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abstract — english

The oceanic boundary layer is the barrier connecting the ocean interior

to other climate components. Simultaneously, it is the region in the sea

with the highest turbulence density. In global ocean simulations, turbulent

fluxes are too small to resolve and must therefore be parameterized. Vertical

mixing schemes are thus integral for accurate representation of upper ocean

dynamics in climate models. However, persistent surface biases continue

to limit the accuracy of numerical climate simulations. In this thesis, two

strategies to improve oceanic vertical mixing schemes are explored. The

first study investigates whether a range of parameterizations can reproduce

the observed near-inertial wave-induced mixing at two sites in the Tropical

Atlantic. Shipboard turbulence observations are compared to two forced,

eddy-rich ocean model simulations. The observed mixing is not reproduced

in any of the models, but near-inertial wave amplitude is found to be sensitive

to parameterization choice. In the second study, Bayesian optimization as a

method for automated tuning of ocean models is proposed. The Turbulent

Kinetic Energy (TKE) scheme is tuned to minimize mixed layer depth (MLD)

biases in the ocean model Veros. The default TKE parameter values fall

within the parameter space region for which MLD bias is minimized.

abstract — dansk

Det oceaniske grænselag er barrieren, der forbinder havets indre med an-

dre klimakomponenter. Samtidig er dette område i havet med den højeste

turbulenstætheden. I globale havsimuleringer er turbulente fluxer for små

til at blive løst direkte og skal derfor parameteriseres. Vertikale blandings-

skemaer er således afgørende for en nøjagtig repræsentation af dynamikken

i det øvre hav i klimamodeller. Dog vedbliver vedvarende overfladebiaser

med at begrænse nøjagtigheden af numeriske klimamodeller. I denne afhand-

ling efterforskes to strategier til forbedring af vertikale blandingsskemaer

i havet. Det første studie undersøger, om en række parameteriseringer kan

genskabe den observerede blanding forårsaget af nær-inertielle bølger på

to lokaliteter i det Tropiske Atlanterhav. Skibsbårne turbulensobservatio-

ner sammenlignes med to forcerede, eddy-rige havmodelsimuleringer. Den

observerede blanding bliver ikke genskabt i nogen af modellerne, men ampli-

tuden af de nær-inertielle bølger viser sig at være følsom over for valget af

parameterisering. I det andet studie foreslås Bayesiansk optimering som en

metode til automatisk justering af havmodeller. Turbulent Kinetisk Energi

(TKE)-skemaet finjusteres for at minimere fejl i blandingslagsdybden (MLD) i

havmodellen Veros. De standardmæssige TKE-parameterværdier falder inden

for det parameterområde, hvor MLD-bias minimeres.
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“
Women waste what would otherwise,
in sinister reflections of universes
or worrisome projections of worlds forgotten,
be called precious time.
To think it spent, to think it lost
to wonder if it was ever there at all;
the woes of a worried woman.

Men, we exhibit macabre maneuvers,
fishing, trawling, dragging waters.
No more to that shallow beast.

—J. M. Søndermølle, sir mister esq. ”
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0Introduction

Ocean flows are turbulent, and the chaotic motions span over length scales

from hundreds of kilometers (mesoscale) to milimeters (microscale). Obser-

vations indicate that ocean turbulence is integral to nearly all fundamental

physical processes affecting weather and climate. Upper ocean turbulence

modulates surface fluxes of geochemical tracers and heat, and sets global

water mass properties. Internal turbulence drives the meridional overturning

circulation, which impacts climate on millenial time scales.

Reynolds decomposition provides a method to theoretically describe how tur-

bulence affects the mean flows and physical state of the sea. The Kolmogorov

spectrum describes the energy cascade, where tke induces increasingly finer

eddy structures until it is dissipated into heat. The length scale at which

this irreversible process occurs varies from centimeter to micrometer scales.

Global ocean simulations at these scales are unfeasible. Turbulent fluxes

must therefore be approximated by vertical mixing schemes.

Parameterizing boundary layer turbulence has been named as one of the

most prominent challenges in ocean modeling Fox-Kemper et al. (2019). In

this PhD thesis, various strategies for coping with this challenge are explored.

The following chapters provide an overview of ocean turbulence in obser-

vations, theory and numerical models. The role of upper ocean mixing

in climate is explored, followed by insights into the limits of theoretical

understanding and a summary of how turbulence is represented in Ocean

General Circulation Models (OGCMs). Various vertical mixing schemes are

introduced, and the methods for assessing their accuracy summarized.
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1Navigating the Turbulent Seas

1.1 ocean mixing and climate

The vertical structure of the ocean can be broken down into two major

parts: the surface, which is characterized by strong stratification, vigorous

currents and interactions with the overlaying atmosphere, and the slow,

weakly stratified interior. Diapycnal mixing is integral to both, and plays a

key role in processes which connect them. The following section summarizes

the ways diapycnal mixing shapes the climate, with the focus on upper ocean

turbulence. It was inspired by the excellent book Ocean Mixing: Drivers,
Mechanisms and Impacts by Meredith and Garabato (2021).

The ocean is mostly adiabatic, which means that in the absence of external

forcing, water masses in its interior will retain their physcial properties. The

ocean density varies on the order of tens of kilograms per cubic meter, a

small fraction of the mean density of seawater 𝜌0 ≈ 1024 kg m
−3
. Even so,

the ocean is stably stratified in most places, with lighter water overlaying the

denser. Buoyancy frequency 𝑁 is used to quantify the strength of stratification

in the ocean:

buoyancy frequency𝑁 2 = − 𝑔
𝜌0

𝜕𝜌

𝜕𝑧
, (1.1)

where 𝑧 symbolizes the vertical coordinate, 𝜌 is local density and 𝑔 is the

magnitude of the gravitational acceleration. Mixing across the constant den-

sity surfaces - the isopycnals - requires energy to overcome the stratification.

Diapycnal mixing away from basin boundaries is mainly driven by internal

wave breaking.

The water mass properties are thus attained at the surface, set by the interac-

tion with the overlaying atmosphere
1

1. Sea surface boundary conditions

are also locally set by sea ice and

land hydropshere.

. Flow velocities in the atmosphere are

typically 1 − 2 orders of magnitude larger than in the ocean. Laws of fluid

dynamics, however, assert that the velocities must match at the interface.

This leads to the exchange of momentum at the sea surface and creates the
atmospheric and oceanic boundary layers, where the strong vertical velocity
gradient induces turbulent mixing. It is the oceanicmixed layer that transfers
heat and momentum from the surface into the stratified layers below. This

surface barrier, which can at times become thinner than 10 meters
2

2. Amounting to approximately 0.25%

of the total average depth of the

ocean.

, plays a

central role in setting the global climate.

Water is highly efficient at storing heat, as opposed to air. Because of this, “the

heat capacity of the top 2.5 m of the ocean equals that of the whole column of

air above it” (Garrett, 1996). In fact, over 90% of the heat excess resulting from

3



anthrophogenic climate change has been absorbed by the ocean (Levitus et al.,

2012). The rate of the surface heat uptake depends on stratification (Marshall

and Zanna, 2014). On annual average, heat enters the ocean in the tropics

and is released at higher latitudes, which necessarily involves heat transfer

across isopycnal layers. Diapycnal mixing is therefore important to both the

mean rate of ocean heat uptake, as well as the geographic distribution of

surface heat fluxes which affect local weather.

Mixed layer processes impact the exchange of gases between the ocean and

atmosphere. The rate of surface uptake of carbon dioxide and its sequestration

into the deep ocean, where water masses can remain with no atmospheric

contact for hundreds of years, impacts climate on millenial time scales. The

ocean’s long term carbon storage properties are the reason for its key role

in theories explaining the CO2 and global temperature correlation across

glacial-interglacial transitions (e.g., Galbraith and Eggleston, 2017; Peacock,

Lane, and Restrepo, 2006). Central to these theories is the sluggish meridional

overturning circulation (MOC), which sinks the carbon-rich surface waters

into the ocean interior. TheMOC itself is driven partially by diapycnal mixing

of abyssal waters (Kuhlbrodt et al., 2007).

The surface ocean is home to a vast ecosystem, which relies on the oxygen

and nutrients supplied by diapycnal mixing. One of the major challenges of

contemporary oceanography is the observed growth of oxygen minimum

zones in the warming climate, which threaten marine life (Breitburg et al.,

2018; Schmidtko, Stramma, and Visbeck, 2017). Proposed pathways to explain

this trend include the reduction in surface ocean ventilation due to stronger

stratification (Brandt et al., 2015; Oschlies et al., 2018).

Diapycnal mixing impacts climate on time scales ranging from millenial

to inter-annual. Surface mixed layer sets the physical and geochemical

properties of the global water masses, thereby connecting the surface ocean

to the abyss. The fluxes of oxygen and carbon dioxide across the air-sea

interface and isopycnal layers have direct consequences for aquatic life.

Understanding and accurate modeling of diapycnal mixing in the ocean is

therefore of utmost importance.

1.1.1 Surface Mixed Layer

Figure 1.1 shows the main properties of the oceanic boundary layer (OBL).

An important disctinction must be made between the mixing layer and the

mixed layer (ML). The former is a region of active mixing where the turbulent

kinetic dissipation rate 𝜖 is elevated. In Fig. 1.1, the mixing layer has the depth

of ℎ𝜖 , at the point where log(𝜖) exceeds its background value. The mixed

layer forms as a consequence of mixing. The two depths may be, but often

are not equal.
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The mixed layer is characterized by an approximately constant vertical den-

sity profile 𝜌 (𝑧). It overlays the thermocline, the stratified layer extending

from ML base down to the abyss. Beyond the thermocline, the stratification

weakens. Away from the atmospheric forcing, the mean currents become

more sluggish, but the diapycnal mixing is still active in the presence of

internal wave breaking. High rates of turbulent mixing appear again at the

bottom of the ocean, driven by the friction between the fluid and the inert

sediment. It is the surface mixed layer, however, which contains the most

energy-dense turbulence in the ocean.

The sea surface is well mixed, because the energy supplied by the atmosphere

at the boundary results in a strong vertical gradient of horizontal velocity.

This shear stress is a source of turbulent kinetic energy, of which a portion is

dissipated into internal energy, and a portion is used to lift the underlaying

denser fluid. As a result, stratification becomes unstable and the lifted fluid

element gains potential energy. When it sinks, it accelerates, eventually

forming the characteristic vortex-like structure of turbulence. The energy

from the atmosphere is continuously supplied, so the mixing maintains the

constant density profile at the sea surface.

Shear-driven mixing as described above is one of the two main processes

which maintain the surface ML. Buoyancy flux, i.e. the exchange of heat and
freshwater with the atmosphere, can lead to convective mixing at the air-sea

interface. The heating of the ML base by the penetrating shortwave radiation

can result in convective mixing as well.

mixed layer baselog(ε)

AIR
SEA

solar 
radiation R

T(z) S(z)

stable
thermocline

stable
halocline

Reγz

velocity profile

net
longwave
radiation Lz=0

z=-h
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ε
turbulent
fluxes
-H , -He w

w

w

e

Figure 1.1: Oceanic boundary layer schematic adapted from Meredith and Garabato (2021).

The profile of log(𝜖) sets the mixing layer depth ℎ𝜖 , while the temperature and salinity

profiles 𝑇 (𝑧) and 𝑆 (𝑧) set the mixed layer depth ℎ. Sensible 𝐻𝑒 and latent 𝐻𝑤 heat fluxes,

and the net longwave radiation 𝐿 are confined to the surface, while the shortwave solar

radiation 𝑅 penetrates the water column. Upwelling𝑤 squeezes the temperature profile in

the thermocline. Entrainment fluxes𝑤𝑒 originate from shear instability at the ML base.
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Due to its dependence on buoyancy fluxes and wind stress, mixed layer

depth (MLD) varies significantly in space and time. During the day, the heat

from the sun stratifies and thins the mixed layer, while nocturnal cooling

destabilizes and deepens it. The annual MLD cycle is driven by surface wind

strength and heat flux varations (Figure 1.2
3

3. Data source of SST and wind

speed: Prediction and Research

Moored Array in the Tropical At-

lantic (PIRATA, Bourlès et al., 2019);

of MLD and Q: enhanced PIRATA

(Foltz, Schmid, and Lumpkin, 2018).

).

The thinnest mixed layers coincide with peak heat flux into the ocean and

lowest wind speeds. At 11.5◦N, which is located below the Tropic of Cancer,

heat flux peaks at the fall equinox. For mid- and high-latitude regions, the

mixed layer is thinnest at summer solstice. At winter solstice, the rate of heat

flux leaving the ocean is highest, but MLD is not yet at its deepest. Between

winter solstice and spring equinox, continued heat loss drives buoyancy loss,

while the strong winds provide mechanical energy to deepen the ML. The

mixed layer does not respond to atmospheric forcing instantaneously, and
thus is characterized by a degree of lag behind active mixing processes.

Figure 1.2: The mean seasonal cycle

of wind speed (|U|), total heat flux
(Q), sea surface temperature (SST)

and mixed layer depth (MLD) at the

PIRATA mooring site 11.5◦N, 23
◦
W.

The vertical lines indicate the spring

equinox (SE), the summer solstice

(SS), the fall equinox (FE) and the

winter solstice (WS).

Considerable effort has been committed to finding the best possible criterion

for computing the depth of the mixed layer in order to validate it in ocean

models (e.g., de Boyer Montégut et al., 2004; Holte and Talley, 2009; Kara,

Rochford, and Hurlburt, 2000). The most common is the threshold method,

where MLD is defined as the depth for which the density (or temperature)

changes by some quantity 𝛿𝜌 relative to some reference depth 𝑧ref:

density threshold 𝜌 (MLD) = 𝜌 (𝑧ref) + 𝛿𝜌. (1.2)

The difficulty lies in the realization that MLD is highly nonlinear, and thus

not commutable (de Boyer Montégut et al., 2004). MLD computed from

mean density profiles is not the same as the average of MLDs computed

from individual density observations. A criterion for MLD computation

must therefore be effective for the full range of MLD values in the ocean:

from a few meters in the tropical summer to hundreds of meters during the

polar winter. No single threshold criterion can fulfill this task. Holte and

Talley (2009) developed a promising alternative, where MLD is computed by a

complex algorithm, which utilizes density, temperature and salinity gradients.

However, the many steps involved in the calculation make it impractical to

include in ocean models, thus threshold methods are often preferred.

Despite these difficulties, MLD is an important variable used to validate ocean

and climate models (e.g., Huang, Qiao, and Dai, 2014; Treguier et al., 2023) and

vertical mixing parameterizations (e.g., Damerell et al., 2020; Pottapinjara

and Joseph, 2022). Over the past 25 years, the Argo programme contributed

over two million profiles of drifter observations (Wong et al., 2020), enabling

the construction of global 1
◦
MLD climatologies (e.g., de Boyer Montégut,

2022; Holte et al., 2017). Remote sensing of turbulence observations is more

difficult, and although the global mixing dataset of Waterhouse et al. (2014) is

an invaluable tool for modelers, MLD climatology provides a more complete

global reference for upper ocean turbulence.
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1.2 ocean turbulence theory

What is the basis for the current understanding and prediction of upper ocean

turbulence? The answer to this question requires a deep dive into the theory

of geophysical fluid dynamics (GFD). The following sections are a synthesis

of numerous GFD texts, in particular Kundu et al. (2016), Thorpe (2007) and

Umlauf and Burchard (2020). The aim is to address the three points:

▷ How is ocean turbulence described theoretically?

▷ How is ocean turbulence modeled and why is it difficult?

▷ What are the limitations of turbulence parameterizations?

1.2.1 Notation and Governing Equations

Continuum mechanics relies on the so-called continuum hypothesis, where
the motion of matter in a fixed volume can be described by its macroscopic

properties, such as the mean flow and density. Second order tensors are used

for a complete description of internal forces acting on fluid particles. While

the second order tensor is similar to a matrix, it represents physical quantities

invariant under coordinate transformations, meaning the underlying physical

relationships remain the same regardless of the coordinate system used. For

this reason, the equations that describe fluid motion are often expressed in

Einstein notation, which serves as a shorthand for summation
4

4. Consider, for example, tensor

contraction:

A : B = 𝐴𝑖 𝑗𝐵𝑘𝑙 (e𝑖 ⊗ e𝑗 ) : (e𝑙 ⊗ e𝑘 )
= 𝐴𝑖 𝑗𝐵𝑘𝑙𝛿𝑖𝑘𝛿 𝑗𝑙

= 𝐴𝑖 𝑗𝐵 𝑗𝑖 ,

where 𝐴𝑖 𝑗 and 𝐵𝑘𝑙 are elements

of the second order tensors A and

B, respectively, and 𝛿 is the Kro-
necker delta. The expression 𝐴𝑖 𝑗𝐵 𝑗𝑖
preserves the brevity of the vector

notation, but is easier to parse.

:

einstein notation x = 𝑥1e1 + 𝑥3e2 + 𝑥3e3 = 𝑥𝑖e𝑖 . (1.3)

Here, the three basis vectors e1, e2 and e3 span the three-dimensional Carte-

sian space, and the three scalar coordinates {𝑥1, 𝑥2, 𝑥3} define a point x in

the space. The left hand side shows an example of Einstein notation, where

the repeated index 𝑖 ∈ {1, 2, 3} indicates summation.

Fluid motion is governed by the Navier-Stokes (N-S) equations. Due to

their complexity, analytical solutions exist only for highly idealized flows.

Numerical solutions in ocean models are most often based on the Boussinesq

approximation for incompressible fluids, where it is assumed that density

fluctuations in the fluid are small:

navier-stokes momentum
equations

𝜕u
𝜕𝑡

+ u · ∇u + 2Ω × u − 𝜈∇2u = −∇𝑝
𝜌0

+ 𝜌

𝜌0

g, (1.4)

continuity equation∇ · u = 0. (1.5)

Here, u is the three-dimensional velocity vector, 𝑝 is pressure, 𝜌 is density

and 𝜈 is the kinematic viscosity. The reference density 𝜌0 is the mean den-

sity of seawater. Ω = (0,Ωcos𝜙,Ωsin𝜙) is the Earth rotation vector and

7



g = (0, 0,−𝑔) is the gravitational acceleration vector. Using Einstein nota-

tion
5

5. In oceanographic literature, it

is a custom to use x = (𝑥,𝑦, 𝑧)
as geographical coordinates and

u = (𝑢, 𝑣,𝑤) as the velocity vector.

Hence, (𝑥,𝑦, 𝑧) = (𝑥1, 𝑥2, 𝑥3) and
(𝑢, 𝑣,𝑤) = (𝑢1, 𝑢2, 𝑢3) will be used
interchangeably.

, the equations become:

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
+ 2𝜖𝑖 𝑗𝑘Ω 𝑗𝑢𝑘 − 𝜈

𝜕2𝑢𝑖

𝜕𝑥 𝑗 𝜕𝑥 𝑗
= − 1

𝜌0

𝜕𝑝

𝜕𝑥𝑖
+ 𝜌

𝜌0

𝑔𝑖 , (1.6)

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0. (1.7)

The complete description of the physical state of sea water includes (the

linear approximation of) the equation of state:

equation of state𝜌 (𝜃, 𝑆, 𝑝) = 𝜌0(−𝛼 (𝜃 − 𝜃0) + 𝛽 (𝑆 − 𝑆0)), (1.8)

where 𝛼 is the thermal expansion coefficient, 𝛽 is the haline contraction co-

efficient, while 𝜃0 and 𝑆0 are reference temperature and salinity, respectively.

The transport equations for potential temperature 𝜃 and salinity 𝑆 :

transport equations of tem-
perature and salinity

𝜕𝜃

𝜕𝑡
+ 𝑢 𝑗

𝜕𝜃

𝜕𝑥 𝑗
= 𝜈𝜃

𝜕2𝜃

𝜕𝑥 𝑗 𝜕𝑥 𝑗
and

𝜕𝑆

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑆

𝜕𝑥 𝑗
= 𝜈𝑆

𝜕2𝑆

𝜕𝑥 𝑗 𝜕𝑥 𝑗
, (1.9)

where 𝜈𝜃 and 𝜈𝑆 are molecular viscosities, complete the seven equations (1.6)-

(1.9) for sea water dynamics.

Fluid motion is by nature oscillatory. As will be discussed in the following

text, it is useful to decompose velocity and other fluid properties into mean and

fluctuating components, where the mean of the fluctuations is by definition

equal to zero:

reynolds decomposition𝑢 = 𝑢 + 𝑢′, 𝑢′ = 0. (1.10)

The decomposition formalism is borrowed from the theory of stochastic
processes, where 𝑢 is assumed to be a random variable. Independent, repeated

measurements of 𝑢 under identical conditions make up an ensemble. The

expected value of 𝑢𝑚 is:

expected value of a random
variable ensemble

⟨𝑢𝑚 (x, 𝑡)⟩ = lim

𝑁→∞
𝑢𝑚 (x, 𝑡) ≡ lim

𝑁→∞

1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑚 (x, 𝑡 : 𝑛), (1.11)

where𝑢 (x, 𝑡 : 𝑛) is the𝑛th set of measurements of𝑢 (x, 𝑡). In practice, repeated
conditions are never identical, so the choice of the spatial and temporal span

of the measurements needs to be defined based on the individual problem. For

example, consider the annual mean cycles of MLD in Fig. 1.2. The climatology

is based on daily measurements over 28 years, i.e. each monthly ensemble

is composed of 𝑁 ≈ 840 measurements. The ensemble means approximate

8



the expected values of MLD for each month of the year. Any sub-monthly

departures from the mean are considered as random fluctuations.

The exponent𝑚 symbolizes the𝑚th statistical moment of 𝑢. As a direct con-
sequence of Eq. (1.11), the product of statistical moments is not commutable.

For𝑚 > 1 and for two random variables 𝑢 and 𝑣 :

product of statistical
moments

𝑢𝑚 ≠ 𝑢𝑚 and 𝑢𝑣 ≠ 𝑢 𝑣. (1.12)

This simple fact turns out to be fundamentally tied to the energetics of

turbulent flows.

1.2.2 Energy Cascade

The laws of fluid motion were first described over two centuries ago, but

the formalism to study turbulence followed only 72 years later in a seminal

work by Osborne Reynolds (1895). In his paper On the Dynamical Theory of
Incompressible Viscous Fluids and the Determination of the Criterion, Reynolds
introduced the method to decompose the Navier-Stokes equations into fluc-

tuating and mean components (Eq. (1.10)). The formalism was used to derive

a theoretical foundation for the empirically observed limit at which fluid flow

becomes turbulent:

reynolds number
LU
𝜈
, (1.13)

where L is the lenght scale of the flow andU is the relevant flow velocity.

Today, this ratio of advective to viscous forces in the fluid is known as the

Reynolds number, 𝑅𝑒 . At the time, it was empirically determined that the

fluid flow became unstable when 𝑅𝑒 ≈ 2000 or higher. Today, the generally

accepted value is 𝑅𝑒 = O(10
3) (Thorpe, 2007). Typical values of 𝑅𝑒 for the

ocean
6

6. With 𝜈 ≈ 10
−6

m
2
s
−1
, some

oceanic 𝑅𝑒 values can be estimated.

