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Foreword

This thesis is a collection of work done as part my Ph.D. programme at Copenhagen

University, Faculty of Science. The work has been done in theperiod from fall 2005

to winter 2009, and covers in detail a generalized three-dimensional description of the

interaction between an electromagnetic field and a realistic collection of atoms. The thesis

that I present here is split in four parts, where the first partgives an overview of the

problems adressed in the thesis. The second part describes aweakly interacting collection

of photons and atoms, whereas the third part describes a strongly interacting system. Part

Four of the thesis covers work done in collaboration with Z. Kurucz and M. Fleischhauer

at University of Kaiserslautern, J. Taylor at Massachusetts Institute of Technology and M.

D. Lukin at Harvard University. The work was done in Kaiserslautern in the fall of 2007. I

note that after I left Kaiserslautern the process continued. The work I present in Part Four

of this thesis is a preprint of a paper including more than my contribution. Specifically I

participated in the development of the theory leading to Eqs. (16.0.1- 16.2.7) of Part Four.

I would like to thank Professor Michael Fleischhauer for hishospitality and obligingness

during my stay in Kaiserslautern. Also and in particular I amgreatly thankfull to Ph.D.

Zoltan Kurucz, with whom I primarily worked. Finally I wish to thank my supervisor

Anders Sørensen. In spite of our differences I find our collaboration inspirering. It goes

without mention that I could not have derived these results without him.

My Ph.D was prolonged by two months as my wife in January 2007 gave birth to our

first child. I only hope that eventually I shall be able to giveback to my family, some of

the time I borrowed for finishing this thesis.

The work presented in Part Two is published in Ref. [1], publications concerning Part

Three and Four are in preparation. In the following I presenta brief abstract for the bulk

of the thesis, Part Two, Three, and Four.
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Part Two

We present a full quantum mechanical three dimensional theory describing an electromag-

netic field interacting with an ensemble of identical atoms.The theory is constructed such

that it describes recent experiments on light-matter quantum interfaces, where the quan-

tum fluctuations of light are mapped onto the atoms and back onto light. We show that the

interaction of the light with the atoms may be separated intoa mean effect of the ensemble

and a deviation from the mean. The mean effect of the interaction effectively gives rise to

an index of refraction of the gas. We formally change to a dressed state picture, where the

light modes are solutions to the diffraction problem, and develop a perturbative expansion

in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random

positions of the atoms. In this perturbative expansion we show how the quantum fluctua-

tions are mapped between atoms and light while the random positioning of the atoms give

rise to decay due to spontaneous emission. Furthermore we identify limits, where the full

three dimensional theory reduce to the one dimensional theory typically used to describe

the interaction.

Part Three

We present a three-dimensional theory of Stimulated Raman Scattering (SRS) or superra-

diance. In particular we address how the spatial and temporal properties of the generated

SRS beam, or Stokes beam, of radiation depends on the spatialproperties of the gain

medium. Maxwell equations for the Stokes field operators andof the atomic operators

are solved analytically and a correlation function for the Stokes field is derived. In the

analysis we identify a superradiating part of the Stokes radiation that exhibits beam char-

acteristics. We show how the intensity in this beam builds upin time and at some point

largely dominates the total Stokes radiation of the gain medium. We show how the super-

radiance depends on geometric factors such as Fresnel number and gain properties such

as optical depth, and that in fact these geometry factors arethe only factors describing the

coherent radiation.

Part Four

We present a mechanism to protect quantum information stored in an ensemble of nuclear

spins in a semiconductor quantum dot. When the dot is chargedthe nuclear magnetic

moments interact with the spin of the excess electron through the hyperfine coupling. If

this coupling is made off-resonant it leads to an energy gap between the collective storage

vi



states and all other states. We analyze the collective spin excitations and show that the

energy gap protects the quantum memory from local spin-flip and spin-dephasing noise.

The protection decreases with increasing spatial correlation length of the noise. Effects of

non-perfect initial spin polarization and inhomogeneous hyperfine coupling are discussed.
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Dansk resuḿe

Denne afhandling hører under feltet kvanteoptik inden for diciplinen teoretisk fysik. Afhan-

dlingen er delt i tre dele foruden en introduktion og en konklusion. Disse tre dele består af

en tre-dimensionel beskrivelse af lys, der vekselvirker svagt med atomer, en tre-dimensionel

teori for en stærkere vekselvirkning mellem lys og atomer, kaldet superradians, og til sidst

en beskrivelse af dynamikken i et system bestånde af en elektron og en samling atom-

kerner i en kvante-prik. I det følgende giver vi en mere detaljeret beskrivelse af de enkelte

dele.

I Del to udleder vi en fuldstændig, tre-dimensionel beskrivelse af vekselvirkningen

mellem et elektromagnetisk felt og en samling identiske atomer. Teorien er konstrueret

med henblik på at beskrive eksperimenter udført for nylig omkvante-grænsefladen mellem

lys og atomer, hvor kvante-unøjagtigheder fra lyset projekteres på atomerne og bagefter

tilbage på lyset. Vi viser, at vekselvirkningen mellem lys og atomer kan deles i en mid-

deleffekt og i en afvigelse fra middeleffekten. Vi viser også at denne middeleffekt blot

leder til et brydnings-index for den atomare gas. Vi skifterdernæst til en beskrivelse

hvori middeleffekten af vekselvirkningen er inkorporeret i lysets dynamik, og laver en

formel perturbations regning i afvigelsen fra middeleffekten. Både de kvantemekaniske

unøjagtigheder samt unøjagtigheder fra den tilfældige rummelige fordeling af atomerne er

indeholdt i beskrivelsen af afvigelserne fra middeleffekten. I denne perturbative beskriv-

else viser vi, hvordan kvante-unøjagtigheder projekteresimellem lys og atomer, samt at

den tilfældige rumlige fordeling af atomer leder til et henfald at felt- og atomare exita-

tioner. Til sidst identificerer vi de grænser, hvor den tre-dimensionelle teori reduceres til

den en-dimensionelle teori, der typisk bliver brugt til at beskrive denne type vekselvirkn-

ing mellem lys og atomer.

I Del tre udleder vi en tre-dimensionel teori om “StimulatedRaman Scattering” (SRS).

Vi er specielt interesserede i de rumlige og tidslige egenskaber ved den i vekselvirkningen
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genererede SRS stråle eller “Stokes” stråle, og hvordan egenskaberne afhænger af dimen-

sionerne af de atomer, der danner strålen. Vi udleder Maxwell-ligninger for Stokes-feltet

og tilsvarende ligninger for atomerne. Disse ligninger bliver løst analytisk, og der bliver

udledt en korrelations-funktion for Stokes-feltet. Vi identificerer den del af Stokes-feltet,

der giver anledning til en stråle, og viser hvorledes intensiteten i strålen tager til over

tid og endeligt bliver den dominerende effekt. Vi viser, hvordan strålen afhænger af ge-

ometriske egenskaber ved samlingen af atomer, såsom Fresnel-nummer og optisk dybde,

og at netop disse geometriske faktorer er de eneste, der påvirker den genererede stråle.

I Del fire præsenterer vi en mekanisme, der kan beskytte kvanteinformation gemt i en

samling kernespin i en halvleder eller kvante-prik. Når kvante-prikken er ladet op med en

elektron, vil kernernes magnetiske moment vekselvirke medelektronens spin via den hy-

perfine kobling. Når denne kobling gøres ikke-resonant med kernespin-overgange fører

det til et energi-gab mellem den kollektive hukommelses-tilstand og alle andre kollek-

tive tilstande. Vi analyserer den kolletive spin tilstand og viser at energi-gabet beskytter

hukommelsen mod individuelle “spin-flips” og “spin-dephasing” støj. Beskyttelsen af-

tager når den rumlige korrelations længde af støjen tiltager. Effekten af en samling atomer,

der til at begynde med ikke er perfekt polariserede, samt effekten af en ikke-homogen hy-

perfin kobling, bliver ligeledes analyseret.
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Part I

Introduction
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Chapter 1

Introducing quantum optics with

atomic ensembles

Entering the field of quantum optics, one quickly learns the that the importance of the

wave particle duality of light can not be overstated. An almost overwhelming amount

of effects in nature involving the electromagnetic field are explained and explored within

the framework of wave theories in the Maxwell equations. This includes grand scale

phenomena such as the rainbow, radio signals transmitted tothe other end of the universe,

but also small scale electrical circuits printed on a silicon plate in a computer processor.

At the other end of our intuition, where the particle behavior of light is found, we are able

to explain effects such as spontaneous radiative decay of an atom, and the photoelectric

effect. It is at the border of classical electrodynamics that quantum optics is found. Should

one have a desire to work in the field of quantum optics, it is therefore of paramount

importance to understand a description of the electromagnetic field that encompass both

the particle and the wave behavior. Statistics on quantum optics shows that the bulk of

the research has to do with the interaction between electromagnetic radiation and atom-

like systems. This thesis is no exception, as some of the mostamazing quantum features

of light is found in the interface between radiation and atomic excitation. In this thesis

we will show examples of how to derive a description of light suitable for treating both

particle and wave effects. We will examine light-atom interactions, where the microscopic

quantum effects is still visible even though the system is scaled to involve thousands of
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4 Chapter 1 - Introducing quantum optics with atomic ensembles

k

k′

p

p′

Figure 1.1: A single atom interacting with a single photon.

atoms and photons. The methods for dealing with these atom and photon interaction

problems are many and varied, but often falls under the two main problems. The problem

of interaction strength, and the dimensionality and scaling problem. In this thesis we

will however not discuss the exciting problems of imposing extra boundary conditions

to the electromagnetic field, such as including an optical fibre, a photonic crystal, or a

nano-wire. Below we shall discuss the two main problems thatwe are examining in this

thesis.

1.1 The interaction strength problem

We will discuss and examine the interaction strength problem by using simple drawings.

Let us imagine that the degrees of freedom of an atom can be described by the indexk.

That will include the momentum of the atom, the internal energy state and other infor-

mation we could ascribe to a set of commuting operators. Similarly we imagine that the

degrees of freedom for the photon is described by an indexp. In the picture, Fig. 1.1,

we draw the evolution of the atom as a straight line and the evolution of the photon as a

wiggly line. The picture is understood in the following way.A photon described by the

indexp meets an atom described by the indexk. They interact, and after the interaction

the atom is no longer described by the indexk but with the indexk′. Similarly the photon

is now described by the indexp′. During the interaction the state of the atom and the

photon changed. Perhaps the energy of the photon changed, and the internal state of the

atom changed. This will of course depend on the details of theinteraction.

We readily complicate the picture when allowing the photon to meet the same atom
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over and over again, like in an optical cavity. In Fig. 1.2 we have made an illustration

of the case where the photon and the atom interact five times. The number of times they

interacts is chosen with some arbitrariness, we really can not tell if they interact one,

five, or say, one hundred times. This is the essence of the interaction strength problem.

Depending on this interaction strength, one will either treat the interaction as a pertur-

Figure 1.2: Interactions in a cavity

bation to the time-evolution of the system, or as a source driving the time-evolution. In

the case of a photon and an atom in a cavity one will typically expect the latter. Since

such a system driven by the interaction is of fundamental interest in the quantum op-

tics field we will continue the analysis a little further. Letus say that the problem of

an atom in a cavity is described by the situation that either the photon and the atom do

not interact, they interact one time, they interact two times, three times and so on, we

can make a drawing that represents this situation.
+ + + + · · ·

.

The drawing can be split, so that we start treating the drawing as a mathematical object

{ + + + · · · }
, and what we see is that the complicated problem of

an atom in a cavity can be summarized in a geometrical series
1−

{ }

.

Often however the problem is to find the proper mathematical description of such draw-

ings, because what seems intuitively clear on drawing mightcontain mathematical pit

holes.

Let us move to the class of systems that are the subject of thisthesis. Namely systems

that include many atoms and many photons. Before we dig into the large variety of

diagrams describing the possible interaction events happening in such a system, we first

look at two relatively simple situations. The first situation describes a photon traveling

through the ensemble of atoms, and on its way it interacts with a lot of different atoms.

We will assume that during this passage the photon never interacts with an atom that have

any prior history involving an interaction with a photon. InFig. 1.3 we show such an

interaction sequence. The symmetry and relative simplicity of such kinds of diagrams
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p

p′

.

Figure 1.3: A diagram describing the propagation of a photonthrough an atomic gas. The diagram belongs
to a class of diagrams that can be reduced to an index of refraction.

k

k′

.

Figure 1.4: A diagram describing the propagation of an atom through an electromagnetic field. This type
of diagram belongs to a class of diagrams that reduce to a Stark shift of the internal energy levels of the
atom.

enable us to treat them the same way as with the atom in a cavity. The effect of such

interactions is to add to the propagation of the photon an index of refraction.

Similarly such a situation exists from the atoms point of view, where an atom is being

hit by a number of different photons. This situation is described in Fig. 1.4. In the simple

case where the photons are identical, and have not interacted with atoms before, the type

of drawings presented above can similarly be summed to represent a Stark shift of the

dipole-energy of the atom.

The work presented in this thesis is in the many photon many atom regime, where

we understand the Stark shift, and the index of refraction. The physics we focus on is

described in the remaining diagrams. As an example we imagine an atom first interacting

with a photon and then later with another photon. This photonthen interact with two

different atoms. I all we have an interaction process involving two different photons and

three different atoms. This situation can be represented in a drawing such as Fig. 1.5. The

vast number of such interaction sequences is what we will call the interaction strength
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k

k′

.

Figure 1.5: A complicated sequence of interactions involving two photons and three atoms.

problem, since sorting out and choosing the relevant interaction sequences is much related

to the interaction strength between photons and atoms. Thisproblem is typically split in

two cases. The weak interaction problem, and the strong interaction problem. In the weak

interaction problem we will in principle consider all kindsof interaction sequences, but

introduce a maximal number of interactions that still effects the evolution of the system.

This way we only get a finite set of interaction sequences or diagrams, and can in principle

analyze all of them. In Part Two of the thesis we demonstrate this approach, by way

of analyzing the dynamics of a system that is too complicatedto solve exactly, but is

sufficiently described by a relatively small number of interaction sequences.

In Part Three of the thesis we will turn to the strong interaction problem. In this

regime there is an interaction that we can not treat in an entirely perturbative way. By

this we mean that the interaction is so strong that there is noway we can make a cut

in the number of interactions and claim that these remainingdiagrams contain all the

information that is relevant for the dynamics of the system.We could for example imagine

that the situation where a photon interacts with an atom and then later with another atom

is so probable, that with this interaction sequence all atoms effectively interacts with each

other all the time. To find the dynamics of one atom , thereforerequires solving the two-

particle interaction problem exactly. In Fig. 1.6 we illustrate the meaning of this effective

two-particle interaction. An example on such a problem is the superradiance problem

which is the topic of Part Three. Solving such a strong interaction problem is often quite

complicated, but the formal solution is in principle found in the same way as we did with

the atom in a cavity. Let us now turn a little away from the problem involving only the

interactions and look a little on the environment in which the interaction takes place.
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k

k′

.

Figure 1.6: A diagram showing an effective two-particle interaction between atoms, involvingthe emission
and absorption of a photon.

1.2 The dimensionality and scaling problem

When we discuss the environment we refer to the situation that the atoms are distributed

in a finite region of space. The problems that such a distribution of atoms lead to, we

will refer to as the dimensionality and scaling problem. In this discussion we will have to

be more specific concerning the interaction between the particles since such a discussion

eventually have to compare the length scale of the environment with the length scale of

the interaction. Say that the interaction is very short range, e.g. in a collision. We then

assume that all the atoms are homogeneously distributed in abox of dimensions much

larger than the range of the interactions, and thus we can with high accuracy say that the

overall dynamics of the system is not effected by the finite size of the container. In this

case the particles interacts only with their nearest neighbors, and thus the majority of them

will have the same amount of nearest neighbors and the same dynamical environment.

Let us consider an interaction that does not exhibit this local behavior. We could

as an example take the two-particle interaction described in Fig. 1.6. In principle this

interaction has an infinite range in the sense that the photonafter interacting with the first

atom can travel to the end of the universe before it meets another atom and interact. For

this type of interaction one can imagine that having a finite sized ensemble of atoms, does

effect the overall dynamics of the system. To discuss this problem we will consider a

system where the atoms are described by some operatorb(r ). The operator can tell us

about the internal state of an atom at positionr . This information is changed when the

atom interacts with a photon. We will assume that the interacting photon originated from

another atom, and that the state of the photon depends on the state of the atom it was

emitted from. We might therefore find that the change of the state of an atom can be
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described by

d
dt

b j(t) =
∑

j′
P(+)(r j , r j′) β b j′(t). (1.2.1)

The functionP is a Green’s function that describes the propagation of a photon traveling

from r j′ to r j. The quantityβ describes the coupling strength between a photon an atom.

To discover some of the effects of a finite sized ensemble of atoms we will use the fact

that we have no knowledge about the position of the atoms. By this we mean that though

the atoms are in principle localized in space, we do not know where, so if we talk about

the outcome of some physical measurement, we will have to trace out the position of the

atoms. This we will refer to by taking a spatial average. In Sec. 5.2 we discuss and

develop such spatial average. In this way we get a continuousfunction describing the

density of atoms. The natural continuous formulation of theproblem is

d
dt

b(r , t) =
∫

d3r ′
√

ρ(r ) ¯̄P(+)(r , r ′)
√

ρ(r ′)b(r ′) (1.2.2)

where the functionρ(r ) is the atomic density at positionr . The two limits that we will

consider here is first the limit where the atomic ensemble is infinitely big, and second the

limit where the atomic ensemble is infinitely small. In the first case we will use the fact

that the density is constant. and in the second case that the density is resembling a delta

function. The propagatorP(+) has a nice description in Fourier space, see e.g. Chap. 5,

P(r , r ′) ∝
∫

d3k
k2eik·(r−r ′)

k2 − k2
L

, (1.2.3)

where we assume that there is some wave numberkL describing the energy scale on which

these interaction processes takes place. It is therefore convenient to make a Fourier trans-

formation of the Eq. (1.2.2). In the fist case of a infinitely big atomic ensemble we arrive

at a differential equation stating

d
dt

b(k, t) = iβ′
k2

k2 − k2
L

b(k, t). (1.2.4)

From here we see that in the case of an infinitely sized atomic ensemble, the Fourier

components of the operators describing the atoms are decoupled from each other. We see

a resonance behavior of the Fourier components that are on resonance with the energy
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scale on which the interactions takes placekL. The nice thing about infinitely size atomic

ensembles is then that the dynamics of the atomic operators are decoupled in Fourier

space. One can therefore choose to look at some specific Fourier component which makes

dimensionality reduction very easy.

In the opposite limit where the sample is infinitely small, the propagator will now

only describe a photon traveling an infinitely short distance. This type of propagator is

the subject of Chap. 6. There we show that the propagator in the simple case reduces to a

decay rateΓ. The atomic operator equation is in this case best describedby

d
dt

b(k, t) = −Γ
∫

d3k′b(k′, t). (1.2.5)

Now we find that the Fourier components of the atomic operators collectively decays,

and the natural way to continue is to define the collective operator as being just the sum

of all the Fourier components. This collective operator decays in the same way a sin-

gle atom operator would. The two results are quite different, in the first case, where we

have no localization of the atoms in position-space, we havea perfect localized behav-

ior in momentum-space. Where in the other case we have perfect localized behavior of

the atoms in position space, we find that they are completely de-localized in momentum

space. For atomic ensembles in the real world we can never really be in any one of the

two situations, and discovering the behavior of such a real system is what we refer to as

the dimensionality or scaling problem. The reason for calling it a scaling problem is that

we would like to know, how fast we go from one limit to the otheras we wary the geom-

etry of or system. We also wish to know how the general dynamics of our system scale

with the geometry of the system. Both in Part Two and in Part Three of the thesis, this

scaling problem is a main concern, which is also the reason for calling the research topic

under which this thesis falls, three-dimensional theoriesfor light matter interactions. The

general approach we shall use in dealing with this problem isto say that the system is big

compared to the wave numberkL but otherwise finite.

1.3 Overview of the thesis

The thesis is divided into three research Parts, Two, Three,and Four. In Part Two we de-

velop a three-dimensional theory for light-matter interactions, where we focus on a weak
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interaction, and present the dynamics of the system as a perturbation series. The work

presented in Part Two is organized as follows: In Chap. 3 we give the details of the model

used to describe the interaction. In Chap. 4 we derive a set ofequations of motion de-

scribing the system of atoms and light, using Heisenberg’s equation of motion. The wave

equation describing the light is expressed in a form that ideally suits a perturbative treat-

ment. In Chap. 5 we express the general solution to the wave equation in terms of Green’s

functions and derive the perturbative expansion of the solution to the wave equations as

well as the equation describing the atoms. This is represented in terms of Feynman dia-

grams. In addition we develop the appropriate theoretical tools to describe point particle

effects such as density correlations, and derive a formal expression for the Green’s func-

tion. In Chap. 6 we present our results where we discuss higher order effects such as

spin decay and light scattering. We define operators that describe photon-measurements,

and demonstrate how these are calculated in the theory. In Chap. 7 we discuss various

limits where the general three dimensional theory reduce tothe usually employed one di-

mensional model [2]. We also describe how a detailed understanding of the spatial modes

can be used to achieve storage and retrieval of information in several transverse modes of

light and atoms simultaneously. In Chap. 8 we conclude the work, and in Appendix A we

give several details omitted from the main text.

In Part Three we look at a system of strongly interacting atoms and photons. This

system can not be expressed correctly as a finite perturbation series, and we therefore

turn to an eigenvalue description of the dynamics of the system. The analysis begins with

the basic set of equations describing the interaction of light with atoms. The atoms are

treated as non-moving point particles and the radiation fields are considered in the so-

called length gauge with operators suited to a macroscopic description. See Chap. 3 for a

discussion of this choice. We will then in Chap. 10 derive effective equations of motion

for both the radiation field and the atoms. These equations are directly comparable to the

equations used in Ref. [3]. Having established the equations of motion we will in Chap.

11 change from the point particle picture to a continuous description. This again follows

methods described in Sec. 5.2. In Chap. 12 we make a formal diagonalization of the ma-

trix describing the interaction between atoms mediated by the light. This diagonalization

means that we have to find a basis that will simplify the interaction. In Chap. 13 we will

look at the radiated field and see how this is evolving as the atoms are interacting. Finally

in Chap. 14 we look at the intensity of the radiated field and present the final results. We

shall in addition to the analytical results make a comparison with numerical calculations
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for the superradiance starting with the point particle equations of motion derived in Chap.

4. In Chap. 15 we conclude the work. Calculations omitted from the text is found in

Appendix B.

In Part Four we look at a system consisting of a single electron, and a collection of nu-

clear spins confined in a quantum dot. The electron spin is coupled to the nuclear spin by

the Fermi contact interaction Hamiltonian. The spin state of the electron is via the interac-

tion Hamiltonian mapped onto the collection of nuclear spin. We first derive a description

of the collective nuclear spin states. These states includethe state of the collective nuclear

spin after a successful mapping of the electron state via theinteraction Hamiltonian. We

then look at mechanisms responsible for destroying the stored electronic spin state in the

collective nuclear spin system. First we look at the effect of an inhomogeneous distribu-

tion of nuclear spin in the quantum dot. Then we look at the effect of coupling the nuclear

spins to a noisy classical magnetic field. After that we look at the effect of nuclear spin

diffusion due to dipole-dipole interactions between nuclear spins. Finally we look at the

problem of mapping the electron spin to non-perfect polarized nuclear spin.

Finally in Part Five we summarize the main results presentedin the thesis.
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Three-dimensional theory for

light-matter interactions
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Chapter 2

Introduction

For several applications in quantum information science, such as long distance quantum

communication [4], it is essential to create an interface linking the photonic states used for

transmitting quantum information to a material state suitable for storing and processing

the information. The generation of the required strong coherent coupling of light to a

single emitter has proven difficult to achieve in practise, although substantial progresshas

been made [5–9]. In recent years optically dense atomic ensembles has emerged as a

promising alternative [2, 10–24]. In this approach one can for instance use classical laser

pulses to engineer a suitable interaction such that an incoming light field is reversibly

stored into the coherence between, e.g., two stable ground states in the atoms [11].

Some experiments on atomic ensembles uses atoms that are enclosed inside a cav-

ity to enhance the coupling [20]. In this situation the cavity defines a unique mode of

the light field and the theoretical description consists of describing a single optical mode

coupled to the atomic ensembles. Most experiments are, however, performed with atoms

in free space not enclosed in a cavity, and in this situation the theoretical description is

more complicated. Typically this situation is described ina one dimensional approxima-

tion, where one only considers a single transverse mode and solves a one dimensional

propagation equation for this mode [2,14,15].

In this paper we explore the range of validity of the one-dimensional approximation

15
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by making a full three dimensional description of the interaction between light and an

atomic ensemble. Our calculations directly apply to an experimental situations similar

to the ones described in Refs. [10–13], where the light is detuned far from the atomic

transition, but we expect the general features of our results to be valid for a much broader

class of problems.

Some justification for the one-dimensional description maybe found in the litera-

ture on superflouressence, e.g. Refs. [3, 25, 26]. In this context it was found that the

one-dimensional description is valid provided that the Fresnel number is of order unity

F ≡ A/λL ≈ 1, whereA is the transverse beam area,λ is the wavelength of the light,

and L is the length of the ensemble. Based on this work it has been argued that it is

also necessary to have a Fresnel number of order unity in order for the one-dimensional

approximation to be applicable to the quantum interfaces between light and atomic en-

sembles [2,14,15]. It is, however, essential to realize that the physical situations are very

different in the two cases. The work on superflouressence typically concerns the temporal

distribution of the output light measured by impinging the outgoing light on a photode-

tector. Because the photodetector just measures the incoming flux I , this is essentially a

multi-mode measurement

I ∝
∑

m

â†mâm, (2.0.1)

where the the sum is over all modesmhitting the detector, and each of these modes are de-

scribed by the photon creation (annihilation) operators ˆa†m (âm). In particular the sum here

includes all transverse modes. This is in contrast to the quantum interface work, where

one is interested in the outgoing state of a single light mode, e.g., in Refs. [10–13] the mea-

surement is essentially a homodyne measurement of a single mode, defined by the field of

the strong classical laser. In other experiments the outgoing light is sent through a single

mode optical fiber, which filters out everything except a single transverse mode. Further-

more the superflouressence work applies to a nonperterbative situation with a large optical

gain, whereas the quantum interfaces typically operates inthe few excitation regime. The

previous analysis is thus not applicable to the present situation and it is therefore not to

be expected that the conditionF ∼ 1 is the right condition for the validity of the one-

dimensional approximation. In fact, the experiments in Refs. [10–12] are performed with

F ∼ 104, and still give very good agreement with the one-dimensional description. Here

we make a full three dimensional description of the experiments in Refs. [10–12], and

we find that it reduces to the one-dimensional description inthe paraxial approximation



17

provided thatF ≫ 1.

In a related work a three dimensional description was also presented in Ref. [27].

Whereas our procedure assumes non-moving atoms, i.e., coldatoms, that work consid-

ered the opposite limit, where the motion of the atoms wash out any spatial structure of the

atomic spin state. Unlike the situation in Ref. [27], where the motion of the atoms always

lead to certain inefficiencies, the fact that we consider stationary atoms, allows us to iden-

tify certain limits, where we exactly reproduce the simple result of the one dimensional

theory as discussed in Chap. 7.2.

Our theory is developed as a perturbative expansion of the interaction between light

and the atomic ensembles. It is, however, essential to be very careful about the way this

perturbative expansion is performed. Below we shall present results up to second order

in the interaction between the light and the atoms. We shall use an effective Hamiltonian,

where the excited atomic state has been eliminated, i.e., a Hamiltonian of the form

H ∼
∑

k,k′

∑

i

gk,k′uk(r i)u
∗
k′(r i)â

†
k′âk , (2.0.2)

wheregk,k′ is a coupling constant for the two modesk, andk′ described by photon creation

(annihilation) operators ˆa†k (âk) with mode functionsuk, andr i is the position of theith

atom. If we take the mode functions to be simple plane waves with an input field in a

certain modek0 and calculate the intensity in a certain direction described by k1, we find

the intensity

I ∝
∣

∣

∣

∣

∣

∣

∣

∑

i

ei∆k·r i

∣

∣

∣

∣

∣

∣

∣

2

=

∑

i, j

ei∆k·(r i−r j ), (2.0.3)

where∆k = k1− k0. The standard way to proceed from here is to say that the exponential

varies rapidly wheni , j and therefore neglect all terms excepti = j so that one is left

with something proportional to the number of atomsNA, which is known as spontaneous

emission. For the problem we are interested in here, we are, however, mainly concerned

with the properties of the light in the forward direction, where∆k ≈ 0. In this case it

seems unjustified to neglect the cross terms which give rise to collective scattering scaling

asN2. SinceN is typically a very big number, the presence of such largeN2 contributions

may limit the applicability of perturbation theory.

In order to avoid the problems associated with this collective scattering, we use a
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different basis for our perturbative expansion: instead of starting from the eigenmodes

of the propagation equation in vacuum, we use the solutions to the classical diffraction

problem in the presence of the medium, i.e., we take into account that the atoms give

rise to an index of refraction of the gas, which changes the propagation of the light.

Specifically, we write the Hamiltonian as

H = 〈H〉atoms+ δH, (2.0.4)

where〈H〉atoms is the quantum mechanical expectation value of the Hamiltonian with re-

spect to the atomic spin state averaged over the random positions of the atoms. This

averaged Hamiltonian gives rise a continuous quadratic Hamiltonian in the light field

operators similar to a Hamiltonian describing the interaction with a dielectric medium.

When we formally change to the interaction picture with respect to this averaged Hamil-

tonian, we obtain a new set of basis modes. Doing perturbation theory on these modes,

the only effect on the light comes from the quantum mechanical fluctuations and the fluc-

tuations caused by the random position of the atoms. These fluctuations are described

by the HamiltonianδH = H − 〈H〉atoms. When we average the first order term in the

perturbative expansion with respect to the position of the atoms the resultant expression

describe that the quantum fluctuations of the atoms are mapped onto the light in analogy

with the results derived in a one-dimensional theory in Ref.[2].

If we go to second order in the interaction, our expression will give terms quadratic

in δH. In order to take the spatial average of such terms we need to know the density

correlation function of the atoms. Inserting the density correlation function for an ideal

gas we no longer find the collective scattering terms described above, i.e., the collective

scattering is essentially the classical diffraction of the light, which is explicitly taken into

account by our average Hamiltonian, and therefore it does not appear in our perturbation

theory. The spatial average of the second order term does, however, produce a new term

associated with the point particle nature of the atoms and their random positions. This

term is equivalent to the results obtained by just keeping the i = j terms in Eq. (2.0.3),

and represents the effect of spontaneous emission.

