengths (up to 3.55 m [D Dahl-Jensen et 
al., 2002]) of ice core sections retrieved at each run. As this is close to twice the length of the 
ice core sections scanned at a time, approximately every second image contains a break. 



Processing of line-scan images  22 

Although not always explicitly acknowledged in the following, knowing the location of 
core boundaries plays a significant role in many of the subsequent image processing steps. 
Together with knowledge on the precise length of the individual ice core sections scanned, 
it is also utilized for constructing a depth scale for the visual stratigraphy data. 

Alignment of core sections 

In the considered depth interval, the layering in the NGRIP ice core is more or less hori-
zontal. However, as the ice core itself often not is placed straight in the core-scanning 
device, layers are not always horizontal in the image itself. Given that intensity profiles 
are constructed by horizontal averaging of intensities, proper alignment of the core in the 
line-scan images increases the resolution of the resulting data series. Besides, the aligned 
and cropped images are in general much handier to work with than the original data.  

The images were aligned and cropped in the following way: For each unbroken piece of 
ice core, a straight line was fitted to the vertical edges of the core, and the core piece was 
subsequently aligned using the corresponding angle. Afterwards, parts of image only 
containing background data were removed.  

Potentially, the aligned core data could further be used for describing how the layers in the 
core changes with depth. 

Locating breaks in core 

Another image processing tool was developed to locate breaks in the core data. Such 
breaks can be recognized as areas of the core, which are bright and with a different incli-
nation to horizontal than the surrounding layers. Furthermore, due to the one inactive light 
source in the line-scan set-up, breaks in the ice core leave a very specific signature in the 
core edges, in which a dark area is imprinted.  

Based on the above observations, a filter has been created, which works on the aligned 
data to create a “bad ice mask” containing regions of the ice core which are breaks. How-
ever, as breaks can be very hard to discern from bright layers with a slightly wavy 
structure, the constructed mask was inspected manually afterwards to ensure that the 
correct areas had been masked out. The “bad ice mask” both contains the actual break in 
the core and potential dark areas below, for which the break blocked out most of the light 
from the active light source.  

The very top and bottom (~1 mm) part of the core did not contain useful data either, as the 
areas here were oversaturated due to increased scattering from the edges. Such areas were 
easy to identify due to their high intensity values, and an algorithm was developed to mask 
out data also from these regions. 

On average, a little more than 1% of the image data had to be removed due to breaks and 
scattering off the ice core end faces.  

 Reconstructing 8-bit line-scan images 2.3.2

Comparing raw gray-tone intensity data  

A few line-scan images within the considered depth range were taken more than once and 
using different apertures. A compilation of these and the applied apertures is found in  
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Image 
Aperture 

f/11 f/16 f/22 f/32 
3778   × × 
4045   × × 
4462   × × 
4501   × × 
4564   × × 
4825  × ×  
4888  × ×  
5023  × ×  
5227 × ×   
5278  × ×  

Table 2.3.1: Line-scan images captured using more than one value of aperture. Within the consid-
ered depth interval, 10 such images exist.  

table 2.3.1. From a comparison between such images, the effect of the dysfunctional bit in 
the CCD camera combined with the applied gray-tone conversion of the images can be 
observed. 

In figure 2.3.2 is plotted the relationship between the raw gray-tone intensities of the five 
line-scan images measured both with apertures of f/22 and f/32. Obviously, the relation-
ship between the two sets of intensities is non-trivial. An aperture of f/32 is the smaller 
one, resulting in darker images and therefore a lesser degree of saturation. Consequently, 
they provide the better estimate of the actual intensities. An aperture of f/22 is twice as 
large as that of f/32, allowing twice as much light to enter the CCD, and hence the theoret-
ical relationship between intensity values measured with those two apertures is a straight 
line with a slope of approximately 0.5. This is also observed for low intensity values. 
However, for intensities above 60, the linear relationship breaks down. Observe how 
much of the dynamical range is mapped into a region of intensity values around 60 in both 
images, thereby giving rise to a large amount of ‘intermediate gray’ colors in the line-scan 
images.   

In figure 2.3.3 is compared a small section of two intensity profiles from the same depth 
interval, but based on line-scan images obtained using different aperture values. The one 
captured with an aperture of f/32 has experienced very little saturation. Oversaturation of 
the image scanned with larger aperture (f/22) changes the peak values in the gray-tone 
intensity profile. Caused by the non-linearity of the relationship between original and 
observed intensity values, peaks may even be turned into valleys, thereby significantly 
degrading the overall signal in the data series. 
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Figure 2.3.2: A comparison of pixel-to-pixel gray-tone intensities for the line-scan images scanned 
both with aperture f/22 and f/32. For intensities below 60, a linear relationship is found. The best 
fitting straight line for these values is plotted. Above this value, however, the linear relationship 
breaks down, and intensity values are clustered in the interval between 60 and 70. The development 
of a secondary linear branch for high intensity values is caused by full saturation of the large-
aperture image (see discussion in text). For the five images selected here, 30% of all intensity val-
ues in the large-aperture images are above 60 and hence possibly unreliable. For reasons of 
discernibility, only a small subset of the available data is shown. To account for small discrepan-
cies in the co-registration, data has first been smoothed with a Gaussian filter of width 5 pixels.  

Figure 2.3.3: Corrected and uncorrected intensity profiles. The intensity profile measured with ap-
erture f/22 (A) is much more affected by oversaturation than that measured with an aperture of f/32 
(D). Note in A, how all peak values are more or less similar. As seen from B (or D), this is not a 
true phenomenon. In general, oversaturation causes the peaks to be less pronounced. The gray 
bands in particular are heavily influenced. Also note how e.g. the very top of the peak around 
2225.65m has turned into a small depression by the combination of oversaturation and color chan-
nel averaging.  
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Correction of gray-tone intensities 

Having realized the importance of saturation for the visual stratigraphy data quality and 
the coherence between subsequent line-scan images, the unsaturated 8-bit line-scan imag-
es have been reconstructed on a pixel-to-pixel basis.  

The effect of the bad bit on the recorded and subsequently averaged line-scan images can 
be realized from the following line of reasoning: For each of the three color channels (here 
denoted by �, �, and �) the camera went into saturation for values above 127, at which 
point the color scale restarted at 0. That is, with �� ∈ {0, 1} for  ∈ {�, �, �}, the observed 
averaged intensity in a specific pixel is related to the original intensity value by:  

!"#$ = 13 '(� − 128 ∙ �-. + 0� − 128 ∙ �12 + (� − 128 ∙ �#.3 

= 13 (� + � + �. − 1283 ∙ 0�- + �1 + �#2 

= !4-56 − 1273 0�- + �1 + �#2 

Consequently, the intensity value to be observed, had the camera not been malfunctioning, 
can be calculated as: 

(2.3.1. !4-56 = !"#$ + 1283 0�- + �1 + �#2 = !"#$ + 1283 �∗  

Although we do not know the individual correction factors �� corresponding to a given 
pixel, the total correction (�∗) to apply to the observed intensity values can only be one 
out of four possible values: 

�∗ = 0�- + �1 + �#2 ∈ {0, 1, 2, 3} 
With increasingly high intensities, the image gets progressively saturated, and a larger and 
larger saturation factor is to be applied. The combined effect of increased intensities and 
increased correction factors is that for a large range of values of original intensity values, 
more or less the same intensity is observed. Finally, having reached full saturation, the 
correction factor can no longer increase, and the observed intensity values will again 
increase. Hence, for sufficiently high intensities, we would in figure 2.3.2 have observed a 
straight line with the same slope as the one observed for low intensities, had not the small-
aperture image also reached saturation at these values.  

To obtain a guess of which correction factor to apply to which pixel, the recorded infor-
mation on “strangely colored pixels” (see example in figure 2.1.3) was used together with 
an assumption of smoothly varying intensity values.  

Most pixels in the line-scan images need no correction. Yet, areas of strange green or 
purple coloring are caused by respectively one or two color channels being over-saturated2 

                                                      
2 Unfortunately, it was not recorded which pixels were in green colors and which were purple. Such 
information would have been a great help for correcting the images. The conversion between colors 
and correction factors appears to be straight-forward, with green colors corresponding to a correc-
tion factor of 1, and purple corresponding to a correction factor of 2 (see figure 2.1.3A). 
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Consequently, the appropriate correction factor here is limited to being either 1 or 2. If all 
three color channels are oversaturated (hence requiring a correction factor of 3), the colors 
are again in balance, and the result is grayish like the original data. Assuming slowly 
varying intensities in all color channels, the correction factors are likely to vary one step at 
a time. Hence, the only pixels which may require a correction factor of 3 are located 
within an area surrounding by saturated pixels. However, it may also be that such regions 
are not saturated at all. Thus, possible correction factors for these areas are 0 and 3. The 
rest of the image is left uncorrected. 

Subsequently, correction factors were assessed for those parts of the line-scan image 
hereby identified as potentially oversaturated. By starting from the border of each such 
area and slowly filling it in, the most likely correction factor for each pixel was found. The 
likelihoods of both possible correction factors were assessed based on the similarity 
between the resulting gray-tone intensity and a weighted mean of known intensity values 
in the immediate surroundings. As the intensities generally are more alike parallel than 
perpendicular to the layering, largest emphasis was placed upon the similarity of intensity 
values in the horizontal direction. Pixels with assigned correction values were hereafter 
treated as having known intensities, and were used for estimating the remaining correc-
tions.  

As the above described reconstruction procedure continuously uses information from 
correction factors previously obtained, a decrease in quality of the reconstruction may be 
expected with increasing size of area to be filled out. To circumvent this, the estimated 
best correction values were accepted only where these were unambiguously defined. 
Pixels with no significant difference in likelihood of the two possible correction values 
were not assigned any of these. They had to wait for the correction values of other less 
ambiguous pixels in the neighborhood to be determined. With increasing number of 
surrounding intensity values known, a better estimate of the most likely correction factor 
for the pixel in consideration could be made. In this way, uncertain corrections were not 
allowed to inflict significantly on the resulting reconstructed image.  The level of certainty 
required for assigning a correction factor to a given pixel was successively lowered as the 
algorithm started struggling to find correction factors good enough to be accepted.  

To further increase the robustness of the procedure, the algorithm was run twice on each 
image. After having obtained a first estimate of correction values, regions of non-smooth 
intensities changes were mapped. The algorithm was then re-run a second time in a neigh-
borhood around these areas.  

Performance of reconstruction procedure 

In figure 2.3.4 (and figure 2.3.6) is shown the relationship between corrected intensity 
values of images captured using more than one aperture value. As desired, the relationship 
is now linear for the entire range of intensity values. The improvement relative to the same 
relationship for uncorrected images (figure 2.3.2) is evident.  

Given that an aperture of f/22 is twice as large as f/32, the theoretical slope of the two sets 
of intensity values is 0.5. However, these aperture values are likely to be taken more as an 
estimate of the actual aperture area rather than an exact number. From the observed 
slopes, it seems that the aperture setting on the line-scanner was not precisely 0.5, but 
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rather 0.4. Furthermore, as the aperture was adjusted manually, the value was not exactly 
the same each time, which can be seen from the slightly different slopes of the best fitting 
straight lines when based on the individual line-scan images.    

With the above procedure, the line-scan images could be reconstructed almost perfectly in 
full 8-bit resolution. If looking carefully at each line corresponding to a specific image, it 
seems that for very high intensity values, the algorithm may tend to assign too small 
correction values to a minor fraction of the pixels, hereby giving rise to a slight underes-
timation of the height of very high peaks. However, the differences are generally 
insignificant.  

Visual inspection of the line-scan images revealed that while thin layers having experi-
enced oversaturation are truly impeccably restored, few imperfections may exist for very 
thick layers, as these required a lot of processing in order to be restored. High intensity 
values most often correspond to such thick layers, and this may be the reason for the slight 
underestimation of very high intensity values mentioned above. In figure 2.3.5 is shown a 
comparison between the original oversaturated image and its corrected version.  

 

 
Figure 2.3.4: Corrected intensity values for the same line-scan images as shown in figure 2.3.2, 
namely those measured both with aperture f/22 and f/32. After the correction procedure, the rela-
tionship is a straight line for all intensity values. Only a small subset of the available data is shown, 
whereas the entire data set has been used to calculate the best fitting straight lines. Most of the 
scatter stems from difficulties co-registering the data on a pixel basis. To account for small dis-
crepancies in the co-registration, data has first been smoothed with a Gaussian filter of width 5 
pixels. 
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Figure 2.3.5: The image processing steps. The original line-scan images (A) are cropped and 
aligned (B), corrected for the dead pixel and the faulty 8th bit (C) and corrected for illumination ef-
fects (D). Finally, white speckles are removed (E) and the image is median filtered to remove noise 
(F). The resulting intensity profile is found in G. 

 Other image improvements 2.3.3

Correcting for dark current 

A Charge-Coupled Device (CCD) detects the received amount of light by capturing pho-
tons, turning them into electrons, and counting the accumulated number of electrons in 
tiny bins. Even when left in complete darkness, however, CCDs will collect some elec-
trons. Hence, on the read-out of image, a so-called dark current will be present, providing 
a minimum level of measured intensities.  
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The dark current is independent of aperture. Hence, the dark current level for the em-
ployed CCD can be found from the relationship between measured intensity values using 
different apertures (like figure 2.3.4 above).  Using again apertures f/22 and f/32 as an 
example, we have: 

!��;"-- = !��"#$ − !<=-> 

A similarly relationship holds for !��, leading to: 

!��"#$ − !<=-> = !��;"-- = ?!��;"-- = ?0!"#$�� − !<=->2 ⇔ 

(2.3.2. 
From the best fitting straight lines, the dark current level of the line-scan images can 
therefore be determined.  Its value is found to be close to 7, and this value has therefore 
been subtracted from the observed intensity values.   

Varying lightening conditions 

Having first subtracted the dark current, we can correct for different illumination condi-
tions across the image (flat-field correction). By itself, this correction has limited 
influence on the shape of peaks and troughs in the resulting intensity profiles, as it mainly 
results in a general change of level of intensities measured. However, for the “bad ice 
mask” (see p. 22) to work properly, it was necessary first to apply such a flat-field correc-
tion to the images. It also increased the performance of the reconstruction algorithm, 
which assumed slowly varying horizontal intensity changes.  

Looking at the line-scan images in details, it is clear that ice core was not uniformly 
illuminated during scanning. Individual layers do not maintain the same color across the 
core, but appear darker towards the edges. As the trend seems to be more related to posi-
tion in the image than to core edges, the effect seems mainly to be caused by the light 
sources used to illuminate the ice core from below rather than shadowing of light by the 
core edges.  

The general trend in gray-tone intensities across the image was found by vertically averag-
ing the measured intensities in the line-scan images. Repeating this for many images and 
averaging their normalized trends, the resulting curve gave an estimate of the general 
pattern of intensity values across the ice core. The effect of changing lightening conditions 
could then be removed by dividing the intensities with the appropriate correction factor 
(figure 2.3.5D).  

A similar exercise was done for the upper part of the line-scan image from each ice core 
section, which suffered from decreased illumination due to high amounts of scattering of 
the active light source from the nearby core edge. In this case, however, the decrease in 
intensity does not depend on the position in image, but the distance from the edge of the 
core. Also, the pattern is not constant across the core. Nevertheless, from the averaging of 
many co-registered images, a general illumination pattern was obtained and its effect 
could be removed (figure 2.3.5D).  

!��"#$ = ?!"#$�� + (1 − ?.!<=-> 
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Dead pixel 

The CCD camera used in the line-scanner at NGRIP had an inactive pixel, which can be 
recognized as a dark vertical line on each line-scan image. The appropriate intensity 
values here have been interpolated as the average intensity of the pixels on either side.  

Noise filtering 

The line-scan images are generally filled with white speckles, most of which probably 
artifacts produced from polishing the ice core with a microtome knife [Faria et al., 2010].  
These tiny bright spots are easily recognizable on the line-scan image and have been 
removed. Their new intensity values were found as the average intensity of the surround-
ing pixels (figure 2.3.5E). 

Finally, the image was filtered using a median filter in order to remove as much noise in 
the image data as possible before constructing the intensity profile (figure 2.3.5F and G).  

 Constructing gray-tone intensity profiles 2.3.4

Obtaining intensity profiles 

Finally, the intensity profiles were constructed based on the aligned images, and measured 
down the center of the core. As the visible strata in the NGRIP line-scan data are more or 
less horizontal throughout the considered depth interval, the intensity profiles were con-
structed as a simple mean of 50 intensity values perpendicular to the ice core.  

No efforts were made to account for the increased tilting and waviness of the individual 
layers with depth3. Breaks and other areas without useful data were disregarded when 
calculating the averages. 

Aperture calibrations 

All intensity profiles were then calibrated to the one obtained with an aperture of f/22. For 
the depth interval under consideration, this is the aperture most commonly used (figure 
2.3.1). The calibration factor (‘k’ in eq. (2.3.2)) corresponding to different aperture values 
were found from the comparison between two exposure-corrected scans of the same ice 
core (figure 2.3.4, figure 2.3.6). The calibration factors are found as the slope of the best 
fitting straight line when using all data points from all images available.  

By applying the aperture calibration to the resulting intensity profiles, and not directly on 
the images themselves, we allow for non-integer data values, as well as intensity values 
above 255.  

 

                                                      
3 A detailed method of doing so has been outlined in e.g. Katsuta, N., M. Takano, T. Okaniwa, and 
M. Kumazawa (2003), Image processing to extract sequential profiles with high spatial resolution 
from the 2D map of deformed laminated patterns, Comput Geosci-Uk, 29(6), 725-740. 
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Figure 2.3.6: The linear relationship used for calibrating between !�A and !�� (A), and from !�� to !�A (B). Intensity profiles measured with an aperture of f/11 can be calibrated to an aperture of f/22 
by first applying the calibration factor relative to !�A, and then the one from !�A to !��. 

 Depth scale of line-scan images 2.3.5
Line-scan images directly provide a “proper” depth scale. Disregarding breaks in the ice 
core, which always present a source of depth uncertainty, the accuracy of the line-scan 
depth scale is only limited by the steadiness of movement of camera trolley in the line-
scanner. Assuming a constant velocity, the depth scale can be established based on the 
length of the ice core section in the image, and its true length. The involved uncertainties 
in the constructed depth scale are difficult to estimate as they entirely depend on the core 
section in question. For most core sections, however, these are negligible. 

In the following, we will often wish to compare the visual stratigraphy with data from e.g. 
CFA measurements. However, a detailed comparison of such two high-resolution records 
is severely hampered by small differences in the two depth scales. Whereas the visual 
stratigraphy associates an absolute length scale to the core, the depth scale derived from 
the CFA system is slightly harmonica-like. It depends on the melt rate of the ice rod, 
which is difficult to control and which may slightly change during the measurements, as 
well as on the travel time of the water stream through the pump, tubes and analytical lines. 
The resulting depth scale may be up to several centimeters off – a large difference when 
comparing to annual layers with a thickness of the same order of magnitude. The depth 
scale variations are even larger with ECM data, which are measured by hand. 

2.4 Annual layer signal in VS 

For the considered depth interval of the NGRIP ice core, the visual stratigraphy displays a 
clear banding of dark and bright layers, and the derived intensity profile resembles the 
dust concentration signal in great details [E. Kettner, pers. comm.]. Due to the seasonality 
of inclusion of dust into the ice [Alley et al., 1997; Hamilton and Langway, 1968], cloudy 
bands in the visual stratigraphy have the potential to be used as indicators for annual 
layers. 

The present seasonality of dust concentration in deposited snow is believed to be the result 
of intensified dust storms occurring during spring and summer, in combination with 
seasonal changes in atmospheric circulation [Ram and Illing, 1994]. But increased dust 
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concentrations may occur throughout the entire year due to e.g. irregular changes in 
weather patterns or influx of volcanic dust.  

Similar to the irregular seasonality pattern expressed in dust profiles, the annual signal in 
the visual stratigraphy is not very regular. In Holocene ice, it has been observed that often 
more than one strong cloudy band is formed during springtime, and that a secondary layer 
of increased dust content often occurs in fall [Alley et al., 1997]. From considering the 
visual stratigraphy data from NGRIP, its seasonal pattern generally seems to be more 
regular during the cold periods than during the warm interstadials. 

In figure 2.4.1 is shown the result of a spectral analysis on visual stratigraphy data from 
the Greenland Stadial 13 (GS-13). The seasonal pattern is too irregular to show up as a 
peak if considering the data on a depth scale (figure 2.4.1A). However, a seasonal signal 
does exist in the data. This can be seen from a spectral analysis on the data on a timescale 
according to GICC05 (figure 2.4.1B).  

 

Figure 2.4.1: Spectral analysis on the corrected visual stratigraphy profile from a depth of 2233 m 
in the NGRIP ice core (GS-13). A: Spectral analysis on the data on a depth scale. B: Spectral anal-
ysis on data on a timescale according to GICC05. The gray bar signifies the location of an 
expected annual peak. In this spectrum, several other regular peaks with lesser importance also 
show up. These may be attributed a non-cosine structure of the annual layer signal, causing it to 
require more than just one spectral component to describe the signal.  

The most extensive use of visible strata for deriving an ice core time scale was for the 
dating of the GISP2 ice core. The Holocene part of the GISP2 time scale predominantly 
relies on data from visual inspection of the ice core, with annual markers based on a 
designation of depth-hoar sequences in the core. Further down the ice core, where depth-
hoar sequences were no-longer visible, visible cloudy bands along with other annual layer 
indicators (ECM, laser-light scattering from dust) were used for establishing an annually 
counted timescale for the glacial part of the ice core. Cloudy bands in the visual stratigra-
phy were then used to extend the dating of the GISP2 ice core back to 50 ka BP [Meese et 
al., 1997]. To a lesser extent, the VS profile was also used as one of several parameters for 
the deeper part of the GICC05 timescale. 
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 3. Layer	counting	using	Hidden	

Markov	Modeling	

Establishing a chronology for a paleoclimatic record by manual counting of annual lami-
nations is a tedious and furthermore subjective task. The Greenland Ice Core Chronology 
2005 (GICC05) was developed over several years, involving the persevered efforts of 
many researchers; counting, comparing and re-counting the layers in the ice core data. To 
reduce the subjectivity of layer counting, and hence increase the quality of the resulting 
timescales, many attempts have been made to develop automated methods of doing so. 
However, this is not an easy job, and most methods have since been abandoned, leaving 
the manual layer counting approach to still be the most accurate.   

The attempts range from simple approaches mainly concerned with smoothing the data 
beforehand and simple counting of the remaining peaks [Shimohara, 2003] to those more 
elaborate and sophisticated [Rasmussen et al., 2002]. General features, however, are 
preprocessing of the data in form of smoothing or bandpass-filtering (hereby implicitly 
using some prior knowledge on the involved layer thicknesses), in combination with either 
a one-layer-at-a-time approach [McGwire et al., 2008a; Rasmussen et al., 2002; Smith et 
al., 2009] or a general search for periodicities in the data [Rupf and Radons, 2004; 
Svensson et al., 2005]. In comparison to these, the method developed here can be regarded 
as a one-section-at-a-time approach, where multiple layer boundaries in an entire data 
section are being determined simultaneously. This is an approach much more similar to 
the manual approach of layer counting.  

The method developed here is a novel method of automating the annual layer counting 
procedure. It is based on the statistical framework of Hidden Markov Modeling (HMM), 
which originates from speech recognition, and to my knowledge has not yet been applied 
in any paleoclimatic context. In many ways, the layer detection methodology described 
here resembles what is automatically done by eye. And although the human eye is almost 
unsurpassable when it comes to pattern matching, an automated approach will always 
benefit from its objectivity.  

Before knowing about the existence of the Hidden Markov Model framework, I tried out 
various other methods. However, too large variations in the individual annual layer thick-
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nesses resulted in poor performance for methods looking for specific frequencies in the 
data. And methodologies based on a one-layer-at-a-time approach simply lacked the 
ability of using the entire data sequence to best pick out the layer boundaries.  

Given the large variability in expression of the annual layers and the high degree of noise, 
it is often not possible to detect all layers with certainty. When using a one-layer-at-a-time 
approach, the accumulation of errors from wrongly positioned annual layer boundaries 
turned out to be crucial for their performance, and I could not make such algorithms work 
properly. In contrast, the present algorithm is able to position the annual layer boundaries 
based on the entire data section at once. The layering in sections with poorly resolved 
annual layer peaks is therefore determined based on the positioning of clearly discernible 
layers before as well as after. In this way, a false peak will not disrupt the overall perfor-
mance of the layer counting routine, hereby making it much more robust against noise and 
variability of the annual layer signal of the data in question. 

This chapter will start out with a short introduction to Bayesian statistics, which provide 
the fundamental theoretical basis for the approach. The layer detection routine itself is 
based on the Bayesian statistical framework of Hidden Markov Modeling (HMM). The 
concepts of this framework will be presented, and it will be described how they can be 
applied to the case of annual layer detection in ice cores. Assuming the observations to be 
the outcome of a hidden Markov process, layer detection in an observation sequence can 
then be achieved by using one of two algorithms: The Forward-Backward and the Viterbi 
algorithm. Although very similar, they are based on different perceptions of what is the 
‘best’ annual layering in a given data sequence, and will therefore give slightly different 
results having slightly different interpretations. Equations related to annual layer detection 
will be derived for both algorithms, and their differences will be discussed. The layer 
detection routine is developed with the application for visual stratigraphy in ice cores in 
mind, but the general concepts can be used for a wide range of similar applications. 

The layer detection algorithm works by reducing the complex issue of simultaneous 
pattern matching of multiple successive layers to a given template, to the much simpler 
question concerning how likely a particular data segment is to represent a single annual 
layer. However, the determination of such probabilities is challenging in itself, and their 
calculation will be postponed to chapter 4. They provide the criteria used for determining 
what should be considered an annual layer, and are of course vital for the methodology. 
Yet, in the present chapter, only the general framework for annual layer detection will be 
derived. The aforementioned probabilities, evaluating which segments are the most likely 
to form an annual layer, are assumed known.  

The chapter is very theoretical, and to help the reader a summary of the employed notation 
can be found in appendix A1. 

3.1 An introduction to Bayesian inference 

The layer detection algorithm developed is inherently of Bayesian nature. For this reason, 
an outline of the fundamental concepts in Bayesian inference is given here. These con-
cepts will be applied throughout the rest of the thesis.  
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In Bayesian statistics, the state of knowledge regarding anything unknown can be de-
scribed by a probability distribution. Using probabilities as a yardstick of the involved 
uncertainties, the Bayesian methodology enables statements concerning variables (or 
unobserved data) to be made when only partial knowledge and uncertain statements are 
available.  

In the following, the quantity to be inferred will be denoted B, and may comprise a collec-
tion of parameters. When wishing to emphasize that we have in mind the entire set of 
parameters, B will be referred to as the ‘parameter vector’, although it does not necessarily 
fulfill the formal requirements of e.g. linearity for being a physical vector quantity. Like-
wise, the observed data, C, may sometimes be termed the observation vector. In table 3.1.1 
is given an overview of the most common concepts in Bayesian probability theory. 
 

B Parameter(s) to be inferred C Observed data D(B. Prior probability of B D(B|C. Posterior probability of B	(given C) 
F(B|C. Likelihood of B (with fixed C) 
D(G. Marginal probability of G 
D(G, H. Joint probability of G and H 
D(G|H. Conditional probability of G given H 

Table 3.1.1: The most common probability concepts used in Bayesian inference. 

 Bayes’ theorem 3.1.1
Using a Bayesian approach, any relevant prior knowledge that we might possess about 
model parameters is systematically integrated in the analysis by way of prior probabilities, 
D(B.. The result of the analysis can be thought of as an update of such prior knowledge 
based on the observed data, making the methodology ideal for applications in which 
sequential updates are required. However, as will be discussed shortly, the use of such 
‘subjective’ priors can also be a source of much dispute.  

Bayesian statistical conclusions are made in terms of a probability density function 
D(B|C., which is the probability of the parameter B	conditioned on the known data C. This 
probability distribution is termed the posterior probability density, or just ‘the posterior’. 
Implicitly, the posterior probability density is also conditioned on all further assumptions 
going into the applied model. The posterior probability distribution can be calculated by 
use of Bayes’ theorem: 

D(B|C. %
D(C|B.D(B.

D(C.
 

The term	D(C. is the marginal probability distribution of C, i.e. the probability of observ-
ing C regardless the value of B. With the observations fixed, the probability of the 
involved observations is constant, and D(C. is just a normalization factor:  

D(B|C. ∝ D(C|B.D(B. 

Thus, the primary task in a Bayesian analysis is to develop a model to compute an esti-
mate of D(C|B.. Regarding D(C|B.	as a function of B (with C fixed), this is termed the 
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likelihood of B: F(B|C. = D(C|B.. From the calculated likelihood in combination with our 
chosen prior, the posterior probabilities can be evaluated.  

Bayesian analysis offers a conceptually simple statistical framework with an explicit use 
of probabilities to quantify the involved uncertainties. The generality of the approach and 
the ease with which it allows for even very complex models (many parameters, complicat-
ed probability distributions etc.) make it applicable to a wide range of statistical problems.  
In practice, the main limitation of the methodology is often the computational burden 
associated with calculation of the appropriate likelihood function. However, as a result of 
the ever-expanding computational power, Bayesian inference is becoming increasingly 
popular.  

 Prior probabilities 3.1.2
The prior probability distribution – or simply ‘the prior’ – reflects the state of knowledge 
on the parameter values prior to the arrival of any data. The incorporation of prior infor-
mation is one of the key capabilities of Bayesian analysis. At the same time, however, the 
subjectivity involved in assessing these priors represents one of the major criticisms of the 
Bayesian methodology. In many cases, however, a prior can be estimated from other 
sources, hereby greatly reducing the subjectivity of the choice. If this is not the case, an 
uninformative prior may be used.  

Uninformative and improper priors 

An uninformative prior expresses only vague information about a variable. This could e.g. 
be knowledge regarding its sign or an interval of allowed values, with equal probabilities 
assigned to each possibility. Given the limited prior knowledge available, such analyses 
often lead to results very similar to those derived from conventional statistics.  

When working with probability densities, however, the assignment of equal probabilities 
sometimes leads to the use of improper priors: Priors which are not integrable functions, 
and therefore cannot be probability densities. Such a situation arises e.g. when wishing to 
assign equal probabilities to all values from J0,∞J. Fortunately, by rewriting Bayes’ 
theorem as: 

D(B|C. %
D(C|B.D(B.

L D(C|B.D(B.MB
N

 

we see that the prior probabilities D(B. need not to be normalized for the posterior to be a 
sensible probability density, which integrates to one. The prior probabilities just need to 
be specified in the correct proportion.  

Informative priors 

If explicit information on the parameter in question is available, an informative prior 
should be employed. Very often, such knowledge is based on previous experience from 
similar data, in which case a previous posterior may be used as prior for the current prob-
lem. In this way, the prior contains information from previous collected data, and the 
analysis presents an update of this knowledge based on current data. With an increasing 
amount of data, the prior will largely become determined by evidence from the data, and 
not depend on the original choice of prior. 
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Conjugate priors 

Very often, algebraic convenience advocates for the use of conjugate priors [Raiffa and 
Schlaifer, 1961]. A conjugate prior for a given likelihood function will result in a posterior 
of the same family as the prior distribution. The Gaussian distribution is e.g. self-
conjugate: Given a Gaussian likelihood function and choosing a Gaussian prior over its 
mean, the resulting posterior distribution will also be Gaussian. By using conjugate priors, 
a closed-form of the resulting posterior can be obtained, hereby avoiding computationally 
intensive numerical integrations. 

Hyper-parameters and hyper-priors 

For sequential estimation, in which the resulting posterior probability distribution is to be 
used as prior for subsequent data analysis, the parameters of the underlying model used 
for calculating the likelihood function are often not specified directly, but given as proba-
bility distributions in terms of their prior probabilities. To avoid confusion, the parameters 
describing these prior probability distributions are called hyper-parameters.  

Conjugate priors are particularly convenient when dealing with sequential estimations, 
rendering the process of how the likelihood function continuously updates the posterior 
distribution more straight-forward and intuitive. When using a conjugate prior, the above 
can simply be described as a change in hyper-parameters due to the information added by 
the data. The change in hyper-parameters over time can be regarded as the evolution of the 
system over time. 

As an example: A parameter is described by a normal distribution with known variance 
(��) but unknown mean (O). The unknown mean of the distribution (O) may itself be 
considered a variable, which can be described by a normal distribution with hyper-
parameters OP and �P, which is a conjugate prior to the normal distribution. As is charac-
teristic for conjugate hyper-parameters, these have a dimensionality one larger than that of 
the original model parameter. The resulting posterior distribution is again a normal distri-
bution with variance ��, and an analytical solution exist for the calculation of hyper-
parameters of the posterior based on the values of hyper-parameters of the prior. 

A prior probability distribution of a hyper-parameter is called a hyper-prior. In principle, 
this can be iterated infinitely, allowing for hyper-hyper-parameters (the parameters of a 
hyper-prior) etc. However, the increased model complexity generally prohibits more than 
just a few of such iterations. 

3.2 Hidden Markov Models 

A Hidden Markov Model (HMM) is a stochastic signal model, which can be used for 
modeling the output of a system displaying Markovian behavior, i.e. a stochastic system 
which transits between states, and where the next state of the system depends only on the 
current state. By comparison to observed data, knowledge on the nature of the underlying 
signal can then be obtained. The concept of Hidden Markov Models was originally intro-
duced in the late 1960s [L. E. Baum and Petrie, 1966], and has successfully been applied 
for pattern recognition in the field of machine speech recognition since the mid-70s 
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[Jelinek et al., 1975]. A review of the subject and its use for speech recognition is found in 
Rabiner [1989]. Modern general-purpose speech recognition software is almost exclusive-
ly based on Hidden Markov Models. However, the rich mathematical structure of Hidden 
Markov Models can form the theoretical basis for a wide range of signal modeling appli-
cations, spanning from magnetic resonance imaging (MRI) brain mapping [Faisan et al., 
2005] via electrocardiography (ECG) [Antti, 1996; Thoraval et al., 1994] to the analysis of 
protein structures [Schmidler et al., 2000] as well as financial time series [Bulla and Bulla, 
2006]. It will here be applied for annual layer recognition in ice core data.  

For Hidden Markov Modeling to be applicable, one must be able to unequivocally define 
a finite number of possible states of the system. The state of the system corresponding to 
any ‘time’ Q is considered a stochastic variable. The use of Q for indexing is owed to 
Hidden Markov Modeling usually being applied on time series. For the current purpose, Q 
will be used as an index for depth, and hence has nothing to do with the resulting time-
scale.  

The variable describing the state of the system at Q will in the following be denoted by R4. 
Its outcome is ℓT, �	 ∈ {1,2, … , V}, V being the number of possible states of the system. The 
state of the system is assumed to change stochastically in such a way that the state se-
quence, R�:X, is a Markov chain, i.e. the next state only depends on the current state of the 
system. In this way, the model only contains limited knowledge on past history. 

When a direct outcome of the state sequence can be observed, it is easy to characterize the 
statistical nature of this signal. However, in many circumstances this is not possible. 
Instead it may be possible to observe the influence of the state sequence on another sto-
chastic process, the outcome of which is seen as a sequence of observations Y�:X. This is 
illustrated in figure 3.2.1. The model hereby has a two-layer structure, with the state 
sequence providing the unknown ‘truth’, and each observation by itself only providing 
incomplete information on the current state. Using a Hidden Markov Model on such data, 
it may still be possible to infer a statistical estimate of the underlying hidden Markovian 
state sequence, hence the name of the method. 

Figure 3.2.1: The two-layer structure of a Hidden Markov Model (HMM). Two stochastic process-
es influence the resulting sequence of observations. One is described by the probability of state 
transitions (Z�T etc.), and another is described by the probability of each observation given a spe-
cific state (��(Y4. etc.). See section 3.3.1 for further explanation of the applied notation. 
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When applying a Hidden Markov Model to identify and count annual layers in a paleocli-
matic data series, an obvious choice for the states of the system is a labeling with the 
actual layer number (i.e. year) corresponding to every single data point. We then wish to 
recover the most likely state sequence giving rise to the observation sequence, which may 
be any kind of ice core data on a depth scale. This is the desired depth-age relation.  

The sequence of encountered years in a data series can be viewed as a Markov chain – a 
very simple Markov chain, given that the years occur in sequential order without any 
skipping. However, the actual state sequence, consisting of one annual layer label per data 
point, is not a Markov chain. For a given depth interval, annual layer thicknesses in ice 
cores are approximately log-normal distributed [Andersen et al., 2006a]. Hence, from a 
perspective based only on state sequence probabilities: Assuming the system at a given Q 
to be in state ℓ� (i.e. data point Q is part of layer  ), the probability [�T of next being in state ℓT (i.e. to be in layer � at data point Q + 1), does not solely depend on the values of  	and � 

(with [�T % 0 for � ≠ { ,  + 1}). It also depends on the number of data points already 
encountered in layer   at Q, as given by the probability of the resulting annual layer thick-
ness. 

Such a state sequence, where the changes in state are endowed with a Markov property, 
but with holding times of each state distributed according to a specific probability distri-
bution, is called a semi-Markov chain. It can be envisioned as a doubly embedded Markov 
chain with no self-transitions, which is often a convenient way of representation. In this 
case, each generalized state ]T = (ℓT, MT. includes a duration parameter as well as the 
actual state label, both of which may depend on the previous generalized state of the 
system (figure 3.2.2). Allowing the underlying stochastic process to be semi-Markov, this 
variant of a Hidden Markov Model is in the literature sometimes called a Hidden Semi-
Markov Model (HSMM), or – depending on the specific assumptions of the model, its 
application area and the author – a segment model [Ostendorf et al., 1996; Yu, 2010]. 

