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Foreword

This thesis is a collection of work done as part my Ph.D. paogne at Copenhagen
University, Faculty of Science. The work has been done inpidr@od from fall 2005
to winter 2009, and covers in detail a generalized threesdsional description of the
interaction between an electromagnetic field and a reatistlection of atoms. The thesis
that | present here is split in four parts, where the first gares an overview of the
problems adressed in the thesis. The second part descrmeszkdy interacting collection
of photons and atoms, whereas the third part describesragbtrimteracting system. Part
Four of the thesis covers work done in collaboration with zrdcz and M. Fleischhauer
at University of Kaiserslautern, J. Taylor at Massachgdettitute of Technology and M.
D. Lukin at Harvard University. The work was done in Kaisatgkern in the fall of 2007. |
note that after | left Kaiserslautern the process continiiég work | present in Part Four
of this thesis is a preprint of a paper including more than wmtiebution. Specifically |
participated in the development of the theory leading ta Eb8.0.1- 16.2.7) of Part Four.
| would like to thank Professor Michael Fleischhauer forlmspitality and obligingness
during my stay in Kaiserslautern. Also and in particular | greatly thankfull to Ph.D.
Zoltan Kurucz, with whom | primarily worked. Finally | wislotthank my supervisor
Anders Sgrensen. In spite of oufférences | find our collaboration inspirering. It goes
without mention that | could not have derived these resuitisout him.

My Ph.D was prolonged by two months as my wife in January 2@¥e dpirth to our
first child. | only hope that eventually | shall be able to gback to my family, some of
the time | borrowed for finishing this thesis.

The work presented in Part Two is published in Ref. [1], pedtibns concerning Part
Three and Four are in preparation. In the following | presehtief abstract for the bulk
of the thesis, Part Two, Three, and Four.



Part Two

We present a full guantum mechanical three dimensionatytasscribing an electromag-
netic field interacting with an ensemble of identical atoiftse theory is constructed such
that it describes recent experiments on light-matter quranhterfaces, where the quan-
tum fluctuations of light are mapped onto the atoms and batklmyint. We show that the
interaction of the light with the atoms may be separatedanteean &ect of the ensemble
and a deviation from the mean. The medieet of the interactionféectively gives rise to
an index of refraction of the gas. We formally change to askdstate picture, where the
light modes are solutions to thefiitaction problem, and develop a perturbative expansion
in the fluctuations. The fluctuations are due to quantum fatains as well as the random
positions of the atoms. In this perturbative expansion vesvgiow the quantum fluctua-
tions are mapped between atoms and light while the randoitiggosg of the atoms give
rise to decay due to spontaneous emission. Furthermoreanéfidlimits, where the full
three dimensional theory reduce to the one dimensionatyhgpically used to describe
the interaction.

Part Three

We present a three-dimensional theory of Stimulated Ramatie3ing (SRS) or superra-
diance. In particular we address how the spatial and terhpoyperties of the generated
SRS beam, or Stokes beam, of radiation depends on the spaifrties of the gain

medium. Maxwell equations for the Stokes field operators @nithe atomic operators
are solved analytically and a correlation function for thek8s field is derived. In the

analysis we identify a superradiating part of the Stokegatamh that exhibits beam char-
acteristics. We show how the intensity in this beam buildsnuggme and at some point
largely dominates the total Stokes radiation of the gainiomadWe show how the super-
radiance depends on geometric factors such as Fresnel namibgain properties such
as optical depth, and that in fact these geometry factortharenly factors describing the
coherent radiation.

Part Four

We present a mechanism to protect quantum informationgtor@n ensemble of nuclear
spins in a semiconductor quantum dot. When the dot is chatgeduclear magnetic
moments interact with the spin of the excess electron thralig hyperfine coupling. If

this coupling is madef&-resonant it leads to an energy gap between the collectvags

Vi



states and all other states. We analyze the collective xgitagéions and show that the
energy gap protects the quantum memory from local spin-flip spin-dephasing noise.
The protection decreases with increasing spatial coroel&ngth of the noise. fEects of

non-perfect initial spin polarization and inhomogeneoysdtfine coupling are discussed.

Vil






Dansk resung

Denne afhandling harer under feltet kvanteoptik inden fcptinen teoretisk fysik. Afhan-
dlingen er delt i tre dele foruden en introduktion og en kaoslidn. Disse tre dele bestar af
en tre-dimensionel beskrivelse af lys, der vekselvirkagsmed atomer, en tre-dimensionel
teori for en steerkere vekselvirkning mellem lys og atomeald&t superradians, og til sidst
en beskrivelse af dynamikken i et system bestande af enretekyy en samling atom-
kerner i en kvante-prik. | det fglgende giver vi en mere getat beskrivelse af de enkelte
dele.

| Del to udleder vi en fuldsteendig, tre-dimensionel beskge af vekselvirkningen
mellem et elektromagnetisk felt og en samling identisken&tio Teorien er konstrueret
med henblik pa at beskrive eksperimenter udfart for nylickeemte-greensefladen mellem
lys og atomer, hvor kvante-ungjagtigheder fra lyset pitajels pa atomerne og bagefter
tilbage pa lyset. Vi viser, at vekselvirkningen mellem lygatomer kan deles i en mid-
delefekt og i en afvigelse fra middefekten. Vi viser ogsa at denne middéékt blot
leder til et brydnings-index for den atomare gas. Vi skiffernaest til en beskrivelse
hvori middeldfekten af vekselvirkningen er inkorporeret i lysets dynanaigg laver en
formel perturbations regning i afvigelsen fra middég&ten. Bade de kvantemekaniske
ungjagtigheder samt ungjagtigheder fra den tilfeeldigemefige fordeling af atomerne er
indeholdt i beskrivelsen af afvigelserne fra middediten. | denne perturbative beskriv-
else viser vi, hvordan kvante-ungjagtigheder projektereslem lys og atomer, samt at
den tilfeeldige rumlige fordeling af atomer leder til et haldf at felt- og atomare exita-
tioner. Til sidst identificerer vi de graenser, hvor den tieehsionelle teori reduceres til
den en-dimensionelle teori, der typisk bliver brugt til askrive denne type vekselvirkn-
ing mellem lys og atomer.

| Del tre udleder vi en tre-dimensionel teori om “Stimulaiaiman Scattering” (SRS).
Vi er specielt interesserede i de rumlige og tidslige egebskved den i vekselvirkningen



genererede SRS strale eller “Stokes” strale, og hvordams&gberne afhaenger af dimen-
sionerne af de atomer, der danner stralen. Vi udleder Maigainger for Stokes-feltet
og tilsvarende ligninger for atomerne. Disse ligningevdiilgst analytisk, og der bliver
udledt en korrelations-funktion for Stokes-feltet. Vi mdiicerer den del af Stokes-feltet,
der giver anledning til en strale, og viser hvorledes inteten i stralen tager til over
tid og endeligt bliver den dominerend#ekt. Vi viser, hvordan stralen afhaenger af ge-
ometriske egenskaber ved samlingen af atomer, sdsom Fresneer og optisk dybde,
og at netop disse geometriske faktorer er de eneste, dekpatden genererede strale.

| Del fire praesenterer vi en mekanisme, der kan beskytte &rdgntmation gemtien
samling kernespin i en halvleder eller kvante-prik. Narrkeaprikken er ladet op med en
elektron, vil kernernes magnetiske moment vekselvirke elektronens spin via den hy-
perfine kobling. Nar denne kobling gares ikke-resonant nexddspin-overgange farer
det til et energi-gab mellem den kollektive hukommelsesand og alle andre kollek-
tive tilstande. Vi analyserer den kolletive spin tilstarglwaser at energi-gabet beskytter
hukommelsen mod individuelle “spin-flips” og “spin-dephnas st@j. Beskyttelsen af-
tager nar den rumlige korrelations leengde af stgjen tittdgfgekten af en samling atomer,
der til at begynde med ikke er perfekt polariserede, sdfekten af en ikke-homogen hy-
perfin kobling, bliver ligeledes analyseret.
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Chapter 1

Introducing quantum optics with
atomic ensembles

Entering the field of quantum optics, one quickly learns theg the importance of the
wave particle duality of light can not be overstated. An ainaverwhelming amount
of effects in nature involving the electromagnetic field are @rplh and explored within
the framework of wave theories in the Maxwell equations. sTihcludes grand scale
phenomena such as the rainbow, radio signals transmittee tther end of the universe,
but also small scale electrical circuits printed on a siliptate in a computer processor.
At the other end of our intuition, where the particle behawiight is found, we are able
to explain éfects such as spontaneous radiative decay of an atom, antidteefectric
effect. Itis at the border of classical electrodynamics thangum optics is found. Should
one have a desire to work in the field of quantum optics, it exdfore of paramount
importance to understand a description of the electrontagfield that encompass both
the particle and the wave behavior. Statistics on quantutiephows that the bulk of
the research has to do with the interaction between eleeosgtic radiation and atom-
like systems. This thesis is no exception, as some of the amatring quantum features
of light is found in the interface between radiation and atoaxcitation. In this thesis
we will show examples of how to derive a description of lighitable for treating both
particle and waveféects. We will examine light-atom interactions, where thenwscopic
guantum €ects is still visible even though the system is scaled tolirevthousands of
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Figure 1.1: A single atom interacting with a single photon.

atoms and photons. The methods for dealing with these atahphaton interaction
problems are many and varied, but often falls under the twio preblems. The problem
of interaction strength, and the dimensionality and sgaproblem. In this thesis we
will however not discuss the exciting problems of imposingra boundary conditions
to the electromagnetic field, such as including an opticakfila photonic crystal, or a
nano-wire. Below we shall discuss the two main problemsweaare examining in this
thesis.

1.1 The interaction strength problem

We will discuss and examine the interaction strength prolidg using simple drawings.
Let us imagine that the degrees of freedom of an atom can leeilded by the index.
That will include the momentum of the atom, the internal ggestate and other infor-
mation we could ascribe to a set of commuting operators. I&ilyiwe imagine that the
degrees of freedom for the photon is described by an ipdel the picture, Fig. 1.1,
we draw the evolution of the atom as a straight line and théuéweno of the photon as a
wiggly line. The picture is understood in the following wad.photon described by the
indexp meets an atom described by the indexThey interact, and after the interaction
the atom is no longer described by the indtebut with the index<’. Similarly the photon
is now described by the indgX. During the interaction the state of the atom and the
photon changed. Perhaps the energy of the photon changethemternal state of the
atom changed. This will of course depend on the details ointteeaction.

We readily complicate the picture when allowing the photomieet the same atom
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over and over again, like in an optical cavity. In Fig. 1.2 waé made an illustration
of the case where the photon and the atom interact five times.nimber of times they
interacts is chosen with some arbitrariness, we really aantell if they interact one,

five, or say, one hundred times. This is the essence of theaatten strength problem.
Depending on this interaction strength, one will eitheatréhe interaction as a pertur-

Figure 1.2: Interactions in a cavity

bation to the time-evolution of the system, or as a souroerdyithe time-evolution. In

the case of a photon and an atom in a cavity one will typicatlyeet the latter. Since
such a system driven by the interaction is of fundamentairést in the quantum op-
tics field we will continue the analysis a little further. Le$ say that the problem of
an atom in a cavity is described by the situation that eitherghoton and the atom do
not interact, they interact one time, they interact two siniree times and so on, we

can make a drawing that represents this situati +}% m W

The drawing can be split, so that we start treating the drguasha mathematical object

S }{ o e et € W i

: 1, and what we see is that the complicated problem of
[
. . . . . - }{ 1- (\} ﬁ
an atom in a cavity can be summarized in a geometricals . _ NS :
Often however the problem is to find the proper mathematieatdption of such draw-
ings, because what seems intuitively clear on drawing mightain mathematical pit
holes.

Let us move to the class of systems that are the subject ahigss. Namely systems
that include many atoms and many photons. Before we dig imtolarge variety of
diagrams describing the possible interaction events hmapgen such a system, we first
look at two relatively simple situations. The first situatidescribes a photon traveling
through the ensemble of atoms, and on its way it interacts svibt of diferent atoms.
We will assume that during this passage the photon neveatttewith an atom that have
any prior history involving an interaction with a photon. Fig. 1.3 we show such an
interaction sequence. The symmetry and relative simplmitsuch kinds of diagrams
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"

Figure 1.3: A diagram describing the propagation of a phtttoough an atomic gas. The diagram belongs
to a class of diagrams that can be reduced to an index of tigfinac

k/

Figure 1.4: A diagram describing the propagation of an atmough an electromagnetic field. This type
of diagram belongs to a class of diagrams that reduce to & §tét of the internal energy levels of the
atom.

enable us to treat them the same way as with the atom in a caMity dfect of such
interactions is to add to the propagation of the photon aexrud refraction.

Similarly such a situation exists from the atoms point ofwiehere an atom is being
hit by a number of dterent photons. This situation is described in Fig. 1.4. édimple
case where the photons are identical, and have not intdradtie atoms before, the type
of drawings presented above can similarly be summed to septea Stark shift of the
dipole-energy of the atom.

The work presented in this thesis is in the many photon maom aegime, where
we understand the Stark shift, and the index of refractiohe physics we focus on is
described in the remaining diagrams. As an example we ingagiratom first interacting
with a photon and then later with another photon. This phdkam interact with two
different atoms. | all we have an interaction process involvivmdifferent photons and
three diferent atoms. This situation can be represented in a drawtigas Fig. 1.5. The
vast number of such interaction sequences is what we willtisalinteraction strength
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K

Figure 1.5: A complicated sequence of interactions invaj\tivo photons and three atoms.

problem, since sorting out and choosing the relevant interasequences is much related
to the interaction strength between photons and atoms.proidem is typically split in
two cases. The weak interaction problem, and the strongaictien problem. In the weak
interaction problem we will in principle consider all kind$ interaction sequences, but
introduce a maximal number of interactions that sfileets the evolution of the system.
This way we only get a finite set of interaction sequencesagrdims, and can in principle
analyze all of them. In Part Two of the thesis we demonstiaite dapproach, by way
of analyzing the dynamics of a system that is too complicabesiolve exactly, but is
suficiently described by a relatively small number of interactsequences.

In Part Three of the thesis we will turn to the strong intamactproblem. In this
regime there is an interaction that we can not treat in amedntperturbative way. By
this we mean that the interaction is so strong that there isapwe can make a cut
in the number of interactions and claim that these remaidiagrams contain all the
information that is relevant for the dynamics of the systéve.could for example imagine
that the situation where a photon interacts with an atom hed kater with another atom
is so probable, that with this interaction sequence all atefectively interacts with each
other all the time. To find the dynamics of one atom , therefecgiires solving the two-
particle interaction problem exactly. In Fig. 1.6 we illkege the meaning of thidtective
two-particle interaction. An example on such a problem & shperradiance problem
which is the topic of Part Three. Solving such a strong irttioa problem is often quite
complicated, but the formal solution is in principle foumdtihe same way as we did with
the atom in a cavity. Let us now turn a little away from the peab involving only the
interactions and look a little on the environment in which thteraction takes place.
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K

Figure 1.6: A diagram showing afffective two-particle interaction between atoms, involving emission
and absorption of a photon.

1.2 The dimensionality and scaling problem

When we discuss the environment we refer to the situatiarttiesatoms are distributed
in a finite region of space. The problems that such a disichutf atoms lead to, we
will refer to as the dimensionality and scaling problem.Histdiscussion we will have to
be more specific concerning the interaction between thécfeatsince such a discussion
eventually have to compare the length scale of the envirohmih the length scale of
the interaction. Say that the interaction is very short earggg. in a collision. We then
assume that all the atoms are homogeneously distributedox af dimensions much
larger than the range of the interactions, and thus we cdnhigh accuracy say that the
overall dynamics of the system is ndtexted by the finite size of the container. In this
case the particles interacts only with their nearest neightand thus the majority of them
will have the same amount of nearest neighbors and the sanaenigal environment.

Let us consider an interaction that does not exhibit thislldehavior. We could
as an example take the two-particle interaction describdeig. 1.6. In principle this
interaction has an infinite range in the sense that the phajteninteracting with the first
atom can travel to the end of the universe before it meetdhanatom and interact. For
this type of interaction one can imagine that having a findedensemble of atoms, does
effect the overall dynamics of the system. To discuss this proble will consider a
system where the atoms are described by some opédi@dor The operator can tell us
about the internal state of an atom at positionThis information is changed when the
atom interacts with a photon. We will assume that the intergghoton originated from
another atom, and that the state of the photon depends onatieeos the atom it was
emitted from. We might therefore find that the change of tla¢esbf an atom can be
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described by

d
G0 =D PO By (). (1.2.1)

j/

The functionP is a Green'’s function that describes the propagation of agphimaveling
fromrj tor;. The quantity3 describes the coupling strength between a photon an atom.
To discover some of theflects of a finite sized ensemble of atoms we will use the fact
that we have no knowledge about the position of the atomshByite mean that though
the atoms are in principle localized in space, we do not kntwre, so if we talk about
the outcome of some physical measurement, we will have ¢e tat the position of the
atoms. This we will refer to by taking a spatial average. 16.SB.2 we discuss and
develop such spatial average. In this way we get a continfilnuion describing the
density of atoms. The natural continuous formulation ofgreblem is

dﬂtb(r,t) = f &’ (PO, 1) /p(r)b(r’) (1.2.2)

where the functiom(r) is the atomic density at positian The two limits that we will
consider here is first the limit where the atomic ensemblefisitely big, and second the
limit where the atomic ensemble is infinitely small. In thetficase we will use the fact
that the density is constant. and in the second case thaetisitylis resembling a delta
function. The propagatd®*) has a nice description in Fourier space, see e.g. Chap. 5,

kzeik-(r—r/)
P(r,r’) o fd3kk2—_k5, (1.2.3)
where we assume that there is some wave nuiklascribing the energy scale on which
these interaction processes takes place. It is thereforeeogent to make a Fourier trans-
formation of the Eq. (1.2.2). In the fist case of a infinitelg Btomic ensemble we arrive
at a diferential equation stating

k2
k2 — K2

d .
d_tb(k’t) =ip b(k, t). (1.2.4)
From here we see that in the case of an infinitely sized atomserable, the Fourier
components of the operators describing the atoms are diecbinpm each other. We see
a resonance behavior of the Fourier components that aresonaece with the energy
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scale on which the interactions takes pl&ceThe nice thing about infinitely size atomic
ensembles is then that the dynamics of the atomic operaterdexoupled in Fourier

space. One can therefore choose to look at some specifieFoamponent which makes
dimensionality reduction very easy.

In the opposite limit where the sample is infinitely smalle foropagator will now
only describe a photon traveling an infinitely short dis@nchis type of propagator is
the subject of Chap. 6. There we show that the propagatoeisithple case reduces to a
decay ratd". The atomic operator equation is in this case best deschiped

dﬂtb(k,t) =T f d®k'b(k’, t). (1.2.5)

Now we find that the Fourier components of the atomic opesatotlectively decays,
and the natural way to continue is to define the collectiveatpe as being just the sum
of all the Fourier components. This collective operatorayscin the same way a sin-
gle atom operator would. The two results are quitéedent, in the first case, where we
have no localization of the atoms in position-space, we laaperfect localized behav-
ior in momentum-space. Where in the other case we have péofsdized behavior of
the atoms in position space, we find that they are completlpchlized in momentum
space. For atomic ensembles in the real world we can neWy beain any one of the
two situations, and discovering the behavior of such a ngstesn is what we refer to as
the dimensionality or scaling problem. The reason for igllt a scaling problem is that
we would like to know, how fast we go from one limit to the otlasrwe wary the geom-
etry of or system. We also wish to know how the general dynamiour system scale
with the geometry of the system. Both in Part Two and in Pareé&tof the thesis, this
scaling problem is a main concern, which is also the reasocaiting the research topic
under which this thesis falls, three-dimensional thedoesight matter interactions. The
general approach we shall use in dealing with this probletm $ay that the system is big
compared to the wave numberbut otherwise finite.

1.3 Overview of the thesis

The thesis is divided into three research Parts, Two, Tlamee Four. In Part Two we de-
velop a three-dimensional theory for light-matter intéi@ts, where we focus on a weak
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interaction, and present the dynamics of the system as arpation series. The work
presented in Part Two is organized as follows: In Chap. 3 we thie details of the model
used to describe the interaction. In Chap. 4 we derive a segwhtions of motion de-
scribing the system of atoms and light, using Heisenbeymeon of motion. The wave
equation describing the light is expressed in a form thallgesuits a perturbative treat-
ment. In Chap. 5 we express the general solution to the wasieq in terms of Green’s
functions and derive the perturbative expansion of thetmwiuo the wave equations as
well as the equation describing the atoms. This is repredantterms of Feynman dia-
grams. In addition we develop the appropriate theoretam@btto describe point particle
effects such as density correlations, and derive a formal sgjane for the Green'’s func-
tion. In Chap. 6 we present our results where we discuss higtaer éfects such as
spin decay and light scattering. We define operators thatitbesphoton-measurements,
and demonstrate how these are calculated in the theory. dp.Chwe discuss various
limits where the general three dimensional theory redutledasually employed one di-
mensional model [2]. We also describe how a detailed uraedstg of the spatial modes
can be used to achieve storage and retrieval of informatigeveral transverse modes of
light and atoms simultaneously. In Chap. 8 we conclude thdxyamd in Appendix A we
give several details omitted from the main text.

In Part Three we look at a system of strongly interacting at@md photons. This
system can not be expressed correctly as a finite perturbaéines, and we therefore
turn to an eigenvalue description of the dynamics of theesgsiThe analysis begins with
the basic set of equations describing the interaction &t Mgth atoms. The atoms are
treated as non-moving point particles and the radiatioddielre considered in the so-
called length gauge with operators suited to a macroscascrgption. See Chap. 3 for a
discussion of this choice. We will then in Chap. 10 deriffeeive equations of motion
for both the radiation field and the atoms. These equatiandiagctly comparable to the
equations used in Ref. [3]. Having established the equaittdmotion we will in Chap.
11 change from the point particle picture to a continuousdgason. This again follows
methods described in Sec. 5.2. In Chap. 12 we make a formgigization of the ma-
trix describing the interaction between atoms mediatedbylight. This diagonalization
means that we have to find a basis that will simplify the irtgoa. In Chap. 13 we will
look at the radiated field and see how this is evolving as thsatare interacting. Finally
in Chap. 14 we look at the intensity of the radiated field aresent the final results. We
shall in addition to the analytical results make a comparisdh numerical calculations
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for the superradiance starting with the point particle ¢éigna of motion derived in Chap.
4. In Chap. 15 we conclude the work. Calculations omittednftbe text is found in
Appendix B.

In Part Four we look at a system consisting of a single elactaind a collection of nu-
clear spins confined in a quantum dot. The electron spin iplediuto the nuclear spin by
the Fermi contact interaction Hamiltonian. The spin state@electron is via the interac-
tion Hamiltonian mapped onto the collection of nuclear spue first derive a description
of the collective nuclear spin states. These states inthelstate of the collective nuclear
spin after a successful mapping of the electron state vimteeaction Hamiltonian. We
then look at mechanisms responsible for destroying thedtelectronic spin state in the
collective nuclear spin system. First we look at tifieet of an inhomogeneous distribu-
tion of nuclear spin in the quantum dot. Then we look at tffieat of coupling the nuclear
spins to a noisy classical magnetic field. After that we lobtha dfect of nuclear spin
diffusion due to dipole-dipole interactions between nuclearssg=inally we look at the
problem of mapping the electron spin to non-perfect podatiauclear spin.

Finally in Part Five we summarize the main results preseintéte thesis.
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Chapter 2

Introduction

For several applications in quantum information scienaehsas long distance quantum
communication [4], itis essential to create an interfackilig the photonic states used for
transmitting quantum information to a material state fédor storing and processing
the information. The generation of the required strong oeitecoupling of light to a
single emitter has provenfticult to achieve in practise, although substantial prognass
been made [5-9]. In recent years optically dense atomicnelnles has emerged as a
promising alternative [2, 10—24]. In this approach one @arnrfstance use classical laser
pulses to engineer a suitable interaction such that an imgptight field is reversibly
stored into the coherence between, e.g., two stable graatessn the atoms [11].

Some experiments on atomic ensembles uses atoms that dmsezhmside a cav-
ity to enhance the coupling [20]. In this situation the cawdefines a unique mode of
the light field and the theoretical description consistsegatibing a single optical mode
coupled to the atomic ensembles. Most experiments are,\esyeerformed with atoms
in free space not enclosed in a cavity, and in this situatientheoretical description is
more complicated. Typically this situation is describe@ione dimensional approxima-
tion, where one only considers a single transverse mode @adssa one dimensional
propagation equation for this mode [2, 14, 15].

In this paper we explore the range of validity of the one-disienal approximation

15
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by making a full three dimensional description of the intéian between light and an
atomic ensemble. Our calculations directly apply to an grpental situations similar
to the ones described in Refs. [10-13], where the light isited far from the atomic
transition, but we expect the general features of our resnilbe valid for a much broader
class of problems.

Some justification for the one-dimensional description rbayfound in the litera-
ture on superflouressence, e.g. Refs. [3, 25, 26]. In thisegoit was found that the
one-dimensional description is valid provided that theskRet number is of order unity
¥ = A/AL ~ 1, whereA is the transverse beam areais the wavelength of the light,
andL is the length of the ensemble. Based on this work it has beguredrthat it is
also necessary to have a Fresnel number of order unity im éodéhe one-dimensional
approximation to be applicable to the quantum interfaceéwéen light and atomic en-
sembles [2,14,15]. Itis, however, essential to realizétti@mphysical situations are very
different in the two cases. The work on superflouressence tiypamaicerns the temporal
distribution of the output light measured by impinging theégwing light on a photode-
tector. Because the photodetector just measures the ingditak I, this is essentially a
multi-mode measurement

| o Z al A, (2.0.1)

where the the sum is over all modaditting the detector, and each of these modes are de-
scribed by the photon creation (annihilation) operagdrédy,). In particular the sum here
includes all transverse modes. This is in contrast to thetyua interface work, where
one s interested in the outgoing state of a single light medg, in Refs. [L0-13] the mea-
surement is essentially a homodyne measurement of a sirggle,rdefined by the field of
the strong classical laser. In other experiments the onggiajht is sent through a single
mode optical fiber, which filters out everything except a Erigansverse mode. Further-
more the superflouressence work applies to a nonperteelstiration with a large optical
gain, whereas the quantum interfaces typically operatdseifew excitation regime. The
previous analysis is thus not applicable to the preserdtsitio and it is therefore not to
be expected that the conditioh ~ 1 is the right condition for the validity of the one-
dimensional approximation. In fact, the experiments insSREf0—12] are performed with
F ~ 10%, and still give very good agreement with the one-dimendidascription. Here
we make a full three dimensional description of the expenitmén Refs. [10-12], and
we find that it reduces to the one-dimensional descripticiménparaxial approximation
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provided thatF > 1.