Unlike most approaches to the interaction between atoms andlight, which derive cou-

pled equations for the atomic states and the electric field, our approach considers the

electric displacement fieldD instead of the electric field. The reason we chose to use the
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displacement field is that it is convenient to work with a purely transverse field, which is

the case for the displacement field due to the macroscopic Maxwell equation∇ · D = 0,

whereas this is not necessarily the case for the electric field in a medium. Formally the

two approaches are equivalent and may be related through a unitary transformation [28].

The full theory is quite involved. Readers who are mainly interested in the conse-

quences of our theory for experimental implementations aretherefore advised to skip to

Chap. 7, where we discuss such consequences. The sections prior to this mainly focus on

building the theoretical frame using a first-principles strategy.





Chapter 3

Model

The model we consider describes the interaction between an ensemble of atoms and an

incoming light field. The atomic ensemble is considered to bean ideal gas of identical

atoms. The atoms are described as non-moving randomly distributed point particles and

the interaction with the light field is described within the dipole-approximation. Each

atom is assumed to have a ground level of total spinF. In addition we assume that the

atoms have no other stable ground states to which they can decay. See Fig. 3.1. We

shall assume that the electric fields are sufficiently far-detuned that we may adiabatically

eliminate the exited states, and work with an effective Hamiltonian involving only the

ground states. In the following we first discuss the interaction between light and a single

atom, and then move on to discuss the interaction with an ensemble of atoms.

3.1 Interaction with single atoms

The aim of this work is to describe the interaction between anelectromagnetic field and an

ensemble of identical atoms. The problem is therefore both to deal with the microscopic

behaviour of a single atom, and also the collective effect of many atoms. We choose here

to work in the so called length gauge, where the basic interaction is given as the product

21
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F’,m+1 F’,m−1

F,m+1 F,m−1F,m

F’,m

.... ....

...
.

...
.

F’’,m

∆

....

....

....

....

D +
D0

D   

Figure 3.1: Example of an atomic level structure. The atoms have a single ground level with spin F and
one or more exited levels. The fields have a large detuning∆ so that the exited states may be adiabatically
eliminated and we obtain an effective ground state Hamiltonian Eq. (3.1.3).

of the displaced electric field and the polarization of the media [28]∗.

Hint = −
Atoms
∑

j

1
ǫ0

D(r j , t) · P(r j , t). (3.1.1)

Our gauge choice ensures∇·D(r , t) = 0. We will assume that the fields have a large detun-

ing and do not saturate the atomic transition, so that the exited levels may be adiabatically

eliminated. This procedure is described in Appendix A.1. The polarization of the atomic

ensemble then depends linearly on the displaced electric field, that isP(r , t) = ¯̄V[Ĵ]D(r , t).

We introduce here the argumentĴ to indicate that the interaction matrix̄̄V[Ĵ] depends on

the spin of the atoms. Next we write the displaced electric field as a sum of a positively

oscillating part and a negatively oscillating part,

D(r , t) = D(+)(r , t) + D(−)(r , t). (3.1.2)

In Appendix A.1 we show that the effective interaction Hamiltonian, assuming such linear

∗We have here a formally divergent term, the dipole self-energy. One can, however, show that this term
has no effect on the dynamics of the system.
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dependence of the polarization on the displaced electric field, reads

Hint = −
1

2ǫ0

Atoms
∑

j

([

¯̄V[Ĵ j]
t D(−)

j

]

· D(+)
j

+ D(−)
j ·

[

¯̄V[Ĵ j] D(+)
j

])

, (3.1.3)

where we have also employed the rotating wave approximation. Here the superscriptt

denotes matrix transposition.

Since the Hamiltonian must be rotationally invariant it canonly contain irreducible

tensors of at most rank two. In the vector representation theinteraction may thus in

general be written as

¯̄V[Ĵ j] = β
(

c0 Ĵ2
j − ic1 Ĵ j × +c2 × Ĵ j

) · (Ĵ j ×
)

. (3.1.4)

The meaning of the notation is that when inserted into the Hamiltonian the result of, e.g.,

the last term of the right hand side of Eq. (3.1.4) is

βc2

Atoms
∑

j

(

D(−)(r j , t) × Ĵ j
) · (Ĵ j × D(+)(r j , t)

)

. (3.1.5)

Note that we have here chosen a description which has a simpleanalytical representation,
but this means thec2 term is not a pure rank two irreducible tensor, but consist ofa
combination of tensors of rank zero, one and two. In matrix form the interaction may be
written:

¯̄V[J̄] = β



























(c0 − c2)Ĵ2
+ c2Ĵ2

x ic1Ĵz+ c2ĴyĴx −ic1Ĵy + c2ĴzĴx

−ic1Ĵz+ c2ĴxĴy (c0 − c2)Ĵ2
+ c2Ĵ2

y ic1Ĵx + c2ĴzĴy

ic1Ĵy + c2ĴxĴz −ic1Ĵx + c2ĴyĴz (c0 − c2)Ĵ2
+ c2Ĵ2

z



























. (3.1.6)

In general the atoms may have several exited levels as shown in Fig. 3.1. The effect of

several exited levels can be included in the coefficientsc0, c1 andc2 that will then depend

on the detuning. For atoms withF = 1
2 or for an alkali atom, where the fields are detuned

by more than the hyperfine structure of the exited state, thec2 term disappears [29] and

the interaction matrix is given by

¯̄V[Ĵ j] = β
(

c0 Ĵ2
j − ic1 Ĵ j ×

)

. (3.1.7)
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Herec0 andc1 are constants which depend on the atomic structure as well asthe detuning.

The coupling constantβ in Eq. (3.1.7) is given by

β =
πγ

2∆k3
L

, (3.1.8)

whereγ is the linewidth of the exited level,∆ the detuning of the laser field with respect

to the atomic transition, andkL is the wave vector. With this choice ofβ the coefficients

c0, c1 andc2 will be of order unity or less. Throughout this paper we shallonly consider

the simple interaction in (3.1.7). A discussion of the effect of thec2 term is given in

Refs. [23,24] in a one dimensional description.

We will consider a perturbative regime, where the product ofthe atomic densityρ

andβ is smallβρ ≪ 1, and make a perturbative expansion inβ. Note, however, that

this condition does not imply that the total effect of the interaction is small. On the

contrary, we are most interested in situations, where the integrated effect of the interaction

significantly alters the light beam as it passes through the sample. To take into account

these collective effects we explicitly include, e.g., the diffraction of the light caused by

the propagation through a medium. To describe these effects we discuss in the following

section how to quantize the field in a medium.

3.2 Mode expansion

To quantize the electromagnetic fields we could: i) impose the canonical commutation

relations on the vector potential and displaced electric field. Or ii) expand the electro-

magnetic fields on an orthonormal set of spatial mode-functions
{

fk
}

conveniently chosen

to diagonalize the Hamiltonian (in vacuum this is the set of plane waves), and then quan-

tizing the mode-amplitudes. Here we will use the latter. TheHamiltonian describing the

electromagnetic field in a medium is given by [28]

H = 1
2

∫

d3r
{D2

ǫ0
+

(∇ × A)2

µ0

}

+Hint, (3.2.1)

whereHint is given in equation (3.1.3). A careful analysis of how to quantize the electro-

magnetic field in a medium, is given in Ref. [30], and here we shall only go through the

steps briefly.
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By introducing the spin field

Ĵ(r , t) =
Atoms
∑

j

Ĵ jδ(r − r j), (3.2.2)

the Hamiltonian may be put in an all-integral form. The main idea in our approach is

to divide the full Hamiltonian into a spatially averaged part, and a point particle part,

describing the fluctuations from the average caused by the atoms being point particles. For

now we only consider the spatially averaged part of the theory. We will use calligraphic

font to denote that we have made a spatial average. We thus write the spatially averaged

interaction from equation (3.1.7) as

¯̄V[J̄] = βρ(r )
(

c0 J2 − ic1 J̄(r ) ×
)

. (3.2.3)

Here a bar denotes a single-atom operator, that isJ̄(r ) is the spin operator of a single atom

at positionr . We use the bar to distinguish between the spatially averaged single-atom

spin operator, and the general spin field in equation (3.2.2). The two may be related by

〈Ĵ(r , t)〉s.a. = ρ(r )J̄(r , t), where〈·〉s.a. denotes spatial average. The functionρ(r ) denotes

the average atomic density, which in this model is a continuous scalar field.

In the following we will define a mean Hamiltonian, where we have taken into account

the quantum mechanical average of the spatially averaged interaction. We then write the

Hamiltonian as a sum of the average Hamiltonian and a point particle Hamiltonian

H =H0 +Hpp, (3.2.4)

where

H0 =
1
2

∫

d3r
{D( ¯̄MtD(−)

+
¯̄MD(+))

ǫ0
+

(∇ × A)2

µ0

}

, (3.2.5)

Hpp = −
1

2ǫ0

∫

d3r D ·
(

¯̄m[Ĵ]t D(−)
+ ¯̄m[Ĵ] D(+)

)

, (3.2.6)

¯̄M = I − ¯̄V[J], (3.2.7)



26 Chapter 3 - Model

and

¯̄m[Ĵ] = ¯̄V[Ĵ] − ¯̄V[J]. (3.2.8)

Here we simply writeJ (without the hat) to denote that this is now a classical field de-

scribing the classical expectation of the spin of the atoms.In analogy with Ref. [30] we

introduce the mode functions
{

fk
}

defined by:

∇ ×∇ × ¯̄Mfk(r ) =
ω2

k

c2
fk(r ), (3.2.9a)

∇ · fk(r ) =0. (3.2.9b)

We also define the appropriate inner product on the space spanned by these mode func-

tions:

〈φ(r )|ψ(r )〉 =
∫

d3rφ(r )∗ · ¯̄Mψ(r ). (3.2.10)

We will assume that the average interaction term̄̄V[J] does not evolve in time, and our

appropriate mode-functions are therefore time independent vector fields. One can show

that the functionsfk span a complete orthonormal basis for the space in which we work.

To diagonalize the Hamiltonian we expand the vector potential and the displaced electric

field in these mode functions

D(r , t) = −
∑

k

√
ǫ0 pk(t)f ∗k(r ) (3.2.11a)

A(r , t) =
∑

k

c
√
µ0 qk(t)(1− ¯̄V[J]) fk(r ). (3.2.11b)

The minus sign in Eq. (3.2.11a) is conventional and stems from the relation between

the displaced electric field and the canonical conjugate field given in terms of the vector

potential.

The reality condition on the displaced electric field
[

(D(r , t))† = D(r , t)
]

allows us to

write

D(r , t) = −
∑

k

√
ǫ0

2

(

p†k(t)fk(r ) + pk(t)f ∗k(r )
)

. (3.2.12)



3.3 - Quantization and commutation relations 27

Using the results in Eqs. (3.2.9) and (3.2.10) and the expansion in equation (3.2.11), the

Hamiltonian attains the desired diagonal form

H0 =
1
2

∫

d3r
{D(1− ¯̄V[J])D

ǫ0
+

(∇ × A)2

µ0

}

=
1
2

∑

k

{

p†k(t)pk(t) + ω2
kq†k(t)qk(t)

}

. (3.2.13)

The mode functions
{

fk
}

are thus the spatial basis diagonalizing the spatially averaged

Hamiltonian, and as we shall see the proper basis describingthe diffraction problem.

The splitting in equation (3.2.4) allows us to consider the problem as comprised of two

types of properties. The effect of single atoms, and the spatially averaged Hamiltonian.

The effect of the spatially averaged Hamiltonian is well understood in terms of the mode-

functions defined in equation (3.2.9). The point particle effect we will discuss in greater

detail when considering the equations of motion for the fullsystem. Before deriving

these equations of motion we, however, briefly need to discuss the commutation relations

describing the system.

3.3 Quantization and commutation relations

Above we expanded the fields in convenient spatial modes. Thecoordinatespk(t) and

qk(t) are canonically conjugate variables, and we can thus quantize our theory by impos-

ing the commutation relations

[

qk(t), pk′(t)
]

= i~δkk ′ . (3.3.1)

It will however be convenient to have the commutation relations for the fields which we

may derive from the mode-amplitude commutation relations.It will also be convenient

to separate the displaced electric field into a positively and a negatively oscillating part

D = D(+)
+ D(−), whereD(−) is in accordance with convention chosen so that it only

contains terms oscillating likeeiωk t. Our choice of gauge is reflected in the transversality

of the mode functions defined in Eq. (3.2.9). We expect this transversality condition to be

represented in the commutation relations as well. With the quantization procedure above
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one finds the following expression for the negative frequency part of the relevant fields

D̂(−)(r , t) = − i
∑

k

√

~ωkǫ0

2
â†keiωk tf ∗k(r ) (3.3.2a)

Â(−)(r , t) =
∑

k

c

√

~µ0

2ωk
â†keiωk t(1− ¯̄V[J])tf ∗k(r ). (3.3.2b)

The positive frequency part may be found by Hermitian conjugation. The above result

is found from equation (3.2.12) along with the definitions ofcreation and annihilation

operators given by

qk(t) =

√

~

2ωk

{

âk(t) +
∑

k′
U∗kk ′ â

†
k′(t)

}

(3.3.3a)

pk(t) =i

√

~ωk

2

{

â†k(t) −
∑

k′
Ukk ′ âk′(t)

}

, (3.3.3b)

where the matrixUkk ′ is defined as

Ukk ′ =

∫

d3r ¯̄Mfk(r ) · fk′(r ). (3.3.4)

A detailed discussion of this procedure is found in Ref. [30].

From these definitions and the commutation relations (3.3.1) we obtain

[

âk(t), â†k(t)
]

= δkk ′ . (3.3.5)

Going to the field operators we get

[

D̂(+)(r , t), Â(+)(r ′, t)
]

=0 (3.3.6)

[

D̂(+)(r , t), Â(−)(r ′, t)
]

=
i~
2

¯̄δT(r , r ′), (3.3.7)

where

¯̄δT(r , r ′) =
∑

k

fk(r )
[ ¯̄Mtf ∗k(r ′)

]

. (3.3.8)

Here¯̄δT(r , r ′) is a generalized transverse delta function [30]. This may be seen by consid-
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ering its action on some transverse vector field (∇ ·ψ(r , t) = 0). Since
{

fk
}

is a complete

basis on the set of transverse fields, we may expandψ(r , t) as

ψ(r , t) =
∑

k

Ĉk(t)fk(r ). (3.3.9)

If we calculate the effect of the transverse delta-function on a transverse field wefind
∫

d3r ′ ¯̄δT(r , r ′) · ψ(r ′, t) =
∫

d3r ′
∑

kk ′
Ĉk(t)fk′(r )

[ ¯̄Mtf ∗k′(r
′) · fk(r ′)

]
∑

kk ′
Ĉk(t)fk′(r )δkk ′

= ψ(r , t), (3.3.10)

where we have used the orthonormality condition of the basis-functions.

We shall also need the equal-space commutation relations

[

D̂(+)(r , t), D̂(−)(r , t′)
]

.

A formal expression of this commutation relation can be found from Eq. (3.3.2a) to be

[

D̂(+)(r , t), D̂(−)(r , t′)
]

=
~ǫ0

2
¯̄η(r , t, t′), (3.3.11)

where

¯̄η(r , t, t′) =
∑

k

ωkfk(r )f ∗k(r )e−iωk (t−t′). (3.3.12)

In vacuum¯̄η(r , t, t′) is simple to evaluate, but for complex systems it is nontrivial to gain

knowledge of the basis-functions
{

fk
}

. In Appendix A.2 we calculatē̄η using the rotating-

wave approximation and the local density approximation, where we assume thatρ(r )

varies slowly with respect tor .





Chapter 4

Equations of motion

In this section we derive the equations of motion for the system, and consider their general

properties. In the previous section we discussed that the theory could be divided into

an average part and a part representing the deviation from the average. To derive the

equations of motion we will, however, work with the full Hamiltonian and later make the

splitting into the average part and the deviations from it. The strategy we will use is to

first derive the quantum mechanical Maxwell equations, and then to combine them into

an effective wave equation for the field.

We will now as an example derive one of the quantum mechanicalMaxwell equations

from Heisenberg’s equation of motion:

d
dt

D̂(r ) =
i
~

[Ĥ , D̂(r )
]

=
i

2~µ0

∫

d3r ′
[(

∇ × Â(r ′)
)2
, D̂(r )

]

=
i

2~µ0

∫

d3r ′
{

(∇ ×∇ × Â(r ′)) · [Â(r ′), D̂(r )
]

+
[

Â(r ′), D̂(r )
] · (∇ ×∇ × Â(r ′))

}

. (4.0.1)

Here we have used the Hamiltonian given in Eq.(3.2.1), and the boundary condition that

the physical fields vanish at infinity. To shorten the notation we have suppressed the ex-
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plicit time dependence. The commutation relation may be found from (3.3.6) and (3.3.7)

to be

[

Â(r ′), D̂(r )
]

= −i~¯̄δT(r , r ′). (4.0.2)

Since the field∇×Â is transverse by definition, this gives us the first quantum mechanical

Maxwell equation.

d
dt

D̂(r ) =
1
µ0

∇ × B̂(r ), (4.0.3)

where

B̂(r ) =∇ × Â(r ). (4.0.4)

Similarly we may derive the Maxwell equation∇ × Ê = −∂tB̂, whereÊ = −dÂ/dt =

D̂ − P̂. The remaining Maxwell equations∇ · B̂ = 0 and∇ · D̂ = 0 follow immediately

from the definition ofB̂ in Eq. (4.0.4) and from the transversality ofD̂.

Because of the nature of the interaction part of the Hamiltonian, it is convenient to

consider the two frequency components of the displaced electric field separately. The

quantum mechanical Maxwell equations may be combined into asingle wave equation

( d2

dt2
+ c2

∇ ×∇ ×
)

D̂(−)(r , t) = c2

∫

d3r ∇ ×∇ × ¯̄δT(r , r ′) · ¯̄V[Ĵ]tD̂(−)(r ′, t), (4.0.5)

where the positive frequency part can be found by Hermitian conjugation. Similarly we

may derive equations for the spin of the atoms, and for the simple interactions given in

Eq. (3.1.7), one finds

d
dt

Ĵ(r , t) =
iβc1

~ǫ0
Ĵ(r , t) ×

(

D̂(−)(r , t) × D̂(+)(r , t)
)

. (4.0.6)

In the remainder of this article we will solve these coupled partial differential equations.

The expression in Eq. (4.0.5) is a second order differential equation in time. The

solution of this equation will in general not only depend on the initial valueD(r , t = t0),

but also the time derivative∂tD(r , t)|t=t0. In deriving our interaction we have, however,

already used the rotating wave approximation, where we ignore the dynamics on a time
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scale similar to the inverse of the optical frequency. Similarly we shall here make a

slowly-varying-envelope approximation and write the displaced electric field as

D̂(r , t) = D̃(−)(r , t)eiωL t
+ D̃(+)(r , t)e−iωL t, (4.0.7)

whereD̃(±) are slowly varying in time. If we ignore the second derivative of the slowly

varying operators (∂2
t D̃

(±)(r , t) ≈ 0), then Eq. (4.0.5) reduces to a first-order differential

equation in time.

Since we are heading towards a perturbation theory in the point-particle part of the

Hamiltonian (3.2.4), we will add and subtract the average part of the source term in Eq.

(4.0.5). That is we write

¯̄V[Ĵ] = ¯̄V[Ĵ] − ¯̄V[J] + ¯̄V[J] ≡ ¯̄m[Ĵ] + ¯̄V[J]. (4.0.8)

The idea in this separation is that now̄̄V[J] represents the average effect of the ensemble,

which may have a big effect, whereas̄̄m[Ĵ] represents the fluctuations around this average.

To take advantage of this we first consider the average term

∫

d3r ∇ ×∇ × ¯̄δT(r , r ′) · ¯̄V[J]tD̂(−)(r ′, t). (4.0.9)

This term is continuous and we may use partial integration twice. Using the expression

for the general transverse delta-function one finds

∫

d3r ∇ ×∇ × ¯̄δT(r , r ′) · ¯̄V[J]tD̂(−)(r ′, t)

=∇ ×∇ × ¯̄V[J]tD̂(−)(r , t). (4.0.10)

This term we will move to the left hand side of Eq. (4.0.5), andwe are left with a diffusion

equation involving only the fluctuations as a source term on the right hand side

(

2iωL

d
dt
−ω2

L + c2
∇ ×∇ × ¯̄Mt

)

D̃(−)(r , t)

= c2

∫

d3r ∇ ×∇ × ¯̄δT(r , r ′) · ¯̄m[Ĵ]tD̃(−)(r ′, t). (4.0.11)

If we put the right hand side of this equation to zero, i.e., ignore the fluctuations, this

equation describes the propagation and diffraction of the field in a medium. For instance
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if we take the simplest case where the medium is isotropic so that the matrix ¯̄V[J] is

just a scalar, this equation describes the propagation through a medium with an index of

refraction given byn = 1/
√

1− ¯̄V[J], see Ref. [30].



Chapter 5

General solution and Feynman

diagrams

In this section we discuss the solution of Eq. (4.0.11) in terms of its Green’s function. Let

us for convenience define the differential operator

D = 2iωL

d
dt
− ω2

L + c2
∇ ×∇ × ¯̄Mt(r ). (5.0.1)

We then define the Green’s function by

D ¯̄G(−)(r , t|r0, t0) = ¯̄δT(r , r0)δ(t − t0). (5.0.2)

The right hand side of this equation describes an identity functional on the inner product

space we are working in. We want the Green’s function to describe an evolution of the

system forward in time. We therefore define a cut-off on the Green’s function in time

¯̄G(−)(r , t|r0, t0) = 0 for t < t0. (5.0.3)
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The general solution to Eq. (4.0.11) in terms of Green’s functions is discussed in detail in
Appendix A.3, and reads

D̃(−)(r , t) = 2iωL

∫

d3r′ ¯̄Mt(r ′) ¯̄G(−)(r , t|r ′, t0) · D̃(−)(r ′, t0)

+ c2
" t+

t0
d3r′dt′ ¯̄Mt(r ′) ¯̄G(−)(r , t|r ′, t′) ·

∫

d3r′′ ∇′ ×∇
′ × ¯̄δT(r ′, r ′′) · ¯̄m[Ĵ]tD̃(−)(r ′′, t′).

(5.0.4)

The upper limit is understood to bet+ = limε→0[t+ε]. Before continuing a few comments

are in order. Here we have used the boundary conditions, thatall fields vanish at infinity,

i.e., we imagine that at timet = 0 we have generated an optical pulse inside the volume

we are describing, which travels toward the atomic medium. Alternatively we could have

described the incomming field by a boundary term. The positive frequency part may be

found by Hermitian conjugation.

Let us now consider the last term of Eq. (5.0.4). We notice that the involved fields

are all continuous and differentiable with respect to the primed spatial coordinates.Using

partial integration twice and introducing the propagator defined by

¯̄P(−)(r , t|r ′, t′) =∇
′ ×∇

′ × ¯̄Mt(r ′) ¯̄G(−)(r , t|r ′, t′) (5.0.5)

the last term of Eq. (5.0.4) may be written as

c2

" t

t0

d3r ′dt′
∫

d3r ′′ ¯̄P(−)(r , t|r ′, t′)· ¯̄δT(r ′, r ′′) ¯̄m[Ĵ]tD̃(−)(r ′′, t′). (5.0.6)

Due to the cross product in Eq. (5.0.5) the propagator is transverse with respect to primed

coordinates and the transverse delta function in (5.0.6) may be integrated out, giving

c2

" t

t0

d3r ′dt′ ¯̄P(−)(r , t|r ′, t′) · ¯̄m[Ĵ]tD̃(−)(r ′, t′). (5.0.7)

The first term of the right hand side of equation (5.0.4) we will denote as̃D(−)
0 (r , t)

D̃(−)
0 (r , t) = 2iωL

∫

d3r ′ ¯̄Mt(r ′) ¯̄G(−)(r , t|r ′, t0) · D̃(−)(r ′, t0). (5.0.8)

If there were no deviation from the mean, i.e.̄̄m[Ĵ] = 0, the solution would simply be
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D̃(−)(r , t) = D̃(−)
0 (r , t). D̃(−)

0 (r , t) thus denotes the solution to the diffraction problem, where

the atomic medium is treated as a continuous medium with a diffraction matrix ¯̄M.

5.1 Perturbative expansion

Below we shall develop a perturbative expansion in the deviation from the mean due to

quantum fluctuations and from the fact that the medium is not continuous but consists of

a large number of point particles. The starting point for theperturbative expansion will

be thefield equation

D̃(−)(r , t) = D̃(−)
0 (r , t) + c2

" t

t0

d3r ′dt′ ¯̄P(−)(r , t|r ′, t′) · ¯̄m[Ĵ]tD̃(−)(r ′, t′). (5.1.1)

In addition to this we shall also need the solution to the equations of motion for the spin

(4.0.6), which may be formally solved to give thespin equation

Ĵ(r ,t) = Ĵ(r , t0) +
iβc1

~ǫ0

∫ t

t0

dt′ Ĵ(r , t′) ×
(

D̃(−)(r , t′) × D̃(+)(r , t′)
)

. (5.1.2)

These are the equations we wish to treat using the Born approximation, where we make

an expansion in the interaction parameterβ. ( In Eq. (5.1.1) the interaction̄̄m[Ĵ]t is

proportional to the expansion parameterβ.)

In terms of notation this expansion gets extremely cumbersome. It is therefore conve-
nient to introduce Feynman diagrams to represent the various terms of the expansion. We
will be dealing with two types of interactions: the one givenin Eq. (5.1.1) which we will
represent with a shaded circle, and the one given in Eq. (5.1.2) which we will represent
with a shaded triangle. The field equation, we diagrammatically represent as

= +

, (5.1.3)
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and the spin equation is represented as

= +

. (5.1.4)

The orientation of the diagram is such that time is going fromleft to right, and the

evaluation at timet is marked by a dot. Spin propagation is represented by a line with

an arrow pointing in the positive-time direction. A wiggly line represents propagation

of the displaced electric field. The arrow denotes whether the line represent the photon-

generating part of the field,̃D(−)(r , t), where the arrow points forward in time, or the

photon-annihilating part of the field, where the arrow points backward in time. The full

solution to the spin̂J(t) is denoted with a double straight line, and the full solution to the

displaced electric field is denoted with a double wiggly line.

The field equation and the spin equation can be represented asa perturbation series,

and in the following we shall discuss the effect of the terms in this perturbation series. An

important feature of our system is the random distribution of the atoms in the ensemble.

The equations that we have derived so far apply to each realization of the atomic distri-

bution
{

r1, r2, . . . , r N
}

. However since we have no control of the position of the atomswe

will have to make a spatial average of our equations, that is of the terms in the perturbation

series. To do this we need to know the density correlations ofthe gas.

5.2 Density correlations.

We assume that we are dealing with an ideal gas, i.e., we assume that the distribution

of the atoms is completely random but has a distribution given by the possible spatially

varying densityρ(r ), and we assume that there are no correlations between the positions

of different atoms. The correlation function for the density distributionρ(r ) =
∑

j δ(r − r j)
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is thus

〈ρ(r )ρ(r ′)〉s.a.= 〈
∑

jl

δ(r − r j)δ(r ′ − r l)〉s.a.

=

∑

j,l

〈δ(r − r j)δ(r ′ − r l)〉s.a.+

∑

j

δ(r − r ′)〈δ(r − r j)〉s.a.

= 〈ρ(r )〉s.a.〈ρ(r ′)〉s.a.+ δ(r − r ′)〈ρ(r )〉s.a.. (5.2.1)

Here 〈·〉s.a. denotes spatial averaging. In the last step we used that the distribution is

independent for different atoms, and we ignored the small difference betweenN2
A and

NA(NA − 1), whereNA is the number of atoms. We have also neglected the effect that

two different atoms can not be found at the same point in space. While this may seem

insignificant for a low density gas, we show in Appendix A.4 that including this effect to

all orders in the perturbation series gives the Lorentz-Lorenz correction to the index of

refraction.

Below we shall also use the correlation functions for the spin. Similar to the calcula-

tion above we find

〈Ĵn(r )Ĵm(r ′)〉s.a.= ρ(r )ρ(r ′)J̄n(r )J̄m(r ′) + ρ(r )δ(r − r ′)J̄n(r )J̄m(r ), (5.2.2)

where the indexn,m refer to the spatial components of the operators. To shortennotation

we have writtenρ(r ) instead of〈ρ(r )〉s.a.. As discussed previously the bar denotes a single

atom operator. We will preserve the quantum mechanical behavior of the operators by not

taking the quantum mechanical mean. The first term on the right hand side of Eq. (5.2.2)

arises from the contribution from different atoms (signified by the prime on the second

spin operator). In the second term on the other hand the two operators refer to the same

atom, and the operator product should be evaluated for a single atom. For example for

a spin-12 system, we have the following relation between products of spin operators on

single atoms

J̄n(r )J̄m(r ) =
i
2
εnmlJ̄l(r ). (5.2.3)

The generalization to even higher-order density correlations is straight-forward.

These considerations become important when we calculate the spatial average of the
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second-order terms of the perturbation series. Let us as an example consider the second

order term of the spin equation representing a photon first interacting with one atom and

then later with the atom in consideration.

−−−→s.a. (5.2.4)

When taking spatial average this term generates two terms inthe perturbative expansion

as indicated with the arrow in Eq. (5.2.4). The first term involving the spin of two different

atoms we will refer to as a coherent interaction, which we will discuss later. The second

term involving the delta function corresponds to the incoherent interaction (for reasons

which will become clear below). We include this situation inthe diagrammatic notation by

introducing a hatched star and a loop signifying the infinitely short propagation stemming

from the delta-function term of the correlation function Eq. (5.2.2), i.e.

∫

d3r ¯̄P±(r , t|r ′, t′) ·ψ(r ′, t′)δ(r − r ′) = ¯̄P±(r , t|r , t′) ·ψ(r , t′). (5.2.5)

The loop is placed on the top of the star when it comes from the positively oscillating

propagator¯̄P(−), and in the bottom of the star when we refer to the negatively oscillating

propagator¯̄P(+). A star scales with the expansion coefficientβ squared since it involves

two interactions. In the next section we will calculate the infinitely short propagator

appearing in these expressions in the local density approximation.

5.3 Green’s function and propagator

In this section we first derive a formal expression for the Green’s function. Within our

inner product space the Green’s function is defined by (5.0.1) and (5.0.2). Expanding our
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Green’s function in the basisf ∗k(r ) we find the representation

¯̄G(−)(r , t|r ′, t′) =
∑

k

f ∗k(r )fk(r ′)g(−)
k (t, t′). (5.3.1)

We have here expanded on the complex conjugated setf ∗k(r ) to match the expansion of the

displaced electric field in Eq. (3.3.2a). The transverse delta-function has the representa-

tion

¯̄δT(r , r ′) =
∑

k

f ∗k(r )fk(r ′) (5.3.2)

where we are now working in the inner-product space with inner product defined in Eq.

