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A B S T R A C T

Displacement measurements are found everywhere, both in scientific
applications and in the everyday life. Classical physics and experience
suggest that one can perform these measurements with unlimited
precision upon technological improvements, without perturbing the
measured system. Quantum physics, instead, changes this picture,
predicting that the more precise a displacement measurement is done,
the larger the disturbance, or quantum backaction, affecting the mo-
mentum of the measured system.

As of today, the most precise displacement measurements are done
by reflecting a laser field off a mechanical resonator and interferomet-
rically measuring the phase of that field. This interaction, stemming
from radiation pressure forces, is at the heart of the field of optome-
chanics. In such a displacement measurement, the imprecision and
the quantum backaction arise from the quantum fluctuations of the
optical phase and amplitude quadratures, respectively. In addition,
mechanical systems unavoidably couple to a thermal environment,
which introduces more disturbance and hinders the observation of
quantum effects of the measurement. Nevertheless, an efficient quan-
tum measurement can be realized whenever the information about
the displacement is gathered at a rate close to the one at which the
mechanical resonator is perturbed, due to both thermal forces and
the quantum backaction. When available, the result of this measure-
ment can be used to purify the state-of-knowledge held by an observer
about the mechanics, that is, the conditional state. Based on this knowl-
edge, the observer can exert a measurement-based quantum control
to convert this conditional state into an unconditional one.

In this thesis, we report experiments achieving quantum displace-
ment measurements of a soft-clamped membrane resonator, inserted
in the middle of an optical cavity. The cornerstones of the experi-
ments are the extremely low dissipation rate of the mechanical energy
and the high total detection efficiency, which together result in a
measurement efficiency of up to 56%. This corresponds to a system
operating at the Heisenberg measurement-disturbance limit to within
33%. Furthermore, we employ the quantum trajectory formalism and
a retrodiction measurement to experimentally verify the conditional
state, which is a coherent one with purity of 78%. Based on the mea-
surement outcomes, we design a feedback loop to exert a viscous force
on the resonator. This feedback cools the mechanical mode down to
its ground state, with a residual occupation of 0.29 phonons, thus
realizing a long-standing goal in the field.

iii



Quantum measurements form an important tool for several ap-
plications, from ultra-precise sensing to the generation of entangled
states. We exploit these quantum-limited measurements to perform
displacement sensing below the standard quantum limit and to gener-
ate and verify the entanglement between two lasers, stemming from
the simultaneous measurement of a common mechanical motion. The
results shown in this thesis make this optomechanical platform at-
tractive for further applications, such as the quantum transduction of
information via an electro-opto-mechanical system and the generation
of non-classical mechanical states by measurements.
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S A M M E N FAT N I N G

Forskydningsmålinger findes overalt, både i videnskabelige anven-
delser og i hverdagen. Klassisk fysik og hverdagserfaring tyder på at
man kan lave disse målinger med ubegrænset præcision, givet tekno-
logiske forbedringer, uden at forstyrre det målte system. Kvantefysik
ændrer dette billede og forudsiger tværtimod at jo mere præcist en
forskydningsmåling udføres, desto større en forstyrrelse, eller kvante-
tilbagevirkning, virker på impulsen af det målte system.

Til dags dato udføres de mest præcise forskydningsmålinger ved
at reflektere et laser felt på en mekanisk resonator og interferome-
trisk måle fasen af det pågældende felt. Denne vekselvirkning, der
stammer fra strålingstrykskræfter, ligger til grund for feltet optome-
kanik. I sådan en forskydningsmåling stammer unøjagtigheden og
kvantetilbagevirkningen fra kvantefluktuationer af de optiske fase-
og amplitudekvadraturer, respektivt. I tillæg kobler mekaniske syste-
mer uundgåeligt med et termisk miljø, hvilket introducerer yderligere
forstyrrelse og forhindrer observation af kvantemekaniske effekter af
målingen. Alligevel kan en effektiv kvantemekanisk måling realiseres
såfremt information om forskydningen indsamles med en hastighed
tæt på den hvormed den mekaniske resonator forstyrres, af både ter-
miske kræfter og den kvantemekaniske tilbagevirkning. Hvis det er
tilgængeligt, kan resultatet af denne måling udnyttes til at rense en
observatørs videnstilstand om mekanikken, det vil sige den betingede
tilstand. På baggrund af denne viden kan observatøren udøve må-
lingsbaseret kvantekontrol for at omdanne den betingede tilstand til
en ubetinget en.

I denne afhandling rapporterer vi eksperimenter der opnår kvan-
temekaniske forskydningsmålinger af en blødt-hæftet membranre-
sonator, indsat i midten af en optisk kavitet. Hjørnestenene af eks-
perimenterne er den ekstremt lave mekaniske energidissipationsrate
samt den høje samlede detektionseffektivitet, hvilket resulterer i en
måleeffektivitet på op til 56%. Dette svarer til et system der opererer
indenfor 33% af Heisenberggrænsen for måling og forstyrrelse. Vi
udnytter yderligere kvantebaneformalismen og en retrodiktionsmå-
ling til eksperimentelt at verificere den betingede tilstand, der er en
kohærent en, med en renhed på 78%. På baggrund af måleudfaldene
designer vi en tilbagevirkningskreds til at udøve en viskøs kraft på re-
sonatoren. Denne tilbagevirkning nedkøler den mekaniske svingning
til dens grundtilstand, med en resterende befolkning på 0.29 fononer,
og realiserer således et mangeårigt mål i feltet.

Kvantemålinger udgør et vigtigt værktøj for flere anvendelser, fra
ultrapræcise sensorer til generering af sammenfiltrede tilstande. Vi
udnytter disse kvantestøjsbegrænsede målinger til at udføre forskyd-
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ningsoptegnelser under standardkvantegrænsen og til at generere og
verificere sammenfiltringen af to lasere der stammer fra deres simulta-
ne måling af en fælles mekanisk tilstand. Resultatet der vises i denne
afhandling gør den optomekaniske platform attraktiv for yderligere
anvendelser, såsom kvantetransduktion af information ved hjælp af
et elektro-opto-mekanisk system og gennem målinger generering af
uklassiske mekaniske tilstande.
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C O N V E N T I O N S

Hereby we report the conventions used throughout the thesis for the
spectral analysis. Analogous relations hold for classical processes, a(t)
and b(t), where the Hermitian adjoint, †, is replaced by the complex
conjugate, ∗.

F [â(t)] (Ω) := â(Ω) =

∫∞
−∞ dteıΩtâ(t) Fourier transform

F−1 [â(Ω)] (t) =

∫∞
−∞

dΩ

2π
e−ıΩtâ(Ω) Inverse Fourier transform

â(Ω)† = â†(−Ω) = F
[
â(t)†

]
(−Ω)

Râb̂(τ) =
〈
â(t+ τ)†b̂(t)

〉
Two-time correlation function

Sâb̂(Ω) = F
[
Râb̂(τ)

]
(Ω) Power spectral density

Râb̂(τ)
∗ = Rb̂â(−τ)

Sâb̂(Ω)∗ = Sb̂â(Ω)

Sâb̂(Ω) :=
Sâb̂(Ω) + Sb̂â(−Ω)

2
Symmetrization

Classical and quantum noise processes differ in the relation between
negative and positive frequency components of the spectrum. Classi-
cally, one always has

Sab(−Ω) = Sb∗a∗(Ω)

The quantum counterpart is instead not valid, as the operators â(t + τ)

and b̂(τ), in general, do not commute.



I N T R O D U C T I O N

The beginning of the last century was marked by the dawn of quantum
physics. The new theory rapidly received wide acceptance from the
scientific community as it allowed to explain, with large degree of
precision, the new experimental results in atomic physics, in evident
contrast with the laws of classical physics. At the same time, quantum
theory brought up the necessity to revisit some of the most deep-
rooted concepts in human knowledge, formed from everyday life
experience. Among them, a special role was played by the concept of
measurement, a key part of any science for it allows to connect the
world around us to its abstraction we produce, i. e. a theory. Already
in the 20s Bohr and Heisenberg promptly realized that a measurement
has a profound impact on a quantum system, causing a “reduction
of the wave packet” [Hei50]. Furthermore, this effect could not be
explained by the dynamical quantum equations, making the relation
between the physical world, quantum at its heart, and the measuring
apparatus, a classical machine, hard to grasp.

To better understand the radical change let’s recall that, accord-
ing to the law of classical physics and experience, any measure-
ment can be performed at arbitrary precision without incurring in
perturbation of the measured system. In fact, experimenters can al-
ways refine and improve the measuring apparatus at their disposal
at will, without any fundamental constraints. In contrast, quantum
theory prohibits that. Peculiarly, it establishes that any measure-
ment results in a dynamical disturbance of the measured system.

The Heisenberg micro-
scope. Reproduced from
[Hei50].

As a consequence, this always limits the
amount of knowledge about the system that
one can extract, giving rise to a trade-off be-
tween information and disturbance, charac-
teristic of quantum phenomena. To illustrate
this fact, Heisenberg conceived a thought ex-
periment already at the end of the 20’s, now
known as the Heisenberg microscope [Hei50].
The experiment aims to measure the position
of a quantum particle, let’s say an electron,
along the x direction. To do that, one can use
a microscope to focus a beam of electromag-
netic rays, of wavelength λ, on the electron.
The microscope does that with a given angu-
lar aperture, ε, which results in an optical re-
solving power of ∆x = λ/ sin(ε). Ideally, this

is also the minimum precision with which we know the electron posi-
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2 introduction

tion. This precision can be made arbitrary small by choosing smaller
and smaller wavelength. However, one should realize that, in order for
the measurement to happen, at least a single impinging photon should
be scattered from the electron back through the microscope and finally
to the photographic plate. This scattering process results in a Compton
recoil of the electron, to which the photon imparts a momentum. The
recoil direction is, however, not exactly known, as the scattered photon
can be anywhere within the cone formed by the rays. As such, along
the x direction the electron must have an unknown momentum of
∆px ≈ h sin(ε)/λ, which increases as we decrease the wavelength. It
is this momentum uncertainty that forms the quantum disturbance,
as a consequence of the acquired knowledge about the position. It
follows that ∆x∆px ≈ h, which is the first example of Heisenberg
measurement-disturbance relation, a quantum measurement feature.

This simple thought experiment is at the base of the theory of
quantum measurements, which was rigorously formalized in the 30’s
mainly by Dirac and von Neumann [NW18]. To verify the predicted
disturbance one needs to repeat non-destructive measurements on
the same quantum system. Experiments at that time, however, were
not so technologically advanced, as they allowed only to perform a
destructive measurement on a single system or an ensemble of them.
As a consequence, their results were well explained by Born’s rule and
the theory of quantum measurements ceased to be of interest for many
physicists, who relegated it mainly to epistemological discussions. It
was only after forty years, in the 80s, that the recent technological
developments, with the invention of the maser and laser, enabled
the experimental observation of the predicted quantum measurement
disturbance. This led, in 1986, to the first observation of quantum
jumps in a single ion, the energy of which was continuously measured
[Ber+86; NSD86]. Since then, quantum measurement experiments have
been performed on disparate systems of increasing size, permitting
to enlarge the validity domain of quantum mechanics to a more and
more macroscopic world. At the same time, quantum measurements
have received increasing attention in the context of emerging quantum
technologies, as they allow to gain a full control on the quantum state
of a system.

Concurrently with the technological developments in the second
half of the twentieth century, a new experimental branch of physics
emerged. It was devoted to study and understand the implications
of the mechanical effects of the radiation pressure force, as exerted
by electromagnetic fields. Experimental observations of such a force
existed since the beginning of the century, but it was only in the
70s that researchers started to recognize the prominent role of this
force in many experiments. In that regard, the pioneering works of
Ashkin on optical trapping of dielectric particles via radiation pressure



introduction 3

forces paved the way for electromagnetic manipulation and control of
mechanical systems [Ash70; Ash78].

During the same years, Bragisnky and collaborators predicted and
experimentally verified the dynamical effects of the radiation pres-
sure force on a mechanical pendulum, used as a movable boundary
in a microwave cavity [BM67; BMT70]. These effects amount to an
additional rigidity and damping, due to the retarded nature of the ra-
diation pressure force in cavities. The researchers also figured out that
such a composite system can be used to perform sensitive displace-
ment measurements of the center-of-mass of a mechanical system, a
promising platform for testing quantum measurements of macroscopic
systems. In this regard, Bragisnky also recognized the importance of
the quantum nature of the electromagnetic field in such a measure-
ment [Bra68]. In fact, he pointed out that the quantum fluctuations
of the radiation pressure force lead to a disturbance on the mechan-
ical system as a more and more precise measurement is performed,
according to the Heisenberg measurement-disturbance relation. Since
then, a large amount of theoretical and experimental work has been
produced on optomechanical systems [AKM14]. Several different plat-
forms have been devised and used to achieve important milestones in
generating quantum resources, as the preparation of optical [Saf+13;
Pur+13] and mechanical [Wol+15] squeezed states, ground state cool-
ing [O’C+10; Cha+11; Teu+11] and stabilization of higher order Fock
states [Chu+18], bipartite entangled states between electromagnetic
[Bar+19; Che+20], mechanical [Lee+11; Rie+18; Ock+18] and hybrid
modes [Pal+13]. The interest in optomechanics, and particularly in
mechanical resonators, has rapidly grown over the past years, due to
their promising outlooks. On one side, they are well-suited for high-
sensitivity detection of a multitude of quantities, such as displacement,
force, acceleration, mass and magnetic fields. On the other, the optome-
chanical interaction is capable of an unprecedented level of control
of the mechanical quantum state, a necessary tool for further uses in
quantum information processing applications. This is also appealing
for addressing fundamental questions, as pushing the quantum-to-
classical border to larger and larger systems and generating a gravity
field by a massive quantum system.

One promising way to achieve such a quantum control is by exploit-
ing the outcomes of a quantum measurement to shape and exert a
force on the mechanical system itself. Performing this quantum mea-
surement requires the mechanical system to behave, essentially, like
an Heisenberg microscope. That is, all the information in the measure-
ment should be recorded and the quantum backaction disturbance
should overcome any other technical source of noise. Measurement-
based quantum control has been recently achieved for electromagnetic
degrees of freedom, both in a microwave cavity [Say+11] and in a
superconducting qubit [Vij+12]. As of today, however, it has remained



4 introduction

elusive for mechanical degrees of freedom. In this context, an ele-
mentary form of quantum control is the stabilization of the ground
state by feedback cooling [MVT98]. The last two decades have seen an
increasing effort to achieve this milestone, with experiments involv-
ing disparate systems as trapped atoms [Kub+09] and ions [Bus+06],
levitated particles [LKR11; Teb+20], cantilevers [KB06; Pog+07], nano-
mechanical resonators [Lee+10; GVK12; Wil+15], vibrational modes
of a mirror [CHP99] and test masses of a gravitational-wave detec-
tor [Vin+08; Abb+09]. All these experiments were lacking of a clean
quantum measurement, mainly due to detection inefficiencies, which
led to additional imprecision in the recorded outcomes, and/or ex-
cess thermal noise, overcoming the quantum backaction. In contrast,
we design an optomechanical experiment in which both issues are
solved. This enables a deep operation in the quantum measurement
regime. Based on that, we are able to exert quantum control on a
membrane mechanical resonator and to stabilize its ground state via
feedback cooling. It is precisely these experiments which form the
central subject of this thesis.

structure of the thesis

The present work is just the tip of a long succession of efforts and
results, as pointed out by the historical background. As Bernard De
Chartres said, “we are like dwarfs on the shoulders of giants”, espe-
cially in the scientific community where forward steps always come
from the legacy of the past. This thesis comprises two parts. The
first one is a collection of already known materials from the above-
mentioned giants, which form the building blocks of our works. The
second part, instead, contains novel experimental results, many of
which have been already published, and specific theoretical discus-
sions, if not presented in the first part. In details:

In Chapter 1 we provide a short summary of some useful results
from quantum optics. In particular, we provide a theoretical descrip-
tion of open quantum systems, such as optical cavities, and of measur-
ing devices, such as photodiodes. These two descriptions are merged
in a stochastic dynamical theory. Also, we provide a general frame-
work for quantum measurements and control on the class of linear-
quadratic-Gaussian systems. In Chapter 2 we discuss the mechanical
system, which is an elastic vibrating membrane, and provide some in-
sights in its dissipation properties. Finally, we derive an effective quan-
tum description for the motion of the membrane center-of-mass. In
Chapter 3 we introduce the optomechanical coupling and the specifics
of the system we employ. Then, we detail some basic consequences of
the interaction, focusing on displacement measurements. In Chapter 4

we introduce the experimental setup and tools used throughout the
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thesis, such as the lasers, the optomechanical cavity and the detectors.
Also, it provides a detailed account of the calibration methods used.

The second part starts with Chapter 5, which reports the experi-
mental achievement of a displacement quantum measurement. The
implications of that are further studied in the second half of the chap-
ter, which is devoted to describe how the recorded outcomes allow,
via the quantum trajectory, to obtain a pure coherent mechanical state-
of-knowledge. In Chapter 6 we experimentally exert quantum control
on the resonator to transform this coherent state-of-knowledge into
an unconditional state. In particular, we show the first experimental
realization of feedback cooling to the ground state. In Chapter 7 we
study some of the thermodynamic implications of a continuous mea-
surement. In particular, we show how the act of measuring drastically
changes the entropic balance by introducing a new entropy produc-
tion term. Then, in Chapter 8, we move to report some preliminary
results of experiments designed to explore different routes in quan-
tum measurements. In the first part we describe how to perform a
backaction-evading measurement by means of a stroboscopic probing.
In the second part, instead, we focus on the entanglement generation
between the optical field and the mechanical system, predicted by
the quantum measurement theory. Finally, in Chapter 9, we report a
couple of experiments which show useful applications of quantum
measurements. In the first half, we show how the quantum correla-
tions present in the measurement enable ultra-sensitive measurements
below the standard quantum limit. In the second half, instead, we ex-
perimentally verify that two probe systems, measuring simultaneously
the same mechanical motion, become entangled.

I acknowledge Nenad Kralj and Junxin Chen for helpful comments
on this thesis. Also, I am grateful to David Mason for graphical inspi-
ration, in particular for the wonderful palette he put together.
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Q UA N T U M O P T I C S : A P R I M E R

In this chapter we review some basic concepts of optical physics,
which are of crucial importance for the experiments later described.
We start with an introduction on optical cavities, then we move on a
quantum description of the electromagnetic field and provide some
basic results of quantum optics. In particular, we discuss how to treat
open quantum systems, how to perform and correctly describe the
photodetection, and finally how to embody this measurement in a
dynamical description. At the end of the chapter, we apply these
concepts to the important class of linear-quadratic-Gaussian systems.

1.1 optical cavities

Any electric field, E, at location x = (r, t), can be decomposed into a
positive and negative frequency components, i. e. E(x) = E(+)(x) +

E(−)(x) [WM08]. The term E(+)(x) contains all the components which
oscillate at positive frequencies,Ω > 0, according to e−ıΩt. Conversely,
the other term, E(−)(x), contains components oscillating with negative
frequencies, such that E(−) =

(
E(+)

)∗
. A general solution of Maxwell’s

equations for the electric field involves a superposition of orthonormal
modes. In a finite volume, this superposition takes the form of a sum
as

E(x) = ı
∑
k

√
 hΩk
2ε0

(
ak(t)uk(r)e−ıΩkt + a∗k(t)uk(r)

∗eıΩkt
)

, (1.1)

where  h is the reduced Planck’s constant, ε0 the vacuum permittiv-
ity, Ωk the frequency of the mode labelled by the index k, uk are
orthonormal mode functions determined by the appropriate boundary
conditions and ak is known as field mode amplitude. Electric field in an

optical cavityAn important case is the electric field in the space delimited by
two reflective mirrors in front of each other [Fow89]. Such an optical
system, of central importance, is known as an optical cavity (Figure 1.1a).
The presence of the mirrors impose as boundary conditions that the
electric field should vanish at their location. For the simple case of a
one dimensional system in vacuum, the resulting electric field, from
Equation 1.1, is stationary with eigenmodes

En(z) = sin(knz)
(
ane

−ıΩnt + a∗ne
ıΩnt

)
, (1.2)

where z is the direction along the optical axis, the wave vector satisfies
kn = nπ/L, with n a positive integer, and the frequency is Ωn =

ckn from the dispersion relation. The frequency separation between

9
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two adjacent modes is called the free spectral range (FSR), i. e.ΩFSR =

Ωn+1−Ωn = 2π c/(2L), where L is the cavity length (Figure 1.1b). The
FSR corresponds to the inverse cavity round-trip time for the bouncing
electric field. A realistic description should take into consideration
the tridimensional nature of the optical cavity. For mirrors with large
area such that diffraction at the edges can be safely neglected, the
electric field acquires a transverse structure, which is well described
by Gaussian optics [Yar89]. Such transverse modes are represented by
Hermite-Gauss polynomials.

So far we have assumed that the mirrors are perfectly reflecting. In
real situations however, part of the impinging field is not reflected by
the mirror, due to the presence of scattering and absorption processes
and a non-zero transmissivity. Modern fabrication technologies, based
on super-polished substrates and atomic layer deposition, enable the
production of high quality mirrors, with losses and a transmissiv-
ity as low as a few ppm. Despite the extremely small value, the
finite transmissivity plays an important role in the dynamics of cavity
field, which will escape out of the cavity or, conversely, be populated
from an external field. In particular, both the losses and the trans-
missivity determine the energy decay rate of the cavity field, κ. The
inverse, 1/κ = τcav, represents the average time that the cavity field
takes to escape. The average number of round-trips completed by
the cavity field before decaying is called finesse, and corresponds to
F = τcav/(1/ΩFSR) = πc/(κL).

0 1 2 3-1-2-3

π/2

-π/2

0

0

1

2

Ωn+1Ωn

ΩFSR

a

b

c

d
z

Figure 1.1: Optical cavity. a, Schematic of a linear optical cavity, with a par-
tially transmissive mirror. Subsequent longitudinal optical modes
differ by the numbers of antinodes. b, Wide cavity response. Sub-
sequent longitudinal modes are spectrally separated by a FSR. c,
Magnitude and d, phase of the cavity susceptibility, as a func-
tion of the driving laser detuning, around the resonance of a
longitudinal mode. The full-width half-maximum (FWHM) of the
magnitude is the decay rate of the intracavity electromagnetic
energy.



1.1 optical cavities 11

For large finesse, the spectral width of the cavity modes becomes
much narrower than their separation, that is, the FSR (Figure 1.1b).
Then, one can, assume the modes an to be independent from each
other. In the following we always consider a single mode and omit
the subscript. The equation of motion for the mode amplitude, a, Equation of motion

for a cavity modeassuming one perfectly reflective mirror, is

ȧ(t) =
(
−
κ

2
− ıΩc

)
a(t) +

√
κain(t), (1.3)

where Ωc is the resonance frequency of the chosen mode and ain(t)

is the external field coupled into to the cavity mode, a, through the
partial transmissive mirror. The field ain(t) is usually referred to as
the input field, and can have both a coherent part, e. g. any electric
field derived from a laser that we use to drive the cavity, and a
stochastic part, e. g. the excess noise in the intensity and frequency
from the laser source. In many situations, the coherent part of the
input field contains a monochromatic field at frequency ΩL, which is
in the range of hundreds of THz. Therefore, it is common practice to
describe the physics in a reference frame rotating at ΩL, compared to
Equation 1.3. This transformation is performed by the substitutions
a(t) → a(t)e−ıΩLt and ain(t) → ain(t)e

−ıΩLt, where a(t) and ain(t)

become slowly varying amplitudes. The new equation of motion
becomes

ȧ(t) =
(
−
κ

2
+ ı∆

)
a(t) +

√
κain(t), (1.4)

where ∆ = ΩL −Ωc is the laser-cavity detuning.
By taking the Fourier transform of Equation 1.4, one obtains the

solution a(Ω) = χc(Ω)ain(Ω), which describes the response of the
cavity field to an external perturbation. The response function, known
as cavity susceptibility, is

χc(Ω) :=

√
κ

κ/2− ı (∆+Ω)
. (1.5)

Its magnitude and phase are shown in Figure 1.1c and d, respectively.
The energy decay rate, κ, can be interpreted also as the FWHM of the
susceptibility.

An optical cavity can offer multiple decay channels to its field. Some
examples are a cavity with both mirrors partially transmissive, or a
cavity with an absorber in the middle. One can describe each decay
channel by assigning to it the proper decay rate, κl. Thus, the total
decay rate is κ =

∑
l κl. Any decay channel is also a port for external

fields to enter the cavity. In this more general case, Equation 1.4 should
take it into account by introducing additional input terms,

√
κlain,l(t).

The amount of field decaying through a given port is represented by
the cavity overcoupling, ηc,j := κl/κ.
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Experimentally, one has no access to the cavity field and any mea-
surement is performed on the output field, aout. From the input-output
theory, one can calculate the output field from the l-th port as

aout,l + ain,l =
√
κla. (1.6)

1.2 quantization of the electromagnetic field

A quantum mechanical description of the electromagnetic field re-
quires to replace the c-number field amplitudes with non-Hermitian
quantum operators, i. e. ak → âk and a∗k → â

†
k. The amplitude opera-

tors, âk, also satisfies the commutation relations [WM08]

[âj, â
†
k] = δjk, (1.7)

where δjk is the Kronecker delta. They describe a bosonic field, the
energy excitations of which are called photons.

The unitary dynamics is fully governed by the Hamiltonian operator.
We derive it from the classical electromagnetic field energy

Eem =
1

2

∫ (
ε0E

2 + µoB
2
)
dV , (1.8)

where µo is the vacuum permeability and B the magnetic field, which
can be calculated from the Maxwell’s equations. Using Equation 1.1
with the quantum operators âk we find the Hamiltonian operator

Ĥ =
∑
K

 hΩk

(
â
†
kâk +

1

2

)
, (1.9)

which describes each mode of the electric field as an independent
harmonic oscillator. The last term in Equation 1.9 is associated with
the energy due to fluctuations of the electric field even when no
photons are present, a configuration called the vacuum state.

The operators âk are of central importance in quantum optics. WhenField amplitudes as
ladder operator applied to a field state, they describe the operation of removing, or

annihilating, one photon in the mode k from that field. Conversely,
the adjoint operator â†k describes the creation of a photon in the
mode k. As such, the operators âk, â†k are known as annihilation and
creation operators, or equivalently ladder operators. The non-Hermitian
property of these operators reflects their dissipative action. In fact,
the Hermitian operator n̂k = â

†
kâk, which appears in Equation 1.9,

represents the number of photons in the mode k and is called the
number operator. Then, the field energy Equation 1.9 can be interpreted
as the total number of photons in all modes. The ladder operators,
acting of the field, change this total photon number, thus the field
energy, leading to a dissipative process.

Another important dissipative process is represented by the energy
decay from an optical cavity. In order to properly describe the full non-
unitary dynamics of dissipative systems, the Hamiltonian operator is
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not enough and one needs to resort to the theory of open quantum
systems.

1.3 open quantum systems

We start by considering a large closed quantum system, which is
sometimes referred to as universe. Being closed, its dynamics is fully
determined by the Hamiltonian operator. The universe is further di-
vided in two subsets: a system, which contains the degrees of freedom
of our interest, and an environment, usually formed by a large number
of degrees of freedom interacting with the system [Car93; WM08].

In quantum optics, the system usually comprises a single, or few,
mode of an optical cavity. Instead, the environment is represented
by the external electromagnetic field which is coupled to the system
modes via partially transmissive mirrors. This suggests that the envi-
ronment can be described as a set of independent quantum oscillators,
with annihilation operators b̂k. The simplest interaction form is a
bi-linear one between the environment operators, b̂k, and an arbi-
trary system operator, ô. For instance, the interaction term between
an optical cavity mode, â, and the external field is b̂†kâ+ â

†b̂k, which
describes the process by which a photon from the environment is
annihilated to create a photon in the cavity mode, and vice versa.

Dissipation is introduced when the environment is traced out from
the dynamics. This partial trace reflects the fact that the number of
degrees of freedom in the environment is so large that it is impossible,
for an observer, to completely describe them. Then, energy exchanges
from the system to the environment effectively appear as dissipative
processes. Assuming that the environment is in thermal equilibrium Master equation

at temperature T and memoryless, i. e. the system-environment in-
teraction is instantaneous, the system state, described by a density
operator ρ̂, evolves according to a Lindblad master equation

˙̂ρ =
1

ı h

[
Ĥ, ρ̂

]
+ κ (n(Ωc) + 1)D[ô]ρ+ κn(Ωc)D[ô†]ρ̂, (1.10)

where Ĥ is the system’s Hamiltonian, κ the coupling rate to the envi-
ronment, D[ô]ρ = 2ô†ρ̂ô− ô†ôρ̂− ρô†ô the dissipation superoperator
and n(Ωc) =

(
e
 hΩc/(kBT) − 1

)−1
is the average number of quanta in

the environment at the frequency Ωc. For an optical cavity coupled to
the external field, κ is the energy decay rate through a transmissive
mirror and the system operator coupled to the environment is the
mode amplitude, i. e. ô ≡ â. At optical frequencies, Ωc ∼ O (100 THz),
and at room temperature, T ∼ 300 K, the average thermal occupation
of the external field is n(Ωc) ≈ 0: the environment is in the vacuum
state.

In general, the environment state can be engineered to be different
from a thermal one. A common situation is when one of its mode is in
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a coherent state, as realized by a laser source. In this case, Equation 1.10

can still be used to describe the coherent driving of the system.Quantum Langevin
equations An alternative, but equivalent, formulation in the Heisenberg picture

is provided by the quantum Langevin equations (QLE) [GZ04], which
are equations of motion for the system operators, rather than the
state. For a cavity mode amplitude, â, in a frame rotating at the laser
frequency, ΩL, one has

˙̂a(t) =
(
−
κ

2
+ ı∆

)
â(t) +

√
κâin, (1.11)

which resembles the classical evolution of Equation 1.3. The input
field, âin(t), is a superposition of modes from the environment, which
are coupled to the cavity at time earlier then t. This field obeys the
commutation relation

[âin(t), â
†
in(t
′)] = δ(t− t ′), (1.12)

where δ(t− t ′) is the Dirac delta. A main difference from the classical
case is that the input field always carries fluctuations, or noise, in the
form of vacuum fluctuations.

For time later than t, the modes in the environment carry informa-
tion about the cavity amplitude, â. These modes form an output field
operator, âout, which satisfies the same commutation relation of Equa-
tion 1.12 and relates to the input and cavity fields via the input-output
relation

âout(t) + âin(t) =
√
κâ(t), (1.13)

analogous to the classical Equation 1.6. The output field is of crucial
importance because it is the only one which carries information about
the cavity field and is accessible to the observers. In many cases inCorrelations of input

and output fields fact, it is interesting to know the two-time correlation function of the
cavity field. For the input field in the vacuum state, the only non-zero
correlation is〈

âin(t), â
†
in(t
′)
〉
= δ(t− t ′), (1.14)

where we have introduced the correlator operation 〈·, ·〉 = 〈··〉− 〈·〉〈·〉.
Using Equation 1.14, one can show that the output field satisfies〈

âout(t), â
†
out(t

′)
〉
= κ

〈
â(t), â†(t ′)

〉
, (1.15a)〈

âout(t), âout(t
′)
〉
= κT

〈
â(t), â(t ′)

〉
, (1.15b)

where T· is the time-ordering operator [WM08]. In this sense, the
measurable correlations of the output field directly reflect the ones of
the cavity mode. In order to understand how the correlations in Equa-
tion 1.15 are measured, we should understand how the photodetection
is done.
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1.4 photodetection

Optical fields are oscillating very fast, with frequencies in the range
of hundreds of THz. As of today, there exists no technology which is
capable of detecting the instantaneous value of this high-frequency
electromagnetic field. Instead, optical detectors are based on energy
measurements and on the photoelectric effect [RB04]. The first quan-
tum theory of optical detection, or photodetection, was pioneered by
Glauber [Gla63]. He recognized that a detector based on the photo-
electric effect works by absorbing photons in the impinging field, Ê(x).
Based on this, he derived the probability of absorbing a photon or,
equivalently, of a detector click at x to be

p1(x) = 〈Ê(−)(x)Ê(+)(x)〉, (1.16)

where the average 〈. . . 〉 is performed over the quantum state of the
field, ρ̂, and the positive and negative field components are defined
from Equation 1.1. In general, when n detectors are present, the
probability of clicks at x1, x2, . . . , xn is

pn(x1, . . . , xn) = 〈Ê(−)(x1) . . . Ê
(−)(xn)Ê

(+)(xn) . . . Ê
(+)(x1))〉. (1.17)

Crucially, the order of appearance of the field operators in Equa-
tion 1.17 matters. Firstly, they should be normally ordered, i. e. all
annihilation (creation) operators on the left (right). Secondly, they
should also be time ordered, i. e. the time argument increases from
right (left) to left (right) for the annihilation (creation) operators. These
orderings originate from the choice of the optical detector used, based
on photon absorption. In fact, normal ordering implies that photons
are absorbed instead of emitted. Instead, time ordering assures that
the absorption of photons is done subsequently, that is, in a causal way.
The implication of these orderings is that the modes of the field in
vacuum states do not contribute to the average value in Equation 1.17.
Physically, this results from the fact that a detector cannot absorb a
photon from the vacuum. This is a direct consequence of the detection
mechanism employed: had we chosen a detector based on photon
emission, this would have been different. Normal-time

ordering in
photodetection

Absorbed photons become correlated with electrons emitted in
the detector, thus called photoelectrons. To be recorded by an observer,
photoelectrons are usually amplified. This involves the interaction with
a large number of additional degrees of freedom, which destroys the
quantum coherence property of these electrons. This forms a boundary,
or cut, between the quantum and classical description of the system
[Zur03a; WM10]. Then, photoelectrons form a classical, stochastic
counting process, dN(t). For large counts as in the situations we deal
with, it is more useful to describe the photodetection via the rate of
the counting process, referred to as the photocurrent i(t) = dN(t)/dt.
This photocurrent is what we experimentally measure and it is a
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classical stochastic process. However, its statistical properties can be
connected to the quantum state of the optical field generating it, via
the photoelectron-counting formula [KK64]

P(n; t, t+∆t) =

〈
:

(
ηd
∫t+∆t
t î(s)ds

)n
n!

exp

(
−ηd

∫t+∆t
t

î(s)ds

)
:

〉
,

(1.18)

where : : indicates normal-time ordering of the embraced expression,
ηd the total detection efficiency and

î(t) =
2ε0
 hΩ

∫
dr Ê(−)(x)Ê(+)(x) (1.19)

is the photocurrent operator. This is a formal object, useful for calcu-
lations, which should not be confused with the classical measured
photocurrent, i(t).Operation

representation
theorem

Nevertheless, the operator representation theorem of Yuen and
Shapiro [YS80] proved that the characteristic function of this for-
mal operator, î, equals the characteristic function of the measured
photocurrent, provided that the field considered in Equation 1.19 is
Ê(+)(x) =

√
ηdâ(x) +

√
1− ηdâv(x), where â is the amplitude of the

impinging field and âv the amplitude of an additional fictitious field
in the vacuum state, uncorrelated with â. That is, the inefficiency
is modelled as if there was a beam-splitter with transmissivity

√
ηd

in front of the detector, with a fictitious vacuum field, âv, entering
through the unused port. With this prescription, all the statistical
moments of the measured photocurrent can be calculated from the
moments of the quantum observable î, which is sometimes recognized
as the observable measured by a photodetector.

However in this view, the normal-time order originally present in
Glauber’s theory is lost. As a consequence, vacuum fields as the ones
stemming from inefficiencies give a non-zero contribution and should
be taken into account in the calculations. To give correct predictions,
one should carefully reintroduce the normal-time order at a later stage
of the calculations. In particular, we will be interested in calculatingSymmetrization of

power spectral
density

the power spectral density (PSD) of the measured photocurrent, Sii.
This spectrum can be obtained from the PSD of the operator î with the
additional prescription of symmetrization, i. e.

Sâb̂(Ω) =
Sâb̂(Ω) + Sb̂â(−Ω)

2
. (1.20)

Then, we have Sii = Sîî which we often indicates as Sii for the sake
of conciseness. The symmetrization restores the symmetry between
positive and negative frequencies, as required for a classical real signal.

We also mention that an alternative theory of photodetection with
normal-time order is possible, as shown by Carmichael [Car87]. The
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predictions obtained from these two theories are equivalent, however
they provide two rather different perspective on the measurement
interpretations.

We describe now two important photodetection schemes: direct and
homodyne detections.

1.4.1 Direct detection

The simplest scheme one can imagine consists of a field impinging on
a photodetector. We assume the field to be single-mode, i. e. it has all

Sketch of direct
detection

modes in the vacuum state but one. The field annihilation operator can
be decomposed in a sum of a mean field, a = 〈â(t)〉 chosen to be real,
and a displaced operator, δâ(t), i. e. â(t) = a+ δâ(t). The operator
δâ(t) represents small fluctuations around the mean amplitude. The
first two statistical moments of the photocurrent can then be linearized
around a as〈

î(t)
〉
≈ a2 + a

〈
δâ(t) + δâ†(t)

〉
= a2 +

√
2a
〈
X̂(t)

〉
, (1.21a)〈

î(t)2
〉
−
〈
î(t)
〉2 ≈ 2a2 (〈X̂(t)2〉− 〈X̂(t)〉2) , (1.21b)

where we have introduce the amplitude quadrature operator, X̂. In fact,
the amplitude operator, â, can be decomposed into a sum of Hermitian
operators as â =

(
X̂+ ıŶ

)
/
√
2, where X̂ (Ŷ) is the amplitude (phase)

quadrature operators, satisfying the canonical commutation relation
(CCR) [

X̂, Ŷ
]
= ı. (1.22)

The photocurrent PSD is

Sii(Ω) = Sîî(Ω) ≈ a4δ(Ω) + 2a2SX̂X̂(Ω). (1.23)

Equation 1.23 suggests that the fluctuations in the direct detection
photocurrent stem from the fluctuations of the amplitude quadrature
of the detected field.

1.4.2 Homodyne detection

Direct detection only provides a measurement of the amplitude quadra-
ture of the field. A more general phase-sensitive detection scheme
is offered by the homodyne detection, which can measure an arbitrary
quadrature component [YS80]. This detection scheme comprises two
fields: a signal, âs, and a local oscillator (LO), âl, which provides a
phase reference. They are overlapped onto a 50:50 beam-splitter, the

50:50

Sketch of a
homodyne detector

output fields of which, â±, are a linear combination of the input fields
and can be written as

â±(t) =
âs(t)± âl(t)√

2
. (1.24)
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Two photodetectors directly detect these fields. The corresponding
photocurrent operators are

î±(t) =
â
†
s(t)âs(t) + â

†
l(t)âl(t)± â

†
s(t)âl(t)± â†l(t)âs(t)

2
. (1.25)

We decompose the signal field into a mean and a fluctuating part,
i. e. âs(t) = as + δâs(t) and we assume that as is real. The LO field
is in a strong coherent state such that its mean amplitude, 〈âl(t)〉l =
|al|e

−ıθl , is larger than the signal mean amplitude, i. e. |al|� 1, |al|�
as. Within these assumptions, one can consider the LO as a classical
coherent field and Equation 1.25 simplifies

î±(t) ≈
|al|

2

2
± |al|√

2
X̂θls (t), (1.26)

where we have introduced the generalized quadrature component

X̂θ :=
e−ıθâ+ eıθâ†√

2
, (1.27)

where θ is the quadrature angle and X̂ := X̂0 (Ŷ := X̂π/2) the amplitude
(phase) quadrature.

In the balanced configuration, the two photocurrents are subtracted
from each other and the resulting measured photocurrent is

î(t) = î+(t) − î−(t) =
√
2|al|X̂

θl
s (t), (1.28)

proportional to the generalized quadrature component individuated
by the phase θl of the LO. In general, balancing is not needed for
measuring an arbitrary quadrature, as done already in Equation 1.26.
In practice however, it is advantageous since it removes the large DC
term in the photocurrents of Equation 1.26, as well as any common
excess noise present in the LO amplitude quadrature.

A more realistic description should include (i) inefficiencies, ηl, due
to optical losses experienced by the signal field, (ii) finite quantum
efficiency, ηqe, of the photodiodes, that is, the probability that an
impinging photon emits a photoelectron, and (iii) any mode mismatch
between the LO and the signal fields. The former two can be modelledHomodyne detection

with losses and
inefficiencies

by introducing fictitious beam-splitters with transmission
√
ηl and

√
ηqe in the signal path and in front of the photodetectors. The unused

ports mix some uncorrelated vacuum fields with the signal field [YS80].
The mode mismatch is modelled by assuming that the LO state is
a separable, two-mode coherent state, i. e. |val〉s|

√
1− v2al〉⊥, such

that the total power sums up to |al|
2. The first mode, denoted by s,

corresponds to the signal mode and thus interferes with it, whereas
the other mode, denoted by ⊥, is orthogonal. The parameter v is
usually called the interference visibility or, simply, visibility. Combining
all these requirement together, one can obtain a final expression for
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the photocurrent, î(t), which is quite cumbersome. We are interested
in its statistical moments, and in particular in its PSD which is

Sii(Ω) = ηqe|al|
2
(
1− ηd + 2ηdS ˆXθl ˆXθl

(Ω)
)

, (1.29)

where we have defined the total detection efficiency as ηd := ηlηqev
2.

As an example, let’s consider the case in which the signal field is
in the vacuum state. Experimentally, this can be achieved by blocking
all the fields to the balanced homodyne detector (BHD) but the LO.
By substituting S ˆXθl ˆXθl

(Ω) = 1/2 in Equation 1.29 we get the flat
spectrum

50:50

Measuring the shot
noise PSDSsn

ii(Ω) = ηqe|al|
2, (1.30)

due to the white shot noise present in homodyne detection. Within the
operator representation theorem [YS80], used for the calculations, this
noise originates from the vacuum fluctuations in the signal field and
in any other vacuum fields coupled due to inefficiencies. In contrast,
within the alternative normal-time ordered theory [Car87] this shot
noise spectrum arises from self-correlations of the single photocurrent
detection events, mainly coming from the strong LO field. Apart from
interpretation debates, Equation 1.30 provides a fast and reliable
method for calibrating the measured homodyne spectra in units of
shot noise.

1.5 filtered modes

Let’s now analyze in more details the modal structure of a continuous
propagating field, Ê. In fact, this field contains infinite modes which
are usually grouped into positive and negative frequency components,
as done in Equation 1.1. In the limit of a continuous mode density,
the term for the positive components is expressed as an integral over
plane waves,

Ê(+)(z, t) = ı
∫∞
0

dΩ

2π

√
 hΩ

2ε0cσ
eı(kz−Ωt)â(Ω) = ı

√
 hΩL
2ε0cσ

eıkLzâ(t).

(1.31)

The quantum mechanical operator â(t) is the field amplitude operator
and usually employed, as seen, to describe the quantum optical prop-
erties of the field. From Equation 1.31 is clear that this field amplitude
contains a multitude of modes. One can extract a single mode by
filtering this amplitude with an arbitrary complex mode function, f(t),
according to [ZDGV15]

âf =

∫+∞
−∞ dtf(t)â(t), (1.32)
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with the additional constraint that f(t) is normalizable, i. e.∫+∞
−∞ dt|f(t)|2 = 1. (1.33)

This is necessary to assure that the mode operator, âf, satisfies the
commutation relation in Equation 1.7. Then, it can be decomposed
into quadrature operators as âf = (X̂f + ıŶf)/

√
2, which satisfy the

CCR.
Special and important modes are the Fourier modes, defined by the

Fourier basis, i. e.

Single filtered
spectral mode

âΩ =

∫+∞
−∞ dseıΩsâ(s). (1.34)

The mode âΩ is the spectral frequency component Ω of the Fourier
transform of the field â(t), i. e. âΩ ≡ â(Ω). We indicate now the fre-
quency as a subscript rather than a variable to stress that it should
be thought as a parameter defining a specific mode. Physically, the
mode function required to filter out this mode corresponds to an
infinitely long averaging of the propagating field. Mathematically,
this makes the mode function non-normalizable according to Equa-
tion 1.33. In this case, the commutation relation take the singular
form [âΩ, â†Ω ′ ] = δ(Ω−Ω ′), where â†Ω ≡ â(Ω)† with the convention
â(Ω)† = â†(−Ω).Windowed Fourier

modes Despite being unphysical, such Fourier modes are useful for calcula-
tions. Whenever a proper normalization is required, one can introduce
the windowed Fourier modes as

âΩ,T =
1√
T

∫+T/2
−T/2

dteıΩtâ(t), (1.35)

which are normalizable and, as such, satisfies the standard commuta-
tion relation [âΩ,T , â†Ω ′,T ] = δΩ,Ω ′ .

1.5.1 Interpretation of the homodyne detection

Usually, filtering out single modes from a propagating field can be
done either optically, e. g. via optical filtering, or electronically, e. g. in
the detection process. We now reconsider the case of homodyne de-
tection, and give an interpretation of the measurement in terms of
filtered modes.

Filtered mode
measured by a

homodyne detector

In the ideal case of perfect detection with continuous LO, the
normalized measured photocurrent at the quadrature angle θl is
î(t) =

√
2X̂θl(t), according to Equation 1.28. From this photocurrent,

we can filter out the Fourier components at frequency Ω, according to
Equation 1.34, as

îΩ = e−ıθlâΩ + eıθl â†−Ω. (1.36)
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Such a filtered mode, îΩ, actually contains a pair of symmetric Fourier
modes of the signal field, â±Ω, at frequencies ±Ω. In this sense, homo-
dyne detection is a two-mode detection scheme with a phase relation
between these two modes fixed by the phase of the LO. We refer to
such a superposition of symmetric Fourier modes as a quadrature mode.
We notice that this filtering can be performed in post-processing on
the recorded photocurrent trace.

For normalizable modes, one can filter the homodyne photocurrent
either according to windowed Fourier modes or by introducing any
window function in the Fourier modes definition Equation 1.34. When Window function for

normalizable modesthis is done, the quadrature mode will have two symmetric packets of
Fourier modes at frequencies ±(Ω± δΩ), where the bandwidth δΩ
is determined by the window function in the Fourier transform. For
the sake of conciseness, we always refer to quadrature modes as îΩ,
disregarding if a window function is applied or not.

We can express Equation 1.36 in terms of the quadrature operators
of the modes â±Ω [Bar+13; Lvo15]. By doing that, we have

îΩ = X̂θ+ + ıŶθ−, (1.37)

where

X̂θ± = cos(θ)
X̂Ω ± X̂−Ω√

2
+ sin(θ)

ŶΩ ± Ŷ−Ω√
2

, (1.38a)

Ŷθ± = − sin(θ)
X̂Ω ± X̂−Ω√

2
+ cos(θ)

ŶΩ ± Ŷ−Ω√
2

(1.38b)

and [X̂θ±, Ŷφ∓ ] = 0. The quadratures X̂θ±, Ŷθ± are usually referred to
as the generalized Einstein-Podolsky-Rosen (EPR) quadratures of the two
modes âΩ and â−Ω. Equation 1.37 clearly shows that homodyne Homodyne detection

as a two-mode
measurement

detection measurements not only are two-mode measurements, but
also directly probe a combination of commuting EPR quadratures of
these two modes. In particular, the correlation〈

î
†
ΩîΩ

〉
=
〈(
X̂θ+
)2〉

+
〈(
Ŷθ−
)2〉

(1.39)

has the form of an EPR variance, used as an entanglement witness
[Dua+00; Gio+03]. A value of

〈
î
†
ΩîΩ

〉
< 1 indicates that the bipartite

state formed by the two modes â±Ω is entangled.
Finally, we notice that in the case of Fourier modes the correla-

tion in Equation 1.39 corresponds to the frequency component Ω
of the normalized homodyne photocurrent PSD in Equation 1.29,
i. e.