In a related work a three dimensional description was alesegted in Ref. [27].
Whereas our procedure assumes non-moving atoms, i.e.ataias, that work consid-
ered the opposite limit, where the motion of the atoms washioyspatial structure of the
atomic spin state. Unlike the situation in Ref. [27], whédre motion of the atoms always
lead to certain inficiencies, the fact that we consider stationary atoms, alleswto iden-
tify certain limits, where we exactly reproduce the simmsuit of the one dimensional
theory as discussed in Chap. 7.2.

Our theory is developed as a perturbative expansion of tieeaiction between light
and the atomic ensembles. It is, however, essential to lyecaeeful about the way this
perturbative expansion is performed. Below we shall presssults up to second order
in the interaction between the light and the atoms. We slsallan &ective Hamiltonian,
where the excited atomic state has been eliminated, i.eanailtbnian of the form

H 30 Gt Ui ()&, &, (2.0.2)
kk? i

wheregy  is a coupling constant for the two modesandk’ described by photon creation

(annihilation) operatoraf(ék) with mode functionslyy, andr; is the position of theth

atom. If we take the mode functions to be simple plane wavéls an input field in a

certain modek and calculate the intensity in a certain direction descringk,, we find

the intensity
Z eiAk-ri

2

= ) ), (2.0.3)

I,

| o«

whereAk = k; —kg. The standard way to proceed from here is to say that the exyiaih
varies rapidly when # j and therefore neglect all terms except j so that one is left
with something proportional to the number of atoNys which is known as spontaneous
emission. For the problem we are interested in here, we aveg\rer, mainly concerned
with the properties of the light in the forward direction, @b Ak ~ 0. In this case it
seems unjustified to neglect the cross terms which giveaiseltective scattering scaling
asN2. SinceN is typically a very big number, the presence of such Igeontributions
may limit the applicability of perturbation theory.

In order to avoid the problems associated with this colMectcattering, we use a
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different basis for our perturbative expansion: instead ofistafrom the eigenmodes
of the propagation equation in vacuum, we use the solutionké classical diraction
problem in the presence of the medium, i.e., we take intowatcthat the atoms give
rise to an index of refraction of the gas, which changes tlopagation of the light.
Specifically, we write the Hamiltonian as

H = (H)aoms+ oH, (2.0.4)

where(H)aomsiS the quantum mechanical expectation value of the Hamdtowith re-
spect to the atomic spin state averaged over the randomqussinf the atoms. This
averaged Hamiltonian gives rise a continuous quadratic iltaman in the light field
operators similar to a Hamiltonian describing the inteoactvith a dielectric medium.
When we formally change to the interaction picture with exgo this averaged Hamil-
tonian, we obtain a new set of basis modes. Doing pertundtieory on these modes,
the only dfect on the light comes from the quantum mechanical fluctnatamd the fluc-
tuations caused by the random position of the atoms. Theswidlions are described
by the HamiltoniarvH = H — (H)aoms When we average the first order term in the
perturbative expansion with respect to the position of tieena the resultant expression
describe that the quantum fluctuations of the atoms are ndapme the light in analogy
with the results derived in a one-dimensional theory in [Rf.

If we go to second order in the interaction, our expressidhgiie terms quadratic
in 6H. In order to take the spatial average of such terms we needdw khe density
correlation function of the atoms. Inserting the densitgreation function for an ideal
gas we no longer find the collective scattering terms desdrébove, i.e., the collective
scattering is essentially the classicdfdiction of the light, which is explicitly taken into
account by our average Hamiltonian, and therefore it doeam@ear in our perturbation
theory. The spatial average of the second order term does&ven, produce a new term
associated with the point particle nature of the atoms aait tandom positions. This
term is equivalent to the results obtained by just keepirg th j terms in Eq. (2.0.3),
and represents théfect of spontaneous emission.

Unlike most approaches to the interaction between atom&girtigdwhich derive cou-
pled equations for the atomic states and the electric field,approach considers the
electric displacement fielD instead of the electric field. The reason we chose to use the
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displacement field is that it is convenient to work with a pyiteansverse field, which is
the case for the displacement field due to the macroscopisvélberquationV - D = 0,
whereas this is not necessarily the case for the electrit ifteh medium. Formally the
two approaches are equivalent and may be related througiteayutnansformation [28].

The full theory is quite involved. Readers who are mainlerasted in the conse-
guences of our theory for experimental implementationgteeefore advised to skip to
Chap. 7, where we discuss such consequences. The secimri® pinis mainly focus on
building the theoretical frame using a first-principlesastgy.






Chapter 3

Model

The model we consider describes the interaction betweemsen#le of atoms and an
incoming light field. The atomic ensemble is considered t@ibedeal gas of identical
atoms. The atoms are described as non-moving randomlybditetd point particles and
the interaction with the light field is described within thgpale-approximation. Each
atom is assumed to have a ground level of total $pirin addition we assume that the
atoms have no other stable ground states to which they caay.d&ee Fig. 3.1. We
shall assume that the electric fields aréisiently far-detuned that we may adiabatically
eliminate the exited states, and work with dfeetive Hamiltonian involving only the
ground states. In the following we first discuss the inteéoachetween light and a single
atom, and then move on to discuss the interaction with amelpigeof atoms.

3.1 Interaction with single atoms

The aim of this work is to describe the interaction betweealaotromagnetic field and an
ensemble of identical atoms. The problem is therefore lmtleal with the microscopic
behaviour of a single atom, and also the collectiffea of many atoms. We choose here
to work in the so called length gauge, where the basic intieracs given as the product

21
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[F"m >

[Em+1 > IFPm > [FPm-1>

Do

[F,m+1> [F.m > | Fm-1

Figure 3.1: Example of an atomic level structure. The atoavela single ground level with spin F and
one or more exited levels. The fields have a large detuhisg that the exited states may be adiabatically
eliminated and we obtain arffective ground state Hamiltonian Eq. (3.1.3).

of the displaced electric field and the polarization of theliag28] .

Atoms
1

Hiy = — Z E—OD(r,-,t)-P(rj,t). (3.1.1)

J

Our gauge choice ensur®sD(r, t) = 0. We will assume that the fields have a large detun-
ing and do not saturate the atomic transition, so that the@ievels may be adiabatically
eliminated. This procedure is described in Appendix A.le pblarization of the atomic
ensemble then depends linearly on the displaced electidg it isP(r, t) = \7[3]D(r, t).

We introduce here the argumehto indicate that the interaction matr‘i7{f]] depends on
the spin of the atoms. Next we write the displaced electrld f#&s a sum of a positively
oscillating part and a negatively oscillating part,

D(r,t) = DU(r,t) + DO(r, 1). (3.1.2)

In Appendix A.1 we show that thetective interaction Hamiltonian, assuming such linear

*We have here a formally divergent term, the dipole self-gnedne can, however, show that this term
has no éect on the dynamics of the system.
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dependence of the polarization on the displaced electid; fieads

Atoms
1

=30, . (01 0707
J
+D - |V[3; DY), (3.1.3)

where we have also employed the rotating wave approximatitere the superscrifit
denotes matrix transposition.

Since the Hamiltonian must be rotationally invariant it @ardy contain irreducible
tensors of at most rank two. In the vector representationirttezaction may thus in
general be written as

= A

V[3j] = B(co I —icy Jj x +62 x Jj) - (J; x). (3.1.4)

The meaning of the notation is that when inserted into the iHanman the result of, e.g.,
the last term of the right hand side of Eq. (3.1.4) is

Atoms

peo Y. (OO, ) x3p) - G x DO(r 1)), (3.1.5)
j

Note that we have here chosen a description which has a sanplgtical representation,
but this means the, term is not a pure rank two irreducible tensor, but consisa of
combination of tensors of rank zero, one and two. In matnrfthe interaction may be
written:

(Co— )P +032  icyd+cdydx  —icdy + e,y
VI =8| —icid + 3y (- +cl2  icdi+ el | (3.1.6)

In general the atoms may have several exited levels as shotig.i 3.1. The fect of
several exited levels can be included in theffiontsc,, ¢; andc, that will then depend
on the detuning. For atoms with= % or for an alkali atom, where the fields are detuned
by more than the hyperfine structure of the exited statecthierm disappears [29] and
the interaction matrix is given by

— A

V[3]] = B(co I —icy Jj x). (3.1.7)
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Herecy andc, are constants which depend on the atomic structure as wbkaketuning.
The coupling constartin Eq. (3.1.7) is given by

Ty
B= ka’ (3.1.8)
wherey is the linewidth of the exited levely the detuning of the laser field with respect
to the atomic transition, ankl is the wave vector. With this choice gfthe codficients
Co, C; andc, will be of order unity or less. Throughout this paper we sbally consider
the simple interaction in (3.1.7). A discussion of theet of thec, term is given in
Refs. [23, 24] in a one dimensional description.

We will consider a perturbative regime, where the producthef atomic density
andpg is smallBp <« 1, and make a perturbative expansiorgin Note, however, that
this condition does not imply that the totaffect of the interaction is small. On the
contrary, we are most interested in situations, where tiegrated &ect of the interaction
significantly alters the light beam as it passes through @ingpée. To take into account
these collective féects we explicitly include, e.qg., thefthiaction of the light caused by
the propagation through a medium. To describe thé&gsets we discuss in the following
section how to quantize the field in a medium.

3.2 Mode expansion

To quantize the electromagnetic fields we could: i) impogedinonical commutation

relations on the vector potential and displaced electrid.fi©r ii) expand the electro-

magnetic fields on an orthonormal set of spatial mode-fonsfify} conveniently chosen

to diagonalize the Hamiltonian (in vacuum this is the setlahp waves), and then quan-
tizing the mode-amplitudes. Here we will use the latter. Haaniltonian describing the

electromagnetic field in a medium is given by [28]

H = f or | (VXA)Z} Hi, (3.2.1)

whereH is given in equation (3.1.3). A careful analysis of how to wfiie the electro-
magnetic field in a medium, is given in Ref. [30], and here wallsinly go through the
steps briefly.
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By introducing the spin field

Atoms

ir,t) = Z Jio(r — 1)), (3.2.2)
j

the Hamiltonian may be put in an all-integral form. The malea in our approach is
to divide the full Hamiltonian into a spatially averaged tpand a point particle part,
describing the fluctuations from the average caused by timesatbeing point particles. For
now we only consider the spatially averaged part of the theéde will use calligraphic
font to denote that we have made a spatial average. We thtestivei spatially averaged
interaction from equation (3.1.7) as

VI3 = Bo(r)(co 32 — iy I(r) x ). (3.2.3)

Here a bar denotes a single-atom operator, thHtisis the spin operator of a single atom
at positionr. We use the bar to distinguish between the spatially averagele-atom
spin operator, and the general spin field in equation (3.ZL8g two may be related by
<f](r,t)>&a = p(rﬁ(r,t), where(-)so denotes spatial average. The functign) denotes
the average atomic density, which in this model is a contiswsxalar field.

In the following we will define a mean Hamiltonian, where weéégaken into account
the quantum mechanical average of the spatially averadgerchation. We then write the
Hamiltonian as a sum of the average Hamiltonian and a poiticgaHamiltonian

H =Ho + Hyp, (3.2.4)
where
D) + MDE 2
Ho :}fd?*r{D(MD + MD™) N (V xA) } (3.2.5)
2 € Ho
Hop = — - f ¢*r D - (3] DO + (3] D), (3.2.6)
260

M=T-V[J], (3.2.7)
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and
m(3] = V[3] - V[J]. (3.2.8)

Here we simply write (without the hat) to denote that this is now a classical fiedd d
scribing the classical expectation of the spin of the atoimsnalogy with Ref. [30] we
introduce the mode function§} defined by:

_ 2
V X V x Mb(r) :%fk(r), (3.2.9a)

V - fi(r) =0. (3.2.9b)

We also define the appropriate inner product on the spacaegdry these mode func-
tions:

(SO = f Pro(r) - Map(r). (3.2.10)

We will assume that the average interaction teﬁ{n]] does not evolve in time, and our
appropriate mode-functions are therefore time independstor fields. One can show
that the functions, span a complete orthonormal basis for the space in which wk.wo
To diagonalize the Hamiltonian we expand the vector paaéatid the displaced electric
field in these mode functions

D(r.1) == > Ve P(®)fi(r) (3.2.11a)
k
A(r, 1) :Zc\/,LTo QG ()(L = V[I]) fie(r). (3.2.11b)

k

The minus sign in Eq. (3.2.11a) is conventional and stems fitee relation between
the displaced electric field and the canonical conjugatd gelen in terms of the vector
potential.

The reality condition on the displaced electric fi{aICD(r, )" = D(r,1) ] allows us to
write

D(r.t)=- )" g (PLOR(r) + Pe(OF(r)). (3.2.12)

k
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Using the results in Egs. (3.2.9) and (3.2.10) and the expams equation (3.2.11), the
Hamiltonian attains the desired diagonal form

1 D(L-V[I)D (V x A)?
Ho :Efdg'r{ €0 * Ho }

=2 " {PLOP) + w0, (0a(0), (3.2.13)
k

The mode functiongf,} are thus the spatial basis diagonalizing the spatiallyaayest
Hamiltonian, and as we shall see the proper basis desctibenditraction problem.

The splitting in equation (3.2.4) allows us to consider thabem as comprised of two
types of properties. Theffect of single atoms, and the spatially averaged Hamiltonian
The dfect of the spatially averaged Hamiltonian is well underdtimaterms of the mode-
functions defined in equation (3.2.9). The point partidfee we will discuss in greater
detail when considering the equations of motion for the $yktem. Before deriving
these equations of motion we, however, briefly need to dssthescommutation relations
describing the system.

3.3 Quantization and commutation relations

Above we expanded the fields in convenient spatial modes. cbbedinatesp(t) and
gk (t) are canonically conjugate variables, and we can thus queaotir theory by impos-
ing the commutation relations

[k (), P (V)] = 1764k (3.3.1)

It will however be convenient to have the commutation reladifor the fields which we
may derive from the mode-amplitude commutation relatidhsvill also be convenient

to separate the displaced electric field into a positively amegatively oscillating part

D = D® + D®), whereD®) is in accordance with convention chosen so that it only
contains terms oscillating likeé“!. Our choice of gauge is reflected in the transversality
of the mode functions defined in Eg. (3.2.9). We expect thisdversality condition to be
represented in the commutation relations as well. With thentjzation procedure above
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one finds the following expression for the negative freqygrart of the relevant fields

BOE Y =i S kg it (r) (3.3.2a)
5> %
k
ACrH=>"cyf %aﬁéwkt(l — VD). (3.3.2b)
K k

The positive frequency part may be found by Hermitian coafiogn. The above result
is found from equation (3.2.12) along with the definitionscoéation and annihilation
operators given by

7, A
(t) = Z—W{ak(t) + ; Upe 8L ) (3.3.3a)
1) =i "2 a1 - 3 U0} (3.3.30)

where the matri}Jy is defined as
U = fd3r/\7fk(r) . fk,(r). (334)

A detailed discussion of this procedure is found in Ref. [30]

From these definitions and the commutation relations (Bv8elobtain

[ (1), & ()] = S (3.3.5)

Going to the field operators we get

[DD(r, 1), AP, 1)] =0 (3.3.6)
[DD(r, 1), AW, 1)] :%?T (r,r'), (3.3.7)
where
ST(r,r) = ka(r)[ﬁtf;(r')]. (3.3.8)
k

HeregT(r, r’) is a generalized transverse delta function [30]. This negden by consid-
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ering its action on some transverse vector fi&t-@(r,t) = 0). Since{fy} is a complete
basis on the set of transverse fields, we may expandt) as

$(r.0) = ) COf(). (3:3.9)
k
If we calculate the #ect of the transverse delta-function on a transverse fieltinge
fd3r’ ST Y- (1) =
[ Y G OME) )] Y G0
kk’ kk’

=(r,1), (3.3.10)

where we have used the orthonormality condition of the Basistions.

We shall also need the equal-space commutation relations
[DW(r, 1), DO(r, t)].
A formal expression of this commutation relation can be fbtrom Eqg. (3.3.2a) to be
[DW(r,t), DO(r,t)] = h—;"ﬁ(r,t, t'), (3.3.11)

where

=

(rtt) = > adfi(r)fi(r)e "), (3.3.12)
k

In vacuumn(r, t,t') is simple to evaluate, but for complex systems it is noiwtito gain
knowledge of the basis-functioffig}. In Appendix A.2 we calculatg using the rotating-
wave approximation and the local density approximationemghwe assume thai(r)
varies slowly with respect to.






Chapter4

Equations of motion

In this section we derive the equations of motion for theaystand consider their general
properties. In the previous section we discussed that theryhcould be divided into

an average part and a part representing the deviation frenatarage. To derive the
eqguations of motion we will, however, work with the full Hdtonian and later make the
splitting into the average part and the deviations from e Btrategy we will use is to
first derive the quantum mechanical Maxwell equations, &ed to combine them into

an dfective wave equation for the field.

We will now as an example derive one of the quantum mechaklaaivell equations
from Heisenberg’s equation of motion:

da, o i~ =
aD(r) :£[7_{’ D(r)]
_ | 3./ INT VAN -
T f & [(V x A(r))%. D()]
| ’ NPL Alr’Y P
= S fd3r {(V x V x A(r')) - [A(r’), D(r)]
+[AE)LBM]- (VX VXA (4.0.1)

Here we have used the Hamiltonian given in Eq.(3.2.1), aadtundary condition that
the physical fields vanish at infinity. To shorten the notatie have suppressed the ex-

31
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plicit time dependence. The commutation relation may baddwom (3.3.6) and (3.3.7)
to be

[AG), D()] = —iks" (r, ). (4.0.2)

Since the fieldV xA is transverse by definition, this gives us the first quanturchaeical
Maxwell equation.

EmozivXém, (4.0.3)
dt Ho
where

B(r) =V x A(r). (4.0.4)

Similarly we may derive the Maxwell equatidl x E = -8,B, whereE = —dA/dt =
D — P. The remaining Maxwell equatior® - B = 0 andV - D = 0 follow immediately
from the definition o8 in Eq. (4.0.4) and from the transversalitydf

Because of the nature of the interaction part of the Hamdionit is convenient to
consider the two frequency components of the displacedreldeld separately. The
guantum mechanical Maxwell equations may be combined istogle wave equation

2 . = = A A
Q%+&VxprHm0:&fﬁ%Vxfomwywwd%mm (4.0.5)
where the positive frequency part can be found by Hermit@jugation. Similarly we
may derive equations for the spin of the atoms, and for thelginmteractions given in
Eq. (3.1.7), one finds

EA — i'BﬁA NG) N(+)
deQ_EQJnox@ (r.t) x DO(r, 1)). (4.0.6)

In the remainder of this article we will solve these coupladial differential equations.

The expression in Eq. (4.0.5) is a second ordéiedential equation in time. The
solution of this equation will in general not only depend ba initial valueD(r, t = to),
but also the time derivativg,D(r, t)|.,. In deriving our interaction we have, however,
already used the rotating wave approximation, where werggtiee dynamics on a time
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scale similar to the inverse of the optical frequency. Sanhyl we shall here make a
slowly-varying-envelope approximation and write the thsed electric field as

D(r,t) = DO(r, )t + DO (r, t)e 'r!, (4.0.7)

whereD® are slowly varying in time. If we ignore the second derivatof the slowly
varying operatorsé@f)(i)(r,t) ~ 0), then Eq. (4.0.5) reduces to a first-ordefatiential
equation in time.

Since we are heading towards a perturbation theory in thet4pairticle part of the
Hamiltonian (3.2.4), we will add and subtract the average glethe source term in Eq.
(4.0.5). That is we write

V[3] = V3] = V[3] + V(3] = m3] + V[I]. (4.0.8)

The idea in this separation is that ndzd‘[J] represents the averagffexrt of the ensemble,
which may have a bigfeect, whereasJ] represents the fluctuations around this average.
To take advantage of this we first consider the average term

jﬁ%vaxﬁamyimﬁHwn. (4.0.9)

This term is continuous and we may use partial integratiangwUsing the expression
for the general transverse delta-function one finds

fd3r V XV X6 (r,r) - VDO, 1)
=V x V x VDO, ). (4.0.10)

This term we will move to the left hand side of Eq. (4.0.5), aredare left with a dfusion
equation involving only the fluctuations as a source termheright hand side

(Zidegt—wf + PV XV X /\Tlt)f)(‘)(r, )

=c? fd3r V XV xa(r,r) - MO, 1), (4.0.11)

If we put the right hand side of this equation to zero, i.enoig the fluctuations, this
equation describes the propagation arftraction of the field in a medium. For instance
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if we take the simplest case where the medium is isotropithabthe matri>(1=/[J] IS
just a scalar, this equation describes the propagatiomgira medium with an index of

refraction given byn = 1/ /1 - q=/[J], see Ref. [30].



Chapter 5

General solution and Feynman
diagrams

In this section we discuss the solution of Eq. (4.0.11) im&eof its Green’s function. Let
us for convenience define theffdirential operator

D= 2ideﬂt ~ WP+ BV x ¥ x M) (5.0.1)
We then define the Green'’s function by

DGO, tro,to) = 67 (r, Fo)8(t — to). (5.0.2)

The right hand side of this equation describes an identitgtional on the inner product
space we are working in. We want the Green’s function to des@n evolution of the
system forward in time. We therefore define a cfitem the Green’s function in time

GONr tro,t)) =0 for t <t (5.0.3)

35
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The general solution to Eq. (4.0.11) in terms of Green’s fioms is discussed in detail in
Appendix A.3, and reads

DO(r, 1) = 2iw, f B’ M()GO(r i o) - DO, o)
t* = — = .
+c2f d3r’dt Mt(r’)é(‘)(r,t|r’,t’)-fd3r” V' XV xs (t/,r") - ma'DOr”, ).
to

(5.0.4)

The upper limit is understood to be = lim,_,o[t+]. Before continuing a few comments
are in order. Here we have used the boundary conditionsalhi#lds vanish at infinity,
i.e., we imagine that at time= 0 we have generated an optical pulse inside the volume
we are describing, which travels toward the atomic mediufterAatively we could have
described the incomming field by a boundary term. The pasftequency part may be
found by Hermitian conjugation.

Let us now consider the last term of Eq. (5.0.4). We notice tie involved fields
are all continuous and fllerentiable with respect to the primed spatial coordinasing
partial integration twice and introducing the propagatefirted by

PO, ', t) = V' x V' X Aftt(r’)c?("(r,tlr’,t’) (5.0.5)
the last term of Eq. (5.0.4) may be written as
t — = — A ~
czf d3rdt’ fd3r” PO, e, )-8 (r', r)m[J]'DO(r”, t). (5.0.6)
fo

Due to the cross product in Eq. (5.0.5) the propagator istense with respect to primed
coordinates and the transverse delta function in (5.0.§)meantegrated out, giving

t — —te ~
& f drdt PO(r 1, t) - AIIDO(, ). (5.0.7)
to

The first term of the right hand side of equation (5.0.4) wé déhote aD{(r, t)
N () — 2 3.7 N At(r (=) ’ DO (!
Dy (r,t) = 2|wad r’ M (r")GY(r, tlr’, to) - D(r/, to). (5.0.8)

If there were no deviation from the mean, i®[J] = 0, the solution would simply be
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DO(r, 1) = DY(r, 1). DY(r, 1) thus denotes the solution to thefdiction problem, where
the atomic medium is treated as a continuous medium witlffeadiion matrixM.

5.1 Perturbative expansion

Below we shall develop a perturbative expansion in the dievidrom the mean due to
guantum fluctuations and from the fact that the medium is anticuous but consists of
a large number of point particles. The starting point for pleeturbative expansion will
be thefield equation

t — —_ A ~
DO(r, 1) = DY(r, 1) + ¢ f f dr’dt PO(r, tir’, ') - mI)DO(r, t). (5.1.1)
to

In addition to this we shall also need the solution to the #qoa of motion for the spin
(4.0.6), which may be formally solved to give thgin equation

By

) =3, to) +
hEo

t
f dt' 3(r,t) x (DO(r, t') x DI, ')). (5.1.2)
fo
These are the equations we wish to treat using the Born ajppativn, where we make
an expansion in the interaction parameger ( In Eq. (5.1.1) the interactiom[J]! is
proportional to the expansion parameger

In terms of notation this expansion gets extremely cumbeesdt is therefore conve-
nient to introduce Feynman diagrams to represent the \aterms of the expansion. We
will be dealing with two types of interactions: the one giverieq. (5.1.1) which we will
represent with a shaded circle, and the one given in Eq.2Bwlhich we will represent
with a shaded triangle. The field equation, we diagrammiitioapresent as

RAARAPARAAS = ~"ANAAPANNS + %
: (5.1.3)
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and the spin equation is represented as

—Pp———n =——>—0 %
. (5.1.4)

The orientation of the diagram is such that time is going fieifh to right, and the
evaluation at time is marked by a dot. Spin propagation is represented by a litte w
an arrow pointing in the positive-time direction. A wiggiyné represents propagation
of the displaced electric field. The arrow denotes whethelitte represent the photon-
generating part of the fieldD)(r,t), where the arrow points forward in time, or the
photon-annihilating part of the field, where the arrow pgibackward in time. The full
solution to the spird(t) is denoted with a double straight line, and the full solatio the
displaced electric field is denoted with a double wiggly line

The field equation and the spin equation can be represenigadurbation series,
and in the following we shall discuss thféext of the terms in this perturbation series. An
important feature of our system is the random distributibthe atoms in the ensemble.
The equations that we have derived so far apply to each atializof the atomic distri-
bution{ry,r,,...,rn}. However since we have no control of the position of the ataas
will have to make a spatial average of our equations, thdttseaerms in the perturbation
series. To do this we need to know the density correlationiseofjas.