On the high end, there is the tur-

bulent Gulf Stream with width

L ≈ 10
5
m and surface velocity

U ≈ 1 m s
−1
, giving 𝑅𝑒 = O(10

11).
On the low end, e.g. in costal wa-

ters, L ≈ 10 m,U ≈ 0.1 m s
−1

and

𝑅𝑒 = O(10
6).

exceed 10
4
.

Reynolds’ original aim to demonstrate the theoretical basis for the limit of

flow stability was far surpassed in his work, because Reynolds decomposition
became a fundament for the modern understanding of turbulence. N-S mo-

mentum equations (Eq. (1.6)) can be re-written to describe the evolution of

the mean and fluctuating components of the flow separately. It turns out that

Reynolds stress

reynolds stress𝑢′
𝑖
𝑢′
𝑗

(1.14)

appears in both. Through Reynolds stress, kinetic energy is removed from

the mean flow and becomes a driver of chaotic motions of the fluid.

Turbulent kinetic energy (tke) is defined as:

turbulent kinetic energy𝑒 =
1

2

𝑢′
𝑖
𝑢′
𝑖
. (1.15)

9



The transport equation for 𝑒 can be derived by contracting the N-S equations

with 𝑢′𝑖 and averaging. The resulting budget is:

turbulent kinetic energy
equation

𝜕𝑒

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑒

𝜕𝑥 𝑗
=
𝜕

𝜕𝑥 𝑗

(
−1

2

𝑢′
𝑖
𝑢′
𝑖
𝑢′
𝑗
+ 2𝜈𝑢′

𝑖
𝑠′
𝑖 𝑗
−
𝑝′𝑢′

𝑗

𝜌0

)
+ 𝑢′

𝑖
𝑢′
𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
− 𝑔

𝜌0

𝑢′
3
𝜌 ′ − 2𝜈𝑠′

𝑖 𝑗
𝑠′
𝑖 𝑗
.

(1.16)

The first three terms on the right hand side of the equation represent the

transport of tke due to turbulent stresses, viscous diffusion and turbulent

pressure fluctuations, respectively. The last three terms represent the sources

and sinks of tke: shear production, buoyancy flux and tke dissipation 𝜖 :

turbulent kinetic energy
dissipation

𝜖 = 2𝜈𝑠′
𝑖 𝑗
𝑠′
𝑖 𝑗
. (1.17)

Buoyancy flux is a source of tke when the density profile is unstable, and

a sink in stably stratified conditions. Shear production is a source of tke,

and it is equal and opposite to the energy removed from the mean flow via

Reynolds stress. The dissipation term 𝜖 represents the irreversible conversion

of turbulent kinetic energy into internal energy.

Typical values of 𝜖 in the ocean are between 10
−9

and 10
−10

W kg
−1
, but in

turbulent patches such as the ocean surface, they can reach 10
−1

W kg
−1

(Thorpe, 2007). Following dimensional analysis, the length scale at which

the term makes a significant contribution to the tke budget is:

kolmogorov length scale𝑙𝑘 =

(
𝜈3

𝜖

)
1/4

. (1.18)

The order of magnitude of kinematic viscosity 𝜈 in sea water is 10
−6

m
2
s
−1
,

resulting in the range 𝑙𝑘 ∈ [10
−2

m, 6 · 10
−5

m]. Let us consider this scale in
relation to the dimensions of ocean flows. Turbulent kinetic energy is sup-

plied at mesoscales of O(100 km) to geostrophic, two-dimensional turbulent

motions. Largest scales supporting three-dimensional turbulence associated

with diapycnal mixing are of the order of O(100 m), much larger than the

dissipation scales. What happens in between?

The idea of the energy cascade is credited to Lewis Fry Richardson (1922)
7

7. In this work, Richardson para-

phrased Augustus de Morgan to

formulate the famous rhyme:

“We realise thus that:

big whirls have little whirls

that feed on their velocity,

and little whirls have lesser whirls

and so on to viscosity

- in the molecular sense.”

.

However, it was the Russian mathematician Andrey Kolmogorov who de-

scribed it mathematically, contributing amonumental step in the development

of the theoretical description of turbulence (Kolmogorov, 1941/1991).

In his 1941 paper, Kolmogorov formalized the idea of the inertial subrange at
which turbulent motions are not dissipated nor forced, but transfer turbulent

kinetic energy from low to high wave numbers. In this description, the kinetic

10



energy from large eddies is transferred to smaller eddies, until eventually the

dissipation scale is reached where tke is irreversibly converted into heat.

Turbulent kinetic energy and its dissipation can be expressed in spectral

form:

turbulent kinetic energy
spectra

𝑒 =

∫ ∞

0

𝐸 (𝑘)𝑑𝑘 and 𝜖 =

∫ ∞

0

𝐷 (𝑘)𝑑𝑘, (1.19)

where the wave number 𝑘 = 2𝜋𝑙−1
is inversely proportional to the eddy

diameter 𝑙 . Kolmogorov postulated that at high 𝑅𝑒 numbers, turbulence is

locally isotropic. Under the assumption that 𝜕𝐸 (𝑘)/𝜕𝑡 = 0, this indicates that

there exists a range of eddy wave numbers for which the tke dissipation is

balanced by the spectral energy flux
8

8. For homogeneous, isotropic turbu-

lence,

𝜕𝐸

𝜕𝑡
+ 𝜕T
𝜕𝑘

= −2𝜈𝑘2𝐸 (𝑘) = 𝐷 (𝑘),

where T is the spectral energy flux.

. In this universal equilibrium range, 𝐸 (𝑘)
is only a function of 𝑘 , 𝜖 and 𝜈 . Eventually, eddies become small enough for

molecular viscosity to take effect. This threshold is defined as the Kolmogorov

wave number 𝑘𝑘 = 2𝜋𝑙−1

𝑘
, with 𝑙𝑘 from Eq. (1.18). In the inertial subrange

𝑘𝑘 ≪ 𝑘 , the tke spectrum is dominated by the energy cascade from large to

small eddies:

kolmogorov’s 𝑘−5/3 law 𝐸 (𝑘) = 𝑘0𝜖
2/3𝑘−5/3, (1.20)

where 𝑘0 is a constant and 𝑘𝑘 ≪ 𝑘 ≪ 𝐾𝑂𝑧 . The lower bound for 𝑘 is the

Ozmidov length scale, 𝐾𝑂𝑧 . At lower wave numbers, tke is generated by the

mean flow. The Kolmogorov spectrum is illustrated on Figure 1.3.

log(k)K k

k

log E(k)

inertial 
subrange

-5/3

kOz

Figure 1.3: Kolmogorov spectrum

(adapted from Meredith and Gara-

bato (2021)).

The results of Kolmogorov and Reynolds explain the profound difficulty of

modeling large scale flows:

▷ Turbulence removes energy from the mean flow, and thus needs to be

accounted for in the discretizedmomentum equationswhich consititute

the physical basis of ocean models and

▷ The resolution required to simulate the full spectrum of turbulence

down to the dissipation scale is unfeasible.

When the fluid motion equations are discretized, the energy spectrum is

truncated. This inevitably results in error, which propagates from small

to large scale flows. One of the fundamental questions of computational

oceanography is: can this error be rectified and if so, how?

1.3 turbulence closure schemes

Reynolds averaged Navier-Stokes (RANS) equations offer valuable insights

into the physical properties of turbulence. However, in the resulting formula-

tion, variables outnumber the equations, leading to the infamous turbulence
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closure problem. Numerical models based on RANS equations involve expres-

sions that represent turbulent fluxes in terms of the properties of the mean

flow, the so-called turbulence closure schemes.

In ocean general circulation models (OGCMs), where the horizontal grid

spacing is much larger than the vertical, diapycnal mixing budget is assumed

to be dominated by the vertical gradient terms
9

9. This is known as the boundary
layer approximation.

. Horizontal isopycnal mixing

is treated separately by other parameterizations. Vertical turbulent closures

are formulated for one-dimensional columns and approximate the turbulent

fluxes of momentum and tracers across the isopycnal layers.

Two main types of vertical turbulence closures are used in oceanography:

statistical and empirical
10

10. A third approach has emerged

in recent years, namely machine

learning (ML)-based parameteriza-

tions. The results of this work are

focused on evaluating the classical

approaches, but ML-based methods

are briefly discussed in Section 4.3.

. The former estimate the mixing rate for the whole

vertical column based on prognostic turbulent transport equations of second

moment quantities such as tke in Eq. (1.16). The latter typically consider the

boundary layer and ocean interior separately, and estimate turbulent fluxes

by directly modeling specific geophysical mixing processes.

The schemes discussed in this PhD thesis are the Turbulent Kinetic Energy clo-

sure (TKE, Blanke and Delecluse, 1993; Gaspar, Grégoris, and Lefevre, 1990)

and the K-profile parameterization (KPP, Large, McWilliams, and Doney,

1994). Both are widely used in contemporary ocean models and each repre-

sents one of the two approaches: KPP is an empirically based closure, while

TKE is a statistical scheme. The following sections outline their structure, as

well as their performance across models of varying complexity.

1.3.1 Turbulent Kinetic Energy Closure

The scheme proposed by Gaspar, Grégoris, and Lefevre (GGL90, 1990) is a

simplified version of the Mellor and Yamada (MY82, 1982) level 2.5 model,

one of the classic second moment closures (SMC), where two prognostic

equations for 𝑒 and 𝑒𝑙 are used to estimate vertical turbulent fluxes. The

version of the scheme used in OGCMs in Articles I and II is further altered

variant from Blanke and Delecluse (BD93, 1993). Although lengthy, the steps

between the formulations of MY82 and BD93 help to explain the motivation

for default parameter values in modern uses of the scheme, and the results

of TKE optimization in Article II. They will be therefore summarized in this

section.

Contemporary turbulence closures are based on the turbulent viscosity and

diffusion hypotheses. The full Reynolds stress is parameterized by:

turbulent viscosity
hypothesis

𝑢′
𝑖
𝑢′
𝑗
=

2

3

𝑒𝛿𝑖 𝑗 − 𝐾𝑚
(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
, (1.21)

a tensor of the same form as the stress tensor for a Newtonian fluid. Here,

the tke acts as turbulent pressure. Due to the boundary layer and the hydro-
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static approximations, only two terms of the full Reynolds stress need to be

parameterized:

𝑢′𝑤 ′ = −𝐾𝑚
𝜕𝑢

𝜕𝑧
and 𝑣 ′𝑤 ′ = −𝐾𝑚

𝜕𝑣

𝜕𝑧
. (1.22)

The turbulent flux of tracer values such as potential temperature is approxi-

mated by analogy to Fick’s law of molecular diffusion:

turbulent diffusion
hypothesis

𝑢′
𝑖
𝜃 ′ = −𝐾ℎ

𝜕𝜃

𝜕𝑥𝑖
. (1.23)

Eddy viscosity 𝐾𝑚 and eddy diffusivity 𝐾ℎ are then determined using a method

dependent on the type of closure. Dimensional analysis suggests that they

should be a product of a characteristic length scale and velocity scale. A

natural choice for the velocity scale is the turbulent kinetic energy, so that:

smc eddy diffusivity𝐾𝑚 = 𝑐𝜇𝑙 𝑒
1/2

and 𝐾ℎ = 𝑐′𝜇𝑙 𝑒
1/2, (1.24)

where 𝑙 is the mixing length scale, while 𝑐𝜇 and 𝑐
′
𝜇 are the stability functions of

squared mean shear 𝑆ℎ2
and buoyancy frequency 𝑁 2

. 𝐾𝑚 and 𝐾ℎ are related

by the turbulent Prandtl number 𝑃𝑟𝑡 , such that 𝐾𝑚 = 𝑃−1

𝑟𝑡 𝐾ℎ . To parameterize

the diffusive fluxes, 𝑒 , 𝑙 , 𝑐𝜇 and 𝑐
′
𝜇 have to be determined.

SMCs typically involve prognostic equations for the turbulent kinetic energy

and another second moment quantity, such as tke dissipation (𝑘 − 𝜖 , Rodi,
1987)

11
11. In this thesis, I adapt the notation

from GGL90 where tke is symbolized

by 𝑒 . However, in SMC literature, tke

is typically symbolized by 𝑘 .

, mixing lenght scale (𝑘 − 𝑘𝑙 , Mellor and Yamada, 1982) or mixing time

scale (𝑘 − 𝜔 , Umlauf and Burchard, 2003; Wilcox, 1988). The two prognostic

equations are used to derive all other relevant quantities. The GGL90 scheme

inherits the prognostic tke equation from MY82 in the following form:

prognostic tke equation
𝜕𝑒

𝜕𝑡
− 𝜕

𝜕𝑧

(
𝐾𝑒

𝜕𝑒

𝜕𝑧

)
= 𝐾𝑚𝑆ℎ

2 − 𝐾ℎ𝑁 2 − 𝑐𝜖
𝑒3/2

𝑙𝜖
. (1.25)

This is a considerable simplification of the full tke equation in Eq. (1.16). The

most dramatic changes originate from the boundary layer approximation,

which removes all horizontal gradient terms. Horizontal advection by the

mean flow is explicitly modeled in the OGCM, and thus not included.

The two dominant turbulent transport terms are approximated with a diffu-

sion model:

vertical tke diffusion− 𝜕

𝜕𝑧

(
𝑒𝑤 ′ + 𝑝

′𝑤 ′

𝜌0

)
= 𝐾𝑒

𝜕𝑒

𝜕𝑧
, (1.26)
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where 𝐾𝑒 = 𝛼𝑡𝑘𝑒𝐾𝑚 is tke diffusivity. Shear production and buoyancy flux

are derived using Eq. (1.21) and Eq. (1.23):

shear and buoyancy
production

𝑢𝑤
𝜕𝑢

𝜕𝑧
+ 𝑣𝑤 𝜕𝑣

𝜕𝑧
= −𝐾𝑚

(
𝜕𝑢

𝜕𝑧

)
2

− 𝐾𝑚
(
𝜕𝑣

𝜕𝑧

)
2

𝑔

𝜌0

𝑤 ′𝜌 ′ = −𝐾ℎ
𝑔

𝜌0

𝜕𝜌

𝜕𝑧

(1.27)

Finally, 𝜖 is parameterized following the Kolmogorov spectrum in Eq. (1.19):

tke dissipation parameteriza-
tion

𝜖 = 𝑐𝜖
𝑒3/2

𝑙𝜖
∝ 𝑒3/2𝑘. (1.28)

1.3.2 The Choice of TKE Parameters

In MY82, all second moment quantities 𝑢𝑖𝑢 𝑗 are parameterized in terms of

model variables from Equations (1.25) - (1.28) and used to derive the stability

functions 𝑐𝜇 and 𝑐
′
𝜇 . The free parameters of the model all scale the master

lenght 𝑙 . The parameter values are set so the model fulfills the logarithmic

law of the wall near solid surfaces.

It is the complex formulation of 𝑙 which motivated GGL90 to edit the MY82

scheme and introduce a simplified version where only two length scales are

considered: the dissipation length 𝑙𝜖 and the mixing length 𝑙𝑘 . The latter

replaces 𝑙 in Equations (1.24):

ggl90 eddy diffusivity𝐾𝑚 = 𝑐𝑘𝑙𝑘𝑃𝑟𝑡𝑒
1/2

and 𝐾ℎ = 𝑐𝑘𝑙𝑘𝑒
1/2, (1.29)

where 𝑐𝑘 is now a constant model parameter. The values of 𝑙𝑘 and 𝑙𝜖 are

computed from the integrals:

ggl90 length scales

𝑔

𝜌0

∫ 𝑧+𝑙𝑢

𝑧

[𝜌 (𝑧) − 𝜌 (𝑧′)]𝑑𝑧 = 𝑒 (𝑧),

𝑔

𝜌0

∫ 𝑧−𝑙𝑑

𝑧

[𝜌 (𝑧) − 𝜌 (𝑧′)]𝑑𝑧 = 𝑒 (𝑧),
(1.30)

where 𝑙𝜖 = (𝑙𝑢𝑙𝑑 )1/2
and 𝑙𝑘 = min(𝑙𝑢, 𝑙𝑑 ).

The length scale computation in GGL90’s version of the closure requires an

iterative algorithm, which is the most expensive part of the scheme. Contrary

to GGL90, BD93 test the scheme in a three-dimensional ocean model and find

the GGL90 length scale computation to be a bottleneck. BD93 implement

instead:

bd93 length scales𝑙𝑑 = 𝑙𝑢 = 𝑙𝑘 = 𝑙𝜖 = 2
1/2𝑒1/2𝑁 −1, (1.31)

14



which is an approximation of Eq. (1.30) obtained by assuming constant strati-

fication.

In MY82 and GGL90, the constant
12

12. And the reciprocal of the Schmidt

number 𝜎𝑘 .

scaling the vertical diffusive flux of tke

𝛼𝑡𝑘𝑒 = 1. BD93 find that this value sometimes causes numerical instabili-

ties due to coarse vertical resolution of the three-dimensional model, and

therefore recommend 𝛼𝑡𝑘𝑒 = 30 for OGCMs
13

13. In Article II, we find that the 𝛼𝑡𝑘𝑒
value does not impact model stability

when 60 vertical layers are used.

.

GGL90 use 𝑃𝑟𝑡 = 1, similar to MY82’s 𝑃𝑟𝑡 = 0.8. BD93 use a value which is

dependent on gradient Richardson number 𝑅𝑖 instead:

bd93 prandtl number𝑃𝑟𝑡 = 6.6𝑅𝑖, 𝑃𝑟𝑡 ∈ [1, 10] . (1.32)

This choice is motivated by observations of 𝑃𝑟𝑡 dependence on stratification.

As a result of this relation, 𝑅𝑖𝑐 ∝ 𝑐𝑘𝑐−1

𝜖 in the BD93 model
14

14. For realistic 𝑅𝑖𝑐 numbers. See

Section 3.2 for the discussion about

𝑅𝑖𝑐 > 1.5.

.

The quasi-equilibrium is the state for which the shear and buoyancy pro-

duction terms 𝑃𝑠 + 𝑃𝑏 equal tke dissipation. As pointed out in Umlauf and

Burchard (2003), this state can support a range of gradient Richardson num-

bers, of which 𝑅𝑖𝑐 is the maximum. They find that it is in fact this steady-state
gradient Richardson number 𝑅𝑖𝑠𝑡 (𝑐𝜇, 𝑐′𝜇) that determines the depth of the

mixed layer in the column SMC models. In BD93, the stability functions

are constant, which leads to a constant steady-state gradient Richardson

number equal to 𝑅𝑖𝑐 . Mrozowska et al. (n.d.) demonstrates that similarly to

the one-dimensional SMC cases, it is the 𝑅𝑖𝑐 which sets the global MLD.

Simplifications implemented by GGL90 and BD93 are motivated by com-

putational efficiency and numerical stability considerations. The changes

implemented do not tackle any of the typical SMC limitations, such as the

lack of parameterization of nonlocal mixing and internal wave breaking.

1.3.3 K-profile Parameterization

The KPP scheme addresses these issues by including a nonlocal transport

term 𝛾𝜓 in the closure:

kpp vertical turbulent fluxes𝑤 ′𝜓 ′ = −𝐾𝜓
𝜕𝜓

𝜕𝑧
− 𝐾𝜓𝛾𝜓 , (1.33)

where𝑤 ′𝜓 ′
represents the turbulent flux of a quantity𝜓 , such as momentum

or temperature. Just as in TKE, turbulent diffusivity and viscosity hypotheses

are applied, but the 𝛾𝜓 term simulates the mixing which occurs when the

vertical 𝜓 gradient is weak. Non-zero values of 𝛾𝜓 are only prescribed to

tracer quantities in unstable surface buoyancy forcing.

Eddy diffusivity in KPP is a product of three terms:

kpp eddy diffusivity𝐾𝜓 = ℎ𝑤𝜓 (𝜎)𝐺 (𝜎), (1.34)
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where ℎ is the depth of the ocean surface boundary layer (OSBL), 𝐺 (𝜎) is
the vertical polynomial shape function and 𝜎 is the dimensionless vertical

coordinate 𝜎 ∈ [0, 1], which extends from the ocean surface to the OSBL

base.

The depth of the boundary layer is prescribed based on the value of the bulk

Richardson number:

bulk richardson number𝑅𝑖𝑏 (𝑑) =
(𝐵𝑟 − 𝐵(𝑑))𝑑

|v𝑟 − v(𝑑) |2 + 𝑣2

𝑡 (𝑑)
, (1.35)

where 𝐵 is buoyancy, v is the horizontal velocity vector, 𝑟 symbolises near-

surface values, 𝑑 = −𝑧 +𝜂, 𝜂 is the position of the dynamic ocean free surface

and 𝑣𝑡 parameterizes the unresolved vertical shear. Boundary layer depth ℎ

is the shallowest depth layer for which 𝑅𝑖𝑏 > 𝑅𝑖𝑐 . Below the boundary layer,

eddy diffusivity is set to a constant minimum value to simulate unresolved

internal wave breaking. Gradient Richardson number 𝑅𝑖 exceeding a critical

value may increase the interior eddy diffusivity above the background value.

1.3.4 Verical Mixing Schemes in Contemporary Ocean Models

The KPP and TKE schemes summarized in previous sections are widely used

in the community, but many more proposed closures exist.
15

15. For example, the Pacanowski and

Philander model (PP, Pacanowski

and Philander, 1981), NASA Goddard

Institute for Space Studies scheme

(GISS, Canuto et al., 2002), the Plan-

etary Boundary Layer model (ePBL,

Reichl and Hallberg, 2018), and many

more.

The schemes

undergo continued development due to the changes in OGCM structure

and resolution. For example, Van Roekel et al. (2018) test the KPP scheme

against Large Eddy Simulations (LES). The original parameterization for

unresolved shear by Large, McWilliams, and Doney (1994) is sensitive to

vertical resolution. Motivated by this, new formulation of 𝑣𝑡 is proposed.

Additional expressions to simulate specific physical processes may also be

implemented. For example, Jochum et al. (2013) extend the KPP scheme

to include a parameterization of NIW-induced mixing. Li et al. (2019) test

the impact of simulating the effects of Langmuir circulation across various

models, and Brüggemann et al. (2024) show that the inclusion of the tidal

mixing parameterization IDEMIX (Nielsen et al., 2018; Olbers and Eden, 2013)

in three OGCMs can lead to a better representation of diffusivity in the ocean

interior.

Despite a plethora of choices, no scheme has yet emerged as generally favored.

Partially, this is due to the nature of model development. Implementing

new model components is time consuming and cumbersome, thus modelers

often prefer to continue working on the schemes that are already there.

Modeling aims also determine which mixing scheme is used. For example, the

TKE scheme can be implemented in an ocean model which favors energetic

consistency (Eden, Czeschel, and Olbers, 2014).
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The volume of literature comparing vertical mixing scheme performance is

gradually expanding. The task carries with itself a number of challenges,

such as computational cost of sensitivity studies in OGCMs and coupled

models; the contamination of biases originating from forcing and model

structure; the scheme sensitivity to resolution, and the impact of numerical

mixing. Nevertheless, the persistent near-surface OGCM biases motivate the

continued research into strategies to improve the schemes.

