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Abstract

This PhD thesis consists of two parts:

The topic of the first part is defect conformal field theories that arise as modifications of the

well-known AdS5/CFT4 correspondence between type IIB superstring theory and  = 4 super-
symmetric Yang-Mills theory. We review the supersymmetric D3-D5 probe brane intersection

and then study two D3-D7 brane intersections in which supersymmetry is completely broken.

We obtain the mass spectrum of the field theories by diagonalizing the quadratic part of the

action and derive the propagators, thereby allowing for perturbative computations of correlation

functions. The procedure closely follows previous work in the field theory dual of a 1/2-BPS

D3-D5 brane intersection. We compute the one-point function of a scalar single-trace operator

and the expectation value of a straight Wilson line and compare the results to a computation on

the string theory side of the correspondence.

The second part deals with the special functions that arise as integrals over loop momenta

in Feynman diagrams in the perturbative computation of scattering amplitudes. Using direct

integration techniques we study both integrals that can be computed in terms of multiple 

polylogarithms as well as others that require new classes of functions. To the latter class of

integrals we associate a Calabi-Yau geometry and study its properties. For a class of conformal

integrals we are able to obtain this geometry more directly as the leading singularity locus

in momentum twistor space. It is generally unknown whether different parameterizations of

a given integral lead to different geometries, but we are able to confirm this for the sunrise

integrals and the two-loop elliptic double box integral.



Resumé på dansk

Denne doktorafhandling består af to dele:
1

Emnet for den første del er konforme defektfeltteorier der opstår som modifikationer af den

velkendte AdS5/CFT4 korrespondance mellem type IIB superstrengteori og = 4 supersymme-

trisk Yang-Mills teori. Vi gennemgår den supersymmetriske D3-D5 sonde/brane-skæring og

undersøger derefter to D3-D7 braneskæringer med fuldstændigt brudt supersymmetri. Vi udleder 

massespektret af feltteorierne ved at diagonalisere den kvadratiske del af virkningen og udleder

også propagatorerne, hvilket tillader perturbationsberegninger af korrelationsfunktioner. Frem-

gangsmåden følger nært tidligere værker i feltteoridualen af en 1/2-BPS D3-D5 braneskæring.

Vi udregner et-punkts-funktionen af en skalar enkeltsporsoperator samt forventningsværdien

af en lige Wilson-linje og sammenligner resultaterne med en beregning på strengteori-siden af

korrespondancen.

Den anden del behandler specialfunktionerne der opstår som integraler over løkkeimpulser i

Feynman-diagrammer i perturbationsberegningen af spredningsamplituder. Ved brug af direkte

integrationsteknikker undersøger vi både integraler som kan beregnes i form af multiple polylo-

garitmer samt andre der kræver nye funktionsklasser. Til den sidstnævnte klasse af integraler

associerer vi en Calabi-Yau geometri og undersøger dens egenskaber. For en særlig klasse af

konforme integraler kan vi udlede denne geometri mere direkte som det førende singularitetslo- 

kus i impulstwistorrummet. Det er generelt ukendt om forskellige parametriseringer af et givent

integral fører til forskellige geometrier, men vi kan bekræfte dette for solopgangsintegraler og

det elliptiske to-løkke-dobbeltboksintegral.

1
I would like to thank Martin Ravn Christiansen for helping me translate the abstract into Danish.
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Chapter 1

Introduction and summary

Quantum field theories provide a powerful framework for the computation of physical observ-

ables that finds widespread application in many different areas of physics. In particle physics,

the Standard Model is formulated as a quantum field theory which has been successful at very

precise predictions about scattering amplitudes of elementary particles, as well as other observ-

ables such as the magnetic moment of the electron. Quantum field theory methods also find 

application in many-body systems in condensed matter physics, for example to describe the

quantum hall effect. More recently, field-theoretic methods have found application in predicting

the wave forms of gravitational waves caused by black hole mergers as well as in cosmology.

This thesis consists of two parts that deal with two different aspects of the general framework 

that quantum field theories provide: The subject of the first part in chapter 2 is defect conformal

field theories with holographic duals. The second part in chapter 3 deals with the special

functions that arise as integrals over loop momenta in the computation of Feynman integrals.

The two chapters provide the background and additional details for the publications that we

have contributed to during the time of this PhD. The publications are part of the thesis and we

therefore do not repeat the arguments and calculations given there in the main text. Each paper

is referenced and shortly summarized at the end of the chapter where it belongs thematically

and a copy is included after the references of the main text. We now give a short introduction

to each chapter.

1.1 Defect conformal field theories with holographic duals

Symmetry groups and their representations play a very important role in quantum field theories.

The most fundamental example is the notion of a particle, which as Wigner noted in [1] can be

described mathematically as an irreducible representation of the isometry group of spacetime.

Since symmetries constrain the form of physical observables, one can take it as a rule of

thumb that theories with a large amount of symmetries are easier to handle computationally.

The isometry group of spacetime is the Poincaré group and according to a famous theorem 

by Coleman and Mandula (see [2]) this group can only be combined with further internal 

symmetries in a trivial way, at least if the theory has a mass gap. There are however two

well-known ways that circumvent this no-go theorem: By relaxing the assumption on the mass

gap and considering a theory with only massless particles, the Poincaré group can be enlarged to

the conformal group. Another loophole is to replace the underlying Lie algebra of the Poincaré

group by a super Lie algebra which gives rise to supersymmetric theories.

On the one hand, considering theories with conformal symmetry or supersymmetry is very

convenient because the enlarged symmetry groups pose constraints on the form of physical
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observables such as correlation functions or scattering amplitudes. On the other hand, physical

systems often do not possess these symmetries, at least not in an unbroken form. One approach 

towards more realistic models is therefore to begin with a theory with enlarged symmetry group

and then try to break some of its symmetries in a systematic way. The hope is that the more

symmetric theory is mathematically and computationally easier to treat and that some of this

simplicity survives even when some of the symmetries are broken.

A widely studied quantum field theory that is both conformal and supersymmetric is

supersymmetric Yang-Mills (sYM) theory in four dimensions with the maximum number = 4
of supersymmetries [3, 4]. The exceptional amount of symmetry has made it possible to study

this theory and its observables in great detail. Many results in this theory are moreover obtained

from the well-known dual description in terms of the low-energy limit of type IIB superstring

theory on AdS5 ×𝑆5 via the AdS/CFT correspondence. Following the approach mentioned above,

one can look for deformations that break some of the symmetries of  = 4 sYM and study the

resulting theory. Keeping in mind that the original theory has a holographic dual, one can in

particular focus on deformations of = 4 sYM that also have a dual description in the string

theory picture. One particular way to achieve this is the subject of the first part of this thesis in

chapter 2.

Concretely, we consider the situation where additional Dirichlet branes are added to the

well-known picture of 𝑁 coincident D3 branes in type IIB superstring theory from which the

duality between  = 4 sYM and the holographic theory can be motivated and which we 

remind the reader of in appendix A. On the conformal field theory side, these models give 

rise to modifications of  = 4 sYM in which conformal symmetry is partially broken by a

codimension-one defect and spacetime-dependent vacuum expectation values for some of the

fields. We specifically review the so-called D3-D5 and D3-D7 probe brane systems, in which D5

and D7 branes are added to the background of 𝑁 coincident D3 branes respectively. The D3-D5

system preserves some of the supersymmetry of = 4 sYM, while the D3-D7 system breaks

supersymmetry completely.

Our own contribution to this subject is a framework for perturbative computations in the

D3-D7 system on the field theory side beyond leading order in the coupling constant. There 

are two variants of the D3-D7 system with different symmetry properties and for which the 

perturbative setups are worked out in [5] and [6]. The perturbative setups are used to test 

the proposed extension of the AdS/CFT dictionary to conformal field theories with defects.

In [5] and [6] this test consists of matching one-point functions of scalar field theory operators

between the field and the string theory side. In [7] we add the expectation value of a Wilson line

operator as another test. The articles are included at the end of this thesis and a short summary

will be given in section 2.5. In many ways, the approach follows the steps that were taken for

the D3-D5 system although the details are technically more involved. The one-point functions

in the defect versions of = 4 sYM also have interesting connections to boundary integrability

which we comment on at the end.

1.2 Aspects of Feynman integrals

The perturbative expansion of a scattering amplitude in a quantum field theory can be organized

into Feynman diagrams. On the one hand, this expansion is very useful, because it provides
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a systematic framework for constructing the scattering amplitude for a given process up to a

specified order in the expansion. On the other hand, computing higher orders in the expansion

with the diagrammatic method in practice quickly becomes impossible for several reasons:
1
The

number of diagrams that have to be evaluated scales very badly with the number of external

particles and the order of the expansion corresponding to the number of loops in a diagram. 

This is a combinatorial issue, since the diagrammatic method dictates that for a fixed set of

external particles, all diagrams compatible with the external data must be drawn and evaluated.

Moreover, the evaluation of a diagram includes a four-dimensional integration over an internal

loop momentum for each loop in the diagram. These integrations are in general very difficult

to carry out, both numerically and analytically, and for most cases standard analytic functions

studied in the mathematics literature are insufficient to express the integrals in closed form.

To address some of these issues, more efficient methods for the construction of an amplitude

have been developed, for example (generalized) unitarity [8, 9], recursion relations (for exam-

ple [10, 11]) or on-shell methods for = 4 sYM (see for example [12]). While these methods

are successful at constructing integrands, they do not bypass the integrations over internal loop

momenta that are part of the prescription for going from a set of Feynman diagrams to the

scattering amplitude.

Ideally one would like to “solve” these integrations in some way by expressing the in- 

tegrals over internal momenta in terms of some special functions that are mathematically 

well-understood. This is the topic of the second part of this thesis in chapter 3. There is a 

number of reasons for why a rewriting of the integrals in terms of special functions can be

useful, for example faster and more reliable numerical evaluations through series expansions,

a better understanding of the singularity structure of the amplitude or connections to other

fields in mathematics (e.g. number theory) as well as to neighboring areas in physics (e.g. string

theory). If one has some knowledge about the class of functions and the singularity structure,

then one can moreover combine these two and try to find the amplitude through bootstrap 

methods which in recent years has successfully been applied to very complicated scattering

amplitudes.

It is not known which class of functions is generally best-suited to express Feynman integrals 

in perturbation theory, but some guidance is provided by very general results due to Landau [13]

about the singularities that can occur in the perturbative expansion of scattering amplitudes. In

particular, Landau’s work not only predicts the location of the singularities of the amplitude, but 

also its behavior in the neighborhood of such a singularity. This poses constraints on the classes

of functions that can be considered. For certain amplitudes the class of multiple polylogarithms

defined by Goncharov in [14] has found widespread application, but there are many examples of 

relatively simple diagrams that cannot be expressed in terms of these functions. More generally,

iterated integrals as studied by Chen [15] are a promising candidate that have been shown to

work for more complicated integrals that involve elliptic curves.

During this PhD we have on the one hand studied integrals that can be computed algorith-

mically in terms of multiple polylogarithms using the method of direct integration (see [16]

1
Besides the practical issues there are also “philosophical” issues with the expansion in terms of Feynman

diagrams, for example the fact that in a gauge theory individual diagrams are generally not gauge-invariant, while

the full amplitude is. Moreover, it has been observed many times that the result of a laborious computation in terms

of Feynman diagrams has a very simple result, suggesting that there should be a better way to obtain the answer.
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and [17]). We therefore review the corresponding integration algorithm in some detail. On the

other hand, we have been involved in the exploration of the space of functions required beyond

multiple polylogarithms. This includes the papers [18, 19, 20] where the focus is in particular

on understanding the elliptic and more generally Calabi-Yau geometry that can be associated to

non-polylogarithmic Feynman integrals. The corresponding articles are included at the end of

this thesis and a short summary will be given in section 2.5.
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Chapter 2

Defect conformal field theories with ho-
lographic duals

As previously mentioned in the introduction, one of the best-studied quantum field theories 

is  = 4 sYM theory in four dimensions. Impressive results for physical observables such 

as correlation functions and scattering amplitudes have been obtained in this theory, often

using the exceptional number of symmetries provided by the superconformal group PSU(2, 2 | 4).
The theory also appears on one side of the best-understood example of a duality between a 

conformal field theory and a gravitational theory on anti-de Sitter (AdS) space. For the case

of = 4, the counterpart of the correspondence is type IIB supergravity on AdS5 ×𝑆5 and the

correspondence can be motivated by considering a stack of 𝑁 coincident D3 branes embedded

in ten-dimensional type IIB superstring theory. In this form, the correspondence was originally

presented by Maldacena in [21]. We assume some familiarity with the correspondence in this

chapter and refer to appendix A for additional details.

By adding additional Dirichlet branes into the background of 𝑁 coincident D3 branes one

can obtain interesting variations of the correspondence. One key motivation for studying such

variations is that they allow for a controlled breaking of some of the symmetries that are present

in the original setup, in particular some of the conformal symmetry and some or all of the

supersymmetries. Another motivation is to introduce fields that transform not in the adjoint,

but in the fundamental representation of the gauge group, as well as to describe different flavors

of fields. In subsection 2.1 below we discuss some general aspects of embedding probe branes

into the background of 𝑁 coincident D3 branes. Then we study two concrete examples in 

detail, the supersymmetric D3-D5 and the non-supersymmetric D3-D7 probe brane systems, 

in subsections 2.2 and 2.3 respectively. In subsection 2.4, we focus on observables such as

one-point functions and Wilson line expectation values that can be computed on both sides of

the correspondence and therefore constitute a check of the proposed extension of the AdS/CFT

correspondence to conformal field theories with defects. In subsection 2.5, we summarize our

own contributions to this topic which have published in [5, 6, 7].

2.1 Probe branes in type IIB supergravity

The starting point is the stack of 𝑁 coincident D3 branes in type IIB superstring theory in

ten dimensional Minkowski space as in appendix A.1. Into this background we would like to

embed additional Dirichlet 𝑝-branes (D𝑝 branes). In general, this means that we should add 

to the action of type IIB string theory an action for a D𝑝 brane which is of the form (see for
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example [22, chapter 13.3])

𝑆D𝑝 = −𝜇𝑝 ∫
D𝑝

tr [𝑒
−𝜙
√
− det(𝐺 +  )] + 𝜇𝑝 ∫

D𝑝
tr
[
𝑒 ∧∑

𝑞
𝐶𝑞]

. (2.1.1)

Here the first term is the usual Dirac-Born-Infeld (DBI) action for a D𝑝 brane with the induced

world volume metric 𝐺, the dilaton 𝜙 and the world volume field-strength  = 2𝜋 𝛼 ′𝐹 .1 The

second term is a Chern-Simons-like term that couples  to the Ramond-Ramond background

fields 𝐶𝑞 . The prefactor 𝜇𝑝 is the D𝑝 brane charge and the integrations run over the (𝑝 + 1)-
dimensional world volume of the D𝑝 brane. In the following we will always consider a constant

dilaton and write 𝑔𝑠 = 𝑒𝜙 for the corresponding string coupling.

The D𝑝 brane action changes the equations of motion of IIB supergravity such that AdS5 ×𝑆5

is no longer a solution. It turns out, that this so-called backreaction of the D𝑝 branes can be 

neglected if the number of D𝑝 branes is very small compared to the number 𝑁 of D3 branes 

(see [23, section 6.1]). In the following, we usually consider the case where only a single D𝑝
brane is added into this background. Neglecting the effects of this brane onto the AdS5 ×𝑆5

geometry is called the probe-brane approximation.
The geometry of the D𝑝 probe brane follows from the equations of motion derived from the

action (2.1.1). In [23, 24] a class of solutions was described that is dual to a defect conformal 

field theory in four dimensions with a codimension-one interface. The geometry of the D𝑝
brane in this solution is AdS4 ×𝑀𝑝−3

, where 𝑀 is some manifold that will be specified later. The

AdS4 part of the D𝑝 brane is embedded in the AdS5 part of the ten-dimensional background as a

submanifold; the 𝑀𝑝−3
part wraps certain cycles of the 𝑆5 part of the background solution. The

AdS4 effectively cuts the four-dimensional boundary of AdS5 in two halves with a different CFT

living on each half. The two halves are glued together by a three-dimensional interface that

corresponds to the three-dimensional intersection of the boundary of AdS4 and the boundary of

AdS5. The embedded AdS4 preserves a SO(2, 3) ⊂ SO(2, 4) subgroup of the isometry group of

AdS5. This matches precisely conformal group in three dimensions which is the same as the

subgroup of the conformal group in four dimensions that leaves a flat codimension-one defect

invariant.

As usual, the Dirichlet branes may be seen as submanifolds on which the open strings of

ten-dimensional type IIB superstring theory can end. The setup with 𝑁 coincident D3 branes

and a single D𝑝 branes then gives rise to the following open string excitations:

• 3–3 strings: There are open strings stretching between the 𝑁 coincident D3 branes.

These degrees of freedom are already present in the original AdS/CFT setup. On the CFT

side, they give rise to the degrees of freedom transforming in the adjoint representation

of the gauge group U(𝑁 ) of = 4 sYM theory.

• 𝑝–𝑝 strings: The open strings stretching between the probe D𝑝 brane produce new

degrees of freedom that are not present in the original AdS/CFT correspondence. It turns

out that for 𝑝 > 3 these degrees of freedom decouple. This can be seen by comparing the

coupling constants as follows: The Yang-Mills coupling for the 3–3 and the 𝑝–𝑝 strings is

1
We assume that there is no Kalb-Ramond 𝐵-field.
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related to the string coupling 𝑔𝑠 by

𝑔2 

D3 = 2𝜋 𝑔𝑠 and 𝑔2 

D𝑝 = (2𝜋)𝑝−2 𝛼 ′(𝑝−3)/2𝑔𝑠 (2.1.2) 

respectively. Thus their ratio

𝑔2 

D3
𝑔2 

D𝑝
= (2𝜋)𝑝−3 𝛼 ′(𝑝−3)/2

(2.1.3)

goes to zero in the limit 𝛼 ′ → 0 if 𝑝 > 3. The 𝑝–𝑝 string excitations may then be neglected. 

For 𝑝 < 3 on the other hand, the ratio diverges and the 𝑝–𝑝 excitations must be taken into

account.

• 3–𝑝 and 𝑝–3 strings: The open strings between a D3 and the probe D𝑝 brane correspond

to new degrees of freedom transforming in the fundamental representation of the U(𝑁 )
gauge group.

The open strings are restricted by Dirichlet boundary conditions in the directions in which

the brane extends and by Neumann boundary conditions in the directions perpendicular to the

brane. In particular, the 𝑝–3 and 3–𝑝 strings have Dirichlet boundary conditions on both ends in 

the directions that are shared by the D3 and the D𝑝 brane and Neumann boundary conditions on 

both ends in the directions perpendicular to both type of branes. In the directions perpendicular

to one but not to the other Neumann boundary conditions are imposed on one end of the

strings and Dirichlet on the other. These directions are called ND or DN directions. It turns out

(see [22, chapter 13.4]) that the number 𝜈 of ND and DN directions determines the amount of

supersymmetry preserved by the probe brane. If 𝜈 = 0, the full amount of supersymmetry is

preserved; if 𝜈 = 4 or 𝜈 = 8, half of the supersymmetry of the original setup is preserved.

With this general discussion in mind, we will now consider the following two probe-brane

systems and their field theory duals in more detail:

• D3-D5 system: Here a probe D5 brane is inserted into the background of 𝑁 coincident

D3 branes. The D5 brane extends in the directions indicated in table 2.1. Note that this

setup preserves half of the original amount of supersymmetry, since 𝜈 = 4. We review

this system in section 2.2.

• D3-D7 system: In this system the probe brane is a D7 brane oriented according to

table 2.1. Note that here 𝜈 = 6, so this setup is not supersymmetric. We review this system

in section 2.3.

2.2 The D3-D5 system

The D3-D5 probe-brane system was first described by Karch and Randall in [23, 24, 25] as a way

to realize conformal field theories with a boundary holographically. In the following we will

first review the string theory side of their construction (subsection 2.2.1) and then describe the

dual field theory side in subsection 2.2.2.
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0 1 2 3 4 5 6 7 8 9

𝑁 coincident D3 ✔ ✔ ✔ ✔ × × × × × ×
Probe D5 ✔ ✔ ✔ × ✔ ✔ ✔ × × ×
Probe D7 ✔ ✔ ✔ × ✔ ✔ ✔ ✔ ✔ ×

Table 2.1: Orientation of the probe branes relative to the 𝑁 coincident D3 branes in ten dimensions.

The symbol ✔ in column 𝑖 indicates that the world volume of the brane extends in the 𝑋 𝑖
direction.

2.2.1 String theory side

According to the general discussion in section 2.1, a single D5 probe brane is inserted into the

background of 𝑁 coincident D3 branes. The world volumes of the D3 branes and the D5 brane

span the directions marked in table 2.1. The solution discussed in the following first appeared

in [23, 24, 25] and can be described either from the point of view of the probe brane or from the

point of view of the world volume of the 𝑁 coincident D3 branes. We begin with the D5 brane

point of view, which describes how the probe brane is embedded into the background and from

which we will see the geometry of the D5 brane arise.

D5 brane point of view In the near-horizon limit, the background metric of ten-dimensional

space time is the metric of AdS5 ×𝑆5 which we can write in Poincaré coordinates as

d𝑠2 

BG =
𝜌2

𝐿2 (
−d𝑥2 

0 + d𝑥2 

1 + d𝑥2 

2 + d𝑥2 

3) +
𝐿2

𝜌2
d𝜌2 + 𝐿2dΩ2 

5. (2.2.1)

Here 𝜌 is the radial coordinate of the AdS5 part of the geometry and dΩ2
5 is the metric on the

𝑆5. The AdS5 radius of curvature is the same as the radius 𝐿 of the 𝑆5. The Ramond-Ramond

four-form sourced by the D3 branes in this solution is given by

𝐶4 =
𝜌4

𝐿4
d𝑥0 ∧ d𝑥1 ∧ d𝑥2 ∧ d𝑥3. (2.2.2)

Into this background we embed a single probe D5 brane for which the general action in

equation (2.1.1) takes the form

𝑆D5 = −𝜇5 ∫
D5

√
− det(𝐺 +  ) + 𝜇5 ∫

D5
 ∧ 𝐶4. (2.2.3)

We make the following ansatz for the embedding into the background: The D5 brane world

volume extends along the directions (𝑥0, 𝑥1, 𝑥2, 𝜌) inside AdS5 and wraps an 𝑆2 inside the 𝑆5. We 

take the 𝑆2 to have maximal radius 𝐿 inside the 𝑆5.2 Moreover, we assume that the embedding is

such that the 𝑥3 direction is given by a function of 𝜌 only, i.e. 𝑥3 = 𝑥3(𝜌). Finally, we assume

that there are 𝑘 units of flux through the 𝑆2, sourced by the abelian field-strength living on the

brane. This means that we can write the field-strength as

 = 2𝜋 𝛼 ′𝐹 = (𝜋 𝛼 ′𝑘) vol(𝑆2), 𝑘 ∈ ℕ0, (2.2.4)

2
One can also allow for an angle 𝜓 so that the 𝑆2 has radius 𝐿 cos(𝜓 ) and check that 𝜓 = 0 is a solution to the

equations of motion for 𝜓 . It also turns out that this is a stable configuration, see [23, section 5] or [26, section 2.1].
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where vol(𝑆2) is the volume-form on the two-sphere 𝑆2. We will comment on the interpretation

of this flux momentarily.

With this ansatz, we can proceed to evaluate the action (2.2.3). The induced metric on the

world volume of the D5 brane becomes

d𝑠2 

D5 =
𝜌2

𝐿2 (
−d𝑥2 

0 + d𝑥2 

1 + d𝑥2 

2) + (
𝜌2

𝐿2
𝑥 ′ 

3(𝜌)
2 +

𝐿2

𝜌2)
d𝜌2 + 𝐿2dΩ2 

2. (2.2.5)

The field-strength  was given in equation (2.2.4) and with this information the first term in

the action (2.2.3) can be computed. For the second term, we also need the R-R background field

𝐶4 which was given in equation (2.2.2), pulled back to the world volume. After integrating out

the 𝑆2 part, the action becomes

𝑆D5 = −(4𝜋)𝜇5 ∫
AdS4 ( 

√

1 + (
𝜋 𝑘
√
𝜆)

2

𝜌2
√

1 +
𝜌4

𝐿4
𝑥 ′3(𝜌)2 + (

𝜋 𝑘
√
𝜆)

2 𝜌4

𝐿2
𝑥 ′ 

3(𝜌))
. (2.2.6)

Varying 𝑆D5 with respect to 𝑥3 one obtains the following equation of motion for the embedding

coordinate 𝑥3(𝜌):

𝜕
𝜕 𝜌

⎡ 

⎢ 

⎢ 

⎣ 

√

1 + (
𝜋 𝑘
√
𝜆)

2 𝜌6𝑥 ′3(𝜌)√
1 + 𝜌4

𝐿4 𝑥
′
3(𝜌)2

+ (
𝜋 𝑘
√
𝜆)

𝐿2𝜌4
⎤ 

⎥ 

⎥ 

⎦
= 0. (2.2.7)

This differential equation looks daunting but it turns out to have one particularly simple solution,

𝑥3(𝜌) = (
𝜋 𝑘
√
𝜆)

𝐿2

𝜌 

. (2.2.8)

Note that in the naive limit 𝜆 → ∞ this solution becomes trivial. In subsection 2.4.1 below, 

specifically eq. (2.4.9), we will see that a connection with the holographic CFT can be made

only in a certain double-scaling limit in which the parameter 𝑘2 is also taken very large. In this

region, the solution for 𝑥3(𝜌) is non-trivial.

In the 𝑥3-direction the D5 brane sits along the curve 𝑥3(𝜌) determined by the solution (2.2.8).

Note that as 𝜌 goes to infinity corresponding to the boundary of AdS5, 𝑥3(𝜌) goes to zero. 

The D5 brane thus separates the boundary into two halves, one with 𝑥3 > 0 and one with

𝑥3 < 0, as claimed in the general discussion in section 2.1. Inserting the solution (2.2.8) into the

induced metric (2.2.5), one indeed finds the metric of AdS4 ×𝑆2 with AdS4 radius of curvature

𝐿2 (1 + 𝜋2𝑘2
𝜆 ).

We now come to the interpretation of the flux due to the field strength  given in equa- 

tion (2.2.4). The field-strength is excited only in the 𝑆2 directions. We can then consider the

second term in the D5 brane action (2.2.3) which becomes

𝜇5 ∫  ∧ 𝐶4 = 𝜇5 (𝜋 𝛼 ′𝑘) ∫ vol(𝑆2) ∧ 𝐶4 = 𝑘 𝜇3 ∫ 𝐶4, (2.2.9)

where in the last step we have integrated over the 𝑆2 to produce a factor of 4𝜋 and used the 

relation 𝜇𝑝 = (4𝜋2𝛼 ′) 𝜇𝑝+2 between the D𝑝 brane charges. By integrating out the 𝑆2 we have

obtained the effective coupling constant of the D5 brane to the R-R form 𝐶4. Comparing to the

last term in the general D𝑝 brane action (2.1.1) we see that the coupling is precisely the same as

the coupling of 𝑘 D3 branes to 𝐶4. The non-zero flux through the 𝑆2 is therefore interpreted as

originating from 𝑘 D3 branes that are “dissolved” in the D5 probe brane.
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D3 brane point of view We have now studied the D3-D5 system from the point of view of

the D5 brane and seen how it is embedded into the ten-dimensional background. Studying the

same system from the point of view of the D3 branes gives a complimentary perspective from

which it is easier to make the connection to the defect versions of  = 4 sYM that we will

encounter in the next subsection.

The starting point is the world volume theory of𝑁 coincident D3 branes, for which the action 

is the non-abelian generalization of the action shown in (2.1.1) in the case 𝑝 = 3. Expanding this

action in 𝛼 ′
one obtains

3

𝑆D3 ≃ − 

1
2𝜋 𝑔𝑠 ∫

d4𝑥 tr [
1
4
𝐹𝜇 𝜈𝐹 𝜇 𝜈 + 

1
2
𝜕𝜇Φ𝑖𝜕𝜇Φ𝑖 + 

1
4 [

Φ𝑖 , Φ𝑗] [Φ𝑖 , Φ𝑗] + (𝛼 ′)] , (2.2.10)

where Φ𝑖 for 𝑖 = 1, … , 6 are U(𝑁 ) valued scalar fields and 𝐹𝜇 𝜈 is the (non-abelian) field-strength,

both living on the world volume of the D3 brane. The equations of motions for the scalar fields

are

□Φ𝑖(𝑥) − [Φ𝑗(𝑥), [Φ𝑗(𝑥), Φ𝑖(𝑥)]] = 0, (2.2.11)

where □ = 𝜕𝜇𝜕𝜇 is the d’Alembert operator. A particular solution that describes the situation in

which 𝑘 out of the 𝑁 coincident D3 branes “expand” into a D5 brane are the block matrices

Φ𝑖(𝑥) = ± 

1
𝑥3 [

(𝑡𝑖)𝑘×𝑘 𝟎𝑘×(𝑁−𝑘)
𝟎(𝑁−𝑘)×𝑘 𝟎(𝑁−𝑘)×(𝑁−𝑘)]

for 𝑖 ∈ {1, 2, 3}, (2.2.12)

andΦ𝑖 = 0 for 𝑖 ∈ {4, 5, 6}. The matrices 𝑡𝑖 in the upper left block of (2.2.12) form a 𝑘-dimensional

irreducible
4
representation of the Lie algebra su(2), i.e. they satisfy the commutation relations

[𝑡𝑖 , 𝑡𝑗] = 𝑖 𝜖𝑖 𝑗 𝑘𝑡𝑘 . (2.2.13)

The solution (2.2.12) is called a fuzzy funnel; for each value of 𝑥3 ≠ 0, the scalars Φ𝑖 , 𝑖 ∈ {1, 2, 3},
describe a non-commutative two-sphere with radius

𝑅2
funnel

(𝑥) = (2𝜋 𝛼 ′)
2

𝑘

3
∑
𝑖=1

tr [Φ𝑖(𝑥)Φ𝑖(𝑥)] = (2𝜋 𝛼 ′)
2 (𝑘 − 1)(𝑘 + 1)

4 

1
𝑥23
. (2.2.14)

As 𝑥3 goes to zero, 𝑅funnel diverges which is interpreted as an expansion of 𝑘 out of the 𝑁
coincident D3 branes into a D5 brane with 𝑘 units of flux. In the limit, the brane fills out the

space time directions (𝑋 4, 𝑋 5, 𝑋 6) corresponding to the scalars (Φ1, Φ2, Φ3) and we recover the

situation shown in table 2.1.

The two signs in the solution (2.2.12) have the following meaning: If 𝑥3 > 0, then choosing

the plus sign in Φ𝑖 leads to a negative charge for the D5 brane and thus the D5 brane is in fact an

D5 anti-brane. On the other hand, choosing the minus leads to a positive charge and is thus the

correct choice for a D5 brane. The sign of the charge can be derived by evaluating the second

term in the action (2.1.1) on the solution; this is done in [27, section 3.1].

3
We are dropping a term proportional to ∫ d4𝑥 𝑁 here.

4
One can in principle consider reducible representations of su(2). This would correspond to several D5 branes

emerging from the same 𝑘 D3 branes [27]
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D5 probe brane

𝑁 D3

(𝑁 − 𝑘) D3

𝑥3

𝑥4, 𝑥5, 𝑥6, …

𝑥0, 𝑥1, 𝑥2

𝑥3

𝑥0

𝑥1, 𝑥2
broken 𝑈 (𝑁 )

𝑈 (𝑁 − 𝑘)

Figure 2.1: Brane configuration in string theory (left) and the dual field theory picture (right) with

different gauge groups on each side of the defect at 𝑥3 = 0.

Summary The picture that emerges from this section is shown in the left of figure 2.1. Starting

with 𝑁 coincident D3 branes and a single D5 probe brane oriented according to table 2.1, we

consider the solution (2.2.12) that corresponds to 𝑘 out of the 𝑁 branes dissolving into the probe

D5 brane. The D5 brane is embedded into the AdS5 ×𝑆5 solution to type IIB supergravity and in

the probe brane approximation we are neglecting the backreaction of the D5 brane onto the

geometry. The geometry of the D5 brane is AdS4 ×𝑆2 and the parameter 𝑘 also appears as the

flux of a gauge field supported on the D5 world volume through the 𝑆2.
We now analyze the field theory dual to this setup. The 3–3 open strings give rise to the 

degrees of freedom of a defect version of  = 4 sYM in which some of the scalars acquire a 

non-zero vacuum expectation value. The 3–5 and 5–3 open strings may correspond to extra

degrees of freedom localized on the hyperplane 𝑥3 = 0; however, it turns out that they are only

present in the case where 𝑘 = 0. The 5–5 strings can be neglected in the near-horizon limit.

2.2.2 Field theory side

As suggested in [23, 24], the field theory dual to the probe-brane system described in the previous

subsection should be a four-dimensional defect conformal field theory with a flat codimension-

one interface at 𝑥3 = 0. A different field theory can live on each of the half-spaces 𝑥3 > 0 and
𝑥3 < 0 and the two theories may be coupled through a three-dimensional theory living on the

interface at 𝑥3 = 0. As we will describe in more detail below, this situation can be studied by 

“folding” the theory for 𝑥3 < 0 to 𝑥3 > 0 studying a “product theory” on the half-space 𝑥3 > 0. 

Since the string theory side preserves half the amount of supersymmetry, the same should

hold for the field theory dual. This is achieved by imposing certain supersymmetry-preserving

boundary conditions on the fields at the interface located at 𝑥3 = 0.
According to the AdS/CFT correspondence, the field theory dual to type IIB supergravity

on AdS5 ×𝑆5 is  = 4 sYM theory in four dimensions with gauge group U(𝑁 ). Similarly, the

field theory dual to the probe D3-D5 probe-brane system is a defect version of = 4 sYM in

which the rank of the gauge group is U(𝑁 − 𝑘) for 𝑥3 < 0 and U(𝑁 ) for 𝑥3 > 0. By the folding

trick the possible supersymmetric boundary conditions for the fields follow from the boundary
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conditions for a version of  = 4 sYM on a half-space with gauge group U(𝑁 − 𝑘) × U(𝑁 ). 

Supersymmetry-preserving boundary conditions for  = 4 on a half-space were considered

by Gaiotto and Witten in [28]. Their main results will be reviewed in this section momentarily.

Another review of their work was recently given in [29, section 2.1].

The interface at 𝑥3 = 0 breaks some of the symmetries of  = 4 sYM theory. Most notably,

translations in the 𝑥3-direction (perpendicular to the interface) and rotations that change the

plane 𝑥3 = 0 are no longer symmetries of the theory. In total, the four-dimensional conformal

group SO(2, 4) is reduced to the three-dimensional conformal group SO(2, 3). Note that SO(2, 3)
is also the group of isometries of the AdS4 part of the D5 probe brane. The SO(6) R-symmetry

of = 4 sYM is reduced to SO(3) × SO(3) by the interface. The first SO(3) factor corresponds

precisely to the isometries of the 𝑆2 part of the D5 brane geometry.

Half-space with full gauge symmetry The boundary conditions for the four-dimensional

defect = 4 sYM theory are most easily derived by dimensional direction from ten-dimensional

 = 1 sYM theory. In ten dimensions, the action of = 1 sYM is

𝑆 = 

1
𝑒2 ∫

d10𝑥 tr [
1
2
𝐹𝐼 𝐽 𝐹 𝐼 𝐽 − 𝑖Ψ Γ𝐼𝐷𝐼Ψ] , (2.2.15)

where 𝐹𝐼 𝐽 is the field strength of the gauge field 𝐴̂𝐼 , Ψ is a Majorana-Weyl fermion, and Γ𝐼 are the

(16 × 16)-dimensional matrices satisfying the Clifford algebra {Γ𝐼 , Γ𝐽} = 2𝑔𝐼 𝐽 in ten dimensions.

The possible boundary conditions are derived from the requirement that there is no flux of the

supercurrent through the boundary. The expression for the supercurrent is

𝐽 𝐼 = 

1
2 

tr [Γ
𝐽 𝐾𝐹𝐽 𝐾Γ𝐼Ψ] , (2.2.16)

and the condition that the flux vanishes means that the normal component 𝐽 3 has to vanish at

𝑥3 = 0. This ensures supersymmetry.

As usual in dimensional reduction, the components 𝐴̂𝐼 of the gauge field in ten dimensions

turn into components 𝐴𝜇 of a four-dimensional gauge field and six real scalars 𝜙𝑖 ,

𝐴𝜇 = 𝐴̂𝜇 , 𝜙𝑖 = 𝐴̂𝑖+3. (2.2.17)

In the presence of the boundary the SO(6) R-symmetry of the scalars 𝜙𝑖 is broken to the subgroup

SO(3)𝑋 × SO(3)𝑌 where the subscripts 𝑋 and 𝑌 refer to the action on the subsets of scalars

(𝑋1, 𝑋2, 𝑋3) = (𝜙1, 𝜙2, 𝜙3) and (𝑌1, 𝑌2, 𝑌3) = (𝜙4, 𝜙5, 𝜙6) , (2.2.18)

respectively. The full bosonic symmetry group of the theory with a boundary is SO(2, 3) × 

SO(3)𝑋 × SO(3)𝑌 . As a representation of this group, the 𝟏𝟔 of SO(1, 9) in which the fermion Ψ
transforms is reducible and the representation space splits into a product 𝑉8 ⊗ 𝑉2 where the

subscript indicates the dimension.

It turns out that one can put Dirichlet boundary conditions on either the first group of

scalars (𝑋1, 𝑋2, 𝑋3) or on the second group (𝑌1, 𝑌2, 𝑌3), but not on both simultaneously. Putting

Dirichlet conditions on (𝑌1, 𝑌2, 𝑌3), one obtains the following for the bosons at 𝑥3 = 0:

𝑌𝑎
||||𝜕
= 0, (𝐷3𝑋𝑎 +

𝑢
2
𝜖𝑎 𝑏 𝑐[𝑋𝑏 , 𝑋𝑐]) 

||||𝜕
= 0, (𝜖𝜆 𝜇 𝜈𝐹 3𝜆 + 𝛾 𝐹𝜇 𝜈) 

||||𝜕
= 0. (2.2.19)
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Here and in the following we use the notation ♣ ||𝜕 to denote the value of the quantity ♣ on the

boundary at 𝑥3 = 0. For the fermion Ψ the boundary condition is

Γ3Ψ
||||𝜕
= Ψ′ ⊗ 𝑣2, (2.2.20)

where 𝑣2 is a fixed vector in 𝑉2. The parameters 𝛾 and 𝑢 in equation (2.2.19) are related by a

single parameter 𝑎 through

𝛾 = − 

2𝑎
1 − 𝑎2

, 𝑢 = − 

2𝑎
1 + 𝑎2

. (2.2.21)

Different choices of 𝑎 yield different boundary conditions that are all compatible with super- 

symmetry. Important for us are the choices 𝑎 = ±1 which gives 𝑢 = ±1 and 𝛾 = ±∞. These

conditions are called D5-like boundary conditions. The choices 𝑎 = 0 and 𝑎 = ∞ give 𝑢 = 𝛾 = 0
and are called NS5-like boundary conditions. The family of boundary conditions parameterized

by 𝑎 in this way preserves full gauge symmetry on the boundary.

Reducing the gauge symmetry This procedure can be generalized to allow for boundary

conditions that break part of the gauge symmetry. Suppose that we are interested in conditions

that only preserve a subgroup 𝐻 ⊂ 𝐺 of the gauge group 𝐺. The Lie algebra g of 𝐺 decomposes

into the Lie algebra h of 𝐻 and an orthogonal complement,

g = h ⊕ h⟂. (2.2.22)

With this decomposition we can write every element Φ ∈ g as Φ = Φ✔ + Φ⟂
, where Φ✔ ∈ h and

Φ⟂ ∈ h⟂. In order to retain supersymmetry on needs that h is a Lie algebra (this is trivial) and

that g has an action on h, i.e.

[h, h] ⊆ h, [h, h⟂] ⊆ h⟂. (2.2.23) 

One then imposes NS5-like boundary conditions on the fields Φ✔
at the boundary:

𝐹✔3𝜇
||||𝜕
= 0, 𝑋✔

𝑎
||||𝜕
= 0, 𝐷3𝑌 ✔

𝑎
||||𝜕
= 0. (2.2.24) 

The remaining fields Φ⟂
are restricted by D5-like boundary conditions,

𝐹⟂𝜇 𝜈
||||𝜕
= 0, (𝐷3𝑋⟂

𝑎 − 

1
2
𝜖𝑎 𝑏 𝑐 [𝑋⟂

𝑏 , 𝑋⟂
𝑐 ]

⟂
) 

||||𝜕
= 0, 𝑌⟂

𝑎
||||𝜕
= 0. (2.2.25)

We note that the commutator term is not present in [28] and it vanishes if [h⟂, h⟂] ⊆ h.5 This

does not have to be the case however, see also [30, section 2.3] for a similar discussion.

The elements of the subgroup 𝐾 ⊂ 𝐺 that commutes with 𝐻 become global gauge trans-

formations of the boundary conditions. Away from the boundary the gauge group is 𝐺, so the

elements of 𝐾 act as gauge transformations. At 𝑥3 = 0 however, the gauge group is 𝐻 , so the

elements of 𝐾 are not gauge transformations. Instead, they are considered global symmetries.

5
In this case the quotient 𝐺/𝐻 is a symmetric space.
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Application to the D3-D5 system with an interface The general discussion so far has

dealt with  = 4 sYM with a boundary at 𝑥3 = 0. The situation in the D3-D5 system is slightly

different and consists of an interface at 𝑥3 = 0 with a version of = 4 sYM on each side. The

difference between the two sides is the rank of the gauge group. This situation fits into the

present framework with the folding trick: Instead of discussing two theories, one with gauge

group 𝐺+ for 𝑥3 > 0 and another one with gauge group 𝐺− for 𝑥3 < 0, we flip the theory for

negative 𝑥3 by replacing 𝑥3 → −𝑥3 and discuss = 4 sYM on a half-space with gauge group

𝐺+ ×𝐺−. In order to keep the orientation of the ten-dimensional space, one also has to reverse the

sign of an odd number of the scalars 𝜙𝑖 . Here one has to reverse the sign of either (𝑋1, 𝑋2, 𝑋3)𝐺+

or (𝑋1, 𝑋2, 𝑋3)𝐺− , which are the scalars (𝑋1, 𝑋2, 𝑋3) with gauge group 𝐺+ and 𝐺− respectively.

For simplicity, we consider the case 𝑘 = 1, i.e. the situation with gauge groups 𝐺− = U(𝑁 )
for 𝑥3 < 0 and 𝐺+ = U(𝑁 + 1) for 𝑥3 > 0. The gauge group of the folded theory to which we can

apply the general results is 𝐺 = U(𝑁 + 1) × U(𝑁 ). We are looking for boundary conditions that 

preserve the diagonal subgroup 𝐻 = U(𝑁 )diag ⊂ 𝐺.
Let us check what the decomposition of the Lie algebra as g = h ⊕ h⟂ amounts to in this case.

An element Φ of the Lie algebra u(𝑁 + 1) is an (𝑁 + 1) × (𝑁 + 1) matrix. We decompose this as

Φ = Φ✔ + Φ⟂ =

⎛ 

⎜ 

⎜ 

⎜ 

⎜ 

⎝

0 0 ⋯ 0
0
⋮
0

[Φ]𝑚 ,𝑛

⎞ 

⎟ 

⎟ 

⎟ 

⎟ 

⎠⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= Φ✔

+

⎛ 

⎜ 

⎜ 

⎜ 

⎜ 

⎝

[Φ]1,1 [Φ]2,1 ⋯ [Φ]𝑁+1,1

[𝜙]1,2
⋮

[𝜙]1,𝑁+1

0

⎞ 

⎟ 

⎟ 

⎟ 

⎟ 

⎠⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= Φ⟂

, (2.2.26)

where Φ✔
contains the lower right 𝑁 × 𝑁 block of Φ and Φ⟂

is simply the rest of the matrix. In

other words, h consists of (𝑁 + 1) × (𝑁 + 1) matrices in which the first row and first column is

zero, while h⟂ consists of matrices in which the lower right 𝑁 × 𝑁 block is zero. We can check

that for any Φ and Ψ,

[Φ✔, Ψ✔] ∈ h, [Φ✔, Ψ⟂] ∈ h⟂, tr [Φ✔Ψ⟂] = 0, (2.2.27)

so this is indeed the correct orthogonal decomposition of g. On the fields Φ✔
in the 𝑁 × 𝑁 block

we now impose the NS5-like boundary condition (2.2.24); on the remaining fields we impose

the D5-like conditions (2.2.25). Note that [Φ⟂, Ψ⟂] ∉ h so it we do indeed need the commutator 

term in the D5-like conditions (2.2.25). Global symmetries are generated by the matrices with a

single non-vanishing entry in the (1, 1) component since they commute with the elements in h.

When 𝑘 > 1, the gauge group of the folded theory is similarly 𝐺 = U(𝑁 + 𝑘) × U(𝑁 ). As

before, the boundary conditions are supposed to preserve the diagonal subgroup 𝐻 = U(𝑁 )diag.
The decomposition Φ = Φ✔ + Φ⟂

is as in equation (2.2.26) except that Φ⟂
is non-zero in the first

𝑘 rows and columns.

Concrete solutions to Nahm equations In equation (2.2.12) we already saw the fuzzy 

funnel solution for the scalars living on the world volume of 𝑁 coincident D3 branes that 

corresponds to a situation where 𝑘 of the D3 branes expand into a probe D5 brane. By the

general AdS/CFT dictionary, this solution carries over to a classical solution for the scalar fields
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𝜙𝑖 in four-dimensional = 4 sYM. Thus, the classical solution in the half-space 𝑥3 > 0 is

𝜙cl𝑖 (𝑥) = − 

1
𝑥3 [

(𝑡𝑖)𝑘×𝑘 𝟎𝑘×(𝑁−𝑘)
𝟎(𝑁−𝑘)×𝑘 𝟎(𝑁−𝑘)×(𝑁−𝑘)]

for 𝑖 ∈ {1, 2, 3} and 𝑥3 > 0. (2.2.28)

All other fields, i.e. the scalars 𝜙𝑖 for 𝑖 ∈ {4, 5, 6}, the gauge field and the fermions, vanish

classically. For 𝑥3 < 0 all fields are U(𝑁 − 𝑘) valued and the classical solution is zero. Recall that

the matrices 𝑡𝑖 form a 𝑘-dimensional representation of the Lie algebra su(2), i.e. they satisfy the

commutation relations [𝑡𝑖 , 𝑡𝑗] = 𝑖 𝜖𝑖 𝑗 𝑘𝑡𝑘 . This is enough to check that the classical solution (2.2.28) 

satisfies

𝐷3𝜙cl𝑖 −
𝑖
2
𝜖𝑖 𝑗 𝑘 [𝜙cl𝑗 , 𝜙cl𝑘 ] = 0, (2.2.29)

which is the only non-trivial boundary condition coming from equations (2.2.25) and (2.2.24).

The set of equations in (2.2.29) are also known as Nahm equations.
The classical solution (2.2.28) applies only for 𝑥3 > 0, while for 𝑥3 < 0 the theory is simply

four-dimensional = 4 sYM with certain boundary conditions on the fields. So far we have

not made any statements about the field theory living on the defect at 𝑥3 = 0. Two cases can be

distinguished:

• Case 𝑘 = 0: When 𝑘 = 0, the number of D3 branes is the same on both sides of the D5 

brane in figure 2.1. Equivalently, the rank of the gauge group in the defect CFT is the 

same for 𝑥3 > 0 and 𝑥3 < 0 and the classical solution (2.2.28) is trivial. In this case, the 

theory on the interface consists of two complex scalars 𝑞𝑚, 𝑚 ∈ {1, 2}, and two Dirac

fermions Ψ𝑖
, 𝑖 ∈ {1, 2}. Both the scalars and the fermions transform in the fundamental

representation of the gauge group and correspond to open string degrees of freedom

stretching between the D3 and D5 branes. The string as well as the field theory side of

this theory were described in detail in [31]. The new fields on the interface are coupled

to the “bulk” fields by restricting the fields of  = 4 sYM to the boundary, taking into

account their boundary conditions.

• Case 𝑘 ≥ 1: It turns out that the new fields 𝑞𝑚 and Ψ𝑖
are not independent degrees of

freedom when 𝑘 ≥ 1. Instead, they can be expressed in terms of “bulk” fields coming from

defect  = 4 sYM restricted to 𝑥3 = 0. The argument was originally given in [28, section

3.4.2]; slightly more details may be found in [30, section 3.2.1] and [32, appendix C].

Note that the case 𝑘 = 1 is special: On the one hand, there are no new additional fields on the

interface, but on the other hand the classical solution (2.2.28) is still trivial, because the matrices

𝑡𝑖 form the one-dimensional representation of su(2). This case was studied in detail in [32, 33].

Fluctuations around the classical solution One can now consider fluctuations of the defect

CFT fields around the classical solution (2.2.28). Since the classical solution is non-zero only for

some of the scalars, but not for any of the other fields, this amounts to expanding the scalars as

𝜙𝑖(𝑥) = 𝜙cl𝑖 (𝑥) + 𝜙𝑖(𝑥), 𝑖 ∈ {1, … , 6}, (2.2.30) 

where 𝜙𝑖(𝑥) is the fluctuation.
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Inserting this expansion into the action of  = 4 sYM given in equation (A.1.1) one can

observe that mass terms for the field fluctuations are generated. Schematically, some of those

terms coming from the scalar potential are

tr ([𝜙𝑖 , 𝜙𝑗] [𝜙𝑖 , 𝜙𝑗])
𝜙𝑖=𝜙cl𝑖 +𝜙𝑖−−−−−−−−→ tr ([𝜙cl𝑖 , 𝜙𝑗] [𝜙cl𝑖 , 𝜙𝑗] + [𝜙cl𝑖 , 𝜙𝑗] [𝜙𝑖 , 𝜙cl𝑗 ] + ⋯) . (2.2.31)

As can be seen from the second term on the right hand side, the mass terms are not diagonal and

mix 𝜙𝑖 and 𝜙𝑗 for 𝑖 ≠ 𝑗. Moreover, for 𝑘 > 1 the classical solution is a non-trivial 𝑁 × 𝑁 matrix

and the mass terms therefore also mix up the color structure of different fields. This mixing

problem was solved in [34] by expanding the fields in so-called fuzzy spherical harmonics which
are eigenfunctions of the Laplacian of a fuzzy two-sphere.

6
Each mode on the fuzzy-two sphere

corresponds to a scalar with a different mass.
7
Subsequently, position space Feynman rules were

obtained allowing for perturbative computations in the defect CFT.

The classical solution (2.2.28) contains a factor 𝑥−13 , so that the mass terms in equation (2.2.31)

are proportional to 𝑥−23 . Note that that this is required for scale invariance of the Lagrangian:

Under a scaling transformation 𝑥𝜇 → 𝜆 𝑥𝜇 , the scalar fluctuations transform as 𝜙𝑖 → 𝜆−1𝜙𝑖 . 

Together with 𝑥−23 → 𝜆−2𝑥−23 this implies that the mass terms (2.2.31) pick up a factor of 𝜆−4

which is the correct behavior for a scale-invariant Lagrangian in four dimensions. One can

similarly check all the other terms in the expanded Lagrangian given in [34, section 2.2].

The 𝑥3-dependence of the mass terms also means that even after the mixing problem has

been solved, the propagators are not simply the flat-space propagators in four dimensions. After

the diagonalization each massive mode 𝜑 has an action of the form

𝑆toy = − 

2
𝑔2 

YM
∫ d4𝑥 [

1
2 (

𝜕𝜇𝜑) (𝜕𝜇𝜑) +
𝑚2

𝑥23
𝜑2] , (2.2.32)

where the “dimensionless mass” 𝑚2
depends on the su(2) representation of the fuzzy spherical

harmonic corresponding to 𝜑. Applying the Weyl rescaling

𝜂𝜇 𝜈 → 𝑔𝜇 𝜈 = 𝑥−2 

3 𝜂𝜇 𝜈 ,
√−𝜂 → √−𝑔 = 𝑥−4 

3 , 𝜑 → 𝜑 = 𝑥3𝜑 , (2.2.33) 

this action becomes

𝑆toy → − 

2
𝑔2 

YM
∫ d4𝑥√−𝑔 [𝑔𝜇 𝜈 (𝜕𝜇𝜑) (𝜕𝜈𝜑) + (𝑚2 − 2) 𝜑2] . (2.2.34)

This is the action for a massive scalar 𝜑 of mass 𝑚2 − 2 on AdS4. Consequently, the propagators 

for the original field 𝜑 with 𝑥3-dependent mass is given by (a rescaled version of) the propagator

for scalar with mass 𝑚2 − 2 in AdS4. A similar statement holds for the fermions in the theory,

c.f. [34, section 4.2].

6
Fuzzy spherical harmonics first appear in Hoppe’s PhD thesis in [35] and were introduced more formally by

Madore in [36]. Explicit constructions for fuzzy spherical harmonics in various dimensions in terms of matrices can

be found in [37]. We also refer to [34, appendix B] for a review of the 𝑆2 fuzzy spherical harmonics.

7
This is very similar to an expansion in Kaluza-Klein modes.
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2.3 The D3-D7 system

In section 2.2 we reviewed the D3-D5 system and the fuzzy funnel solution (2.2.12) that corre-

sponds to 𝑘 out of the 𝑁 D3 branes opening up into a probe D5 brane. The cross-section of the

funnel for 𝑥3 ≠ 0 was a fuzzy two-sphere. A natural generalization is to look for other funnel

solutions in which the cross section is a different fuzzy space. The D3-D7 probe brane system

provides two such solutions:

• In the first solution, the cross-section of the funnel is a fuzzy four-sphere and the geometry

of the D7 brane(s) is AdS4 ×𝑆4. We will describe the brane construction for this solution

in more detail in subsection 2.3.1. The original construction for this model can be found

in [26, section 2.2]; a similar D1-D5 brane intersection involving a fuzzy four-sphere was

previously treated in [38, sections 3, 4].

• In the second solution, the cross section is a product of two fuzzy spheres and the geometry

of the D7 brane is AdS4 ×𝑆2 × 𝑆2. We will not describe the brane construction for this

solution in detail, because it is very similar to the one for the AdS4 ×𝑆4 solution as well as

for the one for the D3-D5 system. The original reference for this model is [39] and we

will mention the most important features at the end of section 2.3.1.

In both cases the probe D7 brane(s) are oriented according to table 2.1. Note that both solutions

break supersymmetry completely as the total number of ND and DN directions is six.

2.3.1 String theory side

As in the case of a D5 probe brane there are two complimentary points of views and we begin

as before to study the system from the point of view of the probe brane.

D7 brane point of view It turns out that due to the lack of supersymmetry the naive embed-

ding of a single D7 brane with AdS4 ×𝑆4 geometry is unstable. One way to stabilize the system

is to tune the world volume gauge field such that there is a non-zero instanton number on the

𝑆4 part of the geometry. However, this comes at a cost: The world volume gauge field has to be

non-abelian and we are forced to consider a number 𝑁7 > 1 of coincident D7 branes.

We again write the background metric ofAdS5 ×𝑆5 into which the probe branes are embedded

as in (2.2.1). The non-abelian generalization of the action (2.1.1) for D7 branes takes the form

𝑆D7 = −𝜇7 ∫
D7

str [ 

√
− det(𝐺 +  )] +

𝜇7
2 ∫

D7
str [ ∧  ∧ 𝐶4] , (2.3.1) 

where str stands for the “symmetrized trace” prescription [40].

Analogously to the D3-D5 system, we make an ansatz for the embedding of the D7 branes into 

the AdS5 ×𝑆5 background: The world volume of the D7 extends along the directions (𝑥0, 𝑥1, 𝑥2, 𝜌)
inside AdS5 and wraps an 𝑆4 inside the 𝑆5. As before, we take the 𝑆4 to have maximal radius 𝐿
and we assume that the embedding coordinate 𝑥3 is a function only of 𝜌. The analogy of the flux

in the D5 brane case is the non-vanishing instanton number 𝑑𝐺 on the 𝑆4 required for stability,

∫
𝑆4
tr ( ∧  ) = 8𝜋2 (2𝜋 𝛼 ′)

2 𝑑𝐺 . (2.3.2)
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In the following we consider a self-dual field strength, so that 𝑑𝐺 is positive.

With this ansatz for the embedding, the induced metric on the world volume of the D7 brane

becomes

d𝑠2 

D7 =
𝜌2

𝐿2 (
−d𝑥2 

0 + d𝑥2 

1 + d𝑥2 

2) + (
𝜌2

𝐿2
𝑥 ′ 

3(𝜌)
2 +

𝐿2

𝜌2)
d𝜌2 + 𝐿2dΩ2 

4. (2.3.3)

The action (2.3.1) can now be evaluated and after integrating over the 𝑆4 part of the geometry it

becomes

𝑆D7 = −𝜇7𝑁7(
8𝜋2

3 )𝐿2 ∫ d4𝑥
(
(1 + 𝑄)𝜌2

√

1 +
𝜌4

𝐿4
𝑥 ′3(𝜌)2 − 𝑄 

𝜌4

𝐿2
𝑥 ′ 

3(𝜌))
. (2.3.4)

Note that this is very similar in form to the action for the D5 brane shown in (2.2.6). Consequently

the equation of motion for 𝑥3(𝜌) is essentially the same as in (2.2.7) and as a solution we find

𝑥3(𝜌) = 

Λ
𝜌 

, Λ =
𝑄

√
1 + 2𝑄 

, 𝑄 = 

6𝜋2

𝜆 

𝑑𝐺
𝑁7
. (2.3.5)

As before one can verify that the induced metric (2.3.3) evaluated on the solution (2.3.5) becomes

the metric of an AdS4 space with radius of curvature 𝑅2 (1 + Λ2). 

The second term in the D7 brane action (2.3.1) includes a coupling between the instantons

on the 𝑆4 and the R-R four-form 𝐶4. Integrating out the 𝑆4 using (2.3.2) we find that the effective

coupling is

𝜇7
2 (8𝜋2) (2𝜋 𝛼 ′)

2 𝑑𝐺 = 𝑑𝐺 (4𝜋2𝛼 ′)
2 𝜇7 = 𝑑𝐺𝜇3, (2.3.6)

where we again used the relation 𝜇𝑝 = (4𝜋2𝛼 ′) 𝜇𝑝+2. This is precisely the right constant for

coupling 𝑑𝐺 D3 branes to the four-form. The 𝑆4 instantons are therefore interpreted as 𝑑𝐺 D3

branes that are dissolved in the 𝑁7 D7 branes.

The configuration where the D7 brane wraps a maximal 𝑆4 inside the ambient 𝑆5 is unstable.

A condition for stability was derived in [26, section 2.2] as follows: For a non-maximal 𝑆4 we
have to replace its radius 𝐿 by 𝐿 cos(𝜓 ) where 𝜓 ∈ [0, 𝜋2 ]. The angle 𝜓 corresponds to a massive

field on the world volume of the D7 brane. It turns out that the mass of this field only satisfies

the Breitenlohner-Freedman bound for a massive field in AdS4 if only if

𝑄 >
7
2
. (2.3.7) 

In particular this bound rules out 𝑑𝐺 = 0.

D3 brane point of view From the D3 brane point of view we are again looking for a solution

to the equations of motion for the scalars Φ𝑖 that were given in (2.2.11). However, this time 

the solution should describe a number 𝑑𝐺 of the D3 branes opening up into a D7 brane. The

solution corresponding to the D7 brane with AdS4 ×𝑆4 geometry is a fuzzy funnel in which the

cross-section is a non-commutative four-sphere,

Φ𝑖(𝑥) = ± 

1
2
√
2𝑥3 [

(𝐺𝑖)𝑑𝐺×𝑑𝐺 𝟎𝑑𝐺×(𝑁−𝑑𝐺 )
𝟎(𝑁−𝑑𝐺 )×𝑑𝐺 𝟎(𝑁−𝑑𝐺 )×(𝑁−𝑑𝐺 )]

, 𝑖 ∈ {1, 2, 3, 4, 5}, (2.3.8)
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and Φ6 = 0. The 𝑑𝐺 × 𝑑𝐺 matrices 𝐺𝑖 can be constructed as an 𝑛-fold symmetrized tensor

product of 𝛾 -matrices and their commutators 𝐺𝑖 𝑗 = 1
2 [𝐺𝑖 , 𝐺𝑗] are the generators of an irreducible

𝑑𝐺-dimensional representation of so(5). The construction as well as many useful properties of

the matrices 𝐺𝑖 can be found in [41, appendix A]; here we only note that they satisfy

𝑑𝐺 = 

1
6 

(𝑛 + 3)(𝑛 + 2)(𝑛 + 1) and

5
∑
𝑖=1

𝐺𝑖𝐺𝑖 = 𝑛(𝑛 + 4)1𝑑𝐺×𝑑𝐺 . (2.3.9) 

The cross-section of the funnel solution (2.3.8) is a non-commutative four-sphere with radius

𝑅funnel(𝑥) = (2𝜋 𝛼 ′)
2

𝑑𝐺

5
∑
𝑖=1

tr [Φ𝑖(𝑥)Φ𝑖(𝑥)] = (2𝜋 𝛼 ′)
2 𝑛(𝑛 + 4) 

1
𝑥23
, (2.3.10)

which again diverges at 𝑥3 = 0. This is interpreted as the expansion of 𝑑𝐺 out of the 𝑁 coincident

D3 branes into the D7 brane located at 𝑥3 = 0. As before we recover the brane arrangement

shown in table 2.1.

The two signs in the solution (2.3.8) again correspond to D7 branes and anti-branes. It turns

out that the sign correlation is reversed compared to the D3-D5 system and one has to choose

the plus sign in Φ𝑖 for D7 branes and the minus sign for D7 anti-branes. This is discussed in [38,

section 3].

Relation between 𝑁7 and 𝑛 The number 𝑁7 of probe D7 branes and the integer 𝑛 are related. 

Note that in (2.3.9) we have used 𝑛 to express the dimension 𝑑𝐺 of the matrices 𝐺𝑖 which equals

the number of D3 branes dissolving into the D7 branes. On the other hand, 𝑑𝐺 is the instanton

number on the 𝑆4, see (2.3.2).

To construct a D7 world volume gauge field satisfying (2.3.2), we have to construct a 

homogeneous instanton solution on the four-sphere for an SU(𝑁7) gauge group. The explicit

construction may be found in [38, appendix B]. The idea is to start with the BPST instanton for

SU(2) gauge theory and replace the generators of the fundamental representation of the SU(2)
gauge group by an 𝑁7-dimensional representation of SU(2).

The largest possible 𝑆4 instanton number can be obtained by choosing the irreducible

𝑁7-dimensional representation of SU(2). In this case the instanton number is

𝑑𝐺 = 

1
6
𝑁7(𝑁7 + 1)(𝑁7 − 1). (2.3.11)

Comparing this expression for 𝑑𝐺 to the formula given in (2.3.9) we see that we have to identify

𝑁7 = 𝑛 + 2. (2.3.12) 

Note that even for 𝑛 = 0, we still have 𝑁7 > 1 D7 branes and therefore a non-abelian theory.

The solution with AdS4 ×𝑆2×2 geometry As mentioned in the beginning of section 2.3, there

exists another solution where the D7 probe brane has geometry AdS4 ×𝑆2 × 𝑆2 [39]. In this case

there are no instantons; instead the world volume gauge field is such that there are 𝑘1 and 𝑘2
units of flux through the first and the second 𝑆2 respectively. Apart from this difference, the

construction of the embedding is very similar to the two cases that were discussed in this thesis.

Further details may be found in the original paper [39, section 2] or [42, section 3.1].
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2.3.2 Field theory side

A lot of the discussion in section 2.2.2 for the field theory dual to the D3-D5 system carries over

the D3-D7 system. In particular, we again obtain a defect conformal field theory with gauge

groups of different ranks for 𝑥3 > 0 and 𝑥3 < 0.
The solution (2.3.8) for the scalar fields living on the world volume of the D3 brane translates

into a classical solution for five out of the six scalar fields of = 4 sYM,

𝜙cl𝑖 (𝑥) = 

1
2
√
2𝑥3 [

(𝐺𝑖)𝑑𝐺×𝑑𝐺 𝟎𝑑𝐺×(𝑁−𝑑𝐺 )
𝟎(𝑁−𝑑𝐺 )×𝑑𝐺 𝟎(𝑁−𝑑𝐺 )×(𝑁−𝑑𝐺 )]

, 𝑖 ∈ {1, 2, 3, 4, 5}, (2.3.13)

and 𝜙cl6 = 0. As before the gauge field and the fermions vanish classically. The “size” 𝑑𝐺 of the

classical solution again translates into the difference of the rank of the gauge groups: for 𝑥3 > 0
the gauge group is U(𝑁 ), while for 𝑥3 < 0 the gauge group is U(𝑁 − 𝑑𝐺). Since the D3-D7 probe

brane system is not supersymmetric, the discussion about supersymmetric boundary conditions 

does not apply. In particular, one can check that the Nahm equations (2.2.29) are not fulfilled for

this solution.

In the classical solution corresponding to a D7 probe brane with AdS4 ×𝑆2 × 𝑆2 geometry all

six scalar fields acquire a non-zero classical solution,

𝜙cl𝑖 (𝑥) = − 

1
𝑥3 [

(𝑡𝑖)𝑘1×𝑘1 ⊗ 𝟏𝑘2×𝑘2 𝟎𝑘1𝑘2×(𝑁−𝑘1𝑘2)
𝟎(𝑁−𝑘1𝑘2)×𝑘1𝑘2 𝟎(𝑁−𝑘1𝑘2)×(𝑁−𝑘1𝑘2)]

, 𝑖 ∈ {1, 2, 3}, 

𝜙cl𝑖 (𝑥) = − 

1
𝑥3 [

𝟏𝑘1×𝑘1 ⊗ (𝑡𝑖)𝑘2×𝑘2 𝟎𝑘1𝑘2×(𝑁−𝑘1𝑘2)
𝟎(𝑁−𝑘1𝑘2)×𝑘1𝑘2 𝟎(𝑁−𝑘1𝑘2)×(𝑁−𝑘1𝑘2)]

, 𝑖 ∈ {4, 5, 6}.
(2.3.14)

Here the matrices 𝑡𝑖 are the same that appeared in the D3-D5 system, i.e. they satisfy the su(2)
commutation relations given in (2.2.13). As before, the remaining fields vanish classically. The 

different gauge groups are U(𝑁 − 𝑘1𝑘2) for 𝑥3 < 0 and U(𝑁 ) for 𝑥3 > 0.
One important difference compared to the D3-D5 system is that the instanton number 𝑑𝐺

and the fluxes 𝑘1 and 𝑘2 cannot be zero, otherwise the solution is unstable. Unlike before we

can therefore not consider the case of equal gauge groups on both sides of the interface.

Other than that the discussion about fluctuations around the classical solution on page 17

still applies to the present case. In particular, mass terms of the form shown in (2.2.31) are 

generated by inserting the expansion 𝜙𝑖 = 𝜙cl𝑖 + 𝜙𝑖 into the action of  = 4 sYM. The mixing 

problem for the solution (2.3.13) was solved in [6] and for the solution (2.3.14) in [5]. In both 

cases, the fields of the defect theory had to be expanded in modes on the respective fuzzy

geometry, i.e. in fuzzy spherical harmonics for 𝑆4 and 𝑆2 × 𝑆2 respectively.

2.4 Observables

In the previous sections we have described the D3-D5 and D3-D7 probe brane systems and their

field theory duals in some detail. To check and make use of the proposed extension of the usual

AdS/CFT duality to these defect conformal field theories, one would like to compare physical

observables computed on both sides of the correspondence. It turns out that in particular

one-point functions of field theory operators as well as expectation values of field theory Wilson

loops can also be computed on the string theory side as we describe in this section.
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2.4.1 One-point functions

We focus on computations on the side 𝑥3 > 0 of the interface where we have a non-zero classical

solution given by either (2.2.28), (2.3.13) or (2.3.14). In this case we are dealing with a defect

conformal field theory with a boundary. The reduced conformal symmetry allows for non-trivial

one-point functions of conformal operators of the form

⟨(𝑥̂ , 𝑥3)⟩ =
𝑎
𝑥Δ3

, (2.4.1)

where we are using the notation 𝑥̂ = (𝑥0, 𝑥1, 𝑥2) to denote the coordinates on the boundary at

𝑥3 = 0. The one-point functions can be computed both in string theory and in the defect CFT. In

a certain double-scaling limit they may even be compared allowing for tests of the proposed

duality between supergravity on AdS5 ×𝑆5 with probe branes and defect versions of = 4 sYM.

We will return to this limit below.