5.2 Density correlations.

We assume that we are dealing with an ideal gas, i.e., we a&stuhthe distribution
of the atoms is completely random but has a distributionrgle the possible spatially
varying densityp(r), and we assume that there are no correlations between iteope
of different atoms. The correlation function for the density dhstionp(r) = 33; 6(r —r;)
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is thus
WP Nsa= 60 =18 = 1))sa
il
= > (6 =180 =1 )sat Y 6 —U'NS(F =1 sa

j# i

= ((r)s.alp(r Nsa+ o(r —r')p(r))s.a: (5.2.1)

Here (-)s o. denotes spatial averaging. In the last step we used thatistrébdtion is
independent for dierent atoms, and we ignored the smaltefience betweeiN: and
Na(Na — 1), whereN, is the number of atoms. We have also neglected ffexiethat
two different atoms can not be found at the same point in space. Wislenly seem
insignificant for a low density gas, we show in Appendix A.4ttmcluding this &ect to
all orders in the perturbation series gives the Lorentzharcorrection to the index of
refraction.

Below we shall also use the correlation functions for thesgimilar to the calcula-
tion above we find

(Ga()In(rNs.a = PP )I(F)In(r") + p(1)S(F = 1) In(r)In(r), (5.2.2)

where the index, mrefer to the spatial components of the operators. To shod&tion

we have writterp(r) instead oKp(r))s.a. As discussed previously the bar denotes a single
atom operator. We will preserve the quantum mechanicahbehaf the operators by not
taking the quantum mechanical mean. The first term on thé higghd side of Eq. (5.2.2)
arises from the contribution from félerent atoms (signified by the prime on the second
spin operator). In the second term on the other hand the twoatgrs refer to the same
atom, and the operator product should be evaluated for #esatgm. For example for

a spin—; system, we have the following relation between productspof sperators on
single atoms

— — I —
Jn(r)Im(r) = Egnml\]l (r). (5.2.3)
The generalization to even higher-order density cormatetis straight-forward.

These considerations become important when we calculatsptitial average of the



40 Chapter 5 - General solution and Feynman diagrams

second-order terms of the perturbation series. Let us agaane consider the second
order term of the spin equation representing a photon fitstacting with one atom and
then later with the atom in consideration.

Sa (5.2.4)

o

When taking spatial average this term generates two terringeiperturbative expansion
as indicated with the arrow in Eq. (5.2.4). The first term imimy the spin of two diferent
atoms we will refer to as a coherent interaction, which wé eidcuss later. The second
term involving the delta function corresponds to the ingeheinteraction (for reasons
which will become clear below). We include this situatiohe diagrammatic notation by
introducing a hatched star and a loop signifying the inflpishort propagation stemming
from the delta-function term of the correlation function. £§.2.2), i.e.

fd3r5i(r,t|r',t') (V)8 = 1) = PE(L A, T) - (. ). (5.2.5)

The loop is placed on the top of the star when it comes from tsitigely oscillating
propagatoE(‘), and in the bottom of the star when we refer to the negativetyllating
propagatorl5(+). A star scales with the expansion ¢idgent squared since it involves
two interactions. In the next section we will calculate thénitely short propagator
appearing in these expressions in the local density appiation.

5.3 Green’s function and propagator

In this section we first derive a formal expression for thedate function. Within our
inner product space the Green’s function is defined by (bahd (5.0.2). Expanding our
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Green’s function in the basfg(r) we find the representation
GOr.tr.t) = 3 fi(h (gt 1), (5.3.1)
k

We have here expanded on the complex conjugated(sgto match the expansion of the
displaced electric field in Eq. (3.3.2a). The transverstadeinction has the representa-
tion

5T(r.r) = Y f(Df(r) (5.3.2)
k

where we are now working in the inner-product space withiimmeduct defined in Eq.
(3.2.10). The scalar functiogf(t, t') is defined by

(ZiwLE

5~ o+ eR)dOE ) = 8- ). (533)

along with the condition that the functiap(t, t") vanish fort < t’. We will consider the
following form of the scalar function, where we explicitlyrite this cut-dtf in terms of a
step function

g, 1) = CE Vet - t). (5.3.4)

The codficientsy, andC is found by inserting this result into equation (5.3.3).

W? — w?
Yk = X Wk — Wy (5.3.5a)
2w,
c-—. (5.3.5b)
2w,
The Green'’s function is thus given by
- j(wk—wL)(t-1)
GOr,tlrt) = —i Z f;(r)fk(r’)é—(a(t—t’). (5.3.6)
- 2w,

Next we will look at the infinitely short propagator in Eq. Z5%). Using the Green’s
function given in equation (5.3.6) along with definitionZ®a) and (5.0.5) the propagator
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may be written as

— i : :
PO, tr, t) = o Z W27 (1 )i (r) e, (5.3.7)
L k

where we have omitted the step function since it autom#gicaes unity for the inte-
gration limits we are using here. We will now relate this iitefy short propagator to
some already known parameter. If we go back and considerehergl result for the
equal-space commutator, this may in terms of the basisitumgff, } be written as:

[DOr, 1): DN(r, )] = hGonkfk(r)fk(r)é(wk o)), (5.3.8)

Comparing with (5.3.7) we immediately get a formal relasibip between this commuta-
tor and the infinitely short propagator

(% — i, )[DOUr, 1); DI(r, 1)) = Tiegw PO, I, 1), (5.3.9)
Using Eq. (3.3.11) this relation can also be written as

= 1,d
POt t) = (=

202( i i )7 (r 1Y), (5.3.10)

To illustrate how the infinitely short propagator entereitiite equations we will again
consider the second order term in the spin equation repexsenEq. (5.2.4). The term
prior to spatial average is given as

iﬁC]_CZ

hEo

t t/ — . .
f dtd x| f f dt’d®{PO(r, v, )M 3] D (. 1)} x BP(r.1)]. (5.3.11)
to to

After spatial average we get two terms, representing therewit and the incoherent in-
teraction. The incoherent interaction may then be writen a

IBC]- / t, 24 a
2heof dt dt J(r)x[( P

i )| T YVEIDE )] x DY, 1)].
(5.3.12)

To simplify notation, we have signified spatial averaginghwgalligraphic letters, e.g.
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(D(r,1t))s.a. = D(r,t). This convention will be used in the remainder of this detic

We have now developed all the necessary theoretical toalsgoribe the system. In
the next section we shall use these tools to discuss a paveibapansion of the evolution
of the system.






Chapter 6

Time evolution

This section is divided into three parts. In the first part wameine the general behaviour
of the atomic spin in the presence of a light field. The aim isitderstand thefiect
of the loops introduced in the Feynman diagrams. In the skpant we consider the
light field and we show how the theory introduce a decay of takl fstrength of the
light as it interacts with the atoms. Again this is connedtethe loops introduced in the
Feynman diagrams. Finally we will introduce and discus&&mperators, which are the
appropriate operators for describing the experiments in[R@e-12].

6.1 Evolution of the spin

In this section we will consider the spin equation in detail the simple interaction
(5.1.2). We will begin our analysis by considering the fireder term in the perturba-
tive expansion of the solution to the spin equation, forgngiVen by the diagram

g . (6.1.1)

This term gives no extra contributions when doing the spati@raging, and we read-

45
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ily write down the expression describing this term

iBcio(r)

héo

t - ~ (- ~ (+
f dt I(r.to) x (DG (r. 1) x DF(r, 1)). (6.1.2)
to

We now continue with the second order terms representededfplowing Feynman
diagrams

When taking spatial average of these terms, we have arga¢dhih first two diagrams
will give an additional set of Feynman diagrams containowpls and stars. It still remains
to consider the last diagram of Fig (6.1.3), representingwotons interacting with the
same atom at timéandt’. In this diagram it is necessary to pay special attention to
the case where the two interactions happen at the same tinté The contribution of
this term is proportional t@© (t")D® (") DO (t)DH(t') which is not normal-ordered,
and it will be convenient to separate it into normal-ordeteins. When commuting
D(r, ") and DY (r, ') we once again get an infinitely short propagator c.f. (38.1
This extra term we will denote by a filled star with a loop. Th@mmutator term will
produce an interaction which is linear in the field intengitwolves D) D)) whereas
the normally ordered terng) DO D® D) will be quadratic in the intensity. Ignoring
for now this quadratic term as well as the coherent intevastithe second order diagrams
for the spin equation after spatial average reads

P
, (6.1.4)
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which can also be written as

(6.1.5)

The interpretation of the diagrams is given below.

To simplify the expression we will make the slowly varyingvelope approximation
which simplifies Eq. (5.3.10) to

PO, tr, t') ~ ;'—é“;y?t(r,t, t). (6.1.6)

Secondly we shall evaluatgin a local density approximation, where we assume that
n(r,t,t") is the same as if we were in an infinite medium with a constansiyp(r) and
spin densityJ(r). By doing this we ignore the reflection of the field on the aoef of

the ensemble or other inhomogeneities. The infinitely spiarpagator which expresses
the amplitude for the field to be found at the same positioroateslater time, therefore
becomes a delta-function in time. This approximation isdvafovided that the dirac-

tion matrix /\7((r) varies slowly on the scale of the wavelength of the lightrtikermore
n(r,t,t") also contain the Lamb shift which we ignore for simplicity.detailed calcula-
tion of 77 is presented in Appendix A.2, where we find

- . ~lal) 0 0
POt t) =20 o o) —ierr)
0 ior(r) o.(r)

E#ﬁ—m, (6.1.7)

where the cofficientsg, o, andor may be found in Eq. (A.2.13). Here the result is given
in an Euclidean basis, whedds assumed to be along the tk@xis. The result may also
be expressed in a coordinate-independent form as

PO, tr, ) = %{gm — iy(n)] x +[ey(r) = 0. (O] (] -}, (6.1.8)

Wheref is a unit vector parallel td. This infinitely short propagator is inserted into the
second-order terms in the spin equation. The second-andehérent interaction given
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in Eqg. (6.1.5) then reads

2 t
hﬁe f dt'{C Con[A( )Z)( )(J Z)(+)) Z)( )(J A(+)D(+)) +H. C]
0
¢ AD PO (T. HE G . N AC)
+§[A DOJ- DY) — (DY - DA
~TAOIDO - D) + DY@ - AODY) + H.c.]}, (6.1.9)

where we have suppressed the space and time dependencies.

In the simple case, where the matA% is proportional to the identity matridaf ~ 0,
oy ~ 0. = 0), which is the case to lowest order, the terms proportiameld, cancels and
the expression reduces to

_Bcio
27’260

f dt[(DF - D)+ DP I DY) + Hee|. (6.1.10)
to

This term scale with the power of the incident light, and &irlg polarized light will
affect the spin component parallel to the field with twice the thtan the perpendicular
spin components. To see this we may introduce a decay-ggtand writing expression
(6.1.10) on a dierential form, we thus see that the term indeed describesaydd the
spin-components.

Ody = — 2T pdy (6.1.11a)
0y =-Tpd, (6.1.11b)
0d, =-Tpd, (6.1.11c)
where
B*cto
Ip == “ 12 o5 Dy,

and where we have assumed that the light is linearly polaiizéhe x-direction.

Let us now turn to the coherent part of the interaction regmwesd by the Feynman
diagrams in Eq. (6.1.3). The first two terms containing a detksy construction very
small, and will vanish when taking the quantum mechanicaraye, as discussed in
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Sec. 5.2. The only important second-order coherent iniierais therefore the following
Feynman diagram for normal-ordered fields.

(6.1.12)

Suppressing the spatial dependence of the displacedieléetd, this normal-ordered
coherent interaction is given in vector representation by

£ f ar {f)é‘)(t')(bé"(t) - DF)) (30 DY)

2,2
hees

- (D51 - DY (1)) (30 - D (0)Dg () + H.c.}. (6.1.13)

In the case of linearly polarized light, safyé_) || e this term vanishes, but this is in
general not the case. In Sec. 7 we examine the term in soméifschpystem.

6.2 Evolution of the light

The treatment of the displaced electric field is similar te #pin, but there are a few
important diferences. Let us consider the negative-frequency part dfeloe and write
the expansion of the displaced electric field ignoring fawrlbe evolution of the spin

— TN TN,
. (6.2.1)

+ +
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When we take spatial average of diagrams like these, wedntedelta-function correla-
tions between vertex points. So far we have treated the atoths ideal gas approxima-
tion, where we ignore any correlation in the position of ttes but in reality we should
include a short-range correlation functions describirgg ttvo diferent atoms cannot be
at the same position. In Appendix A.4 we show that includimg teads to the Lorentz-
Lorenz or Clausius-Mossotti relation. In the following wdlhenly discuss loops, where
two consecutive vertex points are evaluated for the samm.&bince we have subtracted
the quantum mechanical average from the vertex, no firsgrarertex will give a contri-
bution to the evolution of the light, and therefore thes@sadeorder loop diagrams are the
most important fects apart from the fraction éfects included in the mode-functions
{fy}. Later in section 6.4 we shall discuss the operator natutbeofight field and then
we keep the first-order vertex in the calculations. In theentrapproximation Eq. (6.2.1)
reduces to

P z:ﬁ‘\ + 4o

We have here introduced an interaction denoted by a hatamdgon which scales with
B%ok3, and describes twa connected by the infinitely short propagator. Using theltssu
for the infinitely short propagator, and taking quantum nagdtal average this interaction
reads on matrix form

(6.2.2)

F||(r) 0 0 _
Q —igo)| 0 T.ur) i) |=iMi), 6.2.3)
0 —iIr(r) Toar)
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where the cofficients entering the matrix are given by

F”(r) :CSJ4Q|| + CiQJ_(JZZ + JS), (624&)
I, a(r) =c33%, + 2coCiord? Iy + Ci(0yJ2 + 0. 32), (6.2.4b)
I, o(r) =c§%. + 2CoC10r Iy + (01 + 0. 35), (6.2.4c)

C2
Ir(r) =01261C00%3 = 0% Ji + (GG + L), (6.2.4d)

We have here suppressed the spatial dependence to shotéiomoThe series in Eq.
(6.2.2) can be included in theftBrential equation describing the displaced electric field,

(ZideEt—wf £V XV x [M(r) + IM(r)])DOr, Y

=c? fd3r VXV x5 (r,r)- mJ DO, 1), (6.2.5)

where the perturbation is modified accordingly. Becauséhefanti-Hermitian matrix,
we see that these types of loop diagrams correspond to a d@édhg field, i.e. the
differential operator on the left side describes the propag#timugh a lossy medium.
On the basis of this analysis and the analysis in Sec. 6.1 welihk the loops in the
Feynman diagrams with the decay associated with spontaregnission.

It remains to discuss thetect of light interacting with an atom that was previously
subject to an interaction such that the atomic spin statebbas changed. In terms of
Feynman diagrams this is described as

@N | (6.2.6)

We shall postpone the analysis of this term and discuss wbimection with relating the
fields to photon counting operators below.
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6.3 Photon counting and Stokes operators

So far we have mainly been concerned with calculating the Bt , t). For experiments
which eventually involves counting photons we are morerggied in quantities like pho-
ton flux, and in particular the flux in some particular polatianal state. We shall now
discuss how to desribe such photon counting experimenksnour theory.

The general idea in this subsection is that we shall assuat@&thare able to measure
the light-flux in a certain spatial mode by projecting thétigeld onto the mode and then
integrating the flux of the light field at some detector plahat we assume to be far away
from the atomic ensemble. We will formulate such a measuypitogess in terms of an
inner product,

(@t OIp(r. 1) = f "t f (0 (). (6.3.1)

We assume that the fields in general have some axis of propagatyr,. The spatial
integral is then performed in some plane perpendiculariscetkis at some poim on this
axis. This measuring process could be realized by e.g. sgiie light field through a
single mode optical fibre prior to detection.

We are interested in the polarization of the field which isvesnently described by the
so called Stokes operators defined below. These operatotsecderived from a Stokes
generator defined in a bra-ket-notation by

S = DO, HWD(r, 1), (6.3.2)

which we represent as the following diagram

3 ' (6.3.3)

Measuring certain light-modes according to the inner pebduEqg. (6.3.1), correspond
to picking out a certain matrix element of the Stokes generaéis an example we assume
that in some experiment we are able to measure the photonffhaxee linear polarization
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in some mode safﬁ,x(r,t) after the interaction with the atoms. The time dependesice i
herefyx(r.t) = fox(r)e'@t, The integrated photon flux measured at the detector
plane, is then given by

2C2 o =~>}<
m«fq,x|8|fq,x»’ (634)

where we normalize the outcome to count the number of photeshave here taken a
spatial average of the Stokes generator as indicated byatlgraphic font.

Expanding this operator to second order, gives an addittera not covered by the
analysis above. This extra term describes a process whénghmnegative frequency
part and the positive frequency part of the displaced etefitld interacts with the same
atom. This extra term comes from the following contributiorthe Stokes generator

= ... + + ... )
(6.3.5)

When taking the spatial average of this term we again gemerétrm representing that
the interaction happens at the same point. This particetar wwould not have been there
if we only considered the spatial average of the displacedtiet field. The generated
term we will illustrate as

Sa + (6.3.6)

FC

We constructed the interaction represented in the Feynmagnan as a gray circle, such
that when taking the quantum mechanical average the terishzamhe new term gen-
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erated when taking the spatial average, given as the loght diagram of Eq. (6.3.6),
describe the square of the fluctuations which is not vangshiimis was also the case for
the terms containing the infinitely short propagator. The term however dters from
the second order terms containing the infinitely short pgapars because here we need
to use the full macroscopic propagator. To calculate tfeceof this term in detail, we
therefore need to have an expression for the spatial modesli@ag the system. We will
consider this term for a simplified system in Sec 6.4.

To describe the experiments in Ref. [12] it is convenientdbre a set of polarization
dependent photon counting operators denoted as StokestoqzerThese are defined in
accordance with Eq. (6.3.4) as

caq Kz See 5 o
81 =5 [(FaISie) - Ty ISHFe )] (6.3.7a)
caq Kz Se g L 5o
8§ =5 [(FaISie ) + (Fa IS ] (6.3.7b)
caq Kz oy 5 o
879 =5 (Faisifey - «Fq ISy | (6.3.7¢)

whereK = % Using commutation relations for the creation and anniimfeoperators
these Stokes operators are seen to have the commutatitongfor angular momentum
operators.

(839, 89 = i enmi§™, (6.3.8)

We will calculate and discuss these Stokes operators tondemraler in the coupling co-
efficientg in the following.

6.4 Calculation of Stokes operators

In this section we shall calculate the Stokes operatorsdorgkorder. In the experiments
in Ref. [10-12] the Stokes operators are measured by setigénlight onto polarizing
beamsplitters followed by a measurement of thifgedence in the intensity of the two out-
puts. For instance if we take the indicgsaandq’ to refer to thex andy polarizations
of the light, the operatos,” in Eq. (6.3.7) can be measured by measuring tfierince
in the intensity of thex andy polarizations. The remaining operatcn’z%y and s”;y can
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Figure 6.1: Schematic setup. We assume that away from tteerdnis, the light-mode resembles a
plane-wave with some transverse profile. A set of lensessfdeibeam down into the ensemble.

respectively be related to thefidirence intensity with the polarizing beam splitter rotated
by 45 and the diference intensity between the two circular polarizationsr & gen-
eral light beam, however, fiitaction will cause the polarization of the light to depend on
the spatial position and there is no well defined polarirati®he simple measurement
scheme is thus only applicable in the paraxial approximmatidiere we can separate out
a position independent polarization vector. Far away froenensemble we will therefore
assume a paraxial approximation. That is, the mode-fumsfigr, t) andf, (r, t) describ-
ing the Stokes operators far away from the atomic ensembéile plane waves with
transverse profiles that change slowly compared to the wagéh. The detector plane
is placed far away from the atomic ensemble, and at this planwiill assume that the
general set of basis-functioffg} can be approximated as

1 .
fo(r) = \/—Zun(n)ejék? (6.4.1)

We have here set the direction of propagation to be along-teds. The indexq are
now given as the set = (k, n, j), wherek is some wavenumben,is an index referring to
the transverse shape of the mode described by the scathiJfjgl), and ) describes the
polarization of this mode, that can be eitheror y-polarized. The completeness relation
Eq. (3.3.8), and orthonormality condition in this approation thus gives

DU IUA(r) =50 — 1), (6.4.2a)
fder—U;:(rJ_)Un’(rJ_) =0nn, (6.4.2b)

and the dispersion relation Eq. (3.2.9a) at the detectoegkaw] = k>

The paraxial approximation above is convenient for expngsthe measured observ-
able in terms of the polarization of the field, but may not bffisent to accurately de-
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scribe experiments, where tightly focused beams are usedh@ll therefore only assume
this approximation to be applicable far away from the samgbel not necessarily inside
the ensemble. Physically this could correspond to a s@natihere an initially paraxial
beam is focused onto the ensemble with a lens and convertédirita a paraxial beam
after the interaction by another lens, as shown in Fig. 6.%imilar treatment was used
in Ref. [31].

Inside the ensemble we make the much weaker approximataariiié set of spatial
mode functionsJ,(r) is independent of the polarization of the field, so that &t gr)
is given by

1
V2
The modeU,q(r) now takes into account that the spatial shape of the beamchrayge
through the ensemble, and likewise the polarization veg(o}, which we shall assume
to be real-valued. The indexwill still be eitherx ory, corresponding to the polarization
of the mode far away from the sample, but the veej@r) will not necessarily be parallel
to thex or they axis. A more general description of the mode-functions wontlude
a dependence of the polarization veatpion the polarization stat8mg(r), i.e., emj(r).
The correction this generalization gives to the Stokesaipes, is presented in Appendix
A.8, in relation to Sec. 7.3. When we make the relevant catmns to describe the
Stokes operators defined in Eqg. (6.3.7), we will chose toidensnodes corresponding
to the indexq = (k,m x) andq’ = (k,n7,y). We note that the sdf,} defined in this
way is in general not complete, since, e.g, the assumptianthie polarization vector
is independent of the transverse mode number applies inaifaxipl approximation but
does not apply in general. When calculating tifte@ on the forward scattered field to
first order we only get contributions from the near paraxiaties in the forward direction.
When we go to second order there will, however, Beats of all the transverse modes,
and in this case a correct treatment requires a more acdrgatment of the complete set
of modes. Above we have already employed such a more gem¢@ modes, when we
discussed theftect of spontaneous emission, which involve all the trarsverodes. In
addition to this, a more accurate set of modes is also redjtoredescribing the féect of
dipole-dipole interactions, which also involves all thatsverse mode.

fq(r) = Ung(r)e;(r). (6.4.3)

We will in the following calculate the Stokes operators ie thmit described above.
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Diagrams containing a loop, we will not discuss, since thady leads to a decay of
the light which we have discussed earlier. After taking isphaverage the diagrams in
consideration are

(6.4.4)

Let us begin our discussion of this perturbation series msictering the first term on
the right hand side of equation (6.4.4). This term is the theavder term of the Stokes
generatoS©, In the far-field limitz — oo the matrix-element we need to calculate is

Fomir DIDS (1)) =

” 1 ikz—i(wk—w higow * _igz—i(wg—w )t A
f‘[m dtder_\/_EUm(rJ_)ejékz i(wk L)tZ / 4(-)71- LUn(M)ae iqz—i(wg—wL )t Tnl

qnl

heow, .
— ./ ZZzLalmr (6.4.5)

andS© thus gives us
K (Fn (- OISOl (.0 = 8 By (6.4.6)

The zeroth order Stokes operascﬁ' for g = (k. m, x) andq’ = (k, nY,y) gives

81T = 8 =5 Bmlom — By By)- (6.4.7a)
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The two remaining zeroth order Stokes operators are foucardingly,

1
& =S By + By Bm), (6.4.7b)
T

S =5 BBty — By B (6.4.7¢)

In the following we will calculate the first-order compongtf the Stokes operators.
We assume the quantum mechanical average of the atomid splbe parallel thec-axis.
The relevant interaction matrix can in this case be written

0 Jr) =)
mJ] =iciB| -J(r) O 0 |, (6.4.8)
Jr o 0

and after spatial averaging we simply write

_ _O
(M[3)sa = 4[] = —icsBp(r) | J(r) |x. (6.4.9)
3Ar)

The second and the third term on the right hand side of Eq.4)6ade the first order terms
of the Stokes generatas®. To calculate the contribution to the Stokes operators from
these terms we have to evaluate the expression

(Femi(r ) f dtd®r’ PO(r, tr, t)///‘[J]Z) (1, 1)). (6.4.10)
o
The initial timety we will set to—oco, and because we assume our detector plane to be
infinitely far away from the atomic ensemble, we can take . Using the expression

for the set{f,} given by Eq. (6.4.1) for the detector plane and Eq. (6.4.8)dm the
ensemble, Eg. (6.4.10) reduces to

( h;éfo]mlﬁfdg'zp(r )O5(r) By (6.4.11)
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where
_O
O5"(r") = Uim(r") Uin(r)e;(r) - [ Jl(r’) x g(r')]
Jo(r)
_O
= () Sy = Spdyl[| J(r) |- eLr)], (6.4.12)
JAr")
with
PR(r") = Upn(r') Ugn(r). (6.4.13)

In the final equality we have introduced the local basis vegl®) = e(r) x e (r). The
effect of the first-order term of the Stokes genera&idtto the Stokes operators thus reads

KT OISO (1, D) =
1 * A ~ n N\ A ~
kciB f dr' Y7 o) SIOF(Y &pBuan + OF(r")8n ). (6.4.14)
nl

The remaining terms of the right hand side of Eq. (6.4.4)t thahe second-order
terms, can be calculated in a similar way. The results mapied in Appendix A.5. The
calculations given in Eq. (6.4.14), (A.5.1), (A.5.2) and35A) is the starting-point for a
discussion of the dynamics of the system subject to a gelighafield of many modes.