The coarse and eddy-permitting OMIP
16

16. Ocean Model Intercomparison

Project (Griffies et al., 2016). OMIP

mostly includes models with varia-

tions of the TKE and KPP schemes.

models exhibit shallow summer and

deep winter MLD biases (Treguier et al., 2023). Despite identical forcing and

relatively small differences in SST across the OGCMs, MLD biases have a

significantly larger spread. Increasing horizontal resolution does not lead to

universal improvements. The eddying models cannot rectify the MLD biases

in the Antarctic Circumpolar Current (ACC) and subpolar regions seen in

their coarser counterparts. MLD is generally shallower in the high resolution

models, likely due to the presence of mesoscale eddies which restratify the

water column (Gaube, J. McGillicuddy Jr., and Moulin, 2019).

Approaches to testing the model sensitivity to mixing scheme choice include

column, OGCM and full GCM studies. For example, Damerell et al. (2020)

compare the ability of five mixing schemes, TKE and KPP among them, to

reproduce point observations from the North Atlantic Ocean. ML is too

deep in all models, and none of the mixing schemes performs systematically

better than others. Pottapinjara and Joseph (2022) use three different mixing

schemes, including KPP, to simulate the climate of the tropical Indian Ocean.

They find that ML is biased deep across all the tested schemes. Once again,

none of them is found to be systematically better.

Another approach is to compare the schemes in full GCMs. Gutjahr et al.

(2021) investigate the four parameterizations in this context. The response

to TKE and KPP is similar, with warm SST biases in the Atlantic ocean. The

authors propose a pathway, where the enhanced Atlantic MOC strengthens

the heat transport to high northern latitudes, resulting in SST increase.

Mixed layer depth biases persist across different models and schemes, which

shows that turbulence parameterizations are still in need of improvement.

Validation and sensitivity studies can be done using column models, which

allow for a cleaner comparison, but cannot quantify the sensitivity of large

scale circulation to the parameterization. For this purpose, OGCMs can be

used. The downside is that OGCM biases result from the combined model

deficiencies originating from resolution, geometry, forcing, initial conditions

and other parameterizations. Isolating the vertical mixing scheme impact

on the biases is not possible. On top of this, OGCMs do not include ocean

interactions with the atmosphere and other climate components. Mixing

schemes may induce feedbacks in coupled models, which are not captured in

OGMCs. Coupled model studies are the most expensive option for analyzing

climate sensitivity to vertical mixing parameterizations. The feedback path-

ways resulting from changing the scheme used, parameter values, or scheme
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components are difficult to determine due to the complexity of full GCMs

and ESMs.

How can we move forward? Although OGCM and full GCM biases in phys-

ical properties of the upper ocean exhibit persistent biases, the modeling

community is not short on ideas for alternative approaches. In the following

chapters, two novel strategies for assessing oceanic vertical mixing schemes

are explored.
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2Mixing in Eddy-Rich Models

Structural OGCM and GCM biases fundamentally stem from the inability to

simulate the full energy spectrum of the atmospheric and oceanic flows. In

coarse resolution models, where the horizontal grid spacing is on the order

of 1
◦
, geostrophic turbulence is not simulated and must be parameterized.

As a result, transient climate processes that induce vertical mixing are either

absent or only approximated.

A natural solution to this problem is to increase the model resolution. Unfor-

tunately, reducing GCM grid spacing by a factor of 10 is approximately 10
3

times more computationally expensive (Hewitt et al., 2022). Nevertheless, the

development of global eddy-rich models is one of the major current focuses

of the climate community.
1

1. The rate of the development is im-

pressive. In the first intercomparison

of global storm-resolving models,

Stevens et al. (2019) demonstrate

how the 40-day DYAMOND simu-

lations at less than 5 km resolution

pass the so-called Palmer-Turing test
(Palmer, 2016), where snapshots of

the atmospheric cloud fields are in-

distinguishable from observations.

Recently, in association with the

nextGEMS project, Rackow et al.

(2024) report the results of global

multi-year IFS-FESOM simulations at

2.8 km resolution.

Simulated atmosphere benefits significantly from increased resolution due to

the better representation of deep convection, top-of-the-atmosphere radiative

balance and rainfall. The hope for km-scale ESMs is that biases in upper

ocean dynamics are reduced due to improved atmospheric forcing, and due

to more realistic statistical representation of oceanic flows.

Even down to kilometer scale, the Kolmogorov spectrum informs that vertical

turbulence schemes continue to be a necessity. Contrary to their coarse

counterparts, eddy-rich ESMs have not been subject to decades of tests and

tuning. One universal impact of increasing ocean model resolution is ML

shallowing due to enhanced levels of baroclinic instability (e.g., Lévy et al.,

2010; Oschlies, 2002; Treguier et al., 2023), suggesting that vertical mixing

parameterizations in eddy-rich OGCMs may require adjusting.

2.1 near-inertial waves

ML deepening can occur due to entrainment of water below its base. One of

the main drivers of this phenomenon are near-inertial waves (NIWs), which

get their name from their frequency:

coriolis frequency𝑓 = 2Ωsin𝜙, (2.1)

where 𝜙 is latitude, Ω is Earth’s angular velocity and 𝑓 is the Coriolis or iner-
tial frequency. The near-inertial currents are excited by winds and sustained

by resonance.
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NIWs propagate out of the mixed layer with the group velocity:

vertical group velocity of
niws

𝑐𝑔,𝑧 ≈ −𝑁
2 |kℎ |2
𝑓𝑚3

, (2.2)

where kℎ is the horizontal wavenumber and𝑚 is the vertical wavenumber.

They move equatorward, and therefore are most often observed oscillating

with frequency slightly higher than the local inertial frequency. NIWs are

believed to contribute significantly to internal diapycnal mixing, but most of

the wind-driven NIW energy has been shown to be dissipated at the surface

(Furuichi, Hibiya, and Niwa, 2008; Zhai et al., 2009).

Observations of sea surface temperature (SST) along hurricane tracks indicate

that near-inertial motions induced by resonant winds contribute significantly

to surface ocean cooling. Horizontal NIW currents can reach speeds of

1 m s
−1
, inducing strong shear at the ML base and mixing via entrainment.

Jochum et al. (2013) show that by parameterizing near-inertial motions in the

Community Earth SystemModel, surface SST and rainfall biaseswere reduced.

The interest to estimate surface NIW dissipation is therefore two-fold: 1) it

allows to determine the fraction of near-inertial wind energy available for

mixing in the ocean interior and 2) it provides insight into the impact of

NIW-induced mixing on the upper ocean.

NIW dissipation rates have been shown to vary significantly depening on

the model used. The first NIW model was proposed by Pollard and Mil-

lard (1970), where the near-inertial currents are driven by wind stress in a

one-dimensional slab mixed layer. The unrealistic linear damping of this

model significantly overestimates NIW amplitude (Plueddemann and Far-

rar, 2006). Efforts to simulate NIWs in three-dimensional models show that

high temporal resolution of at least 6 hours is necessary to resolve the NIW

forcing mechanism (Rimac et al., 2013). Moreover, NIW propagation into

ocean interior is enhanced in the presence of eddies (Zhai, Greatbatch, and

Zhao, 2005; Zhai, Greatbatch, and Eden, 2007). This implies that studying the

impact of NIWs on surface ocean on global scale requires realistic, eddy-rich

ocean models.
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2.2 article i — using niw observations to assess mixed
layer parameterizations: a case study in the
tropical atlantic

Article I: “Using NIW Observations to Assess Mixed Layer Parameterizations:
A Case Study in the Tropical Atlantic” (Mrozowska et al., 2024) has been

published in the Journal of Geophysical Research: Oceans.

The research in Article I is motivated by the question: can local mixing be used
as a metric for the performance of turbulence closures in eddy-rich OGCMs? 2

2. The nextGEMS project begun

shortly after the publication of Hum-

mels et al. (2020), which provided a

set of NIW turbulence observations

for model validation. The availability

of the data and the considerations

outlined in the previous section

amounted to NIWs becoming the

research focus.

The main aims of the study are:

1. To investigate how well eddy-rich OGCMs reproduce the observed

NIW characteristics and associated mixing;

2. To determine whether the simulated NIW characteristics are sensitive

to the vertical mixing parameterization.

The two schemes tested are KPP and TKE, although model sensitivity to

parameter values is investigated only for the latter
3

3. Based on communication with Nils

Brüggemann, Johann Jungclaus and

Sergey Danilov, it was hypothesized

that the TKE parameter 𝑐𝑘 was likely

to have the largest impact on the

upper tropical ocean. This turns out

to be true, see Article II in Section 3.2

. The analysis is focused

at two PIRATA sites: 11.5◦N and 15
◦
N.

The comparison of modeled and observed NIW characteristics is complicated

by slight biases of the atmospheric forcing. Modeled winds in the near-

inertial band are too weak at both sites, with significant bias of 27% at 15
◦
N.

As a result, although the near-inertial currents at 15
◦
N are in phase with

observations, they are too weak in all models.

Due to shallowML bias at the 11.5◦N site, some TKEmodels simulate stronger

than observed near-inertial currents despite the weaker forcing. The simu-

lated NIW amplitude is smaller than observed at the time of the microstruc-

ture observations, and thus the NIW-induced mixing is not simulated. In

contrast, enhanced eddy diffusivity can be seen at the 15
◦
N site after storm

winds substantially deepen the mixing layer.

TKE models with lower 𝑐𝑘 values generally simulate stronger near-inertial

currents at the 11.5◦N site, but the sensitivity is reduced at 15
◦
N. This may

be due to the generally higher startification and shallower ML at 11.5◦N.

The answer to the question posed at the beginning is thus mixed: on one

hand, the models simulate the NIWs and the comparison with microstructure

observations was possible. On the other, the combination of surface ocean

biases and forcing biases makes it difficult to isolate the impact of the vertical

mixing schemes on NIW characteristics.

In association with the nextGEMS project, a mixing database was devel-

oped which contains shipboard observations of local mixing processes, NIWs
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among them (Dengler et al., 2023; Fischer, Dengler, and Melzer, 2024). In-

vestigating NIW mixing across the whole Tropical Atlantic could provide

a more robust basis for testing the sensitivity of NIW characteristics to the

vertical mixing schemes.

2.2.1 A Note on Insufficient Resolution

One alternative reason for the absence of NIW-induced mixing is not dis-

cussed in Article I. Namely, that higher modes of NIWs are not resolved in

the models, and thus the modeled shear is not sufficient to overcome the

stratification and induce mixing.
4

4. Lars Umlauf provided this idea

through personal correspondence.

As shown in Eq. (2.2), lower NIW modes propagate out of the mixed layer

the quickest due to the inverse proportionality between 𝑚 and 𝑐𝑔,𝑧 . It is

thus the higher modes that are associated with upper ocean dissipation. The

contribution to the near-inertial kinetic energy and shear of each mode can

be computed via modal decomposition. However, the full profile of the model

velocities in the study was not saved due to limited disk space, and therefore

this approach was not possible.

The reasoning is plausible, however, considering that RAJA2022 find that in

global HYCOM runs with 1/25
◦
horizontal and 8 m surface vertical resolution,

only the 5 lowest NIW modes are resolved. In Article I, it is evident that

shear below the mixed layer is too weak in all models (see Figure 5 in the

article), but the observed shear is a product of the whole unresolved internal

wave field. The near-inertial kinetic energy is also generally too weak in the

models (Fig. 3), although this may result from the wind forcing bias.

Moreover, the models do simulate enhanced eddy diffusivities associated

with NIWs at the 15
◦
N site, which suggests that some degree of mixing can

be resolved at the present resolution. The Fischer, Dengler, and Melzer (2024)

database provides an observational basis for a broader assessment of NIW

characteristics in the models.
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Using NIW Observations to Assess Mixed Layer
Parameterizations: A Case Study in the Tropical Atlantic
M. A. Mrozowska1 , M. Jochum1 , S. Bastin2, R. Hummels3, A. Koldunov4 , M. Dengler3 ,
T. Fischer3 , R. Nuterman1 , and R. R. Hansen1

1Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 2Max Planck Institute for Meteorology, Hamburg,
Germany, 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 4Alfred Wegener Institute for Polar and
Marine Research, Bremerhaven, Germany

Abstract Tropical sea surface temperature (SST) biases can cause atmospheric biases on global scales,
hence SST needs to be represented well in climate models. A major source of uncertainties is the representation
of turbulent mixing in the oceanic boundary layer, or mixed layer (ML). In the present study we focus on near‐
inertial wave (NIW) induced mixing. The performance of two mixing schemes, Turbulent Kinetic Energy and
K‐profile parameterization (KPP), is assessed at two sites (11.5°N, 23°W and 15°N, 38°W) in the tropical
Atlantic. At 11.5°N, turbulence observations (eddy diffusivities, shear and stratification) are available for
comparison. We find that the schemes differ in their representation of NIWs, but both under‐represent the
observed enhanced diffusivities below the observed ML. However, we find that the models do mix below the
ML at 15°N when a storm passes nearby. The near‐inertial oscillations remain below the ML for the following
10 days. Near‐inertial kinetic energy (NIKE) biases in the models are not directly correlated with the wind
speed, the MLD biases, or the stratification at the ML base. Instead, NIKE biases are sensitive to the vertical
mixing scheme parameterization. NIKE biases are lowest when the KPP scheme is used.

Plain Language Summary The surface temperature of the ocean is highly dependent on the depth of
the mixed layer (ML), the uppermost layer in the water column, where density, temperature and salinity are
approximately constant. In climate models, the vertical mixing processes cannot be resolved, and instead they
are computed with the use of vertical mixing schemes. We assess how well two of such schemes can represent
the mixing induced by a specific type of ocean waves, near‐inertial waves (NIWs). We compare recent
observations of turbulent mixing induced by NIWs in the tropical Atlantic with numerical simulations that
resolve storms. Our results show that the models are able to reproduce the observed NIWs, but underestimate
their mixing and amplitude. Our analysis also shows that NIWs are a driver of mixing below the uppermost
ocean layer in the models. The strength of the near‐inertial currents is sensitive to the vertical mixing
parameterization.

1. Introduction
The tropical ocean is one of the main energy sources for the tropical and extra‐tropical atmosphere and even small
sea surface temperature (SST) anomalies there can lead to a restructuring of the global climate (Barsugli &
Sardeshmukh, 2002; Jochum & Potemra, 2008). Weather forecasting and climate prediction therefore rely on
accurate representation of the tropical SST. A large source of bias could be the vertical mixing (Foltz et al., 2003).

Diapycnal mixing in the ocean has been studied extensively, as it is theorized to be a significant driver of the
meridional overturning circulation (Munk & Wunsch, 1998). Vertical turbulent mixing in the ocean interior is
mainly driven by internal wave breaking powered by winds and tides (Wunsch & Ferrari, 2004). Near‐inertial
waves (NIWs) are a dominant mode of high‐frequency variability in the ocean (Fu, 1981; Garrett &
Munk, 1975). They can be generated by a range of processes, such as oceanic Lee waves and wave‐wave in-
teractions (Alford et al., 2016), but their most notable and well‐recorded driver is the surface wind stress (e.g.,
D’Asaro, 1985). Due to their ubiquity in the ocean and the potential for driving diapycnal mixing, a multitude of
estimates for the fraction of the wind power input (WPI) transferred into deep ocean by NIWs exist. While the
estimates vary in magnitude, a common conclusion is that the majority of the NIW energy is dissipated in the
surface ocean. Zhai et al. (2009), for example, show in a model study that almost 70% of the near‐inertial WPI is
dissipated in the top 200 m.
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It is well established that NIWs are important in deepening of the surface mixed layer (ML) in the tropical ocean.
Strong vertical shear across the ML base induced by near‐inertial currents leads to elevated mixing and vertical
diffusive heat flux that cools and subsequently deepens the ML (e.g., Large & Crawford, 1995). Jochum
et al. (2013) find that by accounting for near‐inertial currents in the coarse resolution CCSM4 model, the tropical
rainfall bias is reduced through deepening of the ML and changing the SST gradients. NIW‐induced mixing is
also the dominant process which contributes to SST cooling during and after the passing of tropical cyclones (e.g.,
Greatbatch, 1983; Price, 1981; Vincent et al., 2012).

The database of direct measurements of NIW‐induced mixing has been expanding over the past two decades (e.g.,
Alford & Gregg, 2001; Brizuela et al., 2023; Hummels et al., 2020), but is still limited. Large scale studies of
NIW‐induced mixing are therefore based on numerical models of varying complexity (e.g., Kuwano‐Yoshida
et al., 2017; Raja et al., 2022; Rimac et al., 2016). In climate models, the strength of NIWs is often under-
estimated because their main generation mechanism is a rapid change of wind speed across the fronts of a storm
system, something that is often not properly resolved in ESMs (Rimac et al., 2013). The amplitude of wind‐driven
NIWs is highly dependent on the depth of the mixed layer (MLD) (Pollard & Millard, 1970), and their rate of
dissipation is primarily dependent on ocean stratification (Pollard, 1970).

The biases in surface oceanMLD remain an unsolved problem in oceanmodeling (Huang et al., 2014). One issue is
that the depth of theML is a highly spatially and temporally variable field (de BoyerMontégut et al., 2004). While
ocean models are able to simulate realistic MLD values, it remains a question whether local mixing processes are
accurately represented. Our study attempts to bridge this gap by evaluating the ability of two commonly used
mixing schemes, the K‐profile parameterization (KPP, Large et al., 1994) and the turbulent kinetic energy closure
scheme (TKE, Gaspar et al., 1990), to reproduce NIW‐induced mixing in the tropical Atlantic. We use two forced,
eddying ocean models: the Ocean component of the ICOsahedral and Nonhydrostatic weather and climate model
(ICON‐O, Korn et al., 2022) and the Finite Element/volumE Sea ice‐OceanModel (FESOM, Danilov et al., 2017;
Scholz et al., 2019). Furthermore, we assess the sensitivity of the NIW‐induced mixing to the TKE scheme
parameterization by conducting five TKE sensitivity experiments. We present the results of this evaluation at two
sites in the tropical Atlantic.

The text is structured as follows: we motivate the choice of sites (Section 2.1), specify the setup of the sensitivity
studies (Section 2.2) and the data selected to evaluate the model performance (Section 2.3); the atmospheric
conditions at the sites are compared to model forcing (Section 2.4). We present an overview of the MLD bias in
the tropical Atlantic (Section 3.1), modeled NIW characteristics (Section 3.2), their mixing signature (Sec-
tion 3.3), and the sensitivity of the near‐inertial kinetic energy (NIKE) to the vertical mixing schemes (Sec-
tion 3.4). Following a summary and discussion (Section 4), the main conclusions of the study are listed in
Section 5.

2. Methods
2.1. Choice of Study Period and Locations

A study by Hummels et al. (2020) (hereafter referred to as HDRF20) documents a strong NIW observed during a
research cruise in the tropical Atlantic. The vessel‐mounted Acoustic Doppler Current Profiler (vmADCP)
measurements show a clear signal of the wave at 11°N, 21°W between thirteenth and fifteenth of September 2015,
as the tropical storm Ida develops (Cangialosi, 2015). The shear induced by the wave cooled the ML at the rate of
244 Wm− 2. The observations provide a complete set of parameters required to investigate the NIW‐induced
mixing in the models, therefore we pick the years 2014/2015 as the period of the ocean simulations.

The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA, Bourlès et al., 2019) offers a range
of long‐termmeasurements of ocean currents and state. In theAtlantic, the near‐inertial velocity variance is highest
between 7.5°S and 12.5°N (Elipot & Lumpkin, 2008). In the vicinity of this latitude band, high frequency current
and co‐located wind observations are available in 2014/15 at two PIRATA moorings off the equator: 11.5°N, 23°
W; 15°N, 38°W. Coincidentally, Ida also passes across this second mooring, and the two periods of NIW‐induced
mixing are the focus of the present study. Throughout the article, they are referred to as the 11.5°Nand the 15°N site,
respectively.
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2.2. Setup of Sensitivity Experiments

We use two models for the study: the Ocean component of the ICOsahedral and Nonhydrostatic weather and
climate model (ICON‐O, Korn et al., 2022) and the Finite Element/volumE Sea ice‐Ocean Model (FESOM,
Danilov et al., 2017; Scholz et al., 2019). Both of them are forced with hourly ECMWF Reanalysis product
(ERA5, Hersbach et al., 2020). FESOM spin‐up is initialized from the Polar Science Hydrographic winter
Climatology (PHC3.0, updated from Steele et al., 2001) in 2009. Both the base run and the sensitivity runs start
from rest. ICON‐O spin‐up is initialized with Ocean Reanalysis System 5 (ORAS5, Zuo et al., 2019) in 2010. The
simulation branches out into control and sensitivity experiments in 2014. The models run for 2 simulated years
after the spin‐up with a temporal output frequency of 3 h.

The models run on a triangular mesh grid, and the output is interpolated on a regular 0.1° grid in post‐processing.
There are 40 vertical levels in the top 200 m, with monotonously increasing distance between the layers: 2 m at the
surface and 10.7 m at the bottom. Due to constraints on available output storage space, the simulation domain
covers the whole global ocean down to the sediment, but only the upper 200 m are saved. FESOM runs on a B‐grid
of 13 km resolution in the tropical Atlantic and 50 km resolution in the rest of the ocean. ICON‐O runs on a C‐grid
of approximately 10 km horizontal resolution globally. We use two widely employed vertical mixing schemes for
the analysis: the turbulent kinetic energy (TKE, Gaspar et al., 1990) and the KPP (Large et al., 1994).

TKE is a parameterization where the turbulent vertical fluxes are determined from the vertical property gradients.
Eddy diffusivities are dependent on TKE:

Km = cklke1/2, Kh = Ks = Km/Prt , (1)

where lk is a mixing length, ck is a constant and e is the TKE. The momentum diffusivity, Km, is related to the heat
and salinity diffusivities, Kh and Ks, through the Prandtl number. The constant ck scales the contribution of
turbulent kinetic energy to mixing. The TKE itself is computed by a prognostic equation in the model. It can be
enhanced by external forcing, such as the winds, or internal waves and currents producing shear. Aside from the
TKE dissipation term, TKE sinks include vertical TKE diffusion and stable stratification.

KPP is a non‐local closure parameterization. Like TKE, KPP utilizes the concept of eddy diffusivities for
determining the turbulent vertical fluxes. The diffusivities no longer depend on TKE, but have a vertical profile
dependent on the depth of the boundary layer h, which is determined using the bulk Richardson number:

Rib(d) =
(Br − B(d)) d

|vr − v(d)|2 + v2t (d)
, (2)

where B is buoyancy, v = (u, v, w) is the mean velocity, and the subscript r denotes near‐surface values; vt is an
additional term, the turbulent velocity shear, which ensures that entrainment is independent of stratification N.
The depth of the boundary layer h is then the smallest d for which Equation 2 is less than a critical bulk Richardson
number, Ric. Below the boundary layer, the ocean vertical mixing in KPP is parameterized as a superposition of
three effects: instability due to resolved shear, internal wave breaking, and double diffusion. The former is based
on the local gradient Richardson number, and the diffusivities arising from internal wave breaking are set to
constant values (typically 10− 4 m2 s− 2 for momentum and 10− 5 m2 s− 2 for tracer diffusivity).