The field theory operators that can be matched most easily in the AdS/CFT dictionary are

chiral primary operators of conformal dimension Δ. On the AdS side, these operators correspond

to supergravity Kaluza-Klein modes with mass 𝑚2𝐿2 = Δ(Δ − 4). A chiral primary operator in

 = 4 sYM is of the form

Δ,𝑎(𝑥) =
( 

(8𝜋2)
Δ/2

𝜆Δ/2
√
Δ )

𝐶 𝑖1⋯𝑖Δ
𝑎 tr [𝜙𝑖1(𝑥) ⋯ 𝜙𝑖Δ(𝑥)] , (2.4.2)

where 𝐶 𝑖1⋯𝑖Δ
𝑎 is a tensor that is totally symmetric and traceless in the indices (𝑖1, … , 𝑖Δ). Each

index 𝑖𝑘 take values in {1, … , 6} and transforms under the action of the SO(6) R-symmetry. Thus

𝐶 𝑖1⋯𝑖Δ
𝑎 describes a state labeled by 𝑎 in the symmetric traceless irreducible representation of

SO(6) and 𝑎 should run from 1 to 1
12 (Δ + 3)(Δ + 2)2(Δ + 1).8

By construction the chiral primary (2.4.2) has good quantum numbers with respect to the

original SO(6) R-symmetry. In the defect CFT however, the R-symmetry is broken to SO(3) × SO(3)
in the case of the classical solutions (2.2.28) and (2.3.14) and to SO(5) in the case of the classical

solution (2.3.13). It turns out that only those chiral primaries that are symmetric with respect to 

the residual R-symmetry can have a non-zero one-point function. Moreover, for a given Δ, there 

is a unique linear combination of chiral primariesΔ,𝑎 that satisfies this property, both in the case

of SO(3) × SO(3) (see [43, appendix A]) and SO(5) (see [42, section 4.1.1]) residual R-symmetry.

By abuse of notation we will simply call this linear combination Δ in the following.

String theory side The GKPW prescription shown in equation (A.2.3) in appendix A.2 gives a 

general recipe for the computation of field theory correlators from the dual supergravity theory.

For a one-point function, the general formula reduces to

⟨Δ(𝑥)⟩ = −
𝛿 𝑆cl[𝑠(0)]
𝛿 𝑠(0)(𝑥)

. (2.4.3)

To use this formula, one first has to identify the supergravity Kaluza-Klein modes on 𝑆5 that are 

dual to the chiral primaries in (2.4.2). The chiral primaries correspond to an SO(6) representation
8
The dimension 𝑑(𝑝1, 𝑝2, 𝑝3) of an irreducible SO(6) representation labeled by Dynkin labels [𝑝1, 𝑝2, 𝑝3] is

𝑑(𝑝1, 𝑝2, 𝑝3) = 1
12 (𝑝1 + 1)(𝑝2 + 1)(𝑝3 + 1)(𝑝1 + 𝑝2 + 2)(𝑝1 + 𝑝3 + 2)(𝑝1 + 𝑝2 + 𝑝3 + 3). The symmetric traceless repre-

sentation has Dynkin labels [Δ, 0, 0].
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AdS5 radial direction 𝜌

AdS5 boundary (𝑥)𝑥3 = 0
𝑥3

𝜌 → ∞

Probe brane

Figure 2.2: Computation of the one-point function in string theory (figure adapted from [42])

with Dynkin labels [Δ, 0, 0] and the corresponding supergravity modes should transform in the

same way. Matching all quantum numbers one finds a particular linear combination 𝑠Δ,𝑎 of the

fluctuation of the background metric on AdS5 ×𝑆5 and the five-form field strength on 𝑆5, see [44, 

section 3.3]. Each mode 𝑠Δ,𝑎 is a Kaluza-Klein mode in the expansion of a supergravity field 𝑠 on
AdS5 ×𝑆5.

The next step is to compute the variation of the classical action 𝑆cl with respect to a small

change in 𝑠. The relevant action here is the action of the probe brane, i.e. the one given in (2.2.3)

for the D3-D5 or the one given in (2.3.1) for the AdS4 ×𝑆4 symmetric solution of the D3-D7

system. The results of this computation may be found in [43, appendix B.2] for the D3-D5 and

in [42, section 3.2, section 4.2] for the D3-D7 system.

Finally, one uses that the field theory operator is located at a single point 𝑥 which corresponds

to a source that is simply a 𝛿-function on the AdS5 boundary,

𝑠(0) 

Δ (𝑦) = 𝛿 (4)(𝑥 − 𝑦). (2.4.4)

Effectively, this replaces the supergravity field 𝑠 with its bulk-to-boundary propagator and 

the picture that results from this prescription is the following: On the boundary of AdS5, the

field theory operator Δ sources a supergravity field 𝑠Δ which propagates into the bulk and is

integrated over the world volume of the probe brane. This situation is depicted in figure 2.2.

Field theory side On the field theory side, the recipe for computing the one-point functions

is rather straightforward. To obtain the classical one-point function of a given scalar single

trace operator,

Δ(𝑥) = 𝑖1⋯𝑖Δ tr [𝜙𝑖1(𝑥) ⋯ 𝜙𝑖Δ(𝑥)] , (2.4.5)

one simply inserts the classical solution of the scalar fields (c.f. equations (2.2.28), (2.3.14) and

(2.3.13)). We denote the classical one-point function as

⟨Δ(𝑥)⟩(0) = 𝑖1⋯𝑖Δ tr [𝜙cl𝑖1 (𝑥) ⋯ 𝜙cl𝑖Δ(𝑥)] = (𝑥) . (2.4.6)
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In the diagram on the right hand side, the operator is represented as the blob in the middle

and the crosses symbolize the insertion of the classical solution. As mentioned earlier, only the

unique chiral primary that respects the residual R-symmetry has a non-vanishing one-point 

function. If we consider a general single trace operator as in (2.4.5), we may get a non-zero 

one-point function if it has a non-zero projection onto the unique chiral primary. Note that

the insertion of the classical solution leads to an expression that has an 𝑥3-dependence of the

form shown in (2.4.1): The classical solutions 𝜙cl𝑖 are proportional to 𝑥−13 so that ⟨Δ(𝑥)⟩(0) is
proportional to 𝑥−Δ3 .

To go beyond the classical result (2.4.6), one has to take into account fluctuations of the

fields around their classical solution as in (2.2.30). Corrections to the classical one-point function

can then be computed by a perturbative expansion in the Yang-Mills coupling 𝑔YM. This leads

to an expansion in position-space Feynman diagrams. To first order in the planar limit 𝑁 → ∞,

the fluctuations contribute two terms, see [34, section 6.1]. The first one is

⟨Δ(𝑥)⟩(1),A = 𝑖1⋯𝑖Δ
Δ
∑
𝑚=1

tr [𝜙
cl
𝑖1 ⋯𝜙𝑖𝑚 ⋯𝜙cl𝑖Δ] 

∫ d4𝑦∑
𝑉3
𝑉3(Φ1, Φ2, Φ3) = (𝑥) ,

(2.4.7)

where the sum runs over cubic interaction vertices between the fields and the lines above the

equation denote Wick contractions. Similarly to the mass terms that we saw in (2.2.31), such

vertices arise when expanding the action of = 4 sYM around the background classical solution.

The second term is

⟨Δ(𝑥)⟩(1),B = ∑
𝑚 ,𝑛

𝑖1⋯𝑖𝑚⋯𝑖𝑛⋯𝑖Δ tr [𝜙cl𝑖1 ⋯𝜙𝑖𝑚 ⋯𝜙𝑖𝑛 ⋯𝜙cl𝑖Δ] = (𝑥) . (2.4.8)

These expressions can be evaluated once a perturbative setup consisting of Feynman rules has

been found. For the D3-D5 system this was done in [34], for the two solutions of the D3-D7

system in [5] and [6]. Note that the diagrams in (2.4.7) and (2.4.8) are one-loop diagrams that

contain one extra power of 𝜆 = 𝑁 𝑔2 

YM compared to the classical result (2.4.6).

For general scalar operators there are further corrections to the one-point function due to

renormalization of the operator and corrections to its wave function𝑖1⋯𝑖Δ
. This is also described

in [34, section 6.1]. However, for 1/2-BPS operators that are often considered in practice these

corrections are absent.

Comparing the string and field theory One would like to compare the one-point function

computed on the string theory side to the one computed by the perturbative expansion on 

the field theory side. The supergravity approximation used on the string theory side can be

trusted when the radius of curvature 𝐿 of AdS5 is much bigger than 𝛼 ′
. By the identification of

25



coupling constants in the AdS/CFT dictionary, this is the case for 𝜆 ≫ 1. On the other hand, the

perturbative expansion on the field theory side is valid for 𝜆 ≪ 1.
The idea to connect the two regions is to make use of the additional parameters that appear

as the flux or instanton numbers in the defect CFTs setups. Concretely, in the D3-D5 system

with flux parameter 𝑘 one considers a double-scaling limit first suggested in [45]:

𝜆 ≫ 1, 𝑘 ≫ 1, 

𝜆
𝜋2𝑘2

≪ 1. (2.4.9)

Since 𝜆 ≫ 1, the supergravity approximation is valid. On the other hand, if upon taking

𝑘 ≫ 1 the perturbative expansion on the field theory organizes itself in an expansion with 

effective coupling
𝜆

𝜋2𝑘2 , then perturbation theory is justified. Similarly, for the D3-D7 system

with AdS4 ×𝑆4 probe brane geometry one considers the double-scaling limit

𝜆 ≫ 1, 𝑛 ≫ 1, 

𝜆
𝜋2𝑛2

≪ 1, (2.4.10) 

where the integer 𝑛 is related to the instanton number 𝑑𝐺 by the dimension formula (2.3.9).

In a perturbative computation on the field theory side it is easiest not to compute the

one-point function of the unique chiral primary with the relevant residual R-symmetry, but to

consider the operator

(𝑥) = tr [ 𝑍(𝑥)⋯𝑍(𝑥)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿

] = tr [𝑍(𝑥)𝐿] , (2.4.11)

where 𝑍 is a complex combination of the scalars in = 4 sYM, for example 𝑍 = 𝜙1 + 𝑖 𝜙3.9 To
compare the one-point function of the operator tr [𝑍(𝑥)𝐿] to the one-point function of the chiral 

primary Δ the latter has to be projected onto the former. To this end, tr [𝑍(𝑥)𝐿] is written as a

linear combination of the form

tr [𝑍(𝑥)𝐿] = ∑
𝑎
𝑐𝑎 Δ,𝑎(𝑥) (2.4.12)

for some coefficients 𝑐𝑎. One of the terms in this sum is the unique conformal primary Δ that is

symmetric with respect to the residual R-symmetry and, as remarked earlier, only this operator

has a non-vanishing one-point function. In particular this means that in order to compare the

first order in the double-scaling parameters, we should compare

⟨tr [𝑍(𝑥)𝐿]⟩
(1)

⟨tr [𝑍(𝑥)𝐿]⟩
(0) and

⟨Δ(𝑥)⟩(1)

⟨Δ(𝑥)⟩(0)
. (2.4.13) 

This argument was first used in [34, section 7].

Results We briefly summarize the results about one-point functions that were obtained for the

D3-D5 and D3-D7 systems respectively. For the D3-D5 system the classical one-point function

of the unique chiral primary was computed both in string and field theory in [43] and agreement

9
It is most convenient to choose 𝑍 = 𝜙1 + 𝑖 𝜙3 for the D3-D5 system and 𝑍 = 𝜙5 + 𝑖 𝜙6 for the D3-D7 system with

probe brane geometry AdS4 ×𝑆4. With this choice only one scalar contributes to the classical solution for 𝑍 .
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between both sides was found in the double-scaling (2.4.9). Feynman rules and propagators

for the field theory side were derived in [34] and to first order in the double-scaling parameter

agreement was found between the ratios in (2.4.13).

For both classical solutions of the D3-D7 system, one point functions were computed and

matched between string and field theory in [42]. Perturbative setups for the two solutions

were derived by us in [5] and [6] respectively. In both cases agreement between the one-point 

function ratios (2.4.13) was found to first order in the double-scaling parameter.

The idea to use a double-scaling limit to compare quantities computed at 𝜆 ≫ 1 and 𝜆 ≪ 1
is similar to the construction by Berenstein, Maldacena and Nastase (BMN) in [46]. It is well

known that the BMN expansion does not work to all orders in the double-scaling parameter due

to an order-of-limits problem (see [47, section 4]) and it is conceivable that similar problems

arise in the double-scaling limits (2.4.9) and (2.4.10) at higher order.

Connections to integrability As a closing remark, let us mention that the one-point functions

of field theory operators discussed in this section have interesting connections to integrability.

In particular, the classical one-point functions of certain non-protected scalar operators can be

expressed as overlaps between Bethe eigenstates describing the operator and a fixed “boundary

state”. The overlaps can be expressed in closed form in terms of determinants of Gaudin matrices. 

For the D3-D5 system, these results are due to [48, 49, 50]; a generalization that takes into account

fluctuations and is conjectured by the authors to hold to high orders in 𝜆 was found in [51]. For

the special case 𝑘 = 1 results for operators involving not only scalars can be found in [33]. By

now, all-order in 𝜆 results have been bootstrapped using supersymmetric localization [29] and

boundary integrability [52, 52]. On the string-theory side the integrability properties of this

setup are reflected in certain boundary conditions as recently discussed in [53].

For the D3-D7 system similar results are only known for the solution in which the probe

brane has AdS4 ×𝑆4 geometry that we described in more detail in section 2.3. Early results were

obtained in [54] and a closed overlap formula was presented in [55]. It is known that the D3-D7

system with probe brane geometry AdS4 ×𝑆2 × 𝑆2 is not amenable to the methods used in these

references, see [56].

2.4.2 Wilson lines

Observables that can similarly be computed both in string theory and field theory are expectation

values of field theory Wilson line operators. We will only sketch the idea in this section and

refer to the references at the end of this subsection for more details. For simplicity we consider

only a straight Wilson line parallel to the interface at 𝑥3 = 0 in this subsection.

A Wilson line operator on the field theory side is given by the trace of a path-ordered

exponential,

𝑊(𝛾) = tr [Pexp(∫
𝛾
)] , (2.4.14)

where 𝛾 is a straight path in the (𝑥1, 𝑥2)-plane parameterized by 𝑡 ↦ (𝑡 , 0, 0, 𝑥3),  is the

one-form

 = [𝑖 𝐴0 − 𝜙3 sin(𝜒) − 𝜙6 cos(𝜒)] d𝑡 (2.4.15)
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and 0 ≤ 𝜒 ≤ 𝜋
2 is an angle. The expectation value ⟨𝑊 (𝛾)⟩ can be computed classically by 

inserting the classical solution for the scalar fields into (2.4.15). The first correction to the 

classical expectation value again consists of two terms similar to the correction terms (2.4.7)

and (2.4.8) for the one-point functions. These corrections may be computed using the Feynman

rules of the defect CFTs.

The expectation value ⟨𝑊 (𝛾)⟩ is related to the potential energy 𝑉 (𝑥3) between a particle 

traveling along 𝛾 and the interface at 𝑥3 = 0 by ⟨𝑊 (𝛾)⟩ ≃ exp(−𝑇 𝑉 (𝑥3)). Here 𝑇 is the time 

interval for which the particle is traveling and one has to consider the limit 𝑇 → ∞. The

potential energy may also be computed in string theory by solving a minimal surface problem.

In the present setting, one computes the action for a classical string that extends from the 

field theory Wilson line located on the boundary of AdS5 into the interior. The world-sheet 

of the string has to be such that it ends perpendicularly on the world volume of the probe

brane. As before, the comparison between the string and field theory result is only possible in a

double-scaling limit as shown in (2.4.9) and (2.4.10).

Results For the D3-D5 system, the classical expectation value of𝑊(𝛾) was first computed 

in [45] in the two ways sketched in this section. In the double-scaling limit, agreement was

found between the two computations. In [57], this computation was taken to the next order in

the double-scaling parameter using the perturbative setup established in [34]. Again, agreement

was found between the string and field theory computation. For the D3-D5 system also other

Wilson line configurations have been considered, namely circular Wilson loops in [58, 59] and a

pair of antiparallel Wilson lines in [60].

For both solutions of the D3-D7 system, we computed ⟨𝑊 (𝛾)⟩ to leading and next-to-leading

order in the double-scaling parameter in [7] using the Feynman rules and propagators found

in [5] and [6]. The string and field theory results matched perfectly.

2.5 Summary of own work and outlook

In the previous subsections we have reviewed probe-brane systems in type IIB superstring

theory that give rise to defect versions of = 4 sYM theory under a version of the AdS/CFT

correspondence. The different probe brane models considered are summarized in table 2.2. The

defect conformal field theories are versions of  = 4 sYM in which some of the scalar fields

acquire Lie algebra valued vacuum expectation values in the half space 𝑥3 > 0. The symmetry of 

the vacuum expectation values reflects the geometry of the probe brane on the string theory side.

The “size” of the classical solution constitutes a free parameter of the model and corresponds to

a flux or non-vanishing instanton number on part of the probe brane geometry. Importantly,

the D3-D5 system preserved some amount of supersymmetry, while in the D3-D7 system

supersymmetry was completely broken. We also explained how one-point functions of certain

scalar field theory operators as well as the expectation values of Wilson lines are observables

that can be computed both on the field and on the string theory side of the correspondence. The

comparison of quantities is made possible in a double-scaling limit in which the ratio of the

’t Hooft coupling 𝜆 to the square of the flux or instanton number is held small.

Our own work on this topic during the time of this PhD is related to the D3-D7 system. 

In subsection 2.3 we have described the classical solutions on the field theory side in some
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D3-D5 D3-D7 D3-D7

Classical solution 𝑡𝑖 (eq. (2.2.28)) 𝐺𝑖 (eq. (2.3.13)) 𝑡𝑖 ⊗ 1,1 ⊗ 𝑡𝑖 (eq. (2.3.14)) 

Symmetry of the vevs su(2) so(5) su(2) × su(2)
Probe brane geometry AdS4 ×𝑆2 AdS4 ×𝑆4 AdS4 ×𝑆2 × 𝑆2

Supersymmetry
1
2 -BPS None None 

Parameter 𝑘 𝑛 𝑘1, 𝑘2

Table 2.2: Comparison of probe-brane systems described in sections 2.2 and 2.3

detail, but we have not explained how fluctuations around the classical solution are taken into

account. In particular, we have not described how the expansion of the  = 4 sYM field in 

terms of fuzzy spherical harmonics works concretely. This and subsequent calculations that

check the proposed extension of the AdS/CFT correspondence to defect CFTs are the subject of

the following publications:
10

1. A. Gimenez Grau, C. Kristjansen, M. Volk, and M. Wilhelm, “A Quantum Check of

Non-Supersymmetric AdS/dCFT,” JHEP 01 (2019) 007, arXiv:1810.11463 [hep-th].

In this paper, we set up the perturbative framework for the defect version of  = 4 sYM
theory that is dual to the D3-D7 system in which the D7 brane has geometry AdS4 ×𝑆2 ×𝑆2.
The classical solution for this case is given in equation (2.3.14). We derive the mass

spectrum, the mass eigenstates and the propagators of the theory. We then use those to

compute the first correction to the classical solution and to the one-point function of a

1/2-BPS operator due to quantum fluctuations. The result is compared against a string

theory computation in a double-scaling limit similar to (2.4.9) and agreement is found.

2. A. Gimenez-Grau, C. Kristjansen, M. Volk, and M. Wilhelm, “A quantum frame- 

work for AdS/dCFT through fuzzy spherical harmonics on S
4
,” JHEP 04 (2020) 132,

arXiv:1912.02468 [hep-th].

This paper deals with the field theory dual of the D3-D7 system in which the D7 brane

has geometry AdS4 ×𝑆4 and for which the classical solution on the field theory side was

given in equation (2.3.13). We proceed in analogy to the previous paper in setting up 

the perturbative framework and expand the fields of the defect CFT in fuzzy spherical 

harmonics of 𝑆4. The most complicated part of the paper is the diagonalization of the

mass matrix and the derivation of the propagators which requires the coupling of various

representations of so(5). This step is significantly more involved than in the previous

paper due to the representation theory of so(5). Once the perturbative setup is found, we

compute the first corrections to the classical solution and to the one-point function of a 

1/2-BPS operator. As before we find agreement with string theory in the double-scaling

limit (2.4.10).

10
Note that the first two papers include results that were obtained in a MSc thesis written together with A. Gimenez 

Grau. We include them in the list, because the results were expanded and the papers were published during the time

of the PhD.
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3. S. Bonansea, K. Idiab, C. Kristjansen, and M. Volk, “Wilson lines in AdS/dCFT,” Phys.
Lett. B 806 (2020) 135520, arXiv:2004.01693 [hep-th].

In this paper, we compute the expectation value of a Wilson line operator inserted in

either of the two field theory duals of the D3-D7 system. The computation is made feasible

by the propagators and corrections to the classical solutions obtained in the previous 

two papers. When comparing to a string theory computation as briefly explained in

section 2.4.2, we find agreement between the two sides for both defect CFTs.

The propagators for the defect versions of  = 4 sYM theory obtained in these papers

have opened the door for further perturbative computations. Such perturbative computations

are an important check and input for predictions about physical observables coming from 

integrability, supersymmetric localization (in the case of the supersymmetric D3-D5 setup, 

see for example [29]) or as input for the boundary conformal bootstrap program (see for

example [61]). Due to the holographic nature of the defect CFTs one may also expect interesting 

connections to string theory. Naturally, the starting point for further studies is the D3-D5 system 

which is technically much simpler due to the structure of the classical solution and the additional

supersymmetry.

In this setup, we have recently started to compute two-point correlation functions of the

stress-energy-momentum tensor. An interesting feature of these correlators is that the operators

may either be inserted on the same side of the interface at 𝑥3 = 0 or on different sides. While

the space-time dependence of the correlators may be fixed using symmetry arguments, the 

coefficients of the various tensor structures that arise are interesting data that describes the

interaction of the bulk theory with the defect. The presence of the interface implies for example

that the conservation of the stress-energy-momentum tensor is modified by an operator called

the displacement operator that is localized to 𝑥3 = 0. Computing correlation functions involving

this new operator will allow for tests of various general results about defect CFTs (see for

example [62, 63]). With the perturbative framework at hand we can even expect to be able to

compute these correlators beyond leading order.

Another exciting application of the perturbative computations of one-point functions in 

the D3-D7 system is higher-loop integrability. It was first found in the D3-D5 system that

the one-point functions of scalar operators may be expressed as overlaps of Bethe eigenstates

and a boundary state [48, 49, 50]. Starting from the one-loop correction to the one-point

functions computed in [34], the authors of [51] then conjectured and checked a higher-order

generalization of these overlap formulas and all-loop versions were subsequently bootstrapped

in [29, 52, 64]. Except for the one-loop corrections to the one-point functions, a key input was a

closed expression for the overlaps in terms of determinants of Gaudin matrices. Due to [55]

such a formula is now available for the so(5)-symmetric version of the D3-D7 setup. One might

hope that it can similarly be generalized beyond the leading order.

Another possible application of the explicitly computed one-point functions is as input for

bootstrap methods. In [61] boundary conformal bootstrap as applied for two-point functions in

the D3-D5 system and would could imagine a similar program for the D3-D7 setup.
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Chapter 3

Aspects of Feynman integrals

The expansion of a scattering amplitude in quantum field theory in terms of a coupling constant 

can be organized diagrammatically by drawing graphs with a fixed set of external points. In this

expansion, the order of the coupling corresponds to the number of closed loops in the graph.

Following a set of rules due to Feynman, one can associate a value to each diagram. The value

of a diagram is a function on the space of external kinematic data that describes the scattering

process, for example the momenta and masses of the particles that are involved.

To obtain the full scattering amplitude for a given process, one is instructed to draw all

possible diagrams compatible with the given external data, i.e. the number and species of the

involved particles, and compute the value of each diagram. If one is interested in the result up

to a fixed order in the coupling constant, all diagrams up to a fixed number of loops have to be

considered. It is well known that this leads to an explosion in the number of graphs for processes

with a large number of external particles or when going to higher order in the expansion in 

the coupling. A lot of research has been devoted to bypassing this issue and nowadays there

are many methods that construct the scattering amplitude in a more direct or more economical

way, for example unitarity methods [8, 9], recursion relations [10] or on-shell methods [12].

However, one problem that remains challenging is the integration over the internal four-

momentum that is associated to each loop in a Feynman diagram. These integrations are difficult

even numerically and in most cases the usual analytic functions known from the mathematics

literature are not enough to express the function that a Feynman diagram defines on the space

of external kinematic data.

The integrals and the functions that arise from them are the topic of this chapter. We begin

in section 3.1 with a reminder about integration parameters that are often used to transform 

the momentum-space integrals into a simpler form. We then review the work by Landau on

the singularities of integrals in section 3.2. In section 3.3, we review the algorithm that may be

used to express certain Feynman integrals in terms of a class of functions known as multiple

polylogarithms. There we also encounter obstructions to the integration algorithm and describe

how they can sometimes be overcome. In section 3.4, we discuss Feynman integrals that cannot

be expressed in terms of multiple polylogarithms due a non-trivial complex geometry that can

be associated to them. In section 3.5 we summarize our own work on this topic.

3.1 Reminder about integration parameters

We consider a scalar Feynman diagram 𝐺 in momentum space with 𝓁 loops, 𝑛 internal edges and

𝑚 external momenta in 𝑑 dimensions of spacetime. To each loop in the diagram we associate a

𝑑-dimensional momentum 𝑘𝑗 and to each internal edge a propagator of the form (𝑞2𝑖 − 𝑚2
𝑖 )

−1
.
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Here, each momentum 𝑞𝑖 is a linear combination of the loop and the external momenta 𝑝𝑗 ,
𝑗 ∈ {1, … , 𝑚}, with coefficients drawn from the set {−1, 0, 1}. The value of a diagram is a

function of the 𝑚 external momenta 𝑝𝑗 and the internal masses 𝑚2
𝑖 , 𝑖 ∈ {1, … , 𝑛} defined by the

integral

𝐼𝐺 = ∫ (

𝓁
∏
𝑗=1

d𝑑𝑘𝑗)

𝑛
∏
𝑖=1

1
𝑞2𝑖 − 𝑚2

𝑖
. (3.1.1)

Note that due to overall momentum conservation only 𝑚 − 1 of the external momenta are inde-

pendent. We assume that the integral (3.1.1) is finite, possibly after applying some regularization

procedure.

To integrate over the internal momenta one introduces an integration parameter 𝑥𝑖 for each

edge in the graph and writes

𝑛
∏
𝑖=1

1
𝑞2𝑖 − 𝑚2

𝑖
= ∫

∞ 

0 (

𝑛
∏
𝑗=1

d𝑥𝑗)
𝛿
(
1 −

𝑛
∑
𝑗=1

𝑥𝑗)
(𝑛 − 1)!

∑𝑛 

𝑖=1 𝑥𝑖 (𝑞2𝑖 − 𝑚2
𝑖 )

(3.1.2)

according to the well-known identity attributed to Feynman [65].
1
The integral (3.1.1) can then

be brought into the following form (see for example [67, chapter 1.5]):

𝐼𝐺 = 𝜋 𝓁𝑑/2Γ(𝜈 −
𝓁𝑑
2 ) 

∫
∞ 

0 (

𝑛
∏
𝑗=1

d𝑥𝑗)
𝛿
(
1 −

𝑛
∑
𝑗=1

𝑥𝑗)
 𝑛−(𝓁+1)𝑑/2

𝑛−𝓁𝑑/2 . (3.1.3)

Here  and  are polynomials
2
in 𝑥1, … , 𝑥𝑛 with coefficients that are Lorentz-invariant com-

binations of the external momenta as well as the masses. This expression can also easily be

generalized to the case where the propagators in the momentum space integral (3.1.1) are raised 

to some power. One method to compute the polynomials and  is due to Chisholm [68]: One

expresses the sum in on the right-hand side of (3.1.2) as

𝑛
∑
𝑖=1

𝑥𝑖 (𝑞2𝑖 − 𝑚
2
𝑖 ) =

𝓁
∑
𝑖 ,𝑗=1

𝐴𝑖 𝑗 (𝑘𝑖 ⋅ 𝑘𝑗) − 2
𝓁
∑
𝑖=1

𝑚−1
∑
𝑎=1

𝐵𝑖 𝑎 (𝑘𝑖 ⋅ 𝑝𝑎) + 𝐶 . (3.1.4)

Here 𝐴𝑖 𝑗 are the components of an 𝓁 × 𝓁 matrix 𝐴 and similarly 𝐵𝑖 𝑎 are the components of 

an 𝓁 × (𝑚 − 1) matrix. The quantities 𝐴, 𝐵 and 𝐶 are linear combinations of the integration

parameters 𝑥𝑖 and the polynomials  and  can be computed from them by

 = det(𝐴),  = det(𝐴)
[
𝐶 −

𝑚−1
∑
𝑎 ,𝑏=1

(𝐵⊺𝐴−1𝐵)𝑎 𝑏 (𝑝𝑎 ⋅ 𝑝𝑏)]
. (3.1.5)

It follows that  and  are homogeneous in the integration parameters of degrees deg( ) = 𝓁
and deg( ) = 𝓁 + 1. There exists also a more graph-theoretic way to compute  and  from

spanning trees and spanning two-forests of a graph. This method may be found in [69, chapter

6.2.3] and is reviewed in [70].

1
In the paper [65] Feynman writes that the identity was suggested by some work of Schwinger, maybe in [66].

2
The polynomials  and  have various names, for example first and second graph polynomial or first and

second Symanzik polynomial.
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The main point is that in the form (3.1.3) any Feynman integral is expressed as an integral of

a rational function over a relatively simple domain. This makes various tasks such as analyzing

its singularities or expressing the integral in terms of known functions easier.
3
The question of

singularities is addressed in subsection 3.2 below. With regard to the second point, the integrals

in (3.1.3) are amenable to direct integration in terms of a class of functions known as multiple

polylogarithms which we will review in subsection 3.3. Subsection 3.4 deals with Feynman

integrals that cannot be expressed in terms of multiple polylogarithms.

3.2 Singularities of Feynman integrals

The Feynman integral 𝐼𝐺 is a function of Lorentz-invariant combinations of the external momenta

and the internal masses. We refer to this data collectively as the kinematic data and from now

on denote it simply by 𝐳. For special kinematic values 𝐳0 the function 𝐼𝐺 has singularities and

branch cuts. In this section we review the conditions given by Landau in [13] that determine

the locations of the singular points as well as the nature of the singularity. We will not follow

the original paper by Landau, but instead use the approach by Polkinghorne and Screaton found

in [73, 74].

Landau equations It is convenient to consider the complexification of 𝐼𝐺 and to think of the

Feynman integral as an integral along some contour in the (higher-dimensional) complex plane.

Considering one integration at a time, the integral over one of the Feynman parameters, say

𝑥𝑗 , is a contour integral along some contour 𝑗 . The integrand for the integration over 𝑥𝑗 can
have singularities 𝑢𝑘 at various locations in the complex 𝑥𝑗-plane. The external data 𝐳 for the

𝑥𝑗-integration consists of the external kinematic data and possibly further integration variables

𝑥𝑖 with 𝑖 ≠ 𝑗. We assume that there is a region 𝑍 such that for every 𝐳 ∈ 𝑍 , the poles 𝑢𝑘(𝐳)
do not lie on the contour 𝑗 . As the external data 𝐳 varies, each singularity 𝑢𝑘(𝐳) moves along

a path in the 𝑥𝑗-plane. When 𝐳 leaves the region 𝑍 , a singularity 𝑢𝑘(𝐳) can cross the contour

𝑗 and the contour has to be deformed in order avoid a singularity. In this way we obtain the

analytic continuation of the integral to values 𝐳 that are outside the region 𝑍 . The value of the

integral 𝐼𝐺 may depend on the way the contour was deformed which is reflected in the fact that

Feynman integrals are in general multi-valued functions.

It is crucial to be able to deform the integration contour, otherwise the integral is divergent.

It turns out that there are two situations in which the contour deformation fails:

1. For some value 𝐳0 a singularity 𝑢𝑘 passes through an end-point of 𝑗 . Since the end points 

of 𝑗 are held fixed, the contour cannot be deformed to avoid the singularity. This situation

is called an end-point singularity.

2. Two singularities 𝑢𝑘 and 𝑢𝑙 approach  from different sides and coincide for some value

𝐳0. In this case the contour is trapped between 𝑢𝑘 and 𝑢𝑙 and cannot be deformed to avoid

the singularity. This is called a pinch singularity.

3
It also allows one to make contact with the math literature; for example it has been shown in [71] that Feynman

integrals are “periods” as defined by Kontsevich and Zagier in [72].
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Note that the second case includes the situation where a singularity moves to infinity. The

points 𝐳0 where one of those two cases occurs are points where the function 𝐼𝐺(𝐳) has a singular

behavior.

This procedure can be iterated to be applicable to the full Feynman integral 𝐼𝐺 (see for 

example [73, section 4]) and it turns out that for a singular behavior one needs that in each

integration there is either a pinch or an end-point singularity. From this one can derive a set

of equations that (in principle) determine the locations of the points 𝐳0 where 𝐼𝐺 has such a

behavior. These equations are called Landau equations and were first stated by Landau in [13].

Formulated in terms of the polynomial  , the conditions are

 = 0 (3.2.1) 

as well as 

either 𝑥𝑖 = 0 or

𝜕
𝜕 𝑥𝑖

= 0 for each 𝑖 ∈ {1, … , 𝑛}. (3.2.2)

If for some external data 𝐳0, the equations (3.2.1) and (3.2.2) admit a non-trivial solution for the 

integration parameters 𝑥𝑖 , then the integral 𝐼𝐺 has a singular behavior at 𝐳0.4 Note that since 
is homogeneous in the 𝑥𝑖 , the second equation (3.2.2) implies the first equation (3.2.1) by Euler’s

homogeneous function theorem.

Nature of the singularities Landau’s paper [13] also derives the asymptotic behavior of the

Feynman integral 𝐼𝐺 near a singular point 𝐳0. For the derivation, one considers the integral 𝐼𝐺
and eliminates one of the integration parameters using the 𝛿-function, say 𝑥𝑛. We denote by  ′

the polynomial obtained by  in this way, i.e.

 ′(𝑥1, … , 𝑥𝑛−1) =  (𝑥1, … , 𝑥𝑛−1, 1 − 𝑥1 − ⋯ − 𝑥𝑛−1). (3.2.3)

We consider the situation with 𝜈 end-point and 𝑛 − 𝜈 − 1 pinch singularities occurring among

the remaining 𝑛 − 1 integrations. After relabeling the integration parameters 𝑥𝑖 if necessary, the

Landau equations (3.2.2) then take the form

𝜕 ′

𝜕 𝑥𝑖
= 0 for 𝑖 ∈ {1, … , 𝑛 − 𝜈 − 1}, 

𝑥𝑖 = 0 for 𝑖 ∈ {𝑛 − 𝜈 , 𝑛 − 𝜈 + 1, … , 𝑛 − 1}.
(3.2.4)

We denote by 𝐳0 some point in the space of external kinematic data, such that the equa-

tions (3.2.4) have a solution and denote the solution by 𝑥 𝑖 . To compute an approximation to the

integral 𝐼𝐺 in the neighborhood of 𝐳0, one can use the method of steepest descent. To this end,

one expands the polynomial  ′
in a Taylor series in 𝑥𝑖 − 𝑥 𝑖 to lowest order, which gives

 ′ =  ′ 

0 +
𝑛−1
∑
𝑖=𝑛−𝜈

(𝑥𝑖 − 𝑥 𝑖)
𝜕 ′

𝜕 𝑥𝑖

|||||𝑥𝑖=𝑥 𝑖
+ 

1
2

𝑛−𝜈−1
∑
𝑖 ,𝑗=1

(𝑥𝑖 − 𝑥 𝑖) (𝑥𝑗 − 𝑥 𝑗)
𝜕2 ′

𝜕 𝑥𝑖𝜕 𝑥𝑗

|||||𝑥𝑗=𝑥 𝑗 , 

𝑥𝑘=𝑥𝑘

+  ((𝑥𝑖 − 𝑥 𝑖)3) .

(3.2.5)

4
To be precise, the condition

𝜕
𝜕 𝑥𝑖

= 0 is a necessary, but not a sufficient condition for a pinch singularity to appear

on the physical sheet of the function 𝐼𝐺 . It tells us however, that on some sheet of 𝐼𝐺 that we may access by analytic

continuation, a singularity can occur. Note also that in the discussion of the singularities only the denominator of

the integral (3.1.3) enters. It is also possible that a singularity does not occur because it is canceled by the numerator

in the integral.
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Here  ′
0 is  ′

evaluated at the solution 𝑥 𝑖 and 𝐳0. Roughly speaking the idea is that the biggest

contribution to the integral 𝐼𝐺 comes from the region where 𝑥𝑖 − 𝑥 𝑖 is small, i.e. where the

expansion (3.2.5) is a good approximation. Using the method of steepest descend one obtains

that near 𝐳0, the integral 𝐼𝐺 behaves as

𝐼𝐺 ∼ 

1
√
𝐷 ( ′ 

0)
−𝛾

(

𝑛−1
∏
𝑖=𝑛−𝜈

𝜕 ′

𝜕 𝑥𝑖

|||||𝑥𝑖=𝑥 𝑖)

−1

, (3.2.6)

up to numerical factors. In the asymptotic expression (3.2.6), 𝐷 is the Hessian determinant of

the polynomial  ′
,

𝐷 = det(
𝜕2 ′

𝜕 𝑥𝑖𝜕 𝑥𝑗) 

|||||𝑥𝑗=𝑥 𝑗 , 

𝑥𝑘=𝑥𝑘

, (3.2.7) 

and the exponent 𝛾 is given by

𝛾 = 

1
2 

(𝑛 − 𝜈 − 𝑑𝓁 + 1) . (3.2.8)

Importantly, the asymptotic expansion (3.2.6) is only valid if 𝛾 > 0 or if 𝛾 is half-integer. If

𝛾 is an integer and 𝛾 ≤ 0, one can replace  ′
by  ′ + 𝑡 and differentiate the integral 𝐼𝐺 with

respect to 𝑡 . This increases the exponent of the denominator of the Feynman integral so that 

the asymptotic expansion (3.2.6) becomes valid. Since the exponent must be at least one, one

has to take |𝛾 | + 1 derivatives and the asymptotic expansion contains a factor ( ′
0 + 𝑡)

−1
. The

result is then integrated |𝛾 | + 1 times with respect to 𝑡 . Thus, for integer 𝛾 ≤ 0, the Feynman

integral 𝐼𝐺 behaves as

 |𝛾 |
0 log (0) (3.2.9) 

near a Landau singularity 𝐳0. For 𝛾 > 0 and half-integer 𝛾 the behavior according to (3.2.6) is

−𝛾
0 , (3.2.10) 

as the derivatives and the Hessian occurring in (3.2.6) are assumed to be non-singular.

The integral (3.1.3) can be a very complicated function of 𝐳, yet the behavior near a Landau

singularity is remarkably simple. Note in particular that the behavior (3.2.9) only includes a

single power of the logarithm and no terms of the form log𝑎(0) for some 𝑎 > 1.5 If we express

a Feynman integral as a combination special functions, the location of the Landau singularities

should become manifest and the behaviour should be as dictated by equations (3.2.9) and (3.2.10).

This poses constraints on the classes of functions that may be considered to express a Feynman

integral in closed form.

3.3 Direct integration

In some cases, a Feynman integral 𝐼𝐺 can be expressed in terms of special functions. In this

section, we review the class of functions known as multiple polylogarithms and in particular

5
I would like to thank Cristian Vergu for pointing this out to me.
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the algorithm that expresses a Feynman integral 𝐼𝐺 in terms of these functions. The strategy 

of starting with a parameterization of the integral such as the one in equation (3.1.3) and 

transforming the integrand until it matches the definition of some special function is called

direct integration. This is not the only strategy that one can employ to express Feynman integrals

in closed form and another popular method is to find a differential equation that is satisfied by

the integral.

3.3.1 Direct integration in terms of multiple polylogarithms

In [14] Goncharov defined multiple polylogarithms (MPLs) by a power series as a generalization

of the classical polylogarithms Li𝑛(𝑥). The MPLs can also be expressed as an iterated integral,

which is more common in the physics literature as it connects more directly to Feynman

integrals such as the one shown in equation (3.1.3). As an iterated the integral, MPLs are defined

recursively by

𝐺(𝑎1, … , 𝑎𝑛; 𝑥) = ∫
𝑥

0

d𝑡
𝑡 − 𝑎1

𝐺(𝑎2, … , 𝑎𝑛; 𝑡), 𝐺(𝑥) = 1, (3.3.1)

where 𝑎1, … , 𝑎𝑛 ∈ ℂ. In the following we use the notation 𝐚 = (𝑎1, … , 𝑎𝑛), i.e. 𝐺(𝐚; 𝑥) ≡
𝐺(𝑎1, … , 𝑎𝑛; 𝑥) and write |𝐚| = 𝑛 for the weight of 𝐺(𝐚; 𝑥) which is equal to the number of 

entries in 𝐚. In this section we assume some familiarity with multiple polylogarithms and

iterated integrals. Additional details and background may be found in appendix B. 

We wish to compute the definite integral

𝐼 = ∫
∞ 

0
d𝑥1⋯d𝑥𝑛 𝑓1(𝑥1, … , 𝑥𝑛), (3.3.2)

where 𝑓1(𝑥1, … , 𝑥𝑛) is a rational function of the integration parameters 𝑥1, … , 𝑥𝑛. The integral 

will generally again be a function of the external kinematic data 𝐳 such as Lorentz-invariant 

combinations of the momenta or masses. In this section we are mostly interested in the inte-

gration algorithm that allows us to express the integral in terms of MPLs defined in (3.3.1). We

therefore consider the physical parameters 𝐳 to be fixed and generic and hide the dependence of

all quantities on them in this section.

Not every rational function 𝑓1 allows the integral (3.3.2) to be computed in terms of MPLs.

We will now briefly review an algorithm that can be used for the computation assuming that this

is possible and afterwards state a sufficient (but not necessary) criterion for it known as linear
reducibility. The algorithm is due to Brown and was presented in [75] building on top of earlier

work on period integrals on the moduli space of curves of genus zero [76]. The algorithm was

improved and implemented by Panzer in [77] in the Maple package HyperInt. A description

from a slightly different point of view may also be found in [78, appendix D].

Integration algorithm As we will see below, the algorithm depends crucially on being able

to find an order of the integration parameters in which the integrand is linearly reducible. We

assume that such an order has been found and that after relabeling if necessary the parameters

are to be integrated in the order (𝑥1, … , 𝑥𝑛). The idea is to integrate one variable at a time starting

with 𝑥1. This produces a sequence of partial integrals given by

𝑓𝑗+1(𝑥𝑗+1, … , 𝑥𝑛) = ∫
∞ 

0
d𝑥𝑗 𝑓𝑗(𝑥𝑗 , … , 𝑥𝑛), 𝑗 ∈ {1, … , 𝑛}. (3.3.3)
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After 𝑛 integrations we obtain 𝐼 = 𝑓𝑛+1 as the final result. We assume that each step of the

integration, the integrand is of the form
6

𝑓𝑗(𝑥𝑗 , … , 𝑥𝑛) = 𝑅𝑗(𝑥𝑗 , … , 𝑥𝑛) 𝐺(𝐚𝑗 ; 𝑥𝑗)𝐺(𝐚𝑗+1; 𝑥𝑗+1) ⋯𝐺(𝐚𝑛; 𝑥𝑛), (3.3.4) 

where each 𝐚𝑗 depends only on those integration parameters with index greater than 𝑗,

𝐚𝑗 = 𝐚𝑗(𝑥𝑗+1, … , 𝑥𝑛). (3.3.5)

The function 𝑅𝑗(𝑥𝑗 , … , 𝑥𝑛) in (3.3.4) is a rational function in the remaining integration parameters.

The integration over a single parameter 𝑥𝑗 consists of three steps:

1. Construction of a primitive. As a function of 𝑥𝑗 , the rational function 𝑅𝑗 has poles 

at locations that depend on the integration variables 𝑥𝑗+1, … , 𝑥𝑛 with higher index. We 

denote the set of poles of 𝑅𝑗 by Σ𝑗 . By decomposing 𝑅𝑗 into partial fractions, it may be

written as

𝑅𝑗(𝑥𝑗 , … , 𝑥𝑛) = ∑
𝑎∈Σ𝑗

∑
𝑛≥0

𝑄𝑎 ,𝑛

(𝑥𝑗 − 𝑎)𝑛
+∑
𝑛≥0

𝑄𝑛𝑥𝑛 

𝑗 , (3.3.6)

where 𝑄𝑎 ,𝑛, 𝑄𝑛 and 𝑎 are independent of 𝑥𝑗 . It is important to realize that in order to

apply the recursive definition (3.3.1) of the MPLs, the integration variable 𝑥𝑗 has to appear

linearly in the denominators of this decomposition. Once the decomposition (3.3.6) has

been computed, a primitive 𝐹𝑗 for the integrand (3.3.4) with respect to 𝑥𝑗 is found using

∫
d𝑥𝑗
𝑥𝑗 − 𝑎 

𝐺(𝐚𝑗 ; 𝑥𝑗) = 𝐺(𝑎 , 𝐚𝑗 ; 𝑥𝑗), (3.3.7) 

together with the integration by parts identities

∫
d𝑥𝑗

(𝑥𝑗 − 𝑎)𝑛
𝐺(𝐚𝑗 ; 𝑥𝑗) = −

𝐺(𝐚𝑗 ; 𝑥𝑗)
(𝑛 − 1)(𝑥𝑗 − 𝑎)𝑛−1

+ 

1
𝑛 − 1 ∫

d𝑥𝑗
(𝑥𝑗 − 𝑎)𝑛−1

𝜕
𝜕 𝑥𝑗

𝐺(𝐚𝑗 ; 𝑥𝑗), 𝑛 > 1,

∫ d𝑥𝑗 𝑥𝑛 

𝑗 𝐺(𝐚𝑗 ; 𝑥𝑗) =
𝑥𝑛+1𝑗

𝑛 + 1
𝐺(𝐚𝑗 ; 𝑥𝑗) − 

1
𝑛 + 1 ∫

d𝑥𝑗 𝑥𝑛+1𝑗
𝜕
𝜕 𝑥𝑗

𝐺(𝐚𝑗 ; 𝑥𝑗), 𝑛 ≥ 0.

(3.3.8)

Note that the derivative of 𝐺(𝐚𝑗 ; 𝑥𝑗) appearing on the right-hand side is an MPL of lower

weight, so these identities can be applied recursively.

2. Evaluate the definite integral. Take the limit of the primitive 𝐹𝑗 as 𝑥𝑗 → ∞ and 𝑥𝑗 → 0.
In this way we obtain a function 𝑓𝑗+1(𝑥𝑗+1, … , 𝑥𝑛) of the remaining integration parameters,

𝑓𝑗+1(𝑥𝑗+1, … , 𝑥𝑛) = Reg
𝑥𝑗→∞

𝐹 (𝑥𝑗 , … , 𝑥𝑛) − Reg
𝑥𝑗→0

𝐹 (𝑥𝑗 , … , 𝑥𝑛). (3.3.9)

The limits are computed using the regularized limits introduced in appendix B in equa-

tion (B.1.16).

6
Note that the integrand in the starting point (3.3.2) is of this form, because the MPLs on the right-hand side can

be identically one since 𝐺(𝑥) = 1.
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3. Ensure the form (3.3.4). Whenever an MPL of higher weight is created in (3.3.7), the

new argument 𝑎 will generally depend on 𝑥𝑗+1. Therefore the function 𝑓𝑗+1 is not of the

form (3.3.4) and cannot serve as the starting point for the next iteration of the integration

algorithm.

Concretely, the problem is that the primitive 𝐹𝑗 contains MPLs of the form 𝐺(𝐚̃; 𝑥𝑗), where

𝐚̃ depends on 𝑥𝑗+1. It turns out (see [77, lemma 2.7]) that if the dependence on 𝑥𝑗+1 is
rational, one can find a set of other MPLs with arguments 𝐚 that are independent of 𝑥𝑗+1
such that

Reg
𝑥𝑗→∞

𝐺(𝐚̃; 𝑥𝑗) = ∑
𝐚
𝐺(𝐚; 𝑥𝑗+1) Reg

𝑥𝑗+1→0
Reg
𝑥𝑗→∞

𝐺(𝐛̃𝐚; 𝑥𝑗). (3.3.10)

Here the arguments 𝐛̃𝐚 depend on 𝑥𝑗+1, but since 𝑥𝑗+1 is taken to zero on the right-hand side,

the end result is a linear combination of MPLs 𝐺(𝐚; 𝑥𝑗+1) with arguments 𝐚 independent
of 𝑥𝑗+1. We review this procedure in appendix B; here we only note that crucially the 

transformation requires a factorization of the 𝑥𝑗+1-dependent entries of 𝐚̃ into linear
factors,

𝑎̃𝑚 − 𝑎̃𝑛 = ∏
𝛼

(𝑥𝑗+1 − 𝛼)
𝑛𝛼 , 1 ≤ 𝑛 < 𝑚 ≤ |𝐚̃|, 𝑛𝛼 ∈ ℤ. (3.3.11)

This procedure almost brings the function 𝑓𝑗+1 into the form in (3.3.4), but recall that the

original integrand (3.3.4) had and additional factor 𝐺(𝐚𝑗+1, 𝑥𝑗+1) that is also an MPL in 𝑥𝑗+1. 

The products of the form 𝐺(𝐚; 𝑥𝑗+1)𝐺(𝐚𝑗+1; 𝑥𝑗+1)may be expanded into a linear combination

of 𝐺-functions evaluated at 𝑥𝑗+1 using the shuffle relation (B.1.13). In this way we obtain

a function 𝑓𝑗+1(𝑥𝑗+1, … , 𝑥𝑛) that is of the form (3.3.4) and can serve as the starting point for

the integration in the next variable 𝑥𝑗+1.

Note that at two steps in the algorithm it is necessary to decompose a polynomial into linear

factors: in the partial fraction decomposition (3.3.6) and in the factorization of the integration

parameter dependent arguments (3.3.11). This factorization is always possible in an appropriate

domain, for example the algebraic closure of the field of rational functions in the remaining

variables. However, it may not be possible rationally: The roots 𝑎 in the decomposition (3.3.6)

may contain square or higher algebraic roots of the subsequent integration variables. In this case

the third step fails. Similarly, the roots 𝛼 in the factorization (3.3.11) may depend algebraically

on the remaining variables. In both cases the integral 𝑓𝑗+1 can not be brought back into the 

form (3.3.4) required for the next iteration of the algorithm. We will discuss the obstructions

due to algebraic roots in more detail in subsection 3.3.2 below.

Linear reducibility If there exists an order of the integration parameters 𝑥1, … , 𝑥𝑛 such that

at every iteration of the integration algorithm the linear factors can be computed without intro-

ducing an algebraic dependence on the remaining integration parameters, then the integrand

𝑓1(𝑥1, … , 𝑥𝑛) in (3.3.2) is called linearly reducible. There are polynomial reduction algorithms 

that can decide in advance if a given integrand is linearly reducible without having to try all

permutations of 𝑥1, … , 𝑥𝑛.

38



The idea of these reduction algorithms is to keep track of the singularities of the integrands

in each iteration of the algorithm, i.e. of the poles of any rational parts as well as arguments 

of the polylogarithms. To demonstrate the idea, we consider the integration of a single MPL

multiplied with a simple rational function,

∫ d𝑥
1

(𝑓0 + 𝑓1𝑥)(𝑔0 + 𝑔1𝑥)
𝐺(𝐚; 𝑥) = (

1
𝑓1𝑔0 − 𝑓0𝑔1) 

∫ d𝑥 (
𝑓1

𝑓0 + 𝑓1𝑥
−

𝑔1
𝑔0 + 𝑔1𝑥 )

𝐺(𝐚; 𝑥).

(3.3.12)

Here we have decomposed the rational part of the integrand into partial fractions as in (3.3.6).

The original integrand has poles at 𝑥 = − 𝑓0
𝑓1 and 𝑥 = − 𝑔0

𝑔1 . These ratios end up as arguments to a

new MPL after integrating over 𝑥 . If we want to be able to continue with another integration,

we must get rid of the dependence on the next integration variable as explained in step three

above. The factorization (3.3.11) certainly succeeds rationally if 𝑓0, 𝑓1, 𝑔0 and 𝑔1 are linear in the

next variable. Moreover, in the next step we also need the prefactor (𝑓1𝑔0 − 𝑓0𝑔1)−1 on the right

hand side of (3.3.12) to factor linearly.

The simple reduction algorithm presented in [75, section 4.1] formalizes this observation:

We begin by defining a set 𝑆 = irre d(𝑓1) as all the irreducible factors contained in the integrand

𝑓1. If all polynomials in 𝑆 are linear in some integration variable 𝑥𝑖 , then we write each of them

as 𝑓 = 𝑓0 + 𝑓1𝑥𝑖 . We then define the reduction of 𝑆 with respect to 𝑥𝑖 to be the set

𝑆(𝑖) = irre d ({𝑓0, 𝑓1 ∶ 𝑓 ∈ 𝑆} ∪ {𝑓1𝑔0 − 𝑓0𝑔1 ∶ 𝑓 , 𝑔 ∈ 𝑆}) . (3.3.13)

The elements of 𝑆(𝑖) are polynomials in the variables that remain, i.e. 𝑥𝑗 for 𝑗 ≠ 𝑖. If there is a 

variable 𝑥𝑘 in which all the polynomials in 𝑆(𝑖) are linear, we can iterate this procedure and 

define 𝑆(𝑖 ,𝑘) as the reduction of 𝑆𝑖 with respect to 𝑥𝑘 . If we can continue in this way until we

have eliminated all variables and found the set 𝑆(𝑖1,…,𝑖𝑛), then 𝑆 and the integrand 𝑓1 are called

simply linearly reducible.

An improvement of this algorithm is presented in [75, section 4.2] as Fubini reduction based

on the following observation: If both 𝑆(𝑖 ,𝑗) and 𝑆(𝑗 ,𝑖) exist, then the integration orders (𝑥𝑖 , 𝑥𝑗)
and (𝑥𝑗 , 𝑥𝑖) both lead to an expression in terms of multiple polylogarithms and are therefore

admissible. In this case, Fubini’s theorem implies that the result of both integrations also has to

be the same and an improved upper bound for the set of singularities after integrating over 𝑥𝑖
and 𝑥𝑗 is the intersection 𝑆(𝑖 ,𝑗) ∩ 𝑆(𝑗 ,𝑖). This procedure may again be iterated and if one manages

to produce a sequence of polynomial sets such that all variables are eliminated, then the set 𝑆 is

Fubini linearly reducible.

In practice many of the possible singularities computed by either Fubini or simple reduction

do not show up. One can give a criterion for when for two polynomials 𝑓 , 𝑔 ∈ one has to to add

the resultant 𝑓1𝑔0 − 𝑓0𝑔1 during the reduction step shown in (3.3.13). This was first done in [79,

section 6.6] and is elaborated on in [80, section 3.6.4]. A pair (𝑓 , 𝑔) of polynomials that has to be

considered by this criterion is called compatible. The compatibility can be modeled as a graph

whose vertices are polynomials and in which two polynomials are connected by an edge if they

are compatible. From these considerations one obtains a significantly more powerful reduction

algorithm known as compatibility graph reduction that computes a much better approximation

to the singularities of the integral.
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Linear reducibility is a sufficient criterion for the integration of 𝑓1 to succeed in terms of

multiple polylogarithms, but it is not necessary. In particular, even if no order of the integration 

parameters 𝑥1, … , 𝑥𝑛 is found in which the integrand 𝑓1 is linearly reducible, a change of variables

might bring 𝑓1 into a form in which such an order can be found. For a review of the different

reduction algorithms mentioned briefly here we also refer to the thesis [80, sections 3.6.3, 3.6.4]

in addition to the original papers [75, 79].

Fibration bases Multiple polylogarithms satisfy many identities, for example shuffle relations

which are reviewed in appendix B. In order to simplify or even just compare expressions it is

useful to be able to write a combination of polylogarithms in a chosen basis of functions. It

turns out that the solution to this problem is essentially again to bring a given polylogarithm

into the form (3.3.4), see [75, section 5].

More concretely, let us assume that the integration of the integral 𝐼 in (3.3.2) succeeded in

terms of polylogarithms. If we denote the kinematic variables on which the integral depends by

𝐳 = (𝑧1, … , 𝑧𝑘), then after using the shuffle relations if necessary the integral is of the form

𝐼 (𝑧1, … , 𝑧𝑘) = lim
𝑥→∞

∑
𝐚̃
𝑐𝐚̃ 𝐺(𝐚̃; 𝑥). (3.3.14)

Here the arguments 𝐚̃ as well as the coefficients 𝑐𝐚̃ depend on 𝑧1, … , 𝑧𝑘 and we assume that this

dependence is rational in both cases. We can then follow the same procedure as in step three of

the algorithm above (see also appendix B for more details) and try to rewrite this function in a

form as in equation (3.3.4),

𝐼 (𝑧1, … , 𝑧𝑘) = ∑
(𝑖1,…,𝑖𝑘 )

𝑐(𝑖1,…,𝑖𝑘 )𝐺(𝐚1,𝑖1 ; 𝑧1)𝐺(𝐚2,𝑖2 ; 𝑧2) ⋯𝐺(𝐚𝑘;𝑖𝑘 ; 𝑧𝑘), (3.3.15)

where all the 𝐚1,𝑖1 are independent of 𝑧1, the 𝐚2,𝑖2 are independent of 𝑧1 and 𝑧2 and so on as in (3.3.5).

The coefficients 𝑐(𝑖1,…,𝑖𝑘 ) may be rational functions of 𝑧1, … , 𝑧𝑘 . The decomposition (3.3.15) is

unique and depends on the order of the variables (𝑧1, … , 𝑧𝑘). The basis of MPLs associated with

a given order (𝑧1, … , 𝑧𝑘) is called a fibration basis. The concept was introduced in [75, section

5]; more details may also be found in [80, section 4.3].

3.3.2 Obstructions to direct integration

As we have seen in subsection 3.3.1, the factorizations into linear factors can introduce an 

algebraic dependence on subsequent integration parameters. For example, the roots 𝑎 in the

partial fraction decomposition (3.3.6) may be of the form

√
𝑃(𝑥𝑗+1, … , 𝑥𝑛) for some polynomial

𝑃 that is not a perfect square. In some cases, the algebraic dependence can be removed by a

change of variables. In this case we call the root 𝑎 rationalizable.

Rationalizable roots Note that a root 𝑎 arising from partial fractioning is algebraic, which

means that 𝑎 and the remaining integration parameters always satisfy a relation of the form

ℎ(𝑎 , 𝑥𝑗+1, … , 𝑥𝑛) = 0 for some polynomial ℎ. The problem of finding a suitable change of variables 

amounts to finding a rational parameterization of an affine hypersurface defined by the equation

ℎ(𝑎 , 𝑥𝑗+1, … , 𝑥𝑛) = 0.
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In the following we will abuse language slightly and speak of the hypersurface associated to

a root 𝑎. However one should keep in mind that the Feynman integral depends on kinematic

data such as momenta and masses that enter as coefficients in the polynomial ℎ. More correctly,

we should therefore speak of a family of hypersurfaces for which the kinematic variables play

the role of the moduli. This is important, because for special values of the kinematic variables a

root can simplify. An easy example is 𝑎 =
√
𝑥2 + 𝑘 𝑥 𝑦 + 𝑦2 which for 𝑘 = 2 becomes the square

root of a perfect square. When we speak of the hypersurface we have in mind generic values of

the kinematic values for which no such simplification happens.

It is convenient to deal with the parameterization problem projectively by introducing a

new variable that makes the polynomial ℎ homogeneous, so that ℎ defines a hypersurface 𝑉 (ℎ)
in an 𝑚-dimensional projective space ℙ𝑚,

𝑉 (ℎ) = {[𝑧0 ∶ ⋯ ∶ 𝑧𝑚] ∈ ℙ𝑚 ∶ ℎ(𝑧0, … , 𝑧𝑚) = 0} ⊂ ℙ𝑚. (3.3.16)

Here we using the notation [𝑧0 ∶ ⋯ ∶ 𝑧𝑚] for the homogeneous coordinates of a point in ℙ𝑚. A

rational parameterization of the (𝑚 − 1)-dimensional hypersurface 𝑉 (ℎ) is given by a rational

map

𝜙 ∶ ℙ𝑚−1 → 𝑉(ℎ), 𝑡 ↦ [𝜙0(𝑡) ∶ ⋯ ∶ 𝜙𝑚(𝑡)] (3.3.17) 

such that

ℎ(𝜙0(𝑡), … , 𝜙𝑚(𝑡)) = 0 for all 𝑡 ∈ ℙ𝑚−1. (3.3.18)

This map is onto, so a rational parameterization writes the hypersurface 𝑉 (ℎ) as the image of a

projective space with the same dimension as 𝑉 (ℎ). For most hypersurfaces such a parameteri-

zation does not exist. Loosely classifying the hypersurfaces by their dimension, there are the

following results about rational parameterizations:

• Curves. In the case𝑚 = 2, the hypersurface 𝑉 (ℎ) is a plane curve. Clebsch showed in [81]

that a plane curve has a rational parameterization if and only if its genus is zero. By the

genus-degree formula (see for example [82, chapter 8.3]) a curve of degree 𝑑 with only

ordinary multiple points
7
has genus

𝑔 = 

(𝑑 − 1)(𝑑 − 2)
2 

− ∑
𝑃∈𝑉 (ℎ)

𝑟𝑃 (𝑟𝑃 − 1)
2

. (3.3.19)

Here 𝑟𝑃 is the multiplicity of the point 𝑃 . If the curve is smooth, all points have multiplicity

𝑟𝑃 = 1 and the formula reduces to the first term.

The simplest case is 𝑑 = 2, i.e. a smooth curve of degree two (a smooth conic). A conic

may be rationalized by picking a point 𝑃0 ∈ 𝑉 (ℎ) and projecting 𝑉 (ℎ) onto a line that does

not contain 𝑃0. For the commonly encountered case where ℎ is of the form

ℎ(𝑥 , 𝑦 , 𝑧) = 𝑦2 − 𝑎 𝑥2 − 𝑏 𝑥 𝑧 − 𝑐 𝑧2 (3.3.20)

7
A point 𝑃 ∈ 𝑉 (ℎ) is an ordinary point of multiplicity 𝑟𝑃 if there are 𝑟𝑃 tangents to 𝑉 (ℎ) at 𝑃 . For example, the

shape “∝” has an ordinary double point, but the shape “≺” does not.
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for some coefficients 𝑎 , 𝑏 and 𝑐, the rationalization map that sends 𝑡 = [𝑡0 ∶ 𝑡1] ∈ ℙ1
to a

point on 𝑉 (ℎ) is well known:

𝜙1(𝑡) = −𝑡0 (𝑏 𝑡0 − 2
√
𝑐 𝑡1) , 𝜙2(𝑡) = 𝑎

√
𝑐 𝑡2 

0 − 𝑡1 (𝑏 𝑡0 −
√
𝑐 𝑡1) , 𝜙3(𝑡) = 𝑎 𝑡2 

0 − 𝑡
2 

1 . (3.3.21)

One can check that this is a parameterization of the curve, i.e. ℎ(𝜙1(𝑡), 𝜙2(𝑡), 𝜙3(𝑡)) = 0.
The corresponding change of variables to rationalize square roots in an otherwise rational

integral is known as Euler substitution.

A smooth curve of degree 𝑑 ≥ 3 has genus 𝑔 ≥ 1 and is therefore not rational. From the

genus-degree formula (3.3.19) it follows that a curve of degree 𝑑 is rational precisely if it

has multiple points such that

∑
𝑃∈𝑉 (ℎ)

𝑟𝑃 (𝑟𝑃 − 1)
2 

= 

(𝑑 − 1)(𝑑 − 2)
2

. (3.3.22)

Examples are a curve with
(𝑑−1)(𝑑−2)

2 ordinary double points (𝑟𝑃 = 2) or a curve with 

one point of multiplicity 𝑟𝑃 = 𝑑 − 1. For the second case there is an easy algorithm 

to construct the rationalization map (see for example [83, chapter II.F]). The first case 

is more complicated, but an algorithm exists and may be found in [84, chapter 4]. An 

implementation of these algorithms is available for example in the Singular library

paraplanecurves.lib [85].

• Surfaces. For 𝑚 = 3 the hypersurface 𝑉 (ℎ) is a two-dimensional surface. An old theorem

by Castelnuovo states that a surface is rational if and only if certain numerical invariants

of the surface that are generalizations of the genus to higher dimensions vanish [86]. An

algorithm to compute these invariants and (if possible) a rational parameterization of 

a general algebraic surface is presented in [87]. If a surface of degree 𝑑 has a point of

multiplicity 𝑑 − 1, then the computation is again significantly simpler and can be handled

with the method presented in [88].

• Higher-dimensional hypersurfaces. For hypersurfaces of higher dimensions, no

general algorithm appears to be known to compute a rational parameterization if possible.

As before however, the case where a hypersurface of degree 𝑑 has a point of multiplicity

𝑑 − 1 is particularly simple. An algorithm for this case was presented in [88] and an

implementation is available in [89].

It is important to note that the rationalization procedures usually require that the field in

which the coefficients live is extended. Already for the case of a conic this is evident from the

appearance of

√
𝑐 in the map (3.3.21). If the coefficients contain further integration parameters,

then this may block subsequent integrations; otherwise it may introduce an algebraic dependence

on the physical parameters that the integral depends on.

An algebraic dependence on physical parameters may arise even if no rationalization proce- 

dure is required to express the integral (3.3.2) in terms of multiple polylogarithms. In particular,

this can happen if the integration over the last variable 𝑥𝑛 makes it necessary to introduce

algebraic roots in order to factor the rational part of the integrand linearly. In either case, an

algebraic dependence on physical parameters means that additional work must be done to 

express the end result in a fibration basis (see page 40): The algebraic roots first have to be

expressed rationally by a suitable change of the kinematic variables.
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Non-rationalizable roots If a hypersurface 𝑉 (ℎ) associated to a root encountered during the

integration process is not rational,
8
there is no hope to express the integral in terms of multiple

polylogarithms, at least for generic values of the kinematic parameters. Instead, one can study

the hypersurface 𝑉 (ℎ) itself and attempt to develop a theory of functions and integrals defined

on it.

The simplest case of this type is a smooth plane curve of degree three, which by the genus-

degree formula (3.3.19) has genus 𝑔 = 1. It is well known that a genus-one curve 𝐶 together

with a choice of a rational point  ∈ 𝐶 determines an elliptic curve.
9
The points on a genus-one

curve 𝐶 cannot be parameterized by a rational map from ℙ1
to 𝐶 . Instead Clebsch found in [91]

that a new class of functions called elliptic functions are required. The theory of functions on

elliptic curves is a classical subject and there are many references for it, for example the books

by Lang [92], Silverman [93] or Weil [94]. There also exist generalizations of polylogarithms and

multiple polylogarithms to elliptic curves which we will comment more on in subsection 3.4.2

below.

Beyond a hypersurface 𝑉 (ℎ) that is a curve of genus one, there are curves of higher genus

as well as higher-dimensional non-rational hypersurfaces. Examples for curves of genus 𝑔 > 1
associated to Feynman integrals were presented in [95]. In the higher-dimensional cases, it

was found that often the 𝑑-dimensional hypersurface 𝑉 (ℎ) is of Calabi-Yau type which means

that it has a unique holomorphic 𝑑-form that vanishes nowhere on 𝑉 (ℎ). It is generally hoped

that integrals along (relative) homology cycles of differential forms on 𝑉 (ℎ) will provide a basis

of integrals for a given Feynman integral or that the differential equations satisfied by period

integrals on such manifolds provide (part of) the differential equation satisfied by the Feynman

integral. The Calabi-Yau geometries associated to Feynman integrals will be treated in more

detail in subsections 3.4.1 and 3.4.2 below.

3.3.3 Applications of direct integration to Feynman integrals

We now give references to the literature where the method of direct integration in terms of

multiple polylogarithms has been applied to Feynman integrals. Note that many of the references

given here do not start the integration from a representation of the integral as in (3.1.3) with

Mandelstam invariants as their physical parameters. In particular, it is desirable to reduce both

the number of physical variables as well as the number of integration parameters before applying

the integration algorithm. Regarding the former, one should attempt to express the integral

in terms of variables that respect all of its symmetries, for example conformal cross-ratios in

the case of conformal integrals. Regarding the latter, one can introduce integration parameters

loop-by-loop in a Feynman diagram rather than for all loops at the same time as in (3.1.2). This

technique was recently reviewed in [96, section 2.1].

In the context of scattering amplitudes for = 4 sYM, the authors of [97] demonstrated for 

planar diagrams that in many cases algebraic roots of physical parameters can be avoided during 

the integration, if the kinematics are parameterized by momentum twistor variables. This insight

8
To show that a hypersurface is not rational, one studies so-called birational invariants. Such invariants are

numbers (like the genus), groups or rings associated to a given hypersurface. By comparing to data for a projective

space of the same dimension one may be able to decide that a hypersurface is not rational, see for example [90,

chapter 4].