The description that we have used here, where we define thesStperators in term
of expectation value betweenfidirent orthogonal modes, is very convenient for a the-
oretical description of the process. It does, however, ety correspond to the ex-
perimentally measured observables unless one, e.g. atepaut particular modes with
single mode optical fibers. We shall therefore defer theudision of the consequences
of these results to the next section, where we use thesé tesalculate the evolution of
observables more relevant to experiments.

We will now give the equation for the atomic spin. The incamgrterms describing
decay due to spontaneous emission have already been @dcu$sre we will consider
the coherent interaction up to second order in the pertiaaeries. Below we show the



60 Chapter 6 - Time evolution

diagrammatic representation of the coherent perturbagoies for the atomic spin up to
second order.

=P=°=—>—O+$—»+ +

(6.4.15)

We will denote the first order term in the expansion, Eq. (@&%.as7®. Employing
again the approximations done in the previous calculatithva is, using the set of light
modesify} given in Eq. (6.4.3) and setting the initial time+too and the final time teo,
the term can be written

g = —Bcik Z \I_,rknm (r)(j(r) X ez(r))%[almﬁkmy - élimﬁkmx]

kmm
= —perk ) (30) x e()){Rel¥™O1F™ + Im¥" 1K) (6.4.16)

kmm
We notice that compared to the simple theory in Ref. [29]dhisran additional term
proportional to the imaginary part of the functi®#™(r). A similar correction can also
be found for the Stokes operators for the light. Also notie the dynamics of the spin
to first order happens in a plane orthogonal to the ve{o). This is the reason why the
term in Eg. (A.5.3) vanish, since there we are consideriegdifect of the dynamics of
the atomic spin on an axis parallel to #ér)-vector. The calculation of the second-order
terms is presented in Appendix A.6. In the following sectiea will examine the ffect
of these calculations under conditions attainable in erpents.



Chapter I

Experimental application and validity

In this section we shall considerftérent limits where we can reduce our general theory
to a theory resembling the simple description obtained endimensional theories [2,29].
Furthermore we discuss the validity of the approximatiomaslento arrive at these simple
limits as well as the validity of our perturbative treatmehthe interaction.

7.1 Measurement procedure

In the previous section we discussed how our theory couldslee to calculate Stokes
operators corresponding to specific transverse modes @ietdeWhile such a treatment
is appealing from a theoretically perspective, it is lessirddle experimentally, since the
isolation of single transverse modes is complicated (alghat could be done by passing
the light through single mode optical fibers). Here we shadrefore express our result
in terms of a simpler experimental procedure. Suppose tigatieétections is performed
by sending the light onto a polarizing beamsplitter and réiog the intensity of the two
output port with two cameras. Thefllirence between the intensities can now be used to
define position dependent Stokes operasdrs ), i.e.,$(r ) corresponds to thefilerence
in intensity betweerx andy polarization at positiom, in the detector plane. Similarly
S(r.) ands(r.) can, respectively, be related to thédience intensity with the polarizer

61
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rotated by 45 and the diference intensity between the two circular polarizatioriseSe
operators may in general be determined by

S(ru) = Z %(UE(M)'&‘Zm@kmem(M) - U;](rL)élmyékmyUm(rL)) (7.1.1a)
kmm

é2(rL) = Z %(U;](rL)élmXékrﬂyUm’(rL) + U;](rL)élmﬁkmem(rL)) (711b)
kmm

OEDY %(u:;(u)aimxékmyum(u) = Un(r )3, A xUm (1 1)). (7.1.1c)
kmm

Below we shall derive expressions for the operators (7 dntl)discuss how to imple-
ment a light-matter quantum interface based on these apsraln subsec. 7.2 we for
simplicity first consider an extreme paraxial limit, where assume that essentially no
diffraction occurs during the propagation. In this limit the dymcs becomes extremely
simple. In subsec. 7.3 we consider a more interesting linfiere we may have multiple
modes which may experienceflidaction. Here we show that measurement of the opera-
tors §(r.) still allows us to simplify the dynamics of the system. Inwuatable limit we
find a simple two mode transformation between transverseesotithe light field and
single modes of the atomic ensembles.

7.2 Extreme paraxial approximation

In the extreme paraxial approximation, we completely ignamy dynamics transverse to
the propagation direction of the light modes and approxentia¢ set of modef,} with
Eq. (6.4.1) throughout the ensemble. Since the typicahdcs for difraction is given by
lg ~ A/A, the condition for the validity of this approximationlis< lg, or expressed in
terms of the Fresnel numbgr > 1.

The full expressions for the Stokes operators are quitelvedy and we therefore
leave the incoherent part of the evolution to Appendix A.#&efing only the coherent
part of the interaction, we find the Stokes operators to sttcoder in the interaction to
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be

S1ou(r ) =&n(rL) - kC1B f dZp(Z.1 ) IZ 1 )&in(r 1)
- Skper)? [[ d2az . r )o@ 1) I () (7210
Spoull 1) =Sin(rL) + kCiB f dZp(Z.1 ) IZ 1 )&uin(r 1)
—}(kL c)szdz’dz” (Z,r )21 )IAZ,r )IAZ', 1 )&in(r L), (7.2.1b)
zﬁl PZ, T )p\Z", 11 )IAZ, 11 )IAZ 11 )Sin(lL), (1.2
Sout(r 1) =S3in(rL). (7.2.1c)

In this limit we see that the Stokes operaspis decoupled from the coherent dynamics
of the system, and only evolves due to spontaneous emissgoné¢d in Eq. (A.7.2)].

Similarly we may find the coherent dynamics of the atomic spi@aving again the
incoherent part to Appendix A.7, we find

Jxout(r) =Juin(r) = Beake > Jyin()F5;(r1) - %(ﬁclmz D Jain(MFn(r )& (re)  (7.2.2a)
k kk'

Jyoulr) =yin(r) + ok D Jin(r)&n(r1) - %wclmz D hin()Fin(r)En(rL)  (7:2.2b)
k Kk
Jzoulr) =Jzin(r). (7.2.2¢)

Analogous to what we found fags,”we see that the operatd_{ is decoupled from the
coherent dynamics of the system. This result can directhseciated to the conservation
of angular momentum along tlzeaxis. In the extreme paraxial approximation this is true
to all orders in the coherent interaction.

The results in Eq. (7.2.1) and (7.2.2) is essentially edeitato the simplified one-
dimensional description of the system given in Refs. [2,Z8 only diference is that the
expressions derived here now apply for each value pivhereas the previous treatments
assumed the system was transversely homogeneous and osige®d the variables
integrated over | .

A further simplification of Eq. (7.2.2) can be obtained if weroduce the rotation
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vector
Q =gk > &ire. (7.2.3)
k

With this definition we find that Eq. (7.2.2) describes nothbut a rotation of the spin
around thee,-axis

— — — 1 —
Jout = Jin + Jin X Q + E(‘]i” x ) x Q. (7.2.4)

7.3 Multi-mode coupling

In the previous subsection we basically ignored all the dyina transverse to the prop-
agation direction. Now we turn to a more interesting situatiwhere we may describe
effects associated with fiiiaction of the light beams. Our goal in this section is to find
a set of conditions under which we can have a simple dynamibsre the individual
transverse modes of the light field talks to a single mode@atbmic ensemble. Such an
interaction would enable the storage of information frowesal light modes into spatial
modes of the ensemble, e.g., using the protocol in [11]. €hkzation of this interaction
would thus expand the information storage capacity of tbenat ensembles. A similar
problem is considered in Ref. [32]. In related work such ager of multimode mem-
ory has recently been achieved in atomic ensembles usiogaigagnetically induced
transparency [33].

To achieve simple results in the end, we will here considéiuatson, where we have
a strong classical beam polarized in tkelirection in a single transverse modkgy(r)
(denoted by the inde®). For they-polarization we, however, include a complete set of
modes, which may or may not include a term identical to the emafdhex-polarization.
For the strong mode we will approximagg ° = &ox = /N¢ > 1 whereN¢ is the
number of photons in this particular mode. Since the Stokesators are dominated
by the terms involving the classical component, the onlyangmt contributions in the
Stokes operator (7.1.1) are the terms containing the stilasgical mode. Eq. (7.1.1) are
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thus approximated by

(i 1
87(r2) ~ 51Uk (FL)PNS, (7.3.1a)

, No ~ ~
() ~ ‘/2— D (RelUgr Umk(r DIXE — IM[UG(r )Umdr )IPE),  (7.3.1b)
km

) No ~ ~
égn)(rl) ~ \/—X Z (Re[U;k(l’l)Umk(rL)] PR+ Im[U;k(rL)Umk(rL)]xg])’ (7.3.1c)
km

2
where
Xm —i(AT + Bmy) (7.3.2a)
N
P -5 \/é(akmy_ Bumy)- (7.3.2b)

In order to obtain simple result in the measurement prodetsss assume that we can
choose the mode function,(r) to be real in the detection plane. This could, e.g., be
achieved by sending the light through a lens which convedsricoming modes into ex-
treme paraxial beams as shown in Fig. 6.1 (note that sincenlyamake this assumption
in the detection plane, this assumption does not restrecstiape inside the ensemble).
Experimentally the operatot&™ and P™ defined here can then be measured by simply
integrating the measureg{r, ) with a suitable weight function, e.g.,

2 Un(r.) . _om
\/N:Qfdumsg(u) = Xp, (7.3.3)

where we have used the expansion in (7.1.1) as well as theguiality relation of the
transverse mode functions (6.4.2b).

In our equations of motions we for simplicity only keep tertadirst order in3 and
4/N?, and neglect all other terms. The equations of motion foiStukes operators give
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in this limit
N R N© _0
R =X{r?+hﬂ01\/; [ & o] 50 |- aRetroen  (7.349
J(r)
R R N© _O
Pg“ut:P{Q+kLﬁc1\/;fd3r’p(r’) JX(r) - e(r)Im[¥R(r)], (7.3.4b)
J(r)

where?™ is defined in terms of the mode functiobs, in Eq. (6.4.13). Employing the
same set of approximations for the spin equation we find

Joulr) ~ Jin(r) + ks @ > [Rel¥R(NIPY — Im[ER(OIRN|(n(r) x e4r)).  (7.3.5)

Note, that the expressions we have derived here, allow fareml set of transverse
modes which may experiencefidaction, and thus go beyond the extreme paraxial ap-
proximation made in the previous section. In the expressairove we do, however, still
use the paraxial approximation in Eq. (6.4.3), where we ligrthe dependence of the
polarization vector on the mode number. In Appendix A.8 wax¢his approximation.

The expressions in Egs. (7.3.4) and (7.3.3)edifrom the simple results of the last
section because of the extra terms proportional toMj?{r)]. These terms complicate
the dynamics and, e.g., means that one cannot use the grisiétef. [11] to store infor-
mation in the ensemble. There are, however, certain limitsre/the extra terms in Eq.
(7.3.5) disappear. One situation is when the mode we ared=yirgy in they-polarization
is identical to the classical mode in tlgolarization (except from the fiierent orienta-
tion of the polarization). This situation corresponds te éxperimental situation, where
the weight factolJ,,/U, in Eq. (7.3.3) is unity, such that the final result is obtaitgd
integrating the intensity over the transverse plane. Tagedherefore corresponds the
experimental situation where the light is detected by ploatiectors instead of cameras.
In this case Imi°(r)] vanish identically and the evolution of the light operatagain re-
semble the result of the last section, where, e.g.sflt@mponent was conserved, which
translates intd},, = P?. Note, however, that unlike the situation considered betbes
atomic operators in this situation gets an admixture of isg\d#ferent input light modes,
and will not in general reduce to the dynamics consideredein R1].
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Let us now consider a flerent limit ideally suited for a multi-mode memory. We
assume that we are in the paraxial approximation, where wegrere the spatial de-
pendence of the polarization vectors. For simplicity weoassume that the classical
modeU,(r) has a uniform intensity and that the density is constant theeregion, where
Un, is non-zero in the atomic ensemble. We furthermore assuatetie macroscopic
polarization is constant and along tkewxis, J, and finally we assume th&t™ s real
(for a discussion of the validity of this approximation wéereto the next subsection). In
the spin equation (7.3.5) we will only keep terms propomicio the macroscopic spin
componentl,. In this situation the relevant equations reads

X =X+ kAerUo \/gp f &’ Ir)Um(r)e 2 (7.3.6a)

PBout =PPin (7.3.6b)

Jyoulr) =Jyin(r) + ke Ug \/gz Un(r)e ™ 2P Jyin (7.3.6¢)
7

Jroulr) =zin(r)- (7.3.64)

Here the factor exp{ikz) comes from the classical field and cancels the i&xpde-
pendence of the mode functids,, sinceU,,exp(-ikz) should be real according to the
assumption of¥ being real. This set of equations can be symmetrized andifgdby
introducing a set of collective operators

X = /ﬁfd%]_y(r)um(r)e‘ikz, (7.3.7a)
X

P = /ﬁ f dPrd,(r)Um(r)e ™, (7.3.7b)
X

wherelL is the length of the ensemble. The fio®@ents here are chosen such that the
operatorsKT andP7 fulfil the standard commutation relation for position andmemtum

[X2, PY] = i6mny. (7.3.8)
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With these definitions Egs. (7.3.6) reduce to

)N(lg,]out :)N(g,]in t K |5/T,im (7.3.93)
PEout =Pin- (7.3.9b)
Kot =X + kP, (7.3.9¢)
PRout =PRin- (7.3.9d)
where
NopJ,L
K =k feilo | =5 (7.3.9€)

These equations describe a system where one transversenligie couples to a single
mode of the atomic ensemble, which in term couple back to @aheedight mode. This
two-mode mode dynamics is exactly identical to the dynardersved in Ref. [2] for a
single transverse mode. The dynamics can thus, e.g., betosedlize a multi-mode
version of the memory protocol implemented Ref. [11]. Ir:stpiotocollf”g,jin is stored in
the atomic modé(gout, while at the same time the atomic md@l@m is transferred to the
Iight-mode)?@out, as described by Eq. (7.3.9). After detection of the Iigk&rtaporf(gout

one can then realize a quantum memory by feeding back theumesasnt result to the
atoms as it was shown in Ref. [11].

7.4 Validity

7.4.1 Validity of the simple multi-mode dynamics

In the previous subsection we derived a simple multi-mod®adyics useful for making

a multi-mode light matter quantum interface. For experitakimplementation of these
idea an important question is the validity of the approxiorad leading to Eq. (7.3.9).
First of all we need that the imaginary part'\8?™(r) in Eq. (7.3.4) should vanish. Fur-
thermore, in order to define orthogonal spin-modes that dccaople diferent trans-
verse modes, we neéd,(r)| to be uniform. Taking the classical mode to be given by
Uo(r) = U.€*?, whereU, is real, we also need the quantum madgr) to be real-valued
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apart from theg? dependence. Let us now take the modegr) to be Hermite-Gaussian
beams [34]. Such modes can be represented by

)= ) )

w(2)
X é[kz—(mm+1) tanhz/zp]

x @OC+)/2R@ g (WD) (7.4.1a)

where

W(2) =Wo /1 + 22/Z2, (7.4.1b)

R(2) =z+ ? (7.4.1¢)
Zy :NTV\%. (7.4.1d)

Herewg is the minimum waist of the beark,is the wave-number} is the wavelength,
B € R is a normalization cdé&cient, andH, is the set of Hermite polynomials. The
condition thatUn,(r) must be real-valued gives the conditions

IR@ > W2 |(1+m+ n)%l <1 (7.4.2)

These are in fact equivalent conditions, and introduciedgitesnel numbef = w?(2)/AL
we find the condition

F>1+m+n. (7.4.3)

7.4.2 Validity of perturbation theory

The theory we have developed in this paper is based on pattonktheory in the inter-
action between light and atoms. In this subsection we dssthes limits of validity of
this perturbative treatment. We will be considering woesteescenarios to find the limit,
where our perturbation series Eq. (6.4.4) and (6.4.15)@age/ An important parameter
for these estimates will be thdfective coupling constant for the collective operators
defined in Eq. (7.3.9). For applications to light-mattermfuan interfaces this parameter
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should be of order unity. As we shall see below, this is stkgible without violating
the applicability of perturbation theory. Another impartparameter is the optical depth,
OD, defined byOD ~ pA®L. The optical depth plays an important factor when desagibin
the dfect of the incoherent interaction, e.g., the spontaneoussem.

Throughout this work, we have assumed that the atomic erlsampolarized along
the x-axis, so that the atomic spin componqmg, pJ_Z only carries quantum noise. Also
we have assumed that the classical component of the lightgarly polarized so that,
e.g., circular components are governed by quantum noiseserassumptions will be
important for estimating the terms below.

We first consider the expansion of the light field (6.4.4), amgbarticular the co-
herent part of the interaction. Thefective perturbation cdicient for the first order
term is found to scale at most g8k(VNa)/A ~ «x/ vNp (may be found by estimating
Eq. (6.4.14)). Herd\ is the transverse area of the atomic ensemble Npnig the total
number of photons in a pulse. Going to second order an immiteam is described in
Eq. (A.5.3). Since we are not including the the time evolutid the macroscopic po-
larization in the average interaction, this term has a gitescaling as large ag. We
showed, however, that in the paraxial approximation the tesinish. Going beyond the
paraxial approximation as done in Appendix A.8, we find tloatihearly polarized light
the scaling i</ vNp. The last contribution to Eq. (6.4.4) is the incoherentriat&on
considered in Appendix A.7. The scaling of thieet«? - (Na/Np)/OD .

Now we consider the spin series (6.4.15) for a single atore.itoherent part of the
evolution of the spin is described in Eqg. (6.1.9), and sca&&/0D, it can be ignored
for sufficiently largeOD. The first order term scale ag /Ny for linearly polarized light.
To increase this cdicient we need circularly polarized light, which makes ientsting
to examine the second order term describing the change giollaeization of the due to
the interactions with atoms. This process is described in (Bg6.1), which represent
the optically induced dipole-dipole interaction. Thistiarlar term vanish when we take
guantum mechanical averages, because we have subtragtenlymon-vanishing com-
ponent, but we can still calculate the root mean squareibaoitibn. The éect can then be
separated into a short-range contribution and a long-ranggibution. The long range
contribution can be estimated to give a contribution of owde/d/(L - OD), whered is
the smallest dimension of the setup, i.e., the smaller ofethgth and the transverse sizes
of the beam and the ensemble. The short range part actuadiges within our present
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approximations. If, however, we regularize the integraklgluding the volume, where
the dipole-dipole interaction of an excited and a grountesatomV ~ yA3/r is of the
same order as the detuning we find a contribution? \/A/y ¥A/(L-OD). The justifi-
cation for this regularization is that when we made the aatiakelimination we assumed
a constant detuning. This approximation breaks down when two atoms afégently
close that the dipole-dipole interaction is the strongéstein the problem, in which case
it is more appropriate to describe the atoms in terms of nuidectates. Both the short
and long range part of the interaction are thus small f@igantly large optical dept®D
and for stficiently long ensembles (lardg. It should, however, be noted that here we
have only performed a very rough treatment of the dipol®léimpteraction, and it would
be desirable to make a more accurate treatment offfeete of these terms. Also it should
be noted that the estimates we have performed here applyntowowing atoms, i.e., cold
atoms. If we include the motion of the atoms, i.e., warm atam Refs. [10-12], there
will be a reduction of these terms because the sign of thedctien will change in time.

In summary, stiicient requirements for the convergence of the series fotidjh
fields are , TN
K K K A
< 1, <]l — —x1, (7.4.4)
VNp VNp

and for the spin equation ficient requirements are

K K2 d
1, — <1, Zw/ 1,
NA < OD < K L'OD <
A 1
2
- 1.
“ \/yVL-OD <

By having many atoms and photons as well as a large opticéhdiées thus possible to
achievex ~ 1 without violating the applicability of perturbation thgo

(7.4.5)

The main idea in this work is to develop a perturbation sevibere we explicitly take
into account the reshaping of the light modes caused by tlaa @fiect of the interaction.
Let us for comparison compare with the series, if the me@ateof the interaction had not
been subtracted. For the Stokes operators the perturisatives is given in Eq. (6.4.4). If
we do not subtract the averageet of the interaction, the scalar part of the interaction
[the co component in Eqg. (3.1.4)] will give first order correctiomsthe field of order
k VNa/Np times the incoming field. Witthy ~ Np as it is suggested in Ref. [2], this term
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will give a factor of order unity fok ~ 1, and this therefore cannot be considered a small
term. For the calculation of the Stokes operators, howéleriwo large components in
the first order terms in Eq. (6.4.4) cancel out. The calcoitathay thus yield reasonable
result even without performing the more involved procedutescribed in this article, but
the validity of the procedure would be questionable. (Sompeements actually uses
Np > Na [10], where this problem may be of minor concern). Furtheenone of
the major limiting factors identified above, is the dipoipdale interactions. Thefiect
of this term is much more complicated to evaluate if we hadsuditracted the average
interaction, but the term certainly will be larger, becatlsinteractions in Eq. (A.6.1)
would include a non-vanishing term, and not just the quarflustuations. Again this
term would thus seriously question the applicability oftpdsation theory. In contrast
the present approach allows us to rigorously apply pertimbaheory in experimentally
relevant regimes.



Chapter 8

Conclusion

In quantum optics the propagation of light through an atomeédium is often described
in a one-dimensional approximation, where one completgigies the transverse struc-
ture of the beam and only considers the longitudinal propagaln this paper we have
investigated the validity of this approximation by devetapa full three-dimensional the-
ory describing the interaction. The challenge in this woak lheen to develop a theory
capable of describing the microscopic interaction withregke atoms as well as macro-
scopic €fects such as thefiiiaction of the laser beam caused by the refractive indexeof th
gas. In essence the theory we have developed here incluttethianicro- and macro-
scopic éfect by separating the interaction into an average part amdubtuation from
the average. In this formulation macroscopi®ets such as firaction are naturally asso-
ciated with the average part whereas the microscopic fltionsdescribe processes such
as the mapping of quantum fluctuations between light and atdtarthermore we have
shown that spontaneous emission from the atoms naturglyaasmas anféect caused by
the fluctuations associated with the point particle natackthe random positions of the
atoms.

Based on our separation into the average and the fluctuatiertsave developed a
perturbative expansion in the fluctuations. The advantdgiei®procedure is that it has
a wider region of applicability than a direct perturbativeatment. For instance in an
experimental setup an index of refraction of the gas jushgbaf the beam profile which
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often only has a minorféect on the experiment. On the other hand, such 'trivifees
may have a large influence on the theoretical calculatiomn& considers perturbation
theory based on the vacuum solutions to the wave equatiempdtturbative expansion
willinclude all the terms responsible for the reshapingeflbeam, and this may break the
validity of perturbation theory. On the other hand our tlygmerforms perturbation theory
on modes which are solutions to the wave equation includiegridex of refraction of
the gas. Our theory is thus applicable even for situationsrevthe beam is considerably
distorted by the refractive index of the gas.

A major motivation for this work has been to investigate ttadidity of the one-
dimensional approximation in the description of the expents in Refs. [10-13]. In
Chap. 7 we explicitly considered some situations where weédcoeduce our general
theory to a theory resembling the one used to describe thggziments in the one di-
mensional approximation [2,29]. To achieve a simple dpsiomn resembling the previous
theories, an essential requirement is that we are in theighegpproximation. If we are
not in this limit, the polarization of the light change asgtepagate through the ensemble,
which complicates the interaction with the atoms. Furtreenfor the particular interac-
tion considered here, we also find it to be desirable to be ggare where the Fresnel
number is much larger than unify > 1. In these limits our theory essentially reproduce
the results of the simple theory. The onlyfdrence is that instead of the vacuum mode
functions, the mode functions appearing in the theory shmpresent the modes, which
are solutions to the draction problem including the index of refraction of the gas

In the present work we have mainly focused on developinghkery and deriving
how the usual approximations arise from our more complicapgroach. The theory is,
however, fully consistent and thus capable of including ligyer order corrections not
previously included in the theoretical description. Intmardar it could be interesting to
study the &ect of light induced dipole-dipole interactions. While bygrocesses may not
be relevant for understanding the current experimentgy, ity play an important role
in future experiments, e.g., with Bose-Einstein condesssavhere the density may be
fairly high. Another interesting extension of our theoryttbbe to study dterent types
of interactions such as for instance electromagneticattyced transparency [21].
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Three-dimensional theory for
Superradiance
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Chapter )

Introduction

The field of quantum information and quantum computationregoadly growing research
area. Along with elaborate schemes and ideas for realizimgntym systems, follows
the need for understanding the details of such systems. pémgsr is motivated by a
proposal [35] to use an ensemble of Bose Einstein condensatsdBEC) as a gener-
ator of a beam of stimulated Raman scattering (SRS), or sgtiation entangled with
atoms in the BEC. The idea is to utilize entanglement praggedf such superradiation
and momentum classes of atoms in the condensate. Whiley$tesns shows promising
properties, its full potential can not be estimated withedetailed description of the full
three-dimensional structure of the superradiated beara.eXperimental history of SRS
goes back to 1962 where th&ext was first observed [36]. A theoretical explanation in
terms of a photon rate equation was given in Ref. [37]. Muchkwas been made on
the theory of superradiance e.g. [38—40]. Later Raymer aastdvski [3] developed a
microscopic quantum mechanical theory of SRS. The impodi@p was to identify the
mathematical description of the spontaneously initiatadtering process, as it involves
the coupling of a radiation field to internal energy tramsis in the gain medium. In
1985 Raymer and co-workers [41] generalized the theorydo miclude certain three-
dimensional properties of the propagation of light in thengmedium. Common for these
theories is that they are developed under the basic assamipdt the region in which this
SRS process happens is defined by the properties of the latbanktime and space. Thus
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figures of merits are the width and temporal shape of the lakerh is driving the SRS
process. The experiments exploring the SRS process hangathaince then [42—-44],
and much more attention is given to systems where the terhpodaspatial shape of
the laser have long surpassed the spatial geometries aporainproperties of the gain
medium. Here we develop the theoretical framework that kessals to address questions
such as how the Fresnel number and the optical depth of thengadium &ects the tem-
poral behavior and spatial shape of the generated supeticac® What is the threshold
for this stimulated process, and when can we say that theesedtradiation is dominated
by a coherent beam of light? The last question refers to tp&cability of a BEC for
realizing and utilizing entanglement properties of the $i*8m, and momentum classes
of the BEC. Some progress have been made on such questianly imavever on a nu-
merical basis [45,46]. One of the common strategies useedoribe SRS is to look at the
dipole interactions between typically some thousand atanasrephrase the interaction
problem into a linear dierential matrix equation which can be handled numericalhe
computational power therefore sets a limit to the numbentaia that can be included
in the simulation. This on the other hand means that theasatalability of the atomic
ensemble is limited. Based on these theories there is adfearunderstanding of the
SRS process in the limit of very large gain medium as well adapposite limit of a
very small gain medium. In this paper we will look at the im@diate case, based on a
generalization of the methods used in [3].