〈
î
†
ΩîΩ

〉
≡ Sii(Ω). Usually, an optical field giving rise to a ho-

modyne spectrum with frequency components less than the vacuum
level,i. e.Sii(Ω) < 1, is recognized as a squeezed field. According to
the previous discussion, the underlying squeezed state, for Ω 6= 0, is a
two-mode squeezed state.
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1.6 stochastic master equation

So far, we have been dealing with the outcomes of a measurement
without worrying about its effect on the dynamics of the quantum
system. As known, in fact, measurements in quantum mechanics have
a profound impact on the measured system. For example, an ideal von
Neumann projective measurement, once performed, abruptly changes
the state of the system. More realistic measurement schemes are de-
scribed by a generalized class of measurements, known as positive-
operator-valued measure (POVM), which the projective measurement
is part of. These generalized measurements also lead to an effect in
the system [WM10; Jac14]. Whenever the measurement outcomes are
recorded and available, one can observe the selective evolution of the
state of the system. The dynamical equation describing this evolution
is known as the stochastic master equation (SME) [Dió88; JS06]. The
selective state, ρ̂c, is also known as a conditional state.

Here, we focus on a specific class of quantum measurements known
as monitoring, namely time-continuous Gaussian measurement of a
system’s observable. With Gaussian measurement, we intend that the
random measurement outcomes follow a Gaussian distribution. For
instance, the homodyne detection is an example of monitoring. The
SME for a quantum system, subjected to monitoring of the observbales
ôk, is

dρ̂c =
1

ı h

[
Ĥ, ρ̂c

]
dt+

∑
k

D[ôk]ρ̂cdt+
∑
k

√
ηkH[ôk]ρ̂cdWk, (1.40)

where the superoperator H[ôk]ρ̂c = ôkρ̂c + ρ̂cô
†
k −

〈
ôk + ô

†
k

〉
c
ρ̂c de-

scribes the conditioning upon the outcomes from the k-th measure-
ment channel, with efficiency ηk, 〈·〉c is the expectation value over the
conditional state and Wk is a Wiener process, with dWk the associated
Wiener increment satisfying

E [dWk] = 0, (1.41a)

dWkdWj = δkjdt. (1.41b)

In addition, the measurement outcomes ik is

dik(t) =

〈
ôk + ô

†
k

〉
c

2
dt+

dWk
2
√
ηk

. (1.42)

Then, the conditional state ρ̂c is driven by the measurement outcomes
through the process dWk.

The non-selective evolution for the system state can be obtained
from averaging Equation 1.40 over all possible realizations of the noise
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processes dWk. When doing that using Equation 1.41, the measure-
ment superoperators cancel and one is left with

dρ̂ =
1

ı h

[
Ĥ, ρ̂

]
dt+

∑
k

D[ôk]ρ̂dt, (1.43)

where ρ̂ := E [ρ̂c]. When not recorded, the effect of a measurement is
fully captured by the additional terms D[ôk]ρ̂, which represent the
quantum backaction of the measurements on the system. These terms
introduce a decay of the coherence elements of the density operator, a
process called decoherence.

We also notice a resemblance between Equation 1.43 and the mas-
ter equation for an open system, Equation 1.10. In fact, we can now
interpret an open system as a system monitored by the environment.
Because the environment is inaccessible to an observer, the measure-
ment outcomes are not available and the non-selective evolution is
retrieved. This effective loss of information in the environment leads
to decoherence and energy dissipation.

1.7 linear-quadratic-gaussian quantum systems

Based on what we discussed so far, we now introduce an important
class of quantum systems, that is, the linear-quadratic-Gaussian (LQG)
quantum systems, and how they can be optimally controlled [WM10].
Their importance relies on the fact that they always have an analogue
classical system. As such, many of the results hereby reported are a
direct consequence of the classical counterparts, with system’s vari-
ables replaced by operators. The fundamental difference for quantum
systems lies on some additional constraints imposed in the source of
noise present in the dynamics, as we will see. Such constraints result
from the different phase-space structure in quantum mechanics, and
in particular from the commutation relations for canonical conjugate
observables.

1.7.1 Unconditional dynamics

The linearity assumption implies that the non-selective, or uncon-
ditional, dynamics is governed by a linear equation, whose general
matrix form is

dx̂ = Ax̂dt+Bu(t)dt+ Ednp(t), (1.44)

where x̂ = (x̂1, p̂1, x̂2, p̂2, · · · , x̂n, p̂n)T is the vector of canonical conju-
gate observables,A is a drift matrix, encoding both unitary and dissipa-
tive dynamics, B is the control matrix and u(t) the control or feedback
signal, Ednp(t) is a Wiener process vector with <

[
Ednp(t)dnp(t)TET

]
=

Ddt, with D a diffusion matrix.
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The drift matrix can be obtained from the underlying master equa-
tion

˙̂ρ =
1

ı h

[
Ĥ, ρ̂

]
+D[ĉ/

√
 h]ρ̂, (1.45)

where ĉ = C̃x̂. For a linear system, the general form of the Hamiltonian
is

Ĥ =
1

2
x̂TGx̂ − x̂TΣBu(t), (1.46)

with G real and symmetric and Σ the symplectic matrix

Σ =

n⊕
1

(
0 1

−1 0

)
. (1.47)

Introducing the matrix

C
T
=
(

Re[C̃T ], Im[C̃T ]
)

, (1.48)

we have that

A = Σ
(
G+C

T
SC
)

, (1.49a)

D =  hΣC
T
CΣT , (1.49b)

where

S =

(
0 1

−1 0

)
. (1.50)

The assumption of Gaussian noise implies that the state is fully
determined only by the first two moments, 〈x̂〉 and V , which evolve
according to〈 ˙̂x

〉
= A 〈x̂〉+Bu(t), (1.51a)

V̇ = AV + VAT +D. (1.51b)

The fundamental difference between a classical and a quantum system
lies in the drift and diffusion matrices, A and D. For quantum systems,
these matrices are not independent because they both depend on C.
In fact, they satisfy the linear matrix inequality (LMI)Fluctuation-

dissipation
relation

D− ı h
AΣ− ΣTAT

2
> 0, (1.52)

which is sometimes called the fluctuation-dissipation relation. It is weaker
than the homonymous relation in equilibrium thermodynamics, as no
assumption about thermal equilibrium is made here.
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1.7.2 Conditional dynamics

We also let the system being monitored via a linear measurement,
as discussed in Section 1.6. The measurement outcome, similarly to
Equation 1.42, can be written as

ŷdt = Cx̂dt+ dnm(t), (1.53)

where ŷ is the outcome operator vector, dnm is a Wiener process
known as the measurement noise and the matrix C represents a specific
monitoring scheme. This matrix can be obtained from the underlying
diffusive SME

dρ̂c =
1

ı h

[
Ĥdt, ρ̂c

]
+ dtD[ĉ/

√
 h]ρ̂c +H[

dz†(t)√
 h

ĉ√
 h
]ρ̂c, (1.54)

where E [dz] = 0, dzdz† =  hNdt and dzdzT =  hΛdt, with Λ a com-
plex symmetric matrix. The matrix N = diag(η1, . . . ,ηL) includes the
detection inefficiency for each detection channel. We combine these
two matrices in an unravelling matrix

U =
1

2

(
N+ Re(Λ) Im[Λ]

Im[Λ] N− Re(Λ)

)
. (1.55)

The measurement scheme matrix C is obtained as

C = 2TTC/ h, (1.56)

where TTT =  hU and C is defined in Equation 1.48. The measurement
noise, dnm(t), has the following correlations

dnmdnTm = 1dt, (1.57a)

<
[
Ednp(t)dnTm

]
= ΓTdt, (1.57b)

where Γ = −TTSCΣT .
For a linear Gaussian system, the conditional state is again fully

determined by the first two moments, 〈x̂〉c and Vc, which evolve
according to

d 〈x̂〉c = A 〈x̂〉c dt+Bu(t)dt+
(
VcC

T + ΓT
)
dŵ, (1.58a)

V̇c = AVc + VcA
T +D−

(
VcC

T + ΓT
)
(CVc + Γ) , (1.58b)

where we have introduced the innovation dŵ = dnm + C (x̂ − 〈x̂〉c),
which quantifies the deviation between the first moment of the condi-
tional state and the measurement outcome. Again, the fundamental
difference between classical and quantum systems is the presence of
additional constrains on the fluctuations, due to the measurement.
Defining ẼẼT := D− ΓT Γ , we find that a quantum system satisfies the
LMI

ẼẼT −
 h2

4
ΣCTCΣT > 0. (1.59)
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This is called the fluctuation-observcation relation or, sometimes, theMeasurement-
disturbance

relation
Heisenberg measurement-disturbance relation, as it originates from the
Heisenberg uncertainty relation. It connects the system fluctuations,
ẼẼT , to the measurement strength, CTC, and imposes more fluctua-
tions as the measurement strength increases.

1.7.3 Optimal control

This system can be controlled by exerting the external forces u. Any
optimal control strategy aims to minimize a cost function, j, which
takes the general form

j =

∫t1
t0

E [h(x̂, u, t)]dt, (1.60)

which is additive over time. This allows to make use of the separation
principle, which states that the optimal control strategy should be
based only on the conditional state. For LQG systems, the cost function
is at most quadratic in the system’s observable, i. e.

h(x̂, u, t) = x̂TPx̂ + uTQu. (1.61)

Then, the stronger certainty equivalence holds. That is, the optimal
control force u(t) is linear on the conditional state first moments 〈x̂〉c,
i. e.

u(t) = −K(t) 〈x̂(t)〉c , (1.62)

where K(t) = Q−1BTX(T) and X(t) is a symmetric, positive semi-
definite matrix. At the steady-state, the matrix X := X(∞) is a solution
of the Riccati equation

ATX+XA+ P−XBQ−1BTX = 0. (1.63)

Two important figures of merit are the steady-state variance of the
closed loop system, Vcl, and the average integrand of the cost function,
E [h]ss. The former one satisfies the following Lyapunov equation

NVcl + VclN
T + FTF−NVC − VCN

T = 0, (1.64)

with NT := AT − XBQ−1BT , F := CVc + Γ and Vc is the steady-state
solution of Equation 1.58b. The latter, instead, is expressed by

E [h]ss = tr
[
XBQ−1BTXVc

]
+ tr

[
XD
]

. (1.65)

A summary of a generic LQG system is shown in Figure 1.2.
In practice, the controller is represented by a filter: it takes the

measurement record y as input, processes it and outputs the control
signal u. To experimentally implement this filter, it is useful to compute
the transfer function of the controller. Taking the Fourier transform
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Figure 1.2: Linear-quadratic-Gaussian system. Block schematic of a linear
Gaussian system undergoing continuous monitoring and sub-
jected to the optimal control, constrained to a quadratic cost
functions.

of Equation 1.58a with dŵ = ŷ −C 〈x̂〉c and u(Ω) = −K 〈x̂〉c (Ω), we
find

〈x̂〉c (Ω) =
[
−ıΩ1 −A+BK+ (VcC

T + ΓT )C
]−1 (

VcC
T + ΓT

)
y(Ω).

(1.66)

The controller transfer function, from ŷ to û, is

Hoc(Ω) = −K
[
−ıΩ1 −A+BK+ (VcC

T + ΓT )C
]−1 (

VcC
T + ΓT

)
.

(1.67)





2
M E C H A N I C A L V I B R AT I O N S O F M E M B R A N E S

In this chapter we provide a basic theory of mechanical vibrating struc-
tures, which constitute one of the building blocks for optomechanical
experiments, together with optical cavities. We first review the equa-
tions of motion for a vibrating elastic plate, taking into account also
an energy dissipation mechanism. Then, we focus on understanding
the origin of this dissipation for pre-stressed structures and introduce
a recent approach to reduce its contribution. Finally, we provide a
method to reduce the dynamics of such a tridimensional structure to
the one of a point-like oscillator, for which we derive the quantum
mechanical description.

2.1 equations of motion for a vibrating membrane

In this thesis, we focus on mechanical systems in the form of mem-
brane resonators. They are composed of a thin plate, firmly clamped
at the edges to a supporting frame which is assumed at rest. The
membrane has a continuous mass density, ρ, which deforms when
subjected to forces. In particular, we assume that the membrane mate-
rial is elastic to some extent, i. e. for small deformations, the internal
forces are linear in the deformation and opposite to the direction of
the deformation itself.

x

y
z

h

Sketch of a vibrating
plate

In the following, we use the notation ui for a vector and uijk for a
tensor. Also, we use the convention that repeated indices are summed
over. Let’s assume a reference frame in which the membrane frame is
at rest. The membrane motion can be represented by the displacement
vector ui, with i = x,y, z. The membrane deformation is quantified by
the strain tensor eij, defined as [LL08]

eij = 2
−1
(
∂jui + ∂iuj + ∂iuk∂juk

)
, (2.1)

where ∂i indicates the partial derivative with respect to coordinate i.
The internal forces arising in the membrane are quantified by the

stress tensor σij. In general, its response to a given strain field is
arbitrary and depends on the chosen material. In many cases however,
one can safely assume that this response is linear in the strain. Within
this assumption, one can obtain the following stress-strain relation

σij = hijklekl =
E

1+ ν

(
eij +

ν

1− 2ν
ellδik

)
, (2.2)

where E and ν are, respectively, the Young’s modulus and the Poisson
ratio, parameters specific of a given material. Equation 2.2 is known
as Hooke’s law and forms the basis of the theory of elasticity.

29
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From the strain and the stress tensors, one can calculate the free
energy density as

f = 2−1σijeij. (2.3)

Minimizing Equation 2.3 via a variational calculus gives the equa-
tions of motion governing the displacement vector ui. These general
equations are cumbersome and hard to solve without any further
approximations. For thin vibrating membranes, where the thicknessvon Kármán strain

approximations dimension is usually much smaller than the other two, the approx-
imations one can make are that (i) the surfaces normal to the mem-
brane plane remain normal even after the deformation occurs; (ii)
the in-plane displacement components are negligible, compared to
the out-of-plane ones and (iii) any change in thickness, during the
vibration, is negligible. Within these assumptions [Cia80; Cia90], the
displacement vector is parameterized only by the out-of-plane compo-
nent w(x,y) := uz and the strain tensor can be approximated by the
von Kármán strain tensor

eαβ = e0δαβ − z∂αβw+ 2−1∂αw∂βw, (2.4)

where the Greek subscripts indicate the in-plane coordinates, i. e.α =

x,y. The first constant term, e0δαβ, represents an in-plane pre-strain.
The second term, linear in the displacement w, describes the structure
bending as it moves out of plane. The last term, quadratic in the
displacement w, represents a non-linearity of the structure. It origi-
nates from the geometrical elongation of the structure as it moves out
of plane, and is referred to as the geometrical non-linearity. Inserting
Equation 2.4 in Equation 2.2, we obtain

σαβ =
E

1− ν2
[
(1− ν)eαβ + νeγγδαβ

]
(2.5)

=σ0δαβ − z
E

1− ν2
(
(1− ν)∂αβw+ ν∂γγwδαβ

)
+

E

2(1− ν2)

(
(1− ν)∂αw∂βw+ ν∂γw∂γwδαβ

)
,

where σ0 := e0E/(1− ν) is the constant, in-plane stress resulting from
the pre-strain e0.

The in-plane free energy density, fip, obtained from integrating
Equation 2.3 along the thickness coordinate, z, comprises three contri-
butions, fip = ft + fb + fe, where

ft =
σ0
2
h∂γw∂γw (2.6)

is the energy stored in the initial pre-stress,

fb =
D

2

[
∂γγw∂λλw+ (1− ν)

(
∂αβw∂αβw− ∂γγw∂λλw

)]
(2.7)
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where D = Eh3/
(
12(1− ν2)

)
is the flexural rigidity, is the energy

stored in the material bending, which relates to the structure curvature
as shown by the presence of second-order derivatives and

fe =
Eh

8(1− ν2)
∂αw∂αw∂βw∂βw (2.8)

is the energy stored in the material elongation.
The equations of motion, in terms of the stress resultants

Nαβ =

∫h/2
−h/2

σαβdz, (2.9a)

Mαβ =

∫h/2
−h/2

zσαβdz, (2.9b)

are

∂αβMαβ + ∂α
(
Nαβ∂βw

)
= ρhẅ, (2.10a)

∂αNαβ = 0, (2.10b)

where ẇ := ∂tw. In many cases, one is interested only in small dis-
placements around the equilibrium configuration, thus the non-linear
contribution arising from the elongation can be safely neglected. In Neglecting the

geometrical
non-linearity

this case, the equation of motion for the displacement w becomes
linear(

hσ0∂αα −D∂ααββ
)
w = ρhẅ, (2.11)

This is a bi-harmonic equation for the displacement w, which under-
goes a harmonic motion. In particular, a general solution of Equa-
tion 2.11 can be decomposed into a sum of orthonormal functions,
wk(x,y, t), satisfying appropriate boundary conditions. The functions
wk are called the normal modes of the structure. To find them, one can
solve Equation 2.11 from numerical simulations employing techniques
as finite element modelling.

2.2 introduction of the dissipative dynamics

We now introduce the dissipation of the elastic energy stored in the
material. In order to model it, we assume that there exists a time lag,
τ, in the stress-strain response [LR00]. For τ much shorter than any
relevant dynamical timescale, we can approximate Equation 2.2 as

σij(t) = hijklekl(t− τ) ≈ hijklekl(t)︸ ︷︷ ︸
σcij(t)

−τhijkl∂tekl(t)︸ ︷︷ ︸
σdij(t)

, (2.12)
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where σcij(t) is the conservative part of the stress, as calculated in
Equation 2.5, and σdij(t) is the dissipative contribution. Inserting the
time derivative of Equation 2.4, we have

σdαβ(t) =
−τE

1− ν2
{
−z
[
(1− ν)∂αβẇ+ ν∂γγẇδαβ

]
+2−1(1− ν)

(
∂αẇ∂βw+ ∂αw∂βẇ

)
+ ν∂γẇ∂γwδαβ

}
. (2.13)

The instantaneous dissipated power density is p = σdij∂teij. After in-
tegrating over the thickness dimension, the in-plane dissipated power
density comprises two contributions, pip = pb + pe, where

pb = τD

∂γγẇ∂λλẇ︸ ︷︷ ︸
mean curvature

+(1− ν)

∂αβẇ∂αβẇ− ∂γγẇ∂λλẇ︸ ︷︷ ︸
Gaussian curvature

 (2.14)

corresponds to the power dissipated in bending the structure, propor-
tional to the mean and the Gaussian curvatures, and

pe =
−τEh

1− ν2
[
(1− ν)∂αẇ∂αẇ∂βw∂βw+ (1+ ν)∂αẇ∂αw∂βẇ∂βw

]
(2.15)

is a small non-linear contribution arising from the dissipation in
elongating the material. The dissipated energy density can be obtained
from the integration of the dissipated power over one oscillation cycle,
i. e.∆fip =

∮
pipdt.

The linear bending dissipation can be included in the equation of
motion Equation 2.11 for the displacement w as

ρhẅ+
(
D∂ααββ − hσ0∂αα

)
w− τD∂ααββẇ = 0, (2.16)

which takes the form of a damped harmonic oscillator. A correct
formulation of the problem also requires to take into account the in-
evitable fluctuations that dissipation brings into the dynamics [LLP08].
For a system in thermal equilibrium, the fluctuation-dissipation the-
orem links the power spectral density of the fluctuating force to the
dissipation rate of the system.

In general, there are more sources of dissipation present in addition
to the one arising from the lag between the stress and the strain.
Two of them, which are worth of mention, are the gas damping andOther dissipative

mechanisms the radiation or clamping loss, both originating from external causes
[SVR16].

gas damping It is produced by random collisions with gas molecules
surrounding the membrane, and decreases with the gas pres-
sure. To mitigate its effect, one should operate the mechanical
structure in a high-vacuum environment, where the pressure
can reach values below < 10−6 mbar.
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radiation loss The mechanical structure is connected to a sup-
porting frame, which itself can sustain vibrational modes. When
the modes from the membrane and the frame are matched, the
mechanical energy propagates into the frame. This is, in turn, in
physical contact with some other holding structure, which can
absorb the propagating mechanical energy, thus dissipating it.
In order to mitigate this loss, one can embody the membrane in
a larger phononic crystal [Mal13], such that the membrane nor-
mal modes of interest lie in the bandgap region, where energy
propagation is not allowed. As such, these modes do not interact
with frame modes, therefore are shielded from radiation losses.

In the following, we assume that these other dissipation mechanisms
are taken care of and do not play a significant role.

2.2.1 Dissipation dilution and soft clamping

A useful concept to classify the influence of dissipation is the quality
factor, Q, defined as the amount of stored energy per dissipated energy
per cycle, i. e.

Q =
f

∆f
=
ft + fb + fe
∆fb +∆fe

≈ ft + fb
∆fb

, (2.17)

where the approximation holds for negligible contributions from the
non-linear elongation terms.

An important situations is when the pre-stress, σ0, is large such
that the stored tensile energy ft dominates over the stored bending
energy. When this is true, the quality factor becomes Q = ft/∆fb
and can be enhanced by increasing the pre-stress σ0. The increase of
the quality factor as a consequence of pre-stress in the structure is a
phenomenon known as dissipation dilution, firstly recognized by the
researchers in the gravitational wave detectors [HS98]. In this case, the
quality factor is limited by the structural bending dissipation, ∆fb, the
rate of which has been calculated in Equation 2.14. In order to better
understand the origin of this limitation, it is instructive to look at the
simple case of a doubly-clamped beam, that is, a string [SVR16]. The Soft clamping

shape of the fundamental normal mode is shown in red in Figure 2.1a.
This shape, at the maximum displacement location, resembles a si-
nusoidal shape, shown in gray, and deviates from it as the clamping
regions, at the edges, are approached. In particular, the boundary
conditions impose that the structure should clamp to the frame hori-
zontally. The consequence is that, at the clamping region, the string
significantly bends and the mean curvature, shown in Figure 2.1b,
is greatly enhanced compared to a pure sine wave. Given that the
Gaussian curvature averages to zero, the mean curvature dominates
the bending losses of Equation 2.14. Then, improving the quality factor
requires to drastically reduce this clamping loss mechanism due to
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Figure 2.1: Vibrational modeshape and curvature of a string. a, The ideal
modeshape, which neglects boundary conditions, is a sinusoidal
shape, shown as a dashed gray beam. The boundary conditions
impose a deviation from the ideal shape at the clamping region,
resulting in a different modeshape as shown by the red beam.
b, The mean curvature of a real beam (red) is greatly enhanced
compared to the one of an ideal sinusoidal beam (gray), due to
the clamping requirements. As a consequence, the bending loss
at the clamping dominates.

the bending. This can be done by engineering the mode shape such
that it evanescently decays towards the edges. This is the idea beyond
the recently developed soft clamping approach [Tsa+17; Gha+18].

We exploit both the dissipation dilution and soft clamping in design-
ing our membrane resonators. They are made of thin films of silicon
nitride (Si3N4), deposited on a silicon (Si) wafer which forms the
supporting frame. During the fabrication process, the Si3N4 acquires
a large in-plane stress of σ0 ≈ 1.3 GPa. The membrane area is also
patterned with a honeycomb lattice of holes. This forms a phononic

Soft-clamped
membrane resonator

crystal which opens up a bandgap. By modifying the lattice, we im-
plant a defect at the center of the structure. This defect can sustain
localized vibrational modes, which lie within the bandgap, thus are
shielded by radiation losses. At the same time, the profile of such
defect modes enables soft clamping, reducing by orders of magnitude
their bending dissipation.

2.3 reduction to an effective point-mass model

The equation of motion Equation 2.16 deals with a continuous distri-
bution of mass. However, we are often interested only in the temporal
evolution of a given normal mode. Then, we can simplify the treatment
by ignoring the mode profile and reducing the equation of motion to
the one of a point-like oscillator, with effective parameters. This is what
the Galerkin’s method does [SVR16]. We start by assuming a variable
separation between the spatial and temporal parts of a normal mode,
i. e.wk(z,y, t) = w̃k(x,y)qk(t). The orthonormality condition of nor-
mal modes implies that

∫
w̃kw̃jdxdy = δkj. The effective equation for

the temporal mode, qk(t), is obtained by multiplying Equation 2.16
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for wk and integrating over the surface to exploit the orthogonality.
The resulting equation is

mq̈k +mΓmq̇k +mΩ
2
mqk = F(t), (2.18)

where we have introduced a fluctuating force F(t) driving the mode
k. The effective mass, m, energy damping rate, Γm, and resonance
frequency, Ωm, are related to the transverse mode profile via Effective parameters

m =

∫
S

ρhw̃2k(x,y)dxdy, (2.19a)

mΓm =

∫
S

w̃k(x,y)
(
−τD∂ααββ

)
w̃k(x,y)dxdy, (2.19b)

mΩ2m =

∫
S

w̃k(x,y)
(
D∂ααββ − hσ0∂αα

)
w̃k(x,y)dxdy, (2.19c)

where the integration is performed over the area of the membrane, S.
In this simplified model the quality factor becomes Q = Ωm/Γm.

Equation 2.18 describes a driven damped harmonic oscillator and
can be exactly solved by taking the Fourier transform. From the so-
lution, qk(Ω) = χm(Ω)F(Ω), we define the mechanical susceptibility

χm(Ω) =
m−1

Ω2m −Ω2 − ıΓmΩ
, (2.20)

which quantifies the response of the mechanical displacement to the
exerted sinusoidal force, F(Ω), at frequency Ω. The magnitude and
phase are shown in Figure 2.2. For high quality factors, i. e.Q � 1,
the mechanical susceptibility can be approximated by a Lorentzian
function around resonance as

χm(Ω) ≈ 1

2mΩm

1

Ωm −Ω− ıΓm/2
. (2.21)

When the system is at thermal equilibrium at temperature T , the
force F(t) is a fluctuating thermal force which induces a Brownian mo-
tion. In this case, the fluctuation-dissipation theorem holds and links
the PSD of the thermal force to the imaginary part of the susceptibility
as

SFF(Ω) =
2kBT

Ω
Im
(

1

χm(Ω)∗

)
= 2mΓmkBT , (2.22)

where kB is the Boltzmann constant.

2.4 quantization of mechanical vibrations

The quantum description of a harmonic oscillator is obtained from
replacing the classical position, qk, with the position operator, q̂k.
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Figure 2.2: Mechanical susceptibility. a, Mechanical susceptibility (blue) and
Lorentzian approximation (dashed light blue). The approximation
is valid around the mechanical resonance and considerably devi-
ates away from it. The height of the resonance, compared to the
zero frequency response, is the quality factorQ. b, Magnitude and
c, phase of the susceptibility, around the mechanical resonance
frequency Ωm. The FWHM of the magnitude is the mechanical
energy damping rate Γm.

Together with the momentum operator, p̂k, they form a pair of non-
commuting canonical observables satisfying the CCR [q̂k, p̂l] = ı hδkl.
A first consequence is that, differently from the classical counterpart,
the mechanical energy is discretized. The smallest packet of energy
is called a phonon and its energy is  hΩm. Also, there exists a lowest
energy state, or ground state, which exactly contains half of a phonon.
For convenience, we use the dimensionless position and momen-
tum operators defined as q̂ → q̂/(

√
2xzp) and p̂ → p̂/(

√
2pzp). The

quantity xzp =
√

 h/(2mΩm) and pzp =
√

 hmΩm/2 are, respectively,
the position and momentum fluctuations at the ground state, such
that its energy is E0 =  hΩm/2 = p2zp/(2m) +mΩ2mx

2
zp/2. In these

units, the mechanical susceptibility Equation 2.20 rescales according
to χm → χm/(xzp/pzp). For these dimensionless operators, the CCR

becomes [q̂, p̂] = ı.
When dissipations are present, the fluctuations from the environ-

ment drive the harmonic oscillator. For thermal equilibrium situations,
the resulting motion is a quantum Brownian process. One needs to
properly account for the environment and its interaction with the sys-
tem to model the dissipative process, as seen in Section 1.3. However,
the assumptions made there to derive the Lindblad master equation
are not always well justified by mechanical systems, for which more
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attention should be paid. As shown by Giovannetti and Vitali [GV01],
the correct QLE for the quantum Brownian motion are

˙̂q = Ωmp̂, (2.23a)

˙̂p = −Ωmq̂− Γmp̂+
√
2Γmξ̂(t). (2.23b)

The operator ξ̂(t) represents the fluctuating force from the thermal Quantum Brownian
motionenvironment in equilibrium at temperature T . Its correlation function

is

〈
ξ̂(t+ τ)ξ̂(t)

〉
=

∫Ωe
0

dΩ

2π

Ω

Ωm

[
eıΩτnth(Ω) + e−ıΩτ (nth(Ω) + 1)

]
,

(2.24)

where nth(Ω) =
(
e
 hΩ/(kBT) − 1

)−1
is the average number of phonons

in the environment and Ωe its bandwidth. The correlation function
has a non-white structure, corresponding to a non-Markovian process.
In the limit of broadband environment, Ωe → ∞, one recovers the
Markovian nature and the correlation function, in the Fourier domain,
becomes〈

ξ̂(Ω)ξ̂(Ω ′)
〉
≈ 2πδ(Ω+Ω ′)

Ω

Ωm
(n(Ω) + 1) . (2.25)

In this limit, the PSD of the thermal force is [BM16]

Sξ̂ξ̂(Ω) =
Ω

Ωm
(nth(Ω) + 1) , (2.26a)

Sξ̂ξ̂(−Ω) =
Ω

Ωm
nth(Ω). (2.26b)

where we have used the identity nth(−Ω) = −1−nth(Ω). The asym-
metry of the force spectrum between positive and negative frequencies
is a quantum feature, and relates to the different rates at which the
environment absorbs and emits phonons. The classical limit can be
retrieved in the large temperature limit, kBT �  hΩ, for which the av-
erage number of phonon becomes nth(Ω) + 1 ≈ nth(Ω) ≈ kBT/( hΩ).





3
C AV I T Y O P T O M E C H A N I C S

We now review the basics of cavity optomechanics, a branch of physics
which studies the interaction between optical and mechanical systems.
We first describe the physical origin of this interaction, namely the
radiation pressure force, for both the canonical, “rubber cavity” system
and the membrane-in-the-middle cavity, of relevance for the experi-
ments later reported. Then, we summarize the major effects arising on
both the mechanics and optical field. In particular, we show how this
interaction can be tailored to perform a quantum-limited displacement
measurement.

3.1 radiation pressure coupling

The canonical optomechanical system is composed of an oscillating
mirror which, combined with another mirror at rest, forms an optical
cavity. An external laser resonantly populates one of its mode, and a
stationary electromagnetic field inside the cavity is built up [AKM14;
BM16]. According to Maxwell’s equations, the field carries a momen-
tum proportional to its intensity. Upon reflection, this momentum is
exchanged with the movable mirror via a radiation pressure force.
This is the origin of the optomechanical interaction, which we will
now intuitively explain. In fact, the consequence of the momentum
exchange is that the mirror is accelerated, starting to oscillate, thus
changing the cavity length. This leads to a shift of the cavity resonance Canonical

optomechanical
interaction

frequency, as shown in Section 1.1. Then, the external laser, resonant
with the cavity before the motion of the mirror, becomes now detuned
and the intracavity intensity redistributes, finally affecting the radia-
tion pressure force. This is the basic mechanism of the optomechanical
interaction, which we will explore in details throughout the thesis.

To be more quantitative, we start with a simple yet powerful one-
dimensional model. We consider the non-interacting classical Hamil-
tonian of a single cavity mode, with amplitude a(t), and a single
mechanical mode for the oscillating mirror, with position q(t) and
momentum p(t), which is

H =  hΩca(t)
∗a(t) +

1

2
mΩ2mq(t)

2 +
p(t)2

2m
, (3.1)

whereΩc is the cavity mode resonance frequency,m the effective mass
of the mechanical mode and Ωm its resonance frequency. We recall
that the resonance frequency for the nth longitudinal cavity mode is
Ω0c = nc/(2L), from Section 1.1. The displacement of the mirror, q,

39
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Figure 3.1: Canonical optomechanical cavity. A cavity mode is resonantly
driven with an external field at wavelengthλc. One mirror is
oscillating at frequency Ωm. As the mirror moves, the cavity
resonance frequency is shifted, because the new intracavity field
is resonant for a different wavelength, λ ′c. This leads to a coupling
between the optical cavity mode and the displacement of the
movable mirror.

leads to a change of the cavity length, thus of its resonance frequency.
We can model it asOptomechanical

parametric coupling

Ωc(q) =
nc

2(L+ q)
≈ Ω0c −

Ω0c
L
q, (3.2)

where we have assumed that the displacement q is small compared to
the cavity length L. After substitution in Equation 3.1, we obtain the
interaction Hamiltonian

Hint = − h
Ω0c
L
q(t)a∗(t)a(t) = q(t)Frp(t), (3.3)

where we have introduced the radiation pressure force Frp(t) =
 hGa∗(t)a(t), with the optomechanical coupling constant G := −Ω0c/L.

A more careful analysis would require to solve the Maxwell’s equa-
tions for the electromagnetic field inside the cavity, with the oscillating
boundary condition at the mirror’s location, as done by Law [Law95].
In addition, the mechanical motion can scatter the field into differ-
ent cavity modes, leading to a multimode interaction. All the optical
modes not driven by the external laser can, however, be adiabatically
eliminated if the mechanical resonance frequency is much smaller than
any frequency separation between the cavity modes. In the follow-
ing we assume this condition to be always satisfied, thus the simple
single-optical mode description will be used.

3.2 membrane-in-the-middle cavity

The canonical system just described is, however, of difficult practical
implementation. The movable mirror should have high reflectivity
in order to achieve a large finesse and enhance the optomechanical
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interaction. At the same time, a large mechanical quality factor is re-
quired for quantum protocols, where the thermal contribution should
be kept at minimum. It turns out that the fabrication of such a device,
with simultaneously excellent optical and mechanical properties, is
far from being trivial. An alternative route to achieve well performing
optomechanical systems is to separate the mechanical element from
the optical one, which can then be engineered separately to achieve the
best performance. In the last decades, this approach led to a variety of
different systems, ranging from optomechanical crystals [Eic+09] to
levitated particles [Cha+10]. Among them, we employ the so called
membrane-in-the-middle (MIM) cavity [Tho+08], in which a mechanical
resonator in the form of a vibrating dielectric membrane (cf. Chap-
ter 2) is placed in the middle of an optical cavity at rest, as sketched
in Figure 3.2a.

0 1

Empty cavity
a b

Figure 3.2: Membrane-in-the-middle optomechanical cavity. a, A thin dielec-
tric vibrating membrane is inserted in an optical cavity, with
fixed mirrors, perpendicular to its axis. The refractive index of
the membrane material, different from the one of the surround-
ing environment, effectively increases the optical cavity length,
depending on its position relative to the intracavity intensity.
This modulates the cavity resonance frequency as the membrane
moves. b, Sketch of the cavity resonance shift as a function of the
membrane position z, relative to a node of the intracavity field.
This shift has a periodicity of λ/2 and is always negative, as the
membrane refractive index can only lead to an increase of the
optical length.

The membrane’s material has a different refractive index from the
surrounding medium. This leads to an effectively longer optical path Optomechanical

interaction in a MIM
system

for the field in the cavity, thereby to a different cavity resonance
frequency, compared to the empty case. If the membrane thickness is
smaller than the optical wavelength, the effective optical path depends
on the relative position, z, between the membrane and the intensity
standing wave of the cavity field (Figure 3.2a). Intuitively, the smallest
(largest) effect is achieved when the membrane is at a node (antinode)
of the standing wave. As before, the cavity resonance frequency shifts
depending on the membrane position, as shown in Figure 3.2b. As
seen in Equation 3.2, this leads to an optomechanical coupling.
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3.2.1 Modulation of the main parameters

The expression for the cavity frequency shift has been derived in a rig-
orous way [CL11; Bia+11]. Here, we simplify the treatment assuming
that the fields are plane waves, as outlined by Jayich et al. [Jay+08].
This approximation holds if the membrane lies within the Rayleigh
range of the cavity Gaussian mode. The reflection and transmission
coefficient, respectively ri and ti, characterize each optical element,
which is modelled by a scattering matrix transforming the input fields,
impinging from left and right, into output fields, reflected and trans-
mitted. The optical cavity, of length L, is in general composed of two
different mirrors, with r1, t1 and r2, t2. The membrane, of thickness
h� λ and refractive index n, is located at distance zm from the mir-
ror 2, here assumed to be the one with the largest transmissivity. The
membrane reflection and transmission coefficients, rm and tm, can be
calculated from the Fresnel equations.

We also assume that an external laser field, ain, at wavelength λ, is
used to drive the cavity from mirror 1. In this case, one can calculate
the fraction of the field transmitted through mirror 2, i. e.atr/ain,
by concatenating the right combination of scattering matrices of the
optical elements and propagation in vacuum. We find that

atr

ain
=

−ı t1 t2

e−ıkL − rm
(
e−ık(2zm−L)r1 + eık(2zm−L)r2

)
+ eıkLr1r2(r2m + t2m)

,

(3.4)

where k = 2π/λ is the input field wavenumber. To find the resonance
frequencies, we look for the zeros of the denominator in Equation 3.4,
assuming that the mirrors are perfectly reflecting, r1 = r2 = 1, and
that the membrane is lossless, |rm|2 + |tm|2 = 1. Then, the resonant
wavenumber, kc, satisfyCavity resonance

shift in a MIM
system cos(kcL+φr) + |rm| cos(2kczm − kcL) = 0, (3.5)

where rm = |rm|eıφr [Jay+08; Dum+19]. The cavity resonance fre-
quency shift, δΩc = ckc −Ω

0
c, from the empty resonance, Ω0c, can

be found by numerically solving Equation 3.5. We do that for a fixed
membrane position, zm, and show the resulting frequency shifts in
Figure 3.3a, for several subsequent longitudinal modes. The horizontal
axis is formed by the resonant wavenumbers, kc, in units of membrane
position, 2zm, modulus 2π, as suggested by the periodicity in Equa-
tion 3.5. That is, even keeping the membrane position fixed, one can
get different cavity resonance shifts by addressing different longitudi-
nal modes. From δΩc, we can calculate the optomechanical coupling
constant, G, for each resonance in 2kzm, by taking the first derivative
with respect to the membrane position, as done in Figure 3.3b.

Differently from the canonical optomechanical system, the mem-
brane affects the spatial distribution of the electric field in the cavity. In
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Figure 3.3: Optomechanical parameters modulation. a, Cavity resonance fre-
quency shift (blue) relative to the empty cavity one (light blue).
b, From the first-order derivative compared to the membrane
position zm we obtain the optomechanical coupling constant. c,
Total cavity linewidth and d, cavity overcoupling, both in blue,
modulated by the presence of the membrane. The correspond-
ing value in the case of an empty cavity is shown in light blue.
We assume, for these simulations, L = 1.61 mm, zm = 0.5 mm,
λ ∼ 796 nm, t21 = 77 ppm, t22 = 950 ppm, |rm|2 = 2.6× 10−2 and
φr = −0.4π.

particular, the field differs in the two sub-cavities formed by each mir-
ror and the membrane itself. This leads to an effective cavity linewidth,
κ, and overcoupling, ηc, different from the empty case. Analytical
expressions, derived by Dumont et al. [Dum+19], are used to show
their dependence in Figure 3.3c and d, respectively.

3.2.2 Equations of motion: Heisenberg picture

We are now interested in the optomechanical quantum dynamics
happening around some working point in the 2kzm space, as shown
in Figure 3.3. By choosing such a working point, either by moving the
membrane at the proper location zm or by tuning the laser resonantly
with the chosen cavity resonance kc, one fixes the optomechanical
coupling constant, G, the cavity linewidth, κ, and overcoupling, ηc.
For a single optical mode, characterized by the amplitude â and
â†, and a single mechanical mode, with dimensionless position q̂

and momentum p̂, the interacting Hamiltonian can be derived from
Equation 3.3 by substituting the system’s variables with the proper
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quantum operators and using the correct coupling constant G. We find
that

Ĥint = −
√
2 hg0q̂â

†â, (3.6)

where we introduced the vacuum optomechanical coupling rate g0 :=

GxzpΛ, with Λ a geometrical overlap factor between the transverse
mode functions of the cavity Gaussian mode and the chosen mem-
brane normal mode [AKM14; BM16]. The vacuum coupling rate, g0,
expresses the cavity frequency shift caused by a zero-point displace-
ment. By taking into account coupling with the external optical bath
and the thermal bath, the non-unitary dynamics can be described by
means of QLE, as done in Section 1.3 and Section 2.4, which areNon-linear equations

of motion
˙̂a = −

κ

2
â− ıΩcâ+ ı

√
2g0q̂â+

√
κ1âin,1 +

√
κ2âin,2, (3.7a)

˙̂a† = −
κ

2
â† + ıΩcâ

† − ı
√
2g0q̂â

† +
√
κ1â

†
in,1 +

√
κ2â

†
in,2, (3.7b)

˙̂q = Ωmp̂, (3.7c)

˙̂p = −Ωmq̂− Γmp̂+
√
2g0â

†â+
√
2Γmξ̂. (3.7d)

The initial state is assumed to be separable, with the mechanics in a
thermal state and the cavity in the ground state. The radiation pressure
force, proportional to the photon number â†â, makes these equations
non-linear, thus hard to solve analytically. In many cases however, the
non-linearity has a small contribution to the dynamics, which can be
described in a linearized regime.

3.2.2.1 Mean-field steady-state solution

The optomechanical system is usually driven through one of the cavity
ports by a strong coherent external field, from a laser. Here, we assume
that it is injected through port 1. This coherent field is modelled by
the mean complex amplitude of the input field âin,1, i. e.

〈âin,1〉 = aine
−ı(ΩLt+θin), (3.8)

where ΩL is the laser frequency and θin an explicit phase term, which
arises from the adopted convention of taking the cavity field as the
phase reference. The absolute value of Equation 3.8 is related to the
laser optical power, Pin, via ain =

√
Pin/( hΩL). To make the driving

term time-independent, we switch to a frame rotating at the laser
frequency, ΩL. Then, the cavity field rotates at the detuning frequency,
∆ = ΩL −Ωc. Under this continuous driving, the optomechanical
steady-state solution can be found by putting the time derivatives to
zero in Equation 3.7 and taking the quantum expectation value over
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the initial state. The solutions for the cavity amplitude, a, and the
mechanical displacement, q, are

a =

√
κ1√(

κ
2

)2
+
(
∆+
√
2g0q

)2ain, (3.9a)

q =

√
2g0
Ωm

a2. (3.9b)

Choosing the cavity field as a phase reference implies that a is real Steady-state solution

and that the input field phase should satisfy

θin = arctan

(
∆+
√
2g0q

κ/2

)
. (3.10)

One can find the steady-state solution by solving the coupled non-
linear Equation 3.9. They form a pair of known equations, which
can lead to the appearance of phenomena like the static bistability.
The optical power, built up in the cavity, exerts a static, net radiation
pressure force on the membrane, which consequently displaces to a
new rest position, q. However according to Equation 3.5, this leads to
a new cavity resonance frequency, thus a different detuning, ∆̃ = ∆+√
2g0q, and a different intracavity intensity, ncav = a2. The effective

potential experienced by the membrane deforms and shows multiple
stable solutions under certain circumstances. In the following we
always choose to operate in a regime where bistability does not occur.

Also, we finally notice that the new displaced rest position q changes
the optomechanical parameters, as described in Section 3.2.1. However,
this shift remains always much smaller than the optical wavelength,
thus has no significant effect in the 2kczm space. For instance, under
the typical conditions of the experiments described in this thesis, the
steady-state displacement is q ∼ O(103), which corresponds to few
pm.

3.2.2.2 Linearized dynamics of the fluctuations

Away from the bistable regime, we can displace the cavity and mechan-
ical operators by their average value, i. e. â→ a+ â and q̂→ q+ q̂. The
operators â, q̂ are now interpreted as fluctuations around their mean
values. If the frequency shift, g0, caused by a mechanical resonator in
the ground state is smaller than the cavity linewidth, i. e.g0 � κ, these
fluctuations can be considered small compared to the mean values.
Then, higher order terms in the fluctuation operators appearing in
Equation 3.7 can be neglected. The linearized equations of motion are Linearized equations

of motion
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˙̂X = −
κ

2
X̂− ∆̃Ŷ +

√
κ1X̂

θin
in,1 +

√
κ2X̂in,2, (3.11a)

˙̂Y = −
κ

2
Ŷ + ∆̃X̂+ 2gq̂+

√
κ1Ŷ

θin
in,1 +

√
κ2Ŷin,2, (3.11b)

˙̂q = Ωmp̂, (3.11c)

˙̂p = −Ωmq̂− Γmp̂+ 2gX̂+
√
2Γmξ̂, (3.11d)

where X̂ and Ŷ are the cavity field quadrature operators, such that â =

(X̂+ ıŶ)/
√
2, ∆̃ = ∆+

√
2g0q is the effective detuning and g := g0a is

the field-enhanced optomechanical coupling rate. In the following, we will
refer to the effective detuning simply as ∆, for the sake of notation
conciseness. The linearization procedure corresponds to adopting the
linearized, bi-linear Hamiltonian

Ĥint, lin = −2 hgq̂ X̂, (3.12)

a well known linear interaction between coupled harmonic oscillators,
in our case the optical cavity field and the vibrating membrane.

The linear Equation 3.11 can be recast in a simple matrix form as ˙̂x =

Ax̂ + n̂, with the system’s observables vector x̂ = (X̂, Ŷ, q̂, p̂)T and the
noise vector n̂ = (

√
κ1X̂θin

in,1 +
√
κ2X̂in,2,

√
κ1Ŷθin

in,1 +
√
κ2Ŷin,2, 0,

√
2Γmξ̂)

T .
The matrix A is called the drift matrix, according to the nomenclature
derived in Section 1.7, and describes the unitary and dissipative dy-
namics. In particular, the optomechanical system is stable, and thusStability condition

reaches a stationary steady-state when all the real parts of the drift
matrix eigenvalues are negative. Based on this, stability criterion can
be found. Importantly, it turns out that the dynamics remains stable
if a non-positive detuning, ∆, is chosen, as far as static bistablity is
avoided.

For stable systems, Equation 3.11 can be solved ignoring any tran-
sient by taking their Fourier transform. In a matrix notation, the solu-
tion corresponds to x̂(Ω) = (−A− ıΩ1)−1 n̂(Ω). This can be further
used to calculate the PSD of the system’s observable and the output
fields, obtained via the input-output relation Equation 1.13.

Finally, we notice that the linear dynamics and the white input noise
assures that the optomechanical state remains Gaussian throughout
the evolution. Then, it can be fully characterized only by the first two
statistical moments of the system’s observables.