9
The rational point  ∈ 𝐶 serves as the origin for the group law on the elliptic curve.
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was also used in [98] to compute the two-loop ratio and remainder function for six particles

which was previously well known in the literature due to [99, 100, 101]. Crucially however, the

authors of [98] computed their result from local, dual-conformally invariant loop integrands

using a regulator that preserves dual-conformal symmetry.
10

In [16] we followed a very similar

strategy for the two-loop remainder function for seven particles which was previously known 

due to [103].

In [17] we used direct integration to compute a particular component of the eight-point

NMHV amplitude in planar  = 4 sYM theory and analyzed its symbol. A major complication

at eight points is the appearance of algebraic letters in the symbol that are not rationalized 

by the use of momentum twistor variables. For the particular component it turned out that 

all algebraic letters dropped out of the final result, but their appearance and form has been

confirmed using different methods in [104].

Direct integration has also been used to associate a geometry to a given Feynman integral via

the occurrence of non-rationalizable roots. In [105], the elliptic curve associated to a two-loop

double-box integral was found using direct integration.
11

In [107] and [108] higher-dimensional 

Calabi-Yau geometries were found by the same method and in [18] we have taken a step towards 

a more detailed analysis of these geometries. We discuss the idea of associating a geometry with

a non-polylogarithmic Feynman integral in more detail in the following section 3.4.

3.4 Non-polylogarithmic Feynman integrals

It is well known that sufficiently complicated Feynman integrals cannot be computed in terms

of multiple polylogarithms and that new and more general classes of functions are required.

Ideally, one would like to find classes of functions that suffice to express all Feynman integrals

occurring in perturbation theory, possibly up to some loop order or number of external legs.

At the same time these functions should not be too general, so that an understanding of their

analytic properties is still possible. Moreover, the form of their singularities is constraint due to

the behavior (3.2.9) and (3.2.10) near a Landau singularity. As a first step towards defining and

understanding such functions, one can study a geometry associated to a given integral in more

detail.

3.4.1 Associating a geometry to a Feynman integral

We discussed one way to associate a geometry to a Feynman integral in section 3.3.2. In this 

approach, the geometry is given as the hypersurface associated to a non-rationalizable root 

encountered in the process of direct integration. We point out again that speaking of “the” 

hypersurface is imprecise if the Feynman integral depends on kinematic data and that one

should instead speak of a family of hypersurfaces whose moduli are (certain combinations of)

the kinematic variables. As before, we consider the case of generic kinematic data. 

An approach that is similar but not equivalent to direct integration is to analyze the multi-

dimensional residues of the integrand: The integrand of a Feynman integral is a rational

differential form with poles. In the loop momentum representation (3.1.1) for example there is a

10
The dual-conformal invariance preserving regulator was first described in [102].

11
Note that it was previously known due to [106] that the integral in question would involve an elliptic curve.
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pole whenever 𝑞2𝑖 = 𝑚2
𝑖 , i.e. when an internal particle is on-shell. Similarly, in the representa-

tion (3.1.3) there is a pole at  = 0.
The idea of multi-dimensional residues goes back to work by Poincaré in [109] and a standard

reference for these so-called Poincaré residues is [90, chapter 5]. Informally, the idea is the

following: The Poincaré residue is a map that takes a differential 𝑛-form 𝜔 with singularities

along a hypersurface 𝑉 and assigns to it a differential (𝑛 − 1)-form denoted Res(𝜔) and called

the residue of 𝜔 that is well-defined on 𝑉 . To compute Res(𝜔) one finds local coordinates in 

which 𝑉 is given by the vanishing of one coordinate, say 𝑧 = 0, and expresses 𝜔 in terms of

these coordinates. Then the residue is computed as

Res(𝜔) = Res(𝛼 ∧ 

d𝑧
𝑧 ) = 𝛼 ||𝑉 , (3.4.1)

where 𝛼 is an (𝑛− 1)-form that is non-singular on 𝑉 so that the restriction to 𝑉 on the right-hand 

side makes sense. If Res(𝜔) itself has simple poles along a hypersurface, then the residue map can

be applied again. At some point this process stops, either because one has reached a differential

zero-form or because the form does not have a pole. A classical example for the latter case is the

holomorphic differential
d𝑥
𝑦 of an elliptic curve defined by an equation of the form 𝑦2 = 𝑃3(𝑥)

for some polynomial 𝑃3(𝑥) of degree three in 𝑥 with no repeated roots.

The residue of the highest codimension is known as the leading singularity of an integral;

in this form it was introduced in [110] (see also [111, section 2.3]) although a similar notion 

already exists much earlier, see for example [67, section 2.2]. In the more recent version, the

idea is exactly what we just described: Starting with the integrand of a Feynman integral, one

takes as many residues around the poles in the integrand as possible. From the loop momentum

representation (3.1.1) it may seem that the maximum number of residues possible coincides 

with the number of propagators, but this is false: Jacobian factors can arise when bringing

the integrand into a form to which (3.4.1) can be applied and those Jacobians may themselves

develop singularities so that further residues can be taken.
12

If in an application to a Feynman integral the process of taking residues stops with a zero-

form, then usually the integral can be computed in terms of multiple polylogarithms. If it is not

possible to take enough residues to reach a zero-form, then one is left with a differential form

defined on some space whose geometry one can analyze. The latter case was first discussed 

in [106] where the authors found an elliptic curve in a two-loop integral with ten external

particles. This integral is sometimes called the elliptic double box integral.

It is unknown if the direct integration and the leading singularity approach will always 

associate the same geometry to a given Feynman integral. At least in the case of the elliptic

double box agreement was found: In [105] the authors analyzed this integral from the point of

view of direct integration and their elliptic curve was found to be the same as the one that we

detected by an analysis of its leading singularity in momentum twistor space in [19].

12
This notion of the leading singularity it closely related to the maximal cut of a Feynman diagram, but not exactly

the same. The maximal cut is is related to a discontinuity of the integral due to the work of Cutkosky [112]. The

notion of leading singularity as the residue of the highest codimension does not directly have the interpretation as a

discontinuity, essentially because the residue procedure requires integration over a contour that is different from the

contour of the original Feynman integral. This point is elaborated in [111, section 2.3] and also in [113, section 7.5].
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3.4.2 Elliptic and Calabi-Yau geometries

We already mentioned in subsection 3.3.2 that the simplest non-polylogarithmic Feynman 

integrals involve smooth curves of genus one which can be made into an elliptic curve by

choosing an origin for the group law on the curve. Beyond that, both curves of higher genus as

well as higher-dimensional geometries occur in Feynman integrals.

The elliptic case The theory of functions on elliptic curves is a well-developed classical 

subject with a vast literature (see for example the books [92, 93, 94]). It has been known for 

some time that classical polylogarithms can be generalized to elliptic polylogarithms which 

are functions on a punctured elliptic curve, see [114, 115, 116]. Recently in [117], Brown and

Levin introduced also elliptic multiple polylogarithms as iterated integrals of one-forms that

are well-defined on an elliptic curve, analogous to the definition of multiple polylogarithms in

equation (3.3.1).

The idea is to iteratively integrate functions that are well-defined on an elliptic curve in the

following sense: A complex elliptic curve is isomorphic to a complex torus ℂ/Λ, where Λ is a

lattice defined by two periods 𝜔1 and 𝜔2 (see for example [118, chapter VI]).
13
A well-defined

function 𝑓 from ℂ/Λ to ℂ should be doubly periodic with respect to the periods 𝜔1 and 𝜔2, i.e.

𝑓 (𝜉 ) = 𝑓 (𝜉 + 𝜔1) = 𝑓 (𝜉 + 𝜔2). Since the domain ℂ/Λ of 𝑓 is compact, the function is bounded
14
;

then Liouville’s theorem implies that if 𝑓 is holomorphic everywhere on ℂ/Λ it has to be a 

constant. Thus, in order to get more interesting functions, one either has to allow for poles,

non-holomorphic functions or relax the periodicity constraint to quasi-periodicity. Allowing for

poles one obtains meromorphic functions on ℂ/Λ whose simple poles are further constrained

by a residue theorem that states that the sum of the residues on ℂ/Λ is equal to zero.

To obtain a function that is well-defined on the torus, one can take any function and sum over

the images of translation by the periods. This is how the Weierstrass ℘-function is constructed

which is a standard example of an elliptic function. It is periodic with respect to shifts by 𝜔1 and

𝜔2 and has a double pole at each point in the lattice ℂ/Λ. Similarly, the key idea to constructing

an elliptic logarithm is to sum over all shifts of the argument of the logarithm according to the

double periodicity property. Concretely, one first applies an exponential map so that instead of

as ℂ/Λ the elliptic curve is represented as ℂ⋆/𝑞ℤ, where 𝑞 = 𝑒2𝜋 𝑖 𝜏
and 𝜏 = 𝜔2

𝜔1
and ℂ⋆ = ℂ ⧵ {0}.

The translation by a vector in the lattice Λ then amounts to multiplication by an integer power

of 𝑞.
As a first step towards elliptic multiple polylogarithms one can then consider the function

Li1(𝑧) (see [117, section 6]). The naive attempt to sum over all multiplications with 𝑞 would be a

sum of the form ∑𝑛∈ℤ Li1(𝑞𝑛𝑧) which does not work, because the series is not convergent. This

may be fixed by introducing a damping factor 𝑢 which leads to the series

𝐸𝜏 (𝑧; 𝑢) = ∑
𝑛∈ℤ

𝑢𝑛 Li1(𝑞𝑛𝑧). (3.4.2)

13
If the elliptic curve 𝐶 is embedded into ℙ2

, then the isomorphism that maps ℂ/Λ to 𝐶 is given by 𝜉 ↦
[℘(𝜉 ) ∶ ℘′(𝜉 ) ∶ 1], where ℘ is Weierstrass’ elliptic ℘-function. The inverse map from 𝐶 to ℂ/Λ involves elliptic

integrals.

14
We are only interested in continuous functions.
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This series converges for 1 < 𝑢 < |𝑞|−1. It turns out that the differential of 𝐸𝜏 (𝑧; 𝑢)with respect to

𝑧 is related to the Kronecker-Eisenstein series 𝐹𝜏 (𝜉 ; 𝛼) by d𝐸𝜏 (𝑧; 𝑢) = 𝐹𝜏 (𝜉 ; 𝛼) d𝜉 with 𝑧 = 𝑒2𝜋 𝑖 𝜉

and 𝑢 = 𝑒2𝜋 𝑖 𝛼
(see [117, lemma 47]). The Kronecker-Eisenstein series is a quasiperiodic function

of 𝜉 and may be defined in terms of the Jacobi 𝜗 -function 𝜗11 by

𝐹𝜏 (𝜉 ; 𝛼) =
𝜗 ′
11(0; 𝜏 )𝜗11(𝜉 + 𝛼; 𝜏 )
𝜗11(𝜉 ; 𝜏 )𝜗11(𝛼; 𝜏 )

. (3.4.3) 

A reference for this series that appears frequently in the study of elliptic functions is [94].

This “averaging” procedure can be repeated for multiple polylogarithms and one obtains a

version of them that is well-defined on the torus. Eventually these functions may be reformulated

as integrals of certain one-forms that appear in an expansion of the differential d𝐸𝜏 (𝑧 , 𝑢) in 𝑢.
Explicit expressions of these forms can therefore be computed from a slight modification of the

Kronecker-Eisenstein series (3.4.3) that makes 𝐹𝜏 (𝜉 ; 𝛼) periodic,

Ω𝜏 (𝜉 ; 𝛼) = 𝑒2𝜋 𝑖 ℑ(𝜉 )ℑ(𝜏 ) 𝐹𝜏 (𝜉 ; 𝛼) d𝜉 . (3.4.4) 

The coefficients of 𝛼 in the expansion of Ω𝜏 (𝜉 ; 𝛼) around 𝛼 = 0 gives the desired one forms,

Ω𝜏 (𝜉 ; 𝛼) =
∞
∑
𝑛=0

𝛼𝑛−1𝑓 (𝑛)𝜏 (𝜉 ) d𝜉 . (3.4.5)

In analogy to the multiple polylogarithms 𝐺(𝑎1, … , 𝑎𝑛; 𝑥) defined recursively in (3.3.1), a

class of elliptic multiple polylogarithms may thus be defined as

Γ𝜏 (
𝑛1𝜂1, … , 𝑛𝑟𝜂𝑟 ; 𝜉 ) = ∫

𝜉

0
d𝜁 𝑓 (𝑛1)𝜏 (𝜁 − 𝜂1) Γ𝜏 (

𝑛2𝜂2, … , 𝑛𝑟𝜂𝑟 ; 𝑡) , (3.4.6)

where we are using the notation and definition given in [119, section 2.2]. In this iterated integral

the one-forms are expressed in terms of integration kernels 𝑓 (𝑛)𝜏 (𝜉 ), 𝑛 ∈ {0, 1, 2, …} that appear

in the expansion (3.4.5). Some explicit examples are given in [119, section 3.3.1]. Crucially, the

integration kernels are doubly periodic with respect to the periods 1 and 𝜏 ,

𝑓 (𝑛)𝜏 (𝜉 + 1), = 𝑓 (𝑛)𝜏 (𝜉 ), 𝑓 (𝑛)𝜏 (𝜉 + 𝜏) = 𝑓 (𝑛)𝜏 (𝜉 ), (3.4.7)

which makes them well-defined functions on a torus. With respect to a modular transformation

𝛾 ∈ SL(2, ℤ), the functions 𝑓 (𝑛) transform as

𝑓 (𝑛)𝛾 ⋅𝜏 (
𝜉

𝑐 𝜏 + 𝑑 )
= (𝑐 𝜏 + 𝑑)𝑛 𝑓 (𝑛)𝜏 (𝜉 ), (3.4.8) 

where

𝛾 = (
𝑎 𝑏 

𝑐 𝑑)
∈ SL(2, ℤ) and 𝛾 ⋅ 𝜏 =

𝑎 𝜏 + 𝑏
𝑐 𝜏 + 𝑑 

. (3.4.9) 

The functions 𝑓 (𝑛) are not meromorphic, but they satisfy the differential equation

𝜕
𝜕 𝜉 

𝑓 (𝑛)𝜏 (𝜉 ) = −
𝜋

ℑ(𝜏)
𝑓 (𝑛−1)𝜏 (𝜉 ). (3.4.10)
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It turns out that 𝑓 (1)𝜏 (𝜉 ) has a pole at each lattice point 𝜉 = 𝑚 + 𝑛 𝜏 with 𝑚 , 𝑛 ∈ ℤ. The other

functions 𝑓 (𝑛)𝜏 for 𝑛 ≥ 2 are free of poles.

Multiple zeta values are special values of multiple polylogarithms (see (B.1.7) in appendix B)

and similarly elliptic multiple zeta values are special values of the functions defined in (3.4.6)

when all 𝜂𝑖 = 0 and 𝜉 = 1. The functions Γ as well as their special values also appear naturally

in scattering amplitudes in string theory, see [120, 121].

For applications to field theory Feynman integrals the elliptic polylogarithms defined in (3.4.6)

are not a very natural choice. In particular, recall from section 3.4.1 that the geometry associated

to a Feynman integral typically arises as the zero locus of some polynomial which is obtained

from the original integrand through algebraic manipulations such as taking residues. Specifically, 

an elliptic curve would not naturally be given as a complex torus ℂ/Λ but for example as the zero

locus of a polynomial of degree three. While it is always possible to describe a complex elliptic

curve as a complex torus, passing from the algebraic picture to the complex torus involves 

non-canonical choices that one might want to avoid. Moreover, if one decides to pass to the 

torus picture anyways, an explicit dependence on 𝜉 will never arise. The integration kernels

𝑓 (𝑛)𝜏 (𝜉 ) on the other hand do have a dependence on 𝜉 as can be seen from eq. (3.4.10).

A recursive definition that is more natural from the point of view of a genus-one curve given

as the zero-locus of a polynomial of degree three is given in [122, section 3.2]. In [122, section

4.3] the authors moreover define elliptic multiple polylogarithms Γ̃ that are very similar to the

ones in equation (3.4.6) but using kernels that do not satisfy the periodicity condition (3.4.7). On 

the other hand, their kernels are meromorphic unlike the kernels 𝑓 (𝑛)𝜏 (𝜉 ) used above. It turns out

to be impossible to have kernels that are both meromorphic and doubly periodic if one insists

on single simple poles, see [122, section 4.3]. As explained in [122, section 5] all these different

definitions lead to essentially the same class of functions.

A lot of progress has been made on elliptic multiple polylogarithms recently and they have

been used to express various non-polylogarithmic Feynman integrals (see for example [123, 124]

or [125]). Various tools such as the coaction and the symbol have also been generalized to the

elliptic setting [126] and algorithms for numerical evaluation have been released [127].

Calabi-Yau geometries Higher-dimensional geometries associated to Feynman integrals

have often been observed to be of Calabi-Yau type. The Calabi-Yau geometry is one direction to

consider when looking for generalizations of elliptic curves: A Calabi-Yau manifold of complex

dimension 𝑛 admits a single holomorphic 𝑛-form and in the case 𝑛 = 1 one recovers the

holomorphic one-form of an elliptic curve.

It is not known what a generalization of (multiple) polylogarithms to a Calabi-Yau manifold

with dimension greater than one should be. On the other hand, higher-dimensional analogues of 

elliptic integrals have indeed been studied and are known as the period integrals of a Calabi-Yau

manifold. The period integrals satisfy a system of differential equations known as Picard-Fuchs

equations which provides at least part of the system of differential equations that the original

Feynman integral satisfies.

There are various ways to derive Picard-Fuchs differential equations, for example the method

by Griffiths (see [128]) or the approach by Gel’fand, Kapranov and Zelevinsky (GKZ, see [129]).

Both methods have been applied to Feynman integrals, see for example [130, 131, 132] for the

former and [133, 134] for the latter approach. The reference [132] also makes connections to
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Calabi-Yau mirror symmetry which has been studied extensively in the math and string theory

physics literature.

By now there is a long list of Feynman integrals that are known to involve Calabi-Yau 

geometries in addition to the references already mentioned. The earliest examples can be 

found in the work by Brown [79, section 12.7]; a K3 surface occurring at high loop order in

𝜙4 theory was diagnosed in [135]. K3 surfaces with relation to virtual QED processes were 

investigated [136, 137]. Using a residue analysis as explained in subsection 3.4.1 as well as

direct integration Calabi-Yau manifolds were identified in large classes of Feynman integrals

in [107, 108, 18, 19].

Currently there is no general framework of functions applicable to Feynman integrals that

involve Calabi-Yau or potentially even more complicated geometries. It is even an open question 

whether different parameterizations of a Feynman integral always give rise to the same geometry.

Regarding this latter point, we took some steps to answer the question for the elliptic sunrise

and double box integrals in [20]; there we made use of the fact that complex elliptic curves can

be characterized by a single invariant, the so-called 𝑗-invariant. For other Calabi-Yau geometries

this is an open problem.

3.5 Summary of own work and outlook

In this chapter we have discussed the integration of Feynman integrals in terms of special 

functions that depend on the external kinematic data. We have seen that Landau’s work

determines both where these functions are allowed to have singularities as well as their behavior 

close to a singularity. In particular, near a singularity a Feynman integral behaves like a logarithm

as in equation (3.2.9). We then reviewed the algorithm that expresses a Feynman integral in

terms of the class of multiple polylogarithms if possible. We also identified algebraic roots arising 

from partial fractioning as an obstruction to direct integration that may sometimes be overcome 

by a rationalizing change of variables. When the obstruction cannot be overcome, we explained

how one can associate a geometry to a Feynman integral. This geometry was an elliptic curve

in the simplest cases beyond polylogarithms and of Calabi-Yau type in more complicated cases.

An important comment was that there are different ways to define such a geometry, for example

as a hypersurface associated to a non-rationalizable root encountered during direct integration

or as the space on which one cannot take further residues. Sometimes one may even construct

the geometry directly in momentum twistor space. Whether the different approaches always

lead to the same geometry is a topic for further investigation.

During the time of this PhD we have contributed to the following publications related to

the integration and analytic structure of Feynman integrals described in this chapter:

1. J. L. Bourjaily, M. Volk, and M. Von Hippel, “Conformally Regulated Direct Integration

of the Two-Loop Heptagon Remainder,” JHEP 02 (2020) 095, arXiv:1912.05690 [hep-th].

In this paper, we recomputed the two-loop seven-particle remainder function in planar

 = 4 sYM theory. The remainder function appears as the logarithm of the two-loop MHV 

amplitude which can be expressed in terms of dual-conformally invariant double-pentagon

integrals (see [111]). These integrals are infrared-divergent and we regulated them using

the dual-conformal regulator introduced in [102]. Applying the direct integration method
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described in section 3.3.1 together with the rationalization tricks in section 3.3.2, we

obtained the same result for the seven-particle remainder function as [103].

2. J. L. Bourjaily, A. J. McLeod, C. Vergu, M. Volk, M. Von Hippel, and M. Wilhelm,

“Rooting Out Letters: Octagonal Symbol Alphabets and Algebraic Number Theory,” JHEP
02 (2020) 025, arXiv:1910.14224 [hep-th].

It had been conjectured for a while that the eight-particle two-loop NMHV amplitudes in

 = 4 sYM theory would not be be expressible rationally in terms of momentum-twistor

variables. The goal of this paper was to test the conjecture for a simple such amplitude.

One particular component of the superamplitude requires only the computation of two

eight-point two-loop integrals. We computed these integrals using the methods described

in section 3.3.1 at a particular numeric point and analyzed the symbol of the resulting 

expression. To clean up and simplify the symbol, we had to find identities between

algebraic letters for which we used techniques from algebraic number theory. It turned

out that in the particular component that we considered all algebraic letters canceled, 

but their appearance in the eight-particle two-loop NMHV amplitudes has since been

confirmed using a different approach (see [104]).

3. J. L. Bourjaily, A. J. McLeod, C. Vergu, M. Volk, M. Von Hippel, and M. Wilhelm,

“Embedding Feynman Integral (Calabi-Yau) Geometries in Weighted Projective Space,”

JHEP 01 (2020) 078, arXiv:1910.01534 [hep-th].

This paper shows that many of the Calabi-Yau geometries encountered in Feynman

integrals can be realized as a hypersurface in a particular weighted projective space. The

hypersurfaces are detected using a residue analysis as described in section 3.4.1. We

compute the Hodge numbers of such hypersurfaces using a combinatorial approach due

to Batyrev [138]. The main examples of the paper are the three-loop traintrack and three-

loop wheel integrals which correspond to a Calabi-Yau two- and three-fold respectively.

The analysis is done entirely in Feynman parameters space.

4. C. Vergu and M. Volk, “Traintrack Calabi-Yaus from Twistor Geometry,” JHEP 07 (2020)

160, arXiv:2005.08771 [hep-th].

It had been conjectured in [107] based on direct integration methods that a certain class

of Feynman integrals now known as traintrack integrals contains a Calabi-Yau (𝓁 − 1)- 

fold at 𝓁 loops. In this paper, we come to the same conclusion analyzing the leading 

singularity of these integrals directly in momentum twistor space without the need to

introduce integration parameters. For two loops we find the same elliptic curve as [107]

as the intersection of two quadrics in ℙ3
. For three loops we construct a K3 surface as a

four-fold covering of ℙ1 × ℙ1
branched over two genus-one curves and describe some of

its characteristics such as the dimension of the moduli space and certain automorphisms.

We also show how the geometric construction generalizes to higher loops and take some

steps towards a supersymmetrization.

5. H. Frellesvig, C. Vergu, M. Volk, and M. von Hippel, “Cuts and Isogenies,” JHEP 05
(2021) 064, arXiv:2102.02769 [hep-th].
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In this paper, we address the question of whether different parameterizations of a Feynman 

integral give rise to the same geometry. We consider first the elliptic sunrise integral in two 

dimensions for which two different elliptic curves had previously been found in [139, 125]

using either Feynman parameterization or a maximal cut in the Baikov representation.

The curves were found to be isogenous, but not isomorphic. We explain that this is due to

a change of coordinates that is not one-to-one and that when computed more carefully

the maximal cut and the Feynman parameter integral give rise to the same elliptic curve.

We then perform a similar analysis for the elliptic double box integral in four dimensions

and again find that the elliptic curve is the same in different representations.

6. J. L. Bourjaily, Y.-H. He, A. J. McLeod, M. Spradlin, C. Vergu, M. Volk, M. von 

Hippel, and M. Wilhelm, “Direct Integration for Multi-leg Amplitudes: Tips, Tricks,

and When They Fail,” in Antidifferentiation and the Calculation of Feynman Amplitudes. 3,

2021. arXiv:2103.15423 [hep-th].

This article is a review of the direct integration method, its limits and results obtained in

applications to Feynman integrals.

There are many open research question in particular pertaining to Feynman integrals that

cannot be expressed in terms of multiple polylogarithms. In particular, the geometries that were

described in the articles above must be studied in more details.

An important question to address are the moduli spaces of the Calabi-Yau varieties that 

have been detected. Just from counting the kinematic parameters that enter in the Feynman 

integral it is clear that those varieties are not generic, but instead live on some subspace of a

generic Calabi-Yau variety of the same dimension. Moreover one can expect that the varieties

arising in some Feynman integrals will have special properties such as marked points or a

fibration structures that are not present in a generic variety of the same type. For the purpose

of expressing a Feynman integral in terms of an iterated integral on some kinematic space, it is

necessary to understand the homology and cohomology of the space. An understanding of the

moduli spaces and special features associated to the detected varieties will thus be a crucial step 

towards analytic control over functions associated to non-polylogarithmic (and also non-elliptic)

Feynman integrals.

From a detailed study of the varieties and their moduli spaces one can also expect progress

on the differential equations that the Feynman integral satisfies. As mentioned previously,

there are well-known ways to derive Picard-Fuchs equations for the varieties associated to such

integrals, for example the Griffiths-Dwork or the GKZ method. While these methods work for

some Feynman integrals as has been demonstrated in the literature, they are very general and

do not take into account the special features that can be found in Feynman integral. It is to be

expected that a more tailored approach will allow for an extension of these methods to Feynman

integrals with a larger number of moduli and larger number of loops.

Eventually one would like to understand the analytic structure of the most complicated

Feynman integrals and express them in terms of functions that make analytic properties such

as singularities and monodromies manifest. Even in the elliptic case, where elliptic multiple

polylogarithms are now available as a tool, these properties are often not very transparent. One 

might be discouraged by the fact that already the elliptic case is somewhat complicated and that 

integrals involving more complicated varieties should be expected to be even more involved. On
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the other hand, Feynman integrals have many special and striking properties, for example the

very simple behavior near Landau singularities that was discussed above and that constrains

the analytic structure. Taking into account as many of these properties as possible one can hope

to understand even the non-elliptic Feynman integrals reasonably well at some point.
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Appendix A

The AdS/CFT correspondence and = 4
sYM theory

The best-studied instance of the correspondence between a gravitational theory on anti-de Sitter

space and a conformal field theory living on its boundary is the duality between type IIB 

supergravity on AdS5 ×𝑆5 and  = 4 sYM in four dimensions. This correspondence was

established by Maldacena in [21] by considering a stack of 𝑁 D3 branes in type IIB superstring

theory.

A.1 Heuristic derivation of the correspondence

The correspondence between the two theories can be motivated by studying the stack of D3

branes from two different points of view. In the open string perspective, the D3 branes are viewed

as the end point for open strings in ten-dimensional Minkowski space. In the closed string

perspective, the D3 branes are viewed as a particular solution to the supergravity equations of

motion. The equivalence of these two perspectives leads to the AdS/CFT correspondence as we

briefly review now.

Open string perspective For the open string perspective, one considers type IIB superstring

theory on ten-dimensional Minkowski space ℝ1,9
with a background of 𝑁 coincident D3 branes.

The degrees of freedom in this background are the open strings stretching between the D3

branes as well as closed strings propagating in ten dimensions. In order to stay in the realm of

perturbative string theory, the string coupling constant 𝑔𝑠 has to be small. In fact, the effective

open string coupling in the case of 𝑁 coincident D3 branes is 𝑔𝑠𝑁 ; for the perturbative picture

to be valid one therefore requires 𝑔𝑠𝑁 ≪ 1.
Massive string excitations have a mass of order 𝛼 ′−1/2

; for energies 𝐸 much lower than that,

i.e. for 𝐸 ≪ 𝛼 ′−1/2
, these may be neglected and one only considers massless excitations. From

the point of view of the world volume theory of the D3 branes, the open string excitations along 

the world volume directions correspond to a gauge field 𝐴𝜇 and the excitations in the transverse

directions to scalars. Together with their fermionic companions, these organize themselves into

a four-dimensional = 4 supermultiplet. Similarly, the massless closed string modes fall into a

ten-dimensional = 1 supermultiplet.

In the limit 𝛼 ′ → 0, the open and closed string modes decouple. The action for the open
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strings becomes the well-known action for  = 4 sYM in four dimensions, which we write as

𝑆 = 

2
𝑔2 

YM
∫ d4𝑥 tr [ − 

1
4
𝐹𝜇 𝜈𝐹 𝜇 𝜈 − 

1
2 (

𝐷𝜇𝜙𝑖) (𝐷𝜇𝜙𝑖) +
𝑖
2
𝜓 𝛾 𝜇𝐷𝜇𝜓

+ 

1
4 [

𝜙𝑖 , 𝜙𝑗] [𝜙𝑖 , 𝜙𝑗] + 

1
2

3
∑
𝑖=1

𝜓 𝑎𝐺
𝑖 

𝑎 𝑏 [𝜙𝑖 , 𝜓𝑏] + 

1
2

6
∑
𝑖=4

𝜓 𝑎𝐺
𝑖 

𝑎 𝑏 [𝜙𝑖 , 𝜓𝑏] ].
(A.1.1)

Here 𝐴𝜇 is the four-dimensional non-abelian gauge field, each 𝜙𝑖 for 𝑖 ∈ {1, … , 6} is a real scalar

field and each 𝜓𝑎 for 𝑎 ∈ {1, … , 4} is a four Majorana-Weyl fermion. All fields transform in the

adjoint representation of the U(𝑁 ) gauge group and the string coupling 𝑔𝑠 has been identified

with the coupling of sYM theory by

𝑔2 

YM = 2𝜋 𝑔𝑠 . (A.1.2)

Moreover, in the limit 𝛼 ′ → 0, the action of the closed string modes simply becomes the action

of ten-dimensional supergravity.

Closed string perspective The D3 branes may also be viewed as a special solution to the

equations of motion of ten-dimensional type IIB supergravity.
1
These massive, charged branes

constitute the background for closed string excitations of type IIB superstring theory. The

solution is characterized by a length scale 𝐿 which can be determined by the requirement that 

the total charge of 𝑁 coincident D3 branes should be given by 𝜇3𝑁 . One finds that 𝐿 is related

to the string theory parameters by

𝐿4

𝛼 ′2 = 4𝜋 𝑔𝑠𝑁 . (A.1.3)

The background supergravity solution is made up of two regions: If the radial distance 𝑟
from the D3 branes is very large compared to 𝐿, the closed strings essentially do not feel the

presence of the branes and the theory reduces to type IIB supergravity on flat, ten-dimensional

Minkowski space. On the other hand, in the region 𝑟 ≪ 𝐿, the background metric becomes the

metric of AdS5 ×𝑆5 in which both the radius of the sphere and the AdS5 are given by 𝐿. In the

low-energy limit 𝛼 ′ → 0, the two regions decouple from each other.

For the supergravity approximations to be valid, one has to require that the radius of

curvature is large compared to 𝛼 ′
, i.e. 𝐿4 ≫ 𝛼 ′2

, which due to the identification (A.1.3) means

that 𝑔𝑠𝑁 ≫ 1. Note that this is opposite from the open string perspective where we had 𝑔𝑠𝑁 ≪ 1.

Identification of theories Both points of view give rise to two decoupled low-energy systems 

and in both pictures one of those systems is type IIB supergravity on ten-dimensional Minkowski

space ℝ1,9
. The two points of view have the same starting point and should describe the same

physics which lead Maldacena to conjecture in [21] that the remaining two low-energy systems,

namely = 4 sYM in four dimensions and type IIB supergravity on AdS5 ×𝑆5 should also be

identified.

We speak of  = 4 sYM as the field theory side of this correspondence and by abuse of

language of the AdS5 ×𝑆5 side as the string theory side. On the field theory side the parameters

1
This point of view was established by Polchinski in [140].
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are the Yang-Mills coupling 𝑔YM and the rank of the gauge group 𝑁 . On the string theory side,

the parameters are the string coupling 𝑔𝑠 and the ratio
𝐿4
𝛼 ′2 . As written in (A.1.2) and (A.1.3) they

are related by

𝑔2 

YM = 2𝜋 𝑔𝑠 and 2𝑔2 

YM𝑁 =
𝐿4

𝛼 ′2 . (A.1.4)

Note that in the limit 𝑁 → ∞ which we usually consider, the ’t Hooft coupling 𝜆 = 𝑔2 

YM𝑁 is the

only parameter and the relation becomes 2𝜆 = 𝐿4𝛼 ′−2
.

A.2 Dictionaries

To check and make use of the proposed duality, one has to be able to translate objects and

physical quantities from one side to the other. This section is a reminder of the most important

entries in the dictionary that achieves this translation.

Field-operator map On the field theory side, we are dealing with  = 4 sYM theory 

which is a superconformal field theory. One class of observables thus consists of correlation 

functions of gauge invariant operators. These operators are organized in representations of 

the superconformal algebra psu(2, 2|4) which has the bosonic subalgebra su(2, 2) × su(4). The

su(2, 2) ≅ so(2, 4) factor corresponds to the conformal algebra, while the su(4) ≅ so(6) factor 

represents the R-symmetry. An operator is thus labeled by a conformal dimension Δ, two

Lorentz spins (𝑠1, 𝑠2) for so(1, 3) ≅ su(2) × su(2) and three quantum numbers corresponding to

the R-symmetry.

On the string theory side, the so(2, 4) and so(6) symmetries correspond to the isometries of 

the AdS5 and 𝑆5 factors of the geometry respectively. Under the duality, a field theory operator

with a given set of quantum numbers should correspond to a supergravity field with the same

quantum numbers. To this end, the supergravity fields are decomposed into Kaluza-Klein modes

on the sphere by expanding them in spherical harmonics on 𝑆5 that constitute irreducible

representations of so(6).
From the AdS5 point of the view, the Kaluza-Klein modes are massive modes with a certain

mass 𝑚2
that is determined by the R-symmetry quantum numbers. Near the boundary of AdS5,

such a massive mode 𝜑 has an expansion

𝜑(𝑧 , 𝑥) = [𝜑(0)(𝑥) +  (𝑧2)] 𝑧Δ− + [𝜑(+)(𝑥) +  (𝑧2)] 𝑧Δ+ . (A.2.1)

Here 𝑧 denotes the radial coordinate of AdS5 in Poincaré coordinates and the four-dimensional

boundary with coordinates 𝑥 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) is located at 𝑧 = 0. The exponents Δ± are given

by Δ± = 2 ±
√
𝑚2 + 4. Under the correspondence, the boundary value 𝜑(0) is identified with the

source for a field theory operator Δ with conformal dimension Δ = Δ+. The other boundary

value 𝜙(+) is associated with a vacuum expectation value of Δ.
2

2
The association of 𝜑(0)

with a source and 𝜑(+)
with a vacuum expectation value can be interchanged if the AdS

mass 𝑚2
satisfies −4 ≤ 𝑚2 ≤ −3. For 𝑚2

in this range one can choose to associate 𝜑(0)
with the vacuum expectation

value and 𝜑(+)
with the source on the field theory side. This leads to two inequivalent theories that differ by a 

non-zero boundary term in the action. For −3 < 𝑚2
, the association presented in the main text is the only option. 

Note that the negative masses are not a stability problem as they lie above the Breitenlohner-Freedman bound

− 𝑑2
4 = −4 ≤ 𝑚2

.
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3 4

Figure A.1: Witten diagrams for three- and four-point field theory correlators. The circle depicts

the boundary of AdS5 where the operators 𝑖 are inserted. The solid lines in the interior are AdS5
bulk-to-boundary and bulk-to-bulk propagators.

Correlation functions of field theory operators are computed by taking functional derivatives

of a generating function with respect to sources and subsequently setting the sources to zero.

Under the dictionary, the field theory partition function and the supergravity action 𝑆SG are

identified as

⟨exp(∫ d4𝑥 (𝑥)𝜑(0)(𝑥))⟩
CFT

= 𝑒−𝑆SG[𝜑]. (A.2.2)

Taking functional derivatives with respect to the source 𝜙(0)𝑖 for each operator 𝑖 , one can

therefore compute field theory correlation functions from the supergravity action by

⟨1(𝑥1) ⋯𝑛(𝑥𝑛)⟩ = −
𝛿 𝑆cl [𝜙

(0) 

1 , … , 𝜙(0)𝑛 ]
𝛿 𝜙(0) 

1 (𝑥1) ⋯ 𝛿 𝜙(0)𝑛 (𝑥𝑛)

|||||𝜙(0)𝑖 =0
. (A.2.3)

This prescription is due to Gubser, Klebanov and Polyakov [141] as well as Witten [142] and is

called GKPW prescription for short. The right-hand side leads to a diagrammatic expansion of

field theory correlators in terms of so-called (tree-level) Witten diagrams (see figure A.1).

Other entries in the dictionary The GKPW prescription provides a way to compute the

correlation functions of local field theory operators from the dual string theory side. Of course,

there are other interesting observables on the field theory side that one would like to compute

in this way.

A famous example is the expectation value of a field theory Wilson loop, i.e. the expectation

value of a non-local operator of the form

𝑊(𝛾) = tr [Pexp(∫
𝛾
)] , (A.2.4)

where 𝛾 ∶ 𝑡 ↦ (𝑥0(𝑡), 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) is a closed path in four dimensions and is a combina-

tion of the gauge field 𝐴𝜇 and the scalars 𝜙𝑖 of = 4 sYM,

 = (𝑖 𝐴𝜇 𝑥̇𝜇 + |𝑥̇ | 𝜙𝑖𝑛𝑖) d𝑡 with 𝛿𝑖 𝑗𝑛𝑖𝑛𝑗 = 1 and 𝑥̇𝜇 =
𝜕 𝑥𝜇

𝜕 𝑡 

. (A.2.5)
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The dual description of such a Wilson loop proposed in [143] and [144] is given by a string in

AdS5 ×𝑆5 whose world-sheet ends on the loop 𝛾 on the boundary of AdS5. This string has to

minimize the action and the world-sheet then is essentially a surface of minimal area in AdS5 ×𝑆5

with the prescribed boundary 𝛾 .
Another well-known entry is the relation between gluon scattering amplitudes at strong

coupling and the minimal area of the worldsheet of a fundamental string on the gravity side. This

relation was found in [145]. Since the string has to end on a light-like curve, this establishes a

relation between strong coupling gluon amplitudes and light-like Wilson loops. The IR-divergent 

part of these amplitudes can moreover be compared to an all-loop field-theory conjecture known

as the BDS ansatz [146]. One of the relevant quantities that can be compared is the cusp

anomalous dimension which was also computed from integrability in [147].

Finally, a connection between the two sides of the correspondence is also established through

integrability. On the field theory side, this was first found in [148] by mapping the one-loop

dilatation operator of the theory to the Hamiltonian of an integrable spin chain. Generalizations

to higher loops and more results are found in [149]. Integrable structures have similarly been

found on the string-theory side, in the form of 𝜎-models (see for example [150]).
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Appendix B

Multiple polylogarithms and the symbol

B.1 Multiple polylogarithms

Classical polylogarithms and iterated integrals Classical polylogarithms can be defined 

by the series expansion

Li𝑛(𝑥) =
∞
∑
𝑘=1

𝑥𝑘

𝑘𝑛
, |𝑥| ≤ 1, 𝑛 ∈ ℕ. (B.1.1)

To analytically continue this function outside the unit disk one expresses Li𝑛(𝑥) as an iterated

integral. Iterated integrals were studied by Chen in [15] and are defined as follows: Let 𝑀 be a

smooth, complex manifold. Let 𝛾 ∶ [0, 1] → 𝑀 be a path defined by 𝑡 ↦ (𝑥1(𝑡), … , 𝑥𝑛(𝑡)) and
𝜔1(𝑥), … , 𝜔𝑟 (𝑥) be differential one-forms on 𝑀 . Then the iterated integral along 𝛾 is defined as

∫
𝛾
𝜔1 ◦ ⋯ ◦ 𝜔𝑟 = ∫

1 

0
𝛾⋆𝜔1(𝑡1) ∫

𝑡1

0
𝛾⋆𝜔2(𝑡2) ∫

𝑡2

0
⋯∫

𝑡𝑟−1

0
𝛾⋆𝜔𝑟 (𝑡𝑟 ), (B.1.2)

where 𝛾⋆𝜔𝑖(𝑡𝑖) is the pull-back of 𝜔𝑖 to [0, 1]. If the one-forms 𝜔𝑖 satisfy a certain integrability

criterion, the iterated integral is independent of the path and only depends on the end point

𝛾(0) and 𝛾(1). In this sense the polylogarithm (B.1.1) can be expressed as an iterated integral as

Li𝑛(𝑥) = ∫
𝑥

0

d𝑡
𝑡
◦ ⋯ ◦

d𝑡
𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛−1

◦
d𝑡
1 − 𝑡 

, 𝑛 ≥ 1. (B.1.3) 

The notation ∫ 𝑥
0 denotes an integral along a path in the complex plane that begins at zero and 

ends at 𝑥 . The iterated integral can also be written recursively as

Li𝑛(𝑥) = ∫
𝑥

0

d𝑡
𝑡

Li𝑛−1(𝑡), 𝑛 ≥ 2 (B.1.4) 

with Li1(𝑥) = − log(1 − 𝑥).

Multiple polylogarithms Multiple polylogarithms were defined by Goncharov as a gener-

alization of the series (B.1.1) to 𝑑 > 1 variables (see [14]): Let 𝑛1, … , 𝑛𝑑 ∈ ℕ and 𝑥1, … , 𝑥𝑑 ∈ ℂ
such that

||𝑥𝑗 || < 1 for all 𝑚 = 1, … , 𝑑 . Then the multiple polylogarithm of depth 𝑑 is defined as

Li𝑛1,…,𝑛𝑑 (𝑥1, … , 𝑥𝑑 ) = ∑
0<𝑘1<⋯<𝑘𝑑

𝑥𝑘11 ⋯𝑥𝑘𝑑𝑑
𝑘𝑛11 ⋯𝑘𝑛𝑑𝑑

. (B.1.5)
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The sum 𝑛 = 𝑛1 + ⋯ + 𝑛𝑑 is called the weight. As the classical polylogarithms these functions

can be expressed in terms of an iterated integral as

Li𝑛1,…,𝑛𝑑 (𝑥1, … , 𝑥𝑑 ) = (−1)𝑑 ∫
1 

0

d𝑡
𝑡
◦ ⋯ ◦

d𝑡
𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛𝑑−1

◦
d𝑡

𝑡 − 𝑏𝑑
◦ ⋯ ◦

d𝑡
𝑡
◦ ⋯ ◦

d𝑡
𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛1−1

◦
d𝑡

𝑡 − 𝑏1
, 𝑏𝑗 =

𝑑
∏
𝑖=𝑗

𝑥−1𝑖 .

(B.1.6)

Note that when the argument(s) are equal to one, the sums in (B.1.1) and (B.1.5) reduce to

(multiple) zeta values,

𝜁𝑛 = Li𝑛(1), 𝜁𝑛1,…,𝑛𝑑 = Li𝑛𝑑 ,…,𝑛1(1, … , 1). (B.1.7) 

From the recursive expression (B.1.4), it is also natural to consider the generalization

𝐺(𝑎1, … , 𝑎𝑛; 𝑥) = ∫
𝑥

0

d𝑡
𝑡 − 𝑎1

𝐺(𝑎2, … , 𝑎𝑛; 𝑡), 𝐺(𝑥) = 1, (B.1.8)

for 𝑎1, … , 𝑎𝑛 ∈ ℂ. If all 𝑎𝑖 are zero, one sets 𝐺(0, … , 0; 𝑥) = 1
𝑛! log

𝑛(𝑥). Such integrals were

already studied a long time ago, for example by Kummer in [151], Poincaré in [152] or Lappo-

Danilevski [153], but as a function of a single variable 𝑥 . In [154] Goncharov considered them

as multivalued analytic functions of 𝑛 + 1 variables and this is the perspective that we follow

from now on. The functions 𝐺 are the multiple polylogarithms that are most commonly used

in the physics literature nowadays. We sometimes also use the notation 𝐚 = (𝑎1, … , 𝑎𝑛), i.e.

𝐺(𝐚; 𝑥) = 𝐺(𝑎1, … , 𝑎𝑛; 𝑥), and write |𝐚| = 𝑛 for the number of entries in 𝐚. The relation to the

functions Li𝑛1,…,𝑛𝑑 defined in (B.1.5) is

Li𝑛1,…,𝑛𝑑 (𝑥1, … , 𝑥𝑑 ) = (−1)𝑑𝐺(0, … , 0
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑛𝑑−1

, 𝑏𝑑 , … , 0, … , 0
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑛1−1

, 𝑏1; 1), 𝑏𝑗 =
𝑑

∏
𝑖=𝑗

𝑥−1𝑖 . (B.1.9)

In particular this means that in the recursive definition (B.1.8) the weight 𝑛 = 𝑛1 + ⋯ + 𝑛𝑑 = |𝐚|
simply corresponds to the number of integrations. 

The total differential of the functions 𝐺 is

d𝐺(𝑎1, … , 𝑎𝑛; 𝑥) = 𝐺(𝑎̂1, 𝑎2, … , 𝑎𝑛; 𝑥) dlog(
𝑥 − 𝑎1
𝑎2 − 𝑎1)

+ 𝐺(𝑎1, … , 𝑎𝑛−1, 𝑎̂𝑛; 𝑥) dlog(
𝑎𝑛−1 − 𝑎𝑛

𝑎𝑛 )

+
𝑛−1
∑
𝑖=2

𝐺(𝑎1, … , 𝑎̂𝑖 , … , 𝑎𝑛; 𝑥) dlog(
𝑎𝑖−1 − 𝑎𝑖
𝑎𝑖+1 − 𝑎𝑖)

. (B.1.10) 

A hat on an argument 𝑎𝑖 means that it should omitted, e.g. 𝐺(𝑎̂1, 𝑎2, … , 𝑎𝑛; 𝑥) = 𝐺(𝑎2, … , 𝑎𝑛; 𝑥). 

Chen iterated integrals satisfy shuffle relations [155] which means that the product of two

iterated integrals along the same path 𝛾 can be expressed as a combination of single integrals

along 𝛾 ,

∫
𝛾
𝜔1 ◦ ⋯ ◦ 𝜔𝑛 ⋅ ∫

𝛾
𝜔𝑛+1 ◦ ⋯ ◦ 𝜔𝑛+𝑚 = ∑

𝜎∈Σ(𝑛 ,𝑚)
∫
𝛾
𝜔𝜎(1) ◦ ⋯ ◦ 𝜔𝜎(𝑛+𝑚). (B.1.11)

59



Here Σ(𝑛 , 𝑚) is the set of shuffles of {1, … , 𝑛} and {𝑛 + 1, … , 𝑛 +𝑚} which are permutations that

preserve the order within each of the two sets,

Σ(𝑛 , 𝑚) =
{
𝜎 ∈ Σ𝑛+𝑚 ∶ 𝜎−1(1) < ⋯ < 𝜎−1(𝑛) and 𝜎−1(𝑛 + 1) < ⋯ < 𝜎−1(𝑛 + 𝑚)

}
. (B.1.12)

In the concrete case this means that the product of two MPLs with weights 𝑛 and𝑚 evaluated at 

the same point 𝑧 can be written as a linear combination of MPLs of weight 𝑛 + 𝑚 evaluated at 𝑧,

𝐺(𝑎1, … , 𝑎𝑛; 𝑧)𝐺(𝑎𝑛+1, … , 𝑎𝑛+𝑚; 𝑧) = ∑
𝜎∈Σ(𝑛 ,𝑚)

𝐺(𝑎𝜎(1), … , 𝑎𝜎(𝑛+𝑚); 𝑧) (B.1.13)

From the series definition (B.1.5) for the functions Li𝑛1,…,𝑛𝑑 one can derive a similar set of

combinatorial relations called stuffle or quasi-shuffle relations. We will not comment further on

those and refer to the original paper [156] instead.

Singularities and regularization The integral (B.1.8) diverges for 𝑥 → 𝑎1 and 𝑥 → ∞, and

has to be regularized. The limit 𝑥 → 0 is generally finite as long as at least one of the arguments

(𝑎1, … , 𝑎𝑛) is non-zero and after applying the regularization procedure that we will describe

momentarily,

lim
𝑥→0

𝐺(𝑎1, … , 𝑎𝑛; 𝑥) =

{
0 𝑛 ≥ 1,
1 𝑛 = 0,

if 𝑎𝑖 ≠ 0 for some 𝑖 ∈ {1, … , 𝑛}. (B.1.14)

In all cases, the singularities of MPLs are at worst logarithmic, which means that as 𝑧
approaches a singular point 𝑧0 they have an expansion in powers of logarithms,

𝐺(𝐚; 𝑧) =
𝑁
∑
𝑘=0

𝑔(𝑘)𝐚,𝑧0(𝑧)

{
log𝑘(𝑧 − 𝑧0), 𝑧0 ∈ ℂ,
log𝑘(𝑧), 𝑧0 = ∞.

(B.1.15)

The functions 𝑔(𝑘)𝐚,𝑧0(𝑧) are analytic at 𝑧 = 𝑧0 and the regularized limit of a 𝐺-function is defined

as the lowest term in the expansion (B.1.15),

Reg
𝑧→𝑧0

𝐺(𝐚, 𝑧) = 𝑔(0)𝐚,𝑧0(𝑧0) (B.1.16)

The limit lim𝑧→𝑧0 𝐺(𝐚; 𝑧) coincides with the regularized limit Reg𝑧→𝑧0 𝐺(𝐚; 𝑧) whenever the

former exists. Thus, the limit of a linear combination,

lim
𝑧→𝑧0

∑
𝐚
𝑐𝐚(𝑧)𝐺(𝐚; 𝑧) (B.1.17)

can be computed term by term with (B.1.16). The function 𝑔(𝑘)𝐚;𝑧0 on the right-hand side of (B.1.16)

can be obtained explicitly by using the shuffle algebra of the MPLs. This is explained in detail

in [80, section 3.3.1]. Importantly, the regularization procedure preserves the shuffle algebra

structure.
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Removing parameter-dependent arguments In the definition (B.1.8) it is important that

the arguments of 𝐺(𝑎2, … , 𝑎𝑛; 𝑡) in the integrand are independent of the integration parameter 𝑡 .
In the recursive algorithm described in section 3.3.1, this not fulfilled automatically. We briefly

review how this dependence can be removed which is the statement of [77, lemma 2.7].

We assume that we have an MPL of weight 𝑛 of the form 𝐺(𝑎1(𝑡), … , 𝑎𝑛(𝑡); 𝑥) in which the

arguments 𝑎𝑖 depend on a parameter 𝑡 . From the total differential (B.1.10) we find that the

derivative with respect to 𝑡 is

𝜕𝑡𝐺(𝑎1, … , 𝑎𝑛; 𝑥) = 𝐺(𝑎̂1, 𝑎2, … , 𝑎𝑛; 𝑥) 𝜕𝑡 log(𝑥 − 𝑎1) − 𝐺(𝑎1, … , 𝑎𝑛−1, 𝑎̂𝑛; 𝑥) 𝜕𝑡 log(𝑎𝑛) 

+
𝑛−1
∑
𝑖=1

[𝐺(𝑎1, … , 𝑎̂𝑖+1, … , 𝑎𝑛; 𝑥) − 𝐺(𝑎1, … , 𝑎̂𝑖 , … , 𝑎𝑛; 𝑥)] 𝜕𝑡 log(𝑎𝑖+1 − 𝑎𝑖),

(B.1.18)

where we have hidden the dependence of (𝑎1, … , 𝑎𝑛) on 𝑡 in order not to clutter the notation too

much. The dependence of the 𝑎𝑖 on 𝑡 is removed recursively in the weight 𝑛, i.e. we assume the

MPLs occurring in (B.1.18) have already been expressed in the form

∑
(𝑏1,…,𝑏𝑛−1)

𝑐(𝑏1,…,𝑏𝑛−1)𝐺(𝑏1, … , 𝑏𝑛−1; 𝑡), (B.1.19) 

where the 𝑏𝑖 are independent of 𝑡 .
Now one would like to integrate (B.1.18) over 𝑡 using the definition (B.1.8). In order to do

so, one has to factor the rational prefactors of the MPLs linearly in 𝑡 . Concretely one factors

𝑎𝑖+1(𝑡) − 𝑎𝑖(𝑡) = ∏
𝛼

(𝑡 − 𝛼)𝑛𝛼 , 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑛𝛼 ∈ ℤ, (B.1.20) 

after which

𝜕𝑡 log(𝑎𝑖+1 − 𝑎𝑖) = ∑
𝛼

𝑛𝛼
𝑡 − 𝛼 

. (B.1.21)

Similarly one factors 𝑥 − 𝑎1 and 𝑎𝑛 in the first line of (B.1.18) linearly in 𝑡 . Note that the roots 𝛼
may be complicated algebraic expressions, but importantly they are independent of 𝑡 .

This allows one to apply (B.1.8) and integrate the differential equation (B.1.18). The end

result should be a new expression for the original function 𝐺(𝑎1(𝑡), … , 𝑎𝑛(𝑡); 𝑥), which fixes the

integration constant. This constant may be found symbolically as shown in [77, section 2.5];

alternatively one it may be determined numerically as in [78, appendix D].

B.2 The symbol

A very useful quantity to study multiple polylogarithms is the symbol, which was introduced

into the physics literature in [157], but appeared already earlier in work by Goncharov [158, 

section 3]. The idea is to take an iterated integral (B.1.2), where all the one-forms are of the

form 𝜔𝑖 = dlog(𝑅𝑖) for some algebraic function 𝑅𝑖 , forget the information about the integrations

and only keep the information about the forms. Concretely, the symbol  of an iterated integral

of this type is a formal tensor product of all the 𝑅𝑖 ,

 (∫
𝛾
dlog (𝑅1) ◦ ⋯ ◦ dlog (𝑅𝑛)) = 𝑅1 ⊗ ⋯ ⊗ 𝑅𝑛. (B.2.1)
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This is extended to linear combinations of iterated integrals by linearity, i.e. a general symbol

tensor looks like

∑
(𝑖1,…,𝑖𝑛)

𝑐(𝑖1,…,𝑖𝑛)𝑅𝑖1 ⊗ ⋯ ⊗ 𝑅𝑖𝑛 (B.2.2)

for some coefficients 𝑐(𝑖1,…,𝑖𝑛). In practice, the symbol of a function can often be obtained

recursively from its total differential, see [159, section 3.2]. If the total differential of a function

𝑓 (𝑥1, … , 𝑥𝑚) of 𝑚 variables can be written as

d𝑓 (𝑥1, … , 𝑥𝑚) = ∑
𝑖
𝑓𝑖(𝑥1, … , 𝑥𝑚) dlog (𝑅(𝑖)(𝑥1, … , 𝑥𝑚)) , (B.2.3) 

then its symbol  may be defined recursively by

(𝑓 (𝑥1, … , 𝑥𝑚)) = ∑
𝑖
(𝑓𝑖(𝑥1, … , 𝑥𝑚)) ⊗ 𝑅(𝑖)(𝑥1, … , 𝑥𝑚). (B.2.4)

From the total differential in (B.1.10) we can see that this is applicable to the multiple polyloga-

rithms 𝐺(𝑎1, … , 𝑎𝑛; 𝑧). Explicitly, the recursive formula then reads

 (𝐺(𝑎1, … , 𝑎𝑛; 𝑥)) =  (𝐺(𝑎̂1, 𝑎2, … , 𝑎𝑛; 𝑥)) ⊗ (
𝑥 − 𝑎1
𝑎2 − 𝑎1)

+  (𝐺(𝑎1, … , 𝑎𝑛−1, 𝑎̂𝑛; 𝑥)) ⊗ (
𝑎𝑛−1 − 𝑎𝑛

𝑎𝑛 ) (B.2.5)

+
𝑛−1
∑
𝑖=2

 (𝐺(𝑎1, … , 𝑎̂𝑖 , … , 𝑎𝑛; 𝑥)) ⊗ (
𝑎𝑖−1 − 𝑎𝑖
𝑎𝑖+1 − 𝑎𝑖)

.

The identities between symbol tensors are relatively simple, since they are inherited from

the functional equations of the logarithm,

𝑆 ⊗ (𝑎 𝑏) ⊗ 𝑇 = 𝑆 ⊗ 𝑎 ⊗ 𝑇 + 𝑆 ⊗ 𝑏 ⊗ 𝑇 and 𝑆 ⊗ (±1) ⊗ 𝑇 = 0. (B.2.6)

It is often stated (for example in [157]) that the symbol of a constant vanishes which fits with

the recursive definition in terms of the total differential of a function. The symbol can however

also be obtained as the maximum iteration of a coproduct defined on multiple polylogarithms

that turns the algebra of multiple polylogarithms into a Hopf algebra. The coproduct and Hopf

algebra were described in [160, section 2] and we will not go into further detail about these 

structures here. A recent review can be found in [161, section 6]. With this framework, the 

rule that the symbol of a function vanishes can be refined which is useful for working with

symbols over a number field. In this case one can choose the symbol of each element of a sets of

multiplicatively independent constants independently. This is discussed in [159, section 3.2]

and also in [17, section 2.2], where it was used in practice.

The symbol of the multiple polylogarithms 𝐺(𝑎1, … , 𝑎𝑛; 𝑥) is compatible with the shuffle

algebra,

(𝑓 𝑔) = (𝑓 )X(𝑔), (B.2.7)
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where 𝑓 and 𝑔 are multiple polylogarithms. HereX denotes the shuffle of symbol tensors,

(𝑅1 ⊗ ⋯ ⊗ 𝑅𝑛) X (𝑅𝑛+1 ⊗ ⋯ ⊗ 𝑅𝑛+𝑚) = ∑
𝜎∈Σ(𝑛 ,𝑚)

𝑅𝜎−1(1) ⊗ ⋯ ⊗ 𝑅𝜎−1(𝑛+𝑚). (B.2.8) 

This is extended to linear combinations of symbol tensors by linearity.

Not every arbitrary symbol tensor comes from an iterated integral. It was pointed out in [76,

section 3.2] that a necessary and sufficient condition for this to be the case is the so-called

integrability criterion,

∑
(𝑖1,…,𝑖𝑛)

𝑐(𝑖1,…,𝑖𝑛) 𝑅𝑖1 ⊗ ⋯ ⊗ 𝑅𝑖𝑝−1 ⊗ 𝑅𝑖𝑝+2 ⊗ ⋯ ⊗ 𝑅𝑖𝑛 dlog (𝑅𝑖𝑝) ∧ dlog (𝑅𝑖𝑝+1) = 0, 1 ≤ 𝑝 < 𝑛 , (B.2.9) 

which has to hold to all 𝑝 ∈ {1, … , 𝑛 − 1}.
A very general definition of the symbol and an explanation for the connections to and issues

with the one given here in terms of the total differential is given in the notes [162, section 9].
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Appendix C

Momentum twistors

𝑝𝑎+1

𝑥𝑎+1
𝑝𝑎

𝑥𝑎

𝑝𝑎−1

𝑥𝑎−1

𝑝𝑎−2
𝑥𝑎−2 𝑝𝑎−3

Figure C.1: Dual coordinates

For a planar Feynman diagram (see figure C.1) it is convenient to encode the 𝑚 external

momenta 𝑝𝑖 in terms of so-called dual momentum variables 𝑥𝑖 ,

𝑝𝑖 = 𝑥𝑖 − 𝑥𝑖+1. (C.0.1)

In terms of these variables, momentum conservation∑𝑚 

𝑖 𝑝𝑖 = 0 simply becomes the condition

that the 𝑥𝑖 are labeled cyclically, i.e. 𝑥𝑚+1 = 𝑥1. Poincaré-invariant Mandelstam variables are

constructed from the dual variables as

(𝑥𝑖 − 𝑥𝑗)
2 = (𝑝𝑖 + ⋯ + 𝑝𝑗−1)

2 . (C.0.2)

In case the Poincaré symmetry is enhanced to conformal symmetry, only cross-ratios of the

Mandelstam variables are invariant under the full symmetry. These cross-ratios are defined as

(𝑖 , 𝑗; 𝑘 , 𝓁 ) = 

(𝑥𝑖 − 𝑥𝑗)2(𝑥𝑘 − 𝑥𝓁 )2

(𝑥𝑖 − 𝑥𝑘)2(𝑥𝑗 − 𝑥𝓁 )2
. (C.0.3)

It is well known that the four-dimensional conformal group SO(2, 4) acts non-linearly on the

dual variables 𝑥𝑖 . It is known due to Dirac (see [163]) that the action can be linearized: In this

so-called embedding formalism, conformally compactified (and complexified) four-dimensional

Minkowski space ℝ1,3
is represented as a quadric inside a five-dimensional projective space

ℙ5
. If we denote the homogeneous coordinates on ℙ5

by [𝑌0 ∶ ⋯ ∶ 𝑌5], then the hypersurface

corresponding to ℝ1,3
is given by the equation

𝑌 2 = 𝑌 2 

0 − 𝑌 2 

1 + 𝑌 2 

2 − 𝑌 2 

3 − 𝑌 2 

4 − 𝑌 2 

5 = 0. (C.0.4)
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The homogeneous coordinates can be packaged into a 4 × 4 antisymmetric matrix 𝑋𝛼 𝛽 = −𝑋𝛽 𝛼 by

𝑋01 = 

1
√
2 

(𝑌0 − 𝑌1) , 𝑋02 = 

1
√
2 

(𝑖 𝑌3 + 𝑌4) , 𝑋03 = 

1
√
2 

(𝑌2 − 𝑌5) , (C.0.5)

𝑋12 = −
𝑖
√
2 

(𝑌2 + 𝑌5) , 𝑋13 = 

1
√
2 

(−𝑖 𝑌3 + 𝑌4) , 𝑋23 = 

1
√
2 

(𝑌0 + 𝑌1) . (C.0.6)

The condition for a point to lie on the quadric in equation (C.0.4) and thus belong to Minkowski

space then becomes

𝜖𝛼 𝛽 𝛾 𝛿𝑋𝛼 𝛽𝑋𝛾 𝛿 = 0. (C.0.7)

It turns out that this equation is satisfied if and only if the rank of the matrix 𝑋𝛼 𝛽 is two which

means that it can be written in the form

𝑋𝛼 𝛽 = 𝐴[𝛼𝐵𝛽] = 𝐴𝛼𝐵𝛽 − 𝐴𝛽𝐵𝛼 , 𝛼 , 𝛽 ∈ {0, 1, 2, 3}, (C.0.8)

for some twistors 𝐴 and 𝐵 which are points in three-dimensional projective space ℙ3
. The two

points 𝐴 and 𝐵 span a line in ℙ3
which we denote by (𝐴𝐵). Conversely, given a line (𝐴𝐵) ⊂ ℙ3

determined by two points 𝐴, 𝐵 ∈ ℙ3
, we can construct a matrix 𝑋𝛼 𝛽 satisfying (C.0.7) and a point

[𝑌0 ∶ ⋯ ∶ 𝑌5] that lies on the quadric in equation (C.0.4).

Every dual point 𝑥𝑖 in four-dimensional Minkowski space may be represented by such a 

line (𝐴𝑖𝐵𝑖) ⊂ ℙ3
. The distance (𝑥𝑖 − 𝑥𝑗)2 of two points can be written in terms of the twistors

variables as

1
2 

(𝑥𝑖 − 𝑥𝑗)2 =
⟨𝐴𝑖𝐵𝑖𝐴𝑗𝐵𝑗⟩

⟨𝐴∞𝐵∞𝐴𝑖𝐵𝑖⟩⟨𝐴∞𝐵∞𝐴𝑗𝐵𝑗⟩
, (C.0.9) 

where the four-bracket between the twistors is defined as

⟨𝐴𝐵 𝐶 𝐷⟩ = 𝜖𝛼 𝛽 𝛾 𝛿𝐴𝛼𝐵𝛽𝐶𝛾𝐷𝛿 , (C.0.10)

The twistors𝐴∞ and 𝐵∞ represent a line through the point at infinity that breaks conformal to the

usual Poincaré symmetry of Minkowski space. One can take for example 𝐴∞ = [1 ∶ 0 ∶ 0 ∶ 0]
and 𝐵∞ = [0 ∶ 1 ∶ 0 ∶ 0]. Note that if two dual points are light-like separated, i.e. (𝑥𝑖 − 𝑥𝑗)2 = 0,
then the four bracket of the twistors vanishes. Geometrically this means that the corresponding 

lines (𝐴𝑖𝐵𝑖) and (𝐴𝑗𝐵𝑗) intersect in a point. Note also that the conformal group SO(2, 4) acting non-

linearly on the dual points 𝑥𝑖 simply becomes the group PGL(4) of coordinate transformations

in ℙ3
. A translation between the most important notions in dual space and twistor space may

be found in table C.1.

Twistors are originally due to Penrose (see [164]); in the context of scattering amplitudes

they were introduced by Hodges in [165] (see also [166]). They have since found a large number

of applications in scattering amplitudes, in particular in the context of = 4 sYM.
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Dual momentum space Momentum twistor space ℙ3

Point 𝑥 Line 𝐿𝑥 = (𝐴𝑥𝐵𝑥 )
Distance (𝑥 − 𝑦)2 Four bracket ⟨𝐴𝑥𝐵𝑥𝐴𝑦𝐵𝑦⟩
Null separation (𝑥 − 𝑦)2 = 0 Lines 𝐿𝑥 and 𝐿𝑦 intersect 

Conformal transformations SO(2, 4) PGL(4) transformations

Table C.1: Momentum twistor dictionary
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1 Introduction and summary

Introducing defects such as boundaries or interfaces in conformal field theories (CFTs)

does not only make these theories more adapt to experimental situations in condensed

matter systems but also constitutes a natural step in exploring the limits of applicability of

modern approaches to quantum field theory such as duality, integrability and the conformal

bootstrap program, see e.g. [1]. From the latter perspective, various defect versions of the

four-dimensional maximally supersymmetric Yang-Mills (N = 4 SYM) theory constitute

particularly interesting arenas for investigation.

An example of such a defect CFT is the field theory dual to the D3-D5 probe-brane

setup with k units of background gauge-field flux [2, 3], see [4] for a review. The presence

of the flux translates into the rank of the gauge group of the defect field theory being

different on the two sides of a codimension-one defect placed at x3 = 0 and three of the

scalar fields of N = 4 SYM theory carrying vacuum expectation values (vevs) given by the

generators of a k-dimensional irreducible representation of su(2) for x3 > 0. This setup

partly breaks conformal symmetry as well as supersymmetry. Conformal symmetry is

reduced from SO(4, 2) to SO(3, 2) and the supersymmetry is reduced to three-dimensional

N = 4 [5, 6]. The presence of the defect implies that operators can acquire non-vanishing

one-point functions of the form [7]

〈O∆〉(x) =
C

x∆
3

, (1.1)

with ∆ denoting the conformal dimension, and due to the vevs this can happen already at

tree level for certain scalar operators. Using the language of integrability, it was possible to

express in one compact formula the tree-level one-point functions of all bulk single-trace

scalar operators of the defect CFT [8–11]. Furthermore, by a rather demanding field-theory

calculation involving the diagonalization of the highly non-trivial mass matrix using fuzzy

spherical harmonics, it was possible to extend the compact formula for one-point functions

to one-loop order in the SU(2) sector of the theory [12–14]. What is more, the one-loop

computation allowed for a comparison with a prediction originating from supergravity [15]

and despite the partial breaking of both conformal and supersymmetry a perfect match

was found [12, 13]. More precisely, the supergravity computation involved taking the

double-scaling limit [16]1

λ→∞, k →∞, λ

k2
fixed, (1.2)

where λ is the ’t Hooft coupling, and performing a perturbative expansion in λ/k2. From

the result of this computation, a prediction for the ratio of the one-loop and the tree-level

value of the one-point function of the chiral primary trZL in the double-scaling limit could

be inferred [12].

1This double-scaling limit is reminiscent of the Berenstein-Maldacena-Nastase limit [17], which breaks

down at four-loop order [18–20]. While the present double-scaling limit breaks down for non-protected

operators already at one-loop order, it holds for protected operators such as trZL to at least (L− 1)-loop

order [14].
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D7 probe brane

N D3

N − k1k2 D3

x3

x4, x5, x6, x7, x8

x0, x1, x2

x3

x0

x1, x2

broken U(N)

U(N − k1k2)

Figure 1. Brane configuration in string theory (left) and the dual field-theory picture (right) with

different gauge groups on each side of the defect at x3 = 0.