Figure 3.2.2: A schematic drawing of a Hidden Semi-Markov Model (HSMM). States are now ap-
pended with a duration parameter, and observations are collected in segments. State transition 
probabilities (Z(�,<^.(T,<_. etc.) as well as observation probabilities (��(Y4 ∗̂
�:4 ∗̂
<^. etc.) may de-

pend both on state labels and state durations. For a further description of the employed notation, 
see section 3.3.1. 
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Within continuous speech recognition, an increasing amount of research in the last decade 
has gone into extending the applied algorithms to Hidden Semi-Markov Models and 
segments models [Ostendorf et al., 1996; Russell and Holmes, 1997]. Depending on the 
specific objective of the modeling, the hidden state sequence may in this case either be 
composed by phones, syllables or entire words, with the size of the vocabulary (i.e. num-
ber of possible states) adjusted hereafter. The observed data sequence is composed of an 
audio recording of a sentence or individual words, which has first passed through some 
preprocessing. As a speech sound can be characterized by the amount of energy in differ-
ent frequency bands, the preprocessing is usually done by spectral analysis of the speech 
signal from which the cepstral components4  is calculated. Such feature extraction of the 
signal simplifies the data processing task without discarding too much information from 
the signal. From the multiple resulting data sequences (each cepstral component of the 
speech signal is used as a single data series), the most likely combination of words is 
sought.  Via the assumed state transition probabilities of the Hidden Markov process, the 
recognized utterance may be subjected to syntactic and semantic constraints, hence incor-
porating ‘human’ knowledge of sentence constructions. Using the simpler HMMs, no 
assumption of the duration of a specific speech segment (phone/syllable/word) is made, 
which implicitly gives rise to a geometric duration distribution. It has been shown that the 
performance of speech recognition systems improves drastically when instead using 
HSMMs, which are able to take the proper duration distributions into account [Gish, 
1993].  

The application of Hidden Markov Modeling for annual layer counting in ice core data 
differs from most other applications of HMMs in the following ways. One is the simplici-
ty of the changes in state, one year simply pursuing the previous. On the other hand, this 
simplicity is combined with a large variability from one year to the next of how an annual 
layer is expressed in the data series, which gives rise to a rather challenging pattern recog-
nition problem.  

3.3 Overview of layer detection model 

An annual layer recognition algorithm based on Hidden Markov Modeling is inherently of 
Bayesian nature. The resulting annual layer boundaries are given as probability distribu-
tions, both in depth and layer number, which are calculated based on a priori knowledge 
from known state sequence probabilities and updated based on the observed data, hereby 
forming the posterior probabilities. It is the repeated application of Bayes’ theorem that 
leads to the final layer detection algorithm.  

Consider the option of envisaging all possible segmentations of an observation sequence, 
one at a time, and calculating the respective probabilities. In this way, the most likely 
segmentation can be found, and the result will be based on the entire observation sequence 
in consideration. In reality, however, such an approach is not feasible. Fortunately, the 

                                                      
4 The power cepstrum is the inverse Fourier transform of the logarithm of the power spectrum of a 
signal [Norton, M. P., and D. G. Karczub (2003), Fundamentals of noise and vibration analysis for 
engineers, 2nd ed., 631 pp., Cambridge University Press, Cambridge, New Yorkibid.]. 
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same probabilities can be efficiently calculated by recursion by use of one of two algo-
rithms: The Forward-Backward algorithm (section 3.4) or the Viterbi algorithm (section 
3.6). The difference between the two lies in the specific definition of a most likely layer-
ing. The approach here is primarily focused on probabilities calculated using the Forward-
Backward algorithm, but results from the Viterbi algorithm will be considered as well. 

When calculating these probabilities, an entire observation sequence is taken into account 
at once. The likelihood of a given observation segment representing an annual layer is 
therefore judged not only by its own resemblance to an annual layer, but is seen in con-
junction with the likelihood of the proposed annual layers and annual layer thicknesses on 
either side. In this way, the algorithm works very similar to what is implicitly done by eye 
when counting layers manually.  

The name “Forward-Backward algorithm” is derived from the way the algorithm makes 
such judgment in a rigorous yet efficient manner by executing respectively a forward pass 
of the data series, which contains the information included in all previous data, and a 
backward pass, containing information from all subsequent data. In this way, the entire 
data sequence is used for inferring the most likely layering and the involved uncertainties. 
The derived uncertainties provide an estimate of the counting error in much the same way 
as is done manually.  

The algorithm is able to use the data itself to improve on estimates of the parameter values 
describing e.g. the annual layer template (unsupervised learning). In other words, the 
algorithm is able to use the information from distinct layers in the entire sequence to deal 
with sections herein of less obvious layering. This gives rise to high performance of the 
algorithm, even when only imperfect knowledge is available on employed parameter 
values. The algorithm is therefore robust against gradual changes with depth in annual 
layer appearance, changes in layer thickness distributions etc. Such robustness is neces-
sary as the layer thicknesses and appearance highly depends on the climate regime during 
deposition as well as ice-flow induced thinning of layers with depth.  

Also many other features of this annual layer counting algorithm based on Hidden Markov 
Modeling bear similarities to a manual approach. Sections containing missing data are e.g. 
treated much the same way: The most likely number of annual layers contained within 
such a section is estimated based on the assumed annual layer thickness distribution along 
with any possible layer fragments on either side.  

Finally, the method can relatively easily be extended to allow the incorporation of multi-
ple data series containing an annual layer signal, and infer the most likely annual layering 
based on all of these data series at once. It therefore provides the necessary statistical 
framework to allow for an automated multiple-parameter counting algorithm. For the 
current purpose, this property of the algorithm has been used to incorporate information 
from derivatives of the observation sequence as well as the observation sequence itself.  

Features, such as multi-parameter counting and the treatment of an entire observation 
sequence at once, have otherwise proved hard to incorporate in automatic methods. Con-
sequently, manual annual layer counting in ice core data have hitherto generally provided 
the best results.  
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 Notation 3.3.1
In the following, the potential annual layers encountered during the observation sequence 
will be denoted by ℓT ∈ ` % aℓ�, ℓ�, … , ℓbc. The total observation sequence of length d 

will be represented as Y�:X. Equivalently, a section of the observation sequence covering 
data between Q� and Q� (both included) will be represented as Y4e:4f. Layer durations, M, 
are given in terms of number of observations covered by each layer. These are allowed to 
assume integer values in the finite set g % �1,2,… . , h� with a prescribed probability 
distribution D(M..  
The hidden state of the system corresponding to observation Q will be denoted by R4. The 
sequence R�:X is thus a sequence of stochastic variables, whose values are confined to the 
set ̀ . A realization of such a sequence, corresponding to observations Y4e:4f, will be 

written i4e:4f. Following Yu [2010], the short hand notation RJ4e:4fj % ℓT will in the follow-

ing be used to signify that layer � starts exactly at Q� and ends exactly at Q� (both data 
points included). The notation RJ4 % ℓT indicates that layer � starts at Q, while containing 

no information on where the layer ends. Similarly, R4j % ℓT signifies that layer � ends at Q, 
but says nothing about where the layer started. R4 % ℓT only implies that observation Q is a 

part of layer �, and bears no information on the state of the surrounding observations. 

The probability of a state transition from the generalized state (ℓ�, M′. to state (ℓT, M.	is 
assumed stationary in time. In a formal sense, and using the above definitions, this transi-
tion probability is defined by: 

	Z0�,<l2(T,<. ≡ [ 'RJ4
�:4
<j % ℓT|Rn4�<l
�:4o % ℓ�3 

More specifically, it is the probability of entering layer � having duration M, provided that 
the previous layer   of duration M’ has just ended. However, the annual layers follow each 
other in a sequential manner, and are assumed to share the same layer thickness probabil-
ity density function. If furthermore the duration of the new layer ℓT is assumed 
independent on both numbering and duration of the previous layer, this transition proba-
bility simplifies to: 

Z0�,<l2(T,<. % Z�TD(M., 
Previous studies point to the existence of a slightly negative correlation between succes-
sive layer thicknesses [Fisher et al., 1985]. Such correlation has not been taken into 
account when using the above formulation. 

With D(M. being the layer thicknesses probability distribution, and Z�T being the probabil-

ity of a transition from layer ℓ� to layer ℓT (regardless of layer thicknesses), we have: 

Z�T ≡ [0RJ4
� % ℓT|R4j % ℓ�2 % ��,T�� % q 1, � %  / 1			0, rQst�u it 

In the last part, the Kronecker delta notation ��,T has been employed. Note, that the state 
transition probabilities are only concerned with the probability of the resulting state se-
quence, and independent of the actual observations. 
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The dependency on the observations is contained in the emission probabilities. The emis-
sion probability is defined as the conditional probability of observing a given sequence of 
observations, when assuming these to form an annual layer ℓT:  

(3.3.1. �T(Y4
�:4
<. ≡ [0Y4
�:4
<  | RJ4
�:4
<j % ℓT2  

The observation sequence Y�:X is allowed to be a sequence of vector observations, mean-
ing that several observations may be connected to each index Q. In case of the ice core 
data, this implies that the annual layer counting method can be extended to a full multi-
parameter counting approach, with Y4 being a vector containing the entire collection of 
chemistry data measured at depth Q.  
All annual layers are to be described as a product of the same seasonal deposition process. 
For this reason, the probabilities �T(Y4
�:4
<. are independent of the specific layer under 
consideration, and when considering the present task of annual layer detection, the de-
pendence of the emission probabilities on � can be left out. 

The calculation of these emission probabilities is the very heart of the layer detection 
algorithm. The emission probabilities evaluate which observation segments resemble an 
annual layer and which do not. The performance of the layer detection algorithm crucially 
depends on a proper description of how an annual layer is being represented by the obser-
vations. All model parameters used for calculating the emission probabilities, along with 
those used in the parameterization of D(M., are collected in the variable B, which will be 
used as short-hand notation in the following. Thus, B contains all free parameters of the 
Hidden Markov Model. First, however, consider the probabilities �(Y4
�:4
<. known 
from data. The calculation of these will be dealt with in chapter 4.   

 The Forward-Backward algorithm3.4  

In the terminology of a HMM, determining the best annual layering in a section of ob-
served ice core data corresponds to inferring the most likely hidden state sequence giving 
rise to the observed data. For the Forward-Backward algorithm, this is to be understood as 
the state sequence in which each state individually has maximum posterior probability, 
when conditioned on the entire observation sequence. Using this definition, the most 
likely state at Q is the state ℓT ∈ ` satisfying:  

(3.4.1. ℓwxy(Q. % argmax ℓ_
a[0R4 % ℓT| Y�:X , B 2c  

The dependence on the applied model parameters (B) is included to clarify that the result 
depends on the chosen model and model parameters used for describing annual layers and 
their thickness probability density function. The expression ‘argmax’ stands for the argu-
ment that leads to the maximum, and MAP is short for Maximum a Posteriori, i.e. the 
maximum of the posterior probability function. The Forward-Backward algorithm pre-
sents a way in which such posterior probabilities can be evaluated in a rigorous, yet 
efficient way.  
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Other definitions of a “most likely state sequence” are possible as well. The one most 
commonly used is that of the Viterbi path [Viterbi, 1967], discussed in section 3.6. Indeed, 
the definition in (3.4.1) may lead to state sequences that are not allowed. This could e.g. 
be a layer sequence in conflict with the assumption of layers being laid down in succes-
sive order. However, the main objective of the present analysis is not an ideal 
segmentation of the observation sequence into individual annual layers. Rather, it is a best 
estimate of the total number of annual layers within any given depth interval. Using the 
above definition, it is also possible to calculate the entire probability distribution for each 
state variable R4, Q ∈ {1, … , d}, when taken into account all of the observations Y�:X. 
Hereby not only the most likely annual layering is inferred, concurrently also the uncer-
tainty of the resulting layering is estimated.  

In principle, such probabilities (3.4.1) can be calculated by brute force by considering all 
possible state sequences one at a time, calculating their respective probabilities, and 
adding up those which give rise to state ℓT at Q. However, even if constricting ourselves to 
applications of short observations sequences with a small number of possible states and 
durations, such a calculation is an overwhelming undertaking, which quickly creates a 
heavy computational burden.  

A much more efficient way to calculate these probabilities is by means of first calculating 
the joint probability of ending layer ℓT of duration M at Q and observing the observation 

sequence Y�:X: 

(3.4.2. ~4(�, M. ≡ [0RJ4�<
�:4j = ℓT, Y�:X|B2  

Although by first sight not appearing any simpler than the previous equation (3.4.1), these 
probabilities can be calculated recursively using a generalized version of the Forward-
Backward algorithm commonly used in HMMs, and extended to the appliance for 
HSMMs.  

The joint probability of a collection of events can be calculated by multiplying the proba-
bilities of each event conditioned on all other events: [(�, �, �) = [(�) ∙ [(�|�) ∙
[(�|�, �). Simplifying notation by skipping the dependence on the model parameters B 
throughout the subsequent derivations, equation (3.4.2) can therefore be rewritten as: 

[0RJ4�<
�:4j = ℓT, Y�:X2 = [0RJ4�<
�:4j = ℓT, Y�:4, Y4
�:X2  
= [0RJ4�<
�:4j = ℓT, Y�:42 ∙ [0Y4
�:X| RJ4�<
�:4j = ℓT, Y�:42 

= [0RJ4�<
�:4j = ℓT, Y�:42 ∙ [0Y4
�:X| RJ4�<
�:4j = ℓT2 

The last equality rests upon the assumed independence of the observations Y4
�:X on Y�:4, 
which is an assumption inherent to the HMM approach.   

By doing so, the initial problem has been substituted by that of calculating the forward and 
backward variables �4(�, M) and �4(�, M) defined as: 

(3.4.3) �4(�, M) ≡ [0RJ4�<
�:4j = ℓT, Y�:42 

�4(�, M) ≡ [0Y4
�:X|RJ4�<
�:4j = ℓT2 
 

In terms of these two variables, we have the following identity:  
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~4(�, M. % �4(�, M. ∙ �4(�, M. 
As it will be shown, both �4(�, M. and �4(�, M. can be calculated in an efficient manner by 
recursion. The number of calculations required for a brute force approach is exponentially 
increasing with d, V and h. By way of recursion, the order of computational complexity is 
reduced to being linear in these variables.  

The equation above can be interpreted as follows: In order to find the probability of a 
specific layer (�, M. ending at Q, both observations before and after Q must be taken into 
account. In the Forward-Backward algorithm, this is done by a double pass of the observa-
tion sequence. The forward pass takes account of the entire observation sequence up to Q, 
while the backward pass takes account of information based on later observations. The 
best estimate of the hidden state sequence is then found by combining the two. 

 Forward message pass 3.4.1
The forward variable �4(�, M. gives the joint probability of ending state ℓT with duration M 
at Q, and of observing the partial observation sequence Y�:4 (3.4.3). In the general case, �4(�, M.	can be calculated recursively by [Yu, 2010]:  

(3.4.4.	
�4(�, M. % [0RJ4�<
�:4j % ℓT, Y�:42	

% � � �4�<( , M�.Z0�,<l2(T,<.�T(Y4�<
�:4.
<l∈gℓ^�`\�ℓ_�

  

A derivation of this equality is found in box 1. (This is a general equation, but I have not 
been able to find its derivation anywhere.)  

With the simplifying assumptions pertinent to the present case (sequential states, duration 
of the next layer independent on duration and number of the previous layer, layer signal 
independent on layer number), it can be reduced to:  

�4(�, M. % � � �4�<( , M�.	��,T��	D(M.	�(Y4�<
�:4.
<l∈�ℓ^�`\�ℓ_�

	
% � �4�<(� ) 1, M�.	D(M.	�(Y4�<
�:4.

<l∈�
	

% D(M.�(Y4�<
�:4. � �4�<(� ) 1, M�.
<l∈�

 

(3.4.5.	 % D(M.	�(Y4�<
�:4.	��4�<(� ) 1.																	  

A new variable ��4(�. has here been introduced to simplify notation. It is the total proba-
bility of ending layer � at Q, while observing the partial observation sequence Y�:4: 

��4(�. ≡ [0R4j % ℓT, Y�:42 % � �4(�, M.
<∈g

 

Before evaluating the recursion, the initialization conditions must be considered. The most 
common initialization assumption is that the first state begins at Q	 % 	1 (leading to ��4�P(�. % 0 for all �), although sometimes a more general assumption of unknown start-
ing position of the first state somewhere before beginning of the observation sequence is 
used. In this case [Yu, 2010]: 
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(3.4.6. ��4�P(�. = 1,    � ∈ �0, … V�  

For the layer detection algorithm developed here, these initialization conditions can be 
improved. The simple structure of this particular Hidden Markov Model allows us to 
utilize any available information about the ending position of the layer prior to start of the 
observation sequence. Without any loss of generality, this layer will be taken as ‘layer 0’ 
(ℓP), and all subsequent layers are counted upwards from this. Thus the first observation is 
always a part of ℓ�. The initial distribution of ��4(�. for Q � 0 is given by:  

(3.4.7. �4(�. ≡ ��4�P(�. % �[0R4j = ℓP2,   � = 0
0,                       � ≠ 0  

The notation �4(�) has here been used to indicate the initial conditions of the Forward-
Backward algorithm. The above initialization condition can be obtained by allowing the 

�4(�, M. ≡ [0RJ4�<
�:4j % ℓT , Y�:42 

% � � [0RJ4�<�<l
�:4�<j % ℓ� , RJ4�<
�:4j % ℓT , Y�:42
<l∈�ℓ^�`\�ℓ_�

 

% � � [0RJ4�<�<l
�:4�<j % ℓ� , RJ4�<
�:4j % ℓT , Y�:4�< , Y4�<
�:42
<l∈�ℓ^�`\�ℓ_�

 

% � � [0RJ4�<
�:4j % ℓT , Y4�<
�:4|RJ4�<�<l
�:4�<j % ℓ� , Y�:4�<2 ∙
<l∈�ℓ^�`\�ℓ_�

 

[0RJ4�<�<l
�:4�<j % ℓ� , Y�:4�<2 

�4(�, M. % � � [0RJ4�<
�:4j % ℓT , Y4�<
�:4|RJ4�<�<� 
�:4�<j % ℓ�2 ∙
<l∈�ℓ^�`\�ℓ_�

�4�<( , M′. 
% � � [0Y4�<
�:4|RJ4�<
�:4j % ℓT , RJ4�<�<l
�:4�<j % ℓ�2 ∙

<l∈�ℓ^�`\�ℓ_�
[(RJ4�<
�:4j

% ℓT|RJ4�<�<l
�:4�<j % ℓ�. ∙ �4�<( , M′. 
% � � [0Y4�<
�:4|RJ4�<
�:4j % ℓT2 ∙

<l∈�ℓ^�`\�ℓ_�
[(RJ4�<
�:4j % ℓT|RJ4�<�<l
�:4�<j % ℓ�. ∙ �4�<( , M′. 

�4(�, M. % � � �T(Y4�<
�:4.
<l∈�ℓ^�`\�ℓ_�

Z(�,<l.(T,<.�4�<( , M′. 

Box 1: Recursive formula for the forward variable 

We here derive the recursive equation for �4(�, M. for the general case where the probability of successive 
states depends both on the individual states and their duration. To simplify the notation, the conditioning 
on the model parameters (B) will not be explicitly annotated. We have: 

Utilizing the two-level structure of the Hidden Markov Model, it can be realized that knowledge of the 
underlying state sequence provides all necessary information to evaluate the probabilities of subsequent 
states as well as observations. Hence, given that state ℓ� is assumed to end at time Q ) M, the conditioning 
on Y�:4�< in the first term above can be dropped. The last term can be recognized as �4�<( , M′.:  

In the last equality we have again made use of the assumption that the probability of a given observation 
sequence Y4e:4f is fully described by the state of the system between Q� and Q�. Recognizing the variables �T(Y4�<
�:4. and Z(�,<l.(T,<. in the above expression, we finally arrive at the following recursive formula 

for �4(�, M.: 
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observations outside the sampling period to take on any possible value, such that the 
probability of encountering any one of these is equal to 1. 

However, it turned out that due to the flexibility of the Forward-Backward algorithm to 
account for the variation in thickness of individual layers, the algorithm is not very strong-
ly dependent on these. 

Provided that �(Y4�<
�:4. and D(M. are known, �4(�, M. can now be calculated for all Q, � 
and M. 

 Backward message pass 3.4.2
The backward variable �4(�, M. is defined as: 

�4(�, M. % [0Y4
�:X|RJ4�<
�:4j % ℓT2 

Whereas the forward variable takes care of information from the first part of the observa-
tion sequence, the backward variable includes information contained in the second part of 
the observation sequence. It can also be calculated recursively [Yu, 2010] (see box 2 for a 
derivation): 

�4(�, M. % [0Y4
�:X|RJ4�<
�:4j % ℓT2 % � � Z(T,<.0�,<l2��(Y4
�:4
<l.�4
<�( , M�.
<l∈�ℓ^∈`\�ℓ_�

 

The same simplifications as those used for the forward pass lead to the reduced equation:  

(3.4.8. �4(�, M. % � D(M�.�(Y4
�:4
<l.�4
<�(� / 1, M�.
<l∈�

  

No assumptions are made regarding the end of the last layer. Hence, the backward pass is 
initialized using the general assumption that the last layer ends somewhere after the last 
observation in the observation sequence. Given the definition of �4(�, M., and assuming 
the observations after d to take on any possible value, such initialization condition for �4(�, M. implies that: 

(3.4.9. �4�X(�, M. % 1  

From the independence of this initial condition both on � and M, and the non-existence of 
these two parameters in the recursion formula for �4(�, M. (3.4.8), it is seen that the back-
ward variable only depends on Q: 

�4 % � [0Y4
�:X|R4j % ℓT2
ℓ_∈`

% � D(M�.�(Y4
�:4
<l.
<l∈�

�4
<� 

Given the definition of �4(�, M., and the general structure of the assumed model, the 
independence on � and M should not be a major surprise: As each layer is assumed inde-
pendent on the previous layer, the knowledge that a layer just ended is the only 
information needed for calculating the probability of the remaining observation sequence. 
All other properties of this layer are irrelevant.  
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 Posterior probabilities of layer positions 3.4.3
Let’s now return to the original question: We have an observation sequence Y�:X.  What is 
the posterior probability of being in layer � at any given index Q, i.e. [(R4 % ℓT|Y�:X.? 

Consider the joint probability �4(�. defined by:  

�4(�. % [(R4 % ℓT, Y�:X. 
Observe that this joint probability measure only quantifies the probability of being in layer � at Q. It does not specify where the layer starts or ends, nor its duration.  

The posterior probabilities �4(�. can be calculated based on the forward and backward 
variables. The results give the entire probability distributions corresponding to the layer at 
a given index Q. These probability distributions can be used not only for determining the 
most likely layer corresponding to the observation at Q, but also to infer the uncertainties 
associated with the determination of this most likely layer.  

Recall that the probability of ending layer � with duration M at index Q, when given the 
entire observation sequence Y�:X, is: 

~4(�, M. ≡ [0RJ4�<
�:4j % ℓT, Y�:X2 % �4(�, M.�4 

�4(�, M. ≡ [(Y4
�:X|RJ4�<
�:4j % ℓT. 
% � � [(Y4
�:4
<l , Y4
<l
�:X ,

<l∈�ℓ^�`\�ℓ_�
RJ4
�:4
<lj % ℓ��RJ4�<
�:4j % ℓT2 

% � � [(Y4
<l
�:X<l∈�ℓ^�`\�ℓ_�
�Y4
�:4
<l , RJ4
�:4
<lj % ℓ� , RJ4�<
�:4j % ℓT2

∙ [0Y4
�:4
<l , RJ4
�:4
<lj % ℓ�|	RJ4�<
�:4j % ℓT2 

�4(�, M. % � � [(Y4
<l
�:X<l∈�ℓ^�`\�ℓ_�
�RJ4
�:4
<lj % ℓ�2 ∙ 

[(Y4
�:4
<l, 	|	RJ4
�:4
<lj % ℓ� , RJ4�<
�:4j % ℓT. ∙ [0RJ4
�:4
<lj % ℓ�|	RJ4�<
�:4j % ℓT2 

�4(�, M. % � � [(Y4
<l
�:X<l∈�ℓ^�`\�ℓ_�
�RJ4
�:4
<lj % ℓ�2 	 ∙ 

																																													[(Y4
�:4
<l 	|	RJ4
�:4
<lj % ℓ�.	[0RJ4
�:4
<lj % ℓ�|	RJ4�<
�:4j % ℓT2 

																						% � � �4
<l( , M′.
<l∈�ℓ^�`\�ℓ_�

��(Y4
�:4
<l.	Z(T,<.(�,<l.	

Box 2: Recursive formula for the backward variable 

Here, the general recursive equation for efficient calculation of the backward variable �4(�, M. will be 
derived. As before, the conditioning on the model and corresponding parameters (B) will not be explicitly 
annotated. Manipulating the definition for the backward variable, we find that: 

Making use of the Markovian property of the state sequence, as well as observations only being dependent 
on the state sequence, the conditioning in the first term can be reduced to that of RJ4
�:4
<lj % ℓ�. Hence, 
the equation can be rewritten as: 

Also here, the conditioning on RJ4
�:4
<lj % ℓ� can be dropped from the middle component of the above 

equation. Recognizing then the expressions for	�4
<l( , M′., ��(Y4
�:4
<l. and Z(T,<.(�,<�., we arrive at: 
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Its marginalized probability distribution is the probability of ending a given layer regard-
less of its duration:  

~�4(�. ≡ [0R4j = ℓT, Y�:X2 = � ~4(�, M.
<∈g

 

By definition, the first observation in the observation sequence always belongs to layer 1. 
Thus, the probability of still being in layer 1 at index Q is just the probability of not yet 
having ended the layer, i.e. the probability of ending layer 1 at or after Q. That is: 

�4(1. = [(R4 = ℓ�, Y�:X. = � [(R�j = ℓ�, Y�:X.
��4

= � ~��(1.
��4

 

Using this as the initialization condition, the probabilities of the remaining layers can now 
be calculated recursively. The probability of being in layer � at Q equals the probability of 
being in layer � at Q − 1, minus the probability of having ended layer � at Q − 1, plus the 
probability of beginning layer � at Q (i.e. ending layer � − 1 at time Q − 1):  

�4(�. = �4��(�. − ~�4��(�. + ~�4��(� − 1. 

This recursive formulation gives the probability of being in any layer � at any point in the 
observation sequence. The maximum a posteriori (MAP) estimate of the annual layer 
corresponding to the observation at a given Q can be found as: 

ℓ���(Q. ≡ argmaxℓ_
	a[(R4 % ℓT, Y�:X.c = argmaxT 	��4(�.� 

This is the most likely layer at observation Q. By considering the width of the derived 
probability distributions, the uncertainties involved in the inference of the most likely 
layer can be estimated. 

The single most likely layer sequence can be found as the sequence of maximum a poste-
riori layers for each Q. However, this MAP state sequence is not necessarily regular. The 
maximum a posteriori criterion provides the most likely layer at each Q, but this is being 
determined separately for each Q. This means that in sections where the layering is vague, 
some layer boundaries may correspond to a shift of two layers, or a previous layer may re-
appear. The MAP layer boundaries can be found as those locations where a change in ℓ��� occurs. But the most likely total number of layers in a section, as determined by ℓ���(d., may in principle differ from the number of MAP layer boundaries found. This 
does not imply that there is anything wrong with the algorithm. It is just a consequence of 
the employed definition of a best state sequence as the one which individually maximizes 
the posterior probability of each state. As it will be discussed further in section 3.6, this is 
a strength rather than a weakness of the layer counting algorithm, as the goal is to produce 
the best possible chronology down the ice core.  

This is how the Forward-Backward algorithm is able to compute the most likely state 
sequence based on the entire observed data series: The information obtained from respec-
tively a forward and a backward pass of the observation sequence is combined. We will 
now consider the output of the algorithm when applying it to a small section of visual 
stratigraphy data from NGRIP.  
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 Output from the Forward-Backward algorithm 3.4.4
In figure 3.4.1A&B, the log-probabilities resulting from respectively a forward and a 
backward message pass of the Forward-Backward algorithm are shown. The employed 
data series (figure 3.4.1E) is the visual stratigraphy data from the NGRIP ice core from a 
depth of 2233 m (age: 47 ka BP).  

For the forward variable ��4(�., the probability distribution corresponding to each layer is 
drawn in different colors. With increasing distance from the beginning of the data series, 
the ��4(�.-values generally decrease, whereas �4-values generally increase. This decrease 
in probability with distance from the initiation point of each pass is due to the definition of ��4(�. and �4 as the joint probability of ending a layer at a given position, and observing an 
ever-increasing number of observations. Due to the log-scale, even small bumps in the 
log-probabilities correspond to large differences in probability. 

By combining the probabilities resulting from the forward and the backward pass of the 
data sequence, the probabilities ~4(�. can be computed (figure 3.4.1C). The probabilities ~4(�. estimate the probabilities of ending a given layer � at Q. The protruding peaks are 
therefore locations, as inferred by the algorithm, with high probability of being layer 
boundaries. The total probability of ending any layer at a given location Q can be calculat-
ed as the sum of all contributions from the individual layers. A slight decrease in peak 
height with distance is therefore due to an increase in uncertainty as to which layer the 
boundary belongs.  

The probabilities ~4(�. can subsequently be converted to �4(�., expressing the probability 
of being in a given layer � at Q (figure 3.4.1D). From these values, the most likely layer at 
a given position can be found, as well as the probability of other layers at that location. 
Assuming the observation sequence to always start in layer 1, the probability of being in 
this layer is equal to one at the start of the observation sequence. The further away from 
the start, the less certainly can the total number of layers be determined. As a result, the 
maximum probabilities slowly decrease.  

From the data employed here, it is seen that the algorithm struggles with the layer around 
2233.1 m, where the peak values of �4(�. suddenly decrease. Indeed, the corresponding 
peaks in the visual stratigraphy data at this location do look a bit strange, hence explaining 
the behavior of the algorithm. Nevertheless, the layer detection algorithm manages to 
recover much the same positions for the annual layer boundaries as those in the GICC05 
chronology. The resulting layer boundaries based on the MAP criteria are shown in figure 
3.4.1E.  

 Likelihood of applied model parameters 3.4.5
In addition to inferring the most likely layer boundaries, the Forward-Backward algorithm 
is able to evaluate the likelihood of the applied model parameters based on the observation 
sequence. This feature of the algorithm gives the opportunity to improve the model pa-
rameter estimates used as input to the algorithm. The calculation of the likelihood of the 
applied model parameters is shown here, and in chapter 4, a procedure for improving the 
model parameter estimates will be developed. 
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Figure 3.4.1: The output from a run of the Forward-Backward algorithm. The data employed (E) 
are visual stratigraphy data from NGRIP. The layer definition employed is described in chapter 4. 
The result from the forward pass (��4(�.) and backward pass (�4) (A,B) combines to form ~4(�. and �4(�. (C,D), which tells about the probability of respectively ending and being in a given layer � at 
a given position Q. Note, that ��4(�. and �4 are shown on log-scale, whereas ~4(�. and �4(�. are 
not. The resulting MAP layer positions are shown in E. The bright and dark banding shows the an-
nual layers in the GICC05 chronology, uncertain layer boundaries are marked with small 
horizontal white stripes.  
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In a formal sense, the computed posterior probabilities ~4(�. and �4(�. are conditioned on 
the chosen model and model parameters used for specifying the annual layer characteris-
tics. This set of model parameters is denoted B.  

The probability of observing exactly the current observation sequence is just a number, the 
value of which can e.g. be calculated by: 

(3.4.10. [(Y�:X. = � �4(�.
ℓ_∈ℒ

  

That this equation holds true for every value of Q can be realized from the fact that the 
total probability of being in any possible layer � at Q must equal 1: 

� �4(�.
ℓ_∈ℒ

= � [0R4 = ℓT, Y�:X2
ℓ_∈ℒ

= [(Y�:X. � [0R4 = ℓT| Y�:X2
ℓ_∈ℒ

= [(Y�:X. 

As a result, the probability of being in layer � at Q can be evaluated directly without includ-
ing the observation sequence probability. A normalized version of �4(�. can therefore be 
defined as: 

�̅4(�. ≡ [0R4 = ℓT �Y�:X2 = [0R4 = ℓT, Y�:X2[(Y�:X. = �4(�.[(Y�:X. 
And likewise for ~4(Q.: 

~̅4(�, M. ≡ [0RJ4�<
�:4j = ℓT|Y�:X2 = ~4(�, M)
[(Y�:X) 

These expressions will e.g. be used in chapter 5. 

For a fixed observation sequence, [(Y�:X) is constant. To determine e.g. the maximum a 
posteriori estimate of the layer at Q, it has no impact whether or not division with this 
number has taken place. However, the value of [(Y�:X) is minuscule, as any specific 
observation sequence is indeed very unlikely to occur. By having eliminated the extremely 
small probabilities associated with [(Y�:X), the normalized probabilities �̅4(�) and ~̅4(�, M) 
are much easier to interpret.  

However, the true power of (3.4.10) is more profound: Throughout the derivations of the 
posterior probabilities, and therefore also in (3.4.10), we left out the dependence on the 
model parameters B describing how an annual layer is expected to appear in the observa-
tions. By leaving it in, it can be seen that by calculating the probability of the observation 
sequence, the likelihood of the chosen model parameters has been inferred: 

F(B|Y�:X) = [(Y�:X|B) 

Consequently, the Forward-Backward algorithm gives an opportunity to evaluate the 
likelihood of the employed set of model parameters, hereby presenting us with a method 
by which the model parameters best suited for modeling the observations can be selected. 
In other words, a learning process can be implemented. The opportunity of such training 
of the annual layer detection algorithm is a major advantage of the Hidden Markov Mod-
eling approach.  
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3.5 Constructing the chronology 

Having obtained all the relevant probability distributions resulting from a run of the For-
ward-Backward algorithm, a next question arises on how to use all of this information to 
achieve an optimal chronology. Such a chronology should include both an optimal layer 
(i.e. age) at each depth as well as an uncertainty estimate of this layer number. There is no 
final answer to how these should be selected. A variety of reasonable choices can be 
made. In this section, I will describe what has been chosen here.  

By way of the probabilities �4(�., an annual layer probability distribution exist at each 
index Q. These probability distributions include the entire information obtained, but to 
contemplate the development in these throughout an extended depth interval is not tracta-
ble. It is more convenient to summarize all the probability distributions by some 
descriptive statistics, and see how these evolve with depth in the ice core data.  

To obtain an optimal layer at a given depth, which can provide an age estimate for the 
chronology, three choices come to mind: The mean, the median and the mode of the 
annual layer distributions. Using the mean is only a good approximation if the annual 
layer distributions are symmetric. If the distributions are skewed, the median or mode is a 
better choice. Thus, as there is no reason for the obtained layer distributions to be symmet-
ric, the choice stood between the median and the mode of the distributions. Here, the 
mode was selected. The mode of the distribution will always be an integer, hence remov-
ing the need for working with years in the resulting chronology having non-integer values.  

An estimate of the uncertainties was made by considering quantiles of the annual layer 
distributions, as these are better at describing skewed distributions than e.g. the standard 
deviation. The 25% and 75% quantiles (���	and ���) were used to provide a 50% confi-
dence interval of the obtained age estimate, and the 2.5% and 97.5% quantiles (��.� and ���.�) produced a 95% confidence interval. These were used as descriptive statistics for 
the uncertainty of the age estimates.  

Theoretically, the above definitions allow for the best estimate of the annual layer count at 
a certain depth (the mode) to be outside the confidence interval. However, for the data in 
consideration, this is not an issue. The mode and the median of the distributions are usual-
ly almost identical.  

The uncertainty estimates produced by the Forward-Backward algorithm are computed 
based on the assumption that the annual layer detection algorithm provides an unbiased 
counting. Provided this is the case, an extra layer at one location is very likely to be coun-
terbalanced by a layer lacking somewhere else. This means that although the uncertainty 
of the annual layer number continually increases, it will increase slower and slower with 
distance from the starting depth of the algorithm.   

In contrast, the uncertainties in the manually counted GICC05 chronology were derived 
based on the counting of uncertain layers as ½�½ year. This uncertainty estimate does not 
assume an unbiased counting, and leads to an almost linear increase in uncertainty with 
depth. The best estimate of the involved uncertainties is most likely in between. The linear 
increase in uncertainty with depth is believed to be a very conservative estimate [Andersen 
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et al., 2006b], whereas the very narrow uncertainty interval band resulting from assuming 
an unbiased counting procedure most likely is very optimistic when dealing with real data. 

3.6 The Viterbi algorithm  

As mentioned previously, the definition of a “best” sequence of states is debatable. The 
Forward-Backward algorithm computes the sequence of states, in which each state indi-
vidually maximizes the likelihood of the observed data – implying that the resulting state 
sequence may not even be allowed by the underlying model structure. In the layer detec-
tion model, it may e.g. be that one observation is most likely to be part of layer 2, whereas 
both surrounding observations are most likely to be part of layer 1. Such a state sequence 
contradicts the model assumption of layers to be in successive order.  

Another definition of a “most likely state sequence” is used in the Viterbi algorithm 
[Viterbi, 1967], which provides the state sequence corresponding to the most likely seg-
mentation of observations into annual layers. As such, this is a more meaningful definition 
given that it ensures the resulting state sequence to be valid. However, the Viterbi algo-
rithm only computes the most likely layer boundaries, and does not keep track of the 
involved uncertainties. Consequently, it cannot be used to obtain an estimate of the uncer-
tainties involved in the resulting timescale.  

Furthermore, the most likely segmentation of a data series into annual layers does not 
necessarily imply the best counting of the number of annual layers in the data. In general, 
when applied to the visual stratigraphy data from NGRIP, the Viterbi algorithm tends to 
count fewer layers than the Forward-Backward algorithm. This is probably due to the 
existence of many possible layers which are not likely enough to be counted as layers by 
the Viterbi algorithm. In the Forward-Backward algorithm, on the other hand, all of these 
layers with low probability are slowly being summed up, and eventually an extra year is 
added.  

Where distinct annual layers in a data series are visible, the annual layer estimates result-
ing from employing respectively the Forward-Backward algorithm and the Viterbi 
algorithm are very similar. However, in case of an ill-posed annual layer model or a data 
series containing a high degree of noise and many ambiguous layers, the two countings 
may differ significantly. By considering the results of the Viterbi algorithm as well as the 
Forward-Backward algorithm, the uncertainties involved in constructing the timescales 
can therefore be assessed.  