3.2.3 Equations of motion: Schrödinger picture

The optomechanical dynamics can also be described in the Schrödinger
picture. Here, dissipations can be described by means of a master equa-
tion. However, we have seen in Section 2.4 that the quantum Brownian
process leads to non-Markovian dynamics, which cannot be described
by a Lindblad master equation. This problem can be circumvented
for a mechanical resonator with high quality factor, Q� 1, and high
temperature, kBT �  hΩm. Within these limits and the rotating wave
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approximation (RWA), the mechanical dynamics becomes Markovian
and a Lindblad master equation is recovered. When combined with
the optical mode and the linearized optomechanical interaction, one
finds

˙̂ρ =
1

ı h

[
Ĥ, ρ̂

]
+ κD[â]ρ̂+ Γm (nth + 1)D[b̂]ρ̂+ ΓmnthD[b̂†]ρ̂, (3.13)

where ρ̂ is the optomechanical state, b̂ = (q̂+ ıp̂)/
√
2 is the mechan-

ical amplitude and Ĥ includes both the systems and the interacting
Hamiltonians. The initial separable state is ρ̂(0) = |0〉〈0|c

⊗
ρ̂th
m, where

ρ̂th
m is the mechanical thermal state, with average phonon number nth.
An interesting limit is when the cavity mode evolves much faster

than the mechanics and the interaction, i. e. κ� Ωm,g. In this case the
cavity can be adiabatically eliminated [Hof17], reducing the problem
effectively to a description of the mechanical mode only. In a frame
rotating at the mechanical resonance frequency, Ωm, the effective
mechanical master equation is Cavity adiabatic

elimination
˙̂ρm = −ı

[
δΩmb̂

†b̂, ρ̂m
]
+ Γ−D[b̂]ρ̂m + Γ+D[b̂†]ρ̂m, (3.14)

where ρ̂m is the mechanical state density matrix. The radiation pres-
sure force induces a shift of the mechanical resonance frequency,
known as optical spring effect and equals to

δΩm =
∆+Ωm

κ
A+ +

∆−Ωm

κ
A−. (3.15)

where A± = g2|χc(±Ωm)|2 are the optomechanical Stokes/anti-Stokes
scattering rates and χc the cavity susceptibility as defined in Equa-
tion 1.5.

From a comparison of the dissipation terms in Equation 3.14 and in
Equation 3.13, we define the effective mechanical energy decay rate
and the average phonon occupation as

Γeff = Γ− − Γ+ = Γm + Γopt, (3.16a)

neff =
Γ+

Γ− − Γ+
=
Γmnth + Γoptnopt

Γm + Γopt
, (3.16b)

with the rates

Γ± = A± + Γm

(
nth +

1

2
∓ 1
2

)
. (3.17)

In Equation 3.16 we have introduced the additional decay rate, Γopt =

A−−A+, known as the optical damping rate, and nopt = A+/(A−−A+),
which is the effective optical bath occupation.
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3.3 consequences for the mechanical system

The optomechanical effects on the mechanical system can be alter-
natively derived from the solution of Equation 3.11, obtained in the
Fourier domain. The mechanical displacement is fully characterized
by its average value, q, and by the PSD of the fluctuations q̂, whose
symmetrized version is

Sq̂q̂(Ω) = |χeff(Ω)|2 S
tot
FF(Ω), (3.18)

where we have introduced the total force noise PSD,

S
tot
FF(Ω) = Sqba(Ω) + Sth(Ω), (3.19)

and the effective mechanical susceptibility, χeff(Ω).
The first optomechanical effect we notice is indeed a modification

of the bare susceptibility, χm, as defined in Equation 2.20–here used
in terms of dimensionless units, see Section 2.4. The new effective
susceptibility is

χeff(Ω)−1 = χm(Ω)−1 − ı
2g2√
κ
[χc(Ω) − χc(−Ω)∗] , (3.20)

due to the radiation pressure force. On one side, this force modifies theDynamical
backaction conservative potential landscape in which the mechanical resonator

moves, by changing its stiffness. This leads to a shift, δΩm, of the
mechanical resonance frequency, known as optical spring effect. For
a high-Q resonators, the second term on the right hand side (RHS)
of Equation 3.20 can be considered constant over the mechanical
resonance, i. e.Ω = Ωm, and the shift is expressed by Equation 3.15.

On the other side, the radiation pressure force does not instanta-
neously act, but is retarded due to the presence of the optical cavity.
For a detuning different from zero, the optical phase quadrature, pro-
portional to the mechanical displacement, is partially rotated into the
amplitude quadrature, which is responsible for the radiation pressure
force (cf. Equation 3.11). Then, a component of this force is propor-
tional to the displacement of resonator at previous time, yielding a
viscous force, thus additional damping. For a high-Q resonator, this
optical damping rate can be approximated by Γopt, derived in Equa-
tion 3.16.

The dynamical backaction can be controlled by the power and the
detuning of the laser. For red detunings, i. e.∆ < 0, the optical damping
is positive and increases the overall dissipation rate; conversely for blue
detunings, i. e.∆ > 0, the radiation pressure force compensates for the
mechanical dissipation, leading to an overall reduction of the damping
rate. Eventually, this damping rate can become zero, leading to no
energy decay and thus unbounded motion. This represents the typical
scenario of dynamical instabilities, which would preclude continuous
operation of the system, thus the achievement of a steady-state.
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The other optomechanical effect on the mechanical motion is the
introduction of an additional fluctuating force, as shown in Equa-
tion 3.18 and Equation 3.19. This adds to the usual Brownian force
noise, the symmetrized PSD of which is, from Equation 2.26,

Sth(Ω) = 2ΓmSξ̂ξ̂(Ω) ≈ 2Γm (nth(Ωm) + 1/2) , (3.21)

where the approximation holds for a high-Q mechanical resonator,
for which the susceptibility is higly peaked around Ωm and the force
noise can be considered constant there around.

The additional force noise arises from fluctuations in the radiation
pressure force. If the input optical field contains no excess noise, then Quantum backaction

fluctuationssuch fluctuations are generated by the vacuum fluctuations, which
drive the optical cavity mode. The variance of such vacuum fluctua-
tions is expressed by the two-time correlation function in Equation 1.14.
Then, the additional force noise PSD on the mechanical resonator is

Sqba(Ω) = g2
(
|χc(Ω)|2 + |χc(−Ω)|2

)
, (3.22)

usually referred to as the quantum backaction noise. As we will see,
the optical field is continuously performing a displacement measure-
ment on the mechanical resonator. Then, quantum physics imposes
that this measurement should introduce a disturbance on the sys-
tem, via a backaction mechanism, as expressed by the Heisenberg
measurement-disturbance relations in Equation 1.59. In the optome-
chanical context, this backaction mechanism is accomplished by the
fluctuating radiation pressure force.

In absence of optomechanical interaction, the mechanical system Effective mechanical
energyis in thermal equilibrium with a bath at temperature T . The average

mechanical energy can be calculated from the equipartition theorem,
which states that any conjugate observable shares the same energy
content, corresponding to kBT/2. For a mechanical resonator, the aver-
age energy is then E = kBT =  hΩm(nth + 1/2), where the temperature
can be equivalently expressed in terms of average phonon number,
nth.

When we turn on the optomechanical interaction, the quantum
backaction noise displaces the mechanical system away from thermal
equilibrium and increases its energy. As a consequence, the equipar-
tition theorem does not hold anymore and the mechanical energy
should be computed as a quantum expectation value over the mechan-
ical state, i. e. E =

〈
Ĥ
〉

[Gen+08a]. This energy can be equivalently
expressed in terms of an effective average phonon occupation as
neff = E/( hΩm) − 1/2. The effective phonon occupation is usually
interpreted as the average phonon occupation of a single, effective
thermal bath in contact with the mechanical system and it is used to
define an effective temperature.
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For a mechanical resonator, undergoing optomechanical interaction,
we have

neff =

〈
q̂2
〉
+
〈
p̂2
〉
− 1

2
=

∫∞
0

dΩ

2π

(
1+

Ω2

Ω2m

)
Sq̂q̂(Ω) −

1

2
, (3.23)

where we have use the fact that p̂(Ω) = −ıΩq̂(Ω), from the Fourier
transform of Equation 9.5c. For a high-Q resonator, one can assume
that

〈
q̂2
〉
≈
〈
p̂2
〉
, leading to the simpler expression

neff ≈
2
〈
q̂2
〉
− 1

2
=

∫∞
0

dΩ

π
Sq̂q̂(Ω) −

1

2
. (3.24)

Inserting Equation 3.18 in Equation 3.24 we obtain the effective
phonon occupation

neff =
Γoptnopt + Γmnth

Γm + Γopt
, (3.25)

which is the average between the thermal bath occupation, nth, and
effective optical bath occupation, nopt, weighted with the respective
coupling rates, Γm and Γopt. This is in agreement with Equation 3.14,
where

nopt =
|χc(−Ωm)|2

|χc(Ωm)|2 − |χc(−Ωm)|2
. (3.26)

The thermal and optical baths destroy the coherence present in
the mechanical state, by introducing uncorrelated bath phonons into
the dynamics. The typical rate at which a single phonon from theDecoherence rates

and quantum
cooperativity

bath is absorbed by a mechanical resonator in the ground state is
called the decoherence rate. We define the thermal decoherence rate as
γ = Γm(nth +1/2) and the optical, or quantum backaction decoherence rate,
as Γqba = Γopt(nopt + 1/2). Their ratio, known as quantum cooperativity,
forms a useful figure of merit for the appearance of quantum effects.
It is defined as

Cq :=
Γqba

γ
=
Sqba(Ωm)/2

Sth(Ωm)/2
, (3.27)

where, in the last equality, we connect the decoherence rates back to
their spectral definitions. Based on this figure of merit, one can outline
two qualitatively different regimes:

Cq � 1: The thermal decoherence dominates over the quantum back-
action, which can thus be neglected. The effective mechanical oc-
cupation, according to Equation 3.25, is neff ≈ nthΓm/(Γm + Γopt).
For Γopt > 0, which happens whenever ∆ < 0, the final occu-
pation is reduced below the thermal one, therefor the effective
temperature is lowered, leading to an optical cooling effect, known
also as sideband cooling. This cooling can be enhanced by increas-
ing the optomechanical coupling g. Eventually, the quantum
backaction decoherence rate becomes significant and the system
enters a different regime.
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Cq � 1: The quantum backaction decoherence now dominates over
the thermal one. The effective mechanical occupation becomes
neff ≈ noptΓopt/(Γm + Γopt). For many situations one has Γopt �
Γm and the bare mechanical damping rate can be neglected.
Then, the mechanical resonator fully thermalizes to the effective
optical bath and neff ≈ nopt. This effective occupation, calculated
in Equation 3.26, is determined by few parameters, as κ, ∆
and Ωm, and is independent of the optomechanical coupling,
g. This occupation represents the ultimate limit of sideband
cooling, known as quantum backaction limit, or sideband cooling
limit [Wil+07; Mar+07; Pet+16].

3.4 displacement measurements

So far, we have focused on the optomechanical effects arising in the
mechanical resonator. However, this system is ultimately inaccessible
to the experimenter, which can only perform measurements on the
output optical fields outside the cavity. We now turn our attention
to such fields and to the signatures of mechanical motion they carry.
From Equation 3.11, we notice that the phase quadrature of the cavity
field, Ŷ, is displaced by an amount proportional to the mechanical
displacement, q̂. This phase quadrature couples to the external output
field, on which a measurement can be performed. This will effectively
realize a mechanical displacement measurement [BK92], as we will
see.

3.4.1 Standard phase detection

Let’s first consider the case of a measurement on the output phase
quadrature from a resonantly driven optomechanical cavity, ∆ = 0.
In particular, we assume that the measurement is performed on the
transmitted field, i. e. the output field from port 2. Experimentally,
this can be achieved by directing the transmitted field to a BHD. The
transmitted phase quadrature, obtained from the Fourier transform of
Equation 3.11 and the input-output relation Equation 1.13, is Transmitted phase

quadrature

Ŷout = 2g
√
ηcχc,0(Ω)q̂︸ ︷︷ ︸

mechanical displacement

+
√
(1− ηc)ηcκχc,0(Ω)Ŷθin

in,1 +
(
ηc
√
κχc,0(Ω) − 1

)
Ŷin,2︸ ︷︷ ︸

imprecision noise

, (3.28)

proportional to the mechanical displacement, q̂, with ηc = κ2/κ the
cavity overcoupling and χc,0(Ω) the cavity susceptibility at ∆ = 0.

The latter two terms in Equation 3.28 are the fluctuating phase
quadratures of the input fields. They hinder the inference of the
displacement q̂ from the measured phase, limiting the measurement
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precision. As such, they are called the measurement imprecision noise.
For an ideal laser source with no excess noise, these input phase noises,
Ŷin,i, represent vacuum fluctuations, with correlation function given
by Equation 1.14.

The imprecision noise is strictly related to the quantum backac-
tion noise. Both arise from vacuum fluctuations present in orthogo-
nal quadratures of the input optical fields. The fluctuations in these
quadratures, according to quantum mechanics, satisfy the Heisenberg
uncertainty relation. This implies an analogous relation between the
imprecision and quantum backaction noise, as we will see soon. In-
tuitively, when the imprecision noise becomes comparable to, or less
than the typical size of the mechanical ground state wavefunction, one
expects the appearance of a significant disturbance on its momentum,
in order to satisfy the Heisenberg relation uncertainty. It is the quan-
tum backaction noise, in the form of a fluctuating force, which plays
the role of this disturbance.

The PSD of Equation 3.28 can be calculated from the spectrum of
the BHD photocurrent. Including detection inefficiencies and normal-
izing it to the shot noise, as discussed in Section 1.4.2, the measured
spectrum becomes

Sii(Ω) = 1+ Simp(Ω)−1|χm(Ω)|2
(
Sth(Ω) + Sqba(Ω)

)
, (3.29)

where

Simp(Ω) =
1

32ηg2/κ

(
1+

(
2Ω

κ

)2)
=

1

8Γmeas

(
1+

(
2Ω

κ

)2)
,

(3.30a)

Sqba(Ω) =
8g2

κ

(
1+

(
2Ω

κ

)2)−1

= 2Γqba

(
1+

(
2Ω

κ

)2)−1

,

(3.30b)

and η := ηlηqev
2ηc is the total efficiency, which contains both the total

detection efficiency (optical losses, photodetectors quantum efficiency
and visibility) and the cavity overcoupling ηc and we have defined
the measurement rate Γmeas := ηΓqba [Cle+10].

This measured PSD can be calibrated into displacement units in
order to infer the mechanical displacement spectrum. This corresponds
to calibrate out the transduction factor S−1imp(Ω) from Equation 3.29,
yielding

S
inf
q̂q̂(Ω) = Simp(Ω) + |χm(Ω)|2

(
Sth(Ω) + Sqba(Ω)

)
. (3.31)

The interpretation of Simp, arising from the imprecision noise terms,
becomes now clear: spectrally, it represents the background floor of
the spectrum of the inferred mechanical displacement, Sinf

q̂q̂(Ω). This
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imprecision, compared to the mechanical displacement signal, can be
reduced by increasing the quantum backaction decoherence rate Γqba,
sometimes referred to as the measurement strength in the context of
displacement measurements. Heisenberg

measurement-
disturbance
relation

As pointed out earlier, the imprecision noise is not independent
from the quantum backaction noise. From Equation 3.30 we observe
that the product of their spectral value is lower bounded by

Simp(Ω)Sqba(Ω) =
1

4η
>
1

4
, (3.32)

which suggests that an increase in the measurement precision is al-
ways accompanied by a non-zero amount of disturbance, in the form
of quantum backaction noise. Equation 3.32 is part of a class of in-
equalities, known as Heisenberg measurement-disturbance relations [BK92;
WM10; AKM14; BM16] in the context of quantum measurement theory
and it represents the optomechanical form of the more general LMI

Equation 1.59. This is a genuine quantum bound, as measurements
with unlimited precision without disturbance are perfectly allowed by
classical physics.

In the context of quantum measurements, the important figure of
merit is represented by the measurement efficiency [Cle+10], that is, the
ratio between the information acquired from the measurement and
the total disturbance on the system under measurement. In terms of
measurement and decoherence rates, it can be defined as Measurement

efficiency

ηmeas =
Γmeas

Γqba + γ+ γadd
, (3.33)

where γadd is any additional mechanical decoherence, e. g. the one
coming from excess classical noise of from an unmonitored populated
cavity mode. In the case of no additional decoherence, γadd = 0,
inserting the definitions of the measurement and quantum backaction
rates in Equation 3.34 we find

ηmeas =
η

1+ C−1
q

. (3.34)

The Heisenberg measurement-disturbance relation, Equation 3.32, is
equivalently expressed as

ηmeas 6 1, (3.35)

as expected for an efficiency. The measurement efficiency is important
as ηmeas ≈ 1 is the hallmark of measurement-based quantum effects.
This is a stronger condition than what we have derived for quantum
effects in the mechanical resonator, for which Cq � 1 is required.
Here, one also needs a large total efficiency, η ≈ 1.
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3.4.1.1 Limit of standard measurements

The Heisenberg relation, Equation 3.32, also defines an important limit
for sensors based on continuous displacement measurements, as in
Equation 3.31. Let’s suppose that an unknown force, f, couples to the
mechanical resonator. A standard displacement measurement assumes
a resonant laser and a phase quadrature detection. After calibration,
the spectrum of the inferred displacement is

S
inf
q̂q̂(Ω) = Simp(Ω)+ |χm(Ω)|2

(
Sth(Ω) + Sqba(Ω) + Sff(Ω)

)
, (3.36)

where the unknown force, f, is supposed to be uncorrelated from
all the other sources of noise. If the motion caused by f is the signal
we want to measure, then we refer to |χm|2Sff as the spectral signal,
whereas the remaining terms form a spectral noise. Rather, if the un-
known force is what we want to measure, we can calibrate out the
mechanical susceptibility from Equation 3.36 to obtain the inferred
force PSD, i. e.Sinf

FF := |χm|−2S
inf
q̂q̂. Then, the same nomenclature and di-

vision used in the displacement measurement case for signal and noise
holds. In the following we always refer to the case of displacement
measurements.Spectral noise

The spectral noise can be broken down in three contributions

S
n
q̂q̂(Ω) = Simp(Ω) + |χm(Ω)|2Sqba(Ω)︸ ︷︷ ︸

added noise

+ |χm(Ω)|2Sth(Ω)︸ ︷︷ ︸
intrinsic noise

, (3.37)

where the added noise refers to the sum of the imprecision and quantum
backaction noise, added by the measuring system, i. e. the coherent
optical cavity field, and the intrinsic noise refers, instead, to the thermal
and zero-point motion, intrinsic in the mechanical resonator and
independent from the measuring system. To achieve the ultimate
displacement sensitivity, it is important to understand all the sources
of noise and minimize their contribution as much as possible. We
now provide a description of each term in Equation 3.37, focusing
in particular on their dependence on the bath temperature, T , the
measurement strength, Γqba, and the total efficiency, η.

intrinsic noise The intrinsic noise contains fluctuations from both
the thermal motion, which depends on the bath temperature T ,
and the zero-point motion, always present even at T = 0 K. In a
calibrated spectral measurement, Equation 3.36, this noise has a
Lorentzian lineshape and does not depend on Γqba or η.

imprecision noise This is expressed in Equation 3.30a. It can be
approximated as a white noise for frequencies within the cav-
ity linewidth. It is inversely proportional to the measurement
strength, Γqba, and to the efficiency, η. In fact, any detector inef-
ficiency corresponds to additional uncorrelated vacuum noise
reaching the detector, leading to larger imprecision.
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quantum backaction noise The mechanical displacement has
additional fluctuations induced by the quantum backaction noise,
as expressed in Equation 3.30b. This force spectrum can be ap-
proximately considered white for frequencies within the cav-
ity linewidth. In this limit, the induced displacement has a
Lorentzian lineshape and is proportional to the measurement
strength, Γqba.

One parameter we can now tune to minimize the added noise is
the measurement strength, Γqba. Experimentally, this is achieved by
changing the driving optical power, proportional to the optomechan-
ical coupling g2. In Figure 3.4 we show all the noise contributions
as a function of Γqba, at the fixed frequency Ω = Ωm. It is clear that Resonant standard

quantum limitthere exists a trade-off in the added noise between the imprecision and
quantum backaction contributions. The minimum added noise, at the
optimal measurement strength Γopt

qba = Γm/4 for the ideal total efficiency
η = 1, is known as the standard quantum limit (SQL) [Bra68; BK92].
At the mechanical resonance, it corresponds to SSQL

q̂q̂ (Ωm) = 1/Γm.
It equals the resonant displacement spectrum of a resonator in the
ground state, i. e.Szp

q̂q̂(Ωm) := |χm(Ωm)|2Γm = 1/Γm: in this sense, the
SQL is equivalent to half of a phonon, which is the energetic content of
the ground state. Any inefficiency will precludes achieving this limit.

10010-210-410-6 102
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imprecision
intrinsic
backaction
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Standard quantum limit

Figure 3.4: Resonant standard quantum limit. The total spectral noise (black),
normalized to the SQL, at the mechanical resonance frequency,
as a function of the measurement strength Γqba, in unit of the
thermal decoherence rate γ. The spectral noise comprises the
intrinsic noise (green), as well as the imprecision (red) and quan-
tum backaction (blue) noise. The sum of the latter two is the
added noise (gray). Its minimum value, achieved at Γopt

qba = Γm/4,
is the SQL. Any detection inefficiency leads to a higher impreci-
sion noise (dashed red), thus to a higher minimum added noise.
The parameters used are κ/(2π) = 10 MHz, Ωm/(2π) = 1 MHz,
Γm/(2π) = 100 Hz, nth = 50.
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The SQL represents a very important limit and a benchmark for force
and displacement sensors. In the recent decades, several experiments
pushed the sensitivity closer and closer to the SQL [LaH+04; Teu+11;
Sch+14; Mar+16]. However, it turned out that reaching it is quite chal-
lenging, in particular at the mechanical resonance frequency, where
the thermal noise is dominant by many orders of magnitude. Then,
achieving the SQL also requires to suppress this thermal noise, either
via cryogenic techniques or laser cooling.
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Figure 3.5: Off-resonant standard quantum limit. a, Spectra of the Inferred
mechanical displacement, normalized to the corresponding SQL at
each frequency, as a function of frequency, Ω, and measurement
strength, Γqba, in unit of the thermal decoherence rate γ. Darker
blue corresponds to spectral noise closer to the SQL. b, Spectrum
corresponding to the dashed white line in a, at Γqba = 3γ, i. e. a
quantum cooperativity of Cq = 3. The total spectrum (black)
consists of the imprecision (red), intrinsic (green) and quantum
backaction noises (blue). Conversely to a, this spectrum is normal-
ized to the resonant SQL. The spectral SQL is shown for reference
in gray. Away from the resonance, at δΩ/(2π) ≈ 30 kHz, the quan-
tum backaction and the imprecision noises balance each other and
dominate the intrinsic noise, thereby approaching the SQL. The
parameters are the same as in Figure 3.4. The parameters used
are κ/(2π) = 10 MHz, Ωm/(2π) = 1 MHz, Γm/(2π) = 100 Hz,
nth = 50.

Spectral standard
quantum limit The situation is rather different if we consider noise contributions

at frequencies off the mechanical resonance. An SQL can be derived
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at each frequency, yielding a spectral SQL, SSQL
q̂q̂ (Ω) = |χm(Ω)|. It rolls

off slower than the intrinsic noise. Then, at some frequency range
away from the mechanical resonance, the thermal noise contribution
becomes negligible and the total spectral noise is only given by the
added noise. Balancing the imprecision and quantum backaction noise
at these frequencies allows to reach the SQL, as shown in Figure 3.5.
Again, the condition for reaching the off-resonant SQL can be cast in
terms of a large measurement efficiency, ηmeas ≈ 1.

3.4.2 Arbitrary quadrature detection

So far, we have considered the case of a resonant laser. We now relax
this assumption, and calculate the PSD for the general non-resonant
case. The non-zero detuning dynamically couples the amplitude and
phase quadratures of the cavity field. As a consequence, the infor-
mation about the mechanical displacement is now distributed over
both quadratures. The most general expression for the cross-spectrum
of any two quadratures of the transmitted field at angles θ and φ,
normalized to the shot noise, is

SX̂θX̂φ(Ω) = cos (θ−φ) + S−1imp(Ω)Sq̂q̂(Ω)

+ 2S
−1
imp(Ω)<

[
χeff(Ω)∗Scorr(Ω)

]
, (3.38)

where the transduction function

S
−1
imp(Ω) = 2g2η<

[
e−ı(θ−φ)

(
|χc(Ω)|2 + |χc(−Ω)|2

)
−2e−ı(θ+φ)χc(Ω)χc(−Ω)

]
(3.39)

generalizes the expression in Equation 3.30a, by taking into account
the filtering effect from the cavity susceptibility. Analogously, we can
define a generalized measurement rate as Γmeas := Simp(Ωm)/4.

The main difference compared to the resonant case is the appearance
of a complex correlation term, which is

Scorr(Ω) =

=
[
e−ı(θ+φ)χc(Ω)χc(−Ω)

]
+ ı<

[
e−ı(θ−φ)

(
|χc(Ω)|2 − |χc(−Ω)|2

)]
<
[
−e−ı(θ−φ) (|χc(Ω)|2 + |χc(−Ω)|2) + 2e−ı(θ+φ)χc(Ω)χc(−Ω)

]
(3.40)

These are correlations between the fluctuations of the imprecision
noise and the ones of the displacement induced by the quantum back-
action. They are absent in the PSD for a standard phase measurement,
Equation 3.29, because, there, the imprecision and quantum backaction
noises originate from orthogonal quadratures, respectively the phase
and amplitude quadratures.
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To infer the mechanical displacement from Equation 3.38, one can
calibrate the transduction out in order to obtain

S
inf
q̂q̂(Ω) = Simp(Ω) cos (θ−φ) + Sq̂q̂(Ω) + 2<

[
χeff(Ω)∗Scorr(Ω)

]
.

(3.41)

In this case the measurement added noise satisfies the relation [Cle13]

Simp(Ω)Sqba(Ω) >
1+ 4|Scorr(Ω)|2 + |1+ 4Scorr(Ω)2|

8
, (3.42)

which is a generalization of the Heisenberg measurement-disturbance
relation, Equation 3.32, and provides a quantum bound for the corre-
lation strength, which is stronger than the classical bound

Simp(Ω)Sqba(Ω) > |Scorr(Ω)|2. (3.43)

That is, imprecision and backaction noise cannot be zero in the quan-
tum case, even more they cannot be perfectly correlated, as expressed
by Equation 3.42.

We finally notice that Equation 3.38 represents the PSD of the arbi-
trary output quadrature at angle θ, when θ = φ.

3.5 ponderomotive correlations

Let’s now focus on the correlations created in the output field, Equa-
tion 3.40. They are created by the mechanical motion and, as such, are
known as ponderomotive correlations [MT94; Fab+94]. In certain regimes,
such correlations become quantum and find use in many applications,
ranging from quantum-enhanced sensing to generation of entangled
states.

To clarify the meaning of quantum correlations and when they arise,
let’s consider the PSD from Equation 3.38 with θ = φ in the case of a
broad, κ� Ωm, and resonant, ∆ = 0, cavity. Within this regime, the
measured optical spectrum is

SX̂θX̂θ(Ω) = 1︸︷︷︸
shot noise

+ 16Γmeas sin2(θ)|χm(Ω)|2
(
Γqba + γ

)︸ ︷︷ ︸
effective mechanical displacement

+ 4Γmeas< [χm(Ω)] sin (2θ)︸ ︷︷ ︸
ponderomotive correlations

. (3.44)

An example of such a spectrum is shown in Figure 3.6, as well as its
dependence on the detected quadrature angle. The correlation term,
Equation 3.40, becomes real and the generalized Heisenberg relation,
Equation 3.42, takes the simple form

Simp(Ω)Sqba(Ω) >
1

4
+ Scorr(Ω)2, (3.45)
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Figure 3.6: Spectrum of ponderomotive squeezing. a, Spectra of the detected
output field quadratures, at the phase value θ = π/2 (dashed
black) and at θ = 0.9π (purple), as well as the shot noise (gray).
The correlations appear in the non-phase quadrature as an asym-
metric contribution (green). Such ponderomotive correlations lead
to noise reduction below the shot noise, i. e. squeezing, at frequen-
cies where they assume a negative value. b, Spectra as a function
of the frequency, Ω, and the detected quadrature angle, θ. The
amount of squeezing increases from yellow to blue. The dashed
(solid) black (purple) line corresponds to the quadrature spectrum
at θ = π/2 (0.9π), shown in a.

which poses a bound on the maximum achievable correlation.
As expected, the ponderomotive correlations vanish at the phase

quadrature θ = π/2. Also, they disappear at the mechanical resonance
Ωm, where the induced displacement has a phase shift of π/2 com-
pared to the driving force. If the imprecision noise is correlated with
the quantum backaction noise, the mechanical motion induced by the
latter will be uncorrelated with the imprecision noise. Correlations are
observed at frequencies away from the mechanical resonance. Their
frequency lineshape is asymmetric and contributes to reduce the spec-
tral noise, whenever it assumes negative values. From Figure 3.6b, it is
easy to see that the minimum spectral value is obtained in the limits
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θ→ 0+ and Ω→ Ω−
m, or, equivalently, θ→ π− and Ω→ Ω+

m. In these
limits, one finds the lower bound

SX̂θX̂θ(Ω) > 1− ηmeas. (3.46)

This suggests that, for large measurement efficiency, the fluctuations
of the measured optical quadrature can be reduced below the vacuum
noise level of 1. The optical state giving raise to this quantum noise
reduction is often called a squeezed state. In the optomechanical case
this noise reduction phenomenon, caused by mechanically induced
correlations, is referred to as ponderomotive squeezing and was recently
experimentally observed [Bro+12; Saf+13].

We can also interpret the spectrum measured by the homodyne
detector as a two-mode measurement, as detailed in Section 1.5.1.Quantum

correlations in
ponderomotive

squeezing

Then, ponderomotive squeezing can be understood as the verification
of the entanglement of a bipartite states, composed of two spectral
components mode at ±Ω, where Ω is the frequency component in
Equation 3.44 showing squeezing. This entangled state is in the form
of a two-mode squeezed state and its two-mode intensity correlation
function violates a classical Cauchy-Schwarz inequality [WM08]. In
this sense, the ponderomotive correlations can become quantum ones.

The entangled spectral components are co-propagating modes of
the same field. To find use in entanglement-based applications, one
should spatially separate them, e. g. via a frequency discriminator like
an optical cavity. A different approach would be, instead, to generate
these correlations between modes of two different fields, separated
from the beginning. This is indeed possible, and forms the basic idea
of the experiment reported in Section 9.2.



4
E X P E R I M E N TA L T O O L S A N D M E T H O D S

In this chapter we transition to reviewing the main experimental tools
employed. In the first part we describe the setup, which includes
both the optical and electronic components, as well as the mechanical
hardware supporting the experiments and the cryogenic environment.
In the second part we move to describe the experimental methods
we use to measure the main optical and mechanical parameters. In
particular, we provide a detailed explanation on how we characterize
the optomechanical coupling, of crucial importance for the quantitative
calibration of the raw measurements, which are just electric signals
from a detector, into displacement units.

4.1 experimental setup

In Figure 4.1 we show the conceptual blocks composing our main
experimental optical setup. This figure and the description provided
here form the general basis for the experiments reported in later
chapters, where instead we include just a sketch of the setup. For more
details, the reader should refer to this section. The setup comprises
three main conceptual blocks: (i) the beam preparation, with the laser
sources and the modulations, (ii) the optomechanical cavity, kept cold
inside a cryostat, and (iii) the optical detection stage, in turn composed
of a monitoring and a measurement part.

4.1.1 Beam preparation

The main light sources are two commercial continuous-wave (CW)
Solstis Ti:shappire (TiS) lasers, from MSquared1. They are both pumped
by a common CW diode laser at 532 nm, a Sprout-G from Lighthouse
Photonics2, with power up to 10 W. Such pump power determines
both the TiS output power and, more importantly, its excess intensity
noise characteristics, due to the laser medium relaxation oscillations.
For quantum optomechanical experiments it is important to employ a
quantum-noise-limited optical field in the frequency range around the
mechanical resonance frequency, ∼ 1 MHz for the experiments hereby
reported. Thus, we tune the pump power to achieve the minimum
excess noise at these frequencies, guaranteeing at the same time a
stable lasing operation. More details on the laser excess noise can be
found in Appendix B.

1 m2lasers.com
2 lighthousephotonics.com
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https://www.m2lasers.com/solstis.html
http://lighthousephotonics.com/products/sprout-g/
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Figure 4.1: Principal elements of the optical experimental setup. From the
left, a master diode laser, at 532 nm, is employed to pump two Ti:S
lasers. They are subsequently processed by external amplitude
and phase modulators to provide useful signals for locks and
calibrations. Part of each laser is split and coupled into an optical
fiber to provide an LO beam for homodyne detectors. The rest is
combined by a polarizing beam-splitter (PBS) and sent to the next
stage. Here, a 50 : 50 beam-splitter (BS) is used to monitor both
the power through the amplitude modulator and the reflected
powers from the optomechanical cavity. The transmitted beams
can be measured by means of either a BHD or direct detection, by
flipping the mirrors indicated by dashed black contours. Finally,
the transmitted beam from the cavity can also be redirected to a
charge-coupled device (CCD) to monitor its transverse profile.

The active medium of a TiS laser is a sapphire crystal rod, doped with
titanium ions and placed inside a bow-tie ring cavity. A combination of

EOM
PZT out

pump TiS rod

Inside of a TiS laser

an optical diode, a birefringent filter, an etalon and a piezo-translating
cavity mirror allows continuous single-mode lasing, tunable over
a broad range from ∼ 700 nm to ∼ 1000 nm. Together with stable
optical mountings, this allows ultra-narrow-linewidth of < 50 kHz.
In order to accurately monitor the laser wavelength, a small fraction
of the output light is fiber-coupled into a wavelength-meter with pm
precision. A mechanical fiber switch is used to swap the input fiber in
the wavelength-meter.

The laser frequency can also be externally fine-tuned by means of
a dual piezo, which translates one of the laser cavity mirrors. This
provides both a slow (∼ 50 Hz, 1.5 GHz/V) and fast (∼ 100 kHz,
4 MHz/V) actuation, used to stabilize the frequency detuning be-
tween the lasers and the optomechanical cavity, as described later, in
Section 4.1.3.1.

We can modulate the laser field amplitude with an external fiber-
based amplitude modulator, AM830 from Jenoptik3. The on-chip de-Laser modulations

vice is composed of a Mach-Zender interferometer with the phase
difference electronically controlled via the electro-optic effect. The
modulation response function thus has a sinusoidal shape. To obtain a
linear response, one has to stabilize the working point in gray-fringe,

3 jenoptik.com

https://www.jenoptik.com/products/optoelectronic-systems/light-modulation/integrated-optical-modulators-fiber-coupled/amplitude-modulator
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i. e. at phase shift of π/2. Despite the small size of the chip, passive
stability is not sufficient and active stabilization is required [Bec05].
To do that, we split the field transmitted through the modulator and
monitor its power via direct detection. The photocurrent forms the
error signal for a PI servo. The output feedback signal is used to
actuate the bias DC voltage of the modulator, to lock it at the chosen
set-point.

We can also perform phase and frequency modulations on the laser.
The former is done via a fiber-based modulator, a NIR-MPX800 from
iXblue4, based on the electro-optic effect. The main characteristic of
such a device is the DC voltage, Vπ, required to generate a π-phase
shift. For our device, we measure it to be Vπ = 3.6 V [Che20]. The
frequency modulation is, instead, achieved by means of an electro-
optic modulator (EOM) located directly inside the laser optical cavity.

4.1.2 Optomechanical cavity

The generated beams are distributed, via optical fibers, to both the
homodyne detectors and the optomechanical cavity, which we discuss
now. It comprises two high-reflective mirrors and a membrane res-
onator chip, assembled together in a sample holder kept in vacuum
and at low temperature in a cryostat.

4.1.2.1 Optical cavity

The optical cavity is formed by two asymmetric mirrors, one flat and
the other spherical, with a radius of curvature of 25 mm, separated by
a total length of L ≈ 1.6mm. The mirrors also differ in the coating spec-
ifications, as measured by Nielsen [Nie16] and shown in Figure 4.2a.
Combined with our widely tunable lasers, this enables operation of
the cavity in very different regimes, e. g. from very low finesse config-
urations to moderate finesse values and large overcoupling, which are
interesting regimes for the experiments later reported.

The mirrors’ substrates are cylinders of fused silica, with diameter
of 7.75mm and thickness of 4mm. They have structural normal modes Mirror noise

which vibrate due to their coupling to a thermal bath. This thermal
motion is kept relatively small due to the large mass of these normal
modes. Nevertheless, this motion introduces fluctuations in the op-
tical cavity length, which is transduced into frequency fluctuations
of the transmitted optical field from the cavity. Such ponderomotive
frequency noise, which we refer to as mirror noise, forms an additive,
excess noise when measuring other mechanical motion, e. g. from
a membrane in the cavity, and thus limits the achievable displace-
ment sensitivity. It turns out that, for the low sensitivities required
in quantum measurement experiments, such mirror noise can play

4 ixblue.com

https://photonics.ixblue.com/store/lithium-niobate-electro-optic-modulator/phase-modulators


64 experimental tools and methods

780 850840830820810800790
101

102

103

104

105

Finesse

Tr
an

sm
is

si
vi

ty
 (p

pm
)

101

102

103

104

105

105

103

101

0.0 0.2 0.4 0.6 0.8 1.0 1.2

100

102

1.05 1.15 1.25

1.0

0.8

0.6
780 800 820 840

PL/CC PL/PL

293 K 4 K

a

b

Figure 4.2: Optical and mechanical properties of the cavity mirrors. a, Trans-
missivity of the spherical (orange) and flat (green) mirrors, and
corresponding finesse (black), as a function of the optical wave-
length λ. The inset show the corresponding cavity overcoupling,
ηc. b, Spectra of the amplitude quadrature of a transmitted field
through the empty cavity, locked to the side of its resonance, at
room (red) and cryogenic (blue) temperature. The observed peaks
corresponds to Brownian motion of the vibrational modes of the
mirrors’ substrates. As they are cooled down the area diminishes
and the resonance frequencies shift, as a results of the substrates
thermal contraction. The inset shows an enlarged view of the
boxed area, which is the spectral region of interest.

an important role and should be taken into account in designing the
experiment.

We experimentally characterize the mirror noise by assembling an
empty optical cavity and measuring the amplitude quadrature of a
transmitted field, locked on the side of a cavity mode. A phenomeno-
logical fact is that such mirror noise largely depends on the material in
direct contact with the mirrors’ substrates. In order to mimic, as close
as possible, the conditions in the optomechanical cavity, we assemble
an analogous empty cavity in the same way, as described later in
Section 4.1.2.3. The only difference, now, is that the membrane chip is
replaced by a silicon chip of equal dimensions, with the membrane
replaced by a square aperture. In Figure 4.2b we show the spectrum
of the measured amplitude quadrature. The substrates’ normal modes
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appear as peaks at different frequencies, which have been recently
verified also by numerical simulations [Mat19]. These measurements
are useful as they guide us in choosing the mechanical resonance
frequency when designing the membrane resonator. In particular,
we choose to work in the region 1.0÷ 1.2 MHz, where the spectrum
becomes relatively quiet.

4.1.2.2 Membrane resonator

The mechanical resonator is a soft-clamped membrane [Tsa+17], made
of 3.6 mm x 3.6 mm x 20 nm highly-stressed Si3N4, suspended on top
of a 15 mm x 15 mm x 0.5 mm silicon chip, as shown in Figure 4.3a.

10-30
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a b

c

Figure 4.3: Soft-clamped membrane resonator. a, Real picture of a membrane
chip. The large red area is the silicon frame, whereas the central
white area is the Si3N4membrane. The defect is the white spot
at its center. Photo by David Mason. b, Simulation of the mode
profile of the in-bandgap mode of interest, mostly localized at
the defect and soft-clamped as it decays towards the edges. c,
Measured mechanical displacement spectrum. The honeycomb
structure provides a bandgap, visible from 1.07 MHz to 1.27 MHz.
The few in-bandgap modes are localized to the central defect. The
black arrow indicates the mode of interest, at 1.14 MHz. The gray
peak, at 1.09 MHz, is a phase modulation tone for calibration
purposes.

The honeycomb lattice provides a phononic bandgap for out-of-
plane modes. The central defect has been engineered to support local-
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ized vibrational modes which lie in the bandgap. This prevents their
propagation towards the membrane edges, where the mechanical en-
ergy is dissipated, via radiation loss, into the supporting silicon frame,
as discussed in Section 2.2. When combined with dissipation dilution
and soft-clamping, extremely large quality factors of Q ∼ 109 can be
achieved for the in-bandgap defect modes at cryogenic temperature.
We later focus on a single defect mode, whose mode profile is shown
in Figure 4.3b. Unless otherwise stated, when we talk about the me-
chanical mode, we usually refer to this particular normal mode. The
six small holes close to the defect edge allow to push the resonance
frequency further towards the bandgap centre [Tsa19], as shown in
Figure 4.3c, increasing the shielding from radiation loss.

Achieving a large, clean region in the spectrum around the me-
chanical mode in the bandgap is crucial for achieving control of that
mode. When designing the membrane resonator, one needs to pay
attention to other structural defects, which can introduce other modes
even inside that bandgap. For example, the boundary between the
membrane and the silicon frame requires the pads and tethers to be
cut somewhere. These are, then, defects which can sustain vibrational
modes, located at the edges. In order to tune their frequencies away
from the bandgap and from the mechanical mode, one can shift the
boundary line, thus reducing the amount of mass present in those
edge defects.

4.1.2.3 Sample holder

The membrane is then assembled in the middle of the optical cavity.
The sample holder we employ is the result of several iterations and
prototypes, efforts of several people over the years [Nie16; Tsa19;
Che20]. Its design is based on two requirements: (i) high passive
stability, obtained by a monolithic assembly with as few degrees of
freedom as possible and (ii) large degree of orthogonality between the
membrane surface and the cavity optical axis. The former requirement
precludes the use of piezo actuators to tune the cavity length and
the membrane position inside the optical cavity. This is necessary forControl of

optomechanical
parameters

tuning the optomechanical working point, as discussed in Section 3.2.1.
Instead, we exploit the wide tuning range of our lasers to achieve
such control. This corresponds, for a fixed membrane position zm,
to tuning the laser frequency to different longitudinal cavity modes,
with wavenumber kc. As already discussed, these different modes will
effectively sample a different working point in 2kczm. In Figure 4.4a
we show, in circles, the measured cavity frequency shifts for a sample
of 9 subsequent cavity modes, and a fit based on Equation 3.5. From
it we extract a FSR of ΩFSR/(2π) = 93 GHz, corresponding to a cavity
length of L = 1.6 mm, and a membrane-mirror separation of zm =

0.5 mm, consistent with the thickness of the silicon spacer used. Also,
from the maximum frequency shift, we estimate a membrane thickness
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of h = 14 nm, lower than the nominal value of 20 nm. We hypothesize
that the discrepancy arises from a slow etching of the silicon nitride
during the release of the structure, in the fabrication process [Tsa19].
We choose to work with the mode at 796.060 nm, located at the
highest gradient point, where the optomechanical coupling constant G
is maximum. Based on the fit line and on the knowledge of the mirror
coatings we can also calculate the expected cavity overcoupling, for
each mode, as shown in Figure 4.4b. For the chosen mode we expect
ηc ≈ 0.95.
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Figure 4.4: Measured cavity resonance frequency shifts and simulated over-
coupling. a, The resonant wavelength of several cavity modes are
measured (labels, in nm) and the corresponding frequency shifts
(blue dot) are plotted in 2kczm. We fit them to a model (light
blue). The mode indicated by the red dot features the largest
optomechanical coupling constant. b, From the fit we infer the
corresponding cavity overcoupling, ηc, for each cavity modes.
The red cross is the cavity mode with largest optomechanical
coupling constant.

Figure 4.5 shows a breakout schematic of the cryostat and sample
holder. The latter is fully machined from elmedur copper to ensure
good thermalization at cryogenic temperature of liquid helium, 4 K.
The two mirrors are separated by a stack of three silicon chips, the
middle of which contains the membrane resonator. A thin copper
plate is used to clamp down both the flat mirror and the chips stack.
One needs to take extra care when tightening the four screws which
clamp this copper plate. In fact, overtightening this plate can break
the silicon chips underneath, thereby destroying the membrane chip
as well. We perform a series of assemblies in which we measure the
torque we apply to the screws until the chips break, from which we
find that the maximum torque we can apply without breaking them
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is 3.1 N · cm. We then always tighten the screws with this value, by
using a torque driver. The curved mirror is placed on top of the stack
and horizontally translated in order to align the cavity optical axis
with the membrane defect. Then, it is clamped down by means of a
copper cap. Both mirrors lay on rubber o-rings, which allow to reduce
the mechanical dissipation of the substrates’ normal modes and, thus,
reduce the mirror noise [Nie16]. The membrane chip is separated from
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Figure 4.5: Breakout of the optomechanical cavity setup. a, Section view of
the optomechanical cavity once attached to the cryostat cold finger.
b, Detailed section view of the optomechanical cavity setup.

the flat mirror by a silicon spacer. The very small roughness of the
mirror surface and of the silicon spacer ensures that, once everything
is firmly clamped down, the membrane area is perpendicular to the
cavity optical axis.

During assembly, we only need to align the optical axis relative
to the membrane. This is important in order to (i) avoid clippingAlignment of the

optomechanical
cavity

the optical mode with the honeycomb lattice and (ii) obtain a large
overlap, Λ, between the mechanical and optical modes transverse
profile, required to have a large optomechanical coupling rate, g0.
Given that we always use the fundamental transverse optical mode,
the TEM00, and the mechanical mode profile shown in Figure 4.3b,
the optimal alignment is when the optical axis is centered with the
membrane defect. To achieve that, we translate the spherical mirror
horizontally, while sweeping the laser frequency and monitoring both
the transmitted optical profile and imaging the membrane with the
CCD (cf. [Che20] for more details).

4.1.2.4 Cryostat

Once assembled, the sample holder is rigidly attached to the cold
finger of a continuous flow cryostat ST-100 from Janis5, as shown
in Figure 4.5a. The cryostat comprises a metallic cylindrical vacuum

5 janis.com

https://www.janis.com/Products/productsoverview/SuperTranContinuousFlowCryostatSystems/ST-100_OpticalCryostat.aspx
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can, evacuated with a turbo-molecular pump down to a pressure of
∼ 10−5 mbar. Inside, the cold finger is surrounded by another thin Cryostat operation

metallic can, which shields the cold sample from the hot, room temper-
ature radiation coming from the outer can. After evacuation, cooling
is initiated by flushing liquid helium from a storage dewar into the
inner cold finger. The dewar is pressurized at 0.2÷ 0.5 bar from the
helium which is evaporated when the transfer line is inserted. Such
pressure is sufficient to push the cryogenic liquid through the line
down to the cold finger and guarantees continuous cryostat operation,
until the dewar is emptied. A resistive thermometer is attached next
to the cold finger and allows to monitor the inner temperature of
the cryostat, which can reach at most 3.9 K. The cooling rate can be
regulated by controlling the aperture of a needle valve, on the transfer
line. Sometimes we observe that a cooldown happening “too fast”,
or “too slow” can result in degradation of the mechanical quality of
the membrane, or even its rupture. Despite a lack of clear evidence,
we hypothesize that this comes from either a fast stress redistribu-
tion, due to different materials’ contraction, or a condensation of gas
molecules on the membrane surface. In order to avoid that and to
have a systematic cooldown method we choose to use a cooling rate,
starting from room temperature, of 7 K/min, measured by the cold
finger thermometer.

4.1.3 Optical detection

We measure the optical fields by means of photodetectors, as discussed
in Section 1.4. We employ both direct and balanced homodyne de-
tection. We employ these measurements to derive an error signal for
stabilization purposes, to monitor the optical powers and to measure
the membrane mechanical motion.

4.1.3.1 Direct detection

As shown in Figure 4.1, we perform several direct detections. We have
already seen an example when discussing the amplitude modulator
and the error signal needed to stabilize its working point.