A similar prediction can be extracted from a supergravity computation performed

in a closely related but completely non-supersymmetric setup, namely that of a D3-D7

probe-brane system [21]. The D3-D7 probe-brane system has two configurations which are

of relevance for us, namely one where the geometry of the D7 brane is AdS4 × S2 × S2

and one where the geometry is AdS4 × S4. In both cases, the configuration has to be

stabilized by adding either fluxes k1 and k2 on the two S2’s [22] or a non-trivial instanton

bundle on the S4 [23]. These flux-stabilized configurations have interesting applications

from the condensed matter perspective giving rise to strongly coupled Dirac fermions in

2+1 dimensions, see e.g. [22–29]. The former configuration has a dual defect CFT where

all six scalar fields of N = 4 SYM theory are assigned vevs in the form of generators of

the (k1 × k2)-dimensional irreducible representation of su(2) × su(2) on one side of the

defect; see figure 1. In the latter case, only five out of the scalar fields are assigned vevs

and these transform in an irreducible SO(5) representation. For both cases, it is possible to

introduce a double-scaling parameter and to evaluate the one-point function as an expansion

in this parameter [21]. Furthermore, in both cases the system is stable if the double-scaling

parameter is sufficiently small. Reference [21] gives the leading order result of this evaluation

and the higher orders can be extracted by a straightforward extension of this work. For

the AdS4 × S2 × S2 symmetric configuration, the double-scaling limit is introduced as

follows [21]:

λ→∞, k1, k2 →∞,
λ

(k2
1 + k2

2)
fixed. (1.3)

Keeping also the ratio k1/k2 finite and assuming (k1 − k2) to be of the same order as k1

and k2, the supergravity prediction for the one-point function of the unique SO(3)× SO(3)-

symmetric chiral primary of (even) length L reads

〈OL〉
〈OL〉tree

= 1 +
λ

4π2(k2
1 + k2

2)

1

(L− 1)(k2
1 + k2

2)2

(
4(k1k2)2 + (L3 + 3L− 2)(k4

1 + k4
2)

+ 2(L− 1)(L+ 2)k1k2(k2
1 − k2

2) cot[(L+ 2)ψ0]

)
+O

(
λ2

(k2
1 + k2

2)2

)
,

(1.4)
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where ψ0 = arctan(k1/k2). Notice that the prediction carries over to any other chiral

primary with a non-trivial projection on an SO(3) × SO(3)-symmetric one, such as e.g.

trZL. For the AdS4 × S4 configuration, supergravity also gives a prediction for the one-

point function, however, with less structure as only one parameter is involved. In the

remainder of this paper, we shall demonstrate how the rather intricate prediction (1.4) can

be reproduced via a solid field-theory calculation. The major challenge of the computation

is the diagonalization of the mass matrix of the theory, which requires a significant further

development of the technique based on fuzzy spherical harmonics introduced in [12, 13].

The challenge is even bigger in the case of the SO(5)-symmetric vevs. Our refined method

works for that case as well but with considerably more effort. We plan to return to this

case in a future publication [30]. With the present work, we do not only provide a detailed

positive test of AdS/dCFT in a situation where supersymmetry is completely broken; we

also set up a perturbative framework which makes possible the evaluation of numerous

other quantities in the defect CFT in question.

Our paper is structured as follows. In section 2, we diagonalize the highly non-trivial

mass matrix that arises due to the vevs. In section 3, we determine the resulting propagators

of the mass eigenstates, which take the form of AdS4 propagators, and subsequently the

propagators of the fields occurring in the action. Having thus set up the framework for

calculating quantum corrections in this defect CFT, we calculate the first quantum correction

to the classical solution in section 4, which we find to be non-vanishing. We proceed to

calculate the one-loop correction to the one-point function of general single-trace operators,

and in particular to trZL, in section 5. In section 6, we conclude with an outlook on possible

future directions and interesting problems our perturbative framework can be applied to.

Several appendices contain our conventions (appendix A) as well as details on technical

parts of the calculations (appendices B–D).

2 Mass matrix

In this section, we diagonalize the mass matrix that arises due to the scalar vevs. Following

the strategy of [12, 13], we begin by expanding the action around the classical solution in

section 2.1. We then proceed to diagonalize the mass matrices for the bosons and fermions

in sections 2.2 and 2.3, respectively. We summarize the result in section 2.4.

2.1 Expansion of the action

The defect CFT we study contains two types of fields: the ones of N = 4 SYM theory

transforming in the adjoint of the gauge group and the fundamental fields living on the

three-dimensional defect. However, the fields living on the defect will not contribute to the

one-loop one-point functions of bulk2 operators as explained in [13], and we accordingly

neglect the corresponding part of the action. The action for the bulk fields is the one of

2Note that ‘bulk’ refers to four-dimensional Minkowski space without the defect; it should not be confused

with the bulk of the dual AdS5.
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standard N = 4 SYM theory in four dimensions,

SN=4 =
2

g2
YM

∫
d4x tr

(
− 1

4
FµνF

µν − 1

2
DµφiD

µφi +
i

2
ψ̄γµDµψ (2.1)

+
1

4
[φi, φj ][φi, φj ] +

1

2

3∑
i=1

ψ̄Gi[φi, ψ] +
1

2

6∑
i=4

ψ̄Gi[φi, γ5ψ]

)
.

We describe in appendix A our field-theory conventions, which follow the ones of [13]. In

particular, we explicitly give the matrices Gi (i = 1, . . . , 6), which arise in the reduction

from ten- to four-dimensional SYM theory. The ψi for i = 1, . . . , 4 are four-dimensional

Majorana fermions, and all these fields transform in the adjoint of U(N),

Dµφi = ∂µφi − i[Aµ, φi], Dµψi = ∂µψi − i[Aµ, ψi]. (2.2)

The classical equations of motion of (2.1) are

∇2φcl
i =

[
φcl
j ,
[
φcl
j , φ

cl
i

]]
, i = 1, . . . , 6, (2.3)

where we are setting the fermions and gauge fields to zero classically, and are looking for

time-independent solutions for the scalars. A solution to the equations of motion for the six

scalar fields with SO(3)× SO(3) symmetry is [21]3

φcl
i (x) = − 1

x3

(
tk1i ⊗ 1k2

)
⊕ 0N−k1k2 for i = 1, 2, 3,

φcl
i (x) = − 1

x3

(
1k1 ⊗ t

k2
i−3

)
⊕ 0N−k1k2 for i = 4, 5, 6.

(2.4)

Here the matrices tkai constitute the ka-dimensional irreducible representation of su(2);

thus, the solution has su(2)× su(2) symmetry. In the case k1 = 1 or k2 = 1, the vevs (2.4)

reduce to the ones in the supersymmetric D3-D5 setup [13]; hence, we will always assume

k1, k2 ≥ 2. The classical solution (2.4) applies for x3 > 0 and is responsible for breaking

the gauge group from U(N) to U(N − k1k2) for x3 > 0. All other fields vanish classically

in this region. For x3 < 0, all fields have gauge group U(N − k1k2) and the vevs for these

fields vanish.

We expand the action around the classical solution as

φi(x) = φcl
i (x) + φ̃i(x). (2.5)

The gauge fixing is implemented by introducing fermionic ghost fields c and c̄ transforming

as Lorentz scalars, following [13, 32]. The terms in the expanded action that are linear in

3The prefactor 1
x3

ensures scale invariance of the defect field theory and is important for the dual

probe-brane interpretation. A set-up where the classical fields were similar but not carrying the 1
x3

prefactor

was studied in [31], where in order to stabilize the system extra mass and interaction terms were added to

the N = 4 SYM action.

– 5 –
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φ̃i vanish by the classical equations of motion. All fields have a canonically normalized

(quadratic) kinetic term,

Skin =
2

g2
YM

∫
d4x tr

(
1

2
Aµ∂ν∂

µAν +
1

2
φ̃i∂ν∂

ν φ̃i +
i

2
ψ̄γµ∂µψ + c̄∂µ∂

µc

)
. (2.6)

The mass term for the bosons becomes

Sm,b =
2

g2
YM

∫
d4x tr

(
− 1

2
φ̃j [φ

cl
i , [φ

cl
i , φ̃j ]]− φ̃i[[φcl

i , φ
cl
j ], φ̃j ]

− 1

2
Aµ[φcl

i , [φ
cl
i , A

µ]] + 2i[Aµ, φ̃i]∂µφ
cl
i

)
,

(2.7)

while the mass term for the four Majorana fermions ψi and the ghosts c and c̄ is

Sm,f =
2

g2
YM

∫
d4x tr

(
1

2

3∑
i=1

ψ̄Gi[φcl
i , ψ] +

1

2

6∑
i=4

ψ̄Gi[φcl
i , γ5ψ]−

6∑
i=1

c̄[φcl
i , [φ

cl
i , c]]

)
. (2.8)

The expanded action also contains cubic and quartic interaction vertices between the

different fields. The cubic interactions are given by

Scubic =
2

g2
YM

∫
d4x tr

(
i[Aµ, Aν ]∂µAν + [φcl

i , φ̃j ][φ̃i, φ̃j ] + i[Aµ, φ̃i]∂µφ̃i + [Aµ, φ
cl
i ][Aµ, φ̃i]

+
1

2
ψ̄γµ[Aµ, ψ] +

1

2

3∑
i=1

ψ̄Gi[φ̃i, ψ] +
1

2

6∑
i=4

ψ̄Gi[φ̃i, γ5ψ] + i(∂µc̄)[Aµ, c]− c̄[φcl
i , [φ̃i, c]]

)
.

(2.9)

The quartic interaction vertices are identical to the quartic vertices present in the action (2.1).

They do not play a role for the one-loop correction to the one-point functions of bulk

operators, starting to contribute only at two-loop order [13].

The mass terms (2.7) and (2.8) are not diagonal, neither in flavor nor in color, and

have to be diagonalized in order to obtain the mass spectrum of the theory and thus

the propagators. Moreover, note that unlike actual mass terms, the terms (2.7) and (2.8)

depend on the inverse distance to the defect via the vevs (2.4). This dependence can be

understood in terms of an effective AdS4 space, as was found in [13, 16] and is discussed in

detail in section 3.

In the remainder of the paper, we will use Euclidean signature.

2.2 Boson mass matrix

In this section, we will treat the mass term for the bosons, while the mass term for the

fermions will be treated in section 2.3.

– 6 –
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Inserting the classical solution (2.4) into the mass term (2.7) for the bosons, the latter

can be written as

Sm,b =
2

g2
YM

∫
d4x

1

x2
3

tr

(
− 1

2

6∑
j=1

φ̃j

[
(L(1))2 + (L(2))2

]
φ̃j −

1

2
Aµ

[
(L(1))2 + (L(2))2

]
Aµ

+ i
3∑

i,j,k=1

εijkφ̃iL
(1)
j φ̃k + i

3∑
i,j,k=1

εijkφ̃i+3L
(2)
j φ̃k+3

+ i
3∑
i=1

[
φ̃iL

(1)
i A3 −A3L

(1)
i φ̃i

]
+ i

3∑
i=1

[
φ̃i+3L

(2)
i A3 −A3L

(2)
i φ̃i+3

])
. (2.10)

The operators L
(1)
i and L

(2)
i for i = 1, 2, 3 are defined as the adjoint of the classical solution,

L
(1)
i ≡ ad

[(
tk1i ⊗ 1k2

)
⊕ 0N−k1k2

]
, L

(2)
i ≡ ad

[(
1k1 ⊗ t

k2
i

)
⊕ 0N−k1k2

]
, (2.11)

where as usual (adA)B ≡ [A,B]. They satisfy the commutation relations of su(2)× su(2),[
L

(1)
i , L

(1)
j

]
= iεijkL

(1)
k ,

[
L

(2)
i , L

(2)
j

]
= iεijkL

(2)
k ,

[
L

(1)
i , L

(2)
j

]
= 0. (2.12)

Furthermore, we write (L(a))2 ≡
∑

i(L
(a)
i )2 for the quadratic Casimirs corresponding to

the two sectors with a = 1, 2. We will use their eigenvalues `1(`1 + 1) and `2(`2 + 1) to

label irreducible representations of su(2) × su(2) by (`1, `2). As in [13], we find that we

can distinguish two types of bosons: if their mass term is already diagonal in flavor the

fields are called “easy” bosons, while the ones for which flavor and color mix are called

“complicated”.

We rewrite (2.10) as

Sm,b =
2

g2
YM

∫
d4x

(
−1

2x2
3

)
tr

(
E†
[
(L(1))2 + (L(2))2

]
E (2.13)

+ C̃†
[
(L(1))2 + (L(2))2 − 2S̃

(1)
i L

(1)
i − 2S̃

(2)
i L

(2)
i

]
C̃

)
,

where we have grouped the fields into vectors of easy and complicated fields E and C̃

respectively,

E =

A0

A1

A2

 , C̃ =


φ̃1

...

φ̃6

A3

 . (2.14)

The seven-dimensional matrices S̃
(1)
i and S̃

(2)
i act on the flavor index while the operators

L
(1)
i and L

(2)
i act on the color part of the quantum fields. We see from (2.13) that for the

easy fields we only need to diagonalize the operator (L(1))2 + (L(2))2 in color space. The
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mass term for the complicated fields mixes different flavors by means of the matrices S̃
(1)
i

and S̃
(2)
i and we will have to diagonalize the color and flavor part simultaneously. Note that

compared to the solution where only three scalar fields get non-trivial SO(3)-symmetric vevs

studied in [13], all scalars φ̃i are now complicated bosons and only the three components of

the gauge fields A0, A1, A2 and the ghost field remain easy. We will denote the eigenvalues

of the matrices inside the trace in (2.13) by m2.

2.2.1 Decomposition of the color matrices and easy fields

In order to proceed with the diagonalization, we decompose the color part of a generic field

Φ in blocks:

Φ = [Φ]n,n′E
n
n′ + [Φ]n,aE

n
a + [Φ]a,nE

a
n + [Φ]a,a′E

a
a′ , (2.15)

with n, n′ = 1, . . . , k1k2 and a, a′ = k1k2 + 1, . . . , N . Here Enn′ are N ×N matrices with a

single non-vanishing entry, namely a 1 at position (n, n′). The fields [Φ]n,a and [Φ]a,n will

often be referred to as fields in the off-diagonal block.

The fields [Φ]a,a′ in the (N − k1k2)× (N − k1k2) block are massless since

L
(1)
i Eaa′ =

[(
tk1i ⊗ 1k2

)
⊕ 0N−k1k2 , E

a
a′

]
= 0, (2.16)

and similarly for L
(2)
i . One can think of this result as the statement that the indices a and

a′ are singlets under su(2)× su(2).

The matrices Ena and Ean transform in the (k1 × k2)-dimensional irreducible represen-

tation of su(2)× su(2),

L
(1)
i Ena = En

′
a[t

k1
i ⊗ 1k2 ]n′,n, L

(1)
i Ean = −[tk1i ⊗ 1k2 ]n,n′E

a
n′ ,

L
(2)
i Ena = En

′
a[1k1 ⊗ t

k2
i ]n′,n, L

(2)
i Ean = −[1k1 ⊗ t

k2
i ]n,n′E

a
n′ .

(2.17)

Equivalently, each index n transforms in the same representation as ti, namely the one

with spins `1 = k1−1
2 and `2 = k2−1

2 . It follows that the matrices Ena and Ean already

diagonalize the quadratic Casimir operators,

(L(1))2Ena =
k2

1 − 1

4
Ena, (L(1))2Ean =

k2
1 − 1

4
Ean, (2.18)

and analogously for (L(2))2. The matrices Ena and Ean transform into each other under

Hermitian conjugation, and this behavior carries over to the fields [Φ]n,a and [Φ]a,n in the

off-diagonal block:

(Ena)
† = Ean, [Φ]†n,a ≡

(
[Φ]n,a

)†
= [Φ]a,n . (2.19)

Moreover, they are orthogonal and normalized in the sense that

tr
[
(Ena)

†En
′
a′

]
= δnn

′
δaa′ , tr

[
(Ean)†En

′
a′

]
= 0,

tr
[
(Ean)†Ea

′
n′

]
= δaa

′
δnn′ , tr

[
(Ena)

†Ea
′
n′

]
= 0.

(2.20)
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For easy fields [Φ]n,a and [Φ]a,n, for which (L(1))2 + (L(2))2 is the complete mass term, we

thus find the masses

m2
easy ≡

k2
1 − 1

4
+
k2

2 − 1

4
, (2.21)

which have multiplicity 2k1k2(N − k1k2).

Finally, the matrices Enn′ contain two n indices, and therefore they transform as the

product of two (k1 × k2)-dimensional irreducible representations of su(2) × su(2). This

product is reducible and decomposes as

(
k1 − 1

2
,
k2 − 1

2

)
⊗
(
k1 − 1

2
,
k2 − 1

2

)
=

k1−1⊕
`1=0

k2−1⊕
`2=0

(`1, `2), (2.22)

where (`1, `2) is the su(2) × su(2) representation with spins `1 and `2 and dimension

(2`1 + 1)× (2`2 + 1). Note that the fields [Φ]n,a and [Φ]a,n in the off-diagonal block have

spins `1 = k1−1
2 and `2 = k2−1

2 , which appears as one of the terms in the decomposition (2.22).

Thus, any results for the masses in the off-diagonal blocks can be obtained from the result

in the k1k2 × k1k2 block by the simple replacement rule

`1 →
k1 − 1

2
and `2 →

k2 − 1

2
. (2.23)

This justifies that in the following we will mostly focus on the k1k2 × k1k2 block.

In the case of the field theory where only three scalar fields get non-trivial SO(3)-

symmetric vevs, dual to the D3-D5 probe-brane setup, the mass term for the easy bosons is

L2. In [13], it was found that the diagonalization in the corresponding k× k block could be

solved by expressing the fields in a basis of fuzzy spherical harmonics Ŷ m
` constituting an

irreducible spin-` representation of su(2). In the present case, the mass term for the easy

bosons contains the operator (L(1))2 + (L(2))2, and since (L(1))2 and (L(2))2 commute with

each other, we can diagonalize them simultaneously. The eigenstates of (L(1))2 + (L(2))2

are therefore the tensor products Ŷ m1
`1
⊗ Ŷ m2

`2
of two fuzzy spherical harmonics. We use this

basis to express the fields in the k1k2 × k1k2 block as

k1k2∑
n,n′=1

[Φ]n,n′E
n
n′ =

k1−1∑
`1=0

k2−1∑
`2=0

`1∑
m1=−`1

`2∑
m2=−`2

Φ`1,m1;`2,m2 Ŷ
m1
`1
⊗ Ŷ m2

`2
. (2.24)

The properties of the basis states Ŷ m1
`1
⊗ Ŷ m2

`2
follow from the properties of the fuzzy

spherical harmonics Ŷ m
` , which are reviewed in appendix A.2. An important property

is the behavior under Hermitian conjugation, which carries over to the field components

Φ`1,m1;`2,m2 : (
Ŷ m1
`1
⊗ Ŷ m2

`2

)†
= (−1)m1(−1)m2 Ŷ −m1

`1
⊗ Ŷ −m2

`2
,

(Φ`1,m1;`2,m2)† = (−1)m1(−1)m2Φ`1,−m1;`2,−m2 .
(2.25)
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m2 Multiplicity

`1(`1 + 1) + `2(`2 + 1) (2`1 + 1)(2`2 + 1)

(k2
1 − 1)/4 + (k2

2 − 1)/4 2k1k2(N − k1k2)

0 (N − k1k2)(N − k1k2)

Table 1. Masses for the easy bosons A0, A1 and A2 (as well as the ghosts c), including the

k1k2× k1k2, the k1k2× (N − k1k2) and the (N − k1k2)× (N − k1k2) blocks. Here `1 = 0, . . . , k1− 1

and `2 = 0, . . . , k2 − 1.

The operators L
(1)
i and L

(2)
i act on the basis states as

(L(1))2 Ŷ m1
`1
⊗ Ŷ m2

`2
= `1(`1 + 1) Ŷ m1

`1
⊗ Ŷ m2

`2
,

L
(1)
3 Ŷ m1

`1
⊗ Ŷ m2

`2
=
√
`1(`1 + 1)〈`1,m1; 1, 0|`1,m1〉 Ŷ m1

`1
⊗ Ŷ m2

`2
,

L
(1)
± Ŷ m1

`1
⊗ Ŷ m2

`2
= ∓

√
2`1(`1 + 1)〈`1,m1; 1,±1|`1,m1 ± 1〉 Ŷ m1±1

`1
⊗ Ŷ m2

`2
,

(2.26)

with the ladder operators L
(1)
± = L

(1)
1 ± iL

(1)
2 and analogous expressions for (L(2))2, L

(2)
3

and L
(2)
± . Here and in the following, 〈`,m`; s,ms|j,mj〉 denotes the su(2) Clebsch-Gordan

coefficient for coupling the two angular momenta ` and s to the total angular momentum j.

For the case s = 1 and j = ` in (2.26), they are

〈`,m; 1,±1|`,m± 1〉 = ∓
√
`(`+ 1)−m(m± 1)√

2`(`+ 1)
, 〈`,m; 1, 0|`,m〉 =

m√
`(`+ 1)

. (2.27)

Furthermore, the basis states are orthogonal and normalized such that

tr

[(
Ŷ
m′1
`′1
⊗ Ŷ m′2

`′2

)†
Ŷ m1
`1
⊗ Ŷ m2

`2

]
= δ`′1,`1 δ`′2,`2 δm1,m′1

δm2,m′2
. (2.28)

Using this basis, we see that the mass eigenvalues of the fields Φ`1,m1;`2,m2 are

m2
easy ≡ `1(`1 + 1) + `2(`2 + 1), (2.29)

where we must take all combinations of `1 = 0, . . . , k1−1 and `2 = 0, . . . , k2−1. The multiplic-

ity is the dimension of the corresponding su(2)×su(2) representation, i.e. (2`1 + 1)(2`2 + 1).

As discussed before, the masses of the fields in the (N − k1k2)× (N − k1k2) block are zero.

Finally, the masses (2.21) in the k1k2 × (N − k1k2) and the (N − k1k2)× k1k2 blocks are

indeed obtained from (2.29) by the replacement rule (2.23). We summarize the masses of

the easy fields in table 1.

2.2.2 Complicated fields

For the complicated fields the decomposition in terms of su(2)× su(2) representations is not

sufficient, because we also need to solve the problem of flavor mixing. Since (L(1))2 + (L(2))2

commutes with S̃ · L ≡ S̃
(1)
i L

(1)
i + S̃

(2)
i L

(2)
i we can diagonalize the two terms in (2.13)

simultaneously. Thus the masses will have the form `1(`1 + 1) + `2(`2 + 1)− 2λ, where λ

are the eigenvalues of the mixing matrix S̃ · L.
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Rewriting the matrices S̃i. The seven-dimensional matrices S̃i are given in block

form by

S̃i ≡ S̃(1)
i =

 T̃i 0 R̃i
0 0 0

R̃†i 0 0

 , S̃i+3 ≡ S̃(2)
i =

0 0 0

0 T̃i R̃i

0 R̃†i 0

 , i = 1, 2, 3. (2.30)

In the previous equation, R̃j is a 3× 1 matrix that has an i in the j-th component and zeros

everywhere else, namely (R̃j)k = i δjk. On the other hand, the three-dimensional matrices

T̃i are given by

T̃1 =

0 0 0

0 0 −i
0 i 0

 , T̃2 =

 0 0 i

0 0 0

−i 0 0

 , T̃3 =

0 −i 0

i 0 0

0 0 0

 . (2.31)

These matrices form an irreducible representation of the su(2) Lie algebra, so they can be

brought into the usual form for the spin-one representation

T1 =
1√
2

0 1 0

1 0 1

0 1 0

 , T2 =
1√
2

0 −i 0

i 0 −i
0 i 0

 , T3 =

1 0 0

0 0 0

0 0 −1

 , (2.32)

using the unitary transformation

U =
1√
2

−1 0 1

−i 0 −i
0
√

2 0

 . (2.33)

Hence, the matrices S̃i can be rewritten as

S
(1)
i + S

(2)
j = V †

(
S̃

(1)
i + S̃

(2)
j

)
V =

Ti 0 Ri
0 Tj Rj

R†i R
†
j 0

 , (2.34)

with

Ti = U †T̃iU, Ri = U †R̃i, V =

U 0 0

0 U 0

0 0 1

 . (2.35)

The vector of complicated fields has to be transformed accordingly:

C = V †C̃ =

C(1)

C(2)

A3

 , (2.36)

where the three-dimensional vectors C(1) and C(2) are defined by

C(1) ≡

C
(1)
+

C
(1)
0

C
(1)
−

 ≡


1√
2
(−φ̃1 + iφ̃2)

φ̃3
1√
2
(+φ̃1 + iφ̃2)

 , C(2) ≡

C
(2)
+

C
(2)
0

C
(2)
−

 ≡


1√
2
(−φ̃4 + iφ̃5)

φ̃6
1√
2
(+φ̃4 + iφ̃5)

 . (2.37)
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The subscripts +,−, 0 denote the eigenvalues with respect to T3. One can also check that

R†iL
(1)
i = i

(
L

(1)
+√
2
,−L(1)

3 ,−
L

(1)
−√
2

)
, R†iL

(2)
i = i

(
L

(2)
+√
2
,−L(2)

3 ,−
L

(2)
−√
2

)
. (2.38)

After the flavor transformation (2.33), the seven-dimensional matrix that mixes the

flavors in the mass term for the complicated bosons is

S · L = S
(1)
i L

(1)
i + S

(2)
i L

(2)
i =

TiL
(1)
i 0 RiL

(1)
i

0 TiL
(2)
i RiL

(2)
i

R†iL
(1)
i R†iL

(2)
i 0

 . (2.39)

In the diagonalization of (2.39), we have to distinguish the cases where one `a is 0 and

where both `a are bigger than 0.4 For simplicity, we begin with the easier case where one `a
is 0. Note that this formally reduces the diagonalization problem to the one where only three

of the scalar fields get non-trivial SO(3)-symmetric vevs that was solved in [12, 13]. We will

now present a different solution to this diagonalization problem that has a straightforward

generalization to the classical solution with SO(3) × SO(3) symmetry considered in this

paper. In the following, we also drop all references to a.

Diagonalization of TiLi. After the flavor transformation in the previous section, the

four-dimensional matrix S · L ≡ SiLi has the form

SiLi =

(
TiLi RiLi

R†iLi 0

)
. (2.40)

It is important to realize that if we find an eigenvector of TiLi that is annihilated by R†iLi
we can obtain an eigenvector of S · L by padding it with a zero to make it four-dimensional.

We will thus first look for states Φ such that

TiLi Φ = λΦ Φ and R†iLi Φ = 0. (2.41)

This does not yield all eigenstates of S · L, but we will see that the remaining ones are

obtained by diagonalizing a simple 2 × 2 matrix.

If we define a total “angular momentum” operator Ji = Li + Ti, then

TiLi =
1

2

(
J2 − L2 − T 2

)
=

1

2

(
J2 − L2 − 2

)
. (2.42)

Hence, the diagonalization of the term TiLi reduces to the problem of finding a set of

common eigenstates for J2, J3 and L2. This is the well-known problem of addition of angular

momentum, which can be solved using Clebsch-Gordan coefficients. The matrices Ti form

the three-dimensional (spin-one) representation of su(2) and the matrices Li form the spin-`

representation. Thus, the fields (Cms)`m in (2.37) have well-defined quantum numbers `, m

and ms for L2, L3 and T3 respectively. The fields with total angular momentum j, magnetic

4The case where `1 = `2 = 0 is trivial as the corresponding fields are massless.
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quantum number mj and angular momentum ` are found in terms of Clebsch-Gordan

coefficients 〈`,m; s,ms|j,mj〉 by

Bj,mj ;` =

+1∑
ms=−1

∑̀
m=−`

δm+ms,mj 〈`,m; 1,ms|j,mj〉 (Cms)`m. (2.43)

Here the total angular momentum can in general take the three values j = `, `± 1. For the

case ` = 0, however, there is only one total angular momentum j = 1; this necessitates the

aforementioned distinction between `a = 0 and `a 6= 0. The dependence on ` will generally

be dropped, and we will use the notation (Bα)j,mj ≡ Bj,mj ;`=j−α. For example, the state

B+ has total angular momentum j = `+ 1 and mj = −`− 1, . . . , `+ 1. Using this notation

and summing explicitly over m, (2.43) becomes

(Bα)j,mj =
+1∑

ms=−1

〈`− α,mj −ms; 1,ms|j,mj〉 (Cms)`−α,mj−ms . (2.44)

We can write out the basis states corresponding to (2.43) in vector form. Since the 3 × 3

matrices Ti are the standard spin-one representation of su(2), cf. (2.32), we have

T3 êms = ms êms with ê+1 =

1

0

0

 , ê0 =

0

1

0

 , ê−1 =

0

0

1

 . (2.45)

The basis states that are eigenstates of J2, J3 and L2 can thus be written as

Ŷj,mj ;` ≡
+1∑

ms=−1

〈`,mj −ms; 1,ms|j,mj〉 Ŷ
mj−ms

` ⊗ êms

=

〈`,mj − 1; 1,+1|j,mj〉 Ŷ
mj−1
`

〈`,mj ; 1, 0|j,mj〉 Ŷ
mj

`

〈`,mj + 1; 1,−1|j,mj〉 Ŷ
mj+1
`

 .

(2.46)

The Clebsch-Gordan coefficients for the case j = ` were given in (2.27). For j = ` ± 1,

we have

〈`,m; 1,±1|`+ 1,m± 1〉 =

√
(`+ 1±m)(`+ 2±m)√

2(`+ 1)(2`+ 1)
,

〈`,m; 1, 0|`+ 1,m〉 =

√
(`+ 1−m)(`+ 1 +m)√

(`+ 1)(2`+ 1)
,

〈`,m; 1,±1|`− 1,m± 1〉 =

√
(`− 1∓m)(`∓m)√

2`(2`+ 1)
,

〈`,m; 1, 0|`− 1,m〉 =

√
(`−m)(`+m)√

`(2`+ 1)
.

(2.47)
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We find three sets of eigenstates for j = `± 1 and j = ` with eigenvalues

TiLi Ŷj=`+1,mj ;` = ` Ŷj=`+1,mj ;`,

TiLi Ŷj=`,mj ;` = −Ŷj=`,mj ;`,

TiLi Ŷj=`−1,mj ;` = (−`− 1) Ŷj=`−1,mj ;`.

(2.48)

We will show below that the first and the last states satisfy the second condition in (2.41),

namely

R†iLi Ŷj,mj ; j±1 = 0. (2.49)

The fields B± can thus be made into eigenstates of S · L by padding with zeros. The

multiplicity of the corresponding eigenvalue is the dimension of the su(2) representation, i.e.

2j + 1 = 2(`± 1) + 1.

Diagonalization of the remaining 2 × 2 matrix. We can expand the complicated

scalars in the basis of total angular momentum eigenstates and A3 in the basis of fuzzy

spherical harmonics Ŷ`,m, so that the four-dimensional vector of complicated fields is

C =

∑j,mj ,`
Bj,mj ; `Ŷj,mj ;`∑

`,m(A3)`,mŶ
m
`

 . (2.50)

We know how TiLi acts on the basis states Ŷj,mj ;` obtained from the Clebsch-Gordan

procedure from (2.48). Now we will calculate how R†iLi, i.e. the last row in S · L as given

in (2.40), acts on Yj,mj ;`. Using that the ladder operators act as given in (2.26) together

with (2.38) and the completeness relation of the Clebsch-Gordan coefficients, one obtains

R†iLi Ŷj,mj ;` = −i
√
`(`+ 1)

∑
ms

〈`,mj −ms; 1,ms|j,mj〉〈`,mj −ms; 1,ms|`,mj〉 Ŷ
mj

`

= −i δj,`
√
`(`+ 1) Ŷ

mj

` . (2.51)

This vanishes unless j = `. The states Ŷj,mj ;` with j = `± 1 are thus annihilated by R†iLi
and can simply be padded with a zero block to give eigenstates of S · L as we have claimed

before. Using (2.48) and (2.51), we can find the matrix elements of both TiLi and RiLi:

tr
(
Ŷ †j′,m′;`′ TiLi Ŷj,m;`

)
= µj,` δm,m′δ`,`′δj,j′ ,

tr
(

(Ŷ m′
`′ )†R†iLi Ŷj,m;`

)
= −i δm,m′ δ`,`′ δj,`′

√
`(`+ 1),

tr
(
Ŷ †j′,m′;`′ RiLi Ŷ

m
`

)
= +i δm,m′ δ`,`′ δ`,j′

√
`(`+ 1).

(2.52)

The matrix elements µj,` in the first line are µ`+1,` = `, µ`,` = −1 and µ`−1,` = −` − 1,

cf. (2.48). The third line follows naturally from complex conjugation of the second line and

L†i = Li.
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Mass eigenstate Mass m2 Multiplicity

B+ `1(`1 − 1) 2`1 + 3

B− (`1 + 1)(`1 + 2) 2`1 − 1

D+ `1(`1 − 1) 2`1 + 1

D− (`1 + 1)(`1 + 2) 2`1 + 1

Table 2. Masses and eigenstates of the complicated bosons in the k1k2 × k1k2 block for the case

`2 = 0 and `1 = 1, . . . , k1 − 1. The case `1 = 0 and `2 = 1, . . . , k1 − 1 is obtained by relabeling. In

the case `1 = `2 = 0, the masses vanish, while the case `1 6= 0 and `2 6= 0 is shown in table 3.

We now insert the vector of complicated fields C given in (2.50) into the flavor mixing

term in the action, obtaining

tr
[
C†SiLiC

]
=
k−1∑
`=1

[
`

`+1∑
m=−`−1

(B+)†`+1,m(B+)`+1,m − (`+ 1)
`−1∑

m=−`+1

(B−)†`−1,m(B−)`−1,m

+
∑̀
m=−`

(
(B0)†`,m (A3)†`,m

)( −1 −i
√
`(`+ 1)

+i
√
`(`+ 1) 0

)(
(B0)`,m
(A3)`,m

)]
.

(2.53)

The fields B± diagonalize the full 4× 4 matrix as we discussed before. What remains to be

diagonalized is the 2× 2 matrix in the last line of the previous equation. Note in particular

that this matrix does not depend on the magnetic quantum number. The fields that achieve

the diagonalization are

D+ =
1√

2`+ 1

(
−i
√
`B0 +

√
`+ 1A3

)
,

D− =
1√

2`+ 1

(
i
√
`+ 1B0 +

√
`A3

)
,

(2.54)

with eigenvalues λ+ = ` and λ− = −`−1. Notice from this result that the masses are integer

numbers, even though from (2.53) we could have expected square roots in the spectrum.

This is actually an indication that the spectrum can be obtained in a simpler way, namely

only using Clebsch-Gordan coefficients as in [13].

This concludes the diagonalization of the 4×4 sub-block of the seven-dimensional flavor

mixing matrix, which is relevant for the case where one `a is 0. We summarize the result in

table 2. We have effectively rederived the spectrum of the bosons for the classical solution

considered in [13] where only three of the scalar fields get non-trivial SO(3)-symmetric vevs.

Our method is however different and can be extended to the present classical solution with

SO(3)× SO(3) symmetry. In particular, we will find a natural generalization of the 2 × 2

matrix in (2.53).

Full mixing matrix. Let us now diagonalize the full seven-dimensional matrix (2.39)

in the case where `1 6= 0 and `2 6= 0. Following the steps discussed for the 4 × 4 sub-

block relevant for the case where one `a = 0, we define fields B(1) and B(2) with total
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Mass eigenstate Mass m2 Multiplicity

B
(1)
+ m2

(1),+ = `1(`1 − 1) + `2(`2 + 1) (2`1 + 3)(2`2 + 1)

B
(1)
− m2

(1),− = (`1 + 1)(`1 + 2) + `2(`2 + 1) (2`1 − 1)(2`2 + 1)

B
(2)
+ m2

(2),+ = `1(`1 + 1) + `2(`2 − 1) (2`1 + 1)(2`2 + 3)

B
(2)
− m2

(2),− = `1(`1 + 1) + (`2 + 1)(`2 + 2) (2`1 + 1)(2`2 − 1)

D0 m2
0 = `1(`1 + 1) + `2(`2 + 1) + 2 (2`1 + 1)(2`2 + 1)

D+ m2
+ = `1(`1 + 1) + `2(`2 + 1)− 2λ+ (2`1 + 1)(2`2 + 1)

D− m2
− = `1(`1 + 1) + `2(`2 + 1)− 2λ− (2`1 + 1)(2`2 + 1)

Table 3. Masses and eigenstates of the complicated bosons in the k1k2 × k1k2 block in the

SO(3) × SO(3)-symmetric case. One must consider all combinations of `1 = 1, . . . , k1 − 1 and

`2 = 1, . . . , k2 − 1. The masses for the fields in the off-diagonal blocks are obtained by the

replacements `1 → k1−1
2 and `2 → k2−1

2 , while the corresponding multiplicities are obtained by the

same replacement followed by a multiplication with 2(N − k1k2).

angular momentum in each sector. As before, they are given in terms of Clebsch-Gordan

coefficients by

(B(1))j1,m1,`1;`2,m2 =
+1∑

ms=−1

〈`1,m1 −ms; 1,ms|j1,m1〉 (C(1)
ms

)`1,m1;`2,m2 , (2.55)

(B(2))`1,m1;j2,m2,`2 =

+1∑
ms=−1

〈`2,m2 −ms; 1,ms|j2,m2〉 (C(2)
ms

)`1,m1;`2,m2 . (2.56)

We can also write out the corresponding basis states explicitly:

(Ŷ (1))j1,m1,`1;`2,m2
≡ Ŷj1,m1;`1 ⊗ Ŷ

m2
`2

, (Ŷ (2))`1,m1;j2,m2,`2
≡ Ŷ m1

`1
⊗ Ŷj2,m2;`2 . (2.57)

Now using the natural generalization of the matrix elements in (2.52), one can see that the

four fields B
(1)
± and B

(2)
± diagonalize the full 7× 7 matrix (2.39). It remains to diagonalize

a 3× 3 matrix, which is a simple generalization of (2.53):

((
B

(1)
0

)† (
B

(2)
0

)† (
A3

)†) −1 0 −i
√
`1(`1 + 1)

0 −1 −i
√
`2(`2 + 1)

+i
√
`1(`1 + 1) +i

√
`2(`2 + 1) 0


B

(1)
0

B
(2)
0

A3

 . (2.58)

Here we have dropped the quantum numbers from the fields to unclutter the notation. This

matrix has eigenvalues

λ0 = −1, λ± = −1

2
±
√
`1(`1 + 1) + `2(`2 + 1) + 1

4 , (2.59)

and the corresponding diagonal fields are

D0 =
1√
N0

(
−
√
`2(`2 + 1)B

(1)
0 +

√
`1(`1 + 1)B

(2)
0

)
,

D± =
1√
N±

(
i
√
`1(`1 + 1)B

(1)
0 + i

√
`2(`2 + 1)B

(2)
0 + λ∓A3

)
,

(2.60)
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with

N± = λ∓(λ∓ − λ±)

=
1

2

(
1 + 4`1(`1 + 1) + 4`2(`2 + 1)±

√
1 + 4`1(`1 + 1) + 4`2(`2 + 1)

)
,

N0 = −λ+λ− = `1(`1 + 1) + `2(`2 + 1).

(2.61)

Since λ± contains a square root, it is clear that it is impossible to obtain the spectrum of

masses using only a Clebsch-Gordan decomposition, but a more general procedure like the

one we have presented is required.

2.3 Fermion mass matrix

Inserting the classical solution (2.4) into the mass term for the Majorana fermions (2.8),

we find

Sm,f =
2

g2
YM

∫
d4x

(
−1

2x3

)
tr

(
3∑
i=1

ψ̄j(G
(1)
i )jkL

(1)
i ψk +

3∑
i=1

ψ̄j(G
(2)
i )jkL

(2)
i (γ5ψk)

)
, (2.62)

where G
(1)
i ≡ Gi and G

(2)
i ≡ Gi+3 for i = 1, 2, 3. Since [G

(1)
i , G

(2)
j ] = 0 and [L

(1)
i , L

(2)
j ] = 0,

we can diagonalize both terms in (2.62) simultaneously. We give the form of the matrices

G
(1)
i and G

(2)
i in appendix A using the same conventions as [13]. From [13], we also know

that the matrices G
(1)
i can be transformed into block-diagonal form with

U =
1√
2


0 −i −1 0

0 1 i 0

−1 0 0 i

i 0 0 −1

 ⇒ U †G
(1)
i U = −

(
σi 0

0 σi

)
= −12 ⊗ σi. (2.63)

Here σi are the usual Pauli matrices. Acting with U on the remaining matrices G
(2)
i gives

U †G
(2)
i U = i σi ⊗ 12. (2.64)

The extra factor of i is consistent with the fact that the matrices G
(2)
i are anti-Hermitian

and it is also required to make the term with γ5 in (2.62) Hermitian. On the fermions, the

transformation U yields

U †


ψ1

ψ2

ψ3

ψ4

 =
1√
2


−ψ3 − iψ4

iψ1 + ψ2

−ψ1 − iψ2

−iψ3 − ψ4

 =


C++

C−+

C+−
C−−

 ≡ CF . (2.65)

Here the subscripts on Cms1 ,ms2
indicate that the field has spin 1

2 and magnetic quantum

number ms1 with respect to 1
212 ⊗ σ3, and spin 1

2 and magnetic quantum number ms2

with respect to 1
2σ3 ⊗ 12. The fields also have orbital angular momentum `a and magnetic

quantum number ma with respect to L(a) for a = 1, 2. This problem is closely related to
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the one studied in [13], with the difference that here we have two copies of the spin-orbit

coupling problem.

To diagonalize the mass matrix, we define the total angular momentum operators

J
(1)
i = L

(1)
i +

1

2
12 ⊗ σi, J

(2)
i = L

(2)
i +

1

2
σi ⊗ 12, (2.66)

so the terms inside the trace in (2.62) take the form

−C̄F
[
(J (1))2 − (L(1))2 − 1

2

(
1

2
+ 1

)]
CF + C̄F

[
(J (2))2 − (L(2))2 − 1

2

(
1

2
+ 1

)]
(iγ5)CF .

(2.67)

The notation C̄F means the following: transpose the four-dimensional vector of fermions

CF as given in (2.65) and take the Dirac conjugate ψ̄ ≡ ψ†γ0 of each fermion inside of it.

The explicit formula for the diagonal fields in terms of the Clebsch-Gordan coefficients is

given by

Bj1j2
`1,mj1

;`2,mj2
=

∑
ms1 ,m1
ms2 ,m2

〈`1,m1; 1
2 ,ms1 |j1,mj1〉〈`2,m2; 1

2 ,ms2 |j2,mj2〉(Cms1 ,ms2
)`1,m1;`2,m2 ,

(2.68)

where the total angular momentum is ja = `a ± 1
2 . In total, there are four combinations

from combining j1 = `1 ± 1
2 with j2 = `2 ± 1

2 in all possible ways, each with a multiplicity

of (2j1 + 1)(2j2 + 1). The eigenvalues of each term in (2.62) are

j(j + 1)− `(`+ 1)− 1

2

(
1

2
+ 1

)
=

{
` for j = `+ 1

2 ,

−`− 1 for j = `− 1
2 .

(2.69)

After the diagonalization, the quadratic part of the action for the fermions takes the

schematic form

S =
2

g2
YM

∫
d4x

∑
α

tr

[
i

2
B̄αγ

µ∂µBα −
1

2x3
B̄α (cα + i dαγ5)Bα

]
. (2.70)

Here the index α is running over all the diagonal fields B. We will now use a chiral rotation

to rewrite this action in a form where the mass term is positive and does not contain the iγ5

part. Following the procedure described in [33], one finds that the required transformation is

Bα = cos
(
θ
2

)
B′α − i sin

(
θ
2

)
γ5B

′
α, θ ≡ arg(c+ id). (2.71)

Notice that this transformation preserves the Majorana property, namely the fields B′α are

also Majorana fermions. Using this transformation, one can check that the resulting action

has the form

S =
2

g2
YM

∫
d4x

∑
α

tr

[
i

2
B̄′αγ

µ∂µB
′
α −

mα

2x3
B̄′αB

′
α

]
, (2.72)

with mα = |cα + idα| =
√
c2
α + d2

α. We list the values of cα, dα and mα along with their

multiplicities in table 4.
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Mass eigenstate c d Mass m = |c+ id| Multiplicity

B`1+
1
2 ,`2+

1
2 −`1 `2 m++ =

√
`21 + `22 (`1 + 1)(`2 + 1)

B`1+
1
2 ,`2−

1
2 −`1 −`2 − 1 m+− =

√
`21 + (`2 + 1)2 (`1 + 1)`2

B`1−1
2 ,`2+

1
2 `1 + 1 `2 m−+ =

√
(`1 + 1)2 + `22 `1(`2 + 1)

B`1−1
2 ,`2−

1
2 `1 + 1 −`2 − 1 m−− =

√
(`1 + 1)2 + (`2 + 1)2 `1`2

Table 4. Eigenvalues and eigenstates of the fermions in the SO(3)× SO(3)-symmetric case in the

k1k2×k1k2 block. One must consider all combinations of `1 = 0, . . . , k1−1 and `2 = 0, . . . , k2−1. For

the definition of c and d, see (2.70). The values for c, d and m for the fields in the off-diagonal blocks

are obtained by the replacements `1 → k1−1
2 and `2 → k2−1

2 , while the corresponding multiplicities

are obtained by the same replacement followed by a multiplication with 2(N − k1k2).

2.4 Summary of the spectrum

We have now derived the spectrum for the defect CFT with SO(3)× SO(3)-symmetric vevs.

For the easy bosons (and the ghosts), we had to diagonalize the operator (L(1))2 + (L(2))2

which was achieved by expanding the fields in the k1k2 × k1k2 block in fuzzy spherical

harmonics. The fields in the off-diagonal blocks were already eigenstates of this operator.

We list the masses and multiplicities of the easy bosons in table 1.

For the complicated bosons, the mass term reads

(L(1))2 + (L(2))2 − 2S · L, (2.73)

where the term S · L is responsible for mixing fields of different flavor. Knowing that

(L(1))2 + (L(2))2 is diagonalized by an expansion in fuzzy spherical harmonics, we have

subsequently obtained the eigenstates of S · L in two steps. Since we were coupling the

spin-` with the spin-one representation of su(2), we had to distinguish between the case

where either `1 or `2 were zero and the case where both `a were non-zero. The case `a = 0

formally reduced the diagonalization problem to the one solved in [13], which we solved

using a slightly different approach that was also applicable to the second case where both

`1 6= 0 and `2 6= 0. For this case, we first diagonalized the 3 × 3 blocks TiL
(1)
i and TiL

(2)
i

using angular momentum coupling. The eigenstates with j1 = `1 ± 1 and j2 = `2 ± 1 could

trivially be padded with zeros to give eigenstates of the full matrix and their eigenvalues

are given in (2.48). For the remaining eigenstates, we had to diagonalize the 3 × 3 matrix

in (2.58) and found D± and D0 in (2.60) with eigenvalues λ± and λ0 in (2.59). Adding

the contribution from (L(1))2 + (L(2))2, we obtain the masses shown in table 2 for the case

where one of the `a is zero and in table 3 for the general case where `1 6= 0 and `2 6= 0. Note

that we are only listing the masses and multiplicities for the fields [Φ]n,n′ in the k1k2× k1k2

block here. To obtain the masses and multiplicities of the fields in the off-diagonal block, we

use the replacement rule (2.23). The multiplicity also receives an extra factor of 2(N −k1k2)

from the size of the two blocks. Additionally there are (N − k1k2)× (N − k1k2) massless

fields [Φ]a,a′ .
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Finally, we found that the spectrum of the fermions could be obtained by simply

employing the angular momentum techniques from [13] for each sector. The only additional

step was the chiral rotation which allowed us to trade the term with iγ5 in the action for a

standard mass term. The fermion spectrum is shown in table 4.

Let us compare the spectrum for the defect CFT with SO(3)× SO(3)-symmetric vevs

dual to the D3-D7 brane system derived here to the one for the defect CFT dual to the

D3-D5 probe-brane system, where only three scalar fields get non-trivial SO(3)-symmetric

vevs, derived in [13]. In the D3-D5 system, the spectrum can be derived using Clebsch-

Gordan coefficients only, i.e. it is not necessary to employ the two-step process that we

used to rederive it here. In the D3-D7 system however, Clebsch-Gordan coefficients are

not sufficient as can be seen from the appearance of square roots in the mass eigenvalues.

Furthermore, in the D3-D5 system, supersymmetry was visible in the spectrum. Defining

ν =
√
m2 + 1

4 for the bosons and comparing it with the mass |mf | of the fermions, one could

see that the steps between these parameters were half-integers. This could be attributed

to supersymmetry in AdS4, where the conformal dimensions are given by ∆ = 3
2 + ν for

the bosons and ∆ = 3
2 + |mf | for the fermions. The conformal dimensions within one

supermultiplet however differ by 1
2 which implies the observed relation between ν and |mf |.

In the present case, we can only relate three of the masses that appear in the spectrum of

the bosons; namely, we find the relation

ν− =
√
m2
− + 1

4 = νeasy + 1, ν+ =
√
m2

+ + 1
4 = νeasy − 1. (2.74)

This is consistent with the fact that supersymmetry is broken in the D3-D7 system.

3 Propagators

In this section, we take into account the effect that the x3-dependence of the ‘masses’

has on the propagators of the scalars (subsection 3.1) and the fermions (subsection 3.2),

following [13]. We then derive the propagators of the flavor eigenstates that occur in the

action in terms of the propagators of the mass eigenstates. Thus, this section provides the

framework for doing perturbative calculations in this defect CFT.

3.1 Scalar propagators

The propagator for a generic scalar field with mass term m2

x23
is the solution to(

−∂µ∂µ +
m2

x2
3

)
Km2

(x, y) =
g2

YM

2
δ(x− y). (3.1)

As noted in [16], the propagator of a scalar with mass m2

x23
in (d+ 1)-dimensional Minkowski

space is related to the propagator of a scalar with constant mass m̃2 in AdSd+1. The

relation is explicitly given by

Km2
(x, y) =

g2
YM

2
(x3y3)−

d−1
2 Km̃2

AdS(x, y), m̃2 = m2 − d2 − 1

4
. (3.2)
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In our case, d is the dimension of the defect, i.e. d = 3. Using that m̃2 = ∆(∆ − d) in

AdSd+1, we find that the scaling dimension ∆ is

∆ =
d

2
+ ν, ν ≡

√
m2 + 1

4 . (3.3)

A closed expression for the scalar propagator in AdSd+1 using Euclidean signature can be

found e.g. in [34]:

K∆
AdS(x, y) =

Γ(∆) ξ(x, y)∆

2∆(2∆− d)πd/2Γ(∆− d
2)

2F1

(
∆
2 ,

∆+1
2 ; ∆− d

2 + 1; ξ2(x, y)
)

(3.4)

with

ξ(x, y) =
2x3y3

x2
3 + y2

3 + (x0 − y0)2 + (x1 − y1)2 + (x2 − y2)2
. (3.5)

For the Feynman-diagram calculation, we will require the propagator evaluated at x = y.

In this case, the propagator diverges (in the UV) and needs to be regularized. Our

regularization of choice is dimensional regularization (or rather dimensional reduction, as

we discuss below). Moreover, we want to keep the codimension of the defect at 1, such

that its dimension becomes d = 3− 2ε. The expression (3.4) cannot be used in this case.

Instead,

Kν(x, x) =
g2

YM

2

1

16π2x2
3

[
m2

(
− 1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(ν + 1

2)− 1

)
− 1

]
,

(3.6)

which is derived from an integral representation of (3.4), see [13]. Above, γE denotes the

Euler-Mascheroni constant and Ψ denotes the digamma function.

3.2 Fermionic propagators

After the chiral rotation, the action for the Majorana fermions takes the form

S =
2

g2
YM

∫
d4x tr

[
i

2
ψ̄′γµ∂µψ

′ − m

2x3
ψ̄′ψ′

]
, (3.7)

where the mass m > 0, cf. (2.72). The fermionic propagator is the solution to(
−iγµ∂µ +

m

x3

)
Km
F (x, y) =

g2
YM

2
δ(x− y). (3.8)

These propagators were derived in [13, 35],

Km
F (x, y) =

[
iγµ∂µ +

m

x3

] [
Kν=m− 1

2 (x, y)P− +Kν=m+ 1
2 (x, y)P+

]
, (3.9)

with P± = 1
2(1± iγ3) and Kν(x, y) being the bosonic propagator.

The fermionic propagator will later be required in the calculation of the one-loop

correction to the classical solution (section 4), where fermions can circulate in a loop. As
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all spinor indices have to be contracted in this case, we will be interested in the spinor trace

of the propagator. Using (3.6), one can show that the trace of the fermionic propagator,

regularized for x = y, is [13]

trKm
F (x, x) =

g2
YM

8π2x3
3

[
m3 +m2 − 3m− 1 (3.10)

+m(m2 − 1)

(
−1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(m)− 2

)]
.

It will later be convenient to have an expression for the propagators between the fermion

fields before the chiral rotation. Before the chiral rotation, the action takes the form (2.70),

S =
2

g2
YM

∫
d4x tr

[
i

2
ψ̄γµ∂µψ −

1

2x3
ψ̄(c+ idγ5)ψ

]
. (3.11)

Here ψ could be any of the fields Bα, either in the k1k2 × k1k2, the (N − k1k2)× k1k2 or

the k1k2 × (N − k1k2) block. Since the mass m is related to the parameters c and d by

m = |c+ id|, the propagators between the original fields ψ and chirally rotated fields ψ′ are〈
ψ(x)ψ̄(y)

〉
= K̃c,d

F (x, y),
〈
ψ′(x)ψ̄′(y)

〉
= K

m=|c+id|
F (x, y). (3.12)

Using the transformation (2.71), one can see that the relation between them is

K̃c,d
F = cos2

(
θ
2

)
K
|c+id|
F − sin2

(
θ
2

)
γ5K

|c+id|
F γ5 − sin

(
θ
2

)
cos
(
θ
2

)
{γ5,K

|c+id|
F }, (3.13)

where θ ≡ arg(c + id). We will always be interested in the trace of this propagator,

possibly multiplied by iγ5. Using the explicit form of the fermionic propagator (3.9) and

trigonometric identities, we find

tr K̃c,d
F =

c

|m|
trK

m=|c+id|
F , tr

(
iγ5K̃

c,d
F

)
=

d

|m|
trK

m=|c+id|
F . (3.14)

3.3 Color and flavor part of the propagators

In sections 2.2 and 2.3 we have found the mass eigenstates of the theory, and the propagators

between them can be obtained as described in sections 3.1 and 3.2. However, it will prove

convenient to also derive the propagators between the fields that originally appeared in

the action of N = 4 SYM theory, namely the six scalars, the gauge field, the Majorana

fermions and the ghosts. The reason is that it would be extremely cumbersome to rewrite

the interaction vertices (2.9) in terms of the diagonal fields. Note that we are still giving

the propagators for the color components [Φ]n,a and [Φ]a,n defined in (2.15) as well as

Φ`1,m1;`2,m2 defined in (2.24), which partially diagonalize the color part of the mixing

problem.5

5Recall that the massless fields [Φ]a,a′ have ordinary propagators. The massless fields from the k1k2×k1k2
block can only propagate for x3 > 0 and appropriate boundary conditions have to be imposed at the defect

for these fields. In the D3-D5 case, supersymmetry puts constraints on the possible choices of boundary

conditions, cf. [36, 37], but in the present case we have no such guidelines. The choice of boundary conditions

for these fields, however, will not affect the results in the large-N limit.
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To find these propagators, we express the original fields in terms of the diagonal fields.

For example, for the bosons we have to undo the three steps of the diagonalization: the

flavor transformation (2.36), the Clebsch-Gordan procedure (2.55) and the diagonalization

of the final 3× 3 matrix (2.60). The details of this calculation are shown in appendix B.

The mass term of the complicated bosons is diagonalized in terms of the fields B
(1)
± , B

(2)
± ,

D0 and D±. Thus the propagators between these fields are simply the scalar propagators

Km2
(x, y) from section 3.1 with the corresponding mass eigenvalue from table 3. The

eigenvalues λ± and normalization constants N± and N0 were given in (2.59) and (2.61),

but we repeat them here for convenience:

λ± = −1

2
±
√
`1(`1 + 1) + `2(`2 + 1) + 1

4 , N± = λ∓ (λ∓ − λ±) , N0 = −λ+λ−. (3.15)

For the matrix elements of the su(2) generators ti, we use the shorthand notation

[t
(`1)
i ]m1,m′1

≡ [t2`1+1
i ]`1−m1+1,`1−m′1+1, [t

(`2)
i ]m2,m′2

≡ [t2`2+1
i ]`2−m2+1,`2−m′2+1. (3.16)

Explicit expressions for the generators ti are given in appendix A.2. The propagators

involving easy fields are diagonal in flavor, and we find

〈(A0)`1m1;`2m2(A0)†
`′1m

′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1,m′1

δm2,m′2
Km2=`1(`1+1)+`2(`2+1)︸ ︷︷ ︸

≡Keasy

, (3.17)

where one could replace A0 with any of the other easy fields A1, A2 or c. For the propagators

involving A3 and scalars of different sectors, we find

〈(φ̃(1)i )`1m1;`2m2
(φ̃

(2)
j )†`′1m′1;`′2m′2

〉 = δ`1`′1δ`2`′2 [t
(`1)
i ]m1,m′1

[t
(`2)
j ]m2,m′2

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
︸ ︷︷ ︸

≡Kφ
opp

,

(3.18)

〈(φ̃(1)i )`1m1;`2m2
(A3)†`′1m′1;`′2m′2

〉 = −〈(A3)`1m1;`2m2
(φ̃

(1)
i )†`′1m′1;`′2m′2

〉 (3.19)

= −iδ`1`′1δ`2`′2 [t
(`1)
i ]m1m′1

δm2m′2

(
λ+
N−

Km2
− +

λ−
N+

Km2
+

)
︸ ︷︷ ︸

≡Kφ,A

,

〈(A3)`1m1;`2m2
(A3)†`′1m′1;`′2m′2

〉 = δ`1`′1δ`2`′2δm1m′1
δm2m′2

(
λ2+
N−

Km2
− +

λ2−
N+

Km2
+

)
︸ ︷︷ ︸

≡KA,A

, (3.20)

with φ̃
(1)
i ≡ φ̃i and φ̃

(2)
i ≡ φ̃i+3. For the propagator between scalars from the same sector,

we find

〈(φ̃(1)i )`1m1;`2m2(φ̃
(1)
j )†`′1m′1;`′2m′2

〉 = δ`1`′1δ`2`′2δm2m′2
(3.21)[

δijδm1m′1

(
`1 + 1

2`1 + 1
Km2

(1),+ +
`1

2`1 + 1
Km2

(1),−

)
︸ ︷︷ ︸

≡Kφ,(1)
sing

−iεijk[t
(`1)
k ]m1,m′1

(
Km2

(1),+

2`1 + 1
− Km2

(1),−

2`1 + 1

)
︸ ︷︷ ︸

≡Kφ,(1)
anti

− [t
(`1)
i t

(`1)
j ]m1,m′1

(
Km2

(1),+

(2`1+1)(`1+1)
+

Km2
(1),−

(2`1 + 1)`1
− `2(`2 + 1)

`1(`1 + 1)

Km2
0

N0
− Km2

−

N−
− Km2

+

N+

)
︸ ︷︷ ︸

≡Kφ,(1)
sym

]
.
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From (3.19) and (3.21), the propagators for the other sector are obtained by a simple

relabeling, e.g.

〈(φ̃(2)
i )`1m1;`2m2(φ̃

(2)
j )†

`′1m
′
1;`′2m

′
2
〉 = 〈(φ̃(1)

i )`2m2;`1m1(φ̃
(1)
j )†

`′2m
′
2;`′1m

′
1
〉, (3.22)

where the (implicit) dependence of the masses on `1 and `2 must be taken into account as

well. In the following, we will often use the combination of spacetime propagators Keasy,

Kφ
opp, Kφ,A, KA,A, K

φ,(a)
sing , K

φ,(a)
anti and K

φ,(a)
sym defined in (3.17)–(3.21).6

Before the chiral rotation, the quadratic part of the action for the fermions is diagonalized

by the fields B`1+
1
2 ,`2+

1
2 , B`1+

1
2 ,`2−

1
2 , B`1−1

2 ,`2+
1
2 and B`1−1

2 ,`2−
1
2 . Written in terms of

these fields, the action still contains γ5. Therefore, the propagators between them are of the

form K̃c,d
F in (3.13), where the eigenvalues c and d are given in table 4. In the calculations

in this paper, the propagators always appear inside a spinor trace, possibly multiplied by γ5,

and they can be transformed to the propagators Km
F by means of (3.14) which relates them

to the propagators after the chiral rotation. Undoing the diagonalization of the fermion

mass matrix, we find

〈(ψi)`1m1;`2m2(ψj)`′1m′1;`′2m
′
2
〉 =

δ`1`′1δ`2`′2
(2`1 + 1)(2`2 + 1)

(3.23){
+ δijδm1m′1

δm2m′2

[
`1`2 K̃

`1+1,−`2−1
F + `1(`2 + 1) K̃`1+1,`2

F

+ (`1 + 1)`2 K̃
−`1,−`2−1
F + (`1 + 1)(`2 + 1) K̃−`1,`2F

]
− [G(1)

n ]ij [t
(`1)
n ]m1m′1

δm2m′2

[
(`2 + 1)

(
K̃−`1,`2F − K̃`1+1,`2

F

)
+ `2

(
K̃−`1,−`2−1
F − K̃`1+1,−`2−1

F

) ]
− i[G(2)

n ]ij [t
(`2)
n ]m2m′2

δm1m′1

[
(`1 + 1)

(
K̃−`1,`2F − K̃−`1,−`2−1

F

)
+ `1

(
K̃`1+1,`2
F − K̃`1+1,−`2−1

F

) ]
+ i[G(1)

n1
G(2)
n2

]ij [t
(`1)
n1

]m1m′1
[t(`2)
n2

]m2m′2

[
K̃`1+1,−`2−1
F − K̃`1+1,`2

F − K̃−`1,−`2−1
F + K̃−`1,`2F

]}
.

The propagators given so far are valid for fields in the k1k2 × k1k2 block, not the fields

in the (N − k1k2)× k1k2 and k1k2 × (N − k1k2) blocks. As we argued in section 2.2.1, we

can simply replace

`1 →
k1 − 1

2
and `2 →

k2 − 1

2
(3.24)

everywhere to obtain the masses for the fields in the off-diagonal blocks. For the fields

themselves, we replace (Φ)`1m1;`2m2 → [Φ]n,a. To obtain the corresponding mass eigenstates,

6The cases where either `1 = 0 or `2 = 0 required special treatment in the diagonalization of the boson

mass matrix, see the discussion in section 2.2.2. In these cases, the spectrum reduces to the one in table 2,

which was originally found in [13]. While the boson masses in table 3 do not have the correct limit for `1 = 0

or `2 = 0, the propagators presented in this section indeed reduce to the ones found in [13].
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we have to replace the matrices Ŷ m1
`1
⊗ Ŷ m2

`2
by Ena, resulting in a replacements of the

orthonormality condition (2.28) with (2.20) and similar changes in the non-diagonal matrix

part. We find for the propagators between the easy fields,

〈[A0]n,a[A0]†n′,a′〉 = δa,a′δn,n′K
easy, (3.25)

where as above A0 could be any of the easy fields A0, A1, A2 and c. For the remaining

propagators, we find

〈[φ̃(1)
i ]n,a[φ̃

(2)
j ]†n′,a′〉 = δa,a′ [t

k1
i ⊗ t

k2
j ]n,n′K

φ
opp, (3.26)

〈[φ̃(1)
i ]n,a[A3]†n′,a′〉 = −〈[A3]n,a[φ̃

(1)
i ]†n′,a′〉 = −iδa,a′ [tk1i ⊗ 1k2 ]n,n′K

φ,A, (3.27)

〈[A3]n,a[A3]†n′,a′〉 = δa,a′δn,n′K
A,A (3.28)

and

〈[φ̃(1)
i ]n,a[φ̃

(1)
j ]†n′,a′〉 = δa,a′

[
δijδn,n′K

φ,(1)
sing − iεijk[t

k1
k ⊗ 1k2 ]n,n′K

φ,(1)
anti

− [tk1i t
k1
j ⊗ 1k2 ]n,n′K

φ,(1)
sym

]
.

(3.29)

As above, we can simply obtain the expressions for the scalars from the other sectors

from (3.27) and (3.29), e.g.

〈[φ̃(2)
i ]n,a[A3]†n′,a′〉 = −iδa,a′ [1k1 ⊗ t

k2
i ]n,n′K

φ,A. (3.30)

Note that it is understood that the replacement rule (3.24) is applied everywhere, in particu-

lar also in Keasy, Kφ
opp, Kφ,A, KA,A, K

φ,(1)
sing , K

φ,(1)
anti , and K

φ,(1)
sym defined in (3.17)–(3.21). No

new complications arise for the fermions in the off-diagonal block and it is straightforward

to obtain the propagators between them from (3.23).

4 One-loop corrections to the classical solution

With the propagators at hand, we are now able to study many different quantities perturba-

tively. In this section, we start by calculating the first quantum correction to the classical

solution, i.e. to the vevs of the scalars. While it is not observable itself, it occurs as a

part of the calculation of many observables, including the one-loop corrections to one-point

functions of scalar single-trace operators considered in the subsequent section. We find

that the first quantum correction to the scalar vevs is non-vanishing, unlike in the D3-D5

system, where the vevs of the scalars were not corrected at one-loop order [13].

The one-loop vacuum expectation value of the scalars is [13]

〈φi〉1-loop(x) = φ̃i(x)

∫
d4y

∑
Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)). (4.1)

Here, the sum of all the contractions of cubic interactions occurs where one of the fields,

which we call Φ1, remains uncontracted. The field Φ1 is then contracted with φ̃i and the

position of the interaction is integrated over to obtain 〈φi〉1-loop.7

7The only conceivable contribution of the defect fields at one-loop order is through a cubic defect vertex

V3. However, the defect fields Φ2 and Φ3 are massless in this case, resulting in a massless tadpole integral

that vanishes due to conformal symmetry.
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The calculation of (4.1) requires the evaluation of propagators at the same spacetime

points, i.e. Kν(y, y) and trKm
F (y, y). This introduces divergences which we regularize

using dimensional regularization, cf. (3.6) and (3.10). Dimensional regularization in 4 − 2ε

dimensions changes the number of components of the gauge field to nA = 4 − 2ε while

keeping the number of scalars and fermions fixed. This breaks supersymmetry and is

therefore not a convenient regularization scheme for standard N = 4 theory; for instance,

non-renormalization theorems due to supersymmetry are only applicable if supersymmetry is

preserved by the regulator. Usually, supersymmetry can be restored in dimensional reduction

by introducing additional 2ε scalars in the action [38, 39], which has been successfully

applied in N = 4 theory (see e.g. [40, 41] and references therein).8 In the defect theory,

the regularization procedure must be chosen in a way that is compatible with the theory

without the defect, i.e. with N = 4 SYM theory. The reason is that the entire UV behavior

of the theory with defect is governed by the theory without the defect. One can see this

by considering the scalar propagator (3.2) in the limit x → y, where it reduces to the

propagator for a scalar in N = 4 SYM theory in four dimensions. In the following, we will

therefore work in a version of dimensional reduction where we introduce 2ε scalars behaving

as the easy components of the gauge fields. We also note that dimensional reduction has

been applied successfully in [13] for the D3-D5 system, where it was crucial for the one-loop

correction to the vevs to vanish.