The Forward-Backward algorithm generally ought to provide a better estimate of the 
timescale than the Viterbi algorithm. For the current purpose, most of the conclusions 
have therefore been based on the results of the Forward-Backward algorithm, and the 
main use of the results of the Viterbi algorithm has been as an indication of how well the 
chronology has been inferred. If, on the other hand, it is desired to divide up the observa-
tion sequence into years in order to obtain information on e.g. the seasonal signal in the 
data series, the Viterbi algorithm is the most promising.  
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The basic structure of the Viterbi algorithm is very similar to that of the Forward-
Backward algorithm, and is also based on recursive evaluation of probabilities. The idea 
behind the algorithm is that the most likely state at a given time only depends on the most 
likely state before, and the transition probability between the previous and present state.  

The most instructive way to visualize the procedure of the Viterbi algorithm is probably 
by use of a lattice (figure 3.6.1). Each possible state (or each generalized state in case of 
HSMMs) corresponds to a specific level in the lattice, and Q increases towards the right. 
The Viterbi path is then the path through the lattice having the highest total probability 
when arriving to the end of the observation sequence. At each instant Q, any path through 
the lattice arriving at a given state (ℓT, M. can be divided up into two parts: The path 
followed for reaching the previous (generalized) state, and the last path segment from the 
previous to the present state. The most probable partial path through the lattice ending 
exactly this state is the one, for which the product of the probabilities corresponding to 
each of these two path segments is the largest.  

Figure 3.6.1: A lattice of states. At each time step is shown the best partial path leading to each 
possible state (dark green arrows). For any given time Q and state ℓT, the best partial path is the 
one which maximizes the following product: The probability of reaching a given previous state (ℓ�) 
via the most likely path, times the probability of transitioning from this state (ℓ�) to the considered 
present state (ℓT). By recursive computation, the most likely final state can be found. Using the in-
formation stored in the back-pointer, it is possible subsequently to go backwards in the state lattice 
and retrieve the most likely state sequence (colored light green). 

 Partial path probabilities 3.6.1
We define �4(�, M. as the joint probability of the most probable state sequence in which 
state (ℓT, M. ends at Q, and this first part of the observation sequence: 

�4(�, M.≡ [0�riQ	D�r�Z��t	iQZQt	it]Gt� t	i�:4	ZiiG� ��	QsZQ	iQZQt	0ℓT, M2	t�Mi	ZQ	Q, Y�:42 

% max$e:¡¢£	 [0i�:4�< , RJ4�<
�:4j % ℓT, Y�:42 
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In the general case, this variable can be recursively calculated for 1 � Q � d as (see box 
3) [Yu, 2010]: 

�4(�, M. % maxℓ^∈`\ℓ_,	<l∈g	 ¤�4�<( , M�.	Z0�,<l2(T,<.	�T(Y4�<
�:4.¥ 
Note the similarities between this expression and that of the recursive estimation of the 
forward variable (3.4.4). The only difference is that the summation over all possible 
values of ℓ� and M’ in the computation of the forward variable �4(�, M. here is being re-
placed with the maximum.  

Using the definitions of Z0�,<l2(T,<. and �T(Y4�<
�:4. relevant to the annual layer detection 

algorithm, we arrive at the following simplified expression for partial path probabilities �4(�, M.: 
�4(�, M. % maxℓ^∈`,	<l∈g	a�4�<( , M�.	Z�TD(M.	�(Y4�<
�:4.c 

% max	<l∈g	��4�<(� ) 1, M�.	D(M.	�(Y4�<
�:4.� 
% �¦4�<(� ) 1. D(M.	�(Y4�<
�:4. 

In the last equality, the notation �¦4(�. % max	<l∈g	��4(�, M�.� has been used.	�¦4(�. can be 

interpreted as the joint probability of the most likely state sequence ending layer ℓT at time Q and the corresponding first part of the observation sequence, i.e.:   

�¦4(�. ≡ max$e:¡¢e	 [0i�:4��, R4j % ℓT, Y�:42 % max	<l∈g	��4(�, M�.� 
Initialization of the recursion, i.e. �4�P(�, M., is similar to that of the forward variable 
(3.4.7). 

 Back-pointer  3.6.2
The variables �4(�, M. only estimates the resulting maximum probability of all partial 
paths ending state (ℓT, M. at Q. In order to keep track of the state sequence giving rise to 
this maximum probability path, such information is simultaneously stored in a back-
tracking vector variable, §4(�, M., with components (ℓ⋆, M⋆.. In the general case, this 
backtracking vector can be computed by: 

§4(�, M. % (ℓ⋆, M⋆.	% argmaxℓ^∈`\ℓ_,	<l∈g	 ¤�4�<( , M�.	Z0�,<l2(T,<.	�T(Y4�<
�:4.¥ 
In other words, whereas �4(�, M. tracks the resulting maximum partial path probabilities, 
the back-pointer keeps track of the previous (generalized) state which gave rise to these 
probabilities.  

In the general case, this back-pointer includes information on the most likely duration (M⋆. as well as state (ℓ⋆. corresponding to the previous generalized state. However, due to 
the fixed structure of the annual layer detection model, only information on the most 
likely duration of the previous layer is necessary for our application. In our case, the 
above simplifies to: 

§4(�, M. % (M⋆.% arg	max	<l∈g 	��4�<(� ) 1, M�.� 
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Observing that Q and M in the equation above only appears in the combination Q − M, we 
can reduce the computational complexity by re-formulating the above using one less 
variable, namely:  

§©4(�. = (M∗) = §4
<(� / 1, M. % arg	max	<l∈g 	��4(�, M�.� 
For our case, this is a convenient notation. The original version of the back-pointer, §4(�, M., provides information on the most probable duration of the previous state ℓ� % ℓT��, under the assumption that state 0ℓT, M2 is ending at Q. In contrast, the new back-

pointer, §©4(�., provides information on the most likely duration of the present layer ℓT, 
when assuming it to end at Q. 

 The back-tracking procedure 3.6.3
Having calculated these two parameters, the most likely path through the lattice of gener-
alized states can be determined. First, the most likely final state is determined based on �4(�, M. (or, if possible, �¦4(�.). Subsequently, the §©4’s are used repeatedly to obtain the 
most likely duration of this layer, thereby eventually determining the overall most likely 
state sequence.  

First consider the simple case for which it is given that the last layer in the observation 
sequence ends exactly at d. The initialization of the backtracking procedure would then be 
the state ℓ�∗, chosen as the state ending at d having the highest total probability: 

ℓ�∗ % argmaxℓ_∈` �¦X(�. % argmaxℓ_∈` ªmax$e:¡¢e	 [0i�:4��, 	RXj % ℓT, Y�:X2« 

Observe that the probabilities �¦X(�. are based on the entire observation sequence. In the 
following, a star (∗) signifies the resulting most likely state, being indexed according to 
the number of steps taken backwards from d.  

However, for the annual layer detection model applied on real data, no knowledge on the 
termination of the last layer is given. The last layer may terminate at any point at or after 
the end of the observation sequence. Hence, to find the most likely terminal state, we must 
take into account all options of ending time as well as annual layer number and duration. 
The initialization condition is therefore: 

(Q�∗, ℓ�∗ , M�∗. % argmax4�Xℓ_∈`<�4�X
�,			<∈g
�4(�, M.

% argmax4�Xℓ_∈`<�4�X
�,			<∈g
q max(ℓ.e:¡¢£	 [0(ℓ.�:4�< , RJ4�<
�:4j % ℓT, Y�:X2¬	 

With Q�∗ being the most likely ending time of the most likely state (ℓ�∗ , M�∗.. 
As §©4(�. provides the most likely duration of the present layer ℓT when assuming this 
layer to end at Q, the state sequence can now be traced back until reaching the start of the 
observation sequence. This is done by repeated application of: 
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(Q>
�∗ , ℓ>
�∗ , M>
�∗ . % 0Q>∗ ) M>∗ , 	ℓ>∗ ) 1, §©4­®e∗ (ℓ>
�∗ .2 

And the most likely segmentation of a data series into annual layers is hereby obtained. 

Similarly to the Forward-Backward algorithm, also the Viterbi algorithm allows for a 
measure of the likelihood of the applied model and model parameters to be computed. The 
value of �4e∗(�, M�∗. gives the resulting joint probability of the most likely state sequence 
and the entire observation sequence. By maximizing this probability measure, the model 
and model parameters can be adjusted to best fit the observed data. Hence, also the Viterbi 
algorithm can be run in an unsupervised learning mode.  

3.7 Implementation issues 

In this section, some practical aspects on the implementation of the layer detection algo-
rithms will be discussed. Firstly, it will be described how the layer detection algorithm can 
be treated to allow for sections of missing data. This turns out to be very easy. Secondly, it 
will be described how the computation of the probability variables in the layer detection 
algorithm very quickly is causing underflow due to machine precision, and how this issue 
was dealt with. And thirdly, I will mention the issue of how long it takes for the layer 
detection algorithm to compute the layering in a section of data. 

 Sections of missing data 3.7.1
Most data series are not complete, but contain areas of bad or missing data. For the visual 
stratigraphy, around 1% of the data series is lacking due to breaks in the ice core (figure 
2.3.1). Fortunately, this does not present a major problem for the layer detection algo-
rithm. The algorithm treats these sections in a way that much resembles what is usually 
done by eye in manual layer counting: The annual layers are interpolated based on infor-
mation in the surrounding data and knowledge of the layer thickness distribution. 

Data enters the layer detection algorithm through the probabilities �(Y4
�:4
<.: 
�(Y4
�:4
<. ≡ [0Y4
�:4
< 	|	RJ4
�:4
<j % ℓT2 

The simplest and crudest approximation (which is the one used here) is to assume no 
knowledge on the observations in areas of missing data, i.e. these data can have any value. 
Hence, when judging the likelihood of an annual layer based on a data segment containing 
missing data, the result only depends on how well the remaining data in the segment 
resemble a layer. If none of the data points exist, the likelihood is set equal to 1. 

By doing so, the algorithm will fit in an appropriate number of layers in these sections, 
with the ‘appropriate number’ being determined based on knowledge of the layer thick-
ness distribution in combination with the positions of annual layer boundaries in the 
surrounding data. Meanwhile, the uncertainty on the annual layer count may be increased. 
Small sections of missing data are of almost no importance for the resulting outcome of 
the algorithm, while for larger sections (much larger than the average layer thickness) the 
errors are increased along with the uncertainty estimates. This is very similar to what is 
done by eye when manually counting annual layers: Based on the surrounding layer 
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thicknesses, an appropriate number of years are added, and the estimated counting uncer-
tainty is increased. 

 Preventing underflow  3.7.2
Given the definition of �4(�, M. and �4 in the Forward-Backward algorithm as the joint 
probability of a specific layer and an increasingly long sequence of observations, a direct 
implementation of the forward and backward equations ((3.4.5) and (3.4.8)) will quickly 
suffer from underflow.  

In order not to be limited by machine precision, one of two approaches are frequently 
used: The one most commonly encountered is to calculate the forward variable multiplied 
with a scaling function, and the backward variable multiplied with its inverse [Yu, 2010]. 
The dependence on the scaling function is then eliminated when the two variables are 
multiplied in the end. Being the fastest and most precise, this approach is often preferable. 
However, if there are relatively few state transitions compared to the length of the obser-
vation sequence, it may be difficult, perhaps even impossible, to find a suitable scaling 
function [Yu, 2010]. This is the case here. The annual layers are relatively thick and en-
compass many observations, and the use of a scaling function turned out to be inadequate. 
Hence, to solve this issue for the layer detection algorithm, a slightly different path than 
the customary one had to be taken. It turned out that a more practical approach was to use 
a log-transform of the forward-backward variables.  

Inserting logs in the equations for �4(�, M. and �4 gives: 

log �4(�, M. % log D(M. / log �(Y4�<
�:4. / log ��4�<(� ) 1. 
log ��4�<(� ) 1. % log � exp	(log�4(�, M..

<∈g
 

And for the backwards variable: 

log�4 % log � exp(log D(M. / log �(Y4�<
�:4. / log �4
<.
<∈g

 

However, these equations cannot be directly implemented either. The recursive approach 
of summing up previously calculated values causes both of these equations to contain the 
operator log ∑ exp, the required accuracy of which quickly exceeds machine precision. To 
prevent underflow, these values are therefore calculated using the following transfor-
mation: 

log� exp(´�.
�

% max(µ. / log� exp(´� ) max(µ..
�

 

With	µ being the vector of all possible values ´�. 
Computer-wise, this is an approximate solution only, as some of the very small terms may 
still drop out during the evaluation. However, the transformation ensures the largest and 
therefore most important terms to be included in the evaluation of the result. And for our 
purposes, the provided accuracy is more than sufficient.  
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Having accomplished the computation of �4(�, M. and �4 without serious issues of under-
flow, it may still happen that the equations for calculating ~4(�, M. and �4(�, M. are 
subjected to underflow, simply due to very low probabilities of observing the exact obser-
vation sequence. All of these have therefore been evaluated in log-space.  

To prevent underflow caused by limited machine precision, also the Viterbi equations 
have been implemented in log-space. In this case, however, the log-transformation is 
straight-forward: Given that the logarithm is a well-behaved and continuously increasing 
function, the logarithm of the maximal probabilities equals the maximum of the log-
probabilities.  

 Execution time 3.7.3
A precarious spot of many Bayesian analyses is that they are very time consuming. Even 
though the Viterbi and the Forward-Backward algorithms provide an efficient procedure 
for computing all the relevant probabilities, the time issue still persists.  

The computation of probabilities for a single batch of data containing 500 observations 
(with data in 1 mm resolution, as will be used later, this corresponds to 50 cm of data), 
does not take much time. In the present implementation of the algorithm, and for the 
conditions appropriate to the visual stratigraphy data later investigated, it only takes about 
10-15 seconds on a laptop to simultaneously compute the layering as inferred by the 
Forward-Backward and the Viterbi algorithm.  

However, one must bear in mind that if wanting to establish a chronology for several 
hundred meters of ice core, this will take a while. This is in particular the case if it is 
desired to take advantage of the ability of the algorithm to learn about the appropriate 
model parameters from the appearance of the data itself. In this case, the algorithm may be 
run in an iterative mode, as it will be described in chapter 5, which easily may lead to a 
10-fold increase in computation time.  

The computational burden lies in the calculation of the probabilities �(Y4
�:4
<. (3.3.1), 
which evaluates whether a data segment is likely to be an annual layer or not. With an 
added complexity of the annual layer model, the addition of more data series etc., the 
computation time of these probabilities may increase. On the other hand, the computation 
of these probabilities has the potential to be parallelized, which may save some computa-
tion time.  

To conclude: Most practical issues concerning the implementation of the layer detection 
algorithm have been solved. Missing data can be included in a simple yet efficient way, 
and by using log-probabilities, there is no serious problems with underflow. The only 
remaining issue is that it can be rather computationally demanding to use the algorithm on 
long sections of data. However, with the ever-expanding computer power available, this 
may not stay an issue for long.  

 



 4. Modeling	the	annual	layers		

This chapter deals with the fundamental problem posed in the HMM-based annual layer 
detection model: How can an annual layer be described in a simple way that allows us to 
evaluate the likelihood that a given observation segment is an annual layer? Knowing such 
probabilities for all possible start and ending locations is a prerequisite for inferring the 
most probable layering of an observation sequence. The most likely layer at any given 
location can then be inferred using the Forward-Backward algorithm (section 3.4), and the 
most likely segmentation of the observations into annual layers can be deduced from the 
Viterbi path procedure (section 3.6).  

Obviously, the inferred layer boundaries depend critically on the applied annual layer 
model and model parameters (B..	The set of model parameters includes parameters used 
for judging how well a segment of observations Y4e:4f fits the characteristics of an annual 

layer (�(Y4e:4f..,	as well as parameters describing the probability distribution of annual 

layer thicknesses (D(M.).   

4.1 Annual layer thicknesses 

Empirical data show that for a given depth interval, the annual layer thicknesses in an ice 
core, ¶, are approximately lognormal distributed [Andersen et al., 2006a]. The assumed 
probability distribution of the layer durations is therefore taken to be a lognormal distribu-
tion described by the two parameters O< and �<:  

¶	~	D(M. % Log ¹(O< , �<�. 
Throughout the following, log will denote the natural logarithm. To avoid confusion, the 
above two parameters will in the following be termed respectively the location parameter 
(O<) and the scale parameter (�<) of the distribution. An illustration of the effect of these 
on the layer thickness distribution is found in figure 4.1.1.  

This continuous probability density function is discretized and normalized to provide 
duration probabilities corresponding to an integer number of data points. Furthermore,  
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Figure 4.1.1: A lognormal layer thickness probability distribution with different location (O<) and 
scale (�<) parameters.  

tails of the probability distribution are removed, such that there is a minimum as well as 
maximum duration allowed for each layer.  

In Andersen et al. [2006b], the parameters governing the annual layer thickness distribu-
tion in the NGRIP ice core during different time periods were estimated (table 4.1.1). The 
flow-induced thinning of annual layers with depth has been taken into account by using 
strain-corrected mean values of log( ¶). Consistent with previous studies [D Dahl-Jensen 
et al., 1993], these strain-corrected values show the occurrence of significantly lower 
accumulation rates during the cold periods.  

The variance of the distribution of log ¶ remains more or less the same throughout the 
three investigated time periods, indicating that the mechanisms of accumulation at the 
NGRIP site must be stable over time. The uniform variance of the distribution of strain-
corrected layer thicknesses also applies to annual layer thicknesses at any given depth: As 
the applied strain correction is a multiplicative constant, the variance of the lognormal 
distribution of annual layer thicknesses is independent of this correction factor (see ap-
pendix A2). Hence, also the annual layer thickness distribution during the investigated 
periods was found to have a standard deviation around 0.3, more or less independently of 
depth and climate regime.  

 

 GS-2 Stadials Interstadials 

º»Y¼¼ -2.786 -2.899 -2.289 

½¾     0.290 0.302 0.272 

 
Table 4.1.1: Parameter values governing the log-normal layer thickness distribution during differ-
ent time periods and climate regimes. The value of O<  at a given depth is dependent on the thinning 
of annual layers due to ice flow, which here has been corrected for by using a strain-corrected 
measure of the annual layer thicknesses (O;"--). The corrected values provide an estimate of the 
mean of the original layer thickness distribution at time of deposition. In appendix A2 is included a 
derivation of the above quantities based on those given in Andersen et al. [2006b]. 
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4.2 The annual layer signature 

The very core of the annual layer detection algorithm is the model for the annual layer 
signal. An appropriate choice for this is central to the accuracy of the resulting chronolo-
gy. The annual signal model is used for calculating the emission probabilities:  

�0Y4e:4f2 % [0Y4e:4f�RJ4e:4fj % ℓT, B2,			ℓT ∈ `	 
These provide an estimate of the likelihood that a given data segment represents an annual 
layer. The probability contribution due to the annual layer thickness itself is disregarded as 
it is taken care of separately by D(M.. While being among the most important parts of the 
algorithm, it is also the modeling of annual layers that presents the main shortcomings of 
the annual layer detection model described here. The remaining part of the algorithm is 
based on consistent mathematical principles, whereas this part dealing with actual data is 
inherently vague and difficult to properly define.  

The annual layer model must be able to take into account the large degree of inter-annual 
variability in annual layer signal, while also being sufficiently simple. Simplicity is re-
quired given that the calculation of � takes up the major part of the computation time: � is 
to be calculated for all possible combinations of start and ending position of a layer within 
the entire observation sequence.  

For the main part, the model equations derived in the previous sections present a simplifi-
cation of the principal equations in Hidden Semi-Markov Modeling. This is not the case 
for the calculation of �, for which is needed a more sophisticated model than what is 
commonly used for Hidden Markov Model applications. In speech recognition, it is cus-
tomary to use numerous observation sequences at once (all cepstral coefficients as well as 
their derivatives), but they are all assumed to follow relatively simple trajectories 
throughout each state. Here, we are faced with an annual layer signal which is relatively 
complex, and which cannot be modeled just by a constant value or a straight line. 

 An annual layer template 4.2.1
Each horizon in the visual stratigraphy record is assumed to be formed by gradual changes 
in dust influx to the ice sheet. With the dust influx displaying a seasonal variation, an 
obvious choice is to describe an annual layer by a smoothly changing mean value, which 
solely depends on the time of year of deposition. To simplify matters, linear transfor-
mation between time of year and depth within each layer is assumed, thereby eliminating 
the need to distinguish between the two.  

The annual layers are modeled based on a generalized layer template, which consists of a 
selection of appropriate functions providing the general shape of the layer signal. The 
layer trajectories are then formed by linear combinations of these. However, the weighting 
corresponding to each of these functions is not fixed, but assumed to be Gaussian distrib-
uted around a given mean value. In this way, the template allows for a selected range of 
year to year variability in layer shapes. The employed model is an extended version of the 
linear trajectory models used by Gish and Ng [1996] and Russell and Holmes [1997], and 
bears many similarities to the one used for ECG waveform detection by Kim et al. [2004] 
and Kim and Smyth [2006].  
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The trajectory of an annual layer signal is described as the output of a linear system: A 
linear combination of basis functions, which themselves may be non-linear. These basis 
functions are combined to form a design matrix, X, which provides the generalized layer 
template. A one-year observation segment ÀT (corresponding to a layer ℓT spanning M 
observations) is then modeled as: 

(4.2.1. ÀT ≡ Y4�<
�:4 = XÁT + ÂT  

In the general case of a Ã-parameter annual layer model, ÁT is the Ã × 1 waveform pa-

rameter vector, and ÂT is a M × 1 vector of residuals. The residuals will be assumed to be 
independent and identically distributed (i.i.d.) with zero-mean Gaussian distributions, i.e. ÂT~¹<(Å, �Æ�I<., hence adding a Gaussian white noise component to the resulting obser-

vation vector ÀT. The size of the design matrix, X, is M × Ã. The basis functions in the 
design matrix are normalized according to the annual layer thickness (M), such that the 
resulting shape of the annual layer signal is independent of the layer thickness. 

Several options will be used as basis functions for the layer template to be contained in the 
design matrix X. The perhaps simplest (meaningful) basis is to assume the annual layer 
curve to be sinusoidal. However, it is a much better approximation to take into account 
possible differences in peak heights etc. by allowing a cosine to be overlain with a linear 
function with mean value 0 and a constant. Such assumption gives rise to the following 
design matrix: 

(4.2.2. X =

ÈÉ
ÉÉ
ÉÉ
ÉÉ
Êcos(2�Í�. Í� − 12 1
cos(2�Í�. Í� − 12 1
cos(2�Í�. Í� − 12 1

⋮ ⋮ ⋮
cos(2�Í<. Í< − 12 1ÏÐ

ÐÐ
ÐÐ
ÐÐ
Ñ

=

ÈÉ
ÉÉ
ÉÉ
ÉÉ
Ê 1 − 12 1
cos(2�Í�. Í� − 12 1
cos(2�Í�. Í� − 12 1

⋮ ⋮ ⋮
1 12 1ÏÐ

ÐÐ
ÐÐ
ÐÐ
Ñ

  

with Ò = (Í�, Í�, Í�, … Í<.⊺ = '0, �
<�� , �

<�� , … , 13⊺
denoting the layer fractions correspond-

ing to each of the M data points. ⊺ denotes the matrix transpose. The above is a three-
parameter annual layer model, and correspondingly, the size of X is M × 3.  

Observe that this model by itself does not impose any restrictions regarding continuity of 
fitted trajectories across layer boundaries. For each layer, the most likely layer trajectory 
is chosen separately from that of the surrounding layer trajectories. Only if all basis func-
tions have a value of zero in both ends, hereby forcing each layer trajectory also to have 
zero value here, the resulting fitted trajectories for successive layers will be continuous. 
However, even layer models which do not impose continuity across layer boundaries, 
turned out to work rather well in practice.  
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 Allowing for inter-annual variability in layer shape 4.2.2
The annual layers in the visual stratigraphy data display a significant amount of variability 
in shape from one year to the next, and the annual signal model must be able to capture 
this diversity.  

The approach taken here has been to divide up the layer shape characteristics into two 
levels: The uppermost level contains information on the average layer signal, and the 
lower one describes the individual differences in layer trajectory from this average layer 
shape. Such differences are called ‘random effects’. In this way, it is possible to not only 
include information on how an average layer looks like, but also how much each individu-
al layer is allowed to differ from this average signal. This kind of model is called a two-
level hierarchical model. A conceptual illustration of such a model is found in figure 4.2.1. 

In a hierarchical model, variations between individual annual layer signals are therefore 
caused by two different processes: One process is responsible for the general difference 
between individual layer trajectories due to different realizations of the shape form, while 
another process is responsible for the corruption by additive white noise on this layer 
shape. In other words: Two layer trajectories produced by the same set of overall model 
parameters need not be similar. But even if they are, detailed small-scale disparities in the 
realization of their trajectories will exist.  

Here, the diversity of the individual layers has been accounted for by using a Bayesian 
approach. In Bayesian terms, the general idea of a hierarchical model can be formulated as 
a model which allow each layer to have its own parameters (lower level), but where these 
are coupled together by an overall population prior (upper level). In this way, only a 
generalized waveform template as the one in (4.2.2) is specified via the design matrix. The 
waveform parameter ÁT itself is given as probability distributions.  

Restricting ourselves to consider only multivariate Gaussian probability distribution as 
prior for the parameter values5, this corresponds to assuming ÁT~¹(Ô, Φ. in (4.2.1), 

where Ô and Φ are two new parameters (replacing the one parameter ÁT). The likelihood 
that a segment comprises exactly one annual layer can then be evaluated by Bayesian 
linear regression (described in section 4.2.3). Bayesian linear regression will in general be 
superior to the ordinary least squares approach, which is prone to overfitting [Bishop, 
2006]. 

To simplify the following derivations, this Bayesian annual layer model is now re-written 
as a two-level hierarchical linear model. This is done by splitting up the wave 
ters	ÁT into one part which describes the average layer signal (Ô), and a second part 

describing the random effect specific to each layer (¼T ∈ Ö):  

ÁT % Ô / ¼T 

 

                                                      
5 Such multivariate normal distribution being self-conjugate.  
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Figure 4.2.1: A schematic drawing of the two-level hierarchical model used for modeling the an-
nual layers. At the upper level, an average template for the layers is supplied. But based on this 
template, each layer has its own trajectory (middle level). Furthermore, white noise is added to the 
observed data (lowest level).  

With ÁT~¹(Ô, Φ., the observation segment corresponding to an annual layer can be 
described as the output of the following linear system:  

(4.2.3. 
ÀT = XÁT = X0Ô / ¼T2 / ÂT 

¼T~ ¹×(Å, Φ. 
ÂT~¹<(Å, �Æ�I<. 

 

This description is similar to the one used by Kim and Smyth [2006]. As the mean average 
layer signal is given by the parameter Ô, the mean of the random effect vector ¼T is equal 

to zero. Its covariance is denoted Φ. The noise on each data point is assumed to be Gauss-
ian white noise with variance �Æ�. 

Hence, with this modification, the parameters contained in the parameter vector B for the 
layer detection algorithm are the annual layer signal parameters Ô, Φ and �Æ�, along with 
the parameters describing the annual layer thickness distribution, O< and �<, i.e.: B %�O< , �< , Ô, Φ, �Æ��. 

 Probability of a hypothesized annual layer segment 4.2.3
In order to evaluate the likelihood of an observation segment to be an annual layer, con-
sider first an observation vector ÀT of length M, which is known to be distributed 
according to a multivariate normal distribution with mean º (vector of length M) and 
covariance matrix Σ (M Ä M matrix): 

ÀT ~ ¹<(º, Σ. 
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The probability density corresponding to obtaining an observation vector ÀT is then given 
by [Bishop, 2006, p. 78]: 

(4.2.4. D0ÀT�º, Σ, M2 = (2�.�<�  |Σ|��� exp Ù− 12 0ÀT − º2⊺Σ��0ÀT − º2Ú  

Here, |Σ| denotes the determinant of the matrix Σ, and Σ�� is the matrix inverse. This is 
the general equation for the probability density function of a multivariate Gaussian. The 
hereby calculated values are probability densities, and they may therefore have values 
above 1.  

If the value of ÁT was known, such probabilities could be computed by inserting º = XÁT, 

and Σ =  �Æ�I<. However, as ÁT is not known, we must first find the appropriate expres-
sions for º and Σ for the linear annual layer model outlined in the previous section (4.2.3). 

As the expectation value for ¼T and ÂT both equal zero, Ûn¼To = Å and ÛnÂTo = Å, and Ô is 

a constant, i.e. ÛJÔj = Ô, the expectation value for ÀT is: 

ÛnÀTo = ÛnXÔ + X¼T + ÂTo  = XÔ 

The corresponding covariance of ÀT is given by:  

covnÀTo = Û Ý'ÀT − Û0ÀT23 'ÀT − Û0ÀT23⊺Þ 
= Û ß0X¼T + ÂT20X¼T + ÂT2⊺à 
= ÛnX¼T¼TX⊺ + ÂT¼T⊺X⊺ + X¼TÂT⊺ + ÂTÂT⊺o  
= XÛn¼T¼T⊺oX⊺ + ÛnÂTÂT⊺o  = XΦX⊺ + �Æ�I< 

Here, the equality ÛJµµ⊺j = ºº⊺ + Σ [Bishop, 2006] has been utilized. As a consequence, 
the covariance matrix of any zero-mean vector µ can be calculated as the expected value 
of the vector itself times its transpose. 

Given that a conjugate prior was picked for the distribution of the wave parameters, also 
the distribution of the observation vector ÀT will be Gaussian, and as shown above it has 

expectation value XÔ and covariance XΦX⊺ + �Æ�I<. Consequently, the observation vector 
is described by the following probability distribution: 

ÀT~¹(XÔ, XΦX⊺ + �Æ�!<.  

With this probability distribution determined, the probability of observing a hypothesized 
layer can be calculated according to (4.2.4). 

Note how the uncertainty in the precise value of ÁT for a given layer acts to increase the 
allowed discrepancies from the mean trajectory, and it does so in a non-uniform way. The 
non-uniformity reflects how the linear regression ties in some sections of the trajectory 
more than others [Bishop, 2006].  

The annual model described here is relatively simple. Yet, it is able to address the general 
problem faced by any annual layer detection model: The layers display a high degree of 
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variability. By the explicit modeling of this variability, it becomes an integrated part of the 
layer detection algorithm, and makes it able to better handle observation sequences with 
irregular and noisy annual layer signals.  

4.3 Including the derivative of data series 

In the previous section, an annual layer model was described, in which the layer signal 
was modeled as the noisy output of a linear system. However, the additive white noise 
assumption in this annual layer model is not very realistic. The white noise component of 
the model will be used to explain all variability in the observed data which cannot be 
explained by the chosen annual layer trajectory. As a consequence, the ‘noise’ on two 
consecutive observations will most likely be highly correlated, unlike additive white noise 
which per definition is uncorrelated. A more realistic model would have allowed the 
unexplained variability in the data series to be correlated. However, assuming correlated 
noise would make the calculations of �0Y4e:4f2 much more cumbersome, and therefore an 
assumption of white noise was preferred. 

Fortunately, there is a relatively simple way to get around the unrealistic assumption of 
uncorrelated white noise. If considering instead the slope of the observation sequence, the 
noise here will be more like white noise than it was on the observation sequence itself. At 
the same time, however, the signal-to-noise ratio of the data will decrease, rendering the 
annual layer signal generally less perceptible. If considering the curvature of the data 
series, this would be even more so. The issue of correlated noise on the observations can 
therefore to some extent be addressed by simultaneously considering the observation 
sequence and its slope, and perhaps even its curvature, and locating the best annual layer 
boundaries based on the combined information in all of these. By simultaneously model-
ing the observation sequence and its derivatives, the impact of the white noise assumption 
is reduced, and there is no need to model the error correlation of successive observations. 
Thus, even though the information contained in the derivative of the observed data series 
also was present in the data series itself, information is added to the model by using this as 
an additional input. Indeed, when applied to real data, much better estimates of the annual 
layering were obtained when considering also the derivatives of the observed data.  

Fortunately, it is easy to extend the previously derived equations to include information 
from more than a single data series. Consider e.g. the visual stratigraphy intensity data 
along with its derivatives. All of these contain a seasonal signal. Using the notation á for 
the original data vector, and ∆á and Δ�á for respectively its slope and curvature, the 
observation vector ÀT now consists of all three of these.  

Extending the example from section 4.2.1, in which the annual layer signal was taken as 
proportional to a cosine function, the annual layer model can now be written in the follow-
ing way:  
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ÀT = ã áΔáΔ�áä = XÁT +
ÈÉ
ÉÉ
ÊÂT(�.
ÂT(�.
ÂT(�.ÏÐ

ÐÐ
Ñ = X(Ô + ¼T. + åT 

Here, åT is the vector of white noise components for all data series. The appended design 
matrix is found by appending the derivatives of the basis functions to the original one 
(4.2.2): 

X = 	
ÈÉ
ÉÉ
ÉÊ cos(2�Ò. Ò − 12 æ

− 2�M − 1 sin(2�Ò. æM − 1 Å
− ª 2�M − 1«� cos(2�Ò. Å ÅÏÐ

ÐÐ
ÐÑ
 

Where the notation Ò = (Í�, Í�, Í�, … Í<.⊺ = '0, �
<�� , �

<�� , … , 13⊺
 has been used. In this 

way, the annual layer signal is described by the same number of parameters (i.e. the 
vectors	Ô and ¼T remain the same size) as if only a single data series were used. But given 
that all three data series now are assumed to be described by the same set of parameter 
values, these must now be determined as those which fit all of these the best. 

The noise on all data series is assumed to be additive Gaussian white noise. But the indi-
vidual data series may have different noise levels. Hence, in the general case of é 
different data series, the combined vector of white noise components for all data series, åT, is distributed according to the following multivariate normal distribution: 

åT %
ÈÉ
ÉÉ
ÊÂT(�.
ÂT(�.
⋮ÂT(�.ÏÐ

ÐÐ
Ñ

~¹�<(Å, �Æ�W.			 

With W being a éM Ä éM diagonal matrix having the structure: 

W % diag	(æ< , u�æ<, u�æ< , … , u�æ<. 

The notation æ< has here been used for an all-ones vector of length M, and the weights uì, � ∈ {1, … . é}, denote the white noise variance on data sequence � relative to that of 
the first data sequence. 

When taking into account the different noise levels corresponding to the individual data 
series, it can be shown that the resulting probability distribution for the observations ÀT, 

belonging to a hypothesized annual layer segment �, in this case is given by: 

ÀT~¹(XÔ, XΦX⊺ + �Æ�W.  

Based on this probability distribution, the probability of observing a hypothesized layer 
can also in this case be calculated according to (4.2.4).  
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In the annual layer model applied here, an annual layer is modeled as the outcome of a 
linear model with additive white noise. But in reality the assumption of white noise is not 
really appropriate. The inadequacy of such assumption can be circumvented by supple-
menting the observation sequence with the sequence(s) of its derivatives. By doing so, 
much more accurate estimates of the annual layering in a data sequence can be made. The 
layer detection algorithm has therefore here been implemented in a semi-multi-parameter 
mode, in that not only the visual stratigraphy data itself, but also the derivatives of the data 
sequence, are taken into account.   

4.4 Adding additional observation sequences 

There are no conceptual difficulties in adding more data series to the annual layer recogni-
tion algorithm. These data series do not necessarily have to be connected to the visual 
stratigraphy. They may as well be e.g. multiple chemistry data series from CFA measure-
ments, which contain an annual layer signal. In this way, an annual layer detection model 
based on Hidden Markov Modeling is able to provide a true multi-parameter annual layer 
counting algorithm, which can take into account the annual variation in many different 
chemical species in the ice core data at once. 

Practical difficulties may arise, however, as it may be required to take the covariance 
between the signals in the individual data series into account. Doing so will cause the 
complexity of the model to increase. However, such issues may be minimized by selecting 
the employed data series carefully. A sensible choice could e.g. be to merely use data 
series which express different aspects of the annual signal.  

Another issue is the different timing of peaks in the individual data series, and that not all 
measurements are supplied with an accurate depth scale. A very accurate depth scale is 
essential given that the annual layer thickness in the deeper part of the ice core is just a 
few centimeters.  

The above mentioned obstacles are, however, still of minor character relative to the poten-
tial gains of obtaining an automated method of annual layer counting which may be able 
to compete with manual counting.  

4.5 Possible extensions of annual layer model 

Provided that increased computation time is not a serious concern for the annual layer 
detection algorithm, the model for how to calculate the likelihood of a hypothesized 
annual layer segment can be as complex as desired. In this respect, the annual layer model 
outlined above only presents a fairly simple implementation.  

An obvious starting place for improving the modeling of an annual layer would be to 
allow for small inter-annual variations in the transformation between time of year and 
annual layer fraction. As the seasonal precipitation of snow changes from one year to the 
next, this by itself will give rise to a changing time-to-depth conversion for each layer – 
even if the seasonal variation in dust influx remains exactly the same.  
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In other words, even within each year, the time-to-depth conversion should be allowed 
some flexibility. Such time-warping within each annual layer can be allowed in several 
ways. One option is to warp the timeline within each hypothesized layer in order to con-
form the observations to the given template in the best possible way. Such approach can 
be pursued using the methods of Dynamical Time Warping (DTW), which often has been 
employed for such purpose within the realm of speech recognition [Rabiner, 1989].  

Another approach could be to nest a tiny HMM model into the overall annual layer detec-
tion model. For each hypothesized layer segment, this HMM model can be used to both 
find the optimal warping specific to the current layer, as well as the resulting probability 
of the observation sequence to form an annual layer. As long as such a nested model is not 
too complex, it will not necessarily increase the computation time excessively, as the 
number of data points within each observation segment will be small.  

Yet another method, by which the assumption of a linear time-depth relationship within 
each layer can be relaxed, is to model each layer segment as the outcome of a dynamical 
linear system. The prediction errors of the dynamical system can then be used to evaluate 
the probabilities of a given data segment to form an annual layer [Ostendorf et al., 1996]. 
Dynamical systems can be made to allow for a wide range of annual layer signals, and has 
the advantage of allowing a direct modeling of the physical processes involved in forming 
the annual layers visible in the ice core data. Additionally, dynamical linear system theory 
also allow for the autoregressive character of the visual stratigraphy signal to be better 
exploited.  