We directly detect the fields which are reflected from the optical
cavity. The photocurrent is used to generate an error signal for a
Pound-Drever-Hall (PDH) lock, which allows to stabilize the laser
frequency at around the cavity resonance [Bla01]. This also requires
a modulation of the laser frequency, which is imposed via the laser
intracavity EOM. In Figure 4.6a we show a more detailed electronic
schematic for the PDH locks we implemented in the experiments.

The transmitted beams can also be directly detected by two avalanche
photodiodes (APDs). The DC photocurrent can be used as a measure
of the optical power, to infer the cavity circulating power. In addition,
the photocurrent forms the error signal for a slope lock, which can
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Figure 4.6: Electronic schematic of cavity locks. a, PDH lock, based on the
directly detected reflected beam. b, Slope lock, based on the
directly detected transmitted beam

stabilize the laser frequency on the side of a cavity resonance, where
the intensity gradient is largest. In Figure 4.6b we show a schematic of
the electronics used for the slope lock.

4.1.3.2 Balanced homodyne detector

The main measurements of mechanical motion are performed via
quantum-limited phase-sensitive detection, which takes the form of a
polarization-multiplexed BHD. The LO and the signal fields, in linear
orthogonal polarizations, are mixed on a PBS. A subsequent half-
waveplate (HWP) rotates their polarization by 45 degrees, and they are
then split by another PBS. The output fields are sent to two photodiodes,
arranged in a subtraction configuration, as shown in Figure 4.7.

To achieve a large interference visibility we align and focus the LO,
in order to mode-match the signal field, and employ photodiodes
with large quantum efficiency, ηqe. At near-infrared (NIR) wavelengths,
which we use, silicon photodiodes are best suited. They can, in fact,
reach up to ηqe = 98%, at a wavelength of λ ∼ 850 nm. Standard
commercial photodiodes, however, are packaged in an aluminium can
with a protective glass window in front. This glass slab introduces
optical absorption and reflection, degrading the efficiency down to
87%. To avoid that, we use custom S5971 photodiodes, from Hama-
matsu6, without the protective window. The electronic schematic of
the balanced detector is shown in Figure 4.8. The photodiodes are
reversed-biased with 12 V and arranged in a subtraction configuration.
The resulting photocurrent is converted into a voltage signal via a
transimpedance operational amplifier, with a gain of −10 kV/A. Then,

6 hamamatsu.com

https://www.hamamatsu.com/us/en/product/type/S5971/index.html
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Figure 4.7: Optical and electronic schematic of a homodyne detector. The
LO optical path is controlled by a piezo-actuated mirror. It is
combined to the signal field from the cavity on a PBS, and sent to a
balanced detector. The RF part of the photocurrent is split from the
DC. The latter is fed into a digital controller and further processed
to provide a feedback signal for stabilization of the signal-LO

path difference. The RF part is digitized and acquired with a
DAQ card for further data analysis. Simultaneously, it is sent
to multiple digital controllers, which are used as tunable band-
pass filters. This is part of a feedback loop aiming to cool down
some mechanical modes of the membrane. The filtered signals
are recombined together, amplified and sent to the amplitude
modulator for actuation.

it is further amplified by an inverting operational amplifier, with a
gain of −2. Finally, the output electrical signal is split in two parts,
one of which is high-pass filtered to provide only the RF components.
The other part, which contains also the DC, is used for monitoring
and stabilization purposes.

-
+ -

+
-12 V

+12 V G=-10kV/A G=-2

RF
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Figure 4.8: Electronic schematic of balanced detector.

The quadrature component measured by a BHD is chosen by con-
trolling the path length difference, ∆L, between the LO and the signal
fields. Their path lengths fluctuate due to both slow drifts, as caused
by temperature variations, and fast noises, as caused by environmental
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vibrations. For optimal and accurate operation, one needs to actively
stabilize the resulting phase difference θl := k∆L, with k the laser
angular wavenumber. These fluctuations are imprinted in the DC part
of the photocurrent, as VDC ∝ cos(θl), which can be used as an error
signal for a servo loop. The feedback actuates on a piezo, which trans-
lates a mirror on the LO path and controls the phase difference θl, as
shown in Figure 4.7.

Depending on the quadrature angle we want to measure, we use
two different stabilization techniques. For measurements around theStabilizing the

homodyne detector phase quadrature, θl ∼ π/2, we use directly the low frequency part
of the BHD photocurrent, VDC, as an error signal for a slope lock.
Around the amplitude quadrature, θl ∼ 0, the photocurrent gradient
is zero. Therefore, it cannot be used directly for stabilization, as it
does not allow to discriminate between positive and negative drifts.
In this case, we can derive a useful error signal from the photocurrent
derivative. This is obtained by modulating the path difference ∆L with
a known, coherent tone and demodulating the photocurrent at the
same frequency. This forms the basic of the dither lock technique, which
we implement for amplitude quadrature stabilization.

Both locks are digitally implemented via a RedPitaya system7, which
is equipped with fast ADCs and an FPGA. An open source Python
project, PyRPL [Neu+17], provides the software for both the servo
controller and the signal generators, to output the feedback signal
and the dither tone. The analog output signal from RedPitaya is
further amplified by a homemade high-voltage amplifier from ±1 V
to −30/+ 60 V, then sent to the piezo.

The final part of the detection is formed by a digital acquisition
system. The RF photocurrent component is digitized by a fast, high-Data acquisition

system resolution data acquisition system (DAQ) card, M2i.4931-exp from
Spectrum8. Each channel has a 16 bit vertical resolution and a sampling
rate of 15 MS/s. To avoid electronic aliasing effects, we use an analog
5 MHz low-pass filter in front of each channel.

For estimating the power spectra of the measured signal, we process
the digitized time traces according to the Bartlett’s method. It is based
on averaging several periodograms obtained from non-overlapping
portions of the digitized signal. In the periodograms’ estimation we
use a Hanning window function [PM07].

4.2 calibration methods

We now move to discuss the calibration procedures and preliminary
measurements we perform to estimate the main parameters of the op-
tomechanical experiments. On one side, these allow to independently
derive theoretical predictions which can corroborate the experimental

7 redpitaya.com
8 spectrum-instrumentation.com

https://www.redpitaya.com
https://spectrum-instrumentation.com/en/m2i4931-exp
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results. On the other side, they offer a way to calibrate the measured
signals in the lab, which are electric voltages, into proper mechanical
units.

4.2.1 Optical cavity

We start with an overview of measurement protocols and estimations
of the main parameters of the optical cavity.

cavity linewidth , κ We linearly sweep the laser frequency around
the cavity resonance and detect the transmitted optical inten-
sity via direct detection. The photocurrent is recorded on an
oscilloscope, the horizontal axis of which is calibrated into fre-
quency units by means of a known phase modulation tone. The
recorded trace is fitted to a Lorentzian function to extract the
cavity linewidth, κ. When there is a membrane inside the cavity,
sweeping over the blue side, i. e.∆ > 0, leads to mechanical
dynamical instabilities (cf. Section 3.2.2.2). The consequent mo-
tion amplification causes fluctuations of the cavity resonance
frequency, and thus also of the detuning, much larger than
the cavity linewidth. Effectively, this broadens the cavity peak
detected in the transmission intensity, making the fitting impre-
cise, if not impossible. To mitigate this problem, we turn on the
auxiliary laser and tune it on the red side of a different longi-
tudinal cavity mode, with κ � Ωm: this generates additional
optical damping which counteracts the instability caused by the
swept laser when blue-detuned. We finally note that addressing
a different cavity mode with the auxiliary laser avoids having a
low-frequency beating between the two lasers in the recorded
photocurrent.

detuning , ∆ We obtain the laser-cavity detuning from the transmit-
ted optical powers. We first sweep the laser over the resonance
and record the peak voltage, Vp, on the oscilloscope. Then, we
lock the laser to the cavity and measure on the oscilloscope the
transmitted power, i. e. the resulting voltage Vt. From these two
voltage measurements we obtain the detuning, in units of the
cavity linewidth, as

∆

κ
=
1

2

√
Vp

Vt
− 1. (4.1)

If the cavity linewidth is known, we can get the absolute value
of the detuning.

overcoupling , ηc We estimate it, for the empty cavity, from the
measured coating curves of the mirrors, shown in Figure 4.2a.
In presence of a membrane, the overcoupling is modulated ac-
cording to the position in 2kczm, as discussed in Section 3.2.1.
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We estimate the modified overcoupling from a model obtained
from the mirror coatings and the fitted frequency shifts, as done
in Figure 4.4.

4.2.2 Optical detectors

We now discuss how we calibrate the optical detection part, in partic-
ular how to measure the homodyne quadrature angle and the various
contributions to the total detection efficiency, ηd := ηlηqev

2.

quadrature angle , θl The DC part of the photocurrent carries
information about which quadrature is measured. In general, the
DC photocurrent is VDC = Va cos(θl)+Vo. The quadrature angle
can be estimated from the knowledge of the actual value, VDC,
the maximum value of the interference fringe, VM = Va + Vo,
and the minimum one, Vm = −Va + Vo, as

θl = arccos
(
VDC − Vo
Va

)
. (4.2)

The offset Vo accounts for imperfect power balancing. The maxi-
mum and minimum of the interference fringe can be measured
by ramping the piezo for a distance ∆L > λ/2.

optical loss efficiency, ηl The optical losses are due to imper-
fect optical components along the beam path, as PBSs, HWPs
and lenses. We measure the overall loss directly from the ra-
tio of the optical powers measured in front of the photodiodes
and just at the output of the cryostat, and find ηl = 92%. This
does not include losses from the cryostat optical window, which
has a nominal transmissivity of 99.6%. The measured efficiency
compares well with the expected one, from nominal values and
independently measured losses. Their contribution is reported
in Table 4.1.

photodiode quantum efficiency, ηqe We start by assembling
the photodiode in a simple, passive transimpedance circuit, with
a reverse bias voltage on the diode. The detector gain, Gd, is
the value of the resistor used, which we previously measure
with a voltmeter. We then measure the linear DC response of the
photodiode by recording the photocurrent, VDC, as a function of
the impinging optical power, P. The linear relation is expressed
as VDC = Gdηqee/( hΩL)P, where e is the electron charge andΩL
the laser frequency. If all these quantities are accurately known,
we can extract the quantum efficiency, ηqe, from the fitted slope.
The detector gain is obtained from the measured resistance. The
laser frequency is measured with a wavelength meter. Finally, the
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optical element value origin

Cavity overcoupling 95% Predictions

Cavity window 99.6% Specs

Lens 99.6% Specs

PBS, transmission 99% Measured

Lens 99.6% Specs

HWP 99.2% Specs

PBS, transmission 99% Measured

PBS, reflection 99.5% Specs

Table 4.1: Contributions to the optical losses.

optical powers are detected with a commercial power meter, 843-
R from Newport9. This instrument, although convenient for fast
measurements, is not extremely accurate, and tends to go out of
calibration over time, leading to significant systematic errors. To
mitigate that, we calibrate its readings against a NIST-calibrated
S5971 silicon photodiode, from Hamamatsu. Combining all these,
we can infer the quantum efficiency of different photodiodes.
Typical measured values, at λ = 800 nm, are ηqe = 87%, for
photodiodes with the protective windows and ηqe = 93% when
the window is removed.

interference visibility, v To measure the homodyne visibility,
we first adjust the intensity of the LO and signal fields to the same
value. Then we monitor on the oscilloscope the BHD photocurrent
with one photodiode blocked, as we sweep the piezo which
controls θl. The observed signal shows an interference fringe,
well described by VDC = Va cos(θl) + Vo. From the maximum
and minimum values of the recorded photocurrent, VM and Vm
respectively, we obtain the visibility as

v =
VM − Vm
VM + Vm

. (4.3)

For our BHD we can get visibilities of up to v = 98%.

Later on, we report a different method for characterizing the total
efficiency η := ηdηc. It is based on measuring several optomechanical
homodyne spectra, at different quadrature angles, and calibrating
them into displacement units. The background spectral noise, that is
the imprecision noise, can be fitted to Equation 3.39. If the optome-
chanical coupling rate, g, the cavity linewidth, κ, and detuning, ∆, are
known, one can extract the total efficiency, η, from the fit. An example
of such a measurement is shown in Section 9.1.2.1.

9 newport.com

https://www.newport.com/p/843-R
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4.2.3 Mechanical modes

We now describe how to measure the main parameters of the mechan-
ical mode.

resonance frequency, Ωm The mechanical resonance frequency
can be obtained spectroscopically, from the PSD of a phase
quadrature measurement. The mechanical motion appears as a
peak, centered around Ωm. From fitting it to a Lorentzian, we
can extract the resonance frequency.

energy damping rate , Γm We measure it via the ringdown tech-
nique. First, the mechanical mode is coherently excited to large
amplitude. Then, the driving force is switched off and the me-
chanical displacement is monitored during its free decay. As
discussed in Section 2.1, for moderate excitation amplitude, the
dynamics remains linear and is well described by the exponential
decay x(t) = x(0)e−tΓm/2+n, where x(0) is the initial amplitude
and we introduce n, a constant value which takes into account
noise in the detection. We fit the measured displacement to this
function and extract the energy damping rate, Γm.

Experimentally, we perform this ringdown measurement on the
membrane once it has been assembled in the optical cavity and
put in the cryostat. We monitor the decaying displacement by
direct detection of the detuned laser transmitted through the
cavity, which transduces the mechanical motion into the field
amplitude quadrature. While doing that we should pay attention
that the induced optical damping from the laser, as discussed
in Section 3.3, is negligible. One way is to ensure exactly res-
onant operation, ∆ = 0. In practice, however, this turns out to
be unfeasible, as it is at the verge of instability. To avoid optical
damping, we tune the wavelength of the monitoring laser down
to λ ∼ 740 nm, at which the optical cavity has a very low finesse
of ∼ O(10), as shown by the mirror coatings in Figure 4.2. This
results in very broad cavity modes, for which the optical damp-
ing rate is much smaller than the natural mechanical decay rate,
which we want to measure. The driving force to the mechanical
mode is exerted as a classical radiation pressure force, resulting
from an amplitude modulation of the monitoring laser.

The resulting photocurrent is analyzed by a lock-in amplifier
(LIA), which extracts the slow, decaying amplitude of the fre-
quency components around Ωm. The measured decay is shown
in Figure 4.9a. Additional damping mechanisms can arise from
photothermal forces, due to optical absorption. To rule these
out, we perform another ringdown measurement by pulsing
the monitoring laser, with a bright-to-dark ratio of 1 : 30. The
two measurements are in agreement and give a damping rate
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Figure 4.9: Mechanical ringdown. a, Mechanical amplitude decay for con-
tinuous (light blue) and pulsed (dot blue) monitoring laser, at
frequencies around Ωm. b, Spectrum of the continuous ringdown
photocurrent. The peak linewidth of 3 mHz is limited by the
frequency resolution.

of Γm/(2π) = 1.1 mHz. This corroborates the fact that no addi-
tional backaction mechanisms, due to the monitoring optical
field, are present [Ros+18]. In Figure 4.9b we calculate the PSD

of the photocurrent measured via ringdown, from which we ex-
tract a linewidth of 3 mHz, limited by the frequency resolution
of the spectrum. Finally, we notice that it is important that the
monitoring field has a stable optical power over the duration of
the measurement. Any drift of power would appear as a drift in
the level of the photocurrent and can lead to systematic errors
in the ringdown. Our laser source and the subsequent optics is
optimized to reduce amplitude drift over the timescale of hours.
For this ringdown measurement, we also employ a feedback loop
on the amplitude modulator to stabilize its transmitted power.

thermal bath occupation, nth The mechanical resonator is in
a cryogenic environment. The cold finger, kept at 4 K, cools
the membrane through several thermal links, such as copper
parts, rubber o-rings, mirrors, silicon chips. At the same time,
hot thermal radiation from the cryostat outer vessel provides a
source of heating. Together, they determine a new equilibrium
membrane temperature, different in general from the reading of
the thermometer, positioned next to the cold finger. In addition,
any force fluctuating at the mechanical mode frequency, which
is coupled to the membrane, leads to an increase of the effective
temperature of that given mode, sometimes referred to as mode
temperature. The mode temperature can be defined from the
total displacement fluctuations and variance, as discussed in
Section 3.3. This method has two requirements: (i) the quantum
backaction noise from the optical field is negligible, such that
the mode temperature is not affected by it and (ii) the measured
photocurrent should be converted into mechanical units, like
phonon energy. The former can be satisfied by simply tuning the
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optical power low enough, such that the quantum cooperativity
is Cq � 1. The latter, instead, requires the knowledge of the
vacuum optomechanical coupling rate, g0. We postpone the
discussion on the thermal mode temperature measurement in
the next section, where we introduce two methods for measuring
this coupling rate.

4.2.4 Vacuum optomechanical coupling rate

The vacuum optomechanical coupling rate, g0, is of fundamental im-
portance to calibrate the measured photocurrent in mechanical energy
and displacement units. It allows to make quantitative statements
about the mechanical resonator. We provide here two methods to
measure it, which rely on very different assumptions. Then, their
reciprocal agreement would corroborate the results and strengthen
their reliability.

4.2.4.1 Optomechanical coherent response via OMIT

The first method we present is based on measuring the optomechanical
response function to a coherent optical modulation of some sort. Part
of this response, modified by dynamical backaction, is proportional to
the optomechanical coupling g which enables us extract it. Experimen-
tally, we use a single laser, slope locked on the red side of the cavity
resonance at detuning ∆. Both the detuning and cavity linewidth are
measured independently, as explained in Section 4.2.1. A LIA sends
a coherent tone, at frequency Ω, to a phase modulator in the input
laser. We directly detect the transmitted field and analyze the resulting
photocurrent with the LIA, which extracts the response at frequency
Ω [Nie+17]. Sweeping the frequency Ω around the resonance of the
mechanical mode allows to reconstruct the optomechanical coherent
response function. For the case considered here, this response is

Homc(Ω) = αχeff(Ω)χm(Ω)−1
(
χc(Ω)

ı

2

|χc(0)|

χc(0)
− χc(−Ω)∗

ı

2

|χc(0)
∗|

χc(0)∗

)
,

(4.4)

where α is an irrelevant normalization factor. The inverse mechani-
cal susceptibility forms a notch window in the response known as
optomechanically induced transparency (OMIT) [Wei+10]. In addition,
the optomechanical response contains the cavity response to a phase
modulation and the effective mechanical response to a driving force,
which arises from the amplitude component of the rotated phase
modulation once in the cavity.

In Figure 4.10 we show such a complex response, measured at
different detuning. We fit the data to Equation 4.4 and extract the
field-enhanced optomechanical coupling rate, g, from the effective me-
chanical susceptibility. We can further estimate the intracavity average
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Figure 4.10: Optomechanical coherent response. a, Magnitude and b, phase
response of the optomechanical cavity, at different detunings, ∆
(coloured circles). A LIA provides a coherent tone, at frequency
Ω, which modulates the phase of the input field. At the same
time, it extracts the frequency component Ω from the detected
photocurrent. The complex response is reconstructed by sweep-
ingΩ. The vertical dashed gray line is at the resonance frequency,
Ωm, of the natural mechanical response, which is responsible
for the narrow, inverted Lorentzian peak. The black lines are fit.

photon number, ncav, from the measured transmitted power, Ptr, the
direct detection efficiency, ηd, and the cavity overcoupling, ηc, as

ncav =
Ptr

 hΩLκηcηd
, (4.5)

from which we get the vacuum coupling rate g0 = g/
√
ncav. From the

data shown in Figure 4.10, we extract g/(2π) = (82, 70, 52) kHz and
ncav = (3.9, 2.9, 1.7)×105, at the detuning ∆/κ = (−0.38, −0.56, −0.84).
Combining all of them together, we finally estimate g0/(2π) = (129±
2) Hz, where the error indicates the mean absolute deviation (m.a.d.).

This method relies on the precise knowledge of the intracavity
average photon number, ncav, which in part stems from the knowledge
of the cavity overcoupling, ηc, as shown by Equation 4.5. We have
seen in Section 4.2.1 that this parameter is estimated from the transfer
matrix model and the measured mirrors’ transmissivities. In practice,
however, there might be excess losses in the cavity, e. g. due to light
scattering from a non-orthogonal membrane, which are not accounted
for by the theory. Despite our effort to guarantee orthogonality during
the optomechanical cavity assembly, this remains a major, unknown
parameter.
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4.2.4.2 Quantum noise thermometry

A different method for measuring g0, not based on the cavity overcou-
pling, relies on thermometry measurements. The mechanical displace-
ment induces frequency fluctuations on the cavity resonance. These
frequency fluctuations are imprinted in the phase quadrature of the
driving field, which can be measured by means of a BHD. In particular,
the measured photocurrent can be calibrated into frequency units by
comparing it to a phase modulation tone, with known modulation
depth. The total frequency variance,

〈
δΩ2c

〉
, due to the mechanical

motion, can be obtained by integrating the measured spectrum and is
related to g0 from〈

δΩ2c
〉
= g20 (2neff + 1) . (4.6)

If the mode temperature, in units of phonon neff, is precisely known,
one can estimate the vacuum coupling g0. This method, differently
from the one in Section 4.2.4.1, relies on (i) calibrating the measured
photocurrent in frequency units and (ii) the precise knowledge of
the effective mechanical mode temperature, and not of the cavity
overcoupling.

The former is done by phase-modulating the laser with a known
modulation depth, φrms, at frequency Ωcal [Gor+10]. Under certainFrequency

calibration via a
phase-modulation

conditions, the phase modulation of the input laser is transduced,
through the optomechanical cavity and the detector, into a voltage in
the photocurrent in the same way as the mechanical displacement does.
The corresponding transduction function, K(Ω), can be experimentally
obtained from a comparison between the variance σ2cal, coming from
integrating the PSD of the measured photocurrent around the calibra-
tion frequencyΩcal, i. e. σ2cal :=

∫
Ωcal

dνSii, and the known modulation
depth φ2rms, that is, K(Ωcal) = σ

2
cal/φ

2
rms. By changing the calibration

frequency, we verify that this transduction function is constant over
the frequency range around the mechanical mode, and we can assume
that K(Ωm) ≈ K(Ωcal). Then, we use this transduction function to
convert the variance σ2m, coming from integrating the photocurrent
PSD around the mechanical mode, i. e.σ2m :=

∫
Ωm

dνSii, into frequency
units according to σ2ω := σ2mΩ

2
m/K(Ωm), where the termΩ2m is needed

to convert the phase variance into a frequency one. The variance σ2ω
is the variance of the frequency fluctuations around the mechanical
mode, and corresponds to a measurement of the quantity

〈
δΩ2c

〉
in

Equation 4.6.
Regarding the latter requirement, that is, the precise knowledge

of the mode temperature, we cannot use the cryostat temperature
reading as a reliable value for the effective mode temperature, as
previously explained in Section 4.2.3. We then use a strong auxiliaryTemperature

reference from
quantum noise

laser, with Cq � 1, red-detuned with respect to a different cavity
mode, to provide strong optical cooling, down to the sideband cooling
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limit expressed by Equation 3.26. In this limit, the quantum backac-
tion noise is the dominating source of displacement fluctuations and
fully determines the effective temperature, making the thermal bath
temperature negligible. Importantly, this effective temperature is a
function of few, experimentally measurable parameters as the cavity
linewidth, κ, detuning, ∆, and mechanical resonance frequency, Ωm.
In this sense, quantum noise is used as a reference temperature to
calibrate the readings of our “optical thermometer” [Pur+17].

In practice, we employ two lasers, as sketched in Figure 4.11a. A
weak probe laser with Cq � 1, is resonantly locked, via PDH, to the
cavity mode the coupling g0 of which we want to measure, with
λ = 796.060 nm, Cq ≈ 0.08 and κ/(2π) = 15.9 MHz. This laser is also
phase-modulated at Ωcal/(2π) = 1.09 MHz, with φrms = 0.28 mrad. A
strong auxiliary laser, with Cq � 1, is slope locked to the red side of a
different cavity mode, at 795.075 nm, with κa/(2π) = 12.9 MHz and
∆a/(2π) = −4.2 MHz, in order to provide strong quantum backaction
noise as a temperature reference. This cavity mode has been chosen
since it features a large optomechanical coupling constant, as shown in
Figure 4.4. We monitor the phase quadrature of the probe transmitted
field via a BHD as we increase the auxiliary power, thereby also in-
creasing its quantum cooperativity. The PSDs of the raw photocurrent
are shown in Figure 4.11b. We fit the mechanical peak to a Lorentzian
function and extract the effective linewidth, Γeff, the resonance fre-
quency shift, δΩm and the area under the peak, σ2m. The former two
linearly scale with the auxiliary laser power as

δΩm = Ωeff −Ωm = g2a

[
∆a +Ωm

(∆a +Ωm)2 + (κa/2)2

+
∆a −Ωm

(∆a −Ωm)2 + (κa/2)2

]
, (4.7a)

Γeff = Γm + Γopt = Γm + g2a

[
κa

(∆a +Ωm)2 + (κa/2)2

−
κa

(∆a −Ωm)2 + (κa/2)2

]
, (4.7b)

where the auxiliary transmitted power, Ptr,a is linked to the optome-
chanical coupling rate ga via g2a = g20,aPtr,a/( hΩL,aκaηc,a). We fit
both the extracted linewidths and the resonance shifts to Equation 4.7
by using orthogonal distance regression, which allows to include
weights in the independent variable Ptr,a. From these fits, shown in
Figure 4.11c and d, we extract ga/(2π) = 24 kHz per 1 µW of trans-
mitted power.
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Figure 4.11: Quantum noise thermometry. a, Two-laser experiments for prob-
ing mechanical motion and providing a known temperature
reference. b, Spectra of the phase quadrature of the transmitted
probe field, for different auxiliary powers, increasing from light
to dark blue. Smooth, solid lines are Lorentzian fits. c, Mechani-
cal resonance shift, d, effective linewidth and e, area under the
peak, extracted from the fits and shown as black dots. The hori-
zontal and vertical error bars indicate, respectively, uncertainty
in the power measurements and the confidence interval from
the fit. The extracted parameters are further fitted to theoretical
model and the results are shown in red. Adapted from [Ros+18].

The extracted area, σ2m, is related to the frequency fluctuations in
Equation 4.6 via the transduction factor K(Ωm)/Ω2m, as seen before.
Inserting Equation 3.25 we find

σ2m =
K(Ωm)

Ω2m
g20

(
2
Γmnth + Γopt(Ptr,a)nopt

Γm + Γopt(Ptr,a)
+ 1

)
︸ ︷︷ ︸

2neff+1

, (4.8)

where g0 is the optomechanical coupling rate for the probe field and
the dependence of the optical damping, Γopt, on the auxiliary power
has been explicated. Equation 4.8 shows two regimes for the extracted
area:

Γoptnopt � Γmnth : achieved at large auxiliary powers, the extracted
area σ2m is proportional to the product g20nopt, where nopt can
be easily calculated from known parameters. Then, from the
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extracted area and the transduction function we can calculate
the vacuum optomechanical coupling rate, g0.

Γoptnopt � Γmnth : conversely, for small auxiliary power, the area
σ2m becomes proportional to g0nth, from which, employing the
previously estimated g0, we can extract the effective bath average
occupation, nth, as anticipated in Section 4.2.3.

In practice, we fit all the areas to Equation 4.8, as shown in Figure 4.11e,
from which we extract g0/(2π) = (127± 2) Hz and nth = (2.0± 0.4)×
105, or equivalently T = (11± 2) K, where the errors indicate the fit
confidence interval at 95%.
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Figure 4.12: Calibrated quantum noise thermometry. a, Effective average
phonon number and b, total decoherence rate as a function of
the optical damping, Γopt, induced by the auxiliary laser, as black
circles. They are fitted to theoretical models and the results are
shown as shaded blue area, whose width reflects the confidence
interval from the fit. Dashed lines indicate contributions from
thermal decoherence (green) and quantum backaction (blue). Er-
ror bars are from the confidence interval of the fit used to extract
the shown circles. c, Calibrated mechanical displacement spec-
trum (black), at the highest auxiliary power, with a Lorentzian fit
(blue). The contributions from imprecision, quantum backaction
and thermal noise are shown, respectively, in red, blue and green.
Adapted from [Ros+18].

We can now use these results to calibrate the extracted area, σ2m, in
units of phonons, as shown in Figure 4.12a. As expected for sideband
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cooling, the effective mechanical phonon number saturates at the
sideband cooling limit. In Figure 4.12b we plot the total mechanical
decoherence rate, γtot = Γeffneff. When the sideband cooling limit is
approached, quantum backaction decoherence overcomes the thermal
one. The linear dependence of the total decoherence with optical power,
for large values, is characteristic of quantum vacuum noise, in contrast
to the quadratic dependence arising for classical decoherence due to
laser excess noise [PPR13]. Finally, we show in Figure 4.12c a measured
spectrum for the largest auxiliary power. Here, the dominating source
of fluctuations is quantum backaction while the unknown thermal
noise contribution is reduced to only (1+ Γoptnopt/Γmnth)

−1 ≈ 4%.
The two methods presented for estimating the vacuum optome-

chanical coupling rate are based on very different assumptions and
subjected to different systematic errors. In brief, the optomechanical
coherent response is based on calibrating the intracavity photon num-
ber, while the quantum noise thermometry is based on knowing the
mechanical phonon number. The former is affected by extra losses
in the cavity. The latter is instead affected by additional classical de-
coherence. The agreement achieved in the two measurements then
strengthens the assumptions made in modelling the optomechanical
system.

4.2.5 Effective mechanical occupation

We later use the measured optomechanical coupling, g0, to estimate
the effective mechanical phonon number in different experiments,
by exploiting Equation 4.8. For a measured area, σ2m, the inferred
mechanical occupation, ninf

eff , is 2ninf
eff + 1 = σ

2
mΩ

2
m/(K(Ωm)g20), which

explicitly depends on the transduction function K(Ωm). Its determi-
nation, as we have seen, relies on the knowledge of the modulation
depth, which in turn depends on the characteristic Vπ of the mod-
ulator. However, the coupling g0, as measured via quantum noise
thermometry, depends also on the modulator characteristic. In fact,
one has that g0 = σ2mΩ2mK(Ωm)−1/(2ncal + 1), where σ2m and K(Ωm)

are measured quantities from the quantum noise thermometry ex-
periment at the sideband cooling limit and ncal is the corresponding
calculated reference occupation, very close to nopt. If this g0 value is
used in all the experiments and the phase modulation depth is kept
always the same, such that K(Ωm) = K(Ωm), the calibrated effective
phonon number becomes

2ninf
eff + 1 =

σ2m
σ2m

(2ncal + 1) , (4.9)

that is, it comes from a comparison between the two measured ar-
eas and a known reference occupation. In particular, the modulator-
dependent transduction function, subjected to systematic errors, can-
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cels out in the final expression for the inferred phonon number
[Mas+19].





Part II

E X P E R I M E N TA L R E S U LT S





5
C O N T I N U O U S D I S P L A C E M E N T M E A S U R E M E N T O F
A M E C H A N I C A L R E S O N AT O R

In the previous chapters we have seen, from the theory side, that
optomechanical systems are particularly well-suited for performing
quantum displacement measurements. Here, we report experiments
aiming to achieve the quantum-limited measurement regime, a pre-
requisite for measurement-based quantum control.

In the first part we discuss some of the very first experiments,
which had the merit of highlighting some limiting aspects of soft-
clamped structures and how to overcome them. With these lessons
learnt, we describe subsequent experiments, which clearly show that
our platform enables measurements at the quantum limits.

In the second part we move to a different description of the quantum-
limited displacement measurement, based on quantum trajectories. In
particular, apart from offering a different interpretation framework,
the quantum trajectory description provides a prescription which is
used to experimentally obtain a mechanical conditional state from
the measurement record. For a quantum measurement, such a state
is predicted to be close to a pure coherent state. We verify this state
by developing a new verification protocol based on a retrodiction
measurement. In particular, this gives us access to the experimental
observation of the conditional state throughout all the measurement-
induced dynamics, from state reduction, happening at the beginning
of the measurement, to decoherence, when the conditioning from the
upcoming records is stopped.

5.1 preliminary attempts

The first step towards quantum control of mechanical motion is to
achieve displacement measurements in the quantum regime. In the
first generation of the experiment, we attempt that by using a 5.4mm x
5.4 mm x 35 nm soft-clamped membrane, with mechanical mode
resonance frequency of Ωm/(2π) = 753 kHz and quality factor of Q =

120× 106, assembled in the optical cavity, at cryogenic temperature
of ∼ 4 K. We start by locking a single probe laser on the red side of

PM
a cavity mode, at λ ≈ 800 nm with linewidth κ/(2π) = 6.6 MHz. The
laser is phase-modulated with a known coherent tone. The non-zero
detuning transduces the mechanical displacement into the amplitude
quadrature, which is detected on the transmitted beam via direct
detection. We collect several PSDs at different optical powers, for fixed
detuning, as shown in Figure 5.1a. Surprisingly, extraneous in-bandgap

89
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Figure 5.1: Appearance of extraneous in-bandgap modes. a, Spectra of the
amplitude quadrature of a red-detuned laser, at ∆ ≈ −0.2κ, as a
function of its output optical power, Ptr. The defect mode, at ≈
753 kHz, is surrounded by extraneous peaks. b, Spectra, at a fixed
power of Ptr = 10.5 µW, as a function of the laser detuning. The
defect mode shows a large optical spring effect. The extraneous
peaks shift as well, both downward and upward.

peaks are present, in addition to the few localized defect modes. We
exclude the possibility of them being electronic in origin and test
their mechanical origin by collecting also PSDs for different detunings,
with fixed power, as shown in Figure 5.1b. We make the following
observations:

• The amplitude of many of these peaks is reduced as a function
of detuning by orders of magnitude. This reduction is consistent
with the optical cooling from a red-detuned laser, experienced
by a mechanical mode. The defect mode at Ωm serves as an
example.

• In addition, the peaks’ frequencies shift downward, as a function
of detuning, as expected from the optical spring effect for modes
with frequency Ω� κ. Again, the typical dependence is shown
for the defect mode at Ωm.

• However, some of these peaks shift upwards, oppositely to what
is expected from optical spring. These peaks, then, are not di-
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rectly mechanical peaks, but reflected copies of other mechanical
peaks.

• There are also peaks which are not affected at all by the tuned
laser, as the one visible at ≈ 750 kHz.

• Finally, large frequency noise is induced by some mechanical
modes at low frequencies, not shown in Figure 5.1, correspond-
ing to normal modes of the whole membrane structure. For
example, modes at ≈ 100 kHz and ≈ 170 kHz, at ∆ = −0.2κ and
for the lowest power, have a peak value of ∼ 1010Hz2/Hz, five
orders of magnitude larger than the defect mode.

Based on these observations, we hypothesize that the extraneous
in-bandgap peaks are the result of a frequency-mixing process due
to a non-linear cavity transduction. In particular, the displacement of In-bandgap

extraneous peakslow-frequency modes induces large cavity detuning excursions which
exceed the linear range of the cavity transduction. The consequence is
that these large peaks acquire mechanical sidebands of “non-linear”
nature, which mix with the “linear” sidebands around the laser carrier.
The non-linear sidebands will show dynamical backaction as well, and
negative sidebands will be reflected. More recently, an independent
experiment performed by Fedorov et al. quantitatively verified such
intermodulation noise mechanism [Fed+20]. Regarding the peaks not
affected by dynamical backaction, e. g. the one at ≈ 750 kHz, we verify
that they come from modes localized at the edges of the membrane,
where the boundary with the silicon frame forms additional defects.
We move them away from the bandgap by reducing the mass of such
defects.

The extraneous in-bandgap peaks form an additive, excess noise
which limits the performance of our displacement measurements.
In order to improve it, we need to reduce the fluctuations of the
large modes at low frequencies. This is done with a combination of
sideband cooling, from an auxiliary laser, and feedback cooling to
selectively cool down these few disturbing modes. The latter technique
exploits the measured low-frequency displacement to tailor and exert a
viscous-like force on the resonator itself. This force increases the mode
linewidth without introducing more fluctuations, leading to a net
cooling effect. Experimentally, we derive the displacement signal by
filtering the measured photocurrent around the mechanical resonance
frequency. The viscous force is exerted via classical radiation pressure,
by modulating the amplitude of an auxiliary laser with the filtered
electronic signal. Reducing the amplitude of such modes brings the
corresponding frequency excursions within the linear regime of the
cavity transduction and eliminates these extraneous peaks.

The large displacement of these modes is not well understood yet.
One hypothesis is that it is driven motion by excess laser noise, which
is significant at those low frequencies of ≈ 100 kHz. Reducing the
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lateral size of the membrane increases the corresponding frequencies,
where the laser noise is diminished. We decide, then, to do this for
the next generation of experiments, for which we employ a membrane
with size reduced by 50%, moving the defect modes to around 1 MHz,
a good spot even in terms of mirrors’ noise (cf. Figure 4.2).

5.2 standard phase measurements

The setup of the second generation of experiments [Ros+18] is sketched
in Figure 5.2. A probe laser is locked, via PDH, close to resonance of

PM

AM

probe

aux

AD9959
1.09 MHz

feedback
controller

DAQ

BHD

Figure 5.2: Experimental setup for displacement quantum measurements.

a cavity mode, at λ = 796.060 nm, κ/(2π) = 15.9 MHz and typical
detuning ∆ ≈ −0.05κ. The input phase is modulated by a known
tone at Ωcal/(2π) = 1.09 MHz and used to calibrate the overall trans-
duction function, as described in Section 4.2.4. We estimate a cavity
overcoupling of ηc = 0.95, such that most of the intracavity fields is
transmitted. We then measure the phase quadrature of this transmit-
ted beam via a BHD and calculate the PSD of the photocurrent. We
achieve a total detection efficiency of ηd = 77% for the BHD. At the
same time, we also have an auxiliary laser, locked to the red side
of a different longitudinal cavity mode, at λa = 795.057 nm with
κa/(2π) = 12.9 MHz and ∆a = −4.2 MHz. We choose to keep its
power low, such that Caq = 0.18, in order to have a small contribution
to the mechanical decoherence rate from its quantum backaction. This
laser is used to stabilize and cool some of the low-frequency mem-
brane modes which lead to additional in-bandgap noise, as seen in
Section 5.1. The membrane, of size 3.6 mm x 3.6 mm x 20 nm, is assem-
bled inside the optical cavity, and kept cold in the cryostat, at ∼ 4 K. It
has a mechanical resonance frequency of Ωm/(2π) = 1.14 MHz and
a quality factor of Q = 1.03× 109. As typical of our experiments, we
operate in the regime of a very broad cavity, i. e.κ� Ωm. The vacuum
optomechanical coupling rate is measured in two different ways, as
explained in Section 4.2.4, which yield values well in agreement. From
the quantum noise thermometry, we obtain g0/(2π) = (127± 2) Hz
and T = (11± 2) K. More details about the experimental setup and
the methods for measuring each parameter are found in Chapter 4.

We start by measuring the PSD of the probe homodyne photocurrent,
measuring the phase quadrature, for different probe powers, as shown
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in Figure 5.3a. The chosen power values is such that the probe quan-
tum cooperativity, Cq, ranges from the classical measurement regime,
where Cq � 1, to the quantum measurement one, where Cq � 1. We
also calibrate the measured photocurrent in units of displacement.
This is done from the relation Calibration of the

spectrum

S
inf
qq(Ω) ≡ S

inf
xx(Ω)

2x2zp
=

Ω2m
K(Ωm)

1

2g20
Sii(Ω), (5.1)

where K(Ωm) is the transduction function, measured with the known
phase modulation tone (cf. Section 4.2.4.2). The dynamical backaction,
from the residual detuning of the probe laser, shifts the mechanical
resonance frequency as the power is increased. In order to compare
all the spectra, we always refer the horizontal axis to the effective
resonance frequency, Ωeff. For resonant phase measurements, the
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Figure 5.3: Displacement quantum measurements. a, Inferred displacement
spectra around the effective mechanical frequency, Ωeff, for differ-
ent quantum cooperativities, Cq. The Lorentzian fits are shown by
smooth, thin solid lines. b, Logarithmic view of the off-resonant
tails of the spectra shown in a. The spectral SQL is indicated by
a solid gray line. Black arrows highlight the two main effects of
increasing cooperativities, namely a reduction of the imprecision
noise and an increase of the total force noise due to quantum
backaction. Adapted from [Ros+18].

spectrum is governed by Equation 3.31. For a high-Q resonator, it
consists of a Lorentzian peak, centered at Ωm and driven by the total
force noise spectrum, Stot

FF, on top of a constant imprecision noise,
Simp. Increasing the quantum cooperativity has two main effects in the
spectrum, as highlighted in Figure 5.3b: (i) reducing the imprecision
noise, visible on the floor level and (ii) increasing the total force
spectrum due to the increasing quantum backaction noise, visible as a
raise of the Lorentzian tails, off resonance.
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5.2.1 Measurements at the Heisenberg limit

We fit, for each Cq, the corresponding spectrum to a Lorentzian func-
tion with a constant background. From the fits we extract the area,
neff, the total linewidth, Γeff, and the background value, Simp. The totalImprecision and total

noise effective
occupation

force noise equivalent occupation is obtained from ntot = neffΓeff/Γm,
where the last factor, Γeff/Γm, takes into account optical damping due
to dynamical backaction. This represents the average phonon number
that a single, effective bath should have to generate the same motion.

The imprecision noise, Simp, can also be expressed into an equivalent
phonon number. This is accomplished by comparing it to the resonant
displacement spectral value generated by a single-phonon-energy
thermal bath, i. e.S1p

q̂q̂ := |χm(Ωm)|22Γm = 2S
zp
q̂q̂ = 2/Γm [Wil+15]. In SI

units, this is given by S1p
x̂x̂ = 2x2zpS

1p
q̂q̂ = 4x2zp/Γm. Then, the equivalent

imprecision noise occupation is obtained as nimp := Simp/S
1p
q̂q̂.

These occupations are theoretically modelled from Equation 3.30,
assuming a resonant, broad cavity, i. e.∆ = 0 and κ� Ωm, such that

nimp =
Γm

16Γmeas
=

1

16η (nth + 1/2)Cq
, (5.2a)

ntot =
2γ+ 2Γqba + 2Γ

a
qba

2Γm
= (nth + 1/2)

(
1+ Cq + Caq

)
, (5.2b)

where, in the total force noise occupation, we also take into account
the weak quantum backaction noise from the auxiliary laser, with
measurement strength Γaqba and quantum cooperativity Caq = Γaqba/γ.

We calculate these occupations, for each Cq, from the Lorentzian fit
parameters and fit them to Equation 5.2, as shown in Figure 5.4a and c.
All measured imprecision (total force) noise occupation values agree
with the theoretical expectation, from Equation 5.2a (Equation 5.2b),
with independently measured parameters within a factor 1.03± 0.06
(1.08± 0.02), where the uncertainty corresponds to ±1 standard devia-
tion (s.d.).

In order to better assess the measurement regime of the experiment,
we use these findings to compute the measurement efficiency, ηmeas.
We have in terms of the imprecision and total force occupation ηmeas =(
16nimpntot

)−1 using Equation 3.33, and shown in Figure 5.4b. Our
experiment, at Cq = 7.7, features a measurement efficiency of ηmeas =

56%, close to the unity bound and operating, thus, in the quantum
measurement regime. Indeed, this is sufficient for operating several
quantum measurement and control protocols, as we will see.

From the measurement efficiency we can also derive a bound onHeisenberg limit

the Heisenberg measurement-disturbance relation for the probe field.
We remind the reader that this inequality reads as Simp · Sqba > 1/4, as
derived in Equation 3.32. The measurement efficiency can be recast
as η−1meas = 4SimpS

tot
FF > 4SimpSqba, since one always has Stot

FF > Sqba.
Thus, the Heisenberg measurement-disturbance relation can be upper
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Figure 5.4: Imprecision and total force occupation and measurement effi-
ciency. a, Total force noise, ntot and c, imprecision noise, nimp,
effective occupations (coloured squares), obtained from the
Lorentzian fits of the spectra in Figure 5.3. The dashed green
line indicates the thermal bath occupation. b, Measurement ef-
ficiency, ηmeas (coloured squares) obtained from the values in a
and c. The solid black line corresponds to the Heisenberg limit
of ηmeas = 1. All data are fit to optomechanical models, shown in
gray. Adapted from [Ros+18].

bounded by the measurement efficiency as 1/ (4ηmeas) > Simp · Sqba >
1/4. From our data, the largest measurement efficiency constraints the
deviation from the ideal measurement at the Heisenberg limit to, at
most, 33%. This result is, to our knowledge, the closest experimental
value to the Heisenberg limit, making this experimental platform a me-
chanical realization of the Heisenberg microscope thought experiment
[Hei27; Hei50].

Achieving such a large measurement efficiency is the result of two
important aspects of our experimental platform: (i) a large probe quan-
tum cooperativity and (ii) a large total detection efficiency for the BHD.
The former aspect is achieved by drastically reducing the mechanical
dissipation rate, Γm. This reduces also the thermal decoherence rate
well below the quantum backaction one. This requirement is common
to other protocols, e. g. ground state preparation via sideband cooling.
The latter aspect, instead, relates to the detection part and is a result
of optimization of several optical components and alignment. It is
crucial for any measurement-based protocol, in which the recorded
measurement outcome plays a vital role in the preparation stage.

5.2.2 Measurements at the SQL

For a quantum measurement, at large measurement efficiency, the
measured spectral noise approaches the SQL at some frequencies off
resonance (cf. Section 3.4.1.1). In order to verify that we show, in
Figure 5.3b, the spectral SQL, SSQL

x̂x̂ = 2x2zp|χeff(Ω)|, as discussed in
Section 3.4.1.1. Here we use the effective susceptibility in order to cali-
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brate out the effects of dynamical backaction. In particular, we notice
that, upon a horizontal shift which brings the resonance frequency
to zero, the effective susceptibility matches the natural one off reso-
nance, at frequencies |δΩ| = |Ω−Ωeff|� Γeff. At the highest Cq, from
the Lorentzian fit in Figure 5.3, we find that the measured spectral
noise is just 33% above the SQL, at δΩ/(2π) = 3.2 kHz. This is, to our
knowledge, the closest approach to the SQL achieved experimentally,
improving what has been done in the past years in other experimen-
tal platforms, as ultracold atoms [Sch+14] or ultracold mechanical
resonators [Kam+17].

The Lorentzian fits done so far assume a resonant probe field. InEffects of finite
detuning practice, this is not strictly the case as a finite, red detuning is always

present, which we estimate to be ∆ = −0.05κ. Apart from small
dynamical backaction effects, this also results in a correlation term in
the measured phase quadrature spectrum, according to Equation 3.38.
As seen, the correlations change sign around the mechanical resonance
frequency, leading to a frequency asymmetric spectral lineshape. In
particular, this can also improve the achievable sensitivity [Kam+17;
Sud+17], at least in some frequency range.

In Figure 5.5a we show a closer view of the measured spectrum, at
Cq = 7.7, and the spectral SQL. The symmetric Lorentzian fit highlights
a small asymmetry present in the data. To capture this feature, we
also fit the data to a full model, in Equation 3.38, with θ = φ = π/2

and with the coupling rate, g, the total efficiency, η, and the detuning,
∆, as free parameters. From the fitted values of the former two, we
estimate a total force noise and imprecision occupations which agree
with independent predictions, to within a factor of 1.08 and 1.07,
respectively. The fitted detuning is ∆fit = −0.04κ, consistent with
our initial estimation. The new, full fit can reproduce the measured
asymmetric shape. To better visualize the distance to the SQL, we
show in Figure 5.5b the same data and fit lines, normalized to the
corresponding SQL at each frequency; that is, the spectral SQL now
appears as a constant value at 1. From the full fit line, we estimate
that the measured spectral noise approaches the SQL within 23%, for
frequencies below the resonance, and within 46%, for frequencies
above it. This represents an improvement compared to the simple
Lorentzian fit, which averages together the two sides of the asymmetric
spectrum.