(3.2.10). The scalar functiong(−)
k (t, t′) is defined by

(

2iωL

d
dt
− ω2

L + ω
2
k

)

g(−)
k (t, t′) = δ(t − t′), (5.3.3)

along with the condition that the functiongk(t, t′) vanish fort < t′. We will consider the

following form of the scalar function, where we explicitly write this cut-off in terms of a

step function

g(−)
k (t, t′) = Ceiγk (t−t′)

Θ(t − t′). (5.3.4)

The coefficientsγk andC is found by inserting this result into equation (5.3.3).

γk =
ω2

k − ω2
L

2ωL

≈ ωk − ωL (5.3.5a)

C =
−i

2ωL

. (5.3.5b)

The Green’s function is thus given by

¯̄G(−)(r , t|r ′,t′) = − i
∑

k

f ∗k(r )fk(r ′)
ei(ωk−ωL )(t−t′)

2ωL

Θ(t− t′). (5.3.6)

Next we will look at the infinitely short propagator in Eq. (5.2.5). Using the Green’s

function given in equation (5.3.6) along with definition (3.2.9a) and (5.0.5) the propagator
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may be written as

¯̄P(−)(r , t|r , t′) = −i
2ωLc2

∑

k

ω2
kf ∗k(r )fk(r )ei(ωk−ωL )(t−t′), (5.3.7)

where we have omitted the step function since it automatically gives unity for the inte-

gration limits we are using here. We will now relate this infinitely short propagator to

some already known parameter. If we go back and consider the general result for the

equal-space commutator, this may in terms of the basis-functions
{

fk
}

be written as:

[

D̃(−)(r , t); D̃(+)(r , t′)
]

= −~ǫ0

2

∑

k

ωkf ∗k(r )fk(r )ei(ωk−ωL )(t−t′). (5.3.8)

Comparing with (5.3.7) we immediately get a formal relationship between this commuta-

tor and the infinitely short propagator

( d
dt′
− iωL

)

[

D̃(−)(r , t); D̃(+)(r , t′)
]

= −~ǫ0ωLc
2 ¯̄P(−)(r , t|r , t′). (5.3.9)

Using Eq. (3.3.11) this relation can also be written as

¯̄P(−)(r , t|r , t′) = 1
2c2

( d
dt′
− iωL

)

¯̄η∗t(r , t, t′). (5.3.10)

To illustrate how the infinitely short propagator enters into the equations we will again

consider the second order term in the spin equation represented in Eq. (5.2.4). The term

prior to spatial average is given as

iβc1c2

~ǫ0

∫ t

t0

dt′Ĵ ×
[

" t′

t0

dt′′d3r ′
{

¯̄P(−)(r , t′|r ′, t′′) ¯̄m[Ĵ]tD̃(−)
0 (r ′, t′′)

}

× D̃(+)
0 (r , t′)

]

. (5.3.11)

After spatial average we get two terms, representing the coherent and the incoherent in-

teraction. The incoherent interaction may then be written as

iβc1

2~ǫ0

∫ t

t0

dt′
∫ t′

t0

dt′′ J̄(r ) ×
[( ∂

∂t′′
− iωL

)[

¯̄η∗t(r , t′, t′′) ¯̄Vt[J̄]D̃
(−)
0 (r , t′′)

]

× D̃(+)
0 (r , t′)

]

.

(5.3.12)

To simplify notation, we have signified spatial averaging with calligraphic letters, e.g.
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〈D(r , t)〉s.a.≡D(r , t). This convention will be used in the remainder of this article.

We have now developed all the necessary theoretical tools todescribe the system. In

the next section we shall use these tools to discuss a pertubative expansion of the evolution

of the system.





Chapter 6

Time evolution

This section is divided into three parts. In the first part we examine the general behaviour

of the atomic spin in the presence of a light field. The aim is tounderstand the effect

of the loops introduced in the Feynman diagrams. In the second part we consider the

light field and we show how the theory introduce a decay of the field strength of the

light as it interacts with the atoms. Again this is connectedto the loops introduced in the

Feynman diagrams. Finally we will introduce and discuss Stokes operators, which are the

appropriate operators for describing the experiments in Ref. [10–12].

6.1 Evolution of the spin

In this section we will consider the spin equation in detail for the simple interaction

(5.1.2). We will begin our analysis by considering the first order term in the perturba-

tive expansion of the solution to the spin equation, formally given by the diagram

. (6.1.1)

This term gives no extra contributions when doing the spatial averaging, and we read-
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ily write down the expression describing this term

iβc1ρ(r )
~ǫ0

∫ t

t0

dt′ J̄(r , t0) ×
(

D̃
(−)
0 (r , t′) × D̃(+)

0 (r , t′)
)

. (6.1.2)

We now continue with the second order terms represented by the following Feynman

diagrams

+ +

. (6.1.3)

When taking spatial average of these terms, we have argued that the first two diagrams
will give an additional set of Feynman diagrams containing loops and stars. It still remains
to consider the last diagram of Fig (6.1.3), representing two photons interacting with the
same atom at timet and t′. In this diagram it is necessary to pay special attention to
the case where the two interactions happen at the same timet = t′. The contribution of
this term is proportional toD(−)(t′′)D(+)(t′′)D(−)(t′)D(+)(t′) which is not normal-ordered,
and it will be convenient to separate it into normal-orderedterms. When commuting
D

(−)(r , t′′) andD(+)(r , t′) we once again get an infinitely short propagator c.f. (3.3.11).
This extra term we will denote by a filled star with a loop. Thiscommutator term will
produce an interaction which is linear in the field intensity(involvesD(−)

D
(+)) whereas

the normally ordered term (D(−)
D

(−)
D

(+)
D

(+)) will be quadratic in the intensity. Ignoring
for now this quadratic term as well as the coherent interactions, the second order diagrams
for the spin equation after spatial average reads

+ +

, (6.1.4)
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which can also be written as

×
{

+ +

}

×
. (6.1.5)

The interpretation of the diagrams is given below.

To simplify the expression we will make the slowly varying envelope approximation

which simplifies Eq. (5.3.10) to

¯̄P(−)(r , t|r , t′) ≈ −iωL

2c2
¯̄η∗t(r , t, t′). (6.1.6)

Secondly we shall evaluateη in a local density approximation, where we assume that

η(r , t, t′) is the same as if we were in an infinite medium with a constant densityρ(r ) and

spin densityJ(r ). By doing this we ignore the reflection of the field on the surface of

the ensemble or other inhomogeneities. The infinitely shortpropagator which expresses

the amplitude for the field to be found at the same position at some later time, therefore

becomes a delta-function in time. This approximation is valid provided that the diffrac-

tion matrix ¯̄M(r ) varies slowly on the scale of the wavelength of the light. Furthermore
¯̄η(r , t, t′) also contain the Lamb shift which we ignore for simplicity.A detailed calcula-

tion of ¯̄η is presented in Appendix A.2, where we find

¯̄P(−)(r , t|r , t′) =−iδ(t − t′)
c2



























̺||(r ) 0 0

0 ̺⊥(r ) −i̺Γ(r )

0 i̺Γ(r ) ̺⊥(r )



























≡−iδ(t − t′)
c2

¯̄A(−)(r ), (6.1.7)

where the coefficients̺||, ̺⊥ and̺Γ may be found in Eq. (A.2.13). Here the result is given

in an Euclidean basis, whereJ is assumed to be along the thex-axis. The result may also

be expressed in a coordinate-independent form as

¯̄P(−)(r , t|r , t′) = −iδ(t − t′)
c2

{

̺⊥(r ) − iγ(r )ĵ × +[̺||(r ) − ̺⊥(r )
]

ĵ ( ĵ ·
}

, (6.1.8)

whereĵ is a unit vector parallel toJ. This infinitely short propagator is inserted into the

second-order terms in the spin equation. The second-order incoherent interaction given
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in Eq. (6.1.5) then reads

β2

~ǫ0

∫ t

t0

dt′
{

c1c0J̄2
[

¯̄A(−)
D

(−)
0 (J̄ ·D(+)

0 ) −D(−)
0 (J̄ · ¯̄A(+)

D
(+)
0 ) + H.c.

]

+
c2

1

2

[

¯̄A(+)
D

(−)
0 (J̄ ·D(+)

0 ) − (D(−)
0 ·D

(+)
0 ) ¯̄A(−)J̄

− Tr[ ¯̄A(−)]D(−)
0 (J̄ ·D(+)

0 ) +D(−)
0 (J̄ · ¯̄A(−)

D
(+)
0 ) + H.c.

]

}

, (6.1.9)

where we have suppressed the space and time dependencies.

In the simple case, where the matrix̄̄A(±) is proportional to the identity matrix,(̺Γ ≈ 0,

̺|| ≈ ̺⊥ = ̺), which is the case to lowest order, the terms proportional to c1c0 cancels and

the expression reduces to

−
β2c2

1̺

2~ǫ0

∫ t

t0

dt′
[

(D(−)
0 ·D

(+)
0 )J̄ +D(−)

0 (J̄ ·D(+)
0 ) + H.c.

]

. (6.1.10)

This term scale with the power of the incident light, and linearly polarized light will

affect the spin component parallel to the field with twice the rate than the perpendicular

spin components. To see this we may introduce a decay-rateΓD, and writing expression

(6.1.10) on a differential form, we thus see that the term indeed describes a decay of the

spin-components.

∂t J̄x = − 2ΓD J̄x (6.1.11a)

∂t J̄y = − ΓD J̄y (6.1.11b)

∂t J̄z = − ΓD J̄z (6.1.11c)

where

ΓD =
β2c2

1̺

~ǫ0
〈D(−)

0,xD
(+)
0,x〉,

and where we have assumed that the light is linearly polarized in thex-direction.

Let us now turn to the coherent part of the interaction represented by the Feynman

diagrams in Eq. (6.1.3). The first two terms containing a dot are by construction very

small, and will vanish when taking the quantum mechanical average, as discussed in
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Sec. 5.2. The only important second-order coherent interaction is therefore the following

Feynman diagram for normal-ordered fields.

: :
(6.1.12)

Suppressing the spatial dependence of the displaced electric field, this normal-ordered

coherent interaction is given in vector representation by

−
β2c2

1

~2ǫ2
0

∫ t

t0

dt′
{

D̃
(−)
0 (t′)

(

D̃
(−)
0 (t) · D̃(+)

0 (t′)
)(

J̄0 · D̃
(+)
0 (t)

)

−
(

D̃
(−)
0 (t) · D̃(−)

0 (t′)
)(

J̄0 · D̃(+)
0 (t)

)

D̃
(+)
0 (t′) + H.c.

}

. (6.1.13)

In the case of linearly polarized light, saỹD
(−)
0 || ex this term vanishes, but this is in

general not the case. In Sec. 7 we examine the term in some simplified system.

6.2 Evolution of the light

The treatment of the displaced electric field is similar to the spin, but there are a few

important differences. Let us consider the negative-frequency part of thefield, and write

the expansion of the displaced electric field ignoring for now the evolution of the spin

≈ +

+ + + · · ·
. (6.2.1)
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When we take spatial average of diagrams like these, we introduce delta-function correla-

tions between vertex points. So far we have treated the atomsin the ideal gas approxima-

tion, where we ignore any correlation in the position of the atoms but in reality we should

include a short-range correlation functions describing that two different atoms cannot be

at the same position. In Appendix A.4 we show that including this leads to the Lorentz-

Lorenz or Clausius-Mossotti relation. In the following we will only discuss loops, where

two consecutive vertex points are evaluated for the same atom. Since we have subtracted

the quantum mechanical average from the vertex, no first-order vertex will give a contri-

bution to the evolution of the light, and therefore these second-order loop diagrams are the

most important effects apart from the diffraction effects included in the mode-functions

{fq}. Later in section 6.4 we shall discuss the operator nature ofthe light field and then

we keep the first-order vertex in the calculations. In the current approximation Eq. (6.2.1)

reduces to

≈ + + · · · .
(6.2.2)

We have here introduced an interaction denoted by a hatched pentagon which scales with

β2ρk3
L , and describes two connected by the infinitely short propagator. Using the results

for the infinitely short propagator, and taking quantum mechanical average this interaction

reads on matrix form

= iβ2ρ(r )



























Γ||(r ) 0 0

0 Γ⊥,1(r ) iΓΓ(r )

0 −iΓΓ(r ) Γ⊥,2(r )



























≡ i ¯̄M′t(r ), (6.2.3)
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where the coefficients entering the matrix are given by

Γ||(r ) =c2
0J

4̺|| + c2
1̺⊥(J

2
z + J2

y), (6.2.4a)

Γ⊥,1(r ) =c2
0J

4̺⊥ + 2c0c1̺ΓJ2Jx + c2
1(̺||J

2
z + ̺⊥J2

x), (6.2.4b)

Γ⊥,2(r ) =c2
0J

4̺⊥ + 2c0c1̺ΓJ2Jx + c2
1(̺||J

2
y + ̺⊥J2

x), (6.2.4c)

ΓΓ(r ) =̺⊥2c1c0J2Jx − ̺||
c2

1

2
Jx + ̺Γ(c

2
0J

2
+ c2

1J2
x). (6.2.4d)

We have here suppressed the spatial dependence to shorten notation. The series in Eq.

(6.2.2) can be included in the differential equation describing the displaced electric field,

(

2iωL

d
dt
−ω2

L + c2
∇ ×∇ × [ ¯̄Mt(r ) + i ¯̄M′t(r )

]

)

D̃(−)(r , t)

= c2

∫

d3r ∇ ×∇ × ¯̄δT(r , r ′) · ¯̄m[Ĵ]t
modD̃

(−)(r ′, t), (6.2.5)

where the perturbation is modified accordingly. Because of the anti-Hermitian matrix,

we see that these types of loop diagrams correspond to a decayof the field, i.e. the

differential operator on the left side describes the propagation through a lossy medium.

On the basis of this analysis and the analysis in Sec. 6.1 we thus link the loops in the

Feynman diagrams with the decay associated with spontaneous emission.

It remains to discuss the effect of light interacting with an atom that was previously

subject to an interaction such that the atomic spin state hasbeen changed. In terms of

Feynman diagrams this is described as

.
(6.2.6)

We shall postpone the analysis of this term and discuss it in connection with relating the

fields to photon counting operators below.
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6.3 Photon counting and Stokes operators

So far we have mainly been concerned with calculating the field D̃(r , t). For experiments

which eventually involves counting photons we are more interested in quantities like pho-

ton flux, and in particular the flux in some particular polarizational state. We shall now

discuss how to desribe such photon counting experiments within our theory.

The general idea in this subsection is that we shall assume that we are able to measure

the light-flux in a certain spatial mode by projecting the light field onto the mode and then

integrating the flux of the light field at some detector plane,that we assume to be far away

from the atomic ensemble. We will formulate such a measuringprocess in terms of an

inner product,

〈〈φ(r , t)|ψ(r , t)〉〉 ≡
∫ ∞

−∞
dt

∫

R2
d2r⊥φ

†(r , t) ·ψ(r , t). (6.3.1)

We assume that the fields in general have some axis of propagation sayr ||. The spatial

integral is then performed in some plane perpendicular to this axis at some pointr || on this

axis. This measuring process could be realized by e.g. sending the light field through a

single mode optical fibre prior to detection.

We are interested in the polarization of the field which is conveniently described by the

so called Stokes operators defined below. These operators can be derived from a Stokes

generator defined in a bra-ket-notation by

¯̄S ≡ |D̃(−)(r , t)〉〉〈〈D̃(−)(r , t)|, (6.3.2)

which we represent as the following diagram

.
(6.3.3)

Measuring certain light-modes according to the inner product in Eq. (6.3.1), correspond

to picking out a certain matrix element of the Stokes generator. As an example we assume

that in some experiment we are able to measure the photon flux of some linear polarization
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in some mode saỹfq,x(r , t) after the interaction with the atoms. The time dependence is

here f̃q,x(r , t) = fq,x(r )e−i(ωq,x−ωL )t. The integrated photon flux measured at the detector

plane, is then given by

2c2

~ǫ0ωL

〈〈f̃ ∗q,x| ¯̄S|f̃ ∗q,x〉〉, (6.3.4)

where we normalize the outcome to count the number of photons. We have here taken a

spatial average of the Stokes generator as indicated by the calligraphic font.

Expanding this operator to second order, gives an additional term not covered by the

analysis above. This extra term describes a process where both the negative frequency

part and the positive frequency part of the displaced electric field interacts with the same

atom. This extra term comes from the following contributionto the Stokes generator

= · · · + + · · · .
(6.3.5)

When taking the spatial average of this term we again generate a term representing that

the interaction happens at the same point. This particular term would not have been there

if we only considered the spatial average of the displaced electric field. The generated

term we will illustrate as

−−−→s.a. + (6.3.6)

We constructed the interaction represented in the Feynman diagram as a gray circle, such

that when taking the quantum mechanical average the term vanish. The new term gen-
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erated when taking the spatial average, given as the lower right diagram of Eq. (6.3.6),

describe the square of the fluctuations which is not vanishing. This was also the case for

the terms containing the infinitely short propagator. The new term however differs from

the second order terms containing the infinitely short propagators because here we need

to use the full macroscopic propagator. To calculate the effect of this term in detail, we

therefore need to have an expression for the spatial modes describing the system. We will

consider this term for a simplified system in Sec 6.4.

To describe the experiments in Ref. [12] it is convenient to define a set of polarization

dependent photon counting operators denoted as Stokes operators. These are defined in

accordance with Eq. (6.3.4) as

ŝq,q′

1 =
K
2

[

〈〈f̃ ∗q| ¯̄S|f̃ ∗q〉〉 − 〈〈f̃ ∗q′ | ¯̄S|f̃ ∗q′〉〉
]

(6.3.7a)

ŝq,q′

2 =
K
2

[

〈〈f̃ ∗q| ¯̄S|f̃ ∗q′〉〉 + 〈〈f̃ ∗q′ | ¯̄S|f̃ ∗q〉〉
]

(6.3.7b)

ŝq,q′

3 =
K
2i

[

〈〈f̃ ∗q| ¯̄S|f̃ ∗q′〉〉 − 〈〈f̃ ∗q′ | ¯̄S|f̃ ∗q〉〉
]

, (6.3.7c)

whereK = 2c2

~ǫ0ωL
. Using commutation relations for the creation and annihilation operators

these Stokes operators are seen to have the commutation relations for angular momentum

operators.

[

ŝq,q′
n ; ŝq,q′

m

]

= i εnmlŝ
q,q′

l , (6.3.8)

We will calculate and discuss these Stokes operators to second order in the coupling co-

efficientβ in the following.

6.4 Calculation of Stokes operators

In this section we shall calculate the Stokes operators to second order. In the experiments

in Ref. [10–12] the Stokes operators are measured by sendingthe light onto polarizing

beamsplitters followed by a measurement of the difference in the intensity of the two out-

puts. For instance if we take the indicesq andq′ to refer to thex andy polarizations

of the light, the operator ˆsx,y
1 in Eq. (6.3.7) can be measured by measuring the difference

in the intensity of thex andy polarizations. The remaining operators ˆsx,y
2 and ŝx,y

3 can
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Figure 6.1: Schematic setup. We assume that away from the ensemble, the light-mode resembles a
plane-wave with some transverse profile. A set of lenses focus the beam down into the ensemble.

respectively be related to the difference intensity with the polarizing beam splitter rotated

by 45◦ and the difference intensity between the two circular polarizations. For a gen-

eral light beam, however, diffraction will cause the polarization of the light to depend on

the spatial position and there is no well defined polarization. The simple measurement

scheme is thus only applicable in the paraxial approximation, where we can separate out

a position independent polarization vector. Far away from the ensemble we will therefore

assume a paraxial approximation. That is, the mode-functions f̃q(r , t) andf̃q′(r , t) describ-

ing the Stokes operators far away from the atomic ensemble resemble plane waves with

transverse profiles that change slowly compared to the wavelength. The detector plane

is placed far away from the atomic ensemble, and at this planewe will assume that the

general set of basis-functions{fq} can be approximated as

fq(r ) =
1√
2π

Un(r⊥)eje
ikz. (6.4.1)

We have here set the direction of propagation to be along thez-axis. The indexq are

now given as the setq = (k, n, j), wherek is some wavenumber,n is an index referring to

the transverse shape of the mode described by the scalar-field Un(r ), and j describes the

polarization of this mode, that can be eitherx- or y-polarized. The completeness relation

Eq. (3.3.8), and orthonormality condition in this approximation thus gives

∑

n

U∗n(r⊥)Un(r ′⊥) =δ(r⊥ − r ′⊥), (6.4.2a)

∫

d2r⊥U
∗
n(r⊥)Un′(r⊥) =δnn′ , (6.4.2b)

and the dispersion relation Eq. (3.2.9a) at the detector plane isω2
q = c2k2.

The paraxial approximation above is convenient for expressing the measured observ-

able in terms of the polarization of the field, but may not be sufficient to accurately de-
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scribe experiments, where tightly focused beams are used. We shall therefore only assume

this approximation to be applicable far away from the sample, and not necessarily inside

the ensemble. Physically this could correspond to a situation, where an initially paraxial

beam is focused onto the ensemble with a lens and converted back into a paraxial beam

after the interaction by another lens, as shown in Fig. 6.1. Asimilar treatment was used

in Ref. [31].

Inside the ensemble we make the much weaker approximation that the set of spatial

mode functionsUnq(r ) is independent of the polarization of the field, so that the set fq(r )

is given by

fq(r ) =
1√
2π

Unq(r )ej(r ). (6.4.3)

The modeUnq(r ) now takes into account that the spatial shape of the beam maychange

through the ensemble, and likewise the polarization vectorej(r ), which we shall assume

to be real-valued. The indexj will still be eitherx or y, corresponding to the polarization

of the mode far away from the sample, but the vectorej(r ) will not necessarily be parallel

to thex or they axis. A more general description of the mode-functions would include

a dependence of the polarization vectorej on the polarization stateUmq(r ), i.e., em j(r ).

The correction this generalization gives to the Stokes operators, is presented in Appendix

A.8, in relation to Sec. 7.3. When we make the relevant calculations to describe the

Stokes operators defined in Eq. (6.3.7), we will chose to consider modes corresponding

to the indexq = (k,m, x) andq′ = (k,m′, y). We note that the set{fq} defined in this

way is in general not complete, since, e.g, the assumption that the polarization vector

is independent of the transverse mode number applies in the paraxial approximation but

does not apply in general. When calculating the effect on the forward scattered field to

first order we only get contributions from the near paraxial modes in the forward direction.

When we go to second order there will, however, be effects of all the transverse modes,

and in this case a correct treatment requires a more accuratetreatment of the complete set

of modes. Above we have already employed such a more general set of modes, when we

discussed the effect of spontaneous emission, which involve all the transverse modes. In

addition to this, a more accurate set of modes is also required for describing the effect of

dipole-dipole interactions, which also involves all the transverse mode.

We will in the following calculate the Stokes operators in the limit described above.
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Diagrams containing a loop, we will not discuss, since theseonly leads to a decay of
the light which we have discussed earlier. After taking spatial average the diagrams in
consideration are

≈ + + + +

+

{

+ + H.c.

}

.

(6.4.4)

Let us begin our discussion of this perturbation series by considering the first term on

the right hand side of equation (6.4.4). This term is the zeroth-order term of the Stokes

generator¯̄S(0). In the far-field limitz→ ∞ the matrix-element we need to calculate is

〈〈f̃ ∗km j(r , t)|D̃
(−)
0 (r , t)〉〉 =

" ∞

−∞
dtd2r⊥

1√
2π

Um(r⊥)eje
ikz−i(ωk−ωL )t

∑

qnl

√

~ǫ0ωL

4π
U∗n(r⊥)ele

−iqz−i(ωq−ωL )tâ†qnl

=

√

~ǫ0ωL

2c2
â†km j, (6.4.5)

and ¯̄S(0) thus gives us

K〈〈f̃ ∗km j(r , t)| ¯̄S(0)|f̃ ∗km′ j′(r , t)〉〉 = â†km jâkm′ j′ . (6.4.6)

The zeroth order Stokes operator ˆsqq′

1 for q = (k,m, x) andq′ = (k,m′, y) gives

ŝqq′

1 ≡ ŝmm′
1 =

1
2
(

â†kmxâkmx− â†km′yâkm′y
)

. (6.4.7a)
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The two remaining zeroth order Stokes operators are found accordingly,

ŝmm′
2 =

1
2
(

â†kmxâkm′y + â†km′yâkmx
)

, (6.4.7b)

ŝmm′
3 =

1
2i

(

â†kmxâkm′y − â†km′yâkmx
)

. (6.4.7c)

In the following we will calculate the first-order components of the Stokes operators.

We assume the quantum mechanical average of the atomic spinJ to be parallel thex-axis.

The relevant interaction matrix can in this case be written

¯̄m[Ĵ] = ic1β



























0 Ĵz(r ) −Ĵy(r )

−Ĵz(r ) 0 0

Ĵy(r ) 0 0



























, (6.4.8)

and after spatial averaging we simply write

〈 ¯̄m[Ĵ]〉sa. ≡ ¯̄
M [J̄] = −ic1βρ(r )



























0

J̄y(r )

J̄z(r )



























× . (6.4.9)

The second and the third term on the right hand side of Eq. (6.4.4) are the first order terms

of the Stokes generator,̄̄S(1). To calculate the contribution to the Stokes operators from

these terms we have to evaluate the expression

〈〈f̃ ∗km j(r , t)| c2

" t

t0

dtd3r ′ ¯̄P(−)(r , t|r ′, t′) ¯̄
M

t[J̄]D̃
(−)
0 (r ′, t′)〉〉. (6.4.10)

The initial time t0 we will set to−∞, and because we assume our detector plane to be

infinitely far away from the atomic ensemble, we can taket → ∞. Using the expression

for the set{fq} given by Eq. (6.4.1) for the detector plane and Eq. (6.4.3) inside the

ensemble, Eq. (6.4.10) reduces to















−i

√

~ωLǫ0

2c2















kLc1β

2

∫

d3r ′
∑

nl

ρ(r ′)Θmn
jl (r ′)∗â†knl, (6.4.11)
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where

Θ
mn
jl (r ′) ≡ Ukm(r ′)∗Ukn(r ′)ej(r ) · [



























0

J̄y(r ′)

J̄z(r ′)



























× el(r ′)
]

= Ψ
mn
k (r ′)

[

δlxδ jy − δ jxδly
][



























0

J̄y(r ′)

J̄z(r ′)



























· ez(r ′)
]

, (6.4.12)

with

Ψ
mn
k (r ′) = Ukm(r ′)∗Ukn(r ′). (6.4.13)

In the final equality we have introduced the local basis vector ez(r ) = ex(r ) × ey(r ). The

effect of the first-order term of the Stokes generator¯̄S(1) to the Stokes operators thus reads

K〈〈f̃ ∗km j(r , t)| ¯̄S(1)|f̃ ∗km′ j′(r , t)〉〉 =

kLc1β

∫

d3r ′
∑

nl

ρ(r ′)
1
2
{

Θ
mn
jl (r ′)∗â†knlâkm′ j′ + Θ

m′n
j′ l (r ′)â†km jâknl

}

. (6.4.14)

The remaining terms of the right hand side of Eq. (6.4.4), that is the second-order

terms, can be calculated in a similar way. The results may be found in Appendix A.5. The

calculations given in Eq. (6.4.14), (A.5.1), (A.5.2) and (A.5.5) is the starting-point for a

discussion of the dynamics of the system subject to a generallight field of many modes.

The description that we have used here, where we define the Stokes operators in term

of expectation value between different orthogonal modes, is very convenient for a the-

oretical description of the process. It does, however, not directly correspond to the ex-

perimentally measured observables unless one, e.g., separates out particular modes with

single mode optical fibers. We shall therefore defer the discussion of the consequences

of these results to the next section, where we use these result to calculate the evolution of

observables more relevant to experiments.

We will now give the equation for the atomic spin. The incoherent terms describing
decay due to spontaneous emission have already been discussed. Here we will consider
the coherent interaction up to second order in the perturbation series. Below we show the
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diagrammatic representation of the coherent perturbationseries for the atomic spin up to
second order.

= + + +

+
: :

(6.4.15)

We will denote the first order term in the expansion, Eq. (6.4.15), asJ (1). Employing

again the approximations done in the previous calculations, that is, using the set of light

modes{fq} given in Eq. (6.4.3) and setting the initial time to−∞ and the final time to∞,

the term can be written

J (1)
= −βc1kL

∑

kmm′

Ψ
mm′
k (r )

(

J̄(r ) × ez(r )
) 1
2i

[

â†kmxâkm′y − â†kmyâkm′x

]

= −βc1kL

∑

kmm′

(

J̄(r ) × ez(r )
){

Re[Ψmm′
k (r )] ŝmm′

3 + Im[Ψmm′
k (r )] ŝmm′

2

}

. (6.4.16)

We notice that compared to the simple theory in Ref. [29] there is an additional term

proportional to the imaginary part of the functionΨmm′(r ). A similar correction can also

be found for the Stokes operators for the light. Also notice that the dynamics of the spin

to first order happens in a plane orthogonal to the vectorez(r ). This is the reason why the

term in Eq. (A.5.3) vanish, since there we are considering the effect of the dynamics of

the atomic spin on an axis parallel to theez(r )-vector. The calculation of the second-order

terms is presented in Appendix A.6. In the following sectionwe will examine the effect

of these calculations under conditions attainable in experiments.
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Experimental application and validity

In this section we shall consider different limits where we can reduce our general theory

to a theory resembling the simple description obtained in one dimensional theories [2,29].

Furthermore we discuss the validity of the approximations made to arrive at these simple

limits as well as the validity of our perturbative treatmentof the interaction.