For the visual stratigraphy, one could also speculate that perhaps it would be an idea to 
use an indexing Q based on the individual visible horizons in the line-scan images instead 
of depth. If creating a new data series by extracting one single data point per horizon, a 
more stable annual layer signal might emerge. However, such approach would only work 
for the visual stratigraphy, which is the only ice core record in which strata corresponding 
to individual snow events can be recognized. 
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 5. Improving	on	layer	parameter	

estimates	

A major benefit of a HMM annual layer detection model lies in its ability to utilize the 
observations themselves to adjust and optimize the parameter values used for determining 
the most likely annual layering. In other words, the model is able to improve on an initial 
guess of the appropriate model parameters based on how the data actually looks like. By 
doing so, the model is able to continuously adjust itself to temporal changes in how an 
annual layer is expressed in the ice core data. Such adjustment is important due to the 
extreme abruptness of some climatic events recorded in the ice cores [Steffensen et al., 
2008], influencing both the mean annual layer thickness as well as the annual layer signal 
recorded in the data.  

5.1 The optimal model parameters 

As part of the Forward-Backward and the Viterbi algorithm, the likelihood of the current 
set of HMM parameter values, F(B|Y�:X., is computed. This measure can be used to train 
the model by maximizing the likelihood of the joint set of parameters. The Maximum 
Likelihood (ML) value of the parameters is denoted B�í:  

B�í % argmaxN 	log 	F(B|Y�:X. 
% argmaxN 	log[(Y�:X|B. 

The logarithm of the likelihood function is often used for convenience of easier calcula-
tions. As the logarithmic function is monotonously increasing, it bears no importance 
whether the likelihood or the log-likelihood is maximized.  

The resulting annual layer parameters are those most likely to have produced a data se-
quence as the one observed. Yet, although not explicitly annotated above, the conditioning 
on the applied annual layer model should be kept in mind. The significance of the maxi-
mum likelihood parameters is contingent on the annual layer model to provide a 
reasonable description of an annual layer in the data. Also, no magic is involved. If for 
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some reason the annual layering is indistinguishable, the most likely annual layer parame-
ters will be of little or no value. Likewise, even with an annual signal present and an 
appropriate annual layer model to detect it, the observation sequence may simply be too 
short to uncover a good estimate of the annual layer parameters.  

Under challenging conditions, the performance of the annual layer detection algorithm 
may improve if supplied with any prior knowledge on the parameter values that we may 
be in possession of. Prior information on the parameter values can be taken into account 
by maximizing the posterior probability rather than the likelihood of the parameters. The 
Maximum a Posteriori (MAP) estimate of parameters is a point estimate corresponding to 
the mode of their posterior distribution: 

B��� = argmaxN 	log [(B|Y�:X. 

= argmaxN 	log0[(Y�:X|B.	[(B.2 

% argmaxN 	(log [(Y�:X|B. + log [(B)) 

Our prior knowledge on the value of the model parameters is contained within the proba-
bilities [(B).  

Both Maximum Likelihood and Maximum a Posteriori optimization of the annual layer 
parameters can be achieved using a range of maximization methods. For Hidden Markov 
Modeling, the method most commonly used is the Expectation-Maximization (EM) algo-
rithm, which within the framework of HMMs is also known as the Baum-Welch algorithm 
[Leonard E. Baum et al., 1970; Dempster et al., 1977; Gupta and Chen, 2011; Welch, 
2003].  

The EM-algorithm attempts to find a point estimate of the most likely set of parameter 
values. Hence, it is not a Bayesian optimization method, by which the entire posterior 
probability distribution would be determined. However, a straight-forward adaptation of 
the EM-algorithm makes it possible to include a prior for the parameter values, and the 
algorithm can thus be implemented in a semi-Bayesian way. It hereby has obvious ad-
vantages compared to e.g. optimization using the Newton-Raphson method [Press, 1996], 
while being much faster than a full Bayesian Markov-Chain Monte Carlo optimization 
procedure [Mosegaard and Tarantola, 1995; Tarantola, 2005].  

5.2 The Expectation-Maximization algorithm 

The basic idea behind the Expectation-Maximization algorithm is as follows: By compar-
ing a first evaluation of the hidden state sequence with observations, a new estimate of the 
model parameters can be obtained. Given that this set of parameters is influenced by the 
observations, these will provide a better assessment of the true parameter values than the 
initial guess. By repeating this exercise multiple times, an optimal set of parameters can be 
found.  

The EM-algorithm (figure 5.2.1) hence alternates between two steps: First step is the 
expectation step (E-step), in which the current set of model parameters, B(>), is used for 
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calculating the conditional expectation of the log-likelihood of the joint set of parameter 
values:  

�(B|B(>)) ≡ Ûn	log F0B|î;"ìïð6462	|	Y�:X , B(>.o 
Here, î;"ìïð646 denotes the complete data set, which consists of the observation sequence 
as well as all hidden sequences, and the expectation value is taken with respect to all of 
the hidden sequences. In case only the state sequence, i�:X, is hidden, we have:  

�(B|B(>)) = Ûn	log F(B|i�:X , Y�:X)	|	Y�:X, B(>.o 
(5.2.1.	 																														% � [0i�:X�Y�:X , B(>.2 	log F(B|i�:X , Y�:X)

$e:ñ∈ℒñ
  

 

Figure 5.2.1: Flow chart depicting the procedure of the EM-algorithm in the general case of the 
Forward-Backward algorithm. Starting from an initial guess of the model parameters, B(P., the 
joint set of these is continually being improved upon by iterating between the E-step and the M-
step. During the E-step, posterior probabilities based on the current set of model parameters are 
computed, and using these, a new and better set of parameters is estimated during the M-step by 
maximizing either their resulting likelihood or posterior probability. The two steps are repeated un-
til convergence, at which stage a (local) maximum of the likelihood/posterior probability function 
has been reached. 
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Although intimidating as this definition of �(B|B(>)) may appear, it is only a repetition of 
what was said in words above: From the observations – pretending that our current guess 
of model parameters, B(>), is correct – the probability of any hidden state sequence i�:X 
can be computed using the Forward-Backward algorithm. Assume for the sake of sim-
plicity that only a single hidden state sequence is likely to occur. (Likewise, this could e.g. 
be the output of the Viterbi algorithm, which only determines a single optimal state se-
quence). By comparing this state sequence with the observations, the log-likelihood of any 
model parameter value can then be evaluated. This is �(B|B(>)). When multiple hidden 
state sequences are conceivable, the expectation of the log-likelihood is calculated in order 
to take into account the different probabilities associated with the respective hidden state 
sequences. Given that the Viterbi algorithm does not provide any such probability esti-
mates of alternative state sequences, its performance in this regard is inferior. For that 
reason, the EM-algorithm will here only be used in combination with the Forward-
Backward algorithm.  

As implied by its notation, �(B|B(>)) is a function of the model parameters B. But it also 
depends implicitly on the current guess of the joint set of model parameters B(>) used for 
estimating the hidden state sequence in the first place.   

Secondly, after having calculated the �-function in the E-step, a maximization step (M-
step) is performed. During the M-step, the �-function is used for selecting an improved 
set of model parameters, B(>
�). If a maximum likelihood estimate is desired, the new set 
of model parameters is chosen as the joint set maximizing the �-function:  

B�í(>
�) = 	 argmaxN	 �(B|B(>)) 

Alternatively, if a Maximum a Posteriori estimate of the parameters is required, the max-
imization step is achieved by maximizing the auxiliary function ò(B|B(>)) defined by 
[Gauvain et al., 1994]: 

ò0B�B(>)2 = �0B�B(>)2 / log [(B) 

(5.2.2)	 		B���(>
�. % 	 argmaxN	 ò(B|B(>))  

These two steps may now be iterated. The convergence properties of the EM-algorithm 
are analogous for both types of estimates.  

It can be theoretically proven (see derivation in appendix A3) that by iterating between the 
E- and M-steps, the likelihood of the parameter values will never decrease. And hopefully, 
the parameters will simultaneously converge towards their optimal values. But notice the 
word ‘hopefully’. Gupta and Chen [2011, p.227] give the following explanation of why 
the function to be optimized has been termed the �-function: “We like to say that the � 
stands for quixotic because it is a bit crazy and hopeful and beautiful to think you can find 
the maximum likelihood estimate of B in this way that iterates round-and-round like a 
windmill, and if Don Quixote had been a statistician, it is just the sort of thing he might 
have done”.  
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No guarantee is given that the EM-algorithm will manage to locate the globally most 
likely set of parameter values. The deterministic behavior of the algorithm may e.g. cause 
it to get trapped in a local maximum of the likelihood function.  Furthermore, not even 

convergence of the sequence aB(>.c is guaranteed. The EM-algorithm only assures the 

convergence of the sequence {log F(B(>)|Y�:X)} provided that this sequence is bounded 
[Gupta and Chen, 2011]. A detailed discussion on the convergence issues of the EM-
algorithm can be found in Wu [1983]. 

Despite these theoretical limitations, numerous implementations of the EM-algorithm 
have demonstrated that in practice the EM-algorithm often does a good job (see e.g. 
Lagendijk et al. [1990], Snyder and Politte [1983], Zabin and Poor [1991]). The trouble-
some ability of the algorithm to get caught up in a local maximum of the likelihood 
function can to some extent be addressed by using a couple of random starts, and ultimate-
ly picking the set of parameters having obtained the highest likelihood value.  

For the annual layer detection model developed here, it will in practice make most sense 
to run the EM-algorithm in Maximum a Posteriori mode: Prior probabilities can be esti-
mated based on previous data, and by adding the information contained in these, the 
robustness of the algorithm will in general increase. In addition, the usage of a prior 
allows the use of relatively short observation sequences, which may not contain sufficient 
information to produce robust statistics and therefore reliable Maximum Likelihood 
estimates. As short observation sequences can be processed faster, this may speed up the 
annual layer detection significantly. 

When optimizing the model parameters used in the layer detection algorithm, the proce-
dure therefore should be: First, an initial set of parameters is used as input to the Forward-
Backward algorithm, and a proposed first segmentation of the observations into annual 
layers is obtained. This state sequence, along with the corresponding observations and our 
priors, is now used to compute the a posteriori most probable set of parameter values. 
Subsequently, this set is used as input for a new iteration of the Forward-Backward algo-
rithm. The iteration continues until the sequence has converged. In this way, the Forward-
Backward algorithm can be trained by the observations to obtain a ‘best’ estimate of the 
involved parameters. 

In the next section, the Maximum Likelihood re-estimation equations of the annual layer 
parameters will be derived. Although related to similar equations for other applications of 
the EM-algorithm (see e.g. Chien and Huang [2003], Kim and Smyth [2006]), the equa-
tions here have been developed for the specific assumptions applicable for annual layer 
detection in ice cores (lognormal layer thicknesses etc.). Having obtained the Maximum 
Likelihood re-estimation equations, it is only a little step further in complexity to derive 
also the Maximum a Posteriori update equations (section 5.4).  

5.3 Maximum Likelihood layer parameters 

The simplest way to re-estimate the annual layer signal parameters is by considering the 
observations corresponding to each layer individually, these being defined using the 
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proposed most likely layer boundaries. Such an approach is sometimes termed a ‘hard 
count’. However, the Forward-Backward algorithm does not as such calculate the most 
likely segmentation of the observations; what is estimated are the probabilities of each 
observation to belong to a given layer (se discussion in section 3.6). As a result, each layer 
boundary constitutes a probability distribution, and taking these probabilities into account 
(making a ‘soft count’) will lead to a better estimate of the parameter values.  

A soft count approach ensures a proper treatment of sections within the observation se-
quence in which the annual layering cannot be determined very accurately, and 
accordingly neither can the corresponding annual layer parameters. In a hard count, a 
parameter estimate derived from such a section of the observation sequence would be a 
single, and most likely incorrect, value. Using a soft count, the result is a probability 
distribution of the full suite of potential parameter values, in which each annual layer 
parameter is weighted according to the probability of the corresponding segment to form 
an annual layer. In this way, an uncertainty in the layer boundary positions is transferred 
to the estimated parameter values.  

In chapter 4, the annual layer signal model used for parameterizing the annual layers was 
described. In short, each layer is considered a noisy outcome of a generalized linear model 
with Ã base functions, and annual layer thicknesses are assumed log-normally distributed. 
According to this, the annual layer parameters are: Parameters describing the layer thick-
ness distribution (O<, �<), parameter vector describing the mean annual layer signal (Ô) 
along with the covariance matrix hereof (Φ), and variance of the white noise component 
(�Æ�). Hence, the joint set of parameters, whose likelihood is to be estimated, is B ={O< , �< , Ô, Φ, �Æ�}.	  
According to the definition of the �-function, parameters must be re-estimated using their 
expectations: 

�(B|B(>)) ≡ Ûn	log F0B|î;"ìïð6462	|	Y�:X , B(>.o 
First of all, the complete dataset, î;"ìïð646, which contain the observation sequence as 
well as all hidden sequences, must be identified.  

In (5.2.1) the state sequence i�:X was the hidden sequence. We will now bring into play 
instead the generalized state sequence ]�:ó, where ]ô = (ℓô, Mô., ℓô ∈ ℒ, Mô ∈ g. N is 
the total number of annual layers in the observation sequence. The observation segment 
belonging to the �’te layer will be denoted Àô (in case of several observation 
es,	Àô contains the complete set of observations corresponding to that layer) and the entire 
observation sequence can therefore be written À�:ó. Observe that this notation implies 
knowledge on the segmentation of the observation sequence into annual layers, which is 
not implied by the notation Y�:X.  

As the succession of layers is fixed, and all layers are modeled alike, the information 
contained in consecutive values of ℓô is trivial. All necessary information lies within the 
durations of the individual layers. The hidden sequence will therefore be taken as the 
sequence of layer durations, M�:ó ∈ gó, which gives a complete description of the seg-
mentation of the observation sequence into annual layers. 
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Additionally, the random effect ¼ô ∈ ℛ corresponding to each layer will be considered a 
hidden variable. The random effect vector describes the differences in shape of the indi-
vidual layers from the mean signal, and it has a Gaussian distribution, ¼ô~	¹×(Å, Φ.. The 
corresponding hidden sequence is ¼�:ó ∈ ℛó. In our case, the complete data is therefore: î;"ìïð646 = {M�:ó, ¼�:ó, À�:ó}.  
The log-likelihood of a joint set of parameters B, when conditioned on the complete data, 
can be calculated as: 

log F0B|î;"ìïð6462 = log F(B|M�:ó, ¼�:ó, À�:ó) 

= log [(M�:ó, ¼�:ó, À�:ó|	O< , �< , Ô, Φ, �Æ�. = log0[(M�:ó|	O< , �< , Ô, Φ, �Æ�.	[(¼�:ó|M�:ó, O< , �< , Ô, Φ, �Æ�) 	∙ [(À�:ó|M�:ó, ��:ó, 	O< , �< , Ô, Φ, �Æ�.2 = log [(M�:ó|O< , �<) / log [(¼�:ó|Φ) / log [(À�:ó|M�:ó, ¼�:ó, Ô, �Æ�) 

Consequently, the �-function can be decomposed into three parts:  

(5.3.1.	 �0B�B(>.2 % ��0O< , �<�B(>.2 + ��0Φ�B(>.2 + ��0Ô, �Æ��B(>.2  

With: 

��0O< , �<�B(>.2 ≡ Ûnlog [(M�:ó|O< , �<) 	|	Y�:X, B(>.o 
(5.3.2.	 ��0Φ�B(>.2 ≡ Ûnlog [(¼�:ó|Φ) 	|	Y�:X , B(>.o 	

																				��0Ô, �Æ��B(>.2 ≡ Ûnlog [(À�:ó|M�:ó, ¼�:ó, Ô, �Æ�) 	|	Y�:X, B(>.o 
Hereby, the log-likelihood has been decoupled into three different parts. As each of the 

five layer signal parameters in (5.3.1) is included in just a single term of	�0B�B(>.2, the 
terms (5.3.2) can be maximized separately to get a re-estimate of the respective parameter 
values. Yet, their resulting optimum values depend on the entire set of previous parame-
ters, B(>.. 
The expectation values must be calculated with respect to all possible realizations of both 
two hidden sequences, M�:ó and ¼�:ó. The probability of obtaining a specific realization is:  

[0M�:ó, ¼�:ó|Y�:X , B(>)2 = [0M�:ó�Y�:X , B(>)2	[0¼�:ó�M�:ó, Y�:X , B(>.2 

= [0M�:ó�Y�:X , B(>.2	[0¼�:ó�À�:ó, B(>.2 

(5.3.3.	 																																					% [0M�:ó�Y�:X , B(>.2 õ [0¼ô�Àô, B(>.2
ó

ôö�
  

In the second step of the derivation above, the duration sequence M�:ó was used for seg-
menting the observations into their respective layers: A conditioning on {M�:ó, Y�:X} is 
equal to a conditioning on À�:ó, which includes information on the layer boundary posi-
tions. For the factorization in the last step, it was utilized that the individual values of ¼ô 
corresponding to each layer are assumed independent. 

The layer durations are only allowed to take on discrete values, specified as the number of 
observations covered by each layer. The expectation value of the log-likelihood with 
respect to the hidden state sequence M�:ó is therefore found by summing up the probability 



Maximum Likelihood layer parameters  80 

contributions from each of these. On the other hand, the random components ¼T are con-
tinuously valued. To take the expectation with respect to the hidden state sequence 
composed of these, the corresponding probability densities must be integrated.  

With these prerequisites in hand, the re-estimation equations for each of the five annual 
layer signal parameters will now be evaluated.   

 Layer thickness parameters 5.3.1
To re-estimate the duration distribution parameters O< and �<, we must evaluate the 
conditional expectation of log[(M�:ó|O< , �<., summed and integrated over all possible 
realizations of the hidden sequences. This expectation can be computed as follows: 

��0O< , �<�B(>.2 % Ûnlog[(M�:ó|O< , �<.	|	Y�:X , B(>.o 
% � ÷ [0M�:ó, ¼�:ó|Y�:X , B(>.2	log [(M�:ó|O< , �<. M¼�:ó¼e:ø∈Öø<e:ø∈gø

 

% � ÷ ù[0M�:ó�Y�:X, B(>.2 ∙ [0¼�:ó�À�:ó, B(>.2¼e:ø∈Öø<e:ø∈gø

∙ � log[(Mô|O< , �<.ó

ôö�
úM¼�:ó 

% � � ÷ [0M�:ó�Y�:X , B(>.2	[0¼�:ó�À�:ó, B(>.2 log[(Mô|O< , �<. M¼�:ó¼e:ø∈Öø<e:ø∈gø

ó

ôö�
 

Consider first only the contribution from the �’te layer to the sum: 

� ÷ [0M�, M�, … Mô��, Mô, Mô
�, … Mó�Y�:X , B(>.2	[0¼�:ó�À�:ó, B(>.2	log[(Mô|O< , �<. M¼�:ó¼e:ø∈Öø<e:ø∈gø
% � [0Mô|Y�:X , B(>.2

<û∈g
	 log[(Mô|O< , �<. 

with Mô being the duration of layer �. The equality holds as all other variables (¼�:ó and M�:ô��, Mô
�:ó) can be marginalized out, and hence do not contribute to the sum. As the 
above is true for all � layers, we see that:  

(5.3.4.	 ��0O< , �<�B(>.2 % � � [(Mô|Y�:X, B(>..	log [(Mô|O< , �<.
<û∈g

ó

ôö�
  

To evaluate this sum directly, knowledge on the duration probabilities of each individual 
layer (calculated based on the entire observation sequence and the current set of parame-
ters) is required. However, such probabilities have not been determined. Instead, the 
probability of ending layer � with duration M at index Q was computed using the Forward-
Backward algorithm: 

~̅4(�, M. % [0RJ4�<
�:4j % ℓT�Y�:X , B(>.2 
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Seeking a way to utilize this knowledge, equation (5.3.4)  can be transformed by including 
the probability of ending the �’te at Qô, and summing over all values of ending time Qô:  

��0O< , �<�B(>.2 = � � [0Mô�Y�:X , B(>.2
<û∈g

log [(Mô|O< , �<.ó

ôö�
 

= � � � [0Mô, Qô�Y�:X , B(>.2 log [(Mô|O< , �<.
<û∈g

ó

ôö�

X

4ûö�
 

= � � � [0RJ4û�<û
�:4ûj = ℓô�Y�:X , B(>.	2 log [(Mô|O< , �<.
<û∈g

ó

ôö�

X

4ûö�
 

		% � � � ~̅4(�, M. log [(M|O< , �<.�

<ö�

b

Tö�

X

4ö�
 (5.3.5) 

Note that in the last equality, the summation over the different layers is indexed by � 
instead of �, with � going up to V (not ü). There is a subtle difference between these two: 
We do not know the value of ü, which is the actual number of annual layers in the obser-
vation sequence (if we did, there was no need for the analysis in the first place!). But a 
maximum number of annual layers in the sequence, V, can be estimated. Fortunately, there 
is no problem in summing over all V possible layers.  

Finally, we are ready for the M-step of re-estimating the duration parameters (O< and �<) 
by optimizing the �-function with respect to these. As previously mentioned, �� is the 
only part of the �-function depending on these parameters. Their optimum values can 
therefore be found by differentiating equation (5.3.5) with respect to each of the two 
duration parameters, and setting the result equal to zero.  

The layer thickness parameter M is assumed to follow a (discretized) lognormal distribu-
tion described by the location parameters O< and scale parameter �<:  

[(M|O< , �<. ∝ 1
Mý2��<�

exp Ù−(log M − O<)�
2�<�

Ú 

And thus: 

log [(M|O< , �<. = −log ÙMý2��<�Ú − (log M − O<)�
2�<�

/ constant	
Differentiating the �-function (5.3.1) with respect to O< gives: 

��0B�B(>.2�O< % ���0O< , �<�B(>)2�O< 	
= � ~̅4(�, M) ��O< Ù−log ÙMý2��<�Ú − (log M − O<)�2�<� + constantÚ4,T,<  
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   = 1�<� � ~̅4(�, M.(log M ) O<.
4,T,<

 (5.3.6) 

By setting this expression equal to zero, the value of O< which maximizes the �-function 

(re-estimated parameter values will throughout the following be denoted with a ‘� ’) is 
found to be: 

(5.3.7) Ô< = ∑ ~̅4(�, M. log M4,T,<∑ ~̅4(�, M.4,T,<   

Differentiating � with respect to �< yields: 

��0B�B(>.2��< % ���0O< , �<�B(>.2��<  

% � ~̅4(�, M. ���< Ù)log ÙMý2��<�Ú ) (logM ) O<.�
2�<� +  r�iQZ�QÚ

4,T,<
 

% ) 1�< � ~̅4(�, M. Ù1 ) (logM ) O<.�
�<� Ú

4,T,<
 

We hence arrive at the following rule for how the value of �<� should be re-estimated: 

(5.3.8) ��<�  = ∑ ~̅4(�, M.(log M ) Ô<.�4,T,< ∑ ~̅4(�, M.4,T,<   

Here, Ô< is the new estimate (as given by (5.3.7)) of the location parameter governing the 
lognormal distribution of annual layer thicknesses. 

Regardless of the trouble we went through to derive these re-estimation equations, (5.3.7) 
and (5.3.8), for the two duration parameters, both of these have a rather straightforward 
interpretation. The best estimate of O< (mean of the distribution of log-transformed layer 
thicknesses) is simply a weighted sample average of the logarithm to the layer durations, 
with each segment being weighted according to the probability of it to form an annual 
layer. The uncertainties in individual layer boundary positions are reflected in the proba-
bilities ~̅4(�, M.. Likewise, the best estimate of the scale parameter of the distribution 
(variance of the distribution of log-transformed layer thicknesses) is just the weighted 
sample variance. As one might have guessed beforehand, these are the values of the 
duration parameters with the highest likelihood based on the current segmentation of the 
data series into annual layers.  

 Covariance of the random effects  5.3.2
In analogy to the way that �� was treated in the previous section, also the remaining parts 
of the �-function can be re-arranged by summing over all possible realizations of the 
hidden sequences, and subsequently marginalizing out as many hidden variables as possi-
ble. For the second part of the �-function, which deals with the covariance matrix of the 
random effect vector, we get:  
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��0Φ�B(>)2 = Ûnlog[(¼�:ó|Φ)	|	Y�:X , B(>)o
= � ÷ [0M�:ó, ¼�:ó|Y�:X, B(>)2	log[(¼�:ó|Φ) M¼�:ó¼e:ø∈ℛø<e:ø∈gø
= � ÷ [0M�:ó�Y�:X , B(>)2 ùõ[0¼��À�, B(>)2ó

�ö� ú	� log[(¼ô|Φ)ó
ôö� M¼�:ó¼e:ø∈ℛø<e:ø∈gø

= � [0M�:ó�Y�:X , B(>)2 � ù÷ õ [0¼��À� , B(>)2ó
�ö� 	 log[(¼ô|Φ) M¼�:ó¼e:ø∈ℛø úó

ôö�<e:ø∈gø
= � ÷ [0¼ô�Àô, B(>)2 log[(¼ô|Φ) M¼ô¼û∈ℛ

ó
ôö�

= � � � ÷ [0RJ4�<
�:4j = ℓô�Y�:X, B(>)2¼û∈ℛ [0¼ô�Àô, B(>)2 log[(¼ô|Φ)M¼ô
�

<ö�
ó

ôö�
X

4ö�
= �� � ÷ ~̅4(�, M)¼_∈ℛ [0¼T�ÀT, B(>)2 log[0¼T�Φ2	M¼T

�
<ö�

b
Tö�

X
4ö�  

In the above, ¼T is the random component corresponding to a proposed layer segment ÀT. 
It is a vector with Ã components, Ã being the number of base functions used for modeling 
the annual layer signal. The random components are assumed to be distributed according 
to a multivariate normal distribution with mean vector Å and Ã × Ã covariance matrix Φ, 
i.e. ¼T~¹×(Å,Φ). The corresponding probability density function is:  

[0¼T|Φ2 = (2�)�×� 	|Φ|��� exp ª− 12 ¼T⊺Φ��¼T«	 
Hence, the log-probability density corresponding to a given value of ¼T	is:  

log[0¼T|Φ2 = − Ã2 log 2� − 12 log|Φ| − 12 ¼T⊺Φ��¼T 

Inserting this expression into ��, and differentiating with respect to the matrix Φ, we get: 

��0B�B(>.2�Φ = ���0Φ�B(>.2�Φ  

= � ÷ ~̅4(�, M.	[0¼T�ÀT , B(>)2	¼_∈ℛ
��Φ ª− Ã2 log 2� − 12 log|Φ| − 12 ¼T⊺Φ��¼T«

4,T,<
M¼T 

= � ÷ ~̅4(�, M.¼_∈ℛ	 [0¼T�ÀT, B(>)2 Ù− 12� log|Φ|�Φ − 12
�(¼T⊺Φ��¼T.�Φ Ú

4,T,<
M¼T 

Knowing that the covariance matrix Φ (and consequently also its inverse) is symmetric, 
we have the following two identities [Petersen and Pedersen, 2008]: � log|Φ|�Φ = (Φ��)⊺ = Φ�� 
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�(¼T⊺Φ��¼T.�Φ % )(Φ��.⊺¼T¼T⊺(Φ��.⊺ % )Φ��¼T¼T⊺Φ�� 

The insertion of these two identities leads to the following expression for the derivative of 
the �-function with respect to the random effect covariance matrix Φ: 

��0B�B(>.2�Φ % � ÷ ~̅4(�, M.¼_∈Ö	 [0¼T�ÀT , B(>.2 ª) 12 Φ�� / 12 Φ��¼T¼T⊺Φ��«
4,T,<

M¼T 

% ) 12 � ~̅4(�, M. ù÷ [0¼T�ÀT , B(>.2¼_∈Ö 0I× ) Φ��¼T¼T⊺2M¼Tú
4,T,<

	Φ�� 

% ) 12 �� ~̅4(�, M.
4,T,<

) Φ�� � ~̅4(�, M. ÷ [0¼T�ÀT, B(>.2¼_∈Ö ¼T¼T⊺M¼T
4,T,<

� Φ�� 

% ) 12 �� ~̅4(�, M.
4,T,<

) Φ�� � ~̅4(�, M.	Ûn¼T¼T⊺�ÀT , B(>.o
4,T,<

� Φ�� 

Setting this result equal to zero (i.e. all entries in the resulting matrix must be zero), yields 
the following update equation for the random effect covariance matrix:  

� ~̅4(�, M.
4,T,<

) Φ��� � ~̅4(�, M.	Ûn¼T¼T⊺|ÀT, B(>.o
4,T,<

% 0	 ⇔ 

Φ� � ~̅4(�, M.
4,T,<

% � ~̅4(�, M.	Ûn¼T¼T⊺	|ÀT, B(>.o
4,T,<

	⇔ 

(5.3.9)	 Φ� % ∑ ~̅4(�, M.	Ûn¼T¼T⊺	|ÀT, B(>.o4,T,< ∑ ~̅4(�, M.4,T,<   

This is the covariance matrix with the maximum likelihood. Also this re-evaluated covari-
ance matrix of the random component has a nice interpretation, although perhaps slightly 
less intuitive as for the layer thickness distribution parameters. The most likely covariance 
matrix is the sample average of the expected value of ¼T¼T⊺ for each possible segment, 

weighted according to the probability of the segment to be an annual layer. For a normally 
distributed vector µ with mean º and covariance matrix Σ, the expectation value of µµ⊺ 
has the following interpretation: 

Û(µµ⊺. % ºº⊺ / Σ, 
Hence, as the vectors ¼T on average are assumed to have zero mean, what is calculated is 
the averaged predicted covariance matrix of the random component for the proposed layer 
sequence.  

 Mean trajectory parameter and white noise component 5.3.3
Finally, also the third and last part of the �-function can be maximized with respect to the 
two remaining variables: The mean trajectory parameter (Ô) and the variance of the white 
noise component (�Æ�). The basic idea behind uncovering their optimum values is similar 
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to the above, although the derivation itself is somewhat more involved. Once again, the 
part of the �-function which involves these parameter values must first be expressed in 
terms of ~̅4(�, M):  
��0Ô, �Æ��B(>)2 = Ûnlog[(À�:ó|M�:ó, ¼�:ó, Ô, �Æ�)	|	Y�:X , B(>)o
= � ÷ [0M�:ó, ¼�:ó|Y�:X , B(>)2 	log[(À�:ó|M�:ó, ¼�:ó, Ô, �Æ�) M¼�:ó¼e:ø∈ℛø<e:ø∈gø
= � ÷ [0M�:ó�Y�:X , B(>)2 õ [0¼��À�, B(>)2ó

�ö� � log[(Àô|M, ¼ô, Ô, �Æ�)ó
ôö� M¼�:ó¼e:ø∈ℛø<e:ø∈gø

= � ÷ 	[0¼ô�Àô, B(>)2 	log[(Àô|M, ¼ô, Ô, �Æ�) M¼ô¼û∈ℛ
ó

ôö�
= � � � ÷ [0RJ4�<
�:4j = ℓô�Y�:X , B(>)2¼û∈ℛ [0¼ô�Àô, B(>)2 log[(Àô|M, ¼ô, Ô, �Æ�)M¼ô

�
<ö�

ó
ôö�

X
4ö�  

	 = � � � ÷ ~̅4(�, M)¼_∈ℛ [0¼T�ÀT , B(>)2 log [0ÀT�M, ¼T, Ô, �Æ�2	M¼T
�

<ö�
b

Tö�
X

4ö�  (5.3.10.	
As described in section 4.2, each annual layer is parameterized as the noisy outcome of a 
generalized linear model with mean parameter Ô and random component ¼T: ÀT = X0Ô + ¼T2 + åT 

where ÀT is a vector containing all observations in the é data series which are part of 

layer ℓT, and the noise vector åT corresponds to this assembled observation vector. Both of 

these are vectors of length éM. The noise on the data series is assumed to be Gaussian 
white noise, but the individual data series may have different noise levels. Hence, the 
noise vector is distributed according to a multivariate normal distribution åT~¹�<(Å, Σ�) 
where Σ� is a éM × éM diagonal matrix with the structure: 

Σ� = �Æ�W			with 		W = diag	(æ< , u�æ< , u�æ<, … , u�æ<)	 
The matrix W is assumed known. In the above, the notation æ< has been used for an all-
ones vector of length M.  

If the random effect for a layer is given, the layer expression in the data series is only 
modified by the addition of white noise. In this case, the probability density corresponding 
to observing a segment of observations ÀT covering exactly one layer is given by: 

[0ÀT|Ô, ¼T , �Æ�, M2
= (2�)��<� 	|Σ�|��� 	exp Ù− 12 'ÀT − X0Ô + ¼T23⊺ Σ��� 'ÀT − X0Ô + ¼T23Ú 

In terms of the weight matrix W, the determinant and inverse of Σ� can be written as: 

|Σ�| = |�Æ�W| = �Æ��<|W| 
Σ��� = (�Æ�W.�� = �Æ��W�� 
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Inserting these expressions into the equation above and taking the log, the corresponding 
log-probability is found to be: 

log[0ÀT|Ô, ¼T, �Æ�, M2 = 

− éM
2 log 2� − éM log �Æ − 12 log|W| 	− 12�Æ� 'ÀT − X0Ô + ¼T23⊺ W�� 'ÀT − X0Ô + ¼T23 

Now, differentiating the �-function (5.3.1) with respect to Ô, we get: 

��0B�B(>.2�Ô = ���0Ô, �Æ��B(>.2�Ô  

= � ÷ ~̅4(�, M.	[0¼T�ÀT , B(>)2	 �∂Ô0log [0ÀT|Ô, ¼T, �Æ�, M22
¼_∈
4,T,< M¼T 

= − 12�Æ� � ÷ ~̅4(�, M.	[0¼T�ÀT, B(>)2¼_∈
4,T,<
∙ 	 �∂ÔÙ'ÀT − X0Ô + ¼T23⊺ W�� 'ÀT − X0Ô + ¼T23Ú M¼T 

By completing the square, and differentiating the individual terms separately, it can be 
seen that the following identity holds:  

	 �∂ÔÙ'ÀT − X0Ô + ¼T23⊺ W�� 'ÀT − X0Ô + ¼T23Ú = −2X⊺W��(ÀT − X(Ô + ¼T)) 

A formal derivation of this result is included in appendix A4.1. 

Inserting the above identity, it is seen that: 

��0B�B(>)2�Ô = 1�Æ� � ÷ ~̅4(�, M.		[0¼T�ÀT , B(>)2¼_
X⊺W�� 'ÀT − X0Ô + ¼T234,T,< M¼T 

= 1�Æ� � ~̅4(�, M.	X⊺W���ÀT − X ùÔ + ÷ [0¼T�ÀT , B(>)2¼_
¼TM¼Tú�4,T,<  

(5.3.11.	 = 1�Æ� � ~̅4(�, M.	X⊺W�� 'ÀT − X0Ô + Ûn¼T|ÀT, B(>)o23
4,T,<

  

The optimal re-estimated value for Ô, denoted Ô� , is now found by setting this expression 
equal to zero:  

� ~̅4(�, M)	X⊺W�� 'ÀT − X0Ô� + Ûn¼T|ÀT, B(>)o23
4,T,<

= Å	 ⟺ 

� ~̅4(�, M)X⊺W��XÔ�4,T,< = � ~̅4(�, M)	X⊺W��0ÀT − XÛn¼T|ÀT, B(>)o2
4,T,<

	⟺ 
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(5.3.12. Ô� = �� ~̅4(�, M.X⊺W��X
4,T,<

�
��

� ~̅4(�, M. X⊺W��0ÀT − XÛn¼T|ÀT, B(>)o2
4,T,<

  

Neglecting the added complexity caused by the summing up of matrices, and just consid-
ering the contribution from a single proposed layer, we get:  

XÔ� = X(X⊺W��X)��X⊺W��0ÀT − XÛn¼T|ÀT, B(>)o2 

= X(X⊺W��X)��X⊺W��XX⊺(XX⊺)��0ÀT − XÛn¼T|ÀT, B(>)o2 

= ÀT − XÛn¼T|ÀT, B(>)o 
By comparison to the parameterization of an annual layer, it is seen that this is precisely 
the most likely value of the mean trajectory parameter Ô for this proposed segment: 

XÔ� = ÀT − XÛn¼T|ÀT, B(>)o     ⇔   ÀT = X0Ô� + Ûn¼T|ÀT, B(>)o2 

Hence, also this update equation can be interpreted in a sensible way as the overall most 
likely value of the parameter vector Ô, when weighted with the annual layer boundary 
probabilities provided by the Forward-Backward algorithm.  