5.2.3 Consequences of quantum measurements for the mechanical state

So far, we have focused on analyzing the different contributions to
the measured spectrum. Regarding the mechanical state, the major
effect of a quantum measurement is to enhance the total displacement
fluctuations via quantum backaction noise. This results in a larger
effective temperature, which leads to a more mixed state, compared to
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Figure 5.5: Residual spectral correlations arising from a non-zero detuning.
a, Inferred displacement spectrum (blue), for Cq = 7.7, and the
corresponding spectral SQL (gray). The data are fit both to a
Lorentzian model (black) and to a full optomechanical model
(orange) for general, non-resonant case. b, The data and fit lines,
from a, normalized to the spectral SQL. Dashed coloured lines and
labels indicates the minimum values of the fit lines, at frequencies
both above and below the mechanical resonance. Adapted from
[Ros+18].

the case of a classical measurement, where quantum backaction noise
is negligible.

Thus, if one aims to precisely estimate the actual displacement of
the mechanical resonator, with no or minimum disturbance from
the measuring system, i. e. the probe optical field, then performing a
quantum measurement would seem the worst choice. However, in a
quantum measurement, the large displacement fluctuations induced by
quantum backaction are always accompanied by a small imprecision
noise in the measurement outcome, which allows the observer to keep
track, in a clean way, of these total displacement fluctuations, for each
measurement realization, which usually takes the form of a recorded
photocurrent.

So far, we have only considered statistical moments of an ensem- Unconditional state

ble of such photocurrent records. In particular, we have calculated
PSDs, which come from averaging the spectra of each single record
together, thus ignoring part of the stochastic information carried by
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each of them. The knowledge which only comes from the statistical
quantities of an ensemble of measurement records, and not from the
single records themselves, forms an unconditional state [WM10]. In
our case of continuous displacement monitoring, the stationary me-
chanical unconditional state is Gaussian with the mean displacement
and variance 〈q̂〉 = 0 and

〈
q̂2
〉
= (nth + 1/2) (1 + Cq), respectively.

As previously noted, a quantum measurement, for which Cq � 1,
implies that the displacement variance is larger than the thermal one,
i. e.

〈
q̂2
〉
> nth + 1/2.

Nonetheless, the observers can make use of each single measure-Conditional state

ment record to update and refine their own state of knowledge, i. e. the
best knowledge about the system they possess. The new state obtained
in this way is called a conditional state, because at any instant of time it
is conditioned on the previous recorded measurement outcomes. The
conditional state is strongly dependent on the measurement scheme
adopted.For linear Gaussian systems, any measurement always gener-
ates a more pure conditional state [MK06] which, thereby, provides
a more accurate description of the system. This also suggests that a
conditional state should be interpreted as a subjective piece of knowl-
edge, related to a particular observer which interacts with the system
in some way, more than an objective property of the system. In fact,
multiple observers, interacting with the same system in different ways,
in general have different conditional states. In this sense, a state is
just a mathematical tool which any observer generates in order to
best predict outcomes of measurements done on the system [Wis96;
WM10].

The conditional state, based on the stochastic measurement out-
comes, evolves following a stochastic dynamics, based on random
trajectories in the quantum configuration space, or phase space. As
such, the conditional state is also interpreted as a quantum trajectory,
the quantum analogy to classical phase space trajectories [Car93]. The
next section focuses on introducing the concept of quantum trajectory,
from the historical and conceptual point of view, and describing how
experimentally observe that.

5.3 quantum trajectory of a mechanical resonator

The concept of a quantum trajectory was first introduced by Carmichael
[Car93] in the context of quantum optics, as an alternative description
of open quantum systems. Building from the photoelectron counting
theory and the associated exclusive and non-exclusive probability
densities, Carmichael derived a possible decomposition for the system
density operator, which evolves according to a master equation. In
such a decomposition, the state density operator results from summing
up all the possible paths, from time 0 to t, which include non-unitary
evolution, from the master equation, and photon counting events,
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from an ideal photon counter. Any combination of these two opera-
tions forms a random path for the state, which was called a quantum
trajectory. Summing over all these trajectories yields the state density
operator, in a similar fashion to Feynman path integrals. The photon
counting measurement scheme is somewhat arbitrary and provides
one unravelling of the master equation, but is not a unique choice. A
different unravelling, for example, is provided by photodetection, in
which the outcome, a photocurrent, is a diffusive continuous process,
instead of the point process arising from photon counting. Despite
this arbitrariness, summing up all the trajectories always leads to the
same state, which is the solution of the underlying master equation
independently of the chosen unravelling.

Here, we focus on the diffusive unravelling from homodyne pho- Diffusive
unravelling from
homodyne detection

todetection, measuring the quadrature angle θl. The quantum tra-
jectory, represented by an operator ρ̂c, evolves according to an SME

[Dió88; Bel95; JS06]

dρ̂c =
1

ı h

[
Ĥ, ρ̂c

]
dt+D[ĉ]ρ̂cdt+

√
ηH[ĉeıθl ]ρ̂cdW, (5.3)

where Ĥ is the system’s Hamiltonian, ĉ one of its observable operators,
η the total efficiency and dW the infinitesimal increment of a Wiener
process.

Equation 5.3 has already been introduced in Section 1.6, in the con-
text of quantum measurement theory. In combination with what is
seen there, we can interpret the quantum trajectory, ρ̂c, as the con-
ditional state of the observer who is performing the measurement
described by the superoperator H. The recorded photocurrent out-
come, i(t), on which the state is conditioned, is linked to the Wiener
process in Equation 5.3 by

di(t) =

〈
ĉeıθl + ĉ†e−ıθl√

2

〉
c

+
dW√
2η

, (5.4)

where the quantum average, 〈·〉c, is performed over the conditional
state, ρ̂c. The unconditional state evolution is recovered upon averag-
ing over all the possible trajectories in Equation 5.3. This ensemble
average removes the measurement superoperator and leads back to the
Lindblad master equation, as described in Equation 1.43. In this case,
the state non-unitary dynamics is affected only by the measurement-
induced decoherence, D, resulting in a mixed state. In contrast, the
conditional state is also driven by the additional measurement con-
ditioning term, H, which can counteract the decoherence, producing
pure states.

Together, Equation 5.4 and Equation 5.3 provide an operational way
of constructing the conditional state, from the available measurement
outcomes and the deterministic evolution. However, observing pure
conditional states remains challenging, as it requires an efficient quan-
tum measurement, for which the dominating decoherence source is
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the measurement-induced one. This has been achieved only in mi-
croscopic, clean experimental settings, like in cavity [Gue+07] and
circuit [Mur+13; Web+14] quantum electrodynamics. The observation
for macroscopic systems, as a mechanical resonator [Doh+99; Doh+12],
has remained elusive so far, precluded by small achievable measure-
ment efficiency, ηmeas [Wie+15]. In contrast, our experimental platform
features a large measurement efficiency, as shown in Section 5.2.1,
enabling the observation of pure quantum trajectories [Ros+19], as we
will see in the next sections.

5.3.1 Experimental setup and effective model

We employ the same setup shown already in Figure 5.2, but the
measurements we report here are taken during a subsequent cryogenic
cycle. This leads to slightly different parameters, which we measure
again each time. The probe laser is locked close to the resonance of
a cavity mode at λ = 796.299 nm, with linewidth κ/(2π) = 18.5 MHz
and a detuning of ∆ > −0.05κ. The vacuum optomechanical coupling,
measured via the coherent response calibration (cf. Section 4.2.4.1), is
g0/(2π) = (129± 2) Hz, where the errors are given by the m.a.d.. The
phase of the transmitted field is continuously monitored via a BHD,
whose total efficiency, comprising total detection efficiency and cavity
overcoupling, is η = 74%.

The auxiliary laser is locked to the red side of a different cavity mode
at ∆a = −5.6 MHz, and used for stabilization of low-frequency modes,
as seen in Section 5.1. The chosen cavity mode is at λa = 795.906 nm
and has a linewidth of κa/(2π) = 13.0 MHz. The membrane is the
same one as used in Section 5.2 and has a resonance frequency of
Ωm/(2π) = 1.14 MHz and a quality factor Q = 1.03× 109. We also
assume a thermal bath temperature of T = 11 K, as obtained in a
different cryogenic cycle from quantum noise thermometry (cf. Sec-
tion 4.2.4.2). The assumption of equal thermalization between these
two different thermal cycles is supported by the fact that the optome-
chanical cavity has always remained in the vacuum environment, and
was never detached from the cold finger. In addition, in the large quan-
tum backaction regime, in which the system operates, the thermal
noise is negligible and the exact thermal bath temperature does not
play an important role.Unconditional state

We characterize the unconditional state from the displacement
spectrum of the homodyne photocurrent, shown in Figure 5.6a. We
fit it to a Lorentzian function and extract the effective mechanical
linewidth, Γeff/(2π) = 130 Hz, and the effective average phonon num-
ber, neff = 18. Both are affected by dynamical backaction and optical
cooling from the red-detuned auxiliary laser, as well as the slightly
detuned probe laser. The undetected auxiliary laser contributes to
the effective occupation also with its own quantum backaction noise.
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Figure 5.6: Homodyne photocurrent and demodulated quadratures. a, In-
ferred displacement spectrum (blue) from a phase measurement,
averaged over several realizations, with a Lorentzian fit (black).
b, Example of calibrated homodyne photocurrent (blue) in shot
noise units. Demodulating it at Ωm yields the two electronic
quadratures, iX (dark orange) and iY (light orange).

From the measured parameters, we estimate a quantum backaction
decoherence of Aa+/(Γmnth) = 0.16 (cf. Equation 3.16). From the
point of view of the probe laser, such decoherence from the auxil-
iary quantum backaction cannot be discriminated from the thermal
one. Thus, the two of them form an effective thermal bath, character-
ized by an effective occupation of n ′th = 2 and a total decoherence of
n ′thΓeff = 2π× 260 Hz. In the following, with abuse of notation, we will
indicate the effective parameters with the same symbols of the ther-
mal bath, that is Γm, nth and γ will refer to, respectively, the effective
thermal bath coupling rate, average phonon occupation and decoher-
ence rate. The probe field is characterized by its quantum backaction
decoherence rate, Γqba/(2π) = 2.54 kHz, and by the measurement
rate, Γmeas/(2π) = 1.88 kHz. From them we estimate a measurement
efficiency of ηmeas = Γmeas/(γ+ Γqba) = 67%.

We now move to construct a conditional state from this measure-
ment. First, we record and digitize the photocurrent i(t) with a DAQ

card (cf. Section 4.1.3.2) and store it permanently on a computer. The
next operations are done offline in post-processing on these digital
records. Such a recorded time trace contains displacement signals from
several mechanical modes, discriminated by their resonance frequency.
The signal we are after is only at the frequency components around the
mechanical frequency, Ωm. We extract it by performing a numerical
demodulation of the raw time trace, at Ωm, within a bandwidth δΩ,
from which we obtain the two electronic quadrature signals Demodulated

quadratures
iX = k(t) ∗ [i(t) cos(Ωmt)] , (5.5a)

iY = k(t) ∗ [i(t) sin(Ωmt)] . (5.5b)

The function k(t) represents the kernel of the low-pass filter employed
to define the demodulated signal bandwidth. In practice, we use



102 continuous displacement measurement of a mechanical resonator

a Butterworth filter with fourteen poles and a 3 dB bandwidth of
∼ 60 kHz. This is chosen to be much larger than the probe field
measurement rate while, at the same time, suppressing sufficiently
the contributions of other mechanical modes to the total demodulated
variance. An example of a raw photocurrent and the demodulated
quadratures is shown in Figure 5.6b. These electronic quadratures,
iX and iY , are a simultaneous measurement of the slowly varying
quadratures, X̂ and Ŷ, of the mechanical position, q̂, which can be
written as q̂ = X̂(t) cos(Ωmt) + Ŷ(t) sin(Ωmt). For high-Q mechanical
resonators, the pair of slow quadratures r̂ := (X̂, Ŷ) also describes
the momentum dynamics. If continuously done, such a measurement
allows to reconstruct the mechanical complex amplitude. In the ideal
limit of no additional noise, this realizes a von Neumann projective
measurement on mechanical coherent states [JS06].

The conditional state, ρ̂c, conditioned on the electronic measurement
outcomes, i = (iX, iY), can be described by the following equation
[Doh+12]Quantum trajectory

dynamics
dρ̂c =

(
Lth +Lqba

)
ρ̂c+

√
Γmeas

(
H[X̂]ρ̂cdWX +H[Ŷ]ρ̂cdWY

)
, (5.6)

which is derived from the effective master equation for the mechanical
resonator, in a frame rotating at Ωm, obtained by adiabatically elim-
inating the cavity mode and performing the RWA for the mechanics
[Hof17] (cf. Equation 3.14). The latter is justified by the timescale
separation of the problem, in which the resonance frequency is much
faster than any other dynamics, i. e.Ωm � Γm, Γmeas. For the effective
parameters of our experiment, in fact, we have Ωm/Γm = 8.8× 103 and
Ωm/Γmeas = 6× 102. We also notice that we have now switched to a
master equation description, in a Schrödinger picture, in contrast with
the unconditional case, in which we employed the Heisenberg picture
with the QLE. Although the conditional dynamics could in principle
be derived in the Heisenberg picture too, its interpretation is more
clear in the master equation approach, which we therefor decide to
pursue.

The first two terms on the RHS of Equation 5.6 are the decoher-
ence arising from, respectively, the thermal noise and the quantum
backaction noise from the measurements. They are defined as

Lthρ̂ = ΓmnthD[ĉ†]ρ̂+ Γm(nth + 1)D[ĉ]ρ̂, (5.7a)

Lqbaρ̂ = ΓqbaD[X̂]ρ̂+ ΓqbaD[Ŷ]ρ̂. (5.7b)

where we have introduced the slow mechanical displacement ampli-
tude ĉ =

(
X̂+ ıŶ

)
/
√
2 and the dissipation superoperator, D, defined

in Section 1.3. The last two terms on the RHS of Equation 5.6 describe
the conditioning on the measurement records, via the two independent
Wiener processes W = (WX,WY)

i(t)dt =
√
4Γmeasrc(t)dt+ dW. (5.8)
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The vector rc represents the average displacement over the conditional
state, i. e. rc(t) = tr(r̂ ρ̂c(t)).

The system is linear and Gaussian and, as such, its state is fully char-
acterized by the average displacement rc(t) and its covariance matrix
2(Vc)ij =

〈
r̂i, r̂j

〉
c
+
〈
r̂j, r̂i

〉
c
, with the correlator 〈·, ·〉 = 〈··〉− 〈·〉 〈·〉,

which takes a simple diagonal form proportional to the identity in our
case, i. e. (Vc)ij(t) = Vc(t)δij. These two moments form the mechanical
quantum trajectory which, from Equation 5.6, evolve according to Average

displacement and
variance of quantum
trajectorydrc(t) = −

Γm

2
rc(t)dt+

√
4ΓmeasVc(t)2dW, (5.9a)

V̇c(t) = −ΓmVc(t) + Γm

(
nth +

1

2

)
+ Γqba − 4ΓmeasVc(t)

2. (5.9b)

The initial conditions are based on the initial state, which we as-
sume to be the unconditional thermal state, where rc(0) = 0 and
Vc(0) = Vuc := nth + 1/2+ Γqba/Γm. In particular, the average displace-
ment rc(t) evolves stochastically, conditioned on the measurement
outcomes through the Wiener process. In fact, from Equation 5.8 we
get dW = idt−

√
4Γmeasrcdt. An operational prescription to compute

the first moment of the quantum trajectory is obtained by discretizing
Equation 5.9a and inserting the expression of the Wiener increment in
terms of the outcomes i, i. e. Recursive relation

for operational
computation

rc(t+∆t) =
[
1−

(
Γm

2
+ 4ΓmeasVc(t)

)
∆t

]
rc(t)+

√
4ΓmeasVc(t)2i(t)∆t,

(5.10)

where ∆t is the time step in the digitized trace and the conditional
variance, Vc(t), is calculated from the solution of Equation 5.9b. From
the signal processing perspective, Equation 5.10 describes a discrete-
time, Lorentzian low-pass filter with a time-dependent bandwidth. At
the steady-state, this bandwidth becomes Γm/2+ 4ΓmeasVc ≈ 2Γmeas,
where the last approximation holds for large measurement efficiency.
Formally, in fact, Equation 5.9 are equivalent to the equations for a
Kalman filter [Kai82; GLS16], with additional constraints between the
process and measurement noises dictated by quantum mechanics.

In order to observe the quantum trajectory, we chop the demod-
ulated photocurrent time traces into 3.2 ms-long segments. We con-
sider each of them as an independent realization of the measurement,
and use them to form a statistical ensemble. Then, we calibrate each
realization into shot noise units. To do that, we perform a similar
measurement and processing, but with the transmitted cavity field
blocked. As a result, the measured demodulated photocurrent, isn,
contains only shot noise, represented by the Wiener process in Equa-
tion 5.8. In particular, the spectrum of such a photocurrent is flat. We
take the square root of the average value of the measured shot noise
spectrum, in the range 1.120÷ 1.155 MHz, as the calibration constant,
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c. Then, we calibrate the main photocurrent, i, by dividing through by
calibration constant. In this way, the equivalent shot noise level in the
spectrum of the calibrated photocurrent will appear at the value of
1 Hz/Hz. Finally, we apply the recursive relation in Equation 5.10 to
all the realizations in the ensemble to obtain the average displacement
of the quantum trajectories. We show an example in Figure 5.7a. The
conditional state variance, shown in Figure 5.7b, is instead obtained by
solving the differential Equation 5.9b, with the measured parameters.
In particular, the variance evolution clearly shows a collapse, over
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Figure 5.7: Measuring the mechanical quantum trajectory. a, Example of
average displacement, rc(t), from a quantum trajectory. The two
slow quadratures, Xc(t) and Yc(t), are shown, respectively, in
dark and light red. b, Theoretical prediction for the evolution
of the conditional variance, Vc(t), during the collapse, from the
beginning of the measurement at time t = 0 ms. For longer
time, not displayed, the conditional variance is stationary at the
steady-state value Vc.

the first ∼ 100µs from the beginning of the measurement. Due to
the large measurement efficiency in which the system operates, the
predicted steady-state variance is Vc = 0.61, only 20% larger than
the variance of a pure coherent state. The conditional state purity is
Pc := tr(ρ̂2c) = 1/

(
2Vc

)
= 82%, which constitutes an improvement

of more than an order of magnitude compared to the initial thermal
state, with purity of Puc = 0.02%.

The derivation of the quantum trajectory, shown in Figure 5.7, de-Innovation sequence

pends on the modelling used in the SME. In order to gain confidence
in its validity, we evaluate the experimental innovation sequence,
vdt = idt −

√
4ΓmeasVc(t)rdt. If the model correctly describes the

experiment, then such a sequence should be white noise [Wie+15].
We show the innovation spectrum, averaged over all the measured
realizations of the quantum trajectory rc, in Figure 5.8, together with
the spectrum of the raw photocurrent, representing the unconditional
state. The flat innovation spectrum corroborates the model employed



5.3 quantum trajectory of a mechanical resonator 105

1.125 1.130 1.135 1.140 1.145 1.150
10-34

10-33

10-32

10-31

10-30

Figure 5.8: Consistency of the innovation sequence. Spectra of the inferred
displacement (blue), shot noise (gray) and innovation sequence
(red). The innovation spectrum is flat, validating the model as-
sumed in the Equation 5.6. Adapted from [Ros+19].

in deriving the quantum trajectory. A small deviation is also visible,
which has an asymmetric lineshape around the resonance, arising from
residual optomechanical correlations induced by the small non-zero
detuning of the probe laser, not included in Equation 5.6.

5.3.1.1 Covariance of the conditional mechanical state

The quantum trajectory cannot be fully observed from the measure-
ment outcomes. In fact, the conditional variance Vc(t) evolves deter-
ministically and is not affected by the actual measurement outcomes,
but only by the measurement scheme and efficiency. This is common
to all linear Gaussian systems. When deriving the quantum trajec-
tory in Figure 5.7, we resort, for the conditional variance, to the exact
solution of the Riccati Equation 5.9b, which is

Vc(t) = Vc +
2Vc + Γm/(4Γmeas)

e(8VcΓmeas+Γm)t
[
1+ Γm/(4ΓmeasVc)

]2
− 1

. (5.11)

The equation describes a collapse from the initial variance, which
happens over a finite time, independent of the initial value itself due
to the non-linear term arising from the measurement conditioning.
The steady-state conditional variance is Steady-state

Vc =

√
1+ 16VucΓmeas/Γm − 1

8Γmeas/Γm
. (5.12)

We can make several interesting observations on Vc. Firstly, one can
show that the steady-state conditional variance is always smaller than
the unconditional one, i. e.Vc < Vuc, as expected from linear, Gaussian
measurements. In other words, the purity of the conditional state
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Pc always exceeds the one of the corresponding unconditional state.
Secondly, the steady-state conditional variance can be used to classify
the performed measurement, when compared to the limiting cases of
an ideal measurement and no measurement at all. We individuate the
following three classes of displacement measurements:

poor measurement Whenever the conditional variance is not re-
duced below the thermal one, i. e.Vc > Vth = nth + 1/2, we
have a poor measurement. In this case, in fact, not performing
the measurement at all by turning off the interaction, g = 0,
would give rise to an unconditional state which is more pure,
i. e.Vuc = Vth. The condition for a poor measurement, in terms
of the total efficiency, is

η 6
1

4V2th
. (5.13)

quantum measurement For more efficient measurements, the
conditional variance is reduced below the thermal one. The other
limiting case is when the conditional variance corresponds to
an average phonon number less than one, i. e.Vc < 3/2. Despite
being arbitrary, this threshold has been used in the scientific com-
munity as a gauge for the quantum ground state preparation.
When this condition is verified, we talk about a quantum measure-
ment. In terms of measurement efficiency, this is equivalent to

ηmeas >
1

9
−

1

6Vuc
≈ 1
9

. (5.14)

In this regime, the steady-state conditional variance is approxi-
mately given by

Vc ≈
1√
4ηmeas

, (5.15)

which depends only on the measurement efficiency ηmeas. At
the Heisenberg limit of ηmeas = 1, we have that Vc = 1/2, which
is the ultimate limit for the steady-state conditional variance
of continuous displacement monitoring. In this case, the condi-
tional state is a pure coherent one, with amplitude stochastically
evolving in the configuration space. It resembles the classical
picture of a phase space, with the main difference being the
presence of fundamental, quantum fluctuations, of the order
of the zero-point motion. We note that this limit does not hold
indefinitely. In fact, achieving exactly ηmeas = 1 requires, amongBreaking down of the

RWA other things, to having an infinite measurement strength Γqba. As
Γqba is increased, at some point it will overcome the mechanical
resonance frequency Ωm, breaking down the RWA on which this
quantum trajectory description is based [Doh+12]. Then, in this
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limit Equation 5.12 is not valid anymore and one should con-
sider all the counter-rotating terms in the full master equation.
Physically, what is happening is that the measurement is so
strong that the conditional variance collapses in a time much
shorter than the mechanical period. Then, the mechanical state
is essentially frozen over the collapse time and the measurement
reduces to a single-quadrature projector. This can lead, then, to
a conditional mechanical squeezed state, for which the variance
of one quadrature is below the coherent limit of 1/2 [Men+20].

classical measurement Finally, we can also define an intermedi-
ate regime between that of a poor and a quantum measurement.
We call it the classical measurement regime, obtained whenever
the steady-state conditional variance is smaller than the thermal
one, but larger than a single phonon, i. e.Vth > Vc > 3/2. In
terms of measurement efficiency

1

4V2th
> ηmeas >

1

9
−

1

6Vuc
≈ 1
9

. (5.16)
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Figure 5.9: Steady-state conditional variance. Conditional variance, Vc, as a
function of quantum cooperativity, Cq, and total efficiency, η. The
dashed white lines define three regions, according to the value
of Vc. Poor measurements are performed whenever Vc > Vth,
whereas quantum measurements are defined by Vc < 3/2. In
between, there is the classical measurement regime. The dashed
white line defining the boundary of the quantum measurement
region corresponds to the contour of constant measurement effi-
ciency, at ηmeas = 1/9. The thermal occupation is nth = 10.

In Figure 5.9 we plot the steady-state conditional variance, divided
into the three classes, as a function of two important parameters, the
total efficiency η and the quantum cooperativity Cq, from which the
measurement efficiency is defined.
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5.3.2 Retrodiction measurement and past quantum states

A continuous displacement measurement, carried out up to time t0,
prepares a conditional state described by the average displacement
rc(t0) and variance Vc(t0). The previous measurement outcome i(t),
with t 6 t0, can be used to verify and obtain the average displacement
of the prepared state, rc(t0), as described in the previous section. The
conditional state variance, however, evolves deterministically and can-
not be verified from the available experimental outcomes. In order to
carry out this verification step, the observer could, ideally, perform
a projective measurement on coherent states, at time t0, and collect
statistics over several experimental realizations. In practice, projectiveEffects and

operations measurements exist as a limit of generalized measurements, which
are described in terms of effects and operations. The possible mea-
surement outcomes, and the associated probability, are encoded in an
effect operator, Êk, analogous to the projector in ideal measurements.
Upon realization of a given outcome k, the change in the system state,
known as the post-measurement state, is given by an operation superop-
erator, acting on the a-priori state. In our experiment, we implement a
generalized measurement, for this verification, in the form of a retrod-
iction measurement [GJM13; Tan+15; ZM17; Lam18]. This is based on
the back-propagation of an effect operator from time t > t0 back to
t0, based on the outcomes recorded in this future time interval. The
back-propagation refines, in a Bayesian sense, the probability distribu-
tion for the measurement outcomes, as determined by the past state
ρ̂c. However, in contrast with standard generalized measurement, the
retrodiction has no operation, because the state on which we give
information belongs to the past and does not exist anymore at the
time of the retrodiction. In this sense, a post-measurement state for
retrodiction is unphysical.

Together the quantum trajectory, ρ̂c(t0), and the effect, Ê(t0), formPast quantum state

the so-called past quantum state [GJM13]. This state can be used to
provide more general and accurate expectation values for a system
operator Ô according to〈

Ô
〉
(t0) = tr(Ôρ̂c(t0)Ê(t0))/tr(ρ̂c(t0)Ê(t0)), (5.17)

where one has to keep in mind that ρ̂c(t0) and Ê(t0) only depend, re-
spectively, on the past and future time with respect to t0. Equation 5.17

generalizes the usual expectation value rule in quantum mechanics. If
the retrodiction measurement is not performed, one has Ê(t0) = 1̂ and
Equation 5.17 only depends on the past through the conditional state,
as expected from the standard calculation of expectation values. Vice
versa, if the state at time t0 is ignored and only the retrodiction mea-
surement is performed, one has ρ̂c ∝ 1̂ and Equation 5.17 exclusively
depends on the future through the effect operator. In fact, the effect
operator is a dynamical quantity. The evolution of this operator, when
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conditioned on future outcomes, is governed by a stochastic backward
Itô equation [Lam18]. For our experimental system under the cav-
ity adiabatic elimination and the mechanical RWA, the unnormalized
equation for the conditional effect operator, Êc, is [ZM17; Lam18]

− dÊc(t) = Êc(t− dt) − Êc(t) =(
L
†
th +L

†
qba

)
Êcdt+

√
Γmeas

(
H̃†[X̂]ÊcdWE,X + H̃†[Ŷ]ÊcdWE,Y

)
,

(5.18)

where the adjoint superoperators, L†, are defined similarly to the
superoperators, L, in Equation 5.7, with the replacement D→ D† and

Average
displacement and
variance of the
retrodiction
measurement

D†[ĉ]Ê = ĉ†Êĉ−
ĉ†ĉÊ+ Êĉ†ĉ

2
, (5.19a)

H̃†[ĉ]Ê = ĉ†Ê+ Êĉ. (5.19b)

We note that Equation 5.18 is linear in the conditional state, since the
measurement superoperator in Equation 5.19b does not depend on
averaged values. This stems from choosing to adopt an unnormalized
evolution, according to Equation 5.18.

Based on Equation 5.17 with ρ̂c = 1̂, we use the conditional effect
operator obtained from solving Equation 5.18 to calculate the aver-
age displacement, rE = 〈r̂〉E, and the covariance matrix, 2(VE)ij =〈
r̂i, r̂j

〉
E
+
〈
r̂j, r̂i

〉
. The latter is a diagonal matrix, i. e. (VE)ij = VEδij,

similar to the quantum trajectory. The equations of motion for these
two moments are

−drE(t) =
Γm

2
rEdt+

√
4ΓmeasVE(t)2dWE. (5.20a)

−V̇E(t) = ΓmVE(t) + Γm

(
nth +

1

2

)
+ Γqba − 4ΓmeasVE(t)

2.

(5.20b)

Again, the retrodicted average displacement depends on the mea-
surement outcomes via dWE = idt−

√
4ΓmeasrEdt, whereas the con-

ditional retrodicted variance is deterministic and assumes the value
VE = Vc + Γm/(4Γmeas) ≈ Vc at the steady-state. The approximation
holds in the quantum measurement regime, which is the relevant one
in our experiment.

The retrodicted average displacement, rE(t0), is operationally ob-
tained from filtering the experimental outcomes at time t > t0 with
the recursive relation derived from the discretization of Equation 5.20a,
similar to what was done for the quantum trajectory. In Figure 5.10a
we show the average displacement, obtained from the recorded real-
izations, both from the quantum trajectory, evolved up to t0, and from
the retrodicted effect operator, evolved backward down to t0.

In particular, we ensure that t0 is away from the initial time evo-
lution of both the quantum trajectory and the effect operator, such



110 continuous displacement measurement of a mechanical resonator

4

2

0

-2

-4
420-2-4

10

5

0

-5

-10
1050-5-10

5.0

2.5
10

5
2000-200 -100 100-150 -50 50 150

b

a

c

quantum trajectory rc retrodiction rE

Figure 5.10: Verification of the conditional state. a, Average displacement
coming from the quantum trajectory, rc(t), (quadratures in dark
and light red) and the retrodicted effect, rE(t), (quadratures
in dark and light blue), calculated up to t0. b, Ensemble of
average displacements from quantum trajectories rc(t0) (red
circles) and retrodicted effect rE(t0) (blue triangles), at t0, from
different experimental realizations. Each pair is connected by
a gray line. The example shown in a is highlighted by a gray
box. c, Phase space distribution for the distance d(t0) (purple
circles). The purple (black) line corresponds to two s.d. of the
data (pure coherent state), with radius 2

√
Vd (2

√
1). Adapted

from [Ros+19].

that the corresponding variance is always at the steady-state. In this
case, both rc(t0) and rE(t0) are drawn from Gaussian distributions
with variances Vc and VE. One can expect that the distance between
these two expectation values, i. e. d(t0) := rE(t0) − rc(t0), also is a
Gaussian variable with a zero mean and a variance equals to the sum
of the variances of the quantum trajectory and the retrodiction effect,
i. e.Vd(t0) = Vc + VE ≈ 2Vc. Therefore, we are able to verify the vari-
ance of the conditional state by comparing the first moments coming
from independent sections of the data. In the next section, we prove
the latter relation and extend it to the case of a conditional variance
not in the steady-state.

In Figure 5.10b we collect the average displacements, rc(t0) and
rE(t0), from different realizations in a phase space. Each pair isExperimental

verification of the
conditional state

variance

connected by a gray line, which represents the distance outcome,
d(t0). The ensemble of all distances is shown in Figure 5.10c as a
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2D histogram. We calculate the covariance matrix of the distances as
(Vd)ij = E

[
di(t0)dj(t0)

]
− E [di(t0)]E

[
dj(t0)

]
. In practice, we find

that (Vd)12 ≈ 0 and (Vd)11 ≈ (Vd)22 within 2%, thereby we only re-
port the average of the diagonal terms, i. e.Vd = [(Vd)11 + (Vd)22] /2.
From the data, we obtain that Vd = 1.29± 0.02, which agrees with the
predicted value Vd(t0) ≈ 2Vc = 1.24 to within 4%. The uncertainty
in the measured variance reflects statistical uncertainties due to the
ensemble finite size, whereas a systematic error of 6% introduced by
the demodulation filter has been subtracted (cf. Section 5.3.4). The ver-
ified conditional state has, then, a purity of Pc = 0.78 and corresponds
to a thermal state, randomly displaced, with an average occupancy
of 0.14 phonons, which is much lower than the initial unconditional
thermal state. In this sense, this process is sometimes referred to as
cooling-by-measurement [Van+13].

5.3.2.1 Derivation of covariance of distance

Here we prove that

Vd(t) = Vc(t) + VE, (5.21)

for any time t from the beginning of the measurement, happening at
t = 0 s, and assuming that the retrodiction measurement has reached
the steady-state.

Using the definition of the distance, d, we cast the covariance matrix
as

Vd(t) = E
[
(rE(t) − rc(t))2

]
= E

[
rc(t)2

]
+E

[
rE(t)2

]
−2E [rc(t)rE(t)] ,

(5.22)

where we took advantage of the fact the E [rc] = E [rE] = 0. We use
the integral form of Equation 5.9a and Equation 5.20a for calculating
the three expectation values in Equation 5.22, i. e.

rc(t) =
√
4Γmeas

∫t
0

Vc(s)e
− Γm
2 (t−s)dW(s), (5.23a)

rE(t) =
√
4ΓmeasVE

∫∞
t

e−
Γm
2 (t−s)dWE(s), (5.23b)

where we made use, for rc(t), of its initial condition rc(0) = 0 and
Vc(0) = Vuc, and we assumed that the back-propagation of the effect
operator is carried out from an initial time far in the future, at∞, such
that at time t the conditional variance has reached the steady-state, VE.
In addition, we will also make use of the Wiener process properties,
i. e. E [dWi] = 0 and dWidWj = δijdt.

E
[
rc(t)2

]
: Firstly, we calculate the two-time correlation function. Ex-

ploiting Itô isometry, we obtain

E
[
rc(t)rc(t ′)

]
= 4Γmease

− Γm
2 (t+t ′)

∫min(t,t ′)

0

eΓmsVc(s)
2ds. (5.24)
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Then, we calculate the variance E
[
rc(t)2

]
directly from Equa-

tion 5.24 imposing t = t ′, which yields

E
[
rc(t)2

]
= 4Γmease

−Γmt

∫t
0

eΓmsVc(s)
2ds. (5.25)

The integral in Equation 5.25 can be solved from a formal inte-
gration of Equation 5.9b, from which we get

4Γmease
−Γmt

∫t
0

eΓmsVc(s)
2ds = Vuc − Vc(t). (5.26)

Inserting Equation 5.26 in Equation 5.25 we finally get

E
[
rc(t)2

]
= Vuc − Vc(t). (5.27)

E
[
rE(t)2

]
: From Equation 5.23b and exploiting dWE(s)dWE(s

′) =

δ(s− s ′)ds, we have

E
[
rE(t)2

]
= 4

Γmeas

Γm
V
2
E = VE + Vuc, (5.28)

where the last equality can be derived from Equation 5.20b at
the steady-state, i. e. putting V̇E(t) = 0.

E [rc(t)rE(t)]: In order to correctly asses the cross-correlations be-
tween the two average displacements, we need to make use of
the relation dWE(t) = idt−

√
4ΓmeasrEdt =

√
4Γmeas(rc− rE)dt+

dW, in which the Wiener increment from the retrodiction mea-
surement is linked to the average displacement from the quan-
tum trajectory, rc(t). Inserting this relation in Equation 5.23b we
get

rE(t) = 4ΓmeasVE

∫∞
t

eλ(t−s)rc(s)ds+
√
4ΓmeasVE

∫∞
t

eλ(t−s)dW(s),

(5.29)

where λ := 4ΓmeasVE− Γm/2. When calculating the cross-correlation,
the stochastic terms containing the Wiener increments are de-
fined on time intervals which, apart from a set of measure zero,
do not overlap. Therefore, they are uncorrelated according to
the Wiener process properties. The only non-zero term in the
cross-correlations is

E [rc(t)rE(t)] = 4ΓmeasVE

∫∞
t

eλ(t−s)E [rc(t)rc(s)]ds

= 4Γmease
−Γmt

∫t
0

eΓmsVc(s)
2ds = Vuc − Vc(t), (5.30)

where the last equality comes from Equation 5.26.
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Combining all these together we prove Equation 5.21.
In particular, for a quantum measurement the condition ηmeas ≈ 1

implies that Γmeas � Γm, then the following approximation holds

VE = Vc +
Γm

4Γmeas
≈ Vc. (5.31)

Using it in Equation 5.21 yields the simple and intuitive result that
Vd(t) ≈ Vc(t) +Vc and, at the steady-state for the quantum trajectory,
Vd ≈ 2Vc. This is our main result, which links the experimental
variance of an ensemble of data points, obtained from the distance
between the average displacements from the quantum trajectory and
the retrodiction measurement, to the conditional state variance, Vc(t),
otherwise not directly measurable due to its deterministic evolution.
This has already been exploited in Figure 5.10.

Equation 5.21 also has a simple interpretation: the retrodiction mea-
surement is an independent tool which is used to verify the conditional
state. The experimental statistics, Vd, yields the original conditional
state variance, Vc, plus an additional noise from the measurement,
VE. For ideal quantum measurements, this additional noise has a vari-
ance of VE = 1/2 in both quadratures: the retrodiction measurement
approximates an ideal, von Neumann projection on coherent states.

5.3.3 Observation of the conditional variance dynamics

The result proved suggests that this verification method, based on the
retrodiction measurement, can be extended to time t0 in which the
quantum trajectory is not at the steady-state. This allows to observe
the whole dynamics of the state during the measurement. In practice,
we perform the same statistical analysis done in Figure 5.10, now at
different time t0, within the interval 0 ms < t0 < 3 ms. Given the
3.2 ms-long measurement records, this ensures that the retrodiction
measurement variance always is at the steady-state, as assumed in
Equation 5.21. We calculate the variance of the distance, Vd(t0), and
the unconditional variance, Vuc, from the variance of the retrodicted
average displacement E

[
rE(t0)2

]
, at each time t0. The results are

shown in Figure 5.11.
The variance of the distance reproduces the conditional state vari-

ance, apart from the small offset VE. In the first ∼ 100 µs we observe
a reduction of this variance, as predicted by the model shown in
Figure 5.7b. This reduction stems from the purification of the condi-
tional state that the measurement carries out over time, leading to a
localization in the configuration space. For a quantum measurement
at the steady-state, the conditional variance is maximally reduced
close to the coherent state limit and much lower than the correspond-
ing unconditional variance, in which the quantum backaction noise
dominates. In this regard, performing a quantum measurement is the
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Figure 5.11: Measurement-induced collapse and decoherence. a, Sample of
distance Xd quadrature (gray) shown during different time inter-
vals. At time t0 = 0.7 ms the conditioning on the measurement
record is interrupted and the conditional state diffuses. Few
traces are highlighted in black for illustration purposes. b, Ex-
perimental unconditional (blue), from the retrodicted average
displacement, and distance (purple) variances. The horizontal
black line indicates the lower achievable limit, which is a pure
conditional coherent state. The dark gray line represents the
minimum variance achieved by our setup. Finally, the thin black
light is a theoretical prediction for the distance variance Vd.
Adapted from [Ros+19].

best choice for estimating and monitoring the mechanical state. The
suppression of the thermal and the quantum backaction decoherence
is a measurement-based mechanism. In fact, the fluctuating Brownian
and radiation pressure forces are still acting on the mechanical sys-
tem, however the outcome of the quantum measurement provides the
observer with a clean and accurate record of fluctuations. This record
can thus be used to track the induced random displacement, avoiding
any loss of information.

To show that the measurement outcomes counteract the decoher-
ence, we stop to condition the quantum trajectory on the measurementDecoherence from

ignoring the
outcomes

record from time t0 = 0.7 ms, by setting the detection efficiency to
zero in Equation 5.10 used to calculate the average displacement. In
such a way, we do not have any upcoming information, and our best
knowledge is solely based on the unconditional dynamics. The result



5.3 quantum trajectory of a mechanical resonator 115

is that the conditional variance heats up to the unconditional one via
decoherence, as shown in Figure 5.11b.

This concludes the verification of the conditional state, which is
a central object in quantum measurements. At this stage, the condi-
tional state still represents a tool that the observers have built to best
describe their knowledge about the system. As such, this state may
appear useless for further experiments in which the system needs to
be prepared in a given configuration, independently of the observers.
In other words, it would be desirable to convert such conditional state
into an unconditional one. This is indeed possible and requires to
control the dynamics of the system, based on the state-of-knowledge
expressed by the conditional state [DJ99; Doh+12]. For example, the
conditional state of a monitored mechanical resonator is almost a
pure coherent state with a fluctuating, but known, amplitude, whereas
many experiments require to have a fixed amplitude, e. g. at the ori-
gin of the phase space. Then, one can envision a strategy in which
displacement operations back to the origin are applied, based on the
average position from the conditional state. This is, in short, the idea
of feedback cooling, which we discuss in details in the next chapter.

5.3.4 Systematic effects of the demodulation filter

We now quantify the systematic error in the estimation of the vari-
ances introduced by the demodulation filter in Equation 5.5. This
filter should be compared to the effective one used to compute the
average displacement from the quantum trajectory (cf. Equation 5.10).
This is a Lorentzian filter, with a bandwidth, at the steady-state, ap-
proaching the measurement rate, Γmeas. We compare these two filters
in Figure 5.12, where we show the spectra of the raw homodyne pho-
tocurrent and of the demodulated quadratures iX and iY , arranged
in the form iX cos(Ωmt) + iY sin(Ωmt), and the magnitude squared of
the effective quantum trajectory filter. We can already anticipate that
the systematic error is small, since the bandwidth of the latter filter is
much smaller than the one from the demodulation filter.

In order to quantify this error, we start by rewriting the steady-
state average displacement, from both the quantum trajectory and
retrodiction, in terms of a convolution with the proper filter kernels
kc(t) and kE(t), i. e. rc(t) = kc(t) ∗ i(t) and rE(t) = kE(t) ∗ i(t), where
∗ indicates convolution. From Equation 5.9a and Equation 5.20a we
find that

kc(t) =
√
4ΓmeasVcH(t)e

−αt, (5.32a)

kE(t) =
√
4ΓmeasVEH(−t)e

αt, (5.32b)

where H(t) is the Heaviside step function and α := Γm/2+ 4ΓmeasVc.
We recast the demodulated photocurrent quadratures as convolutions
as well, i. e. i(t) = kdem(t) ∗ i(t), where kdem is the kernel of the band-
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Figure 5.12: Systematic effect of the demodulation filter. The average spec-
trum of the raw homodyne photocurrent, i(t), is shown in blue.
Such photocurrent is demodulated at Ωm to obtain the quadra-
tures iX and iY . For comparison, we show in red the spectrum
of iX cos(Ωmt) + iY sin(Ωmt). The gray line is the squared mag-
nitude of the steady-state filter used for estimating the quantum
trajectories. Adapted from [Ros+19].

pass filter and i(t) is the raw homodyne photocurrent. Combining all
together we obtain

rc(t) = kc(t) ∗ kdem(t) ∗ i(t)→ rc(Ω) = kc(Ω)kdem(Ω)i(Ω),
(5.33a)

rE(t) = kE(t) ∗ kdem(t) ∗ i(t)→ rE(Ω) = kE(Ω)kdem(Ω)i(Ω),
(5.33b)

where the right arrows point to the Fourier transforms. From Equa-
tion 5.33 and the convolution theorem we calculate the experimental
variances as

E
[
rc(t)2

]
=

∫+∞
−∞

dΩ

2π
|kc(Ω)kdem(Ω)|2E

[
|i(Ω)|2

]
, (5.34a)

E
[
rE(t)2

]
=

∫+∞
−∞

dΩ

2π
|kE(Ω)kdem(Ω)|2E

[
|i(Ω)|2

]
, (5.34b)

E [rc(t)rE(t)] =
∫+∞
−∞

dΩ

2π
kc(−Ω)kE(Ω)|D(Ω)|2E

[
|i(Ω)|2

]
.

(5.34c)

We can now compare these statistical quantities with and without the
presence of the filter kdem, by using the definition of kc, kE and the
Lorentzian fit of the measured PSD of i(t).

We summarize the results in Table 5.1. In particular, we notice that
the demodulation filter introduces a systematic underestimation of
the variance of the distance, Vd. We have corrected for this error in
Section 5.3.2, where we have presented the experimental results.
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with kdem without kdem difference

E
[
rc(t)2

]
21.20 21.21 0.05%

E
[
rE(t)2

]
22.42 22.44 0.09%

E [rc(t)rE(t)] 21.23 21.21 0.09%

Vd(t) 1.17 1.24 5.6%

Table 5.1: Variance and covariance with and without the demodulation filter.
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M E A S U R E M E N T- B A S E D Q UA N T U M C O N T R O L O F A
M E C H A N I C A L R E S O N AT O R

In the previous chapter we have seen how an observer can use a
quantum measurement to generate a pure conditional state. This is
done by conditioning the observer state-of-knowledge on the recorded
measurement outcomes. However, this refinement has no effect on the
unconditional state, which remains a largely mixed state dominated
by the quantum backaction noise. As anticipated, converting such
conditional state into an unconditional one, and thus independent of
the observer, requires to have control on the dynamics of the system
[WM10; Jac14; Zha+17], e. g. via engineering the Hamiltonian. Every
control strategy is based on spending some resources to achieve a
specific target. The effectiveness of the strategy is quantified by a cost
function, which is a functional of the observables of the system and the
variables of the control resources, further constrained by limitations
often present in realistic applications. For a chosen cost function the
control strategy is said to be optimal if it minimizes the cost. Finally,
when the control is based on the outcome of a measurement performed
on the same system, we talk about feedback control or optimal feedback
control if, in addition, the control minimizes the chosen cost function.

The general problem of deriving and experimentally exerting the
optimal feedback control strategy on a quantum system is rather
complicate. A significant simplification occurs for a specific class of
problems, in which the cost function is additive over time. In this
case, the separation principle holds. It states that the optimal strategy
should be only based on the conditional state. This splits the problem
in an estimation and a control step, which consists of, respectively, the
derivation of the conditional sate and the actuation of the feedback
force.

For instance, let’s consider the case of a mechanical resonator, the
displacement of which is continuously measured. A common control
situations is the one in which the cost function minimizes the total
energy [MVT98; CHP99]. In this case, the estimation step can be
carried out as shown in the previous chapter. The control force, ufb(t),
based on that state, is a viscous force proportional to the average
displacement of the conditional state. When exerted on the resonator,
by introducing the additional Hamiltonian term q̂ufb(t), it affects the
dynamics and provides the optimal control.

The separation principle makes clear a crucial theoretical aspect
of feedback control: the dynamics is controlled by a force based on
a conditional state, which itself depends on past measurements of

119
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some observables of the system. That is, the controlled dynamics is, in
general, non-Markovian. The consequence of this is that the standard
Lindblad master equation cannot be applied anymore, making the
Schrödinger picture description hard and less intuitive. While similar
problems arise in the Heisenberg picture too, one can still solve the
non-Markovian QLE for linear systems, by taking the Fourier trans-
form. Therefore, we prefer this picture over the Schrödinger one. It
should also be noted that in the QLE description the explicit measure-
ment outcomes are lost in the operator formalism, which treats the
photocurrent as an operator [WM10].