7.1 Measurement procedure

In the previous section we discussed how our theory could be used to calculate Stokes
operators corresponding to specific transverse modes of thefield. While such a treatment
is appealing from a theoretically perspective, it is less desirable experimentally, since the
isolation of single transverse modes is complicated (although it could be done by passing
the light through single mode optical fibers). Here we shall therefore express our result
in terms of a simpler experimental procedure. Suppose that the detections is performed
by sending the light onto a polarizing beamsplitter and recording the intensity of the two
output port with two cameras. The difference between the intensities can now be used to
define position dependent Stokes operators ˆsi(r⊥), i.e., ŝ1(r⊥) corresponds to the difference
in intensity betweenx andy polarization at positionr⊥ in the detector plane. Similarly
ŝ2(r⊥) andŝ3(r⊥) can, respectively, be related to the difference intensity with the polarizer

61
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rotated by 45◦ and the difference intensity between the two circular polarizations. These
operators may in general be determined by

ŝ1(r⊥) =
∑

kmm′

1
2

(

U∗m(r⊥)â†kmxâkm′xUm′(r⊥) − U∗m(r⊥)â†kmyâkm′yUm′(r⊥)
)

(7.1.1a)

ŝ2(r⊥) =
∑

kmm′

1
2

(

U∗m(r⊥)â†kmxâkm′yUm′(r⊥) + U∗m(r⊥)â†kmyâkm′xUm′(r⊥)
)

(7.1.1b)

ŝ3(r⊥) =
∑

kmm′

1
2i

(

U∗m(r⊥)â†kmxâkm′yUm′(r⊥) − U∗m(r⊥)â†kmyâkm′xUm′(r⊥)
)

. (7.1.1c)

Below we shall derive expressions for the operators (7.1.1)and discuss how to imple-

ment a light-matter quantum interface based on these operators. In subsec. 7.2 we for

simplicity first consider an extreme paraxial limit, where we assume that essentially no

diffraction occurs during the propagation. In this limit the dynamics becomes extremely

simple. In subsec. 7.3 we consider a more interesting limit,where we may have multiple

modes which may experience diffraction. Here we show that measurement of the opera-

tors ŝi(r⊥) still allows us to simplify the dynamics of the system. In a suitable limit we

find a simple two mode transformation between transverse modes of the light field and

single modes of the atomic ensembles.

7.2 Extreme paraxial approximation

In the extreme paraxial approximation, we completely ignore any dynamics transverse to

the propagation direction of the light modes and approximate the set of modes{fq} with

Eq. (6.4.1) throughout the ensemble. Since the typical distance for diffraction is given by

ld ∼ A/λ, the condition for the validity of this approximation isL ≪ ld, or expressed in

terms of the Fresnel numberF ≫ 1.

The full expressions for the Stokes operators are quite involved, and we therefore
leave the incoherent part of the evolution to Appendix A.7. Keeping only the coherent
part of the interaction, we find the Stokes operators to second order in the interaction to
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be

ŝ1,out(r⊥) =ŝ1,in(r⊥) − kLc1β

∫

dz′ρ(z′, r⊥)J̄z(z
′, r⊥)ŝ2,in(r⊥)

− 1
2

(kLβc1)2
"

dz′dz′′ρ(z′, r⊥)ρ(z′′, r⊥)J̄z(z
′, r⊥)J̄z(z

′′, r⊥)ŝ1,in(r⊥), (7.2.1a)

ŝ2,out(r⊥) =ŝ2,in(r⊥) + kLc1β

∫

dz′ρ(z′, r⊥)J̄z(z
′, r⊥)ŝ1,in(r⊥)

− 1
2

(kLβc1)2
"

dz′dz′′ρ(z′, r⊥)ρ(z′′, r⊥)J̄z(z
′, r⊥)J̄z(z

′′, r⊥)ŝ2,in(r⊥), (7.2.1b)

ŝ3,out(r⊥) =ŝ3,in(r⊥). (7.2.1c)

In this limit we see that the Stokes operator ˆs3 is decoupled from the coherent dynamics

of the system, and only evolves due to spontaneous emission [derived in Eq. (A.7.2)].

Similarly we may find the coherent dynamics of the atomic spin. Leaving again the
incoherent part to Appendix A.7, we find

J̄x,out(r ) =J̄x,in(r ) − βc1kL

∑

k

J̄y,in(r )ŝk
3,in(r⊥) − 1

2
(βc1kL)

2
∑

kk′
J̄x,in(r )ŝk

3,in(r⊥)ŝk′
3,in(r⊥) (7.2.2a)

J̄y,out(r ) =J̄y,in(r ) + βc1kL

∑

k

J̄x,in(r )ŝk
3,in(r⊥) − 1

2
(βc1kL)

2
∑

kk′
J̄y,in(r )ŝk

3,in(r⊥)ŝk′
3,in(r⊥) (7.2.2b)

J̄z,out(r ) =J̄z,in(r ). (7.2.2c)

Analogous to what we found for ˆs3, we see that the operator̄Jz is decoupled from the

coherent dynamics of the system. This result can directly beassociated to the conservation

of angular momentum along thez-axis. In the extreme paraxial approximation this is true

to all orders in the coherent interaction.

The results in Eq. (7.2.1) and (7.2.2) is essentially equivalent to the simplified one-

dimensional description of the system given in Refs. [2,29]. The only difference is that the

expressions derived here now apply for each value ofr⊥, whereas the previous treatments

assumed the system was transversely homogeneous and only considered the variables

integrated overr⊥.

A further simplification of Eq. (7.2.2) can be obtained if we introduce the rotation
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vector

Ω = βc1kL

∑

k

ŝk
3,in(r⊥)ez. (7.2.3)

With this definition we find that Eq. (7.2.2) describes nothing but a rotation of the spin

around theez-axis

J̄out = J̄in + J̄in ×Ω +
1
2
(

J̄in ×Ω
) ×Ω. (7.2.4)

7.3 Multi-mode coupling

In the previous subsection we basically ignored all the dynamics transverse to the prop-

agation direction. Now we turn to a more interesting situation, where we may describe

effects associated with diffraction of the light beams. Our goal in this section is to find

a set of conditions under which we can have a simple dynamics,where the individual

transverse modes of the light field talks to a single mode of the atomic ensemble. Such an

interaction would enable the storage of information from several light modes into spatial

modes of the ensemble, e.g., using the protocol in [11]. The realization of this interaction

would thus expand the information storage capacity of the atomic ensembles. A similar

problem is considered in Ref. [32]. In related work such storage of multimode mem-

ory has recently been achieved in atomic ensembles using electromagnetically induced

transparency [33].

To achieve simple results in the end, we will here consider a situation, where we have

a strong classical beam polarized in thex-direction in a single transverse modeUok(r )

(denoted by the indexo). For they-polarization we, however, include a complete set of

modes, which may or may not include a term identical to the mode of thex-polarization.

For the strong mode we will approximate ˆa†kox = âkox =
√

No
x ≫ 1 whereNo

x is the

number of photons in this particular mode. Since the Stokes operators are dominated

by the terms involving the classical component, the only important contributions in the

Stokes operator (7.1.1) are the terms containing the strongclassical mode. Eq. (7.1.1) are
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thus approximated by

ŝ(in)
1 (r⊥) ≈ 1

2
|UokL (r⊥)|2No

x , (7.3.1a)

ŝ(in)
2 (r⊥) ≈

√

No
x

2

∑

km

(

Re[U∗ok(r⊥)Umk(r⊥)]X̂m
P − Im[U∗ok(r⊥)Umk(r⊥)]P̂m

P

)

, (7.3.1b)

ŝ(in)
3 (r⊥) ≈

√

No
x

2

∑

km

(

Re[U∗ok(r⊥)Umk(r⊥)]P̂m
P + Im[U∗ok(r⊥)Umk(r⊥)]X̂m

P

)

, (7.3.1c)

where

X̂m
P =

1√
2

(

â†kmy+ âkmy
)

, (7.3.2a)

P̂m
P =

1

i
√

2

(

â†kmy− âkmy
)

. (7.3.2b)

In order to obtain simple result in the measurement process,let us assume that we can

choose the mode functionsUmk(r ) to be real in the detection plane. This could, e.g., be

achieved by sending the light through a lens which converts the incoming modes into ex-

treme paraxial beams as shown in Fig. 6.1 (note that since we only make this assumption

in the detection plane, this assumption does not restrict the shape inside the ensemble).

Experimentally the operatorŝXm and P̂m defined here can then be measured by simply

integrating the measured ˆsi(r⊥) with a suitable weight function, e.g.,

√

2
N0

x

∫

dr⊥
Um(r⊥)
Uo(r⊥)

ŝ2(r⊥) = X̂m
P , (7.3.3)

where we have used the expansion in (7.1.1) as well as the orthogonality relation of the

transverse mode functions (6.4.2b).

In our equations of motions we for simplicity only keep termsto first order inβ and
√

No
x, and neglect all other terms. The equations of motion for theStokes operators give
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in this limit

X̂m
out =X̂m

in + kLβc1

√

No
x

2

∫

d3r′ ρ(r ′)



























0

J̄y(r )

J̄z(r )



























· ez(r )Re[Ψmo
k (r )] (7.3.4a)

P̂m
out =P̂m

in + kLβc1

√

No
x

2

∫

d3r′ ρ(r ′)



























0

J̄y(r )

J̄z(r )



























· ez(r )Im[Ψmo
k (r )], (7.3.4b)

whereΨmo is defined in terms of the mode functionsUm in Eq. (6.4.13). Employing the
same set of approximations for the spin equation we find

J̄out(r ) ≈ J̄in(r ) + kLβc1

√

No
x

2

∑

n

[

Re[Ψno
k (r )]P̂n

in − Im[Ψno
k (r )]X̂n

in

](

J̄in(r ) × ez(r )
)

. (7.3.5)

Note, that the expressions we have derived here, allow for a general set of transverse

modes which may experience diffraction, and thus go beyond the extreme paraxial ap-

proximation made in the previous section. In the expressions above we do, however, still

use the paraxial approximation in Eq. (6.4.3), where we ignore the dependence of the

polarization vector on the mode number. In Appendix A.8 we relax this approximation.

The expressions in Eqs. (7.3.4) and (7.3.5) differ from the simple results of the last

section because of the extra terms proportional to Im[Ψ
no
k (r )]. These terms complicate

the dynamics and, e.g., means that one cannot use the protocol in Ref. [11] to store infor-

mation in the ensemble. There are, however, certain limits where the extra terms in Eq.

(7.3.5) disappear. One situation is when the mode we are considering in they-polarization

is identical to the classical mode in thex-polarization (except from the different orienta-

tion of the polarization). This situation corresponds to the experimental situation, where

the weight factorUn/Uo in Eq. (7.3.3) is unity, such that the final result is obtainedby

integrating the intensity over the transverse plane. This case therefore corresponds the

experimental situation where the light is detected by photodetectors instead of cameras.

In this case Im[Ψno
k (r )] vanish identically and the evolution of the light operators again re-

semble the result of the last section, where, e.g., the ˆs3 component was conserved, which

translates intôPn
out = P̂n

in. Note, however, that unlike the situation considered below, the

atomic operators in this situation gets an admixture of several different input light modes,

and will not in general reduce to the dynamics considered in Ref. [11].
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Let us now consider a different limit ideally suited for a multi-mode memory. We
assume that we are in the paraxial approximation, where we can ignore the spatial de-
pendence of the polarization vectors. For simplicity we also assume that the classical
modeUo(r ) has a uniform intensity and that the density is constant over the region, where
Um is non-zero in the atomic ensemble. We furthermore assume that the macroscopic
polarization is constant and along thex-axis, J̄x, and finally we assume thatΨmo is real
(for a discussion of the validity of this approximation we refer to the next subsection). In
the spin equation (7.3.5) we will only keep terms proportional to the macroscopic spin
componentJ̄x. In this situation the relevant equations reads

X̂m
P,out =X̂m

P,in + kLβc1Uo

√

No
x

2
ρ

∫

d3r′ J̄z(r )Um(r )e−ikz (7.3.6a)

P̂m
P,out =P̂m

P,in (7.3.6b)

J̄y,out(r ) =J̄y,in(r ) + kLβc1Uo

√

No
x

2

∑

n

Un(r )e−ikzP̂n
in J̄x,in (7.3.6c)

J̄z,out(r ) =J̄z,in(r ). (7.3.6d)

Here the factor exp(−ikz) comes from the classical field and cancels the exp(ikz) de-

pendence of the mode functionUm, sinceUm exp(−ikz) should be real according to the

assumption ofΨ being real. This set of equations can be symmetrized and simplified by

introducing a set of collective operators

X̃m
A =

√

ρ

JxL

∫

d3r J̄y(r )Um(r )e−ikz, (7.3.7a)

P̃m
A =

√

ρ

JxL

∫

d3r J̄z(r )Um(r )e−ikz, (7.3.7b)

whereL is the length of the ensemble. The coefficients here are chosen such that the

operatorsX̂m
A andP̂m

A fulfil the standard commutation relation for position and momentum

[

X̃m
A , P̃

m′
A

]

= iδmm′ . (7.3.8)
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With these definitions Eqs. (7.3.6) reduce to

X̃m
P,out =X̃m

P,in + κP̃
m
A,in, (7.3.9a)

P̃m
P,out =P̃m

P,in, (7.3.9b)

X̃m
A,out =X̃m

A,in + κP̃
m
P,in, (7.3.9c)

P̃m
A,out =P̃m

A,in, (7.3.9d)

where

κ =kLβc1Uo

√

No
xρJ̄xL

2
. (7.3.9e)

These equations describe a system where one transverse light-mode couples to a single

mode of the atomic ensemble, which in term couple back to the same light mode. This

two-mode mode dynamics is exactly identical to the dynamicsderived in Ref. [2] for a

single transverse mode. The dynamics can thus, e.g., be usedto realize a multi-mode

version of the memory protocol implemented Ref. [11]. In this protocolP̂m
P,in is stored in

the atomic modêXm
a,out, while at the same time the atomic modeP̂m

A,in is transferred to the

light-modeX̂m
P,out, as described by Eq. (7.3.9). After detection of the light operatorX̂m

P,out

one can then realize a quantum memory by feeding back the measurement result to the

atoms as it was shown in Ref. [11].

7.4 Validity

7.4.1 Validity of the simple multi-mode dynamics

In the previous subsection we derived a simple multi-mode dynamics useful for making

a multi-mode light matter quantum interface. For experimental implementation of these

idea an important question is the validity of the approximations leading to Eq. (7.3.9).

First of all we need that the imaginary part ofΨom(r ) in Eq. (7.3.4) should vanish. Fur-

thermore, in order to define orthogonal spin-modes that do not couple different trans-

verse modes, we need|Uo(r )| to be uniform. Taking the classical mode to be given by

Uo(r ) = Uoeikz, whereUo is real, we also need the quantum modeUm(r ) to be real-valued
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apart from theeikz dependence. Let us now take the modesUm(r ) to be Hermite-Gaussian

beams [34]. Such modes can be represented by

Umn(r ) =
Bw0

w(z)
Hm

(√
2

x
w(z)

)

Hn

(√
2

y
w(z)

)

× ei[kz−(m+n+1) tanhz/z0]

× eik(x2
+y2)/2R(z)e−(x2

+y2)/w2(z), (7.4.1a)

where

w(z) =w0

√

1+ z2/z2
0, (7.4.1b)

R(z) =z+
z2

0

z
, (7.4.1c)

z0 =
πw2

0

λ
. (7.4.1d)

Herew0 is the minimum waist of the beam,k is the wave-number,λ is the wavelength,

B ∈ R is a normalization coefficient, andHn is the set of Hermite polynomials. The

condition thatUmn(r ) must be real-valued gives the conditions

λR(z)≫ w2(z) |(1+m+ n)
z
z0
| ≪ 1 (7.4.2)

These are in fact equivalent conditions, and introducing the Fresnel numberF ≡ w2(z)/λL

we find the condition

F ≫ 1+m+ n. (7.4.3)

7.4.2 Validity of perturbation theory

The theory we have developed in this paper is based on perturbation theory in the inter-

action between light and atoms. In this subsection we discuss the limits of validity of

this perturbative treatment. We will be considering worst case scenarios to find the limit,

where our perturbation series Eq. (6.4.4) and (6.4.15) converge. An important parameter

for these estimates will be the effective coupling constant for the collective operatorsκ

defined in Eq. (7.3.9). For applications to light-matter quantum interfaces this parameter
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should be of order unity. As we shall see below, this is still possible without violating

the applicability of perturbation theory. Another important parameter is the optical depth,

OD, defined byOD ∼ ρλ2L. The optical depth plays an important factor when describing

the effect of the incoherent interaction, e.g., the spontaneous emission.

Throughout this work, we have assumed that the atomic ensemble is polarized along

thex-axis, so that the atomic spin componentsρJ̄y, ρJ̄z only carries quantum noise. Also

we have assumed that the classical component of the light is linearly polarized so that,

e.g., circular components are governed by quantum noise. These assumptions will be

important for estimating the terms below.

We first consider the expansion of the light field (6.4.4), andin particular the co-

herent part of the interaction. The effective perturbation coefficient for the first order

term is found to scale at most as (βkL

√
NA)/A ∼ κ/

√
NP (may be found by estimating

Eq. (6.4.14)). HereA is the transverse area of the atomic ensemble, andNP is the total

number of photons in a pulse. Going to second order an important term is described in

Eq. (A.5.3). Since we are not including the the time evolution of the macroscopic po-

larization in the average interaction, this term has a potential scaling as large asκ2. We

showed, however, that in the paraxial approximation the term vanish. Going beyond the

paraxial approximation as done in Appendix A.8, we find that for linearly polarized light

the scaling isκ2/
√

NP. The last contribution to Eq. (6.4.4) is the incoherent interaction

considered in Appendix A.7. The scaling of this effectκ2 · (NA/NP)/OD .

Now we consider the spin series (6.4.15) for a single atom. The incoherent part of the

evolution of the spin is described in Eq. (6.1.9), and scalesasκ2/OD, it can be ignored

for sufficiently largeOD. The first order term scale asκ/
√

NA for linearly polarized light.

To increase this coefficient we need circularly polarized light, which makes it interesting

to examine the second order term describing the change of thepolarization of the due to

the interactions with atoms. This process is described in Eq. (A.6.1), which represent

the optically induced dipole-dipole interaction. This particular term vanish when we take

quantum mechanical averages, because we have subtracted the only non-vanishing com-

ponent, but we can still calculate the root mean square contribution. The effect can then be

separated into a short-range contribution and a long-rangecontribution. The long range

contribution can be estimated to give a contribution of order κ2
√

d/(L ·OD), whered is

the smallest dimension of the setup, i.e., the smaller of thelength and the transverse sizes

of the beam and the ensemble. The short range part actually diverges within our present
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approximations. If, however, we regularize the integral byexcluding the volume, where

the dipole-dipole interaction of an excited and a ground state atomV ∼ γλ3/r3 is of the

same order as the detuning∆, we find a contributionκ2
√

∆/γ
√
λ/(L ·OD). The justifi-

cation for this regularization is that when we made the adiabatic elimination we assumed

a constant detuning∆. This approximation breaks down when two atoms are sufficiently

close that the dipole-dipole interaction is the strongest effect in the problem, in which case

it is more appropriate to describe the atoms in terms of molecular states. Both the short

and long range part of the interaction are thus small for sufficiently large optical depthOD

and for sufficiently long ensembles (largeL). It should, however, be noted that here we

have only performed a very rough treatment of the dipole-dipole interaction, and it would

be desirable to make a more accurate treatment of the effects of these terms. Also it should

be noted that the estimates we have performed here apply to non-moving atoms, i.e., cold

atoms. If we include the motion of the atoms, i.e., warm atomsas in Refs. [10–12], there

will be a reduction of these terms because the sign of the interaction will change in time.

In summary, sufficient requirements for the convergence of the series for thelight

fields are
κ√
NP

≪ 1,
κ2

√
NP

≪ 1,
κ2

OD
· NA

NP
≪ 1, (7.4.4)

and for the spin equation sufficient requirements are

κ√
NA

≪ 1,
κ2

OD
≪ 1, κ2

√

d
L ·OD

≪ 1,

κ2

√

∆

γ

√

λ

L ·OD
≪ 1.

(7.4.5)

By having many atoms and photons as well as a large optical depth, it is thus possible to

achieveκ ∼ 1 without violating the applicability of perturbation theory.

The main idea in this work is to develop a perturbation series, where we explicitly take

into account the reshaping of the light modes caused by the mean effect of the interaction.

Let us for comparison compare with the series, if the mean effect of the interaction had not

been subtracted. For the Stokes operators the perturbativeseries is given in Eq. (6.4.4). If

we do not subtract the average effect of the interaction, the scalar part of the interaction

[the c0 component in Eq. (3.1.4)] will give first order corrections to the field of order

κ
√

NA/NP times the incoming field. WithNA ∼ NP as it is suggested in Ref. [2], this term
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will give a factor of order unity forκ ∼ 1, and this therefore cannot be considered a small

term. For the calculation of the Stokes operators, however,the two large components in

the first order terms in Eq. (6.4.4) cancel out. The calculation may thus yield reasonable

result even without performing the more involved procedures described in this article, but

the validity of the procedure would be questionable. (Some experiments actually uses

Np ≫ NA [10], where this problem may be of minor concern). Furthermore, one of

the major limiting factors identified above, is the dipole-dipole interactions. The effect

of this term is much more complicated to evaluate if we had notsubtracted the average

interaction, but the term certainly will be larger, becausethe interactions in Eq. (A.6.1)

would include a non-vanishing term, and not just the quantumfluctuations. Again this

term would thus seriously question the applicability of perturbation theory. In contrast

the present approach allows us to rigorously apply perturbation theory in experimentally

relevant regimes.



Chapter 8

Conclusion

In quantum optics the propagation of light through an atomicmedium is often described

in a one-dimensional approximation, where one completely ignores the transverse struc-

ture of the beam and only considers the longitudinal propagation. In this paper we have

investigated the validity of this approximation by developing a full three-dimensional the-

ory describing the interaction. The challenge in this work has been to develop a theory

capable of describing the microscopic interaction with a single atoms as well as macro-

scopic effects such as the diffraction of the laser beam caused by the refractive index of the

gas. In essence the theory we have developed here includes both the micro- and macro-

scopic effect by separating the interaction into an average part and the fluctuation from

the average. In this formulation macroscopic effects such as diffraction are naturally asso-

ciated with the average part whereas the microscopic fluctuations describe processes such

as the mapping of quantum fluctuations between light and atoms. Furthermore we have

shown that spontaneous emission from the atoms naturally appear as an effect caused by

the fluctuations associated with the point particle nature and the random positions of the

atoms.

Based on our separation into the average and the fluctuationswe have developed a

perturbative expansion in the fluctuations. The advantage of this procedure is that it has

a wider region of applicability than a direct perturbative treatment. For instance in an

experimental setup an index of refraction of the gas just change of the beam profile which
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often only has a minor effect on the experiment. On the other hand, such ’trivial’ effects

may have a large influence on the theoretical calculation. Ifone considers perturbation

theory based on the vacuum solutions to the wave equation, the perturbative expansion

will include all the terms responsible for the reshaping of the beam, and this may break the

validity of perturbation theory. On the other hand our theory performs perturbation theory

on modes which are solutions to the wave equation including the index of refraction of

the gas. Our theory is thus applicable even for situations where the beam is considerably

distorted by the refractive index of the gas.

A major motivation for this work has been to investigate the validity of the one-

dimensional approximation in the description of the experiments in Refs. [10–13]. In

Chap. 7 we explicitly considered some situations where we could reduce our general

theory to a theory resembling the one used to describe these experiments in the one di-

mensional approximation [2,29]. To achieve a simple description resembling the previous

theories, an essential requirement is that we are in the paraxial approximation. If we are

not in this limit, the polarization of the light change as itspropagate through the ensemble,

which complicates the interaction with the atoms. Furthermore, for the particular interac-

tion considered here, we also find it to be desirable to be in a regime where the Fresnel

number is much larger than unityF ≫ 1. In these limits our theory essentially reproduce

the results of the simple theory. The only difference is that instead of the vacuum mode

functions, the mode functions appearing in the theory should represent the modes, which

are solutions to the diffraction problem including the index of refraction of the gas.

In the present work we have mainly focused on developing the theory and deriving

how the usual approximations arise from our more complicated approach. The theory is,

however, fully consistent and thus capable of including anyhigher order corrections not

previously included in the theoretical description. In particular it could be interesting to

study the effect of light induced dipole-dipole interactions. While such processes may not

be relevant for understanding the current experiments, they may play an important role

in future experiments, e.g., with Bose-Einstein condensates, where the density may be

fairly high. Another interesting extension of our theory could be to study different types

of interactions such as for instance electromagnetically induced transparency [21].



Part III

Three-dimensional theory for

Superradiance
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Chapter 9

Introduction

The field of quantum information and quantum computation is arapidly growing research

area. Along with elaborate schemes and ideas for realizing quantum systems, follows

the need for understanding the details of such systems. Thispaper is motivated by a

proposal [35] to use an ensemble of Bose Einstein condensed atoms (BEC) as a gener-

ator of a beam of stimulated Raman scattering (SRS), or superradiation entangled with

atoms in the BEC. The idea is to utilize entanglement properties of such superradiation

and momentum classes of atoms in the condensate. While this system shows promising

properties, its full potential can not be estimated withouta detailed description of the full

three-dimensional structure of the superradiated beam. The experimental history of SRS

goes back to 1962 where the effect was first observed [36]. A theoretical explanation in

terms of a photon rate equation was given in Ref. [37]. Much work has been made on

the theory of superradiance e.g. [38–40]. Later Raymer and Mostowski [3] developed a

microscopic quantum mechanical theory of SRS. The important step was to identify the

mathematical description of the spontaneously initiated scattering process, as it involves

the coupling of a radiation field to internal energy transitions in the gain medium. In

1985 Raymer and co-workers [41] generalized the theory to also include certain three-

dimensional properties of the propagation of light in the gain medium. Common for these

theories is that they are developed under the basic assumption that the region in which this

SRS process happens is defined by the properties of the laser both in time and space. Thus
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figures of merits are the width and temporal shape of the laserwhich is driving the SRS

process. The experiments exploring the SRS process have changed since then [42–44],

and much more attention is given to systems where the temporal and spatial shape of

the laser have long surpassed the spatial geometries and temporal properties of the gain

medium. Here we develop the theoretical framework that enables us to address questions

such as how the Fresnel number and the optical depth of the gain medium effects the tem-

poral behavior and spatial shape of the generated super-radiation? What is the threshold

for this stimulated process, and when can we say that the scattered radiation is dominated

by a coherent beam of light? The last question refers to the applicability of a BEC for

realizing and utilizing entanglement properties of the SRSbeam, and momentum classes

of the BEC. Some progress have been made on such questions mainly however on a nu-

merical basis [45,46]. One of the common strategies used to describe SRS is to look at the

dipole interactions between typically some thousand atomsand rephrase the interaction

problem into a linear differential matrix equation which can be handled numerically.The

computational power therefore sets a limit to the number of atoms that can be included

in the simulation. This on the other hand means that the spatial scalability of the atomic

ensemble is limited. Based on these theories there is a theoretical understanding of the

SRS process in the limit of very large gain medium as well as the opposite limit of a

very small gain medium. In this paper we will look at the intermediate case, based on a

generalization of the methods used in [3].



Chapter 10

Equations of motion

In the electric dipole approximation the Hamiltonian describing the system that we want

to analyze is given by

H =
∫

{HF +HI }d3r +HA, (10.0.1)

HF =
D2

2ǫ0
+

B2

2µ0
(10.0.2)

HI = −
1
ǫ0

D(r , t) · P(r , t) (10.0.3)

HA =

Atom
∑

j

∑

n

E j
nσ

j
nn, (10.0.4)

whereD is the displaced electric field,B is the magnetic field andP is the atomic po-

larization. The operatorσ j
nn = |n〉〈n| is a projection operator for thej’th operator, and

E j
n is the energy corresponding to the state|n〉. We choose to use the displaced electric

field and not the electric field for reasons discussed Chap. 3.This choice however does

not influence the result of the analysis. Here we have ignoredany direct interaction be-

tween the atoms, e.g. atomic collisions. As we shall often make reference to Ref. [3], we

shall try and match the constants and the dynamics of our system to the system presented

there. The Hamiltonian is also chosen such that results derived in Part II can be directly
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|3〉

|2〉

|1〉

∆

ωL

ωS

σ+

Figure 10.1: Atomic level structure. Two stable ground states|1〉 and|2〉 are coupled through an exited
state|3〉. We assume a strong classical laser ofσ+-polarized light, slightly detuned from resonance with
atomic level|2〉 and|3〉 by∆. The laser thereby effectively drives a transition from level|2〉 to |1〉. The
radiationωS connected to the transition from|3〉 to |1〉 describes the Stokes field, that is analyzed here.

incorporated. In the following section we will focus on the dynamics of the atoms.

10.1 Atomic dynamics

The macroscopic description of the atomic ensemble is givenby the polarization,P(r , t)

which again is the sum of the individual dipole moment of the atoms.

P(r , t) =
Atoms
∑

j

∑

nm

δ(r − r j)dnmσ
j
nm(t), (10.1.1)

where the time dependent operatorσ
j
nm(t) is the operator|n〉〈m| taking thej’th atom from

state|m〉 to state|n〉, and the dipole moment isdnm = e〈n|r |m〉 In addition we assume

the atoms to be identical with an energy level structure shown in Fig. 10.1. We assume

the two levels|1〉 and |2〉 to be stable ground states hence a transition between these is

forbidden. For the chosen atomic system we assume that the transition from level|1〉 or

|2〉 to |3〉 increases the atomic angular momentum by one unit of~, and that there are no

other states that the level|3〉 can decay to. This means that the only non-vanishing vector

components of the dipole moments aree+ = (ex + ey)/
√

2 for positively oscillating terms

ande∗
+

for negatively oscillating terms.

We employ the Rotating Wave Approximation (RWA) and adiabatically eliminate the

exited level|3〉. In this process we split the radiation fieldD into its positively and neg-
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atively oscillating parts, and extract the strong classical field Dcl oscillating with a fre-

quencyωL from the weak quantum mechanical stokes fieldD̂ oscillating with frequency

ωS. We will assume that the strong classical field is constant over the region of the atoms

and can be written as a plane wave with a constant amplitudeD(+)
cl = |Dcl|e−iωSte+. The

presence of the strong classical fieldDcl induce a Stark shift of the atomic levels. The

effective Stokes frequencyωS is therefore given by

ω′S = ωS +
|d31|2|Dcl|2
~2ǫ2

0∆
. (10.1.2)

We shall in general assume the shift to be absorbed in the definition of ωS, the observable

Stokes frequency. We define slowly oscillating operators both for the atomic operatorσ21

and for the stokes field̂D

σ̃12(t) =σ12e
i(ωS−ωL )t (10.1.3)

D̃(+)
=D̂(+)eiωSt. (10.1.4)

For large detuning and weak fields we can adiabatically eliminate the exited state, and

obtain an effective ground state equation of motion.

d
dt
σ

j
12(t) =

−ia
ǫ0~

(σ j
22− σ

j
11)|Dcl|D̃+−(r j , t), (10.1.5)

where the constanta is given by

a =
d32d∗31

~ǫ0∆
. (10.1.6)

The positively oscillating part of the polarization is in this approximation

P̃(+)(r , t) =
∑

j

a|Dcl|e+σ̃ j
12(t)δ(r − r j). (10.1.7)

The negatively oscillating partP(−)(r, t) is found by Hermitian conjugation.
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10.2 Field equation

The equation of motion for the electric fieldD(r , t) is given in general in Eq. (5.1.1), and

reads for our simple system

D(+)(r , t) = D+0(r , t) +
∑

j

∫

dt′ ¯̄P(+)(r , t|r j, t
′) · e+a|Dcl|σ̃ j′

12(t
′), (10.2.1)

whereD0 is the unperturbed field containing the vacuum Stokes field and the classical

laser-field, and̄̄P(+) is the propagator. The coupling between level|2〉 and|3〉 in principle

give rise to an index of refraction. As shown in Part III, suchan index of refraction should

in principle be incorporated into the propagator¯̄P(±). In the limit of large detuning∆ (but

fixeda|Dcl|), we can however neglect this, and will do so in the following. The propagator

in the slowly varying approximation is in Fourier representation given by

¯̄P(+)(r , r ′) = k3
S

∫

d3k
∑

ε⊥k

k2eik·(r−r ′)

(2π)3(k2 − 1)
εε∗, (10.2.2)

where thek-integral is understood to include only the contribution corresponding to the

retarded Green function. Here and in the remainder of this work we will measure the

spatial coordinates in units ofkS, which gives the factor ofk3
S and a pole at 1 in Eq.