The vertical mixing schemes are implemented in the models with the Community Ocean Vertical Mixing package
(CVMix, Griffies et al., 2015; Van Roekel et al., 2018). The evaluation of the schemes can be found in Korn
et al. (2022), Gutjahr et al. (2021) (ICON‐O), and Scholz et al. (2022) (FESOM). In the control runs, the vertical
mixing is parameterized with the TKE scheme. The minimum background TKE is 10− 6 J kg− 1, with no minimum
diffusivity imposed, and ck = 0.2. The sensitivity experiments in both of the models include TKE runs with
ck= 0.1 and ck= 0.3, as well as a simulation done with KPP. During initial runs, we noticed a low diffusivity band
developing at the bottom of the ML, leading to introducing two additional sensitivity runs: one with minimum
background TKE of 10− 5 J kg− 1; and another with a minimum background Km of 10

− 4 m2 s− 1 and a minimum
background Kh of 10

− 5 m2 s− 1. The two KPP experiments − ICON_kpp and FESOM_kpp − are both run with the
critical Richardson number Ric = 0.3. The minimum background Kh and Km values are set as in ICON_kappa. In
ICON_kpp, the mixing scheme below the ocean boundary layer is PP (Pacanowski & Philander, 1981), while in
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FESOM_kpp, it is KPP at both the surface and in the interior of the ocean. Table 1 outlines the specifications of
the experiments.

2.3. Observations Used for Model Evaluation

The modeled mixing in the tropical Atlantic is assessed both by comparison to MLD climatology and by
investigating the local effect of NIWmixing at the two selected sites. The latter requires model forcing evaluation
to ensure that major discrepancies between modeled and observed NIW properties originate from the mixing
parameterizations, rather than biased surface boundary conditions. We use three main data sources for these
purposes: ship based climatology, the PIRATA array, and observations from the R/V Meteor cruise M119.

For the MLD, we use the IFREMER climatology (de Boyer Montégut et al., 2004), which is a global data set
computed from profiles collected between 1941 and 2008. The MLD is calculated using the criterion ΔT =±0.2°
C from the in‐situ temperature at 10 m below the surface. The annual climatology set contains spatially averaged
median MLD values, computed from profiles grouped into 2° × 2° grid boxes. Additionally, we use the enhanced
PIRATA data set (Foltz et al., 2018) to compare the time series of the modeled and observed MLD at the two
PIRATA sites. In ePIRATA, Argo data is used to construct vertical temperature and salinity profiles from the
mooring observations; the MLD time series is then calculated from the criterion of Δρ = 0.12 kg m− 3 relative to
1 m depth, which is approximately equivalent to ΔT = − 0.35°C.

A range of PIRATA data is used to validate the forcing and the NIW response. We note that the data from the
PIRATAmoorings are assimilated into the ERA5 product as a part of the DRIBU data set (Hersbach et al., 2020).
In the forcing comparison, we use the following: wind vector data measured at 4 m above the sea surface (ac-
curacy of magnitude ±2% and direction ±3.4°); longwave and shortwave radiation data measured at 3.5 m above
the sea surface (±1% and ±2%, respectively); and total precipitation data (±0.4 mm hr− 1). The wind vector at
10 m is computed following the logarithmic wind profile assuming neutral stability (Oke, 2002):

U10 = U4
ln(10/z0)
ln(4/z0)

, (3)

where z0= 2 × 10
− 4m is the roughness length andU= (U, V) is the wind vector. For NIW response validation, we

use high frequency ocean current (±0.5 cm s− 1) and temperature data (±0.002°C).

Finally, for the comparison of the mixing parameters, we use the microstructure and vmADCP measurements
from the M119 cruise (Brandt et al., 2017; Fischer, 2020). The NIW observations published by HDRF20 were
recorded between the thirteenth and fifteenth of September. The shear (Sh2 = (∂u/∂z)2 + (∂v/∂z)2) is computed
from the vmADCP current measurements, which span the depths 17–800 m, with 8 m spatial resolution. The shear
values are averaged between the thirteenth and fifteenth of September (with cutoff at midnight). The 25
microstructure profiles were recorded between the thirteenth of September, 10:00 UTC and the fourteenth of
September, 06:00 UTC, and have the vertical resolution of about 0.5 m. The 95% confidence intervals of N2 and
Sh2 are estimated using the bias‐corrected and accelerated bootstrapping algorithm. Eddy diffusivity values across
the 25 profiles are collected in 10 m depth bins and averaged. The 95% confidence intervals of Kρ are estimated
using error propagation from Schafstall et al. (2010).

2.4. Comparison of Forcing to PIRATA Data

The significant factors for NIW generation and dissipation are the wind stress, ML depth, and stratification. The
relevant local forcing parameters to evaluate are therefore wind velocities, radiation, and rainfall. The agreement
between the ERA5 forcing and the local measured PIRATA climate is evaluated and presented in Figure 1. The
ML depth is evaluated in Section 3.1.

NIWs are forced by the wind stress. In comparison to the direct PIRATA observations, the power spectral density
(PSD) of the ERA5 wind speed at the two sites in 2015 shows a clear difference at periods of hours or less
(Figures 1a and 1e). This difference is expected, because at scales close to grid scale viscosity is designed to
remove energy to suppress numerical instability (Jochum et al., 2008). Within the near‐inertial band, the wind
energy is 10% lower at the 11.5°N site and 27% lower at the 15°N site in ERA5 relative to PIRATA. The wind
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velocity time series in Figures 1b and 1f confirm the coherence of the wind forcing. We can therefore expect
coherence in the observed and simulated NIW signal, but lower amplitude due to the discrepancy in WPI.

The shortwave and longwave series reveal a diurnal cycle bias of 200–300 Wm− 2 (Figures 1c and 1g). This bias
originates from the shortwave radiation data. ERA5 tends to show higher daily radiation values compared to
PIRATA, especially at the 15°N site. Considering that the analyzed NIWs were associated with the passing of a
storm, these biases likely arise from discrepancies between in‐situ and modeled cloud cover. Additionally, Foltz
et al. (2013) report that some of the PIRATA moorings can show a bias in SW measurements during boreal

Figure 1. The comparison of the ERA5 forcing (green) to PIRATA mooring data (black) at 11.5°N and 15°N in September 2015. Subplots (a) and (e) show the power
spectral density of the wind speed time series spanning from January–October 2015, the black vertical lines indicate the local Coriolis frequency f, and the shaded region
spans from 0.7f to 1.3f; (b) and (f) show the zonal and meridional wind velocities (U, V); (c) and (g) show the sum of the long‐ and shortwave radiation (LW+ SW) at the
time of the near‐inertial wave events; the plots below indicate the residual (PIRATA‐ERA5); (d) and (h) show the total precipitation and accumulated precipitation
(TPacc). In panels (b), (c), and (d), the shaded region indicates the duration of HDRF20 observations.

Table 1
Overview of the Experiments

Name Mixing scheme ck value Minimum TKE Minimum κH Minimum κM Ric

ICON_ck1 TKE 0.1 10–6 − − −

ICON_ck2 TKE 0.2 10–6 − − −

ICON_ck3 TKE 0.3 10–6 − − −

ICON_kpp KPP − − 10–5 10–4 0.3

ICON_mintke TKE 0.2 10–5 − − −

ICON_kappa TKE 0.2 10–6 10–5 10–4 −

FESOM_ck1 TKE 0.1 10–6 − − −

FESOM_ck2 TKE 0.2 10–6 − − −

FESOM_ck3 TKE 0.3 10–6 − − −

FESOM_kpp KPP − − 10–5 10–4 0.3
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summer and fall due to aeolian dust accumulation. The magnitude of the bias can be as large as 50 Wm− 2, which
could account for 25% of the radiation offset between ERA5 and PIRATA. The contribution could be signifi-
cantly higher during the day, as the reported biases are based on daily averages, including zero values at night.

While the precipitation biases are relatively low at the times the NIWs are measured, long‐term precipitation
differences can introduce persistent salinity offsets. Therefore, we show the hourly precipitation and the accu-
mulated precipitation over the entirety of September 2015 (Figures 1d and 1h). Overall, PIRATA registers higher
rates of rainfall, but ERA5 overestimates the precipitation at the 15°N site when the storm passes by the mooring
on the nineteenth of September.

Surface salinity fluxes are not consistently impacted by the systematic underestimation of rainfall in ERA5.
Table 2 shows the mean salinity and potential density in the ICON‐O models and observations. The differences
across the ML are computed by subtracting the surface layer values from the values at a depth layer d below the
ML: d = 20 m at 11.5°N; d = 40m at 15°N. The depths are selected based on PIRATA data availability. The
means are calculated over the course of September 2015 at both sites. At 11.5°N, we additionally report the mean
biases during HDRF20 observations. “TKE average” is an average of all TKE sensitivity experiments: the
temporal means are computed for each run, and an average of those is presented in the table.

Surface salinity is not systematically higher, nor consistently biased at the two sites as a result of reduced rainfall
in ERA5. In the tropics, a high salinity layer develops below the fresherML in the summer. The reduced rainfall in
ERA5 would therefore serve to reduce the density gradient across the ML. Instead, the density gradient is
generally too high in the models. The surface ocean is too dense regardless of the magnitude of surface salinity
biases. There is therefore no clear indication that the models are significantly affected by the underestimated
precipitation in ERA5 forcing.

In summary, the WPI within the near‐inertial band is lower by 10% at 11.5°N and by 27% at 15°N in ERA5
compared to PIRATA. Despite the biases in radiative forcing and precipitation, the surface layer salinity and
potential density means in the models are all within 1.3% of the observed PIRATA values. We conclude that the
ERA5 reanalysis product is sufficiently close to the PIRATA data to force the observed NIWs and their response
in the models.

3. Results
3.1. Mixed Layer Depth in the Models

The modeled tropical Atlantic MLD is calculated from the temporally averaged output using the criterion of
ΔT= − 0.2°C relative to temperature at 10 m depth. The mean is taken over the summer, defined as first of July to
the first of October. The map of median values in 2°× 2° boxes is computed for all the model runs. In Figure 2, the
climatological MLD distributions are shown, together with comparison to the control FESOM run, FESOM_ck2,
and the simulation which resembles observations most, FESOM_kpp. The zonal averages of MLD distributions
are presented in Figure 2g for the general overview of the model performances. Local daily MLD time series at
11.5°N and 15°N are shown in Figures 2c and 2f, respectively, and compared to the ePIRATA reconstructions.
The model values are calculated from ΔT = − 0.35°C relative to 1 m depth.

We note that 2015 marked the beginning of the strongest Pacific El Niño event of the 21st century (Santoso
et al., 2017). Motivated by this, we check for wind anomalies in the Atlantic. The winds do not diverge signif-
icantly from the climatology, but the El Niño event caused reduction in hurricane activity in the tropical Atlantic
in 2015 (Stewart, 2016).

The two maps in Figures 2d and 2e show the shallowMLD bias which spans nearly the entire basin and is present
in all experiments. The exception is a band north of the equator where the zonal average of ICON_kpp MLD is
about 1.5 times deeper than the IFREMER climatology (Figure 2g). North of 10°N, all but ICON_kpp modeled
MLD profiles are too shallow and fall outside of the IFREMER confidence bound. The ICON‐O TKE runs are
generally more biased than FESOM, despite identical forcing and ML scheme. The TKE sensitivity experiments
do not affect the zonal MLD average significantly; instead we see considerable differences between the two
models, and the two mixing schemes. The KPP MLD values are systematically deeper than the TKE based ones.

At the 11.5°N site, the MLD is generally too shallow in all TKE runs, and too deep in the KPP runs, as indicated
by the comparison to the ePIRATA data (Figure 2c). During the HDRF20 observations, ICON_kpp simulates
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MLD closest to observed. The TKE and KPP runs are not as easily distinguishable at 15°N (Figure 2d). Here, the
MLD before the passing of the tropical storm on the nineteenth of September varies between 15 and 30 m; af-
terward, the ML is restratified.

3.2. Near‐Inertial Wave Characteristics

The time series of the zonal and meridional velocities at 10 m depth is shown in Figures 3a and 3b. A bandpass
filter is used to extract the near‐inertial signal from the raw data (Figures 3c and 3d). The Gaussian window
envelops frequencies between 0.7f and 1.3f. The filtered velocities, ui and vi, are then used to compute the NIKE:

NIKE =
1
2
ρ0 (u

2
i + v

2
i ). (4)

The NIKE values averaged over September 2015 and the three days of the HDRF20 observations are listed in
Table 3. We choose to present the two NIKE diagnostics for the 11.5°N site, as the duration of the HDRF20
observations does not span over a full inertial period. The temporal distribution of NIKE is presented in Figures 3e
and 3f.

The models generally underestimate the strength of the near‐inertial currents at both sites. At 15°N, the negative
bias is higher. About 27% of the lacking NIW energy at this site can be associated with the underestimated WPI
within the near‐inertial band in ERA5 (Section 2.4). At 11.5°N, despite 10% weaker winds, the mean September
NIKE is higher than observed in Icon_ck1, Icon_ck2 and Icon_ck3. In the period of HDRF20 observations, NIWs
are too weak in all experiments.

Table 2
Mean Surface Salinity (S), Salinity Difference Across the Mixed Layer (ML) (Δs Across the ML), Surface Potential Density
(σθ) and Potential Density Difference Across the ML (Δσθ Across the ML) in the ICON‐O Model Runs and PIRATA Mooring
Data

Site 11.5°N 11.5°N 11.5°N 11.5°N 15°N 15°N
Time period HDRF20 HDRF20 Sept 2015 Sept 2015 Sept 2015 Sept 2015

Surface salinity (S) (psu)

PIRATA 35.63 – 35.37 – 36.48 –

TKE average 35.37 −0.26 35.49 0.12 36.46 −0.02

KPP 35.27 −0.36 35.32 −0.05 36.57 0.09

ΔS across the ML (psu)

PIRATA 0.16 – 0.32 – 0.03 –

TKE average 0.31 0.15 0.35 0.03 0.11 0.08

KPP 0.15 −0.01 0.17 −0.15 0.09 0.06

Surface σθ (kg m
− 3)

PIRATA 22.77 – 22.55 – 23.52 –

TKE average 22.95 0.18 22.81 0.26 23.63 0.11

KPP 22.88 0.11 22.82 0.27 23.82 0.30

Δσθ across the ML (kg m
− 3)

PIRATA 0.51 – 0.83 – 0.73 –

TKE average 1.70 1.19 1.79 0.96 1.24 0.51

KPP 0.49 −0.02 0.55 −0.28 1.08 0.35

Note. The means are computed over two time periods (duration of HDRF20 observations, thirteenth to fifteenth of September
2015; and September 2015) at the 11.5° site and over September 2015 at the 15°N site. ”Across the ML” refers to salinity and
potential density values at the surface subtracted from values at a depth d below the mixed layer. At 11.5°N, d = 20 m; at 15°
N, d = 40 m. ”TKE average” stands for the average of all the TKE sensitivity runs. In bold, model biases are highlighted.
Positive bias indicates the modeled values are higher compared to PIRATA data.
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There are key differences in how the NIWs are modeled at the two sites. The waves are in phase at 15°N and out of
phase at 11.5°N, and the strength of the near‐inertial currents is more sensitive to the vertical mixing scheme at
11.5°N. The difference most likely stems from stratification: at 11.5°N, the potential density gradient across the
ML is more than two times higher in the ICON‐O TKE models compared to PIRATA (Table 2); at 15°N, the
density gradient bias is lower. The magnitudes of the relative MLD biases at the two sites are similar (Figures 2c
and 2f), but the ML is thinner at 11.5°N. NIW amplitude is inversely proportional to the depth of the ML
(D’Asaro, 1985), hence shallow MLD biases at 11.5°N potentially have a larger impact on the strength of NIWs.
At both sites, the mean NIKE is sensitive to the amount of TKE which is used for mixing in the TKE scheme:
generally, low ck values lead to more energetic NIWs. The sensitivity of NIKE bias to the vertical mixing scheme
parameterization is further discussed in Section 3.4.

3.3. The Mixing Signature of NIWs

Detailed turbulence observations are only available for the 11.5°N site. We therefore use the PIRATA temper-
ature data to assess the vertical mixing of heat in the models at both locations (Section 3.3.1). The simulated eddy
diffusivities, stratification, and shear are evaluated at the 11.5°N site in Section 3.3.2. We then present the deep
mixing in the models after the storm at 15°N in Section 3.3.3.

3.3.1. Temperature

The measured and modeled temperatures at the two sites are compared in Figure 4. In Figures 4f and 4g, the mean
September vertical temperature profiles show that in most models, not enough heat penetrates below the ML. The
standard deviation from the PIRATA monthly means is indicated by the black horizontal bars. The temperature

Figure 2. The mixed layer depth in the model runs compared to the IFREMER climatology in the tropical Atlantic. The
IFREMER data in panel (a) and the corresponding std in panel (b) show the summer (JAS) average between the years 1941
and 2008, while the model output is the average of summer 2015. The difference maps (d) FESOM_ck2‐IFREMER and
(e) FESOM_kpp‐IFREMER show the shallow bias which is consistent in all model runs. The 11.5°N site is marked on the
maps with an x, and the 15°N site ‐ with a triangle. In panel (g), the zonal averages of all experimental MLD profiles are
compared to the climatology. The shading indicates the median std from the raw IFREMER MLD data. (c) and (f) show the
modeled September MLD time series at 11.5°N and 15°N, respectively; the ePIRATA (black) daily MLD values are
presented with the estimated error (shading). In panel (c), the gray vertical bar indicates the duration of the HDRF20
observations.
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oscillations below the ML have a near‐inertial period, which is reproduced by the models at the 15°N site
(demonstrated in Figures 4k and 4l), but not at 11.5°N (Figure 4e). At the surface, the diurnal cycle is evident, and
it is reproduced by the models. Within the ML, the temperature is approximately constant; the diurnal cycle signal
does not reach the bottom of the ML, and this is consistent between most of the models and the PIRATA
observations.

ICON_kpp exhibits the best agreement with the observed September mean temperature profile at 11.5°N. The
additional ICON TKE runs, ICON_mintke and ICON_kappa, show an improved vertical temperature profile
compared to the base run ICON_ck2. The modeled vertical temperature profile is more consistent across the
sensitivity studies at the 15°N site. The systematic overestimation of the temperature gradient steepness could be a

Figure 3. In panels (a) and (b), the raw PIRATA mooring velocity data in comparison to modeled velocity output at 11.5°N and 15°N at 10 m depth are presented. The
bandpassed velocities ui and vi are plotted in panels (c) and (d). The September near‐inertial kinetic energy time series for both sites is shown in panels (e) and (f). The
gray shading indicates the duration of the HDRF20 observations.
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result of the lacking wind energy in ERA5 forcing. The rapid cooling of the surface occurs when the storm passes
by the mooring. All models reproduce the rapid ML cooling and subsequent warming after the storm. Below the
ML, the temperature oscillations are present, but have reduced amplitude compared to the observations
(Figures 4k and 4l). Contrary to the 11.5°N site, none of the vertical mixing schemes can be singled out as best
performing.

Table 3
Overview of the Mean Near‐Inertial Kinetic Energy

Site 11.5°N 11.5°N 11.5°N 11.5°N 15°N 15°N
Time period HDRF20 (Jm− 3] HDRF20 (%) Sept 2015 (Jm− 3) Sept 2015 (%) Sept 2015 (Jm− 3) Sept 2015 (%)

PIRATA 116.6 – 35.6 – 36.3 –

ICON_ck1 80.8 −30.7 59.2 66.3 25.1 −30.9

ICON_ck2 48.6 −58.3 46.0 29.2 22.7 −37.5

ICON_ck3 76.0 −34.8 42.3 18.8 18.8 −48.2

ICON_kpp 13.2 −88.7 12.9 −63.8 12.5 −65.6

ICON_mintke 40.7 −65.1 35.6 0.0 16.3 −55.1

ICON_kappa 42.9 −63.1 32.8 −7.9 18.2 −49.9

FESOM_ck1 72.6 −37.7 32.1 −9.6 20.6 −43.3

FESOM_ck2 68.0 −41.7 31.6 −11.2 18.1 −50.1

FESOM_ck3 61.6 −47.2 27.3 −23.3 13.9 −61.7

FESOM_kpp 24.1 −79.2 12.3 −65.4 17.5 −51.8

Note. At 11.5°N, the mean is taken both over the entire September 2015 and over the duration of the HDRF20 observations
(thirteenth to fifteenth of September). The relative difference between the model results and the PIRATA data is highlighted
in bold text. Negative values indicate that modeled NIKE is weaker than observed.

Figure 4. The comparison of measured and modeled temperatures at the two sites. (a) and (h) show the PIRATA wind
vectors. The mean September vertical temperature profiles are given in panels (f) and (g); the PIRATA temperature averages
for each available depth are indicated with the black points, and the horizontal bars indicate the standard deviation. The time
series show departures from September mean temperature at (b) 1 m, (c) 13 m, (d) 20 m, and (e) 40 m depths for the 11.5°N
site; and (i) 1 m, (j) 20 m, (k) 40 m, and (l) 60 m depths for the 15°N site. The gray shaded area in panels (b), (c), (d), and
(e) indicates the duration of the HDRF20 observations.
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3.3.2. Comparison to Microstructure Measurements at 11.5°N

The snapshots of the mixing parameters at the 11.5°N site are examined in the model sensitivity runs and
compared to the HDRF20 data. The temporal locations of the peaks in diffusivities and shear coincide with
maximum NIW velocities, which differ across the models due to the NIW phase shift. The snapshots have a
vertical structure which persists over time, and therefore we choose to average the profiles to highlight the
similarities between the modeled and observed mixing structures. These are presented in Figure 5.

Stratification is well represented in the models beyond the ML. The KPP runs simulate the observed N2 profile the
best, and all models can reproduce the observed stratification below the ML. Above 10 m, N2 is significantly
overestimated in all the runs. Shear is systematically underestimated by the models despite coarser vertical
resolution of observed horizontal currents. We suspect unresolved internal waves are the reason for this
discrepancy (Large et al., 1994).

All models exhibit enhanced mixing above approximately the same depth of 20 m. The diffusivity values from the
microstructure profiler are only valid below the ML, which is not constant across the 25 measurements. The top
bin of microstructure diffusivity data in Figure 5 is set to depth below 18 m, which is the average observed MLD,
while the modeledMLD is shallower in the TKE runs. Hence, the TKE simulations exhibit the observed enhanced
diffusivities below the simulated ML, but the effect does not reach the same depth due to the thinner ML.

The enhanced diffusivity below 20 m is not reproduced by the models. The TKEmodel runs with no restrictions to
background diffusivities match the interior Kρ values below 50 m depth well. Although the vertical resolution of
the models is higher than the observations, the interior shear is lower than observed in all of the runs. ICON_ck3 is
an exception, coming close to the observed shear at 40 m. Despite this local consistency with both the N2 and Sh2

values, the run does not exhibit enhanced diffusivity at this depth.

3.3.3. Vertical Mixing Profile

The lack of deep mixing response to NIWs at 11.5°N puts to question whether such process occurs in the models
at all. Due to the proximity and strength of the storm at the 15°N site, we can verify whether mixing below theML
can be simulated.