A similar exercise can be done to retrieve the best estimate for the observed value of the 
white noise variance, �Æ�, based on the current segmentation of the data series. The deriva-
tive of the �-function with respect to �Æ is given by: 

��0B�B(>)2��Æ = ���0Ô, �Æ��B(>)2��Æ  

= � ÷ ~̅4(�, M) [0¼T�ÀT, B(>)2 �∂�Æ¼_∈ℛ4,T,< 0log[0ÀT|Ô, ¼T , �Æ�, M22M¼T 

= � ÷ ~̅4(�, M) [0¼T�ÀT , B(>)2 ∙
¼_∈ℛ4,T,<

�∂�Æ ù−éM2 log 2� − éM log�Æ − 12 log|W| 

− 12�Æ� 'ÀT − X0Ô + ¼T23⊺ W�� 'ÀT − X0Ô + ¼T23ú M¼T 

= 1�Æ � ~̅4(�, M. ⋅
4,T,<

 

ù–éM + 1�Æ� ÷  [0¼T�ÀT, B(>.2¼_∈ℛ 'ÀT − X0Ô + ¼T23⊺  W�� 'ÀT − X0Ô + ¼T23 M¼Tú 

Using åT =  ÀT − X0Ô + ¼T2, the above can be rewritten in a much more compact way, 
namely: 

��0B�B(>.2��Æ = 1�Æ � ~̅4(�, M. Ù–éM + 1�Æ� ÛnåT⊺W��åT|ÀT, B(>)oÚ
4,T,<

 

Finding the optimal value of �Æ� by setting this derivative of the �-function equal to zero, 
leads to the following expression: 
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� ~̅4(�, M.éM
4,T,<

% 1��Æ� � ~̅4(�, M.ÛnåT⊺W��åT|ÀT, B(>.o
4,T,<

	⟺	 
(5.3.13)	 ��Æ� = ∑ ~̅4(�, M)ÛnåT⊺W��åT|ÀT, B(>)o4,T,<

∑ ~̅4(�, M)éM4,T,<
  

Again, this update equation can be interpreted in a reasonable way, as the variable åT is a 
vector describing the estimated residuals from the parameterized layer trajectory. In case 
of just a single data series, i.e. é % 1, the matrix W (and hence also W��)	is the identity 
matrix. Consider a single proposed layer. With all residuals described by the same zero-
mean normal distribution, the best estimate of their variance can be calculated as the mean 
of squared residuals, i.e.:  

1
M � åT( )�<

�ö� = 1M åT⊺åT	 
where M is the layer duration, and åT( ) is the  ’te component of the vector åT. Based on 
the corresponding segmentation probabilities derived from the Forward-Backward algo-
rithm, the above equation (5.3.13) then calculates a weighted average of these.   

If using é data series which do not share the same white noise variance, their correspond-
ing residuals must be evaluated according to their relative noise levels, as they are given in 
the W-matrix. As W is diagonal, the term åT⊺W��åT can be calculated by: 

åT⊺W��åT 	% � åT( )�/u( )�<
�ö�  

with u( ) being the  ’te entry on the diagonal of W. The average of the weighted squared 
residuals are then found by dividing with éM, which is the total number of observations in 
the assembled observation vector ÀT. In this way, the W-matrix normalizes the residuals 
of the individual data series to the noise level of data series number one, and the overall 
best estimate for �Æ� can be found. Also in this case, the weighted average calculated by 
(5.3.13) gives the maximum likelihood estimate of the white noise variance on the data 
series.  

 Conditional expectation value and covariance of ¼� 5.3.4

In the previous sections, the Maximum Likelihood re-estimation equations for each of the 
parameters B % �O< , �< , Φ, Ô, �Æ�� were derived. However, to employ the re-estimation 
equations for Φ and Ô, we need to be able to evaluate the expectation value and covari-
ance of ¼T when conditioned on an observation segment ÀT, which is postulated to form an 
annual layer.   

A simple way to derive these expectation values is to first consider the joint distribution of ÀT and ¼T. As both ÀT and ¼T are Gaussian distributed with ÀT	~	¹�<(XÔ, XΦX⊺ / �Æ�W) 
and ¼T 	~	¹×(Å,Φ) (see section 4.2.3) also their joint distribution will be Gaussian. Most 

parameters of the joint distribution are directly given from the distributions of ÀT and ¼T: 
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ÝÀT¼T Þ ~¹×�< ªßXÔÅ à , ÝXΦX⊺ + �Æ�W ?? ΦÞ« 

The two yet unknown quantities in the joint covariance matrix can be calculated by: 

covnÀT, ¼To = Û ß0ÀT − ÛnÀTo20¼T − Ûn¼To2⊺à = Ûn0X¼T + åT2¼T⊺o = XÛJ¼T¼T⊺j = XΦ 

In the above, it was utilized that ÀT is parameterized as ÀT = X0Ô + ¼T2 + åT, implying 

that ÀT − ÛnÀTo = X¼T + åT , where  ÛnåTo = 0. Also, it was used that:  

Ûn¼T¼T⊺o = 	Ûn¼ToÛn¼To⊺ + covn¼To = covn¼To = Φ 

Correspondingly (using that Φ is symmetric): 

covn¼T, ÀTo = covnÀT, ¼To⊺ = (XΦ)⊺ = Φ⊺X⊺ = ΦX⊺ 
The joint distribution is therefore given as: 

(5.3.14.	 ÝÀT¼T Þ ~¹×�< ªßXÔÅ à , ÝXΦX⊺ + �Æ�W XΦΦX⊺ Φ Þ«  

From the joint probability distribution, the conditional expectation value and covariance of ¼T can be calculated as (a derivation is included in box 3): 

Ûn¼T|ÀT, B(>)o = (�Æ�Φ�� / X⊺W��X)��X⊺W��0ÀT − XÔ2	covn¼T�ÀT, B(>)o = �Æ�(�Æ�Φ�� + 	X⊺W��X)�� 

The conditional expectation value of ¼T, Ûn¼T|ÀT, B(>)o, is used for re-estimating Ô. The 

expectation value Ûn¼T¼T⊺|	ÀT, B(>)o employed in the update equation for Φ, can be calcu-

lated from the above as: 

Ûn¼T¼T⊺|	ÀT, B(>)o = 	Ûn¼T|ÀT, B(>)o	Ûn¼T|ÀT, B(>)o⊺ + covn¼T|ÀT, B(>)o 
The conditioning on B(>) is included to clarify that the involved parameter values are to be 
taken from the current set of parameters.  

Observe the difference between the conditioned and not-conditioned expectation values: 
The mean value of ¼T, Ûn¼To, is zero, whereas the conditioned mean value, Ûn¼T|ÀT, B(>)o, 
generally is not. When conditioning on an observation segment, the expectation value is 
influenced by the observations and one obtains the value of the most likely random effect 
vector ¼T for the layer in consideration.  
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 Conditional expectation value of weighted residuals 5.3.5

The expectation values Ûn¼T|ÀT, B(>)o and 	Ûn¼T¼T⊺|	ÀT, B(>)o used for the re-estimation of Φ and Ô can be evaluated directly from a possible annual layer segment in the data series. 
This is not the case for the weighted squared residuals, whose expectation value is used in 
the update equation for �Æ�. With the residual vector given as åT % ÀT ) X(Ô / ¼T), the 

magnitude of its components depends on the random effect of the specific layer (¼T) as 

well as the mean layer trajectory parameter (Ô). Due to the dependency on the mean layer 
trajectory, the expectation value of squared residuals	can only be calculated after the 
computation of an improved estimate of Ô.  

The expectation value of the weighted sum of squared residuals, ÛnåT⊺W��åT|ÀT, B(>)o, 
can be evaluated in terms of Ûn¼T|ÀT, B(>)o and covn¼T�ÀT , B(>)o as follows: 	

ßµáà ~¹ ªßº�º�à , ÝΣ�� Σ��Σ�� Σ��
Þ« 

ÛJá|µj % º� / Σ��Σ����(µ − º�) covJá|µj % Σ�� ) Σ��Σ����Σ�� 

Ûn¼T|ÀT , B(>)o % Å / ΦX⊺(XΦX⊺ / �Æ�W)��0ÀT − XÔ2 

= (Φ�� + X⊺�Æ��W��X)��X⊺�Æ��W��0ÀT − XÔ2	= (�Æ�Φ�� + X⊺W��X)��X⊺W��0ÀT − XÔ2	
(A + BCD.�� = A�� − A��B(DA��B + C��.��DA�� 

(A + BCD.��BC = A��B(DA��B + C��.�� 

covn¼T|ÀT , B(>)o % Φ ) ΦX⊺(XΦX⊺ / �Æ�W)��XΦ % (Φ�� + X⊺�Æ��W��X)�� 
= �Æ�(�Æ�Φ�� + 	X⊺W��X)��	

Box 3: Conditional expectation and covariance of ¼�  
Consider the general case of a joint probability distribution given as: 

The mean and covariance of the conditional distribution D(á|µ) can then be calculated by [Bishop, 2006]: 

Inserting the expressions for the mean and covariance of the joint distribution of ÀT and	¼T (5.3.14), we 

find for the conditional expectation value of ¼T: 

In the above, the Woodbury matrix identity has been used. For two positive definite matrices A and C, the 
general form of this matrix identity is: 

Which can be re-arranged to [Petersen and Pedersen, 2008]: 

The latter version of the Woodbury identity was used in the above. The former version can be used for 
calculating the conditional covariance matrix: 
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ÛnåT⊺W��åT|ÀT, B(>)o
≡ ÷ 	[0¼T�ÀT, B(>)2¼_∈Ö 'ÀT ) X0Ô / ¼T23⊺ 	W�� 'ÀT − X0Ô / ¼T23 M¼T

= 'ÀT − X0Ô / Ûn¼T|ÀT, B(>)o23⊺ W�� 'ÀT − X0Ô / Ûn¼T|ÀT, B(>)o23
/ tr0X⊺W��X	covn¼T�ÀT, B(>)o2 

where tr(∙) signifies the trace. A derivation of this equality is found in appendix A4.2. 
Using the expectation value of ¼T	for the proposed layer to estimate its trajectory, the term 

ÀT ) X0Ô / Ûn¼T|ÀT, B(>)o2	provides the resulting residuals. The first term in the equation 
above computes the weighted sum of the square of these. However, the uncertainties 
associated with estimating the appropriate random effect vector introduce uncertainties in 
the residuals hereby found. By adding the last term, these uncertainties are taken into 
account.  

 Finding the most likely annual layer parameters 5.3.6
Based on a single iteration of the Forward-Backward algorithm, a new and improved set 
of parameter values can be found from the equations (5.3.7), (5.3.8), (5.3.9), (5.3.12) and 
(5.3.13). The theory behind the EM-algorithm ensures these new parameter values to have 
a higher (or, at least, not a lower) likelihood than the original ones, and therefore to better 
describe the annual layers observed in the data series. By iteratively computing the layer 
segmentation probabilities with the Forward-Backward algorithm and updating the annual 
layer parameters, the algorithm is able to learn the appropriate parameter values, and it 
will converge towards a (local) maximum likelihood of these. The convergence criterion 
employed here will be defined as:  

�log F0B(>
�)�Y�:X2 ) log F0B(>)�Y�:X2� � �, 
with an appropriate choice of � � 0. 

The derived equations for re-estimating the different parameters used in the HMM layer 
detection model constitute a modified version of the set of equations used for waveform 
modeling by Kim et al. [2004] and Kim and Smyth [2006]. The re-estimation equations 
take into account both the uncertainty in layer positions as well as the uncertainty in 
parameter estimates based on the proposed segmentation of the data series into annual 
layers. The update equations can be interpreted in a sensible way, and one might have 
been able to guess some of them without turning to the math behind. Nevertheless, details 
in the resulting equations reveal the necessity of going through all these mathematical 
derivations in order to ensure their correctness. As an example, care must be taken to 
ensure that the right set of parameters (B(>) or the updated ones, B(>
�)) are used in the 
calculations. 

5.4 Maximum a Posteriori layer parameters 

By means of the Forward-Backward algorithm, the most likely layering of the observation 
sequence can be found, and the algorithm may be trained by successive updates of the 
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model parameters used in the characterization of an annual layer. In this section, it will be 
described how such updates can be made to also take prior information into account.  

The update equations derived in the previous section provide a Maximum Likelihood 
estimate of the model parameters. However, such estimates are only justified if the data 
series, on which the algorithm is trained, is sufficiently long to contain robust statistics on 
the parameter values. If limited to a relatively short observation sequence containing e.g. 
30 years, the resulting parameter estimates are based on only 30 inferred annual layers. 
When using a relatively complex annual layer model, this is on the limit of providing 
accurate statistics for the model parameters, in particular for estimates of layer variance. 
This is most notably the case when considering data series with a high noise level, which 
generally require a larger body of data for correct assessment of the involved parameters. 
In such cases, the layering in the data itself may simply not be enough to constrain the 
model sufficiently for reliable Maximum Likelihood estimates to be made. 

To stabilize the performance, the iterative improvement of model parameters employed in 
the Forward-Backward algorithm can be conducted in a Maximum a Posteriori (MAP) 
mode [Gauvain and Lee, 1994], which is less demanding on data quality and volume. In 
this case, prior knowledge on the individual parameter values is taken into account during 
their re-estimation. For annual layer detection in ice cores, such prior information may 
consist of knowledge derived from previous data on how the annual layers generally 
appear in the observation sequence, as well as an estimate of the annual layer thickness 
distribution in the preceding depth interval. Incorporating such information in the training 
process increases the stability of the algorithm, and estimations should be more robust for 
short observations sequences.  

Prior knowledge on parameters is incorporated into the layer detection algorithm in form 
of prior probability distributions for the individual parameter values. These prior probabil-
ity distributions are described by hyper-parameters (which are not to be confused with the 
model parameters themselves). Such prior information going into the model may be as 
complex as desired, and entirely depends on the relevant assumptions for the problem at 
hand. Here, we have focused on the simplest one. To facilitate the ensuing analysis, the 
prior for the duration parameter O< is chosen as a normal distribution described by the two 
hyper-parameters �� and H�, i.e. O< 	~¹(�� , H�). Similarly, the prior for the parameter 
describing the mean annual layer shape, Ô, is taken as a multivariate normal distribution 
with mean �� and covariance matrix U�, i.e. Ô	~	¹×(��,U�). In order not to increase 
the complexity further, the remaining parameters are considered fixed and known. The 
reasoning behind this choice of fixed versus adaptable parameters will be discussed in 
section 6.2.1.  

The collection of hyper-parameters will be denoted by Θ, and comprises the following: Θ = {�� , H� , �<(P),��,U�, Φ(P), �Æ(P)}. Parameters, which are assumed known, can be 
regarded as having deterministic priors, and the parameter and hyper-parameter is equiva-

lent: �< = �<(P), Φ = Φ(P), and �Æ = �Æ(P). The set of hyper-parameters contains all prior 
information on model parameters employed in the Forward-Backward algorithm for 
annual layer detection. Accordingly, it includes all information required for iterative 
MAP-updates of these parameters.  
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Given the assumption of known model parameters	�< , Φ, and �Æ, the resulting update 
equations will not represent a full generalization to the case of Maximum a Posteriori 
parameter re-estimates. Keeping the above parameters fixed, they do not need to be re-
estimated, hence necessitating the use of fewer update equations than derived for the 
Maximum Likelihood in the previous section. In other respects, however, the Maximum a 
Posteriori methodology does represent a more complex approach: A single adaptable 
parameter in the Maximum Likelihood update equations is now being described by two 
new hyper-parameters. Furthermore, these hyper-parameters must be adjusted prior to the 
layer detection procedure being carried out. Fortunately, they can usually be estimated 
based on previously processed data, hence limiting the number of subjective tuning pa-
rameters.  

 Layer thickness parameters 5.4.1
The annual layer thicknesses are taken to be distributed according to a lognormal distribu-
tion with location parameter O< and scale parameter �<. As mentioned above, the scale 
parameter of the distribution will in the following be assumed known. The prior for the 
location parameter is chosen as a normal distribution:  

O< 	~¹0�� , H�2,			�< 	% �<(P) 
That is: 

[(O<) % 1
�2�H�

exp ù)0O< ) ��2�
2H�

ú 

To obtain a Maximum a Posteriori estimate of O<, this prior must be used in the M-step of 
the EM-algorithm, which is now a maximization of the auxiliary function ò0B�B(>)2 
(5.2.2). The maximization of this function is done by differentiating with respect to the 
parameter O<, and setting the derivative equal to zero. 

The derivative of the function ò0B�B(>)2 % �0B�B(>)2 / log[(B) can be rewritten in 
terms of the derivative of the �-function:  

�ò(B|B(>))
�O< % ��0B�B(>)2

�O< / � log[(B)
�O<  

It was previously shown that (5.3.6):  

��0B�B(>)2
�O< % 1�<� � ~̅4(�, M)(log M ) O<)

4,T,<
 

Inserting this, along with the derivative of the assumed prior for O<, into the expression 
for the derivative of the ò-function, yields: 

� log[(B)
�O< % � log[(O<)

�O< % �
�O< ù) 12 log 2�H� ) 0O< ) ��2�

2H�	 ú % ) O< ) ��H�
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�ò(B|B(>))�O< = 1�<� � ~̅4(�, M)(log M ) O<)
4,T,<

) O< ) ��H�
 

Equating this expression with zero, leads to the following Maximum a Posteriori update 
equation for the parameter O<: 

1�<� � ~̅4(�, M)(log M ) O<)
4,T,<

) Ô< ) ��H�
% 0	 ⟺ 

(5.4.1)	 Ô< % H� ∑ ~̅4(�, M) log M4,T,< / �<���H� ∑ ~̅4(�, M)4,T,< / �<�   

Note that this re-evaluation of O< not only depends on the hyper-parameters �� and H� 
describing the prior distribution of O<. It is also influenced by the scale parameter of the 
layer thickness distribution (�<), which here has been assumed known. Consider the case 
where the value of �< is known to be very large (e.g. �< → 	∞). In this situation, we 
cannot have much faith in the estimate of O< derived from a weighted sample average of 
the data. As a consequence, the a posteriori most probable value of O< is almost complete-
ly determined by the prior, and Ô< ! ��.  

The case of no prior knowledge (equivalent to the maximum likelihood case) can be 
obtained as a special case of the above. A non-informative prior corresponds to letting the 
variance of the prior probability distribution for O< approach infinity: H� → ∞ (and hence �<�/H� → 0). In this case, the update equation for O< becomes similar to the one derived in 
section 5.3.1 for the maximum likelihood case. Conversely, in case of a very constraining 
prior (H� → 0), the weighted sample average obtained from data has almost no influence, 

and Ô< ! ��. 

In this way, (5.4.1) works by balancing the two terms: The weighted sample average of 
the location parameter of the layer thickness distribution as found from data, and the prior 
probability distribution for O<. The resulting value of O< depends on the constraints im-
posed by our prior knowledge, and the degree to which data is believed to contain 
information on the layer thickness distribution.  

 Annual layer signal parameters 5.4.2
For the Maximum a Posteriori update equations developed here, most of the layer trajecto-
ry parameters are assumed to be known beforehand. Only the mean layer signal 
parameter, Ô, will be re-estimated based on data, whereas both Φ and �Æ are considered 
fixed. A further discussion on this matter can be found in section 6.2.1.  

The mean layer trajectory vector, Ô, generally contains more than just a single value. To 
avoid excessive complexity, the prior distribution for this trajectory parameter is here 
taken to be a multivariate normal distribution with mean vector �� and covariance matrix U�. Hence, the complete prior for the annual layer signal parameters is as follows: 

Ô	~	¹×0��,U�2,						Φ % Φ(P), 			�Æ % �Æ(P) 
Ã is the number of parameters used for modeling an annual layer signal.  
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The difference between the two covariance matrices U� and Φ deserves a short comment. 
Both matrices describe how the layer signal is allowed to change. However, the fixed 
covariance matrix Φ states the allowed variability of annual layers around their mean 
trajectory, whereas the covariance matrix U� describes the uncertainty on this mean 
signal.  Thus, the information they contain is not redundant.  

As before, the update equations for Ô is found by maximizing the ò-function (5.2.2) with 
respect to Ô. This task can be divided up into finding the derivative of the �-function and 
of the prior log-probabilities. The derivative of the �-function was derived in (5.3.11): 

 ��0B�B(>.2�Ô = 1�Æ� � ~̅4(�, M. X⊺W�� 'ÀT − X0Ô + Ûn¼T|ÀT, B(>)o23
4,T,<

 

The prior probability of a given value of Ô can be written as: 

[(Ô) = (2�)�×/��U����/� exp Ù− 12 0Ô − ��2⊺U���0Ô − ��2Ú 

And accordingly, the derivative of the prior log-probabilities is given by:  � log[(Ô)�Ô = ��Ô Ù−Ã2 log 2� − 12 log�U�� − 12 0Ô − ��2⊺U���0Ô − ��2Ú 

= ��Ô Ù− 12 0Ô − ��2⊺U���0Ô − ��2Ú 

= −U���(Ô − ��. 

The last equality can be derived by completing the squares, and differentiating each term 
separately, while using that the covariance matrix U� is symmetric. The derivation is 
almost analogous to the one included in appendix A4.1. 

Inserting these two into the expression for the derivative of the ò-function, we arrive at 
the following: 

�ò(B|B(>))�Ô = ��0B�B(>)2�Ô / � log [(B)�Ô  

= 1�Æ� � ~̅4(�, M. X⊺W�� 'ÀT − X0Ô + Ûn¼T|ÀT, B(>)o23
4,T,<

− U���(Ô − ��) 

Equating this with zero, the following MAP-update equation for the mean layer signal 
parameter vector is obtained: 

Ô� = "� ~̅4(�, M) X⊺W��X + �Æ�#���
4,T,< $

��
�� ~̅4(�, M) X⊺W��0ÀT − XÛn¼T|ÀT, B(>)o2

4,T,<
/ �Æ�#������  

(5.4.2) 
As was the case for the re-estimated value of O<  (5.4.1., also this Maximum a Posteriori 
re-evaluation of the mean layer signal parameter represents a weighting between its sam-
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ple average and its prior distribution. The weighting depends on the relative amount of 
information contained in the two. As the remaining parameters in our case are kept fixed, 
only these two update equations are required. 

By utilizing the derived MAP update equations for O< and Ô, while keeping fixed all 
remaining parameters used in the Forward-Backward algorithm, an improved assessment 
of the value of these two parameters can be made. The re-evaluation takes into account 
our prior knowledge on the value of these variables. By iteratively estimating a new and 
better set of model parameters, and subsequently running the Forward-Backward algo-
rithm based on these, a joint set of parameters with maximal posterior probability will 
eventually be found. However, the resulting Maximum a Posteriori parameter estimates 
are of course dependent on the postulated fixed values of �< , Φ, and �Æ , as well as on the 
assumed prior for the adjustable model parameters O< and Ô. And, as it is always the case 
with results based on the EM-algorithm, the located maximum may just be a local maxi-
mum.  

 Posterior probability of the joint set of parameters 5.4.3
The successive iterations of the EM-algorithm are terminated when the algorithm has 
managed to converge to a local maximum of the posterior probability function for the joint 
set of model parameters B. When running the EM-algorithm in Maximum a Posteriori 
mode, the convergence criterion may be defined as:  

�log[0B(>
�)�Y�:X2 ) log[0B(>)�Y�:X2� � � 

for an appropriate choice of �� 0. 

To determine whether or not this convergence criterion has been reached, the posterior 
probability of the model parameters must be assessed. This probability can be evaluated 
based on the obtained likelihood of the model parameters and their prior distributions. The 
likelihood of the model parameters, F0B(>)�Y�:X2 % [(Y�:X|B(>)), is derived directly 
during the computations of the Forward-Backward algorithm. The prior probabilities of 
the individual model parameters are known beforehand. The posterior log-probabilities of 
the current set of model parameters can then be calculated as follows: 

log[0B(>)�Y�:X2 ∝ log[0Y�:X�B(>)2[0B(>)2 % log[0Y�:X�B(>)2 / log[0B(>)2 

% log[0Y�:X�B(>)2 / log[ 'O<(>)3 / log[0Ô(>)2 

The proportionality constant, [(Y�:X), remains the same for all iterations, and can there-

fore be ignored. The values of log[ 'O<(>)3 and log[0Ô(>)2 are assessed based on their 

prior probability distributions.  

5.5 Improvement of parameters  

The most likely annual layering in an observation sequence as determined by the Forward-
Backward algorithm (or the Viterbi algorithm) depends on the annual layer model and 
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model parameters used as input to the algorithm. However, the dependency of the result 
on the employed model parameters can be either partly or completely alleviated. This is 
done by training the algorithm on the observed data, thereby allowing it to use the joint set 
of layer model parameters which fit the observations ‘best’. Such training of the algorithm 
can be achieved as the likelihood of the employed layer model parameters based on the 
data is calculated directly during the Forward-Backward algorithm procedure.  

The EM-algorithm presents a relatively simple and fast way of obtaining ‘best’ estimates 
of the model parameters used for describing an annual layer in the observation sequence. 
In addition, the algorithm can be adapted to allow such estimates to take into account prior 
information on the layer model parameters, as it can be run in both a Maximum Likeli-
hood (without prior) and a Maximum a Posteriori (with prior) mode.  

If running the EM-algorithm in Maximum Likelihood mode, the resulting most likely 
annual layering of the observation sequence is (almost) completely independent on the 
input parameters used. The slight dependency which remains is due to the deterministic 
behavior of the EM-algorithm which may cause it to get caught up in a local maximum. 
To avoid this, the algorithm may be run multiple times with different starting points, 
hereby increasing the chances of finding the set of layer model parameters having globally 
maximum likelihood.  

However, for annual layer detection in ice core data, a more constrained version of the 
EM-algorithm may be required. We have no perfect model for the expression of an annual 
layer in the data, and this may cause an unconstrained version of the EM-algorithm to go 
completely astray. Furthermore, even with a perfect annual layer model, the use of rela-
tively short data sequences containing perhaps only 30 years may not be sufficient to 
produce reliable Maximum Likelihood layer parameter estimates. In this case, prior in-
formation on the layer model parameters may be taken into account, and stabilize the 
methodology. In many ways, the Maximum a Posteriori approach is very beneficial. Yet, 
Maximum a Posteriori estimates do per definition depend on the employed prior. In prac-
tice, however, a reasonable estimate for such priors can often be made in an objective way 
based on inferred or observed layering in previous data intervals.  
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 6. Layer	detection	in	sequential	

batches	of	data	

It is not feasible, nor desirable, to run the Forward-Backward algorithm and/or the Viterbi 
algorithm on perhaps several hundred meters of ice core data at once. While also increas-
ing the computational complexity drastically, doing so would require a homogeneous data 
series, in which the annual layer thickness distribution as well as the layer signal is more 
or less constant. Neither of these conditions are satisfied: Annual layer thicknesses are 
changing down the ice core as the combined result of climate-induced variations in past 
accumulation rates and a general thinning of layers with depth due to ice flow. In different 
climate regimes, also the influx of impurities to the inner part of the ice sheet may differ – 
in quantity as well as seasonality – hereby altering the general annual layer signal in the 
ice core data.  

A much better strategy is to divide the total data series into smaller batches, apply the 
layer detection algorithm to one of these at a time, and subsequently stitch them together. 
To retrieve the annual layering down the ice core in the best possible way, one must 
choose an appropriate length of such data batches. This length must be chosen such as to 
balance between the need of the observation sequences to be sufficiently long to fully 
exploit the HMM’s optimal estimation of layer boundaries, while being short enough that 
the assumption of a fixed layer thickness distribution and layer signal is reasonable. Also, 
the shorter the length of these batches, the more efficiently does the algorithm run: The 
layer detection algorithm is linear (as opposed to exponential) in d and V (see section 3.4). 
However, increasing the length of an observation sequence (d), also requires an augment-
ed maximum number of allowed annual layers in the sequence (V). The combined effect is 
a significant increase in computational burden.  

Here, the algorithm has been chosen to run on batches of data covering approximately 30-
50 years each, with the length of each batch being individually determined based on a first 
guess of the mean annual layer thickness. For the visual stratigraphy data within the 
selected depth interval, this amounts to 350-700 observations per batch. The choice of an 
approximately fixed number of annual layers within each batch, instead of e.g. a fixed 
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batch length, was made to ensure the control over the number of layers on which the re-
estimated parameter values are based.  

During fast climatic shifts, however, the mean annual layer thickness may change within a 
very short time period indeed. At the onset of the Holocene, two abrupt warming events 
occurred, interrupted by the Younger Dryas cold period. During the warming events, the 
annual layer thicknesses increased by 40% over respectively 3 and 40 years. The change 
in layer thicknesses happened slightly slower during the intermediate cooling event (i.e. 
the onset of Younger Dryas), during which the mean annual layer thickness decreased 
with 33% over 152 years [Steffensen et al., 2008].  

Nevertheless, the length of the data series cannot be much further reduced, and for most 
time periods, it is a reasonable assumption that the accumulation rates will not change 
significantly during a 30-50 year epoch. Meanwhile, even if 30-50 layers may be too few 
to provide viable Maximum Likelihood estimates of the annual layer parameters, it should 
still be possible to obtain robust parameter estimates if prior information on the parameter 
values is included.  

6.1 Combining successive data batches 

By dividing the data series into batches, and running the layer detection algorithm on each 
of these individually, some of the information contained in the full data series is lost. 
Close to both edges of each batch, the lacking knowledge on the surrounding data outside 
the batch will in general cause the annual layer boundaries here to be placed less accurate-
ly. To some extent, however, such knowledge can be recovered by choosing data batches 
in consecutive order, and incorporating some of the information inferred from one batch 
of data into the next. 

To initialize the Forward-Backward/Viterbi algorithm, information on starting position of 
the first layer in the current batch is utilized. Such information may just be the common-
sense logic that the very first layer started somewhere before the first observation in the 
data batch. In that case, the general initialization condition (3.4.6) can be applied. Yet, the 
performance of the layer detection algorithm will of course improve when adding more 
detailed information on the probability distribution corresponding to the position of the 
preceding layer boundary (3.4.7). Such knowledge can be obtained based on the most 
likely annual layering, as inferred by the Forward-Backward algorithm, in the last part of 
the previous batch of data. 

However, the layering in the very last part of each batch of data is generally less accurate-
ly determined than the rest. An additional initialization condition for the layer detection 
algorithm is the information on ending position of the very last layer in the observation 
sequence. With no such information available, the general condition of the last layer 
ending somewhere after the last observation in the sequence, is applied (3.4.9). As a 
consequence of this unconstrained initialization condition, the quality of the inferred 
layering generally degrades towards the end of each observation sequence. To lessen the 
importance of this issue, the last part of each batch is discarded after having been used for 
inferring a best estimate of the annual layering in the complete batch.  
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In this way, the layer detection algorithm can be run on successive, slightly overlapping 
batches of data. Only the first part of the inferred layering of each batch is accepted. The 
final part is rejected. The annual layering here can be better determined when also includ-
ing the information contained within subsequent data. The initial condition for the next 
batch is then determined based on the deduced most likely layering in the last portion of 
the accepted part of the observation sequence. In this manner, knowledge based on previ-
ous data is continually being incorporated into the analysis of the following data batch, 
thereby minimizing the deterioration in quality of the reconstructed layering caused by 
batch edges. 

 Shortening the observation sequence 6.1.1
Wishing to run the annual layer detection algorithm in the overlapping fashion described 
above, it must, after the analysis of each batch of data, be decided how much of the obser-
vation sequence should be discarded. This should be done for that part of the observation 
sequence for which a much better estimate of the annual layering would be made if also 
taking data subsequent to the present batch into consideration. 

The required length of the overlapping section depends on the data in question. Without 
the surrounding data, the annual layer boundaries in the last part of the batch are generally 
determined with less certainty. If, in spite of this, one of the last layer boundaries in the 
observation sequence is very well-defined, it is sufficient to discard only the very last part 
of the batch. Conversely, if the layering in the last part of the observation sequence is 
ambiguous, it may be necessary to discard a relatively large fraction of the current batch 
of data.  

The Forward-Backward algorithm provides an estimate of the certainty with which the 
individual layer boundaries have been determined, both in terms of their positional accu-
racy as well as their associated certainty of being a layer boundary. We wish to make use 
of this knowledge to find a very well-defined layer boundary in the last part of the obser-
vation sequence. As such, it does not bear much importance whether or not the layer 
boundary is accurately positioned or not. What matters is that it is very certain to be a 
layer boundary. However, the two are not unrelated: At a location where the probability of 
having a layer boundary is high, this is most likely a very certain layer boundary. 

Hence, an indication of a certain layer boundary is a high probability of ending any layer ℓT at a given Q. To obtain the value of Q with the highest such probability, the following 
quantity is maximized (figure 6.1.1): 

Q# % argmax4∈%&	 � [0R4j % ℓT, Y�:X2 % argmax4∈%&	 � � ~4(�, M)�

<ö�

b

Tö�ℓ_∈`
 

%# is an appropriate interval within the last part of the data sequence. This interval should 
be large enough to contain at least one well-defined layer boundary. On the other hand, in 
order to make sure that the layer, whose boundary we are considering, has ended before 
the start of the next batch of data, it should not contain the very last part of the observation 
sequence either. Here, %# has been chosen as the interval between approximately 1-5 
annual layer thicknesses before the end of the observation sequence.   
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Figure 6.1.1: Combining consecutive batches. Example from a depth of 2233 m. The shaded area 
represents the interval %#, within which the best cut-off location (') must be selected. It is chosen 
just after the spot with the highest probability of containing a layer boundary. The resulting proba-
bility distribution, which is to be used as initial condition for the subsequent batch, is shown in red. 

Above, the most likely position of a very certain layer boundary contained within %# was 
computed. The cut-off point of the current data batch, ', is then chosen as the Q encoun-
tered hereafter with the least (and expected: zero) probability of containing an annual 
layer boundary: 

' % argmin4&(4�4&
�	 � � ~4(�, M)�

<ö�

b

Tö�
 

In case of several occurrences of the minimum value, the first of these is chosen. At this 
value of Q, we can be very confident that a new layer has just started, and that this new 
layer had a well-defined first layer boundary. Hence, an accurate initial condition for the 
next batch can be provided.  

 Initial condition for next batch 6.1.2
Having established ' to be a good choice for the cut-off position of the current batch of 
data, the initial conditions for a subsequent batch having this starting point must be deter-
mined. For initializing the forward pass (see (3.4.6)), the probabilities corresponding to 
the termination of the layer prior to the one in ' must be evaluated. Such probabilities can 
be computed as: 

�4l(0) % � [0RJ4
�:� % ℓT2ℓ_∈`
% � � [0RJ4
�:4
<j % ℓT2<���4<∈gℓ_∈`

 

Disregarding the conditioning on observations contained in the probability measure ~̅4(�, M), this can be approximated by: 

�4l(0) ! � � ~̅4
<(�, M)�

<ö��4
b

Tö� 	 
The above initial condition, which describe the probabilities of the starting position of 
what is to become the new layer ℓP of the subsequent batch, has here been indexed with Q� 
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corresponding to this new batch: Q� = Q − ' + 1. It provides the complete set of initial 
conditions required for accurate annual layer detection in the subsequent batch, which 
starts in '.  

When using this procedure for combining consecutive data batches, the resulting annual 
layer count was found to be almost identical to that resulting from running the algorithm 
with all parameters fixed on a complete section at once. 

 Resulting number of annual layers 6.1.3
The annual layers in the data series are always counted from the beginning of each batch, 
starting with ℓP. This is done in order to always keep the number of possible states in the 
system to a minimum. As the computational burden of the annual layer detection algo-
rithm scales linearly with the number of states (section 3.4), an up-scaling of the 
complexity of the problem with increasing batch number is hereby avoided. However, it is 
the combined layer count based on the layering in all batches which is desired. Such a 
chronology down the ice core can be obtained by convolving the resulting layer probabil-
ity distributions from each batch. In this manner, all information in the resulting annual 
layer counts and corresponding uncertainties can be retained with minimal amount of 
effort.  

Denote as �)4"4=ð(*) the merged probability of being in layer ℓ* at ), given the entire 

collection of observations up to ). The change in indexing to ) and *	is made to clarify 
that these variables now are measured from the depth at which the layer counting algo-
rithm was initiated. In contrast, the variables Q and � are measured from the beginning of 
each batch. The probability measure �)4"4=ð(*) contains the complete information on the 
resulting layer counted chronology down the ice core to ).  

Consider a data batch +, which starts at )+. Assume the merged probability distribution of 
counted annual layers corresponding to the very first observation in this batch to be 
known. This probability distribution is �)+

4"4=ð(*). By use of the Forward-Backward algo-

rithm, the probability distribution of the number of annual layers in this current data batch 
is given as �̅4(�), Q � '. The conditioning of these probabilities on the observations in the 
batch will here be neglected. The merged probability distribution of annual layers 
throughout data batch + can then be calculated as the convolution of these two probability 
distributions:  

�)+
4��4"4=ð (*) = � �)+
4"4=ð(* − � − 1) ∙ �̅4(�)

b

Tö�
 

And by the cut-off position of data batch + (i.e. for Q % '), the merged probability distri-
bution, as required for computing the merged probability distribution of the subsequent 
batch, is given by:  

�)+®e4"4=ð(*) % �)+
���4"4=ð (*) 
The probability distribution �)4"4=ð(*)	can be summarized using descriptive statistics such 
as the mean, median, quantiles etc. of the distribution. As for the case of a single batch 
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(section 3.5), these quantities can then be used for describing the corresponding layer 
counted ice core chronology and its associated uncertainties.  

6.2 Changing parameter values down the core 

One of the main reasons to split up the data series into batches, and perform the annual 
layer detection on each batch separately, is to allow the parameter values describing an 
annual layer to vary down the ice core. Provided that the parameters are varying suffi-
ciently slowly, their values at any particular depth are relatively well-constrained from 
previous data. A major increase in performance may result from taking such knowledge 
into account. Approximate posterior probability distributions of model parameters derived 
from previous data can be applied as prior probabilities for the current batch, and in this 
way be used for constraining the parameter values here. By incorporating such knowledge, 
the algorithm is allowed to continuously adjust itself to changes in how an annual layer is 
expressed in the data series, and it does so in a flexible, yet controlled manner.  

Each batch is chosen to contain around 30-50 annual layers. Within each of these batches, 
the layer thickness distribution and the annual layer signal are assumed constant. Howev-
er, as the layer detection algorithm allows for a range of variability around the mean of 
both of these (the allowed amount being specified as a model parameter itself), the algo-
rithm may still be able to pick up a slow evolution of the parameter values even within a 
batch. The requirement for this to happen is that the change in mean value is small com-
pared to the allowed variability from one year to the next.  

When using results based on previous data as prior for current data, the validity of impos-
ing such prior is contingent on the layer model parameters to be slowly varying over time. 
The spread of their respective prior distributions determines the abruptness of changes 
allowed. The smaller the spread, the more constrained is the model, and the slower must 
the evolution take place.  

The updating of priors for the parameter values from one batch to the next can be made in 
a variety of ways, one more sophisticated than the other (see e.g. [Jen-Tzung Chien, 2002; 
J.-T. Chien and Huang, 2003; Gauvain and Lee, 1994; Huo and Lee, 1997]). The most 
sophisticated methods may e.g. incorporate the dependency of the priors on each other, 
while the less pretentious ones settle for very simple and independent prior probability 
distributions. Also, some of the parameters may be considered fixed and known before-
hand.  