(10.2.2).

Inserting Eq. (10.2.1) into Eq. (10.1.5) gives us an effective equation of motion for

the atomic operators,

d
dt
σ̃

j
12(t) = −

Γ

2
σ̃

j
12(t) +

∑

j′, j

M j j ′σ̃
j′

12(t) + F̂ j(t), (10.2.3)

where

Γ =
a2k3

L |Dcl|2
3πǫ0~

, (10.2.4)

F̂ j(t) =
−ia
ǫ0~

D(+)
0 (r j , t) · e−D(−)

cl (t), (10.2.5)

M j j ′ =
−3πiΓ

k3
S

e− · ¯̄P(+)(r j , r ′j) · e+. (10.2.6)
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We have in addition made the approximationσ22−σ11 ≈ 1, where we assume that initially

all atoms are in state|2〉 and that the experiment takes place on a timescale such that we

may neglect depletion of this level. To derive the decayΓ we used the identity

e∗
+
· ¯̄P(+)(r jr j) · e+ =

ik3
S

6π
, (10.2.7)

which is discussed in Part III as the infinitely short propagator. The effective equation of

motion for the atoms, Eq. (10.2.3) is the starting point in many analyzes of superradiance,

Ref. [3, 45, 46], but also in more general analyzes on the coupling between atomic spin-

excitations and collective emission of light, Ref. [47]. Inour analysis we neglect the effect

of the source term̂F j in eq. (10.2.3), as we are eventually only interested in measuring

〈D(−)D(+)〉. It can be found from Eqs. (10.2.1) and (10.2.3) that the effect of the source

term F̂ j leads to a contribution〈D(−)
0 D(+)

0 〉 to the measurement. This contribution vanish

as we assume that the Stokes field is unpopulated, i.e. it is inthe vacuum state. We also

assume that there is no classical noise in the laser fieldDcl. We shall also be interested

in defining creation and annihilation operators for the atoms. This leads in general to

nonlinear equations, but under the low excitation approximation, that isσ j
22−σ

j
11 ≈ 1 we

employ the Holstein-Primakoff approximation and simply use

b̂†j = σ12, b̂ j = σ21, (10.2.8)

so that

[

b̂ j, b̂
†
j′
]

= δ j j ′ . (10.2.9)

The effective equation of motion for the atoms is then given by

d
dt

b̂†j (t) = −
Γ

2
b̂†j (t) +

∑

j′, j

M j j ′ b̂
†
j′(t), (10.2.10)

and for the field Eq. (10.2.1) gives

D(+)(r , t) = D+0(r , t) +
∑

j

∫

dt′ ¯̄P(+)(r , t|r j, t
′) · e+a|Dcl|b̂†j (t). (10.2.11)





Chapter 11

Going from discrete to continuous

system

Now we will be interested in treating Eq. (10.2.10) as a continuous equation. This follows

the fact that for a atomic gas we do not know the individual positions of the atoms, thus

an expectation value of a physical operator has to be accompanied by a spatial average of

the individual atomic positions. We therefore define the density distributionρ̌(r ),

ρ̌(r ) =
∑

j

δ(r − r j). (11.0.1)

After a spatial average of the position of the atoms in the ensemble the density distribution

ρ̌(r ) can be described by a Gaussian function.

〈ρ̌(r )〉sa. ≡ ρ(r ) = ρ0e
− r2

2σ2
⊥
− z2

2σ2
|| . (11.0.2)

We will assume that 1≪ σ⊥ ≪ σ|| and alsoσ2
⊥ > σ|| where spatial coordinates are

measured in units ofkS. We then define the normalized continuous operator

b̂(r ) =
1

√

ρ̌(r )

∑

j

δ(r − r j)b̂ j . (11.0.3)
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This definition leads to the standard commutation relationsfor such continuous operators,

[

b̂(r ), b̂†(r )
]

= δ(r − r ′). (11.0.4)

From the definition of the continuous operators Eq. (10.2.10) can be written as

d
dt

b†(r , t) =
∫

d3r
∑

j

δ(r − r j)
√

ρ̌(r )
M(r , r ′)

√

ρ̌(r ′)b†(r ′, t)

=

∫

d3r
ρ(r )
√

ρ̌(r )
M(r , r ′)

√

ρ̌(r ′)b†(r ′, t)

+

∫

d3r
∑

j

δ(r − r j) − ρ(r )
√

ρ̌(r )
M(r , r ′)

√

ρ̌(r ′)b†(r ′, t), (11.0.5)

The lowest order spatial average is found simply by making a spatial average of Eq.

(11.0.5). In Chap. 6 we considered higher order correctionscoming from such a spatial

average, and showed how fluctuations in position give rise tospontaneous emission and

dipole-dipole effects. Here we ignore these effects. To lowest order in the spatial average,

the first term in Eq. (11.0.5) describes the mean effect of the atoms interaction with

each other, that is when averaged with respect to their individual positions. The second

term gives then a decay described byΓ, which is independent of the interactions between

atoms. Thus dressing the atomic operators with respect to the decayΓ, ignoring the source

termF̂ and the point-particle corrections, the effective differential equation describing the

excitation of the atoms is after spatial average then given by

d
dt

b†(r , t) =
∫

d3r
√

ρ(r )M(r , r ′)
√

ρ(r ′)b†(r ′, t). (11.0.6)

Similarly the field equation (10.2.1) can be described in terms of the continuous operators,

and one find

D(+)(r , t) = D+0(r , t) + a|Dcl|
∫

d3r ′ ¯̄P(+)(r , r ′)
√

ρ(r ′) · e+b̂†(r ′, t) (11.0.7)

In the following we will find approximate solutions to the above equations.
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Diagonalizing the interaction matrix

The system in consideration is assumed cylindrically symmetric, with a density described

by Eq. (11.0.2). We shall therefore use a cylindrically symmetric set of basis functions

for our diagonalization: a combination of plane waves and Bessel functions. We denote

the basis{ fkmn} where

fkmn(r, z, φ) =

√
2

2πacJm+1(Xmn)
eikz+imφJm(Xmn

r
ac

). (12.0.1)

Jm is the Bessel function of first kind of orderm, Xmn is then’th zero of them’th order

Bessel function of first kind. The parameterac is a cut-off in the radial direction, meaning

that our basis is complete on the intervalr ∈ [0, ac]. We work with a cut-off in the radial

direction and not in thez-direction due to the assumptionσ|| ≫ σ⊥ The inner product

defined for this basis is therefore given by,

〈θ|ψ〉 =
∫ 2π

0
dφ

∫ ∞

−∞
dz

∫ ac

0
rdr θ∗(r, z, φ)ψ(r, z, φ). (12.0.2)
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Branch cut

Pole

C1

Im

Re

Figure 12.1: Sketch of the integration contourC1, in the integral representation (12.0.5) of the Green
function.

For a discussion of this basis see e.g. Ref. [48]. The matrix,or in the continuous case the

integral kernel, that we wish to diagonalize in the basis{ fkmn} is now given by

M(r , r ′) =
−3πiΓ

k3
S

e∗
+
·
√

ρ(r ) ¯̄P(+)(r , r ′)
√

ρ(r ′) · e+. (12.0.3)

The propagator̄̄P(+) is found in a real space representation in Eq. (A.4.5). One may from

the real space representation of the propagator show that

e∗
+
· ¯̄P(+)(r , r ′) · e+ =

−k3
S

8π
(∇2
+ ∂2

z

) ei|r−r ′ |

|r − r ′| . (12.0.4)

The polarization effects are included in the differential operator∇2
+ ∂2

z. In addition we

use that the Green function can be written as [49]

ei|r−r ′ |

|r − r ′| =
i
2

∑

m

∫

C1

dheim(φ−φ′)+ih(z−z′)Jm(
√

1− h2r<)H(1)
m (
√

1− h2r>), (12.0.5)

wherer< (r>) is the minor (larger) ofr andr ′. C1 is describing a curve essentially going

from −∞ to ∞ along the real axis but shifted to avoid the branch cut and pick out the

retarded Green’s function, as shown in Fig. 12.1. By introducing an integral, the non-

trivial product of Bessel functions in Eq. (12.0.5), can be symmetrized [50]:

Jm(
√

1− h2r<)H(1)
m (
√

1− h2r>) =
2
iπ

∫

xdx
Jm(xr)Jm(xr′)
x2 + h2 − 1

. (12.0.6)
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The propagator is then given by

e− · ¯̄P(+)(r , r ′) · e+ =
k3

S

8π2

∑

m

∫

C1

dh
∫

xdx
1+ h2

x2 + h2 − 1
eim(φ−φ′)+ih(z−z′)Jm(xr)Jm(xr′).

(12.0.7)

In the basis{ fkmn} the differential equation (11.0.6) can be written as

d
dt

b̂†kmn(t) =
∑

k′m′n′

Mkmn
k′m′n′b̂

†
k′m′n′ (12.0.8)

where

Mkmn
k′m′n′ =〈 fkmn(r )|M(r , r ′)| fk′m′n′(r ′)〉, (12.0.9)

and

b†kmn(t) =〈 fkmn(r )|b†(r , t)〉. (12.0.10)

When calculating the matrix Eq. (12.0.9), we have to make integrals overr, z andφ.

We can at this point simplify the radial integrals by extending the upper integral limit to

infinity. This is correct since the cut-off ac can be chosen arbitrarily and as we in the end

be will set it to infinity. The governing parameter is therefore the density function which

has a finite widthσ⊥. The following results found in Ref. [50] is useful for making the

radial integrals:

∫ ∞

0
rdre−αr2

Im(βr)Jm(γr) =
1

2α
e
β2−γ2

4α Jm(
βγ

2α
)

Re[α] > 0,Re[m] > −1
2

(12.0.11)

and

∫ ∞

0
rdre−α

2r2
Jm(βr)Jm(γr) =

1
2α2

e−
β2
+γ2

4α2 Im(
βγ

2α2
)

| arg[α]| < π

4
,Re[m] > −1, β > 0, γ > 0 (12.0.12)
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After making the spatial integrations the matrixM reduces to

Mk′m′n′
kmn =δmm′

λ0

i

∫

C1

dh
∫

xdxη(k− h)η(k′ − h)
1+ h2

x2 + h2 − 1

8σ4
⊥e−σ

2
⊥(γ2

n+γ
2
n′ )

a2
cJm+1(Xmn)Jm+1(Xmn′)

×

e−2σ2
⊥x2

Im(2σ2
⊥γnx)Im(2σ2

⊥γn′ x) (12.0.13)

where

η(k) =
σ||√
π

e−σ
2
|| k

2
, (12.0.14)

and where we have introduced the constantλ0 =
3πρ0Γ

2 . We notice that both integrals over
x andh is bounded by Gaussian functions, and since we assumeσ⊥ ≫ 1 we may make
a series expansion inx andh of the function 1/(x2

+ h2 − 1). We will be interested in a
series expansion of the integrals overx andh only to the lowest order. Since we assume
thatσ|| ≫ σ⊥, i.e. cigar-shape, our lowest order calculation will terminate after first order
in 1/σ2

⊥. The integral overh can to this order be approximated by treating the function
η(k − h) as a delta function. We show in Appendix B.1 that the integral over x to lowest
order in the variable 1/σ2

⊥ gives

Mk′m′n′
kmn =δmm′η(k− k′)

λ0

i















Λ
m
nn′

1+ k2

k2 − 1
− Λ

1m
nn′√

8σ2
⊥

1+ k2

(k2 − 1)2















+O
[

σ−2
|| , σ

−4
⊥

]

, (12.0.15)

where

Λ
m
nn′ =

2σ2
⊥e
−σ

2
⊥
2 (γ2

n+γ
2
n′ )Im

(

σ2
⊥γnγn′

)

a2
cJm+1(Xmn)Jm+1(Xmn′)

(12.0.16)

and

Λ
1m

nn′ =
4σ2
⊥e
−σ2
⊥(γ2

n+γ
2
n′ )Im

(

2σ2
⊥γnγn′

)

a2
cJm+1(Xmn)Jm+1(Xmn′)

. (12.0.17)

The matricesΛm
nn′ andΛ1m

nn′ are normalized such that forσ⊥ → ∞ they reduce to a delta-

functionδ(n− n′).

We shall here and in the remainder of the article treat the functionη(k − k′) as a delta

function. This approximation enables us to solve the superradiance problem in certain

limits, but it also imposes some limitations. In Appendix B.3 we explore the limitations
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of the approximation, and show that when we look at the radiated light the approximation

gets worse when moving to the far field region, as well as in thelarge time limit.

In the following we take a closer look at the matrixΛm
nn′ defined in Eq. (12.0.16). For

simplicity we will not consider the correctionΛ1m
nn′ , however the conclusions drawn in

the following holds for the correction as well. The differential equation concerning our

system with respect to the quantum numbern, n′ has got the form

d
dt

an(t) =
∑

n′
ωΛm

nn′an′(t). (12.0.18)

We wish to take the limitac→∞. To clarify what this means let us write the matrixΛ in

the following way:

Λ
m
nn′ = ∆kmn′Ξ

m
nn′π

2σ2
⊥e
− π

2σ2
⊥

2 (k2
mn+k2

mn′ )

Im(π2σ2
⊥kmnkmn′)

√

kmnkmn′ (12.0.19)

where

Ξ
m
nn′ =

2
π

1√
XmnXmn′Jm+1(Xmn)Jm+1(Xmn′)

(12.0.20a)

≈ (−1)n+n′ for Xmn,Xmn′ →∞

kmn =
Xmn

πac
(12.0.20b)

∆kmn′ =
1
ac

(12.0.20c)

We thus see that when lettingac → ∞, a transverse momentum naturally ariseskm⊥ =

limac→∞ kmn, and the discrete matrix equation, Eq. (12.0.18) becomes anintegral equation

over the transverse momentumkm⊥, using
∑

n′ ∆kmn′ →
∫

dkm⊥.

d
dt

a(km⊥t) =
∫

dk′m⊥ωΛ
m(km⊥, k

′
m⊥)a(k′m⊥, t) (12.0.21)

It is evident that when using the limiting properties of the Bessel functionIm(x) the inte-

gral kernelΛm(km⊥, k′m⊥) becomes a delta function forσ⊥ → ∞. We thus realize that the

effective one-dimensional result obtained by Raymer and Mostowski [3] is exact for an

infinitely large atomic ensemble.
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Now we again include the correctionΛ1m
nn′ to the analysis. Both matricesΛm

nn′ and

Λ
1m

nn′ are real and symmetric and thus can be diagonalized. In Appendix B.2 we show that

the two matrices commute. We can therefore choose a common set of eigenfunctions,
{

Fkmn(r)
}

for both matrices. We define the unitary matrix̄̄U that transform our initial

basis{ fkmp} to the basis given by the eigenfunctions
{

Fkmn(r)
}

,

Fkmn(r ) =
∑

p

Unp fkmp(r ) (12.0.22)

Finally we will define a corresponding set of eigenvalues,

Λ
m
pp′ =

∑

n

UnpλmnUnp′ (12.0.23)

and

Λ
1m

pp′ =

∑

n

Unpλ
1
mnUnp′ (12.0.24)

It is convenient in the following to change to this basis, whereΛm
nn′ andΛ1m

nn′ are diagonal.

We therefore write the Eq. (12.0.15) as

∑

pp′
UnpMk′m′p′

kmp Un′p′ =
λ0

i















λmn
1+ k2

k2 − 1
− λ1

mn√
8σ2
⊥

1+ k2

(k2 − 1)2















δmm′δnn′η(k − k′) +O
[

σ−2
|| , σ

−4
⊥

]

(12.0.25)



Chapter 13

Real space representation of the

electric field

In the following section we will, based on the eigenvalue analysis of the atomic operators,

derive the real-space behavior of the electric field. We shall divide the analysis into a

regime of small times where the dominating effect is spontaneous emission, and a large

time regime, where the dominating effect is the cooperatively emitted light, the superradi-

ated beam. To keep things simple, we mainly consider the electric field at and around the

symmetry axis. In this regime the scattered radiation field is sufficiently well described

by the vector componentD(+)
+ and the Hermitian conjugate, which can be seen from Eq.

(11.0.7) and the real space representation of the propagator Eq. (10.2.2).

Let us first determine the electric field at the symmetry axis at zero time,t = 0. In this

case the electric field is given by:

D(+)
+ (r s, 0) =D(+)

+ (r s, 0)0 +
∫

d3r ′
a|Dcl|k3

S

4π

((z− z′)2
+

1
2r2)ei

√
(z−z′)2+r2

(r2 + (z− z′)2)3/2

√

ρ(r ′)b̂†(r ′, 0),

(13.0.1)

where the indexs refers to being at the symmetry axis. To arrive at the above result

we used the real space representation of the propagator¯̄P Eq. (12.0.4) to leading order

in one over distance. This approximation is done out of convenience but is not strictly

93
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necessary. When making the calculations for the mode expansion of the electric field in

the general modesFkmn we shall check that the limitt → 0 exist and are given by the

expression, (13.0.1).

The analysis of the radiation field fort , 0 starts by inserting the unit,

11 =
∫

d3r ′
∫

dk
∑

mn

Fkmn(r)F
∗
kmn(r

′) (13.0.2)

into the field equation, Eq. (11.0.7). We then get the following expansion of the electric

field.

D(+)
+ (r , t) = D(+)

+ (r , t)0 +

∫

d3r ′
∫

dk
∑

mn

Ckmn(r )eλkmntF∗kmn(r
′)b̂†(r ′, 0), (13.0.3)

where

Ckmn(r ) =a|Dcl|
∫

d3r ′e∗
+
· ¯̄P(+)(r , r ′)·e+

√

ρ(r ′)Fkmn(r ′), (13.0.4)

the functionsFkmn are the basis functions given in Eq. (12.0.22), and the eigenvalueλkmn

is given in Eq. (12.0.25).

The calculation of the modefunctionsCkmn is initiated by integrating with respect to

the spatial coordinater ′. The integrals involving Bessel functions are found in e.g.[50]

or (12.0.12), and one arrive at

Ckmn(r ) =
a|Dcl|k3

S

√
ρ0(1− ∂2

z)

4π

∫

dy
∫

xdx
∑

p

Unp
eimφ+i(k+y)z

x2 + (k+ y)2 − 1

√
2Jm(xr)

acJm+1(Xmp)
×

2σ2
⊥σ||√
π

e−σ
2
|| y

2−σ2
⊥(γ2

p+x2)Im(2σ2
⊥γpx). (13.0.5)

The next step of the calculation is to include the mode summation. We will therefore

define the propagatorP(+) given by

P(+)(r , r ′; t) =
∫

dk
∑

mn

Ckmn(r )eλkmntF∗kmn(r
′). (13.0.6)

We notice that the variabley in Eq. (13.0.5) is small, as it is controlled by the Gaussian

function ofσ||. We shall therefore by a translation of the integral variablek′ = k+ y move
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the perturbationy to the eigenvalueλkmn, so that we useλk′−y,mn. This choice ensure that

we will get the correct behavior of the integrals in the limitt = 0. This way we can in

principle make thek′ integral by using the series expansion of the functioneλk′−y,mnt, where

the zeroth order term in the expansion int is the limit given by Eq.(13.0.1). Though in

principle thek′ integral can be made using the series expansion of the exponential, we

shall follow the path used by e.g. Ref. [3].

In the following we make a series expansion of the eigenvalueλk−y,mn given in Eq.

(12.0.25) with respect to the variabley.

λk−y,mn ≡
1
i













λmn
(k− y)2

+ 1
(k− y)2 − 1

− λ1
mn√
8σ2
⊥

(k− y)2
+ 1

((k− y)2 − 1)2













≈1
i

(

λmn
k2
+ 1

k2 − 1
+ 2µmn

k2
+ 1

(k2 − 1)2

)

, (13.0.7)

The series expansion can be done since they-integral is bound by a Gaussian function.

To shorten notation we have substitutedk′ → k, and introduced the coefficient µmn =

λmny− λ1
mn√
8σ2
⊥
.

In Eq. (13.0.6) thek-integral includes a pole

1
k2 + x2 − 1

→ 1

2
√

1− x2(k−
√

1− x2)
, (13.0.8)

where the arrow reflects the fact that we are only interested in the retarded Green function,

which correspond to the polek =
√

1− x2. Since we are particularly interested in this

pole, we shall in thek-integral in Eq. (13.0.6), make a translation of the eigenvalue

λk−y,mn → λk+y+
√

1−x2,mn, and then a series expansion similar to Eq. (13.0.7). We can

make the calculation with two different situations in mind, one situation explains the

spontaneous radiation originating from a sample of atoms ofsome geometrical shape.

We are most interested in the other situation describing thecollective emission or the

superradiance occurring when the atoms co-radiate. As a check of our formalism we shall,

however, also consider the short time-limit where there is just spontaneous emission. We

expect that as time evolves the superradiating mode will become the dominating effect.

Therefore we demonstrate where the superradiating effect is found and described in our

mathematical treatment of the problem.
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Let us first show how the important steps in the calculation ofsuperradiance is done,

before going into the full details. The integral appearing in the calculation are of the type

Ik(t) =
1
2π

∫

dk
eλk−y,mnt+ik∆z

k2 + x2 − 1
, (13.0.9)

where∆z= z− z′. For now we consider the lowest order correction for simplicity, that is

we neglectµmn in Eq. (13.0.7). Includingµmn to the eigenvalue is a trivial generalization.

We focus on the pole in the integral atk =
√

1− x2, as this pole describes the energetically

allowed scattering processes. We will here and in the following assume∆z is large, thus

by introducing the variables= i∆z(k−
√

1− x2) the integralI0
k can be written as

I0
k(t) = i

1
2πi

∫ i∞

−i∞
ds

e
s+i∆z

√
1−x2+

λmnt∆z

s−i x2∆z
2

2
√

1− x2s
, (13.0.10)

where the superscript 0 indicates that this is a zeroth ordercalculation in the correction

to the eigenvalue due to finite size. The superradiant contribution to Eq. (13.0.10) comes

from the pole of the exponential. In order for this pole to contribute to the pole describing

the propagated light, that is the zero point of the denominator, the termx2
∆z
2 has to be

small. Forx2
∆z
2 < 1 we shall treat it as a perturbation. When this no longer apply, the pole

in the exponent can be neglected, and we are thus left with theresult for short times, i.e.

spontaneous emission. The latter is analyzed in the following section, and we shall for

now concern ourselves with the superradiant contribution.Sincex2
∆z
2 < 1 we can make an

expansion in this quantity and obtain

Ik(t) =
iei∆z

2

∞
∑

l=0

∞
∑

q=0

(

ix2
∆z

2

)l
(

−2itµmn∆z2
)q

q!
1

2πi

∫ i∞

−i∞
ds

es+ λmnt∆z
s

s1+l+2q
. (13.0.11)

The integral may be found in Ref. [51] and we find (Here we include the correction to the

eigenvale in Eq. (13.0.7).)

Ik(t) =
iei∆z

2

∞
∑

l=0

∞
∑

q=0

(

ix2
∆z

2

)l
(

−2iµmn∆z2
)q

q!

I l+2q(2
√
λmnt∆z)

(
√
λmnt∆z)l+2q

. (13.0.12)
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13.1 Short time limit

In order to understand our calculation of superradiance, wefirst analyze it fort = 0, as

we know how the propagator fort = 0 looks when measured at the symmetry axis. The

t = 0 regime is also met forx
2
∆z
2 > 1. We shall therefore also refer to this calculation as

the short time limit. Here we find from a residue calculation Eq. (13.0.9) to give

Ik(0) =
iei
√

1−x2∆z

2
√

1− x2
. (13.1.1)

Let us therefore return to thek integral fort = 0 in eq. (13.1.1). By inserting this into the

propagator in Eq. (13.0.6), the propagator may be written

P(+)(r , r ′; 0) =
∑

mn

a|Dcl|k3
S

√
ρ0(1− ∂2

z)

4π

∫

xdx
∑

pp′
UnpUnp′

2iσ2
⊥e

im∆φ+i
√

1−x2∆z

√
1− x2

×

Jm(xr)Jm(γp′r ′)Im(2σ2
⊥γpx)

a2
cJm+1(Xmp)Jm+1(Xmp′)

e
−σ2
⊥(γ2

p+x2)− z′2
4σ2
|| .

(13.1.2)

The only dependence on the mode-indexn is in the product of the two matricesUnpUnp′

and the sum overn reduces to a delta functionδpp′ . We then make identification similar

to Sec. 12,
∑

p
1
ac
→

∫ dγp

π
for ac → ∞. The variableγn is in this sense fixed, thus letting

ac → ∞ has to be accompanied byXmn→ ∞. Therefore we can use the large argument

approximation for the Bessel functions,

Jm(Xmn) ≈
√

2
πXmn

cos(Xmn−
mπ
2
− π

4
), Xmn≫ 1. (13.1.3)

Using this we can make the integrals overγp andγp′. The result of the mode summation,

eq. (13.0.6) is then

P(+)(r , r ′; 0) =
a|Dcl|k3

S

√

ρ(r ′)(1− ∂2
z)

8π

∑

m

eim∆φ

∫

xdx
iei
√

1−x2∆z

√
1− x2

Jm(xr)Jm(xr′) (13.1.4)

This is the main result of this section. To verify the validity of the approach taken so

far, we shall now show that the propagator Eq. (13.1.4) reduces to the one used in Eq.
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(13.0.1) on the symmetry axis. In order to show this we will use the summation theorem

for Bessel functions, see e.g. [50],

∑

m

eim∆φJm(xr)Jm(xr′) = J0(xR), (13.1.5)

whereR =
√

r2 + r ′2 − 2rr ′ cos(∆φ). This way the propagator in Eq. (13.1.4) can be

written

P(+)(r , r ′, 0) =
a|Dcl|k3

S

√

ρ(r ′)(1− ∂2
z)

8π

∫

xdx
iei
√

1−x2∆zJ0(xR)√
1− x2

. (13.1.6)

Thex-integral is known and may be found in Ref. [51], to give

P(+)(r , r ′, 0) =
−a|Dcl|k3

S

√

ρ(r ′)(1− ∂2
z)

8π
ei
√

R2+∆z2

√
R2 + ∆z2

. (13.1.7)

Finally thezdifferential give us the result we are looking for.

P(+)(r , r ′, 0) =
a|Dcl|k3

S

√

ρ(r ′)
4π

ei
√

R2+∆z2

√
R2 + ∆z2

1
2R2
+ ∆z2

R2 + ∆z2
. (13.1.8)

When we then look at the symmetry axis, the variableR reduce tor ′ and we are left with

the result in Eq. (13.0.1). The result of this section can be written as

D(+)
+ (r , 0) =D(+)

+ (r , 0)0 +
∫

d3r ′ P(+)(r , r ′; 0)b̂†(r ′, 0). (13.1.9)

13.2 Finite time, build up of superradiance

In the following we shall analyze the effect of the eigenvaluesλmn andλ1
mn in the expres-

sion (13.0.12). When we introduce the eigenvalues in Sec. 12we only concluded they

could be found. We also know that physics connected to the eigenvalues can not depend

on the cut-off ac involved in the indexn. In the following we show that indeed the physics

is independent of the cut-off ac.To find this result we shall in particular look at the sum
∑

n Unpµ
M
mnλ

N
mnUnp′ where the powersN andM are zero or a some positive integer. [The

powersN andM are connected to series expansions of functions involving the eigenvalue
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λmn, e.g. Eq. (13.0.12)] The eigenvaluesλmn andλ1
mn are related to the matricesΛm

pp′ and

Λ
1m

pp′ in Eqs. (12.0.23) and (12.0.24). This enables us to carry outthe calculations in the

limit ac→ ∞. Let us generalize the matricesΛm
pp′ andΛ1m

pp′ defined in Eqs. (12.0.16) and

(12.0.17) to

Λ
m
pp′

(σ⊥
2

N

)

=

4σ⊥2e
−σ⊥2

N (γp
2
+γp′

2)Im

(

2σ⊥2

N γpγp′
)

Nac
2Jm(Xmp)Jm(Xmp′)

, (13.2.1)

i.e. (12.0.16) is theN = 2 limit and (12.0.17) theN = 1 limit. One can then show that

∑

n

Unpµ
M
mnλ

N
mnUnp′ =

M
∑

s















M

s















yM−s(−4σ2
⊥)
−s
Λ

m
pp′

( σ⊥
2

2(N + M − s) + s

)

(13.2.2)

This result along with the appropriate series expansion of functions involving the eigen-

valuesλmn andλ1
mn can be inserted into the result for the propagator Eq. (13.0.6), and the

resulting sum over indicesp andp′ becomes of the form

∑

pp′

Jm(γp′r ′)Im(2σ⊥2γpx)e−σ⊥
2(x2
+γp

2)

ac
2Jm+1(Xmp)Jm+1(Xmp′)

Λ
m
pp′

(σ⊥
2

N

)

=
1

4σ⊥2
e
− r′2

4σ⊥2− Nr′2
4σ⊥2 Jm(xr′), (13.2.3)

whereN is an integer derived from Eq. (13.2.2) and the before mentioned series expan-

sions. The propagator Eq. (13.0.6) can therefore be writtenas

P(+)(r , r ′; t) =
∑

mn

a|Dcl|k3
S

√
ρ0(1− ∂2

z)

4π

∫

xdx
∫

dy
σ||√
π

e−σ
2
|| y

2
+iyz′

∑

pp′
UnpUnp′×

4σ2
⊥e

im∆φIk
Jm(xr)Jm(γp′r ′)Im(2σ2

⊥γpx)

a2
cJm+1(Xmp)Jm+1(Xmp′)

e
−σ2
⊥(γ2

p+x2)− z′2
4σ2
||

=
ia|Dcl|k3

S

4π

√

ρ(r )
∑

m

∫

√
2
∆z

0
xdx eim∆φ+i∆zJm(xr)Jm(xr′)×

∞
∑

l=0

∞
∑

q=0

(

ix2
∆z

2

)l (
iλ0t∆z2

√
8σ⊥2

)q

Φ
q(r ′, z′)

I l+2q

(

2

√

e
− r′2

2σ2
⊥ λ0t∆z

)

(

√

e
− r′2

2σ2
⊥ λ0t∆z

)l+2q
. (13.2.4)
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∆z
z

r

Figure 13.1: A sketch of the coherent build-up of radiation in an atomic cloud. I principle the build-up can
happen along any direction, however for a cigar-shaped geometry such as this the most significant build-up
happens along the cigar.

where

Φ
q(r ′, z′) =

q
∑

n=0

E(n/2)
∑

s=0

e
− r′2

4σ2
⊥

(q+n)

(q− n)!(n− 2s)!s!