We will work in the planar limit, where N →∞ and gYM → 0, such that the ’t Hooft

coupling λ = Ng2
YM remains fixed. The computation of 〈φi〉1-loop is technically involved, so

we present it in detail in appendix C, while here we will focus on the results. We find that

the one-loop correction to the scalar vevs is〈
φ

(a)
i

〉
(x) =

〈
φ

(a)
i

〉
tree

(x) +
〈
φ

(a)
i

〉
1−loop

(x) +O(λ2)

=

(
1 +

λ

16π2
W (a)(k1, k2) +O(λ2)

)〈
φ

(a)
i

〉
tree

(x),
(4.2)

for a = 1, 2. This result is valid for arbitrary k1, k2 ≥ 2, and the functions W (1)(k1, k2) and

W (2)(k1, k2) are

W (1)(k1, k2) =− 1

2

(
3m2

easy − 4 +
16

k2
1 + k2

2 − 2

)
Ψ
(
νeasy + 1

2

)
−
(
k1 − 2

)(
k1 + 3

)
2k1

(
k1 − 1

) m2
(1),−Ψ

(
ν(1),− + 1

2

)
−
(
k2 − 2

)
2k2

m2
(2),−Ψ

(
ν(2),− + 1

2

)
−
(
k1 + 2

)(
k1 − 3

)
2k1

(
k1 + 1

) m2
(1),+Ψ

(
ν(1),+ + 1

2

)
−
(
k2 + 2

)
2k2

m2
(2),+Ψ

(
ν(2),+ + 1

2

)
−

(
1

2
+

4

k2
1 + k2

2 − 2

(
k2

2 − 1
)(

k2
1 − 1

))m2
0Ψ
(
ν0 + 1

2

)
+

1

2
− 8

k2
1 + k2

2 − 2

+

(
k1 + 1

)(
k2 − 1

)
k1k2

(
m2
−− − 1

)(
Ψ
(
m−−

)
+

1

2m−−

)
8For sufficiently high loop orders, dimensional reduction is known to become inconsistent though [42–45].
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+

(
k1 + 1

)(
k2 + 1

)
k1k2

(
m2
−+ − 1

)(
Ψ
(
m−+

)
+

1

2m−+

)

+

(
k1 − 1

)(
k2 − 1

)
k1k2

(
m2

+− − 1
)(

Ψ
(
m+−

)
+

1

2m+−

)

+

(
k1 − 1

)(
k2 + 1

)
k1k2

(
m2

++ − 1
)(

Ψ
(
m++

)
+

1

2m++

)
(4.3)

and

W (2)(k1, k2) = W (1)(k2, k1). (4.4)

The masses and ν =
√
m2 + 1

4 are functions of k1 and k2 that are explicitly given in

tables 1, 3 and 4, where in the latter two the replacement `a → ka−1
2 is understood. While

we have suppressed this dependence in (4.3), it is understood to be taken into account

in (4.4). Note that we have used (2.74) to write Ψ
(
ν− + 1

2

)
and Ψ

(
ν+ + 1

2

)
in terms of

Ψ
(
νeasy + 1

2

)
.

On top of the planar limit, we can employ the double-scaling limit introduced in (1.3).

We find

〈
φ

(1)
i

〉
1−loop

(x) ' − λ

4π2(k2
1 + k2

2)

2k4
2

(k2
1 + k2

2)2

〈
φ

(1)
i

〉
tree

,

〈
φ

(2)
i

〉
1−loop

(x) ' − λ

4π2(k2
1 + k2

2)

2k4
1

(k2
1 + k2

2)2

〈
φ

(2)
i

〉
tree

,

(4.5)

where ' signifies that we are only keeping the leading powers in k1 and k2. Notice that the

expansion yields a result that has the desired expansion in the double-scaling parameter
λ

(k21+k22)
.

Finally, let us note that the one-loop corrections to the vevs of all other fields are

vanishing.

5 One-loop corrections to single-trace operators

In this section, we consider planar one-point functions of gauge-invariant bulk operators of

the defect CFT. We start with general single-trace operators (subsection 5.1) following [13]

and then specialize to the 1/2-BPS operator trZL (subsection 5.2). In particular, we

consider operators with well-defined scaling dimensions ∆, normalized such that in the

theory without the defect the two-point functions are9

〈Oa(x)Ob(y)〉 =
δab

|x− y|2∆a
. (5.1)

9The latter requirement is necessary for the one-point functions to be observable. In general, only

〈O〉/||O|| is observable, where the norm ||O|| is given by the two-point function far away from the defect.

– 27 –



J
H
E
P
0
1
(
2
0
1
9
)
0
0
7

(a) Tree level (b) Tadpole (c) Lollipop

Figure 2. Diagrams that contribute at tree level (a) and one-loop order (b)-(c) to a single-trace

operator such as 〈trZL〉L=8 (in the planar limit). The black dot denotes the operator and the

crosses signify the insertion of the classical solution.

On the grounds of conformal symmetry, we know that the one-loop one-point function of

these operator in the defect CFT will be of the form

〈O∆(λ)(x)〉 =
c

x∆0+γ
3

=
c

x∆0
3

(
1 + γ log x3 + . . .

)
, (5.2)

where ∆0 is the bare and γ the anomalous conformal dimension of the operator.

5.1 General single-trace operators

We will consider a general single-trace operator built out of the scalars,

O(x) = Oi1i2...iL tr(φi1φi2 . . . φiL)(x), (5.3)

which is required to have a well-defined scaling dimension. At leading order, this requires

the operator O to be an eigenstate of the one-loop dilatation operator and hence the wave

function Oi1i2...iL to be a solution of the one-loop Bethe ansatz [46].

We can evaluate the one-point function of this operator at tree level by inserting the

classical solution (2.4) for the fields φi:

〈O〉tree(x) = Oi1i2...iL tr(φcl
i1φ

cl
i2 . . . φ

cl
iL

)(x). (5.4)

At one-loop level, there are two diagrams that contribute to the one-point function, see

figure 2. Following [12, 13], we will call them lollipop and tadpole diagram.

The lollipop diagram is one-particle reducible and describes the one-loop correction

to the classical solution. Its contribution is obtained by considering all fields φi at their

classical value φcl
i , except for the one at position ij , which is replaced by its one-loop

correction. We then sum for all possible values of j = 1, . . . L,

〈O〉lol(x) = Oi1i2...iL
L∑
j=1

tr(φcl
i1 . . . 〈φij 〉1-loop . . . φ

cl
iL

)(x). (5.5)
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For a particular O, this diagram can be evaluated using the correction to the vevs (4.2)

which we have calculated in the previous section.

The tadpole diagram is obtained by expanding the fields around the classical solution

as φi = φcl
i + φ̃i, and keeping only the quadratic terms in the quantum part φ̃i. The two

quantum fields in a particular term of this sum must be Wick contracted, and one obtains

〈O〉tad(x) =

L∑
j1,j2=1

Oi1...ij1 ...ij2 ...iL tr(φcl
i1 . . . φ̃ij1 . . . φ̃ij2 . . . φ

cl
iL

)(x)

=
L∑
j=1

Oi1...ijij+1...iL tr(φcl
i1 . . . E

n
aE

a
n′ . . . φ

cl
iL

)〈[φ̃ij ]n,a[φ̃ij+1 ]a,n′〉.

(5.6)

In the second line, we have used that in the large-N limit only contractions from neighboring

fields contribute. Moreover, propagators between fields in the off-diagonal block scale like

N − k1k2 ' N , whereas propagators from the k1k2 × k1k2 block would scale like k1k2 � N ,

so we are only keeping the former. One can a priori calculate this diagram for any particular

operator O by using the propagators in (3.26) and (3.29).

The one-point function of a general operator O can receive two additional corrections

at one-loop order. If the contribution from the tadpole diagram in (5.6) is UV-divergent,

the divergence has to be canceled by the renormalization constant Z = 1 +Z1-loop +O(λ2).

At one-loop order, the corresponding correction to 〈O〉 is

〈O〉1-loop,Z(x) = 〈Z1-loopO〉tree(x). (5.7)

The second additional correction to 〈O〉 arises from the first quantum correction to the

wave function Oi1i2...iL of the operator. Since we are considering operators with well-defined

conformal dimension at one-loop level, Oi1i2...iL is already a one-loop eigenstate found by

diagonalizing the one-loop dilatation operator. The first quantum correction therefore

comes from the two-loop eigenstate Oi1i2...iL2-loop ,

〈O〉1-loop,O(x) = Oi1i2...iL2-loop tr(φcl
i1φ

cl
i2 · · ·φ

cl
iL

)(x). (5.8)

Thus, the one-loop one-point function of a generic single-trace operator is

〈O〉1-loop(x) = 〈O〉lol(x) + 〈O〉tad(x) + 〈O〉1-loop,Z(x) + 〈O〉1-loop,O(x). (5.9)

Finally, we note that the planar one-point function of a multi-trace operator is given by the

product of the one-point functions of its single-trace factors.

5.2 One-loop one-point function of trZL

We will now particularize the results from the previous subsection for the 1/2-BPS operator

O = trZL, where Z = φ3 + iφ6. The tree-level one-point function of trZL is obtained by

replacing all fields by their classical value:

〈 trZL 〉tree = tr
[
(Zcl)L

]
' (−i)L(k2

1 + k2
2)

L
2

+1 sin [(L+ 2)ψ0]

2LxL3 (L+ 1)(L+ 2)
. (5.10)
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This and other color traces have been collected in appendix D. In the above equation, we

have defined the angle ψ0 = arctan(k1/k2). Moreover, the symbol ' is used here and in

what follows to indicate that we are only keeping the leading-order term in the limit where

k1 and k2 are large. The result vanishes unless L is even, so this will be implicitly assumed

in the following discussion.

Now we proceed to study the one-point function of trZL beyond tree level. Since

the operator trZL is 1/2-BPS, in the theory without the defect it is protected from

quantum corrections; therefore, 〈O〉1-loop,Z(x) = 0 and 〈O〉1-loop,O(x) = 0. However, for

the latter statement to be true, we must use a renormalization scheme that preserves the

supersymmetry of the theory without the defect, and therefore it is required that we use

dimensional reduction in our calculation. We conclude that if we use dimensional reduction,

only the lollipop and tadpole diagrams contribute at one-loop order,

〈 trZL 〉lol = L tr
[
(Zcl)L−1〈Z〉1-loop

]
, 〈 trZL 〉tad = L tr

[
(Zcl)L−2ZZ

]
. (5.11)

In the remainder of this section, we will evaluate these two diagrams.

To calculate the lollipop diagram, we use (5.11) and the one-loop correction to the

vevs (4.5):

〈 trZL 〉lol '
λL

2π2x3(k2
1 + k2

2)3

(
k4

2 tr
[
(Zcl)L−1 tk13 ⊗ 1k2

]
+ i k4

1 tr
[
(Zcl)L−1 1k1 ⊗ t

k2
3

] )
' λ(−i)L(k2

1 + k2
2)

L
2
−3

2L+1π2(L+ 1)(L+ 2)xL3

(
(k2

2 − k2
1)
(
k4

1 + k4
2 + (k1k2)2(L+ 2)

)
sin(Lψ0)

− k1k2(k4
1 + k4

2)L cos(Lψ0)
)
. (5.12)

In the second line, we have used (D.7) in appendix D to compute the color traces.

Finally, the contribution from the tadpole diagram (5.11) is

〈trZL 〉tad = NL

(
tr

[
(Zcl)L−21k1 ⊗

(
tk23

)2
]
Kφ,(2)

sym − tr

[
(Zcl)L−2

(
tk13

)2
⊗ 1k2

]
Kφ,(1)

sym

+ tr
[
(Zcl)L−2

] (
K
φ,(1)
sing −K

φ,(2)
sing

)
+ 2i tr

[
(Zcl)L−2tk13 ⊗ t

k2
3

]
Kφ

opp

)
,

(5.13)

where we have used the propagators (3.18) and (3.21). We can expand this expression in the

limit where k1 and k2 are large, which combined with the color traces in appendix D gives

〈 trZL〉tad '
λL(−i)L(k2

1 + k2
2)

L
2
−1

2L+2π2(L− 1)(L+ 2)xL3

[
2k1k2 cos(Lψ0)− (k2

1 − k2
2) sin(Lψ0)

]
. (5.14)

Notice that the tadpole diagram does not depend on the regulator ε from dimensional

regularization. In fact, even though (5.14) is applicable only in the double-scaling limit, the

regulator drops from the tadpole diagram even for finite k1 and k2. This is an important

consistency check; since trZL is a 1/2-BPS operator, it should not be renormalized, so we

should not find any UV-divergences and the terms proportional to 1
ε should cancel.
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We can combine the tree-level result (5.10), the lollipop diagram (5.12) and the tadpole

diagram (5.14) to obtain

〈trZL〉
〈trZL〉tree

= 1 +
λ

4π2(L− 1)
(
k2

1 + k2
2

)3
(

4(k1k2)2 + (L2 + 3L− 2)
(
k4

1 + k4
2

)
(5.15)

+ 2(L− 1)(L+ 2)k1k2

(
k2

1 − k2
2

)
cot[(L+ 2)ψ0]

)
+O

(
λ2

(k2
1 + k2

2)2

)
.

Note that the result has indeed an expansion in the parameter λ
(k21+k22)

as suggested by the

string-theory dual of the defect CFT. Moreover, the result (5.15) precisely agrees with the

supergravity prediction (1.4) quoted in the introduction!10

6 Outlook

While the main result of the present paper is a highly non-trivial positive test of AdS/dCFT

for a configuration where supersymmetry is completely broken, an important accompanying

achievement is the establishment of a perturbative framework for the SO(3) × SO(3)-

symmetric defect CFT involved. A crucial step of this achievement was of course the

determination of the exact mass spectrum of the theory using fuzzy spherical harmonics,

but an equally essential step was the rewriting of the resulting propagators of the theory in

terms of generators of su(2)×su(2). Worth stressing is also the recognition that dimensional

reduction constitutes an appropriate regularization scheme being compatible with the

supersymmetry of the underlying bulk CFT which governs the UV behavior of the defect

CFT. We have used our perturbative framework to calculate the one-loop correction to

the classical solution in the planar limit and obtained an explicit result for the one-point

function of trZL in the double-scaling limit; in the future, it would be interesting to go to

finite N (following [13, 47]), to obtain explicit results at finite k1 and k2 for trZL and to

go to higher loop orders. With the perturbative framework in place, the scene is also set

for the calculation of quantum corrections to other quantities of interest in the defect CFT,

such as other types of correlation functions or Wilson loops. In the case of the simpler

D3-D5 probe-brane setup, the calculation of a simple Wilson line to one-loop order [48]

confirmed the prediction of a classical string-theory calculation [16] consisting of evaluating

the area of a minimal surface in the double-scaling limit (1.2). The circular Wilson loop of

the D3-D5 defect CFT was analyzed in [49] and the case of two anti-parallel Wilson lines

was considered in a search for a Gross-Ooguri transition in [50]. Finally, the calculation of

two-point functions of the defect CFT allowed for data mining in N = 4 SYM theory by

means of the boundary conformal bootstrap equations [37]. A special class of two-point

functions was considered in [51].

In the case of the defect CFT based on the D3-D5 probe-brane setup, where only three

scalar fields get non-trivial SO(3) symmetric vevs, the one-point function problem showed

10To be precise, the supergravity prediction is for the unique SO(3)× SO(3)-symmetric chiral primary

operator built from L scalar fields [21]; while this operator is not equal to trZL, trZL has a non-vanishing

projection on it (induced by the norm from the two-point function far away from the defect), such that the

ratio of the one-point function and the tree-level one-point function of both operators coincide.
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very strong signs of integrability. Hence, it was possible to express the tree-level one-point

function of any scalar operator in a closed formula valid for any value of the representation

label k [11]. The formula could be extended to one-loop order in the SU(2) sub-sector and a

conjecture for an all-loop asymptotic formula for this sub-sector was put forward as well [14],

which extends the match with the supergravity prediction [15] for 〈trZL〉 in the double-

scaling limit to all loop-orders smaller than L. The calculation of a tree-level one-point

function can be formulated as the evaluation of the overlap between a Bethe state describing

the operator in question and a so-called matrix product state [8], and the apparent integra-

bility of the one-point function problem in the D3-D5 probe-brane set-up was suggested to

be a consequence of the matrix product state being annihilated by all the odd charges of the

integrable spin chain underlying the spectrum of N = 4 SYM theory [52]. One can explicitly

check that the matrix product state of relevance for the computation of one-point functions of

the SO(3)×SO(3)-symmetric defect CFT is not annihilated by the odd charges of the N = 4

SYM spin chain [53]. In accordance with this, it has only been possible to derive results

for tree-level one-point functions of non-protected operators on a case by case basis [53].

On the other hand, one can prove that the matrix product state of relevance for the

computation of the one-point functions of the earlier mentioned SO(5)-symmetric defect

CFT based on the non-supersymmetric D3-D7 probe-brane system with probe geometry

AdS4 × S4 is indeed annihilated by the odd charges of the N = 4 SYM spin chain [11].

Although only a few exact tree-level results and in particular no closed formula exist

so far [54], this observation indicates that setting up the perturbative program for the

SO(5)-symmetric defect CFT could potentially be very rewarding. We have already taken

the first step in this direction by explicitly determining the mass spectrum of the theory

via a further generalization of the method of fuzzy spherical harmonics [30], and we hope

to be able to report on the completion of the program in the near future.
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A Conventions

In this appendix, we summarize our conventions for field-theory calculations (appendix A.1)

and fuzzy spherical harmonics (appendix A.2).

A.1 Field-theory conventions

Throughout the paper, we choose the metric of Minkowski space to have mostly positive

signature, i.e. ηµν = diag(−1,+1, . . . ,+1). We will work in (3+1) dimensions, and we will

denote by d = 3 the dimension of the codimension-one defect. For the fermionic fields, we
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take the four-dimensional γ-matrices to be

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−12 0

0 12

)
, (A.1)

with σµ = (12, σ
i), σ̄µ = (12,−σi) and {γµ, γν} = −2ηµν .

For the four-dimensional matrices Gi that appear in the reduction of the spinors in ten

dimensions to four dimensions, we use the same conventions as in [13]:

G1 ≡ G(1)
1 = i

(
0 −σ3

σ3 0

)
, G2 ≡ G(1)

2 = i

(
0 σ1

−σ1 0

)
, G3 ≡ G(1)

3 =

(
σ2 0

0 σ2

)
,

G4 ≡ G(2)
1 = i

(
0 −σ2

−σ2 0

)
, G5 ≡ G(2)

2 =

(
0 −12

12 0

)
, G6 ≡ G(2)

3 = i

(
σ2 0

0 −σ2

)
.

(A.2)

The matrices in the first line are Hermitian, (G
(1)
i )† = G

(1)
i , while those in the second line

are anti-Hermitian, (G
(2)
i )† = −G(2)

i . Their (anti-)commutation relations are{
G

(1)
i , G

(1)
j

}
= +2δij ,

[
G

(1)
i , G

(1)
j

]
= −2iεijkG

(1)
k ,{

G
(2)
i , G

(2)
j

}
= −2δij ,

[
G

(2)
i , G

(2)
j

]
= −2εijkG

(2)
k .

(A.3)

The two sets commute,
[
G

(1)
i , G

(2)
j

]
= 0.

A.2 Lie algebra su(2) and fuzzy spherical harmonics

For the vevs with SO(3) × SO(3) symmetry, we will need explicit expressions for the

generators ti of the corresponding Lie algebra as well as for the fuzzy spherical harmonics

Ŷ m
` that serve as a basis for the fields in color space. Those are given here using the same

conventions as [13].

The basis matrices Eij are defined to have a 1 at position (i, j), i.e. [Eij ]m,n = δi,mδj,n.

We use the same form of the k-dimensional matrices ti of su(2) that was used in [8], namely

t+ =

k−1∑
n=1

ck,nE
n
n+1, t− =

k−1∑
n=1

ck,nE
n+1

n, t3 =

k∑
n=1

dk,nE
n
n, (A.4)

with the coefficients

ck,n =
√
n(k − n), dk,n =

1

2
(k − 2n+ 1). (A.5)

Defining also t1 = 1
2(t+ + t−) and t2 = 1

2i(t+ − t−), these matrices satisfy the commutation

relations of su(2),

[ti, tj ] = iεijktk. (A.6)
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The k-dimensional matrices ti can be used to construct su(2) representations Ŷ m
` of

spin `, for ` = 0, 1, . . . , k − 1, cf. [55, 56]. The k × k matrices Ŷ m
` are essentially given by a

symmetric and traceless polynomial of degree ` in the generators ti,

Ŷ m
` = 2`

√
(k − `− 1)!

(k + `)!

(
k2 − 1

4

)`/2 ∑
i1,...,i`

f `mi1,...,i` x̂i1 · · · x̂i` , ` = 1, . . . , k − 1, (A.7)

where the su(2) generators have been rescaled to

x̂i =

√
4

k2 − 1
ti ⇒

∑
i

x̂ix̂i = 1k, (A.8)

and the coefficients f `mi1,...,i` implement the symmetry and tracelessness conditions. Note

that the last equation defines the fuzzy two-sphere with coordinates x̂i and that the

construction (A.7) stems from the observation that on a normal two-sphere a basis of

functions can be constructed as a homogeneous polynomial in the Cartesian coordinates xi,

i = 1, 2, 3. These functions are the well-known spherical harmonics Y m
` .

We now give some properties of Ŷ m
` that are important for our purposes. With the

normalization as above, they satisfy(
Ŷ m
`

)†
= (−1)mŶ −m` and tr

[(
Ŷ m
`

)†
Ŷ m′
`′

]
= δ``′δmm′ . (A.9)

We also make use of the relation between the generators ti and Ŷ m
` for ` = 1, namely

t1 = c
(
Ŷ −1

1 − Ŷ 1
1

)
, t2 = ic

(
Ŷ −1

1 + Ŷ 1
1

)
, t3 = c

√
2Ŷ 0

1 (A.10)

with

c =
(−1)k+1

2

√
k(k2 − 1)

6
. (A.11)

B Color and flavor part of the propagators

In this appendix, we derive the propagators between the fields that originally appeared in the

action of N = 4 SYM theory. We focus on the propagators involving the six scalars and the

gauge field; the propagators involving the Majorana fermions can be obtained in a similar

way. To obtain the propagators, we will express the original fields in terms of the fields

in which the mass term of the action becomes diagonal. For example, for the complicated

bosons with `1, `2 6= 0, we have to undo the three steps of the diagonalization: the flavor

transformation (2.36), the Clebsch-Gordan procedure (2.55) and the diagonalization of the

final 3× 3 matrix (2.60).

After the flavor transformation, S · L is in the form (2.39) and the transformed vector

of complicated fields is

V †C =

C(1)

C(2)

A3

 , (B.1)
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where C(1) and C(2) were given in (2.37). In the 3 × 3 blocks TiL
(1)
i and TiL

(2)
i , we

diagonalize using Clebsch-Gordan coefficients and obtain the eigenstates (B(1))j1,m1,`1;`2,m2

and (B(2))`1,m1;j2,m2,`2 . The relation to the fields C
(a)
± and C

(a)
0 with a = 1, 2 is

(C
(a)
± )`m =

∑
j

〈`,m; 1,±1|j,m± 1〉(B(a))j,m±1;`, (C
(a)
0 )`m =

∑
j

〈`,m; 1, 0|j,m〉(B(a))j,m;`.

(B.2)

For j1 = `1 ± 1 and j2 = `2 ± 1, these fields diagonalize S · L and it only remains to

diagonalize the 3 × 3 matrix in (2.58). The fields D± and D0 in which the mass term is

diagonal were given in (2.60). Inverting this relation, we find

B
(1)
0 = −

√
`2(`2 + 1)

D0√
N0
− i
√
`1(`1 + 1)

(
D+√
N+

+
D−√
N−

)
,

B
(2)
0 = +

√
`1(`1 + 1)

D0√
N0
− i
√
`2(`2 + 1)

(
D+√
N+

+
D−√
N−

)
,

A3 =
λ−√
N+

D+ +
λ+√
N−

D−.

(B.3)

We begin with the propagators between scalars from different sectors and those involving

A3 using the notation described in section 3.3. They contain at most one su(2) Clebsch-

Gordan coefficient from each sector, which we can express as the matrix element of an su(2)

generator ti. In particular, we do not yet encounter products of su(2) generators unlike in

the propagators for scalars from the same sector. For convenience, we define

[r`s]m,m′ ≡
√
`(`+ 1)〈`,m; 1, s|`,m+ s〉δm′,m+s, (B.4)

for s = −1, 0, 1. One can check that r± = ∓t∓/
√

2, r0 = t3, r†s = r−s and finally

[(r`s)
†]m,m′ =

√
`(`+ 1)〈`,m− s; 1, s|`,m〉δm′,m−s. (B.5)

Using this notation, it will be easier to keep track of factors ±1/
√

2. The propagators

involving A3 are

〈(C(1)
s )`1m1;`2m2(A3)†

`′1m
′
1;`′2m

′
2
〉 = −iδ`1`′1δ`2`′2δm2m′2

[r`1s ]m1,m′1

(
λ+

N−
Km2

− +
λ−
N+

Km2
+

)
,

〈(A3)`1m1;`2m2(C(1)
s )†

`′1m
′
1;`′2m

′
2
〉 = iδ`1`′1δ`2`′2δm2m′2

[(r`1s )†]m1,m′1

(
λ+

N−
Km2

− +
λ−
N+

Km2
+

)
,

〈(A3)`1m1;`2m2(A3)†
`′1m

′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

(
λ2

+

N−
Km2

− +
λ2
−

N+
Km2

+

)
.

(B.6)

To obtain the same propagators for C
(2)
s , we simply relabel as in (3.22). For the propagators

that mix the two blocks, we need

〈(B(1)
0 )`1m1;`2m2(B

(2)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

×
√
`1(`1 + 1)

√
`2(`2 + 1)

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
,

(B.7)
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and we obtain

〈(C(1)
s )`1m1;`2m2(C

(2)
s′ )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2 [r`1s ]m1,m′1

[(r`2s′ )
†]m2,m′2

×

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
.

(B.8)

Converting to the fields φi is a matter of undoing the flavor transformation,

〈(φ̃(1)
i )`1m1;`2m2(φ̃

(2)
j )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2 [t

(`1)
i ]m1,m′1

[t
(`2)
j ]m2,m′2

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
,

(B.9)

〈(φ̃(1)
i )`1m1;`2m2(A3)†

`′1m
′
1;`′2m

′
2
〉 = −〈(A3)`1m1;`2m2(φ̃

(1)
i )†

`′1m
′
1;`′2m

′
2
〉

= −iδ`1`′1δ`2`′2 [t
(`1)
i ]m1m′1

δm2m′2

(
λ+

N−
Km2

− +
λ−
N+

Km2
+

)
,

(B.10)

with φ̃
(1)
i ≡ φ̃i and φ̃

(2)
i ≡ φ̃i+3. We obtain the analogue of the last equation for the second

sector by relabeling as in (3.22).

As anticipated, the propagators between scalars from the same sector contain products

of Clebsch-Gordan coefficients and are therefore more involved. For simplicity let us focus

on one sector, say the first one for concreteness. We define the combination K0
(1) as

〈(B(1)
0 )`1m1;`2m2(B

(1)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

×
[`2(`2 + 1)

N0
Km2

0 + `1(`1 + 1)

(
Km2

−

N−
+
Km2

+

N+

)]
︸ ︷︷ ︸

≡K0
(1)

.

(B.11)

The propagators with C
(1)
0 are

〈(C(1)
± )`1m1;`2m2(C

(1)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2

[t
(`1)
∓ ]m1,m′1√

2
δm2m′2

×

(
− `1 ∓m1 − 1

(2`1 + 1)`1
K
m2

(1),− +
`1 ±m1 + 2

(2`1 + 1)(`1 + 1)
K
m2

(1),+ +
∓m1 − 1

`1(`1 + 1)
K0

(1)

)
,

〈(C(1)
0 )`1m1;`2m2(C

(1)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

×

(
(`1 −m1 + 1)(`1 +m1 + 1)

(2`1 + 1)(`1 + 1)
K
m2

(1),+ +
(`1 −m1)(`1 +m1)

(2`1 + 1)`1
K
m2

(1),− +
m2

1

`1(`1 + 1)
K0

(1)

)
.

(B.12)
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The propagators between C
(1)
± are

〈(C(1)
± )`1m1;`2m2(C

(1)
± )`′1m′1;`′2m

′
2
〉 =

1

2
δ`1`′1δ`2`′2δm2m′2

[
[t

(`1)
∓ t

(`1)
± ]m1,m′1

`1(`1 + 1)
K0

(1)

+ δm1m′1

(
(`1 ∓m1)(`1 ∓m1 − 1)

(2`1 + 1)`1
K
m2

(1),− +
(`1 ±m1 + 1)(`1 ±m1 + 2)

(2`1 + 1)(`1 + 1)
K
m2

(1),+

)]
,

〈(C(1)
± )`1m1;`2m2(C

(1)
∓ )`′1m′1;`′2m

′
2
〉 =

1

2
δ`1`′1δ`2`′2 [t

(`1)
∓ t

(`1)
∓ ]m1,m′1

δm2m′2

×

(
K
m2

(1),−

(2`1 + 1)`1
− K

m2
(1),0

`1(`1 + 1)
+

K
m2

(1),+

(2`1 + 1)(`1 + 1)

)
.

(B.13)

Undoing the flavor transformation and inserting K0
(1) from (B.11), we find that the propa-

gator between two scalars from the same sector is

〈(φ̃(1)
i )`1m1;`2m2(φ̃

(1)
j )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm2m′2[

δijδm1m′1

(
`1 + 1

2`1 + 1
K
m2

(1),+ +
`1

2`1 + 1
K
m2

(1),−

)
− iεijk[t

(`1)
k ]m1,m′1

(
K
m2

(1),+

2`1 + 1
− K

m2
(1),−

2`1 + 1

)
− [t

(`1)
i t

(`1)
j ]m1,m′1

(
K
m2

(1),+

(2`1 + 1)(`1 + 1)
+

K
m2

(1),−

(2`1 + 1)`1
− `2(`2 + 1)

`1(`1 + 1)

Km2
0

N0
− Km2

−

N−
− Km2

+

N+

)]
,

(B.14)

with an analogous expression for the other sector obtained by relabeling as in (3.22). We

note that the terms with δij and εijk are the same as in [13] and that the last one would

vanish in the setup of that reference.

C One-loop correction to the scalar vacuum expectation values

In this appendix, we present in detail the calculation of the correction to the scalar vevs

summarized in section 4. We split the calculation in three parts: we obtain the effective

vertex Veff in section C.1, the contraction of the vertex with the external field is computed

in section C.2 and finally the remaining spacetime integral is performed in section C.3.

C.1 Calculation of the effective vertex

To compute the one-loop correction to the vevs of the scalars, we will need to know the

effective one-particle vertex defined by

Veff(y) ≡
∑

Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)), (C.1)

where the sum is carried over all inequivalent contractions of cubic vertices in (2.9). We

will start by calculating all the contractions assuming the limit N → ∞, but keeping k1

and k2 finite. We will continue to use equal signs in equations where the large-N limit has

been used. Then we will collect all contributions, and show that the regulator ε drops out.
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The calculation of the contractions proceeds identically to [13], but the propagators are

different in the two setups. In this section, capital Latin indices I, J,K will run from 1 to 6,

whereas lowercase Latin indices i, j, k will run from 1 to 3. We will perform dimensional

reduction at the end of the calculation, so in the intermediate results we will explicitly keep

the dependence on the number of fields of each species. All contractions come with a factor
2

g2YM
, which we will include at the end when we add all the contributions.

Since we are working in the large-N limit, all propagators will involve only fields in the

off-diagonal block. When we write a general propagator K ···, it will be the one defined in

section 3.3, but with the replacement `i → (ki − 1)/2 implicitly understood.

Simple contractions. All the contractions in this paragraph can be immediately obtained

from [13] by adapting the notation. The ghost contractions are

VG ≡ − tr
(
c̄[φcl

I , [φ̃I , c]]
)

= −nc
2N

y3
Keasy tr

(
φ̃ItI

)
, (C.2)

tr (i(∂µc̄)[A
µ, c]]) = 0. (C.3)

All the contributions from the vertex that couples three gauge fields vanish due to the

symmetry of the propagator,

tr
(
i[Aµ, Aν ]∂µAν

)
= tr

(
i[Aµ, Aν ]∂µAν

)
= tr

(
i[Aµ, Aν ]∂µAν

)
= 0. (C.4)

Finally, we consider the vertex tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
. The first two contractions give

tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
= 0, (C.5)

and

V1 ≡ tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
= +2N

(
∂3K

A,φ
)

tr
(
φ̃I tI

)
. (C.6)

Note that in the last equation we have carried out an integration by parts to move the

derivative from the field to the propagator. This is allowed because the effective vertex

will always be contracted with a scalar φ̃i and then integrated, as in (4.1). For the last

contraction, note that we can use (D.21) from [13], because as in that case, we have

Kφ,A ∝ Kν−1 −Kν+1. Thus, we find

V2 ≡ tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
= +N

(
∂3K

φ,A
)

tr
(
φ̃ItI

)
. (C.7)

Interaction of three scalars. We can rewrite the interaction vertex involving three

scalars as

tr
(
[φcl
I , φ̃J ][φ̃I , φ̃J ]

)
= tr

(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
. (C.8)
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There are three inequivalent contractions:

V3 ≡ tr
(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
=

2N

y3

(
nφ,(1)K

φ,(1)
sing −

k2
1 − 1

4
Kφ,(1)

sym

)
tr
(
φ̃ItI

)
+ (1↔ 2),

(C.9)

V4 ≡ tr
(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
=

2N

y3

[
−Kφ,(1)

sing −
nφ,(1) − 1

2

(
K
φ,(1)
anti +Kφ,(1)

sym

)
(C.10)

+
k2

1 − 1

4
Kφ,(1)

sym −
k2

2 − 1

4
Kφ

opp

]
tr
(
φ̃

(1)
i t

(1)
i

)
+ (1↔ 2),

and

V5 ≡ tr
(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
= −N

y3
(nφ,(1) − 1)

(
2K

φ,(1)
anti +Kφ,(1)

sym

)
tr
(
φ̃

(1)
i t

(1)
i

)
+ (1↔ 2).

(C.11)

Interaction of one scalar with two gauge fields. Next we rewrite the interaction

between one scalar and two gauge fields as

tr
(
[Aµ, φcl

I ][Aµ, φ̃I ]
)

= tr
(
φ̃I [A

µ, [φcl
I , Aµ]]

)
. (C.12)

For µ = 0, 1, 2 ≡ i, there is only one possible contraction:

V6 ≡ tr
(
φ̃I [A

i, [φcl
I , Ai]]

)
= nA,easy

2N

y3
Keasy tr

(
φ̃ItI

)
. (C.13)

In this contraction the chosen regularization procedure becomes relevant, because in

d = 3− 2ε space dimensions nA,easy = 3− 2ε. We are working in dimensional reduction [38,

39] and should therefore add 2ε scalars to the action that behave exactly as the easy

components of the gauge field. Thus, we should also consider the contraction

V7 ≡ tr
(
φ̃I [A

2ε, [φcl
I , A2ε]]

)
= 2ε

2N

y3
Keasy tr

(
φ̃ItI

)
. (C.14)

Adding the previous two equations, we find nA,easy + 2ε = 3 as a prefactor. Since nA,easy

only appears in this vertex, we can effectively say that in dimensional reduction nA,easy = 3

exactly.

For µ = 3, there are three possible contractions. The first one gives

V8 ≡ tr
(
φ̃I [A

3, [φcl
I , A3]]

)
=

2N

y3
KA,A tr

(
φ̃ItI

)
, (C.15)

while the other two do not contribute to the effective vertex:

tr
(
φ̃I [A

3, [φcl
I , A3]]

)
= tr

(
φ̃I [A

3, [φcl
I , A3]]

)
= 0. (C.16)
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Fermions in the loop. The action contains three cubic vertices including fermions. The

first one is

VF,1 =
1

2

3∑
i=1

tr
(
ψ̄jG

i
jk[φ̃i, ψk]

)
= Nnψ tr

(
t
(1)
i φ̃

(1)
i

)
tr K̃

(1)
F , (C.17)

the second vertex gives a similar result,

VF,2 =
1

2

6∑
i=4

tr
(
ψ̄jG

i
jk[φ̃i, γ5ψk]

)
= −Nnψ tr

(
t
(2)
i φ̃

(2)
i

)
tr
(
iγ5K̃

(2)
F

)
, (C.18)

and the last contraction vanishes,

1

2
tr
(
ψ̄jγ

µ[Aµ, ψj ]
)

= 0. (C.19)

It is important to remember that when the fermion propagators are being regulated one

has to use (3.14) and (3.10). The combinations of propagators (C.17) and (C.18) are

K̃
(1)
F =

1

(2`1+1)(2`2+1)

[
(`2 + 1)

(
K̃−`1,`2F − K̃`1+1,`2

F

)
+ `2

(
K̃−`1,−`2−1
F − K̃`1+1,−`2−1

F

)]
,

K̃
(2)
F =

1

(2`1+1)(2`2+1)

[
(`1 + 1)

(
K̃−`1,`2F − K̃−`1,−`2−1

F

)
+ `1

(
K̃`1+1,`2
F − K̃`1+1,−`2−1

F

)]
,

(C.20)

and the replacement (2.23) is understood.

Summing up all vertices. The full effective vertex is the sum of all the contractions

calculated in the previous subsection. We also have to remember to restore the overall

prefactor of 2
g2YM

of the action, i.e.

Veff =
2

g2
YM

(VG + V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + VF,1 + VF,2) . (C.21)

Inserting the expressions from the previous paragraphs, we see that the vertex contains a

part that depends on the regulator terms fε(y) = −1
ε − log(4π) + γE − 2 log(y3)− 1 and a

part that is finite as ε→ 0,

Veff = Veff,ε + Veff,fin. (C.22)

The ε-dependent part is

Veff,ε(y; k1, k2) =
−N

32π2y3
3

fε(y)
[
(k2

1 + k2
2)(nc + 2nψ − nφ,(1) − nφ,(2) − nA,easy)

− 2(nc + 2nψ + 5nφ,(1) − nφ,(2) − nA,easy − 18)
]

tr
(
φ̃

(1)
i t

(1)
i

)
+ (1↔ 2).

(C.23)

This is zero for nA,easy = 3, nc = 1, nψ = 4 and nφ,(1) = nφ,(2) = 3. Note that here we are

using that we can keep nA,easy = 3 in dimensional reduction, cf. the discussion after (C.13).

The finite part is

Veff,fin(y; k1, k2) =
−N

2π2y3
3

(
W (1)(k1, k2) tr

(
φ̃

(1)
i t

(1)
i

)
+W (2)(k1, k2) tr

(
φ̃

(2)
i t

(2)
i

))
, (C.24)

where the functions W (1)(k1, k2) and W (2)(k1, k2) are given in (4.3) and (4.4) in the main

text. This result is exact, i.e. we have not expanded for large k1 and k2.
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C.2 Contraction of the stick

Now we proceed to contract the external field with the effective vertex. The traces tr(φ̃
(b)
j t

(b)
j )

with b = 1, 2 coming from the effective vertex will be contracted with an external field φ̃
(a)
i .

For simplicity, let us consider the case where we are contracting fields from the first sector,

i.e. the case a = b = 1. Notice that t
(1)
j is a matrix in the k1k2 × k1k2 block padded with

zeros. Thus, when we multiply it with φ̃
(1)
j only the k1k2 × k1k2 block survives when taking

the trace. Expanding φ̃
(1)
i and φ̃

(1)
j in this block in terms of fuzzy spherical harmonics and

their Hermitian conjugates, we obtain

φ̃
(1)
i tr(φ̃

(1)
j t

(1)
j ) =

〈
(φ̃

(1)
i )`1,m1;`2,m2(φ̃

(1)
j )†

`′1,m
′
1;`′2,m

′
2

〉
Ŷ m1
`1
⊗ Ŷ m2

`2
tr

[(
Ŷ
m′1
`′1
⊗ Ŷ m′2

`′2

)† (
tk1j ⊗ 1k2

)]
.

(C.25)

In the previous expression, the trace can be simplified further. We start by expanding the

matrices ti and 1 in terms of the fuzzy spherical harmonics Ŷ m
` as

tk1i =
∑

m1=±1,0

(ci)m1 Ŷ
m1
`1=1, 1k2 = (−1)k2+1

√
k2 Ŷ

m2=0
`2=0 . (C.26)

The explicit coefficients (ci)m1 can be obtained from (A.10) and (A.11) in appendix A.2.

Using that the Ŷ m
` are traceless for ` > 0 and proportional to the identity for ` = 0, we

obtain

tr

[(
Ŷ
m′1
`′1
⊗ Ŷ m′2

`′2

)†
(tk1j ⊗ 1k2)

]
= tr

[(
Ŷ
m′1
`′1

)†
tk1j

]
tr

[(
Ŷ
m′2
`′2

)†]
= (−1)k2+1

√
k2 δ`′1,1 δ`′2,0 δm′2,0 (cj)m′1 .

(C.27)

Inserting this into (C.25), we find that the propagator between the scalars has to be evaluated

for `2 = `′2 = m2 = m′2 = 0 and `1 = `′1 = 1. The explicit form of the propagator is

〈(φ̃i)1,m1(φ̃j)
†
1,m′1
〉 = δijδm1,m′1

(
2
3K

m2=0 + 1
3K

m2=6
)

− i
3εijk[t

k1=3
k ]2−m1,2−m′1

(
Km2=0 −Km2=6

)
.

(C.28)

Combining this propagator with the explicit form of cmj and the 3 × 3 matrices tk1=3
i ,

we obtain

φ̃
(1)
i tr(φ̃

(1)
j t

(1)
j ) = (tk1i ⊗ 1k2)Km2=6, φ̃

(2)
i tr(φ̃

(2)
j t

(2)
j ) = (1k1 ⊗ t

k2
i )Km2=6. (C.29)

The contractions where the external field and the one inside the trace are from different

sectors vanish,

φ̃
(1)
i tr(φ̃

(2)
j t

(2)
j ) = φ̃

(2)
i tr(φ̃

(1)
j t

(1)
j ) = 0. (C.30)

The contraction of the easy components A0, A1 and A2 of the gauge field with the vertex

vanishes because the propagator between them and the scalars is zero. Furthermore, we find

A3 tr(φ̃
(1)
j t

(1)
j ) = A3 tr(φ̃

(2)
j t

(2)
j ) = 0. (C.31)

This shows that only the vevs of the scalars receive one-loop corrections.
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C.3 Spacetime integral

In order to evaluate the correction to the scalar vevs (4.1), we are only missing the calculation

of the integral over y. The propagator in the integral has mass m2 = 6, or equivalently

ν = 5
2 , and it can be expressed in terms of elementary functions,

Kν=
5
2 (x, y) =

g2
YM

2

ξ(x, y)4

10π2x3y3
2F1

(
2, 5

2 ; 7
2 ; ξ(x, y)2

)
=
g2

YM

2

1

4π2x3y3

(
2ξ2 − 3

ξ2 − 1
− 3 arctanh(ξ)

ξ

)
.

(C.32)

In the second equality, we have dropped the explicit dependence of ξ on x and y to simplify

the notation. In the integral, this propagator will be multiplied by a factor of 1/(y3)3 that

comes from the effective vertex. Thus, the integral is∫
d4y

1

y3
3

Kν=
5
2 (x, y) =

g2
YM

2

1

4π2

∫ ∞
0

dy3

∫ ∞
0

dr

∫
dΩ

r2

x3y4
3

(
2ξ2 − 3

ξ2 − 1
− 3 arctanh(ξ)

ξ

)
=
g2

YM

2

1

5

∫ ∞
0

dy3

{
(x3)−2 for 0 ≤ y3 < x3

(x3)3(y3)−5 for 0 ≤ x3 < y3

}
=
g2

YM

2

1

4x3
,

(C.33)

where we have used spherical coordinates defined by r2 = (x0−y0)2 + (x1−y1)2 + (x2−y2)2

and we are working in Euclidean signature as anticipated when we discussed the spacetime

part of the scalar propagator.

One can combine the effective vertex (C.24), the contractions (C.29) and the spacetime

integral (C.33) to obtain the correction to the vevs given in (4.2) of the main text.

D Color traces

For the calculation of 〈tr ZL〉 to one-loop order in section 5.2, we need expressions for the

color traces. More precisely, we need to calculate traces where (Zcl)L is multiplied with a

number of su(2) generators ti from each sector.

It was shown in [13] that

tr
[
(tk3)L

]
= (−1)L+1 2

L+ 1
BL+1

(
1−k

2

)
=

kL+1

2L(L+ 1)
+O(kL), (D.1)

for L even while tr
[
(tk3)L

]
= 0 for L odd. Here BL+1(k) denotes the Bernoulli polynomial

of degree L+ 1. In this paper, the most general trace that we will evaluate is

tr
[
(Zcl)L

(
tk13

)n1

⊗
(
tk23

)n2
]

=
(−1)L

xL3

L∑
n=0

(
L

n

)
iL−n tr

[(
tk13

)n+n1
]

tr

[(
tk23

)L+n2−n
]
.

(D.2)

A particular term in this sum will not vanish if n+ n1 is even and L+ n2 − n is even. In

order for the entire sum not to vanish we need that n1 and L+ n2 have the same parity, or
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equivalently, we need that n1 and L+ n2 are both even or both odd. In either case, only

half of the terms in the sum will contribute to the result.

When n1 is even and L+ n2 is even, only the terms with n even contribute. Thus, we

must sum over a new variable m such that n = 2m and m = 0, . . . , bL2 c. If we expand for

large k1 and k2, we obtain

(−1)L

2L+n1+n2xL3

bL
2
c∑

m=0

(
L

2m

)
iL−2m k2m+n1+1

1

(2m+ n1 + 1)

kL+n2−2m+1
2

(L+ n2 − 2m+ 1)
+O(kL+n1+n2+1). (D.3)

Here O(k`) stands for terms where the combined powers of k1 and k2 are less than or equal

to `.

When n1 is odd and L+ n2 is odd, only the terms with n odd contribute. Thus, we

must sum over a new variable m such that n = 2m+ 1 and m = 0, . . . , bL−1
2 c. If we expand

for large k1 and k2, we obtain

(−1)L

2L+n1+n2xL3

bL−1
2
c∑

m=0

(
L

2m+ 1

)
iL−2m−1 k2m+n1+2

1

(2m+ n1 + 2)

kL+n2−2m
2

(L+ n2 − 2m)
+O(kL+n1+n2+2).

(D.4)

The above sums can be carried out explicitly for particular values of n1 and n2. In all

cases of interest for us, the traces will vanish for L odd, so we will assume that L is even in

the rest of this section. It will also be convenient to express the results in terms of the angle

ψ0 ≡ arctan

(
k1

k2

)
. (D.5)

In the following results, the symbol ' means that the right-hand side only contains the

leading-order term in k1 and k2. The trace for n1 = 0 and n2 = 0 is

tr

[(
Zcl
)L]
' (−i)L(k2

1 + k2
2)

L
2

+1 sin [(L+ 2)ψ0]

2LxL3 (L+ 1)(L+ 2)
. (D.6)

When (n1, n2) = (1, 0) or (n1, n2) = (0, 1), we find

tr
[ (
Zcl
)L−1

tk13 ⊗ 1k2

]
' (−i)L(k2

1 + k2
2)

L
2

2LxL−1
3 L(L+ 1)(L+ 2)

[
− k1k2L cos (Lψ0)

+
[
k2

2 + k2
1(L+ 1)

]
sin (Lψ0)

]
,

tr
[ (
Zcl
)L−1

1k1 ⊗ t
k2
3

]
' (−i)L−1(k2

1 + k2
2)

L
2

2LxL−1
3 L(L+ 1)(L+ 2)

[
+ k1k2L cos (Lψ0)

+
[
k2

1 + k2
2(L+ 1)

]
sin (Lψ0)

]
.

(D.7)

For the case n1 = n2 = 1, the trace gives

tr
[ (
Zcl
)L−2

tk13 ⊗ t
k2
3

]
' (−i)L+1(k2

1 + k2
2)

L
2

2LxL−2
3 L(L+ 2)(L− 1)

[
+ k1k2L cos (Lψ0)

+ (k1 − k2)(k1 + k2) sin (Lψ0)
]
.

(D.8)

– 43 –



J
H
E
P
0
1
(
2
0
1
9
)
0
0
7

Finally, for the cases (n1, n2) = (2, 0) and (n1, n2) = (0, 2) the traces evaluate to

tr
[ (
Zcl
)L−2 (

tk13

)2
⊗ 1k2

]
' − (−i)L(k2

1 + k2
2)

L
2

2LxL−2
3 (L− 1)L(L+ 1)(L+ 2)

[
+ 2k1k2L cos (Lψ0)

+
(
−2k2

2 + k2
1L(L+ 1)

)
sin (Lψ0)

]
,

tr
[ (
Zcl
)L−2

1k1 ⊗
(
tk23

)2 ]
' (−i)L(k2

1 + k2
2)

L
2

2LxL−2
3 (L− 1)L(L+ 1)(L+ 2)

[
+ 2k1k2L cos (Lψ0)

+
(
2k2

1 − k2
2L(L+ 1)

)
sin (Lψ0)

]
.

(D.9)
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identify additional examples of Feynman integrals that give rise to hypersurfaces of this
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1 Introduction and summary

Recent years have seen the development of a rich interplay between number theory, al-

gebraic geometry, and the study of perturbative scattering amplitudes in quantum field

theory. Even for what is arguably the simplest class of amplitudes — those that can

be expressed in terms of multiple polylogarithms [1–6] — a great deal of conceptual and

computational progress has been made [7–29] by harnessing the geometric (or motivic)

structures with which these functions are endowed when viewed as iterated integrals on

the moduli space of the Riemann sphere with marked points [2, 3, 30–38].

Slightly more complicated amplitudes can be described in terms of elliptic multiple

polylogarithms, which can be understood as iterated integrals over the (moduli space of

the) torus. This class of functions has been the focus of a great deal of recent work and is

now also under reasonably good theoretical control (in part based on an understanding of

modular forms) [39–61].

In general, one expects increasingly complicated classes of integrals to appear in scat-

tering amplitudes at higher perturbative orders, corresponding to integrals over manifolds

– 1 –
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with higher dimension and/or genus. Even for amplitudes known or expected to be poly-

logarithmic, this feature may be impossible to realize while preserving locality (see for

example ref. [62] and the examples discussed in ref. [63]). A general understanding of the

types of integrals that can show up is currently lacking. However, in a surprisingly large

number of cases, it has been observed that these manifolds are Calabi-Yau [61, 64–70].

Even at dimensions as low as three or four, large numbers of Calabi-Yau manifolds are

known to exist — having been constructed and studied, in part, because of their role in

string compactifications (see e.g. refs. [71–74]). One may wonder if a similarly vast number

of geometries are relevant to Feynman integrals in perturbative quantum field theories.

The answer seems to be no. Indeed, all the examples identified in ref. [64] and the entire

class of ‘maximally rigid, marginal’ integrals described in ref. [66] are members of a special

family: they are given as codimension-one (degree-2k) hypersurfaces in the k-dimensional

weighted projective space WP1,...,1,k. This motivates us to better understand this family of

Calabi-Yau manifolds and explore the consequences of their geometry for physics.

The coefficients of the polynomials that define these hypersurfaces are functions of

kinematic data. Virtually all known examples involve (highly) singular Calabi-Yau hyper-

surfaces, and there is little doubt that these singularities will play a significant role in our

understanding of these Feynman integrals. But in this work we mostly set these bigger

questions aside and discuss the geometry of the smooth case — obtainable, in general,

by sufficiently ‘regularizing’ complex structure deformations. This regularization makes it

possible for us to compute various topological quantities, such as Hodge numbers. The

reader may wonder what is the significance of these quantities. While a complete answer

is not available at this point, we believe it is likely that the Hodge numbers will account

for part of the contribution to the dimension of integral bases in terms of which integrals

sharing a given topology decompose.

This work is organized as follows. In section 2, we review some basic algebraic and

differential-geometric aspects of these particular Calabi-Yau geometries. In particular, we

discuss their Dolbeault cohomology groups Hp,q and how to compute the associated Hodge

numbers hp,q, and discuss the Euler characteristics of (smooth) Calabi-Yau hypersurfaces

of WP1,...,1,k. We also review the construction of canonical holomorphic forms (unique up to

an overall scaling), and discuss how the integral of this form over various cycles defines the

independent periods of the hypersurface (which in some sense characterize its geometry).

We study these aspects of Calabi-Yau hypersurfaces in WP1,...,1,k with the general

expectation that the integral geometries appearing in Feynman diagrams can be found to

encode some of the physics of these diagrams. Characterizing these geometries is a first

and necessary step for identifying such connections. We also expect these geometries to be

relevant to the development of technology for representing these Feynman integrals in terms

of iterated integrals. For instance, periods play an important role in the definition of elliptic

multiple polylogarithms [51, 52, 54, 56] and are required to bring differential equations

into ε-canonical form [53]. However, for general Calabi-Yau (k−1)-folds beyond the elliptic

case (k = 2), the calculation of these periods still poses a challenging problem. (But see

ref. [75] for an example where it has been done for the quintic Calabi-Yau hypersurface in

P4.) Additionally, a connection between the dimension of certain cohomology groups and

numbers of master integrals has recently been established using intersection theory [76–78].
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(a) (b)

Figure 1. The three-loop traintrack (a) and wheel (b) integrals.

After this geometric primer, we go on in section 3 to describe in detail two examples

of Calabi-Yau geometries relevant to massless, four-dimensional planar theories at three

loops. Unlike the analysis in refs. [64, 66], which identified these geometries using direct

integration, we here identify such hypersurfaces by taking sequences of residues (as done

in ref. [67]). We do this by first deriving manifestly dual-conformal-invariant six-fold rep-

resentations of these integrals using loop-by-loop Feynman parametrization [67, 79–81].

As both integrals contribute to planar maximally supersymmetric Yang-Mills theory, we

expect all six remaining integrations to be transcendental; therefore, each residue mimics

a polylogarithmic integration.1 In both integrals, Calabi-Yau hypersurfaces appear in the

denominator when no more residues can be taken.

The first integral we study in this way is the three-loop traintrack (or triple-box)

integral shown in figure 1a, which has already been identified as a K3 surface by several

of the authors [67]. We show here how to realize it as a hypersurface in WP1,1,1,3. The

second integral is the three-loop wheel shown in figure 1b, which involves a hypersurface

in WP1,1,1,1,4. While the general three-loop wheel depends on nine kinematic variables, we

also study several of its interesting kinematic limits, some of which we evaluate in terms of

polylogarithms. Moreover, we show that the three-loop wheel permits a toy model similar

to that of the elliptic double-box [80], which has only three parameters while still involving

a Calabi-Yau threefold.

The three-loop traintrack and wheel integrals are the minimal representatives (in terms

of loop order and particle multiplicity) of massless planar topologies that contain these

Calabi-Yau geometries. They occur in massless ϕ4 theory (in the case of the wheel, as a dual

graph), the planar limit of maximally supersymmetric Yang-Mills theory, and integrable

conformal fishnet models [82–84], as well as in more general four-dimensional massless

theories via generalized unitarity [85–91]. For this reason, they merit focused investigation.

While the present work inaugurates this study, it offers only a coarse analysis of the involved

Calabi-Yau geometries. A more refined analysis, including e.g. Picard ranks, has been

possible for some integrals containing K3 surfaces [65, 68–70, 92, 93], for instance, using

differential equations. It would be important to analyze the Calabi-Yau surfaces identified

here and in refs. [64, 66, 67] in a similar way, although these cases will be more difficult

due to the larger number of kinematic variables.

1This follows from the expectation that three-loop integrals will evaluate to functions with uniform

transcendental weight six. Even though the notion of transcendental weight is not established beyond the

case of polylogarithms, both integrals degenerate to weight-six polylogarithms in known limits.
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We conclude in section 4 by highlighting open problems at four loops and beyond. In

addition to discussing some of the broader questions that remain to be answered regarding

the appearance of higher-dimensional varieties in Feynman integrals (and the technology

required to cope with them), we consider the four-loop traintrack and wheel integrals.

Intriguingly, we are not able to identify either of these example as a Calabi-Yau hypersurface

in WP1,...,1,k.

In appendices A and B, we provide more background on the desingularization of hy-

persurfaces in weighted projective space and the computation of Hodge numbers and Euler

characteristics. In appendix C we review loop-by-loop Feynman parametrization [67, 79–

81] and derive a manifestly dual-conformal six-fold representation of the three-loop wheel

integral, and in appendix D we derive a dual-conformal nine-fold representation of the

four-loop wheel. In the latter case, we also describe several interesting kinematic limits

and toy models. In the supplementary material, we include the details of these examples,

as well as the equations defining the hypersurfaces obtained.

2 Calabi-Yau hypersurfaces in WP1,...,1,k

In this section, we characterize the k-dimensional weighted projective space WP1,...,1,k,

which involves k coordinates of weight 1 and a single coordinate of weight k. This space

can be defined as the quotient of Ck+1 \ {0} by the equivalence relation

(x1, . . . , xk, y) ∼ (λx1, . . . , λxk, λ
ky) . (2.1)

Here, λ ∈ C? denotes a non-zero complex number and (x1, . . . , xk, y) are referred to as

homogeneous coordinates on WP1,...,1,k.

We will be interested in defining an algebraic hypersurface embedded into WP1,...,1,k

as the zero-locus of a polynomial Q in the homogeneous coordinates. Of course, such a

polynomial relation has to be consistent with the equivalence relation (2.1). In unweighted

projective space, this would correspond to the requirement that the polynomial be homo-

geneous. Analogously, in weighted projective space, the total weight of each monomial

must be the same; this number is called the (overall) degree of the polynomial.

One can show (see for example ref. [94]) that the zero-locus of any single polynomial

in the coordinates of a weighted projective space defines a codimension-one Calabi-Yau

hypersurface if the overall degree of the polynomial equals the sum of the weights of the

weighted projective space. In the case of WP1,...,1,k, a Calabi-Yau hypersurface can thus be

defined by a polynomial Q of degree (
∑k

i=1 1) + k = 2k, which has the most general form

Q(x1, . . . , xk, y) =
∑

(~α,β)∈Nk+1
0

|~α|+kβ=2k

c~α,β

k∏
i=1

xαi
i y

β , (2.2)

where αi denotes the ith component of ~α and |~α| :=
∑

i αi. The coefficients c~α,β ∈ C are

complex numbers, and can in general depend on additional parameters (which for us will

be kinematics). However, these coefficients are only defined up to WP1,...,1,k coordinate
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transformations. In particular, we can rescale all coordinates using the equivalence rela-

tion (2.1) to set c~0,2 → 1, and additionally shift y by a degree-k polynomial in the xi to

eliminate the terms linear in y (thereby setting c~α,1 → 0). This brings Q into the form

Q(x1, . . . , xk, y) = y2 − P (x1, . . . , xk). (2.3)

Finally, we can act with a GL(k) transformation on the xi. This can be used to eliminate

k2 of the
(
3k−1
k−1

)
possible monomials in P . The remaining

(
3k−1
k−1

)
− k2 coefficients yield

distinct hypersurfaces, which are usually parametrized by
(
3k−1
k−1

)
− k2 complex structure

moduli. We should emphasize that hypersurfaces taking the form (2.2) may be singular

for some values of the coefficients. For generic coefficients, they are however smooth (see

the discussion in appendix A).

We now consider a Calabi-Yau manifold X embedded as a codimension-one hypersur-

face in WP1,...,1,k and study the forms on X. Since X is a complex manifold, any m-form

on X can be decomposed into a sum of forms with p holomorphic and q antiholomorphic

pieces such that p+ q = m. Moreover, the exterior derivative decomposes as d = ∂+ ∂. In

analogy with de Rham cohomology, one can then define the Dolbeault cohomology groups

Hp,q(X) as the cohomology groups of ∂. The dimensions of the Dolbeault cohomology

groups are known as Hodge numbers, hp,q(X):= dim(Hp,q(X)). Moreover, the dimensions

of the de Rham cohomology groups hm are given by hm =
∑

p+q=m h
p,q. Recall that via

Poincaré duality and de Rham’s theorem, hm are exactly the Betti numbers, which count

the numbers of independent m-cycles on X.

In an n-dimensional complex manifold in which p and q run from 0 to n, one might

näıvely expect (n+1)2 different Hodge numbers. However, due to various symmetries many

of these numbers are not independent. For example, in the case of a Calabi-Yau threefold

(k = 4), h1,1 and h2,1 fix the values of all other Hodge numbers.

In general, the computation of the Hodge numbers of a complex manifold poses a

difficult problem.2 In the case of Calabi-Yau hypersurfaces embedded in toric varieties —

of which weighted projective space is an example — the mirror-symmetry construction due

to Batyrev [95] provides a framework to compute (some of the) Hodge numbers from purely

combinatorial data. (For more pedagogical introductions on this topic see, for instance,

refs. [96, 97].) In short, one associates to a defining polynomial (such as Q in eq. (2.2))

a pair of dual polytopes (∆,∆?). The polytope ∆ is called the Newton polytope and its

vertices are given by the (shifted) vectors of exponents of the polynomial. (Note that the

vertices of ∆ therefore lie in an integer lattice.) One can show that in terms of (∆,∆?) the

Calabi-Yau condition becomes the statement that the dual polytope ∆? only has integer

vertices and that both polytopes contain only the origin as an interior lattice point. Some

2For smooth varieties, this can be achieved in general by Gröbner bases computations. We thank the

referee for pointing this out to us.
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of the Hodge numbers can then be computed from the polytopes as

h1,n = δ1,n

[
`(∆?)− (d+ 1)−

∑
codim θ?= 1

`int(θ
?)

]
+ δd−2,n

[
`(∆)− (d+ 1)−

∑
codim θ = 1

`int(θ)

]
+
∑

codim θ?= n+ 1

`int(θ
?)`int(θ).

(2.4)

Here ` and `int count the total and interior lattice points of a polytope, respectively, and

the sums run over faces of ∆ and ∆?, denoted by θ and θ?, with the given codimension.

Note that Batyrev’s framework explicitly excludes the case of K3 surfaces (k = 3).

This construction can be generalized to so-called complete intersection Calabi-Yaus

(CICYs) embedded into a toric variety and one can obtain more Hodge numbers as the

expansion coefficients of a two-variable generating function known as stringy E-function [98,

99],

E(u, v) =
∑
p,q

(−1)p+qhp,qupvq. (2.5)

The construction of the function E relies on a generalization of the reflexive polytope

criterion outlined above by so-called nef-partitions. The function has been implemented in

PALP [100], which is available from SageMath [101].

For the case of a Calabi-Yau hypersurface in WP1,...,1,k, the Newton polytope and its

dual take a relatively simple form and allow us to compute h1,j from eq. (2.4): for any

k ≥ 4, we find

h1,j =


(
3k−1
k−1

)
− k2 j = k − 2,

1 j = 1,

0 otherwise.

(2.6)

The non-trivial Hodge number h1,k−2 counts the complex structure moduli discussed above,

while h1,1 counts the single Kähler structure modulus. We have moreover verified this

formula by comparing to the stringy E-function implemented in PALP [100], which also

computes the remaining Hodge numbers.

For the elliptic curve (k = 2), the Hodge numbers are well-known to be

h0,0

h1,0 h0,1

h1,1

=

1

1 1

1

. (2.7)

As already mentioned, the case of the K3 surface, k = 3, is excluded in the general frame-

work above. Here, in addition to the
(
6+2
2

)
− 9 = 19 complex structure moduli, the Kähler

structure modulus contributes to h1,1, allowing us to obtain the well-known result

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1

0 0

1 20 1

0 0

1

. (2.8)
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For higher k, we find the following patterns of Hodge numbers:

• Calabi-Yau threefold, k = 4:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h2,3

h3,2 h2,3

h3,3

=

1

0 0

0 1 0

1 149 149 1

0 1 0

0 0

1

. (2.9)

• Calabi-Yau fourfold, k = 5:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h4,0 h3,1 h2,2 h1,3 h0,4

h4,1 h3,2 h1,3 h1,4

h4,2 h3,3 h2,4

h4,3 h3,4

h4,4

=

1

0 0

0 1 0

0 0 0 0

1 976 3952 976 1

0 0 0 0

0 1 0

0 0

1

. (2.10)

• Calabi-Yau fivefold, k = 6:

1

0 0

0 1 0

0 0 0 0

0 0 1 0 0

1 6152 67662 67662 6152 1

0 0 1 0 0

0 0 0 0

0 1 0

0 0

1

. (2.11)
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k 2 3 4 5 6 7 8 9

χ(X) 0 24 −296 5910 −147624 4482044 −160180656 6588215370

Table 1. Euler characteristic χ(X) of (k−1)-dimensional Calabi-Yau hypersurfaces X in WP1,...,1,k

for low values of k.

• Calabi-Yau sixfold, k = 7:

1
0 0

0 1 0
0 0 0 0

0 0 1 0 0
0 0 0 0 0 0

1 38711 965644 2473326 965644 38711 1
0 0 0 0 0 0

0 0 1 0 0
0 0 0 0

0 1 0
0 0

1

. (2.12)

The structure of these Hodge diamonds is very simple; a nontrivial cohomology only exists

for degrees (p, p) and (p, k − p− 1), corresponding to their middle column and row. Inter-

estingly, the form of these Hodge diamonds is compatible with hypersurfaces embedded in

ordinary (unweighted) projective space (see appendix B.3 for a short discussion). It would

be interesting to understand why this occurs, as we currently do not know how to embed

our hypersurfaces in unweighted projective space.

To further characterize the Calabi-Yau manifold X in WP1,...,1,k, we compute its Euler

characteristic χ(X). The Euler characteristic is equal to the alternating sum of the di-

mensions of the de Rham cohomology groups, χ(X) =
∑

m(−1)m
∑

p+q=m h
p,q. Following

ref. [94], we can obtain a closed expression for it using an index theorem, see appendix B.1

for details. We find

χ(X) =
1− (1− 2k)k + 2k2

2k
. (2.13)

The Euler characteristic of X for low values of k is given in table 1.

We have seen above that a codimension-one Calabi-Yau hypersurface X in WP1,...,1,k

is defined by a polynomial Q(x1, . . . , xk, y) of the form given in eq. (2.2). In the exam-

ples considered in the following sections, we will find polynomials of precisely this form

with different coefficients c~α,β , i.e. with different complex structure moduli. The complex

structure moduli of X are in principle determined by integrating the holomorphic form of

maximal degree along a basis of cycles on the manifold. While in practice this is a difficult

problem, we still give an account of how this form is constructed.
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On WP1,...,1,k, the canonical k-form Ωk is given by

Ωk = k y

(
k∧

n=1

dxn

)
+

k∑
n=1

(−1)nxn dy ∧

 ∧
m 6=n

dxm

 . (2.14)

The Calabi-Yau hypersurface X is defined as the zero-locus of the polynomial

Q(x1, . . . , xk, y) in eq. (2.2). The holomorphic form ωk−1 of (maximal) degree k − 1 on X

is then given by

ωk−1 = Res
Ωk

Q
. (2.15)

The residue above is determined3 by the property that

Ωk

Q
=

(
Res

Ωk

Q

)
∧ dQ
Q

+ · · · , (2.16)

where the omitted terms are regular on the surface Q = 0.

The hypersurfaces we encounter in the following sections turn out not to be smooth —

i.e. there are non-trivial solutions to the system of polynomial equations Q(x1, . . . , xk, y) =

dQ(x1, . . . , xk, y) = 0. Heuristically, the reason for this is that some of the monomials that

would in principle be allowed for homogeneous polynomials in the coordinates of WP1,...,1,k

are missing in Q. Moreover, the coefficients depend on a limited number of kinematic vari-

ables, which is usually much smaller than the number of complex structure moduli. In order

to regularize the polynomials arising during integration, we can however consider a defor-

mation of the complex structure, i.e. of the coefficients of the c~α,β in eq. (2.2). Equivalently,

we may say that we are considering the polynomials that we encounter in the following

examples as special cases of a generic (smooth) polynomial Q as defined in eq. (2.2). We

provide more details on desingularization by complex structure deformation in appendix A.

3 Three-loop integrals involving Calabi-Yaus in WP1,...,1,k

Among the growing list of examples of Feynman integrals involving Calabi-Yau geometries

are those with surprisingly few propagators — such as the so-called ‘banana’ integrals or

‘tardigrades’,

and . (3.1)

These integrals are sub-topologies4 of almost all Feynman integrands at sufficiently high

multiplicity, and it seems that any integral with a sub-topology involving a Calabi-Yau itself

3Outside of the hypersurface X, this residue is not uniquely defined since we could add to Res Ωk
Q

terms

proportional to Q. However, when pulled back to X, these terms vanish.
4We consider one Feynman integrand a sub-topology of another if the graph of the former’s propagators

is a quotient of the latter’s by an (internal) edge contraction.
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involves a Calabi-Yau. Thus, even for the special classes of scattering amplitudes that are

expected to be polylogarithmic to all orders (see e.g. ref. [102]), it seems impossible that

any local, Feynman-integrand-level representation can have this property term-by-term.

Thus, it is essential that we learn to better understand these examples.

This sense of the ubiquity of Calabi-Yau geometries can be made more precise in the

context of generalized unitarity, where it is possible to describe bases of Feynman integrands

subject to certain constraints. A basis large enough to represent all-multiplicity amplitudes

in planar, maximally (N = 4) supersymmetric Yang-Mills (SYM) theory through three

loops was described in ref. [90]. Although N = 4 SYM theory in the planar limit is an

unquestionably simple theory, this basis represents a necessary part of any larger basis

needed to represent amplitudes in theories with ultraviolet behavior worse than N = 4

SYM theory (including the Standard Model). Thus, it is a natural place to start our

understanding of the Calabi-Yau geometries relevant to general amplitudes.