Chapter 10

Equations of motion

In the electric dipole approximation the Hamiltonian ddsag the system that we want
to analyze is given by

H = f{wp + H )P + Ha, (10.0.1)
D2 B?
He =5t o (10.0.2)
H = - iD(r,t) - P(r,1) (10.0.3)
€0
Atom o
Ha= > > Elohy (10.0.4)
i n

whereD is the displaced electric field is the magnetic field an@ is the atomic po-
larization. The operatoaﬁ-ﬂ',n = |n){n| is a projection operator for thgth operator, and
El is the energy corresponding to the stgle We choose to use the displaced electric
field and not the electric field for reasons discussed Chag.h& choice however does
not influence the result of the analysis. Here we have ignamngddirect interaction be-
tween the atoms, e.g. atomic collisions. As we shall oftekemaference to Ref. [3], we
shall try and match the constants and the dynamics of ouesyt the system presented
there. The Hamiltonian is also chosen such that resultsaetem Part Il can be directly
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i\% . )
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Figure 10.1: Atomic level structure. Two stable groundestfty and|2) are coupled through an exited
state|3). We assume a strong classical lases-tfpolarized light, slightly detuned from resonance with
atomic level2) and|3) by A. The laser therebyfiectively drives a transition from levi) to |1). The
radiationws connected to the transition froj®) to |1) describes the Stokes field, that is analyzed here.

incorporated. In the following section we will focus on thendmics of the atoms.

10.1 Atomic dynamics

The macroscopic description of the atomic ensemble is diyethe polarizationP(r, t)
which again is the sum of the individual dipole moment of ttanes.

Atoms

Pt = > > 600 = 1)damohf®), (10.1.1)
j  nm

where the time dependent operadrdrn(t) is the operatomn)(m| taking thej’th atom from
state|m) to state|n), and the dipole moment &,,, = &(n|rm) In addition we assume
the atoms to be identical with an energy level structure shiowFig. 10.1. We assume
the two levelgl) and|2) to be stable ground states hence a transition between these i
forbidden. For the chosen atomic system we assume thatahsition from leve|l) or

|2) to |3) increases the atomic angular momentum by one urit ahd that there are no
other states that the levi@) can decay to. This means that the only non-vanishing vector
components of the dipole moments are= (e + &,)/ V2 for positively oscillating terms
ande’ for negatively oscillating terms.

We employ the Rotating Wave Approximation (RWA) and adiaiazdity eliminate the
exited level|3). In this process we split the radiation fidldinto its positively and neg-
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atively oscillating parts, and extract the strong claddiedd D oscillating with a fre-
quencyw, from the weak quantum mechanical stokes fidldscillating with frequency
ws. We will assume that the strong classical field is constaat the region of the atoms
and can be written as a plane wave with a constant ampliﬂgi’e: |Dgle i#ste, . The
presence of the strong classical figl, induce a Stark shift of the atomic levels. The
effective Stokes frequenays is therefore given by

031’1 Dl

st oy (10.1.2)

We shall in general assume the shift to be absorbed in theti&diof wg, the observable
Stokes frequency. We define slowly oscillating operatoth bar the atomic operatar,;
and for the stokes fiel®

5'12(t) :O'lzé(ws_wl‘)t (1013)
D) =pHgwst, (10.1.4)

For large detuning and weak fields we can adiabatically elte the exited state, and
obtain an &ective ground state equation of motion.

d . “ia, .
G710 = Eo—h(agz — ol )DgIB (1. 1), (10.1.5)

where the constantis given by

d32d§1
= 10.1.6
hEOA ( )
The positively oscillating part of the polarization is inglapproximation
PO, 1) = ) alDele,dl,05(r 1)), (10.1.7)

I

The negatively oscillating paR™)(r, t) is found by Hermitian conjugation.
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10.2 Field equation

The equation of motion for the electric fiel2(r, t) is given in general in Eq. (5.1.1), and
reads for our simple system

DY(r,t) = D§(r, 1) + Z f dt PO(r, tr ) - eaDyld)(t), (10.2.1)
j

whereDy is the unperturbed field containing the vacuum Stokes fiettitha classical
laser-field, and®P™ is the propagator. The coupling between lg2gland|3) in principle
giverise to an index of refraction. As shown in Part lll, sachindex of refraction should
in principle be incorporated into the propaga®t. In the limit of large detuning (but
fixeda D), we can however neglect this, and will do so in the followiige propagator
in the slowly varying approximation is in Fourier represgian given by

— k2e|k(r r')
Pt = d*k e 10.2.2
:)=K [ 3, oy (102.2
where thek-integral is understood to include only the contributiomresponding to the
retarded Green function. Here and in the remainder of thikwa will measure the
spatial coordinates in units &€, which gives the factor ok® and a pole at 1 in Eq.
(10.2.2).

Inserting Eq. (10.2.1) into Eqg. (10.1.5) gives us &ire&ive equation of motion for
the atomic operators,

d.. r_. »
G010 = 50 + ) M0 + Fi), (10.2.3)
J'#]
where
a3 Dy?
[=— 10.2.4
37r€oh (10.2.4)
Fi(t) _—hD(”(r,,t) e DL(0), (10.2.5)

=3ni
Mjjr = @

e - P“’(r,-, r)-e. (10.2.6)
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We have in addition made the approximatiof—o11 ~ 1, where we assume that initially
all atoms are in statR) and that the experiment takes place on a timescale such éat w
may neglect depletion of this level. To derive the deCaye used the identity

€ P (r,-rj)-e+:6—,
7T

(10.2.7)
which is discussed in Part Il as the infinitely short progagarlhe dfective equation of
motion for the atoms, Eq. (10.2.3) is the starting point imgnanalyzes of superradiance,
Ref. [3, 45, 46], but also in more general analyzes on the looypetween atomic spin-
excitations and collective emission of light, Ref. [47].dar analysis we neglect th&ect

of the source ternhf,- in eq. (10.2.3), as we are eventually only interested in oméag
(DODMY. It can be found from Egs. (10.2.1) and (10.2.3) that tfiect of the source
termF; leads to a contributiotD{’D{") to the measurement. This contribution vanish
as we assume that the Stokes field is unpopulated, i.e. itheimacuum state. We also
assume that there is no classical noise in the laser $igldWe shall also be interested
in defining creation and annihilation operators for the aonfhis leads in general to
nonlinear equations, but under the low excitation appraxiom, that iScréz - o-il ~1lwe
employ the Holstein-Primakbapproximation and simply use

A

b =0, bj=0a (10.2.8)

so that

[61,6}] = 0jjr. (10.2.9)

The dfective equation of motion for the atoms is then given by

d Rt F"T .
500 =-3b/®+ ; M5B}, (1), (10.2.10)

and for the field Eq. (10.2.1) gives

D)(r,t) = D{(r,1) +Zfdt’ |§(+>(r,t|r,-,t')-e+a|z)c.|6}(t). (10.2.11)
j






Chapter 11

Going from discrete to continuous
system

Now we will be interested in treating Eq. (10.2.10) as a cardus equation. This follows
the fact that for a atomic gas we do not know the individualtpmss of the atoms, thus
an expectation value of a physical operator has to be acauiethhy a spatial average of
the individual atomic positions. We therefore define thesttgrdistributiono(r),

5(r) = Zd(r —r)). (11.0.1)
j

After a spatial average of the position of the atoms in theeride the density distribution
o(r) can be described by a Gaussian function.

_2 2
B()sa = p(r) = poe ** 1. (11.0.2)

We will assume that < o, < o and alsoo? > o where spatial coordinates are
measured in units d;. We then define the normalized continuous operator

. 1 .
b(r) = N0 Zé(r —1})b;. (11.0.3)
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This definition leads to the standard commutation relationsuch continuous operators,
[b(r),b' ()] = &(r — ). (11.0.4)

From the definition of the continuous operators Eq. (10.2ca@ be written as
—bT(r t) = fd3 Z M(r ') \/p(r)bi(r', 1)
_ 3 p( ) ’ ~reNhi (v’
= | d°r fM(r,r )v/p(r)b'(r’, t)

fd3 > 1) =P e ey ), (11.05)
R L20)

The lowest order spatial average is found simply by makingatial average of Eq.
(11.0.5). In Chap. 6 we considered higher order correctommsing from such a spatial
average, and showed how fluctuations in position give rissptmtaneous emission and
dipole-dipole &ects. Here we ignore thesffects. To lowest order in the spatial average,
the first term in Eg. (11.0.5) describes the meéliea of the atoms interaction with
each other, that is when averaged with respect to their ichall positions. The second
term gives then a decay describedIhwhich is independent of the interactions between
atoms. Thus dressing the atomic operators with respecttddbayl’, ignoring the source
termF and the point-particle corrections, thieetive diferential equation describing the
excitation of the atoms is after spatial average then giyen b

—bT(r t)_fd3 r Vo()M(r,r") vo(r)bi(r', 1). (11.0.6)

Similarly the field equation (10.2.1) can be described imteof the continuous operators,
and one find

D(r,t) = D{(r,t) + al Dy fd3r’F?(+)(r,r’) Vo(r') - e.bi(r’,1) (11.0.7)

In the following we will find approximate solutions to the aleoequations.



Chapter 12

Diagonalizing the interaction matrix

The system in consideration is assumed cylindrically sytmmevith a density described
by Eq. (11.0.2). We shall therefore use a cylindrically syetnc set of basis functions

for our diagonalization: a combination of plane waves andsBefunctions. We denote
the basiq fymn} Where

V2

fkmn(r, Z @) = 2 )

garimog o Ty (12.0.1)
ac

Jn is the Bessel function of first kind of orden, X, is then’'th zero of them'th order

Bessel function of first kind. The parametglis a cut-df in the radial direction, meaning

that our basis is complete on the interva [0, a;]. We work with a cut-df in the radial

direction and not in the-direction due to the assumptiery > o, The inner product

defined for this basis is therefore given by,

21 00 ac
() = f do f dz f dr 6°(r,2 ) (1. 2 ). (12.0.2)
0 —00 0
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Im

Figure 12.1: Sketch of the integration cont@yr, in the integral representation (12.0.5) of the Green
function.

For a discussion of this basis see e.g. Ref. [48]. The matriixy the continuous case the
integral kernel, that we wish to diagonalize in the b&$is,} is now given by

M(r, ") = 3’”F C PO, 1) V() - e, (12.0.3)

The propagatolg“) is found in a real space representation in Eq. (A.4.5). Ongfrom
the real space representation of the propagator show that

élf r'|

— _ 13
e:‘_ . P("‘)(r, r’) -6, = —( 2 ) (1204)
8r

The polarization ffects are included in the fiérential operatoF? + 42. In addition we
use that the Green function can be written as [49]

Ir—r’|

ilr—r’| i . N
€ _ 12 Z dhdmé-¢)+h2) 3 Mk)HﬁP( V1-har.), (12.0.5)
m YC

wherer. (r.) is the minor (larger) of andr’. C, is describing a curve essentially going
from —co to oo along the real axis but shifted to avoid the branch cut and pid the
retarded Green’s function, as shown in Fig. 12.1. By intodag an integral, the non-
trivial product of Bessel functions in Eq. (12.0.5), can pmmetrized [50]:

In(V1-h2r JHO(V1-hr,) = %fxdx%. (12.0.6)
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The propagator is then given by

e - PI(r,1')- e, :EZ f dh f xdx1+—hzeim(¢‘¢"”h(z‘z)Jm(xr)Jm(xr’).
82 21 Jo, 2+ he—1

(22.0.7)
In the basig fymn} the diferential equation (11.0.6) can be written as
dt B = > MET B, (12.0.8)
K
where
ME e = fiemr(DIM T fiemne (7)), (12.0.9)
and
kmn(t) <fkmn(r)|bT(r t)> (12.0.10)

When calculating the matrix Eq. (12.0.9), we have to makegrgls overr, z and ¢.
We can at this point simplify the radial integrals by extemdihe upper integral limit to
infinity. This is correct since the cutffca, can be chosen arbitrarily and as we in the end
be will set it to infinity. The governing parameter is therefthe density function which
has a finite widtho-, . The following results found in Ref. [50] is useful for magithe
radial integrals:

0 1 2_,2
f rdre‘“rzlm(ﬂr)Jm(yr) - = Jm(’B—y
0 2@’ 20/

Rela] > 0, Re[m] > —% (12.0.11)

and

frdre“er(ﬁf)Jm(w)—ie a m(
0

|argle]| < Z’ Rem| >-1,8>0,y >0 (12.0.12)
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After making the spatial integrations the mathikreduces to

, 2 8 O—J_(7n+yn/)
MK _5mm@ dhfxdxn(k Mn(k ~h)— l+h oie
-1 achml(an)erl(erT)
g ¥ Im(ZUlynX)Im(Za'Lyn/X) (12.0.13)
where
2 2
n(k) =—=e I, (12.0.14)
\/_

and where we have introduced the constint 3”p°r . We notice that both integrals over

x andh is bounded by Gaussian functions, and since we assume 1 we may make

a series expansion xandh of the function ¥(x? + h? — 1). We will be interested in a
series expansion of the integrals owxegindh only to the lowest order. Since we assume
thato, > o, i.e. cigar-shape, our lowest order calculation will tavate after first order

in 1/02. The integral oveh can to this order be approximated by treating the function
n(k — h) as a delta function. We show in Appendix B.1 that the intbgvar x to lowest
order in the variable o gives

2 m 2
MY =Gmmm(k — k’)% {Anmw i;_kl - 35';”5 (klztkl)z} +0[o%o*].  (12.0.15)
where
*(A+v2) '
LT etz 12016)
and
Ay Aot e PO (205 i) (12.0.17)

ang+1(an) \]m+1(er1)

The matrices\™, andA*y, are normalized such that for, — oo they reduce to a delta-
functions(n —n’).

We shall here and in the remainder of the article treat thetfann(k — k') as a delta
function. This approximation enables us to solve the sapéance problem in certain
limits, but it also imposes some limitations. In Appendix8Bve explore the limitations
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of the approximation, and show that when we look at the radight the approximation
gets worse when moving to the far field region, as well as indtge time limit.

In the following we take a closer look at the matiX', defined in Eq. (12.0.16). For
simplicity we will not consider the correction',, however the conclusions drawn in
the following holds for the correction as well. Thefférential equation concerning our
system with respect to the quantum numinar has got the form

Cau) = X ot (12.0.18)

We wish to take the limit, — oo. To clarify what this means let us write the matixn
the following way:

7'(2(7'2 2 2
AT = Ak EM 22 ez Kmt)

Im(ﬂ'zo-ikmnkmrf) V KnnKmrr (12.0.19)
where
2 1
—m
Bpy == (12.0.20a)
" T menxmrr erl(xmn)erl(xmrr)
= (_1)n+n/ for an, an — 0
X
Knn = = (12.0.20b)
mac
1
Ak = a (12.0.20c)

We thus see that when lettilg — oo, a transverse momentum naturally ariggs =
lima.— knn, @nd the discrete matrix equation, Eq. (12.0.18) becomegegral equation
over the transverse momentwq, , using).,, Akny — fdkm.

dgta(k"‘lt) = f dK, WA (ke Ky, )alKin, . ) (12.0.21)

It is evident that when using the limiting properties of thesBel functior,(x) the inte-
gral kernelA™(ky,, ki, ) becomes a delta function for, — co. We thus realize that the
effective one-dimensional result obtained by Raymer and Mesib[3] is exact for an
infinitely large atomic ensemble.
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Now we again include the correctiok'y;, to the analysis. Both matrices”, and
Al are real and symmetric and thus can be diagonalized. In Afip&i2 we show that
the two matrices commute. We can therefore choose a comnmarf seenfunctions,
{kan(r)} for both matrices. We define the unitary mattixthat transform our initial

basis{ fymp} to the basis given by the eigenfunctiofm(r)},
Fin(r) = Z Unp findr) (12.0.22)
p
Finally we will define a corresponding set of eigenvalues,
Ay = Z UnpdmrUnp (12.0.23)
and

AL = Z UnpAtUnp (12.0.24)

It is convenient in the following to change to this basis, vene™, andA'y, are diagonal.
We therefore write the Eq. (12.0.15) as

/10 1 + k2 /llmn 1 + k2 , -2 —
Z Unp kmp Un’p/ == {/lmnkz 1 - \/go-i (k2 ~ 1)2 6mm6nrﬂ7(k— k) + O[O'” ,O'J_4]

(12.0.25)
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Real space representation of the
electric field

In the following section we will, based on the eigenvaluelgsia of the atomic operators,
derive the real-space behavior of the electric field. Welghwaide the analysis into a
regime of small times where the dominatineet is spontaneous emission, and a large
time regime, where the dominatingect is the cooperatively emitted light, the superradi-
ated beam. To keep things simple, we mainly consider théreldeld at and around the
symmetry axis. In this regime the scattered radiation figlduficiently well described

by the vector componem(j) and the Hermitian conjugate, which can be seen from Eq.
(11.0.7) and the real space representation of the propaggtq10.2.2).

Let us first determine the electric field at the symmetry akigeeo timet = 0. In this
case the electric field is given by:

ADIC (- 2)% + e Ve
47rI . (r2 + (z2 - Z)?)%? Vo(r')b'(r', 0),

(13.0.1)

DW(rs, 0) =D(r s, 0) + f d3r’

where the indexs refers to being at the symmetry axis. To arrive at the aboseltre
we used the real space representation of the propaBaiay. (12.0.4) to leading order
in one over distance. This approximation is done out of comrece but is not strictly
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necessary. When making the calculations for the mode eipanéthe electric field in
the general modeB, we shall check that the limit — 0 exist and are given by the
expression, (13.0.1).

The analysis of the radiation field foe: O starts by inserting the unit,

1= f d3r’ f dk > Fianr)Finelr") (13.0.2)

into the field equation, Eq. (11.0.7). We then get the follgywexpansion of the electric
field.

D(r,t) = DX, t)o + f dr’ f dkzckmn(r)e«‘kmntF;mn(r')Bf(r',0), (13.0.3)
mn
where
Cxmr(r) :a|Z)C||fd3r’ej-I§(+)(r,r’)-e+ Vo) Fimdr’), (13.0.4)

the functiond~¢n are the basis functions given in Eq. (12.0.22), and the gajaaAmn
is given in Eqg. (12.0.25).

The calculation of the modefunctiolgq, is initiated by integrating with respect to
the spatial coordinate. The integrals involving Bessel functions are found in ¢0]
or (12.0.12), and one arrive at

al Dk yoo(1 — 82) gme+ilkey)z V2Jm(xr)
Cundr) === [y SO I s P

2
ZO-LO-” e—O'ﬁyz—O'

7 L9 (20%y,pX).  (13.0.5)

The next step of the calculation is to include the mode sunomatWe will therefore
define the propagatd*) given by

PO(r, 1 t) = f dk > Cumlr )& Fin(r). (13.0.6)

We notice that the variablein Eqg. (13.0.5) is small, as it is controlled by the Gaussian
function ofo. We shall therefore by a translation of the integral vaeg&bk k+y move
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the perturbatiory to the eigenvalu@ym,, So that we uséy _ym,. This choice ensure that
we will get the correct behavior of the integrals in the liti¢ 0. This way we can in
principle make thé’ integral by using the series expansion of the funcébr', where
the zeroth order term in the expansiortiis the limit given by Eq.(13.0.1). Though in
principle thek’ integral can be made using the series expansion of the expaheve
shall follow the path used by e.g. Ref. [3].

In the following we make a series expansion of the eigenvalug,, given in Eq.
(12.0.25) with respect to the variabte

O Y RS S M LS
MM -y)2 -1 yBo2 (k—y)2 - 1)
1 k2 +1 K2+ 1
%I— (/lmnm + Zﬂmnm) . (1307)

The series expansion can be done sinceythegral is bound by a Gaussian function.
To shorten notation we have substituléd— k, and introduced the céiecient up,, =

1
Amn

In Eq. (13.0.6) thé-integral includes a pole

1 1
H .
K+x -1 2VI-3(k- VI-)

where the arrow reflects the fact that we are only interestéts retarded Green function,
which correspond to the pole= V1 - x2. Since we are particularly interested in this
pole, we shall in th&k-integral in Eq. (13.0.6), make a translation of the eig&rwa
Akeymn = Ay, viseme @Nd then a series expansion similar to Eq. (13.0.7). We can
make the calculation with two flerent situations in mind, one situation explains the
spontaneous radiation originating from a sample of atomsoafie geometrical shape.
We are most interested in the other situation describingctilective emission or the
superradiance occurring when the atoms co-radiate. Asckdi®ur formalism we shall,
however, also consider the short time-limit where thereiss §pontaneous emission. We
expect that as time evolves the superradiating mode wilbimecthe dominatingféect.
Therefore we demonstrate where the superradiatiiegtels found and described in our
mathematical treatment of the problem.

(13.0.8)
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Let us first show how the important steps in the calculatiosugferradiance is done,
before going into the full details. The integral appearimghie calculation are of the type

eﬂk —ymni+ikAz
I (t) = dk——— 13.0.9
O =5 [ (13.09)
whereAz = z— Z. For now we consider the lowest order correction for sinmjthat is
we negleclmnin Eq. (13.0.7). Includingi, to the eigenvalue is a trivial generalization.
We focus on the pole in the integrallat V1 — X2, as this pole describes the energetically
allowed scattering processes. We will here and in the faligvassume\z is large, thus
by introducing the variable = iAz(k — V1 — x?) the integralZ} can be written as

) S+iAz VI-x2+ AmiAz

oo e %iX—ZA—Z

1
791 = i— ds , 13.0.10
O =1z i 2V1= s ( )

where the superscript 0 indicates that this is a zeroth ardleulation in the correction
to the eigenvalue due to finite size. The superradiant dasttan to Eq. (13.0.10) comes
from the pole of the exponential. In order for this pole totrifmute to the pole describing
the propagated light, that is the zero point of the denoromahe term%AZ has to be
small. For* “Az - 1 we shall treat it as a perturbation. When this no longengpipé pole
in the exponent can be neglected, and we are thus left withethdt for short times, i.e.
spontaneous emission. The latter is analyzed in the fatligwection, and we shall for
now concern ourselves with the superradiant contribuEBince%AZ < 1 we can make an
expansion in this quantity and obtain

. q
_ e o |x2Az (~2itumAZ)" 1 st
0 4=0

The integral may be found in Ref. [51] and we find (Here we idelthe correction to the
eigenvale in Eq. (13.0.7).)

J ( W)HZQ . (13.0.12)
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13.1 Shorttime limit

In order to understand our calculation of superradiancefinstanalyze it fort = 0, as

we know how the propagator for= 0 looks when measured at the symmetry axis. The
t = 0 regime is also met fo¥‘22AZ > 1. We shall therefore also refer to this calculation as
the short time limit. Here we find from a residue calculatiap EL3.0.9) to give

iei\/l—szz
2V1—x2
Let us therefore return to tHeintegral fort = 0 in eq. (13.1.1). By inserting this into the
propagator in Eq. (13.0.6), the propagator may be written

aD 3 1-62 2 2émA¢+i V1-x2Az
PO(r,17: 0) = Z | DK f( 7) fXdXZ UnUns iod y
pp

1,(0) = (13.1.1)

mn Y, 1- X2
In(X0) In(yp F) (252 ypX) —oi(y%+x2)—4{—%
a%‘Jm+1(xmp)‘Jm+1(xmp) '
(13.1.2)

The only dependence on the mode-inadsg in the product of the two matrices, U,y

and the sum oven reduces to a delta functiafyy. We then make identification similar
to Sec. 12,2[% — f% for a. — oo. The variabley, is in this sense fixed, thus letting
a. — oo has to be accompanied B,, — c. Therefore we can use the large argument
approximation for the Bessel functions,

[ 2 mr
mn

Using this we can make the integrals oygrandy,. The result of the mode summation,
eq. (13.0.6) is then

alDylkS \/p(r')(1 - 6?) . igl Vi@az
P(+) r, r’; 0) = 4 e,mAq) fXdX—'Jm Xr 'Jm Xr’ 13.1.4
(r.r";0) o ; = 0D I0T) (13.0.)