In this chapter we show the experimental implementation of a
measurement-based quantum control protocol aiming to prepare the
ground state of a mode of a mechanical resonator. We start with a
theoretical analysis of the optimal control problem, based on the LQG

theory. Despite its simplicity, a practical implementation is often unfea-
sible. Thus, we derive basic equations in the case of an arbitrary, then
sub-optimal, controller. Next, we describe the experimental reality and
the specific filter we design to ensure the stability of the experiment.
Finally, we move to discuss the main experimental results, which
show that the implemented feedback protocol allows to stabilize a
mechanical state close to its quantum ground state.

6.1 feedback control of a mechanical resonator

Feedback control schemes are ubiquitous in physics and engineer-
ing [Bec05] and are of fundamental importance in disparate fields,
from biosciences to technological applications. In recent years new
quantum technologies emerged [Kur+15], which brought the natu-
ral problem of controlling these quantum systems. This led to an
intense research effort on achieving measurement-based quantum
control of disparate mechanical systems, such as atoms [Kub+09],
ions [Bus+06], levitated particles [LKR11], cantilevers [KB06], nano-
mechanical beams [Wil+15], mirror modes [CHP99] and massive test
masses [Vin+08] in gravitational wave detectors. Despite that, however,
measurement-based quantum control has remained elusive so far, even
in its elementary forms such as the stabilization of the ground state.
The closest approach, reported by Wilson et al. [Wil+15], yielded a
low-occupancy thermal state, with ∼ 5 phonons on average, limited by
the measurement efficiency of ηmeas ≈ 0.9%.

Building from the quantum measurement and the conditional state
generation described in Chapter 5, we have managed to achieve the
preparation of the mechanical ground state via feedback cooling
[Ros+18], a form of measurement-based quantum control. In this
protocol the control strategy aims to minimize the mechanical energy,
which forms a quadratic cost function additive in time [DJ99; Doh+00].
Combined with the linear dynamics, the linear displacement measure-
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ment and the Gaussian nature of the noise involved, our platform is
part of the LQG systems, for which an analytical theory of optimal feed-
back control exists [NJP09] and has been summarized in Section 1.7.
In particular, for these systems the principle of certainty equivalence
holds, which states that the feedback force should be proportional to
the first moments of the estimated conditional state.

Let’s now focus on the case of a broad and resonant optomechanical
cavity, such that ∆ = 0 and κ� Ωm, typical of our experiments. We
have already seen that, in this case, the cavity can be adiabatically
eliminated and the effective unconditional mechanical dynamics, from
Equation 3.11, is

˙̂q = Ωmp̂, (6.1a)

˙̂p = −Ωmq̂− Γmp̂+Ωmûfb +
√
4ΓqbaX̂in +

√
2Γmξ̂ (6.1b)

where we have introduced the dimensionless feedback force, ûfb. In
addition, we assume that a BHD is used to continuously measure the
phase of the transmitted optical field. The calibrated photocurrent, î =√
8Γmeasq̂+

√
2Ŷin, represents an effective displacement measurement,

with the imprecision noise given by the phase optical quadrature,
Ŷin. We choose the normalization

√
2Ŷin such that the measurement

noise has a unity variance, consistent with the convention used in
Section 1.7. The control problem of reducing the mechanical energy Control problem of

minimizing the
energy

can be mapped into an LQG system by choosing the following matrices
[Gar+96]

A =

(
0 Ωm

−Ωm −Γm

)
, B =

(
0

Ωm

)
, D =

(
0 0

0 2ΓmVuc

)
,

C =
(√
8Γmeas 0

)
, Γ =

(
0 0

)
. (6.2)

The cost function is expressed by Equation 1.61, with P = 1/2 and Q =

e−1. The former matrix encodes the requirement of minimizing the
mechanical energy, (q̂2+ p̂2)/2, whereas the latter quantifies the effort
in exerting a control force. Within the chosen unit, e = 1 corresponds
to the force magnitude necessary to displace the resonator by an
amount equal to its zero-point displacement.

We notice, from Equation 6.2, that the process and measurement
noises are uncorrelated, i. e. Γ is the null matrix. Physically, this is a
consequence of the resonant phase measurement employed, in which
the two sources of noise are, respectively, the quantum backaction
and imprecision noise, originating in the uncorrelated amplitude and
phase optical quadrature. Also, the control matrix in Equation 6.2,
B, only allows to affect the momentum, p̂, through the force ufb.
This partial control reflects the lack of experimental tools to directly
change the displacement q̂. In practice, this does not represent a
limitation, because one can control the displacement q̂ by exerting
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a force, on the momentum, delayed by a quarter of period. During
this time, in fact, the harmonic evolution rotates the position into the
momentum. For this to work one needs a high-Q mechanical resonator,
for which several harmonic cycles happen before the dissipation kicks
in [Doh+12].

Following the methods from Section 1.7 one can find an analyticalOptimal control
solution solution to the optimal control problem and derive both the steady-

state mechanical energy once the control loop is closed, from Equa-
tion 1.64, and the transfer function of the controller that one needs to
experimentally implement to achieve the optimal control, from Equa-
tion 1.67. In Figure 6.1 we show the steady-state energy, E, in units of
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Figure 6.1: LQG closed loop mechanical energy and optimal controller trans-
fer function. a, Closed loop mechanical energy, in units of  hΩm,
as a function of quantum cooperativity, Cq, at different avail-
able control effort, increasing from light to dark red. The control
limit is represented by the conditional variance, Vc, in blue. The
solid black line corresponds to the mechanical vacuum energy. b,
Squared magnitude of the optimal controller transfer function,
for different control effort. The coloured line corresponds to the
configurations marked with stars in a.

phonon energy,  hΩm, as a function of the quantum cooperativity, and
the corresponding optimal transfer function, for some control efforts,
e. The lowest achievable energy is determined by the average one
from the conditional state, i. e.the conditional variance Vc. However,
reaching this limit, for a fixed quantum cooperativity, requires to have
enough control effort at disposal, as shown in Figure 6.1a. There, for a
fixed available effort, e, there exists an optimal quantum cooperativity
which minimized the energy. For higher cooperativities, in fact, the
unconditional variance is increased, due to the quantum backaction,
and the conditional one is decreased. Therefore, reducing the energy
to the conditional level requires to effectively cancel larger fluctuations,
which implies a larger feedback force, the strength of which is however
limited by the control effort e.
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The control transfer function, at the optimal Cq for different control
efforts, e, is shown in Figure 6.1. This transfer function corresponds to
a two-pole band-pass filter centered around Ωm [Gar+96], similar to
the mechanical susceptibility in Equation 2.20. This transfer function
broadens as the quantum cooperativity is increased, and approaches
a flat filter in the limit of unlimited control effort, e → ∞, and mea-
surement strength, Cq → ∞. In this limit, the feedback force only
depends on the just-recorded measurement outcome, thus realizing a
Markovian feedback [Wis94].

6.1.1 Sub-optimal case

Despite the simplicity of the transfer function of the optimal controller,
its experimental implementation is not always feasible. One major
obstacle is represented by the multitude of mechanical modes present
in practice, which are not taken into account in the optimal solution
derived in the previous section. Using the optimal control strategy
stemming from the single-mode model can lead to instabilities of these
other mechanical modes, thus precluding its use in real experiments.
In fact, we observe this instability when we try to implement the
simple two-pole band-pass filter in our membrane-based platform.

The other mechanical modes also behave in a linear fashion, then
one can ideally include them in the LQG system description by in-
creasing the dimension of the configuration space. This would require,
though, to characterize the parameters of each mode, an experimen-
tally unfeasible task given their large number. Therefor, we decide
to implement a different transfer function for the controller, which is
then sub-optimal, while being inspired by the optimal case for a single
mode.

In the following, we model the implementation of a control force
based on a generic linear filter. The resulting equations are useful to
understand and interpret the experiments which employ non-optimal
control. We start from Equation 6.1 and the measured homodyne
photocurrent, î. If the feedback force is not exerted, we obtain the
following solutions in the Fourier domain [Wil+15]

q̂(Ω) = χm(Ω)f̂tot(Ω), (6.3a)

q̂inf(Ω) = q̂(Ω) + q̂imp(Ω), (6.3b)

where we introduced the photocurrent calibrate in displacement units,
i. e. q̂inf := î/

√
8Γmeas, and the total force f̂tot(Ω) :=

√
2Γmξ̂(Ω) +√

4ΓqbaX̂in(Ω), which comprises, respectively the thermal and the
quantum backaction force. The effective displacement imprecision
noise, in Equation 6.3b, is q̂imp(Ω) := Ŷin(Ω)/

√
4Γmeas.

We now apply a feedback force on the resonator, as done in Equa-
tion 6.1b. In this case, however, the feedback force is not derived
from the optimal LQG controller, but rather from a generic linear filter
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applied to the calibrated photocurrent, i. e. ûfb(Ω) = Hfb(Ω)q̂inf(Ω),
where Hfb(Ω) is the transfer function of the filter. For real-time con-
trol, we also require that this transfer function is causal. The entire

detectormechanical
system

amplitude
modulator

digital band-pass filter

optical bath
quantum

backaction
noise

imprecision
noise

feedback controller

photocurrent

Figure 6.2: Feedback control of a mechanical resonator. An optomechanical
system is employed to continuously monitor the displacement
of a mechanical resonator. The recorded photocurrent is further
processed by an electronic controller, which is used to actuate an
additional feedback force on the resonator itself. This represents
a LQG system.

control loop is sketched in Figure 6.2. We include the feedback force
in the coupled Equation 6.3 and solve for the actual and inferred
displacement, under the closed control loop,Arbitrary control

loop dynamics

q̂(Ω) =
χm(Ω)

1− χm(Ω)Hfb(Ω)

(
f̂tot(Ω) +Hfb(Ω)q̂imp(Ω)

)
, (6.4a)

q̂inf(Ω) =
χm(Ω)

1− χm(Ω)Hfb(Ω)

(
f̂tot(Ω) + χm(Ω)−1q̂imp(Ω)

)
.

(6.4b)

From Equation 6.4a we notice that the feedback loop affects the
mechanical susceptibility, giving rise to an effective one

χeff, fb(Ω) :=
χm(Ω)

1− χm(Ω)Hfb(Ω)
. (6.5)

Also, the displacement q̂ is driven by an additional fluctuating force.
This force stems from the imprecision noise, q̂imp, being fed back by
the feedback loop and its strength depends on the controller gain,
|Hfb(Ω)|. We can already guess that the choice of the transfer function,
Hfb(Ω), is crucial for the statistical moments of the mechanical state.
In particular, for a properly chosen transfer function the feedback loop
effectively cools the mechanical motion, in a similar fashion to optical
cooling (cf. Section 3.3).
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As usual, the actual displacement is inaccessible to the experi-
menters, who can infer it from the calibrated photocurrent, q̂inf, ex-
pressed in Equation 6.4b. However, one should be careful when in-
terpreting this photocurrent, as it now becomes part of the loop. It is In-loop photocurrent

known that such an in-loop photocurrent contains additional correla-
tions, not presents in the actual system, arising from different parts
of the loop itself [Sha+87]. In our case, the in-loop photocurrent in
Equation 6.3b contains the imprecision noise and the mechanical dis-
placement, which is partially driven by the same imprecision noise.
This gives rise to correlations in the spectrum of the photocurrent,
which can distort the usual mechanical Lorentzian response and, then,
should be properly taken into account to make inference on the me-
chanics. For strong enough in-loop correlations, the measured spectral
noise appears to be reduced below the background, which is the shot
noise. This effect is known as noise squashing [Buc+99; Wis99], and
does not corresponds to squeezing of the quantum noise, in contrast
to what happens for free fields out-of-loop.

The symmetrized PSD of the actual displacement and the in-loop
photocurrent, from Equation 6.4, are Spectra of actual

displacement and
in-loop photocurrentSq̂q̂(Ω) = |χeff,fb(Ω)|2

(
S

tot
FF(Ω) + |Hfb(Ω)|2Simp(Ω)

)
, (6.6a)

S
inf
q̂q̂(Ω) = |χeff,fb(Ω)|2

(
S

tot
FF(Ω) + |χm(Ω)|−2Simp(Ω)

)
. (6.6b)

From Equation 6.6a we can calculate the effective average phonon
number according to Equation 3.23 or, in the case of validity of the
equipartition theorem, to Equation 3.24. Experimentally, however, we
only have the in-loop photocurrent at our disposal. Then, in order to
infer the mechanical average occupation, we fit the measured spectrum
to Equation 6.6b. We insert the fitted parameters in Equation 6.6a to
calculate the actual spectrum which, subsequently, we numerically
integrate to obtain the occupation.

6.1.2 An example: cold damping

Let’s now consider a specific feedback control scheme, in which the
transfer function is chosen to be an ideal derivative filter,

Hfb(Ω) = ıΓmgfbΩ/Ωm, (6.7)

where gfb is the dimensionless gain. This filter is the basis of a scheme
which is known as cold damping [MVT98; CHP01; Gen+08a]. It al-
lows to introduce additional mechanical damping with minimum,
“cold” quantum fluctuations. Inserting Equation 6.7 in Equation 6.5
shows that the only effect in the susceptibility is to replace the natu-
ral damping, Γm, with the feedback-enhanced damping, Γm(1+ gfb).
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The mechanical occupation, from Equation 3.24, is obtained from the
integration of Equation 6.6a, which yields

neff =

∫∞
0

dΩ

π
Sq̂q̂(Ω) −

1

2
=

Vuc

1+ gfb
+

g2fb
1+ gfb

Γm

16Γmeas
−
1

2
. (6.8)

The minimum occupancy, achieved upon optimization of the feedback
gain, gfb, is

min
gfb

(neff) =

√
1+ 16Γmeas/ΓmVuc − 1

8Γmeas/Γm︸ ︷︷ ︸
Vc

−
1

2
. (6.9)

This exactly corresponds to the occupation of the conditional state,
displaced to the origin, with the conditional variance defined in Equa-
tion 5.12. The result is rather surprising because, apparently, the cold
damping strategy gives rise to the optimal result, despite the transfer
function of the controller employed is non optimal.Unbounded feedback

force PSD The resolution of this paradox lies in the large violation of the
equipartition theorem in the cold damping approach. In fact, the pure
derivative filter does not have a frequency upper bound, which leads
to an unbounded force spectrum, driving the mechanical resonator.
The momentum spectrum, consequently, is not bounded anymore for
large frequencies, Ω� Ωm, at which

Sp̂p̂(Ω) =
Ω2

Ω2m
Sq̂q̂(Ω) ∼

Γm

Ω2m
g2fbSimp(Ω), (6.10)

which is flat and thus generates an infinite momentum variance.
In practice, this divergence is always avoided in the experiments

thanks to the presence of a cutoff frequency, above the mechanical
resonance, in the actuation [Gen+08a].

6.2 experimental reality and feedback loop design

Experimentally, we use the same setup described in Chapter 5, also
sketched in Figure 6.3, which allows to perform quantum displace-
ment measurements [Ros+18]. The probe laser is locked close to the
resonance of a cavity mode, at λ = 796.060 nm, with a linewidth
κ/(2π) = 15.9 MHz and a residual detuning of ∆ ≈ −0.05κ. The phase
of the transmitted field is detected by means of a BHD, with a total
efficiency of η = 73%, which also includes the cavity overcoupling. The
only difference with the setup in Figure 5.2 is the overall transfer func-
tion, Hfb := Hmain +Haux, of the FPGA-based feedback controller used
to process the recorded homodyne photocurrent. Here, we introduce
the main controller filter, Hmain, which feedback-cools the in-bandgap
mode of interest and is designed to minimize its occupation. The
chosen transfer function, different from the optimal one based on the
single-mode LQG description, is
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Figure 6.3: Measurement-based control experimental setup. A probe laser,
tuned on resonance, performs a displacement quantum measure-
ment, whose outcome is recorded via BHD. The resulting pho-
tocurrent is filtered and employed to modulate the amplitude of
an auxiliary laser, which exerts a feedback force on the resonator
mode to cool it down.

Hmain(Ω) = gfbe
ıΩτ−ıφ

(
ΓfbΩ

Ω2fb −Ω
2 − ıΓfbΩ

)2
. (6.11)

The center frequency and the FWHM of the filter are, respectively, Experimental
controller transfer
function

Ωfb/(2π) = 1.195 MHz and Γfb/(2π) = 77.78 kHz. Electronic cables
and the FPGA unit, which generates this filter, introduce a total time
delay of τ = 300 ns. The gain, gfb, reflects the electronic gain of
the FPGA-based controller, as well as subsequent amplification and
transduction. Finally, the overall phase, φ, is digitally controlled and
experimentally tuned to yield arg (Hfb(Ωm)) ≈ π/2. In such a way, the
feedback force, at the mechanical resonance frequency Ωm, approxi-
mates a viscous force, as in the case of cold damping. Any deviation
from π/2 results in an additional elastic force, which has the effect of
slightly shifting the resonance frequency.

We choose to use a high-order frequency in order to suppress the
residual gain at frequencies outside the phononic bandgap, where the
density of mechanical modes becomes large and it is easy to excite
some of them. Nevertheless, there are still few mechanical modes, Description of the

control loopboth at low frequencies and inside the bandgap, for which the filter
suppression is not enough to avoid instabilities. In order to stabilize
them, we apply additional feedback forces close to the resonance
frequencies of these modes. To do that, we electronically split the
homodyne photocurrent and process it with independent controllers,
one per mode to be stabilized. The employed filters have the same
form of Hmain (cf. Equation 6.11). The electronically processed signals
are recombined together, then sent to an amplitude modulator to feed
them back as forces on the mechanical resonator. In a similar way, we
also feedback-cool few other low-frequency modes which exhibit large
displacement excursions, leading to extraneous in-bandgap noise via
non-linear transduction, as reported in Section 5.1.
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frequency phase bandwidth gain

159.8 kHz 150◦ 1.216 kHz 1

264 kHz 90◦ 4.858 kHz 3

428.5 kHz 100◦ 303.6 Hz 10

546.4 kHz 170◦ 607.2 Hz 0.5

560.3 kHz 170◦ 151.8 Hz 1

690.6 kHz 0◦ 151.8 Hz 1

1.0183 MHz 170◦ 303.6 Hz 15

1.25 MHz 30◦ 9.716 kHz 20

1.195 MHz 178◦ 77.78 kHz gfb

Table 6.1: Filter settings for feedback-cooling additional mechanical modes.
The last row shows the settings for the main filter, Hmain.

All these additional controllers are grouped in an effective, single
auxiliary transfer function, Haux(Ω). The total number of additional
controllers varies from different experimental runs. For the one re-
ported here, we employed eight different filters, which are derived
from three RedPitaya, each of which can simultaneously output at
most three independent filters. In Table 6.1 we report the settings for
these filters.

In Figure 6.4 we show the measured overall transfer function of
the digital filter, Hfb, including both the main and the auxiliary ones.
As reported in Table 6.1, the closest mode to the in-bandgap one of
interest which we need to stabilize is at Ω/(2π) = 1.25 MHz. The
auxiliary filter for this mode clearly appears in Figure 6.4, however,
despite that, it does not add any significant contribution to the total
transfer function close to the mechanical mode, Ω ≈ Ωm.

We use the electronic feedback signal, obtained from applying the
total filter shown in Figure 6.4 to the photocurrent, to actuate a force on
the mechanical resonator. This is done via classical radiation pressure
force, obtained by modulating the amplitude of the auxiliary laser
with the feedback signal. This laser is locked to the red side of a
different cavity mode at λa = 795.057 nm, with a linewidth and a
detuning of, respectively, ∆a/(2π) = −4.2 MHz κa/(2π) = 12.9 MHz.
The amplitude modulation of the input field is partially transduced,
by the cavity, into intracavity amplitude modulation, which yields the
wanted radiation pressure force on the resonator.

We can now use the measured transfer function, shown in Figure 6.4,
to numerically study the performance and limits of the employed filter.Limits of the

experimental
controller

We show the calculated effective mechanical occupation, under the
effect of the experimental controller, in Figure 6.5a, where we optimize
the feedback gain, gfb, at each Cq. We compare it to the ultimate
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Figure 6.4: Experimental controller transfer function. a, Magnitude and b,
phase of the transfer function of the total controller (orange) and
the main controller only (blue), used to cool down the mode of
interest, located at the frequency marked by the vertical gray
dashed line. In the total controller transfer function the only
visible auxiliary filter is the one located at 1.25 MHz, used to
suppress instabilities induced in one of the other in-bandgap
modes. The other auxiliary filters are much more far apart and
have a negligible contribution around the mechanical mode of
interest. Adapted from [Ros+18].

limit given by the occupation of the conditional state [Doh+12; BM16],
achieved by the optimal controller with the same total efficiency of
73%. We predict that our experimental controller, at the optimal Cq,
yields the lowest occupation of 0.2 phonons, whereas the optimal
controller achieves a lower value of 0.09 phonons. We numerically
calculate the variance of both the displacement and the momentum
and verify that they differ only by 6 1%, thus justifying the use of the
equipartition theorem. We also predict that our experimental controller
becomes unstable for sufficiently large gains, as shown in Figure 6.5b.
When the instability is approached, the mechanical resonator heats up
exponentially. In Figure 6.5c we show few theoretical displacement
spectra, at different feedback gains for a fixed Cq. The instability arises
due to the excess motion produced by the feedback force through
the controller filter, at Ω/(2π) ≈ 1.18 MHz, close to resonance of the
transfer function.

6.3 quantum ground state preparation by feedback

We now move to describing the experiments performed with the
experimental controller derived in the previous section. We choose
the quantum measurement efficiency by tuning the optical power of
the probe beam, which changes its Cq accordingly. For each chosen
Cq we close the feedback loop with the filter previously described,
then we collect several inferred displacement spectra, from the in-loop
homodyne photocurrent, as we vary the gain of the electronic filter,
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Figure 6.5: Experimental and ideal limits of feedback cooling. a, Mechanical
occupation at different quantum cooperativities, Cq, achieved
with the experimental (blue) and optimal controller (orange),
optimizing the feedback gain at each Cq. The solid black line
represents the limit for the optimal control, at Cq →∞ and the
same experimental total efficiency of 73%. The dashed gray line,
instead, is the predicted lowest occupation achievable from the
experimental controller. b, Mechanical occupation as a function of
the experimental controller gain gfb, normalized to the instability
gain gins

fb , at Cq = 5. c, Actual displacement spectra corresponding
to the gain values marked as coloured circles in b. The gray line
is the experimental controller transfer function, for reference.
The instability is caused by the excess motion induced by the
controller at Ω/(2π) ≈ 1.18 MHz, for large gain. Adapted from
[Ros+18].

gfb. In Figure 6.6a-c we show some of the measured spectra, Sinf
q̂q̂(Ω),

calibrated in units of phonons S1p
q̂q̂ (cf. Section 5.2.1), for Cq = 2.4 WeInferring

occupations from
in-loop spectra

fit each spectrum to Equation 6.6b, using the transfer function of the
experimental filter, characterized in Figure 6.4, with the electronic gain,
gfb, the overall phase, φ, the total force noise, ntot, and imprecision
noise, nimp, occupations kept as free parameters. The results are shown
as a function of the digital gain set on the RedPitaya in Figure 6.6d-g.
As expected, the fitted gain, gfit, is proportional to the digital gain, gfb,
and all the spectra have a constant overall phase of ≈ π/2. Moreover,
all the spectra are consistent with a constant value of ntot and nimp,
indicating that there is no additional gain-dependent electronic noise
fed back by our feedback loop. We notice that the excess motion at
higher frequencies around 1.10÷ 1.20 MHz, caused by the experimen-
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Figure 6.6: Feedback cooling fit results. a, b, c In-loop inferred displacement
spectra (blue) and fits (black) for three different gains, at Cq = 2.4.
The gray trace is the shot noise. d, Gain, e, phase, f, total force
noise and g, imprecision noise occupations resulting from the
spectral fits. The red lines are linear/constant fits of these results.
Adapted from [Ros+18].

tal controller for high gains, is correctly identified and fitted by the
modelled transfer function. In addition, the in-loop spectrum for high
gains shows a noise reduction below the shot noise, as observed in
Figure 6.6c. This is known as noise squashing and corresponds to the
appearance of significant correlations in the photocurrent, between the
imprecision noise and the mechanical motion. Finally, using the fitted
parameters, we can infer, for each spectrum, the corresponding actual
out-of-loop displacement spectrum, Sq̂q̂(Ω), as shown in Figure 6.7a
and b. The mechanical occupation, neff, is shown in Figure 6.7c and
is obtained from the integration of the actual displacement spectra,
according to Equation 3.23.

We perform similar experiments and data analysis at different probe
quantum cooperativity, Cq. In Figure 6.8 we show the overall results for
the effective mechanical occupations. We now express the electronic
gain in terms of the effective mechanical linewidth, Γeff, obtained
from the FWHM of the estimated actual displacement spectrum. We
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Figure 6.7: Inferring mechanical occupations from measured in-loop spectra.
a, Sample of in-loop calibrated spectra (blue) and fits (smooth
thin lines), for different electronic gains. b, Out-of-loop actual
displacement spectra, estimated from the fit results. c, Effective
mechanical occupation, obtained from integration of the displace-
ment spectra in b, as a function of the electronic gain, expressed
in terms of effective total mechanical linewidth, Γeff. The solid
(dashed) red line is a prediction from the mean values of the fitted
(independently estimated) parameters. Adapted from [Ros+18].

observe that for each Cq there is an optimal electronic gain which
yields the lowest occupation. The lowest mechanical occupation we
achieve is, at Cq = 2.4, of neff = 0.29± 0.03, where the errors indicate
the confidence intervals of the fitted parameters used to calculate
the occupation. For higher gains, the occupation heats up due to the
uncorrelated imprecision noise which is fed back, by the control loop,
as a force on the resonator.

We benchmark our results against the case of the optimal control.
There, if unlimited measurement strengths and control efforts are
available, the lowest achieved occupation is given by the variance of the
conditional state, Equation 5.12. For quantum-limited measurements
with a large quantum cooperativity, we have that ηmeas ≈ η, then
the conditional variance is only determined by the total efficiency, η.
For out total efficiency of η = 0.73 the corresponding occupation is
nmin = 1/

√
η− 1/2 = 0.09. The discrepancy with our experimental

results arises from the sub-optimal filter employed. As discussed, this
is necessary in order to avoid instabilities of other mechanical modes,
which lie outside the phononic bandgap. Improvements of the actual
performance can be achieved by designing a mechanical resonator with
a larger bandgap and a mode closer to its center, as well as designing
optimal filters which take into account the actual multimode nature
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Figure 6.8: Feedback cooling to the quantum ground state. Effective phonon
occupations, for different quantum cooperativities, Cq, as a
function of the electronic gain, in units of effective mechanical
linewidth, Γeff. Points are data, error bars indicate the confidence
interval from the fit, solid lines are predictions using indepen-
dently estimated parameters. The black and gray lines indicate
the lowest achievable occupation for, respectively, the optimal
and experimental controller. The green line indicates instead the
sideband cooling limit for this optomechanical system. Adapted
from [Ros+18].

of the membrane resonator. Furthermore, one can take advantage of
the optomechanical correlations present in the measurement, e. g. by
moving from a phase to a rotated quadrature detection, to reduce even
more the occupation, for a given choice of the filter [Hab+16].

This experiment shows, for the first time, that measurement-based
control can be employed to achieve ground state cooling of a mechani-
cal resonator. In particular, its performance can overcome equivalent
cooling techniques, not based on measurements. As an example, we
consider a sideband cooling performed with the same cavity mode
addressed by the probe laser. In the optimal situation, the lowest limit
corresponds to an occupation of 2.6 phonons, which is almost an order
of magnitude above what we have obtained. In sideband cooling, in
fact, the quantum backaction noise poses limits on the achievable occu-
pation [AKM14]. Measurement-based cooling, instead, can counteract
this quantum noise if an efficient measurement is provided. Because
of this quantum backaction cancellation [Wis95], feedback cooling to
the ground state can be considered as a form of measurement-based
quantum control.
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6.3.1 Heating rate out of the ground state

The mechanical state, prepared close to the ground state, is now
an unconditional one and will remain so as long as the feedback
control is acting on the system. When the control is switched off, the
decoherence from the quantum backaction and the thermal bath kicks
in and heats the mechanics up to the initial thermal state. To show
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Figure 6.9: Heating rate from a low occupation state. a, Mechanical occupa-
tion, neff(t) (blue), during the heating process, caused by switch-
ing off the main control loop at t = 0 ms. The black line is a fit,
the dashed black lines indicate the slope from the initial occu-
pation, ˙neff(0) ≈ γtot. The dashed coloured lines are the initial
and final occupations, estimated from the spectra in b. b, Mea-
sured displacement spectra, corresponding to the initial (light
red) and final (dark red) states. The light gray trace is the shot
noise and the dark gray line is the demodulation filter used by the
LIA. c, Measured heating rate for different quantum cooperativity
(blue circles). The blue line is a prediction from independently
estimated parameters, which accounts for thermal (green) and
quantum backaction decoherence (red) from the auxiliary laser.
Adapted from [Ros+18].

that and to measure the coherence time from the ground state, we
start by feedback cooling the mechanical state to a low occupation of
neff ≈ 2. Then, we switch off the main feedback control, Hmain, while
monitoring the in-loop homodyne photocurrent. The auxiliary filters,
Haux, are on all the time, to provide cooling of some low-frequency
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modes. We provide more details on the calibration and methods in
the next section.

The resulting heating process, averaged over ∼ 400 experimental
repetitions, is shown in Figure 6.9a. The mechanical state heats up
to nf ≈ 60, which mainly results from the sideband cooling of the
auxiliary laser. We fit the heating curve to an exponential law. From
the result of the fit we estimate the slope of the initial dynamics, at
t = 0 ms, corresponding to a total heating rate of 1.4 phonons/ms
out of the ground state. This rate corresponds to a total decoherence
time of 1/γtot ≈ 730 µs, which contains both the thermal decoherence
one, predicted to be 850 µs for a bath at temperature of T ≈ 9 K for
this experiment, as well as the quantum backaction noise decoherence
from both the probe and auxiliary laser. We repeat this measurement
for different quantum cooperativities, Cq, and show the measured
heating rates in Figure 6.9c. The data are well explained by a model
which indeed takes into account all the three source of decoherence
previously mentioned.

6.3.1.1 Methods and calibration

We toggle the main control filter on and off by means of an electronic
switch, placed after the RedPitaya unit which generates the main filter.
The switch is driven by a 200 ms-period square wave. The homodyne Variance extraction

during the heating
process

photocurrent is electronically split and simultaneously sent to the
DAQ card for the spectral analysis and to an LIA, which extracts the
total variance, σ2Ωm

(t), from the frequency components at Ωm within
a bandwidth of 300 Hz. It is this variance which is averaged over the
experiment repetitions. From it, we subtract the shot noise variance,
σ2Ωm,sn(t), which is measured with the LIA by blocking all the fields
but the LO. The resulting variance, proportional to the area of the
displacement spectrum, thereby to the mechanical occupation, forms
the heating process.

We perform a two-step calibration of the raw variance, measured
in V2, into an effective mechanical occupation, neff. First, we derive Calibration of the

raw variance into
phonons

in the usual way a voltage-to-displacement conversation factor, from
the spectra recorded by the DAQ, the measured coupling rate, g0, and
the are of the calibration tone at 1.09 MHz (cf. Section 4.2.4.2). This
conversion factor refers to voltages measured by the DAQ, whereas
the heating process is measured by the LIA. Since the two instruments
might have different systematic errors, e. g. due to electronic imperfec-
tion in the photocurrent splitting, we need to assess and correct for
this discrepancy. Then, as a second calibration step, we use the optical
shot noise as a marker. We filter and integrate the shot noise spectrum,
measured by the DAQ, using the same filter employed by the LIA, as
shown in Figure 6.9b. The resulting variance is compared to the one
outputted by the LIA, and used to correct the voltage from the LIA.





7
E N T R O P Y P R O D U C T I O N I N A M O N I T O R E D
M E C H A N I C A L R E S O N AT O R

The experiments reported in the previous chapters focus on a core
aspect of any experimental science, that is, the ability of performing
measurements on a given system in order to extract information about
it. In particular, we have shown that quantum physics has profound
implications in the measurement action, as it requires that any ex-
tracted information is accompanied by corresponding fluctuations, in
order to satisfy an Heisenberg measurement-disturbance relation.

At the same time, information also has deep connections and influ-
ences on the thermodynamics of the system, as pointed out already by
Maxwell, Szilard and Landauer [PHS15]. In fact, the process of acquir-
ing information from a measurement generally affects the entropic
balance of the system being measured [ALR16]. This means that the
information should be treated as a real physical thermodynamic quan-
tity, on par with others like heat, energy and work. As a consequence,
the second law of thermodynamics should be generalized in order to
take into account the eventual entropic contribution of the information
gathered from a measurement [SU09].

Here we combine these two approaches and experimentally study
the thermodynamics of a mechanical resonator, the displacement of
which is monitored by a quantum-limited measurement. We briefly
review some of the basics concepts of non-equilibrium and stochastic
thermodynamics [Bin+18], then we describe the experiment we per-
formed to observe the informational contribution to the entropy of the
measured system. As we will see, the contribution from the quantum
measurement dominates the thermodynamics.

7.1 non-equilibrium thermodynamics and entropy pro-
duction

Let’s review some of the basics thermodynamic concepts, which will
be useful later. The canonical setup contains a system comprising few
degrees of freedom, which can be monitored and controlled by the
observer, interacting with an environment which instead has a large
number of degrees of freedom, partially or totally inaccessible to the
observer. An important thermodynamic quantity is represented by the
total entropy rate, Ṡ. In general, we can split it into two qualitatively
different contributions [Bin+18],

Ṡ = Φ+Π. (7.1)
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The former, Φ, represents the entropy flux, which quantifies the entropy
exchange between the system and the environment, whereas the latter,
Π, is the entropy production rate, which instead expresses the rate at
which entropy is produced in the system in an irreversible way. Then,
the entropy production rate quantifies the amount of irreversibility
present in the dynamics.

For systems in thermal equilibrium at the steady-state, the entropyNon-equilibrium
steady-state rate vanishes and both the entropy flux and production rate are zero,

i. e.Φ = Π = 0. A typical example is given by a mechanical resonator
coupled to an environment consisting only of a thermal bath. The situ-
ation is different for non-equilibrium systems, like an optomechanical
cavity in which the system, comprising an optical and a mechanical
mode, couples to an environment, comprising both a thermal and an
optical bath. At the steady-state, both modes of the system thermal-
ize to different temperatures from the ones of the respective baths.
In these non-equilibrium systems there is a continuous irreversible
generation of entropy, which then flows away into the environment.
Despite the total entropy rate remains null, as required by a steady-
state, both the entropy flux and production rate, individually, are not
zero, i. e.Φ = −Π 6= 0. This allows to define a second law of thermody-
namics, even in the case of non-equilibrium systems, as Π > 0, where
the equality holds if and only if the thermal equilibrium is achieved.

This picture gets altered in presence of measurements. We have
already seen, in Section 5.3, that the outcomes from a measurement
lead to a conditional dynamics, understood in terms of stochastic
trajectories. Based on this view, one can build a similar perspective
for a stochastic thermodynamics, in which the entropic quantities are
also affected by the measurement outcomes. As of today, however, a
general framework for describing the entropy production rate of a
monitored quantum system does not yet exist. Recently, a new theo-
retical description has been proposed for quantum Gaussian systems
subjected to continuous Gaussian measurements [Bel+19]. This class of
systems, despite not being universal, is of vast theoretical applicability
and embodies a large number of existing experimental platforms, like
the optomechanical cavity setup described in this thesis.

In stochastic thermodynamics the entropy is defined at the level ofStochastic
thermodynamics a single stochastic trajectory, rc, realized by the system, thus we talk

about conditional entropy, Sc. For Gaussian systems this conditional
entropy always remains deterministic. Nonetheless, one can recast
the conditional entropy increment as dSc = φc,r + πc,r, similar to
Equation 7.1. These two terms, φc,r and πc,r, are conditioned on a
single trajectory, rc, and thus are stochastic quantities. We call them
the stochastic entropy flux and production rate, respectively. They
represent the fluctuations of the deterministic conditional counterparts,
that is, the conditional entropy flux and production rate, which are
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obtained from averaging the stochastic quantities over all the possible
trajectories, respectively Φc := E [φc,r] and Πc := E [πc,r].

In order to assess the influence of the measurement, we can compare
the conditional entropy flux and production rate to the unconditional
counterparts, where the measurement outcomes are ignored. For Gaus-
sian systems, the entropy flux is not affected by the measurement at
all, thus one has Φc = Φuc [Bel+19]. In contrast, the acquisition of
information allows the observer to reduce the irreversibility in the
system. As such, the irreversible entropy which is conditionally pro-
duced, i. e. the time integral of the conditional entropy production
rate, Σc =

∫
Πcdt, is always less than the entropy unconditionally

produced, Σuc =
∫
Πucdt, such that Σc 6 Σuc. Their difference exactly

assesses the amount of irreversible entropy cancelled by the acquisi-
tion of information through the measurement [Bel+19]. In terms of
rates, one has Conditional entropy

production rate
Πc = Πuc + İ, (7.2)

where İ is the rate at which entropy is produced by the acquired
information. In particular, its integral, I, can be also expressed as the
opposite of the mutual information between the coordinates of the
system phase space in the unconditional case, 〈r̂〉, and the stochastic
ones in the conditional case, 〈r̂〉c. Since the mutual information is
always non-negative, the informational theoretic entropy contribution,
I, is always non-positive.

In addition, Equation 7.2 suggests that the second law of thermo-
dynamics can be refined to be Πc > İ for monitored systems. This is
an important result, as it formally extends the connection between
information theory and non-equilibrium thermodynamics [SU09], as
pioneered by the Landauer’s principle, to an important class of quan-
tum systems.

Despite its importance, an experimental assessment of this infor-
mational theoretic contribution is still missing. In the following, we
exploit the quantum trajectory description and the retrodiction mea-
surement from Section 5.3 to access the conditional dynamics, from
which we infer the thermodynamics of the mechanical resonator.

7.2 stochastic thermodynamics of a monitored mechan-
ical resonator

The experimental setup is the same shown in Figure 5.6 and the
data here reported have been acquired on the same experimental run
[Ros+20]. Here, we employ a different power for the probe laser, such
that Γqba/(2π) = 0.36 kHz. The dynamical backaction from both the
probe and the auxiliary lasers broadens the mechanical linewidth to
Γm/(2π) = 19 Hz, with a resonance frequency Ωm/(2π) = 1.14 MHz.
In addition, residual laser cooling and the quantum backaction noise
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from the auxiliary laser determines an effective thermal bath with
occupation nth = 14. The phase of the transmitted probe laser is
monitored via a BHD, with a total efficiency of η = 74%.
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Figure 7.1: Measured conditional state. a, Sample of average displacement
over time, rc(t), from six different measured quantum trajectories.
The conditioning is started at t = 0 ms, at which all trajectories
agree on the same initial state rc(0) = 0. b, Measured conditional
variance (blue) from comparison with the retrodiction measure-
ment. The black line is a theoretical prediction from independently
measured parameters. At the steady-state the conditional variance
is Vc = 0.8.

The recorded photocurrent is used to derive the quantum trajectory
and the retrodiction measurement, from which we infer the evolution
of the conditional variance based on the experimental distance vari-
ance (cf. Section 5.3.3), shown in Figure 7.1. This conditional variance,
together with the average displacement rc(t), fully characterizes the
conditional state [Ros+19]. From it, we can now calculate the stochas-
tic entropy flux and production rate [Bel+19]. However, in order to
obtain the correct theoretical expressions, we should be careful with
the location of the optical cavity in the system-environment split.

In fact, for calculating the quantum trajectory, we performed anThermodynamic
consequences of the

adiabatic elimination
adiabatic elimination of the cavity mode from the system dynamics
[Hof17]. As already discussed, this approximation is fully justified in
the regime of the experiment, κ� Ωm,g, and the resulting effective
equations of motion for the mechanics are fully consistent with the
ones obtained from the full optomechanical model, where the cavity
elimination is done afterwards. However, this equivalence does not
carry over to the thermodynamic calculations. The reason lies in the
artificial division between the system and the environment. In fact,
the adiabatic elimination of the cavity moves it from the system to the
environment, which now consists of the mechanical thermal bath, the
optical cavity mode and its optical bath. Effectively, in the adiabatic
elimination regime, the mechanical mode is considered in contact with
two baths, which are the usual thermal one and an effective optical
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bath with the coupling rate Γopt and the occupation nopt. In particular,
in the resonant case, ∆ = 0, this elimination leads to an effective
optical bath with infinite temperature, nopt →∞, and zero coupling
rate, Γopt → 0, such that their product is still finite, Γoptnopt = A+

(cf. Section 3.3). The consequence is that one predicts a null entropy
flow between the mechanical resonator and the effective optical bath,
despite the presence of an energy flow between them [Ros+20]. This
counter-intuitive and unphysical fact arises because the entropy flux
is between the cavity mode and the optical bath, both of which are
hidden in the environment by the adiabatic elimination. Thus, they are
not anymore part of the system and do not contribute to the calculated
entropy flux, as sketched in Figure 7.2.
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Figure 7.2: Thermodynamic implications of cavity adiabatic elimination. a,
An optomechanical system comprises a mechanical mode coupled
to an optical cavity, both in thermal contact with their respective
baths, which together form the environment. Entropy flows be-
tween each mode and its own bath and it is irreversibly produced
within the mechanical and optical modes. b, Adiabatically elim-
ination of the cavity mode leads to a system comprising the
mechanical mode only, interacting with an environment formed
by the thermal bath and an effective optical bath. The entropy flux
between the cavity mode and the vacuum field is now embedded
in the environment, as shown in c, and thus not part of the system
thermodynamics.

To properly assess all the entropic contributions, we should first
calculate the thermodynamic quantities from the full optomechanical
model, and subsequently perform the adiabatic elimination in the
derived expressions. This is performed by taking the limit κ/Ωm →∞,
and averaging the stochastic entropy flux and production rates only
over the cavity mode trajectories.

Following this approach for the unconditional steady-state, we
derive the following result

Φuc = −Πuc = −ΓmCq − 4VucΓqba. (7.3)
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As expected from a non-equilibrium steady-state, the sum of the en-
tropy flux and production rate is zero, while they are not individually
zero.

Moving to the conditional case, we obtain the following stochastic
quantitiesStochastic

thermodynamics of a
monitored resonator φc,r = Γm −

(
Γm

nth + 1/2
+ 4Γqba

)(
Vc(t) + rc(t)T rc(t)

)
, (7.4a)

πc,r =− Γm +

(
Γm

nth + 1/2
+ 4Γqba

)(
Vc(t) + rc(t)T r(t)

)
− Γm + ΓmVuc/Vc(t) − 4ΓmeasVc(t), (7.4b)

where rc(t) is the average displacement from the quantum trajectory,
as shown in Figure 7.1. Finally, the conditional entropy flux and
production rate are obtained from averaging Equation 7.4 over all the
quantum trajectories.

We now proceed to experimentally reconstructing this stochastic
entropy flux and production rates from the measured average displace-
ment, rc(t), and the conditional variance, Vc(t), using Equation 7.4.
In Figure 7.3 we show a subset consisting of ten trajectories, as well
as the conditional entropic quantities obtained from averaging all the
3600 trajectories together.
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Figure 7.3: Stochastic entropy flux and production rates. a, Stochastic entropy
flux and b, production rates (light blue) for a sample of ten
trajectories. Averaging all the trajectories yields the conditional
entropy flux and production rates (dark blue)

We notice from Figure 7.3 that these entropic quantities fluctu-
ate wildly despite the small thermal bath occupation of 14 phonons,
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highlighting the essential role of fluctuations in the thermodynamics
of the system. As expected, we find that the conditional entropy
flux, Φc, equals the unconditional one which is estimated to be
Φuc/(2π) = −48 kHz, from Equation 7.3. Instead, the conditional
entropy production rate differs from the unconditional one at the
beginning of the measurement.

To highlight it, in Figure 7.4 we show their difference, which corre-
sponds to the informational contribution, İ, from Equation 7.2. For the
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Figure 7.4: Informational contribution to the conditional entropy production
rate. We obtain the informational contribution (blue) from the
difference between the conditional and unconditional entropy
production rates. The dashed (dot-dashed) line is the differential
gain (loss) of information due to the measurement (thermal noise).

optomechanical case we find

İ = Γm

(
Vuc

Vc(t)
− 1

)
− 4ΓmeasVc(t). (7.5)

At the steady-state, this contribution approaches zero and monitoring
does not add any additional information. Nevertheless, monitoring is
still necessary in order to maintain the generated conditional state. In
fact, the negative entropy production rate, due to the gathered informa-
tion, is exactly balanced at the steady-state by positive production rate
from the noise coming from the thermal bath. The rate of acquired in-
formation can be identified, from Equation 7.5, by G(t) = −4ΓmeasVc(t),
known as the differential gain. We highlight its contribution in Figure 7.4.
At the early stage of the measurement, this differential gain dominates,
thus reflecting the fact that at the beginning of the measurement there
is much to be learnt from monitoring the system. As time goes on,
the steady-state is approached and the differential gain drops to the
small but non-zero value G = −4ΓmeasVc, which represents the rate at
which the detector must acquire information to maintain the achieved
conditional state.

This is the first experimental assessment of the informational con-
tribution on the thermodynamics of a quantum monitored system,
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demonstrating the key role played by measurement in influencing the
thermodynamics of a quantum system.



8
B A C K A C T I O N E VA S I O N A N D E N TA N G L E M E N T I N
Q UA N T U M M E A S U R E M E N T S

In this chapter we report some preliminary results of other experi-
ments on quantum measurements. As such, they deserve more studies
and represent a natural continuation of the work reported in this
thesis.

The first part of the chapter is devoted to describe the implementa-
tion of a quantum non-demolition (QND) measurement in our optome-
chanical system. In such a measurement, the monitored observable is
different from the one affected by quantum backaction, which thus
does not show up in the outcomes. Therefore, this measurement con-
tributes with an arbitrarily small added noise, not subjected to an
SQL. We report the first experimental attempts and their results, which
show that the multimode nature of the membrane structure represents
a major obstacle for such measurements.

The second part of the chapter focuses on the generation and veri-
fication of the entanglement between the mechanics and the optical
field. This optomechanical entanglement is predicted by the quantum
measurement theory and is peculiar to the act of measuring. We re-
port some first preliminary results on inferring the optomechanical
entanglement from the experimentally verifiable entanglement of two
properly chosen optical modes.

8.1 stroboscopic qnd measurement

Quantum mechanics imposes additional fluctuations to a measured
system, through the quantum backaction noise. We have amply dis-
cussed the case of the measurement of the displacement, q̂, of a
mechanical resonator, for which the quantum backaction appears on
the conjugate momentum observable, p̂. Since these two are dynami-
cally linked by the harmonic evolution, the backaction will also appear
in the displacement, q̂, a quarter of period later. The appearance of
the quantum backaction in the measured observable lies in the fact
that we are simultaneously measuring two non-commuting observ-
ables. In fact, for a high-Q mechanical resonator we can write the
displacement in terms of slowly-varying quadrature operators, X̂ and
Ŷ, as q̂ = X̂(t) cos(Ωmt) + Ŷ(t) sin(Ωmt). These quadrature operators
do not commute, but they are dynamically coupled. It is this pair of
non-commuting observables that we are simultaneously measuring,
as pointed out in Section 5.3. As a consequence, the Heisenberg uncer-
tainty relation imposes that, at best, we can measure the displacement
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with a noise at the level of vacuum fluctuations, which results in the
production of a conditional coherent state. From the perspective of the
quantum measurement theory, this displacement measurement forms
a POVM which approximates a projective measurement on coherent
states [Wis96].