−4iσ2
⊥

σ2
||















n

(−σ2
|| )

sz′n−2s (13.2.5)

We notice since (x2
∆z)/2 < 1, that choosing the variable∆z large means that the sum

over l will converge very fast. Choosing the variable∆z large can be done by placing

the detector plane far away from the sample, in which case we will talk about a far-field

calculation. Unfortunately the sum overq converges more slowly when∆z is larger,

and as discussed in Appendix B.3 we can not quite rely on our initial approximations

[η(k − k′) ≈ δ(k − k′), see Sec. 12] for large∆z. We shall therefore consider the problem

in the near field region. The limit
√

2/∆z in the x-integral we shall on the other hand

approximate with the value
√

2/L, whereL =
√

2πσ|| is the effective length of the atomic

ensemble. This approximation will become better at later times, since the coherent build-

up is essentially described by the modified Bessel functionI l+2q(2
√
λ0∆zt) which in time

will dominate for large values of∆z. In Fig. 13.1 we illustrate the physical significance of

the integral overx, which represents an integral over transverse momentum. Wesee that

as we include more light from deviating angles, this radiation has a shorter region over

which it can build up, and as the build-up is exponential in the build-up length, the error

made by the cut-off L becomes relatively small. From the propagator Eq. (13.2.4)the

electric field can be written, similar to the spontaneously emitted radiation, Eq. (13.1.9),

as

D(+)
+ (r , t) = D(+)

+ (r , t)0 +

∫

d3r ′ P(+)(r , r ′; t)b̂†(r ′, 0). (13.2.6)



Chapter 14

Intensity and the correlation function

In this section we consider the electric field, and assume that we place a detector in a plane

at some positionz0 after the end of the atomic sample. Then we define the correlation

function as a function of the radial coordinater and of timet

C(r, r ′, t) =
2
~ǫ0kS

∫

dφ〈D̂(−)
+ (z0, r, φ, t)D̂

(+)
− (z0, r

′, φ, t)〉, (14.0.1)

where〈·〉 is the quantum mechanical average. The normalization2
~ǫ0kS

is chosen such that

the number of photons in a pulse is given by

Np =

∫

dA
∫

dtC(r, r, t)k2
S. (14.0.2)

Inserting the propagator in Eq. (13.2.4) allows us to describe superradiance, while the

propagator Eq. (13.1.2) gives the spontaneous emission forshort times. We shall be most

interested in the super-radiated light, but will also for comparison examine the sponta-

neously emitted light. First we present the correlation function describing the superradia-

tion, when measured in a plane at the end of the atomic sample.An important Parameter

below will be the Fresnel numberF which we define byF = σ2
⊥

L . We shall in general

assume the Fresnel number to be large, in particularF > 1. In the integration overz′ we

101
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will use the following substitution

∫

dz′e
z′2
2σ2
|| →

∫ L

0
dz′, where L =

√
2πσ||. (14.0.3)

This way the correlation function can be calculated to give

C(r, r′, t) =
k2

Sλ0e−Γt

4F
∑

m

∑

lqk
l′q′k′

q,q′
∑

n,n′

∫ 2F

0
dy

∫ 2F

0
dy′

{

(−iy
2F

)l( iy′

2F
)l′( −i√

8F
)q( i√

8F
)q′

(8iπF )n(−8iπF )n′×

Jm
(√

y
r
σ⊥

)

Jm
(

√

y′
r′

σ⊥

)

e−
y+y′

2+2(k+k′)+q+q′+n+n′ Im

(

2
√

yy′
2+2(k+k′)+q+q′+n+n′

)

×

χ
l′q′k′n′

lqkn

(λ0tL)k+k′+q+q′

k!k′!(l + 2q+ k)!(l + 2q′ + k′)!

}

,

(14.0.4)

where

χ
l′q′k′n′

lqkn =

E(n/2),
E(n′/2)
∑

s,s′

n−2s,
n′−2s′
∑

Q,Q′

2
(

(−1)Q+Q′+s+s′ (2π)−s−s′

(q−n)!(q′−n′)!(n−2s−Q)!(n′−2s′−Q′)!s!s′!Q!Q′!

)

(1+Q+Q′+k+k′+l+l′+2(q+q′))(2+2(k+k′ )+q+q′+n+n′)
. (14.0.5)

This is the main result of this section. We notice that the only variables controlling the be-

havior of the correlation function is the Fresnel number,F , the optical depthρ0L and time

measured in units of the singe atom scattering rateΓ. This follows sinceλ0tL = 3π
2 ρ0LΓt.

From the correlation function (14.0.4) we also expect fast convergence in the indexq

and l as the Fresnel number increases. In the remainder of the article we shall evalu-

ate the correlation function numerically. Even though the correlation function involves

a double integral beside the large number of sums, we see thatas we increase the index

k, k′, q, q′, n, n′, they- andy′-integrals will simplify. This follows since the argument of

the modified Bessel function decreases as the indicesk, k′, q, q′, n, n increases, we can

therefore use the small argument limit. Similarly the Gaussian function can be approx-

imated by unity. From Eq. (14.0.4) we see that the dominatingterm in the sum overk

will have a higherk when time grows. This means that the radial behavior of the beam

simplifies and is due to the small argument description of themodified Bessel function

eventually dominated by them= 0 mode.

In the following section we will examine the radiated light at the symmetry axis.
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The purpose is to examine the timescale on which there is a crossover from spontaneous

emission to superradiance.

14.1 Intensity on the symmetry axis

Placing the detector on the symmetry axis is a nice simplification especially for the spon-

taneous emission correlation function, since in that case we may use the result presented

in Eqs. (13.1.9) and (13.1.8). Also the coherent emission correlation function simplify

since terms withm , 0 vanish at the symmetry axis. In the spontaneous emission limit

t ≈ 0 the intensity on the axis is given by

C0(0, 0) = k2
Sλ0

∫ L

0
d∆z

∫

r ′dr′ e
− r′2

2σ2
⊥

(1
2r ′2 + ∆z2)2

(r ′2 + ∆z2)3
, (14.1.1)

where we use the substitution in Eq. (14.0.3), and assume that the detector is placed at the

end of the atomic ensemble. Thez-integral can be performed analytically and one finds

C0(0, 0) =k2
Sλ0L

∫

rdr
e
− L2

2σ2
⊥

r2

32

{−13− 11r2

(1+ r2)2
+

19 arctan(r−1)
r

}

. (14.1.2)

From Eq. (14.1.2) we find that the parameters controlling theintensity on the symme-

try axis is here the optical depth, and the relation between the length and the width of

the atomic ensemble. In Fig. 14.1 we show how this intensity vary as the relation be-

tween the length and the width of the sample is changed. Here and in the following we

shall measure the correlation function in units ofk2
SΓ. For short time the emitted light is

dominated by spontaneous emission. We shall now investigate the time scale on which

superradiance begins to dominate the radiation. In the time-domain where the radiation is

dominated by spontaneous emission, we expect that the radiation is being emitted almost

homogeneously in all directions. This statement is not completely true, as indicated in

Fig. 14.1. We thus find that the figure of merit for the spontaneous emission is the density

the length and the width of the atomic ensemble, and not as in the case of superradiance,

only the Fresnel number and the optical depth. Thus on order to compare the two time

domains, the spontaneous emission and the superradiance, we will in the have to fix e.g.

the length of the system. In Fig. 14.2 we show the coherent radiation build up as a func-
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Figure 14.1: Plot of the spontaneous emission intensity, Eq. (14.1.2) on the symmetry axis for varying
width of the atomic ensemble. The intensity is measured in units of number of photons timesk2

S perΓt. In
the graph we marked the point corresponding to a Fresnel numberF = 4, assuming we fixL = 100

tion of time. In the plot we also show the spontaneous emission where we have included

the self-coupling of the atoms giving rise to the decayΓ described in Eq. (10.2.3). The

superradiation is calculated for different values of the Fresnel number. Time is measured

in units ofΓ, and we have used a fixed value of the optical depth such that

λ0L
Γ
= 10, or ρ0L =

20
3π
≈ 2.12. (14.1.3)

To compare the superradiation with the spontaneous emission we have fixed the length

L = 100. This parameter is only important when looking at the spontaneous emission.

Fig. 14.2 shows how one may increase the coherent radiation dominance by increasing

the width of the sample.

14.2 Intensity profile

In this section we shall look at the spatial shape of the radiation leaving the atomic en-

semble. Before we present the numerical calculations for the coherent emission we will

look at the correlation function in Eq. (14.0.4). The spatial shape of the function is mainly
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Figure 14.2: Plot of the time evolution of the logarithm of the intensity of coherent radiation as well as of
spontaneous radiation when measured at the symmetry axis. We notice the effect of varying the width of
the sample, in which case the time at which the coherent radiation dominates change.

given by

∫ F

0
dy

∫ F

0
dy′Jm

(√
y

r
σ⊥

)

Jm
(

√

y′
r ′

σ⊥

)

e−
y+y′

2+2(k+k′)+q+q′+n+n′) Im

(

2
√

yy′
2+2(k+k′)+q+q′+n+n′

)

(14.2.1)

With increasing values ofk, k′, q, q′, n andn′, the exponential function can to a higher and

higher precision be approximated by unity. The modified Bessel function of orderm can

for small arguments be approximated with am’th order polynomial

Im(z) ≈ (z/2)m

m!
. (14.2.2)

From the argument of the modified Bessel function in Eq. (14.2.1) we find that region

for which the approximation Eq. (14.2.2) is applicable is given both by the number 2+

2 ∗ (k + k′) + q + q′ + n+ n′ and by the integration rangeF . Eq. (14.2.1) indicates that

as time increases the dominant mode will be them = 0 mode for a finite sized atomic

ensemble. On the other hand we see that for an infinitely sizedatomic ensemble all

m-modes will contribute. This is essentially the limit considered in the one-dimensional

theory [3]. This theory applies to an infinitely wide sample such that all modes experience

the same dynamics. For a sample of finite width we see that the oscillating behavior of

the Bessel functionsJm gives a cut in the width of the beam scaling with approximately
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rc/σ⊥ ∼ 1/
√
F . This cut rc/σ⊥ will, due to the behavior of the Bessel functionJm,

increase asm increases. We thus see that even though the width of the beam is mainly

determined by the length of the atomic ensemble, the width ofthe atomic ensemble plays

an important role as a wider ensemble supports higher order modes that are inherently

wider, thus in effect a wider atomic ensemble will generate a wider beam. From the

expansion Eq. (14.0.4) and the small argument limit of the modified Bessel function Eq.

(14.2.2) along with Eq. (14.2.1) we see that as time increases the contributions to the

intensity from modesm , 0 will diminish. In Fig. 14.3 we show a plot of the radiated

power in three superradiating modes at timet = 0. In Fig. 14.4 we use an atomic ensemble

with Fresnel numberF = 4, and in Fig. 14.3 we useF = 8. The plot demonstrates how

the relative importance between different modes are changed as the Fresnel number is

changed. From the two plots in Figs. 14.4 and 14.3 that the larger the Fresnel number,

the more modes corresponding to the numberm can we fit in the system. In Fig. 14.4 we

see a relative maximum of the first order modem= 1 at about 15% of the principal mode

m = 0, and the second order modem = 2 the maximum is about 3.7% of the principal

mode. When the Fresnel number is doubled in Fig. 14.3 these numbers reads form = 1

approximately 20% andm = 2 approximately 7.4%. These numbers indicates that for

an infinitely sized sample, all modes will contribute. However to conclude such behavior

we have to look at the total number of photons in each mode. This is the topic of Sec.

14.3, and from the results derived there we indeed find that wecan have relatively more

photons in higher order modes as the Fresnel number is increased. E.g forF = 8 the

photon power in them = 1 mode relative to them = 0 mode is about 62% whereas for

F = 4 this number is reduced to 49%.

Next we consider how the time evolution of the superradiant modes corresponding

to differentm changes. From the earlier discussion of Eq. (14.2.1) we expect that the

relative photon power carried by modesm different from the principal modem = 0 will

decrease compared to the principal mode as time is increased. In Figs. 14.6 and 14.5 we

plot the radial distribution of the photon power at timeΓt = 1. We see that the radial

shape of the modes have not changed compared with the initialtime plots, 14.4 and 14.3,

however the relative maximal photon power for modesm , 0 has decreased compared

with the principal modem= 0. Again we can look at the total photon power in each mode,

discussed in Sec. 14.3, and find that for the case of Fresnel numberF = 4 the modem= 1

now only contains 22% of the intensity carried in them = 0 mode, and them = 2 mode

only 4.2%. A similar behavior is found for theF = 8 case, though less pronounced, e.g
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Figure 14.3: Plot of the radiated power for different modesm= 0, 1, 2 as a function of the detection
coordinater/σ⊥. The plot is taken at the initial time,Γt = 0, and demonstrate how the relative distribution
of radiation in different modesm is changed as the Fresnel numberF is varied. In Fig. 14.4) we useF = 4
and here we useF = 8
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Figure 14.4: Same as Fig. 14.3 but with Fresnel numberF = 4
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Figure 14.5: Plot of the radiated power for different modesm= 0, 1, 2 as a function of the detection
coordinater/σ⊥. Here the plot is made at a time ofΓt = 1. The plot demonstrate how the relative
distribution of radiation in different modesm is changed as the Fresnel numberF is varied. In Fig. 14.4)
we useF = 4 and here we useF = 8. When these plots, 14.6 and 14.5 are compared with the initial time
plots, Figs. 14.4 and 14.3 we indeed see that as time increases, the evolution of the principal superradiating
mode,m= 0 is faster that the higher order modes.

the mode nowm = 1 carries 35% of the photon power compared with them = 0 mode,

and them = 2 mode it is 12%. Thus from the plots and the numbers presentedhere we

see the expected behavior of the superradiating modes as time increases.

14.3 Total coherent radiation.

Finally we will examine the behavior of the total intensity of the coherently emitted radi-

ation. We shall in this section not only show the effect of the analytical calculations made

so far but also compare the result with an purely numerical treatment of the equations

given in Eq. (10.2.10). The total intensity is normalized such that it gives the number of
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Figure 14.6: Same as Fig. 14.5, but with Fresnel numberF = 4

photons per second coming through the detector-plane.

IT(t) =
2

kSǫ0~

∫

rdr

k2
L

∫

dφ〈D̂(−)
+ (z0, r, φ, t)D̂

(+)
− (z0, r

′, φ, t)〉. (14.3.1)

To find the total intensity we use the result Eq.(14.0.4) and make the radial integral. To

do this we use the relation
∫ ∞

0
rdrJm(xr)Jm(x′r) =

δ(x− x′)
x

, (14.3.2)

derived in Appendix B.4. The total radiation is then found tobe

IT(t) =
λ0Le−Γt

2

∑

m

∑

lqk
l′q′k′

q,q′
∑

n,n′

∫ F

0
dy

{

(−iy
2F

)l( iy
2F

)l′( −i√
8F

)q( i√
8F

)q′

(8iπF )n(−8iπF )n′×

χ
l′q′k′n′

lqkn

(λ0tL)k+k′+q+q′

k!k′!(l + 2q+ k)!(l + 2q′ + k′)!
e−

2y
2+2(k+k′)+q+q′+n+n′ Im

(

2y
2+2(k+k′)+q+q′+n+n′

)

}

. (14.3.3)

In Fig 14.7 we show a plot of the total radiated power, Eq. (14.3.3) for the parameters

F = 4 and λ0L
Γ
= 4 which correspond to an optical depth ofρ0L = 8

3π ≈ 0.85. It is

interesting to notice that indeed the intensity in modesm, 0 evolves slower in time than

for the modem = 0. This can be seen by looking at the slope of the curves as theyare
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Figure 14.7: Plot of the total radiated power measured in number of photons, #Np per decay time,Γt. We
use a Fresnel number ofF = 4 and show three differentm-modes. We see that the principal modem= 0
has a slightly faster growth than higher order modes.

plotted on a logarithmic scale.

We now compare the result for the total radiated power with the effective one-dimensional

calculation derived in Ref. [3]. The general assumption in the one-dimensional calcula-

tion is that the atomic ensemble is infinitely wide. This assumption makes the problem

easy to solve in Fourier space, and when the transverse momentum in the propagator for

the light is being neglected, the result for the total radiated power is that all modes corre-

sponding to different transverse momentum gives equal contribution to the total radiated

power. Thus the total radiated power measured in units of number of photons per time

gives

IRM
T (t) =

∑

k⊥

λ0Le−Γt
(

I2
0(2

√

λ0Lt) − I2
1(2

√

λ0Lt)
)

. (14.3.4)

This result holds some complications since there is a priorino upper limit on the trans-

verse momentum, thus taking all modes corresponding to all transverse momentum into

account gives an infinite contribution. A derivation of sucha mode description can be

found in Ref. [52]. It is concluded in Ref. [41] that for a Fresnel number near unity the

radiation is dominated by a single transverse mode, and thusthe total radiation is finite.

We can also make a simplification of our result Eq. (14.3.3) byneglecting all kinds of

finite size effects in the eigenvalue matrix,Mkmn
k′m′n′ . We know this will be an oversimpli-
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Figure 14.8: Plot of the total radiated power calculated forvarying Fresnel numbers. The solid lines are
calculated using the expression Eq. (14.3.3) for the principal modem= 0, whereas the dashed line is the
Raymer Mostowski result in Eq. (14.3.5). Apart from a complicated behavior initially in time we see that
the total radiation for large times is linearly proportional to the Fresnel number. This can also be seen from
Eq. (14.3.3).

fication, the approximation however serves well when discussing the results by Raymer

and Mostowski in Ref. [3]. We also assumeF ∼ 1, and use the approximation of the

modified Bessel function in Eq. (14.2.2). In this limit we findthe total radiated power to

give

IT(t) = λ0Le−Γt(1−e−
F
2 )

(

I2
0(2

√

λ0Lt) − I2
1(2

√

λ0Lt)
)

, (14.3.5)

where we made the sum overm. We are thus led to conclude that for a Fresnel number near

unity, the simple Raymer Mostowski result correspond to neglecting all spatial corrections

to the dynamic of the atoms and also neglecting spatial corrections to the propagation of

light out of the atomic ensemble. In Fig. 14.8 we compare the three-dimensional calcula-

tion of the total radiated power, Eq. (14.3.3) with the approximation in Eq. (14.3.5). We

also analyze how the total radiation depends on the Fresnel number, and as can be seen

for large times, the dependence is approximately linear in Fresnel number. This may also

be concluded from Eq. (14.3.3). We also see that the Raymer Mostowski result is largely

overestimating the time evolution of the total radiated power.

In Fig. 14.9 we analyze how the different corrections to the Raymer Mostowski cal-

culation effects the total radiated power. We use an optical depth atρ0L = 20
3π , and fix
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Figure 14.9: Plot of the total radiated power measured in number of photons, per decay time,IT/Γ. Here
we useF = 1. To demonstrate the effects of finite sized atomic ensemble, we show four different plots. a)
is the result completely neglecting geometrical effects on the eigenvalueMkmn

k′m′n′ , and the propagatorP(+) as
in Eq. (14.3.5). In b) we include the correction to the eigenvalue coming from the termΛm

nn′ . In c) we also
include corrections coming from the termΛ1m

nn′ , and finally in d) we plot the total radiated power as given
in (14.3.3).

the Fresnel number atF = 1, as this is the limit where the Raymer Mostowski result is

assumed to be valid. ForF = 1 we can also from Eq. (14.2.2) and the connected dis-

cussion, approximate the sum over modesm, as done in Eq. (14.3.3). The curve a) is the

simple Raymer Mostowski result Eq. (14.3.5). In curve b) we add the lowest order finite

size correction to the atomic time evolution described by the matrixΛm
nn′ . We see that

this does not change the initial radiation, however the build-up in time is much slower.

In curve c) we add the second order finite size correction to the eigenvalue describing

the time evolution of the atomic ensemble given by the matrixΛ1m
nn′ . Finally in d) we

include corrections coming from the propagator describingthe light as it exits the atomic

ensemble. These corrections describes the inclusion of modes having finite transverse

momentum. We see from the graph that the total radiated poweris indeed increased by

this inclusion, but also that the correction is more significant for small times than for large

times. This has to do with the fact that the most significant build-up of radiation happens

along the atomic ensemble, where the transverse momentum iszero, as indicated in Fig.

13.1.

Finally we compare the result of Eq. (14.3.3) with a purely numerical calculation

based on the point particle equations Eqs. (10.2.10) and (10.2.11). To make such a
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comparison we need to connect the evolution of the atomic operatorsb̂ j(t) with the to-

tal intensity of the radiated field. Based on energy conservation argument, the evolution

of the number of atoms in the ground state, is given exclusively by the number of photons

exiting a boundary sphere enclosing the atomic ensemble. InAppendix B.5 we show that

this is indeed the case, and that the conservation law is

2
kS~ǫ0

∫

dΩ D(−)(r , t) · D(+)(r , t) =
∑

j j ′

{

M̃ j j ′ b̂ j(t)b̂
†
j′(t) + H.c.

}

, (14.3.6)

whereM̃ j j ′ is given byM j j ′ + Γδ j j ′ , andM j j ′ is given in Eq. (10.2.6). When comparing

the result of Eq. (14.3.3) to the atomic evolution we have to remember that we are only

measuring half of the photons, since we only consider the emission at one end of the

ensemble. Using that the evolution of the atomic operators are given by

d
dt

b j(t) =
∑

j′
M j j ′b j′(t) (14.3.7)

the problem of calculating the atomic sum given in Eq. (14.3.6) reduce to finding eigen-

values of the matrixM j j ′ . In Ref. [47] is a discussion of this method, where the implica-

tions of dealing with the non-Hermitian matrixM j j ′ is addressed. Let us denote the set of

eigenvalues to the matrixM j j ′ by λn, we find after taking quantum average of the result in

Eq. (14.3.6) that

2
kS~ǫ0

∫

dΩ 〈D̂(−)
+ (r , t)D̂(+)

− (r , t)〉 =
∑

n

{

(λn + 1)e(λn+λ
∗
n)t
+ H.c.

}

. (14.3.8)

We then find the total intensity from the point particle model

I pp
T (t) =

1
2

∑

n

{

(λn + 1)e(λn+λ
∗
n)t
+ H.c.

}

, (14.3.9)

where we normalize with a factor 1/2 since we want to compare the result with the result

in Eq. (14.3.3). The advantages of making these calculations, or indeed solving the

problem of superradiance on a computer are clear. One avoidsthe problems of shifting

from the point particle model to continuous model, not to mention the complications

involving the basis transformations in the continuous case. Also the computer easily

describes the total radiated field and not only the strongestsuper-radiating mode as we
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have analyzed here. On the other hand the direct method is numerically heavy for a large

number of atoms, and we are limited toN ∼ 3000 atoms. To understand the behavior

at larger number of atoms it is therefore important to have ananalytical theory along the

lines considered here.

To make the numerical simulation we have randomly distributed 3000 atoms with a

distribution function given by Eq. (11.0.2). After that thematrix M j j ′ is calculated and

processed in order to find the total number of Stokes photons Eq. (14.3.9). We can then

by making a series of such realizations of the position of theatoms get some statistics

on the inherent noise on the point particle model. In Fig. 14.10 we show the result of a

numerical calculation using parametersσ⊥ = 20 andL =
√

2πσ|| = 100, these values of

ensemble geometry and particle number match a value ofλ0L
Γ
= 45/8, or an optical depth

of ρ0L = 15
4pi ≈ 1.19. That the two methods gives very different results for small times is

quite clear since initially the radiation is dominated by the spontaneous emission, which

is not included in the analytical calculation. In the curve SR we have plotted the total

radiated power where we have estimated the sum over modesm, using the same principles

as for theF ∼ 1 case. This approximation gets better at increasing times,and should

therefore be good when comparing the analytical result withthe numerical. In curve RM

we show the result in Eq. (14.3.4) for a single transverse mode, k⊥ = 0. We show five

realizations of the numerical simulation where we vary the number of particles but keep

the Fresnel number and optical depth constant. We see that the slope of the analytically

calculated curve agrees reasonable well with the numerically calculated curve, however

quantitatively we still have a factor of about 7.5 to explain. We also see from the curve,

that the conclusion that the superradiance only depend on Fresnel number and optical

depth is still an approximation as the nummerical calculation indicate, at least in the point

particle model, this is not completely true.

We finally note that for the time-scale used here, the approximation of neglecting de-

pletion is not completely justified, as the number of emittedphotons exceeds the number

of atoms already at the onset of superradiance. For the ongoing superradiance experi-

ments using Bose-Einstein condensed atoms e.g. Ref. [53] the number of atoms used in

the process is factors of thousands larger than what we are able to numerically simulate

here, and then the approximation is much less severe.
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Figure 14.10: Here we compare the analytical result for the total radiated power in the superradiating
mode Eq. (14.3.3), graph SR, with the total intensity of a single mode of the Raymer Mostwski result in
Eq. (14.3.4), graph RM, and a numerical simulation of the total number of Stokes photons in the point
particle model Eq. (14.3.9). To exploit the nummerical model we fix the Fresnel number and the optical
depth, but vary the number of atoms involved. As the plot shows there seems to be a dependence on the
atomic density that are not included in the analytical theory.





Chapter 15

Conclusion

In this paper we have developed a three-dimensional theory for superradiance. We have

shown that parameters such as transverse momentum naturally arise when developing the

theory, and that the properties of superradiant build-up gives a cut-off in the transverse

momentum, thus giving a finite theory as it should. In the theory we take into account

spatial effects both regarding the dipole-dipole interactions among atoms leading to super-

radiant radiation, but also the propagation of the light when leaving the atomic ensemble.

We derive a correlation function that describes the superradiated light, and find that the

only parameter controlling this function is the optical depth ρ0L and the Fresnel number

F . From this one can in principle make a mode analysis of the electric field. Here we have

considered the intensity of the superradiation. First in Chap. 14.1 we made an estimate of

the timescale on which the superradiance begins to dominatethe spontaneous emission,

and found that increasing the Fresnel number has a positive effect. In Chap. 14.2 we cal-

culated the radial distribution of radiated power in the superradiating modes. We learned

the the Fresnel numberF defines how manym-modes that will contribute to the superra-

diance. For a larger Fresnel number more modes contribute. We also found that as time

increases the finite size effects of the eigenvalues (12.0.25) means that the photon power

in higher order modesm , 0 decreases relative to the principal modem = 0. Again this

decrease depends on the Fresnel number. In Chap. 14.3 we analyzed the total radiated

power in the superradiating modes and found that under certain approximations the one
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dimensional result derived in e.g. Ref. [3] agrees with the tree-dimensional calculation

presented here for Fresnel numberF ∼ 1. We also showed that when including finite size

effects in the eigenvalue Eq. (12.0.25) the one-dimensional calculation overestimates the

total superradiated photon power. Finally we made a comparison between our analytical

results and a numerical calculation of the total superradiated power. Though we are op-

timistic about the method used in the analytical calculation, the comparison showed that

our analytical calculation only accounts for about 10% of the superradiated power found

from the numerical calculation in the point particle model.



Part IV

Qubit protection in nuclear-spin

quantum dot memories
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Chapter 16

Qubit protection in nuclear-spin

quantum dot memories

An essential ingredient for quantum computation and long-distance quantum communi-

cation is a reliable quantum memory. Nuclear spins in semiconductor nanostructures are

excellent candidates for storing quantum information. With a magneton 3 orders of mag-

nitude weaker than electron spins, they are largely decoupled from their environment.

They have long intrinsic lifetimes and the hyperfine interaction with electron spins allows

one to access ensembles of nuclear spins in a controlled way [54–58]. In particular, the

quantum state of an electron spin can be mapped onto the nuclear spins, giving rise to a

collective quantum memory [54,55]. Nevertheless, memory lifetimes are limited, e.g., by

dipole-dipole interactions among the nuclei. In this Letter we demonstrate that the pres-

ence of the electron spin substantially reduces the decoherence of this collective memory.

When off-resonant, the hyperfine coupling induces a dynamic Stark shift proportional to

the number of excitations in the storage spin-wave mode. This isolates the storage states

from the rest of the Hilbert space energetically and protects them against nuclear spin flips

and spin diffusion.

Consider a quantum dot charged with a single excess electronas indicated in Fig. 16.1.

The electron spin̂S is coupled to the ensemble of underlying nuclear spinsÎ j by the Fermi
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Figure 16.1:Left: Charged quantum dot with a single, polarized excess electron. Right: Spectrum of the
effective nuclear Hamiltonian in the presence of a polarized electron. Off-resonant hyperfine coupling
between electron and nuclei results in a gap∆gap between the storage state|1〉 and the non-storage states
|1q〉. ∆K denotes the Zeeman shift due to the effective magnetic field associated with the electron spin
(Knight shift).

contact interaction,

Ĥhf = A
N

∑

j

̺ j

[

Î j
zŜz+

1
2

(

Î j
+Ŝ− + Î j

−Ŝ+
)]

, (16.0.1)

whereA is the average hyperfine interaction constant,A ≈ 90µeV for GaAs, and̺ j is

proportional to the electron density at the position of thejth nucleus,
∑

j ̺ j = 1. For con-

venience, we introduce the collective operatorsÂ ≡ ∑

j ̺ j Î j. The first term in Eq. (16.0.1)

provides an effective magnetic fieldBOH
z = A〈Âz〉/g∗µB for the electron, known as the

Overhauser field. The same also produces an energy shift for each nuclei, the so-called

Knight shift. The flip-flop terms in Eq. (16.0.1),̂HJC =
A
2 (Â+Ŝ− + Â−Ŝ+), can be used to

polarize the nuclear spins [56, 57], and to map the electron’s spin state into a collective

spin mode of the nuclei [54,55]. As will be shown here, the same can be used to provide

a protective energy gap.