At three loops, the basis of integrands needed for planar N = 4 SYM theory consists

of the traintrack and wheel integrands shown in figure 1, and all irreducible integrands

that contain one (or both) as sub-topologies and scale like either integrand (or better)

in the ultraviolet. Thus, these two examples arise nearly ubiquitously (at large enough

multiplicity) in three-loop amplitudes, motivating us in this section to study the Calabi-

Yau geometry that arises in each. But first, let us describe the methods by which we may

uncover these geometries.

3.1 Identifying Calabi-Yau geometries via residues

Several infinite classes of Feynman diagrams have been shown to involve Calabi-Yau hyper-

surfaces in WP1,...,1,k using direct integration [64, 66]. For instance, the two-dimensional

banana graphs and four-dimensional tardigrades shown in eq. (3.1) both fall into this

category. In fact, these integral families both achieve the maximum possible degree of non-

polylogarithmicity for marginal integrals. More precisely, the L-loop representative of each

family saturates a bound on the possible ‘rigidity’ of marginal integrals, where the rigidity

of an integral is defined to be the dimension of the algebraic variety one must integrate over

after a maximal number of polylogarithmic integrations have been carried out [66]. The

banana graphs have rigidity L−1, while the tardigrades have rigidity 2(L−1).5 The two-

dimensional massive banana graphs are required, for example, in the calculation of the elec-

tron self-energy in QED [103], while the massless two-loop tardigrades enter the integrand

basis for massless two-loop amplitudes using prescriptive unitarity [63, 90, 91, 104, 105].

In this work, we instead use sequences of residues to identify Calabi-Yau hypersurfaces

in Feynman integrals, as done in ref. [67]. In particular, we begin with representations of

(here non-marginal) Feynman integrals at L loops in terms of rational integrands involving

only 2L integration variables (motivated by the conjectured bound of transcendental weight

5In the case of equal masses, the three-loop banana integral was recently expressed in terms of elliptic

multiple polylogarithms [61]. While it involves a K3 surface, this K3 surface is related to the elliptic curve

describing the two-loop sunrise graph in a way that drastically simplifies the problem [92]. For general

Calabi-Yau hypersurfaces, we would not expect this procedure to work, but it would be interesting to see

to what extent it is possible. (See ref. [69] for some work in this direction.)
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Figure 2. The L-loop traintrack integral and its dual graph.

2L at L loops in four dimensions). We then examine the singular locus of these integrands

by taking as many residues as we can.6 This leads us to an expression of the form

d~x√
P (~x)

, (3.2)

where P (~x) is a polynomial which is cubic or higher degree in the remaining variables

without repeated roots. After projectivization, this polynomial defines a codimension-one

hypersurface in WP1,...,1,k via eq. (2.3).

It is important to note that the above procedure mimics but is not equivalent to the pro-

cedure of direct hyperlogarithmic integration. They are superficially similar in that direct

integration partial-fractions rational integrands to isolate poles in the integration variable,

while taking sequential residues also isolates poles. However, the partial-fractioning step of

direct integration generates a term for each pole of the integrand, and preserves information

about that pole in the form of the polylogarithmic function it constructs. If any of these

poles introduce a square root in the remaining variables, then this dependence will appear

in the polylogarithmic integrand and direct integration may be obstructed. In contrast, by

taking residues we may avoid this type of obstruction. As a result, the hypersurfaces we dis-

cuss in this section will not necessarily correspond to the degree of rigidity of the integrals

involved; the integrals may be more ‘rigid’ than the geometry we describe would suggest.

While our residue procedure does not necessarily uncover the maximally rigid geometry,

it does uncover a geometry that is important and necessary to the understanding of these

Feynman integrals. In particular, it is a geometry that should characterize the periods

obtained by analytic continuation in the kinematics. To motivate this, recall that we can

isolate any particular residue of the integrand with an integration contour tailored to that

purpose. These closed integration contours represent potential ambiguities in the original

Feynman integration contour, corresponding to the possibility to encircle additional branch

cuts. Much as analytically continuing polylogarithmic functions around branch cuts results

in factors of 2πi, analytically continuing one of the integrals discussed in this work should

give rise to integrals over the maximal residues we can perform — that is, integrals over

the holomorphic forms of the Calabi-Yau manifolds we describe.

3.2 Revisiting the three-loop traintrack integral

In ref. [67], some of the authors provided evidence that the L-loop traintrack integral,

depicted in figure 2, involves an integral over a Calabi-Yau (L−1)-fold. There, a manifestly

6If necessary, we perform changes of variables to rationalize square roots of quadratic polynomials along

the lines of ref. [106].
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dual-conformally invariant 2L-fold representation was given for this integral:

T(L)=

∞∫
0

[
dL~α
]
dL~β

1(
f1 · · · fL

)
gL

, (3.3)

where7

fk:= (a0ak−1;akbk−1)(ak−1bk;bk−1a0)(akbk;bk−1ak−1)fk−1+α0(αk+βk)+αkβk

+

k−1∑
j=1

[
αjαk(bja0;ajak)+αjβk(bja0;ajbk)+αkβj(a0aj ;akbj)+βjβk(a0aj ;bkbj)

]
,

gL:= α0 +

L∑
j=1

[
αj(bja0;ajb0)+βj(a0aj ;b0bj)

]
,

(3.4)

and (xy;zw) denotes the cross-ratio

(xy;zw):=
(x|y)(z|w)

(x|z)(y|w)
. (3.5)

The notation (a|b):=(xa−xb)
2 is intended to be suggestive of the embedding (or momentum-

twistor) formalism.

We now specialize to three loops. Since each fk is linear in every integration variable,

we can take residues in β1, β2, and β3 on the locus of f1 = f2 = f3 = 0. This leaves a single

factor in the denominator, which is a rational function of α0, α1, α2, and α3. Performing

one final residue in α3, we obtain a square root of a polynomial with no repeated roots,

PT(α0, α1, α2). This polynomial is degree six in α0 and α1 and degree four in α2 (the latter

fact motivated the authors of ref. [67] to put this polynomial into Weierstrass form with

respect to α2, which will here prove unnecessary). Importantly, it can be checked that PT

is a homogeneous polynomial in α0, α1, and α2 of (overall) degree six. Therefore, writing

this hypersurface as

Q(x1, x2, x3, y) = y2 − PT(x1, x2, x3) = 0, (3.6)

we identify it as a degree-six hypersurface in WP1,1,1,3. Generic surfaces of this type are

well known to be K3 manifolds, which have Hodge diamond (2.8) and Euler characteristic

24. We include the original three-loop integrand (from eq. (3.3)) in Mathematica format

in the supplementary material integrands and varieties.m.

3.3 The three-loop wheel integral

The three-loop scalar wheel integral is drawn in momentum space and dual-momentum

space in figure 3. Using the notation presented in the previous subsection, it is given by

W(3) :=

∫
d4xAd

4xBd
4xC (a1|a2)(b1|b2)(c1|c2)

(A|C)(A|a1)(A|a2)(A|B)(B|b1)(B|b2)(B|C)(C|c1)(C|c2)
, (3.7)

7Note that we have fixed a typo in fk from the published version of ref. [67].
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Figure 3. The three-loop wheel integral and its dual graph.

where we have included a numerator that renders it dual-conformally invariant. In ap-

pendix C, we derive an equivalent six-fold integral representation of this integral, following

the strategy of refs. [67, 79, 81]. We quote the result here for convenience:

W(3) =

∞∫
0

d2~α d2~β d2~γ
n0

f1 f2 f3
, (3.8)

where

n0 := v1(u1u2u3v1v2v3) ,

f1 := α1 + α2 + α1α2 ,

f2 := α1(1 + α2 + β1 + β2 + γ2) + α2(1 + u1w2(w3β1 + β2) + γ2)

+β1v1(1 + u1u3v2w2β2 + γ2) + u2v1(u1v3γ1 + β2(1 + γ2)) ,

f3 := (1+α2+β1+β2+γ2)
[
α1

(
γ1+β2(1+α2+u3v1v2β1+γ2)+w3β1(1+α2+γ2)

)
+(1+γ2)

(
w3α2β1+(α2+u3v1v2β1)β2

)]
+γ1

[
α2(1+u1(w3β1+β2)+γ2)

+u3v1(u2w1β2(1+γ2)+β1(1+u1v2β2+γ2))
]
,

(3.9)

and where we have used the following basis of dual-conformal invariant cross-ratios:

u1:=(c1a1;a2b2) , u2:=(a1b1;b2c2) , u3:=(b1c1;c2a2) ,

v1:=(a1a2;b1c2) , v2:=(b1b2;c1a2) , v3:=(c1c2;a1b2) ,

w1:=(b2c1;c2b1) , w2:=(c2a1;a2c1) , w3:=(a2b1;b2a1) .

(3.10)

Note that the dihedral symmetry of W(3) acts quite naturally on these variables. Specif-

ically, under the dihedral group that leaves the graph in figure 3 invariant, the ui’s, vi’s

and wi’s each form a three-orbit. We include this integrand in Mathematica format in

the supplementary material integrands and varieties.m.

To analyze the geometry of W(3) (3.8), we first take three residues on the locus fi = 0

by eliminating the variables α1, β2, and γ1. We thereby obtain a three-form

dα2dβ1dγ2√
PW(α2, β1, γ2)

, (3.11)

where PW is a non-homogeneous polynomial. However, assigning α2, β1, and γ2 all weight

one, we can homogenize PW(α2, β1, γ2) by adding a fourth (auxiliary) weight-one coordinate
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x4. The resulting homogeneous polynomial can be chosen to have overall degree eight, and

we denote it P 8
W(α2, β1, γ2, x4). As it is rather long, we do not present this polynomial in

the text, but we provide it in the supplementary material integrands and varieties.m.

Finally, introducing a weight-four variable y with y2 = P 8
W(x1, x2, x3, x4), we obtain a

three-form which can be expressed as

ω3 =
x4dx1dx2dx3

y
(3.12)

in the patch where x4 is a non-vanishing constant.

Up to a numerical factor, the three-form ω3 can be obtained from eq. (2.15) by taking

the residue of
Ω4

y2 − P 8
W(x1, x2, x3, x4)

(3.13)

at the locus defined by the vanishing of the denominator, where Ω4 is the canonical four-

form on WP1,1,1,1,4 given in eq. (2.14),

Ω4 = 4ydx1dx2dx3dx4 + dy
(
− x1dx2dx3dx4 + x2dx1dx3dx4 (3.14)

− x3dx1dx2dx4 + x4dx1dx2dx3

)
.

It follows that Q(x1, x2, x3, x4, y) = y2 − P 8
W(x1, x2, x3, x4) = 0 defines a Calabi-Yau

threefold in WP1,1,1,1,4. The polynomial P 8
W has

(
8+3
3

)
= 165 coefficients, which can be

parametrized by
(
8+3
3

)
− 16 = 149 complex structure moduli, but in our case they depend

only on the nine cross-ratios in eq. (3.10). Hence, by varying these cross-ratios, we only

explore a small part of the complex structure moduli space of our Calabi-Yau threefold.

Interesting kinematic limits. We start by considering the limit in which the legs at

the rungs of the wheel become massless. This corresponds to the condition that the dual

coordinates on either side of these legs become light-like separated, namely (a2|b1) → 0,

(b2|c1)→ 0, and (c2|a1)→ 0. In the variables (3.10), this sets all three parameters wi = 0:

{
(a2|b1)→ 0, (b2|c1)→ 0, (c2|a1)→ 0

}
⇔

{
w1 → 0, w2 → 0, w3 → 0

}
(3.15)

=⇒
(3.15)

⇔ (3.16)

(Notice that we denote light-like separated points in the dual graph by dashed green lines.)

It can be checked that the resulting integral is still a Calabi-Yau hypersurface in WP1,1,1,1,4.

To see this Calabi-Yau threefold factorize into simpler geometries, we now consider

the limit in which one of these massless legs becomes soft. It can easily be checked that

– 14 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
8

identifying a2 = b1 sets u3 = v1 = v2 = 1:{
u3 → 1, v1 → 1, v2 → 1, wi → 0

}
(3.17)

=⇒
(3.17)

⇔ (3.18)

In this limit, P (α2, β1, γ2) factorizes, and one of its factors is a perfect square. This allows

us to take an additional residue. Continuing on in this fashion, we find we can take residues

in all six integration variables; so from the residue analysis, there is no irreducible geometry.

However, direct integration is obstructed after just a single integration; as we emphasized

in section 3.1, these functions may appear to be more rigid under direct integration than

their residue analysis would suggest.

It turns out this obstruction can be avoided by additionally setting v3 = 1 (in this

case our choice is purely pragmatic, and not particularly motivated by physics). On this

kinematic slice, the integral evaluates to

u1u2
u1 − u2

{
Gu1
0,1,1,0,1,0 +Gu1

0,1,0,1,0,0 +Gu1
0,0,1,0,0,0 +Gu1

0,0,0,1,1,0 −G
u1
0,1,1,0,0,0 −G

u1
0,1,0,1,1,0

−Gu1
0,0,1,0,1,0 −G

u1
0,0,0,1,0,0 +Gu2

0

(
Gu1
1,1,0,0,0 +Gu1

1,0,1,1,0 +Gu1
0,1,0,1,0 +Gu1

0,0,1,0,0

−Gu1
1,1,0,1,0 −G

u1
1,0,1,0,0 −G

u1
0,1,0,0,0 −G

u1
0,0,1,1,0

)
+
(
Gu2
1,0 −G

u2
0,0

)(
Gu1
1,0,1,0

−Gu1
1,0,0,0 −G

u1
0,1,1,0 +Gu1

0,1,0,0

)
−
(
Gu2
1,1,0 −G

u2
1,0,0

)(
Gu1
0,1,0 −G

u1
0,0,0

)
+ζ2

[
Gu1
1,0,0,0 +Gu1

0,1,0,1 +Gu1
0,0,1,0 −G

u1
1,0,1,0 −G

u1
0,1,0,0 −G

u1
0,0,0,1

+Gu2
1

(
Gu1
0,1,0 −G

u1
0,0,0

)
−Gu2

0

(
Gu1
1,0,1 −G

u1
1,0,0 +Gu1

0,1,0 −G
u1
0,0,1

)
+Gu2

1,0

(
Gu1
0,1 −G

u1
0,0

)
−Gu2

0,0,G
u1
0,1

]
+ 2ζ3

[
Gu1
1,0,0 −G

u1
1,1,0 −G

u1
0,1,1 +Gu1

0,0,1

+Gu2
1

(
Gu1
1,0 −G

u1
0,0

)
+Gu2

0

(
Gu1
1,1 −G

u1
0,1

)]
− 7

5
ζ22

(
Gu1
1,0 −G

u1
0,1 +Gu2

0 Gu1
1

)
+4 ζ2 ζ3G

u1
1

}
+
(
u1 ↔ u2

)
,

(3.19)

using the shorthand G z
~w := G({~w}, z). We also include this expression in the supplementary

material integrands and varieties.m.

Further simplifications may be achieved by taking a second of the massless legs to be

soft. Identifying a1 = c2 after taking the limit (3.17) additionally sets u2 = v3 = 1, making

this integral the u2 → 1 limit of expression (3.19):

=⇒
u2→1
v3→1

⇔ (3.20)
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where

=
u1

1− u1

[
Gu1
0,1,1,0,0,0 +Gu1

0,1,0,1,1,0 +Gu1
0,0,1,0,1,0 +Gu1

0,0,0,1,0,0

−Gu1
0,1,1,0,1,0 −G

u1
0,1,0,1,0,0 −G

u1
0,0,1,0,0,0 −G

u1
0,0,0,1,1,0

+ζ2

(
Gu1
0,1,1,0 −G

u1
0,1,0,1 −G

u1
0,0,1,0 +Gu1

0,0,0,1

)
+2ζ3

(
Gu1
0,1,1 +Gu1

0,1,0 −G
u1
0,0,1 −G

u1
0,0,0

)
− 6ζ4

(
Gu1
0,1 −G

u1
0,0

)
−2(5ζ5 + ζ2ζ3)G

u1
0 + 4(ζ32 − ζ23 ) + 3ζ6

]
.

(3.21)

We also include this expression in the supplementary material

integrands and varieties.m.

The last massless leg is removed by setting the final cross-ratio u1 = 1:

=⇒
u1→1

⇔ (3.22)

In this limit, the integral evaluates to

= 20ζ5. (3.23)

This might näıvely be surprising, as one expects the three-loop wheel to have transcendental

weight six. However, one can observe that the rational prefactor diverges in the u1 → 1 limit

of expression (3.20); in order to take this limit one should therefore expand the polyloga-

rithmic part of this function in a power series, which leads to a drop in weight [15, 107–114].

A three-parameter toy model. The three-loop wheel integral allows for a three-

parameter toy model similar to that of the elliptic double-box [80]. This toy model is

defined by taking all six dual-momentum points defining the three-loop wheel integral to

be light-like separated in sequence. That is, we take

(a1|b2) = (b2|c1) = (c1|a2) = (a2|b1) = (b1|c2) = (c2|a1) = 0 . (3.24)

=⇒
(3.24)

(3.25)
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In this limit, some of the rescalings of the Feynman parameters in our derivation become

singular.8 The cross-ratios chosen in eq. (3.10) also become problematic; individually we

have vi, wi → 0, ui →∞, while the ratios

t1 :=
1

u1v2v3
= (b1c1;b2c2), t2 :=

1

u2v3v1
= (a1c1;a2c2), t3 :=

1

u3v1v2
= (a1b1;a2b2) (3.27)

remain finite. Accounting for both of these issues, we find the six-fold integral representa-

tion becomes

W(3) 7−→
(3.26)
(3.24)

Wtoy :=

∞∫
0

d2~α d2~β d2~γ
1

g1 g2 g3
, (3.28)

where

g1 := α1+α2+α1α2 ,

g2 := α1(1+α2+β1+γ2)+(α2+β2)(1+γ2)+γ1 ,

g3 := α1β2(1+α2+β1+γ2)(β1+t3(1+α2+γ2))+γ1
[
t1β1(1+γ2)+t2(t3α2+β1)β2

]
+β2(1+α2+β1+γ2)(t3α2+β1)(1+γ2) ,

(3.29)

in terms of the cross-ratios (3.27).

As before, we can take residues in α1, β2, and γ1, obtaining a non-homogeneous curve

P toy
W (α2, β1, γ2) = P toy

W (x1, x2, x3) that we can then homogenize with an auxiliary variable

x4. The resulting degree-eight polynomial is

P 8,toy
W =

[
x2(x

2
1x3 − x1x2x4)t2 + x21

(
x1x3(t2 − 1)− (x2 + x3)x3 − (x2t2 + x3)x4

)
t3

− x2(x1 + x2 + x3 + x4)(x1x3 + (x3 + x4)x4)
]2
− 2t1x2(x1 + x4)(x3 + x4)

2

×
[
(x1 + x2 + x3 + x4)

(
x21 x3 t3 + x1x2x3 + x2x4(x3 + x4)

)
(3.30)

+ t2x1(x1t3 + x2)(x1x3 − x2x4)
]

+ t21x
2
2(x1 + x4)

2(x3 + x4)
4 .

We include both the toy model integrand and the above hypersurface in Mathematica

format in the supplementary material integrands and varieties.m.

We pause here to highlight that it is possible to see this polynomial factorize into

simpler polynomials in simple kinematic limits. Despite its presentation, the toy model’s

geometry must be invariant under permutations of t1, t2, and t3; thus, we may consider

taking limits in any variable. However, these limits can näıvely look different; for instance,

8Concretely, the rescalings of the Feynman parameters β2 taken in eq. (C.19) and those for γi in eq. (C.24)

are singular in the limit (3.24). However, this observation clearly signals how these problems can be

remedied: to access this limit smoothly from our previous expression (C.25), we merely need to rescale

β2 7→ β2
(a1|b2)(a2|c2)
(a1|a2)(b2|c2)

, γ1 7→ γ1
(a2|c1)(b2|c2)
(a2|b2)(c1|c2)

,

γ2 7→ γ2
(a1|a2)(b2|c2)
(a1|b2)(a2|c2)

, γ3 7→1×(a1|a2)(b2|c2)
(a1|b2)(a2|c2)

,

(3.26)

take into account the relevant Jacobians, and collect terms. After this has been done, the limit (3.24) can

be taken smoothly.
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if we set t1 → 0 or t2 → 0, the polynomial becomes a perfect square of a polynomial with

overall degree four, while in the limit t3 → 0 it factorizes into x22 times a polynomial of

overall degree six. By symmetry, the irreducible geometry in each of these limits must

be the same. In the first case (taking the limit in either t1 or t2), the resulting (squared)

polynomial has degree three in x1 and x4, and degree two in x2 and x3. This lets us perform

an additional residue in either x2 or x3, by which we obtain a square root of a polynomial

of overall degree six. In the second case (taking the limit in t3) we instead take a residue at

x2 = 0, after which the remaining polynomial has overall degree six. Both of the resulting

polynomials define a K3, although it is not easy to see that they describe the same geometry

(i.e. that they correspond to different parametrizations of the same hypersurface).

If we take an additional cross-ratio to zero, the curve degenerates again. It becomes

a square of a polynomial that is cubic in one variable and quadratic in the remaining two.

This allows an additional residue in one of the quadratic variables, giving rise to a square

root of a quadratic polynomial in the remaining two variables. Such square roots are ratio-

nalizable under a change of variables, so the integral should be polylogarithmic in this limit.

4 Open problems at four loops and beyond

Having shown that the three-loop traintrack and wheel both involve Calabi-Yau hyper-

surfaces that can be embedded in WP1,...,1,k, it is natural to ask whether their four-loop

counterparts also involve such hypersurfaces.

The four-loop traintrack. Equations (3.3) and (3.4) provide an eight-fold integral rep-

resentation of the four-loop traintrack integral (which we again provide in Mathematica

format in the supplementary material integrands and varieties.m). We can analyze the

residues of this integral in the same way as was done for the three-loop integrals in the last

section, to see if it contains a Calabi-Yau hypersurface in WP1,...,1,k. Here we can take four

residues, in β1, β2, β3, and β4, on the locus f1 = f2 = f3 = f4 = 0, then one final residue in

α4 on g4 = 0 to obtain a square root of a polynomial P
(4)
T (α0, α1, α2, α3) with no repeated

roots. This polynomial is homogeneous, but has overall degree ten. It is degree ten in α0

and α1, degree six in α2, and degree four in α3. Taking other sequences of residues also

result in degree ten, twelve, or sixteen polynomials.

As P
(4)
T (α0, α1, α2, α3) has degree ten, y2−P (4)

T (α0, α1, α2, α3) = 0 cannot be embedded

in WP1,1,1,1,4. It can be embedded in weighted projective space WP1,1,1,1,5, but this does

not satisfy the Calabi-Yau condition. We currently know of no way to embed this variety

in a weighted projective space so that it satisfies the Calabi-Yau condition.
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The four-loop wheel. The four-loop scalar wheel (or ‘window’) integral, W(4), may be

drawn in momentum space and dual-momentum space as

W(4) := ⇔ (4.1)

=

∫
d4xAd

4xBd
4xCd

4xD (a1|a2)(b1|b2)(c1|c2)(d1|d2)
(D|A)(A|a1)(A|a2)(A|B)(B|b1)(B|b2)(B|C)(C|c1)(C|c2)(C|D)(D|d1)(D|d2)

, (4.2)

where in the last line we have written the integral explicitly in dual-momentum space.

We derive a manifestly dual-conformally invariant integral representation of the four-loop

wheel integral in general kinematics in appendix D, finding

W(4) =

∞∫
0

d2~α d2~β d2~γ d3~δ
n0

f1 f2 f3

(
n1
f2

+
n2
f3

)
. (4.3)

The expressions for n0, n1, n2, f1, f2, and f3 are lengthy, but are given in Mathematica

format in the supplementary material integrands and varieties.m.

Unfortunately, this expression is a nine-fold integral, while considerations of transcen-

dental weight suggest that it should be possible to write down an eight-fold representation.

This has direct consequences for the validity of our residue analysis. In particular, it means

that we cannot directly associate the number of remaining integration parameters after tak-

ing a maximum number of residues with the dimension of an irreducible geometry. With

this proviso in mind, we can take residues in α1, δ1, β1, and α2, leaving a quartic with no

repeated roots in five (non-projective) variables. This means that the geometry is at most

a fivefold hypersurface, but could be of lower dimension. Without an eight-fold integral

representation, we cannot distinguish these possibilities.

This integral has several limits with applications to integrable theories, which would

make it particularly interesting to compute. We discuss these limits (some of which are

polylogarithmic), as well as a nine-parameter toy model similar to the three-loop toy

model (3.24), in appendix D.1.

Further directions. There are many open questions regarding the types of varieties that

appear in Feynman integrals. While an increasingly large number of examples have now

been identified to be Calabi-Yau, it remains unclear whether all such varieties have this

property (and what this tells us about Feynman integrals in general).9 In this paper, we

have identified two further examples of Calabi-Yaus that can be realized as hypersurfaces

in the weighted projective space WP1,...,1,k and have characterized hypersurfaces of this

type in a number of ways. However, it again remains unclear how universal this property

9The Calabi-Yau condition in the embedding we are considering restricts the degree of the defining

polynomial; since we can deprojectivize and reprojectivize to increase the degree, it is effectively an upper

bound. Thus, Calabi-Yaus are the first class one naturally encounters.
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might be, and what it encodes about these specific Feynman graphs. To better connect

the properties of these varieties to the physics encoded in Feynman diagrams, it may prove

necessary to move to a differential equation approach [53, 70, 92, 93, 115].

There remains a great deal of technology to be developed before the integrals that

we consider might be ‘computed’. It should be possible, for instance, to develop special

functions analogous to the elliptic multiple polylogarithms [41, 48, 51, 52, 54, 56], in terms

of which these integrals could be evaluated. In particular, a coaction of the type that has

proven useful in the polylogarithmic [9, 31, 33, 34] and elliptic cases [54] should also exist for

such functions [116]. It should also be possible to develop iterated integral representations

involving the relevant Calabi-Yau geometries, akin to what has been done for instance in

refs. [41, 59]. Developing a better understanding of these spaces of functions is sure to lead

to new surprises and simplifications, as has happened in the case of polylogarithmic and

elliptic Feynman integrals over the last few years.
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A Desingularization by complex structure deformation

The varieties we encounter when doing Feynman integrals are typically singular; they

may have singularities at fixed points in the Feynman parameters or at points which vary

with the external kinematics. To define a smooth variety, we deform the polynomial(s)

that define the variety. In practice, this amounts to adding new monomials and changing

the values of the coefficients already present. Such deformations turn out to be complex

structure deformations.

One may worry that, even after performing such deformations, we do not obtain a

smooth variety. At this point, we may invoke the Bertini theorem (see for example ref. [94]

for a textbook presentation).
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Theorem 1 (Bertini) Given a compact complex manifold X and a holomorphic line bun-

dle L over X such that at every point x ∈ X the line bundle L has at least one non-zero

section, then the points where a generic section f of L vanishes define a smooth hypersur-

face M = f−1(0).

One way we can apply this theorem is to take the embedding space to be Pn, and L

to be a holomorphic line bundle whose sections are homogeneous polynomials of degree

d. Then the Bertini theorem assures us that for a generic section f of L i.e. for almost

every choice of values for the coefficients of a homogeneous degree d polynomial, the variety

defined by {x ∈ Pn | f(x) = 0} is smooth.

In the following, we will apply reasoning analogous to the Bertini theorem to embed-

dings in a weighted projective space of type WP1,...,1,k. Strictly speaking, the conditions

of the Bertini theorem are not satisfied since the embedding space itself has a singularity.

If the singularity were to have dimension one or larger, then it would generically intersect

any hypersurface, and the hypersurface would inherit the singularity.

However, in the case of WP1,...,1,k, the singularity arises at just the point with homo-

geneous coordinates (0, . . . , 0, 1). As a result, in the neighborhood of this point we need to

make the identifications

(x1, . . . , xk, 1) ' (ξx1, . . . , ξxk, 1), (A.1)

where ξ is a k-th root of unity. Since the singularity arises at only a single point, a

codimension-one hypersurface will not generically contain it. (Moreover, we can explicitly

check to see if this happens). In fact, even if our variety contains this singularity, we may

define a resolution and compute its Euler characteristic using for example eq. (5.1.14) of

ref. [94].

B Hodge numbers and Euler characteristic

B.1 Euler characteristic

One way to compute the Euler characteristic is to integrate the top Chern class over the

manifold. We may obtain the Chern classes of an embedded hypersurface from the Chern

classes of the embedding manifold and some data about the embedding. There are several

good presentations of this material in the literature (see for example refs. [94, 117]), so we

will be brief.

Given a bundle E, the total Chern class c(E) is the sum of all Chern classes of all

degrees. Given an exact sequence of bundles 0 → A → B → C → 0, we have c(B) =

c(A) ∧ c(C). Using this fact, we conclude that the Chern class of a weighted projective

space with weights (w0, . . . , wn) is

c(WPw0,...,wn) =

n∏
i=0

(1 + wiJ), (B.1)

where J = c1(O(1)) is the first Chern class of the bundle O(1) whose sections are poly-

nomials of homogeneity one. Depending on the weights wi, this bundle may not exist as
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a holomorphic bundle on WPw0,...,wn , but can nevertheless be used as a building block for

other bundles.

We can define a codimension-m variety Y as the vanishing locus of m homogeneous

polynomials of degrees di, for i = 1, . . . ,m. Then, the Chern class of Y is

c(Y ) =

∏n
i=0(1 + wiJ)∏m
r=1(1 + drJ)

. (B.2)

In this case, the Calabi-Yau condition reads

n∑
i=0

wi =
m∑
r=1

dr. (B.3)

Then the Euler characteristic is

χ(Yn−m) =

∫
Y
cn−m =

m∏
r=1

dr

∫
WPw0,...,wn

cn−mJ
m, (B.4)

where we have extended the integral from Y to the full WPw0,...,wn by wedging with a form

that encodes the contribution of the normal.

For our explicit examples of a codimension-one variety X in WP1,...,1,k, we have the

Chern class

c(X) =
(1 + J)k(1 + kJ)

1 + 2kJ
, (B.5)

while the Euler characteristic is

χ(Xk−1) =

∫
X
ck−1(Xk−1) =

∫
WP1,...,1,k

2kJ ∧ ck−1(Xk−1). (B.6)

The final piece of information we need is
∫
WP1,...,1,k Jk = 1

k because it corresponds to the

intersection of k hyperplanes at the singular point (0, . . . , 0, 1), which has a cyclic singularity

of order k.

Using this normalization, and the expression for ck−1 obtained by expanding the ratio

of polynomials in J ,

ck−1(Xk−1) =
1

4k

(
1− (1− 2k)k + 2k2

)
Jk−1 , (B.7)

we eventually find

χ(Xk−1) =
1− (1− 2k)k + 2k2

2k
. (B.8)

We have tabulated the Euler characteristic for the first few values of k in table 1.
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B.2 Index theorems

We can also compute further combinations of Hodge numbers as a cross-check using various

index theorems. In particular, we have

χ(Xk−1) =
∑
r

(−1)r dimHr
dR(X) =

∫
X
ck−1(Xk−1), (B.9)

χh(Xk−1) =
∑
q

(−1)q dimH0,q

∂
(Xk−1) =

∫
X
tdk−1(Xk−1), (B.10)

τH(Xk−1) =
∑
p,q

(−1)q dimHp,q

∂
(Xk−1) =

∫
X
Lk−1(Xk−1), (B.11)

where χh is the arithmetic genus and τH is the Hirzebruch signature. Also, td is the Todd

class and L is the Hirzebruch polynomial. We present just the final answers for these

computations:

k = 3 : χh = 2, τH = −16, (B.12)

k = 4 : χh = 0, τH = 0, (B.13)

k = 5 : χh = 2, τH = 2002. (B.14)

The reader can easily check that these values are consistent with the Hodge diamonds

presented in section 2.

B.3 Lefschetz hyperplane theorem

The cohomology of a hypersurface is strongly constrained by the cohomology of the em-

bedding space. The Lefschetz-Bott theorem characterizes the connections between these

cohomology groups. We follow the presentations in ref. [94] (see theorem 1.4 on page 44).

In the Lefschetz-Bott theorem, we are given a complex compact manifold X of dimen-

sion n + 1 and a positive line bundle L over X. Then, given a holomorphic section λ, we

denote by λ−1(0) the points of X where λ vanishes. We then have10

Hq(λ
−1(0),Z) ' Hq(X,Z), q 6= n, (B.15)

Hn(λ−1(0),Z)→ Hn(X,Z), (B.16)

where the last map is surjective. Dualizing to cohomology and using the Hodge decom-

position (and the fact that (p, q)-forms pull back to (p, q)-forms), we obtain the result for

cohomology. We can also use the Lefschetz-Bott theorem to constrain the cohomology of

complete intersections in projective spaces, by repeated application of the theorem.

Stated concretely, equations (B.15) and (B.16) tell us that the upper and lower rows

of the Hodge diamonds that describe our Calabi-Yau hypersurfaces are inherited directly

from WP1,...,1,k, while its middle row can involve numbers greater than or equal to those

describing WP1,...,1,k. Interestingly, this means the Hodge numbers of these hypersurfaces

10In fact, the result is more general and holds for homotopy groups. The version for homology is listed

as a corollary, presumably by an application of the Hurewicz theorem.

– 23 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
8

could also arise from a codimension-one embedding in unweighted projective space, which

has Hodge numbers hp,q(Pk) = δp,q. (We do not, however, know how to realize our Calabi-

Yau hypersurfaces as embeddings in unweighted projective space.)

C Feynman parametrization of the three-loop wheel

In this appendix, we describe the concrete steps by which the three-loop wheel

W(3) ⇔ ⇔ , (C.1)

defined in eq. (3.7) and discussed at length in section 3.3, can be expressed as a rational

and manifestly conformal integral. This form was quoted in eq. (3.8).

Provided only a mild degree of cleverness, it is not hard to Feynman-parametrize and

integrate each of the loop variables. This is especially true for (any choice of) the first two

integrations, which are easily seen to be conformal box integrals. Let us briefly review the

mechanics of how those integrals may be performed before applying these techniques to

the integral in question.

Review : conformal box integrals in the embedding formalism. For the sake of

reference and for those readers less familiar with the embedding formalism, let us recall

that the box integral ∫
d4x`

1

(̀ |x1)(̀ |x2)(̀ |x3)(̀ |x4)
(C.2)

can be Feynman-parametrized by introducing

|Y):= α1|x1) + α2|x2) + α3|x3) + α4|x4) (C.3)

so that the second Symanzik polynomial F may be written as

F =
4∑
i≤j

αiαj(xi|xj) =
1

2
(Y|Y) =:(Y -Y), (C.4)

upon which the Feynman integral (C.2) becomes

∫
d4x`

1

(̀ |x1)(̀ |x2)(̀ |x3)(̀ |x4)
∝
∞∫
0

[
d3~α

] 1

(Y -Y)2
. (C.5)

Above, we have used the notation
[
dk~α

]
to denote the volume form on Pk as expressed in

terms of homogeneous coordinates (α1, α2, . . . , αk+1). Specifically,[
dk~α

]
:= dα1 · · · dαk+1 δ

(
αi − 1

)
(C.6)
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for any αi. The attentive reader will notice that Feynman’s own de-projectivization pre-

scription, dα1 · · · dαk+1 δ
(∑

i αi−1
)
, is related to that in eq. (C.6) by a change of variables

with unit Jacobian and which preserves the domain of integration, αi ∈ [0,∞].

Provided that there is at least one point |ai) such that (ai|ai) = 0, then (Y -Y) will be

linear in its Feynman parameter αi. When this happens, this Feynman parameter can be

trivially integrated rationally. If the reader will forgive us for being somewhat pedantic,

suppose that |Y) may be written of the form

|Y) =: |Q) + η|q) (C.7)

for any |q) such that (q|q) = 0 and for any η ∈ {α1, . . .}; then

(Y -Y) = (Q -Q) + η(Q|q) , (C.8)

and

∞∫
0

[
d3~α

] 1

(Y -Y)2
=

∞∫
0

[
d2~α

] ∞∫
0

dη
1[

(Q -Q) + η(Q|q)
]2 =

∞∫
0

[
d2~α

] 1

(Q -Q)(Q|q)
. (C.9)

The Feynman parametrization of the three-loop wheel integral follows directly from itera-

tion of the above steps (with only mild cleverness at the end).

The Feynman parametrization of the wheel integral W(3). Let us begin with the

(dual-momentum-)space-time definition of the wheel:

W(3) :=

∫
d4xAd

4xBd
4xC (a1|a2)(b1|b2)(c1|c2)

(A|C)(A|a1)(A|a2)(A|B)(B|b1)(B|b2)(B|C)(C|c1)(C|c2)
. (C.10)

We have used embedding-formalism-motivated notation to denote the squared-differences

of points in dual-momentum space — i.e., (a1|a2):= (~a1 − ~a2)2. Notice that all the points

in dual-momentum space appearing in eq. (C.10) — both those being integrated and those

defining the external kinematics — satisfy (x|x) = 0.

Let us begin with the integration over the loop momentum xA. It is not hard to see

that this part of the integral is trivially identical to the box integral just discussed. Thus,

we may introduce

|YA):= α1|a1) + α2|a2) + α3|C) + ηA|B) =: |QA) + ηA|B) (C.11)

and perform the integral over xA and ηA to arrive at

W(3) =

∞∫
0

[
d2~α
] ∫ d4xBd

4xC (a1|a2)(b1|b2)(c1|c2)
(QA -QA)(B|QA)(B|b1)(B|b2)(B|C)(C|c1)(C|c2)

. (C.12)

Now, as with xA, the integral over xB in eq. (C.12) is just an ordinary conformal box

integral. The only minor novelty is that one of the ‘propagators’ of this integral, (B|QA),

involves a ‘non-simple’ point in embedding space — one for which (QA|QA) 6= 0. This

does not actually cause any trouble, however, because the Symanzik formalism defining
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the inner product (·|·) in eq. (C.4) did not require the points to be simple. (The simplicity

of the external points only played a role in making it trivial to integrate out one Feynman

parameter rationally.) Thus, we may introduce

|YB):= β1|b1) + β2|b2) + β3|QA) + ηB|C) =: |QB) + ηB|C) (C.13)

and integrate over xB and ηB to arrive at

W(3) =

∞∫
0

[
d2~α
][
d2~β
] ∫ d4xC (a1|a2)(b1|b2)(c1|c2)

(QA -QA)(QB -QB)(C|QB)(C|c1)(C|c2)
. (C.14)

The careful reader should now be mildly worried as the integral over xC in eq. (C.14)

is not at all a recognizable (box) integral. Even worse: it is not even manifestly conformal

in xC ! To appreciate the magnitude of this problem, notice that the factor (QA|QA) in the

denominator of eq. (C.14) involves a sum of terms with different conformal weights:

(QA -QA) = α1α2(a1|a2) + α1α3(C|a1) + α2α3(C|a2) . (C.15)

Restoring conformality of this term turns out to be relatively easy. Consider rescaling

the Feynman parameters αi according to11

α1 7→ α1(C|a2) , α2 7→ α2(C|a1) , α3 7→ (a1|a2) . (C.16)

Notice that we are actually eliminating the projective redundancy of
[
d2~α

]
by fixing α3 7→

(a1|a2). (This is just done for notational compactness going forward.)

Under this rescaling,

(QA -QA) 7−→
(C.16)

(a1|a2)(C|a1)(C|a2)
(
α1 + α2 + α1α2

)
. (C.17)

The prefactor of eq. (C.17) cancels precisely against the Jacobian from eq. (C.16), resulting

in

W(3) 7−→
(C.16)

∞∫
0

d2~α
[
d2~β
] ∫ d4xC (a1|a2)(b1|b2)(c1|c2)

(α1 + α2 + α1α2)(QB -QB)(C|QB)(C|c1)(C|c2)
. (C.18)

We have certainly improved the situation with respect to the xC integration, but

not entirely. Notice, for example, that under the rescaling (C.16), (QB|QB) becomes an

irreducible (and inhomogeneous!) degree-two polynomial in |C). (This is trivial to see,

considering eq. (C.17), and (QB|QB) = (QA|QA) + . . . .)

In fact, this problem can be remedied without too much hassle. Upon rescaling the

βi’s according to

β1 7→ β1
(C|a1)(a1|a2)

(a1|b1)
, β2 7→ β2

(C|a1)(a1|a2)
(a1|b2)

, β3 7→ 1 , (C.19)

11We hope the reader can forgive the abuse of notation in using the same variables αi to label the

integration parameters before and after the rescaling.

– 26 –



J
H
E
P
0
1
(
2
0
2
0
)
0
7
8

and taking into account the corresponding Jacobian, the reader may verify that eq. (C.18)

takes the form

W(3) 7−→
(C.19)

∞∫
0

d2~α d2~β

∫
d4xC (a1|a2)2(b1|b2)(c1|c2)/(a1|b1)

(α1 + α2 + α1α2)(C|R)(C|S)(C|c1)(C|c2)
, (C.20)

where we have defined the ‘propagators’ (C|R), (C|S) according to

|R):= |a2)(α1 + α2) + |b1)β1
(a1|a2)
(a1|b1)

+ |b2)β2
(a1|a2)
(a1|b2)

,

|S):= |R)(a1|b2) + |a1)
[
α2β1

(a1|b2)(a2|b1)
(a1|b1)

+ α2β2(a2|b2) + β1β2
(a1|a2)(b1|b2)

(a1|b1)

]
+|a2)

[
α1(α2 + β1 + β2)(a1|b2)

]
.

(C.21)

Although these new propagators are not especially simple, we may now observe that

eq. (C.20) is a standard conformal box integral with respect to xC(!). As such, our discus-

sion above can be immediately applied. We merely introduce

|YC):= γ1|c1) + γ2|R) + γ3|S) + ηC |c2) =: |QC) + ηC |c2) , (C.22)

and integrate over xC and ηC to find

W(3) =

∞∫
0

d2~α d2~β
[
d2~γ
] (a1|a2)2(b1|b2)(c1|c2)/(a1|b1)

(α1 + α2 + α1α2)(QC|c2)(QC -QC)
. (C.23)

We are essentially done. However, the representation (C.23) is still not manifestly

conformal in the external points. This can be quickly remedied. All we need to do is

rescale the γi Feynman parameters so that |QC) in eq. (C.22) becomes uniform in weight.

This can be achieved by rescaling them according to

γ1 7→ γ1
(a1|a2)(a2|b2)

(a2|c1)
, γ2 7→ γ2(a1|b2) , γ3 7→ 1 . (C.24)

Upon including the Jacobian, gathering terms, and some minor simplifications, we obtain

the formula quoted in eq. (3.8) — namely, eq. (C.23) becomes

W(3) 7−→
(C.24)

∞∫
0

d2~α d2~β d2~γ
n0

f1 f2 f3
, (C.25)

where

n0 := v1(u1u2u3v1v2v3) ,

f1 := α1 + α2 + α1α2 ,

f2 := α1(1 + α2 + β1 + β2 + γ2) + α2(1 + u1w2(w3β1 + β2) + γ2)

+β1v1(1 + u1u3v2w2β2 + γ2) + u2v1(u1v3γ1 + β2(1 + γ2)) ,

f3 := (1+α2+β1+β2+γ2)
[
α1

(
γ1+β2(1+α2+u3v1v2β1+γ2)+w3β1(1+α2+γ2)

)
+(1+γ2)

(
w3α2β1+(α2+u3v1v2β1)β2

)]
+γ1

[
α2(1+u1(w3β1+β2)+γ2)

+u3v1(u2w1β2(1+γ2)+β1(1+u1v2β2+γ2))
]
,

(C.26)
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expressed in terms of the basis of dual-conformal invariant cross-ratios

u1:=(c1a1;a2b2) , u2:=(a1b1;b2c2) , u3:=(b1c1;c2a2) ,

v1:=(a1a2;b1c2) , v2:=(b1b2;c1a2) , v3:=(c1c2;a1b2) ,

w1:=(b2c1;c2b1) , w2:=(c2a1;a2c1) , w3:=(a2b1;b2a1) .

(C.27)

Recall that these are defined according to

(xy;zw):=
(x|y)(z|w)

(x|z)(y|w)
. (C.28)

Although there appeared to be some magic in the Feynman-parametric rescaling in

eq. (C.19) — which restored not only conformality in the xC integration, but also its man-

ifest linearity in each factor of the denominator of eq. (C.20) — this magic in some sense

‘had to work’. Indeed, Miguel Paulos has shown [118] that all dual-conformal Feynman

integrals whose dual-graphs involve internal loop momenta connected via trees are always

possible to compute conformally by integrating one loop at a time (as described in ref. [79])

and rescaling Feynman parameters accordingly. His proof extends also to integrals whose

dual graphs are free of four-cycles — and hence, his argument also applies to W(3). Never-

theless, the existence of four-cycles in the dual graph (as will be the case for W(4) discussed

below) prevent this line of reasoning from being applied. As such, it is natural to wonder

if there is any obstruction to the magic found in the rescaling (C.19) when considered in

the context of a four (or higher-)loop wheel.

D Feynman parametrization of the four-loop wheel

Similarly to three loops, the four-loop wheel (also known as the ‘window’ integral) can be

defined in dual-momentum space as

W(4) :=

∫
d4xAd

4xBd
4xCd

4xD (a1|a2)(b1|b2)(c1|c2)(d1|d2)
(D|A)(A|a1)(A|a2)(A|B)(B|b1)(B|b2)(B|C)(C|c1)(C|c2)(C|D)(D|d1)(D|d2)

. (D.1)

As before, sequentially introducing Feynman parameters will proceed semi-trivially until

the last step as each integral is a standard, conformal box integral. Thus, we may save

ourselves some of the pedantry of the previous discussion and cut to the chase — to the

non-trivial steps at the end.

To integrate over the first three loop momenta, xA, xB, xC in eq. (D.1), we introduce

Feynman parameters according to

|YA) := α1|a1) +α2|a2) + α3|D) + ηA|B) =: |QA) + ηA|B) ,

|YB):= β1|b1) + β2|b2) +β3|QA) + ηB|C) =: |QB) + ηB|C) ,

|YC) := γ1|c1) + γ2|c2) + γ3|QB) + ηC |D) =: |QC) + ηC |D) ,

(D.2)

and integrate over the Feynman parameters ηA, ηB, ηC to arrive at

W(4) =

∞∫
0

[
d2~α
][
d2~β
][
d2~γ
] ∫ d4xD (a1|a2)(b1|b2)(c1|c2)(d1|d2)

(QA -QA)(QB -QB)(QC -QC)(D|QC)(D|d1)(D|d2)
. (D.3)
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As was the case with three loops, we now find an obstruction in the last loop integration

of eq. (D.3), as it is far from manifestly conformal.

(To reiterate a point made above, we should be clear that mere conformality is not suf-

ficient for us to Feynman parametrize and do the loop integrations. For example, consider

an integral of the form ∫
d4x`

1

(̀ |a)(̀ |b)
[
(̀ |c)(̀ |d) + (̀ |e)(̀ |f)

] . (D.4)

We know of no method by which such integrals can be systematically integrated.12 In this

work, we take a much more conservative approach, and demand that integrands be brought

to the form such that their (loop-dependent) denominators are built directly as products

of propagators.)

Somewhat surprisingly, it turns out to be fairly straightforward to bring eq. (D.3) into

a recognizable form by a sequence of rescalings as done for three loops. In particular, if we

rescale (and eliminate the projective redundancy of) the Feynman parameters according

to13

α1 7→ α1(D|a2), α2 7→ α2(D|a1), α3 7→ 1×(a1|a2),

β1 7→ β1
(D|a1)(a1|a2)

(a1|b1)
, β2 7→ β2

(D|a1)(a1|a2)
(a1|b2)

, β3 7→ 1,

γ1 7→ γ1
(D|a1)(a1|a2)(b1|b2)

(a1|b2)(b1|c1)
, γ2 7→ γ2

(D|a1)(a1|a2)(b1|b2)
(a1|b1)(b2|c2)

, γ3 7→ 1,

(D.5)

then the integral (D.3) becomes

W(4) 7−→
(D.5)

∞∫
0

d2~α d2~β d2~γ

∫
d4xD κ (D|a1)

(α1 + α2 + α1α2)(D|R)(D|S)(D|T )(D|d1)(D|d2)
, (D.6)

where the prefactor in the numerator is

κ:=
(a1|a2)3(b1|b2)3(c1|c2)(d1|d2)
(a1|b1)2(a1|b2)2(b1|c1)(b2|c2)

, (D.7)

which arises from the various Jacobians. Moreover, the new ‘propagators’ are

|R):= |a1)
[
α2β1

(a2|b1)
(a1|b1)

+ α2β2
(a2|b2)
(a1|b2)

+ β1β2
(a1|a2)(b1|b2)
(a1|b1)(a1|b2)

]
+|a2)

[
α1(1 + α2 + β1 + β2) + α2

]
+ |U) ,

|S):= |a2)(α1 + α2) + |U) + |V) ,

|T ):= |S) + |a1)fT + |a2)α1

[
α2 + β1 + β2 + γ1

(a1|c1)(b1|b2)
(a1|b2)(b1|c1)

+ γ2
(a1|c2)(b1|b2)
(a1|b1)(b2|c2)

]
,

(D.8)

12Integrands such as (D.4) arise in the context of all-loop recursion relations [119], and it would be

incredibly interesting to develop methods for these integrations.
13A more symmetrical choice of rescalings — one which treats the γi’s more similarly to the βi’s — would

have worked. We have chosen the somewhat unbalanced set of rescalings in order to maximize the number

of smoothly accessible toy-model-like limits.
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in terms of

|U):= |b1)β1
(a1|a2)
(a1|b1)

+ |b2)β2
(a1|a2)
(a1|b2)

,

|V):= |c1)γ1
(a1|a2)(b1|b2)
(a1|b2)(b1|c1)

+ |c2)γ2
(a1|a2)(b1|b2)
(a1|b1)(b2|c2)

,

(D.9)

and where we have defined the scalar function

fT :=
(a1|a2)(b1|b2)
(a1|b1)(a1|b2)

[
β1β2 + β1γ1 + β2γ2 + α2

(
β1

(a1|b2)(a2|b1)
(a1|a2)(b1|b2)

+ β2
(a1|b1)(a2|b2)
(a1|a2)(b1|b2)

+ γ1
(a1|b1)(a2|c1)
(a1|a2)(b1|c1)

+ γ2
(a1|b2)(a2|c2)
(a1|a2)(b2|c2)

)
+ β1γ2

(a1|b2)(b1|c2)
(a1|b1)(b2|c2)

+ β2γ1
(a1|b1)(b2|c1)
(a1|b2)(b1|c1)

+ γ1γ2
(b1|b2)(c1|c2)
(b1|c1)(b2|c2)

]
.

(D.10)

The integral (D.6) is a conformal integral (with respect to xD) which can be done almost

as trivially as the box integral. In particular, its Feynman parametrization follows more-

or-less trivially from differentiation (with respect to `) of the (Feynman parametrized) box

integral. (The interested reader should consult, e.g., ref. [79].)

Feynman parametrization of the integral (D.6) may be done by introducing

|YD):= δ1|d1) + δ2|R) + δ3|S) + δ4|T ) + ηD|d2) =: |QD) + ηD|d2) , (D.11)

and integrating over xD in the ordinary way. This results in a representation of W(4) of

the form

W(4) =

∞∫
0

d2~α d2~β d2~γ
[
d3~δ
] ∞∫

0

dηD
κ (YD|a1)

(α1 + α2 + α1α2)(YD|YD)3

=

∞∫
0

d2~α d2~β d2~γ
[
d3~δ
] ∞∫

0

dηD
κ
(
(QD|a1) + ηD(d2|a1)

)
(α1 + α2 + α1α2)

[
(QD|QD) + ηD(QD|d2)

]3 (D.12)

=

∞∫
0

d2~α d2~β d2~γ
[
d3~δ
] κ

2(α1+α2+α1α2)

[
(d2|a2)

(QD|d2)2(QD|QD)
+

(QD|a1)
(QD|d2)(QD|QD)2

]
.

As before, the only thing we must do to render the expression (D.12) manifestly con-

formal with respect to the external momenta is to rescale the δi’s such that |QD) becomes

uniform in weight. This is in fact easy, as the reader can easily observe that all of the fac-

tors defined in eq. (D.8) scale like |a2); as such, the only term in eq. (D.11) which has the

wrong scaling weights is the first one. Rescaling as required and eliminating the projective

redundancy (now just for consistency with the previous analysis) according to

δ1 7→ δ1(a1|a2)(a1|d1) , δ4 7→ 1 , (D.13)

the four-loop wheel takes the form

W(4) 7−→
(D.13)

∞∫
0

d2~α d2~β d2~γ d3~δ
n0

f1 f2 f3

(
n1
f2

+
n2
f3

)
, (D.14)
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where ni’s and the fi’s are all directly expressible in terms of dual-conformally invariant

cross-ratios.

We might ask if we could have done better, and found a representation as an eight-

fold integral. The difficulty here is in dealing with the final pentagon integral, which we

here represent as a three-fold. These integrals can be expanded into boxes, and this would

indeed give rise to a two-fold representation. However, writing out this box expansion shows

that it contains dilogs which have square-root arguments — and these square roots would

involve the other Feynman parameters. As such, while one can indeed write down some

two-fold representation, it would not help us to understand its transcendental properties.

At present, we know of no way to write the four-loop wheel as a rational eight-fold integral.

D.1 Interesting kinematic limits of the wheel integral W(4)

The four-loop wheel integral has several interesting kinematic limits. We discuss them

below, and provide expressions for the integral in each of these limits in Mathematica

format in the supplementary material integrands and varieties.m.

The ‘fishnet’ limit of the wheel integral W(4). The first limit we consider is the

one in which all middle legs are light-like:

(a2|b1) = (b2|c1) = (c2|d1) = (d2|a1) = 0 . (D.15)

=⇒
(D.15)

⇔ (D.16)

Notice that a particular case of this limit — where the ‘massive’ momenta flowing into the

corners of the wheel are pairs of massless particles — is itself a particular planar amplitude

in the integrable conformal fishnet theory [82–84],

A(ϕ12, ϕ12, ϕ12, ϕ13, ϕ13, ϕ13, ϕ34, ϕ34, ϕ34, ϕ24, ϕ24, ϕ24) = , (D.17)

which is also a particular component amplitude of the 12-point N4MHV scattering ampli-

tude in planar N = 4 supersymmetric Yang-Mills theory, A(4)
12 . This component of the

supersymmetric amplitude corresponds to∫(
dη̃11dη̃

1
2 · · · dη̃16

)(
dη̃210dη̃

2
11 · · · dη̃23

)(
dη̃34dη̃

3
5 · · · dη̃39

)(
dη̃47dη̃

4
8 · · · dη̃412

)
A(4)

12 . (D.18)

We also note that in this limit (and hence all those below it), n1 of eq. (D.14) vanishes.
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A nine-dimensional toy model of the wheel integral W(4). This limit is analogous

to the toy models discussed in section 3.3 and ref. [80]. In this case, there are several

ways to ‘route’ 8 light-like points among the external points. The only one which will be

dihedrally invariant is the one defined by the conditions (D.15) and

(a1|c2) = (a2|c1) = (b1|d2) = (b2|d1) . (D.19)

⇔ =⇒
(D.19)

(D.20)

In this limit, the integral will depend on the space of kinematics associated with 8 pairwise

light-like separated points — a nine-dimensional parameter space. We do not expect this

limit to lead to any drop in rigidity.

The Basso-Dixon fishnet integral I2,2 as a limit of W(4). Another special case

of interest is the Basso-Dixon fishnet integral I2,2, which contributes to the four-point

correlation function in planar ϕ4 theory. This corresponds to taking the limit where the

eight dual points defining the wheel integral W(4) are pairwise identified according to

d2 = a1, a2 = b1, b2 = c1, c2 = d1 . (D.21)

Graphically, this corresponds to

⇔ =⇒
(D.21)

⇔ . (D.22)

This limit is known explicitly [120], and in particular is polylogarithmic.

A two-dimensional toy model of the wheel integral W(4). One final limit of inter-

est is one that appeared in ref. [121] — also in the context of the conformal fishnet theory.

This limit corresponds to a different pairwise identification of the eight dual points which

define the integral, namely,

a1 = c2, a2 = c1, b1 = d2, b2 = d1 . (D.23)

This limit can perhaps be best understood as a ‘non-planar’ gluing of the original dual

integral — obtained via the sequence

' =⇒
(D.23)

' . (D.24)
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In this limit, the integral can be seen to contribute to the ‘2-magnon’ 4-point function as

drawn on the right-hand part of figure 1 of ref. [121]. At leading order, this four-point

function is given by a single Feynman integral: that drawn in eq. (D.24). This function

is known to be non-polylogarithmic. Fourier-transformed, it corresponds to the five-loop

amoeba integral of ref. [66], which is maximally rigid.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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polylogarithms, Trans. Amer. Math. Soc. 353 (2001) 907 [math.CA/9910045].

[6] S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and

multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].

[7] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for

amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]

[INSPIRE].

[8] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super

Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].

[9] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes,

JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

[10] L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the

three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

[11] L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function

and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP 06

(2014) 116 [arXiv:1402.3300] [INSPIRE].

[12] L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops,

JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].

[13] J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster

bootstrap for the 3-loop MHV heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].

[14] L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function,

JHEP 01 (2016) 053 [arXiv:1509.08127] [INSPIRE].

[15] E. Panzer and O. Schnetz, The Galois coaction on ϕ4 periods, Commun. Num. Theor.

Phys. 11 (2017) 657 [arXiv:1603.04289] [INSPIRE].

– 33 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1090/s0002-9904-1977-14320-6
https://doi.org/10.1006/aima.1995.1045
https://doi.org/10.1006/aima.1995.1045
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://arxiv.org/abs/1105.2076
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2076
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905237
https://doi.org/10.1090/s0002-9947-00-02616-7
https://arxiv.org/abs/math.CA/9910045
https://doi.org/10.1063/1.1471366
https://arxiv.org/abs/hep-ph/0110083
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0110083
https://doi.org/10.1103/PhysRevLett.105.151605
https://arxiv.org/abs/1006.5703
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5703
https://doi.org/10.1007/JHEP12(2011)066
https://arxiv.org/abs/1105.5606
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5606
https://doi.org/10.1007/JHEP08(2012)043
https://arxiv.org/abs/1203.0454
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0454
https://doi.org/10.1007/JHEP12(2013)049
https://arxiv.org/abs/1308.2276
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2276
https://doi.org/10.1007/JHEP06(2014)116
https://doi.org/10.1007/JHEP06(2014)116
https://arxiv.org/abs/1402.3300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3300
https://doi.org/10.1007/JHEP10(2014)065
https://arxiv.org/abs/1408.1505
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.1505
https://doi.org/10.1007/JHEP03(2015)072
https://arxiv.org/abs/1412.3763
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3763
https://doi.org/10.1007/JHEP01(2016)053
https://arxiv.org/abs/1509.08127
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.08127
https://doi.org/10.4310/CNTP.2017.v11.n3.a3
https://doi.org/10.4310/CNTP.2017.v11.n3.a3
https://arxiv.org/abs/1603.04289
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04289


J
H
E
P
0
1
(
2
0
2
0
)
0
7
8

[16] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop

amplitude using Steinmann relations, Phys. Rev. Lett. 117 (2016) 241601

[arXiv:1609.00669] [INSPIRE].

[17] L.J. Dixon, M. von Hippel, A.J. McLeod and J. Trnka, Multi-loop positivity of the planar

N = 4 SYM six-point amplitude, JHEP 02 (2017) 112 [arXiv:1611.08325] [INSPIRE].

[18] L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and

M. Spradlin, Heptagons from the Steinmann cluster bootstrap, JHEP 02 (2017) 137

[arXiv:1612.08976] [INSPIRE].

[19] Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft

anomalous dimension, JHEP 09 (2017) 073 [arXiv:1706.10162] [INSPIRE].

[20] O. Schnetz, The Galois coaction on the electron anomalous magnetic moment, Commun.

Num. Theor. Phys. 12 (2018) 335 [arXiv:1711.05118] [INSPIRE].

[21] S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, The double

pentaladder integral to all orders, JHEP 07 (2018) 170 [arXiv:1806.01361] [INSPIRE].
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[82] Ö. Gürdoğan and V. Kazakov, New integrable 4D quantum field theories from strongly

deformed planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016)

201602 [Addendum ibid. 117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].

[83] C. Sieg and M. Wilhelm, On a CFT limit of planar γi-deformed N = 4 SYM theory, Phys.

Lett. B 756 (2016) 118 [arXiv:1602.05817] [INSPIRE].

[84] D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed N = 4

supersymmetric Yang-Mills theory as an integrable conformal field theory, Phys. Rev. Lett.

120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].

– 37 –

https://doi.org/10.1103/PhysRevLett.121.071603
https://doi.org/10.1103/PhysRevLett.121.071603
https://arxiv.org/abs/1805.09326
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09326
https://doi.org/10.4310/CNTP.2019.v13.n2.a4
https://arxiv.org/abs/1809.04970
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.04970
https://arxiv.org/abs/1908.01079
https://inspirehep.net/search?p=find+EPRINT+arXiv:1908.01079
https://doi.org/10.1007/JHEP04(2011)005
https://doi.org/10.1007/JHEP04(2011)005
https://arxiv.org/abs/1003.3235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.3235
https://doi.org/10.1103/PhysRevD.84.106005
https://arxiv.org/abs/1106.4804
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4804
https://doi.org/10.1007/JHEP06(2012)113
https://arxiv.org/abs/1202.1757
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1757
https://doi.org/10.1007/JHEP07(2013)070
https://doi.org/10.1007/JHEP07(2013)070
https://arxiv.org/abs/1303.1832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1832
https://doi.org/10.1016/0550-3213(91)90292-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B359,21%22
https://doi.org/10.1103/PhysRevLett.120.141602
https://doi.org/10.1103/PhysRevLett.120.141602
https://arxiv.org/abs/1711.00469
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.00469
https://doi.org/10.1007/JHEP02(2019)139
https://doi.org/10.1007/JHEP02(2019)139
https://arxiv.org/abs/1810.03818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.03818
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1103/PhysRevLett.123.201602
https://arxiv.org/abs/1907.02000
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.02000
https://doi.org/10.1016/j.nuclphysb.2019.03.022
https://doi.org/10.1016/j.nuclphysb.2019.03.022
https://arxiv.org/abs/1901.02887
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.02887
https://doi.org/10.1103/PhysRevLett.120.121603
https://doi.org/10.1103/PhysRevLett.120.121603
https://arxiv.org/abs/1712.02785
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.02785
https://doi.org/10.1007/JHEP08(2018)184
https://arxiv.org/abs/1805.10281
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.10281
https://doi.org/10.1103/PhysRevLett.117.201602
https://doi.org/10.1103/PhysRevLett.117.201602
https://arxiv.org/abs/1512.06704
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06704
https://doi.org/10.1016/j.physletb.2016.03.004
https://doi.org/10.1016/j.physletb.2016.03.004
https://arxiv.org/abs/1602.05817
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.05817
https://doi.org/10.1103/PhysRevLett.120.111601
https://doi.org/10.1103/PhysRevLett.120.111601
https://arxiv.org/abs/1711.04786
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.04786


J
H
E
P
0
1
(
2
0
2
0
)
0
7
8

[85] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n-point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]

[INSPIRE].

[86] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes

into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

[87] Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+e− to four partons, Nucl.

Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].

[88] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4

super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

[89] Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric

planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020

[arXiv:0705.1864] [INSPIRE].

[90] J.L. Bourjaily, E. Herrmann and J. Trnka, Prescriptive unitarity, JHEP 06 (2017) 059

[arXiv:1704.05460] [INSPIRE].

[91] J.L. Bourjaily, E. Herrmann and J. Trnka, Building bases of loop integrands, to appear.

[92] S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions,

Compos. Math. 151 (2015) 2329 [arXiv:1406.2664] [INSPIRE].

[93] S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral,

Adv. Theor. Math. Phys. 21 (2017) 1373 [arXiv:1601.08181] [INSPIRE].
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1 Introduction

The analytic structure and functional form of scattering amplitudes computed in (pertur-

bative) quantum field theory continues to hold interesting surprises. Beyond leading order,

amplitudes are typically transcendental functions — the simplest of which are known as

generalized ‘polylogarithms’: iterated integrals over differential forms with exclusively sim-

ple (logarithmic) poles in each integration variable. Although wider classes of functions are

known to be needed for most amplitudes (see e.g. [1–12]), polylogarithms are often suffi-

cient at low loop order and particle multiplicity, and are by far the best understood. Much

of this understanding has emerged in the context of ‘symbology’ [13, 14], which exploits

the coproduct and Hopf algebra structure of these functions [15–19]. (See e.g. [20] for an

introduction to these ideas.)

One of the key aspects of symbols is that they encode complete information about the

(iterated) branch cut structure of polylogarithms in terms of an alphabet of primitive log-

arithmic branch-points called letters. Knowledge about the alphabets relevant for certain

polylogarithmic amplitudes has allowed incredible reaches into perturbation theory, well

beyond what would be possible through any known (e.g. Feynman) diagrammatic expan-

sion. Examples of such triumphs include the recent determination of certain six-particle

amplitudes in planar maximally supersymmetric (N =4) Yang-Mills theory (sYM) through

seven loops [21–29], and through four loops for seven particles [30–32].

A microcosm of progress in scattering amplitudes more broadly, these calculations

have fueled and been fueled by concrete examples. One still mysterious aspect of most

known examples in this theory is that their symbol alphabets are found to be generated by

– 1 –
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cluster mutations [33] — rational transformations that define cluster algebras [34]. Such

algebras naturally appear in the context of the positive Grassmannian geometry of on-shell

scattering amplitudes [35], and seem to encode physical aspects of amplitudes such as the

Steinmann relations [36–39]; they also encode further types of structure whose physical

interpretation remains less clear [40–42].

Despite the intriguing role played by cluster algebras, it has long been known that even

in planar sYM this story cannot be complete. Not only are non-polylogarithmic functions

needed for most scattering amplitudes (at sufficiently high multiplicity or loop order), but

even most polylogarithmic (Nk≥2MHV) amplitudes at one loop require symbol letters that

are not rationally related to any known cluster algebra. These algebraic roots arise, for

example, as Gram determinants in the analysis of Landau singularities (see e.g. [43–46]).

It is therefore natural to wonder what kinds of letters arise in this theory’s MHV and

NMHV amplitudes, which have been argued to be polylogarithmic to all orders [47]. The

symbol of all two-loop MHV amplitudes — computed in [48] — involve only letters drawn

from the coordinates of Grassmannian cluster algebras (which are related to canonical co-

ordinates on the space of positive momentum-twistor variables) [33, 40]. Similarly, the

symbol of the two-loop seven-point NMHV amplitude (computed in [49]) is entirely com-

posed of cluster coordinates. Whether or not this continues to hold beyond seven particles

constitutes an important open question. In particular, in [45] it was suggested that square

roots could appear in NMHV amplitudes at two loops (and in MHV amplitudes at three

loops) starting for eight particles.

In this work, we probe the existence of these algebraic roots by directly computing

a particular component of the eight-point two-loop NMHV amplitude. While we are not

currently able to compute this component in full kinematics, it is sufficient to compute

it analytically at a single (sufficiently generic) kinematic point. Note that it is, however,

necessary to consider an entire amplitude, as it is well known that local integral represen-

tations can involve ‘spurious’ symbol letters (or even ‘spurious’ non-polylogarithmic parts

— see e.g. [50, 51]) that cancel between terms. Surprisingly, in the component under study,

this is precisely what happens: the local integrals that contribute to the amplitude indi-

vidually involve quadratic roots, but these roots cancel. This of course has no implications

for whether square roots will appear in other NMHV component amplitudes.

We begin in section 2 by defining the particular component we will examine. In sec-

tion 2.1, we describe a direct integration strategy that can be used to compute it at a

kinematic point; while it is not linearly reducible in the conventional sense, we find the

integral can be divided up into parts that can be integrated after respective rationalizing

changes of the integration variables. The resulting functional form involves many spurious

algebraic letters in addition to the expected ones, so algebraic identities are required to

eliminate them at symbol level, as we describe in section 2.2. While the individual inte-

grals contributing to this component contain quadratic roots, we show in section 2.3 that

the component as a whole does not. We then conclude, discussing further questions and

potential applications.

We also present two appendices. Appendix A discusses a nice basis of R-invariants for

this amplitude, while appendix B reviews pertinent notions in algebraic number theory.

– 2 –
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We additionally include several pieces of supplementary material: the integrand of the

integral we compute as Omega1357Integrand.m, expressions in multiple polylogarithms

in Omega1357MPLs.m and Omega3571MPLs.m, and the simplified symbols we obtain

as Omega1357Symbol.m and Omega3571Symbol.m. We also include a table of prime

factorizations of the symbol letters conjectured in [45] for comparison with our results as

PrimeFactorLetters.pdf.