Despite that, one can envision different measurement schemes in
which the quantum backaction does not show up in the outcomes.
These schemes form a class of quantum measurements known as
backaction-evading (BAE) or QND measurements1 [BVT80; BK92; WM10].
For instance, measuring a single mechanical displacement quadrature,
e. g. X̂, would induce the quantum backaction in the orthogonal one, Ŷ.
Opposite to the displacement and momentum, these two quadratures
are dynamically uncoupled and the backaction never shows up in the
outcomes for X̂, which can then show arbitrarily small measurement-
induced noise. This would correspond to a POVM which approximates
projective measurements on quadrature squeezed states [Wis96].

BAE measurements in optomechanical systems have been proposed
and recently experimentally implemented [Suh+14; Lec+15]. Intu-
itively, one can measure a single mechanical quadrature by toggling
the optomechanical interaction, g, on and off in correspondence of
times at which the orthogonal quadrature is zero, which happens at a
rate of 2Ωm. In particular, in the sideband-resolved limit, i. e.κ� Ωm,
this can be achieved by fully modulating the amplitude of the in-
put field at 2Ωm [CMJ08]. Spectrally, it corresponds to driving the
optomechanical cavity with two optical tones, at detunings ±Ωm.

The situation is different in the opposite limit of non-sideband-
resolved cavity, relevant for our experiments. Now, the cavity instanta-Stroboscopic

measurements neously follows the dynamics of the mechanical displacement. Then,
a single quadrature measurement can be done by detecting the phase
quadrature of the optical field which is flashing for a duration much
shorter than the mechanical period, 1/Ωm. During each flash, the me-
chanical harmonic evolution is frozen and the optical field measures
effectively only one mechanical quadrature. Once the light flash is
over, the mechanical state continues its rotation at frequency Ωm and
aligns back along the previously measured quadrature every half a
period, 1/(2Ωm). At this time, another light flash is sent towards the
optomechanical cavity to keep measuring the same single quadra-
ture. The protocol is then repeated every half mechanical period. By
collecting more and more outcomes, this measurement progressively
projects the conditional mechanical state from the initial thermal state
onto a quadrature squeezed state. The amount of noise reduction,
and eventually squeezing, is determined by the balance between the
rate of the measurement-induced collapse and any other decoherence

1 Strictly speaking, QND and BAE measurements are different and the former one
implies the latter [WM10]. In practice, however, they are used as synonyms as most,
if not all, proposals made so far for BAE measurements are also QND.
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rates, like the thermal one. We notice that the quantum backaction has
not disappeared, but has been confined in the orthogonal quadrature
which is never measured. This stroboscopic measurement scheme [BVT80;
Bru+20] allows to realize a BAE for a mechanical resonator, but has
never been shown experimentally.

8.1.1 Experimental setup and protocol

Here we describe the implementation of the stroboscopic BAE mea-
surement in our optomechanical setup and discuss some preliminary
results. Experimentally, we use the setup sketched in Figure 8.1a. The
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Figure 8.1: Stroboscopic BAE measurement. a, Experimental setup. The probe
field is amplitude-modulated to generate a stroboscopic sequence
of flashes, which are directed towards an optical cavity. The phase
of the transmitted beams is monitored by a BHD, with continuous
LO. An auxiliary laser, detuned from a different cavity mode, is
also employed. b, Stroboscopic flashes, with repetition rate of
2Ωm. The modulation depth is chosen to be ∼ 99% such that a
weak locking beam is always present. Two of such stroboscopic
packets can be delayed by a time τ. c, Frequency representation
of the stroboscopic input probe field. The spacing between tones
is constant and equal to 2Ωm. The gray line represents the cavity
lineshape. Each tone is labelled with an integer, where 0 corre-
sponds to the laser carrier. d, Sketch of the electronic processing.
The mechanical quadrature is retrieved by demodulating the
homodyne photocurrent, i(t), at frequency Ωm at the right phase.

stroboscopic measurement is performed by a probe laser, the ampli-
tude of which is modulated by means of a fiber-based modulator. The
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modulation depth is chosen to be ∼ 99% such that a weak continuous
field is always present even in the “off” configuration. This weak field
allows to lock the laser carrier to the cavity mode. The modulator is
driven by a train of smooth pulses, from an arbitrary waveform gener-
ator, at a repetition rate of 2Ωm with a small duty cycle, such that each
flash lasts much less than the mechanical period (cf. Figure 8.1b). In
addition, we also use a weak auxiliary laser, locked to the red side of
a different cavity mode. This laser provides a broad sideband cooling
of the membrane modes, which is necessary to reduce some of the
observed in-bandgap noise (cf. Section 5.1). We set the power of the
auxiliary laser to the minimum value necessary for stabilization, in
order to keep the additional quantum backaction small. We notice that
here we do not feedback-cool any low-frequency modes.

Spectrally, the stroboscopic input probe field contains several tones,
evenly spaced at 2Ωm. Their relative phase and amplitude are deter-
mined by the exact shape of the pulses. We label these tones with
positive (negative) integers, for frequencies above (below) the carrier,
which is the reference tone marked with 0, as shown in Figure 8.1c.
Each tone can be considered as a CW field at a fixed detuning from the
cavity resonance, consequently each of them is part of the standard
optomechanical interaction as outlined in Chapter 3. In particular,
each tone acquires symmetric mechanical sidebands due to the dis-
placement of the membrane modes.

Finally, the phase of the transmitted stroboscopic field is detected
by means of a BHD operated with a continuous LO, which enables
to extract the proper mode by electronic processing. This is done
with an LIA, as sketched in Figure 8.1d. The continuously measured
photocurrent carries the mechanical (shot noise) information when
the flashes are on (off). The mechanical information is retrieved by
demodulating the photocurrent at Ωm with a phase such that the
flashes occur at the extrema of the reference sine wave. In this way, one
demodulated quadrature maximally weights the photocurrent during
the flashes, with alternating sign, and minimally when the flashes
are off, during which only the shot noise is present. Once filtered,
this demodulated quadrature provides a measurement outcome for a
single mechanical quadrature.

The experiment we conceived comprises a preparation, an evolutionExperiment protocol

and a verification step and aims to measure the natural mechanical
heating rate out of a low-occupation state, due to the thermal bath
only. In Section 6.3.1 we measured this heating rate exploiting contin-
uous displacement measurements. However, that inevitably resulted
in an additional contribution to the heating rate from the quantum
backaction decoherence. Here instead, we want to take advantage
of the stroboscopic BAE measurement to confine this backaction in
the unmonitored mechanical quadrature. At first, we perform a stro-
boscopic measurement with a first packet of flashes, as described
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in Figure 8.1, which allows to generate a conditional state with the
variance along one quadrature reduced down to the level of zero point
fluctuations. Subsequently, the optical field is switched off, such that
the mechanical conditional state only diffuses under effect of the ther-
mal noise [Bru+20]. Finally, another packet of stroboscopic flashes is
sent towards the cavity after some time delay, τ, from the first one, to
perform another single-quadrature measurement to verify how much
the state has diffused in the meanwhile. The protocol is then repeated
several time at different delays to collect a statistics from which one
can estimate the variance of the heating process, thus the heating rate
from the initial slope.

8.1.2 Preliminary results

We implement the above protocol and collect preliminary results,
which however show the presence of excess noise at frequencies
around the mechanical resonance. This noise heats the prepared condi-
tional state up, making its variance higher than expected. In addition,
the measured variance at different delays does not show any clear
evidence of a heating process. After excluding an electronic origin for
this excess noise, e. g. through the modulator or in the detection, we
come up with a plausible explanation which individuates the source
of this noise in an optical aliasing effect, sketched in Figure 8.2, similar
to the aliasing occurring in data periodically sampled [PM07]. In fact, Optical aliasing
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Figure 8.2: Optical aliasing in stroboscopic measurements. a, A stroboscopic
measurement at 2Ωm, represented by the blue flashes, cannot
discriminate between the mechanical motion from a mode at Ωm
or its odd harmonics. b, In frequency domain, each optical tone
acquires symmetric mechanical sidebands at the frequency of the
mechanical modes. The demodulated BHD photocurrent contains
all the sidebands, at around ±Ωm, from each tone. Here we only
sketch the pair of sidebands around the carrier tone. At these
sideband frequencies, however, both the in-bandgap mode of
interest, which appears as a ±Ωm sideband around order 0 and
+1, and its odd harmonics, e. g. modes at 3Ωm which appears as
sidebands around order −1 and +2, contribute.
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a stroboscopic measurement at 2Ωm would not only measure the me-
chanical quadrature from the mode at Ωm, but also the ones from the
odd harmonics. Spectrally, on top of any pair of sidebands at ±Ωm

around a given tone, let’s say 0, there will also be mechanical side-
bands at +(2n+ 1)Ωm from tone −n and at −(2n+ 1)Ωm from tone
n+ 1, for n integer, as sketched in Figure 8.2b. The total number of
tones contributing is given by how many of them are not suppressed
by the cavity response, which is quantified by the ratio κ/(2Ωm), much
larger than unity for a broad cavity necessary to achieve a stroboscopic
BAE measurement. In addition, the membrane structure is highly mul-
timode, especially at the location of these higher harmonics which are
outside the phononic bandgap.

To corroborate this hypothesis, we stroboscopically flash the probe
laser and measure the spectrum of the transmitted phase quadrature,
continuously acquired. The result is shown in Figure 8.3a. We observe,
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Figure 8.3: Verifying the presence of optical aliasing. a, Spectrum of the
homodyne photocurrent, while flashing the probe laser. The in-
bandgap mode is at Ωm/(2π) = 1.192 MHz, the other visible
peaks are the excess noise from optical aliasing. b, The spectrum
of the homodyne photocurrent spectrum is also recorded with a
CW probe laser. In order to understand what is happening in a,
at around +Ωm, we plot this continuous spectrum several times,
flipped and shifted accordingly to the order to which it refers to.
In particular, we simulate the presence of tones 0, ±1, ±2 and
+3. The black arrows indicate the correspondence between the
additional peaks in the stroboscopic spectrum from a, and the
peaks from the continuous spectrum.

apart from the in-bandgap mode at Ωm/(2π) = 1.192 MHz, additional
peaks all around. Subsequently, we stop flashing the probe laser and
continuously operate it, reducing the optical power in order to match
the averaged one while flashing. We then acquire a phase spectrum
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which does not show the additional peaks in the bandgap. The mea-
sured stroboscopic spectrum would actually contain the sidebands
from the other tones, according to the optical aliasing hypothesis.
We mimic this effect by shifting and flipping the measured continu-
ous spectrum to match the corresponding tone from which it refers
to. In Figure 8.3b we do that for the tones 0, ±1, ±2, +3, and show
the resulting spectrum in the frequency range around Ωm. We no-
tice, with high-accuracy, the correspondence between these peaks and
the ones stroboscopically measured in Figure 8.3a, corroborating our
hypothesis of optical aliasing.

In particular, this folding of higher order modes in the detection
window happens optically and cannot be filtered out at the detection
stage or electronically. A possible solution to mitigate this problem
is to design a membrane resonator with a different phononic crystal
geometry, which will open up additional bandgaps at odd harmonics
of the mode of interest at Ωm. This will reduce the mode density
at those frequencies, but would not avoid the defect itself to have
harmonics there. Avoiding that would additional require to break the
harmonicity of the defect. It turns out that engineering such a design
is a cumbersome task and the efforts made so far still are only partially
successful, requiring yet more work to be done.

8.2 stationary optomechanical entanglement

One of the big challenges of quantum physics, which puzzled gen-
erations of scientists, is to understand the transition between the
quantum and the classical world. The need for this transition becomes
evident when considering the quantum measurement problem, where
a measuring apparatus, brought into contact with a system in a given
quantum state, produces random outcomes [Zur03b]. The Copen-
hagen interpretation of quantum mechanics settled this controversy
by introducing an arbitrary cut between the observed quantum world,
i. e. the system, and the observing classical world, i. e. the apparatus
comprising a meter and a conscious, e. g. a human, or even uncon-
scious, e. g. a computer, observer [Hei50]. This division works well for
the understanding of many experiments, where the meter is repre-
sented by a complex system with many degrees of freedom, making
its quantum description, effectively, intractable. While operationally
justified, this approach keeps the interpretation problem still open.
The exact location of this cut is somewhat arbitrary and can be moved
away to include, in the quantum description, part of the apparatus. In
fact, a generic measurement can be thought as a unitary interaction
between the system and meter, ultimately representing an entangling
operation. Describing and observing this entanglement would then
allow to embody the meter into the quantum world and shift the cut
between the meter and the observer.
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Cavity optomechanics represents a promising platform for studying
this problem. The mechanical resonator is the system under measure-
ment, the displacement of which is coupled to the phase quadrature
of an optical cavity field, which forms the meter. The output field
is subsequently measured by a detector, i. e. the observer, to infer the
mechanical displacement. In the previous chapters we detailed several
experiments in which this system has been employed as a quantum-
limited apparatus. The simplicity of this meter allows to embody it
in the quantum description of the measurement problem, making
an experimental demonstration of the system-meter entanglement
feasible. This entanglement now appears in the form of a station-
ary opto-mechanical entanglement, as already theoretically predicted
more than a decade ago [Gen+08b]. The main challenge for a direct
experimental demonstration lies in the fact that the state of the me-
chanical resonator is not directly accessible and can only be inferred
from output optical modes. Despite this, the existence of entanglement
between time-ordered optical modes, initially uncorrelated, is suffi-
cient to prove the entanglement of one of these optical modes with the
mechanical resonator. Inferring the optomechanical entanglement in
this way has been explored theoretically [Hof+11] and experimentally
[Pal+13] in a pulsed electromechanical system. More recently, Gut et al.
[Gut+19] generalized this idea, showing how one can in fact measure
the stationary optomechanical entanglement in a system continuously
operated.

8.2.1 Experimental setup and single-mode predictions

Let’s consider the case of an optomechanical cavity continuously
driven by a coherent optical field. As a result of the interaction, this
field acquires a pair of symmetric sidebands around its carrier, at
the mechanical resonance frequency. The red (blue) sideband stems
from a Stokes (anti-Stokes) scattering process. The Stokes process
down-converts an input photon into a red-detuned photon, which
is entangled with a phonon as in a two-mode-squeezing interaction.
Conversely, the anti-Stokes process removes a phonon in order to up-
convert an input photon into a blue-detuned one, as in a beam-splitter
interaction. Based on these two processes, we can now define proper
time-ordered modes which are in an entangled state. Intuitively, the
former-occurring mode should contain frequency components close
to the Stokes sidebands, as these are in an entangled state with the
mechanics. As such, we label this optical mode the entangler. The
latter-occurring mode, labelled readout, contains spectral components
around the anti-Stokes sidebands, which result from a state-swap with
the mechanics, thus are entangled with the entangler mode. These



8.2 stationary optomechanical entanglement 153

optical modes can be obtained by filtering the output field, âout(t), as
described in Section 1.5. Formally, this corresponds to

ŝj =

∫∞
−∞ fj(t)âout(t)dt, (8.1)

where j = E,R indicates which mode we are considering, i. e. the en-
tangler or readout, and fj(t) is the appropriate normalizable mode
function. The operators ŝj are mode operators, satisfying the commu-
tation relation [ŝj, ŝ

†
k] = δjk. For the case of a single mechanical mode,

the entanglement is retrieved in the optical modes defined according
to [Gut+19] Time-ordered optical

modes
fE(t) =

√
2Γse

(Γs−ıΩs)tH(−t), (8.2a)

fR(t) =
√
2Γse

−(Γs−ıΩs)tH(t), (8.2b)

which are Lorentzian filters, with bandwidth Γs, around the optical
sidebands centered at frequency ∓Ωs, respectively. The Heaviside
function, H(t), ensures that the two modes are time-ordered, that
is, they are non-zero in disjoint, subsequent time intervals. A sketch
of these modes, both in time and frequency domain, is shown in
Figure 8.4a. In order to verify the entanglement between these two
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Figure 8.4: Experimental setup for generating and verifying the optomechan-
ical entanglement. a, Sketch of the measurement protocol. From
the recorded complex field amplitude (gray trace) we filter out, in
post-processing, two time-ordered modes, which are the entangler
(red) and the readout (blue). In time domain, their mode functions
correspond to oscillations at ∓Ωm with a decaying amplitude.
In frequency domain, they are Lorentzian band-pass filters cen-
tered at ∓Ωm (insets). b, Experimental setup for verifying the
entanglement of these modes.

modes one can measure the complex output field, âout, and use it in
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Equation 8.2 to obtain outcomes for the complex amplitude of the
modes ŝj.

In practice, the experimental setup employed is shown in Figure 8.4b.
The mechanical mode of the soft-clamped membrane has a resonance
frequency of Ωm/(2π) = 1.13 MHz, a quality factor of Q = 0.78× 109
and stands in a cryogenic environment at T = 8 K. Its displace-
ment is measured by a meter, represented by a probe laser locked
almost resonantly to a cavity mode, at λ = 799.638 nm with linewidth
κ/(2π) = 9 MHz and ∆/(2π) ≈ −1.44 MHz. We measure a vacuum
optomechanical coupling rate of g0/(2π) = 150 Hz via quantum noise
thermometry (cf. Section 4.2.4.2). In addition, we also employ an
auxiliary laser, locked to the red side of a different cavity mode, at
λa = 798.052 nm with κa/(2π) = 8.6 MHz and ∆a/(2π) = −2.9 MHz.
This laser is used to stabilize, via sideband and feedback cooling, some
of the low-frequency modes of the membrane structure.

To verify the entanglement of two time-ordered optical modes we
need to reconstruct the complex amplitude of the output field. WeMeasurement of the

field amplitude do that by means of an eight-port homodyne detector [Wal87]. We
split the transmitted probe field into two equal beams, which we send
towards two independent BHDs, arranged to measure the amplitude,
X̂out, and phase, Ŷout, quadrature. The simultaneous measurement of
these non-commuting observables imposes an additional noise on the
measurement. This noise is introduced by the uncorrelated vacuum
field entering from the unused port of the 50 : 50 BS used to split the
transmitted field. Each BHD hence has a maximum achievable total
efficiency of 50%. Including this, we estimate for the two detectors a
total efficiency of ηX ≈ 25% and ηY ≈ 35%. The photocurrents from
the detectors,iX and iY , are continuously acquired and digitized by
DAQ. The recorded traces are further chopped into shorter segments,
of ∼ 9 ms duration. Each of these represents a realization, that is, an
independent experimental repetition which is used to form statistical
ensembles of the modes’ outcomes. We first use these realizations to
compute the PSDs of the amplitude and phase quadrature measure-
ments, as well as their cross-PSD, as shown in Figure 8.5. We fit these
data to a standard optomechanical model (cf. Section 3.4), from which
we extract the optomechanical coupling rate, g/(2π) = 101 kHz, and
the probe laser detuning, ∆/(2π) = −1.44 MHz.

In order to filter out some optical modes we need to estimate, for
each realization, the complex amplitude of the transmitted field. To
do that we combine the photocurrents from the two BHDs according
to sout, j(t) = (iX,j(t) + ıiY,j(t))/

√
2, where iX,j(t) and iY,j(t) are the

jth realizations from the BHD measuring the amplitude and phase
quadrature, respectively. We also notice that the estimator, sout,j(t),
contains both the wanted outcome from the field amplitude, âout, and
an unwanted additional noise contribution, due to inefficiencies, which
affects the estimator statistics [Hoe17]. Nevertheless, for stationary
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Figure 8.5: Measured amplitude and phase spectra. a, b, Spectra of the am-
plitude and phase quadrature of the transmitted field, respec-
tively, as measured simultaneously by an eight-port homodyne
detector. c, Absolute value of the amplitude-phase quadrature
cross-spectrum. The shaded area indicates actual spectral negative
values. All the three spectra are simultaneously fitted to a model,
the result of which is shown as black lines.

processes as the ones we are dealing with, this noise contribution
to the statistics can be calibrated out directly on the final covariance
matrix. Then, we apply Equation 8.1 on sout,j(t) to estimate the filtered
modes. To ensure the crucial time-ordering, we apply a mode function Covariance matrix

estimationonly on the first (second) half of each realization for estimating the
entangler (readout) mode. The resulting numbers, sE,j and sR,j, are
complex and their real and imaginary parts, {XE,j, YE,j,XR,j, YR,j}, are
estimations of the modes’ quadratures. This ensemble is used to
calculate the covariance matrix, σ̃2ER. To normalize and calibrate this
matrix we repeat the same protocol on a different realization set,
coming from a measurement of the shot noise only. That is, all the
beams from the optomechanical cavity are blocked and only the LOs

are directed to the BHDs. Using the same mode functions, we get a
diagonal covariance matrix for the shot noise, σ̃2sn. In practice, there
are non-zero elements outside of the diagonal. However, we find that
they are three orders of magnitude smaller than the diagonal elements
and within the statistical uncertainty, thus can be safely neglected.
The diagonal elements carries the information about the gain of the
detectors and the transduction factors, thus can be used to normalize
the entangler-readout matrix, σ̃2ER, according to

(
σ2ER

)
jk

:=

(
σ̃2ER

)
jk√

(σ̃2sn)jj (σ̃
2
sn)kk

, (8.3a)

(
σ2sn
)
jk

:=

(
σ̃2sn
)
jk√

(σ̃2sn)jj (σ̃
2
sn)kk

. (8.3b)
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Finally, the normalized shot noise matrix, Equation 8.3b, can be fur-
ther used to calibrate out the additional noise from the eight-port
homodyne detector according to

(VER)jk :=
(
σ2ER

)
jk

− δjk

(
σ2sn
)
jj

2
, (8.4a)

(Vsn)jk :=

(
σ2sn
)
jk

2
. (8.4b)

The final covariance matrix, VER, estimates the state covariance matrix
and can be used to verify the entanglement between the two optical
modes. A simple entanglement witness, linear in the covariance ele-
ments, is represented by the sum of EPR variances [Dua+00; Gio+03]
and can be calculated according to

wEPR = tr (ZEPRVER) , ZEPR =
1

2


1 0 1 0

0 1 0 −1

1 0 1 0

0 −1 0 1

 , (8.5)

where the state is entangled if wEPR < 1. This witness might not be
always the best choice for detecting the largest number of entangled
states. An optimal witness matrix, Zopt, can be numerically obtained as
shown in [HE06] We calculate, from the estimated covariance matrix,
both the EPR and optimal witness, and compare them to the unity
threshold.

8.2.2 Preliminary results

As a first attempt, we employ the mode functions defined in Equa-
tion 8.2 to filter the optical modes out of the measurements and verify
their entanglement. Using the measured and fitted parameters, we
predict an optimal witness of wopt = 0.7 for the modes defined by
Ωs = Ωm and Γs ≈ 2Γqba [Gut+19]. In practice, however, we do not
observe this witness less than unity, that is, entanglement, when ap-
plying these mode functions to our data. We suspect that one of the
reasons lies in the multimode nature of the mechanical structure.
As already seen in fact, the membrane supports several modes at
high density, in particular outside the bandgap. For the measurement
set we are discussing here, these modes spectrally appear as peaks
which are three orders of magnitude taller than the background floor.
The functions in Equation 8.2 are single-pole Lorentzian filters with
linewidth Γs ≈ 2Γqba, not enough to suppress some of these other
modes. Then, they contribute to the total covariance matrix, VER, and
lead to additional uncorrelated noise, which spoils the quantum state
coherence.
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The possible definitions for the entangler and readout modes are
not limited to Equation 8.2. In fact, the inference of the optomechan-
ical entanglement only relies on the time-ordering properties of the
optical modes, not on their specific functional form. Then, we decide Wiener filters

to introduce in the mode functions of Equation 8.2 proper notch fil-
ters to largely suppress the additional mechanical modes. To do that
optimally, we resort to the Wiener filtering theory [Kai82]. This filter
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Figure 8.6: Wiener filter for entangler and readout modes. a, (c,) Magnitude
and b, (d,) phase of the transfer function of the Wiener filter for
the entangler (readout) mode. The transfer function contains a
main Lorentzian filter, at |Ωs|/(2π) = 1.132 MHz, with linewidth
Γs/(2π) = 11 kHz. These two parameters can be scanned to
search for the lowest entanglement witness. Also, the transfer
function contains several notch filters at the location of the other
mechanical modes, in order to maximally suppress them once
applied to the measured photocurrents.

is calculated from: (i) the experimental auto-correlation of the mea-
sured complex amplitude of the field, which includes contributions
from both the mode of interest and other mechanical modes to be
filtered away; (ii) the theoretical cross-correlation between the quantity
to estimate, i. e. the amplitude of the filtered mode, and the mea-
sured quantity, i. e. the field complex amplitude. The auto-correlation
is estimated from the inverse Fourier transform of the PSD of the com-
plex realizations, sout. The cross-correlations comes from a theoretical
model, with parameters based on the fits from Figure 8.5 and the
quantities to estimate are defined by Equation 8.1 and Equation 8.2.
In Figure 8.6 we show the Fourier transform of the Wiener filters for
Γs/(2π) = 11 kHz and Ωs/(2π) = 1.132 MHz. We notice that these
transfer functions are Lorentzian filters, similar to Equation 8.2, with
notch filters at the location of the other mechanical modes, mainly
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outside the bandgap. These notch filters are optimized such that the
mean square error between the expected theoretical observable and
the outcome from applying the Wiener filter to the measured complex
realization sout is minimized.

We use these Wiener filters to define the entangler and readout
modes, from which we then calculate the associated covariance ma-
trix, VER, and the entanglement witnesses. In Figure 8.7 we show a
collections of the results, as we scan the center frequency, Ωs, and
linewidth, Γs, of the Wiener filters. The optimal entanglement witness
now reaches smaller values, the lowest of which is wopt = 1.1 for
Ωs/(2π) = 1.132 MHz and Γs/(2π) = 11 kHz. This is close to the
unity threshold, but not below it, precluding the observation of the
optomechanical entanglement.
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Figure 8.7: Entanglement witness for entangler and readout modes. a, b, EPR
(blue circles) and optimal (orange circles) witness as a function
of the Lorentzian center frequency, Ωs, and linewidth, Γs, respec-
tively. A witness less than unity indicates an entangled state. In
a, the bandwidth of the mode is fixed at Γs/(2π) = 11 kHz,
whereas in b, the center frequency of the mode is fixed at
Ωs/(2π) = 1.132 MHz.

Further studies are necessary to investigate the causes of the discrep-
ancy between the experimental results and the predictions. We suspect
that the presence of other mechanical modes also redistributes the cor-
relations between several modes, not only the one of interest [Hoe17].
This would require to find the right modes which share the quantum
correlations. A possible practical solution might be to implement a
numerical optimization program for finding the best mode functions
which minimize some entanglement witness. In fact, for this problem,
which takes a quadratic form, there exist linear programming methods
which can solve it efficiently. This implementation needs yet to be
done, and will be a future research directions for newcomers.
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Q UA N T U M C O R R E L AT I O N S F O R S E N S I N G A N D
E N TA N G L E M E N T G E N E R AT I O N

The generation of the optomechanical entanglement, predicted by
the quantum measurement theory, highlights the important role of
correlations in both the mechanical and optical systems, as we have
also briefly reviewed in Chapter 3.

This chapter is devoted to discuss in detail some of these correla-
tions and how to experimentally take advantage of them. In the first
part, we report an experiment which uses the ponderomotive corre-
lations to enhance the displacement sensitivity of an optomechanical
cavity. We show that, when properly arranged, such an experiment
enables sensitivities below the SQL. In the second part, instead, we
use these correlations to experimentally generate optical entangled
states, which are the building blocks of many quantum information
processing applications. In particular, this shows that the mechanical
interface is capable of generating the entanglement between two dif-
ferent quantum systems, like microwave and optical fields, a key step
towards quantum networks.

9.1 measurements below the sql

In the context of displacement sensing, we have derived in Sec-
tion 3.4.1.1 a very important limit for a standard phase measurement,
the SQL. This limit, despite being an important technological one and
a benchmark, does not represent the ultimate limit for the achievable
sensitivity. In fact, we have assumed in its derivation that the impreci-
sion and the quantum backaction noises, forming the measurement
added noise, are uncorrelated. These two sources of noise derive from
the different quadrature fluctuations of the optical field driving the
optomechanical experiment. Thereby, nothing fundamental imposes
them to be uncorrelated and this assumption can be relaxed. Based
on this, several theoretical proposals have been made to overcome
the SQL exploiting correlations in the measuring optical field[Kim+01;
CM04], either at the input or, equivalently, at the output in front of the
detector. Despite the vast theoretical research over the last decades,
an experimental realization has remained elusive so far[Gio04]. We
can envision several situations in which these correlations are present.
For example, one can use a squeezed optical field[Cav81], instead of a
coherent one, to drive the optomechanical experiment. However, this
requires to have at disposal a squeezed source, usually obtained from
a properly pumped non-linear optical medium, then increasing the

159
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overall experimental complexity. On the other end, the optomechan-
ical interaction itself can generate squeezing in the output field, as
theoretically shown in Section 3.5. Then, one can properly arrange
the detection stage in order to exploit maximally these correlations,
for improving the sensitivity limit. This proposal, usually referred
to as a variational measurement, has been theoretically pioneered by
Vyatchanin and Zubova [VZ95].

As we have shown in Section 5.2, our experimental platform enables
displacement measurements at the SQL to within 33%. Thus, it offers a
promising route towards measurement with sensitivity below the SQL.
In the following, we start by describing the theory of the variational
approach, then we move to report the experimental results achieved.

9.1.1 Use of quantum correlations at the detection

In Section 3.4.2 we have seen that ponderomotive correlations are
present for a general quadrature homodyne measurement. They dis-
appear in the special case of a resonant phase measurement, in which
∆ = 0 and θ = π/2 in Equation 3.41. This is also the regime in which
the experiments so far discussed have been performed.

Now, we relax the assumption of a phase measurement, and let
the quadrature angle, θ, be arbitrary. In the limit of a broad cavity,
κ� Ωm, we have, from Equation 3.41, that the inferred displacement
spectrum isSpectrum for an

arbitrary quadrature

S
inf
q̂q̂(Ω) = Sadd(Ω) + |χm(Ω)|2Sth(Ω)

= S
θ
imp(Ω)+ |χm(Ω)|2

(
Sth(Ω) + Sqba(Ω)

)
+2< [χm(Ω)]S

θ
corr(Ω),

(9.1)

where

S
θ
imp(Ω) =

1

8Γmeas sin(θ)2
, (9.2a)

Sth(Ω) = 2Γm

(
nth +

1

2

)
, (9.2b)

Sqba(Ω) = 2Γqba, (9.2c)

S
θ
corr(Ω) =

1

2 tan(θ)
. (9.2d)

We show an example of this spectrum in Figure 9.1b, and compare it
to the SQL and a standard phase measurement. In Figure 9.1a instead,
we highlight the appearance of sub-SQL regions, as a function of the
frequency and the quadrature angle.

Now, the added noise, Sadd, also contains the correlations term, Scorr,
which has an asymmetric lineshape around the mechanical resonance,
and assumes negative values on one of the two sides of the resonance.
As a consequence, the total added noise can become lower than the
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Figure 9.1: Displacement noise below the SQL. a, Inferred displacement spec-
tra, normalized to the spectral SQL, as a function of relative fre-
quency from the mechanical resonance, δΩ = Ω−Ωm, and the
detection angle, θ. The white contours delimit the regions of sub-
SQL. b, Spectra corresponding to the horizontal cut marked in
a, at θ = π/2 (black) and θ = 3π/4 (purple). Both contain the
imprecision (red), intrinsic (green) and quantum backaction noise
(blue). The spectrum at θ = 3π/4 also contains the arising correla-
tions between the quantum backaction and the imprecision noise.
These correlation lead to sub-SQL spectral values (hatched region)
for some frequencies off the mechanical resonance. The spectral
SQL is shown in gray. The parameters used are Ωm/(2π) = 1 MHz,
Γm/(2π) = 100 Hz, nth = 50, κ/(2π) = 10 MHz, ∆/κ = 0,
Γqba = 3Γmnth, η = 1.

spectral SQL. In particular in the ideal case of unity efficiency, the
added noise can reach the ultimate quantum limit [Cle04; Cle13], at each
frequency, upon optimization of the measurement strength, Γqba, and
the angle, θ, i. e. Ultimate quantum

limit
min
Γqba,θ

Sadd(Ω) = |χm(Ω)|2Γm. (9.3)

This represents the ultimate limit for the noise added by the measure-
ment and corresponds to the same spectral noise associated to the zero
point motion. To understand it, we recall that an ideal optomechan-
ical system is a quantum amplifier for the mechanical displacement
[Cle13]. In addition, this amplifier is also phase-insensitive, as it si-
multaneously measures both mechanical quadratures (cf. Section 5.3).
Thus, the Heisenberg uncertainty relation imposes an added noise to
the amplifier at least equal to half a quanta [Cle+10]. It is exactly this
noise that Equation 9.3 represents.

We further notice that, at the mechanical resonance Ωm, the quan-
tum limit in Equation 9.3 exactly matches the spectral SQL, i. e. |χm(Ωm)|,
which is usually precluded by the non-zero thermal occupation, nth.



162 quantum correlations for sensing and entanglement generation

However away from the mechanical resonance, the spectral thermal
noise contributes negligibly compared to the added noise, which can
then be reduced below the SQL. As usual, this requires to have a sig-
nificant quantum backaction and no excess imprecision noise due
to inefficiencies. In other words, the measurement efficiency, ηmeas,
should be close to unity. This is exactly the regime in which our
platform operates.

In the limiting case of far-off resonance frequencies, i. e. |δΩ| =Lower bound on the
added noise |Ω−Ωm| � Γm, the mechanical susceptibility can be approximated

by χm(Ω) ≈ −(2δΩ)−1, and the added noise, compared to the SQL,
achieves the value

Sadd(Ω)

S
SQL
q̂q̂ (Ω)

∼

√
1

ηmeas
− 1 (9.4)

at the optimal quadrature angle θ → − tan−1(1/(4Γmeas)) and fre-
quency δΩ→ 2Γmeas

√
η−1meas − 1.

9.1.2 Displacement sensitivity below the SQL

To perform this displacement measurement below the SQL we employ
the experimental setup sketched in Figure 9.2 [Mas+19]. A probe laser
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Figure 9.2: Experimental setup for displacement measurements below the
SQL. A resonant probe laser is use to measure the displacement
of a mechanical resonator, inside an optical cavity. An arbitrary
quadrature of the transmitted field is monitored via a BHD. A
weak auxiliary laser is also used for stabilization purposes.

is locked close to the resonance of a cavity mode, at λ = 796.068 nm
with a linewidth κ/(2π) = 16.2 MHz and a residual detuning of
∆/(2π) ≈ −1.6 MHz. This laser performs a displacement measure-
ment of the mechanical resonator, which lies inside the optical cav-
ity, via the optomechanical interaction at the vacuum coupling rate
of g0/(2π) = 121 Hz. The mechanical mode of interest features a
resonance frequency of Ωm/(2π) = 1.14 MHz and a quality factor
Q = 1.03 × 109, and it is coupled to a cryogenic thermal bath at
T = 10 K. Both the coupling rate, g0, and the bath temperature, T ,
have been measured via a quantum noise thermometry experiment,
similar to the one reported in Section 4.2.4.2. We also perform an inde-
pendent calibration of the coupling rate, g0, from the measurement of
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the optomechanical coherent response (cf. Section 4.2.4.1). This inde-
pendent measurement yields a coupling rate g0/(2π) = 125 Hz, which
differs by only 3% from the previously measured rate. In the following,
we use the coupling rate, g0, to calibrate the measured spectra into
displacement units, necessary for comparisons to the SQL. For this
calibration, we employ the g0 value coming from the quantum noise
thermometry, as it turns out to be robust against systematic errors in
the calibration of the phase modulator, provided that it operates under
the same condition, as discussed in Section 4.2.5. The transmitted
probe field is directed towards a BHD, which can measure any arbi-
trary quadrature angle in the range θ ∈ [0.1π, 0.9π]. This is achieved
by using a slope lock technique, as explained in Section 4.1.3.2. The
achieved total efficiency, comprising the total detection efficiency and
the cavity overcoupling, is η = 73%.

We also use an auxiliary laser to stabilize, via both sideband and
feedback cooling, low-frequency modes of the membrane structure,
which otherwise generate extraneous in-bandgap noise. We lock this
laser to the red side of a different cavity mode, at λa = 797.057 nm with
linewidth κa/(2π) = 10.8 MHz and detuning ∆a/(2π) = −3.5 MHz.
This field contributes to the total mechanical decoherence with the
quantum backaction. For the chosen power and in terms of the natu-
ral thermal decoherence, the contribution of the quantum backaction
is A+,a/γ = 0.4. This auxiliary laser also affects the mechanics via
dynamical backaction. In order to account for all these effects we intro-
duce effective mechanical parameters. For instance, for the best result
we have an effective resonance frequency of Ωm/(2π) = 1.135 MHz,
a linewidth of Γm/(2π) = 32 Hz and a bath occupation of nth =

8 phonons.
We set the power of the probe laser such that its quantum cooper-

ativity assumes the value of Cq = 20.7, then we record and calibrate Best sub-SQL
displacement
measurement

into displacement units the homodyne photocurrent spectra, at dif-
ferent quadrature angles. We show some of them in Figure 9.3. For
a standard phase measurement at θ = π/2, the measured spectrum
approaches the SQL off resonance. We fit this spectrum to a Lorentzian
model to extract the effective mechanical parameters, which we use
to draw the spectral SQL, SSQL

q̂q̂ (Ω) = |χeff(Ω)|, using the effective me-
chanical susceptibility as discussed in Section 5.2.2. As we rotate the
detected quadrature, correlations start to arise leading to a total sensi-
tivity below the SQL, as clearly shown in the insets of Figure 9.3. At the
quadrature angle θ = 4π/5, optimal for our experiment, we observe a
total displacement sensitivity, comprising both the added noise and
the intrinsic noise, which is 1.5 dB below the SQL.

In Figure 9.4 we show the full set of measured spectra, normalized
to the SQL, and predictions based on independently measured param-
eters. We observe that the performance is generally degraded on the
lower-than-resonance frequency side of the spectra, compared to both
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Figure 9.3: Measured displacement spectra below the SQL. Measured spectra
for the inferred displacement, as a function of the relative fre-
quency from the effective mechanical resonance, δΩ = Ω−Ωeff.
The red curve is a standard phase measurement, at θ = π/2,
whereas the blue (green) trace corresponds to a rotated quadra-
ture, at θ = 4π/5(π/3). Black solid lines are fit. The spectral SQL is
shown in gray. In the insets we show an enlarged view of the fre-
quency regions with sub-SQL displacement sensitivity. Adapted
from [Mas+19].

the expectations and the measurements on the higher-than-resonance
frequency side. We attribute this degradation to the presence of an
uncorrelated extraneous cavity noise on that side, possibly arising
from the cavity mirrors’ noise.

This is the first experimental realization of a displacement sensor
operating below the SQL, as dictated by quantum mechanics. This
enhanced sensitivity could be directly applicable in sensing applica-
tions [PD10], opening a new regime of precision measurement. More
recently, Yu et al. [Yu+20] have performed a similar experiment with
test masses of a gravitational wave detector. They have shown that the
experiment operates in a similar sub-SQL regime, upon subtraction of
classical imprecision noise.

9.1.2.1 Data analysis and fit

We now describe the analysis and fitting procedures applied to the
data. At first, we calibrate the spectra in displacement units by meansFitting the

imprecision noise of the measured coupling rate, g0. and a known phase modulation
tone (cf. Section 4.2.4.2). Then, we readout the background values
of the spectra, which form the imprecision noise Simp at different
quadrature angles. We fit them to the model in Equation 3.39, where
the optomechanical coupling, g, is fixed from the measured g0 and
the measured transmitted power, see e. g. Equation 4.5. The only free
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Figure 9.4: Measured displacement spectra below the SQL at multiple quadra-
tures. a, Measured spectra for the inferred displacement and b,
theoretical predictions, as a function of the relative frequency, δΩ,
and the quadrature angle, θ. White contours indicate a total noise
at the SQL, i. e.Sinf

xx = S
SQL
xx . The dashed coloured lines correspond

the to spectra in Figure 9.3. Adapted from [Mas+19].

parameters are the total detection efficiency, ηd, and the laser detuning,
∆. From the fit shown in Figure 9.5, we extract ηd = 77% and ∆/κ =

−0.13, consistent with independent predictions.

10-33
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0 π/4 π/2 3π/4 π

fit
data

Figure 9.5: Fit of the imprecision noise. Imprecision spectral noise (circles)
from the calibrated measured spectra, as a function of the detected
quadrature angle, θ. The light red line is a fit to the optomechan-
ical model. Coloured circles mark the data points coming from
the spectra shown in Figure 9.6a. Adapted from [Mas+19].

Next, we fit the measured spectra shown in Figure 9.4 to the full Fitting the
displacement spectraoptomechanical model, using Equation 3.41 with θ = φ. The results

are shown in Figure 9.6. For each fit, we choose as free parameters the
homodyne angle, θ, the optomechanical coupling, g, and the probe
laser detuning, ∆, whereas we fix all the remaining parameters by
independent measurements and predictions. The free parameters are
chosen to reflect the uncertainty in the measured quadrature angles,
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Figure 9.6: Fit of displacement spectra. a, Some measured displacement spec-
tra (blue traces), at different quadrature angles, with the resulting
fits (black lines). b, Quadrature angle, c, optomechanical coupling
and d, detuning (circles) resulting from fitting all the spectra.
The coloured circles mark the data points corresponding to the
spectra shown in a. The light red lines are linear/constant fit of
the resulting parameters from the fit. Adapted from [Mas+19].

especially when they are close to the amplitude quadrature, and
eventual slow drifts of the optical input power during the duration of
the experiment, of roughly an hour.

In Figure 9.6a we show some calibrated spectra with the correspond-
ing fits, while in Figure 9.6b-d we collect all the fitted parameters
as a function of the measured quadrature angles. We notice that the
fitted homodyne angles closely follow the measured ones. The fitted
coupling rates and detunings show correlated fluctuations around
their mean values. These correlations can be explained by a drift of the
optical input power. On one side, in fact, this power directly affects
the intracavity average occupation, ncav, thus the coupling rate g. On
the other side, a power drift also results in a different amplitude of the
PDH stabilization error signal. If an electronic offset is present, as usual
in the experimental reality, the change of the error signal amplitude
leads to a change of the set-point which the feedback loop stabilizes
to, yielding a different detuning.
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9.2 ponderomotive entanglement of propagating opti-
cal modes

So far, we have been using the ponderomotive correlations present
in the optical field to improve the sensitivity of a displacement mea-
surement. Thus, the optical field has been merely considered as a
measuring system. Now, we switch perspective and consider the me-
chanical resonator no more as the main measured system but as an
interface [Kur+15; Che+20], capable of generating correlations in the
state of light leading to the emergence of quantum optical states.

We have seen, in Section 3.5, how the mechanical motion generates
squeezed states of the output optical field. These correlations are
actually shared between two modes co-propagating in the same field,
which form a bipartite entangled state. These states are at the heart of
quantum information processing applications [Hor+09]. In many cases,
however, these two entangled modes need to be spatially separated
into two different independent fields to be of any use. In this way
in fact, the entangled parties can be distributed among two different
locations, which can then share quantum information [Kim08].

The entangled modes in a ponderomotive squeezed field are not
spatially separated, therefore requiring additional filtering and pro-
cessing. Alternatively, one can use the same mechanical motion to
generate and share ponderomotive correlations between two inde-
pendent fields. In this way, two modes belonging to the two output
fields can become quantum correlated, leading to a ponderomotive en-
tanglement, as proposed theoretically several decades ago [GMT01;
GMT03]. In the following, we describe a theoretical model for the pon-
deromotive entanglement. From this model, we derive a toy version
which is useful for building a physical intuition. Then, we report the
experimental results we achieved in our platform.

9.2.1 Ponderomotive entanglement

We assume to have two lasers driving two independent cavity modes,
which are optomechanically interacting with a single mechanical mode.
The linearized QLE for the fluctuation operators can be derived follow-
ing the same steps done in Section 3.2.2, thus obtaining

˙̂Xj = −
κj

2
X̂j −∆Ŷj +

√
κj,1X̂

θin
j,in,1 +

√
κj,2X̂j,in,2, (9.5a)

˙̂Yj = −
κj

2
Ŷj +∆X̂j + 2gjq̂+

√
κj,1Ŷ

θin
j,in,1 +

√
κj,2X̂j,in,2, (9.5b)

˙̂q = Ωmp̂, (9.5c)

˙̂p = −Ωmq̂− Γmp̂+
∑
j

2gjX̂j +
√
2Γmξ̂, , (9.5d)

where j = A,B labels the two cavity modes and the corresponding
input fields and gj is the optomechanical coupling rate of mode j,
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which is a real number since we have taken each intracavity field as a
phase reference. The mechanical motion is now driven by two sources
of quantum backaction, from the independent amplitude quadratures
of the input fields to the cavity modes. The induced displacement
and the thermal motion are imprinted in the phase quadratures of
both cavity modes. Thus, the phase quadrature of one mode and the
amplitude quadrature of the other mode become correlated: this is the
basic mechanism for generating correlations between the two lasers,
which becomes entangled when the thermal noise is negligible.

Using Equation 9.5 and the input-output relation Equation 1.13,
we can calculate a general expression for the cross-PSD between the
output quadrature X̂θjj of laser j at angle θj and X̂θjk of laser k at angle
θk, i. e.

S
out
X̂
θj
j X̂

θk
k

(Ω) =
1

2
δjk +

Simp(Ω)−1

2
Sq̂q̂(Ω) + Scorr(Ω), (9.6)

where

Sq̂q̂(Ω) = |χeff(Ω)|2

Sth(Ω) +
∑
j

S
j
qba(Ω)

 , (9.7a)

Simp(Ω)−1 =

√
Γ
j
measΓkmeas

2
<
[
e−ı(θj−θk)cjk(Ω) − e−ı(θj+θk)αjk(Ω)

]
,

(9.7b)

Scorr(Ω) = −

√
Γ
j
measΓkmeas

4

{
< [χeff(Ω)] =

[
e−ı(θj+θk)αjk(Ω)

]
+ = [χeff(Ω)]<

[
e−ı(θj−θk)βjk(Ω)

]}
.

(9.7c)

We have also introduced the following definitions

αjk(Ω) :=
√
κjκk

[
χc,j(Ω)χc,k(−Ω) + χc,k(Ω)χc,j(−Ω)

]
= αkj(Ω),

(9.8a)

βjk(Ω) :=
√
κjκk

[
χc,j(Ω)χc,k(Ω)∗ − χc,j(−Ω)χc,k(−Ω)∗

]
= βkj(Ω)∗,
(9.8b)

cjk(Ω) :=
√
κjκk

[
χc,j(Ω)χc,k(Ω)∗ + χc,j(−Ω)χc,k(−Ω)∗

]
= ckj(Ω)∗

(9.8c)

and, as usual, the measurement rate Γ jmeas = ηj4g
2
j /κj, with the total

efficiency ηj := η
j
dη
c
c.

The output fields are continuous propagating fields, and as such
contain a multitude of modes. In order to define and verify the pres-
ence of entangled states in these fields, we need to properly define
two modes out of them. This can be done by filtering, as introduced
in Section 1.5.
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We remind the reader that, for a ponderomotive squeezed field, the
entangled modes are represented by two symmetric spectral compo-
nents, roughly Fourier modes, at ±Ω ≈ ±Ωm around the laser carrier. Four-mode process

Now instead, we have two lasers interacting with the same mechanical
mode. We can then expect that the entanglement will involve four
spectral components, which are the symmetric Fourier modes, âA±Ω
and âB±Ω, of the two lasers, similar to a four-mode squeezing process
[Sch+87]. A full characterisation of this quadripartite state is cumber-
some, as it requires to have four simultaneous homodyne detectors
with LOs at the frequency of each Fourier modes in the state. Electron-
ically, this corresponds to measuring a signal at baseband, hindered
by the electronic flicker noise. Nevertheless, this quadripartite state
can be reduced to a bipartite one by considering a quadrature mode
for each field, as introduced in Section 1.5.1. These modes are a com-
bination of symmetric spectral components around each carrier and
conveniently represent the modes measured by a homodyne detector
[Lvo15]. Therefor, a full characterization of this bipartite state only
requires two independent detectors with LOs at the laser carriers.