This is the main result of this section. To verify the valddf the approach taken so
far, we shall now show that the propagator Eq. (13.1.4) redliic the one used in Eq.
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(23.0.1) on the symmetry axis. In order to show this we wi# tfee summation theorem
for Bessel functions, see e.g. [50],

D @™ n(x1)In(x1') = Jo(xR, (13.1.5)

m

whereR = /r2+r2 - 2rr’ cos(A¢). This way the propagator in Eq. (13.1.4) can be
written

aD. 3 [o(r (1 - (92 i V1-x2Az
P®(r,r’,0)= Dalks ';(T X )f XX N JZ(XR) (13.1.6)
X

The x-integral is known and may be found in Ref. [51], to give

—alDalkS Yp(r')(1 - 7)) eVR+az

P(+)(r,r’,0) — . (1317)
8 VRZ + AZ
Finally thez differential give us the result we are looking for.
aD 3 r’ | VRR+AZ lRZ + AZZ
pl(r. . 0) = 2l V() € 2 (13.1.8)

4 VRZ2 + AZ2 R2 + A2~

When we then look at the symmetry axis, the variddleduce ta’ and we are left with
the result in Eq. (13.0.1). The result of this section can bdem as

D (r,0) =DM (r, 0) + f & PY(r, r’; 0)bf(r’, 0). (13.1.9)

13.2 Finite time, build up of superradiance

In the following we shall analyze thefect of the eigenvalues,, and Al in the expres-
sion (13.0.12). When we introduce the eigenvalues in Seavel@nly concluded they
could be found. We also know that physics connected to treneajues can not depend
on the cut-& a. involved in the index. In the following we show that indeed the physics
is independent of the cutfioa..To find this result we shall in particular look at the sum
>0 Unp AN Uny where the powersl andM are zero or a some positive integer. [The
powersN andM are connected to series expansions of functions involViagigenvalue
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Amns €.9. Eq. (13.0.12)] The eigenvalugsg, and Al are related to the matrices;, and
Alr;p, in Egs. (12.0.23) and (12.0.24). This enables us to carryheutalculations in the
limit ac — co. Let us generalize the matricag, andAlg‘F, defined in Egs. (12.0.16) and
(12.0.17) to

— 2

AT (O-J_z) ~ 4o %€V (792+7p’2)|m(2(|7\|l27p7’p’)
PPN N &:2Jm(Xmp) Im(Kmp) ’

(13.2.1)

i.e. (12.0.16) is th&\ = 2 limit and (12.0.17) thé&l = 1 limit. One can then show that

M
M o2
M N — M-s(_ g 2\=SA M L
zﬂ:unpumnﬂmnunp = Zsl( . ]y (—40%) App(Z(N VI S) (13.2.2)
This result along with the appropriate series expansiométions involving the eigen-
valuesin, and A}, can be inserted into the result for the propagator Eq. (63.and the
resulting sum over indiceg andp’ becomes of the form

ZJm(7p’r’)lm(ZO-J_Z’)/pX)e_U-LZ(XZﬂIpZ) m O'J_z 1 N

Nopl ) = e w2y (xr), (13.2.3
op ac?Jmi1(Xmp) Im+1 (Xmp) pp’( N ) 4o ,2 m(Xr). - ( )

whereN is an integer derived from Eq. (13.2.2) and the before maeticseries expan-
sions. The propagator Eg. (13.0.6) can therefore be widtsen

alDy kS po(1 — 62 i
P(+)(r, r/; t) = Z | cllks f( z) fXdedy%e_UzyzHyz Z UnpUnP(X
pp

mn
In(4) Inr V202 ypH) 230525
ang,Ll(xm p) \]m+1(Xm p)

_ ia| Dk \/sz f \/ngX @AdHAz g (xr)Im(Xr’)X
m 0

Ar
|+2q(2 V e_zr"/_% ﬂotAZ)
(N e_z%zomz)”zq

A2 M T

% i(ix?z)l (If/gizz)q 1.2 (13.2.4)

1=0 g=0
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N

Figure 13.1: A sketch of the coherent build-up of radiatioamn atomic cloud. | principle the build-up can
happen along any direction, however for a cigar-shaped gigrsuch as this the most significant build-up
happens along the cigar.

where
’2
q EM/2) — 7 (a+n) . o\N
e “i —4io
oYr’,Z) = L (~od)sZ™* 13.2.5
2 ; ; (CI—n)!(n—ZS)!s![ o ]( 7 ( )

We notice sincexX?Az)/2 < 1, that choosing the variabl&z large means that the sum
over| will converge very fast. Choosing the varialble large can be done by placing
the detector plane far away from the sample, in which case Mealk about a far-field
calculation. Unfortunately the sum ovgrconverges more slowly wheanz is larger,
and as discussed in Appendix B.3 we can not quite rely on atialimpproximations
[n(k — K) =~ 6(k— k'), see Sec. 12] for largkz. We shall therefore consider the problem
in the near field region. The limit/2/Az in the x-integral we shall on the other hand
approximate with the valug/2/L, whereL = V2ro is the dfective length of the atomic
ensemble. This approximation will become better at latees, since the coherent build-
up is essentially described by the modified Bessel fundtign2 v2,Azt) which in time
will dominate for large values afz. In Fig. 13.1 we illustrate the physical significance of
the integral ovel, which represents an integral over transverse momentunsed@/¢hat
as we include more light from deviating angles, this radiathas a shorter region over
which it can build up, and as the build-up is exponential i bild-up length, the error
made by the cut4d L becomes relatively small. From the propagator Eq. (13thd)
electric field can be written, similar to the spontaneousiyted radiation, Eq. (13.1.9),
as

D(r,t) = D(++)(r,t)0+fd3r’ PU(r, r’; t)b(r’, 0). (13.2.6)



Chapter 14

Intensity and the correlation function

In this section we consider the electric field, and assumenb@lace a detector in a plane
at some positiorz, after the end of the atomic sample. Then we define the caoelat
function as a function of the radial coordinatand of timet

2
hEo ks

c(r,r',t) = f de(D (20,1, ¢, D (20,1, 6, 1)), (14.0.1)
where(-) is the quantum mechanical average. The normaliz%&nis chosen such that
the number of photons in a pulse is given by

Np = f dA f dtC(r, r, t)k2. (14.0.2)

Inserting the propagator in Eq. (13.2.4) allows us to descsuperradiance, while the
propagator Eq. (13.1.2) gives the spontaneous emissiahéot times. We shall be most
interested in the super-radiated light, but will also fomg@arison examine the sponta-
neously emitted light. First we present the correlatiorction describing the superradia-
tion, when measured in a plane at the end of the atomic saplanportant Parameter
below will be the Fresnel numbér which we define byF = "—Li We shall in general
assume the Fresnel number to be large, in particbilar 1. In the integration over’ we

101
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will use the following substitution

fdz’e (- dz’ where L = V2ro. (14.0.3)

This way the correlation function can be calculated to give

qq

{ _'y ('y ) (\/__'?)q( \/_75) (8inF)"(=8inF)" x

m  Igk nn’
'q’k

r r. _ y+y’ o7
4 / / y
Im(VY o )Im( VY o. Je Z2cK)ararinin Im(_2+2(k_+k’)+_;,+_q’_+n+n’ )X

rakn (AotL)krkard
Xigkn k(1 + 2q + K11+ 29 + K)! [
(14.0.4)
where
E(n/2), n- 2s, (_1)Q+Q’+S+s’(27r)—s—s’
rgKn B('/2) 28 2((q—n)!(q/—n/)!(n—ZS—Q)!(n/—25’—Q’)!s!s’!Q!Q/!) 14.0.5
lgkn ; 5o A+ Q+Q kK +1+1 +2(q+q ) 2+ 2(k+K )+ +n+17) (14.0.5)

This is the main result of this section. We notice that the @atiables controlling the be-
havior of the correlation function is the Fresnel numierthe optical deptlpoL and time
measured in units of the singe atom scattering Fat€his follows sincelgtL = 3—2”p0L1"t.
From the correlation function (14.0.4) we also expect fastvergence in the indegy
and| as the Fresnel number increases. In the remainder of tleeante shall evalu-
ate the correlation function numerically. Even though ther@ation function involves
a double integral beside the large number of sums, we seashaé increase the index
k. K,q,q,n,n, they- andy-integrals will simplify. This follows since the argument o
the modified Bessel function decreases as the indigsq, ', n, n increases, we can
therefore use the small argument limit. Similarly the Gars$unction can be approx-
imated by unity. From Eq. (14.0.4) we see that the dominatngn in the sum ovek
will have a highelk when time grows. This means that the radial behavior of tlzerbe
simplifies and is due to the small argument description ofntloelified Bessel function
eventually dominated by thea = 0 mode.

In the following section we will examine the radiated lighitthe symmetry axis.
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The purpose is to examine the timescale on which there isssaver from spontaneous
emission to superradiance.

14.1 Intensity on the symmetry axis

Placing the detector on the symmetry axis is a nice simpliinaespecially for the spon-
taneous emission correlation function, since in that casenay use the result presented
in Egs. (13.1.9) and (13.1.8). Also the coherent emissigretation function simplify
since terms withm # 0 vanish at the symmetry axis. In the spontaneous emisgian li
t ~ 0 the intensity on the axis is given by

2 ) ’ Ay’ _zrl_i (%r’z + Azz)z
CO(O, O) = ks/loﬁ dAZfr dr e lm, (1411)
where we use the substitution in Eq. (14.0.3), and assum#étihdetector is placed at the
end of the atomic ensemble. Théntegral can be performed analytically and one finds

2
LI’2

2% (-13-11r> 19arctan(?)
e [ |
Co(0,0) =ksAoL | rdr 32 (1+r2)2 r

(14.1.2)

From Eq. (14.1.2) we find that the parameters controllingitibensity on the symme-
try axis is here the optical depth, and the relation betweendngth and the width of
the atomic ensemble. In Fig. 14.1 we show how this intensaty \as the relation be-
tween the length and the width of the sample is changed. Hetenathe following we
shall measure the correlation function in unitskéff. For short time the emitted light is
dominated by spontaneous emission. We shall now investitjyattime scale on which
superradiance begins to dominate the radiation. In the tiomeain where the radiation is
dominated by spontaneous emission, we expect that thdicadia being emitted almost
homogeneously in all directions. This statement is not detely true, as indicated in
Fig. 14.1. We thus find that the figure of merit for the spontarseemission is the density
the length and the width of the atomic ensemble, and not deigdse of superradiance,
only the Fresnel number and the optical depth. Thus on oaleoinpare the two time
domains, the spontaneous emission and the superradiaasg)iin the have to fix e.g.
the length of the system. In Fig. 14.2 we show the cohereratiad build up as a func-
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Figure 14.1: Plot of the spontaneous emission intensity(E1.2) on the symmetry axis for varying
width of the atomic ensemble. The intensity is measured its @i number of photons timég perTt. In
the graph we marked the point corresponding to a Fresnel aufmk: 4, assuming we fix = 100

tion of time. In the plot we also show the spontaneous enmssitere we have included
the self-coupling of the atoms giving rise to the defagescribed in Eq. (10.2.3). The
superradiation is calculated forftérent values of the Fresnel number. Time is measured
in units of ', and we have used a fixed value of the optical depth such that

Aol

2
L 10 or pol=22~212 (14.1.3)
r 3r

To compare the superradiation with the spontaneous emisgtohave fixed the length
L = 100. This parameter is only important when looking at thengmaeous emission.
Fig. 14.2 shows how one may increase the coherent radiatioindnce by increasing
the width of the sample.

14.2 Intensity profile

In this section we shall look at the spatial shape of the temtideaving the atomic en-
semble. Before we present the numerical calculations ®ctherent emission we will
look at the correlation function in Eq. (14.0.4). The spatieape of the function is mainly
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Figure 14.2: Plot of the time evolution of the logarithm o tihtensity of coherent radiation as well as of
spontaneous radiation when measured at the symmetry agiaot¢e the ffect of varying the width of
the sample, in which case the time at which the coherenttiadidominates change.

given by

F 7 )
r . oy
f dYI dme( WO_—)Jm(\/V )e 2+2(k+k/)+q+q/+n+n')|m(W%) (14.2.1)
0 0 L

g,

With increasing values &, k', g, g, n andn’, the exponential function can to a higher and
higher precision be approximated by unity. The modified Befssction of ordem can
for small arguments be approximated withmah order polynomial

(z/2)"

m!

In(2) ~ : (14.2.2)

From the argument of the modified Bessel function in Eq. (14.2e find that region
for which the approximation Eq. (14.2.2) is applicable igegi both by the number 2
2+ (k+kK)+qg+q+n+n and by the integration rangé. Eq. (14.2.1) indicates that
as time increases the dominant mode will be tthe- 0 mode for a finite sized atomic
ensemble. On the other hand we see that for an infinitely sitexhic ensemble all
m-modes will contribute. This is essentially the limit catesied in the one-dimensional
theory [3]. This theory applies to an infinitely wide samplels that all modes experience
the same dynamics. For a sample of finite width we see thatdtilating behavior of
the Bessel functiond,, gives a cut in the width of the beam scaling with approximatel
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re/o, ~ 1/VF. This cutr./o, will, due to the behavior of the Bessel functidp,
increase asnincreases. We thus see that even though the width of the eaminly
determined by the length of the atomic ensemble, the widthe&tomic ensemble plays
an important role as a wider ensemble supports higher ordelemthat are inherently
wider, thus in &ect a wider atomic ensemble will generate a wider beam. Fian t
expansion Eq. (14.0.4) and the small argument limit of thelifrexd Bessel function Eq.
(14.2.2) along with Eq. (14.2.1) we see that as time inciedse contributions to the
intensity from modesn # O will diminish. In Fig. 14.3 we show a plot of the radiated
power in three superradiating modes at tirae0. In Fig. 14.4 we use an atomic ensemble
with Fresnel numbeF = 4, and in Fig. 14.3 we usg = 8. The plot demonstrates how
the relative importance betweenflérent modes are changed as the Fresnel number is
changed. From the two plots in Figs. 14.4 and 14.3 that thyetahe Fresnel number,
the more modes corresponding to the numhean we fit in the system. In Fig. 14.4 we
see a relative maximum of the first order made- 1 at about 15% of the principal mode
m = 0, and the second order mode= 2 the maximum is about 3.7% of the principal
mode. When the Fresnel number is doubled in Fig. 14.3 thesders reads fom = 1
approximately 20% andh = 2 approximately 7.4%. These numbers indicates that for
an infinitely sized sample, all modes will contribute. Howeto conclude such behavior
we have to look at the total number of photons in each modes iBhthe topic of Sec.
14.3, and from the results derived there we indeed find thatamehave relatively more
photons in higher order modes as the Fresnel number is senlesE.g forF = 8 the
photon power in then = 1 mode relative to then = 0 mode is about 62% whereas for
¥ = 4 this number is reduced to 49%.

Next we consider how the time evolution of the superradiaati@s corresponding
to differentm changes. From the earlier discussion of Eq. (14.2.1) weatxpat the
relative photon power carried by modesdifferent from the principal mode = 0 will
decrease compared to the principal mode as time is incres€ts. 14.6 and 14.5 we
plot the radial distribution of the photon power at tifie= 1. We see that the radial
shape of the modes have not changed compared with the tiiteplots, 14.4 and 14.3,
however the relative maximal photon power for modes: 0 has decreased compared
with the principal moden = 0. Again we can look at the total photon power in each mode,
discussed in Sec. 14.3, and find that for the case of Fresnddenf = 4 the moden=1
now only contains 22% of the intensity carried in tne= 0 mode, and then = 2 mode
only 4.2%. A similar behavior is found for th#& = 8 case, though less pronounced, e.g
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Figure 14.3: Plot of the radiated power foffédrent modesn = 0, 1, 2 as a function of the detection
coordinate /o, . The plot is taken at the initial tim&t = 0, and demonstrate how the relative distribution
of radiation in diferent modesis changed as the Fresnel numigeis varied. In Fig. 14.4) we usg = 4

and here we usg = 8

c(r,r,0)/ @0

Figure 14.4: Same as Fig. 14.3 but with Fresnel nuriber 4
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Figure 14.5: Plot of the radiated power foffédrent modesn = 0, 1, 2 as a function of the detection
coordinate /o, . Here the plot is made at a time Bf = 1. The plot demonstrate how the relative
distribution of radiation in dferent modesis changed as the Fresnel numigers varied. In Fig. 14.4)
we usefF = 4 and here we usg = 8. When these plots, 14.6 and 14.5 are compared with thalitiitie

plots, Figs. 14.4 and 14.3 we indeed see that as time in@ghseevolution of the principal superradiating
mode,m = 0 is faster that the higher order modes.

the mode nown = 1 carries 35% of the photon power compared withriihe 0 mode,
and them = 2 mode it is 12%. Thus from the plots and the numbers presémeriwe
see the expected behavior of the superradiating modes astoreases.

14.3 Total coherent radiation.

Finally we will examine the behavior of the total intensifytioe coherently emitted radi-
ation. We shall in this section not only show tHeeet of the analytical calculations made
so far but also compare the result with an purely numerieattnent of the equations
givenin Eq. (10.2.10). The total intensity is normalizedtsthat it gives the number of
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Figure 14.6: Same as Fig. 14.5, but with Fresnel nurfber4
photons per second coming through the detector-plane.
2 rdr
0 = o [ e [ 900 Gor. .08 .0 (143.1)
s€0

To find the total intensity we use the result Eq.(14.0.4) amadterthe radial integral. To
do this we use the relation

f R (X0 I (XT) = 5()‘; X). (14.3.2)
0

derived in Appendix B.4. The total radiation is then foundbé&o

) =Sy 3 f W5 () =) () @y
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Yo W7 29+ T s 2q RS Inlmei )| (14:33)

In Fig 14.7 we show a plot of the total radiated power, Eq. 313). for the parameters
F = 4 and“® = 4 which correspond to an optical depth@l = £ ~ 0.85. Itis

interesting to notice that indeed the intensity in moates O evolves slower in time than
for the modem = 0. This can be seen by looking at the slope of the curves asaiteey
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Figure 14.7: Plot of the total radiated power measured inmemof photons, M, per decay timel't. We
use a Fresnel number &t = 4 and show three fferentmrmodes. We see that the principal mode- 0
has a slightly faster growth than higher order modes.

plotted on a logarithmic scale.

We now compare the result for the total radiated power wigteffective one-dimensional
calculation derived in Ref. [3]. The general assumptiorhi& dne-dimensional calcula-
tion is that the atomic ensemble is infinitely wide. This asption makes the problem
easy to solve in Fourier space, and when the transverse ntomémthe propagator for
the light is being neglected, the result for the total raztigiower is that all modes corre-
sponding to dierent transverse momentum gives equal contribution tootlaé tadiated
power. Thus the total radiated power measured in units ofbauraf photons per time
gives

IfM(t) = > aoLe™(13(2vA0Lt) - 122V AoL1)). (14.3.4)
Ky

This result holds some complications since there is a pniorupper limit on the trans-
verse momentum, thus taking all modes corresponding toaalksverse momentum into
account gives an infinite contribution. A derivation of suclmode description can be
found in Ref. [52]. Itis concluded in Ref. [41] that for a Fne$ number near unity the
radiation is dominated by a single transverse mode, andtheutotal radiation is finite.
We can also make a simplification of our result Eq. (14.3.3phbglecting all kinds of

finite size dfects in the eigenvalue matriff™" . We know this will be an oversimpli-
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Figure 14.8: Plot of the total radiated power calculated/foying Fresnel numbers. The solid lines are
calculated using the expression Eq. (14.3.3) for the pradehodem = 0, whereas the dashed line is the
Raymer Mostowski result in Eq. (14.3.5). Apart from a corogied behavior initially in time we see that
the total radiation for large times is linearly proportibttathe Fresnel number. This can also be seen from
Eqg. (14.3.3).

fication, the approximation however serves well when disitigsthe results by Raymer
and Mostowski in Ref. [3]. We also assurfie ~ 1, and use the approximation of the
modified Bessel function in Eq. (14.2.2). In this limit we fitigé total radiated power to
give

I7(t) = doLe™(1-e7%)(12(2yoLt) — 112 AoLY)), (14.3.5)

where we made the sum over We are thus led to conclude that for a Fresnel number near
unity, the simple Raymer Mostowski result correspond tdextng all spatial corrections

to the dynamic of the atoms and also neglecting spatial cthores to the propagation of
light out of the atomic ensemble. In Fig. 14.8 we compare ltheg-dimensional calcula-
tion of the total radiated power, Eq. (14.3.3) with the appration in Eq. (14.3.5). We
also analyze how the total radiation depends on the Fresmeber, and as can be seen
for large times, the dependence is approximately linearasiirel number. This may also
be concluded from Eq. (14.3.3). We also see that the Raymstaviski result is largely
overestimating the time evolution of the total radiated pow

In Fig. 14.9 we analyze how theft&rent corrections to the Raymer Mostowski cal-
culation dfects the total radiated power. We use an optical deppilat= g—fj and fix
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Figure 14.9: Plot of the total radiated power measured inbemof photons, per decay timig,/T". Here
we usef = 1. To demonstrate thefects of finite sized atomic ensemble, we show fotietent plots. a)

is the result completely neglecting geometridéets on the eigenvalu\él'j,’:‘r?n,, and the propagatd®*) as

in Eq. (14.3.5). In b) we include the correction to the eigdne coming from the termT . In c) we also
include corrections coming from the tem’rnmw, and finally in d) we plot the total radiated power as given

in (14.3.3).

the Fresnel number & = 1, as this is the limit where the Raymer Mostowski result is
assumed to be valid. Fof = 1 we can also from Eq. (14.2.2) and the connected dis-
cussion, approximate the sum over modess done in Eqg. (14.3.3). The curve a) is the
simple Raymer Mostowski result Eqg. (14.3.5). In curve b) wd the lowest order finite
size correction to the atomic time evolution described ey nratrix A7,. We see that
this does not change the initial radiation, however thedsup in time is much slower.
In curve c) we add the second order finite size correction ¢oeflgenvalue describing
the time evolution of the atomic ensemble given by the matd¥,. Finally in d) we
include corrections coming from the propagator descriltimegight as it exits the atomic
ensemble. These corrections describes the inclusion okmbadving finite transverse
momentum. We see from the graph that the total radiated pmwedeed increased by
this inclusion, but also that the correction is more sigaifitfor small times than for large
times. This has to do with the fact that the most significatitlbup of radiation happens
along the atomic ensemble, where the transverse momentgnasas indicated in Fig.
13.1.

Finally we compare the result of Eq. (14.3.3) with a purelyneuical calculation
based on the point particle equations Eqgs. (10.2.10) an@.1). To make such a
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comparison we need to connect the evolution of the atomicamtpxesB,-(t) with the to-
tal intensity of the radiated field. Based on energy consenvargument, the evolution
of the number of atoms in the ground state, is given exclishethe number of photons
exiting a boundary sphere enclosing the atomic ensemblksppendix B.5 we show that
this is indeed the case, and that the conservation law is

2
kShEo

f dQ DO(r,t) - DY(r,t) = Z{ Vij by ()b}, (t) + H.c.}, (14.3.6)
1

whereM; is given byM;;, + T'sj;;, andM;. is given in Eq. (10.2.6). When comparing

the result of Eq. (14.3.3) to the atomic evolution we havestoember that we are only

measuring half of the photons, since we only consider thesgon at one end of the

ensemble. Using that the evolution of the atomic operat@gaen by

d
D0 = Z M by (t) (14.3.7)

the problem of calculating the atomic sum given in Eq. (18).8educe to finding eigen-
values of the matridM;;.. In Ref. [47] is a discussion of this method, where the ingplic
tions of dealing with the non-Hermitian matri4;; is addressed. Let us denote the set of
eigenvalues to the matrid;j. by 1,, we find after taking quantum average of the result in
Eq. (14.3.6) that

2
kshéo

f dQ (DO (r, )DW(r, 1)) = Z (2o + 1)l 4 Hoel. (14.3.8)

n

We then find the total intensity from the point particle model

1 :
pp _ (An+ ARt
70 = 3 §n {(dn + 1)t 4 Hel, (14.3.9)

where we normalize with a factoy2 since we want to compare the result with the result
in Eq. (14.3.3). The advantages of making these calculgtionindeed solving the
problem of superradiance on a computer are clear. One atldgroblems of shifting
from the point particle model to continuous model, not to trenthe complications
involving the basis transformations in the continuous ca8éso the computer easily
describes the total radiated field and not only the stronggser-radiating mode as we
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have analyzed here. On the other hand the direct method isnatty heavy for a large
number of atoms, and we are limited b ~ 3000 atoms. To understand the behavior
at larger number of atoms it is therefore important to havaraalytical theory along the
lines considered here.

To make the numerical simulation we have randomly distedl8000 atoms with a
distribution function given by Eq. (11.0.2). After that theatrix M;; is calculated and
processed in order to find the total number of Stokes photgng®.3.9). We can then
by making a series of such realizations of the position ofateenms get some statistics
on the inherent noise on the point particle model. In Fig1l@4ve show the result of a
numerical calculation using parameters = 20 andL = V2z0, = 100, these values of
ensemble geometry and particle number match a valdf‘atof 45/8, or an optical depth
of poL = j—; ~ 1.19. That the two methods gives venftérent results for small times is
quite clear since initially the radiation is dominated bg 8pontaneous emission, which
is not included in the analytical calculation. In the curye ®e have plotted the total
radiated power where we have estimated the sum over nrmydesing the same principles
as for theF ~ 1 case. This approximation gets better at increasing tamdsshould
therefore be good when comparing the analytical result thigthumerical. In curve RM
we show the result in Eq. (14.3.4) for a single transverseaniod = 0. We show five
realizations of the numerical simulation where we vary thmher of particles but keep
the Fresnel number and optical depth constant. We see #natdpe of the analytically
calculated curve agrees reasonable well with the numéricalculated curve, however
guantitatively we still have a factor of about 7.5 to expldide also see from the curve,
that the conclusion that the superradiance only depend esnEl number and optical
depth is still an approximation as the nummerical calcataiindicate, at least in the point
particle model, this is not completely true.

We finally note that for the time-scale used here, the appration of neglecting de-
pletion is not completely justified, as the number of emiftedtons exceeds the number
of atoms already at the onset of superradiance. For the ngguriperradiance experi-
ments using Bose-Einstein condensed atoms e.g. Ref. [B3jumber of atoms used in
the process is factors of thousands larger than what we &&d@@humerically simulate
here, and then the approximation is much less severe.
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Figure 14.10: Here we compare the analytical result foraoked tadiated power in the superradiating
mode Eq. (14.3.3), graph SR, with the total intensity of gleirmode of the Raymer Mostwski result in
Eqg. (14.3.4), graph RM, and a numerical simulation of thaltoumber of Stokes photons in the point
particle model Eq. (14.3.9). To exploit the nummerical madefix the Fresnel number and the optical
depth, but vary the number of atoms involved. As the plot shihwere seems to be a dependence on the
atomic density that are not included in the analytical tieor






Chapter 15

Conclusion

In this paper we have developed a three-dimensional theoryuperradiance. We have
shown that parameters such as transverse momentum naturiséi when developing the
theory, and that the properties of superradiant build-wega cut-€f in the transverse
momentum, thus giving a finite theory as it should. In the thewe take into account
spatial €fects both regarding the dipole-dipole interactions amaoigna leading to super-
radiant radiation, but also the propagation of the light wieaving the atomic ensemble.
We derive a correlation function that describes the sudeatad light, and find that the
only parameter controlling this function is the optical trepyL and the Fresnel number
¥ . From this one can in principle make a mode analysis of tretrétdield. Here we have
considered the intensity of the superradiation. FirstiaCH 4.1 we made an estimate of
the timescale on which the superradiance begins to domihatspontaneous emission,
and found that increasing the Fresnel number has a positeeteln Chap. 14.2 we cal-
culated the radial distribution of radiated power in theesuapdiating modes. We learned
the the Fresnel numbér defines how many+modes that will contribute to the superra-
diance. For a larger Fresnel number more modes contribugeal¥d found that as time
increases the finite sizdfects of the eigenvalues (12.0.25) means that the photonrpowe
in higher order modes # O decreases relative to the principal made- 0. Again this
decrease depends on the Fresnel number. In Chap. 14.3 weethéthe total radiated
power in the superradiating modes and found that undericexpgproximations the one
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dimensional result derived in e.g. Ref. [3] agrees with tlee-dimensional calculation
presented here for Fresnel numBexr 1. We also showed that when including finite size
effects in the eigenvalue Eq. (12.0.25) the one-dimensionalledion overestimates the
total superradiated photon power. Finally we made a corapatbetween our analytical
results and a numerical calculation of the total supertadipower. Though we are op-
timistic about the method used in the analytical calcutgttbe comparison showed that
our analytical calculation only accounts for about 10% ef $hiperradiated power found
from the numerical calculation in the point particle model.