2 The simplest NMHV octagon component amplitude

Explicit, prescriptive formulae for all two-loop n-point NkMHV amplitude integrands for

planar sYM, which we denote by A(k),2
n , were given in [52] (see also [53]); these amplitudes

are expressed in terms of a basis of dual-conformal Feynman integrands involving only local

propagators. Each integral in this basis can be Feynman parameterized and conformally

regulated as described in [54, 55]. These integrals are not all yet known analytically.

Consider for example the local integrand representation of MHV amplitudes at two

loops [56, 57]:

A(0),2
n =

∑
1≤a<b<c
c<d<n+a

a

bc

d

N1N1 =:
∑

1≤a<b<c
c<d<n+a

Ω[a, b, c, d] . (2.1)

Here, the ‘N1’s indicate specific choices of loop-dependent numerators for these sets of

(otherwise ordinary) Feynman propagators as defined in [52]. Among these terms is the

integral

Ω
[
1, 3, 5, 7

]
=

8
1

2

3
4

5

6

7

N1N1 , (2.2)

which was referred to as ‘octagon K’ in [46], where the particular challenges to its direct

integration were described at some length (see also [58]). This integral is in fact the

most difficult integral topology required for any eight-point amplitude at two loops for the

simple reason that it is the only topology that depends on eight dual-momentum points.

(Equivalently, it is the only topology which depends on 9 conformal degrees of freedom.) In

general, the ratio function will involve all of the terms in (2.1) — including Ω[1, 3, 5, 7] —

because the 2-loop MHV amplitude is required to compute the ratio function. No analytic

expression for Ω[1, 3, 5, 7] is currently known, making the analysis of any octagon amplitude

a considerable challenge.

Luckily, the question regarding whether or not algebraic letters appear in an amplitude

can be answered for individual components. (We give a less component-oriented motivation

for this amplitude in appendix A.) Moreover, provided the kinematics are parameterized

– 3 –
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appropriately, this question can be answered at a single kinematic point. For the eight-point

NMHV amplitude, there is in fact a simplest component amplitude to consider:1

A8

(
ψ
+ 1

2
1 , φ012, ψ

+ 1
2

2 , φ023, ψ
+ 1

2
3 , φ034, ψ

+ 1
2

4 , φ041

)
(2.3)

=

∫ (
dη̃18dη̃

1
1dη̃

1
2

)(
dη̃22dη̃

2
3dη̃

2
4

)(
dη̃34dη̃

3
5dη̃

3
6

)(
dη̃46dη̃

4
7dη̃

4
8

)
A8

(
λ, λ̃, η̃

)
= 〈82〉〈24〉〈46〉〈68〉

∫ (
dη11
)(
dη23
)(
dη35
)(
dη47
)
A8

(
Z1, . . . ,Z8

)
,

where 〈ab〉:= det
(
λa, λb

)
in terms of spinor variables with pa=:λaλ̃a, and where ηa is the

fermionic component of the super momentum-twistor Za :=(za, ηa) [59–61]. This compo-

nent amplitude is singled out by the fact that it happens to vanish exactly at tree level

and one loop (see e.g. [54, 62, 63]), rendering this two-loop amplitude infrared finite and

equal to the ratio function.

Using the results of [52], it is easy to confirm that the two-loop component (2.3) in

momentum-twistor variables is simply:

∫
dη11dη

2
3dη

3
5dη

4
7 AL=2

8 =
1

〈1357〉


8

1

2

3
4

5

6

7

N1N1 −

2
3

4

5
6

7

8

1

N1N1


, (2.4)

where 〈abcd〉:= det
(
za, zb, zc, zd

)
. Notice that the sum of these integrals contributes to the

MHV amplitude (2.1), while their difference is relevant to us here. The good news is that

this component amplitude only requires one integral; the bad news is that it requires what

is arguably the hardest eight-point integral at two loops.

Following [55], it is reasonably straightforward to Feynman parameterize (2.4) without

breaking conformal invariance. We give this Feynman-parametric representation in the

supplementary material, in Omega1357Integrand.m, expressed in terms of a particular

momentum-twistor (cluster) coordinate chart (see [35, 46] for context):

Z :=


s23 1 s2s3 0 −s2s3 0 s2s3 0

−s3s4 0 s34u 1 s3s4 0 −s3s4 0

s1s4 0 −s1s4u 0 s41u 1 s1s4 0

−s1s2 0 s1s2u 0 −s1s2u 0 s12u 1

⇔ (2.5)

1Component fields of external supermultiplets are specified by their helicity and SU(4)R-charges, written

in superscript and subscript, respectively.
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where sjk:=(1+sj+sk+sjsk+tk) and si:=(1+si), introduced entirely for the sake of nota-

tional compression. Here, these coordinates correspond to the charts

s1 :=
〈2346〉〈4568〉
〈2468〉〈3456〉

, t1 :=
〈1246〉〈2345〉〈3468〉
〈1234〉〈2468〉〈3456〉

, u :=
〈1248〉〈2346〉〈2678〉〈4568〉
〈1246〉〈2478〉〈2568〉〈3468〉

, (2.6)

with s2 := r2(s1), t2 := r2(t1), etc. defined by sequential two-fold rotations r2:zi 7→ zi+2.

As described in [46], any rational parameterization of momentum twistors will be

free of square roots associated with six-dimensional Gramians, and any rational point in

momentum-twistor space can be accessed rationally in any cluster coordinate chart. And so

the question of whether or not algebraic letters arise can be answered at any rational point

in momentum-twistor space. For the analysis described below, we chose to consider the

(nearly symmetrical) point in kinematic space specified by the momentum-twistor matrix

Z −→ Z∗ :=
(
z1, . . . , zn

)
:=


5 1 1 0 −1 0 2 0

−2 0 5 1 1 0 −1 0

1 0 −2 0 5 1 1 0

−1 0 1 0 −2 0 6 1

 (2.7)

obtained from (2.5) by setting t2 = 2 and all other coordinates (si, ti, u) to 1. Landau

analysis (see [45]) suggests that (2.2) may involve the roots associated with the four-

dimensional Gramians:

∆
[
abcd

]
:=
√

(1−u−v)2−4uv with u := (ab;cd) , v := (bc;da) , (2.8)

where

(ab;cd):=
〈a− 1a b− 1b〉〈c− 1c d− 1d〉
〈a− 1a c− 1c〉〈b− 1b d− 1d〉

. (2.9)

For the kinematic point defined by (2.7), these are

∆
[
1357

]
=

1

806

√
644801 , ∆

[
2468

]
=

1

5

√
21 . (2.10)

Our question, therefore, is whether or not the roots (2.10) — or any others — arise as part

of the symbol alphabet for the component (2.4). Answering this question turned out to

require more cleverness and subtlety than expected. We shall now describe the concrete

steps involved.

2.1 Direct, (Feynman-)parametric integration of Ω[1, 3, 5, 7]

The loop-momentum integral over Ω[1, 3, 5, 7] corresponds to a five-fold parametric integral

of Feynman (or Schwinger) parameters:

Ω
[
1, 3, 5, 7

]
=:

∞∫
0

[
d3~α
]
d2~β I(α1, . . . , α4, β1, β2) . (2.11)

Here, the integrals over {α1, . . . , α4} are projective, and those over β1, β2 are not. (This

distinction is irrelevant from the viewpoint of the Cheng-Wu theorem, but reflects how the

parameterization was derived.)

– 5 –
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The principle obstruction to parametric integration is that I(~α, ~β) is not linearly re-

ducible in the sense of [64]. In particular, using compatibility-graph reduction [65] (as

implemented for example in the package HyperInt [66]2), one can readily find that at most

two integrations can be carried out without introducing algebraic roots. For instance, upon

integrating out β1 and β2 (in that order), further integration seems to be obstructed along

every path. For example, the pathway in which α1 is integrated next is obstructed by the

existence of a quadratic polynomial Q1(α1) in the denominator, as this leads to a result

that involves the square root of the discriminant of Q1; this square root involves the remain-

ing integration parameters, näıvely taking us out of the space of multiple polylogarithms.

There is a similar obstruction with respect to α4, due to a quadratic denominator factor

Q4(α4). (The obstructions in α2 and α3 are given by three quadratic polynomials each.)

Luckily, after integrating over β1 and β2, there are no terms that simultaneously depend

on both quadratic factors Q1(α1) and Q4(α4). Thus, we may divide them according to

whether or not Q1(α1) appears. Specifically, we define

∞∫
0

d2~β I(α1, . . . , α4, β1, β2) =:I(~α) =: IA + IB , (2.12)

with IB consisting of all terms that involve Q1(α1), and IA being all terms that do not

depend on Q1(α1). To be clear, IA consists of both those terms involving Q4(α4), and also

those depending on neither quadratic factor. Note that IA and IB are separately finite.

Before we describe further integrations, it is worth mentioning one potential subtlety.

We will ultimately be interested in fixing the projective redundancy of different parts of

the original integral in different ways. To do so, we must first reprojectivize these integrals

by making the replacement αi 7→ αi/(
∑
αi).

3 This is done before we set any parameter to

unity.

Let us first consider the integration of IA. Free of the quadratic obstruction Q1(α1),

we can integrate over α1 and subsequently α2, leaving us with a one-fold projective integral.

The α2 integration, however, result in terms that involve square roots of two more irre-

ducible quadratics q1(α3, α4) and q2(α3, α4). While the appearance of such factors would

generally obstruct further integration, it turns out that no single term contains both roots.

Thus, we can further divide IA into three parts: IA0 , which is free of any square roots, IA1 ,

which involves only
√
q1(α3, α4), and IA2 , which involves only

√
q2(α3, α4). After setting

the projective variable a4 = 1, we can then use a standard change of variables known as

Euler substitution (see also [67]) to rationalize
√
q1(α3, 1) and

√
q2(α3, 1), respectively, in

the latter two groups.

We can integrate each of the terms in IB following a very similar strategy. Specifically,

we first integrate out α4 and then α3, which results in terms that individually involve one

(or neither) of a pair of square roots of different quadratic polynomials, q̃1(α1, α2) and

2HyperInt is obtainable at https://bitbucket.org/PanzerErik/hyperint/wiki/Home.
3This is due to the arguments of the logarithms (and polylogarithms) introduced by previous integrations,

which are not homogeneous.
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I
(
~α, ~β

)
I
(
~α
)

=:



IA
[
63 Q1(α1)

]

IB
[
3 Q1(α1)

]

IA0

[
63 √q1,

√
q2
]

IA0

IA1

IA2

IA1

[
3
√
q1(α3, α4)

]IA2

[
3
√
q2(α3, α4)

]
IB0

[
63
√
q̃1,
√
q̃2
]IB1

[
3
√
q̃1(α1, α2)

]IB2

[
3
√
q̃2(α1, α2)

]
IB0

IB1

IB2

∫
d2~β

∫
dα1,

∫
dα2

∫
dα4,

∫
dα3

“
∫
dα3”

α4 → 1

“
∫
dα1”

α2 → 1

Figure 1. Integration strategy for Ω[1, 3, 5, 7]. Here, the final integrations are written in quotes

to clarify that this step should be understood as integration after the changes of variables made to

rationalize the quadratic roots; these changes depend on which roots exist, and so are different for

different groups IAi and IBi .

q̃2(α1, α2). Splitting these pieces in the same way as for IA, fixing α2 = 1 and changing

variables to rationalize each root, we can do the final integration.

The steps involved in this divide-and-conquer strategy are summarized in figure 1. The

result is a sum of terms, each expressed in terms of multiple polylogarithms depending

on algebraic arguments of high degree (up to 16 in some cases). These expressions can

be evaluated to arbitrarily high precision — for example, using GiNaC [68, 69] — and

have been checked to agree with the numerical (Monte Carlo) integration of the Feynman

parametric integral (in Mathematica). We attach these results as Omega1357MPLs.m

and Omega3571MPLs.m.

Unfortunately, as mentioned, the multiple polylogarithms that arise in this process

depend on many algebraic roots. In addition to the expected roots from the Landau

analysis at this kinematic point,
√

21 and
√

644801, we find that Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
each involve 85 distinct square roots, with only 12 in common between the two integrals.

Each also involves irreducible roots of four distinct fourth-order polynomials, only one of

which appears in both integrals. The vast majority of these algebraic roots are certain

to be ‘spurious’: arising entirely through the change of variables introduced in the final

stages of the integration strategy (required to rationalize the final integrations). To assess

whether or not these roots (or any others) are truly spurious, we analyze the symbol of

each integral.

2.2 Eliminating identities among ‘spurious’ algebraic letters

As described above, we are able to evaluate Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
as complicated

expressions in terms of multiple polylogarithms, which we expect to satisfy many nontrivial

relations. To investigate these relations, we take the symbol of each function.4 Doing so,

4It is sometimes colloquially stated that the symbol of a constant is zero; while this is true for the

constants we most familiarly encounter (namely, the multiple zeta values), it is not true in general. One

letter that is dropped in the symbol is 1 (which correspond to log(1) = 0). We have also dropped all

the roots of unity; if ζn = 1, then log(ζ) → 1
n

log(1) = 0. Allowing this type of transformation is called

“working modulo n-torsion” in the mathematics literature.
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we obtain a pair of extremely complicated expressions, each involving a large number of

spurious letters. Factoring each letter näıvely (including factoring any integer primes),

Ω
[
1, 3, 5, 7

]
has a symbol composed of 8,367,616 terms that involve 2,024 letters, while the

symbol of Ω
[
3, 5, 7, 1

]
contains 9,941,483 terms and 2,156 letters.

Clearly, these symbols must be simplified. To do so, we want to find a set of multi-

plicatively independent letters S in terms of which both of these symbols can be expressed.

Landau analysis suggests that the final alphabet S should be drawn from the union of

the two algebraic number fields Q(
√

21)∪Q(
√

644801). However, our integration proce-

dure yields a symbol with a much larger initial alphabet, involving for instance algebraic

numbers up to degree 16. Finding algebraic relations between these complicated letters

in order to reduce them to elements of S can be extremely difficult. To give the reader a

sense of this complexity, we consider some examples.

Let Pi ∈ K[X] be some degree-four polynomials (indexed by i) with coefficients5 in

K = Q(
√

21,
√

644801). Our initial alphabet includes various roots of Pi, denoted σ∗i,r for

r = 1, . . . , 4. An example of the kind of roots that arise for us are those of the fourth-degree

polynomial:

P1 = (515426609 + 641880
√

644801) + (2105546840 + 2622160
√

644801)X

+(3225674840 + 4015200
√

644801)X2 + (2240256000 + 2676800
√

644801)X3

+1120128000X4 . (2.13)

Clearly, we expect the four roots of P1 that arise in our symbol alphabet to be spurious.

Therefore, we must find some way to demonstrate that they cancel.

Actually, an alphabet merely involving σ∗i,r would not be so difficult. It turns out in

our case that the most complicated letters we see are of the type ρ− σ∗i,r, where ρ can be

an integer or a linear combination of up to two square roots. When there are two roots,

one always belongs to K. Furthermore, when ρ = m + n
√
c with m,n ∈ K and c ∈ Z

appears, then its conjugate ρ = m− n
√
c also appears.

There are two types of relations involving the roots σ∗i,r that turn out to be useful for us.

The first type involves products
∏4
r=1(ρ− σ∗i,r). These products are completely symmetric

in the roots of Pi, so they belong to an extension of the field K by ρ — in particular,

they can be written as linear combinations of square roots and integers. Actually, it turns

out that products of certain pairs of roots of Pi also yield simple answers. We believe it

should be possible to explain the existence of these latter mysterious identities using Galois

theory, but we have not performed this analysis.

The second type of identities involve products of type (ρ − σ∗i,r)(ρ − σ∗i,r), where ρ is

one of the conjugates of ρ. Expanding out this product we obtain a degree-two polynomial

in σ∗i,r with coefficients in K. Next, we search for exponents eρ corresponding to values of ρ

such that, in the product of these letters raised to power eρ, the σ∗i,r cancels and the answer

is of degree two. It turns out to be sufficient to bound the search so that |eρ| ≤ 2. The

5To be more precise, two of these minimal polynomials are with coefficients in Z, one is with coefficients

in Z[
√

21] while another has coefficients in Z[
√

644801].
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calculation of these products can be conveniently performed using SageMath [70], which

uses Pari [71].

Let us be more concrete with an example of this second type of identity. For the

polynomial P1 given in (2.13), we find the letters

a1(σ
∗
1,r):= (1668888 + 2080

√
644801) + (25600σ∗1,r + 4160

√
644801)σ∗1,r,

a2(σ
∗
1,r):= (1412136 + 1760

√
644801) + (3097600σ∗1,r + 3520

√
644801)σ∗1,r,

a3(σ
∗
1,r):= (10013328 + 12480

√
644801) + (17305600σ∗1,r + 24960

√
644801)σ∗1,r,

a4(σ
∗
1,r):= (11938968 + 14880

√
644801) + (24601600σ∗1,r + 29760

√
644801)σ∗1,r,

a5(σ
∗
1,r):= (2456474760 + 3061600

√
644801) + (5069440000σ∗1,r + 6123200

√
644801)σ∗1,r

(2.14)

(among many others involving σ∗1,r), where σ∗1,r is any root of P1. It is not hard to verify that

a1a
2
2

a3a4a5
= − 121

358670
∈ K (2.15)

using SageMath (or even Mathematica).

Fortunately, the method described above turns out to be sufficient to find all required

relations between the most complicated letters that appear in our initial symbols, allowing

us to get rid of all higher-degree roots. However, many other potentially-spurious letters

remain — in particular, there still exist linear combinations of up to two square roots, and

square roots beyond the two physical ones in (2.10).

For the letters containing square roots, we group them according to the algebraic

number fields to which they belong and compute the factorization of the principal ideal

they generate (see appendix B for more details). For this step we use again SageMath and

Pari. Using this factorization, we can find multiplicative relations between these letters.

Note that the integer prime factors we generated in the first step belong to each of these

number fields, so their decomposition in prime ideals has to be computed as well.

This factorization also contains a unit part, which is a term belonging to the group of

units of the various rings we consider. In some of the cases we encounter, the unit part

is ±1, but in others it is non-trivial. We keep a list of all the units arising during the

calculations in a given ring, and if two of them are identical we obtain a new identity by

taking the ratio. In principle a more sophisticated approach is possible.

Using these methods, we decompose our letters into a multiplicatively independent

set S. Doing so, many of the spurious letters in our symbols combine cleanly into integer

letters. Others cancel entirely, removing terms and causing other spurious letters to drop

out. In the end, we find the symbol of each function simplifies dramatically. Expressing

Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
in terms of a shared, multiplicatively independent symbol

alphabet, we find only 35 letters are needed. These letters only involve the expected

square roots: five involve
√

644801, two involve
√

21, and the rest are integer primes.

Expressed in these letters, Ω
[
1, 3, 5, 7

]
is 5316 terms long, while Ω

[
3, 5, 7, 1

]
contains 5245

terms. We attach the symbol of each in supplementary material Omega1357Symbol.m

and Omega3571Symbol.m, respectively.
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Interestingly, some of the symbol letters that contain
√

21 and
√

644801 can be con-

structed simply in dual twistor space. Namely, out of eight points z1, . . . , z8, we can form

four skew lines (z1, z2), (z3, z4), (z5, z6), (z7, z8). These four skew lines have two transver-

sals (lines that intersect all four of them). From the points of intersection on each of these

transversals we can form a cross ratio. A similar construction can be carried out starting

from the (z2, z3), . . . , (z8, z1). Some of the cross ratios that can be formed in this way

appear directly in our symbol expression for Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
.

2.3 Cancellations in the component amplitude

Individually, Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
both contain square-root letters. Now that we

have expressed them in the same alphabet, we can examine their difference Ω
[
1, 3, 5, 7

]
−

Ω
[
3, 5, 7, 1

]
, the combination that appears in this component of the NMHV amplitude.

Remarkably, this difference is free of square-root letters! Recall that we are using a multi-

plicatively independent alphabet: as such, the vanishing of square roots in Ω
[
1, 3, 5, 7

]
−

Ω
[
3, 5, 7, 1

]
requires that terms involving each of the six independent square-root-containing

letters cancel separately. We find that the difference Ω
[
1, 3, 5, 7

]
−Ω

[
3, 5, 7, 1

]
contains just

25 letters, all integer primes.

The sum Ω
[
1, 3, 5, 7

]
+ Ω

[
3, 5, 7, 1

]
contributes to the eight-point MHV amplitude.

This sum is not free of square roots, and depends on all of the letters present in the two

integrals. This observation is still consistent with the observed absence of square roots

in the alphabet of the two-loop eight-point MHV amplitude because several other root-

containing integrals contribute to this amplitude — including two other permutations of

the integral we computed here. Other cancellations, much like those we observed, must be

present in this combination.

We find that square-root letters are present in the second and third entry of Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
, but not the first or fourth entry. This is as expected, as first entries

should correspond to Mandelstam invariants while last entries are constrained by the Q

equation [49]. More specifically, first entries should be composed of four-brackets of the

form 〈i, i+ 1, j, j + 1〉. Examining our symbol, we find first entries of 2, 3, 5, 11, 13, and 31.

Computing the expected first entries at our kinematic point, we find

〈1, 2, 3, 4〉 = 1 , 〈1, 2, 4, 5〉 = 3 , 〈1, 2, 5, 6〉 = 5 , 〈1, 2, 6, 7〉 = 13 ,

〈1, 2, 7, 8〉 = 1 , 〈2, 3, 4, 5〉 = 1 , 〈2, 3, 5, 6〉 = 11 , 〈2, 3, 6, 7〉 = 31 ,

〈2, 3, 7, 8〉 = 3 , 〈1, 2, 3, 8〉 = 1 , 〈3, 4, 5, 6〉 = 1 , 〈3, 4, 6, 7〉 = 4 ,

〈3, 4, 7, 8〉 = 5 , 〈1, 3, 4, 8〉 = 11 , 〈4, 5, 6, 7〉 = 2 , 〈4, 5, 7, 8〉 = 11 ,

〈1, 4, 5, 8〉 = 26 , 〈5, 6, 7, 8〉 = 1 , 〈1, 5, 6, 8〉 = 3 , 〈1, 6, 7, 8〉 = 1 ,

(2.16)

which indeed cover all observed first entries.

We can also investigate whether the prime-number symbol entries we observe elsewhere

in the symbol can originate from the entries predicted in [45]. We have attached this

analysis as supplementary material, as PrimeFactorLetters.pdf, where we tabulate the

prime factors of each of the predicted letters at this kinematic point. We find these factors
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span all of the letters that we observe. There are additional prime factors occurring in

predicted letters in [45] that we do not observe; these are marked by an asterisk in our

table.

In addition to these observations, we find that the two square roots
√

644801 and
√

21

do not appear together in the same term of the symbol: the symbol can be separated

into terms depending on one root, terms depending on the other, and terms depending on

neither.

3 Conclusions and outlook

In this work, we have computed a component of the two-loop eight-point NMHV amplitude

in planar sYM at a specific kinematic point. We find that, while the individual integrals con-

tributing to this amplitude do have letters depending on square roots of four-dimensional

Gramians, these square roots cancel in the combination present in this component. In order

to do this, we have employed an unusual direct integration strategy of breaking the integral

into multiple integration pathways, and simplified our result from millions to thousands of

terms using algebraic number theory.

This work shows that this particular component is free of square-root letters, but it

does not establish that other components of the NMHV amplitude will not depend on

such roots. In order to establish this, we would need to compute many more integrals,

potentially of similar complexity. Alternatively, other methods may be able to compute

these amplitudes much more efficiently, yielding a conclusive answer.

The use of symbol methods with square-root letters is still largely unexplored territory.

While previous forays have involved heuristic or numerical elements (e.g. [72, 73]), our use

of factorization in prime ideals should yield a more canonical and complete analysis of the

relations between algebraic letters, and we believe similar methods should be applicable

elsewhere.

It is interesting to ask if the cancellation of square roots we observed could have been

detected at a later stage. For the individual integrals, better integration methods may

exist that would make these cancellations manifest earlier, or even avoid the introduction

of spurious roots altogether. For the full component amplitude, one might hope that some

analog of Landau analysis might be possible.
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A A proposal for representing NMHV octagon amplitudes

In this appendix we describe a particular representation of eight-point NMHV amplitudes,

analogous to the decomposition of hexagon and heptagon functions into specific bases. This

is a bit outside the line of the main result in this work, but it does provide an independent

logic behind why the particular component amplitude (2.4) plays a special role. In order

to do this, we must first introduce and motivate a small amount of new notation that we

promise will be worthwhile.

A.1 Notational preliminaries: NMHV Yangian invariants

The reader should be aware that NMHV amplitudes can be expressed in terms of so-

called R-invariants that, when expressed in momentum-twistor space, are superfunctions

defined by

R[a, b, c, d, e] :=
δ1×4

(
〈bcde〉ηa+〈cdea〉ηb+〈deab〉ηc+〈eabc〉ηd+〈abcd〉ηe

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

(A.1)

for any five (super-)momentum twistors labelled by {a, b, c, d, e}. An equivalent definition

of the R-invariant is that it is simply the five-particle NMHV tree-level amplitude involving

the momentum twistors {a, b, c, d, e}. It will turn out to be useful to consider NMHV tree-

level amplitudes involving other sets of external particles including sets of more than five.

In particular, let us use the symbol

An := A(1 · · ·n):= A(k=1),L=0
n (z1, . . . , zn) (A.2)

to denote then-point NMHV tree-level amplitude involving momentum twistors {z1, . . . , zn}.
(Recall that ‘A’ is the Fraktur-script form of the letter ‘A’.) Thus, we may define the R-

invariant simply as

R[1, 2, 3, 4, 5]:= A(1, 2, 3, 4, 5) = A5 . (A.3)

Especially at low multiplicity, we find it useful to denote tree amplitudes by which

among the ambient n twistors they do not depend. Because such notation, however conve-

nient, is liable to cause confusion when several multiplicities are discussed, we propose to

keep this information manifest in the way we write them. We denote these complements by

(a · · · b)cn:= A([n]\{a,. . . ,b}) . (A.4)
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Notice that this would allow us to write

An = A(1 · · ·n) =:()cn (A.5)

— a notation that we cannot imagine ever actually using. More realistically, however, we

should notice that in this notation the symbol for a single R-invariant would be multiplicity

dependent. For example,

R[1, 2, 3, 4, 5] = A(12345) = (6)c6 = (67)c7 = (678)c8 = · · · = (6 · · ·n)cn . (A.6)

One (BCFW) representation (among many) of the NMHV tree amplitude (A.2)

would be,

An = An−1 +

n−2∑
a=3

A(1 a −1a n −1n) =

n−2∑
a=3

n∑
b=a+2

A(1 a −1a b −1 b) ; (A.7)

but as already mentioned, we will have little recourse to decompose tree amplitudes into

smaller objects. This is in part because, while A(1 · · ·n) is in fact dihedrally-invariant in

its indices, no formula of the form (A.7) will make this manifest.

Equivalence between various dihedrally-related BCFW formulae (A.7) generates all the

functional relations among R-invariants. In general, there are
(
n−1
4

)
linearly independent

n-point NMHV Yangian invariants.

At seven particles, for example, there are 15 linearly independent superfunctions into

which any amplitude may be decomposed. Although 7 does not divide 15, most authors

(see e.g. [31, 32, 74]) have chosen to write heptagon functions in terms of the cyclic seeds

{(12)c7, (14)c7,A7} which generate 2 cyclic classes of length 7 and one cyclic singlet, A7. That

is, these authors have chosen to decompose all other 7-point superfunctions according to

the ‘elimination rules’ generated cyclically by

(13)c7 = −(34)c7 − (56)c7 − (71)c7 − (36)c7 − (51)c7 + A7 ,

(1)c7 = −(34)c7 − (56)c7 − (36)c7 + A7 .
(A.8)

Having used such eliminations, the heptagon ratio function can be written as

RL7 =:
[(

(12)c7V
7,(L)
(12)c7

+(14)c7V
7,(L)
(14)c7

+A7V
7,(L)
0

)
+cyclic7

]
. (A.9)

(We believe that a better basis for heptagon amplitudes would have been generated by

{(1)c7, (12)c7,A7}, but this is not presently our concern.) Let us now describe a similar basis

for eight-point NMHV Yangian invariants that is in a precise sense ‘optimal’.

A.2 An optimal basis for octagonal NMHV amplitudes

Unlike for seven particles (which is somewhat anomalously nice), there is no easy way

to choose among the 56 different R-invariants — 7 cyclic classes — into non-redundant

classes spanning 35 =
(
7
4

)
independent superfunctions. The situation is not obviously

much improved if we include the cyclic singlet A8, or other lower-point tree-level amplitudes.
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Including also superfunctions corresponding to tree-level amplitudes involving intermediate

subsets of the 8 legs, we have 13 cyclic classes of superfunctions, generated by{
(123)c8,(124)c8,(125)c8,(126)c8,(134)c8,(135)c8,(136)c8,(12)c8,(13)c8,(14)c8,(15)c8,(1)

c
8,A8

}
. (A.10)

From this list, how are we to choose a basis of length 35? Of the cyclic classes generated

by those in (A.10), all but two represent classes of length 8. The exceptions are A8 and

(15)c8 =A(234678), which forms a class of length 4. We are virtually forced to consider the

inclusion of this length-4 class into our basis, as any other choice would lead to even greater

redundancy.

Including A8, the four cyclic images of (15)c8 = A(234678), and some other choice of

four length-8 cyclic classes from among those generated by (A.10), we would have 37

superfunctions in all. In the best case, the two redundancies could be captured entirely by

the length-four class (as 2 divides 4 nicely), with the rest independent. It turns out that

there are 172 such choices available. The basis choice we describe presently is the one in

which the ‘elimination rules’ of all other superfunctions (in the sense of (A.8)) involve the

shortest expressions.

The basis we propose can be defined first in terms of the 37 functions generated by

the seeds

a1:= A(12345) = (678)c8 , b1:= A(12346) = (578)c8 , c1 := A(123456) = (78)c8 ,

d01:= A(123567) = (48)c8 , e1 := A(1234567) = (8)c8 , f := A(12345678) = A8 ,
(A.11)

with other basis elements generated by cyclic rotations. Before we discuss the final, non-

redundant basis, it is worthwhile to enumerate the (cyclic generators of all) elimination

rules — by which non-basis superfunctions may be expanded:

(124)c8= −(467)c8+(12)c8+(67)c8+(4)c8−A8 = −b8+c3+c8+e5−f ;

(125)c8= −(123)c8−(127)c8+(12)c8 = −a4−b3+c3 ;

(126)c8= −(128)c8+(467)c8−(67)c8−(4)c8+A8 = −a3+b8−c8−e5+f ;

∗(135)c8= (178)c8+(567)c8+(15)c8−(3)c8−A8 = a2+a8+d02+e4−f ;

(136)c8= (567)c8−(134)c8+(356)c8−(18)c8−(56)c8+(1)c8 = a8−b5+b7−c2−c7+e2 ;

(13)c8 = (567)c8+(1)c8+(3)c8−A8 = a8+e2+e4−f ;

(14)c8 = (134)c8−(467)c8−(34)c8+(4)c8 = b5−b8−c5+e5 ;

d03=(26)c8 = −(678)c8−(128)c8−(234)c8−(456)c8−(48)c8+A8 = −a1−a3−a5−a7−d
0
1+f ;

d04=(37)c8 = −(178)c8−(123)c8−(345)c8−(567)c8−(15)c8+A8 = −a2−a4−a6−a8−d
0
2+f .

(A.12)

There are a few things to note about these decompositions. As always, other superfunctions

are eliminated according to rotations of (A.12). In addition, there are two aspects of (A.12)

regarding d0i that deserve comment. First, note that the only superfunction from (A.11)

whose decomposition involves d0i (except those of the d0i ’s) is (135)c8 — indicated with a ‘∗’
in (A.12).6

The second aspect to notice about the elimination rules (A.12) is that the last two are

for d03 and d04, which are generated by our initial seeds upon rotation. As evidenced by the

6It is worth mentioning that this particular superfunction, (135)c8 , does not appear as any leading sin-

gularity (hence integral coefficient) until at three loops — where it certainly appears.

– 14 –
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simple fact that they have elimination rules (and also that 35 = 37−2), these two will not

be basis elements. Moreover, it is easy to see that

d01+d03 = f−a1−a3−a5−a7 and similarly, d02+d04 = f−a2−a4−a6−a8 . (A.13)

However, the differences between them are good basis elements. And up to the alternating

sign, they form a length-2 cyclic class of superfunctions. Let us define

d1 := d01−d
0
3 and d2 := d02−d

0
4 . (A.14)

These, combined with the other basis elements in (A.11), non-redundantly span the space

of 35 independent superfunctions in terms of four cyclic classes of length 8, one of length

2, and one of length 1. This is our proposed basis for eight-point NMHV amplitudes.

In this basis, the eight-point NMHV ratio function may be represented as

R
(L)
8 :=

[(
a1V

(L)
a +b1V

(L)
b

+c1V
(L)
c +d1V

(L)
d +e1V

(L)
e +fV

(L)
f

)
+cyclic8

]
. (A.15)

(As with seven points, please notice that we are adding all of these terms (8-fold-) cyclically.

This has the admittedly unfortunate effect of causing V
(0)
f to be 1/8; it will also require us

to account for the over-counting in V
(L)
d .)

For reference, at one loop, these are easy to write explicitly [54, 75]. They are

V
(1)
a = −Li2(1−v2)−Li2(1−u1u4v4)− log(u2) log(u3)− log(u1u4v4) log(v2)+ζ2 ,

V
(1)
b = Li2(1−u5v1)−Li2(1−u2u5v1)−Li2(1−u4v3)+ Li2(1−u4u7v3)

− log(u2) log(u4v3)+ log(u5v1) log(u7) ,

V
(1)
c = −Li2(1−u7)−Li2(1−u5v1)+ Li2(1−u2u5v1)−Li2(1−u2v2)+ Li2(1−u2u7v2)

− log(u4v3) log(v2)− log(u5v1) log(u7) ,

V
(1)
d = 0 ,

V
(1)
e = −Li2(1−u2u7v2)−Li2(1−u8v4)− log(u2u7v2) log(u8v4)+ζ2 ,

V
(1)
f = Li2(1−u1)+

1

2
Li2(1−v1)+ Li2(1−u1v1)−

1

2
log(v1) log(v2)+

3

4
log(v1) log(v3)

+ log(u1v4) log(u2u3v3)−ζ2 .

(A.16)

We have written these function in terms of the 12 multiplicatively independent dual-

conformally invariant cross-ratios,

u1 := (13;48), v1 := (14;58) with ui := r(i−1)(u1), vi := r(i−1)(v1) . (A.17)

Notice that Vd is zero at one loop. At two loops, it is not hard to confirm that

V
(2)
d = −1

4


8

1

2

3
4

5

6

7

N1N1 −

2
3

4

5
6

7

8

1

N1N1


. (A.18)
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B Some notions of algebraic number theory

When working with symbols, it is valuable to be able to put them into a canonical form, for

instance to decide whether two symbols are equal. As an example, many of the amplitudes

that have been computed in planar sYM to date can be uniquely expressed in terms of

a known set of Plücker coordinates. In more complicated amplitudes, a basis of symbol

letters is not generally known. In such cases, we can simply factorize each symbol letter,

as long as this factorization is unique.

It is easy to see that factorization will give rise to a unique expression when all symbol

letters are integers. However, this is not automatic once algebraic roots are introduced.

Consider, for instance, the situation where
√
−5 appears in some letters. The number 9

then has two ‘factorizations’:

9 = 3× 3 = (2 +
√
−5)(2−

√
−5) , (B.1)

where the second factorization of 9 is possible when viewed as an element of Z[
√
−5]. By

Z[
√
−5], we denote the set of numbers of type a + b

√
−5 for a, b ∈ Z, with the obvious

addition and multiplication properties.7 This set of numbers, with these operations, defines

a ring.

From the example above it looks like 9 can be factorized in two different ways, but

perhaps unique factorization can still be salvaged if some of the factors can be further

factored. It turns out that this is not what is happening here.

Before clarifying what is happening, we need to make a distinction between irreducible

and prime elements of a ring R. First, we introduce the notion of unit. The elements of R

which have multiplicative inverses are the units of R (denoted by U(R)). For the integers,

the units are ±1. An element x ∈ R is irreducible if it can not be written as a product

of two elements of R neither of which is a unit. Finally, an element x ∈ R is prime if for

any a, b ∈ R such that x divides ab, then it divides a or b. For the integers there is no

distinction between primes and irreducibles, but in general rings there is.

We now return to the above example: is 3 a prime in Z[
√
−5]? We can show that it

is not. If it were prime, it would follow from the fact that 3 divides (2 +
√
−5)(2−

√
−5)

that it also divides either 2 +
√
−5 or 2−

√
−5. But 3 divides a+ b

√
−5 only if it divides

both a and b, which is not the case here.

Is 3 irreducible instead? One can show that the units of Z[
√
−5] are ±1. It is then

a simple exercise to show that 3 is indeed irreducible (just use the definition and show

that there are no suitable solutions). So the hope that perhaps each of the terms in the

factorization can be factorized further to a prime decomposition which is the same in the

l.h.s. and r.h.s. is not fulfilled. We conclude that Z[
√
−5] is not a UFD (unique factorization

domain).

For this reason, it may look like there is no way to achieve unique factorization. But

if we enlarge our perspective a little, we can recover this desired property. We will now

7We should not think of
√
−5 as being a complex number, but rather as an abstract symbol whose

property is that it squares to −5. In fact, Z[
√
−5] can be embedded in the complex numbers in two ways,

by sending
√
−5 to each of the two roots of −5 in C.

– 16 –
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explain how to do this. The construction we will describe is possible for rings which are

Dedekind domains.

Let us start with the familiar case of integers. In this case, to a prime p we associate

the set of all its multiples. This set has two important properties. First, it is closed under

addition; second, multiplying it by any integer lands us back in the same set. This is just

the definition of an ideal of the ring of integers Z. For the case of a prime we obtain a

prime ideal, but the construction works in general. The set of multiples of p is denoted by

(p). This is also called the ideal generated by p.

The notion of divisibility can be translated to the language of ideals: we say that a

divides b if (b) ⊆ (a). It is easy to check that this corresponds to the usual notion of

divisibility for the integers. Now that we have expressed divisibility in terms of ideals, we

may consider ideals generated by more than one element. The ideals generated by one

element, such as (p), are called principal ideals. An ideal generated by two elements a and

b is denoted by (a, b); as a set, it contains the linear combinations ma + nb where m, n

belong to the ring and a, b belong to the ideal. This satisfies all the properties of an ideal.

Ideals can be multiplied; we have (p)(q) = (pq) and (a, b)(c, d) = (ac, ad, bc, bd) and

the pattern continues in the obvious way, for ideals generated by more generators. These

ideals have some pretty obvious properties:

(a, b) = (a± b, b) , (a, b, a± b) = (a, b) , (1, a) = (1) . (B.2)

Using these rules we can compute the following products, which will be useful momentarily:

(3, 1 +
√
−5)(3, 1−

√
−5) = (9, 3 + 3

√
−5, 3− 3

√
−5, 6) = (9, 3 + 3

√
−5, 6) (B.3)

= (3)(3, 1 +
√
−5, 2) = (3)(1, 1 +

√
−5, 2) = (3)(1) = (3).

Similarly, we find

(3, 1+
√
−5)2 = (9, 3+3

√
−5, −4+2

√
−5) = (9, −6+3

√
−5, −4+2

√
−5)

= ((2+
√
−5)(2−

√
−5), −3(2−

√
−5), −4(2−

√
−5)) (B.4)

= (2−
√
−5)(2+

√
−5, −3, −4) = (2−

√
−5)(2+

√
−5, 1, −4) = (2−

√
−5).

We also have (3, 1 +
√
−5)2 = (2 +

√
−5).

Now that we have made the transition from elements of a ring to the principal ideal

they generate, we can explain the change of perspective mentioned above. Instead of

considering principal ideals, we consider ideals generated by any number of generators.

Indeed, now we can refine the factorization as follows:

(9) = (3)(3) = (2 +
√
−5)(2−

√
−5) = (3, 1 +

√
−5)2(3, 1−

√
−5)2. (B.5)

To finish, we should show that the ideals appearing in this factorization are prime. We will

not do this explicitly here.

This works in general. The factorization is unique in the following sense: any ideal

can be decomposed as a product of prime ideals, up to ordering. Finally, we have achieved
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unique factorization, but at the cost that the factors are some abstract, less familiar quan-

tities.

An algebraic number field is a finite extension of Q constructed as follows. Consider a

root ρ of a degree n polynomial with rational coefficients. Then, Q[ρ] is the ring generated

by rational linear combinations of powers 0 through n − 1 of ρ (higher powers can be

reduced). We also define K = Q(ρ) as the field generated by ρ (whose elements are ratios

of elements of Q[ρ]). Inside K we find the algebraic integers OK which are the elements of

K whose minimal polynomial is monic8 and with integer coefficients. It is a theorem that

the ring of algebraic integers OK of an algebraic number field K is a Dedekind domain, so

it has a unique factorization.

Some of the letters we would like to factorize are not actually algebraic integers, so

we cannot construct an ideal they generate inside OK . Nevertheless, we can construct a

fractional ideal instead, which is a slight generalization of the notion of ideal. We will

not give a full definition here, but the reader who wants to have an intuition for what a

fractional ideal is can think of p
q ·Z as a fractional ideal of Z. In other words, we also allow

denominators.

Now the strategy for computing relations between several elements of a number field

K should be clear. For each of these elements we compute the prime ideal decomposition

of the principal fractional ideal they generate. The exponents form a matrix with integer

coefficients whose rows are labeled by the elements of K and whose columns are labeled

by the prime ideals. Every element of the left kernel of this matrix yields a multiplicative

relation between the given elements of K.

Historically, it was Kummer who started developing these ideas in connection with

Fermat’s conjecture. His ideas were refined and generalized by Dedekind, Hilbert, Noether

and many others. A good reference and resource for the material described in this appendix

is [76].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction and summary

There exists a number of domain-wall versions of N = 4 SYM theory characterized by some

or possibly all of the scalar fields acquiring non-vanishing and spacetime-dependent vacuum

expectation values (vevs) on one side of a codimension-one wall. These theories constitute

defect conformal field theories and have well-defined holographic duals in the form of probe-

brane models with non-vanishing background gauge-field flux or instanton number [1–7].

They have been studied both from the perspective of supersymmetric boundary condi-

tions [8] and from the perspective of condensed matter physics, the probe-brane models

being capable of describing strongly coupled Dirac fermions in 2+1 dimensions [9–14].
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More recently, these models have been analyzed from the point of view of integrability,

where the domain wall or defect is viewed as a boundary state of the integrable bulk N = 4

SYM theory [15–21]; see also [22, 23]. Furthermore, the models have been studied with

the aim of testing AdS/dCFT in situations where supersymmetry is partially or completely

broken [24–26], the comparison between gauge theory and string theory being made possible

by the introduction of a certain double-scaling limit [6, 7]. Table 1 below summarizes the

status of these investigations.

In the present paper, we fill the last gap in the table. We will study the most compli-

cated of the above mentioned domain-wall versions of N = 4 SYM theory where five out

of the six scalar fields have vevs whose commutators constitute an irreducible representa-

tion of the Lie algebra so(5). The string-theory dual of this dCFT is a D3-D7 probe-brane

system where the geometry of the probe brane is AdS4×S4, and where a non-Abelian back-

ground gauge field forms an instanton bundle with instanton number dG on the S4 [2, 9].

The instanton number on the string-theory side translates into the dimension, dG, of the

so(5) representation on the gauge-theory side, where

dG =
1

6
(n+ 1)(n+ 2)(n+ 3), n ∈ N. (1.1)

Combining the large-N limit with the following double scaling [7],

λ→∞, n→∞, λ

π2n2
fixed, (1.2)

one can by means of a supergravity approximation derive results for simple observables

such as one-point functions or Wilson loops. Certain results allow an expansion in positive

powers of the double-scaling parameter λ
π2n2 and open for the possibility of comparing to a

perturbative gauge-theory calculation. We notice that the perturbative regime in the gauge

theory lies within the parameter region where the probe-brane system is stable, which is

given by [9]
λ

π2(n+ 1)(n+ 3)
<

2

7
. (1.3)

One simple observable that can be studied using both supergravity and gauge theory

is the one-point function of the unique so(5)-symmetric chiral primary of even length L,

OL. In [7], this one-point function was calculated in supergravity to the leading order

in the double-scaling parameter. The computation can straightforwardly be extended to

subleading order and results in the following prediction for the ratio between the full one-

point function and its tree-level value:

〈OL〉
〈OL〉tree

= 1 +
λ

π2n2

L(L+ 3)

4(L− 1)
+O

((
λ

π2n2

)2
)
. (1.4)

This prediction trivially carries over to the simple chiral primary trZL with Z = φ5 + iφ6,

which has a non-vanishing projection on the so(5)-symmetric one.

In the present paper, we will confirm this supergravity prediction by a rather intri-

cate gauge-theory computation. The non-vanishing so(5)-symmetric vevs of the scalars

– 2 –
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D3-D5 D3-D7 D3-D7

Supersymmetry 1/2-BPS None None

Brane geometry AdS4× S2 AdS4× S2 × S2 AdS4× S4

Flux/Instanton number k k1, k2
(n+1)(n+2)(n+3)

6

Double-scaling parameter λ
π2k2

λ
π2(k21+k22)

λ
π2n2

Boundary state Integrable Non-integrable Integrable

AdS/dCFT match Yes Yes Yes (this work)

Table 1. The string theory configurations dual to the dCFT versions of N = 4 SYM theory with

non-vanishing vevs. The discussion of the integrability properties of the corresponding boundary

states can be found in [19, 20] and the test of the match between gauge theory and string theory

referred to in the first two columns can be found in [24–26].

introduce a complicated (spacetime-dependent) mass matrix mixing color and flavor com-

ponents of the standard fields of N = 4 SYM theory. Needless to say, the diagonalization

of this mass matrix requires the machinery of representation theory of orthogonal groups,

the key element being the introduction of fuzzy spherical harmonics on S4.

Our motivation for setting up the perturbative program for this dCFT is not only a

wish to reproduce the formula (1.4) and thus provide a positive test of AdS/dCFT in a

situation where supersymmetry is completely broken. Having a perturbative program will

also make it possible to generate a wealth of new data which could provide input to the

boundary conformal bootstrap program as well as to the search for higher-loop integrability

in the one-point function problem in AdS/dCFT.

Our paper is organized as follows. We start by describing the diagonalization of the

mass matrix in section 2 and explicitly give the complete spectrum of quantum excitations

including their multiplicities. The propagators of the fields which diagonalize the mass

matrix are found following the procedure of [25], and due to the spacetime-dependence

of the vevs, become propagators in an auxiliary AdS4 space. For concrete perturbative

calculations, it is convenient to have the contraction rules and propagators formulated

in terms of the original fields of N = 4 SYM theory and the complete set of these are

presented in section 3. In section 4, we calculate the one-loop correction to the classical

solution as well as to the one-point function of trZL and confirm the prediction (1.4) in

the double-scaling limit; explicit expression for both quantities at finite n are also attached

as Supplementary material to this paper. Finally, section 5 contains our conclusion and

outlook. A number of technical details are relegated to appendices.

2 Diagonalization of the mass matrix

2.1 Expansion of the action

We will be considering a domain-wall version of N = 4 SYM theory where five of the six

real scalar fields φi have non-vanishing vevs on one side of a codimension-one wall, say for

x3 > 0, and we will be interested in calculating observables in this region of spacetime.
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With Acl
µ = ψcl = 0, the classical equations of motion for the six scalars read1

∇2φcl
i =

[
φcl
j ,
[
φcl
j , φ

cl
i

]]
, i = 1, . . . , 6. (2.1)

A classical solution with so(5) symmetry was found in [2, 29];

φcl
i (x) =

1√
2x3

(
Gi6 0

0 0

)
, φcl

6 (x) = 0, x3 > 0. (2.2)

Here the matrices Gi6 together with Gij ≡ −i[Gi6, Gj6] for i, j = 1, . . . , 5 are generators

of the representation (n2 ,
n
2 ,

n
2 ) of the Lie algebra so(6).2 From the commutation relations

of so(6), one can check that (2.2) indeed solves the equations of motion. The matrices

Gi6 can be constructed as an n-fold symmetrized tensor product of γ matrices and their

dimension is given in (1.1); see appendix A.3 for details.

To take into account quantum effects, we expand the scalar fields around the classical

solution (2.2) as

φi(x) = φcl
i (x) + φ̃i(x). (2.3)

Inserting the expansion into the action of N = 4 SYM theory generates (spacetime-

dependent) mass terms for some of the fields, as well as novel cubic and quartic interaction

terms. This has been worked out in detail in [24–26].

Upon insertion of the expansion (2.3), the kinetic terms of the action remain canonical,

while the mass terms acquire a non-trivial mixing between different fields. We can rewrite

the mass matrices in a compact form in terms of the operators

Lij ≡ ad (Gij ⊕ 0N−dG) i, j = 1, . . . , 6. (2.4)

The mass terms split into three different pieces:

Smass = Sm,b,e + Sm,b,c + Sm,f. (2.5)

The first one involves only bosonic terms, and following [25] we call it easy because the

mixing only involves color degrees of freedom,

Sm,b,e =
2

g2
YM

∫
d4x

(
−1

2x2
3

)
tr

[
1

2
E†

5∑
i=1

(Li6)2 E

]
, E =


A0

A1

A2

φ̃6

 . (2.6)

1See appendix A for a full set of our conventions. We refer to the reviews [27, 28] for an introduction to

the study of domain-wall versions of N = 4 SYM theory and their one-point functions.
2We are using the eigenvalues of the three generators of the Cartan subalgebra to label the so(6) repre-

sentation, see appendix A.2.
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We call the second term complicated, because it mixes color and flavor degrees of freedom,

Sm,b,c =
2

g2
YM

∫
d4x

(
−1

2x2
3

)
tr

C†


1

2

5∑
i=1

(Li6)2− 1

2

5∑
i,j=1

SijLij
√

2
∑5

i=1RiLi6

√
2
∑5

i=1R
†
iLi6

1

2

5∑
i=1

(Li6)2

C
 ,
(2.7)

with the vector of complicated fields

C =


φ̃1

...

φ̃5

A3

 . (2.8)

In the above expression, Sij are 5 × 5 matrices that form the fundamental representation

of so(5), whereas Ri are five-dimensional column vectors with components (Rj)k = iδjk.

Finally, we have a mass term for the fermions. In this case, not only is there mixing

between color and flavor, but also the different chiralities are mixed. It is therefore useful

to separate the fermions into their chiral components using the projectors PL = 1
2(1 + γ5)

and PR = 1
2(1− γ5). We obtain

Sm,f =
2

g2
YM

∫
d4x

(
−1

2x3

)
tr
(
ψ̄α Cαβ(PLψβ) + ψ̄α C†αβ(PRψβ)

)
. (2.9)

The components of Cαβ involve the operators Li6 and thus act non-trivially on the color

part of the fields. They are explicitly given in appendix B.2.

To set up the perturbative program, we first need to gauge fix introducing ghosts3 as

in [25, 26] and subsequently to diagonalize the mass matrix, i.e. to expand the fields in

a basis on which all the operators and matrices in the quadratic part of the action act

diagonally. We postpone the somewhat technical construction of this basis to appendix B

and proceed to summarize the spectrum which can largely be understood from the repre-

sentation theory of so(5) and so(6).

2.2 Decomposition of the color matrices and easy bosons

From the color structure of the classical solution (2.2), it is natural to decompose the U(N)

adjoint fields into blocks as4

Φ = [Φ]m,m′F
m
m′ + [Φ]m,aF

m
a + [Φ]a,mF

a
m + [Φ]a,a′F

a
a′ =

(
[Φ]m,m′ [Φ]m,a
[Φ]a,m [Φ]a,a′

)
, (2.10)

where m,m′ = 1, . . . , dG and a, a′ = dG + 1, . . . , N . Since we rewrote the mass terms using

Lij , it is natural to ask how it acts on the different blocks. Anticipating their transformation

3For the purpose of diagonalizing the mass matrix, the ghosts behave as easy bosons.
4The N ×N basis matrices Fmm′ are zero everywhere except at position (m,m′), where they are one.
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behavior, we will often refer to [Φ]m,m′ as the fields in the adjoint block, whereas [Φ]m,a
and [Φ]a,m will simply be called fields in the off-diagonal block.

First, we note that LijF
a
a′ = 0, so all the fields in the (N − dG)× (N − dG) block are

massless. We will see in later sections that the fields in this block do not contribute to the

one-point functions we will calculate, and we will mostly ignore them. The fields in the

off-diagonal block transform as

LijF
m
a = Fm

′

a[Gij ]m′,m, LijF
a
m = F am′ [−(Gij)

T ]m′,m. (2.11)

This means that an upper index m transforms in the (n2 ,
n
2 ,

n
2 ) of so(6), while a lower

index m transforms in the dual representation (n2 ,
n
2 ,

n
2 ). Finally, the fields in the dG × dG

dimensional adjoint block carry one index and its dual, so they transform as the product of

the two representations. This product can be decomposed into a direct sum of irreducible

representations

(n
2
,
n

2
,
n

2

)
⊗
(n

2
,
n

2
,
n

2

)
=

n⊕
m=0

(m,m, 0). (2.12)

The key observation (see also [30, 31]) to obtain the spectrum and diagonalize the easy

mass term is that it is given by the difference of Casimir operators for so(5) and so(6),

1

2

5∑
i=1

(Li6)2 =
1

2

∑
1≤i<j≤6

(Lij)
2 − 1

2

∑
1≤i<j≤5

(Lij)
2 =

1

2
(C6 − C5) . (2.13)

Any representation of so(6) can be decomposed into a direct sum of irreducible represen-

tations of so(5). Equation (2.13) implies that fields belonging to different so(5) represen-

tations will have different masses.

For example, we have seen that the fields in the off-diagonal block transform as the

(n2 ,
n
2 ,

n
2 ) of so(6) and its dual. It turns out that they are irreducible representations of so(5):

[Φ]m,a :
(n

2
,
n

2
,
n

2

)
→
(n

2
, 0
)
, [Φ]a,m :

(n
2
,
n

2
,
n

2

)
→
(n

2
, 0
)
, (2.14)

where our notation and conventions are explained in appendix A.2. Thus, all fields in the

off-diagonal block have the same mass, which we can easily obtain from (2.13) and the

formulas for the eigenvalues of the Casimirs in (A.11).

For the adjoint block, we saw in (2.12) that the fields decompose into a sum of irre-

ducible representations of so(6). Each of these representations of the form (m,m, 0) can in

turn be decomposed into so(5) components using the branching rule (A.12)

[Φ]m,m′ :
(n

2
,
n

2
,
n

2

)
⊗
(n

2
,
n

2
,
n

2

)
→
⊕

(L1, L2), (2.15)

where the sum runs over all half-integers (L1, L2) such that

0 ≤ L2 ≤ L1, L1 + L2 ≤ n. (2.16)
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Eigenstate Mass Multiplicity

[E]a,a′ 0 (N − dG)(N − dG)

[E]m,a m2
easy = 1

8n(n+ 4) 2dG(N − dG)

[E]L m̂2
easy = 2L1L2 + L1 + 2L2 d5(L1, L2)

Table 2. Masses of the easy bosons E = A0, A1, A2, φ̃6. The allowed ranges of L1 and L2 are

0 ≤ L2 ≤ L1, L1+L2 ≤ n. The definitions of d5 and dG can be found in (1.1) and (A.8), respectively.

Therefore, fields with several different masses occur in the adjoint block, one for each

so(5) representation in the above sum. Once again, from the expression of the Casimir

operators (A.11) we obtain the easy masses summarized in table 2. It is important to note

that the so(6) Casimir needs to be evaluated for (L1 + L2, L1 + L2, 0), which can be seen

from working out the decomposition (2.15) explicitly.

So far we have only focused on the spectrum, but we have not discussed how the

diagonalization can explicitly be carried out. We can find an explicit orthonormal basis

that diagonalizes the easy mass term, namely

[Φ]m,m′F
m
m′ =

∑
L

[Φ]LŶL, tr
(
Ŷ †L′ ŶL

)
= δL′,L. (2.17)

The matrices ŶL are so(5)-symmetric fuzzy spherical harmonics — the so(5) analogue

of the basis used in [24, 25]. For our purposes, only the existence of this basis will be

important. An explicit construction of the matrices can be found in [32]. In general, we

use the notation L to collectively refer to the quantum numbers that uniquely specify an

so(5) state within a representation. This is described in more detail in appendix A.2. For

example, the sum over L includes a sum over all possible highest weights (L1, L2) in (2.15),

and for each of them also the d5(L1, L2) states that form the representation.

2.3 Complicated bosons

We now turn towards the complicated mass terms, for which color and flavor degrees of

freedom mix. The key observation of [26] is that if one can find an eigenvector of the 5× 5

block of the mass matrix in (2.7) which is annihilated by the 1 × 5 block R†iLi, then we

obtain an eigenvector of the full matrix.

In particular, to diagonalize the 5× 5 block we define the total so(5) ‘angular momen-

tum’ operator Jij , such that

Jij ≡ Lij + Sij ⇒ 1

2

5∑
i,j=1

SijLij =
1

2

∑
1≤i<j≤5

[
(Jij)

2 − (Lij)
2 − (Sij)

2
]
. (2.18)

On the right hand side, we have a combination of so(5) Casimir operators, which act triv-

ially on irreducible representations. As mentioned above, the matrices Sij form the funda-

mental of so(5) which is labeled by ( 1
2 ,

1
2). After decomposing the fields in so(5) fuzzy spher-

ical harmonics, they therefore transform in the product representation (L1, L2)⊗ (1
2 ,

1
2).
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This product decomposes into irreducible representations with well-defined total angular

momentum (J1, J2) as

(L1, L2)⊗
(

1

2
,
1

2

)
=

(
L1 +

1

2
, L2 +

1

2

)
⊕
(
L1 −

1

2
, L2 −

1

2

)
⊕ (L1, L2)

⊕
(
L1 +

1

2
, L2 −

1

2

)
⊕
(
L1 −

1

2
, L2 +

1

2

)
, for 0 < L2 < L1,

(2.19a)

(L1, L1)⊗
(

1

2
,
1

2

)
=

(
L1 +

1

2
, L1 +

1

2

)
⊕
(
L1 −

1

2
, L1 −

1

2

)
⊕
(
L1 +

1

2
, L1 −

1

2

)
,

(2.19b)

(L1, 0)⊗
(

1

2
,
1

2

)
=

(
L1 +

1

2
,

1

2

)
⊕ (L1, 0)⊕

(
L1 −

1

2
,

1

2

)
. (2.19c)

The masses of the fields that diagonalize the 5×5 block of the complicated action can now

again be obtained from the Casimir operators,

1

2

( 5∑
i=1

(Li6)2−
5∑

i,j=1

SijLij

)
=

1

2

[
C6(L1 +L2,L1 +L2,0)−C5(J1, J2)+C5

(
1

2
,
1

2

)]
.

(2.20)

Generically, we obtain the five fields B±,±, B±,∓ and B00 from the decomposi-

tion (2.19a) that diagonalize the 5 × 5 block. It turns out that B±,± and B00 are indeed

mass eigenstates of the full complicated mass term, as the corresponding basis states are

annihilated by
∑5

i=1R
†
iLi6. As we describe in appendix B.1, the remaining complicated

fields B±,∓ and A3 still mix through a 3 × 3 matrix. Diagonalizing this matrix we find

the six mass eigenstates B±,±, B00, D± and D0, where the last three are simple linear

combinations of B±,∓ and A3. We list their masses in table 3. There are two edge cases in

the decomposition of (L1, L2)⊗ (1
2 ,

1
2) corresponding to (2.19b) and (2.19c). We find that

for (L1, L1) the B00 and D0 fields are missing, and for (L1, 0) the B−− and D0 fields are

missing. This concludes the derivation of the spectrum for the complicated bosons in the

adjoint block.

The diagonalization for the complicated bosons in the off-diagonal block proceeds in a

similar manner. In this case, the relevant decomposition is

(n
2
, 0
)
⊗
(

1

2
,

1

2

)
=

(
n+ 1

2
,

1

2

)
⊕
(n

2
, 0
)
⊕
(
n− 1

2
,
1

2

)
. (2.21)

In this case, B00 and A3 mix in a 2 × 2 matrix which is diagonalized by D±. We list the

spectrum of the fields in the off-diagonal blocks in table 4. By abuse of notation, we reuse

some of the previous names for the diagonal fields.
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Eigenstate Mass Multiplicity

B++ m̂2
++ = (2L1 +1)L2 d5(L1 + 1

2 ,L2 + 1
2)

B−− m̂2
−− = (2L1 +3)(L2 +1) d5(L1− 1

2 ,L2− 1
2)

B00 m̂2
00 =L1 +2L2(L1 +1)+2 d5(L1,L2)

D0 m̂2
0 =L1 +2L2(L1 +1)+2 d5(L1,L2)

D+ m̂2
+ = 1+(L1 +2L2(L1 +1))+

√
1+4(L1 +2L2(L1 +1)) d5(L1,L2)

D− m̂2
− = 1+(L1 +2L2(L1 +1))−

√
1+4(L1 +2L2(L1 +1)) d5(L1,L2)

Table 3. Masses and eigenstates of the complicated bosons in the adjoint block. The allowed

ranges of L1 and L2 are 0≤L2 ≤L1, L1 +L2 ≤ n. Note that in the case L2 =L1 the B00 and D0

fields are missing, and in the case L2 = 0 the B−− and D0 fields are missing. The definition of d5
can be found in (A.8).

Eigenstate Mass Multiplicity

B++ m2
++ = 1

8n
2 2d5(n+1

2 , 1
2)(N − dG)

B−+ m2
−+ = 1

8(n+ 4)2 2d5(n−1
2 , 1

2)(N − dG)

D+ m2
+ = 1

8

(
n2 + 4n+ 8 + 4

√
2(n2 + 4n+ 2)

)
2d5(n2 , 0)(N − dG)

D− m2
− = 1

8

(
n2 + 4n+ 8− 4

√
2(n2 + 4n+ 2)

)
2d5(n2 , 0)(N − dG)

Table 4. Masses and eigenstates of the complicated bosons in the off-diagonal block. The definition

of d5 can be found in (A.8).

2.4 Fermions

The diagonalization of the fermionic mass matrix Cαβ is non-trivial, so we will consider first

a simplified version of the problem. The observation we make is that the eigenvalues of C†C
are actually the fermionic masses squared. Moreover, we will use the eigenvectors of C†C
to construct the eigenvectors of C. From the explicit form of Cαβ given in appendix B.2,

we obtain

C†C =
1

2

( 5∑
i=1

(Li6)2 −
5∑

i,j=1

S̃ijLij

)
. (2.22)

The 4× 4 matrices (S̃ij)αβ constitute the four-dimensional representation of so(5) which is

labelled by (1
2 , 0).

Notice the similarity of this problem with that of the 5 × 5 block of the complicated

bosonic mass term. In particular, a variant of (2.20) still holds, with the difference that

now the total angular momentum (J1, J2) takes values in the decomposition5

(L1,L2)⊗
(

1

2
,0

)
=

(
L1+

1

2
,L2

)
⊕
(
L1−

1

2
,L2

)
⊕
(
L1,L2+

1

2

)
⊕
(
L1,L2−

1

2

)
, (2.23a)

for 0<L2<L2,

5We also have to change the last term in (2.20) to C5( 1
2
, 0).
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Eigenstate Mass Multiplicity

D̃+0 m̂+0 =
√

2(L1 + 1)L2 d5(L1 + 1
2 , L2)

D̃−0 m̂−0 =
√

2(L1 + 1)(L2 + 1) d5(L1 − 1
2 , L2)

D̃0+ m̂0+ =
√

1
2(2L1 + 1)(2L2 + 1) d5(L1, L2 + 1

2)

D̃0− m̂0− =
√

1
2(2L1 + 3)(2L2 + 1) d5(L1, L2 − 1

2)

Table 5. Mass eigenvalues of the fermions in the adjoint block. The allowed ranges of L1 and L2

are 0 ≤ L2 ≤ L1, L1 +L2 ≤ n. Note that in the case L2 = L1 the fields D̃−0 and D̃0+ are missing,

and in the case L2 = 0 the D̃0− fields are missing. The definition of d5 can be found in (A.8).

Eigenstate Mass Multiplicity

D̃+0 m+0 = 1√
8
n 2d5(n+1

2 , 0)(N − dG)

D̃−0 m−0 = 1√
8
(n+ 4) 2d5(n−1

2 , 0)(N − dG)

D̃0+ m0+ = 1√
8
(n+ 2) 2d5(n2 ,

1
2)(N − dG)

Table 6. Mass eigenvalues of the fermions in the off-diagonal block. The definition of dG can be

found in (1.1).

(L1,L1)⊗
(

1

2
,0

)
=

(
L1+

1

2
,L1

)
⊕
(
L1,L1−

1

2

)
, (2.23b)

(L1,0)⊗
(

1

2
,0

)
=

(
L1+

1

2
,0

)
⊕
(
L1−

1

2
,0

)
⊕
(
L1,

1

2

)
. (2.23c)

It is now an easy exercise to extract the masses of the fermionic diagonal fields. Note that

compared to the complicated bosons there is no further mixing of fields after coupling the

so(5) representations (L1, L2) and (1
2 , 0) appropriately. In analogy to the previous section,

we will denote the diagonal fields by D̃α,β . The fermionic masses are listed in table 5 for

the adjoint block and in table 6 for the off-diagonal block.

3 Propagators

In the previous section, we have presented the spectrum of ‘masses’ of all the fields in the

theory. In the action, these masses combine with a spacetime-dependent factor into m2

x23
for the bosons, and m

x3
for the fermions. The propagators of fields in (d + 1)-dimensional

Minkowski space with such spacetime-dependent mass terms are related to the propagators

of fields in AdSd+1, as observed in [24, 25, 33].

For the purpose of our computation in section 4, only the propagators of fields evalu-

ated at the same point in spacetime will be relevant. Since they are divergent, we need to

introduce a regulator to keep them finite, and we will accomplish this working in dimen-

sional reduction with d = 3− 2ε, such that the codimension of the defect remains one. For
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the bosonic fields, the regulated propagator is [25]

Km2
(x,x) =

g2
YM

2

1

16π2x2
3

[
m2

(
−1

ε
−log (4π)+γE−2log(x3)+2Ψ

(
ν+

1

2

)
−1

)
−1

]
, (3.1)

where ν =
√
m2 + 1

4 . Similarly, the (spinor trace of the) regularized propagator for the

fermions is

trKm
F (x, x) =

g2
YM

8π2x3
3

[
m3 +m2 − 3m− 1 (3.2)

+m(m2 − 1)

(
−1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(m)− 2

)]
.

In the above expressions, Ψ(x) is the digamma function and γE is the Euler-Mascheroni

constant.

As discussed in section 2, one can change basis from the fields φ̃i, Aµ and ψα in

the action to the diagonal fields B±,±, B00, D± and D0, such that the mass terms become

diagonal. The propagators between these diagonal fields are then of the form (3.1) and (3.2)

we just presented. However, it is easier to perform field-theory computations if we know

the propagators between the original fields in the action. This can be achieved by inverting

the steps in the diagonalization procedure, as explained in more detail in [25, 26]. In the

resulting propagators there is mixing between color and flavor degrees of freedom, which

is introduced by the presence of matrix elements of so(6) generators.

Throughout this section, we denote by Km2
i the scalar propagator with the mass m2

i

being one of the masses listed in tables 3–6, and similarly for the fermions. We will merely

present the final results in the main text and refer the reader to appendix C for more details.

3.1 Off-diagonal block

We begin with the propagators between fields from the off-diagonal block, because they

are the most important ones for the purposes of later calculations in the large-N limit.

We remind the reader that these fields are of the form [Φ]m,a, where m = 1, . . . , dG and

a = dG + 1, . . . , N . The propagators will be expressed in terms of the matrix elements

[Gij ]m,m′ of the matrices Gij that appear in the classical solution; see appendix A.3 for

more details.

The simplest propagator is the one between two easy fields E = A0, A1, A2, φ̃6, because

in this case there is no mixing between the flavor and the color structure,

〈[E]m,a[E]†m′,a′〉 = δm,m′δa,a′K
m2

easy . (3.3)

Note that the propagator between two different easy fields vanishes.
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The remaining scalars φ̃i with i = 1, . . . , 5 mix with each other in the following way:

〈[φ̃i]m,a[φ̃j ]†m′,a′〉 = δa,a′

[
δijδm,m′f

sing + [Gij ]m,m′f
lin + 4[Gi6Gj6]m,m′f

prod

]
. (3.4)

The functions f above are linear combinations of bosonic propagators, with coefficients

which only depend on n:

f sing =
n

2(n+ 2)
Km2

−+ +
n+ 4

2(n+ 2)
Km2

++ ,

f lin =
i

n+ 2

(
Km2

−+ −Km2
++

)
,

fprod = − Km2
−+

2n(n+ 2)
− Km2

++

2(n+ 2)(n+ 4)
+
Km2

−

4N+
+
Km2

+

4N−
,

(3.5)

where the (normalization) factor N± is given by

N± = 4m2
easy + 1±

√
4m2

easy + 1 . (3.6)

As discussed in the diagonalization, the five scalars φ̃i and the third component of the

gauge field also couple in a non-trivial way,

〈[φ̃i]m,a[A3]†m′,a′〉 = −iδa,a′
1√

n(n+ 4) + 2
[Gi6]m,m′

(
Km2

− −Km2
+

)
, (3.7)

while the third component of the gauge field with itself gives

〈[A3]m,a[A3]†m′,a′〉=
δa,a′δm,m′

2

[(
1+

1√
4m2

easy +1

)
Km2

−+

(
1− 1√

4m2
easy +1

)
Km2

+

]
. (3.8)

Note the similarity between these propagators, and the ones obtained for the defect theory

dual to a D3-D7 setup with so(3)× so(3) symmetry [26]. In that case, the propagators had

precisely the same structure if one makes the schematic replacement Gi6 → ti, where ti are

generators of so(3)× so(3) (see (3.25)-(3.29) of [26] for further details).