16.1 Fully polarized nuclei.

We start by reconsidering the storage of a qubit in a collective nuclear state [54]. In the

simplest case when all the nuclear spins are initially polarized in the−z direction (zero

temperature limit), the|↓〉e and|↑〉e spin states of the electron are mapped onto the nuclear
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spin states

|0〉 ≡ |−I ,−I , . . . ,−I 〉, (16.1.1)

|1〉 ≡ A
Ω

Â+|0〉 ∝
∑

j

̺ j |−I , . . . , (−I + 1)j, . . . ,−I 〉, (16.1.2)

respectively. ĤJC couples the state|0〉|↑〉e to |1〉|↓〉e with an angular frequencyΩ =

A(∑

j ̺
2
j 2I

)1/2. The detuning between these two states,δ = δel
+ δOH, comes from the

electron’s intrinsic energy splittingδel due to, e.g., an external magnetic field, and from

the Zeeman splitting due to the Overhauser field,δOH
= −AI . Coherent flip-flops be-

tween the electron and nuclear spins can be brought into resonance (δ ≪ Ω) throughδel,

e.g., applying a spin-state dependent Stark laser pulse [59]. Then |0〉(α|↓〉e + β|↑〉e) can

be rotated to (α|0〉 + β|1〉)|↓〉e, and the quantum information can be transferred from the

electron to the nuclear spin ensemble and back [54,55].

Assume that, after the qubit has been written into the nuclei, the polarized electron

is not removed from the quantum dot but the hyperfine flip-flopsare tuned to be off-

resonant (δ ≫ Ω). Now real transitions can no longer take place between|1〉|↓〉e and

|0〉|↑〉e. However, the residual virtual transitions repel the two states from each other, in

analogy to the dynamic Stark effect. As a result, after eliminating the electron, the energy

of state|1〉 gets shifted by∆gap= −Ω2/4δ. The other, orthogonal states also having exactly

one spin flipped (denoted by|1q〉 in Fig. 16.1) are “subradiant”, i.e., are not coupled via

ĤJC to the electron. Therefore, they are unaffected by the Stark shift. This is the origin of

the energy gap.

To understand the protection scheme, let us introducenuclear spin waves. As long

as the nuclei remain highly polarized, one can introduce bosonic operators through the

Holstein-Primakoff transformation: ˆa j ≈ Î j
−/
√

2I , â†j ≈ Î j
+/
√

2I , andâ†j â j = Î j
z + I . This

allows us to define the bosonic spin wave modes

Φ̂q ≡
∑

j

ηq jâ j , Φ̂
†
q ≡

∑

j

η∗q jâ
†
j , (16.1.3)

where the unitary matrixηq j describes the mode functions of the spin waves. We identify

the storage modeq = 0 as the one given byη0 j =
√

2I A
Ω
̺ j, and write|1〉 = Φ̂†0|0〉. This is

the mode which is directly coupled to the electron spin. In fact, ĤJC ≈ Ω2
(

Φ̂
†
0Ŝ−+Φ̂0Ŝ+

)

is a

Jaynes-Cummings coupling in the bosonic approximation. After eliminating the electron,
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ĤJC reduces toĤgap = −A
2

4δ Â+Â− ≈ ∆gapΦ̂
†
0Φ̂0. As shown in Fig. 16.1,Ĥgap lifts the

degeneracy between states of different number of storage-mode excitations. This is the

key feature of our protection scheme: Any decoherence process that is associated with a

transition from the storage modêΦ0 to any other modêΦq now has to bridge an energy

difference. If this energy gap is larger than the spectral width of the noise, the effect of

the noise on the stored qubit is substantially reduced.

A more detailed analysis shows that the off-resonant interaction with the electron

spin—which itself is coupled, e.g., to phonons—leads in general also to an additional

decoherence mechanism for the nuclear spins. If the corresponding electron spin dephas-

ing rateγ is small compared to the electron’s precession frequencyδ, the decay rate for

the storage mode is reduced by the low probability of exciting the electron spin state:

γΩ2/δ2 ≪ γ.

In addition to the gap, the electron is also responsible for the Knight shift ĤK =

AÂz〈Ŝz〉. The difference of the Knight shifts for the|0〉 and|1〉 states,∆K = −A2
∑

j ̺
3
j

/∑

j ̺
2
j ,

is typically much less than∆gap. When the hyperfine coupling isinhomogeneous, how-

ever, |1〉 fails to be eigenstate of the Knight shift Hamiltonian:̂HK |1〉 = (−1
2δ

OH
+

∆K)|1〉 + ζ |1⊥〉, where the state|1⊥〉 is orthonormal to|1〉 and the coupling parameter

ζ2
=
A2

4

∑

j ̺
4
j

/∑

j ̺
2
j − ∆2

K is directly related to the measure of inhomogeneities. As a

consequence, the storage mode is only an approximate eigenmode, and it gets gradually

mixed with non-storage modes as time passes. This causes loss of the stored qubit.|1⊥〉
is, however, off-resonant due to the energy gap, and our calculations show that the corre-

sponding probability of finding the system in state|1⊥〉 is always bounded by 4ζ2/∆2
gap,

so the detrimental effect of the inhomogeneous Knight shift is suppressed by the energy

gap. In addition, since the admixture of|1⊥〉 is a coherent process, it can be cancelled by

refocusing methods.

A large gap can be achieved by bringing the hyperfine interaction close to resonance.

For example, a non-zero external magnetic field or laser induced level shifts [59] can

partially cancel the Overhauser field, such thatδ ≪ δel ≈ −δOH = AI . (Of course,δ

should be kept sufficiently large so that the hyperfine coupling remains off-resonant). The

requirement of separation of time scales impliesζ ≪ |∆gap| ≪ Ω ≪ |δ|. It means that

the detuning should beδ & 10Ω. To estimate the orders of magnitude of the different

energies, we take an oblate Gaussian electron density of ratio (1, 1, 1/3), and we consider

spin-12 nuclei. Then it is easy to see that∆K andζ are inversely proportional to the number
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of nucleiN, whereasΩ,∆gap∝ N−1/2 only (Fig. 16.2a).

16.2 Decoherence suppression.

To analyze the decoherence suppression, we first consider a noise model where the nuclear

spins are coupled to fluctuating classical fields. The corresponding interaction Hamilto-

nian is given byV̂ =
∑

j B j · Î j. We assume isotropic Gaussian random noise with zero

mean value and correlator

B j
µ(t)Bk

ν(t′) = δµν f jkCe−Γ|t−t′ | (16.2.1)

for µ, ν = x, y, z, wheref jk specifies the spatial correlations of the noise acting on different

nuclei. For simplicity, the noise spectrum is assumed to be Lorentzian with a widthΓ,

although similar results hold for other spectra with a high-frequency cut-off.

Let us first discuss thedephasing part, V̂z =
∑

j B j
zÎ

j
z, of the noise. Using the bosonic

spin-wave operators introduced in Eq. (16.1.3) we can express it as

V̂z =

∑

j

B j
zâ
†
j â j =

∑

pq

(

∑

j

B j
zη
∗
p jηq j

)

Φ̂
†
pΦ̂q. (16.2.2)

As apparent from Eq. (16.2.2), dephasing of individual nuclear spins means transfer of

excitations between different spin-wave modes. Especially, it leads to both real andvir-

tual transitions from|1〉 to a non-storage state|1q〉 (with q , 0). As the latter state is

“subradiant” and, thus, equivalent to|0〉 when the memory is read out, this process essen-

tially results in damping (for real transitions) and dephasing (for virtual transitions) of the

stored logical qubit [60]. This can be seen using the Markov approximation by formally

eliminating the classical fields and deriving a master equation for the density operator of

the nuclear spins, then tracing out all non-storage modes. For that, we assume that the

quantum memory operates in the zero temperature limit and all non-storage modeŝΦq,0

are in the vacuum state. This results in

d
dt
ρ̂ = i

[

ρ̂,EzΦ̂
†
0Φ̂0

]

+Lz(ρ̂), (16.2.3)
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with energy shiftEz = (1− F)C∆gap/(Γ2
+ ∆

2
gap) and Lindbladian

Lz(ρ̂) = γ1
(

2Φ̂0ρ̂Φ̂
†
0 − Φ̂

†
0Φ̂0ρ̂ − ρ̂Φ̂†0Φ̂0

)

+ γ2
(

2Φ̂†0Φ̂0ρ̂Φ̂
†
0Φ̂0 − Φ̂†0Φ̂0Φ̂

†
0Φ̂0ρ̂ − ρ̂Φ̂†0Φ̂0Φ̂

†
0Φ̂0

)

. (16.2.4)

Here,γ1 is the damping rate of the stored qubit whileγ2 describes its dephasing. The two

rates are given by

γ1 =
CΓ

Γ2 + ∆2
gap

(1− F), γ2 =
C
Γ

F, (16.2.5)

where we have introduced the dimensionless parameterF ≡ ∑

jk f jk̺
2
j̺

2
k

/(∑

l ̺
2
l

)2 contain-

ing the spatial part of the noise correlator.

When the correlation length of the classical noise is smaller than the distance between

the nuclei (local uncorrelated noise,f jk ∼ δ jk), F scales inversely with the number of

nuclei (Fig. 16.3). In this case, the dephasing rateγ2 vanishes as 1/N, which is an effect

of the collective nature of the storage states [60, 61]. The storage of a qubit corresponds

to an encoding of the logical state in a large, delocalized ensemble ofN physical spins.

As the decoherence has strongly local character, there is only a very small effect on the

dephasing of the qubit. The second observation is that the loss of the stored qubit is due to

transitions among states with different number of excitations in the storage mode. These

transitions are strongly suppressed and the damping rateγ1 is decreased if∆gap is large

compared to the width of the noise spectrumΓ (or the corresponding cut-off frequency).

Finally, we note that the opposite limit of infinite spatial correlation length (f jk = 1)

corresponds to a homogeneous random field resulting, e.g., from a global external source.

In that case,F ≈ 1 (see Fig. 16.3) and there is obviously no protection against dephasing.

Following a similar but slightly more involved procedure wecan discuss thespin-flip

part V̂xy =
1
2

∑

j
(

B j
+ Î

j
−+B j

− Î
j
+

)

of the noise. When deriving a master equation for this case,

we need to keep higher order terms in the Holstein-Primakoff approximation: in the next

order Î j
− ≈
√

2I
(

1 − λâ†j â j
)

â j (and similarly forÎ j
+) with λ = 1− (1− 1/2I )1/2. Here we

have neglected the probability of double or more excitations on the same sitej, which is

reasonable in the high polarization (T = 0) limit and exact for spin-12 nuclei. Omitting the

energy shifts, the Lindbladian describing decoherences due to spin flips reads, in leading
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order of 1/N,

Lxy(ρ̂) = (γ3 + γ4)
(

2Φ̂0ρ̂Φ̂
†
0 − Φ̂

†
0Φ̂0ρ̂ − ρ̂Φ̂†0Φ̂0

)

+ γ5
(

2Φ̂†0Φ̂0ρ̂Φ̂
†
0Φ̂0 − Φ̂†0Φ̂0Φ̂

†
0Φ̂0ρ̂ − ρ̂Φ̂†0Φ̂0Φ̂

†
0Φ̂0

)

+ γ3
(

2Φ̂†0ρ̂Φ̂0 − Φ̂0Φ̂
†
0ρ̂ − ρ̂Φ̂0Φ̂

†
0

)

, (16.2.6)

which describes decay with rateγ4, dephasing with rateγ5, and additionally thermaliza-

tion (relaxation to the identity matrix) with rateγ3. The rates read

γ3 =
CΓI F̃

Γ2 + (∆gap+ ∆K)2
, γ4 =

2CΓIλ2

Γ2 + (∆gap− ∆K)2
, γ5 =

4CΓIλ2

Γ2 + ∆2
K

∑

j ̺
4
j

(∑

j ̺
2
j

)

2
. (16.2.7)

In the limit of vanishing spatial correlations of the spin-flip noise,F̃ ≡ ∑

jk f jk̺ j̺k/
∑

l ̺
2
l

tends to 1 (Fig. 16.3) and we have protection against thermalization (γ3) because of the

separation of the logical qubit states|0〉 and|1〉 by an energy difference of∆gap+ ∆K. The

decay corresponding toγ4 is due to spin-flip induced transitions between|1〉 and|1p, 1q〉
(the latter containing a total of two excitations but none inthe storage mode), and the

energy to bridge is in the order of∆gap− ∆K (see Fig. 16.1). Finally, the last factor in the

dephasing rateγ5 scales as 1/N, indicating that it is the collective nature of the storage that

leads to protection. Note that the nonlinearity of the Holstein-Primakoff representation is

responsible for the appearance of the dephasing: the virtual non-storage excitations are

interacting with the storage mode.

Another potential source of decoherence isnuclear spin diffusiondue to dipole-dipole

interaction between nuclear spins [62]. The energy gap gives protection against this effect,

too. The dipolar interaction between the pairs of spins is described in secular approxima-

tion by

ĤD =

∑

j,k

B jk
(

Î j
+ Î

k
− − 2Î j

z Î k
z

) ≈ 2I
∑

j,k

B jkâ
†
j âk, (16.2.8)

whereB jk =
1
4γ

2(3 cos2 θ jk−1)/r3
jk, γ is the gyromagnetic factor,r jk = r j−r k is the distance

between two nuclei,θ jk is the zenith angle of the vectorr jk, and we used the first order

Holstein-Primakoff approximation. The dipolar Hamiltonian (16.2.8) preserves the total

number of excitations and it is responsible for damping of the qubit via transitions from

the storage state|1〉 to non-storage states|1q〉. Indeed, in terms of the bosonic spin wave
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mode operators (16.1.3), one can writeĤD =
∑

pq B̃pqΦ̂
†
pΦ̂q, with B̃pq =

∑

j,k B jkη
∗
p jηqk.

Now in the interaction picture, the storage mode creation and annihilation operators (Φ̂†0
andΦ̂0) rotate fast with respect to the other ones due to the energy gap. Therefore, the

coupling between storage and non-storage modes averages out and disappears in first or-

der of the dipolar perturbation. In second order and on time scales between the storage and

non-storage mode dynamics (∆−1
gap≪ T ≪ ∆−1

K ), we find a shiftED = B̃00+∆
−1
gap

∑

q,0 |B̃0q|2
of the storage mode energy. The strength of the remaining coupling between the storage

mode and modeq is only proportional to∆−1
gap

∑

r,0 B̃0r B̃rq.

16.3 Non-perfect spin polarization.

Finally, we investigate the consequences of non-perfect nuclear spin polarization. It has

been shown that partially polarized nuclei (at finite temperature) can also be used for

storing a qubit state [55]. Instead of the fully polarized state (16.1.1), the initial prepa-

ration drives the nuclear ensemble into a statistical mixture of dark states|Dn,β〉 defined

by Â−|Dn,β〉 = 0. These dark states can be characterized by the total numberof spins

flipped n and the permutation group quantum numberβ. As the detuningδ is adiabati-

cally swept from far negative to far positive, a superposition of the|↓〉e and|↑〉e electron

spin states is mapped into the mixture of superpositions of the nuclear spin states|Dn,β〉
and|En,β〉 ≡ A

Ωn
Â+|Dn,β〉, and the qubit state is efficiently written into the memory [55].

When the electron is left in the quantum dot, it feels different Overhauser fields for dif-

ferent dark states, hence the detuning should be adjusted such thatδOH
n + δ

el ≫ Var(δOH
n ).

Moreover, the hyperfine Rabi frequency also varies withn and the energy gap∆gap,n is not

the same for all the dark states. This inhomogeneous broadening would result in dephas-

ing of the qubit, but can be avoided by the symmetric spin echosequence prescribed in

Ref. [55].

To describe inhomogeneous effects in the case of non-perfect polarization, first we

note that the storage state|Dn,β〉 is no longer an eigenstate of the Knight shift operator,

but it is partially mapped into an orthogonal state:ĤK |Dn,β〉 = −1
2δ

OH
n |Dn,β〉 + ωn|D⊥n,β〉.

This is due to the fact that the inhomogeneousÂz,± operators do not follow the angular

momentum commutation relation. Furthermore,|En,β〉 is neither an eigenstate of̂Hgap nor

of ĤK: Ĥ|En,β〉 = (−1
2δ

OH
n +∆K,n+∆gap,n)|En,β〉+ ζn|E⊥n,β〉. The parameters can be expressed
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as expectation values in|Dn,β〉:

Ω
2
n = A2〈Â−Â+〉, ω2

n = A2〈Â2
z〉 − 〈Âz〉2,

∆gap,n = A4〈Â−Â+Â−Â+〉
/

4δnΩ
2
n,

∆K,n =
A
2 〈Âz〉 − A3〈Â−ÂzÂ+〉

/

2Ω2
n,

ζ2
= 〈En,β|Ĥ2|En,β〉 − 〈En,β|Ĥ|En,β〉2. (16.3.1)

The explicit form of the inhomogeneous dark states [55] allows us to estimate these val-

ues. The results are shown in Fig. 16.2b.

In summary, we have demonstrated that it is possible to suppress the influence of spin-

dephasing and spin-flips on a quantum memory consisting of a delocalized ensemble of

nuclear spins in a quantum dot if the noise has a highly local character and the spectral

width or cut-off frequency of the noise spectrum is small compared to the energy gap. We

have shown in particular that the memory can be protected against nuclear spin diffusion

mediated by dipole-dipole interaction. We have also analyzed the effects of inhomoge-

neous hyperfine couplings and imperfect initial nuclear spin polarization.
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Chapter 17

Conclusions

Here we summarize the main results presented in the thesis.

In Part Two we investigated the approximations often used inquantum optics where

the transverse nature of the interacting light is completely ignored. We did that by de-

veloping a full three-dimensional theory describing the interaction between light and an

ensemble of atoms. We showed how to separate the problem intoan average effect and an

effect arising from the atoms being point particles, and showedhow spontaneous emis-

sion from the atoms naturally appear as an effect caused by the fluctuations in the random

position of the atoms. The main feature of the theory is that we only make a perturbative

expansion of the system dynamics in the fluctuations of the interaction Hamiltonian. The

theory therefore has a much wider range of applicability. The conclusions drawn con-

cerning the validity of the one-dimensional theories are that the system of light and atoms

has to apply to the paraxial approximation, and in particular for the interaction considered

here, that the Fresnel number describing the geometry of theatomic ensemble has to be

much larger than one. The main purpose however of the work presented in part two, was

to derive a full and consistent three-dimensional description of light-matter interactions.

In Part Three we turned to the problem of superradiance. Our main focus was to

develop a theory that could describe in detail the spatial distribution of superradiation,

depending on parameters such as the optical depth and the Fresnel number. The system
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in consideration was cylindrically symmetric, and we showed that a natural description

of the dynamics of the electric field involved the decomposition in transverse momen-

tum. We then argued that the conditions for superradiance naturally sets a cut in the

allowed transverse momenta. This way we developed a consistent theory that gives fi-

nite results. One of the motivations for developing the theory was, similarly to Part two,

to understand in what limit the simple one-dimensional description derived by Raymer

and Mostowski will agree with a true three-dimensional theory. We showed that here the

requirement is that the Fresnel number must be of order unity. In the derivation of the

one-dimensional theory it is assumed that the atomic ensemble, or the gain medium, is

cylindrically symmetric and has a transverse area of infinite size. When this assumption

is relaxed, we showed that the one-dimensional model over-estimates the total superra-

diance. Finally we compared the analytical result for the total superradiated power with

the total superradiated power that can be found from a numerical calculation of the point

particle mode. Here we found that the analytical result did not agree very convincingly.

In fact we showed that the numerical calculation seems to have an unexplained behavior

depending on the number of atoms. We thus had to conclude thatwe are able to explain

the connection between the three-dimensional theory and the one-dimensional theory, but

we can not yet explain the numerical results for superradiance in detail.

In Part Four we look at the problem of storing information from an electron spin, in

an ensemble of nuclear spins. The idea was that distributionthe information stored in

one spin particle among an ensemble of spin particles makes the stored information more

robust against individual spin flips and other decoherence processes. In the work we show

that this way of distributing the information in a de-localized ensemble of atomic spins

suppresses the influence of spin-dephasing and spin-flips, if the noise has a local charac-

ter. We also show that the noise coming from dipole-dipole interactions are suppressed.

In addition the effect of inhomogeneous coupling between electron spin and nuclei was

analyzed, as also the effect of imperfect nuclear spin polarization.
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Appendix for Part 1

A.1 Adiabatic elimination

In this appendix we derive an effective Hamiltonian involving only the atomic ground

state. The Hamiltonian (3.1.1) can be expanded on the complete set of states describing

the atom. Let such a set be comprised of a set of exited states{|ej〉} and a set of ground

states{|gi〉} so that the Hamiltonian reads

H =
∑

j

(ω j + ω0)|ej〉〈ej | +
∑

i

ω0|gi〉〈gi | +Hint. (A.1.1)

For convenience we have here set~ = 1 and only consider a single atom. The set of

ground states are assumed to have the same energy,ω0 andω j is the transition frequency

from the ground state to the exited state|ej〉. The interaction Hamiltonian is given in Eq.

(3.1.3), and when expanded on the set of internal atomic states it reads

Hint = −
1
ǫ0

∑

i j

D̂(−)(t) · 〈gi |P̂|ej〉|gi〉〈ej | + 〈ej |P̂|gi〉|ej〉〈gi | · D̂(+)(t), (A.1.2)

where we have used the rotating wave approximation as well asthe fact that the matrix

elements〈ej |P̂|ej′〉 and〈gi |P̂|gi′〉 vanish. To shorten the notation we suppress the spatial
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dependence. We will use that the displaced electric field primarily oscillate at the laser

frequency, and change to the interaction picture

D̂(−)(t) ∝ eiωL t. (A.1.3)

Using Heisenberg’s equations of motion we may derive an equation of motion for|gi〉〈ej |

d
dt
|gi〉〈ej | = −i∆ j |gi〉〈ej | −

i
ǫ0

∑

j′

{

〈ej |P̂|gi〉|ej′〉〈ej | − 〈ej |P̂|gi′〉|gi〉〈gi′ |
}

· D̃(+)(t), (A.1.4)

whereD̃(±) is slowly varying. In the limit of weak driving we may setd
dt |gi〉〈ej | = 0, and

obtain an approximate solution

|gi〉〈ej | ≈
1

ǫ0∆ j

∑

i′
〈ej |P̂|gi′〉|gi〉〈gi′ | · D̂(+)(t), (A.1.5)

where we have neglected the exited state population. The atomic part of the Hamiltonian

can be written

H0 =

∑

j

∆ j |ej〉〈g0|g0〉〈ej | +
∑

i

ωL |gi〉〈gi | +
∑

i j

(ω0 − ωL)(|ej〉〈ej | + |gi〉〈gi |), (A.1.6)

where|g0〉 is any ground state. By inserting expression (A.1.5) and theHermitian conju-

gate into Eq. (A.1.2) and (A.1.6) we find the simple result

H = − 1
ǫ0

(

D̂(−)(t) ·
∑

jii ′

1
ǫ0∆ j
〈gi |P̂|ej〉

)

|gi〉〈gi′ |
(

〈ej |P̂|gi′〉 · D̂(+)(t)
)

. (A.1.7)

(neglecting a zero-point energy term in the Hamiltonian). We may now identify the matrix

operator¯̄V[ Ĵ]

¯̄V[ Ĵ] =
∑

jii ′

1
ǫ0∆ j
〈gi |P̂|ej〉〈ej |P̂|gi′〉|gi〉〈gi′ | ·, (A.1.8)

and we immediately get the result stated in equation (3.1.3). The notation “·” in this

expression means usual vector product with the vector to theright. Furthermore we may
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also find the relation between the polarization and the displaced electric field

P̂(−)(t) =
∑

i j

|ej〉〈ej |P̂|gi〉〈gi |

=

∑

jii ′

1
ǫ0∆ j
〈ej |P̂|gi〉〈gi′ |P̂|ej〉|gi′〉〈gi | · D̂(−)(t)

=
¯̄Vt[Ĵ]D̂(−)(t). (A.1.9)

We have here only written the positively oscillating component, the negatively oscillating

component is found by Hermitian conjugation, which from equation (A.1.8) is the same

as transposition of the matrix.

A.2 Calculation of infinitely short propagator

In this appendix we calculate the infinitely short propagator in the local density approxi-

mation. We will for simplicity only consider the simple interaction given by

¯̄V[J] = βρ(r )
(

c0J(r )2 − ic1J(r ) ×
)

. (A.2.1)

We further shorten the notation by introducing the coefficientsa0 = 1− βρ(r )c0J(r )2 and

a1 = βρ(r )c1|J(r )|.

If we Fourier-transform equation (3.2.9), the equation we wish to solve is

k̂ × k̂ × (a0 + ia1ĵ×)εk
= −

ω2
k

c2k2
(A.2.2a)

k̂ · εk
=0, (A.2.2b)

where the vectorŝk and ĵ are unit vectors representing respectively the direction of the

plane wave solution and the orientation of the atomic spin. The solutions to the above

equations is the following set of polarization-vectors

εk
± = Nk

±
( ĵ × k̂

|ĵ × k̂ |
± i

k̂ × (ĵ × k̂)

|k̂ × (ĵ × k̂)|
)

≡ Nk
±
(

v̂1 ± iv̂2
)

, (A.2.3)

wherev̂1 andv̂2 are unit vectors given by the first and second fraction respectively. The
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normalization constantNk
± is determined by using the inner product in Eq. (3.2.10). In

this way we find the real space representation of the basis-functionsfk(r )

f k
±(r ) =

1
√

2(2π)3(a0 ± a1(ĵ · k̂))

(

v̂1 ± iv̂2
)

eik·r . (A.2.4)

The dispersion relation is then derived from (A.2.2a)

ω2
k± = c2k2(a0 ± a1(ĵ · k̂)). (A.2.5)

The infinitely short propagator can then be calculated to be the following

¯̄P(−)(r , t − t′) =
−i

2ωLc2

∑

s∈{+,−}

∫

d3k ω2
ks(f k

s (r ))∗f k
s (r )e

i(t−t′)
2ωL

(ω2
ks−ω2

L)
. (A.2.6)

We introduce the matrix given by the following juxtaposition:

¯̄M(k̂, ĵ , s) =
(

v̂1 − isv̂2
)(

v̂1 + isv̂2
)

. (A.2.7)

Changing to spherical coordinates and making the substitutions x = cosθ and k′ =

k
√

1− a0 + sa1x as well as using the dispersion relations given in equation (A.2.5) the

integral reduce to

¯̄P(−)(r , t − t′) =
−i

2ωLc2

∑

s∈{+,−}

∫ ∞

0
dk′

∫ 1

−1
dx

∫ 2π

0
dφ

c2k′4

2(2π)3(a0 + sa1x)5/2
·

¯̄M(x, φ, s)eic(t−t′)(k′2−k2
L )/(2kL ). (A.2.8)

Neglecting the denpendence ofk′ outside the exponential and using that the difference

k′2 − k2
L for largekL runs from−∞ to ∞, the k′ integral gives a delta-function in time.

Including theφ integration in a matrix¯̄M we finally get

¯̄P(−)(r , t − t′) =
−ik3

Lδ(t − t′)
16π2c2

∑

s∈{+,−}

∫ 1

−1
dx

¯̄M(x, s)

(a0 + sa1x)
5
2

, (A.2.9)
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with the matrix ¯̄M given by

¯̄M(x, s) = π



























2(1− x2) 0 0

0 1+ x2 2isx

0 −2isx 1+ x2



























. (A.2.10)

The s-sum is evaluated by substitution in the integral and the final expression for the

infinitely short propagator is

¯̄P(−)(r , t − t′) =
−ik3

Lδ(t − t′)
8πc2

∫ 1

−1
dx

¯̄M(x,+)
π(a0 + a1x)5/2

. (A.2.11)

These integral may be evaluated, and we will express the infinitely short propagator as

¯̄P(−)(r , t − t′) =
−iδ(t − t′)

c2



























̺|| 0 0

0 ̺⊥ −i̺Γ
0 i̺Γ ̺⊥



























. (A.2.12)

The coefficients are fora0 − a1 > 0, given by

̺|| =
−k3

L

3πa3
1

{−4a0 + 2a1√
a0 − a1

+
4a0 + 2a1√

a0 + a1

}

(A.2.13a)

̺⊥ =
−k3

L

3πa3
1

{2a2
0 − 3a0a1 +

1
2a2

1

(a0 − a1)3/2
−

2a2
0 + 3a0a1 +

1
2a2

1

(a0 + a1)3/2

}

(A.2.13b)

̺Γ =
k3

L

6πa2
1

{ 2a0 − 3a1

(a0 − a1)3/2
− 2a0 + 3a1

(a0 + a1)3/2

}

. (A.2.13c)

A.3 Reciprocal equation for Green’s function

In this appendix we derive the reciprocal equation for the Green’s function. Before doing

so we will need some results concerning the representation of the Green’s function. Let

us define the following inner product:

〈φ|ψ〉 =
∫

d3rdt ¯̄M(r )φ(r , t) ·ψ†(r , t). (A.3.1)
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We will generally work in theL2-space equipped with this inner product. Using that the

matrix operator ¯̄M is Hermitian, one finds the differential operatorD given in equation

(5.0.1) to be Hermitian in our inner product space

〈φ|Dψ〉 =〈Dφ|ψ〉. (A.3.2)

ThatD is Hermitian means that the eigenfunctionsFk toD

D Fk(r , t) = λkFk(r , t), (A.3.3)

define a complete basis of our inner product space
{

Fk
}

. A representation of the identity

functional given in equation (5.0.2) may therefore be

∑

k

F†k(r , t)Fk(r0, t0). (A.3.4)

It can be checked that this is exactly a functional identity representation in our inner

product space by expanding any function on the basis
{

Fk
}

.