For the layer detection algorithm, a first step before including such prior information is to 
consider which model parameters can be kept fixed, and which ones must be allowed to 
adapt to the changing climate. By tying some of the parameters to a fixed value, and 
describe the remaining ones with very simple probability distributions, the tractability of 
the problem is greatly enhanced, and the changing characteristics of an annual layer in the 
data series can be traced down the ice core. 
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 Adaptable and tied parameters 6.2.1
In section 5.4, it was explained how the EM-algorithm can be run in Maximum a Posterio-
ri mode, thereby allowing prior knowledge on the parameter values to be taken into 
account. The update equations (5.4.1) and (5.4.2) were derived for a simplified case, in 
which three of the annual layer parameters (�< , Φ, and �Æ�) are considered known before-
hand. The remaining two parameters (O< and Ô) are allowed to adapt themselves to the 
data, and their prior probability distributions are considered to belong to the family of 
normal distributions.  

For the current application concerning annual layer detection in ice core data, it is fairly 
reasonable to assume the values of �< , Φ, and �Æ� to be constant. Nor is the choice of prior 
probability distributions for O< and Ô as normal distributions unreasonable. The argu-
ments behind making such simplifying choices are described below.  

Annual layer thickness parameters 

The assumption of a known scale parameter of the layer thickness distribution (�<) can be 
justified based on previous studies, which indicate this parameter to be only marginally 
dependent on climate [Andersen et al., 2006b]. Nor does the gradual ice-flow induced 
thinning of annual layers with depth contribute to changes in the general shape of the layer 
thickness probability distribution (section 4.1). Hence, it is not unreasonable to assume the 
scale parameter to maintain a rather constant value with depth.  

However, when going into details, it is not clear how valid this assumption is. In figure 
6.2.1C&D, the evolution with depth of the two layer thickness distribution parameters is 
shown. To make it resemble the outcome from successive batches of data, the statistics of 
these parameters is based on 50 years each. It must be emphasized that the derived evolu-
tion of �< (figure 6.2.1D) very much depends on the exact placement of the GICC05 layer 
boundaries. Yet, the GICC05 chronology was not developed with the purpose of obtaining 
the best layer boundaries, but rather to obtain the best timescale. Most of the obtained 
variation in �< may therefore be artifacts due to e.g. the person in charge of the layer 
counting, the seasonal variability of peak events in the employed data series, as well as the 
general degree of difficulty in doing such counting.  

From figure 6.2.1D, it is seen that the estimated value of �< does show some variation 
with depth. Sections of unusually large variations of individual layer thicknesses, i.e. large 
values of �< (marked as gray), tend to be associated with a decrease in mean layer thick-
nesses, a sign of climatic cooling events. However, there is no straightforward relation 
between the two. Many cooling events do not have a counterpart in �<, and not all sec-
tions of high �< values appear to be connected with variations in the ���O profile.  Again, 
it may just be due to artifacts. Furthermore, �< seems to decrease with depth. This can 
possibly be explained by a changing counting strategy due to the general smoothing of the 
data series with depth. In any case, however, the variations in �< (figure 6.2.1 D) are much 
less pronounced than the changes in e.g. O< (figure 6.2.1B), and in the following, �< will 
be assumed constant with depth.  
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Figure 6.2.1: Estimated evolution of the layer thickness distribution parameters O< and �< (C&D) 
for the lower part of the NGRIP ice core, and their relation to the observed ���� variations (A). 
Also the mean annual layer thickness, ¶, as derived from O< and �< is shown (B).  Layer thickness-
es are based on the GICC05 chronology, and uncertain layer boundaries have not been included in 
the statistics. Each estimated value of O< and �< is based on 50 layers. Segments with unusually 
high values of �< are marked in gray. 

The mean annual layer thickness does change with depth, and sometimes quite abruptly. 
These abrupt changes are caused by changing climate conditions and the accompanying 
variations in accumulation rate, and can be seen as shifts in the location parameter of the 
annual layer thickness distribution (figure 6.2.1C). Furthermore, gradual changes in the 
location parameter result from thinning of the annual layers with depth due to ice flow. 
Hence, the location parameter of the annual layer thickness distribution cannot be as-
sumed constant.   

Annual layer thicknesses usually change gradually. In the upper part of the ice core, firn 
compaction and high strain rates cause the annual layer thicknesses to rapidly decrease 
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with depth. At these depths, a symmetrical distribution, such as e.g. the normal distribu-
tion, would not be a good description for the changes in layer thicknesses (as described by O<) from one batch of data to the next.   

At larger depths, lower strain rates implies less impact on annual layer thicknesses from 
ice flow induced thinning, and higher impact from changes in climate. This is in particular 
the case for the deeper part of the NGRIP ice core. The occurrence of bottom melt at this 
location is reflected in very low thinning rates of annual layers with depth [D Dahl-Jensen 
et al., 2002]. As a result, for the depth interval in consideration, the chance of layer thick-
nesses being smaller/larger in a subsequent batch is fairly equal, and it turns out that a 
normal distribution here is able to describe these changes quite well (figure 6.2.2B).  

 

Figure 6.2.2: The changes in layer thickness distribution parameters, �< and O<, from one “batch” 
of 50 layers to the next (A,C), and the resulting frequency distributions (B,D). Annual layer thick-
ness parameters are derived from GICC05 layer positions, uncertain years not included.  

However, at extremely fast transition periods, where the annual layer thicknesses may 
change with as much as 40% over merely 3 years [Steffensen et al., 2008], the assumption 
of slowly varying layer thicknesses breaks down. To better the performance of the layer 
detection algorithm over data sections containing fast climate transitions, a more accurate 
prior might be required. Although layer thicknesses in a subsequent batch are most likely 
to stay close to the current value – as described by a normal distribution for O< of mean 0 
and standard deviation 0.1 (figure 6.2.2B) – there is also a small chance that they are 
changing drastically. A more accurate description for the prior of O< would therefore be a 
weighted sum of two Gaussians distributions: One with a relatively small spread to de-
scribe the generally slow changes (this one having the largest weight), and a broad one to 
increase the probabilities in the tails of the distribution. Imposing such a prior would 
better allow abrupt changes in layer thicknesses to occur. Yet, in case of a 40% increase in 
layer thicknesses over just 3 years, this will probably in any case cause problems for the 
layer detection algorithm. 
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Annual layer signal parameters 

Also the way an annual layer is expressed in the ice core data is climate dependent, and 
therefore varying with depth. The amount of impurities transported onto the ice sheet and 
deposited at the drill site (wet deposition versus dry deposition), as well as the seasonality 
of the deposition events, may depend on the climate regime. In the visual stratigraphy 
data, the annual layers are generally more pronounced during the cold periods, when more 
dust is blown onto the ice sheet and deposited as cloudy bands visible in the line-scan 
data. Hence, an annual layer detecting scheme must be able to allow such changes in layer 
expression to occur. 

It will here be assumed that the changes in annual layer signal with depth can be described 
solely as a changing mean annual layer signal. Hence, only the parameter describing the 
mean signal (Ô) is allowed to adapted itself to the data. The remaining parameters (Φ, �Æ�) 
are assumed to stay constant. Depending on the data in question, this may be a very sim-
plistic view: Just as well as changes in climate may affect the mean annual layer signal in 
the core data, it may as well affect the inter-annual variability of this signal. Likewise, the 
general white noise level on top of this signal may also be climate dependent. Precisely 
how much these two parameters change with shifting climate regimes depends on the 
employed annual layer signal model. Nevertheless, these two parameters are still believed 
to vary less than the mean annual layer signal, and including them as adaptable parameters 
would significantly increase the complexity of the algorithm.  

 Sequential updates of parameters 6.2.2
From the previous section, a simple way of making sequential updates of the parameters 
used in the layer detection model can be seen. By assuming the priors to be described by 
very simple probability distributions and tying some of the parameters, the Maximum a 
Posteriori re-estimation equations derived in section 5.4 can be employed. After each 
batch, approximate posterior distributions of the adaptable parameters can be utilized as 
prior for the next.  

However, this methodology does not take into account that we do have some prior 
knowledge on how model parameters depend on each other.  Using the approach outlined 
above, one of the underlying assumptions is that the priors for the individual parameters 
are independent on each other. In other words, the annual layer thicknesses are allowed to 
change independently on how the mean annual layer signal is changing with depth. Yet, 
both annual layer thicknesses and the expression of a layer in the ice core data depend 
heavily on the climate regime at time of deposition. Assuming their changes to occur 
independently is therefore not a very good assumption: A climate-induced decrease in 
layer thicknesses is expected to happen concurrently with an increase in vigor of the 
cloudy bands in the visual stratigraphy data. Indeed, this will be the case for most of the 
chemical parameters that can be used for annual layer detection in ice cores, as all of these 
tend to be more or less strongly depending on climate. 

In principle, nothing hinders a prior probability distribution of the parameter set B, in 
which the priors of the individual parameter values are correlated. Chien [2002] has e.g. 
developed the resulting update equations for use in speech recognition when assuming the 
parameters to be linearly dependent. But to take such interdependencies into account 
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requires a lot of knowledge on how the individual parameters co-varies, something which 
is difficult to quantify. Furthermore, speaking from a practical point of view, the assump-
tion of covariance of the prior parameters does significantly increase the complexity of the 
analysis. 

On the other hand, a simple form for linear dependence in relation to the fixed parameters, �<,	Φ, and �Æ�, could be introduced very easily. Instead of keeping these parameters con-
stant, they could be allowed to vary with the prior distribution for the remaining 
parameters. However, the present level of knowledge does not justify a very sophisticated 
approach on this matter.  

When later applying the annual layer detection algorithm to the visual stratigraphy data 
from NGRIP, only a very simple version of re-iterations are performed. The layer detec-
tion algorithm is still under development, and in its present form, Maximum a Posteriori 
iterations of the parameter values turned out not to be entirely stable.  
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 7. Test	of	inferred	layer	boundaries		

Having developed a HMM-based layer detection algorithm, a next question arises on how 
to evaluate the outcome of the algorithm. Its performance will be evaluated using synthet-
ic data (chapter 8) and visual stratigraphy data from NGRIP (chapter 9). For the ice core 
data, the obtained layer boundaries will be compared to those manually counted in the 
GICC05 chronology. However, such comparison is not straight-forward, as the manually 
detected GICC05 layer boundaries themselves are subject to errors as well as uncertainties 
in depth scale. The following section describes some of the issues to keep in mind when 
judging the degree of similarity between two layer boundary sequences.  

For performance evaluations of the layer detection algorithm, the total number of annual 
layers within a given depth interval as well as the detailed positions of annual layer 
boundaries must be considered. Most important for the resulting timescale is a good 
estimate of the total number of annual layers. However, if judging the algorithm perfor-
mance only by comparing such numbers, the conclusion may be rather misleading. Given 
that the layer detection algorithm is endorsed with some information on average layer 
thicknesses, this knowledge can by itself be exploited to give a decent estimate of the 
number of annual layers within a given depth interval. This is the case, even if the data 
series contains no annual layer signal or, equivalently, if the model is not able to detect 
this signal.  

Consequently, the performance of the algorithm should also be assessed based on the 
similarity between modeled and manually counted layer boundaries. However, for several 
reasons such comparison of the individual annual layer boundaries is not trivial. For the 
GICC05 timescale, inaccuracy in depth scale of the high-resolution chemistry measure-
ments (on which the chronology is based) leads to inherent uncertainties in the precise 
location of designated annual layer boundaries (section 2.3.5). In addition, individual 
variations in the year-to-year timing of peak concentrations in the various chemical com-
ponents may cause the designated layer boundaries not to occur simultaneously with e.g. 
peak values in the visual stratigraphy. For this reason, it was decided to manually transfer 
the GICC05 annual layer boundaries to the visual stratigraphy data series before compari-
son.  
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When matching up the resulting annual layer boundary positions, it must also be kept in 
mind that neither the GICC05 chronology, nor the Forward-Backward layer detection 
algorithm developed here, was constructed with the objective of providing an optimal 
segmentation of the data series into annual layers. Rather, the aim was to obtain a best 
estimate of the overall layer number. Hence, the comparison takes place between two sets 
of layer boundaries, none of which are optimal for any such comparison to take place. 
Besides, one should also keep in mind that the GICC05 chronology is not perfect. 

Hence, although the similarity in annual layer boundary positions is an important tool for 
validating the model results, one should not put too much emphasis on the finer details of 
the comparison. Certainly, a modeled annual layer boundary should not be dismissed just 
because its position does not exactly coincide with a layer boundary present in the 
GICC05 chronology.  

7.1 Comparison of layer boundary positions 

As previously mentioned, validation of a modeled annual layer sequence must be based on 
a comparison of layer boundary positions as well as on the overall layer count. The ap-
proach followed here has been to separate out the two effects, and evaluate the 
performance of the algorithm based on a consideration of both of these individually. Such 
approach is fairly similar to what one might have done per eye if trying to judge the simi-
larity between two sets of layer boundaries.  

Differences in layer boundary positions are therefore compared only for layer boundaries 
which unambiguously can be paired up. The resulting average discrepancy is subsequently 
compared to that resulting from arbitrarily positioned layer boundaries. Differences in 
annual layer count are expressed both in the overall number of detected layers, but also by 
the fraction of annual layer boundaries which could not be paired up. 

In the following, the two sets of layer boundaries to be compared are denoted {´�}�ö�ó  and {C�}�ö�ó . These 2ü	layer boundaries have been selected from the total number of annual 
layer boundaries as those whose counterparts in the opposite set are unambiguously de-
fined by a one-to-one mapping: The closest neighbors to ´� and C� are respectively C� and ´�. Any linkages involving uncertain layer boundaries in the GICC05 chronology have 
been omitted from analysis. They are masked out in such a way that they are allowed to be 
‘closest layers’, but they do not contribute to the Δ-value if not being matched up.  

To measure the discrepancy between two sets of layer boundary positions coupled by a 
one-to-one mapping as described above, the average of their squared differences is em-
ployed: 

Δ� ≡ 1ü �(C� − ´�.�
ó

�ö�
 

In other words, the procedure used for calculating Δ�	corresponds to a pairing up of the 
annual layer boundaries in closest pairs, and computing the average squared difference 
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between these. This measure of discrepancy, along with the fraction of layers which could 
not be paired up, is used for evaluating the performance of the layer detection algorithm.  
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Box 4: Expectation value of 89 for arbitrary sequence 

Consider the layer boundary sequence �´���ö�ó , where the distances between individual boundaries are 
distributed according to a lognormal distribution. Furthermore, an arbitrary sequence �C���ö�ó  is construct-
ed in such a way that C� is the point closest to ´�, with equal probabilities of C� being smaller and larger 
than ́ �. Within each interval, before and after C�, the distribution is uniform. Denoting by ¶� and ¶� the 
annual layer thicknesses on either side of layer boundary ´�, the probability distribution for a given value � % C� ) ´�  is: 

The expectation of �� is given by: 

The second-last equality can be seen from symmetry considerations. Inserting the probability density 
function for lognormal distributed layer thicknesses described by parameters O and �: 

And integrating the above, the following expression is obtained: 

This is the expected squared discrepancy between a single layer boundary and a neighbouring randomly 
positioned point. For several layers, the estimated mean of squared differences is exactly the same: 

With an ‘effective layer thickness’ given by ¶677 % exp(O / ��). 
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 The :–value of arbitrary sequences 7.1.1
By the approach just outlined, the layer boundaries to be compared have been selected in 
such a way that they are as similar to each other as possible.  Consequently, even for an 
arbitrary sequence, the value of Δ� will generally be quite small. To evaluate the signifi-
cance of a calculated Δ�-value, it must be assessed whether this value is significantly 
different from that of an arbitrary sequence with an appropriate spacing. Arbitrary se-
quences with a different spacing can easily be recognized by their disparity in total 
number of counted annual layers, and by the large fraction of layers not being paired up.  

Compare a log-normally distributed layer boundary sequence �´���ö�ó  described by 
lognormal distribution with parameters O and � to an arbitrary sequence �C���ö�ó , with 
each C� being the counterpart to ´�. Denoting by ¶� and  ¶� the annual layer thicknesses 

before and after ´�, each C� is constructed to be situated within the range ß´� ) 3e� , ´� / 3f� à 
with equal probabilities of being situated before and after, and with uniform distribution at 
either side. In this case, it can be shown (see box 4) that the expectation value of Δ� is 
given by: 

ÛnΔ=-#�4-=-�� o % 112 ¶677� ,					¶677 % exp(O / ��) 
Or equivalently: 

(7.1.1)	 ÛnΔ=-#�4-=-�o % 1
√12	 ¶677 ! 0.29	¶677  

The calculated mean value of Δ=-#�4-=-� is slightly smaller (figure 7.1.1A). The above 

construction of C� ’s does not ensure ´� to also be the layer closest to C�, which may not be 
the case if C� is located near the center of a layer on either side of ´�. Such pairs (´�, C�) do 
not fulfill the requirement of an unambiguous pairing up, and have been removed prior to 
the calculation of Δ�. Removal of the above-average contribution from such pairs causes 
the calculated values of Δ=-#�4-=-� to be slightly less than their theoretical values.  

It is not taken into account by the expectation value presented in (4.2.1), that an arbitrary 
layer sequence obtained by use of the Forward-Backward algorithm is likely itself to be 
log-normally distributed – even if the algorithm has not managed to properly locate the 
annual layer boundaries. Such dependency between successive C� ’s causes an increased 
number of the worst aligned C� ’s to be discarded due to ambiguous mappings, and hence 
produces a decrease in the calculated Δ-values (figure 7.1.1C and D). 

 Evaluating obtained values of the similarity measure;;;;				7.1.2
Based on the results of the above investigations (figure 7.1.1), the following conclusions 
are made: For a sequence of calculated layer boundaries to bear more similarity to a 
known set of layer boundaries than would an arbitrary sequence, it is required that: 

Δ ≪ 0.24 ∙ ¶677 
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Figure 7.1.1: A, B: Resulting distribution of =/¶677 and percentage of layers discarded prior to 
analysis, when based on 10.000 realizations of arbitrary sequences constructed as described in 
section 7.1. Layer thicknesses are assumed log-normally distributed with O = −4.25 and � = 0.3. 
On average, about 2.5% of the proposed layer boundaries are removed due to ambiguous pairings, 
causing the calculated =-values to be slightly less than those theoretically obtained from equation 
(4.2.1) (the grey bar). C, D: The analogue results when the arbitrary sequences have a lognormal 
distributed spacing described by the same parameters as the original layer boundary sequence. In 
this case, the percentage of removed layers is much larger, and the =-value is correspondingly 
lower. 

This Δ-value should have been obtained without prior removal of too many layers –
definitely much less than 14%! – and furthermore, of course, the resulting total number of 
layers in the data series should be very similar. If the annual layer count in the two data 
series is very different, the Δ-value does not contain much information. 

Mere fulfillment of these three measures does, however, not provide any guarantee that 
the algorithm works: We wish the algorithm to produce layer boundaries that indeed are 
far better than an arbitrary sequence! Yet, it must be acknowledged that for the considered 
depth interval of the NGRIP ice core, the annual layer thicknesses are small. With an 
average value of ¶677 around 1.5 cm, as appropriate for the lower part of the considered 

depth interval, Δ is required to be much smaller than 3.6 mm.  

The developed layer detection algorithm will in chapter 9 be run for the depth interval 
from 2200 to 2240 m in the NGRIP ice core. For this depth interval, the conductivity 
profile provided the main support for placing the GICC05 layer boundaries, and annual 
layer locations were generally placed at peak values in the conductivity profile. To allevi-
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ate the problems of different depth scales, different times of peak concentrations etc. 
between the conductivity and the visual stratigraphy data, the GICC05 layer boundaries 
for the considered interval were manually transferred from the conductivity data to the 
visual stratigraphy data.  

The fraction of layers which had to be discarded before evaluation of Δ, in the following 
denoted by >, may also contain information on how well the layering is reproduced. In 
this measure, layer boundaries removed due to uncertain layers in the GICC05 chronology 
has not been included. The information in > is in some ways similar to that in Δ: A more 
precisely reproduced timescale leads to fewer layers which need to be removed. Yet, the 
information in the two is not completely the same. The value of Δ is sensitive to the small 
deviations in annual layer positioning, whereas only layers far off any GICC05 counter-
part contribute to the value of >. But as only a relatively few layers contribute to >, this 
measure is not as statistically robust as Δ	,when considering short sections.  

The combination of considering the number of counted layers, and evaluating the resulting Δ and >-values can help to assess how well the annual layer detection algorithm performs. 
However, none of them are a perfect measure, and if the number of layers in the two 
sequences to be compared are not fairly similar, the information in Δ and > may even be 
misleading.  

 

 



 8. A	sensitivity	analysis	

In this chapter, the annual layer detection methodology outlined in the previous chapter 
will be investigated for its resistance to noise in the data series and incomplete knowledge 
on the appropriate model parameters.  

The sensitivity analysis is performed on synthetic data. These present an opportunity to 
obtain an estimate of the performance of the algorithm in a very simple case, as well as 
they have the advantage that the outcome of the layer detection algorithm can be com-
pared to a result, which is known with certainty.  

8.1 Construction of synthetic data series 

Unless otherwise specified, the synthetic data in the subsequent sections have been con-
structed in the following way: The first layer is assumed to start at the same depth as the 
first observation in the data series. Annual layers are then produced repeatedly by each 
time selecting at random the layer duration from a prescribed duration probability distribu-
tion. The annual layer thicknesses are taken to be lognormal distributed with the following 
parameters: 

¶~ Log¹()4.25, 0.3�) 
These values are chosen as to be similar to those governing the annual layer distribution in 
the NGRIP ice core for a large part of the considered depth interval.  

Having determined the annual layer thicknesses, the annual layer trajectories are chosen 
based on the probability distributions of the annual layer signal parameters. Finally, 
Gaussian white noise with variance �Æ� is added to these trajectories, and a synthetic data 
series has been generated.  

To simplify the results, a very simple annual layer model with just a single free parameter 
has been used: The annual layers are constructed as sinusoidal waveforms of different 
durations and amplitudes. A sine function has been selected as basis function to ensure the 
underlying trajectory to be continuous across layer boundaries, and therefore not produc-
ing discontinuities that might artificially help the algorithm in its search for annual layers. 
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The only layer signal parameter is therefore the amplitude, which is distributed according 
to a Gaussian distribution with mean ? and variance Φ. 

The parameter values describing the inter-annual variance in layer shape and white noise 
component of the visual stratigraphy data is much dependent on the climatic regime, the 
model employed and the preprocessing of observations taking place prior to analysis. For 
the sensitivity studies, the value of these two annual parameters are generally set equal to Φ % 0.5� and �Æ� = 0.5�. These values present a mean of the range of parameter values 
investigated.  

The length of each observation sequence is chosen such that each sequence on average 
contains about 50 annual layers, and the statistics are based on an ensemble of 200 realiza-
tions of such sequences. Throughout the chapter, the notation 〈∙〉 will be used to denote the 
mean of the ensemble distributions, and std(∙) will denote their standard deviation. 

8.2 Sensitivity to annual layer variability 

In this section, the stability of the layer detection algorithm is investigated with regard to 
how clearly distinguishable the annual layers appear in the data series. It should be no 
surprise that the annual layers are easiest to identify if the individual layer thicknesses are 
relatively similar, all layer trajectories are fairly identical, and the additive white noise 
component is small.  

To investigate the importance of each of these three factors for the performance of the 
layer detection algorithm, the algorithm is first run in the least challenging way: The 
model parameters are assumed known, and the most likely annual layering is inferred 
based on this knowledge. Hence, as no EM-iterations need to be performed, the results 
solely depend on the performance of the Forward-Backward and the Viterbi algorithm 
respectively. 

The analysis is performed for multiple ensembles of synthetic data series, which have 
been generated with an increasing degree of variance among individual layer shapes and 
with an increasing degree of additive white noise. Also data series with an increased 
amount of variance in layer thicknesses are considered. The performance is evaluated 
based on the resulting counting discrepancy relative to the original data series (Δü), the 
average displacement of layer boundaries (Δ), and the percentage of layer boundaries (>) 
discarded in the calculation of this quantity due to a lacking counterpart in the opposite set 
of layer boundaries.  

 Inter-annual variations in layer shape 8.2.1
The performance of the HMM layer detection algorithm will first be investigated for data 
series with various degrees of inter-annual variability in layer shape. The annual layers are 
constructed as sinusoidal waveforms of different durations and amplitudes. Their mean 
amplitude is held constant at 1, while their spread around this value is varied from 0.1 to 
1. With a value equal to 1, the spread in amplitude of the respective waveforms is equal to 
their mean amplitude, and consequently there is a large probability for each layer to have 
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an amplitude around zero, and there is even 16% chance of the amplitude parameter being 
negative.  

In figure 8.2.1 is shown the performance of the HMM layer detection algorithm for multi-
ple ensembles of such data series, generated with an increasing degree of inter-annual 
variability in layer shape. For all ensembles shown, the spread of the white noise compo-
nent is kept constant at �Æ� = 0.5�. Examples of small sections of observation sequences 
generated based on the given parameters, along with the original and the reconstructed 
layer boundaries, are displayed in figure 8.2.1A. The sections are taken from the middle of 
the observation sequence, such that any memory effect due to knowledge of the location 
of the very first layer boundary essentially is eliminated. Annual layer boundaries are 
placed according to the output of the Forward-backward algorithm. 

The layer detection model is seen to work very robustly, even when the annual layers 
display a wide range of amplitudes. This is due to the algorithm being able to infer the 
best layering based on the entire observation sequence. Even if a single layer is buried in 
noise and indistinguishable from the surroundings, there is a good chance that the sur-
rounding layers are identifiable, and the layer detection model will then try to place a layer 
boundary at an appropriate place, this being determined based on layer thicknesses. And 
indeed, with increasing variance of the amplitude of individual layers, not only the per-
centage of layers with negligible signals of almost zero amplitudes have increased, also 
increased has the percentage of easily detectable layers having very large amplitudes.  

An example of how the algorithm is able to take the annual layer thicknesses into account 
is found for Φ = 1 between 30 and 35 cm. At 31 cm, a well-defined layer is ending, and 
the next distinct layer only starts around 36 cm. In between these two layer boundaries, 
the annual layer signal in the data series is so poorly defined that it basically no longer 
exists. Yet, even in this difficult case, the knowledge of the two surrounding layer bounda-
ries aids the algorithm to rightfully decide that another two layer boundaries should be 
located in between these. These layer boundaries may not be placed very accurately, but 
they are placed, and that is what matters for the resulting timescale. 

Total number of counted layers 

Regardless of the variance levels of the random component and the white noise compo-
nent, the difference in number of inferred and original annual layers produces a 
symmetrical distribution with an average of zero (figure 8.2.1B). This is very fortunate, as 
it implies that the annual layer detection model is not biased towards either too thick or 
too thin annual layers.  

However, with increased inter-annual variations in layer shape, more counting mistakes 
occur, and the spread of the Δü-distribution around zero increases. For the smallest degree 
of amplitude variations investigated (Φ = 0.2�), more than 95% are doing a perfect job 
counting-wise, and are counting exactly the right number of layers. This number is re-
duced to 80% for Φ = 0.4�, and is going down to 50% for amplitude variations of the 
same size as the original underlying signal (Φ = 	 1�). Still, this is quite a high percentage. 
And even in this case, for most realizations the inferred number of annual layers is within �1 from the original number of layers. As the entire section includes around 50 layers on 
average, this gives rise to maximum counting errors around 2%. 
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Figure 8.2.1: Performance of the layer detection algorithm for synthetic data series generated with 
an increased amount of inter-annual variability in layer shape. A) A section of a random data se-
ries and its original annual layering (alternating dark and light grey banding). The inferred layer 
boundary positions as found by the Forward-Backward algorithm are shown as dark grey bars on 
top. To the right (B, C, D) is shown some statistics of the performance, based on an ensemble of 
observation sequences similarly generated. Each horizontal grid-line is 10 percentage points.  
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Discarded layers and :-value 

With increasing degree of variation among the individual layer shapes, the annual layer 
boundaries become increasingly diffuse and difficult to locate. This implies that even if 
the total number of counted layers turns out correct, the annual layer boundaries will be 
placed less precisely. As a result, the calculated Δ-values as well as the percentage of 
discarded layer boundaries (>BC) steadily increase with enlarged variance in the individual 
layer shapes. Furthermore, the total number of annual layers may be counted correctly 
even if there is one layer too much at one location and one too little at another spot, 
whereas such an event will show up as an increase in either Δ- or >-value. These two 
measures therefore provide a better measure of how well the layering in details is repro-
duced.  

In case of just small variations in annual layer shapes, almost no layers need to be discard-
ed (>BC ! 0), and they are placed very accurately indeed; the mean of Δ/¶677 is around 

0.04 for Φ % 0.2�. Even when large annual variations in layer shape are allowed, howev-
er, the average value of Δ/¶677 is significantly smaller (0.07) than that of an arbitrary 
sequence (0.24).  

 The white noise component 8.2.2
Figure 8.2.2 shows the result from multiple ensembles of observation sequences which 
have been constructed with an increasing level of additive Gaussian white noise. The 
amplitude variations of the annual layer signal is fixed at Φ % 0.5�. The variance of the 
white noise component is increased from 0.2� to 1�, i.e. to the same level as the amplitude 
of the underlying signal itself.  

Difference in layer counts 

Again, the annual layer detection model is seen to perform well. The deviations in layer 
count are symmetrically distributed around 0, and for all values of the white noise vari-
ance a major part of the realizations end up with a correct estimate for the number of 
annual layers in the observation sequence.  

For a relatively small value of �Æ� % 0.2�, exactly the right number of annual layers is 
inferred for more than 90% of all realizations. Of course, the performance degrades with 
increasing amounts of noise, which shows up as a slow but steady broadening of the 
histogram showing the discrepancy of annual layer counts. Yet, even when the white noise 
component is of the same magnitude as the mean amplitude of the signal, the algorithm is 
counting the right number of layers in 40% of the cases, and almost all realizations are 
counted within 2 layers hereof. Having on average 50 layers within each observation 
sequence, this amounts to a maximum counting error of 4%.  

Discarded layers and resulting :-value 

With increased noise levels, both the number of discarded layers, >BC, and the average 
value of Δ increases. For a small white noise variance equal to �Æ� % 0.2�, the average of >BC is just 0.1. It is increasing up to 2.5% for large white noise levels, i.e. just 2.5% of all 
layer boundaries in the two sets cannot be paired up. In this case, the Δ-value has in-
creased to 0.1, which is still significantly different from that of an arbitrary sequence.  
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Figure 8.2.2: Performance of the layer detection algorithm for synthetic data which have been 
generated with an increased variance of the white noise component. A) A section of a random data 
series and its original annual layering (alternating dark and light grey banding). Inferred layer 
boundary positions as found by the Forward-Backward algorithm are shown as dark grey bars. To 
the right (B, C, D) some statistics of the performance, based on an ensemble of observation se-
quences, are found. Each horizontal grid-line is 10 percentage points.  
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 Comparing the two types of layer variability 8.2.3
The annual layering is best reconstructed where the annual layer signal displays the least 
variation from one year to the next, regardless of whether their differences are caused by 
varying amplitudes or the addition of white noise. But the two parameters do not influence 
the performance of the algorithm exactly the same way. To compare their relative im-
portance, ensembles have been generated of all combinations of these two types of annual 
layer variability, and the performance of the algorithm has been evaluated (figure 8.2.3).  

In general, the performance of the layer detection algorithm is most affected by the 
amount of white noise added to the annual layer trajectories. This is in particular the case 
when considering the exact placement of the layer boundaries as demonstrated by the 
changes in	Δ and >. For low white noise levels, the amplitude variations of the annual 
layer signal is almost irrelevant, whereas significantly more degradation results from 
keeping the amplitude variations small, and increasing the white noise term (figure 
8.2.3B,C). Also the resulting discrepancy in number of counted layers is most affected by 
the addition of large amounts of white noise, although this quantity is affected in a more 
similar manner by the two types of layer variability (figure 8.2.3A).  

The higher sensitivity to the additive white noise component than to the variations in layer 
shape can be explained as follows: Increasing the amplitude variations does not only 
produce many layers with a layer expression poorly expressed in the observations – simul-
taneously, it increases the number of clearly defined annual layers. A high value of the 
additive white noise component, on the other hand, simply camouflages the annual layer 
signals everywhere.  

 

Figure 8.2.3: Performance of the layer detection algorithm for various values of amplitude varia-
tion of the annual layer signal and standard deviation of the Gaussian white noise level. The 
performance is judged based on standard deviation of the number of miscounted layers (A) and the 
fraction of discarded layers (B) in the evaluation of the mean deviation of annual layer boundary 
displacement (C) .  
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8.3 Comparison between the Viterbi and For-

ward-Backward algorithm 

For small variance and noise levels, the results based on respectively the Viterbi and the 
Forward-Backward algorithm are almost identical. For larger variations in annual layer 
expressions, however, a few differences arise. 

The Viterbi algorithm seeks the most likely segmentation of the observation sequence into 
annual layers, and hence seeks to optimize the positioning of the layer boundaries. This is 
not the case for the Forward-Backward algorithm. As a result, the Viterbi algorithm gen-
erally obtains the smallest values of the layer boundary displacement quantity Δ (figure 
8.2.1C).  

On the other hand, the Forward-Backward algorithm is supposed to estimate the correct 
number of annual layers slightly more often than does the Viterbi algorithm, therefore 
making the Forward-Backward algorithm superior for establishing a timescale of an 
observation sequence. However, for the chosen model and model parameters applied here, 
the two methods basically always come up with the same result (figure 8.2.1A), and thus 
this cannot be confirmed. In any case, however, the Forward-Backward has the major 
advantage relative to the Viterbi algorithm that it allows an uncertainty estimate on the 
resulting counting to be evaluated directly. 

Figure 8.3.1: Performance of the two layer detection algorithms: The Forward-Backward algo-
rithm and the Viterbi-algorithm. The results are based on an ensemble of runs with parameter 
values D = 0.5� and �Æ� = 0.5�. 
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8.4 Reliability of inferred uncertainty estimates 

Inherent to the Forward-Backward algorithm used for annual layer counting is the simul-
taneous derivation of an uncertainty estimate on the counting accuracy. In this section, the 
reliability of such uncertainty estimate will be evaluated.  

The inferred uncertainty estimate is evaluated by considering each realization in an en-
semble at its own, and judging if the original number of annual layers is within the 
uncertainty bounds of the inferred layer count. The percentage of realizations in which the 
original number of layers is within the estimated 50% and 95% posterior uncertainty 
bounds is given in table 8.4.1. For all combinations, the estimated uncertainty bounds are 
seen to be very reliable: The original number of layers is generally within the estimated 
25% and 75% quantiles in ~50% of the cases, and ~95% are within the estimated 2.5% 
and 97.5% quantiles of the posterior distribution – just as they are supposed to be.  

In general, the derived uncertainty estimates even seem to be slightly conservative, which 
can be explained by the general rounding up of quantile estimates due to the annual layer 
number being a discrete quantity. This effect is largest when the derived uncertainties are 
smallest, and hence cannot be expected to hold for real observation sequences.  
 

  ü"-�1�ô=ð ∈ ��P	J%j ü"-�1�ô=ð ∈ ���	J%j Φ = 0.5�, �Æ� = 0.5�	  66% 98% 
All ensembles 68% 98% 

Worst ensemble member 36% 95% 
Table 8.4.1: The reliability of the 50% and 95% uncertainty estimates were estimated for D ={0.1�, 0.2�, … ,1} and �Æ� = {0.1�, 0.2�, … ,1}. ��P and ��� are the 50% and 95% confidence inter-
vals. The result based on the entire array of ensembles is given. Also given are the results for the 
member of the 100 ensembles with the lowest percentage of annual layer counts within their al-
lowed range. For ��P, this was found for (D, �Æ�. = (0.9�, 1., and for ��� it was found for (D, �Æ�. = (1,0.1�.. The result for the basis ensemble, using D = 0.5� and �Æ� = 0.5�, is given as 
an explicit example.  

However, it must be stressed that the validity of these uncertainty estimates is contingent 
on the annual layer model and corresponding model parameters to be valid. The derived 
uncertainty estimate does not include uncertainties contained in these two, and should 
therefore always be regarded as a lower bound estimate.  

8.5 Obtained parameter estimates 

To evaluate the bias of the HMM layer detection methodology, the reconstructed parame-
ter estimates for the five model parameters based on the result of the Forward-Backward 
algorithm have been investigated. For the use of the EM-algorithm, it is important that 
these parameter estimates are reliable, and that – in case of any bias – this bias is known, 
such that it can be dealt with appropriately.  

These reconstructed parameter values are highly dependent on the inferred segmentation 
of the data series into annual layers, and hence are also a valuable tool for determining 
how well the algorithm works under adverse conditions.  
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In figure 8.5.1, the percentagewise deviation between reconstructed and original parame-
ter estimates for multiple ensembles of observation sequence realizations are plotted. 
Their respective deviations have been plotted for each of the five model parameters, and 
for the full range of annual layer shape variations as described by the chosen values of Φ 
and �Æ�.  

In general, the parameters describing the appearance of any given layer are more accurate-
ly determined than parameters describing the variance between individual layers: The 
percentagewise deviation of O< and Ô is less than 0.5%, while the remaining parameters 
are only determined within �2-5%. This is not unexpected, as it is in general much easier 
to estimate mean values than standard deviations.  

The two parameters describing the annual layer thickness distribution (O< and �<) are for 
all ensembles determined within �0.2% and �3% of  their respective original values. 
However, while the mean of the layer distribution (O<) generally are determined very 
precisely and seemingly without any bias (figure 8.5.1A: equally many are determined 
above and below their original values, and no pattern appears to exist), all ensembles tend 
to underestimate the variance between individual layer thicknesses (figure 8.5.1B). In 
other word, the layer detection algorithm generally tends to place the layer boundaries a 
little too regularly. The reason for this probably lies within the way that the algorithm 
works: Whenever a layer is difficult to place, the layer distribution probability density 
function is used to derive the most likely layer boundaries. Implicitly, this gives rise to 
layer boundaries which are a bit too regularly spaced, in particular when the algorithm has 
to interpolate over longer distances from where the annual layer signal is lost. The result is 
a layer thickness distribution whose scale parameter is a little too small than what the 
original data gave rise to.  