Part IV

Qubit protection in nuclear-spin
guantum dot memories
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Chapter 16

Qubit protection in nuclear-spin
guantum dot memories

An essential ingredient for quantum computation and lostadce quantum communi-
cation is a reliable quantum memory. Nuclear spins in sengiaotor nanostructures are
excellent candidates for storing quantum information.hditmagneton 3 orders of mag-
nitude weaker than electron spins, they are largely deedufsbm their environment.
They have long intrinsic lifetimes and the hyperfine intd@cwith electron spins allows
one to access ensembles of nuclear spins in a controlled Wiayp8]. In particular, the
guantum state of an electron spin can be mapped onto theanwsgas, giving rise to a
collective quantum memory [54,55]. Nevertheless, memiteiines are limited, e.g., by
dipole-dipole interactions among the nuclei. In this Lette demonstrate that the pres-
ence of the electron spin substantially reduces the deenberof this collective memory.
When df-resonant, the hyperfine coupling induces a dynamic Stafkgbportional to
the number of excitations in the storage spin-wave modes iEbiates the storage states
from the rest of the Hilbert space energetically and prstdwm against nuclear spin flips
and spin difusion.

Consider a quantum dot charged with a single excess eleasrionlicated in Fig. 16.1.
The electron spiis coupled to the ensemble of underlying nuclear spity the Fermi
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Figure 16.1:Left: Charged quantum dot with a single, polarized excess eledRight: Spectrum of the
effective nuclear Hamiltonian in the presence of a polarizedtedn. GF-resonant hyperfine coupling
between electron and nuclei results in a dgg, between the storage stale and the non-storage states
|1g). Ak denotes the Zeeman shift due to tlikeetive magnetic field associated with the electron spin
(Knight shift).

contact interaction,
Hir = ﬂZQj[ijéz + %(ﬂé_ + IA1§+)], (16.0.1)

whereA is the average hyperfine interaction constafitx 90ueV for GaAs, ang; is
proportional to the electron density at the position of jthenucleus}’; o; = 1. For con-
venience, we introduce the collective operatbrs i gjfj. The firstterm in Eq. (16.0.1)
provides an ffective magnetic fieldH = A(A,) /g ug for the electron, known as the
Overhauser field. The same also produces an energy shifadbr muclei, the so-called
Knight shift. The flip-flop terms in Eq. (16.0.15,c = 2(A,S_ + A_S,), can be used to
polarize the nuclear spins [56, 57], and to map the elerspin state into a collective
spin mode of the nuclei [54, 55]. As will be shown here, the sa@ian be used to provide
a protective energy gap.

16.1 Fully polarized nuclei.

We start by reconsidering the storage of a qubit in a colleatuclear state [54]. In the
simplest case when all the nuclear spins are initially podar in the—z direction (zero
temperature limit), thé )e and|T)e Spin states of the electron are mapped onto the nuclear
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spin states

|O>E |_I’_I?"'?_I>? (1611)
MEgA@xszLmi4+m”w4% (16.1.2)
j

respectively. Hic couples the stat@®)|T)e to |1)|])e With an angular frequencp2 =
A(Xj0%21)"?. The detuning between these two states; 5% + 6°H, comes from the
electron’s intrinsic energy splittingf' due to, e.g., an external magnetic field, and from
the Zeeman splitting due to the Overhauser fiéft! = —Al. Coherent flip-flops be-
tween the electron and nuclear spins can be brought intoaese § < Q) throughs®,
e.g., applying a spin-state dependent Stark laser pulde T3#n|0)(a|l)e + BIT)e) Can

be rotated to¢|0) + B|1))|l)e, and the quantum information can be transferred from the
electron to the nuclear spin ensemble and back [54, 55].

Assume that, after the qubit has been written into the nuttlei polarized electron
is not removed from the quantum dot but the hyperfine flip-flaps tuned to be &
resonantd > Q). Now real transitions can no longer take place betwdégn). and
10| T)e. However, the residual virtual transitions repel the twatest from each other, in
analogy to the dynamic Starlfect. As a result, after eliminating the electron, the energy
of state|1) gets shifted byAgap = —-Q0?/4s. The other, orthogonal states also having exactly
one spin flipped (denoted BY,) in Fig. 16.1) are “subradiant”, i.e., are not coupled via
Hc to the electron. Therefore, they are fieated by the Stark shift. This is the origin of
the energy gap.

To understand the protection scheme, let us introcdumdear spin wavesAs long
as the nuclei remain highly polarized, one can introducebigsoperators through the
Holstein-Primaké transformationa; ~ I1/ V21, a ~ [1/2I, andd 4 = [} +1. This
allows us to define the bosonic spin wave modes

%EZ%@, qEZ@@ (16.1.3)
J J

where the unitary matriy,; describes the mode functions of the spin waves. We identify
the storage mode = 0 as the one given by, = V21 2o, anol write|1>A:Ad3g|q>. :rhis is

the mode which is directly coupled to the electron spin. b, fid;c ~ %(CDZ)S_+<DOS+) isa
Jaynes-Cummings coupling in the bosonic approximatioterAdliminating the electron,
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Hic reduces toHgap = —LAA ~ Agag®iDo. As shown in Fig. 16.1Hgs, lifts the
degeneracy between states dfelient number of storage-mode excitations. This is the
key feature of our protection scheme: Any decoherence psaitat is associated with a
transition from the storage mode, to any other modé)q now has to bridge an energy
difference. If this energy gap is larger than the spectral witithenoise, the #ect of

the noise on the stored qubit is substantially reduced.

A more detailed analysis shows that th-@sonant interaction with the electron
spin—which itself is coupled, e.g., to phonons—leads inegahalso to an additional
decoherence mechanism for the nuclear spins. If the camnelspg electron spin dephas-
ing ratey is small compared to the electron’s precession frequéntye decay rate for
the storage mode is reduced by the low probability of exgitime electron spin state:
yQ?/6% < .

In addition to the gap, the electron is also responsible tier Knight shiftHx =
AALS,). The diference of the Knight shifts for thé) and|1) statesAx = -3 %0/ ¥ 0%,
is typically much less thany,, When the hyperfine coupling ishomogeneoyshow-
ever, |1) fails to be eigenstate of the Knight shift Hamiltoniahtc|1) = (—36°% +
A1) + £|11), where the stat¢l') is orthonormal tgl) and the coupling parameter
2= %2 20/ X0 - A% is directly related to the measure of inhomogeneities. As a
conseqguence, the storage mode is only an approximate eigienm@nd it gets gradually
mixed with non-storage modes as time passes. This causesflt®e stored qubitl*)
is, however, ff-resonant due to the energy gap, and our calculations streivthii corre-
sponding probability of finding the system in st#té) is always bounded by{&/Agap,
so the detrimentalfect of the inhomogeneous Knight shift is suppressed by tkeggn
gap. In addition, since the admixture|&f) is a coherent process, it can be cancelled by

refocusing methods.

A large gap can be achieved by bringing the hyperfine intenaciose to resonance.
For example, a non-zero external magnetic field or laserceduevel shifts [59] can
partially cancel the Overhauser field, such thak 6¢ ~ —6oy = Al. (Of course,d
should be kept sticiently large so that the hyperfine coupling remaiffsresonant). The
requirement of separation of time scales impljes [Agd < Q < |6]. It means that
the detuning should bé& > 10Q. To estimate the orders of magnitude of th&eatent
energies, we take an oblate Gaussian electron densityioftaf, 1/3), and we consider
spin-% nuclei. Thenitis easy to see thgt and/ are inversely proportional to the number
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of nucleiN, whereaf, Agap « N=2 only (Fig. 16.2a).

16.2 Decoherence suppression.

To analyze the decoherence suppression, we first considegsemodel where the nuclear
spins are coupled to fluctuating classical fields. The cpmeding interaction Hamilto-
nian is given bV = 3, Bi - 1. We assume isotropic Gaussian random noise with zero
mean value and correlator

B,(t)B(t') = 6., fCe ™" (16.2.1)

for u, v = X, y, z, wherefj specifies the spatial correlations of the noise acting fierdint
nuclei. For simplicity, the noise spectrum is assumed to teehtzian with a widtH",
although similar results hold for other spectra with a higdguency cut-g.

Let us first discuss théephasing partV, = 3 BiJ, of the noise. Using the bosonic
spin-wave operators introduced in Eq. (16.1.3) we can esgdtas

V.= Blaia =y ( > Blnmg ,-)cbgci)q. (16.2.2)
J Pq J
As apparent from Eq. (16.2.2), dephasing of individual eaclspins means transfer of
excitations between fierent spin-wave modes. Especially, it leads to both realvamd
tual transitions fronjl) to a non-storage staté,) (with q # 0). As the latter state is
“subradiant” and, thus, equivalent|t® when the memory is read out, this process essen-
tially results in damping (for real transitions) and dephggfor virtual transitions) of the
stored logical qubit [60]. This can be seen using the Markgpraximation by formally
eliminating the classical fields and deriving a master @quodor the density operator of
the nuclear spins, then tracing out all non-storage modes that, we assume that the
guantum memory operates in the zero temperature limit dnmbatstorage modeéqio
are in the vacuum state. This results in

d. .. _ sz .
pr = i[p, E,0{Do] + LAp), (16.2.3)
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with energy shifte; = (1 — F)CAgqp/ (I + A, and Lindbladian

Lp) = 7’1(2&)0/5&)8 - &géoﬁ ~ ﬁci)gé)o)
+ 7’2(2&)2)&)0/3(58&)0 - (i)g‘i)o(i)gé)of? - ﬁ‘i)g(i)o(i)g(i)o). (16.2.4)

Here,y, is the damping rate of the stored qubit whyledescribes its dephasing. The two

rates are given by
cr C
— 1-F), = —F, 16.2.5
nemEa - nef (16.2.5)

where we have introduced the dimensionless pararfeted’, fiofof/( X of)? contain-
ing the spatial part of the noise correlator.

When the correlation length of the classical noise is smtikn the distance between
the nuclei (local uncorrelated noiséx ~ di), F scales inversely with the number of
nuclei (Fig. 16.3). In this case, the dephasing satganishes as/N, which is an &ect
of the collective nature of the storage states [60, 61]. Toege of a qubit corresponds
to an encoding of the logical state in a large, delocalizesestble ofN physical spins.
As the decoherence has strongly local character, therdysaorery small &ect on the
dephasing of the qubit. The second observation is that Hsedbthe stored qubit is due to
transitions among states withfildirent number of excitations in the storage mode. These
transitions are strongly suppressed and the dampingyiatedecreased i\, is large
compared to the width of the noise spectrlirtor the corresponding cutfofrequency).
Finally, we note that the opposite limit of infinite spatiarelation length {x = 1)
corresponds to a homogeneous random field resulting, em,d global external source.
In that caseF ~ 1 (see Fig. 16.3) and there is obviously no protection agdeshasing.

Following a similar but slightly more involved procedure eamn discuss thepin-flip
part \7Xy = % i (Bl M +B! IAi) of the noise. When deriving a master equation for this case,
we need to keep higher order terms in the Holstein-Prirffaqaproximation: in the next
orderi! ~ V2I(1 - 14]&))a (and similarly forll) with A = 1 - (1 - 1/21)"2. Here we
have neglected the probability of double or more excitation the same sitg which is
reasonable in the high polarizatioh & 0) limit and exact for spiné— nuclei. Omitting the
energy shifts, the Lindbladian describing decoherencegaspin flips reads, in leading
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order of /N,

L) = (ya+ 74)(2&)0/5&% - (i)g(i)oﬁ - ﬁ&)g&)o)
+ ’)/5(2('1\38('1\)0ﬁ(i)gq,\)0 - (i)gq,\)oé\)gé\)oﬁ - ﬁ(i)g(i)o(i)gq,\)o)
+ ’)/3(26)%(,1\)0 - é\)o(i)gﬁ - ﬁé)oé)g), (1626)

which describes decay with rajg, dephasing with ratgs, and additionally thermaliza-
tion (relaxation to the identity matrix) with rate. The rates read

CIIF 2CT'| A2 ACTI22 Xj0]

_  yem oy . (16.2.7)
T2+ (Agapt A2 ' T2+ (Bgap— A2 7° 7 T2+ AZ (3002

Y3

In the limit of vanishing spatial correlations of the spiipfhoise,F = 2ik fxojox/ % of
tends to 1 (Fig. 16.3) and we have protection against thézatain (y3) because of the
separation of the logical qubit stat@s and|1) by an energy dierence ofAg,,+ Ak. The
decay corresponding te, is due to spin-flip induced transitions betwe&hand|1,, 1,)
(the latter containing a total of two excitations but nondha storage mode), and the
energy to bridge is in the order af,, — Ak (see Fig. 16.1). Finally, the last factor in the
dephasing ratgs scales as/IN, indicating that it is the collective nature of the storagt
leads to protection. Note that the nonlinearity of the HatstPrimakdf representation is
responsible for the appearance of the dephasing: the Mittrastorage excitations are
interacting with the storage mode.

Another potential source of decoherencauslear spin dfusiondue to dipole-dipole
interaction between nuclear spins [62]. The energy gapsgivatection against thigtect,
too. The dipolar interaction between the pairs of spins s£dbed in secular approxima-
tion by

Ho = ) By(fli* -2l ~ 21 )" Byd'a,, (16.2.8)
j#k j#k

whereBj = 7y%(3 co$ 6j—1)/r}, v is the gyromagnetic factary = r;-ris the distance
between two nuclely is the zenith angle of the vectoy, and we used the first order
Holstein-Primaké approximation. The dipolar Hamiltonian (16.2.8) presertee total
number of excitations and it is responsible for damping efdhbit via transitions from
the storage staté) to non-storage statgk,). Indeed, in terms of the bosonic spin wave
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mode operators (16.1.3), one can wititg = 3,4 Bpg®}®q, With Bpg = X Bjrr ok
Now in the interaction picture, the storage mode creatiahamihilation operatorsﬁ@
and ®,) rotate fast with respect to the other ones due to the enexgy §herefore, the
coupling between storage and non-storage modes averagasddisappears in first or-
der of the dipolar perturbation. In second order and on ticaées between the storage and
non-storage mode dynamiasyf, < T < ARY), we find a shifEp = Boo+AgL, Xgs0 Bogl?

of the storage mode energy. The strength of the remaininglicgubetween the storage
mode and modg is only proportional taA;2, 3, .o Bor Brq.

16.3 Non-perfect spin polarization.

Finally, we investigate the consequences of non-perfecteau spin polarization. It has
been shown that partially polarized nuclei (at finite terapgne) can also be used for
storing a qubit state [55]. Instead of the fully polarizedtst(16.1.1), the initial prepa-
ration drives the nuclear ensemble into a statistical mexaf dark stategD,, ;) defined
by A|Z)nﬁ> = 0. These dark states can be characterized by the total nushisgins
flippedn and the permutation group quantum numpBerAs the detuning is adiabati-
cally swept from far negative to far positive, a superposiif the||)e and|T)e electron
spin states is mapped into the mixture of superpositionk@huclear spin stat¢®;, ;)
and|&Eng) = Q%Ali)nﬁ), and the qubit state idfeciently written into the memory [55].

When the electron is left in the quantum dot, it feeBatient Overhauser fields for dif-
ferent dark states, hence the detuning should be adjustbdisatsoH + ¢ > Var(eSH).
Moreover, the hyperfine Rabi frequency also varies widmd the energy gafdgagn is not
the same for all the dark states. This inhomogeneous broaglemuld result in dephas-
ing of the qubit, but can be avoided by the symmetric spin esdguence prescribed in
Ref. [55].

To describe inhomogeneouffexts in the case of non-perfect polarization, first we
note that the storage stét®, ;) is no longer an eigenstate of the Knight shift operator,
but it is partially mapped into an orthogonal stakéy| Dy ) = — 269 Dng) + wnlDrg)-
This is due to the fact that the inhomogenedys operators do not follow the angular
momentum commutation relation. Furthermd&,) is neither an eigenstate Bl nor
of H: HIEng) = (368" + Ak + Agapn)|Eng) + ZnlEL,). The parameters can be expressed

)
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as expectation values [, s):

Q2 = AXAA,), w?= AR - (A
Agapn = AXAAA_A,) /45,8,
Ak = F(A) - ANAAA,) 200,

2% = (EnplA%Enp) — (EnplHIEN). (16.3.1)

The explicit form of the inhomogeneous dark states [S5hvadlas to estimate these val-
ues. The results are shown in Fig. 16.2b.

In summary, we have demonstrated that it is possible to ssgjthe influence of spin-
dephasing and spin-flips on a quantum memory consisting efacdlized ensemble of
nuclear spins in a quantum dot if the noise has a highly locatacter and the spectral
width or cut-df frequency of the noise spectrum is small compared to theygm@p. We
have shown in particular that the memory can be protecteihstgauclear spin diusion
mediated by dipole-dipole interaction. We have also aretlythe &ects of inhomoge-
neous hyperfine couplings and imperfect initial nuclean gailarization.
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Figure 16.2: Hyperfine Rabi frequend), protective energy gapgap), Knight shift diterence between
the logical statesAk), and symmetry breaking couplingsdndw) due to inhomogeneities. (a) The fully
polarized (zero temperature) case is displayed as funcfittre number of spin} nuclei (N) taking partin
the storage, i.e., located withimr3away from the center of the oblate Gaussian electron density
distribution with in-plane variance. (b) Estimated energies in dark staf€s z) with n spins flipped from
the fully polarized state foK = 10°. The energy units are obtained in both plots by taking thezmes
hyperfine constant of GaAs] = 90ueV.
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Chapter 17

Conclusions

Here we summarize the main results presented in the thesis.

In Part Two we investigated the approximations often useglisntum optics where
the transverse nature of the interacting light is compjeigghored. We did that by de-
veloping a full three-dimensional theory describing thieiaction between light and an
ensemble of atoms. We showed how to separate the problemarraeerageféect and an
effect arising from the atoms being point particles, and shdw®d spontaneous emis-
sion from the atoms naturally appear as fie@ caused by the fluctuations in the random
position of the atoms. The main feature of the theory is trebwy make a perturbative
expansion of the system dynamics in the fluctuations of ttezastion Hamiltonian. The
theory therefore has a much wider range of applicabilitye Thnclusions drawn con-
cerning the validity of the one-dimensional theories aed the system of light and atoms
has to apply to the paraxial approximation, and in particidathe interaction considered
here, that the Fresnel number describing the geometry dadttimaic ensemble has to be
much larger than one. The main purpose however of the wodepted in part two, was
to derive a full and consistent three-dimensional desormnpaf light-matter interactions.

In Part Three we turned to the problem of superradiance. Qain ffiocus was to
develop a theory that could describe in detail the spatwtribution of superradiation,
depending on parameters such as the optical depth and thieeFreimber. The system
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in consideration was cylindrically symmetric, and we shdwleat a natural description
of the dynamics of the electric field involved the decomposiin transverse momen-
tum. We then argued that the conditions for superradianteraily sets a cut in the
allowed transverse momenta. This way we developed a censisgteory that gives fi-
nite results. One of the motivations for developing the thewas, similarly to Part two,
to understand in what limit the simple one-dimensional dpson derived by Raymer
and Mostowski will agree with a true three-dimensional tiye@Ve showed that here the
requirement is that the Fresnel number must be of order.uimtyhe derivation of the
one-dimensional theory it is assumed that the atomic enggrabthe gain medium, is
cylindrically symmetric and has a transverse area of irgfisize. When this assumption
is relaxed, we showed that the one-dimensional model asténrates the total superra-
diance. Finally we compared the analytical result for thaltsuperradiated power with
the total superradiated power that can be found from a nwaderalculation of the point
particle mode. Here we found that the analytical result dilagree very convincingly.
In fact we showed that the numerical calculation seems te hawnexplained behavior
depending on the number of atoms. We thus had to concludevthate able to explain
the connection between the three-dimensional theory andrte-dimensional theory, but
we can not yet explain the numerical results for superradiamdetail.

In Part Four we look at the problem of storing informationnfran electron spin, in
an ensemble of nuclear spins. The idea was that distribtiierinformation stored in
one spin particle among an ensemble of spin particles mhkestored information more
robust against individual spin flips and other decoherenoegsses. In the work we show
that this way of distributing the information in a de-loe&d ensemble of atomic spins
suppresses the influence of spin-dephasing and spin-fiifh& noise has a local charac-
ter. We also show that the noise coming from dipole-dipoleractions are suppressed.
In addition the éect of inhomogeneous coupling between electron spin ankkinuas
analyzed, as also thdéfect of imperfect nuclear spin polarization.



AppendixA

Appendix for Part 1

A.1 Adiabatic elimination

In this appendix we derive anffective Hamiltonian involving only the atomic ground
state. The Hamiltonian (3.1.1) can be expanded on the coenpéd of states describing
the atom. Let such a set be comprised of a set of exited dtafgsand a set of ground

stateq|g;)} so that the Hamiltonian reads

H = () +wo)leXejl + Y wolgXgil + Fhn. (A.1.1)
i i

For convenience we have here gt 1 and only consider a single atom. The set of
ground states are assumed to have the same enagrgndw; is the transition frequency
from the ground state to the exited st@g. The interaction Hamiltonian is given in Eq.
(3.1.3), and when expanded on the set of internal atomiesstateads

1 . R . .
Hin = == ) 070 (@IPle)lgie) + (€ IPig)le Xail - D, (A.1.2)
i

where we have used the rotating wave approximation as weétleagact that the matrix
elements(e,-|l5|e,-,) and(gi|I5|gi,> vanish. To shorten the notation we suppress the spatial
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dependence. We will use that the displaced electric fielehgmily oscillate at the laser
frequency, and change to the interaction picture

DO(t) oc e, (A.1.3)

Using Heisenberg’s equations of motion we may derive anteguaf motion for|g;)(e;|

d . [ - A <,
qio el = -iAjla)el - = >~ {<eilPigler el - (elPiggiXarl} - D), (A.1.4)

j/

whereD® is slowly varying. In the limit of weak driving we may s§ﬂ9i><ej| =0, and
obtain an approximate solution

1 . .
D (&lPlgnlgXgr| - DY), (A.1.5)

lgi)}<ejl = ?Aj

i/

where we have neglected the exited state population. Tinei@fart of the Hamiltonian
can be written

Ho = ) AjlejXdolgo)(ejl + D wilg)(gil + ) (wo - w)(ley)(e)l +la)al),  (A.1.6)
j i i]

where|gp) is any ground state. By inserting expression (A.1.5) andhenitian conju-
gate into Eq. (A.1.2) and (A.1.6) we find the simple result

14 1 . R .
H =-=(D() - Z ;ijgi|P|e,->)|gi><gi,|(<e,-|P|gi,> - DO(D)). (A.1.7)

€ il
(neglecting a zero-point energy term in the Hamiltoniang May now identify the matrix
operatoiV/[J]
= . 1 R R
VI3 = ), —-alPle e Planlg (e - (A18)
jii’ ]

and we immediately get the result stated in equation (3.1T3)e notation * in this
expression means usual vector product with the vector taghé Furthermore we may
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also find the relation between the polarization and the desal electric field
POM = ) leiXelPlaiXal
i]

1 N A A
= > ——<(&lPlo)aIPlepig Xgil - D)
GQAJ

i’

~VI[J]DO). (A.1.9)

We have here only written the positively oscillating coment) the negatively oscillating
component is found by Hermitian conjugation, which from &tipn (A.1.8) is the same
as transposition of the matrix.

A.2 Calculation of infinitely short propagator

In this appendix we calculate the infinitely short propagaidghe local density approxi-
mation. We will for simplicity only consider the simple imgetion given by

VLI = Bo(r)(cod(r)? - ic2d(r) x ). (A.2.1)

We further shorten the notation by introducing thefointsay = 1 — So(r)cod(r)? and
ay = Bp(r)caI(r)l.

If we Fourier-transform equation (3.2.9), the equation w&wo solve is

2
R x K % (ag + iag] x)e* = % (A.2.2a)

k - ek =0, (A.2.2b)

where the vectorg andf are unit vectors representing respectively the directioine
plane wave solution and the orientation of the atomic spihe 3olutions to the above
equations is the following set of polarization-vectors

H =

=N

H =

€

(L i 2200 - Ny 2 i), (A2.3)
i xkl |kx(xk)

whereVv; andV, are unit vectors given by the first and second fraction reasmdyg. The
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normalization constarfi is determined by using the inner product in Eqg. (3.2.10). In
this way we find the real space representation of the basistitunsf (r)
k 1 o ioakr
fi(r) = (V1 £ iVp)e ", (A.2.4)
V280 + &l - K))

The dispersion relation is then derived from (A.2.2a)

wi. = k¥(ag + (] - k). (A.2.5)

The infinitely short propagator can then be calculated tdbddllowing

PO, t—t) = 5 f Bk W (FK () P (rye o s, (A.2.6)

We introduce the matrix given by the following juxtapositio
M(K, ], ) = (01 — is02)(¥1 + isVy). (A.2.7)

Changing to spherical coordinates and making the subistimix = cosf andk’ =
kv1-ag + sax as well as using the dispersion relations given in equatfof.5) the
integral reduce to

=(_) 00 1 21 C2k/4
Prnt=1) =3 . dKLdeo Y (a0 + 5T

M(x, ¢, 9S-I -D/@0) (A 2.8)

Neglecting the denpendence ldfoutside the exponential and using that thfedence
k'? — k? for largek_ runs from—co to oo, thek’ integral gives a delta-function in time.
Including theg integration in a matriXM we finally get

= =ikt -t) M(x s)
( )(r’t ~t ) 1671’2C2 Z f dx (ao + Sag_X)2 (A29)
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with the matrixM given by

- 21-x3) 0 0
M(X, s) =7 0 1+ x> 2isx |. (A.2.10)
0 —2isx 1+ X2

The s-sum is evaluated by substitution in the integral and thd #xaression for the
infinitely short propagator is

-ik3s(t - t) [ M(x, +)

SO\ (1 t—t) = _ AT
Prrt-t) = 8nc? 1 m(ag+ a1x)%/?’