Snapshots of Kρ in the model runs reveal that indeed, the enhanced mixing reaches below the recorded ML after
the storm passess on the nineteenth of September (Figure 6). Diffusivities of 10− 3 m2 s− 1 reach 40m depth in most
of the models. Oscillations at near‐inertial frequencies can be seen in the TKE runs; the oscillations persist for
over 10 days after the storm passes. The PSD of diffusivities at 53.6 and 58 m show clear peaks at the near‐inertial
frequency.

3.4. NIKE Sensitivity to Mixing Scheme Parameterization

There are a few key differences in how NIWs are simulated at the two PIRATA sites: at 11.5°N, the mean NIKE
bias is positive for some models, the NIWs are out of phase, and the vertical temperature gradient is sensitive to
the mixing scheme choice; at 15°N, the mean NIKE bias is strictly negative, the NIWs are in phase, and the
vertical temperature gradient is not highly sensitive to the mixing scheme choice. We now consider the NIKE
biases at the two sites throughout the entire simulation period to illustrate what might be the cause of these
differences.

We compare the probability density function (PDF) of the wind vector components and the wind speed, as well as
the PDF of the relative bias between ERA5 output and PIRATA measurements. Throughout 2014 and 2015, the
wind speed is systematically underestimated by ERA5. The magnitude of the bias is 7.88% at 11.5°N and 2.92% at
15°N. The PIRATA wind speed sensors have the precision of 2%–3%. We therefore believe that the agreement
between PIRATA and ERA5 simulated winds is good enough for NIW analysis in 2014 and 2015.

We define a ”NIW event” in the time series of the bandpassed PIRATA current signal as the period in which
NIKE is continuously above 25 Jm− 3 for more than one inertial period. All 2014 and 2015 NIW events take place
during boreal summer and fall, and in total there are nine of such events at 11.5°N and only one at 15°N. The
probability distributions of relative NIKE biases are calculated based on data from periods when NIWs are present
at the sites: between June and November at 11.5°N, and between August and October at 15°N.While the PIRATA
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observations only show one NIW event at 15°N in 2015, the data from 2014 is also included, as in some of the
TKE simulations NIKE is higher than 25 Jm− 3 during that period.

Figure 7 shows that NIKE bias is sensitive to the mixing scheme choice at 11.5°N. The sensitivity is significantly
reduced at the 15°N site (Figure 8). The relative bias is defined as:

Relative bias =
NIKEsim − NIKEobs

NIKEobs + c
⋅ 100%, (5)

where NIKEobs is the observed (PIRATA) NIKE, NIKEsim is the simulated NIKE, and the constant c= 25 Jm
− 3 is

added to handle NIKE values that are close to zero. On the figure, the distribution of the relative bias is shown,
together with the mean bias and its standard deviation. At 11.5°N, all TKE models overestimate the observed
NIKE, while KPP underestimates it. The bias is sensitive to the TKE parameterization: when a higher percentage
of TKE is used for mixing, the NIKE bias is reduced. The mean NIKE bias is smallest in the KPP simulation.

The distribution of the relative NIKE bias is also sensitive to the vertical mixing scheme at 15°N, but the
sensitivity is not consistent with 11.5°N. Similarly to 15°N, Icon_ck1 simulates the largest positive bias and
largest bias overall, and Icon_kpp is the only simulation which systematically underestimates NIKE. However,
apart from Icon_ck1 and Icon_mintke, the average NIKE bias at 15°N is less than 3.5% across the sensitivity
experiments. The 15°N site is therefore fundamentally different than 11.5°N during the simulation period: at 15°
N, the major source of near‐inertial energy is the tropical storm Ida. The NIWs at 11.5°N are forced by weaker but
more frequent bursts of rotating winds, leading to generally higher near‐inertial energy.

We found no statistically significant correlation of the NIKE bias with the wind speed, the MLD bias, or the
stratification at the base of the ML, the latter defined as the maximum N2 value along the vertical coordinate.
Hence, the contrasting characteristics of the modeled NIWs most likely stem from the combination of the
physical conditions at the sites. At 11.5°N, the high density gradient across the ML (Table 2) produces strong
near‐inertial currents. NIW amplitude is inversely proportional to the depth of the ML (D’Asaro, 1985). The
strength of the near‐inertial currents is therefore more sensitive to MLD biases when the ML is thin. At 15°N,
the density gradient is lower and the ML deeper, hence the inertial current sensitivity to MLD biases is
reduced.

Figure 5. Eddy diffusivities (Kρ), the buoyancy frequency (N
2) and shear (Sh2) mean vertical profiles in the models compared

to microstructure and vADCP current data from the M119 R/V Meteor cruise. The gray shading indicates 95% confidence
bounds. The top bin in the diffusivity data is set to 18 m, which is the mean depth of the mixed layer (ML) at the time of the
HDRF20 measurements. Modeled diffusivities within the ML (above 18 m) are available and shown.
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4. Discussion
We present an evaluation of NIW‐induced mixing at two sites in the tropical Atlantic in a range of sensitivity
experiments using two different vertical mixing schemes: the Turbulent Kinetic Energy closure and the K‐profile
parameterization. We demonstrate that the eddy‐resolving ocean models can simulate NIWs in the tropics to an
extent, but the modeled near‐inertial currents are too weak and the NIW‐induced mixing underestimated. Out of
the two parameterizations tested, KPP can model the observed mixing profiles better. At the 11.5°N site,
ICON_kpp excels especially at simulating the depth of the ML (Figure 2c) and mean vertical temperature profile
(Figure 4f). Both KPP runs model the vertical stratification profile well (Figure 5). The analysis of NIKE biases at
11.5°N also shows that KPP is least biased in simulating the magnitude of the near‐inertial currents (Figure 7).

The models do not reproduce the enhanced diffusivities below 20 m at the 11.5°N site (Figure 5). However, at the
15°N site, mixing below theML occurs (Figure 6). The modeled and observed NIWs are in phase at the surface. In
the models, the NIWs radiate down the water column and produce shear which induces mixing below theML. The
near‐inertial oscillations in diffusivity persist below theML for 10 days after the storm passes by the mooring. The
local winds are weak during those remaining days of September (Figure 4h), suggesting that the interior near‐
inertial motions originate from the storm forcing. Hence, NIW‐induced mixing could be a significant contrib-
utor to the local vertical turbulent cooling (see Foltz et al. (2020) for a detailed discussion about the seasonal cycle
of the ML heat budget at this site).

The TKE scheme across all sensitivity runs overestimates the stratification within the ML, which traps the NIWs
within it and suppresses the mixing below it. ICON_ck3 is the only run which shows enhanced shear below the
ML at 11.5°N. The enhanced TKE allows for vertical turbulent flux of momentum, while the thin ML produces

Figure 6. Snapshots of eddy diffusivities at the 15°N site in the models. The snapshots reveal the deep mixing caused by the
storm, and the subsequent near‐inertial diffusivity oscillations below the mixed layer (ML). The depth of the ML is indicated
with the white line. The spectra of diffusivity time series between September 19th and 31st, 2015, at depths 53.6 and 58 m
confirm the presence of diffusivity oscillations at the near‐inertial frequencies. The dotted lines mark f, and the two black
solid lines envelop the range from 0.7f to 1.3f.
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Figure 8. Probability distribution of near‐inertial kinetic energy (NIKE) relative bias in the ICON‐O sensitivity studies
between August and October of the years 2014 and 2015 at 15°N. The black dashed line indicates the mean bias, and the
standard deviation of the bias is given in figure titles. Positive bias means that simulated NIKE is higher than observed. At
this site, only one near‐inertial wave event is detected. The time series is therefore dominated by near‐zero NIKE values.

Figure 7. Probability distribution of near‐inertial kinetic energy (NIKE) relative bias in the ICON‐O sensitivity studies
between June and November in the years 2014–2015 at 11.5°N. The black dashed line indicates the mean bias, and the
standard deviation of the bias is given in figure titles. Positive bias means that simulated NIKE is higher than observed. For
example, in Icon_ck1, the systematic NIKE bias is 28.6%. In this simulation, 68% of the NIKE values in the time series are at
minimum 26.5% too weak and at maximum 83.7% too strong compared to observations.
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relatively strong NIWs, but the shear remains too low to overcome the stratification and induce mixing (Figure 5).
While ICON‐O and FESOM differ significantly across the tested parameters, they consistently show the same
discrepancies between the mixing schemes: TKE simulates shallower ML, lower ML diffusivities, and higher
ML N2 and Sh2 compared to KPP and observations. Mean NIKE bias at 11.5°N is sensitive to the TKE scheme
parameter ck, which determines the fraction of TKE allocated for vertical mixing. In the prognostic TKE equation,
the eddy viscosity Km also scales the vertical flux of shear and TKE. Hence, lower ck values result in stronger
stratification, which increase the inertial current velocity.

The TKE scheme is based on the 2.5 level turbulence closure model by Mellor and Yamada (1982). In order to
simplify the scheme, they neglect the material derivative and the dissipation of the temperature variance. It is
justified for stable and slightly unstable flows, but is likely to introduce numerical errors in highly unstable
conditions. Fan et al. (2021) use the 2.5 level Mellor‐Yamada scheme in the Navy Coastal Ocean Model
(NYCOM) and find that NIWmixing is under‐represented when compared to large eddy simulation results. They
speculate that the highly unstable conditions induced by strong cooling of the ML are the dominant cause for the
scheme's inability to reproduce the NIW‐induced mixing. Our results are consistent with theirs, indicating that the
TKE scheme might be subject to the same limitation.

In this work, our assumption is that the NIW‐induced mixing is not properly simulated because of the weaknesses
of the mixing schemes. Other sources of biases that were not considered in this study might contribute to
misrepresentation of NIWs in the models. Fan et al. (2021) find that turbulent mixing is better represented in the
NYCOMmodel when the resolution at the ML base is as high as in the surface layers. While this does not directly
affect the NIW‐induced mixing in their case, a finer resolution at the ML base in our experiments could have
countered biases in stratification (Table 2) and thereby indirectly countering the biases in NIW characteristics.
Horizontal resolution might also play a role, as is explored in a study by Lévy et al. (2010). In an idealized basin,
they find that increasing horizontal resolution in the NEMOmodel decreases the depth of the ML. Aside from the
resolution, non‐local model biases such as advected offsets in temperature and salinity might have contributed to
the suppression of NIW‐induced mixing.

We demonstrate that NIW observations can be used to identify limitations in the performance of vertical mixing
parameterizations. The presence of deep near‐inertial oscillations following the storm at 15°N confirm the po-
tential of high resolution simulations for exploring the dynamics of NIW‐induced mixing in the ocean interior.

5. Conclusions
Two vertical mixing schemes (KPP and TKE) in two different models (ICON‐O and FESOM) are evaluated on
their ability to reproduce NIW characteristics and NIW‐induced mixing at two PIRATAmooring locations (11.5°
N and 15°N) in the tropical Atlantic. The main findings of our study are:

• Microstructure measurements show enhanced diffusivities below the ML after the passing of a near‐inertial
wave at 11.5°N. The enhanced diffusivities are absent in the models regardless of the mixing scheme used.

• NIKE at both sites is sensitive to the mixing scheme choice. The sensitivity is higher at 11.5°N due to high
stratification and shallow ML. KPP systematically underestimates the observed NIKE, while TKE system-
atically overestimates it.

• The KPP scheme simulates the vertical stratification profile and the depth of the ML at 11.5°N more real-
istically than TKE. NIKE bias at 11.5°N is also generally smallest in the KPP runs.

• The models simulate NIW‐induced mixing following a storm at 15°N. The near‐inertial oscillations remain
below the ML for 10 days after the storm passes.

Data Availability Statement
The M119 cruise data are available at https://doi.pangaea.de/10.1594/PANGAEA.877375 (vmADCP; Brandt
et al., 2017) and https://doi.pangaea.de/10.1594/PANGAEA.920592 (microstructure; Fischer, 2020). The
PIRATA data can be accessed at https://www.pmel.noaa.gov/tao/drupal/disdel/. The ePIRATA data set is
available at https://www.aoml.noaa.gov/phod/epirata/ (Foltz et al., 2018). The ERA5 reanalysis product can be
found at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis‐era5‐single‐levels?tab=overview (Hers-
bach et al., 2020). The IFREMER MLD climatology is available at https://cerweb.ifremer.fr/deboyer/mld/home.
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php (de Boyer Montégut et al., 2004). Model output from ICON‐O and FESOM used in this study is available at
https://sid.erda.dk/cgi‐sid/ls.py?share_id=DDGK0EDcTu.
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3Automated tuning

Automated calibration methods are increasingly used to test model response

to changing parameter values or, in other words, to quantify the model para-
metric uncertainty. For example, Souza et al. (2020) calibrate the KPP scheme

to reproduce Large Eddy Simulation (LES) convective mixing. Their method

requires 10
6
iterations to sample the parameter probability distributions, and

thus is limited to single column models. Williamson, Blaker, and Sinha (2017)

are able to reduce the number of samples needed by using a Gaussian emu-

lator. In their work, they search the 24-dimensional parameter space of an

OGCM to find ranges of parameters which best simulate the obseved temper-

ature and salinity profiles. The method, first introduced in Williamson et al.

(2015), is called history matching, and uses three waves of 400 simulations.

The use of emulators greatly reduces the number of simulations needed for

model calibration. The Calibrate-Emulate-Sample (CAS) method introduced

by Cleary et al. (2021) proposes emulating the parameter-to-data map of an

expensive inverse problem, such that a Gaussian emulator can be sampled

for calibration instead.

Bayesian optimization (BO), in contrast, samples the parameter space itera-

tively. The surrogate model is constructed at each step to maximize the use

of information gained from new simulations. This can be highly beneficial in

OGCM and full GCM studies, especially when simulations have exceedingly

high computational cost. In this chapter, the mechanism behind Gaussian

emulators is summarised
1

1. A more extensive and general

discussion about the modern uses

of Gaussian processes can be found

in Williams and Rasmussen (2006).

The summary in this PhD thesis is

inspired by their Chaper 2, as well as

Stoustrup (2021).

. The second article in Section 3.2 demonstrates

how BO can be used to tune the TKE scheme in a coarse-resolution OGCM.

3.1 gaussian emulators

A Gaussian process is a “a collection of random variables, any finite number of

which have a joint Gaussian distribution” (Williams and Rasmussen, 2006):

gaussian process𝑔(x) ∼ GP(𝑚(x), 𝑘 (x, x′)) . (3.1)

In other words, the probability distribution of 𝑔(x) at any x ∈ X𝑑
is Gaussian

with mean𝑚(x) and variance 𝑘 (x, x′). The variance is determined by the

kernel function, which is a measure of correlation between any two points
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x, x′ ∈ X𝑑
. The function 𝑔(x) is a GP sample. It shows what a function

obeying the probability distribution defined by GP may look like.

Essentially, Gaussian emulators use Gaussian processes to interpolate be-

tween the (usually few) known data points, with the additional advantage of

providing the uncertainty estimate of the model. In the following text, the

linear regression model is derived and generalized for non-linear problems.

3.1.1 The Linear Model

Given a set of 𝑛 datapoints {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}, where 𝑥,𝑦 ∈ R, the sim-

plest regression model is a linear function:

one-dimensional linear model𝑓 (𝑥) = 𝑤𝑥, 𝑦 = 𝑓 (𝑥) + 𝜖, (3.2)

where 𝑤 is the slope of the line and 𝜖 is noise, which is assumed to be

Gaussian with zero mean and standard deviation 𝜎𝑛 : 𝜖 ∼ N(0, 𝜎2

𝑛). The noise
represents the observational uncertainty. The aim now is to find 𝑤 which

can best describe the data. In the Bayesian formalism, this can be achieved

by optimizing the posterior, or the probability of the model parameters given
the data:

bayes ruleposterior =
likelihood × prior

marginal likelihood

: 𝑝 (𝑤 |x, y) = 𝑝 (y|x,𝑤)𝑝 (𝑤)
𝑝 (y|x) . (3.3)

The prior over the model parameters reflects the first guess of𝑤 . It is assumed

that𝑤 ∼ N(0, 𝜎2

𝑝), i.e. that the slope of the line in the model is drawn from a

Gaussian distribution with 0 mean and 𝜎2

𝑝 variance
2

2. This is equivalent to presupposing

that there is no correlation in the data.

Broadly speaking, this is a good first

guess when we have no idea what

𝑓 (𝑥) may look like.

:

prior 𝑝 (𝑤) = 1

√
2𝜋𝜎2

𝑝

exp

(
− 𝑤2

2𝜎2

𝑝

)
, (3.4)

The marginal likelihood is independent of the model parameters and serves

as a normalizing constant:

marginal likelihood𝑝 (y|x) =
∫

𝑝 (y|x,𝑤)𝑝 (𝑤)𝑑𝑤. (3.5)
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We assume that the set of inputs is independent, and thus can calculate the

likelihood, i.e. the probability distribution of the observations given the model:

likelihood

𝑝 (y|x,𝑤) =
𝑛∏
𝑖=1

𝑝 (𝑦𝑖 |𝑥𝑖 ,𝑤)

=

𝑛∏
𝑖=1

1

√
2𝜋𝜎𝑛

exp

(
− (𝑦𝑖 −𝑤𝑥𝑖)2

2𝜎2

𝑛

)
=

1

(2𝜋𝜎2

𝑛)𝑛/2

exp

(
− |y −𝑤x|2

2𝜎2

𝑛

)
= N(𝑤x, 𝜎2

𝑛𝐼 ),

(3.6)

where x and y are vectors containing all datapoints and | · | symbolizes the

Euclidean distance. The result is another Gaussian distribution with mean

𝑤x and a covariance matrix 𝜎2

𝑛𝐼 .

The posterior can be computed from Equations (3.3)-(3.6), isolating the part

dependent on model parameters:

posterior

𝑝 (𝑤 |x, y) ∝ 𝑝 (y|x,𝑤)𝑝 (𝑤)

∝ exp

(
− |y −𝑤x|2

2𝜎2

𝑛

− 𝑤2

2𝜎2

𝑝

)
∝ exp

(
− 𝑎

2

(𝑤 − 𝑎−1𝜎−2

𝑛 x · y)2

)
,

(3.7)

where 𝑎 = 𝜎−2

𝑝 + 𝜎−2

𝑛 |x|2. Thus, the posterior is a Gaussian distribution with

mean �̄� = 𝑎−1𝜎−2

𝑛 x · y and variance 𝑎−1
. Note that this expression only

informs about the most likely value of𝑤 , and the degree of certainty about it.

The posterior is normalized, so the information about how well𝑤 describes

the data in relation to all other possible slope values is contained in the

marginal likelihood in Eq. (3.5).

Finally, the predictive distribution for 𝑓∗ ≜ 𝑓 (𝑥∗) at a test point 𝑥∗ defines the
regression model. Since 𝑓 (𝑥∗) is linear in𝑤 :

expectation and variance
at a test point

E[𝑓 (𝑥∗)] = E[𝑥∗𝑤] = 𝑥∗E[𝑤] = 𝑥∗�̄�,
Var[𝑓 (𝑥∗)] = Var[𝑥∗𝑤] = 𝑥2

∗Var[𝑤] = 𝑥2

∗𝑎
−1.

(3.8)

Thus, 𝑓 (𝑥∗) is normally distributed with mean 𝑥∗�̄� and variance 𝑥2

∗𝑎
−1
. The

regression model is complete with a mean, a standard deviation, and the

estimation of confidence of the fit given by the marginal likelihood.
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This simple example provides a blueprint for how an emulator is constructed.

The following two steps take us from a restrictive, one-dimensional linear

model to a regression model that can predict a vast number of functions

𝑓 (x) : R𝑛 → R:

1. Expanding the linear model to allow multi-dimensional input and

2. Projecting the input vector x into a feature space spanned by a set of

basis functions 𝝓 (x) to allow nonlinearity.

3.1.2 The Nonlinear Model

We now have a set of 𝑛 datapoints {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)}, with x ∈ R𝑑
and

𝑦 ∈ R. The linear model becomes:

1. multi-dimensional input𝑓 (𝑥) = x⊤w, 𝑦 = 𝑓 (x) + 𝜖, (3.9)

wherew is a𝑑-dimensional vector of weights, which is drawn from the normal

distribution w ∼ N(0, Σ𝑝). Σ𝑝 is the covariance matrix on the weights. To

consider all datapoints simultaneously, the vector y contains all outputs and

the matrix 𝑋 is a stack of vector inputs {x1, . . . x𝑛}. Likelihood, posterior and
the predictive distribution follow from the one-dimensional example, and

the extended formulas are listed in Table 3.1.

We can define a set of basis functions {𝜙𝑘 (x) |𝑘 ∈ 1, . . . , 𝑁 } to construct a

vector function 𝝓 : R𝑑 → R𝑁
, which maps the 𝑑-dimensional vector x into

an 𝑁 -dimensional feature space with a new weight vector 𝝎:

2. nonlinear model𝑓 (x) =
𝑁∑︁
𝑘

𝜙𝑘 (x)𝜔𝑘 = 𝝓 (x)⊤𝝎 . (3.10)

Table 3.1: GP regression equations.

Equation Multi-dimensional input Nonlinear models

Dataset {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)}
Model 𝑓 (x) = x⊤w 𝑓 (x) = 𝝓 (x)⊤𝝎
Likelihood N(𝑋⊤w, 𝜎2

𝑛𝐼 ) N (𝚽⊤𝝎, 𝜎2

𝑛𝐼 )
Posterior covariance 𝐴−1 = (Σ−1

𝑝 + 𝜎−2

𝑛 𝑋𝑋⊤)−1 A−1 = (Σ−1

𝑝 + 𝜎−2

𝑛 𝚽𝚽
⊤)−1

Posterior mean w̄ = 𝜎−2

𝑛 𝐴−1𝑋y �̄� = 𝜎−2

𝑛 A−1
𝚽y

Predictive distribution N(x⊤
∗ w̄, x⊤

∗𝐴
−1x∗) N (𝝓 (x∗)⊤�̄�, 𝝓 (x∗)⊤A−1𝝓 (x∗))
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Given that the basis functions are independent of 𝝎, 𝑓 (x) remains a linear

function of the weights, but its flexibility is considerably expanded.
3

3. For example, consider the basis set

{𝑥𝑘−1 |𝑘 ∈ {1, 2, 3, 4}} defining the
mapping 𝝓 (𝑥) = [1, 𝑥, 𝑥2, 𝑥3]⊤. The
Gaussian regression model becomes:

𝑓 (𝑥) = 𝜔1 + 𝜔2𝑥 + 𝜔3𝑥
2 + 𝜔4𝑥

3 .

The model 𝑓 (𝑥) is now able to fit a

3
rd
order polynomial to input points

𝑥 , but the predictive distribution

at a test point 𝑥∗ can still be eas-

ily found by computing the linear

transformation of the multivariate

normal posterior 𝑝 (𝝎 |𝚽, y), just like
in Eq. 3.8:

E[𝝓 (𝑥∗)⊤𝝎] = 𝝓 (𝑥∗)⊤�̄�
Cov[𝝓 (𝑥∗)⊤𝝎] = 𝝓 (𝑥∗)⊤A−1𝝓 (𝑥∗).