Although this is undesirable, it is also an unpreventable short-cut that one may have to 
accept in this kind of analysis. Whenever a layer detection algorithm includes information 
on the mean annual layer thickness, such information will implicitly give rise to a thick-
ness distribution conforming to this layer thickness. It may therefore eradicate layers 
which do not seem to agree with this information, in particular if their layer expression is 
vague. However, it should be noted that although the retrieved spread of the annual layer 
thickness is biased towards too low values, the retrieved values for this parameter are 
always less than 3% off from the original. This is negligible, and will not have any percep-
tible influence on the reconstructed mean annual layer thicknesses.  

The mean layer trajectory parameter, Ô, is determined extremely precisely. This is in 
particular true for small levels of white noise, but even for large values, this parameter is 
being determined with a precision of �0.5%. No bias appears to exist. The robustness of 
this estimate even for large parameter values is due to the ability of the method to place 
more emphasis on derived parameter estimates from sections of the observation sequence 
where the layering is the most obvious.  

The parameters describing the two types of variation in the annual layer expressions (Φ 
and �Æ�) also seem to be determined without any major bias. However, for small white 
noise variance values, the discrepancy is largest, and biased towards too high estimates of 
both Φ and �Æ� . This may partly have to do with the very low values of �Æ� to which they 
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are compared, making even very small absolute discrepancies show up as large percent-
agewise deviations.  

 

 

Figure 8.5.1: Obtained parameter estimates for the Forward-Backward algorithm for different lev-
els of variance and noise in the annual layer signals. The percentagewise discrepancy from their 
original values (denoted as OP etc.) is plotted.   

8.6 Sensitivity to an erroneous input of model 

parameter values 

The reliability of the inferred annual layering in a batch of data does not only depend on 
the amount of variability in the data that is not related to the annual signal. It is also de-
pendent on a properly chosen set of parameter values to describe the annual signal as well 
as its allowed variability. With help of the EM-algorithm it is possible to circumvent the 
dependence of the chosen initial model parameters. By continuously iterating using the re-
estimation equations derived in section 5.3, the most likely set of parameter values for a 
given data sequence can be found. In this section, it will be investigated how sensitive the 
layer detection algorithm is to an erroneous input of model parameter values. Does the 
layer detection algorithm manage to find a correct estimate of these? And how many 
iterations are required before convergence has been reached?  
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All re-estimations in the subsequent sections are made using the Maximum Likelihood 
mode. Apart from an initial (wrong) estimate, the algorithm is not given any information 
on the original set of layer parameters which have created the data series. Similar sensitiv-
ity studies could have been performed in Maximum a Posteriori mode of layer parameter 
re-estimation, as formulated in section 5.4. However, such studies would not give much 
additional information on the sensitivity of the algorithm. Contingent on the appropriate-
ness of the prior information used as input, a Maximum a Posteriori approach will simply 
converge faster.  

The rate, with which the algorithm is converging to a Maximum Likelihood estimate of 
the model parameters, is dependent on the degree of variability among the individual 
annual layer signals. For all sensitivity studies below, the data series are constructed using 
the model parameters O< = −4.25, �< = 0.3, ? = 1, Φ = 0.5�, and �Æ� = 0.5�, which 
also were used previously.  

The sensitivity studies are carried out as follows: One of the five parameters at a time is 
initiated at a wrong value. The remaining parameters are initiated using their correct 
value. From here on, all parameter values are allowed to vary as they prefer. The algo-
rithm is asked to perform 10 iterations of re-estimating the parameter values. This is done 
for an ensemble of 200 different observation series of approximately 50 layers each, 
which have all been constructed based on the same set of parameter values. At each step 
of the iterations, the distribution of the individual parameter values is considered based on 
the ensemble results. These distributions can be summarized using e.g. median and quar-
tiles, and the evolution of these with iteration number portrays the convergence properties 
of the annual layer detection algorithm.  

Even after having reached convergence, the distributions of the annual layer parameters 
have a certain spread. This is to be expected. Each of the observation sequences contain 
only about 50 layers, and the computation of a best estimate of the layer parameters based 
on solely 50 layers cannot be done with high accuracy. Take e.g. the layer thickness 
parameters. The logarithm to the layer durations follows a normal distribution with mean O< and standard deviation �<. Based on a sample of ü = 50 layers, the uncertainty of the 
mean of the layer thickness distribution can only be estimated with a certainty of [J R 
Taylor, 1997]: 

��£ = �<
√ü 

which in this case equals 0.04. The uncertainty in the estimation of the standard deviation 
of the distribution based on merely 50 samples is even larger. The fractional uncertainty in 
the estimation of �< is given as follows [J R Taylor, 1997]: 

F�Z Q r�Z�	G� t�QZ �QC	 �	�< = 1
�2(ü − 1. 

This implies that in our case, the value of �< can only be estimated with an uncertainty of 

10%. Likewise for the other two parameters defining the spread of a distribution, √Φ and �Æ, which can be estimated with an uncertainty of respectively 10% and 3% (as each 
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observation sequence contains approximately 700 observations). With the chosen value of Φ, the uncertainty of the value of the parameter Ô is 0.07 (table 8.6.1).  

 Layer thickness distribution parameters 8.6.1
First, the impact on the model results of a wrong initial estimate of the layer thickness 
distribution parameters O< 	and �< will be investigated. The value of these wrong parame-
ter estimates are chosen as extreme, and sudden changes of this size are not very likely to 
occur in reality. 

Figure 8.6.1 shows the evolution of the five model parameters when starting out with a 
wrong initial estimate of O<, i.e. with a layer thickness far from the original. With the 
selected initial values of O<, the value of this parameter reaches an almost stable level 
after just 2 iterations. Also the distributions of the remaining variables have at this point 
reached an almost constant mean. Yet, not all the variables have reached complete con-
vergence yet. The spread of the distribution of Ô is still increasing, and has not yet 
reached its theoretical value (table 8.6.1). The standard deviation of the remaining pa-
rameters is very close to that theoretically predicted.  

The recovered parameters are very close to the original ones. Yet, it should be mentioned 
that the value of �< generally tends to find a level slightly too low. This was also the 
conclusion from the previous section, where the model parameters used as input to the 
algorithm were known, and the explanation is the same: It is a consequence of the way 

 

Figure 8.6.1: Ring-down of parameter values when starting the layer detection algorithm at wrong 
values of O<. The median as well as the 25% and 75% quantiles of the distributions are marked. 
The original value of O< is rediscovered after 2 iterations, and after 10 iterations, only the layer 
shape parameter Ô has not yet recovered a completely stable level.  
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 O< �< Ô √Φ �Æ 
Theoretical mean -4.25 0.3 1 0.5 0.5 
Observed mean -4.251 0.296 0.998 0.494 0.500 
Theoretical STD 0.042 0.030 0.071 0.051 0.0134 
Observed STD 0.045 0.034 0.053 0.057 0.0146 

Table 8.6.1: Descriptive statistics (mean and standard deviation (STD)) for the theoretical and ob-
served distribution of the five model parameters. The observed distribution is a composite of those 
reached after the 10’th iteration, when starting out with wrong estimates of the parameter O<. 

that the algorithm interpolates over sections with little layer signal in an attempt to make 
the best use of these. The same tendency of an inferred value of �<, which is slightly too 
low, applies to all iterations for all parameters.  

Also Φ appears to have a slight tendency toward a value too small. However, this might 
just be a consequence of the parameter Ô not yet having reached a stable level.  

Very much the same scenario unfolds itself for the scale parameter of the layer thickness 
distribution (figure 8.6.2). With the chosen initial values of �<, it here takes the algorithm 
about 3 iterations to reach stability, and again it reaches stability at a level slightly too 
low. The parameter Ô is again the slowest one to converge, and although the mean of the 
distribution stays around 1, as it should, the standard deviation has not ceased to increase 
after the 10 iterations. 

 

Figure 8.6.2: Ring-down of parameter values when starting the layer detection at wrong values of �<. The median as well as the 25% and 75% quantiles of the distributions are marked. The original 
value of �< is rediscovered after 3 iterations. 
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The parameters describing the distribution of the annual layer thicknesses have a large 
impact on the resulting number of counted annual layers. Fortunately, it was seen that in 
this relatively simple case, the model is able to retrieve the correct value of these parame-
ters after just a few iterations of the Forward-Backward algorithm. However, the 
dependency of a wrong initial input to the model is highly dependent on the overall diffi-
culty of recognizing the annual layers in the data. In case of easy recognizable layers, the 
large amount of information in the data ensures the algorithm to very quickly converge to 
an appropriate set of parameter values. In case of less optimal conditions where the annual 
layering is less apparent, the annual layer detection algorithm is being guided less by the 
data and consequently more by the annual layer thickness distribution. In this case, a poor 
initial estimate of the parameters describing this distribution will have larger effect.  

 Annual signal parameters  8.6.2
The parameter Ô, which describes the mean annual layer signal, turns out to be the param-
eter which is struggling the most to reach convergence. Even after 10 iterations, none of 
the runs with different choice of initials parameters has managed to reach a stable level 
(figure 8.6.3). All of them are heading in the right direction, but in comparison to what 
was the case for the remaining parameters, convergence is slow.  

The slow convergence of Ô also affects the derived values of Φ. Whereas Ô describes the 
mean trajectory of a layer signal, the value of Φ describes the variability of the individual 

 

Figure 8.6.3: Ring-down of parameter values when starting the layer detection at wrong values of 
the mean annual layer signal parameter Ô. The median as well as the 25% and 75% quantiles of 
the distributions are marked. The value of Ô is seen to converge relatively slowly, and have not 
reached a stable level after 10 iterations.  
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layers around this mean signal. The two are therefore closely connected: The further Ô is 
away from its original value, the more variability of the layers around their hereby as-
sumed mean trajectories is required.  

The evolution of the annual layer signal parameters Φ and �Æ� (figure 8.6.4 and figure 
8.6.5) is very similar to the rest. After three iterations, all parameters have reached a more 
or less stable level, only the distribution of Ô may not have reached convergence quite yet. 
Observe the high accuracy with which the parameter �Æ� is determined. This is due to each 
observation in the observation sequence contributing to the estimate of this parameter.  

To conclude: The annual layer parameters generally behave nice, and are converging 
towards their Maximum Likelihood estimates, which are almost perfectly the same as the 
original parameters which went into the construction of the observation sequence to begin 
with. Only two issues need to be kept in mind: The most critical is that the parameter 
describing the mean annual layer signal, Ô, is the one which has the most trouble to reach 
convergence. It does converge, but convergence happens slowly. Hence, the algorithm is 
the most sensitive to changes in this parameter. The second issue is less of a concern: The 
value of �< is continually being estimated slightly too low. However, as the algorithm 
relatively easily adjusts the value of �< within a few iterations, this should not have much 
effect on the performance of the layer detection algorithm in practice.  

 

Figure 8.6.4: Ring-down of parameter values when starting the layer detection at wrong values of D, which express the variability of the individual layers around their mean trajectories. The medi-
an as well as the 25% and 75% quantiles of the distributions are marked.  
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Figure 8.6.5: Ring-down of parameter values when starting the layer detection at wrong values of �Æ�, the variance of the white noise component in the data. The median as well as the 25% and 75% 
quantiles of the distributions are marked.  

 Varying all parameters at once 8.6.3
In the previous section, each of the layer parameters was given a badly chosen initial 
value, while the rest of the parameters were initiated at their original values. To fully 
ensure that the convergence of the layer detection algorithm does not depend on the initial 
set of parameters, a final test was made in which all initial parameter values were chosen 
freely.  

To nonetheless guide the layer detection algorithm a little bit, the initial parameters were 
randomly chosen as follows: O< 	~¹(−4.25, 0.2�), �<~¹(0.3, 0.1�), Ô	~	¹(1,0.1�), Φ	~	¹(0.5�, 0.1�), and �Æ�	~	¹(0.5�, 0.1�). The layer detection algorithm was then left 
to iterate. An ensemble of 500 different observation sequences and differently selected 
initial parameters was hereby constructed. The resulting distributions of the parameter 
values after the 10th iteration are shown in figure 8.6.6. Once again, it can be seen that the 
algorithm has managed to locate the Maximum Likelihood solution of the set of model 
parameters, which is almost equal to the set that the observation sequences were con-
structed with. Only the mean layer trajectory parameter, Ô, is struggling. Based on the 
previous considerations, this is not a surprise. Further investigations indicated that when 
the mean layer trajectory parameter was chosen very broadly, convergence had simply not 
yet been achieved after just 10 iterations.  
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The annual layer model used here is of course a very simple model, and the observations 
are constructed such as to accurately be described by the model. In reality, things get more 
complicated. This may result in a decrease of the ability of the iterations to swiftly con-
verge towards a proper set of Maximum Likelihood parameter values. Yet, the relative 
ease with which the algorithm is able to properly locate the correct set of model parame-
ters in this less demanding case is encouraging.  

 

Figure 8.6.6: Resulting distributions of the inferred parameter values after 10 iterations, when 
starting from an initial set of parameters randomly selected as described in section 8.6.3. 

8.7 Performance of layer detection algorithm  

In general, the annual layer detection algorithm is very robust towards even large degrees 
of noise in the data. For some of the combinations of parameters with high noise levels, 
the annual layer signal in the resulting data series would have been difficult to spot with 
any great deal of certainty by a human investigator. The Viterbi and Forward-Backward 
algorithms, on the contrary, are able to do this counting in an unbiased manner due to 
knowledge on the annual layer thickness distribution in combination with a robust meas-
ure for judging what is an annual layer.  

If provided by an initial wrong input of the model parameters, the algorithm is able to 
iterate its way to the maximum likelihood parameters. With the employed model, and the 
chosen noise value of the data, only a few iterations were usually required before conver-
gence was reached. The parameter that converged at the slowest rate was the parameter 
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describing the mean layer trajectory. It did not manage to reach equilibrium after 10 
iterations.  

However, the method does have a tendency to obtain too small values for the layer thick-
ness distribution scale parameter, 	�<. The bias of this parameter is a generic imperfection 
of the algorithm, which simply derives from the desire to use the thickness distribution of 
the annual layers to determine the most likely layer boundaries in sections where these are 
not obvious. As a result, the layer distribution will be slightly less broad than it ought to 
be.  

Results here have generally been based on the results of the Forward-Backward algorithm. 
The performance of the Forward-Backward algorithm and Viterbi algorithm is, however, 
very similar. They each have their own stronger sides, but in the wish of obtaining an 
uncertainty estimate associated with the resulting layer counted timescale, the Forward-
Backward algorithm is to be preferred. In the following, results based on the Viterbi 
algorithm will therefore only be used to see how well the two agree with each other, and 
therefore how much the obtained layering depends on the specific assumptions in the 
definition of a best timescale for an observation segment.   
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 9. Layer	counting	in	data	from	

different	climate	regimes		

In this chapter, the developed layer detection model based on Hidden Markov Modeling 
will be applied to the visual stratigraphy data from the NGRIP ice core over a Dansgaard-
Oeschger event. Two intervals will be considered: The Greenland Stadial 13 (GS-13, 
GICC05: 47051-48261 years BP), a cold period from the depth interval 2225-2240m, and 
the subsequent warm period, the Greenland Interstadial 12 (GI-12, GICC05: 45927-46770 
years BP) from the depth interval 2000-2220m. Given that the annual layer signal in the 
visual stratigraphy data is more distinct during the cold periods, the method is likely to 
work better here. The layer detection algorithm will also be applied to data from the 
transitional period between the two climate regimes.  

The inferred layering is not to be considered a ‘perfect chronology’. The implementation 
of the layer detection algorithm with regard to the description of an annual layer is still 
very simple, and compared to the complexity of the annual layer signal in the visual 
stratigraphy probably too simple. The complexity can be seen from the different outcomes 
of the layer detection algorithm when using different models for describing the annual 
layer signal. However, the dissimilarity between individual model results should be seen 
in context of the visual stratigraphy being a very noisy data sequence. For instance, many 
annual layers display more than just a single peak. Judged from a visual inspection, the 
outcome of every one of the models is indeed a probable result. The main difference 
between the individual model results lies in the differences of judging how many of the 
extra peaks should be considered to be annual layers. 

One way to think of the algorithm with various annual layer models as input is to consider 
each of these as equivalent to an ‘annual layer counter’. Just as every human investigator 
counting the layering in these data would come up with his/her own result (and different 
uncertainties), so do these. Some are probably better able to judge from the shape of a 
peak whether or not it should be counted as a layer, but it is not always immediately clear 
who is able to do the least biased overall counting. The same is the case here. Yet, in 
comparison, the force of this algorithm lies in its objectivity of judging an annual layer 
signal.   
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Before applying the model to the visual stratigraphy data, the data has been normalized to 
make the annual layer signal stand out more clearly. This is yet another potential reason 
for variability between individual model results. Depending on the applied normalization 
routine, some peaks may be enhanced while others will be degraded, with the overall 
result being a difference in the resulting number of counted layers. Throughout the results 
here, the normalization procedure has been kept simple and the same.  

The GICC05 chronology in this section of the ice core has mainly been based on the 
conductivity and visual stratigraphy. For the exact placement of the layer boundaries, the 
peaks in the conductivity have been used. The conductivity profile was found to show sign 
of most of the annual layers [Svensson, pers. comm.], and its smoothness made it easier to 
use this profile for annual layer counting. An obstacle in the performance assessment of 
the annual layer detection algorithm on real data is the existence of small differences in 
depth scale between the visual stratigraphy and the conductivity data. To alleviate this 
obstacle, the GICC05 annual layer boundaries have been transferred to the visual stratig-
raphy before comparison.  

The evaluation of the algorithm performance is furthermore made difficult by the GICC05 
chronology not necessarily being very accurate when dealing with short intervals 
[Svensson et al., 2008]. Indeed, the data on which the counting has been based within the 
considered depth interval does not allow for very firm annual layer detection to be carried 
out. The annual layers are thin, and only few data series are able to resolve them. Howev-
er, this is the case for the most part of the depth interval for which high quality visual 
stratigraphy data exist.  

9.1 Preprocessing of data 

 Normalization of data 9.1.1
Before applying the layer detection routine to the visual stratigraphy data, the data was 
preprocessed using a normalization routine. This was primarily done with the purpose of 
increasing the similarity between individual layers. The use of appropriate data prepro-
cessing generally tends to have large influence on the performance of machine learning 
techniques [Bishop, 2006], and this is also the case here.  

The general idea behind preprocessing the data is to remove some of background variabil-
ity not related to the target signal, which in this case is the seasonality signal. For this 
application, preprocessing was also used to stabilize the heights of the annual layer peaks, 
thereby removing some of the variability associated with the seasonal signal itself. By 
reducing the variability of the seasonal pattern, the general task of pattern detection be-
comes much easier. 

Preprocessing of the visual stratigraphy data series can be done in a variety of ways, and 
only a very simple transformation has been used here. Firstly, data was log-transformed in 
order to minimize the peak heights of large peaks. Secondly, to remove a varying back-
ground signal, the data was then treated by subtracting a running mean. The window 
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length used for the running mean was 10 cm, and hence contained several annual layers. 
An example of the resulting data series can be seen in figure 9.1.1.  

Other more sophisticated preprocessing procedures of the data series may make the annual 
layer signal stand out better. Several of these were tested (using Box-Cox transforms 
[Madsen, 2008], normalizing to a constant standard deviation etc.). However, there was no 
time to investigate these in details, and at this point, it is difficult to justify more compli-
cated procedures. However, it must be stressed that the choice of preprocessing regulates 
which peaks signals are enhanced and which are not, with large implications for the sensi-
tivity of the algorithm to different types of peaks. In the future, much more time should be 
devoted to such investigations. Meanwhile, the results produced with the current, very 
simple, configuration are quite promising.   

In figure 9.1.1, the differences in outcome of the algorithm when using the original data 
(A, B) and the processed data (C, D) are shown. The layer detection algorithm based on 
the original data shows some skill, but an improvement in performance is evident when 
including the preprocessing. In both cases, the derived annual layer positions are fairly 
similar, and the Forward-Backward algorithm ends up with the same most likely estimate 
of the number of annual layers contained in the sequence (which is one less than in 
GICC05). Yet, the improvement in performance is indicated by the original data leading 
to much broader uncertainty bands, and from the difference between the inferred layering 
when using the Forward-Backward algorithm and the Viterbi algorithm. For the processed 
data, there is no difference between the two.  

 

 

Figure 9.1.1: Examples of original (A) and preprocessed data (C), and output of the layer detec-
tion algorithm using these (B,D). A cosine is used as trajectory function.  
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Furthermore, the line-scan data was down-sampled to 1mm resolution. While decreasing 
the resolution of the data series, such down-sampling decreases the length of each obser-
vation sequence drastically. This makes the algorithm run much faster, which again allows 
for more tests to be carried out. However, the down-sampling does put a limit to the 
annual layer thicknesses which can be resolved. In practice, this is probably not a problem 
for the considered data intervals, where annual layer thicknesses are above 1 cm, but it 
may be a problem for ice core sections where the annual layers are much thinner.  

 Calculating slope and curvature 9.1.2
Including more information in the annual layer detection algorithm by considering several 
data series at once should improve the performance of the algorithm. This turned out to be 
true even if the involved data series were not independent, but derived as derivatives of a 
master data series.  

By taking the derivative of a data series, trends in the data are removed. However, at the 
same time, the noise-level is enhanced, and the signal-to-noise ratio therefore decreased. 
A signal in the derivative data series is therefore generally simpler, but noisier. To ensure 
that the signal in the data series derivative is not completely masked by noise, the visual 
stratigraphy data series was smoothed prior to taking the derivatives. This was achieved 
by Savitzky-Golay smoothing, which is a smoothing filter specifically developed for 
computing the derivative of a noisy data series.  

The basic idea behind this type of smoothing is simple. Instead of computing the deriva-
tive of a data series by point to point differences, a linear function is fitted to the data in 
the neighborhood of any given point by linear regression. The slope of the best fitting 
straight line gives an estimate of the slope of the data here. Likewise, a second order 
polynomial may be fitted to the data in the surrounding neighborhood, and the derived 
slope and curvature gives an estimate of the slope and curvature of the data. The polyno-
mial order employed and the size of neighborhood used for fitting determines the degree 
of smoothing of the data series. In our case, the smoothing was kept to a minimum. Only 
the immediately surrounding observations were used as neighborhood, a first order poly-
nomial was used to derive the slope of the data series, and a second order polynomial to 
derive its curvature. The master data series itself was not smoothed.  

9.2 Layer detection during a cold period 

In this section, the layer detection algorithm will be applied to the visual stratigraphy data 
from the Greenland Stadial 13 (GS-13). This section covers the depth interval from 2225-
2240 m, and a time period of approximately 1200 years (47,051-48,259 years BP accord-
ing to GICC05). Within this section, the GICC05 chronology predicts a general thinning 
of layers with depth.  This thinning seem to have a counterpart in the ���O-record, and it 
is therefore likely to be a real feature (figure 9.2.1). 
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Figure 9.2.1: Evolution of ���� and mean annual layer thickness (¶) over the selected depth inter-
val. The two curves have been treated slightly differently, and are therefore not directly 
comparable: ���� is given as 20 year means, whereas ¶-values are given as 50 cm means. The red 
area is the section considered from the warm period GI-12 (section 9.3). The blue area is the part 
of the previous stadial, GS-13, which is considered in section 9.2. 
 

Figure 9.2.2: The annual layer expression in the visual stratigraphy data during the cold period. 
A: The mean annual layer shape, and corresponding 1� and 2� variance intervals. B: The covari-
ance between individual observations in a layer trajectory. 

Within the interval, climate conditions appear to have been relatively stable, and it is 
therefore possible to run the algorithm in the simplest way possible: The appropriate 
parameter values were estimated based on the layers contained within the first 0.5 m of the 
data, and these parameter values were maintained as fixed values throughout the entire 
period. Observe that even though the employed parameter values in this way are based on 
the first part of the data sequence, this does not necessarily imply a flawless performance 
of the algorithm within this interval. 

 

A B 
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A range of annual layer signal models were tested. When considering how appropriate 
these models are, their postulated mean trajectory and covariance between individual 
observations in a layer should be compared to figure 9.2.2A&B, which shows the trajecto-
ry and covariance from the GICC05 layers. The results of the respective annual layer 
models will be described in the following.  

 A simple cosine as trajectory function 9.2.1
In figure 9.2.3 the resulting annual layering in the depth interval under consideration is 
shown, when using a cosine as shape for the layer trajectories (M is duration of the layer): 

F(´) = � cos ª2�´M « ,				´ ∈ J0,1j 
With only a single parameter to adjust, namely the amplitude of the waveform (�), this is 
one of the simplest functions imaginable which may be able to provide a basis for the 
annual layer signal. In contrary to the sine function used in the sensitivity studies, fitting a 
cosine function to the individual layers separately does not imply the joined fitted curve to 
be continuous. However, by choosing a cosine instead of the sine, the annual layer bound-
aries will be placed on the peaks, hence allowing a direct comparison to the GICC05 layer 
boundary positions. 

However, from the results it can be seen that the simplicity of the layer shape comes at 
cost of the performance of the algorithm: Significantly fewer layers are being counted. 
The discrepancy between the inferred number of layers and the number of layers in 
GICC05 is 12.6% (figure 9.2.3C). By considering the evolution of the mean layer thick-
nesses (figure 9.2.3D), it can be seen that the algorithm throughout the section has a 
tendency of counting too few layers, but lacking most in the last part of the section.  

Although the resulting timescale does not agree that well with the GICC05 timescale, 
most of the inferred annual layer boundaries seem to fit well with GICC05 layer bounda-
ries. A larger example of the inferred layering is included in figure 9.2.7. The computed Δ-
value equals 0.21 cm, and using an effective layer thickness of 1.37 cm (an average value 
found using the GICC05 layer boundaries for the interval), we find that Δ/¶677 % 0.153, 
which is much lower than what was found for an arbitrary sequence (0.24). However, the 
difference in total layer count between GICC05 and the here employed model may be too 
large for the similarity measure Δ  to be trustworthy.  

When looking at a section of counted layers (see e.g. figure 9.2.3E), the reason why too 
few layers are counted can be found: By defining layer trajectories to be described by a 
cosine, it is implicitly assumed that two consecutive peaks have the same height. By 
comparing to the GICC05 annual layers, this is seen to not be a very good assumption. 
Individual annual peaks do not have similar heights, and hence two consecutive peak 
values may be very different. As a consequence of not allowing peak values to differ, an 
annual layer with very dissimilar peak heights at its boundaries is not counted as such.  
Perhaps the clearest example within the illustrated section is found around 2233.3 m. 
Here, the algorithm infers the existence of an annual layer which indeed is very broad (and 
for this reason not very likely), but this is being compensated for by its resemblance to a  
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Figure 9.2.3: Performance of the annual layer detection algorithm when using a cosine as trajec-
tory function. A: Assumed mean layer signal and corresponding 1� and 2�-variability bands. B: 
Assumed covariance matrix for the layer trajectories. C: Resulting inferred timescale when com-
pared to the GICC05. Gray bands show the Maximum Counting Error (MCE) for the GICC05 
chronology. Red bands show the 50% and 95% confidence interval for the inferred layering. D: 
Resulting mean annual layer thicknesses per 50 cm, compared to GICC05. E: An example of the in-
ferred layering. The alternating background pattern of light and dark gray bands show the 
positions of GICC05 layers boundaries. Uncertain layer boundaries are marked with white hori-
zontal stripes. Red bars are inferred layer boundary positions when using the Forward-Backward 
algorithm, purple bars show the layer boundary positions based on the Viterbi algorithm. 
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cosine. If the section was to be divided up into 2 or 3 layers, as implied by the GICC05 
timescale, none of these would be very well described by a cosine.  

Indeed, the assumption of a cosine trajectory does not describe the mean annual layer 
trajectory very well (compare figure 9.2.3A to figure 9.2.2A), and nor does it pick up 
much of the real variability of the annual layers. This can be seen from the postulated 
covariance of the layer trajectories when using this model (figure 9.2.3B). For compari-
son, the covariance of the observed layer trajectories derived based on the GICC05 annual 
layer boundaries is found in figure 9.2.2B.  

When using this model, most of the variability of the individual annual layers from the 
mean annual layer trajectory is caused by a high value of the white noise component on 
the layer shape (�Æ� = 0.35, Φ % 0.05, Ô % 0.65). This is seen as the line of high variance 
levels cutting across the middle of the covariance matrix. The variability of the layer 
trajectories themselves is small. When assuming a cosine as shape function, a high peak 
will always be connected to a deep trough. Even when allowing the peak heights to vary 
from layer to layer, this relationship is postulated to hold for all layers, hence giving rise 
the checkerboard pattern vaguely present in the plot of the covariance pattern in figure 
9.2.3B. However, such correspondence between peak and trough amplitudes does not hold 
for the observed annual layers, whose variance therefore must be described by other 
means. The variability around the mean annual layer curve must therefore to a large 
degree be explained as independent noise on the individual observations, i.e. white noise. 

The above illustrates that the performance of the layer detection algorithm entirely de-
pends on the selection of an appropriate layer signal model. Having asked it to search for 
“cosine-like” layers, this is exactly what the algorithm finds. In this case, such assumption 
is just too much of an approximation.  

 A more complex cosine-based trajectory 9.2.2
From the previous section it is seen that a plain cosine function is not able to reproduce 
the layering in the visual stratigraphy data well enough to detect also the more abnormally 
shaped annual layers. The next question arising is therefore: How can the annual layers be 
described in a more elaborate fashion, which allows the individual layers to conform to a 
more variable shape? 

For this purpose, the following was selected as layer trajectory function (M is duration of 
the layer):  

F(´. % � cos2�´M / � ª´ ) 12« / �,			´ ∈ J0, 1j 
By adding the second term, a straight line crossing zero at ´ % 0.5, the layers are allowed 
to have different peak height at either side. The advantage of the above formulation is that 
the average value of the parameter � can be tied to a value of zero: For reasons of sym-
metry, equally many layers will have a high starting value and a low ending value as the 
opposite. By furthermore adding a constant term, it has been taken into account that most 
layers have a relatively sharply defined peaks, and broader valleys. Hence, even if a 
running mean is subtracted during preprocessing of the data, a fitted cosine curve will 
generally have a mean value that is slightly positive.  
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Figure 9.2.4: Results when using a cosine function combined with a linear function. A, B: Mean 
trajectory and covariance matrix used as input to the algorithm. C, D: Inferred timescale and de-
rived layer thicknesses. E: An example of the interfered layering in a small section. The 
background banding shows the GICC05 layers, uncertain layer boundaries are marked with white.  

The increased flexibility of the layer shape trajectories gives rise to a covariance pattern, 
which, with its broad elongated shape (figure 9.2.4B), is fairly similar to that found for the 
GICC05 layers. Due to the generally improved fitting of the layer shapes, more of their 
variability can be attributed a different shape of the layer trajectory. The estimated degree 
of white noise on the data series is hereby decreased. 
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As it is seen from figure 9.2.4C, the improvement in performance of the algorithm is 
evident. In fact, throughout the entire interval, the discrepancy relative to the number of 
counted layers in GICC05 is merely 5 layers, corresponding to a relative discrepancy of 
just 0.4%, and the two age estimates are within the uncertainty bands of both. The similar-
ity between the two can also be seen from the evolution of the layer thicknesses with 
depth. When using this model to describe the annual layers, the modeled annual layers – 
despite having as input a relatively high annual layer thickness as corresponding to the 
first half meter of the section – are displaying the same decreasing trend with depth as the 
GICC05 annual layer thicknesses.  

However, not all annual layers are paired up one to one. Some GICC05 layer boundaries 
are lacking, while other layer boundaries counted in the visual stratigraphy are not indicat-
ed as boundaries in GICC05 (an example can be found in the VS data at a depth of 2233.4 
m). In total, 9.7% of the layer boundaries cannot be paired up, i.e. averaging to ~5% in 
each data series (table 9.2.1). But on average there is an equal amount of each, and the 
resulting timescales match up quite nicely. Also the value of Δ/¶677 % 0.13 is small, 
meaning that the inferred layer boundaries are placed much similar to those in GICC05. It 
is, however, no surprise that the layer boundaries which are not found, are not taken to be 
such boundaries. Mainly, this happens at locations where the annual layer signal in the 
visual stratigraphy is doubtful or non-existing.  

 A polynomial trajectory 9.2.3
Yet, some things point towards areas of improvement. None of the described cosine based 
annual layer models were able to reproduce the sharp peaks and broad troughs of the 
observed annual layers in the visual stratigraphy intensity profile. In order to allow the 
annual layer model to conform better to such a shape, a polynomial layer trajectory model 
was tested: 

F(´) % � ª´ − 12«� / � ª´ ) 12« / �,			´ ∈ J0, 1j 
Again, this particular choice of second order polynomial was chosen for symmetry rea-
sons: It is a good approximation also here to tie the mean value of � to 0, hence allowing 
equally many high peaks in the beginning as in the end of a layer.   

It can be seen from figure 9.2.5A that this type of model is better at recreating the general 
annual layers observed in the visual stratigraphy data. Its covariance along the trajectory 
also has an expression which is fairly similar to what has been observed.  

Although the obtained timescale does not follow the GICC05 chronology as close as the 
elaborated cosine function described in the previous section, the two are seen to mainly 
deviate in the last part of the profile, where the GICC05 layer thicknesses are decreasing 
faster than what is inferred by the algorithm (figure 9.2.5C,D). Especially in the first 5 
meters of the considered section, the GICC05 and the modeled layer chronology follow 
each other quite nicely, and throughout the section, the inferred number of annual layers is 
within the maximum counting error band of the manually counted timescale.  
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Figure 9.2.5: Results when using a second order polynomial as trajectory function. A, B: Mean 
trajectory and covariance matrix used as input to the algorithm. C, D: Inferred timescale and de-
rived layer thicknesses. E: An example of the interfered layering in a small section. The 
background banding in gray colors shows the GICC05 layers, uncertain layer boundaries are 
marked with white.  

The much improved shape of the modeled annual layer trajectories with sharp and more 
well-defined peaks, results in the exact location of the layer boundaries to be determined 
more precisely with this model than the previous ones, which is seen as a decrease in the 
value of Δ/¶677 to 0.12.   
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Figure 9.2.6: Using a third order polynomial as trajectory function. A, B: Mean trajectory and co-
variance matrix used as input to the algorithm. C, D: Inferred timescale and derived layer 
thicknesses. E: An example of the interfered layering in a small section. The background banding 
shows the GICC05 layers, uncertain layer boundaries are marked with white.  

Also a third order polynomial was tested out. The results obtained for this model (figure 
9.2.6) were very similar to those derived when using a second order polynomial. Although 
the model does count a few layers more than found by the second order polynomial mod-
el, it still tends to count too few layers compared to GICC05. But again, the discrepancy 
between the two is mainly within the last couple of meters of the section in consideration.  
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With increasing complexity of the annual layer model, the model has a better chance to fit 
the full spectrum of possible layer expressions in the data series. But it happens at the 
expense of an increasing number of tunable model parameters. In case such parameters are 
not known beforehand, it will cause the counting results to be less reliable, as they may 
depend on the exact choice of parameter values. It seems that a third order polynomial 
model may not be well-enough constrained based on just a small section of the data, and 
this causes a slightly strange pattern in the covariance matrix to occur. Such covariance 
matrix is used as input to the model, even if it may not be the best estimate. As further-
more it seems that the performance of the layer detection algorithm does not increase 
much by adding the extra terms, the results obtained using this model has not been includ-
ed in the following. 

 Comparison of model results 9.2.4
A 1 m section of the inferred layering according to the four different annual layer models 
is shown in figure 9.2.7. By comparing the exact placement of the layer boundaries, it is 
clear that the main difference between the individual models is generally not the 
placement of layer boundaries, where these stand out relatively clearly also from a manual 
counting prespective. To a great extent, disparities among the models are due to 
differences in how many layers are counted where the intensity profile does not have a 
clear layer expression. An example can e.g. be found at a depth of 2232.9 m, where the 
annual layer expression in the data series is vague. It can also be seen, as mentioned 
previously, that the polynomial layer models in general are able to place the layer 
boundaries a tad more accurately than those based on a cosine function. A summary of the 
results from the individual layer models is included in table 9.2.1. 

Figure 9.2.8 shows a comparison between the individual model results of the derived 
mean annual layer thicknesses in 50 cm sections. By considering the mean annual layer 
thicknesses in small sections, the amount of detected layer boundaries are integrated, and 
the results are therefore easier to compare. The mean annual layer thicknesses in the same 
intervals based on the GICC05 chronology are also shown.  

There is a striking resemblance between the individual model results. In particular, when 
not considering the model based on the pure cosine, which previously was shown to be too 
simplistic for this purpose, and generally not yielding very good results. These four model 
results are almost independent. Yet, they all are based on the same preprocessing of the 
visual stratigraphy intensity profile prior to analysis (hereby enhancing some peaks on the 
expense of others). And also the fixed model parameters going into the annual layer 
detection algorithm was based on the same 50 cm of layers in the beginning of the entire 
section. But the model parameters themselves in each of the three models are different, 
and so is the shape that they are looking for in the data.  

Their similarity does pose the question whether a fresh manual layer counting exercise in 
e.g. the interval around 2233 m would yield a different result with fewer layer boundaries 
detected. However, it may also be that within this interval, there are simply more layers 
with a vague or ambiguous expression, which the layer models employed here have not 
been able to pick up. And one should always remember that the manual counting also  
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Figure 9.2.7: The inferred annual layering according to the four different layer models from the 
depth interval 2232-2233m. A: Simple cosine. B: Cosine plus a first order polynomial. C: Second 
order polynomial. D: Third order polynomial. The bright and dark gray banding in the background 
marks the GICC05 layer boundaries, with white stripes being uncertain layer boundaries. 
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Figure 9.2.8: Comparison between derived mean annual layer thicknesses in sections of 50 cm for 
the selected depth interval between 2225-2240 (cold period). A: Simple cosine. B: Cosine plus a 
first order polynomial. C: Second order polynomial. D: Third order polynomial. For all, the black 
line is the resulting layer thicknesses based on GIOCC05, and the gray band is the Maximum 
Counting Error. The vertical band in light gray band show the location of the layering example in 
figure 9.2.3E, figure 9.2.4E, figure 9.2.5E, and figure 9.2.6E.  

used information from other data records than the visual stratigraphy, whereas the layering 
inferred here only is based on the visual stratigraphy data. 