(A.2.11)

These integral may be evaluated, and we will express thatelfirshort propagator as

_ - Nl 0 0
=, N —io(t-1) .
PO t-t)=—5—| 0 o, -ior |- (A.2.12)
0 ior o
The codficients are foeg — a; > 0, given by
-k (—4day+2a; 4da+ 2a
Q” :3 kL3{ ! + 1} (A213a)
7Tal Vag — a1 Vag + &
—k3 (282 - 3apay + a2 2aZ + 3apay + 22
oL = kLg{ i 3/2281 i 3/2231} (A.2.13b)
rad! (a0 —a) (20 + &)
k3 ( 23— 3 2a, + 3a;
= — . A.2.13
o =g o —a) (o r e (A.2.13¢)

A.3 Reciprocal equation for Green’s function

In this appendix we derive the reciprocal equation for thedais function. Before doing
so we will need some results concerning the representatitedsreen’s function. Let
us define the following inner product:

(Plby = f dBrdt M(r)e(r, 1) - (T, 1). (A.3.1)



140 Chapter A - Appendix for Part 1

We will generally work in the_2-space equipped with this inner product. Using that the
matrix operatorM is Hermitian, one finds the fierential operato® given in equation
(5.0.1) to be Hermitian in our inner product space

(DI DY) =(DPl|). (A.3.2)
ThatD is Hermitian means that the eigenfunctidhsto D
D F(r,t) = AF(r, 1), (A.3.3)

define a complete basis of our inner product sg&gé A representation of the identity
functional given in equation (5.0.2) may therefore be

D R OF(ro, to). (A.3.4)
k

It can be checked that this is exactly a functional identé@gresentation in our inner
product space by expanding any function on the biggis

To get a formal expression of the Green’s function definedgunagon (5.0.2) we
expand the Green’s function in this basis, and using equéfid.3) and (A.3.4) we find

= 1
G(r,tlro,to) = A—Fl(r,t)Fk(ro, to). (A.3.5)
— Ak
Starting from equation (5.0.2) we make the substitutien —t, ty —» —t; andro — r;
and we write:

DG(r, —tre, —t1) = 16(r, r1)8(t, ). (A.3.6)

In the next step we take inner product with equation (5.0r®) @z(r, —tlry, —t;) from
the left with respect to unprimed coordinates, and equd#o8.6) and@(r,tlro, to) also
from the left with respect to unprimed coordinates. The ltesutwo equations are then
subtracted. The term containiagf vanish trivially, and using rules for fierentiating a
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product, the resulting equation may be written as

2iw, f f dPralt A?(r)%[c?(r, ~tlr 1, ~t2) - G(r, tiro.to)|
+ 2 f f d3dt[/\7(r)<3=(r, iy, —t) - V X V x M(r)

G(r, tro, to) = M()G(r, tro, to) - V x 'V x M(r)
G(r, —tIr1. —ty)| = G(r 1. talro. to) — G(ro, —tolr 1, —ty). (A3.7)

Using the cut-€ property of the Green'’s function, the first term on the lefbdhaside
is seen to vanish. Using the explicit expression for the Gsekinction (A.3.5) along
with Gauss’ theorem, one may show that the second term atsshzarhe final result is
therefore

G(r1. talro. to) = G(ro, —tolr 1, —ta). (A.3.8)

From Eg. (5.0.2), (A.3.8) and using the substitutibrs —t’,to —» t,r — r’andro — r
we end up with theeciprocal equation

(- 2iwL% — W2+ PV X VMG, t) = 18(r,1)5(t, t). (A.3.9)

In the following we derive the general solution to the equrati

(2iw% W2+ PV XV x M) (1, 1) = p(r,b), (A.3.10)

where)(r,t) is an unknown fieldp(r,t) is a source termfecting the solution, and
M is some Hermitian matrix operator, which may depend on fmosit We make an
inner product of equation (A.3.10) wit@(r,tlr’,t’) from the left and an inner product
of equation (A.3.9) withey(r,t) from the right and subtract these two equations. In this
calculation we are integrating over the time intert/ak |to, t*[, where we understand
t* = lim._ o[t + €]. Again we find that terms containing? vanish. Similar to above we
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will use rules for diferentiation a product, and we eventually end up with
P(r,t) - f d3r’dt’/\7(r’)G=(r,t|r’,t’) -p(r',t) =
t
ot+ _ 5 _
- 2iw, ff d3r’dt’M(r’)—[G(r,t|r’,t’) : ¢(r’,t’)]
t ot

t+ _
42 d3r’dt’M(r’){
to

B 1) - V' X V' x M(E)G(r, I, 1)
~G(r L) - VX VX (L ). (A.3.11)

Using the same boundary conditions as was done in the catul@ading to the
reciprocal equation we conclude that the last term in eqog#.3.11) vanish. The right
hand side of the equation thus reduce to

“2iw, f d3r’/\7((r’)[5(r,t|r’,t’)'v,b(r’,t’)]z = 2w, f &3 MI)G(r, I to) - W (r to).
(A.3.12)

Here we have used that the upper time limit vanish due to th®f€un the Green’s
function. Rearranging terms we finally arrive at the gensmution to the dfusion
equation

P(r,t) = 2iw, fd3r’ /\jl(r’)G:(r,tlr’,to) (', to)

t = =
4 f d®r'dt M(r)G(r, 1, t) - p(, t). (A.3.13)
to

A.4 Lorentz-Lorenz relation

In the main text we mainly consider lowest order correctitmthe index of refraction.
To verify that our theory can also correctly reproduce higireler corrections, we shall
in this appendix show how to derive the so called Lorentzebaror Clausius-Mossotti
relation for the electric permittivity within our theoreél framework [48]. To lowest



A.4 - Lorentz-Lorenz relation 143

order the permittivity is given by Eq. (4.0.11)
&)t = 1- . (A.4.1)

To calculate the higher order correction it is convenienfitst Fourier transform the
Dyson equation (5.1.1) describing the light field with rede time

DO(r, w) = DS(r, w) + €2 f & PO, 1, w) - MIDO, w). (A.4.2)

This equation is the starting point for the analysis. ( Tharka transformation is here
defined as

f(w) = f dtele Mt (1), (A.4.3)
0
wheren is an infinitely small convergence factor.)

From Eq. (5.3.7) we find the Fourier transformed propaglézlﬁdrto read

1 WZfr(r)fi(r’)

B w) = L . A4.4
( ) szk:wﬁ—wf+2wL(w+ln) ( )

The real space representation of this propagator is in gedéficult to calculate, how-
ever, for a scalar interaction the calculation simplify siolerably. Forw ~ 0 which is
reasonable in our case, since we are dealing with slowlyinggperators, the propagator
reads

= d3k kzeik-n
P®(n) = f z(zﬂ)g e
_ kg (1 3i 3 )nn ( i

n2

Tkn (knp

- @Ak - TR )2)ﬂ+—|5(n) (A.4.5)

wheren=r —r’, n=n|, andl=is the identity matrix. We notice that the propagator gives
us the well known result for the radiated field of an osciligtdipole. In addition we have

a term describing a self-interaction. This propagatorss dliscussed in Ref. [63]. In the
following we shall only be considering the self interactjmart of the propagator.

When considering the density correlation function to secorder{o(r,)p(r,)) we
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have so far used the ideal gas approximation in Eq. (5.2Hgrethere are no correlations
between dterent atoms. In reality we can never have two atoms at the pasigon and
this give a small correction t¢(r1)e(r,)), which must vanish for; = r, (apart from
the delta function, which represent the single atom coutidn). This can formally be
described by introducing so called irreducible correlafianctionsh, such that

(p(r)po(r2)) = <p(r1)Xp(rz)) + ha(ra,ra), (A.4.6)

whereh, now takes care of the core-repulsion of the atoms (here wieidxcthe delta
function). Forr, = r, we thus finds thalty(r1, r1) = —(p(r1))?>.

The above can be used along with the real space representédtibe propagator to
give the second order correction to the permittivity. Wd nilt consider terms that vanish
when we take quantum mechanical mean. The relevant part settond order term thus
gives in shorthand notationf I5(‘)(2/3)(ﬂ_/t[3])2f)(‘). When we introduce this interaction
to the diferential equation (4.0.11) we find the permittivity to sedt@nder

Rn4=1:xﬁp]+§(ﬁpp? (A.4.7)
The calculation can be continued to infinite order [64], dnelresult reads

)t 1=V -] Y] (%2(7@])”
n=1

1- 1]

s (A.4.8)
1+ 291

This is the Lorenz-Lorenz relation, and we thus see thatfiteetecan be included in the
theory by dressing the spatial mode functions accordingeaésult above.
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A.5 Calculations of second-order Stokes generator

In this appendix we present detailed calculations of thers¢order terms of Eq. (6.4.4).
We will denote the fourth term of the right hand side of Eq4(8) asS7A2), and one finds

K Fini (7, OISD ey (. ) =

2
(%) (kge)’ ff ds“’gr'IZp(r>p(r')®ﬁ?”(r>*®?ﬁ?’(r’>éln.éw- (A5.1)

I'n

The seventh term of the right hand side of Eq. (6.4.4) plusataplex conjugate we
will denote asS_(Ef). To calculate this term we extend the limits of the time in&tign
from minus to plus infinity. This we can do by introducing attacof one half, and ap-
proximating the imaginary terr'nf_c; dtsin(wt) to be zero. This corresponds to the usual
treatment of such terms in the Markov approximation to spo@bus emission when one
ignores the Lamb shift. We then find the following contrilutito the Stokes operators

K (i (> ISP (1, ) =

1)3 2 3,3,/ ’ mn, NN [ 7\xAT PN
5| (kpc) drd*r E (Np(r){©57(r) Oy (r') &y, &k
(2 . ﬂ D PP { i I Ary1y A

+ OO (1)), A} (A5.2)

One notice that the factors of2in Eq. (A.5.1) and (A.5.2) exactly add up to give one
half of the square of the first-order term, as is shown in EQ.{J

The sixth term on the right hand side of Eq. (6.4.4), plus isrhitian conjugate, we
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will denote asS®, and we find
KFian T ORSE i (7, D) =

1\* " oAt A PRI
(5) Gasen? [ e Y pte el (00 Ey )y B B
In

q'n’
n//l//

+ almja;mféqrf’l” éknlclj/fllﬁ(r/)\PEm(r’)\Pg’nﬁ(r’)*},
(A.5.3)

where we have introduced the ¢beients

Cll"(r) =ei(r) - {Q(r) x [&:(r) x &(r)]) x &(r)}. (A.5.4a)

This term cam be shown to vanish by expanding the spin-apre?ain the basis defined
by the polarization vectorg(r), g(r) ande,(r) and using that the indicesl,|” andl”
only run overx andy.

Finally we will calculate the #ect of the fifth term on the right hand side of Eq.
(6.4.4), which we will denot(S(Dz). In this calculation it is important to remember that the
term will scale ag?p, and reads

K (T (1 OISO i (1 1)) =

2
(%) (K BY f d3r;p(r)‘I’Em(r)‘PEf”'(f)élmékrvv{

I'n

— 2
Ci(J(I’) : ez(r)) (5jy5Ix - 5jx5|y)(5j/y5|/x - 5j’x5|/y)

+ CSJ(I')4(51'|5J'/|/}. (A.5.5)

A.6 Calculation of second-order Spin-terms

In this section we calculate the second order terms for thmiatspin, represented as the
third and fourth term of the right-hand side of Eq. (6.4.1B)ese terms we will denote



A.6 - Calculation of second-order Spin-terms 147

I and using the previous notation one finds

0
j(Z) _—| (,Bclki_) fd3 ’ (J(I’) % ez(r)) Jy(l”) ez(r ) (r )akmakm/
i Jz(r,)
DR W) - (R (), (A.6.1)

m

We can examine this term by assuming that the only photoryiogrmodes of the light are the
two modedfox andfyyy and neglect all other modes. In this case the term reduce to

g9 - (ﬁclkt) Zfds, D
(De((00.(0' V)
B 0
(30 x| H) |- el Dol Bl M OWEN. (A6.2)
J(r")

This term represents an atom at posittéimteracting with the light field and emitting a
photon into moden, which propagates to the positionwhere it is absorbed by an atom
followed by stimulated emission into the classical beamis Pocess is also known as
optically induced dipole-dipole interaction, and indelbd sum over all modeas can be
used to introduce the dipole propagator in (A.4.5). Noteydwer, that above we have
written the term in the paraxial approximation, where weoignthe dependence of the
polarization vector on the mode number. Since the sum oMerolves all modes, and
not just the paraxial modes, an accurate treatment recuirese complicated expression
involving the polarization vectors along the lines of ApgenA.8 (we use this more
complicated expression in our estimates of the size of fileet.

The last term we will consider is the term describing an atat@racting with the light
field at two diferent times. This term is represented as the fifth term onigfme hand
side of Eq. (6.4.15), and is given on vector component forredn (6.1.13). We will
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denote this term witl7¥. A short calculation gives

222 33 Y a0 e

kk mm “
\Pmmymn [akmlak mléknlak’n/ ! almjalfmjéknj’ék’n/l] + H-C.}, (A63)

where we have suppressed the spatial dependence to shateotation. Doing the sum
over j,j’ andl we obtain

@ (ﬁclkL) ZZ (T-e(-e)).

kk mn'f

\Pkmn\PE'q’n { alimxak’myak”yak’n'x - akmﬂ/myéknxék'n’x - alimxal’rTYxéknyé'k'n'Y}‘
(A.6.4)

The first order term in Eqg. (6.4.16) describe the first ordegat of rotation of the spin
around thee,(r) axis. The second order term in (A.6.4) describe the secaher derm of
this rotation. From the rotation frequency in the first ortlgmoc 53 (assuming? to be
real), one would thus expect this term to scal@#ss)? which is diferent from the term
in (A.6.4). This diference arises because we have separated the term into rnodeiedd
components such that the second order term in (A.6.4) omiyriboites when at least two
photons are present. When we did the normal ordering in thgrain we introduced an
additional term, which we described by the third term in Eq1{4)

A.7 Calculation of spontaneous emission

In this section we calculate the corrections to Eq. (7.20 Bqg. (7.2.2), due to the
incoherent interaction. To do this we need a result for thimitely short propagator.
From the definition of the propagator (5.3.7) and the catauieof in it (6.1.8), we find

the relation

> ) = elr) (A7)
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whereo(r,) = k¥/(16n?) is the zeroth order term of the expansiorpgfr) in g given in
Eq. (A.2.13). This result is important when calculatiﬁﬁ and for relating this term with
the incoherent interactions, responsible for spontanemission. When including this
term and the decay described in Sec. 6.2, the incoherenaatien reduce to

2
Suou(r) = - L [ a2,@)| (B @) - BONam(r) + (')
+ G[a4Z) + ) ain(rL)).  (A7.2a)
2
Spoulr ) =~ L [(azp2)(B0'@) + E139(2) + (@) + E@N) ()
(A.7.2b)
2
Ssoulr) =~ L [ a2, B02) + HB@) + 2D+ ENfson(r.). (720

where we have only kept terms that are nonvanishing afténdauantum mechanical
average of the atomic spin. The operatsyg(f.) measures the total photon flux, and is
given as

(1) = 3 S(Unlr D AU (1) + Ut DU (1)) (A7.3)

kmmi

It is important to note that in a discussion of the varioustibuations to decay one should
include all terms in the perturbative expansion, including loop diagrams (6.2.2). If
these are not included one finds the contribution from tha tarEq. (A.5.5) to increase
the the operatos;”

Similarly we find the &ect of spontaneous emission on the spin equation to read

1 2.2 = . 1, 1- R

Jeou@ = = 2tk o(r1) ) 1xin@IFn(r ) + 5 )]+ 5Hn@Fn( )} (A7.43)
K

_ _ 1 o

Jyout@ =... - B2Cik o(r ) Z (i@ in(r L) + E%”(“)] + EJX,in(z){m(rL)} (A.7.4b)
k

J—z,out(z) =... _Bzcikl_g(rj_) Z J_Zin(Z)%’in(l’J_). (A.7.4¢)
k

The above result is derived from Eq. (6.1.9) by using the patapproximation and
only keeping terms of orded®. A minor correction is introduced since we in Eq. (7.2.2)
chose a representation that was in fact not normal ordered.
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A.8 Beyond paraxial approximation

In this section we will go slightly beyond the approximatiorade in Eq. (6.4.3), and
consider the set

1
fq(r) = \/—Zunq(r)enj(r). (A.8.1)

We will consider the correction this generalization makethe result given i Eq. (7.3.4),
and therefore define spin-components in the local basisidiyehe setn,(r), eny(r) and

endr)

0
Teu) =] F(1) |- emil) (A8.2)
J(r)

fori € {X,y, z}. These vectors are defined by the fact that, e,g(;) should be transverse
and perpendicular to the polarization vector arising fromode functiot g, (r)eyx(r).
€ IS then defined by,, = €, X &,. Similarly for the quantum modes the definition
of enx follow from the fact that it should be perpendicular to thégpazation vector from
the modeU (I )emy(r).

With these definitions Eq. (7.3.4) gives

Xou =Xin + k ey @ f or’ p(r")ReFLAN) T (1) Eox(r) - @mil)] = Te (1)Eox(r) - Emd)]}
(A.8.3a)

Pou =Py + ke @ f At p(r Ym0 T () E0x() - )] = T, (1) E0x(F) - Emd)]}-
(A.8.3b)

Similarly we find the correction to Eq. (7.3.5) to give

Jour) = Jin(r) + kfcy @ > [ReRMIPY, - Im[PR°( )X {Jin(r) X (€ox(r) x eny(r))}-
(A.8.4)
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Appendix for Part 2

B.1 Deriving the first order correction to the matrix M™

By introducing the dummy variable = 202 in the Gaussian function, the series expan-
sion of thex-integral in Eq. (12.0.13) may be written as

Y0 [ e n@rt 2oty (B.1.1)
1=0 0 a=20'i
Using the above expansion along with the relatig(x) = i""Jy(ix) together with the
result [50]
« —a?r2 1 22 ﬁ’y
fo rdre™" Jn(Br)Im(yr) = 272e 202 Im(ZTU2
largf]| < %, R[m] > -1,8> 0,y >0, (B.1.2)

Equation (B.1.1) may be rewritten as

i ((:(i(;)ml fo T e 320y In(ie YY) (B.1.3)
1=0 2

a=20"
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From Eq. (12.0.12) we find the integral to give

ot 6d2)

- e = 204 yoyw
;(—aa)' 1 Ty (B.1.4)

(01

—252
a=20"

We see that in terms of an expansion in the varialite?leach diferentiation will give
a factor of Jo2. We shall therefore only consider a sum up to the first ordehén
differential. To zeroth order theintegral simply gives

vf_(vﬁwﬁ,)

e

z 2
?%(Uﬂ’n)’n')- (B.1.5)
1

To first order we find the-integral to give

(ff'_ (Vﬁwﬁ,) 4
€ @ | (20— 1YY )
m

~0,
2« a

= T[I m(o-iyn')’n’)
[ZZZU'i L
2

0'2 (oa
- ?(Yﬁ + Yﬁ')lm(o'iYnyn/) + ?VnYn’(lm—l(O'iann’) + le(oﬁyn?’n’))]-
(B.1.6)

To understand the above expression let us assum@eiantly largeo-, so that the mod-
ified Bessel function,.; can be approximated with,. In this way we get

ot 0hnA) o2

€ - | (Zo-jl-ynyn' e 2 a7
20 " a , 804

=207

2
1- S0 - ynﬂ. (B.1.7)

Im("i?’n?’n’)

The above approximation gets worse for increasing valuas, dfowever we argue in
Sec. 14.2, that for a finite width of the sample, higher ordedes inm has less influ-
ence. Finally the exponential function along with the medifBessel function express
a conservation of transverse momentum given by the vagahlsince for increasing
values of the transverse momentum, Eq. (B.1.7) can be ajppated with

2
g = ) 2
i [ ] (B.1.8)

o
— 1= E(v.=v.)?
80"1\/% 2(7n Yrr)
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We shall then make the approximation

ol 2+ o B onweY?
1- Sl y)? x €70, (B.1.9)

thus the expression in Eq. (B.1.8) can to first order in thieincey, — v, be written as
e 2 On—rw)?
80'31_ V27T7n7n’

This result is the large size limit, and we therefore coneltight to give this limit as
o, — o the term in Eq. (B.1.6) must be approximated with

(B.1.10)

e LR (ZO'L'}’n')’n )

804

(B.1.11)

From this we conclude the result given in Eq. (12.0.15).

B.2 Commutation relation for AT, and AL

Here we show that the two matriceg!, and A',, commute. Since both matrices are
symmetric, it is enough to show that the prodQgiAT Alm is symmetric. Again we
make the contlnuatloEp P f dfrp for a. — oo. In this way we get

l 4 Yn—¢ i)n/ f ,l (I() )\] (2| )
ac\]m : : ) I } m O- )/
+1(an)Jrn+] (xmn) 1 P 7n p

(B.2.1)

After making they,-integral we end up with

4ot e + (7n+7n/)| ( 7n7n)

m 1m _
ZA A B 3ac\]m+1(xmn)\]m+1(xmn) (BIZIZ)

Since the matrix Eq. (B.2.2) is symmetric we conclude thatrtfatricesA], andA',
commute.
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B.3 Beyond the delta function approximation of the Gaus-
siann(k).

In general the matri, Eq. (12.0.9) can be diagonalized using a unitary transdition
described byJ. Let us denote the eigenvalues corresponding to this daligation with
Aq. From this formal diagonalization we will in complete arngjfowith the problem of

Al eventually have to look at summations such as

> UgkanA§Ug - (8.3.1)
q

The indexg has a dimensionality to fit the Hilbert space spannedk,log, n. Again we
introduce the unit,

1= f dks > Ugukmr, mny- (B.3.2)
q1

ming

so that the expression in Eq. (B.3.1), can be written as the su

N-1
> [ [ i, M- wigeene. (B.3.3)
i=1

.....

Thus to find the ffect of the finite width of the Gaussian function we have to nthiee
following type of integrals

f dk,MEMN kM (B.3.4)

kimng " kompng

The product of two Gaussian function&k — k;)n(k, — k») integrated ovek; gives

aj _ﬁ(k—kz)Z
—e , (B.3.5)
V2r

a Gaussian with a width increased by a factond. In the delta function approximation
the functional form is unchanged by such integrations, theasnd result remains a delta
function. As we increase the number of integratikn,, . . ., ky_1 the width of the Gaus-
sian increases thus making the delta function approximatiorse. The figure of merit
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is now the powemN and as the width only increases with the square root of theepow
we expect that for reasonably fast converging series EG0@)3 the delta-function ap-
proximation is acceptable. However as time and @lgaoncreases one would have to
reconsider the approximation. We note that to treat tfieceone should also include the
poles ¥(k? — k3), ... in the calculation and not only the Gaussian function as dheme.

B.4 Additional material to Sec. 14.3

Here we will show Eq. (14.3.2). Our starting point is the oghnality relation given by

fwrer( F) r):‘5”+ag (B.4.1)
0 min min Zle(an)Z’ o
where the variable, = XI"“" andXn,, is then'th zero of thenth order Bessel functiod,,.

We will assume thaX,, is large, which does not requisg to be so, since we can choose
the cut-df a. to be anything. In this way we can write Eq. (B.4.1) as

Onn@c

n

f " Hdr In(an)In(raT) = (B.4.2)
0

We will then take the sum overon both sides and use the standard continu@pé —
dyn
[ 22 so that

fdynynfrerm(ynr)Jm(yn’r) =1 (B.4.3)

Sincey, is now a continuous variable, we conclude that the measutedistribution

f(x, X) = xfrerm(xr)Jm(x’r), (B.4.4)

wherex, X' is some real and positive number is unity. The next step i©ivovghat for
X # X the functionf(x, x’) vanish. This follows when choosing a zero poXMa, and
a cut-df a. such that sayx = y,. This does not necessarily mean thkahas a similar
representation with the chosen cuf-@n the other hand this is not necessary as one may



show, see e.g. [48], that

(y2 - x?) f ) rdrIm(ynr ) Im(Xr) = 0. (B.4.5)
0

from here we conclude that whepandx’ are diferent the functiorf (y,, X') vanish. This
concludes the derivation of Eq. (14.3.2).

B.5 The Sum rule

Here we derive the sum rule Eq. (14.3.6) used in Sec. 14.3si#ntng point is the total
radiated intensity of Stokes-photons

Sg{D- X (VX A") = (Vx A7) x D}, (B.5.1)
S

whereS is a sphere surrounding the atoms. Using the Divergencedheas well as the
Maxwell equations, the total radiated intensity can betemias

o€ f & G(WF ”{' f &*rG[P, D] (B.5.2)
where
_oP 0P
G[P,D] = D" +D T —. (B.5.3)

To first order inwg, EqQ. (B.5.2) reduce to

powsheo| > THi(HbI() + > {Bj(t)Mj; b)) + Hel |, (B.5.4)
j #J

where we have used Egs. (10.1.7), (10.2.6) and (10.2.7).nWteasuring the intensity

infinitely far away from the atomic ensemble, the expressidag. (B.5.1) reduce to the

electric field squared timeggc, thus the normalized sum-rule reads

fdQD D* = Zrb OB (t) + Z{b (OBl + Hcl. (B.5.5)

j#

k hEo
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