To get a formal expression of the Green’s function defined in equation (5.0.2) we

expand the Green’s function in this basis, and using equation (A.3.3) and (A.3.4) we find

¯̄G(r , t|r0, t0) =
∑

k

1
λk

F†k(r , t)Fk(r0, t0). (A.3.5)

Starting from equation (5.0.2) we make the substitutiont → −t, t0 → −t1 andr0 → r1

and we write:

D∗ ¯̄G(r ,−t|r1,−t1) = ¯̄Iδ(r , r1)δ(t, t1). (A.3.6)

In the next step we take inner product with equation (5.0.2) and ¯̄G(r ,−t|r1,−t1) from

the left with respect to unprimed coordinates, and equation(A.3.6) and ¯̄G(r , t|r0, t0) also

from the left with respect to unprimed coordinates. The resulting two equations are then

subtracted. The term containingω2
L vanish trivially, and using rules for differentiating a
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product, the resulting equation may be written as

2iωL

"
d3rdt ¯̄M(r )

∂

∂t

[

¯̄G(r ,−t|r1,−t1) · ¯̄G(r , t|r0, t0)
]

+ c2

"
d3dt

[ ¯̄M(r ) ¯̄G(r ,−t|r1,−t1) ·∇ ×∇ × ¯̄M(r )

¯̄G(r , t|r0, t0) − ¯̄M(r ) ¯̄G(r , t|r0, t0) ·∇ ×∇ × ¯̄M(r )

¯̄G(r ,−t|r1,−t1)
]

=
¯̄G(r1, t1|r0, t0) − ¯̄G(r0,−t0|r1,−t1). (A.3.7)

Using the cut-off property of the Green’s function, the first term on the left hand side

is seen to vanish. Using the explicit expression for the Green’s function (A.3.5) along

with Gauss’ theorem, one may show that the second term also vanish. The final result is

therefore

¯̄G(r1, t1|r0, t0) = ¯̄G(r0,−t0|r1,−t1). (A.3.8)

From Eq. (5.0.2), (A.3.8) and using the substitutionst → −t′, t0 → t, r → r ′ andr0 → r

we end up with thereciprocal equation

(

− 2iωL

∂

∂t′
− ω2

L + c2
∇
′ ×∇

′× ¯̄M(r ′)
)

¯̄G(r , t|r ′, t′) = ¯̄Iδ(r , r ′)δ(t, t′). (A.3.9)

In the following we derive the general solution to the equation

(

2iωL

∂

∂t
− ω2

L + c2
∇ ×∇ × ¯̄M(r )

)

ψ(r , t) = ρ(r , t), (A.3.10)

whereψ(r , t) is an unknown field,ρ(r , t) is a source term effecting the solution, and
¯̄M is some Hermitian matrix operator, which may depend on position. We make an

inner product of equation (A.3.10) with̄̄G(r , t|r ′, t′) from the left and an inner product

of equation (A.3.9) withψ(r , t) from the right and subtract these two equations. In this

calculation we are integrating over the time intervalt′ ∈ ]

t0, t+
[

, where we understand

t+ = limǫ→0[t + ǫ]. Again we find that terms containingω2
L vanish. Similar to above we
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will use rules for differentiation a product, and we eventually end up with

ψ(r , t) −
" t+

t0

d3r ′dt′ ¯̄M(r ′) ¯̄G(r , t|r ′, t′) · ρ(r ′, t′) =

− 2iωL

" t+

t0

d3r ′dt′ ¯̄M(r ′)
∂

∂t

[

¯̄G(r , t|r ′, t′) ·ψ(r ′, t′)
]

+ c2

" t+

t0

d3r ′dt′ ¯̄M(r ′)
{

ψ(r ′, t′) ·∇′ ×∇
′ × ¯̄M(r ′) ¯̄G(r , t|r ′, t′)

− ¯̄G(r , t|r ′, t′) ·∇′ ×∇
′ ×ψ(r ′, t′)

}

. (A.3.11)

Using the same boundary conditions as was done in the calculation leading to the

reciprocal equation we conclude that the last term in equation (A.3.11) vanish. The right

hand side of the equation thus reduce to

−2iωL

∫

d3r ′ ¯̄M(r ′)
[

¯̄G(r , t|r ′, t′) ·ψ(r ′, t′)
]t+

t0
= 2iωL

∫

d3r ′ ¯̄M(r ′) ¯̄G(r , t|r ′, t0) ·ψ(r ′, t0).

(A.3.12)

Here we have used that the upper time limit vanish due to the cut-off in the Green’s

function. Rearranging terms we finally arrive at the generalsolution to the diffusion

equation

ψ(r , t) = 2iωL

∫

d3r ′ ¯̄M(r ′) ¯̄G(r , t|r ′, t0) · ψ(r ′, t0)

+

" t

t0

d3r ′dt′ ¯̄M(r ′) ¯̄G(r , t|r ′, t′) · ρ(r ′, t′). (A.3.13)

A.4 Lorentz-Lorenz relation

In the main text we mainly consider lowest order correctionsto the index of refraction.

To verify that our theory can also correctly reproduce higher order corrections, we shall

in this appendix show how to derive the so called Lorentz-Lorenz or Clausius-Mossotti

relation for the electric permittivity within our theoretical framework [48]. To lowest
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order the permittivity is given by Eq. (4.0.11)

¯̄ǫ(r )−1
= 1− ¯̄Vt[J]. (A.4.1)

To calculate the higher order correction it is convenient tofirst Fourier transform the

Dyson equation (5.1.1) describing the light field with respect to time

D̃(−)(r , ω) = D̃(−)
0 (r , ω) + c2

∫

d3r ′ ¯̄P(−)(r , r ′, ω) · ¯̄m[Ĵ]tD̃(−)(r ′, ω). (A.4.2)

This equation is the starting point for the analysis. ( The Fourier transformation is here

defined as

f (ω) =
∫ ∞

0
dte(iω−η)t f (t), (A.4.3)

whereη is an infinitely small convergence factor.)

From Eq. (5.3.7) we find the Fourier transformed propagator¯̄P(−) to read

¯̄P(−)(r , r ′, ω) =
1
c2

∑

k

ω2
kf ∗k(r )fk(r ′)

ω2
k − ω2

L + 2ωL(ω + iη)
. (A.4.4)

The real space representation of this propagator is in general difficult to calculate, how-

ever, for a scalar interaction the calculation simplify considerably. Forω ≈ 0 which is

reasonable in our case, since we are dealing with slowly varying operators, the propagator

reads

¯̄P(+)(n) =
∫

d3k
c2(2π)3

∑

ε⊥k

εε
k2eik·n

k2 − k2
L

= − k3
L

c24π
eikLn

kLn

[

(

1+
3i
kLn
− 3

(kLn)2

)

nn
n2
−

(

1+
i

kLn
− 1

(kLn)2

)

¯̄I
]

+
2
3

¯̄Iδ(n), (A.4.5)

wheren = r − r ′, n = |n|, and ¯̄I is the identity matrix. We notice that the propagator gives

us the well known result for the radiated field of an oscillating dipole. In addition we have

a term describing a self-interaction. This propagator is also discussed in Ref. [63]. In the

following we shall only be considering the self interactionpart of the propagator.

When considering the density correlation function to second order〈ρ(r1)ρ(r2)〉 we
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have so far used the ideal gas approximation in Eq. (5.2.1), where there are no correlations

between different atoms. In reality we can never have two atoms at the sameposition and

this give a small correction to〈ρ(r1)ρ(r2)〉, which must vanish forr1 = r2 (apart from

the delta function, which represent the single atom contribution). This can formally be

described by introducing so called irreducible correlation functionsh2 such that

〈ρ(r1)ρ(r2)〉 = 〈ρ(r1)〉〈ρ(r2)〉 + h2(r1, r2), (A.4.6)

whereh2 now takes care of the core-repulsion of the atoms (here we exclude the delta

function). Forr1 = r2 we thus finds thath2(r1, r1) = −〈ρ(r1)〉2 .

The above can be used along with the real space representation of the propagator to

give the second order correction to the permittivity. We will not consider terms that vanish

when we take quantum mechanical mean. The relevant part of the second order term thus

gives in shorthand notation−
∫ ¯̄P(−)(2/3)( ¯̄Vt[J])2D̃(−). When we introduce this interaction

to the differential equation (4.0.11) we find the permittivity to second order

¯̄ǫ(r )−1
= 1− ¯̄Vt[J] +

2
3

( ¯̄Vt[J])2. (A.4.7)

The calculation can be continued to infinite order [64], and the result reads

¯̄ǫ(r )−1
=1− ¯̄Vt[J] − ¯̄Vt[J]

∞
∑

n=1

(

−2
3

¯̄Vt[J]

)n

=
1− 1

3
¯̄Vt[J]

1+ 2
3

¯̄Vt[J]
. (A.4.8)

This is the Lorenz-Lorenz relation, and we thus see that the effect can be included in the

theory by dressing the spatial mode functions according to the result above.
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A.5 Calculations of second-order Stokes generator

In this appendix we present detailed calculations of the second-order terms of Eq. (6.4.4).

We will denote the fourth term of the right hand side of Eq. (6.4.4) as ¯̄S(2)
A , and one finds

K〈〈f̃ ∗km j(r , t)| ¯̄S(2)
A |f̃ ∗km′ j′(r , t)〉〉 =

(

1
2

)2

(kLβc1)
2

"
d3rd3r ′

∑

ln
l′n′

ρ(r )ρ(r ′)Θmn
jl (r )∗Θm′n′

j′l′ (r ′)â†knlâkn′ l′ . (A.5.1)

The seventh term of the right hand side of Eq. (6.4.4) plus itscomplex conjugate we

will denote as ¯̄S(2)
B . To calculate this term we extend the limits of the time integration

from minus to plus infinity. This we can do by introducing a factor of one half, and ap-

proximating the imaginary termi
∫ 0

−∞ dtsin(ωt) to be zero. This corresponds to the usual

treatment of such terms in the Markov approximation to spontaneous emission when one

ignores the Lamb shift. We then find the following contribution to the Stokes operators

K〈〈f̃ ∗km j(r , t)| ¯̄S(2)
B |f̃ ∗km′ j′(r , t)〉〉 =

(

1
2

)3

(kLβc1)
2

"
d3rd3r ′

∑

ln
l′n′

ρ(r )ρ(r ′)
{

Θ
mn
jl (r )∗Θnn′

ll ′ (r ′)∗â†kn′ l′ âkm′ j′

+ Θ
m′n
j′ l (r )Θnn′

ll ′ (r ′)â†km jâkn′ l′
}

. (A.5.2)

One notice that the factors of 1/2 in Eq. (A.5.1) and (A.5.2) exactly add up to give one

half of the square of the first-order term, as is shown in Eq. (7.2.1)

The sixth term on the right hand side of Eq. (6.4.4), plus its Hermitian conjugate, we
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will denote as¯̄S(2)
C , and we find

K〈〈f̃ ∗km j(r , t)| ¯̄S(2)
C |f̃ ∗km′ j′(r , t)〉〉 =

(

1
2

)3

(kLβc1)
2

∫

d3r ′
∑

ln
ql′n′

n′′ l′′

ρ(r ′)
{

Cl′ l′′
jl (r ′)Ψmn

k (r ′)∗Ψn′n′′
q (r ′)â†qn′ l′ âqn′′ l′′ â

†
knlâkm′ j′

+ â†km jâ
†
qn′l′ âqn′′ l′′ âknlCl′ l′′

j′l (r ′)Ψm′n
k (r ′)Ψn′n′′

q (r ′)∗
}

,

(A.5.3)

where we have introduced the coefficients

Cl′l′′
jl (r ) =ej(r ) · {(J̄(r ) × [

el′(r ) × el′′(r )
]) × el(r )

}

. (A.5.4a)

This term cam be shown to vanish by expanding the spin-operator J̄ on the basis defined

by the polarization vectorsex(r ), ey(r ) andez(r ) and using that the indicesj, l, l′ and l′′

only run overx andy.

Finally we will calculate the effect of the fifth term on the right hand side of Eq.

(6.4.4), which we will denotē̄S(2)
D . In this calculation it is important to remember that the

term will scale asβ2ρ, and reads

K〈〈f̃ ∗km j(r , t)| ¯̄S(2)
D |f̃ ∗km′ j′(r , t)〉〉 =

(

1
2

)2

(kLβ)2

∫

d3r
∑

ln
l′n′

ρ(r )Ψnm
k (r )Ψm′n′

k (r )â†knlâkn′ l′

{

c2
1

(

J̄(r ) · ez(r )
)2
(

δ jyδlx − δ jxδly
)(

δ j′yδl′x − δ j′xδl′y
)

+ c2
0J(r )4δ jlδ j′ l′

}

. (A.5.5)

A.6 Calculation of second-order Spin-terms

In this section we calculate the second order terms for the atomic spin, represented as the
third and fourth term of the right-hand side of Eq. (6.4.15).These terms we will denote
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J (2)
A , and using the previous notation one finds

J (2)
A =
−i
2

(

βc1kL

2

)2
∑

k

∫

d3r′
∑

m′m′′
l

(

J̄(r ) × ez(r )
)





















































0

J̄y(r ′)

J̄z(r ′)



























· ez(r ′)



























ρ(r ′)â†km′ lâkm′′ l

∑

m

{

Ψ
mm′′
k (r )Ψm′m

k (r ′) − Ψm′m
k (r )Ψmm′′

k (r ′)
}

. (A.6.1)

We can examine this term by assuming that the only photon carrying modes of the light are the

two modesfkox andfko′y and neglect all other modes. In this case the term reduce to

J (2)
A =

(

βc1kL

2

)2
∑

k

∫

d3r′
∑

m
(n,l)∈{(o,x),(o′ ,y)}

·

(

J̄(r ) × ez(r )
)(



























0

J̄y(r ′)

J̄z(r ′)



























· ez(r ′)
)

ρ(r ′)â†knlâknlIm[Ψmn
k (r )Ψnm

k (r ′)]. (A.6.2)

This term represents an atom at positionr ′ interacting with the light field and emitting a

photon into modem, which propagates to the positionr , where it is absorbed by an atom

followed by stimulated emission into the classical beam. This process is also known as

optically induced dipole-dipole interaction, and indeed the sum over all modesm can be

used to introduce the dipole propagator in (A.4.5). Note, however, that above we have

written the term in the paraxial approximation, where we ignore the dependence of the

polarization vector on the mode number. Since the sum overm involves all modes, and

not just the paraxial modes, an accurate treatment requiresa more complicated expression

involving the polarization vectors along the lines of Appendix A.8 (we use this more

complicated expression in our estimates of the size of the effect).

The last term we will consider is the term describing an atom interacting with the light

field at two different times. This term is represented as the fifth term on the right hand

side of Eq. (6.4.15), and is given on vector component form inEq. (6.1.13). We will
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denote this term withJ (2)
B . A short calculation gives

J (2)
B = −

1
2

(

βc1kL

2

)2
∑

kk′

∑

mm′
nn′

∑

j j ′

l

el

(

J̄ · ej′
)

{

Ψ
mn
k Ψ

m′n′
k′

[

â†kmlâ
†
k′m′ jâkn jâk′n′ j′ − â†km jâ

†
k′m′ jâkn j′ âk′n′ l

]

+ H.c.

}

, (A.6.3)

where we have suppressed the spatial dependence to shorten the notation. Doing the sum

over j, j′ andl we obtain

J (2)
B = −

1
2

(

βc1kL

2

)2
∑

kk′

∑

mm′
nn′

(

J̄ − ez(J̄ · ez)
)

·

Ψ
mn
k Ψ

m′n′
k′

{

2â†kmxâ
†
k′m′yâknyâk′n′x − â†kmyâ

†
k′m′yâknxâk′n′x − â†kmxâ

†
k′m′xâknyâk′n′y

}

.

(A.6.4)

The first order term in Eq. (6.4.16) describe the first order effect of rotation of the spin

around theez(r ) axis. The second order term in (A.6.4) describe the second order term of

this rotation. From the rotation frequency in the first orderterm∝ s3 (assumingΨ to be

real), one would thus expect this term to scale asβ2(s3)2 which is different from the term

in (A.6.4). This difference arises because we have separated the term into normalordered

components such that the second order term in (A.6.4) only contributes when at least two

photons are present. When we did the normal ordering in the diagram we introduced an

additional term, which we described by the third term in Eq. (6.1.4)

A.7 Calculation of spontaneous emission

In this section we calculate the corrections to Eq. (7.2.1) and Eq. (7.2.2), due to the

incoherent interaction. To do this we need a result for the infinitely short propagator.

From the definition of the propagator (5.3.7) and the calculation of in it (6.1.8), we find

the relation

∑

n

|Un(r⊥)|2 = 2
kL

̺(r⊥) (A.7.1)
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where̺(r⊥) = k3
L/(16π2) is the zeroth order term of the expansion of̺||(r ) in β given in

Eq. (A.2.13). This result is important when calculating¯̄S(2)
d and for relating this term with

the incoherent interactions, responsible for spontaneousemission. When including this
term and the decay described in Sec. 6.2, the incoherent interaction reduce to

ŝ1,out(r⊥) = . . . − β
2kL̺(r⊥)

2

∫

dz′ρ(z′)
{

c2
1(J̄2

y(z′) − J̄2
z(z′))ŝ0,in(r⊥) + (c2

0J4(z′)

+ c2
1[4J2

z(z′) + J2
y(z′)]) ŝ1,in(r⊥)

}

, (A.7.2a)

ŝ2,out(r⊥) = . . . − β
2kL̺(r⊥)

2

∫

dz′ρ(z′)
{

c2
0J4(z′) + c2

1[3J2
z(z′) + J2

y(z′) + J2
x(z′)]

}

ŝ2,in(r⊥),

(A.7.2b)

ŝ3,out(r⊥) = . . . − β
2kL̺(r⊥)

2

∫

dz′ρ(z′)
{

c2
0J4(z′) + c2

1[J2
z(z′) + J2

y(z′) + J2
x(z′)]

}

ŝ3,in(r⊥), (A.7.2c)

where we have only kept terms that are nonvanishing after taking quantum mechanical

average of the atomic spin. The operators ˆs0,in(r⊥) measures the total photon flux, and is

given as

ŝ0(r⊥) =
∑

kmm′

1
2

(

U∗m(r⊥)â†kmxâkm′xUm′(r⊥) + U∗m(r⊥)â†kmyâkm′yUm′(r⊥)
)

(A.7.3)

It is important to note that in a discussion of the various contributions to decay one should

include all terms in the perturbative expansion, includingthe loop diagrams (6.2.2). If

these are not included one finds the contribution from the term in Eq. (A.5.5) to increase

the the operator ˆs3.

Similarly we find the effect of spontaneous emission on the spin equation to read

J̄x,out(z) = . . . − β2c2
1kL̺(r⊥)

∑

k

{

J̄x,in(z)[ ŝk
0,in(r⊥) +

1
2

ŝk
1,in(r⊥)] +

1
2

J̄y,in(z)ŝk
2,in(r⊥)

}

(A.7.4a)

J̄y,out(z) = . . . − β2c2
1kL̺(r⊥)

∑

k

{

J̄y,in(z)[ ŝk
0,in(r⊥) +

1
2

ŝk
1,in(r⊥)] +

1
2

J̄x,in(z)ŝk
2,in(r⊥)

}

(A.7.4b)

J̄z,out(z) = . . . − β2c2
1kL̺(r⊥)

∑

k

J̄z,in(z)ŝk
0,in(r⊥). (A.7.4c)

The above result is derived from Eq. (6.1.9) by using the paraxial approximation and

only keeping terms of orderβ2. A minor correction is introduced since we in Eq. (7.2.2)

chose a representation that was in fact not normal ordered.
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A.8 Beyond paraxial approximation

In this section we will go slightly beyond the approximationmade in Eq. (6.4.3), and

consider the set

fq(r ) =
1√
2π

Unq(r )en j(r ). (A.8.1)

We will consider the correction this generalization makes to the result given i Eq. (7.3.4),

and therefore define spin-components in the local basis given by the setemx(r ), emy(r ) and

emz(r )

J̄emi(r ) =



























0

J̄y(r )

J̄z(r )



























· emi(r ) (A.8.2)

for i ∈ {x, y, z}. These vectors are defined by the fact that, e.g.,eoy(r ) should be transverse

and perpendicular to the polarization vector arising from the mode functionUok(r )eox(r ).

eoz is then defined byeoz = eox × eoy. Similarly for the quantum modesm the definition

of emx follow from the fact that it should be perpendicular to the polarization vector from

the modeUmk(r )emy(r ).

With these definitions Eq. (7.3.4) gives

X̂m
out =X̂m

in + kLβc1

√

No
x

2

∫

d3r′ ρ(r ′)Re[Ψmo
k (r )]

{

J̄eoz(r )[eox(r ) · emx(r )] − J̄eox(r )[eox(r ) · emz(r )]
}

(A.8.3a)

P̂m
out =P̂m

in + kLβc1

√

No
x

2

∫

d3r′ ρ(r ′)Im[Ψmo
k (r )]

{

J̄eoz(r )[eox(r ) · emx(r )] − J̄eox(r )[eox(r ) · emz(r )]
}

.

(A.8.3b)

Similarly we find the correction to Eq. (7.3.5) to give

J̄out(r ) ≈ J̄in(r ) + kLβc1

√

No
x

2

∑

n

[

Re[Ψno
k (r )]P̂n

in − Im[Ψno
k (r )]X̂n

in

]{

J̄in(r ) ×
(

eox(r ) × eny(r )
)}

.

(A.8.4)
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Appendix for Part 2

B.1 Deriving the first order correction to the matrix Mkmn
k′m′n′

By introducing the dummy variableα = 2σ2
⊥ in the Gaussian function, the series expan-

sion of thex-integral in Eq. (12.0.13) may be written as

∞
∑

l=0

(−∂α)l

∫ ∞

0
e−αx2

Im(2σ2
⊥γnx)Im(2σ2

⊥γn′x)

∣

∣

∣

∣

∣

∣

∣

α=2σ2
⊥

(B.1.1)

Using the above expansion along with the relationIm(x) = i−mJm(ix) together with the

result [50]

∫ ∞

0
rdre−α

2r2
Jm(βr)Jm(γr) =

1
2α2

e−
β2
+γ2

4α2 Im(
βγ

2α2
)

| arg[α]| < π

4
,ℜ[m] > −1, β > 0, γ > 0, (B.1.2)

Equation (B.1.1) may be rewritten as

∞
∑

l=0

(−∂α)l

(−1)m

∫ ∞

0
e−αx2

Jm(2iσ2
⊥γnx)Jm(2iσ2

⊥γn′x)

∣

∣

∣

∣

∣

∣

∣

α=2σ2
⊥

(B.1.3)
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From Eq. (12.0.12) we find the integral to give

∞
∑

l=0

(−∂α)l e
σ4
⊥(γ2

n+γ
2
n′ )

α

2α
Im

(2σ4
⊥γnγn′

α

)

∣

∣

∣

∣

∣

∣

∣

∣

α=2σ2
⊥

. (B.1.4)

We see that in terms of an expansion in the variable 1/σ2
⊥ each differentiation will give

a factor of 1/σ2
⊥. We shall therefore only consider a sum up to the first order inthe

differential. To zeroth order thex-integral simply gives

e
σ2
⊥(γ2

n+γ
2
n′ )

2

4σ2
⊥

Im

(

σ2
⊥γnγn′

)

. (B.1.5)

To first order we find thex-integral to give

−∂α
e
σ4
⊥(γ2

n+γ
2
n′ )

α

2α
Im

(2σ4
⊥γnγn′

α

)

∣

∣

∣

∣

∣

∣

α=2σ2
⊥

=
e−

σ2
⊥
2 (γ2

n+γ
2
n′ )

8σ4
⊥

[

Im(σ2
⊥γnγn′)

− σ
2
⊥

2
(γ2

n + γ
2
n′)Im(σ2

⊥γnγn′) +
σ2
⊥

2
γnγn′

(

Im−1(σ
2
⊥γnγn′) + Im+1(σ

2
⊥γnγn′)

)

]

.

(B.1.6)

To understand the above expression let us assume a sufficiently largeσ⊥ so that the mod-

ified Bessel functionIm±1 can be approximated withIm. In this way we get

−∂α
e
σ4
⊥(γ2

n+γ
2
n′ )

α

2α
Im

(2σ4
⊥γnγn′

α

)

∣

∣

∣

∣

∣

∣

α=2σ2
⊥

=
e−

σ2
⊥
2 (γ2

n+γ
2
n′ )

8σ4
⊥

Im(σ2
⊥γnγn′)

[

1− σ
2
⊥

2
(γn − γn′)

2

]

. (B.1.7)

The above approximation gets worse for increasing values ofm, however we argue in

Sec. 14.2, that for a finite width of the sample, higher order modes inm has less influ-

ence. Finally the exponential function along with the modified Bessel function express

a conservation of transverse momentum given by the variables γn since for increasing

values of the transverse momentum, Eq. (B.1.7) can be approximated with

e−
σ2
⊥
2 (γn−γn′ )

2

8σ4
⊥
√

2πγnγn′

[

1− σ
2
⊥

2
(γn − γn′)

2

]

. (B.1.8)
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We shall then make the approximation

1− σ
2
⊥

2
(γn − γn′)

2 ≈ e−
σ2
⊥
2 (γn−γn′ )

2
, (B.1.9)

thus the expression in Eq. (B.1.8) can to first order in the differenceγn − γn′ be written as

e−σ
2
⊥(γn−γn′ )

2

8σ4
⊥
√

2πγnγn′
(B.1.10)

This result is the large size limit, and we therefore conclude that to give this limit as

σ⊥ → ∞ the term in Eq. (B.1.6) must be approximated with

√
2

e−σ
2
⊥(γ2

n+γ
2
n′ )Im(2σ2

⊥γnγn′)

8σ4
⊥

. (B.1.11)

From this we conclude the result given in Eq. (12.0.15).

B.2 Commutation relation for Λm
nn′ andΛ1m

nn′

Here we show that the two matricesΛm
nn′ andΛ1m

nn′ commute. Since both matrices are

symmetric, it is enough to show that the product
∑

pΛ
m
npΛ

1m
pn′ is symmetric. Again we

make the continuation
∑

p
1
ac
→

∫ dγp

π
for ac→ ∞. In this way we get

∑

p

Λ
m
npΛ

1m
pn′ =

4σ4
⊥e
−σ

2
⊥
2 γ2

n−σ2
⊥γ

2
n′

a2
cJm+1(Xmn)Jm+1(Xmn)

∫

dγpγp
(−1)m

2
e−

3σ2
⊥γ

2
p

2 Jm(iσ2
⊥γnγp)Jm(2iσ2

⊥γn′γp).

(B.2.1)

After making theγp-integral we end up with

∑

p

Λ
m
npΛ

1m
pn′ =

4σ4
⊥e
−σ

2
⊥
3 (γ2

n+γ
2
n′ )Im

(

2σ2
⊥

3 γnγn′
)

3a2
cJm+1(Xmn)Jm+1(Xmn)

. (B.2.2)

Since the matrix Eq. (B.2.2) is symmetric we conclude that the matricesΛm
nn′ andΛ1m

nn′

commute.
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B.3 Beyond the delta function approximation of the Gaus-

sianη(k).

In general the matrixM, Eq. (12.0.9) can be diagonalized using a unitary transformation

described byU. Let us denote the eigenvalues corresponding to this diagonalization with

Λq. From this formal diagonalization we will in complete analogy with the problem of

Λ
m
nn′ eventually have to look at summations such as

∑

q

Uq,kmnΛ
N
q U∗q,k′m′n′ . (B.3.1)

The indexq has a dimensionality to fit the Hilbert space spanned byk,m, n. Again we

introduce the unit,

11 =
∑

q1

∫

dk1

∑

m1n1

Uq1,kmnU
∗
q1,k1m1n1

, (B.3.2)

so that the expression in Eq. (B.3.1), can be written as the sum

∑

m1,...,mN−1
n1,...,nN−1

∫ N−1
∏

i=1

dki M
kmn
k1m1n1

Mk1m1n1
k2m2n2

· · ·MkN−1mN−1nN−1
k′m′n′ . (B.3.3)

Thus to find the effect of the finite width of the Gaussian function we have to makethe

following type of integrals

∫

dk1Mkmn
k1m1n1

Mk1m1n1
k2m2n2

. (B.3.4)

The product of two Gaussian functionsη(k− k1)η(k1 − k2) integrated overk1 gives

σ||√
2π

e−
σ2
||

2 (k−k2)2
, (B.3.5)

a Gaussian with a width increased by a factor of
√

2. In the delta function approximation

the functional form is unchanged by such integrations, thusthe end result remains a delta

function. As we increase the number of integrationsk1, k2, . . . , kN−1 the width of the Gaus-

sian increases thus making the delta function approximation worse. The figure of merit
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is now the powerN and as the width only increases with the square root of the power,

we expect that for reasonably fast converging series Eq. (13.0.9), the delta-function ap-

proximation is acceptable. However as time and also∆z increases one would have to

reconsider the approximation. We note that to treat this effect one should also include the

poles 1/(k2 − k2
1), . . . in the calculation and not only the Gaussian function as donehere.

B.4 Additional material to Sec. 14.3

Here we will show Eq. (14.3.2). Our starting point is the orthogonality relation given by

∫ ∞

0
rdr Jm(γnr)Jm(γn′r) =

δnn′a2
c

2Jm+1(Xmn)2
, (B.4.1)

where the variableγn =
Xmn
ac

andXmn is then’th zero of them’th order Bessel functionJm.

We will assume thatXmn is large, which does not requireγn to be so, since we can choose

the cut-off ac to be anything. In this way we can write Eq. (B.4.1) as

∫ ∞

0
rdr Jm(γnr)Jm(γn′r) =

δnn′ac

πγn
(B.4.2)

We will then take the sum overn on both sides and use the standard continuation
∑

n
1
ac
→

∫

dγn

π
so that

∫

dγnγn

∫

rdrJm(γnr)Jm(γn′r) = 1. (B.4.3)

Sinceγn is now a continuous variable, we conclude that the measure ofthe distribution

f (x, x′) = x
∫

rdrJm(xr)Jm(x′r), (B.4.4)

wherex, x′ is some real and positive number is unity. The next step is to show that for

x , x′ the function f (x, x′) vanish. This follows when choosing a zero pointXmn and

a cut-off ac such that sayx = γn. This does not necessarily mean thatx′ has a similar

representation with the chosen cut-off. On the other hand this is not necessary as one may



show, see e.g. [48], that

(γ2
n − x′2)

∫ ac

0
rdrJm(γnr)Jm(x′r) = 0. (B.4.5)

from here we conclude that whenγn andx′ are different the functionf (γn, x′) vanish. This

concludes the derivation of Eq. (14.3.2).

B.5 The Sum rule

Here we derive the sum rule Eq. (14.3.6) used in Sec. 14.3. Thestarting point is the total

radiated intensity of Stokes-photons

∮

S

{

D− × (∇ × A+
) − (∇ × A−

) × D+
}

, (B.5.1)

whereS is a sphere surrounding the atoms. Using the Divergence theorem as well as the

Maxwell equations, the total radiated intensity can be written as

−µ0ǫ0

∫

V
d3r

∂(HF +HI )
∂t

− µ0

∫

V
d3rG[P,D] (B.5.2)

where

G[P,D] =
∂P−

∂t
· D+ + D− · ∂P+

∂t
. (B.5.3)

To first order inωS, Eq. (B.5.2) reduce to

µ0ωS~ǫ0

[
∑

j

Γb̂ j(t)b̂
†
j (t) +

∑

j, j′

{

b̂ j(t)M j j ′ b̂
†
j′(t) + H.c.

} ]

, (B.5.4)

where we have used Eqs. (10.1.7), (10.2.6) and (10.2.7). When measuring the intensity

infinitely far away from the atomic ensemble, the expressionin Eq. (B.5.1) reduce to the

electric field squared times 2µ0c, thus the normalized sum-rule reads

2
kS~ǫ0

∫

dΩD−· D+ =
∑

j

Γb̂ j(t)b̂
†
j (t) +

∑

j, j′

{

b̂ j(t)M j j ′ b̂
†
j′(t) + H.c.

}

. (B.5.5)
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