In the general case, we can define 𝚽 as the 𝑛 × 𝑁 matrix of projected input

points [𝝓 (x1) · · · 𝝓 (x𝑛)]. The equations for the likelihood 𝑝 (y|𝚽,𝝎), the
posterior 𝑝 (𝝎 |𝚽, y) mean and variance, and the predictive distribution at a

test point are listed in Table 3.1.

The ingenuity of the method emerges with the realization that the predictive

distribution of the nonlinearmodel can be re-written in terms of𝐾 = 𝚽
⊤Σ𝑝𝚽:

𝑝 (𝑓∗ |x∗, 𝑋, y) = N(𝝓⊤
∗ Σ𝑝𝚽(𝐾 + 𝜎2

𝑛𝐼 )−1y,
𝝓⊤
∗ Σ𝑝𝝓∗ − 𝝓⊤

∗ Σ𝑝𝚽(𝐾 + 𝜎2

𝑛𝐼 )−1
𝚽
⊤Σ𝑝𝝓∗).

(3.11)

The notation eliminates the need to compute 𝝓 (x), because Eq. (3.11) can be

expressed solely as a function of the kernel: 𝑘 (x, x′) = 𝝓 (x)⊤Σ𝑝𝝓 (x′). This
powerful formulation is called the kernel trick.

The predictive distribution in Eq. 3.11 can be expanded to include a set of test

points stacked in a matrix 𝑋∗ with the corresponding vector f∗ ≜ f (𝑋∗):

𝑝 (f∗(𝑋∗) |𝑋∗, y) = N(f∗,Cov(f)),
f∗ = 𝐾 (𝑋∗, 𝑋 ) [𝐾 (𝑋,𝑋 ) + 𝜎2

𝑛𝐼 ]−1y,
Cov(f) = 𝐾 (𝑋∗, 𝑋∗) − 𝐾 (𝑋∗, 𝑋 ) [𝐾 (𝑋,𝑋 ) + 𝜎2

𝑛𝐼 ]−1𝐾 (𝑋,𝑋∗).
(3.12)

where the matrices 𝐾 (𝑋,𝑋 ′) contain the covariances 𝑘 (x, x′). When 𝜎𝑛 = 0,

i.e. when the output is assumed to be noise-free, the formulation is identical

to Equation (2) in Article II.
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3.2 article ii — fast and efficient: bayesian optimization
with gpu acceleration for ocean models

Article II: “Fast and Efficient: Bayesian Optimization with GPU Acceleration
for Ocean Models” (Mrozowska et al., n.d.) has been submitted to Journal of

Geophysical Research: Machine Learning and Computation.

In the second article, the tested method for improving vertical mixing para-

meterization is automated calibration. Bayesian optimization is used to tune

the TKE scheme in the Versatile Ocean Simulator (Veros, Häfner et al., 2018).

The main aims of the study are:

1. To determine whether there exists a set of TKE parameter values which

can reduce MLD biases in Veros;

2. To demonstrate the robustness of VerOpt and the potential of Bayesian

optimization for OGCM tuning.

The answer to the first point turns out to be no. In the optimization exper-

iment where the target is MLD climatology, the default parameter values

are among those which give the best results. Unfortunately, the best in this

context means MLD bias of 43%. This is not satisfactory, but Figure 6 in

Article II shows that TKE parameter values do not impact the global MLD

distribution enough to improve the biases globally. The shallow bias in the

Southern Hemisphere can be rectified by increasing the ratio of 𝑐𝑘𝑐
−1

𝜖 , but

this simultaneously worsens MLD everywhere else.

Consistent with SMC column studies (e.g. Burchard and Bolding, 2001; Um-

lauf and Burchard, 2003), the vertical extent of mixing in the model is solely
4

4. In SMCs, this would be the steady-

state 𝑅𝑖𝑠𝑡 depedenent on the stability

functions, but in the simplified TKE

scheme, the stability functions are

constant and 𝑅𝑖𝑠𝑡 = 𝑅𝑖𝑐 .

dependent on 𝑅𝑖𝑐 ∝ 𝑐𝑘𝑐−1

𝜖 . The geographical MLD distribution, however, is

not affected. The TKE parameterization can therefore only scale the local

rate of mixing supplied by the atmospheric forcing.

The second point is achieved in the TWIN experiment, a supervised opti-

mization where the target MLD is a field simulated using Veros. VerOpt

can identify TKE parameter values which reproduce the target MLD up to

1.18% accuracy within 180 model simulations. In fact, parameter values that

reproduce the target MLD with a comparably low error are already found

after 60 simulations.

An unexpected yet significant outcome of the study is the quantification of

energy efficiency gain with the use of Veros JAX backend (Häfner, Nuterman,

and Jochum, 2021). Even the most efficient calibration techniques require a

number of ocean model simulations which carry a high computational cost.

We find that the use of Lumi GPUs for Veros simulations can cost up to 17

times less energy compared to CPU computation. Of course, computational
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resources vary across research groups and can therefore be highly subjec-

tive
5

5. In Article II, the accessible GPU

resources are considerably newer

than the accessible CPU resources.

. It should be stressed, however, that the adaptability of the model can

significantly reduced the resources needed for calibration.

3.2.1 The Critical Richardson number

Due to the ranges chosen for the parameters 𝑐𝑘 and 𝑐𝜖 , some tested 𝑅𝑖𝑐 values

are much larger than the widely accepted 𝑅𝑖𝑐 < 1. In the submitted version

of the manuscript, a detail about the calculation of the critical Richardson

number is omitted, which results in an overestimation of 𝑅𝑖𝑐 values in the

range 𝑅𝑖𝑐 > 1.5.

In Article II, we use the quasi-equilibrium state 𝑃𝑠 + 𝑃𝑏 = 𝜖 to derive 𝑅𝑖𝑐 as a

function of the TKE parameters. BD
6

6. Blanke and Delecluse, 1993arrive at the same relation by setting

the vertical tke transport to zero:

𝜕𝑒

𝜕𝑡
=
√

2𝑐𝑘𝑁

(
1

𝑅𝑖
− 2𝑐𝑘 + 𝑃𝑟𝑡𝑐𝜖

2𝑐𝑘𝑃𝑟𝑡

)
𝑒. (3.13)

This expression implies that tke is in the quasi-equilibrium state when:

𝑅𝑖 = 𝑅𝑖𝑐 =
𝑃𝑟𝑡

1 + 2
−1𝑃𝑟𝑡𝑐𝜖𝑐

−1

𝑘

, (3.14)

which can be re-written as a polynomial function of 𝑅𝑖 using the definition

𝑃𝑟𝑡 = 6.6𝑅𝑖:

𝑓 (𝑅𝑖) = 6.6𝑐𝜖

2𝑐𝑘
𝑅𝑖2 − 5.6𝑅𝑖. (3.15)

Figure 3.1: The left panel shows the polynomial 𝑓 (𝑅𝑖) with the two roots 0 and 𝑅𝑖𝑐 ≈ 0.23.

The Prandtl as a function of 𝑅𝑖𝑐 is plotted in the middle panel. For values larger than 𝑅𝑖 ≈ 1.5

(dashed blue line), 𝑃𝑟𝑡 is constant. The critical Richardson number is a function of 𝑃𝑟𝑡 ; as a

result, for values greater than 1.5, 𝑓 (𝑅𝑖) overestimates 𝑅𝑖𝑐 (right panel). Black dashed line

on the right panel shows 𝑅𝑖𝑐 as a function of 𝑐𝑘𝑐
−1

𝜖 . 𝑅𝑖𝑐 defined as a root of 𝑓 (𝑅𝑖) can be

compared to the corrected 𝑅𝑖𝑐 computed with constant 𝑃𝑟𝑡 for 𝑅𝑖 > 1.5.
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The polynomial 𝑓 (𝑅𝑖) is plotted in Fig. 3.1 for the default TKE parameteriza-

tion
7

7. 𝑐𝑘 = 0.1 and 𝑐𝜖 = 0.7.and as a function of 𝑅𝑖 and 𝑐𝑘𝑐
−1

𝜖 . The two roots of 𝑓 (𝑅𝑖) are zero and

𝑅𝑖𝑐 . 𝑃𝑟𝑡 = 6.6𝑅𝑖 is only true in the model when 1 < 𝑃𝑟𝑡 < 10, i.e. 𝑓 (𝑅𝑖) only
determines 𝑅𝑖𝑐 in the range 6.6 > 𝑅𝑖−1 > 0.66

8
8. Approximately 0.15 < 𝑅𝑖 < 1.5.. Outside of this range, 𝑅𝑖𝑐

can be determined using Eq. (3.14) with constant Prandtl number. For 𝑃𝑟𝑡 = 1,

Eq. (3.14) is approximately equal to the root of 𝑓 (𝑅𝑖). For 𝑃𝑟𝑡 = 10, Eq. 3.3

increases slower than 1.7𝑐𝑘𝑐
−1

𝜖 , which means that the 𝑅𝑖𝑐 values in the range

𝑅𝑖𝑐 > 1.5 are smaller than reported in Article II. This does not change the

main scientific results of the work, but affects the discussion on how sensitive

the model is to 𝑅𝑖𝑐 > 1.5. The highest 𝑅𝑖𝑐 value in the OBS experiment is 9.9,

which corresponds to 𝑅𝑖𝑐 ≈ 5.38 when computed with constant 𝑃𝑟𝑡 = 10.

In the approximation of Eq. (3.14),

𝑒 ∝ exp

[ (
𝑅𝑖−1 − 𝑅𝑖−1

𝑐

)
𝑡
]
, (3.16)

which illustrates the local exponential growth of tke for 𝑅𝑖 < 𝑅𝑖𝑐 and decay

for 𝑅𝑖 > 𝑅𝑖𝑐 . In Article II, we find that the effect of ML deepening with

increasing 𝑅𝑖𝑐 is strongest at high latitudes where stratification is weakest.

Eq. (3.5) shows that increasing 𝑅𝑖𝑐 will disproportionally affect regions with

typical 𝑅𝑖 values much smaller than 𝑅𝑖𝑐 .
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Abstract15

Ocean general circulation models (OGCMs) contain numerous parameterizations of sub-16

grid scale processes. The parameter tuning procedure is rarely reported and often done17

by hand. We present an automated alternative: Bayesian optimization, a method which18

has recently emerged as a frontier in expensive black box optimization. VerOpt, a Python19

package for the ocean model Veros, adapts Bayesian optimization to climate model tun-20

ing. We use VerOpt to identify a set of parameter values of the Turbulent Kinetic En-21

ergy (TKE) closure scheme that minimize mixed layer depth (MLD) bias in Veros. We22

present the results of two optimization procedures: TWIN and OBS. The goal is to min-23

imize modeled MLD error relative to a target map. In TWIN, the target is MLD sim-24

ulated using Veros with a known parameterization. The ratio of two TKE parameters25

ckc
−1
ϵ , proportional to the critical Richardson number Ric, is the dominant factor in set-26

ting the global MLD. After 180 model simulations, the lowest error in the TWIN exper-27

iment is 1.18%. In OBS, the target is MLD climatology. The MLD bias is smallest when28

Ric < 1, and the default TKE parameterization falls within this range. We find, how-29

ever, that altering the TKE parameterization is not sufficient to reduce the significant30

MLD bias of 42.62%. The OBS experiment results indicate that the TKE scheme pa-31

rameters are not the dominant source of MLD bias in Veros. We discuss other possible32

sources of MLD bias, as well as the potential of extending of the optimization procedure33

to other parameterizations.34

Plain Language Summary35

In the ocean, the mixing of temperature and salinity across layers of equal density36

happens on centimeter scales. In comparison, the spacing between the depth layers in37

ocean models is on the order of meters. Vertical mixing schemes approximate the effect38

of unresolved turbulence, but they require parameter tuning to accurately represent it.39

We use Bayesian optimization (BO) to determine which parameter values of the Tur-40

bulent Kinetic Energy (TKE) mixing scheme minimize the mixed layer depth (MLD) bi-41

ases in the ocean model Veros. Veros Optimizer (VerOpt) adapts BO to climate mod-42

eling problems. We present the results of two optimization sequences: TWIN and OBS.43

In the TWIN experiment, the optimizer is tasked with finding a set of parameters which44

reproduce MLD simulated with Veros. VerOpt identifies a range of parameter values which45

reproduce the target MLD up to 1.18% accuracy. In the OBS experiment, the target is46

the observed MLD. We find that the default values are among the parameters that sim-47

ulate MLD closest to observed. Furthermore, significant MLD biases in Veros cannot be48

rectified by tuning the TKE scheme. We discuss other possible sources of bias, such as49

structural limitations of the scheme and other model parameterizations.50

1 Introduction51

The representation of vertical mixing in ocean models remains a major challenge.52

The horizontal resolution of ocean general circulation models (OGCMs) has increased53

to order of kilometers in the recent decade in an effort to eliminate the need for param-54

eterizing mesoscale physics and the associated mixing (e.g. Small et al., 2014; Korn et55

al., 2022). The same tactic cannot be applied to diapycnal mixing, because it happens56

on centimeter to meter scales, too small to be resolved in the foreseeable future. There-57

fore, the vertical turbulent fluxes of momentum, temperature and salinity have to be com-58

puted by turbulence closure schemes.59

Accurate mixed layer depth (MLD) representation is necessary for realistic energy60

exchange between the ocean and atmospheric components in coupled models, as biases61

in MLD lead to sea surface temperature (SST) anomalies. In the tropical ocean, SST62

anomalies can lead to restructuring of the global climate (Jochum & Potemra, 2008). A63

significant challenge in the modeling of vertical mixing in the ocean are the limited ob-64
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servations. Global datasets of diffusivity profiles have been emerging over the past decade,65

but the data coverage is orders of magnitude lower than that of density profiles (Waterhouse66

et al., 2014). MLD climatology is thus the best indication for the performance of ver-67

tical mixing schemes. Despite the community effort spanning multiple decades, MLD bi-68

ases still persist in OGCMs (Huang et al., 2014; Treguier et al., 2023).69

Only some of the parameters in vertical mixing schemes have a solid physical ba-70

sis. For example, in the Turbulent Kinetic Energy (TKE) closure in Gaspar et al. (1990),71

the parameters ck and cϵ are picked based on the empirical value of the mixing coeffi-72

cient γRf
, which is highly uncertain (Gregg et al., 2018). The OGCM parameters which73

need to be selected by the modeler are often tuned by hand, and the process is rarely74

reported (Mauritsen et al., 2012). Here, tuning refers to changing the model parameters75

slightly such that the model output resembles observations as closely as possible. This76

process carries with itself a number of risks, such as over-fitting (Williamson et al., 2017).77

There’s therefore a need for methods which systematize and automate OGCM param-78

eter tuning.79

In this paper, we demonstrate such a method by tuning the TKE parameter val-80

ues in the ocean model Veros (Versatile Ocean Simulator, Häfner et al., 2018, 2021). We81

use the Python package VerOpt (Veros Optimizer, Stoustrup, 2021), which is designed82

to adapt Bayesian optimization (BO) to climate modeling problems. In recent decades,83

BO has become a popular method to handle expensive black box optimization and has84

been successfully applied in disciplines such as robotics, environmental sensing, drug de-85

sign, as well as in machine learning for hyper-parameter optimization (Shahriari et al.,86

2015; Wang et al., 2023). The method’s popularity has catalyzed its development, as well87

as software availability. In Python, BO models can be constructed using BoTorch (Balandat88

et al., 2020). VerOpt is built in the PyTorch ecosystem (Ansel et al., 2024) and imple-89

ments BoTorch optimization routines and functions.90

We present the results of two optimization experiments: TWIN and OBS. In each91

experiment, a set of TKE parameter values that can best simulate a target MLD map92

is identified by VerOpt. The optimization process and the fundamentals of BO are in-93

troduced in section 2. The setup of the two optimization procedures is described in sec-94

tion 3, including Veros model specifications, the description of the TKE scheme, the choice95

of MLD climatology (section 3.1), the optimizer specifications (section 3.2) and the com-96

putational resources (section 3.3). The results of the TWIN experiment are reported in97

section 4.1, and of the OBS experiment - in section 4.2. The discussion in section 5 ex-98

plores possible improvements and adaptations of the optimization procedure, followed99

by conclusions in section 6.100

2 Bayesian optimization with VerOpt101

Bayesian optimization is a black box optimization method, i.e. it locates the global102

minimum of an unknown scalar objective function f(x) : X d → R. Two aspects of the103

method make it especially well suited for climate science problems. Firstly, the optimiza-104

tion does not rely on the gradient of the objective function. A full simulation spanning105

millions of iterations is difficult to differentiate, and for most existing earth system mod-106

els it is completely out of reach. Furthermore, the gradients may contain singularities107

or bifurcations, which break the optimization sequence. Secondly, BO requires relatively108

few objective function evaluations. Optimization algorithms which do not rely on gra-109

dient information often depend on tens of thousands to millions of input points. Run-110

ning such vast numbers of OGCM simulations is unfeasible. Efficient sampling is there-111

fore a top priority in OGCM calibration.112

The data efficiency of BO stems from utilizing Gaussian process (GP) regression113

to construct a model of f(x) over X . The so-called surrogate of the objective function114

–3–
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is then used to compute the acquisition function, which highlights the regions in the pa-115

rameter space that are most likely to contain the global objective function minimum:116

x∗ = arg min
x∈Xd

f(x).1 (1)

The objective function is sampled iteratively following the three key steps of the opti-117

mization procedure:118

1. the construction of the surrogate model, which emulates the distribution of pos-119

sible objective functions given our existing knowledge,120

2. the calculation of the acquisition function from the mean and uncertainty of the121

surrogate model, and122

3. the minimization of the acquisition function to determine the new objective func-123

tion coordinates to evaluate.124

The steps involved in optimizing an unknown function f : X → R with VerOpt125

are summarized in Figure 1. The following description of the method is highly condensed;126

more in-depth explanations can be found in Stoustrup (2021) and Williams and Rasmussen127

(2006).128

Let us consider a set of objective function evaluations: {(xi, fi)|i = 1, . . . , n}. Here,129

xi is an input point in the parameter space X d with d parameters. The d × n matrix130

X contains all n input points. The corresponding objective function values fi(xi) are131

contained in the vector f(X) ∈ Rn. GP regression allows us to construct a predictive132

distribution of the surrogate model f∗ at a set of test points X∗:133

p(f∗(X∗)|X∗, f(X)) = N (K(X∗, X)K(X,X)−1f,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)).
(2)

N (µ,Σ) symbolizes the normal distribution with mean µ and covariance matrix Σ. We134

assume noise-free input yi = fi. The Gram matrices K(X,X ′) contain covariances be-135

tween any two set of points X and X ′, such that each element of the matrix can be de-136

scribed as kij = k(xi,x
′
j). For example, an element of the covariance matrix between137

the test and input points, K(X∗, X), is equal to k(x∗i,xj).138

The kernel k(x,x′) determines the shape and behavior of the surrogate model; it139

contains the prior information about the objective function. The Matérn kernel is the140

default VerOpt option:141

k(x,x′) =
21−ν

Γ(ν)

(
√
2ν

||x− x′||
l

)ν

Kν

(
√
2ν

||x− x′||
l

)
. (3)

Γ(·) is the gamma function, Kν is the modified Bessel function of the order ν, and l is142

the characteristic length scale. The Matérn kernel has high utility across a wide range143

of black box optimization problems because:144

1. It is ⌈ν⌉−1 differentiable. Climate model output, just as most physical systems,145

is not expected to be infinitely-differentiable and smooth, so the hyper-parameter146

ν provides control over an important aspect of the objective function surrogate.147

2. Aside from ν, the kernel contains only one other hyper-parameter - the charac-148

teristic length scale l, which can be determined by maximizing the marginal like-149

lihood in Eq. (4).150

1 VerOpt follows the Bayesian optimization literature custom where the objective function is maximized

rather than minimized. However, since the aim of the optimization in this paper is to minimize model

biases, we present it as such for the sake of readability and consistency.
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5) Update the surrogate model.

4) Evaluate suggested points.3) Minimize the acquisition function.

Initialization

0) Pick a kernel to define a prior. 1) Evaluate random initial points. 2) Construct a surrogate model.

Optimization loop

Figure 1. Bayesian optimization with VerOpt demonstrated using a one-dimensional exam-

ple. The prior is a Gaussian process GP0(0, k(x, x
′)), where k(x, x′) is the Matérn kernel. Five

sample functions gj∈{1,...,5}(x) ∼ GP0 illustrate our assumption about the shape of the objective

function. The shaded region indicates the 95% confidence bound. In panel 1), the optimization is

initialized by evaluating ninit = 6 random objective function coordinates. In the first optimiza-

tion round m = 1, the surrogate model is constructed based on the initial points (panel 2). For

m ∈ {1, . . . , nrounds}, the acquisition function am(x) with β = 1 is calculated from the surrogate

model mean µ̂m and uncertainty σ̂m (panel 3). The acquisition function minima are suggested to

evaluate. Panel 4 shows the updated set of objective function values: the basis for the updated

surrogate model GPm+1 in panel 5. Each optimization round consists of the steps shown in pan-

els 3-5.