We now consider exact Fourier quadrature modes, (X̂θAA (Ω), ŶθAA (Ω))

and (X̂θBB (Ω), ŶθBB (Ω)), parameterized by the frequency,Ω, and quadra-
ture angles, θA and θB. These modes can be obtained from aver-
aging the homodyne photocurrents for an infinitely long time. De-
spite being unphysical, they represent an easy theoretical tool and
well approximate the experimental modes obtained from averag-
ing for a time much longer than any other dynamical timescale.
In fact, their variance is just the spectral value of the PSD in Equa-
tion 9.6 of the underlying quadratures, at frequency Ω. To verify
the entanglement of these two modes we use a common entangle-
ment witness, w(Ω), based on summing the variance of the EPR

quadrature modes, defined as X̂±(Ω) = (X̂θAA (Ω)± X̂θBB (Ω))/
√
2 and

Ŷ±(Ω) = YθAA (Ω)± ŶθBB (Ω))/
√
2 [Dua+00; Gio+03]. Whenever the en- EPR witness for

ponderomotive
entanglement

tanglement witness satisfiesw(Ω) < 1 the two-mode state is entangled.
Explicitly, this witness takes the form

w(Ω) :=
〈
X̂+(Ω)2

〉
+
〈
Ŷ−(Ω)2

〉
= SX̂+X̂+

(Ω) + SŶ−Ŷ−(Ω) =

1+ fqw(Ω)Sq̂q̂(Ω) +wcorr(Ω), (9.9)

with

fqw(Ω) = <

[∑
J

Γ
j
meas

4
cjj(Ω) +

√
ΓAmeasΓ

B
meas

2
αAB(Ω)e−ı2Θ

]
(9.10)
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and

wcorr(Ω) = −= [χeff(Ω)]<

∑
j

Γ
j
meas

4
βjj(Ω)


+< [χeff(Ω)] =

[√
ΓAmeasΓ

B
meas

2
αAB(Ω)e−ı2Θ

]
, (9.11)

where Θ = (θA + θB)/2.

9.2.1.1 Toy model

In order to gain a physical intuition about the ponderomotive entan-
glement, we now consider the case of a resonant detection, ∆j = 0,
with broad cavities, κj � Ωm, and equal measurement strengths,
ΓAqba = ΓBqba = Γqba. This is also the relevant case for the experiments. We
start by taking these limits in Equation 9.5. Here, we can also introduce
a new joint basis for the cavity fields, defined by X̂± = (X̂A ± X̂B)/

√
2

and Ŷ± = (ŶA ± ŶB)/
√
2. In this new basis, the output fields take the

following simple form

X̂+,out(Ω) = X̂+,in(Ω), (9.12a)

Ŷ+,out(Ω) = Ŷ+,in(Ω) (9.12b)

+
√
8Γqbaχm(Ω)

(√
2Γmξ̂(Ω) +

√
2ΓqbaX̂+,in(Ω)

)
,

X̂−,out(Ω) = X̂−,in(Ω), (9.12c)

Ŷ−,out(Ω) = Ŷ−,in(Ω). (9.12d)

The two new fields are now decoupled from each other and their
dynamics can be promptly understood, as sketched in Figure 9.7. InDark and bright

modes

sqz.

cross
corr.

sqz.

cross
corr.

sqz.

Local basis Joint basis
a b

Figure 9.7: Ponderomotive entanglement in the local and joint basis. a, Sketch
of the system dynamics in the local basis. Each laser field is
squeezed and contains cross-correlations with the other. b, After
moving to the joint basis, the two fields decouple from each
other into a dark mode, which remains coherent and dark to the
mechanical motion, and a bright mode, which instead undergoes
the standard optomechanical interaction, thus becomes squeezed.
Adapted from [Che+20].

fact, the “−” field is also decoupled from the mechanics and remains
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dark to its motion. Given the initial optical coherent state, it remains
coherent throughout all the evolution and the spectrum of any of its
quadrature at angle Θ is at the shot noise level, i. e.SŶΘ− ŶΘ− (Ω) = 1/2.
Conversely, the “+” field is optomechanically coupled to the resonator,
undergoing the usual dynamics discussed in Chapter 3. In particular,
this “+” field becomes ponderomotive squeezed. The spectrum of
one of its quadrature at angle Θ can be calculated from Section 3.5,
yielding

SX̂Θ+X̂Θ+
(Ω) =

1

2
+ 8Γmeas sin(θ)2Sq̂q̂(Ω) + 4Γmeas< [χm(Ω)] sin(2θ).

(9.13)

This new joint basis also corresponds to the EPR basis for the quadra-
ture modes. Then, one can easily calculate the inseparability witness,
defined in Equation 9.9, from Equation 9.13 and the spectrum for the
“−” mode. In particular, the spectrum of the ponderomotive squeezed
field, Equation 9.13, can be lower bounded as in Equation 3.46, where
the measurement efficiency, ηmeas, now refers to the “+” field and is
defined as

ηmeas ≡
∑
j Γ
j
meas

γ+
∑
j Γ
j
qba

=
2Γmeas

Γm(nth + 1/2) + Γqba
. (9.14)

Then, the entanglement witness takes the simple asymptotic value
of

w(Ω) = 1−
ηmeas

2
, (9.15)

showing that entangled states are generated whenever the optical
fields carry out an efficiency quantum measurement, ηmeas ≈ 1. This
toy model, based on Equation 9.12, also makes clear the central role of
ponderomotive correlations in the entanglement generation.

9.2.2 Experimental verification of the bipartite entanglement

We now move to the experimental verification of this entanglement
[Che+20]. The setup used is sketched in Figure 9.8. The mechani-
cal mode of the membrane resonator has a resonance frequency of
Ωm/(2π) = 1.139 MHz, a quality factor Q = 1.04× 109 and is in a
thermal bath at T = 10 K. The two fields, A and B, are obtained
from two independent lasers, referred to as probe and auxiliary in
previous experiments. They are locked via PDH close to the resonance
of two different cavity modes, at λA = 796.154 nm with linewidth
κA/(2π) = 13.3 MHz and detuning ∆A/(2π) ≈ −2.7 MHz and at
λB = 796.750 nm with linewidth κB/(2π) = 12.6 MHz and detuning
∆B/(2π) ≈ −2.5 MHz, respectively. We choose the powers of the input
lasers such that their measurement strengths are ΓAqba/(2π) = 1.35 kHz
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Figure 9.8: Experimental setup for the ponderomotive entanglement. Two
independent lasers interact with a common mechanical resonator.
As a results, correlations between them build up and their state
become entangled. A feedback loop, from the BHD of laser A to
an amplitude modulator in laser B, is used to stabilized some
low-frequency modes of the membrane.

and ΓBqba/(2π) = 0.89 kHz, exceeding the thermal decoherence rate
of γ/(2π) = 0.2 kHz. The two lasers are also linearly polarized in
orthogonal directions, which allows to spatially split the transmitted
fields with a PBS. Once split, they are sent towards two independent
BHDs, which can measure arbitrary quadratures in the full range [0, 2π)
by combing both slope and dither lock techniques. The total efficien-
cies are ηd,A = 60% and ηd,B = 77%. Combining these parameters
together, we estimate a total measurement efficiency of ηmeas = 58%
from Equation 9.14. Finally, the homodyne photocurrent of laser A is
used to feedback-cool some of the low-frequency mechanical modes,
via a modulation of the amplitude of laser B. The feedback settings
are adjusted according to the quadrature angle measured by the ho-
modyne detector [Che20].

The Fourier quadrature modes used in the theory are ideal and
require having access to infinitely long photocurrents. In practice,
we only have at our disposal a finite duration, the inverse of which
determines the smallest mode bandwidth we can define. We digitize
and acquire simultaneously the photocurrents, ij(t), from both BHDs

at some quadrature angles θA and θB. Then in post-processing, we
chop the recorded measurements in shorter realizations, but still longer
than the mechanical correlation time, 1/Γeff. We define the experimen-Experimental

quadrature modes tal quadrature modes by demodulating the time traces at a specific
frequency, Ω, and applying a low-pass filter. The two demodulated
electronic quadratures are combined together in a single complex
number, ij,Ω, which is formally expressed as

ij,Ω =

∫+∞
−∞ eıΩth(t)ij(t)dt, (9.16)

where the demodulation is taken into account by the complex expo-
nential, and the function h(t) is the causal kernel of the low-pass filter,
which goes to zero at ±∞. The electronic quadratures form the real
and imaginary part of ij,Ω, and correspond to different combinations
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of the symmetric spectral components measured by the homodyne
detectors, as expressed in Equation 1.37. In particular for stationary
processes as the ones we are dealing with, the two electronic quadra-
tures are uncorrelated and their statistics is the same [Bar+13]. In the
following, we make use of this result and only consider the real part
of Equation 9.16 for inferring the statistics of the underlying quantum
state.

We apply this definition for the experimental quadrature modes Measurement
protocolto all the realizations and build a statistical ensemble formed by the

outcomes of the quadrature pair {XθAA ,XθBB }. Then, from this ensemble
we can form an histogram and use it to estimate the covariance matrix.
Subsequently, we advance both measured quadrature angles by π/2,
corresponding to measuring the quadrature pair {YθAA , YθBB }, and repeat
the measurement to collect a new ensemble and form an histogram.
Finally, we repeat it once more, this time blocking the fields from
the optomechanical cavity and recording only the shot noise. The
resulting ensemble contains outcomes of the quadrature pair {Xsn

A ,Xsn
B },

and is used to calibrate the other two ensembles into units of shot
noise variance. This calibration is done by imposing the raw variances
Var[Xsn

A ] and Var[Xsn
B ], in units of V2, to be equal to 1/2.

At first, we choose specific modes by setting θA ≈ θB ≈ 0, de-
modulating at Ω/(2π) = 1.1416 MHz and low-pass filtering with
a bandwidth of 200 Hz. The calibrated histograms from the above
outlined measurement protocol are shown in Figure 9.9. From the
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Figure 9.9: EPR quadrature statistics. a, Histogram of X and b, Y quadrature
data, respectively, for Θ = 0. The dashed black circles indicate
the shot noise distribution (with s.d. of 1/

√
2), with a radius of

two times the shot noise s.d.. The solid black ellipses are the
covariance ellipses of the measured data, multiplied by 2. The
arrows indicate the diagonal/anti-diagonal cuts, the variances
of which are relevant for the entanglement verification. Adapted
from [Che+20].

diagonal (anti-diagonal) cut of the histogram in Figure 9.9a (b) we can
promptly extract the variance of the EPR sum (difference) quadrature,
i. e. Var[XA + XB] (Var[YA − YB]), which results to be below (at) the
shot noise level. These two variances can be summed together in order
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to estimate the entanglement witness as in Equation 9.9. From the
measured values we obtain that w = 0.83± 2%(stat.)± 0.3%(syst.) for
these specific modes, well below 1 within the experimental errors. This
proves that the chosen modes are in a bipartite entangled state. The re-
ported statistical error comes from the ensemble size of ≈ 104 samples,
used to estimate the variances, whereas the systematic error is due to
imperfections in the BHDs [Che+20; Che20]. We further measure the
EPR variances and the entanglement witness at different homodyne
angles, Θ ≈ θA ≈ θB, and we show the results in Figure 9.10a, as well
as theoretical predictions from independently measured parameters.
From the data, we observe that the largest two-mode squeezing occurs
for the sum quadrature, X̂+, and it amounts to 1.8 dB below the shot
noise.

  

3.0

2.0

1.0

0.6

Va
ria

nc
e

0 π/5 2π/5-π/5-2π/5

0.82
(0.77)

-0.13
(-0.07)

-0.16
(-0.21)

-0.18
(-0.07)

-0.13
(-0.07)

1.90
(1.94)

-0.02
(-0.09)

0.71
(0.87)

-0.16
(-0.21)

-0.02
(-0.09)

0.78
(0.81)

0.09
(-0.09)

-0.18
(-0.07)

0.71
(0.87)

0.09
(-0.09)

1.58
(1.81)

2

1

0

-1

-2

Variance

a b

Figure 9.10: Homodyne tomography and covariance matrix. a, Relevant EPR

variances (+, purple and −, orange) and entanglement witness
(green) measured at different joint homodyne angles, Θ. The star
symbols correspond to the 2D histograms shown in Figure 9.9.
The solid lines are theoretical predictions. b, Reconstructed co-
variance matrix from homodyne tomography. The values re-
ported are experimental results, whereas the ones in parentheses
are theoretical predictions. The color representation highlights
the significant non-zero entries. Each variance is obtained from
an ensemble containing ≈ 104 samples, thus the statistical er-
ror of the variance estimators is ≈ 2% of the reported values.
Adapted from [Che+20].

We also perform a Gaussian homodyne tomography [DMS07] inState tomography

order to reconstruct the state covariance matrix, which would allow
to fully characterize the entanglement. For stationary processes, this
tomography consists in measuring five linearly independent combina-
tions of the two quadrature modes at different angles, one after the
other. Then, the resulting measured variances and covariances can be
inverted to yield the state covariance matrix. We choose to measure the
following pairs of angles, {θA, θB} = {0, 0}, {π/2,π/2}, {0,π/2}, {π/2, 0},
{π/4,π/4}. From them, we reconstruct the covariance matrix shown
in Figure 9.10b, which compares well with the predicted values in
parentheses. We further process the measured covariance matrix to
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extract the minimum symplectic eigenvalue of its partial transpose
[ASI04], which is 2ν− = 0.79. For Gaussian system, this can be used
to evaluate the logarithmic negativity, which forms an entanglement
measure. We obtain a value of EN := max

(
0,− log2(2ν−)

)
= 0.35.

So far, we have been focusing on specific quadrature modes, cen-
tered at the somewhat arbitrary frequency Ω/(2π) = 1.1416 MHz.
Now, we decide to sweep this frequency and characterize the state Entanglement of

modes at different
frequencies

and the entanglement of all these modes. We notice that this would
correspond to repeat the analysis done previously, in post-processing,
on the same raw data. To do that, however, we do not apply the same
numerical demodulation, but we use an fast Fourier transform (FFT)
algorithm for the sake of computational advantage. In fact, these
two approaches are formally equivalent, that is, one can describe the
FFT with the same Equation 9.16, but in practice the FFT gives rise
to a much faster computation. Now, the duration of the realizations
chopped from the longer photocurrent time traces is chosen to be
of ∼ 9 ms. Formally, this corresponds to having a boxcar window of
that length as a low-pass kernel, h(t), in Equation 9.16. The band-
width of the corresponding spectral mode becomes then 110 Hz. We
compute the FFT of the sum and difference of these realizations from
both BHDs, and average their squared magnitude to estimate the PSD,
as shown in Figure 9.11a. The spectral value at each frequency bin
should be interpreted as the variance of an EPR quadrature of modes
with a center frequency and a bandwidth equal to the center and the
width of that frequency bin. The spectral resolution is much narrower
than any other feature, then the approximation of Fourier quadra-
ture modes is valid and one can use Equation 9.6 to understand and
fit the measurements. In particular, we notice that the spectrum for
the difference quadrature is mostly at the shot noise level, while the
spectrum of the sum quadrature shows a ponderomotive squeezing
feature. This highlights once more the connection between pondero-
motive squeezing and entanglement. From these two spectra, we can
construct the inseparability witness, w(Ω), as a function of the mode
frequency Ω, as shown in Figure 9.11b. This witness violates the sepa-
rability threshold of 1 for several modes in a bandwidth of ∼ 20 kHz
Furthermore, by performing the Gaussian homodyne tomography,
we can reconstruct the covariance matrices for all these modes and
calculate from these matrices the minimum symplectic eigenvalue of
their partial transpose, 2ν−. When its value is below unity the state is
entangled, and this happens for modes over a bandwidth of ∼ 30 kHz.
In addition, the logarithm of 2ν− is the logarithmic negativity, and
quantifies the amount of entanglement. Given the additivity of this
measure, we can integrate the logarithmic negativity over frequencies
to obtain a total extractable entanglement rate [TR17] of 753 ebit/s.
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Figure 9.11: Ponderomotive entanglement at different frequencies. a, EPR

variances, at angle Θ = 0, as a function of the mode center
frequency, Ω. The smooth light-coloured lines are fits. b, The
inseparability witness (green), from the EPR variance, and the
minimum symplectic eigenvalue of the covariance matrix par-
tial transpose (gray) from homodyne tomography, at different
mode frequencies Ω. c, Theoretical predictions and d, measured
witness spectra, w(Θ,Ω). The dashed green line indicates the
measurement shown in b. The horizontal axes are referenced
to the effective mechanical resonance frequency, δΩ = Ω−Ωeff.
Adapted from [Che+20].

9.2.2.1 Calibration and fit

The shown experimental results only depend on the calibration into
shot noise units as already explained, and not on a correct modelling
of the optomechanical interaction. Nevertheless, we fit the data to a
model in order to extract the main parameters and corroborate the
underlying physical phenomena.

At first, we calculate the PSD of the measured realizations andFitting the
imprecision noise calibrate them into displacement units, as usual. Then, we readout

their background values, which are the spectral imprecision noises,
Simp, as a function of the quadrature angle, measured from the DC
homodyne photocurrent (cf. Section 4.2.2). We fit these data to a model
in order to extract the total efficiencies, which result inηA = 60% and
ηB = 77%.
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Next, we calibrate the measured spectra to shot noise units. This Fitting the
displacement spectrais done by measuring the shot noise spectrum and assigning to each

frequency bin the spectral value of 1/2. The calibrated PSD and cross-
PSD for the best result, at Θ = 0, are shown in Figure 9.12. Each
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Figure 9.12: Simultaneous fit of measured spectra. a, b, c, Spectra and cross-
spectra for the simultaneously measured X̂ quadratures of the
two lasers, at Θ = 0. In c, we show the absolute value of the
cross-spectrum for the sake of visualization. The shaded area
corresponds to actual negative values d, e, f, Spectra and cross-
spectra for the simultaneously measured Ŷ quadratures of the
two lasers. The black lines are fits which are all performed
simultaneously. Adapted from [Che+20].

measurement is composed of three steps: first, we measure the combi-
nation of quadratures at θA, θB, from which we calculate their PSD and
cross-PSD, e. g. Figure 9.12a-c; second, we advance the homodyne angle
by π/2 and measure the new orthogonal combination and calculate
again the spectra, e. g. Figure 9.12d-f; third, we measure the shot noise
which we use for the calibration. Each measurement then results in six
independent spectra, four of which come from self-correlations and
the remaining two from cross-correlations during the same step. We
simultaneously fit all these six spectra to the model in Equation 9.6,
with the appropriate choice of j, k, θA and θB. The only free parame-
ters are the optomechanical couplings, gj, and detunings, ∆j, in order
to account for drifts over the duration of the experiment. The overall
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results from the fits are shown in Figure 9.13, as well as their mean
values.

-0.2

-0.3

-0.16

-0.20

-0.24

1 3 5 7 9 1 3 5 7 9
# run

c d

# run

65

50

60

55

70

78

74

a b

Figure 9.13: Resulting parameters from fits. The optomechanical couplings,
gj, and detunings, ∆j, are taken as free parameters in the fit. The
results for laser A and B are shown, respectively, in a, c and b, d.
The dashed lines are the average values of the fitted parameters
over all the runs. The error bars reflect the confidence interval
from the fits. Adapted from [Che+20].
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Quantum measurement is an ancient yet fascinating topic of modern
physics, which carries profound implications in our understating of
Nature. Concurrently, it represents an essential tool for technological
applications, as shown by the vast development during the last forty
years. In particular, the interest on quantum measurement and control
of mechanical systems is growing rapidly, due to its potentiality in
applications and fundamental researches. We hope that this thesis has
provided a flavour of the topic.

In conclusion, let’s summarize the main results presented. We have
realized an optomechanical cavity based on a dielectric membrane
resonator. Owing to the unprecedented low mechanical dissipation
and the high detection efficiency, we performed an efficient quantum
measurement of the displacement of this mechanical resonator. This
measurement operates at the Heisenberg measurement-disturbance
limit to within 33%, making the system the closest mechanical realiza-
tion to the Heisenberg microscope thought experiment. This quantum
measurement enables the production of a state-of-knowledge, or con-
ditional state, which is almost a pure coherent state. We experimentally
implemented a protocol, based on mechanical quantum trajectories
and a retrodiction measurement, which allows to fully verify this con-
ditional state. Also, this allows to observe the measurement-induced
dynamics, from the reduction of the state variance to the decoher-
ence stemming from quantum backaction. Based on the measurement
outcomes, we implemented a control feedback loop to stabilize a me-
chanical mode in its ground state, with a residual thermal occupation
of 0.29 phonons. This realized a long-standing goal in the field and
concluded a twenty-year-long series of experimental efforts in achiev-
ing a measurement-based quantum control of mechanical degrees
of freedom. This capability of our system allowed us to further ex-
plore several routes. On one side, we have shown the thermodynamic
implications of a quantum measurement. In particular, we have experi-
mentally assessed the dramatic contribution to the entropy production
generated by the measurement. On the other side, we made use of
the correlations present in the quantum measurement. First, we have
exploited them at the detection stage to perform displacement mea-
surements with a total noise sensitivity below the SQL. Then, we have
shared these correlations among two optical probe lasers, which were
measuring the same mechanical motion. We experimentally verified
that the bipartite optical state, after the interaction with the mechanics,
becomes entangled.
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This optomechanical platform is also appealing for realizable appli-
cations and further studies on quantum measurements, including:

electro-opto-mechanical coupling Mechanical resonators can
be employed to couple optical and microwave fields together,
which represents a crucial step towards quantum networks based
on, e. g., superconducting qubits. This electro-opto-mechanical
coupling has been shown in several experiments, using either
piezoelectric materials [Boc+13; For+20] or mechanical resonators
capacitively coupled to electrical circuits [Bag+14; Hig+18]. We
are realizing a system similar to the latter. In particular, we de-
signed a soft-clamped membrane with two defects embedded
in the phononic crystal [CTS20]. One of them is coupled to an
optical cavity, as detailed in this thesis. The other, instead, is
coated with a thin layer of superconducting metal and forms
one of the plates of a capacitor in a superconducting circuit.
Once the electrical coupling is optimized, the microwave mode
would also perform a quantum measurement of the mechanical
displacement. In a similar manner to what has been shown in
Section 9.2, this would enable the generation of an entangled
state between an optical and a microwave mode, a milestone for
future quantum information processing applications.

improving gravitational wave detectors To further enhance
the sensitivity of gravitational wave detectors, the injection of
vacuum squeezed light has been recently implemented [Tse+19].
This improves the sensitivity in a limited spectral window, while
degrading it elsewhere. A better performance could be achieved
if the angle of squeezing is rotated in a frequency-dependent
matter [McC+20]. Among the several proposals to do that, one
exploits the OMIT effect [Ma+14]. The advantage lies in the com-
pactness of the required optical cavity, of only few centimeters,
compared to the tens of meter scale of other proposals. The
sideband-resolved optomechanical cavity is driven by a red de-
tuned control laser, which opens a transparency window around
the cavity resonance. The linewidth of the dispersive response
within such a window is dictated by the optical damping rate,
proportional to the power of the control laser. This forms a tun-
able narrow filter which can be used to process the squeezed
vacuum, before delivering it to the main interferometer.

Another possible improvement is about the detection bandwidth.
In fact, important astronomical events, like neutron stars coa-
lescence, take place at high frequencies, up to ∼ 5 kHz. Current
detectors use signal recycling techniques to improve their sensi-
tivity. These are a form of resonance enhancement, thus subjected
to the usual gain-bandwidth trade-off, limiting the useful de-
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tection bandwidth to, at most, 1 kHz. One way to overcome
this limitation is offered by the method of white light signal
recycling. It turns out that a possible implementation is given by
a resolved-sideband optomechanical cavity [Mia+15]. In partic-
ular, under continuous driving with a blue-detuned laser, the
cavity response mimics a negative dispersive filter. Tuning the
power and the detuning of the control laser allows to exactly
match the phase delay experienced by the optical sidebands in
the interferometer, due to signal recycling, and thus cancel it. To
counteract the instability resulting from driving on the blue side,
one also need to implement a feedback loop to cool and stabilize
the mechanical motion. Then, the optomechanical cavity can be
used to filter the outcoming field from the interferometer, before
the detection.

The success of both proposals rely, however, on a strong require-
ment: that the mechanical thermal noise contributes negligibly
either to the vacuum squeezed field or to the optical sidebands
encoding the astronomical information. For a 150 Hz-wide op-
tomechanical filter, this corresponds to requiring, for the mechan-
ical element, thatQ/T > 109 K−1, unrealistic to achieve only few
years ago. The optomechanical cavity based on a soft-clamped
membrane that we have introduced approaches this requirement
closer than ever. In fact, from the experiments reported in this
thesis we have shown that a Q/T ≈ 108 K−1 is possible, in a
moderate cryogenic environment at liquid Helium temperature
and for circulating optical powers of the order of O(10mW). We
expect to improve that ratio and match the needed requirement
once the optomechanical cavity is operated in a dilution refrig-
erator at mK temperature [Pag+20]. Here, the main limitation
would be posed by heating of the membrane due to absorption of
the optical radiation. We have started to investigate that by char-
acterizing the dissipation of a 60-nm-thick membrane resonator,
as a function of the optical power and the fridge temperature.
The results are shown in Figure O.1 and more details can be
found in Appendix C. By assuming perfect thermalization
between the membrane structure and the fridge, we can use the
measured quality factor as a proxy to infer the heating effect of
the optical absorption. For 1µW of impinging power we mea-
sure Q ≈ 0.3× 109 and infer Tinf ≈ 150mK, from which follows
that Q/Tinf ≈ 2× 109K−1, an encouraging results for these ap-
plications. We also expect that using thinner membranes would
give higher quality factors, without affecting significantly the
absorption heating. In fact, the lower bulk absorption of optical
radiation is compensated by the higher thermal resistance.

exploring different quantum measurements Displacement
quantum measurements effectively realize projections in the co-
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Figure O.1: Effect of absorption heating at mK temperature. Quality factors
(blue circles) extracted from ringdown measurements for a, dif-
ferent probe optical powers impinging on the resonator at fridge
temperature ≈ 20 mK and b, different fridge temperatures at
a fixed optical power of 100 nW. The data are fit to a generic
polynomial model, the result of which is shown as solid light
blue lines. The dashed lines are extrapolations based on the fit
results. c, Inferred membrane temperature as a function of optical
power (solid blue). The shaded area reflects the error in doing
such an inversion. The dashed black line represents a square root
law and is meant just as a guide for the eye.

herent states basis. As such, their precision is always limited, at
most, by the mechanical zero point motion. In terms of condi-
tional state, this corresponds to at most a coherent state, with
equal variances in both quadratures. This limit arises from the
detection arrangement, in which the homodyne LO is chosen
to be on resonance with the laser carrier, thus detecting both
red and blue mechanical sidebands. As proposed by Lammers
[Lam18], one can overcome this limit by performing quantum
measurements where the LO is resonant with either one of the
two sidebands. Depending on the chosen sideband, one can ob-
serve a quantum trajectory with a squeezed quadrature variance
and a retrodiction measurement on coherent states, or vice versa.
This is an appealing route to explore, given that our system al-
ready satisfies all the requirements. In particular, it represents a
powerful tool, which is capable of (i) generating conditional me-
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chanical squeezed states, which can be turned into unconditional
ones by means of a feedback and (ii) performing retrodiction
measurements with precision below the zero point fluctuations,
useful for mechanical state tomography, even of non-Gaussian
states.

Looking forward, continuous displacement measurements in
our optomechanical system can be tailored to implement crucial
protocols in quantum information processing applications, as
state teleportation and entanglement swapping [Hof+13; HH15].
If equipped with nonlinear measurements, generation of me-
chanical non-classical states is also possible [Rin+18].





A
S Y M B O L S

a.1 optics

symbol name

Ωc Cavity resonance frequency

F Cavity finesse

κ Cavity energy decay rate

ηc,j = κj/κ Cavity overcoupling

χc(Ω) =
√
κ

κ/2−ı(∆+Ω) Cavity susceptibility

ΩL Laser frequency

∆ Laser-cavity detuning

â Cavity field amplitude

âin Input field amplitude

a Mean cavity field amplitude

ain Mean input field amplitude

î Photocurrent operator

ηl Optical loss efficiency

ηqe Photodiode quantum efficiency

v Interference visibility

ηd := ηlηqev
2 Total detection efficiency

η := ηdηc Total efficiency

Table A.1: Symbols related to the optical and the detection systems.
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a.2 mechanics

symbol name

eij Strain tensor

σij Stress tensor

ν Poisson’s ratio

E Young’s modulus

h Membrane thickness

D = Eh3/
(
12(1− ν2)

)
Flexural rigidity

Q Mechanical quality factor

Ωm Mechanical resonance frequency

Γm Mechanical damping rate

m Effective mass

χm(Ω) = Ωm
Ω2m−Ω2−ıΓmΩ

Mechanical susceptibility

q̂ Dimensionless displacement op-
erator

p̂ Dimensionless momentum oper-
ator

xzp =
√

 h
2mΩm

Zero-point displacement

pzp =
√

 hmΩm
2 Zero-point momentum

ξ̂ Brownian thermal force operator

nth Thermal bath average phonon
number

Table A.2: Symbols related to the mechanical system.
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a.3 optomechanics

symbol name

rm, tm Membrane reflection and trans-
mission coefficients

zm Membrane-mirror distance

G Optomechanical coupling con-
stant

g0 Vacuum optomechanical cou-
pling rate

g Field-enhanced optomechanical
coupling rate

ncav Cavity average photon number

Pin Input optical power

Ptr Transmitted optical power

A± Stokes/anti-Stokes scattering
rates

Γopt Optical damping rate

nopt Effective optical bath occupation

γ = Γm (nth + 1/2) Thermal decoherence rate

Γqba = Γopt
(
nopt + 1/2

)
Quantum backaction decoher-
ence rate

γtot = γ+ Γqba + . . . Total decoherence rate

Γmeas = ηΓqba Measurement rate

Cq = Γqba/γ Quantum cooperativity

ηmeas = Γmeas/γtot Measurement efficiency

Simp Spectral imprecision noise

S
inf
q̂q̂(Ω) Inferred displacement spectrum

S
SQL
q̂q̂ (Ω) = |χm(Ω)| Spectral SQL

S
zp
q̂q̂ = 1/Γm Resonant zero-point displace-

ment spectrum

Table A.3: Symbols related to the optomechanical system.





B
E X C E S S L A S E R N O I S E

Hereby, we describe the methods for characterizing the excess noise in
the amplitude and the phase of a laser, and report the measurement
results for one of our TiS lasers [Ros+18]. Characterizing this excess
noise and achieving a quantum-noise-limited laser is important in
optomechanical experiments in order to avoid introducing excess
imprecision and backaction noise.

Let’s start by the fluctuations in the propagating input field, âin(t) =

(X̂in(t) + ıŶin(t))/
√
2. In presence of excess classical noise, the correla-

tions become [Jay+12]

〈
X̂in(t)X̂in(t

′)
〉
= δ(t− t ′)

1

2
(1+CXX) , (B.1a)〈

Ŷin(t)Ŷin(t
′)
〉
= δ(t− t ′)

1

2
(1+CYY) , (B.1b)〈

X̂in(t)Ŷin(t
′)
〉
= δ(t− t ′)

ı

2
. (B.1c)

The excess noise is described by the quantities CXX and CYY , which
are implicitly dependent on the average optical power. In addition,
we have assumed for simplicity that there are no cross-correlations
between the amplitude and the phase quadratures noises, i. e.CXY = 0.
If any, in fact, these cross-correlations will be limited by the Cauchy-
Schwarz inequality.

The excess noise is also usually not a white noise, but has a depen-
dence on the frequency, Ω. We now provide some methods which are
useful to characterize the spectral dependence of such noises.

b.1 amplitude quadrature

To measure the amplitude quadrature noise, we directly detect the
laser field on a photodiode and record the PSD of the corresponding
photocurrent, at several impinging optical powers, P. From the spectra,
we obtain the amplitude noise variance, at each power, by integrating
the spectra at a given Fourier frequency, Ω, within a bandwidth of
20 kHz. We plot the resulting variances in Figure B.1b as a function of
optical power, for Ω/(2π) = 1.14 MHz. For comparison, we also plot
the noise variances at Ω/(2π) = 4.5 MHz, where the dominating noise
is the shot noise. We fit these variances to a second-order polynomial,
where the linear (quadratic) term is due to shot (classical) noise. From
the fit we extract the ratio between the quadratic and linear coefficients,
which is the classical noise contribution to the total noise variance, in
units of shot noise, per optical power. For the chosen frequency, we
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Figure B.1: Laser excess noise. a, c, Amplitude and phase noise, respectively,
at different frequencies. The dashed red line marks the resonance
frequency Ωm/(2π) = 1.14 MHz of the mechanical mode studied.
b, d, Integrated detected variance (red circles) at Ωm at different
optical powers and detunings, respectively. The solid red line is
a quadratic fit, for the amplitude noise, and a fit from the cavity
rotation model, for the phase noise. The gray circles are variances
at 4.5 MHz, where the dominating source of noise is the shot
noise. The solid gray line is a fit. Adapted from [Ros+18].

obtain that the classical noise has a contribution of 8× 10−4 to the total
noise variance, for 1 µW of optical power. By repeating the analysis
at different Fourier frequencies, we estimate the spectral dependence
of the amplitude quadrature noise, CXX. In Figure B.1a we show the
results, referenced to a 1 µW of optical power.

The broad resonance observed in the spectrum of CXX, at ∼ 500 kHz,
is due to the relaxation oscillations of the laser medium. The center fre-
quency and the linewidth are also determined by the optical power of
the pump laser. We choose to use ≈ 2.5 W of pump power, which guar-
antees a stable lasing operation and reduces the amplitude quadrature
noise around the mechanical resonance frequency at ∼ 1 MHz, which
is the important region for the optomechanical experiments.
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b.2 phase quadrature

Direct photodetection is not sensitive to the phase quadrature. To
measure its noise, then, we need to use an optical system which
performs a phase-to-amplitude conversion, for instance an empty
optical cavity. In fact, the quadratures of a transmitted field from
a cavity are rotated compared to the input ones, according to the
detuning, ∆, from the resonance of the cavity mode addressed. That is,
the input phase quadrature partially appears in the output amplitude
quadrature, which can be simply measured by means of a direct
photodetection, as done in the previous section. The maximum rotation
is expected to be at frequencies Ω ∼ κ/2. In particular, if one knows
the cavity linewidth, κ, the detuning, ∆, and the input amplitude noise,
CXX, measured before, then from the measured amplitude noise of
the output field one can extract the contribution stemming only from
the input phase noise.

In practice, we use a 27-mm long cavity, formed by a plane and a
spherical mirrors, with radius of curvature of 50 mm. At the chosen
working wavelength of 850 nm, the cavity has the narrowest linewidth
of κ/(2π) = 2.44 MHz, which corresponds to a finesse of 2300. The
two employed mirrors have identical coatings, so we assume that
the cavity is symmetric, that is,the overcoupling is ηc = 0.5. Once
assembled, this cavity is put in a vacuum environment and evacuated
to high-vacuum.

We drive a cavity mode with the laser, at a fixed optical power,
from one port and we directly detect the transmitted field through
the other port. The laser is locked to the side of the cavity resonance
via a slope lock. We record the PSD of the photocurrent at different
detunings, ∆. We integrate the spectra, at fixed Ω and bandwidth
20 kHz, to estimate the output amplitude noise variance, as done
previously, as a function of the detuning, ∆. In Figure B.1d we show
these measurements for Ω/(2π) = 1.14 MHz and, for comparison,
at Ω/(2π) = 4.5 MHz, where we expect to have contributions only
from the shot noise. We fit these data to a model for the transmitted
field [Gal+91; Zha+95], which takes into account the cavity dynamics
(cf. Section 1.1) and the correlations in Equation B.1. For the output
amplitude spectrum, normalized to the average output power, we
obtain

S
out
XX(Ω) = 1+

4(1− ηc)ηcκ
2

∆2 + (κ/2)2
×

×
(
(κ/2)2Ω2 + (∆2 + (κ/2)2)2

)
CXX(Ω) +∆2Ω2CYY(Ω)

∆4 + 2∆2 ((κ/2)2 −Ω2) + ((κ/2) +Ω2)
2

.

(B.2)

In practice, we normalize the integrated variance to the one calculated
at 4.5 MHz, which we expect to be shot-noise-limited. Then, at each
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frequency Ω we fit the data to Equation B.2, where the only free
parameter is the phase noise, CYY . In fact, we fix the amplitude noise
value, CXX, from the findings of the previous section. Once repeated
for all frequencies, we find the spectral dependence of the excess phase
noise, as shown in Figure B.1c. At Ω/(2π) = 1.14 MHz we find that it
has a contribution of 5× 10−2 to the total noise variance, for an optical
power of 1 µW.

The laser phase noise is upper bounded by the measured phase
noise, which also contains any other source of noise from the cavity,
e. g. the one arising from the mirrors’ substrate thermal noise. In order
to reduce the effect of the cavity noise, we choose to use a low finesse
cavity, such that the optomechanical coupling to the mirrors’ motion
is small, for the optical power used. Also, we operate the cavity in a
vacuum environment. Firstly, this removes the thermorefractive noise
due to the fluctuating refractive index of the air along the optical
path. Secondly, we have observed that the spectrum of the transmitted
amplitude contains excess noise in the form of a frequency comb,
when the cavity is operated in air. The peaks of this comb are evenly
spaced by ∼ 20 kHz, from baseband up to few MHz, at the cavity
cutoff. We have observed that this comb disappears once the cavity is
in vacuum.



C
M E C H A N I C A L D I S S I PAT I O N AT U LT R A - L O W
T E M P E R AT U R E S

The next generation of experiments will involve the coupling of an
optomechanical cavity to a microwave mode. For best performances
and a quantum-limited operation, it requires to be operated in an
ultra-cold environment at mK temperature. It is important, then, to
characterize the mechanical properties of the membrane resonator
at such low temperatures. In particular, the mechanical dissipation
for silicon nitride membranes has been observed to depend on the
temperature at which the material is kept [Zwi+08; YCS15].

c.1 experimental setup

We have also observed roughly a threefold reduction in the mechanical
dissipation rate in the experiments reported so far, going from room
temperature to T ≈ 10 K. To reach even lower temperature, we make Dilution refrigerator

use of a commercial dry dilution refrigerator, a Bluefors LD-250
1. This

cryogenic system is based on a mixture of the isotopes Helium-3 and
Helium-4, hosted in a mixing chamber (MXC). When this mixture is
cooled below 0.86 K, a spontaneous separation of a concentrated and a
dilute phase, respectively rich and poor of Helium-3, happens. Extract-
ing the evaporating Helium-3 from the dilute phase allows to exploit
the enthalpy of mixing of this mixture to cool the MXC environment,
in principle to an arbitrary low temperature. In practice, the finite size
of the tubes and the thermal radiation from the surroundings limit
the base temperature to around 20 mK. The extracted Helium-3 is
recycled and used to repopulate the concentrated phase, thus closing
the cryogenic cycle. The necessary pre-cooling of the hot Helium-3 gas
inserted during the circulation is provided by a closed-cycle pulse tube
cooler, which provides enough continuous cooling power at 4 K. We
depict a sketch of this refrigerator in Figure C.1a. The MXC is attached
to a copper plate which also thermalizes to base temperature. This
plate is used as the working area for the experiments, for which the
lowest achievable temperature is needed.

To characterize the mechanical dissipation of a membrane resonator,
we interferometrically measure the motion of its mode as it rings
down upon excitation. The resonator is assembled in a sample holder, Sample holder

shown in Figure C.1b. The base block, made of oxygen-free high
conductivity copper, is tightly screwed on the MXC plate. At its center,
we drill a through hole for the propagation of the light, on top of

1 bluefors.com
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Figure C.1: Setup for the characterization of membranes at mK temperature.
a, Section view of a dry dilution refrigerator. The sample is placed
on the coldest plate, at 20 mK. The temperature is measured by a
resistive RuO2 thermometer, next to the MXC. b, Section view of
the sample holder which hosts the membrane resonator chip. An
optical fiber delivers the laser light and collects the reflection from
the membrane, the phase of which encodes the displacement and
is interferometrically detected.

which we put a piezo ring with a membrane chip lying down. The
piezo-membrane stack is clamped down by a middle thin copper plate.
Then, a top copper cap, which hosts an optical fiber, covers the piezo-
membrane stack. Two copper braids provide a thermal link between
this cap and the cold MXC plate. Moreover, we cover the lower end
of the through hole with a thin glass layer, in order to enclose the
membrane resonator in a small volume region. This stems from the
phenomenological observation that the quality factor degrades when
the resonator chip is cooled down with no encapsulation around. We
suspect this arises from the condensation of surrounding gas molecules
on the membrane surface. When an enclosure is present instead, the
gas molecules condense into its walls as well, reducing the risk of
contamination of the membrane surface. The laser light is delivered
into the cryostat by means of an optical pigtailed fiber and focused
onto the sample by a GRIN lens. This allows to achieve a very small
waist size, necessary to avoid scattering of light at the apertures of the
soft-clamped membrane. We insert the fiber-lens assembly into the top
cap, which we translate horizontally in order to align the optical axis
with the membrane defect. The small working distance of ≈ 1 mm
between the membrane and the lens end facet reduces the effect of
tilting between them.

The optical setup comprises a Mach-Zehnder interferometer with a
heterodyne detection scheme, as sketched in Figure C.2. A TiS laser, atOptical detection

scheme λ = 830 nm, is used to generate a LO and a probe beam. The former
is frequency shifted by means of an acousto-optic modulator (AOM),
driven by a coherent tone at 60 MHz. The probe beam is fiber-coupled
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Figure C.2: Optical interferometer setup and electronic detection.

and delivered to the mechanical sample inside the fridge. Its optical
power can be controlled by a continuously variable neutral density
filter wheel, mounted on a servo motor. After the attenuator, a 10% of
the light is tapped into a photodetector in order to monitor the optical
power entering the fridge. The light reflected from the mechanics
is coupled back into the fiber, then is spatially isolated from the
incoming beam and overlapped with the LO on a 50 : 50 BS. We
directly detect one output of the BS with a commercial amplified
photodetector. The resulting photocurrent contains an interference
beat note, at 60 MHz, with phase modulation sidebands around it
due to the mechanical motion. We down-convert this electric signal
to 10 MHz and detect both the carrier and the upper mechanical
sidebands, at 10+Ωm/(2π) MHz, by means of an LIA.

c.2 first results

In practice, we drive the in-bandgap mechanical mode via a piezo
excitation and continuously monitor the decaying energy of the upper
mechanical sideband. We fit these data to an exponential model and
extract the mechanical energy decay rate, Γm, from which we infer
the mechanical quality factor, Q. In Figure C.3a we show the data Dependence on the

optical powerfor an 100-nm-thick membrane, as we vary the probe optical power
impinging on the membrane, Pmem, at a fixed fridge temperature of
≈ 20 mK. The mechanical mode quality factor, at room temperature,
is measured to be Q = 19 × 106. We fit the data to the following
phenomenological model

Q(x) =
1

k0 + kxa
+Q0, (C.1)

with k0,k,a andQ0 free parameters. The measurement roughly shows
a fourfold increase in the quality factor as we reduce the power from
a mW to few µW. We hypothesize that this dependence is caused by
heating of the membrane generated by the absorption of the optical ra-
diation. In fact, the refractive index of silicon nitride membranes has a
small yet non-zero imaginary component, which has been estimated to
be Im(n) ≈ 5× 10−6 at λ ≈ 840nm [Nie16]. Consequently, the spot of
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Figure C.3: Mechanical quality factor as a function of the optical power and
the fridge temperature. a, Quality factors (blue circles) extracted
from ringdown measurements, at different probe optical powers
impinging on the resonator. The fridge temperature is ∼ 20 mK.
b, Measured quality factors (blue circles) at different fridge tem-
peratures, for a fixed optical power of ∼ 60 nW. The data are fit
to a generic polynomial model, the result of which is shown as
solid light blue lines. The dashed lines are extrapolations based
on the fit results.

the probe laser deposits some amounts of heat on the membrane defect.
For amorphous glassy solids, the thermal conductivity is known to
reduce drastically with temperature [ZP71] and silicon nitride makes
no exception [LP98; Fto+15]. Combined with the finite cooling power
of the fridge, the generated heat from the optical absorption raises the
equilibrium temperature of the membrane structure.

In Figure C.3b we show the measured quality factors, with a fixedDependence on the
temperature optical power of Pmem ≈ 60 nW, as we ramp up the mixing chamber

temperature, which is measured by a resistive thermometer located
on the same plate. We fit these data to the same model in Equa-
tion C.1. The measurements show an increase of the quality factor as
the temperature is reduced below 1 K, similar to other independent
experiments [Zwi+08; YCS15; Fis+16]. In particular, Fischer et al. char-
acterized a SiN membrane in a Si phononic shield, with an optical
detection scheme and at dilution refrigerator temperatures as well.
The physical origin of the intrinsic mechanical dissipation is yet not
fully understood for SiN resonators. Recently, more evidences have
pointed to surface losses as the cause [VS14]. For amorphous materials
as silicon nitride, such losses are due to the interaction between two-
level system defects present on the surface and the strain field of the
structure[Phi87]. The number of interacting defects and their strength
cause the mechanical energy dissipation, which indeed depends on
the temperature. The data presented here indicate the presence of a
temperature-dependent dissipation, but further studies need to be
done to ascertain the origin.
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Figure C.4: Effect of the absorption heating under optical illumination. The
measured quality factors are used as a proxy to infer the mem-
brane temperature. To this end, the polynomial fit function in
Figure C.3b is inverted and applied to the other fit function in
a. The shaded area reflects the error in doing this inversion. The
dashed black line represents a square root law and is meant just
as a guide for the eye.

To further investigate the effect of the absorption heating, we use Heating due to
optical absorptionthe quality factors, measured as a function of fridge temperature, as

a proxy for the membrane temperature. To this end, we invert the
fit function in Figure C.3b and apply it to the fitted quality factors
as a function of optical power, shown in Figure C.3a. The resulting
curve is shown in Figure C.4, where the shaded area represents the
uncertainty in this inversion procedure. This error is larger where the
quality factor flattens, because it becomes harder to discriminate its
change due to a given temperature variation. Formally, we can invert
Equation C.1 where the independent variable, x, is now assumed to be
the temperature, T . Then, a given uncertainty in the quality factor, ∆Q,
propagates to the temperature as ∆T = |dT(Q)/dQ|∆Q. The shaded
area corresponds to this uncertainty, where we assume a constant
∆Q = 10× 106.

This result should however be taken cum grano salis, because it relies
on the strong assumption that the membrane mode temperature ex-
actly thermalizes to the fridge temperature, as read from the resistive
thermometer. In general, there might be other processes, as radiative
heating or mechanical vibrations at the mode frequency, which can
displace the mode temperature away from the thermal equilibrium
with the fridge environment. More reliable and quantitative results
can be obtained by performing a mechanical noise thermometry exper-
iment within an optomechanical cavity, as discussed in Section 4.2.5.
This is indeed the direction of further experiments.
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