From figure 9.2.8, the uncertainty with which the annual layer models have estimated the 
annual layering can be seen. These uncertainties assume the correctness of the annual 
layer model and should be regarded as a lower limit of the uncertainties. To alleviate this 
dependency on the model, a more correct estimation of the uncertainties ought to be based 
on a collection of annual layer models.  

The annual layer model based on the cosine has a quite large uncertainty band, implying 
that the model often cannot conclude with certainty whether something is a layer or not. 
This can also be seen from the somewhat larger differences between the results obtained 
from the Forward-Backward algorithm and the Viterbi algorithm. This is due to the cosine 
being a too tight and simplistic description of how an annual layer is expressed in the data. 
The remaining models, with their higher degree of flexibility in the allowed annual layer 
trajectories, estimate the involved uncertainties to be somewhat smaller.  

The inferred uncertainty intervals on the annual layering within each little section cannot 
be fully compared to the Maximum Counting Error (MCE) estimate of the GICC05 chro-
nology. First of all, the MCE is a conservative estimate of the involved uncertainties, and 
although it can be regarded as a 2�-error bound (and as such is comparable to the larger of  
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Trajectory 
function 

� cos ´ � cos ´ + � ª´ − 12« + � � ª´ − 12«� + � ª´ − 12« + � 

 
Forward-
Backward 

Viterbi 
Forward-
Backward 

Viterbi 
Forward-
Backward 

Viterbi 

Δ [cm] 0.21 0.19 0.18 0.17 0.17 0.17 Δ/¶677 0.15 0.13 0.13 0.12 0.12 0.12 > [%] 11.7 12.4 9.7 10.3 10.5 10.9 ü 1031 1002 1199 1177 1136 1115 ��P 1026-1035  1195-1203  1132-1140  ��� 1018-1044  1186-1212  1124-1148  

GICC05 1201�62 years 1204�62 years 1206�62 years 

Table 9.2.1: Performance of three of the layer models during GS-13: The cosine, the cosine plus 
first order polynomial, and the second order polynomial. Results using the Forward-Backwards as 
well as the Viterbi algorithm are noted. The x’te % confidence interval is denoted by ��. As the al-
gorithm has not determined the layering in the very last part of the data section, ‘the last part’ 
being determined separately for each model, the number of GICC05 layers, which the result should 
be compared to, varies slightly from model to model. ¶677 is calculated based on the GICC05 data 
for the entire interval, ¶677GHIIP� = 1.51 cm. As described in chapter 7, F does not include the frac-
tion of layers being discarded due to uncertain years in the GICC05 chronology.   

the two red bands), it takes into account that the manual counting may be biased, such that 
the uncertainty estimates of individual layer boundaries does not partly balance out. The 
layer detection algorithm, on the other hand, assumes the counting to be unbiased. For 
each section, the individual uncertainties are allowed to partly balance each other out, 
thereby causing the resulting uncertainty estimate to grow slower with distance. 

From the above, it is not clear what should be selected as the best model. Apart from the 
pure cosine, which bears all the indications of being just too simple, all the employed 
annual layer models do a decent job, and end up within the Maximum Counting Error 
estimate of the GICC05 annual layer counting.  

The layer trajectory model composed of a cosine plus linear function shows the highest 
skill, and it estimates almost exactly the same number of annual layers as estimated in the 
GICC05. However, the model itself is not flawless. The mean annual layer trajectory does 
not imitate the one found on the basis of the real data very well. A second or third order 
polynomial is able to reproduce the observed shape much better. Yet, none of the models 
seem to be fully able to capture the observed covariance between individual data points 
within a year, and in the future, more time should go into the search for appropriate annual 
layer models. In spite of these limitations of the individual layer trajectory models investi-
gated here, the obtained results turn out to be quite robust among the respective models.  

9.3 Layer detection during a warm period 

The depth interval between 2200-2220 m in the NGRIP ice core covers the last part of 
Greenland Interstadial 12 (GI-12). Within this period, the climate appears to have been 
relatively stable, and the annual layer thicknesses, as well as the general expression of an 
annual layer in the line-scan data, are more or less constant. Also here, it is therefore 
possible to run the layer detection algorithm with all annual layer parameters fixed. These 
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parameters have been determined based on data from the first part of the interval. Howev-
er, due to the increased layer thickness in this interval, robust parameter estimates could 
not be determined based on the first half meter alone. For this reason, layer parameter 
estimates were instead determined based on the observed layering in the first meter of the 
data.  

The annual layer signal in the visual stratigraphy is much more difficult to recognize 
during the warm periods than during the cold periods. In figure 9.3.1 is shown the mean 
layer shapes and corresponding covariance of the annual layers in this interval. Compared 
to the cold period, the shapes are more leveled with relatively small peaks at the bounda-
ries, and the covariance between individual observations is decreasing faster with 
distance, and in that way resembling white noise more than what was the case during the 
cold period. Both of these factors cause annual layer pattern matching to be more difficult 
within this interval.  

Figure 9.3.1: A: Mean annual layer trajectories in the visual stratigraphy data in the depth inter-
val from 2200-2220m, covering the last part of GI-12. Red bands are the 1 and 2� sample 
covariance bands. B: Covariance corresponding to the annual layer trajectories. 

 A simple cosine as trajectory function 9.3.1
The first annual layer model to be considered is again a plain cosine function. The results 
are shown in figure 9.3.2. Also in this case, the assumption of a cosine is a very rigid 
conjecture, which gives rise to a of a strange postulated covariance pattern between indi-
vidual observations within a layer (figure 9.3.2B).  

When considering the resulting timescale, it is seen that although the annual layer detec-
tion with this layer model as input always is counting too few layers, it always stays 
within the maximum counting error of the GICC05 chronology. Indeed, it seems that the 
algorithm is able to point out just about all the certain layers, but that none of the uncertain 
layers are selected. The end result is that the algorithm is counting about 4.5% layers less 
than the GICC05, but as mentioned earlier, this is within the estimated maximum counting 
error band.  

 

 

A B 
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Figure 9.3.2: Using a cosine as trajectory function. A, B: Mean trajectory and covariance used as 
input to the algorithm. C, D: Inferred timescale and derived layer thicknesses. E: An example of the 
interfered layering in a small section. The background banding shows the GICC05 layers, uncer-
tain layer boundaries are marked with white.  

 A more complex cosine-based trajectory 9.3.2
Subsequently, a trajectory function consisting of the cosine plus a first order polynomial 
was considered. The results are shown in figure 9.3.3. This layer model, which showed 
high skill during the cold periods, seriously overestimates the number of layers within the 
warm periods. Apparently, the layer shape is too flexible, allowing too many random 
peaks to be counted as layer boundaries. The total number of inferred annual layers is 25%  
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above the number estimated by GICC05. This is much beyond the uncertainty on the 
manual counting, and the inferred results can therefore be rejected.  

Figure 9.3.3: Using a cosine plus a linear function as trajectory function. A, B: Mean trajectory 
and covariance used as input to the algorithm. C, D: Inferred timescale and derived layer thick-
nesses. E: An example of the interfered layering in a small section. The background banding shows 
the GICC05 layers, uncertain layer boundaries are marked with white.  
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 A polynomial trajectory 9.3.3
Just as it was the case for the layer shape based on a cosine plus a linear function, also a 
second-order polynomial seem to allow too much variety in the individual layer shapes, 
and hence too many peaks are counted as layers. The number of inferred layers is a little 
less than for the cosine-based trajectory function, but still leading to an over-estimation of 
20%. The same was the case when using a third order polynomial, for which the layer 
shape is even more flexible.  

A next question which emerges may then be whether or not this over-estimation can be 
due to a wrong choice of value of the model parameters. The model parameters determine 
how much of the variability within the layer shapes are allowed, and hence have large 
importance for which peaks should be considered as mere peaks, and which ones should 
be considered layer boundaries. Could it be that the layers within the first meter of data, 
which were used to select the employed model parameters, happened to be very variable, 
and therefore did not constrain the model properly? To investigate the effect of the chosen 
set of model parameters on the outcome of the layer detection model, the first 5 m of data 
was used to select a fixed set of model parameters. However, the result turned out almost 
exactly the same with this new set of model parameters.  

 Comparison of model results 9.3.4
In table 9.3.1, the obtained results on the inferred layering during GI-12 are summarized 
for the different trajectory functions. An example of the inferred layering is shown in 
figure 9.3.5.  

The evolution in the obtained mean annual layer thicknesses, based on 50 cm sections of 
data is shown in figure 9.3.4. The cosine function, which did a decent job doing layer 
detection for this depth interval, is different from the rest, and much more alike the 
GICC05. However, the outcomes of the remaining annual layer models are very similar. 
Due to the general lack of agreement with GICC05 on the total number of annual layers, 
this similarity should not be interpreted as a miscounted section of the GICC05. Indeed, it 
implies that all three layer models are counting more or less the same peaks – but not that 
all the peaks counted are annual layers. Rather, it is a sign that the number of peaks in the 
visual stratigraphy, which potentially could be annual layers, is high. Hence, layer detec-
tion in this interval is very demanding on the appropriateness of the applied annual layer 
model and/or a better preprocessing, which is able to enhance the ‘correct’ peaks, and 
suppress peaks which are not related to the seasonal signal. 
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Trajectory 
function 

� cos ´ � cos ´ + � ª´ − 12« + � � ª´ − 12«� + � ª´ − 12« + � 

 
Forward-
Backward 

Viterbi 
Forward-
Backward 

Viterbi 
Forward-
Backward 

Viterbi 

Δ [cm] 0.40 0.4 0.32 0.34 0.29 0.30 Δ/¶677 0.16 0.16 0.13 0.14 0.12 0.12 > [%] 9.6 10.9 13.4 11.8 11.3 10.6 ü 856 817 1046 977 1008 948 ��P 851-860  1041-1052  1003-1013  ��� 844-868  1032-1061  994-1022  

GICC05 839�47 years 840�47 years 840 � 47 years 

Table 9.3.1: Performance of the layer models during GI-12: The cosine, the cosine plus first order 
polynomial, and the second order polynomial. Results using the Forward-Backwards as well as the 
Viterbi algorithm are noted. The x’te % confidence interval is denoted by ��.  ¶677 is calculated 
based on the GICC05 data for the entire interval, ¶677GHIIP� = 2.48 cm.   

 

 

Figure 9.3.4: Comparison between derived mean annual layer thicknesses in sections of 50 cm for 
the selected depth interval during GI-12. A: Simple cosine. B: Cosine plus a first order polynomial. 
C: Second order polynomial. D: Third order polynomial. For all, the black line is the resulting lay-
er thicknesses based on GICC05, and the gray band is the Maximum Counting Error. 
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Figure 9.3.5: A small section of the inferred annual layering during GI-12 for the four investigated 
annual layer models. A: Simple cosine. B: Cosine plus a first order polynomial. C: Second order 
polynomial. D: Third order polynomial. The bright and dark gray banding in the background 
marks the GICC05 layer boundaries, with white stripes being uncertain layer boundaries. 
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9.4 Layer detection during onset of GI-12 

Finally, the layer detection algorithm was tested over a transitional period from cold to 
warm, namely over the onset of GI-12. As for the previous tests, the algorithm was run 
downwards the core, starting in ice deposited during the warm interstadial (with large 
annual layer thicknesses), and towards the older and deeper ice deposited during the 
stadial (small layer thicknesses). From GICC05, the layer thicknesses across the transition 
is known to change with more than a factor two, and also the visual stratigraphy data 
changes dramatically over the transition. Hence, it is not an adequate approximation to 
consider the parameters describing the layer thickness distribution or the mean layer signal 
in the data series as constant across the transition. 

Yet again, the algorithm was tested in the simplest mode possible: Only the mean layer 
thickness was allowed to change with depth. To account for the large evolution also in 
peak height in the data series across the transition, an extra step was taken in the prepro-
cessing of the visual stratigraphy data before analysis: The data was normalized over 50 
cm intervals according to their minimum and maximum values. Apart from a scaling 
factor, such preprocessing does not change the data at any location much, but it ensures 
the signal to maintain approximately the same peak heights down the ice core. The visual 
stratigraphy data changes more with climate, and hence with depth, than what can be 
rectified by merely adjusting the peak height of the signal. These changes were not taken 
into account here.  

The algorithm was given the best starting point possible. With the algorithm starting out in 
a warm period, during which the annual layering was best described with a pure cosine 
function (see section 9.3.1), this was the layer model employed. The parameter input was 
determined based on the first 2 meters of visual stratigraphy data, during which the annual 
layer thicknesses were fairly constant.  

For each batch, the parameter describing the location parameter of the annual layer thick-
ness distribution (O<) was allowed to change. The algorithm was run in Maximum-
Likelihood mode, such that no input regarding prior knowledge on the layer thickness 
distribution was used. The algorithm was allowed to iterate 10 times for each batch, at 
which point it was assumed that it had reached convergence, and a next step was taken. 
The result is shown in figure 9.4.1. 

The result is remarkably good: The layer detection algorithm manages to adapt to the 
changing environment and find an appropriate value of the mean annual layer thickness 
throughout the transitional zone. The inferred timescale can be found in a larger format in 
figure 9.4.2. In fact, the algorithm has most problems in the beginning and end of the 
interval, where the algorithm does not locate enough layers. However, this under-counting 
should come as no surprise. It was exactly the same as what was found when running this 
extremely simplified model separately for the cold and warm periods before and after 
respectively.  

In total, the 95% confidence interval for the number of annual layers within the transition-
al period investigated is [257, 273], which should be compared to the GICC05 estimate of 
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278 � 12 layers within the same interval. The two counting intervals are nicely overlap-
ping.   

 

Figure 9.4.1: Using a cosine as trajectory function over the onset of GI-12. A, B: Mean trajectory 
and covariance used as input to the algorithm. C, D: Inferred timescale and derived layer thick-
nesses. E: An example of the interfered layering in a small section. The background banding shows 
the GICC05 layers, note the uncertain layer boundaries which are marked with white.  
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Figure 9.4.2: The inferred timescale and accompanying uncertainties over the onset of GI-12 (red), 
and the manually counted GICC05 timescale with the Maximum Counting Error uncertainty band 
(black/gray). 

9.5 Next steps for development of algorithm 

The annual layer detection algorithm based on Hidden Markov Modeling is not yet fully 
developed. To take it to the next level, where it is able to produce a timescale on its own, 
further investigations are needed. The major issues to be considered include: How should 
the data series be processed before analysis to enhance the annual layer signal? What kind 
of annual layer model should be chosen? And when having selected a model: How do the 
parameter values vary with depth and with climatic conditions? Longer data sections from 
many different time periods should be investigated in order to find an answer to these 
questions.  

Although the algorithm has been implemented to be run in Maximum a Posteriori mode, 
this has not been used in the above. In its present form, this part of the algorithm seems 
not entirely stable. Most likely, this is due to poor knowledge on the parameter values Ô, 
towards which the sensitivity studies showed that the algorithm was particularly sensitive. 
Although Maximum a Posteriori theoretically is the most beneficial way to run the algo-
rithm, it has one important drawback: By allowing prior information on the parameter 
values to be taken into account, it requires that we have sufficient knowledge of what 
should go into such priors. Hence, for a proper incorporation of priors in the algorithm to 
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make sense, the appropriate values for these priors should be investigated. For these 
reasons, only Maximum Likelihood estimates were used in the above. That the algorithm 
even in Maximum Likelihood mode was able to correctly follow the two-fold increase in 
layer thicknesses, which took place during the onset of GI-12, just proves the strength of 
the method. 

The choice of annual layer model is overwhelmingly important for the algorithm to be 
able to distinguish between seasonal and random peaks in the data series, and hence for 
the correctness of the inferred annual layer count. But, as it turned out, it is not easy to 
choose a layer model, which is flexible enough to locate abnormal layers, but not too 
flexible such that it counts all peaks. Furthermore; the model should work both during the 
cold periods as well as during the warm periods. A ‘correct layer model’ may well be 
impossible to find, and fortunately, it is not required either. The implemented layer trajec-
tory models are crude and simplistic, and in many ways not reflecting the annuals as 
observed in the data. In spite of this, they perform quite well – in particular so during the 
cold periods.  

Instead of searching for an optimal annual layer model, a different approach may be taken: 
The algorithm allows for several criteria to be made concerning an annual layer. This 
implies that it is possible to use more than just a single layer model. Each layer could be 
matched to two separate annual layer trajectory functions, and evaluated based on its 
resemblance to both of these. Yet, by doing so, the dependency of the result on the applied 
annual layer model can no longer be assessed by comparing the results based on the 
respective annual layer models.  

Nevertheless, regardless of the vast amount of things which can be improved upon when it 
comes to the specific annual layer model and parameter values that should be employed, 
this does not change one specific, fundamental issue with the layer detection algorithm as 
it presently stands: It is still just a single-parameter method. Although the algorithm has 
been made ‘semi-multi-parameter-like’ by adding also the derivatives of the observation 
sequence as extra sequences, they essentially contain same information.  

Single-parameter methods have generally proven notoriously difficult to make work 
properly [Meese et al., 1997]. This is also the case when using the layer detection algo-
rithm on the visual stratigraphy data only. The algorithm does exactly what it is asked to 
do: Finds peaks in the data series which are the most likely to be peaks connected to the 
annual cycle. But in cases where even an experienced investigator would be in doubt, 
because there essentially is not enough information, then so is the algorithm. Another next 
step is therefore to incorporate the use of several data series. Only a layer detection algo-
rithm, which is able to take into account several data series, will be able to obtain the same 
(or higher?) accuracy as can be made by comparing and combining data sequences by eye.   

In terms of programming, the addition of extra data series is straight-forward. The chal-
lenge with the addition of extra data sequences is based on the data itself: First of all, the 
data series must be co-registered to be on the exact same depth scale. Also, issues regard-
ing data series where diffusion has taken place must be considered. Almost no diffusion 
has occurred to the visual stratigraphy data, whereas e.g. the conductivity is rather heavily 
diffused. With diffusion, the assumption of individual layers to be independent, and the 
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individual observations within a layer to be conditionally independent, is no longer valid 
(if it ever was). The inclusion of such data series may therefore require the data to be 
back-diffused before analysis. To some extent, this may allow for the re-establishment of 
lost features in the data, and thus decrease the dependency between observations belong-
ing to individual layers.  
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 10. 	Concluding	remarks	

An accurate chronology is the fundament for a correct interpretation of a paleoclimatic 
record. In this respect, the Greenland ice cores are unique, in that they allow for very 
accurate chronologies to be established far back in time. With their high temporal resolu-
tion, it has proven possible to establish an annual layer counted chronology reaching back 
to 60 ka BP. As the subjectivity involved in manual layer interpretation is increasing with 
depth, the chronology cannot manually be extended further back in time. 

Automated procedures for annual layer counting have generally proven notoriously diffi-
cult to develop, and with a performance much inferior to manual layer counting. Yet, I 
believe that the algorithm developed here can represent a first step towards a high-quality 
automated method of annual layer counting in ice cores. Based on the statistical frame-
work of Hidden Markov Modeling, originally developed for machine speech recognition, 
it presents a mathematically rigorous yet efficient method to determine the most likely 
layering in a data series. Its fundamental force lies in the way that the algorithm is able to 
imitate the manual procedures, while being based on purely objective criteria for annual 
layer recognition.  

In its present form, the annual layer detection algorithm does suffer from a few ‘teething 
troubles’. Due to lack of time to fully investigate for an appropriate description of the 
appearance of an annual layer in the data, the methodology has not yet been implemented 
to provide an accurate chronology. However, even with an initial and relatively random 
guess of layer model, the algorithm proved able to correctly identify the annual layering 
over the onset of a Dansgaard-Oeschger event with a corresponding halving in annual 
layer thicknesses over less than five meters.  

The layer detection algorithm has here been applied to visual stratigraphy data from the 
NGRIP ice core, in which the annual signal seems to be maintained to great depths. This 
data series may therefore potentially be used for extending the GICC05 chronology further 
back in time. However, when using an automated approach it is extremely important that 
data is not corrupted. The NGRIP visual stratigraphy profile had to go through extensive 
treatment in order for the layer detection algorithm not to be confused by what it regarded 
as an annual layer signal randomly changing with depth. In that respect, manual layer 
counting is much more robust. But even with the above mentioned reconstruction of the 
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visual stratigraphy profile, the expression of an annual layer in these data is very changea-
ble, and the record as such not very reliable for annual layer detection.  

The layer detection algorithm has been developed with the visual stratigraphy data in 
mind. But it has been developed in a general setting, which allows it to relatively easily be 
adapted to use for other kinds of annually laminated data. One of the most interesting 
prospects may be the possible development of the algorithm into a multi-parameter meth-
od. Only by taking a multi-parameter approach will an automated method be able to fully 
compete with manual counting.  

Speech recognition software based on HMMs has been developed over more than 40 
years. With annual layer detection, we have just started. 
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A1.  Nomenclature 

 

Stochastic 
variable 

Outcome Definition 

 � ∈ {1,2,… , �} Indexing number 

 
� Observation(s) at � 
 � ∈ 
 = {1,2, . . , �} Duration of state 

�� ℓ� ∈ ℒ, � ∈ {1,2,… , �} State of system (at �) 
�� ��,� = (ℓ�, �) Generalized state of system (at �) 

Probabilities: �(����:� ! = ℓ�) Layer � starts at �" and ends at �# 

 �(���� = ℓ�) Layer � starts at �" 

 �(�� ! = ℓ�	) Layer � ends at �# 

 �(�� = ℓ�) 
� is a part of layer � 
Parameters: % Collection of model parameters 

 Θ Collection of hyper-parameters 

 

Sequences are written as e.g. 
��:� , this being the observation sequence from �" to �#, and 

���:�  being the corresponding sequence of state variables. As a special case, a realization 

of such a sequence of states of the system is written '��:� .  
  



 

Probability measures 

()*,+,-(.,+) � /���0":�0�! = ℓ�|�2�3�,0":�4 = ℓ56 
(*. �)���0" = ℓ�|��! = ℓ5- 

7.(
809:80+) �)
�0":�0� 	|	���0":�0�! = ℓ�- 
:8(., +) �)���3�0":�! = ℓ�, 
":�- 
:;8(.) �)��! = ℓ�, 
":�- 
<8(.) =>�?@(�) 
A8(., +) �)
�0":B|���3�0":�! = ℓ�- 
A8 C �)
�0":B|��! = ℓ�-

ℓD∈ℒ
 

E8(., +) �)���3�0":�! = ℓ�, 
":B|%- 
EF8(., +) �)���3�0":�! = ℓ�|
":B , %- 
E;8(.) �)��! = ℓ�, 
":B- 

G8(.) �(�� = ℓ�, 
":B) 
GF8(.) �(�� = ℓ�|
":B) 

HIJK(8) argmaxℓD
	Q�(�� = ℓ�, 
":B)R 

S8(., +) maxT�:UVW	 �)'":�3� , ���3�0":�! = ℓ�, 
":�- 

SX8(.) maxT�:UV�	 �)'":�3", ��! = ℓ�, 
":�- 

Y8(., +),	YX 8(.) Backtracking variables 

 

  



Layer parameters 

Z. Observation segment corresponding to layer � 
[ Design matrix giving the layer template 

A. Waveform parameter for layer �, 
A� = \+ �̂, A�~`(\,Φ) 

\ Mean layer trajectory parameter 

^. ∈ b Random effect vector for layer � 
c Variance of random effect vectors 

d. Gaussian white noise vector for layer � 
efg Variance of white noise 

h+, e+ Layer thickness distribution parameters 

 

  



A2. The lognormal distribution 

A random variable, X, whose logarithm is normally distributed, i.e. Y = logX~	`(m, n#), 
is said to follow a lognormal probability distribution. It can be written as: 

X~opq	`(m, n#) 
The parameters m and n are sometimes termed the “location parameter” and “scale param-
eter”. 

The base of the lognormal transformation can be chosen freely. In Andersen et al. [2006] 
log"@ was used to describe the annual layer thickness probability distribution, while for 
this work the natural logarithm, logr, was chosen. The transformation between the two, 
however, is simple:  

ms = logs(10)m"@ 

ns = logs(10)n"@ 
Under multiplication with a constant, the location parameter of the lognormal distribution 
changes, but the scale parameter does not. This is e.g. the case when using a simple flow-
model to correct for the strain-induced thinning of the annual layers with depth, in which 
case we have for the corrected annual layer thicknesses: 

uvwxx = y ∙ u 

log uvwxx = log(y ∙ u) = log u + log y	 ~	`(m, n#) + y = `(m + y, n#) 
Hence, under the assumption of constant scale parameter of the annual accumulation rates 
over time, also the scale parameter of the annual layer thicknesses should remain the same 
for all depths. 

Similar goes for the transformation of u between measurements in different units. Assum-
ing the annual layer thicknesses to be given in cm, and having a resulting lognormal 
distribution with parameters log uv{~|(mv{, n#),	the resulting distribution in m can be 
computed as: 

u{ = uv{ ∙ 103# 
log u{ = log(uv{ ∙ 103#) = log uv{ + log(103#) 

That is, the resulting distribution is given by: 

log u{~|(mv{ + log103# , n#) 
Note, that although the location parameter changes, the scale parameter does not.  

The mean value, median and mode of the lognormal distribution can be computed as: 

}~�� = exp�m + n#
2 �	 

}~���� = exp(m) 
}p�~ = exp	(m − n#) 



A3. Convergence of the EM-algorithm 

According to the theory behind the EM-algorithm, the likelihood of the parameter values 
will under most circumstances converge to a (local) maximum when repeatedly iterating 
between the expectation step (E-step) and the maximization step (M-step). Following the 
derivation in Gupta and Chen [2011], a proof will here be given that the likelihood of the 
parameters will indeed always monotonously increase during these iterations.  

The log-likelihood function of a parameter % is defined as: 

log o(%|
":B� = log��
":B|%� 
Treating the full hidden state sequence '":B ∈ ℒB as unknown, the above can be rewritten 
as the sum of the joint probability of 
":B and '":B when summed over all possible realiza-
tions of '":B: 

log o�%|
":B� = log C ��
":B , '":B|%�
T�:�∈ℒ�

 

In this expression, both numerator and denominator can be multiplied with 
��'":B|%���, 
":B�, hereby allowing the sum to be rewritten as an expectation: 

log o�%|
":B� = log C ��
":B , '":B|%�	��'":B|%���, 
":B�T�:�∈ℒ�
��'":B|%���, 
":B� 

= log� � ��
":B , '":B|%�	��'":B|%���, 
":B�	|	%
���, 
":B	� 

By Jensen’s inequality (see e.g. Bishop [2006]), it must then hold that: 

�3.1�	 log o�%|
":B� ≥ � �log � ��
":B , '":B|%�	��'":B|%���, 
":B��	|	%
��� , 
":B�  

Now, Bayes’ theorem will be utilized, along with the knowledge that the probability of the 
observation sequence is fully determined by the underlying state sequence, i.e.:  

��
":B , '":B|%� = ��'":B|%���
":B|'":B , %� = 	��'":B|%���
":B|'":B� 
�)'":B�%���, 
":B- = ��'":B , 
":B|%������
":B|%���� = �)'":B�%���-��
":B|'":B���
":B|%����  

Inserting these in (3.1), and eliminating the common factor of ��
":B|'":B�, we arrive at 
the following expression: 

	log o�%|
":B� ≥ � �log � ��'":B|%���'":B|%����/��
":B|%�����	|	%
���, 
":B�

= � �log ���'":B|%��)
":B�%���-��'":B�%���� �	|	%���, 
":B�
= �2log��'":B|%�	|	%���, 
":B4 + log�)
":B�%���-− �2log�)'":B�%���-	�%���, 
":B] 



Recall that the �-function appearing in the EM-algorithm is given by: 

��%|%(�)) ≡ �2	log o(%|'":B, 
":B)	|	%(�), 
":B4 = �2	log�('":B , 
":B|%)	|	%(�), 
":B4 
Inserting this definition of the �-function in the equation above yields: 

log o(%|
":B) ≥ �)%�%(�)- + log�)
":B�%(�)- − �)%(�)�%(�)- 
(3.2)	 																									= log o(%(�)|
":B) + �)%�%(�)- − �)%(�)�%(�)-  

At each M-step in the iteration of the EM-algorithm, the value of % is found, for which the 
function �(%|%(�)) is maximized, and hence, it must necessarily hold that �)%�%(�)- ≥
�)%(�)|%(�)-. According to the inequality (3.2), this in turn implies that log o(%|
":B) ≥
log o)%(�)�
":B-. Consequently, the likelihood of the new set of model parameters esti-
mated during the M-step can never be lower than that of the original parameters.  

The same is true for a MAP estimate of the parameter values. In this case, the function to 
be maximized at each M-step is given by: 

�)%|%(�)- = �)%�%(�)- + log�(%) 
Adding log�(%) to both sides of (3.2), and adding and subtracting log�(%(�)) on the 
right side of the inequality, yields: 

log o(%|
":B) + log�(%) ≥ log o)%(�)|
":B- + �)%�%(�)- − �)%(�)�%(�)- + log�(%)
= log o(%(�)|
":B) + log�(%(�)) + )�)%�%(�)- + log�(%)-
− )�)%(�)�%(�)- + log�(%(�))- 

By maximizing �)%�%(�)- at each M-step, it is ensured that: 

�)%�%(�)- + log�(%) = �)%�%(�)- ≥ �)%(�)�%(�)- = �)%(�)�%(�)- + log �)%(�)- 
Hence, it must also hold that: 

log o(%|
":B) + log�(%)≥ log o(%(�)|
":B) + log�(%(�)) 
This is exactly what we wanted to know, as it implies that the posterior probability of the 
parameter values will never decrease: 

log�(
":B|%) ≥ 	 log�(
":B|%(�)) 
In this way, the EM-algorithm presents a method in which the (posterior) most likely set 
of parameter values can be estimated, and it does so without requiring any knowledge on 
the hidden state sequence giving rise to the observed data. All that is needed is a way to 
calculate the function �(%|%(�)) based on observations (which in our case is provided by 
either the Forward-Backward or the Viterbi algorithm) and an initial guess of model 
parameter values. Iteratively calculating (the E-step) and maximizing (the M-step) the �-
function, the likelihood of the chosen parameter values will either stay at the same level or 
increase.  



The EM-algorithm provides a general procedure, which can be used for solving a range of 
maximization problems. However, no guarantee is given that the obtained maximum is a 
global maximum. Caused by the deterministic behavior of the algorithm, it might get 
caught up in a local maximum of the likelihood function if given a bad initial estimate and 
a complex likelihood function. Multiple random starts may be used to better ensure that 
this is not the case.  

One of the weaknesses of the EM-algorithm is a relatively slow convergence, in particular 
in case of models with many unknown parameters. To resolve this problem, various 
extensions of the EM-algorithm have been suggested. A common extension is to amend 
the algorithm to include intermediate steps of conditional and/or constrained maximiza-
tions, which can help to speed up its convergence [Bishop, 2006; Kim and Smyth, 2006; 
Meng and Rubin, 1993]1.  

 

                                                      
1 Meng, X.-L., and D. B. Rubin (1993), Maximum likelihood estimation via the ECM 
algorithm: A general framework, Biometrika, 80(2), 267-278. 
 



A4. EM update equations  

A4.1 The differential of residuals 
In section 5.3.3, it was stated that the following identity holds: 

�
∂\�/Z� − X)\ + �̂-6⊺W3" /Z� − X)\ + �̂-6� = −2X⊺W3" /Z� − X)\ + �̂-6 

Proof: 

Let’s first re-write the equation using the notation ( ≡ Z� − X �̂. With this abbreviation, 
the differential is given as:  

�
�\��( − X\�⊺	W3"�( − X\�� 

By completing the squares, we find:  

�
�\�(⊺W3"(− (⊺W3"X\ − \⊺X⊺W3"( + \⊺X⊺W3"X\�		 

Realizing that (⊺W3"X\ is just a number, we have that (⊺W3"X\ = �(⊺W3"X\�⊺ =
\⊺X⊺W3"(. It has here been used that W is a diagonal matrix, implying that W3" is too, 
and therefore �W3"�⊺ = W3". Consequently, the equation above can be reduced to: 

�
�\ ��( − X\�⊺	W3"�( − X\�� = −2�(⊺W3"X\

�\ + �\⊺X⊺W3"X\
�\  

Consider each part separately. As it holds for any vector �, that 
�
�\ ��⊺\� = � [Petersen 

and Pedersen, 2008], we get for the first part: 

�(⊺W3"X\
�\ = �(⊺W3"X�⊺ = X⊺W3"( 

For the second part, we can utilize the fact that it holds for any matrix Y that 
�
�\\⊺Y\ =

�Y + Y⊺�\	[Petersen and Pedersen, 2008]: 

�\⊺X⊺W3"X\
�\ 	= �X⊺W3"X + �X⊺W3"X�⊺�\ = 2X⊺W3"X\ 

Inserting these, and finally replacing with the original expression for (, provides the 
desired result: 

�
�\ )�( − X\�⊺	W3"�( − X\�- = −2X⊺W3"( + 2X⊺W3"X\ = −2X⊺W3"�( − X\� 

= −2X⊺W3" /Z� − X)\ + �̂-6 
 

  



A4.2 Expectation value of weighted residuals 
In section 5.3.5, the following identity was put forward without proof: 

�2d�⊺Wd�|	Z�, %(�)4 ≡ � 	�) �̂�Z�, %(�)-^D
/Z� − X)\ + �̂-6⊺W3" /Z� − X)\ + �̂-6 � �̂ 

																													= /Z� − X)\ + ��^��Z�, %(�)4-6⊺W3" /Z� − X)\ + ��^��Z� , %(�)4-6
+ tr)X⊺W3"X	cov2 �̂�Z� , %(�)4- 

Proof: 

To simplify the notation, a vector defined as 7 ≡ Z� − X\ will be used in the following. 
The integral above can then be stated as:  

�2d�⊺Wd�|	Z�, %(�)4 = � 	�) �̂�Z�, %(�)-^D
)7 − X �̂-⊺W3")7 − X �̂-� �̂ 

= � 	�) �̂�Z�, %(�)-^D
)7⊺W3"7 − 7⊺W3"X �̂ − �̂⊺X⊺W3"7 + �̂⊺X⊺W3"X �̂-� �̂ 

= 7⊺W3"7 − 7⊺W3"X� 	�) �̂�Z� , %(�)- �̂� �̂^D
−� 	�) �̂�Z�, %(�)- �̂⊺� �̂^D

X⊺W3"7
+	� 	�) �̂�Z� , %(�)- �̂⊺X⊺W3"X �̂� �̂^D

 

= 7⊺W3"7 − 7⊺W3"X	��^��Z�, %(�)4 − ��^��Z�, %(�)4X⊺W3"7
+ 	�2 �̂⊺X⊺W3"X �̂|Z�, %(�)4 

= )7 − X��^��Z�, %(�)4-⊺W3")7 − X��^��Z�, %(�)4-
− ��^��Z�, %(�)4⊺X⊺W3"X	��^��Z�, %(�)4 + 	�2 �̂⊺X⊺W3"X �̂|Z�, %(�)4 

Consider the last term only: As �2 �̂⊺X⊺W3"X �̂|Z�, %(�)4 is just a number, treating it like a 

matrix and taking its trace will not change anything. This subsequently allows us to 
change the sequence of the variables, as tr(ABC) = tr(BCA) = tr(CAB) for any three 
matrices A, B and C. We get: 

�2 �̂⊺X⊺W3"X �̂|Z�, %(�)4 = 	�2tr) �̂⊺X⊺W3"X �̂-|Z�, %(�)4 
= �2tr)X⊺W3"X �̂ �̂⊺-|Z�, %(�)4 
= tr)X⊺W3"X	�2 �̂ �̂⊺|Z�, %(�)4- 

For a vector  , which is normally distributed with mean h and covariance Σ, we have that 
��  ⊺! = hh⊺ + Σ. The above can therefore be re-written in terms of the conditional mean 

and covariance of �̂, �2 �̂�Z�, %(�)4 and cov2 �̂�Z� , %(�)4: 
�2 �̂⊺X⊺W3"X �̂|Z�, %(�)4

= tr ¢X⊺W3"X	 /�2 �̂|Z�, %(�)4	�2 �̂|Z�, %(�)4⊺ + cov2 �̂�Z�, %(�)46£ 



= tr /X⊺W3"X	�2 �̂|Z�, %(�)4�2 �̂|Z�, %(�)4⊺6 + tr)X⊺W3"X	cov2 �̂�Z�, %(�)4- 
= tr /�2 �̂|Z�, %(�)4⊺X⊺W3"X	�2 �̂|Z�, %(�)46 + tr)X⊺W3"X	cov2 �̂�Z�, %(�)4- 
= �2 �̂|Z�, %(�)4⊺X⊺W3"X	�2 �̂|Z�, %(�)4 + tr)X⊺W3"X	cov2 �̂�Z�, %(�)4- 

Comparing this expression to the remaining terms in the equation for �2d�⊺Wd�|	Z�, %(�)4, 
the similarities between the two last terms can be seen. We hence arrive at the following 
expression for the expectation value of the weighted squared residuals: 

�2d�⊺Wd�|	Z�, %(�)4
= )7 − X��^��Z�, %(�)4-⊺W3")7 − X��^��Z�, %(�)4-
+ tr)X⊺W3"X	cov2 �̂�Z�, %(�)4- 

Or, by insertion of the original vector 7 = Z� − X\: 

�2d�⊺Wd�|	Z�, %(�)4
= /Z� − X)\ + ��^��Z�, %(�)4-6⊺W3" /Z� − X)\ + ��^��Z� , %(�)4-6
+ tr)X⊺W3"X	cov2 �̂�Z�, %(�)4- 
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