–5–
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In VerOpt, the default choice for ν is 2.5, making the kernel twice-differentiable. The151

optimal length scale is determined by maximizing the marginal log likelihood (MLL) of152

the surrogate model:153

log(p(f(X)|θ)) = −1

2
fTK(X,X)f− 1

2
log |K(X,X)| − n

2
log(2π), (4)

where θ is the hyper-parameter vector. In our case, θ = l = [l1, . . . , ld]. The anisotropic154

Matérn kernel allows the length scale parameter l to be different for each dimension in155

X . The radial distance r =
∥x−x′∥

l in Eq. (3) becomes r =
∥∥∥x−x′

l

∥∥∥.156

The three terms in the MLL equation represent the model fit, the model complex-157

ity, and the normalization factor, respectively. The term − 1
2 f

TK(X,X)f measures how158

well the surrogate model covariance fits with the variance of the objective function val-159

ues. At large length scales, the GP model becomes approximately constant, while low160

length scales produce highly nonlinear models. The punishment term for model complex-161

ity 1
2 log |K(X,X)| is therefore high at low length scales where the surrogate is flexible162

and can fit the evaluated points well. The bad fit punishment 1
2 f

TK(X,X)f grows ex-163

ponentially as l increases. This makes the MLL convex and the maximum easy to find.164

After the optimal hyper-parameter vector θ̂ is determined, the predictive distri-165

bution of the surrogate model p(f∗) is used to compute the acquisition function. The de-166

fault VerOpt acquisition function is the modified Lower Confidence Bound (LCB, Srini-167

vas et al., 2009):168

a(x) = µ̂(x)− σ̂(x)β − rσ̂(x)βγ, (5)

where β and γ are positive acquisition function hyper-parameters, µ̂ and σ̂ are the mean169

and standard deviation of the optimal surrogate model, and r is a random number drawn170

from N (0, 1). The standard form of LCB does not include the γ term. The stochastic171

noise is added to improve optimizer performance when the surrogate model is nearly con-172

stant along a parameter. The value of γ = 0.01 is sufficiently small to only affect the173

optimization in that case.174

The acquisition function is optimized using the L-BFGS-B algorithm with multi-175

ple restarts (Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box constraints,176

Byrd et al., 1995), as implemented in the scikit-learn package (Pedregosa et al., 2011).177

The new set of the optimal coordinates is evaluated by the objective function, i.e. by run-178

ning a set of simulations with parameterizations {x1, . . . ,xn evals}. In total, the opti-179

mization produces n objective function evaluations, where n = ninit+nBayes. The ninit180

initial points are randomly picked from a uniform distribution over the finite bounds of181

the parameter space X . The nBayes points are the minima of the acquisition function.182

At each round of optimization, nevals points are evaluated. The total number of opti-183

mization rounds is therefore nrounds = nBayes/nevals. The evaluated set of parameter184

values for which the objective function is minimized is denoted by χ∗.185

In the optimization sequence in Figure 1, the task is to determine the parameter186

x for which f(x) is minimized. Panel 0 shows 5 random vector draws from the GP prior187

GP0(0, k0(x, x
′)), where k0(x, x

′) is the Matérn kernel with ν = 2.5 and l0 = 0.25 (Eq. (3)).188

The shaded region indicates µ0(x) ± 2σ0(x). The optimization is initialized by evalu-189

ating ninit randomly selected initial points (panel 1). The GP prior distribution is con-190

ditioned on the evaluated points (Eq. (2)) to construct the first surrogate model at op-191

timization round m = 1. The optimal length scale l̂1 is found by locating the MLL max-192

imum from Eq. (3). The draws from GP1 show the possible shape of the objective func-193

tion given the information gained from evaluating the initial points. In panel 3, the ac-194

quisition function a(x) (Eq. (5)) computed using the mean and variance from the sur-195

rogate model is plotted. The result of the acquisition function optimization is the new196

set of suggested points: the optimizer’s best guesses for x∗. In panel 4, the new evalu-197

ated points are plotted alongside the initial points. The full set is used to update the sur-198

rogate model to GPm+1 shown in panel 5. Each optimization round m produces:199
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• the surrogate model GPm(µ̂m(x), km(x, x′)) with the kernel defined using the op-200

timal length scale l̂m,201

• the surrogate model mean µ̂m(x) and standard deviation σ̂m(x),202

• the acquisition function am(x) and203

• the set of points to evaluate {xm,1, . . . , xm,n evals}.204

Panels 3-5 summarise the steps of the optimization procedure repeated for m ∈ {1, . . . , nrounds}.205

3 Experimental setup206

The parameterization to optimize is the Turbulent Kinetic Energy (TKE, Gaspar207

et al., 1990) closure scheme in Veros. The optimal TKE parameters are found for two208

setups: the coarse setup with 4◦×4◦ horizontal resolution (Veros 4◦×4◦), and the stan-209

dard setup with 1◦×1◦ horizontal resolution (Veros 1◦×1◦). The model employs a reg-210

ular, three-dimensional staggered Arakawa-C grid. Both setups have 60 vertical layers211

with spacing monotonously increasing towards the bottom. In Veros 1◦×1◦, the surface212

vertical resolution is 2 m, while in Veros 4◦×4◦ it is 4 m. The models are forced with213

monthly ERA-Interim (ECMWF Reanalysis v4, Dee et al., 2011) climatology. Further214

description of Veros components can be found in Häfner et al. (2018).215

The duration of all simulations presented in this paper is 30 model years, which216

is long enough for the tropical and mid-latitude mixed layer to spin up (Liu et al., 1994).217

The integration begins from initial conditions based on climatological temperature and218

salinity profiles from World Ocean Atlas 2005 (WOA05, Locarnini et al., 2006; Antonov219

et al., 2006). The average of the last two years is used for analysis.220

The TKE scheme is a 1.5-order turbulence closure commonly used in ocean mod-221

els, such as Nucleus for European Modelling of the Ocean (NEMO, Madec & the NEMO team,222

2016) included in the Ocean Model Intercomparison Project (OMIP, Griffies et al., 2016).223

Eddy viscosity Km is parameterized as:224

Km = cklkē
1/2, (6)

where lk is the mixing length scale, ck is the mixing coefficient and ē = 1
2 (u

′2 + v′2 + w′2)225

is the turbulent kinetic energy. The zonal, meridional and vertical velocities are sym-226

bolized by u, v and w. The overbar and apostrophe indicate the mean and fluctuating227

components in Reynolds decomposition, respectively: u = ū+u′. The prognostic equa-228

tion for ē is:229

∂ē

∂t
=

∂

∂z

(
Ke

∂ē

∂z

)
− cϵ

ē3/2

lϵ
−KhN

2 +KmSh2, (7)

where Ke = αtkeKm is the vertical diffusive flux of ē, Kh = KmP−1
rt is the eddy dif-230

fusivity with Prandtl number Prt, N is the buoyancy frequency, Sh2 = (∂ū∂z )
2 + (∂v̄∂z )

2
231

is the vertical squared shear, and lϵ is the dissipation length scale. Aside from the three232

parameters αtke, ck and cϵ, the model allows for setting a limit for minimum eddy vis-233

cosity and diffusivity: minKm
and minKh

, respectively.234

The computation of the length scales lk and lϵ in Veros follows Blanke and Delecluse235

(1993):236

lk = lϵ = 21/2ē1/2N−1. (8)

Furthermore, Prandtl number is dependent on the Richardson number Ri: Prt = 6.6Ri,237

Prt ∈ [1, 10]. Assuming homogeneous and stationary turbulence, it is possible to de-238

rive the critical Richardson number Ric as a function of the TKE parameters. In this239

regime, Equation (7) becomes a balance between the buoyancy flux, shear production240

and dissipation:241

KmSh2 −KhN
2 − cϵ

ē3/2

lϵ
= 0. (9)
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Table 1. The default values of the TKE parameters and their bounds.

parameter default value bounds

ck 0.1 [0.05, 1.0]
cϵ 0.7 [0.05, 1.0]
αtke 30.0 [0.5, 50]
log10(minKm

[m2 s−1]) log10(2 · 10−4) [-7.0, -3.5]

After rearranging the terms, Eq. (9) becomes:242

Prt

Prt −Ric
Ric =

6.6

6.6− 1
Ric = c−1

ϵ ē3/2lϵN
2Km (10)

Recalling that Kh = KmP−1
rt and using the length scale definition from Eq. (8), we get243

Km = ck2
1/2ēN−1. We end up with Ric as a function of ck and cϵ:244

Ric ≈ 1.7ckc
−1
ϵ . (11)

Tuning the ckc
−1
ϵ ratio is therefore equivalent to picking the critical Richardson num-245

ber of the model.246

The default parameter values of the TKE scheme in Veros are reported in Table 1;247

the parameterization is used in the control simulations Default Veros 1◦×1◦ and De-248

fault Veros 4◦×4◦. For the optimization, parameter bounds are necessary to define the249

finite search space. The choices are motivated as follows:250

• The default ck and cϵ values are taken from Gaspar et al. (1990). Since the two251

parameters scale ē production and dissipation, a natural pick for the scale for both252

parameters is [0, 1]. However, at ck values close to zero, MLD becomes noisy - likely253

due to numerical diffusivity dominating the model diffusivity. With no sink for254

ē, Eq. (7) might become unstable. The minimum values for ck and cϵ should there-255

fore be larger than zero. We pick 0.05 as the minimum bound for both.256

• The default value for αtke in Gaspar et al. (1990) is 1, but has since been changed257

to 30 in modern TKE implementations (e.g., Williamson et al., 2017; Brüggemann258

et al., 2024). For the bounds, we adapt the range used in Williamson et al. (2017).259

• The Prandtl number is set to 10 in the ocean interior, i.e. minKh
= 0.1minKm .260

The default minKm = 2 · 10−4 is picked based on the mean observed diffusiv-261

ity: Kh ≈ 10−5 m2 s−1 (Ledwell et al., 1998). The lowest values of Kh in mi-262

crostructure profiles are typically on the order of 10−7 m2 s−1. When minKh
is263

below this value, it effectively acts as a limit for numerical stability and does not264

have a significant effect on the diffusivity profile. At the higher end of the range,265

minKh
imposes a constant background diffusivity below the mixed layer.266

3.1 Mixed layer depth definition and climatology267

The depth of the mixed layer does not have a unique definition (de Boyer Montégut268

et al., 2004). Density profile observations outnumber diffusivity profiles by orders of mag-269

nitude, therefore most MLD definitions use a density threshold criterion of the form:270

ρ(z) = ρ(zref) + δρ, (12)

where ρ is the density, z is the vertical coordinate, zref is the reference depth and δρ is271

a fixed density difference. MLD is thus defined as the maximum depth for which the sea-272

water density is δρ larger than the density at the reference depth.273
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Figure 2. a) The observed mean annual MLD map and b) Default Veros 1◦×1◦ MLD bias. In

c), the zonal average MLD is compared between observations (solid black line) and Veros (dashed

black line). The gray dashed lines indicate the meridional extent of the experiments.

We pick the latest dataset from de Boyer Montégut (2022) as the target MLD cli-274

matology. The dataset uses a fixed density threshold of δρ = 0.03 kg m−3 and zref =275

10 m for computing the MLD. The climatology is based on shipboard observations, drifter276

and buoy data. Almost half of the profiles are from ARGO float measurements. The cli-277

matology and the Default 1◦×1◦ Veros MLD bias are shown in Figure 2. MLD in Veros278

is generally too shallow in the tropics, with the exception of the Intertropical Conver-279

gence Zone (ITCZ) region and the northern Indian Ocean.280

Treguier et al. (2023) find that MLD biases as large as 100 m can arise from us-281

ing model reference depth zref which is different than the one used to compute the MLD282

climatology. We therefore set up the vertical grid in Veros so the zref from the climatol-283

ogy matches the model reference depth closely. In Veros 1◦×1◦, zref = 10.7 m; in Veros284

4◦ × 4◦, zref = 11.2 m. MLD is computed at every time step. The depth at which the285

density criterion in Eq. (12) is fulfilled is found by linearly interpolating between the ver-286

tical layers:287

MLD =
ρ(MLD)− ρ(zb)

ρ(za)− ρ(zb)
· (za − zb) + zb, (13)

where za is the depth layer above MLD, and zb is the depth layer below MLD. The den-288

sity ρ(MLD) = ρ(zref) + 0.03 kg m−3.289

3.2 VerOpt setup290

We present the results of two optimization studies: the TWIN experiment, where291

the target is the Default 4◦×4◦ Veros MLD, and the OBS experiment, where the tar-292

get is the MLD climatology. Table 2 outlines the details of the optimization setups.293

The goal of the TWIN experiment is two-fold: 1) to assess the sensitivity of the294

modeled MLD to the TKE parameters and 2) to determine how well VerOpt can iden-295

tify a set of known parameters. When ocean simulations are compared to climatology,296

a degree of bias is expected even in a perfect model due to observational uncertainty. In297

practice, the model is never perfect, and structural limitations independent of the op-298

timized parameterization are another source of error. The TWIN experiment enables us299

to assess the performance of the optimizer independently of these two factors.300

The error metric in the TWIN experiment is the natural logarithm of the root mean301

squared relative error of the MLD map simulated with a parameter set x (MLDsim) rel-302
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Figure 3. The target MLD maps for a) the TWIN experiment and b) the OBS experiment.

ative to the target MLD, MLDtarget:303

RMSRE =

√√√√ 1

NM

N∑

i=0

M∑

j=0

(
MLDsim

i,j −MLDtarget
i,j

MLDtarget
i,j

)2

. (14)

The dimensions of the map are N×M , with i and j symbolizing the zonal and merid-304

ional indices, respectively. The target maps for both experiments are shown in Figure 3.305

MLD is by definition larger than 10 m, so division by zero is not a risk.306

The space XTWIN = {ck, cϵ, αtke,minκM
} includes the full TKE parameterization.307

The experiment is conducted using the 4◦×4◦ Veros setup. The hyper-parameter β of308

the acquisition function (Eq. (5)) is set to 0.8. The choice is rooted in the tendency of309

the optimizer to pick boundary parameter values in the test experiments. The bounds310

for the characteristic length scale in the Matérn kernel (Eq. (3)) are unchanged from VerOpt311

default settings: [0.1, 2]. The optimization starts with 6 rounds of initialization where312

30 ninit points are evaluated, followed by 30 rounds of optimization, with a total of 150313

nBayes evaluated points.314

Table 2. The setup of the two optimization studies.

TWIN OBS

target MLD map simulated Veros MLD MLD climatology
objective function ln(RMSRE) RMSRE
horizontal resolution 4◦ 1◦

latitude bounds [52◦S, 52◦N] [49.5◦S, 49.5◦N]
parameter space X ck, cϵ, αtke, minKM

ck, cϵ
total number of simulations n 180 40
number of iterations 36 20
number of optimization rounds nrounds 30 15
number of simulations per iteration nevals 5 2
number of initial points ninit 30 10
number of Bayes points nBayes 150 30
acquisition function parameter β 0.8 3.0
acquisition function parameter γ 0.01 0.01
kernel hyper-parameter θ bounds [0.1, 2] [0.1, 2]
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In the OBS experiment, the 1◦×1◦ Veros setup is used. The goal of the optimiza-315

tion is to minimize the model MLD bias relative to climatology. The parameter space316

is reduced to two dimensions: XOBS = {ck, cϵ} based on the results of the TWIN ex-317

periment further discussed in section 4.1. The reduction of dimensionality is motivated318

by computational limitations, as a single 1◦×1◦ 30-year simulation takes about 80 times319

longer to complete than a 4◦×4◦ run of the same length. A reduced parameter space320

requires fewer evaluated points to explore effectively.321

The objective function formulation is modified in the OBS experiment to reduce322

its sensitivity to small fluctuations in error. There, we drop the natural logarithm, mak-323

ing fOBS(x) equal to the RMSRE from Eq. (14). The total of n = 40 points are eval-324

uated, including 10 ninit points in 5 rounds of initialization and 30 nBayes points in 15325

rounds of optimization.326

3.3 Performance and computational resources327

Veros can run both fully on CPU, fully on GPU (for full float64 calculations), and328

a mixture (for GPUs that only have fast float32 performance, offloading numerically sen-329

sitive float64 solvers to CPU). We conducted the 4◦×4◦ TWIN experiment on the Dan-330

ish Center for Climate Computing (DC3) CPU cluster Aegir, comprised of an Intel Xeon331

E5-2650v4 2.2GHz CPUs, running each simulation with 24 threads. The 1◦×1◦ OBS332

experiment was run on our local workstation with mixed calculations on commodity NVIDIA333

RTX 3080 GPUs and AMD Threadripper Ryzen 1950X 16-Core CPUs (Threadripper).334

Continued experiments have been conducted on the Lumi-G supercomputer, fully on AMD335

MI250X GPUs (Lumi).336

On a single Lumi MI250X GPU, we can compute about 75 4◦ × 4◦ model years337

per hour, and 1.2 1◦×1◦ model years per hour, calculated in full 64-bit floating point338

precision. The average energy consumption for the GPU while running a 1◦ × 1◦ cal-339

culation was 196W, i.e. 163Wh per model year. The float32/float64 mixed GPU/CPU-340

calculations on Threadripper computes at a similar speed, and uses about 300W on the341

GPU and roughly 150W on CPU, i.e. ∼ 375Wh per model year. The fully-CPU calcu-342

lations on Aegir were benchmarked for the same 1◦ setup by Häfner et al. (2021) for 0.115343

model years using on DC3 Aegir, completing in 3297s and consuming 320Wh (Tables 1344

and A1 in Häfner et al., 2021), which corresponds to 8 hours and 2782Wh per 1◦×1◦345

model year. Thus the same calculation on a single MI250X GPU was not only nearly346

10 times as fast as on the CPUs, but also consume 17 times less energy when running347

fully on Lumi’s MI250X GPUs.348

Our 4◦×4◦ experiments were run on the same system at DC3, using a single CPU349

core per run, at 2.8 minutes per model year. Initially we ran the 1◦ × 1◦ experiments350

on the same system, using 16 CPU cores per run, resulting in 11 hours per model year.351

The move to GPUs and reduction to 50 minutes per 1◦×1◦ model year made experi-352

mentation much more flexible. As the energy consumption for performing long term cli-353

mate simulations is substantial – especially when performing many runs to optimize pa-354

rameters – the final energy reduction by a factor 17 makes an enormous difference as to355

which kinds of experiments can be justified. Due to the relatively coarse resolution of356

the 1◦ × 1◦, we ran the experiments on a single GPU per Veros-simulation. However,357

Häfner et al. (2021) showed that Veros scales well up to at least 16 GPUs for 0.1◦×0.1◦358

simulations, making high-resolution Veros runs feasible on multi-GPU based systems such359

as Lumi-G.360
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4 Optimization results361

4.1 TWIN experiment362

After 36 optimization steps, the best simulation produces RMSRE ≈ 1.18%. The363

parameter values from this simulation, χ∗
TWIN, are reported in Table 3 together with per-364

centage difference relative to the target values. While Ric is not tuned directly, it turns365

out to have the strongest influence on the objective function, thus we report it in Ta-366

ble 3 alongside the other parameters.367

Two-dimensional scatter plots for each combination of parameters in XTWIN and368

the histograms of the evaluated points are shown in Figure 4. The histograms of ck and369

cϵ show well defined peaks, indicating high influence on the objective function. On the370

contrary, the αtke histogram has no peaks, and the minκM
histogram shows two sharp371

peaks at the boundary, both indicating low influence on the objective function. The low-372

est error scores are clustered in the upper left corner of the ck-cϵ scatter plot.373

In Figure 5c), ln(RMSRE) is plotted as a function of the critical Richardson num-374

ber Ric. The global MLD is unsurprisingly tightly correlated with Ric, as seen in Fig. 5a).375

Increasing the Ric has the effect of deepening the global MLD. The deepening is more376

pronounced at mid-latitudes, where the stratification is weaker. In Fig. 5b), the objec-377

tive function values are plotted against the number of evaluated points n. After initial-378

ization, suggested points result in RMSRE of less than 13%; 83% of the RMSRE values379

are below 5%, and 13% of the RMSRE values are below 2%.380

The optimization results indicate that large regions of the TKE parameter space381

simulate MLD maps which are similar. Moreover, since Ric has the highest influence on382

the MLD, and since it is also a function of ckc
−1
ϵ , local RMSRE minima will occur for383

any parameterization where the ckc
−1
ϵ ratio is the same as default. This explains why384

the center of the cϵ peak is shifted relative to the target value in Fig. 4. The relatively385

large parameter errors in Table 3 are also a reflection of this: while ck and cϵ are 21.6%386

and 24.2% larger than the default values, the ratio - and therefore also Ric - is only 2.1%387

off from target.388

The TWIN experiment demonstrates the robustness of the tool. For the price of389

only 180 objective function evaluations, the optimizer is able to paint a comprehensive390

picture of the parameter space, identify the most influential parameters, and find a pa-391

rameter set which simulates the target MLD to 1.18% accuracy. The ratio ckc
−1
ϵ esti-392

mated by the optimizer is only 2.1% higher than default. A natural next step which could393

improve the TWIN estimates for the TKE parameters would be to reduce the param-394

eter space to a region where RMSRE is lowest, further increasing the sensitivity of the395

optimizer to small objective function fluctuations.396

Table 3. VerOpt best estimates for the TKE parameterization in the TWIN experiment.

parameter target value best TWIN estimate % difference

ck 0.1 0.1216 21.6
cϵ 0.7 0.8693 24.2
αtke 30.0 35.7764 19.3
minκM

[m2 s−1] 2 · 10−4 1.633 · 10−4 18.4
Ric 0.241 0.236 2.1
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Figure 4. 2D scatter plots and histograms of the TWIN experiment parameters. The target

values are indicated on each scatter plot with a gray star and with a dashed line on the his-

tograms.
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Figure 5. TWIN optimization results: a) zonal MLD averages in the 180 experimental runs

and in the Default 4◦×4◦ simulation; b) objective function progress after n points; c) ln(RMSRE)

as a function of the critical Richardson number Ric. In b), the vertical dashed line indicates the

separation between initial and Bayes points. In c), the line indicates the target Ric ≈ 0.24.
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Figure 6. OBS optimization results: a) 3D and b) 2D visualization of the objective function

surrogate model mean µ̂ at the final BO iteration and the 40 evaluated objective function coordi-

nates; c) RMSRE as a function of the critical Richardson number Ric; d) zonal average MLD in

the 40 simulations, Default 1◦ × 1◦ Veros run and observations and e) zonal average MLD as in

d) with a reduced y-axis scale. Panel d) is included to show the full extent of MLD bias at higher

latitudes; note the logarithmic scale.

4.2 OBS experiment397

In the OBS experiment, we focus on the two TKE parameters with the most in-398

fluence over the global MLD in the TWIN experiment: ck and cϵ. Figure 6 shows the399

overview of the optimization results. The minimum bias in the OBS experiment is 42.62%,400

which is nearly identical to the Default 1◦× 1◦ Veros MLD bias of 42.67%. The com-401

parison of the observed and modeled zonal MLD profiles in Fig. 6e) reveals that the TKE402

scheme parameterization is not likely to be the dominant source of bias for the modeled403

MLD. The structural limitations of the TKE scheme might be, but in the current form,404

no set of evaluated parameters brings the global MLD distribution closer to observations.405

The climatological MLD is asymmetrical about the equator, which is not reflected in the406

models.407

In the run with the lowest error, Ric = 0.33. When the critical Richardson num-408

ber is less than unity, the MLD bias is relatively insensitive to it. The RMSRE in those409

runs is 44.4±0.2%. For Ric > 1, MLD becomes more sensitive to the parameter val-410

ues, with MLD bias varying between 54% for Ric = 1.2 and 177% for Ric = 9.9. The411

critical Richardson number shifts the global MLD downwards as it increases, similarly412

to the 4◦×4◦ Veros setup (Fig. 5). The objective function shape in the ck-cϵ parame-413

ter space in Figure 6a) and b) strongly resembles the ck-cϵ scatter plot in Figure 4. The414

RMSRE is lowest in the upper left quadrant of the parameter space. The similarity be-415
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Figure 7. Mean vertical temperature profile at 0◦N, 110◦W in TAO mooring observations

(thick black line), Default 1◦ × 1◦ Veros simulation (thick dotted line) and across the 40 OBS

experiment runs (thin colorful lines).

tween the two experiments suggests that including the other two TKE parameters in the416

OBS optimization would not improve the RMSRE significantly.417

The optimization procedure aims to reduce MLD biases, but TKE tuning affects418

other output variables as well. An example of the impact of the TKE parameterization419

on the vertical temperature profile is shown in Figure 7. The temporal mean of Trop-420

ical Atmosphere Ocean (TAO, McPhaden et al., 2010) mooring temperature observations421

at 0◦N, 110◦W is compared with the Default 1◦×1◦ Veros and the 40 OBS simulations.422

At this location, a sharp temperature gradient forms at the top of the Equatorial Un-423

dercurrent (EUC) as the surface pycnoclines are squeezed by the upwelling. In the ob-424

servations, the gradient is sharpest at around 50 m. None of the simulations reproduce425

the location of the ∂T/∂z peak accurately, but the ones with large MLD bias exhibit closer426

resemblance to observations.427

5 Discussion428

VerOpt is used to identify the set of TKE parameter values that minimize Veros429

MLD bias. In the TWIN experiment, the optimization target is MLD simulated using430

the Default 4◦ × 4◦ Veros setup. The lowest RMSRE (Eq. (14)) of 1.18% is achieved431

with TKE parameters which deviate from the target parameters by about 20-25% (Ta-432

ble 3). The ratio ckc
−1
ϵ , which sets the critical Richardson number Ric in the model, is433

accurately identified by the optimizer, deviating from the target value only by 2.1%. Ric434

has the highest influence on the modeled MLD (Fig. 5). The target of the OBS exper-435

iment with the reduced parameter space XOBS = {ck, cϵ} is MLD climatology (de Boyer Montégut,436

2022). The lowest RMSRE in the OBS experiment is 42.62%, only 0.05% lower than the437
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default Veros bias (Fig. 2). In the best simulation, Ric = 0.33. The MLD bias is most438

sensitive to the TKE parameter values when Ric > 1. The zonal averages of MLD in439

the OBS simulations all fail to reproduce the asymmetry of the observed MLD (Fig. 6).440

This means that either the TKE scheme (as it is implemented in Veros) needs extra de-441

grees of freedom to represent mixing in the real ocean, or that the dominant MLD bias442

in Veros originates from another parameterization, a structural limitation, or biases in443

the atmospheric forcing.444

Contrary to empirical schemes, such as the commonly used KPP (K-profile param-445

eterization, Large et al., 1994), algebraic closures can be embedded into energetically con-446

sistent models (Eden et al., 2014). The TKE scheme consists of only one differential equa-447

tion, as opposed to second order algebraic closures, which contain additional prognos-448

tic equations for length scales or turbulent kinetic energy dissipation ϵ. The simplicity449

of the scheme makes it attractive, but it comes at a price of accuracy. Burchard and Bold-450

ing (2001) show, for example, that the parameter ck should be a function of stratifica-451

tion and shear. A constant ck is therefore likely to be a source of error. However, zonal452

MLD averages in Veros 1◦ × 1◦ are largely similar for Ric < 1 (Fig. 6), which shows453

that MLD biases persist for a wide range of ck values. With the current TKE implemen-454

tation in Veros, high Ric > 2 is required to simulate tropical MLD which resembles ob-455

servations in the Southern hemisphere (Fig. 6e). In the TKE scheme, no mixing can oc-456

cur when the Richardson number is higher than Ric, which has been identified as a struc-457

tural shortcoming of the scheme (e.g Burchard & Bolding, 2001).458

Another limitation of TKE is the lack of ability to represent non-local mixing pro-459

cesses. IDEMIX (Olbers & Eden, 2013; Nielsen et al., 2018) attempts to alleviate this460

limitation by including an additional source term in the TKE equation (Eq. (7)) to ac-461

count for mixing due to internal wave breaking. Furthermore, sub-mesoscale eddies have462

been shown to restratify the midlatitude oceans (Lévy et al., 2010), but are not currently463

parameterized in Veros.464

Williamson et al. (2017) propose an alternative method for automated model tun-465

ing which also utilizes GP regression, but employs a different sampling method. They466

search a 24-dimensional parameter space of the NEMO ORCA2 model. Despite differ-467

ences in methodology and the model used, the results of their study are remarkably sim-468

ilar to ours. The TKE parameters ck and cϵ have the highest influence on the temper-469

ature in the upper 300m in ORCA2, alongside the Langmuir cell coefficient and the sur-470

face TKE input coefficient which are not included in Veros. The majority of the param-471

eter space tested in Williamson et al. (2017) results in a warm bias in the upper ocean,472

indicating excessive deepening of the ML. Similarly, we find that increasing the ckc
−1
ϵ473

ratio in 1◦×1◦ Veros leads to global MLD increase, and that MLD is generally the same474

or deeper compared to Default 1◦ × 1◦ Veros in all of the OBS simulations (Fig. 6).475

Climate models differ not only in tunable parameters, but also fundamental build-476

ing blocks such as grid type, geometry, resolution, components, etc. - all of which affect477

the simulated output. Therefore, parameter tuning is highly model dependent, and an478

optimal choice of parameter values for one model is not guaranteed to be the best choice479

for another. However, the similarities between the results in this work and in Williamson480

et al. (2017) suggest that some information about commonly used parameterizations could481

be transferable between different models. MLD deepening as a result of increasing the482

ckc
−1
ϵ ratio in the TKE scheme is expected to occur in models other than Veros, as a higher483

critical Richardson number necessarily results in enhanced vertical diffusivity.484

Our work uses a relatively low-dimensional example to demonstrate the utility of485

Bayesian optimization in climate modeling. The goal of this paper is to introduce VerOpt486

in its basic form, but many aspects of the optimization could be enhanced. The BO toolkit487

has grown significantly over the past decades due to its popularity (Wang et al., 2023).488
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The following paragraphs outline the improvements particularly relevant to climate mod-489

eling.490

Search in higher dimensions. Our results clearly show that optimizing the TKE491

scheme alone is not sufficient to rectify the MLD biases in Veros. A natural next step492

would be to extend the search space to other parameterizations, such as IDEMIX men-493

tioned above. The bulk formula parameters are also candidates, as they impact the ge-494

ographical MLD distribution.495

High-dimensional optimization problems suffer the curse of dimensionality. The ex-496

pensive to evaluate objective functions pose an additional challenge in this regard. If the497

number of points necessary to construct an accurate GP model in one dimension is n,498

then in principle for d dimensions we would need nd points. This is of course in conflict499

with the desire to minimize the necessary objective function evaluations. In practice, op-500

timizer performance is highly dependent on the shape of the objective function. In the501

TWIN experiment, the GP model constructed with only 40 input points is able to ac-502

curately locate the region in the parameter space where RMSRE is below 13% (Fig. 5b).503

Were the objective function highly nonlinear, this would likely require more Veros sim-504

ulations.505

BO is used in high-dimensional optimization problems across many disciplines, thus506

a plethora of methods for coping with the curse of dimensionality has been proposed.507

Two most commonly used tactics are variable selection and low-dimensional embeddings.508

The former involves reducing the search space based on the relative influence of param-509

eters on the objective function (Chen et al., 2012). This strategy has been informally510

applied in this work, as we reduced the search space in the OBS experiment based on511

the findings from the TWIN optimization. An alternative to the exclusion of inactive512

parameters is to optimize a low-dimensional embedding of the high-dimensional param-513

eter space, the so-called active space (e.g. Nayebi et al., 2019).514

Over-sampling at the boundaries. The boundary issue is a common challenge in BO515

(Swersky, 2017), where the optimizer over-samples the edges of the parameter space. In516

the TWIN experiment, we mitigate this tendency by reducing the value of β in the ac-517

quisition function to 0.8, but this comes at a cost of potentially under-exploring the re-518

gions in the parameter space where the information about the objective function is lack-519

ing. Even with reduced β, the optimizer over-samples the boundaries of minKm
(Fig. 4).520

The boundary issue is also noticeable in the OBS experiment (Fig. 6b). A successful strat-521

egy to combat this tendency has been proposed by Oh et al. (2018). The method, Bayesian522

Optimization with Cylindrical Kernels (BOCK), transforms the geometry of the search523

space to increase its volume at the center and reduce it at the boundaries. BOCK has524

been shown to successfully scale to 500-dimensional optimization problems and is already525

implemented in BoTorch (Balandat et al., 2020).526

The error metric and MLD uncertainty. The work of Williamson et al. (2017) un-527

derlines the importance of accounting for observational uncertainty in the tuning pro-528

cess. In this work, we do not incorporate the information about MLD uncertainty in the529

objective function, as it is not included in the dataset we use, which is a significant lim-530

itation. However, MLD in the climatology from de Boyer Montégut (2022) is computed531

using a constant density threshold of 0.03 kg m−3, as opposed to other products which532

typically use a variable density threshold to match the ±0.2◦ C temperature criterion533

(de Boyer Montégut et al., 2004). This is done to make model comparison with obser-534

vations easier, as nearly all OMIP models use constant density threshold for MLD com-535

putation (Treguier et al., 2023). The MLD uncertainty could be incorporated into the536

objective function by e.g. redefining the error metric. Instead of computing the relative537

distance between MLD values in the simulated and target maps (Eq. (14)), the distance538

between MLD distribution in each grid cell could be used.539
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Multiple objectives. Climate model optimization always involves pay-offs between540

the accuracy of different processes at various geographical locations. Tuning to a single541

objective can easily return a parameterization which critically misrepresents another as-542

pect of the climate. An example of this effect can be seen in Figure 7, where the observed543

∂T/∂z profile is reproduced better in the simulations with high MLD bias. A better ap-544

proach is therefore to tune the model to multiple objectives. In the case of mixing pa-545

rameterizations, important biases aside from MLD are temperature and salinity profiles.546

The multi-objective optimization in VerOpt employs the Expected Hypervolume Improve-547

ment acquisition function (Emmerich et al., 2006).548

The work presented in this paper only scratches the surface of the potential BO549

has in automated tuning of climate models. Due to its popularity, it has undergone rapid550

development in recent years. This has resulted in the emergence of specialized algorithms,551

which make BO highly adaptable to a wide range of problems. VerOpt makes BO seam-552

lessly applicable to climate modeling. It can work with any model output, but it ben-553

efits significantly from Veros Python/JAX infrastructure which supports GPU compu-554

tation, enabling faster and more energy efficient simulation.555

6 Conclusions556

We propose Bayesian optimization with VerOpt as a method for automated param-557

eter tuning in OGCMs. Two optimization experiments demonstrate the process by which558

VerOpt identifies a set of TKE parameter values that minimize the simulated MLD er-559

ror relative to a target map. In the idealized TWIN experiment, the best RMSRE is 1.18%.560

In the OBS experiment, where the target is the MLD climatology, the best RMSRE is561

42.62%. The TKE scheme parameters in its current implementation cannot be tuned to562

rectify the MLD biases in Veros. The ckc
−1
ϵ ratio, which sets the model critical Richar-563

son number, has the highest influence on MLD. Increasing Ric deepens the mixed layer564

everywhere, and the effect is stronger at locations where the stratification is weak. The565

geographical MLD distribution appears to be set by other model components. In future566

work, higher-dimensional optimization with multiple objectives can potentially be more567

effective in reducing MLD bias in Veros.568

Acronyms569

TKE Turbulent Kinetic Energy570

MLD Mixed layer depth571

GP Gaussian process572

BO Bayesian optimization573

EKE Eddy kinetic energy574

MLL Marginal log likelihood575

RMSRE Root mean square relative error576

TAO Tropical Atmosphere Ocean577

Notation578

Bayesian optimization579

f(x) The objective function580

X The parameter space of the objective function581

x An input point, x ∈ X582

x∗ A test point, x∗ ∈ X583

X A matrix of input points584

X∗ A matrix of test points585
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f(X) A vector containing objective function evaluations586

x∗ The global minimum of the objective function587

χ∗ The minimum of evaluated (input) points: χ∗ = argmin f(X)588

K(X,X′) The Gram matrix; each element ki,j = k(xi,x
′
j)589

N (µ,Σ) Normal distribution with mean µ and covariance matrix Σ590

q ∼ N (µ,Σ) The vector q is drawn from the normal distribution with mean µ and co-591

variance matrix Σ592

GP(m(·), k(·, ·)) Gaussian process defined by mean m(·) and kernel k(·, ·)593

g ∼ GP(m(·), k(·, ·)) The function g is a sample Gaussian process with mean m(·) and594

kernel k(·, ·)595

θ GP model hyper-parameter vector596

θ̂, µ̂(x), σ̂(x) The hyper-parameter vector, mean and standard deviation of the GP model597

for which the MLL is maximized598

599

Oceanography600

·̄ Mean component in Reynolds decomposition601

·′ Turbulent component in Reynolds decomposition602

x, y, z Geographical coordinates: zonal, meridional and vertical direction603

u, v, w Three-dimensional flow: zonal, meridional and vertical velocity604

ρ Sea water density605

δρ Density difference606

T Sea water temperature607

zref Reference depth for calculating MLD608

Km Eddy viscosity609

minKm Minimum eddy viscosity610

Kh Eddy diffusivity611

minKh Minimum eddy diffusivity612

e Turbulent kinetic energy613

lk Mixing length scale614

lϵ Dissipation length scale615

N Buoyancy frequency616

Sh Vertical shear617

ck Mixing coefficient in Km = cklkē
1/2

618

cϵ Dissipation coefficient in ϵ = cϵl
−1
ϵ ē3/2619

αtke Vertical diffusive flux coefficient in Ke = αtkeKm620

Ri Richardson number Ri = N2Sh−2
621

Ric Critical Richardson number622

γRf Mixing efficiency coefficient623

Prt Turbulent Prandtl number624

7 Open Research625

All model simulations in the manuscript have been done using Veros (Häfner et al.,626

2018, 2021), which is available to download on github: https://github.com/team-ocean/veros.627

Veros documentation is available at https://veros.readthedocs.io. The optimizer628

VerOpt (Stoustrup, 2021) is available on github: https://github.com/idax4325/veropt.629

The mixed layer depth (MLD) climatology (de Boyer Montégut, 2022) can be downloaded630

from https://www.seanoe.org/data/00806/91774/. Veros model output presented in631

this paper is available at https://sid.erda.dk/cgi-sid/ls.py?share id=dGN0t2pSbf.632
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4Uncharted Depths

The two strategies for improving oceanic closure schemes presented in this

thesis illustrate how the parameterizations still fail to accurately capture

the sub-grid scale processes. This issue is recognized in the community and

drives the research into novel methods of attacking the closure problem. A

selected collection of these are summarised at the end of this chapter.

Preceeding the speculation about what oceanic turbulence closures may look

like in the future are two sections that build upon the work in Articles I and II.

Section 4.1 is a reflection on practices involved in model validation using

MLD fields, and Section 4.2 outlines the extended VerOpt experiments.

4.1 mld for model validation

An important result from Treguier et al. (2023) is the demonstrated MLD

sensitivity to its defining criterion. The MLD fields computed using the

surface reference layer of a model (1 m or less) and the 10 m depth layer

differ by more than 40 m. Since MLD is not commutable, the best practice

is to define the model MLD threshold in the same way as in observations

and compute MLD at every time step. However, MLD definition is not

standardized, thus modelers have to choose which criterion to implement.

As a result, comparing modeled MLD to climatology using the same threshold

is sometimes not possible (e.g., Heuzé, 2020). This leads to an unknown

fraction of the MLD bias stemming from its definition. When the same

criterion is used, it is sometimes not stated whether the modeled MLD was

computed based on averaged profiles (Pottapinjara and Joseph, 2022). Article I

unfortunately falls within a similar category, where the modeled summer

MLD biases in Fig. 2 are computed from averaged monthly temperature

profiles.

Even when the best practices in comparing the modeled and observed MLD

are followed (e.g., Damerell et al., 2020; Gutjahr et al., 2021), making general

statements about MLD biases across studies is complicated by the variety

of criterions used. The effort to understand the model response to different

vertical mixing parameterizations is undermined by inconsistencies in MLD

computation. Community efforts to standardize this variable should be

continued.
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4.2 extended optimization

The optimization experiments in Article II show how Bayesian optimiza-

tion can be successfully applied to ocean model tuning. As stated in the

manuscript, there are many ways in which the method can be improved.

Some of these are addressed in our current continued work with VerOpt.

The parameter space of the extended optimization includes the TKE scheme

parameters, the mesoscale eddy closure (Eden, Czeschel, and Olbers, 2014),

the drag coefficient in the bulk formula and a scaling parameter for the salin-

ity restoring mask in Veros, altogether forming a modest nine-dimensional

parameter space. The optimization runs are performed on the Lumi su-

percomputer and include 60-year-long integrations of Veros 1
◦ × 1

◦
setup.

Two additional objectives aside from the mixed layer depth are added: the

strength of the Antarctic Circumpolar Current (ACC) and the depth of the

18
◦
C isotherm. The new targets contain observational uncertainty range,

addressing the weakness of the previous work where only the climatological

MLD mean is considered in the optimization.

The use of Lumi enables significantly more parallel runs per experiment
1

1. Currently, we are trying 32 parallel

Veros runs over 20 optimization

steps and one initialization round,

amounting to 672 total simulations.

, and

one of the current research goals is to establish the number of simulations

and optimization steps needed to effectively search the nine-dimensional

space. We aim to test the scalability of the method, and to quantify model

sensitivity to the extended parameter space.

4.3 turbulence closures of tomorrow

The two leading groups of ideas for improving the representation of sub-

grid scale processes in GCMs can be categorised into machine learing (ML)

methods and kilometer-scale modeling (e.g., Balaji et al., 2022; Fox-Kemper

et al., 2019). The former involves the combination of data-driven and physics-

based components in a single hybrid model, while the latter aims to minimize

the error resulting from the truncated energy spectrum by directly simulating

mesoscale physics. Both approaches are discussed here, with the focus on

vertical mixing.

4.3.1 ML-based parameterizations

Zanna and Bolton (2021) identify the four requirements for schemes repre-

senting sub-grid processes in climate models:
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1. “[A parameterization] accurately captures the physical processes being

parameterized,

2. Respects physical principles such as conservation laws,

3. Is numerically stable when implemented into a climate model and

4. Generalizes to new dynamical regimes.”

Data-driven approaches to closing RANS equations may be able to outmatch

the physics-based schemes in accurately representing the parameterized

processes. Deep networks offer higher predictive skill, but come with new

challenges including, but not limited to, points 2-4. Development of ML

schemes is focused on addressing these challenges.

The second point concerning consistency with physical principles can be

addressed by embedding ML components in physics-based schemes. For

example, Sane et al. (2023) expand the ePBL scheme (Reichl and Hallberg,

2018) by replacing the shape function and the velocity scale in the OSBL

diffusivity profile with two Artificial Neural Network (ANN) models. The

ANNs are trained on SMC output generated with General Ocean Turbulence

Model (GOTM, Umlauf and Burchard, 2005). This approach ensures that the

new scheme, ePBL_NN, adheres to the constraints of turbulence theory.

One of the main points of critique for ML methods in climate science is the

question of generalizability. Data availability constrain is a bottleneck for

all modeling efforts in oceanography. ML parameterizations must therefore

learn from model simulations, such as LES or SMCs. The limitation of the

NN_ePBL approach is that the models inherit the SMC limitations. However,

SMCs still offer a better physical representation of ocean mixing than simpler

closures such as TKE. MOM6 simulations with ePBL_NN shows considerable

reduction of tropical summer MLD biases compared to ePBL, with 10 m

deepening at the equator
2

2. Contrary to the tuning in Article II,

the improvement is not accompanied

by increased winter MLD biases.

.

The issue of numerical stability and the training procedure of ML parame-

terizations are addressed in Frezat et al. (2022). Most existing ML schemes

implement a priori learning, i.e. the models are tuned before being embedded

into GCMs. This can lead to unphysical behavior and numerical instabilities

(e.g., Zanna and Bolton, 2020). Frezat et al. (2022), show that in a quasi-

geostrophic (QG) model, a posteriori tuning can improve the performance,

stability and generalizability of the ML schemes.

4.3.2 Hybrid models and calibration

To enable a posteriori tuning, automatic differentiation (AD) must be sup-

ported in the model. Most contemporary GCMs are not differentiable, which
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makes the effective implementation of ML components a challenge. The ex-

ceptions include Neural GCM (Kochkov et al., 2024), differentiable QGmodels

(e.g., Frezat et al., 2022; Qu, Bhouri, and Gentine, 2024) and column schemes
3

3. See, for example, the tunax model

from the MEOM group at Grenoble

University.

.

The JAX backend (Bradbury et al., 2018) enables automatic differentiation in

Veros.

Shen et al. (2023) envision differentiable modeling as a unifying link between

machine learning and physics-based models. Differentiable modeling breaks

down the dynamical core of a numerical model into the resolved and sub-

grid scale dynamics, both of which involve parameterizations. Using AD

and emulation-based tuning, the two sets of parameters can be optimized

simultaneously to train the model. The results of Qu, Bhouri, and Gentine

(2024) show the success of the method in a QG study.

It should be noted that ML based schemes exacerbate the undesirable GCM

feature, which is the need for tuning (Balaji et al., 2022; Mauritsen et al.,

2012). While physics-based parameterizations often suffer from structural

deficiencies that limit their ability to capture the observed ocean features,

ML schemes may in turn be overfitted due to their much higher number of

tunable hyper-parameters.

Methods such as history matching Williamson et al. (2015) to quantify para-

metric uncertainty address the delicate matter of GCM tuning. Rather than

parameter optimization, the aim of history-matching is to identify largest

possible regions of the parameter space which produce acceptable repre-

sentation of the observed climate. In “The art and science of climate model
tuning”, the authors Hourdin et al. (2017) discuss the many pitfalls involved

in automated tuning, such as overfitting and compensating biases. They

argue for estimating both structural (via model ensembles) and parametric

(via parameter perturbations) uncertainty of GCMs.

4.3.3 Eddy Rich Models

In contrast toMLmethods, kilometer-scalemodeling could reduce the amount

of OGCM parameters. Mixing induced by shear instability in the ocean

will always require parameterizing due to the length scales at which tke

is dissipated. However, resolving mesoscale and even sub-mesoscale could

potentially result in direct simulation of ocean processes which modulate

stratification (geostrophic eddies) and induce mixing (e.g., NIWs). This could

eliminate the need of adding extra components that simulate the effect of

specific physical processes to the “basic” form of OGCM parameterizations.

Article I suggests that 10 km may not be a fine enough resolution to simulate

the NIW-induced mixing, but the progressive refining of models such as

ICON-Sapphire (Hohenegger et al., 2023) and IFS-FESOM (Rackow et al.,

2024) may alleviate this limitation in the future. An alternative path to
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resolving the small scales in OGCMs are nested models, where the resolution

is increased in critical regions of climate sensitivity (Hewitt et al., 2022).

Following best tuning and modeling practices, model ensembles and param-

eter uncertainty quantification of future OGCMs are required. This poses

a challenge to eddy rich models due to their computational cost and the

associated size of model output (e.g., 135TB of output per month for 2.5 km

grid spacing in ICON-Sapphire, Hohenegger et al., 2023). Tackling a problem

of this magnitude requires community effort. Such is the opinion of (Palmer,

2016), who in his essay “A personal perspective on modelling the climate system”
calls for international collaborative effort to develop global, fully coupled

kilometer-scale models, where enough resources are allocated for long term

ensemble studies.

It is safe to say that the prognosis for the future of turbulence closures for

ocean models is a significant increase in variety and further adaptation to the

needs of the individual modelers. The unifying aspect may be the ambition

for objective, transparent and careful tuning procedures.

4.3.4 A Final Note

I would like to bring up this quote from the essay “Geophysical fluid dynamics:
whence, whither and why?” by Vallis (2016), which has been ringing in my

head since the moment I read it a year ago:

“If we see a hurricane in the tropical mid-Atlantic, we know it will usually move
westward, and not because a simulation tells us that.”

The field of climate modeling is beaming with new creative and exciting

methods, which are still in early development stages. In this time, the value

of GFD should not be forgotten; it was the deep dive into the history of the

TKE scheme which facilitated the understanding and contextualization of

the optimization results in Article II. Relying on complex algorithms to do

the thinking for us is a waste of resources at best.
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