Finally, in the diagonalization of the fermions ψα with α = 1, . . . , 4, different chiralities

are mixed with the color and flavor degrees of freedom. As a result, the propagators will

contain γ5. Moreover, matrix elements (Ci)αβ will appear, where Ci are the matrices that

couple scalars and fermions in the action of N = 4 SYM theory, see (A.2). The propagators
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have the following structure:6

〈[ψα]m,a[ψβ ]a′,m′〉= δa,a′

[
δm,m′

[
δα,β

(
f0,+
F −γ5f

0,+
F γ5

)
+ i(C6)α,β

(
f0,−
F +γ5f

0,−
F γ5

)]
−δαβ [G45]m,m′

(
f1,+
F +γ5f

1,+
F γ5

)
+ i

3∑
i=1

5∑
j=4

(CiCj)α,β [Gij ]m,m′
(
γ5f

1,−
F −f1,−

F γ5

)

+

(
1

2

3∑
i,j,k=1

εijk(Ci)α,β [Gjk]m,m′+ i(C6)α,β [G45]m,m′

)(
f1,−
F −γ5f

1,−
F γ5

)

+
3∑
i=1

(Ci)α,β [Gi6]m,m′
(
f2,+
F +γ5f

2,+
F γ5

)
−

5∑
i=4

(Ci)α,β [Gi6]m,m′
(
γ5f

2,+
F +f2,+

F γ5

)
+ i

3∑
i=1

(CiC6)α,β [Gi6]m,m′
(
f2,−
F −γ5f

2,−
F γ5

)
− i

5∑
i=4

(CiC6)α,β [Gi6]m,m′
(
γ5f

2,−
F −f2,−

F γ5

)
+
i

2

3∑
i,j,k=1

5∑
l=4

εijk(CiCl)α,β [G[j6Gk6Gl6]]m,m′
(
γ5f

3
F +f3

Fγ5

)
+

1

2

6∑
i,j,k=4

3∑
l=1

εijk(CiCl)α,β [G[j6Gk6Gl6]]m,m′
(
f3
F +γ5f

3
Fγ5

)]
. (3.9)

As for the complicated bosons, the fF are functions that depend on n and the fermionic

propagators (3.2)

f0,±
F =

(n+4)

8(n+1)
K
m+0

F ± n(n+4)

4(n+1)(n+3)
K
m0+

F +
n

8(n+3)
K
m−0

F ,

f1,±
F =± 1

4(n+1)
K
m+0

F +
1

2(n+1)(n+3)
K
m0+

F ∓ 1

4(n+3)
K
m−0

F ,

f2,±
F =

1

4(n+1)
K
m+0

F ± (n+2)

2(n+1)(n+3)
K
m0+

F +
1

4(n+3)
K
m−0

F ,

f3
F =− 3

(n+1)(n+2)
K
m+0

F − 6

(n+1)(n+2)(n+3)
K
m0+

F +
3

(n+2)(n+3)
K
m−0

F .

(3.10)

The fermionic masses mαβ can be found in table 6.

3.2 Adjoint block

Now we present the propagators in the adjoint block. In this case, the fields are [Φ]m,m′ with

m = 1, . . . , dG, but it is convenient to express them in terms of irreducible so(5) representa-

tions. As explained in section 2, this is achieved by changing basis: [Φ]m,m′F
m
m′ = [Φ]LŶL.

In particular, the matrix elements of generators Lij = adGij will appear, and they can be

6The notation [jkl] denotes antisymmetrization of the three indices, normalized by 1
3!

.
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computed as

〈L|Lij |L′〉 = tr
(
Ŷ †LLij ŶL′

)
= tr

(
Ŷ †L

[
Gij , ŶL′

])
. (3.11)

However, using this expression is hard in general, because we do not have explicit formulas

for ŶL. What one can do instead is to compute the matrix elements thinking of Lij as

an operator acting on an abstract vector |L〉 in a certain so(5) representation. We give a

prescription on how to do this in appendix E.

The propagator between two easy fields E = A0, A1, A3, φ̃6 is simple because there is

no mixing of color and flavor

〈[E]L[E]†L′〉 = δL,L′K
m̂2

easy . (3.12)

For the propagators between the five scalars φ̃i with i = 1, . . . , 5, the resulting structure is

more complicated than in the off-diagonal block:

〈[φ̃i]L[φ̃j ]
†
L′〉 = δijδL,L′ f̂

sing + 〈L|Lij |L′〉 f̂ lin + 〈L|{Lik, Ljl}Lkl|L′〉 f̂ cubic

+ 〈L|{Lik, Lkj}|L′〉 f̂ sym
5

+ 〈L|{Li6, L6j}|L′〉
[
δL1,L′1

δL2,L′2
f̂ sym

6 + δL′1,L1±1δL′2,L2∓1 f̂
opp
]
,

(3.13)

and

〈[φ̃i]L[A3]†L′〉 = i〈L|Li6|L′〉(δL1,L′1+ 1
2
δL2,L′2−

1
2

+ δL1,L′1−
1
2
δL2,L′2+ 1

2
)f̂ φA(L′1, L

′
2). (3.14)

The third component of the gauge field has the following propagator:

〈[A3]L[A3]†L′〉 = δL,L′


(
−1 +

√
4m̂2

easy + 1
)2

2N−
Km̂2

+ +

(
1 +

√
4m̂2

easy + 1
)2

2N+
Km̂2

−

 ,

(3.15)

where N± were introduced in (3.6).7

Finally, one can obtain the propagators between the fermions in the adjoint block in

a similar manner. Rewriting the propagators in terms of matrix elements is a complex

task, and in most applications only certain traces of them will appear. In particular, one

has that

tr 〈[ψα]L[ψβ ]L′〉 =
3∑
i=1

(Ci)α,β〈L|Li6|L′〉 tr f̂ lin
F (L1, L2;L′1, L

′
2)

+

(
6∑

i,j,k=4

3∑
l=1

εijk(CiCl)α,β 〈L|L[j6Lk6Ll6]|L′〉 (3.16)

− i

3

3∑
i,j,k,l=1

εijk(CiCl)α,β 〈L|L[j6Lk6Ll6]|L′〉

)
tr f̂ cub

F (L1, L2;L′1, L
′
2),

7Note that N± needs to be evaluated using m̂2
easy instead of m2

easy.

– 14 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
2

and

tr
(
γ5〈[ψα]L[ψβ ]L′〉

)
= −

5∑
i=4

(Ci)α,β〈L|Li6|L′〉 tr f̂ lin
F (L1, L2;L′1, L

′
2) (3.17)

+ i
3∑

i,j,k=1

6∑
l=4

εijk(CiCl)α,β 〈L|L[j6Lk6Ll6]|L′〉 tr f̂ cub
F (L1, L2;L′1, L

′
2).

The full propagators 〈[ψα]L[ψβ ]L′〉 would have a structure similar to that of (3.9), but

containing many more terms and matrix elements of products of generators Lij up to

cubic order.

As for the off-diagonal case, the functions f̂F are linear combinations of the propagators

between mass eigenstates (3.1) and (3.2). Again, these functions only depend on the labels

(L1, L2) of the external fields. However, since their expressions are more involved than in

the off-diagonal case, we postpone their explicit formulas until appendix C.

4 One-loop corrections to the classical solution and one-point functions

Following previous work [25, 26], we will now use the propagators to compute the first

quantum correction to the vacuum expectation value of the five scalars φi for i = 1, . . . 5, as

well as the one-loop one-point function of the 1/2-BPS operator tr(ZL), where Z = φ5+iφ6.

Throughout this section we will work in the large-N limit, and we will specify which results

are applicable for finite n or in the large-n regime.8 One-loop corrections to one-point

functions of more general, non-protected operators can similarly be obtained in analogy

with [25, 26].

4.1 One-loop correction to the classical solution

The first quantum correction to the classical solution is given by the contraction of an

external scalar with an effective three-vertex,

〈φi〉1-loop(x) = φ̃i(x)

∫
d4y

∑
Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)). (4.1)

The sum on the right-hand side runs over all fields in the theory. We show in appendix D

that

∑
Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)) = − 4
√

2N

π2(y3)3
W (n) tr

(
φ̃iGi6

)
. (4.2)

8It should also be possible to extend this to finite N following [25, 34].
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The function W (n) is positive for n ≥ 0, and is given explicitly

W (n) = − 1

64

(
2(n− 4)(n+ 8)

n(n+ 4)
+

2
√

2(n+ 2)(n(n+ 4)− 4)

(n+ 1)(n+ 3)
+
n
(
n2 − 8

)
Ψ(m+0)

2(n+ 1)

+
(n+ 2)2(n(n+ 4)− 4)Ψ(m0+)

(n+ 1)(n+ 3)
+

(n+ 4)(n(n+ 8) + 8)Ψ(m−0)

2(n+ 3)

−
(
n4 + 8n3 − 32n+ 8n2 + 64

)
Ψ
(
νeasy + 1

2

)
n(n+ 4)

−
n3(n+ 5)Ψ

(
ν++ + 1

2

)
2(n+ 2)(n+ 4)

−
(n− 1)(n+ 4)3Ψ

(
ν−+ + 1

2

)
2n(n+ 2)

)
,

(4.3)

in terms of the masses of bosons and fermions in the off-diagonal blocks (see tables 4

and 6) and νi =
√
m2
i + 1

4 . We also attach a completely explicit expression for W (n) as

Supplementary material to this paper. In section 4.2 we will be interested in this function in

the double-scaling limit (1.2). Expanding for n→∞, this function simplifies dramatically:

W (n) =
1

4n2
+O(n−3) . (4.4)

From the individual terms in (4.3), one would expect terms growing as fast as n2 log(n)

in the large-n limit. However, from the supergravity calculation we know that all terms

growing faster than 1/n2 should not be present. This “miraculous” cancellation provides

a very non-trivial check for our results.

Moreover, using the relation between the matrices Gi6 and the so(5) fuzzy spherical

harmonics given in appendix A.3, we can compute the contraction

φ̃i tr
(
φ̃jGj6

)
= Km2=6(x, y)Gi6. (4.5)

The remaining spacetime integral was already computed in [26]:∫
d4y

1

y3
3

Km2=6(x, y) =
g2

YM

2

1

4x3
. (4.6)

Assembling the pieces, we see that the one-loop correction to the classical solution is

proportional to the classical solution such that we can write

〈φi(x)〉 =

(
1− λ

π2
W (n) +O

(
λ2
))
〈φi(x)〉tree. (4.7)

We note that this correction is non-vanishing, fitting the picture observed so far that for

a domain-wall setup which conserves part of the supersymmetry there is no correction to

the classical field [25] whereas for setups which break the supersymmetry there can be a

correction [26]. The one-loop corrections to vanishing classical vevs are all vanishing.
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(a) Tree level (b) Tadpole (c) Lollipop

Figure 1. Diagrams (identical to the ones of [25]) that contribute at tree level (a) and one-loop

order (b)-(c) to a single-trace operator such as 〈trZL〉L=8 (in the planar limit). The black dot

denotes the operator and the crosses signify the insertion of the classical solution.

4.2 One-loop correction to 〈tr(ZL)〉

Next, we consider the scalar single-trace operator tr(ZL) with Z = φ5 + iφ6 and aim to

compute the first quantum correction to its one-point function.

At tree level, the one-point function 〈tr(ZL)〉 was first computed in [35]; it is simply

obtained by inserting the classical solution Zcl = φcl
5 into the trace:

〈trZL〉tree =
1

(
√

2x3)L
trGL56 =

0, L odd,
1

(
√

2x3)L

[
2

L+3BL+3(−n
2 )− (n+2)2

2(L+1)BL+1(−n
2 )
]
, L even,

(4.8)

where Bl denotes the l-th Bernoulli polynomial.

The general procedure for computing the one-loop one-point function of scalar single-

trace operators can be found in [24–26]. As was derived there, there are only two contri-

butions for the operator tr(ZL), which were called tadpole and lollipop, see figure 1:

〈trZL〉1−loop = 〈trZL〉tad + 〈trZL〉lol. (4.9)

In particular, since the operator is 1/2-BPS, there is no correction to its wave function as

well as no renormalization.

The tadpole diagram corresponds to inserting the classical solution for L − 2 scalars

and contracting the remaining two fields. This can be done in L inequivalent ways, so

we obtain

〈trZL〉tad = L tr

[
(Zcl)L−2Z Z

]
. (4.10)

The contraction of Z with itself is simply

Z Z = φ̃5 φ̃5 − φ̃6 φ̃6 , (4.11)
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since φ5 and φ6 are an easy and a complicated field respectively and there is no propagator

that mixes them. Using the propagators presented in the previous section and taking into

account that only the fields in the off-diagonal block contribute in the large-N limit, we find

〈trZL〉tad = LN

[
tr
(

(Zcl)L−2
)(

f sing −Km2
easy

)
+ 4 tr

(
(Zcl)L−2G56G56

)
fprod

]
, (4.12)

using the combinations of propagators f given in (3.5). Note that this gives us the contri-

bution of the tadpole for any finite value of n, because the color trace is known in terms of

Bernoulli polynomials, see (4.8). As for the effective vertex W (n), we have a cancellation

of the regulator-dependent terms coming from the spacetime propagator for any finite n.

In order to compare our result to the supergravity prediction, we need to evaluate the

expression in the large-n limit. Inserting the expression for the traces (4.8) into (4.12) and

expanding for n→∞, we find that the leading order term is

〈trZL〉tad
n→∞−−−→ λ

π2n2

L(L+ 1)

2(L− 1)
〈trZL〉tree. (4.13)

Notice how once again, only terms which are at most of order n−2 contribute in the large-n

limit, even though from (4.12) one could expect a growth-rate faster than this.

The second type of diagram is the lollipop diagram, which is nothing but the one-loop

correction to the classical solution for one of the scalars in the operator. We find, using

our result (4.7),

〈trZL〉lol = L tr
[
(Zcl)L−1〈Z〉1-loop

]
= −λL

π2
W (n)〈trZL〉tree

n→∞−−−→ − λL

4π2n2
〈trZL〉tree.

(4.14)

In the last step, we have used the expansion (4.4) of W (n) for n→∞.

Combining the tree-level result (4.8) with the values of the tadpole and lollipop dia-

grams (4.13) and (4.14) respectively, we find

〈trZL〉
〈trZL〉tree

= 1 +
λ

π2n2

L(L+ 3)

4(L− 1)
+O

((
λ

π2n2

)2
)
. (4.15)

Up to first order in the double-scaling parameter, this matches precisely the result from

the supergravity computation (1.4). Note that as in [25, 26] we are actually forced to

consider the above ratio in order to compare the supergravity to the field-theory result:

the supergravity result computes the one-point function of the unique so(5)-symmetric

chiral primary on which the operator tr(ZL) has a non-vanishing projection.

A completely explicit expression for 〈trZL〉1−loop at finite n is attached as Supplemen-

tary material to this paper.

5 Conclusion and outlook

Making use of fuzzy spherical harmonics on S4, we have set up the framework required

to carry out perturbative calculations of observables in the domain-wall version of N = 4
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SYM theory where five scalar fields have so(5)-symmetric vevs in a half-space. As an

application, we have computed the one-loop correction to the one-point function of a specific

chiral primary and found that it agrees in a double-scaling limit with the prediction from a

supergravity computation in the dual string-theory setup. We notice that a match between

gauge and string theory is obtained for all defect setups of the given type regardless of

whether supersymmetry is fully or only partially broken and regardless of whether the

relevant boundary state is characterized as integrable or non-integrable, cf. table 1.

With the perturbative framework fully developed, one can of course compute other

types of observables of the dCFT, such as more general correlation functions or Wilson

loops. The study of Wilson loops in the closely related dCFT dual to the D3-D5 probe-

brane system listed in table 1 has revealed interesting novel examples of Gross-Ooguri

like phase transitions [33, 36–39]. Furthermore, the investigation of two-point functions in

the same setup has led to new insights concerning conformal data of dCFTs [40, 41] and

in general such data might prove useful as input for the boundary conformal bootstrap

program [42–44].

The one-loop contribution to the one-point function of general non-protected opera-

tors in the present so(5)-symmetric setup could potentially provide important information

for the integrability program. The corresponding boundary state has been argued to be

integrable [19] and the derivation of a closed formula for all tree-level one-point functions

is in progress [45]. Explicit results at one-loop order might make it possible to package the

results for the two leading orders into one formula, put forward a proposal for an asymp-

totic formula for higher loop orders as was done for the D3-D5 case [18] and eventually

bootstrap an exact all-loop order formula for both cases.

From the string-theory perspective, the most burning open problem is to understand

the reason for the integrability or non-integrability of the boundary states associated with

the different probe-brane models considered here, cf. table 1.
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A Conventions

A.1 N = 4 SYM action

Throughout our work, we consider a mostly-positive metric ηµν = diag(−1,+1,+1,+1).

The action of N = 4 SYM theory is given by

SN=4 =
2

g2
YM

∫
d4x tr

(
− 1

4
FµνF

µν − 1

2
DµφiD

µφi +
i

2
ψ̄γµDµψ (A.1)

+
1

4
[φi, φj ][φi, φj ] +

1

2

3∑
i=1

ψ̄Ci[φi, ψ] +
1

2

6∑
i=4

ψ̄Ci[φi, γ5ψ]

)
,

where (Ci)αβ are 4× 4 matrices of Clebsch-Gordan coefficients that couple the two spinors

with the scalars. We will use the same conventions as [25]:

C1 ≡C(1)
1 = i

(
0 −σ3

σ3 0

)
, C2 ≡C(1)

2 = i

(
0 σ1

−σ1 0

)
, C3 ≡C(1)

3 =

(
σ2 0

0 σ2

)
,

C4 ≡C(2)
1 = i

(
0 −σ2

−σ2 0

)
, C5 ≡C(2)

2 =

(
0 −12

12 0

)
, C6 ≡C(2)

3 = i

(
σ2 0

0 −σ2

)
.

(A.2)

The matrices in the first line are Hermitian, (C
(1)
i )† = C

(1)
i , while those in the second are

anti-Hermitian, (C
(2)
i )† = −C(2)

i . Furthermore, we note some useful properties:{
C

(1)
i , C

(1)
j

}
= +2δij ,

{
C

(2)
i , C

(2)
j

}
= −2δij , (A.3)[

C
(1)
i , C

(1)
j

]
= −2iεijkC

(1)
k ,

[
C

(2)
i , C

(2)
j

]
= −2εijkC

(2)
k , (A.4)

and the two sets commute
[
C

(1)
i , C

(2)
j

]
= 0.

A.2 so(5) and so(6)

Given an so(n) Lie Algebra, we normalize the generators Lij = −Lji such that

[Lij , Lkl] = i (δikLjl + δjlLik − δjkLil − δilLjk) for i, j, k, l = 1, . . . , n. (A.5)

We will label our representations in terms of the quantum numbers of the highest

weight. Our conventions follow [46] since we will make use of some of the Clebsch-Gordan

coefficients for coupling different so(5) representations published there. For so(5), we need

two quantum numbers (L1, L2) to specify a representation, which correspond to the eigen-

values of 1
2(L12 ± L34) acting on the highest weight state. The most relevant examples for

our work will be

so(5) : 4 =

(
1

2
, 0

)
, 5 =

(
1

2
,

1

2

)
, 10 = (1, 0). (A.6)

Our notation is related to the so(5) Dynkin labels (e.g. used in [47]) by (L1, L2) =

[2L2, 2(L1 − L2)].
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Similarly, for so(6) we need three quantum numbers (P1, P2, P3), which correspond

to the eigenvalues of L12, L34 and L56 acting on the highest weight state. Some simple

examples are

so(6) : 4 =

(
1

2
,

1

2
,

1

2

)
, 4̄ =

(
1

2
,

1

2
,−1

2

)
. (A.7)

Our notation is related to the so(6) Dynkin labels by (P1, P2, P3) = [P1−P2, P2+P3, P2−P3].

With our conventions, the dimensions of the irreducible so(5) and so(6) representations are

d5 (L1, L2) =
1

6
(2L1 + 2L2 + 3)(2L1 − 2L2 + 1)(2L2 + 1)(2L1 + 2), (A.8)

d6(P1, P2, P3) =
1

12
(1 + P1 − P2)(3 + P1 + P2)(2 + P1 − P3)

× (1 + P2 − P3)(2 + P1 + P3)(1 + P2 + P3).
(A.9)

The Casimir operator is defined as the sum over all independent generators squared:

Cn =
∑
i<j

(Lij)
2. (A.10)

With our normalizations, it has eigenvalues

C5(L1, L2) = 2
[
L1(L1 + 2) + L2(L2 + 1)

]
, (A.11a)

C6(P1, P2, P3) = P1(P1 + 4) + P2(P2 + 2) + P 2
3 . (A.11b)

Let us also write the branching rule of so(6) representations into so(5),

(P1, P2, P3)→
⊕

(L1, L2) , where P3 ≤ L1 − L2 ≤ P2 ≤ L1 + L2 ≤ P1. (A.12)

The most relevant cases for us are (P1, P2, P3) = (n2 ,
n
2 ,

n
2 ) which implies (L1, L2) = (n2 , 0)

for the fields in the off-diagonal block, and (P1, P2, P3) = (L1 +L2, L1 +L2, 0) for the fields

in the adjoint block.

To label the states in a given so(5) representation, we use the collective label L =

(L1, L2) `1`2m1m2. Here m1 and m2 are the eigenvalues of the two Cartan generators
1
2(L12 + L34) and 1

2(L12 − L34) covering the ranges mi = −`i, . . . ,+`i. The spins `i are

subject to the constraints

−L1 + L2 ≤ `1 − `2 ≤ L1 − L2 ≤ `1 + `2 ≤ L1 + L2, (A.13)

and `1 + `2 ∈ Z [46].

A.3 G matrices

Consider a four-dimensional representation of the so(5) Clifford algebra

{γi, γj} = 2δij14×4. (A.14)
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This can be used as a building block for some particular types of so(5) and so(6) represen-

tations as follows. Take the n-fold tensor product and project to Sym(⊗nC4) as

Gi6 =
1

2

(
γi ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n factors

+ · · ·+ 1⊗ · · · ⊗ 1⊗ γi
)

sym
, (A.15)

and define

Gij ≡ −i [Gi6, Gj6] , i, j = 1, . . . , 5. (A.16)

From the anticommutation relations (A.14), one can verify that Gij for i, j = 1, . . . , 5 satisfy

the commutation relations of so(5) and Gij for i, j = 1, . . . , 6 satisfy the commutation

relations of so(6). We also refer to the appendix of [29], where some useful identities for

the matrices Gij can be found. The matrices Gi6 are related to the so(5) fuzzy spherical

harmonics ŶJ by

G16 =
1√
2
an

(
Ŷ++ + Ŷ−−

)
, G26 = − i√

2
an

(
Ŷ++ − Ŷ−−

)
,

G36 = − 1√
2
an

(
Ŷ−+ − Ŷ+−

)
, G46 = − i√

2
an

(
Ŷ−+ + Ŷ+−

)
,

G56 = −anŶ00,

(A.17)

where

an =
1

2

√
1

5
n(n+ 4) d5

(n
2
, 0
)
, and Ŷαβ ≡ Ŷ( 1

2
, 1
2

) 1
2

1
2
αβ , Ŷ00 ≡ Ŷ( 1

2
, 1
2

)0000. (A.18)

B Details on the diagonalization

In this appendix, we provide details of the diagonalization procedure outlined in section 2.

B.1 Complicated bosons

In (2.7) we have written the mass terms for the complicated bosons, i.e. those for which

color and flavor degrees of freedom mix. As stated in section 2.3, the key observation is

that we can diagonalize this mass term by starting with the 5 × 5 block for which we can

rewrite the mixing term as

1

2
SijLij =

1

2

∑
1≤i<j≤5

[
(Jij)

2 − (Lij)
2 − (Sij)

2
]
. (B.1)

We thus have to find the eigenstates of the total angular momentum operator Jij = Lij+Sij .

Concretely, this works as follows.
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The matrices Sij form the fundamental representation of so(5),9 and we bring them

into canonical form by transforming the five complicated scalars as
φ1

φ2

φ3

φ4

φ5

→
1√
2


−i 0 0 −i 0

1 0 0 −1 0

0 −i i 0 0

0 1 1 0 0

0 0 0 0 i
√

2



†
φ1

φ2

φ3

φ4

φ5

 ≡

C++

C+−
C−+

C−−
C00

 =
∑
α1,α2

Cα1,α2 êα1,α2 . (B.2)

The fields Cα1,α2 are the five components of the ( 1
2 ,

1
2) representation of so(5). In particu-

lar, we use the notation Cα1,α2 ≡ CS, where S = (1
2 ,

1
2) |α1||α2|α1α2, to make manifest that

Cα1,α2 has magnetic quantum numbers α1 and α2 with respect to the su(2)×su(2) subalge-

bra of so(5).10 These fields are now expanded in terms of so(5) fuzzy spherical harmonics

and we denote the components by (CS)L. Finally, the êα1,α2 in (B.2) are five-dimensional

unit vectors, for example ê++ = (1, 0, 0, 0, 0), and so on.

It is clear that the (CS)L transform as the product representation (L1, L2) ⊗ (1
2 ,

1
2).

However, we are interested in fields that are diagonal with respect to the total angular

momentum Jij , and so will belong to the representations (2.19). In particular, we will

denote by Bα1,α2 the diagonal fields in the (J1, J2) = (L1 +α1, L2 +α2) representation. All

the states in this total angular momentum representation are labelled by distinct values

of J = (J1, J2) j1j2m1m2. As familiar from quantum mechanics, the explicit change of

basis is

(Bα1,α2)J =
∑
L,S

〈L; S|J〉(CS)L, (B.3)

where 〈L; S|J〉 are the Clebsch-Gordan coefficients for coupling the so(5) states labeled

by L and S to J. For the present case, i.e. the coupling of the fundamental of so(5)

with an arbitrary state in the irrep (L1, L2), the coefficients can be found in [46]; see also

appendix E for more details.

The fields (Bα1,α2)J will have some corresponding basis elements Ŷ α1,α2

J , which are

defined implicitly from∑
L,S

(CS)L ŶL ⊗ êS =
∑
α1,α2

∑
J

(Bα1,α2)J Ŷ
α1,α2

J . (B.4)

Having obtained eigenstates of the 5× 5 block, it remains to see how they transform under

the action of
∑5

i=1R
†
iLi6, the 1× 5 block in (2.7). One can compute that(

5∑
i=1

R†iLi6

)
Ŷ α1,α2

J = TP1,P2,P3

J1−α1,J2−α2;J1,J2
ŶJ. (B.5)

The right-hand side of this equation is proportional to the so(5) state ŶJ with a constant of

proportionality T that only depends on the irrep (J1, J2) and (α1, α2), not on all quantum

9In our conventions, Sjk contains a −i at position (jk) and an i at position (kj).
10Note that the subscripts +, − and 0 on the fields C denote half-integers, e.g. C+− has α1 = 1

2
and

α2 = − 1
2
.
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numbers contained in J. In fact, the T ’s are certain reduced matrix elements of so(6)

generators; for more details, see appendix E. Their value also depends on which so(6)

representation the fields transform as and we will have to distinguish between the adjoint

block with so(6) irrep (L1 + L2, L1 + L2, 0) and the off-diagonal block with (n2 ,
n
2 ,

n
2 ).

Let us start with the adjoint block, in which case it turns out that the reduced matrix

elements T vanish if (J1, J2) ∈ {(L1 + 1
2 , L2 + 1

2), (L1, L2), (L1− 1
2 , L2− 1

2)}. More explicitly,

we get (
5∑
i=1

R†iLi6

)
Ŷ ++
J =

(
5∑
i=1

R†iLi6

)
Ŷ −−J =

(
5∑
i=1

R†iLi6

)
Ŷ 00
J = 0,(

5∑
i=1

R†iLi6

)
Ŷ ±∓J ≡ T±∓ŶJ,

(B.6)

where the coefficients T±∓ take the following values:

T+− =
√

2

√
(2J1 + 1) (J1 − J2) (J2 + 1)

2J1 − 2J2 + 1
, T−+ = −

√
2

√
(2J1 + 3) (J1 − J2 + 1) J2

2J1 − 2J2 + 1
.

(B.7)

We now write the vector of complicated fields as

C =

(∑
α1,α2,J

(Bα1,α2)JŶ
α1,α2

J∑
L(A3)LŶL

)
, (B.8)

and insert into the mass term (2.7). The mass term then becomes

m̂2
++(B++)†J(B++)J + m̂2

−−(B−−)†J(B−−)J + m̂2
00(B00)†J(B00)J

+
(

(B+−)†J (B−+)†J (A3)†J

)m̂2
easy + 2 0 −

√
2T+−

0 m̂2
easy + 2 −

√
2T−+

−
√

2T+− −
√

2T−+ m̂2
easy


(B+−)J

(B−+)J
(A3)J

 .
(B.9)

As pointed out above, the reduced Clebsch-Gordan coefficients only depend on the so(5)

and so(6) irreps, not any other quantum numbers. We can therefore simply diagonalize

the remaining 3× 3 matrix; the fields that achieve this diagonalization are given by

D0 =
−1√

2m̂2
easy

(
T−+B+− − T+−B−+

)
, (B.10)

D∓ =
±1 +

√
4m̂2

easy + 1
√

2N±
A3 ±

1√
N±

(
T+−B+− + T−+B−+

)
. (B.11)

The eigenvalues are listed in table 3.

The diagonalization for the off-diagonal block proceeds similarly. In this case the

reduced matrix elements are non-zero only if (J1, J2) = (L1, L2), resulting in a 2×2 matrix
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that has to be diagonalized in the final step. The mass term becomes diagonal in terms of

the fields B++, B−+ and

D± = ±
√√√√1

2
± 1

2
√

4m2
easy + 1

B00 +

√√√√1

2
∓ 1

2
√

4m2
easy + 1

A3. (B.12)

The eigenvalues are listed in table 4.

B.2 Fermions

The mass term for the fermions as written in (2.9) is

tr(ψ̄αCαβ(PLψβ) + ψ̄αC†αβ(PRψβ)), (B.13)

where PL and PR are the chiral projectors. The components of the matrix Cαβ are

Cαβ = − 1√
2

5∑
i=1

(Ci)αβLi6, (B.14)

where the (Ci)αβ were defined in (A.2). One can show that C†C 6= CC†; thus, we cannot

diagonalize C with a unitary transformation. We will now follow a standard procedure to

diagonalize a fermionic mass matrix used e.g. also in the standard model; see for exam-

ple [48].

We begin by finding the eigenvectors of C†C = 1
2(
∑5

i=1 (Li6)2−
∑5

i,j=1 S̃ijLij). The 4×4

matrices S̃ij form the four-dimensional representation of so(5); thus, C†C is diagonalized

by coupling a general so(5) representation (L1, L2) with (1
2 , 0). As it was the case for the

complicated bosons, we start by bringing the matrices S̃ij into canonical form with the

transformation 
ψ1

ψ2

ψ3

ψ4

→ 1

2


1 −i −1 i

−i 1 i −1

−1 −i −1 −i
i 1 i 1


†

ψ1

ψ2

ψ3

ψ4

 ≡

C̃+0

C̃−0

C̃0+

C̃0−

 . (B.15)

Here the fields C̃α1α2 ≡ (C̃S)J have well defined orbital and angular momentum. Now the

eigenvectors are found in terms of Clebsch-Gordan coefficients:

Ŷ
(L1,L2)
J =

∑
L,S

〈L; S|J〉 ŶL ⊗ êS. (B.16)

This concludes the diagonalization of C†C.
Now we will use the basis of eigenvectors of C†C to build a basis of eigenvectors of C.

For the fields in the adjoint block, after a long calculation one can find how C acts on the

four eigenvectors:

C Ŷ (J1± 1
2
,J2)

J = χ1(J)m±0(J1, J2)

(
Ŷ

(J1,J2± 1
2

)

Jr

)?
, (B.17)

C Ŷ (J1,J2± 1
2

)

J = χ2(J)m0±(J1, J2)

(
Ŷ

(J1± 1
2
,J2)

Jr

)?
, (B.18)
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with the ‘reversed’ total angular momentum Jr ≡ (J1, J2) j2j1m2m1 and some phase factors

χ1(J) and χ2(J). It turns out that m±0 and m0± are the same when written in terms of

J1 and J2 so that we can obtain eigenvectors of C by essentially adding the two previous

equations and taking care of the phase factors. After the dust has settled, the eigenvectors

of C turn out to be

Ŷ αβ
J =

χ(J;α, β)√
2

[
Ŷ

(J1+α
2
,J2)

J + βŶ
(J1,J2+α

2
)

Jr

]
, (B.19)

for the four combinations of α, β ∈ {−1,+1} and the phase

χ(J;α, β) = (−1)−
1
2

(2J1+m1+m2+α+ 1
2

)i
1−β
2 . (B.20)

The fermions in the action can now be expanded in this basis and the mass term becomes

diagonal in terms of component fields which we call (D̃αβ)J, and which are related to

(C̃S)J by ∑
α,β

∑
J

(D̃αβ)J Ŷ
αβ
J =

∑
S,L

(C̃S)L ŶL ⊗ êS. (B.21)

One can diagonalize the fields in the off-diagonal block in a similar fashion, the only

difference being that different orbital angular momentum representations are not mixed

with each other. There is still mixing between J and Jr, which can be diagonalized easily

with an extra step similar to (B.19).

C Details on the propagators

In this appendix, we provide further details on the derivation of the propagators presented

in section 3. In particular, we give the explicit formulas for the coefficients f̂ that do not

appear in the main text.

The fields in which the mass matrix for the bosons becomes diagonal are B±,±, B0,0,

D± and D0. The propagators between them are simply

〈[B++]L[B++]†L′〉 = δL,L′K
m̂2

++ , (C.1)

and similarly for B−−, B00, D± and D0. In order to invert the Clebsch-Gordan procedure,

we have to express the non-diagonal fields B±,∓ and A3 in terms of the diagonal fields.

This is achieved by

B±,∓ = ∓ T∓,±√
2m̂2

easy

D0 − T±,∓
(
D+√
N−
− D−√

N+

)
, (C.2)

A3 =
−1 +

√
4m̂2

easy + 1
√

2N−
D+ +

1 +
√

4m̂2
easy + 1

√
2N+

D−. (C.3)

From (C.3) it is immediate to obtain the propagator 〈A3A
†
3〉, see (3.15) in the main text.

Similarly, for the propagator 〈φiA†3〉 the two fields couple through propagators 〈B±,∓A†3〉.
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It is therefore natural to introduce the following function

f̂ φA(L1, L2) =
−1 +

√
4m̂2

easy + 1
√

2N−
Km̂2

+ −
1 +

√
4m̂2

easy + 1
√

2N+

Km̂2
− , (C.4)

which captures such contributions.11

The situations is more complicated for the propagators 〈φi φ†j〉, because there are sev-

eral possible contributions. The first one comes from the propagator 〈B+,−B
†
−,+〉, and it

is captured by the function

f̂ opp(L1, L2) =
1

2

(
− Km̂2

0

2m̂2
easy

+
Km̂2

+

N−
+
Km̂2

−

N+

)
. (C.5)

The other contributions come from propagators between identical B fields 〈Bα,β B†α,β〉, and

we will encode them in the functions hα,β . These functions are particularly simple for the

B fields that are diagonal after the Clebsch-Gordan decomposition

h±,±(L1, L2) = Km̂2
±± , h0,0(L1, L2) = Km̂2

00 . (C.6)

For the fields B±,∓, we can read off the corresponding contribution from (C.2), namely

h±,∓(L1, L2) =
(T∓±)2

2m̂2
easy

Km̂2
0 + (T±∓)2

(
Km̂2

+

N−
+
Km̂2

−

N+

)
. (C.7)

Note that here the T±,∓ given in (B.7) are to be evaluated at (L1, L2), i.e. one has to

replace (J1, J2)→ (L1, L2).

The functions f̂ and hαβ we just defined are the building blocks of the final propagators.

In order to obtain the full expressions, we start with a certain propagator, and expand it

using (B.3) and (B.2), and then evaluate the propagators of B fields and A3 in the way

we just described. The result will be a complicated combination of products of Clebsch-

Gordan coefficients and the functions f̂ and hαβ . These expressions can always be rewritten

in terms of matrix elements of so(6) generators12 to obtain the form presented in section 3.2.

In (3.13) we have written the propagators between the scalars in terms of the functions

f̂ sing, f̂ cub, f̂ lin, f̂ sym
5 , f̂ sym

6 and f̂ opp that are linear combinations of propagators between

mass eigenstates. To write them in a more compact way, we define

Zα,β(L1, L2) ≡ 1

2

(
C5

(
L1 +

α

2
, L2 +

β

2

)
− C5(L1, L2)

)
, (C.8)

and

Dα,β(L1, L2) ≡

{
iα−β2(L1 + 1)(2L2 + 1)Zα,β(2Zα,β − 1) (α, β) 6= (0, 0) ,∏

(γ,δ) 6=(0,0) Zγ,δ (α, β) = (0, 0) .
(C.9)

11The prefactor T±∓ that would naively appear gets absorbed in the matrix element of Li6, as one can

see by doing the calculation of the propagators carefully. A similar prefactor will also get absorbed by the

matrix elements of the generators in (C.5).
12In practice, it is easiest to make an ansatz for the propagators and if the coefficients can be fixed for

all possible combination, then the ansatz is correct.
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The indices (α, β) run over the five values (±1,±1) and (0, 0). After a complicated calcu-

lation, on can see that f̂ are given by13

f̂ sing(L1, L2) =
∑
(α,β)

1

2Dα,β

[
− 2Z2

α,β

(
1 + C5 − Z2

α,β

)
− C5 − 2(Z+,−Z−,+)2

− 2(1 + C5)Z+,−Z−,+

]
hα,β

(
L1 +

α

2
, L2 +

β

2

)
,

(C.10)

and

f̂ lin(L1,L2) =
∑
(α,β)

i

4Dα,β
(2Zα,β+1)

(
2C5−2Z2

α,β−3
)
hα,β

(
L1 +

α

2
,L2 +

β

2

)
, (C.11)

f̂ cub (L1,L2) =
∑
(α,β)

−i
4Dα,β

(2Zα,β+1) hα,β

(
L1 +

α

2
,L2 +

β

2

)
, (C.12)

f̂ sym
5 (L1,L2) =

∑
(α,β)

−1

2Dα,β

(
1

2
+Z+,−Z−,+ +Z2

α,β

)
hα,β

(
L1 +

α

2
,L2 +

β

2

)
, (C.13)

f̂ sym
6 (L1,L2) =

∑
(α,β)

−1

4Dα,β
(2Z+,−+1)(2Z−,+ +1) hα,β

(
L1 +

α

2
,L2 +

β

2

)
. (C.14)

As the reader can observe, the functions Dαβ and Zαβ allowed to compactly write the f̂ ,

but we do not think they have any physical meaning beyond this.

In order to obtain the fermionic propagators, we follow an identical procedure as

described above. We start with a given propagator, expand it following the steps described

in the diagonalization, and then identify the result in terms of propagators of diagonal

fields and matrix elements of so(6) generators. The result is given by (3.16) and (3.17),

where the explicit expressions for f̂F are

f̂ lin
F

(
L1, L2;L1 +

1

2
, L2 −

1

2

)
=

(L1 + L2 + 1)K
m=
√

2(L1+1)(L2+1)

F√
(2L1 + 3) (2L2 + 1) (2L1 + 2L2 + 3)

+
(L1 + L2 + 2)K

m=
√

2L2(L1+1)

F

2
√

(L1 + 1)L2 (2L1 + 2L2 + 3)
,

f̂ lin
F

(
L1, L2;L1 −

1

2
, L2 +

1

2

)
=

(L1 + L2 + 1)K
m=
√

2(L1+1)(L2+1)

F

2
√

(L1 + 1) (L2 + 1) (2L1 + 2L2 + 3)

+
(L1 + L2 + 2)K

m=
√

2L2(L1+1)

F√
(2L1 + 1) (2L2 + 1) (2L1 + 2L2 + 3)

,

(C.15)

13In the following equations Zα,β , Dα,β and C5 are always evaluated at (L1, L2) unless noted otherwise.
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and

f̂ cub
F

(
L1, L2;L1 +

1

2
, L2 −

1

2

)
=

3K
m=
√

2(L1+1)(L2+1)

F√
(2L1 + 3) (2L2 + 1) (2L1 + 2L2 + 3)

−
3K

m=
√

2L2(L1+1)

F

2
√

(L1 + 1)L2 (2L1 + 2L2 + 3)
,

f̂ cub
F

(
L1, L2;L1 −

1

2
, L2 +

1

2

)
=

3K
m=
√

2(L1+1)(L2+1)

F

2
√

(L1 + 1) (L2 + 1) (2L1 + 2L2 + 3)

−
3K

m=
√

2L2(L1+1)

F√
(2L1 + 1) (2L2 + 1) (2L1 + 2L2 + 3)

.

(C.16)

D Effective vertex

In this appendix, we will give some extra details on how to compute the effective vertex.

We remind the reader that we started with the N = 4 SYM action, and we expanded

around a classical solution φi = φcl
i + φ̃i. This gives rise to a number of cubic interaction

vertices:

S3 =
2

g2
YM

∫
d4x tr

(
i[Aµ, Aν ]∂µAν + φ̃i[φ̃j , [φ

cl
i , φ̃j ]] + i[Aµ, φ̃i]∂µφ̃i + φ̃i[A

µ, [φcl
i , Aµ]]

+
1

2
ψ̄γµ[Aµ, ψ] +

1

2

3∑
i=1

ψ̄Ci[φ̃i, ψ] +
1

2

6∑
i=4

ψ̄Ci[φ̃i, γ5ψ] + i(∂µc̄)[Aµ, c]− c̄[φcl
i [φ̃i, c]]

)
.

(D.1)

These are the only vertices that can contribute to the computation of the effective vertex.

The following calculation proceeds in exactly the same manner as that of [25, 26]. We will

only write the contractions that contribute, all other possible Wick contractions being zero.

There is one contribution from the ghost fields, which behave simply as easy scalars

− tr
(
c̄[φcl

i , [φ̃i, c]]
)

=

√
2N

y3
Km2

easy tr
(
φ̃iGi6

)
. (D.2)

Only two contractions survive in the vertex that couples two scalars with the gauge field14

tr
(
i[Aµ, φ̃i]∂µφ̃i

)
+ tr

(
i[Aµ, φ̃i]∂µφ̃i

)
= +6iN∂3f

Aφ tr
(
φ̃iGi6

)
, (D.3)

14In the second contraction, we can use (D.21) from [25], since we have

ν− =

√
m2
− +

1

4
= νeasy − 1, ν+ =

√
m2

+ +
1

4
= νeasy + 1,

for both the fields in the diagonal and in the off-diagonal blocks, and the propagator K̂Aφ has the desired

form Kν−1 −Kν+1.
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where

fAφ =
−i

2
√
n(n+ 4) + 2

(
Km2

− −Km2
+

)
. (D.4)

For the vertex that couples three scalars, all possible Wick contractions contribute

tr
(
φ̃i[φ̃j , [φ

cl
i , φ̃j ]]

)
= −
√

2N

y3

[
5f sing + n(n+ 4)fprod +Km2

easy

]
tr
(
φ̃iGi6

)
, (D.5a)

tr
(
φ̃i[φ̃j , [φ

cl
i , φ̃j ]]

)
=

√
2N

y3

[
f sing + 2if lin +

[
n(n+ 4)− 8

]
fprod

]
tr
(
φ̃iGi6

)
, (D.5b)

tr
(
φ̃i[φ̃j , [φ

cl
i , φ̃j ]]

)
=

4
√

2N

y3

[
if lin − 2fprod

]
tr
(
φ̃iGi6

)
. (D.5c)

The regularization procedure becomes important when we consider the vertex that couples

two gauge fields and a scalar. We work in dimensional reduction [49, 50] with d = 3− 2ε

space dimensions, hence nA,easy = 3 − 2ε and we should add 2ε scalars to the action that

behave exactly as the easy components of the gauge field. The choice of this regularization

procedure is motivated by the fact that it is supersymmetry preserving and hence compat-

ible with the symmetries of the bulk N = 4 SYM theory which we must recover far from

the domain wall, cf. the discussion in [25, 26]. In total, we get

tr
(
φ̃i[A

µ, [φcl
i , Aµ]]

)
+ tr

(
φ̃i[A

2ε, [φcl
i , A2ε]]

)
= −
√

2N

y3

(
(nA,easy + 2ε)Km2

easy + fAA
)

tr
(
φ̃iGi6

)
,

(D.6)

where

fAA =
1

2

1 +
1√

4m2
easy + 1

Km2
− +

1− 1√
4m2

easy + 1

Km2
+

 . (D.7)

Finally, we can also have fermions running in the loop, which contribute as

1

2

3∑
i=1

(Ci)αβ tr

(
ψ̄α[φ̃i, ψβ ]

)
+

1

2

5∑
i=4

(Ci)αβ tr

(
ψ̄α[φ̃i, γ5ψβ ]

)
= 8N tr f2,+

F tr(φ̃iGi6).

(D.8)

One can sum all the contributions above, and simplify the resulting expression using

identities such as Ψ(z + 1) = Ψ(z) + 1/z. The result that one obtains is (4.3), where one

notices that the dependence on the regulator ε drops completely.

E Matrix elements and Clebsch-Gordan coefficients

In this appendix, we describe how to compute matrix elements of so(6) generators acting

on general representations and where to obtain the Clebsch-Gordan coefficients relevant

for the calculations in this work.
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Labels S Tensor operator TS

((1, 0), 1, 0, 0, 0) 1
2(L12 + L34)

((1, 0), 1, 0,±1, 0) 1
2
√

2
(∓(L14 + L23) + i(L13 − L24))

((1, 0), 0, 1, 0, 0) 1
2(L12 − L34)

((1, 0), 1, 0,±1, 0) 1
2
√

2
(∓(L14 − L23)− i(L13 + L24))

((1, 0), 1
2 ,

1
2 ,±

1
2 ,±

1
2) 1

2(±L25 − iL15)

((1, 0), 1
2 ,

1
2 ,±

1
2 ,∓

1
2) 1

2(L45 ∓ iL35)

((1
2 ,

1
2), 0, 0, 0, 0) −L56

((1
2 ,

1
2), 1

2 ,
1
2 ,±

1
2 ,±

1
2) 1√

2
(L16 ± iL26)

((1
2 ,

1
2), 1

2 ,
1
2 ,±

1
2 ,∓

1
2) 1√

2
(±L36 + iL46)

Table 7. Relation between the tensor operators of so(6) and the corresponding generators Lij .

In table 7 we map the generators Lij to the tensor operators TS, as the latter have

much simpler matrix elements. Notice how these tensor operators are labeled by a set of

so(5) quantum numbers S = (S1, S2), s1, s2,m1,m2. The tensor operators which transform

in the ten-dimensional representation (1, 0) of so(5) only act on the so(5) labels L. The

matrix elements are

〈L′|TS|L〉 = δL1,L′1
δL2,L′2

√
L1(L1 + 2) + L2(L2 + 1)〈L; S|L′〉. (E.1)

The square root is sometimes called a reduced matrix element or isoscalar factor, and the

second term is an so(5) Clebsch-Gordan coefficient from coupling L and S.

On the other hand, the tensor operators which transform in the five-dimensional

representation ( 1
2 ,

1
2) of so(5) will affect both the so(5) and so(6) quantum numbers.

Therefore, we compute matrix elements of these operators with so(6) states with labels

P = (P1, P2, P3)L, where L are the labels of the so(5) subgroup. Then, the matrix ele-

ments are

〈P′|TS|P〉 = δP1,P ′1
δP2,P ′2

δP3,P ′3
TP1,P2,P3

L1,L2;L′1,L
′
2
〈L; S|L′〉. (E.2)

As before, the matrix element is a product of a reduced matrix element TP1,P2,P3

L1,L2;L′1,L
′
2

and

an so(5) Clebsch-Gordan coefficient.

The reduced matrix elements TP1,P2,P3

L1,L2;L′1,L
′
2

that appear in (E.2) are more complicated

than those in (E.1) and we have derived them using the strategy described in [46]. The main

idea is the following. On the one hand, a construction by Gel’fand and Tsetlin [51] gives the

matrix elements of so(n) generators for any n. On the other hand, these matrix elements

factorize into so(n− 1) Clebsch-Gordan coefficients and the reduced matrix elements that

we are after. This factorization is the content of the Wigner-Eckart theorem. Since the

relevant so(5) Clebsch-Gordan coefficients are known, e.g. from [46], one can construct the
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matrix elements for so(6) and essentially compare the two expressions. The missing factors

are then the reduced matrix elements, which we present in table 8.

We have shown that with knowledge of certain so(5) Clebsch-Gordan coefficients one

can construct the matrix elements for any so(6) generator. The so(5) Clebsch-Gordan

coefficients factorize as

〈(L1, L2), `1, `2,m`1,m`2; (S1,S2), s1, s2,ms1,ms2|(J1, J2), j1, j2,mj1,mj2〉
= 〈(L1, L2), `1, `2; (S1, S2), s1, s2||(J1, J2), j1, j2〉
× 〈`1,m`1; s1,ms1|j1,mj1〉〈`2,m`2; s2,ms2|j2,mj2〉.

(E.3)

The double-barred coefficients are reduced so(5) Clebsch-Gordan coefficients, while the

other two terms are usual su(2) Clebsch-Gordan coefficients. The reduced coefficients were

computed in [46] for the cases (S1, S2) = (1
2 , 0), (1

2 ,
1
2), (1, 0).15 In order to make it easy for

the interested reader to reproduce our results, we attach a Mathematica file with all the

relevant so(5) Clebsch-Gordan coefficients and the reduced matrix elements from table 8.

We are also happy to provide more details on request.

15In the notation from [46] one has Jm = L1, Λm = L2, `1 = J , and so on. Except for these minor

notation differences, our conventions are identical to theirs, and one can directly extract the double-barred

coefficients from the tables at the end of that paper.
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(L′1,L
′
2) TP1,P2,P3

L1,L2;L′1,L
′
2

(L1− 1
2 ,L2− 1

2)

(
(L1+L2−P1−1)(L1+L2+P1+3)(L1+L2−P2)(L1+L2+P2+2)(L1+L2−P3+1)(L1+L2+P3+1)

2(2L1+1)L2(L1+L2+1)(2L1+2L2+1)

)1/2

(L1− 1
2 ,L2+ 1

2) −
(

(L1−L2−P1−2)(L1−L2+P1+2)(L1−L2−P2−1)(L1−L2+P2+1)(L1−L2−P3)(L1−L2+P3)

2(2L1+1)(L2+1)(L1−L2)(2L1−2L2−1)

)1/2

(L1,L2) −
(

(P1+2)2(P2+1)2P3
2

(L1−L2)(L1−L2+1)(L1+L2+1)(L1+L2+2)

)1/2

(L1+ 1
2 ,L2− 1

2)

(
(L1−L2−P1−1)(L1−L2+P1+3)(L1−L2−P2)(L1−L2+P2+2)(L1−L2−P3+1)(L1−L2+P3+1)

2(2L1+3)L2(L1−L2+1)(2L1−2L2+3)

)1/2

(L1+ 1
2 ,L2+ 1

2) −
(

(L1+L2−P1)(L1+L2+P1+4)(L1+L2−P2+1)(L1+L2+P2+3)(L1+L2−P3+2)(L1+L2+P3+2)

2(2L1+3)(L2+1)(L1+L2+2)(2L1+2L2+5)

)1/2

Table 8. Reduced matrix elements appearing in (E.2).
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1 Introduction and overview

The study of scattering amplitudes in recent decades has led to tremendous advances in

both our understanding of quantum field theory and also our technical progress in com-

puting the predictions made for experiment. Much of this progress can be attributed to

the remarkable (and still surprising) simplicity of massless quantum field theories in four

dimensions. Any such theory turns out to possess a connection to Grassmannian geom-

etry [1–4] which has led to novel applications and greater understanding of perturbative

amplitudes for an expanding class of quantum theories. This is true despite the subtlety

involved in even defining the S-matrix for massless field theories! (But see [5, 6] for recent

progress on this problem.)

Many of the difficulties of working with massless quantum field theories can be post-

poned by focusing on loop integrands (‘the sum of Feynman diagrams’). At the integrand

level, there are several new and extremely powerful frameworks for expressing perturba-

tive scattering amplitudes of an increasingly general class of theories. These tools include

all-loop recursion relations [7, 8], bootstrap methods [9–11], Q-cuts [12], and the broad

reach of generalized [13–22] and prescriptive [23–29] unitarity. It remains to be seen, how-

ever, how much of the simplicity of integrands can survive loop integration. Considering

the extent to which the simplicity at the integrand-level arises specifically for theories of

massless particles in exactly four dimensions, and that it is precisely these features that

are responsible for infrared divergences whose regularization necessarily spoils them, it

– 1 –
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would not be surprising if much of this extra structure was lost to the infrared. Indeed,

it would be reasonable to be skeptical that anything remarkable would be found for the

actual infrared-safe quantities in which we are ultimately interested.

To test whether or not any of the niceness of amplitudes at the integrand-level survives

the wrath and fury (the infrared regularization) of loop integration, it would be reasonable

to simply ‘shut up and calculate’ — by any means necessary — and see what emerges in

the ‘[theoretical] data’, so to speak. Of course, this will always be easier to accomplish for

especially simple quantum field theories such as maximally supersymmetric (N =4) Yang-

Mills (‘sYM’) in the planar limit, for which the greatest computational leverage exists

(largely due to this theory’s special properties [30–35]).

There is a now-quite-famous example which illustrates what can be discovered through

such a ‘compute first, understand later’ strategy. It involves one of the simplest non-

constant and non-trivial infrared-safe quantities in planar sYM: the (BDS) remainder func-

tion for six particles at two-loop order. This quantity was determined through truly heroic

efforts, first numerically [20] and then analytically [36] — in both cases, starting from an

integrand-level expression obtained using unitarity-based methods; then regulating; then

integrating. Within months of the publication of the analytic result, however, breathtaking

simplicity was indeed found: the 18-page sum of hyperlogarithms in [36] could be written

in a single line [37]!

The ideas that led to the discovery of this simplicity would lead to a watershed of new

and powerful techniques developed hand-in-hand with even greater evidence of simplicity

surviving regularization and loop integration. Today, this particular quantity — the six-

particle remainder function in planar sYM — is known to seven(!) loops; and the seven-

particle remainder is known (at least at ‘symbol-level’) to four loops [38–49]. Interestingly,

after the two-loop result was found ‘the old fashioned way’ in [36] — namely, by integrating

Feynman integrands — all subsequent results were obtained using methods that made no

reference to loop integrands or loop integration whatsoever ! While these ideas have more

recently been applied to non-planar amplitudes in supersymmetric theories [50, 51] and

more broadly [51–60], they suffer from several fundamental limitations in applicability

— in multiplicity, in the understanding (and simplicity) of the kinds of transcendental

functions that arise in perturbation theory (including those described in e.g. [61]) — that

prevent these ideas from rewriting the methods taught in textbooks, say.

One of the key motivations for our present work is the question of how much simplicity

of loop integrands can be preserved through loop integration and regularization. Specifi-

cally, how can this bridge be crossed by direct and general methods — without reference

to any ansatz about the kinds of functions that may arise in particular cases. A key source

of hope that a more direct (and therefore general) connection between the remarkable inte-

grands for amplitudes in planar sYM [24–26] and the simple expressions that we now expect

to find for infrared-safe quantities is the is the existence of the regulator introduced in [24],

which allows infrared divergences to be regulated without breaking (dual-)conformal invari-

ance. Another critical source of optimism is the recent renaissance in direct-integration

technology for Feynman-parametric integrands [62–64] (see also [65, 66]).

– 2 –
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In this work, we test the robustness of this emerging bridge from integrands to inte-

grals in the highly non-trivial case of the seven-point remainder function at two loops. This

quantity was first determined at symbol-level in [67] (see also [68, 69]), and later upgraded

to a function-level result in [70]. Here, we start from the chiral integrand representa-

tion for the logarithm of the amplitude given in [23], use the conformal regulator of [24],

Feynman-parameterize these terms according to [71], and integrate each piece using the

technology of [62–64]. The result is a novel (if not superior) representation of the two-loop

remainder function, and a proof of concept that such a strategy can work. As a bonus,

by combining this result with that of [71] for six particles, we are able to determine all of

the scheme-dependent parts of the two-loop MHV-amplitude logarithm in the conformal

regularization scheme.

This work is organized as follows. We start in section 2 with a review of the local

integrands necessary for MHV amplitudes and their logarithms in planar sYM at two-loops

and how these integrands can be regulated while preserving dual-conformal invariance. In

section 3 we discuss how we can directly integrate each of the integrands needed for the

seven-particle logarithm, resulting in a representation in terms of explicit hyperlogarithmic

functions. Our main results regarding the heptagon remainder function are described

in section 4, where we determine the scheme-dependent parts of the logarithm of MHV

amplitudes in the conformal regularization scheme and compare these with what is found

for the Higgs regulator.

Available as supplementary material attached to this paper, we have prepared the

supplementary file heptagon logarithm seed data.m. This file contains: Feynman-

parametric integrands for the five (cyclic) seeds which generate the seven-point logarithm

at two loops; analytic expressions for each seed integral — given in terms of Goncharov

hyperlogarithms — obtained via direct integration; details regarding the novel alphabets

that arise for these integrals; and reference details regarding how our coordinates related

to those used by [70] in their representation of the two-loop heptagon remainder function.

2 Local integrands for (logarithms of) MHV amplitudes

In this section, we give a rapid review of the representation (in terms of local Feynman

integrals) of MHV amplitudes and their logarithms at two loops in the planar limit of

sYM. In [7] (see also the earlier work [20, 72, 73]), it was guessed (and checked) that the

n-particle MHV amplitude integrand could be represented as1

A(L=2)
n :=

1

2

∑
1≤a≤n
a<b<c<
d<n+a

, (2.1)

1Notice that we have dropped the typical notation indicating N(k=0)MHV degree in ‘A(L)
n ’, as no other

helicity sectors will be considered in this work.

– 3 –
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where the double-pentagons, herein ‘Ω
[
(a,b),(c,d)

]
’, have precise loop-dependent numer-

ators (indicated by the wavy-lines in the figure) expressed in terms of momentum

twistors [74]:

=: Ω
[
(a,b),(c,d)

]
(2.2)

:=
〈(̀ 1)(a−1aa+1)

⋂
(b−1bb+1)〉〈badc〉〈(̀ 2)(c−1cc+1)

⋂
(d−1dd+1)〉

(̀ 1|a)(̀ 1|a+1)(̀ 1|b)(̀ 1|b+1)(̀ 1|`2)(̀ 2|c)(̀ 2|c+1)(̀ 2|d)(̀ 2|d+1)
.

As usual, we are using the notations (a|b):= (xa − xb)2 where xa are the dual coordinates

related to the momenta through pa =:xa+1 − xa, and 〈abcd〉 := det(za, zb, zc, zd) for the

ordinary four-brackets of momentum twistors.

We should clarify that the factor of ‘1/2’ appearing in (2.1) is really a symmetry

factor : it accounts for the fact that the summand includes each contribution exactly twice

— provided we view the integrand in (2.2) as being (implicitly) symmetrized with respect

to `1 ↔ `2; in particular, this factor of 1/2 could be dispensed by an instruction to ‘delete

duplicates’ from the r.h.s. (something often left implicit in the relevant literature). As

Ω
[
(a,b),(c,d)

]
and Ω

[
(c,d),(a,b)

]
are identical upon integration, we consider them equivalent

(a.k.a. ‘duplicates’) — a potential source of confusion below, for which we apologize.

Notice that the definition of Ω
[
(a,b),(c,d)

]
depends on up to twelve momentum twistors

{za−1, za, za+1}∪{zb−1, zb, zb+1}∪{zc−1, zc, zc+1}∪{zd−1, zd, zd+1} , (2.3)

with cyclic labeling understood. Especially for low multiplicity, these indices can overlap

considerably. When it is necessary to disambiguate the multiplicity n, implicit in the

definition (2.2) above, we will signify this by writing ‘Ω(n)
[
(a,b),(c,d)

]
’.

Shortly after the formula (2.1) appeared in [7], a similar expression was derived in [23]

for the four-dimensional integrand of the two-loop logarithm of the MHV amplitude,

log
(
An
)(L=2)

= A(L=2)
n − 1

2

(
A(L=1)
n

)2
= −1

4

∑
1≤a<n
a<c<b<
d<n+a

Ω
[
(a,b),(c,d)

]
. (2.4)

(As before, the factor of ‘1/4’ above is merely a symmetry factor: the appropriate prefactor

would be 1 times each term in the summand without duplication.) Notice that the summand

in (2.4) now excludes the possibility that a+1= b and — more importantly — the summand

requires that c∈{a+ 1,. . . ,b− 1}.
It is instructive to see a few instances of equation (2.4). Without symmetry factors,

but being explicit about the fact that cyclic seeds should be summed only without duplica-

tion, and being very careful about which cyclic seeds necessitate clarification about when

multiplicity matters, the two-loop logarithms of MHV amplitudes for 4-8 particles are as

– 4 –
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follows:

log
(
A4

)(2)
= −

[
Ω(4)

[
(2,4),(3,1)

]
+ cyclic4

(no dupl.)

]
= −Ω(4)

[
(2,4),(3,1)

]
, (2.5)

log
(
A5

)(2)
= −

[
Ω(5)

[
(2,4),(3,5)

]
+ cyclic5

(no dupl.)

]
= −

[
Ω(5)

[
(2,4),(3,5)

]
+ cyclic5

]
, (2.6)

log
(
A6

)(2)
= −

[
Ω
[
(2,4),(3,5)

]
+ Ω(6)

[
(2,4),(3,6)

]
+ Ω(6)

[
(2,5),(3,6)

]
+ cyclic6

(no dupl.)

]
, (2.7)

log
(
A7

)(2)
= −

[
Ω
[
(2,4),(3,5)

]
+ Ω

[
(2,4),(3,6)

]
+ Ω

[
(2,5),(3,6)

]
+ Ω(7)

[
(2,4),(3,7)

]
+ Ω(7)

[
(2,5),(3,7)

]
+ cyclic7

(no dupl.)

]
,

(2.8)

log
(
A8

)(2)
= −

[
Ω
[
(2,4),(3,5)

]
+ Ω

[
(2,4),(3,6)

]
+ Ω

[
(2,5),(3,6)

]
+ Ω

[
(2,4),(3,7)

]
+ Ω

[
(2,5),(3,7)

]
+ Ω

[
(2,6),(3,7)

]
+ Ω(8)

[
(2,4),(3,8)

]
+ Ω(8)

[
(2,5),(3,8)

]
+ Ω(8)

[
(2,5),(4,8)

]
+ Ω(8)

[
(2,6),(4,8)

]
+ cyclic8

(no dupl.)

]
.

(2.9)

There are a couple of things to notice about these representations. First, observe that

for more than six particles the majority of cyclic seeds can be chosen to be independent

of n; therefore, these contributions remain unchanged beyond some threshold multiplicity.

The second thing to notice is that it is fairly easy to organize contributions according to

their degrees of infrared divergence:2

log2 -divergent: Ω
[
(2,4),(3,5)

]
only,

log1 -divergent: Ω
[
(2,4),(3,b)

]
for b > 5,

(2.10)

with all other integrals finite. In particular, notice that the only cyclic seed with a log2-

divergence is Ω
[
(2,4),(3,5)

]
and that this integral is n-independent once it is evaluated for

any n ≥ 6. We will return to the consequences of this fact momentarily.

To regulate these divergences, we employ the so-called ‘dual-conformal’ regulariza-

tion scheme introduced in [24], wherein each (massless) external particle is taken off the

lightcone by an amount proportional to the conformally-invariant parameter denoted ‘δ’

according to

p2a 7→ p2a + δ
(pa−1 + pa)

2(pa + pa+1)
2

(pa−1 + pa + pa+1)2
= (a|a+ 1) + δ

(a− 1|a+ 1)(a|a+ 2)

(a− 1|a+ 2)
. (2.11)

(There is an alternative definition of this regulator expressed in terms of dual-momentum

coordinates — where each dual coordinate xa is shifted by a small amount in the direction

of its cyclic neighbor, xa+1; these two definitions are not identical for finite δ, but they

result in regulated integrals equivalent to O(δ).)

2In dimensional regularization, ‘logk-divergent’ should be understood as ‘1/εk-divergent’.
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2.1 Specific contributions to the seven-point logarithm

As seven particles is the primary example of interest to us here, it is worthwhile to give

the five cyclic generators in (2.8) individual names. Let us therefore define

I1 := Ω
[
(2,4),(3,5)

]
, I2 := Ω

[
(2,4),(3,6)

]
, I3 := Ω

[
(2,5),(3,6)

]
,

I4 := Ω(7)
[
(2,4),(3,7)

]
, I5 := Ω(7)

[
(2,5),(3,7)

]
.

(2.12)

Notice that from our discussion above, only I1 will be log2-divergent in the infrared upon

integration, while {I2, I4} will be log1-divergent; the two seeds {I3, I5} are infrared finite,

and therefore do not require any regularization.

We will discuss how each of the contributions (2.12) can be evaluated in the following

section. But already now we can observe an important consequence of the fact that I1
depends exclusively on momentum twistors {z1, . . . , z6}: its evaluation will be the same for

seven particles as it was for six. More specifically, I1 is essentially identical to what was

computed (as part of what was called ‘I15’) in [71]

I1 :=

∫
d4`1d

4`2 I1 (2.13)

=
1

4

[
2ζ2 log2(δ)+6ζ3

[
log(δ)+1

]
− ζ22−2ζ2G0,1(1−w)+G0,0,0,1(1−w)−G0,1,0,1(1−w)

]
,

where

w :=
(3|5)(6|2)

(3|6)(5|2)
=
〈23 45〉〈56 12〉
〈23 56〉〈45 12〉

. (2.14)

Notice that we are reserving calligraphic symbols to denote integrands and italic symbols

to indicate integrals.

As I1 is the only cyclic seed with a log2-divergence for arbitrary n, it is wholly re-

sponsible for the leading divergence of the logarithm of MHV amplitudes at two loops.

The coefficient of this divergence is related to the (scheme independent) cusp anomalous

dimension, and the attentive reader can already see that (2.13) captures the right behavior.

We will see this in detail in section 4 below; but before we do, it is worthwhile to describe

how the other seven-point seeds have been evaluated analytically.

3 Feynman parameterization and direct integration

Following the strategy described in [71], it is straightforward to Feynman-parameterize and

regulate each of the contributions (2.12). For each of the double-pentagon integrals, this

will result in a rational, five-dimensional parametric integral representation of the form3

Ii :=

∞∫
0

[
d3~α

]
d2~β Ii

(
~α, ~β; {z1, . . . , z7}, δ

)
(3.1)

3We hope the reader will forgive our abuse of notation in using ‘Ii’ to denote both the loop-momentum-

space and Feynman-parametric integrands.
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In the integral above,
[
d3~α

]
:=d4~α δ

(
αj−1

)
(for any j) represents a projective, 3-dimensional

volume-form; while the β integrations are not taken to be projective. This distinction is

largely irrelevant due to the Cheng-Wu theorem [75]; but it reflects the way in which

the parametric representations were derived via [71], and we find it useful to keep this

information. In the supplementary material, we provide a parametric representation of

each of the seven-point integrals in (2.12).

3.1 (Cluster) coordinate charts for heptagon integrals

In (2.2) we have given the formula for Ω
[
(a,b),(c,d)

]
in terms of momentum twistors za ∈ P3

for a = 1, . . . , n that parameterize the kinematic space of n massless particles. As described

in detail in [65] a momentum-twistor parameterization is preferred over one expressed in

terms of dual-momentum x-coordinates, as twistor space immediately provides us with an

integrand that is rational in terms of an independent set of conformal variables.

It turns out that the default cluster coordinates on G+(4, n) of the Mathematica

package positroids [76] provide a very convenient chart for our present purposes. For a

more detailed discussion of these coordinates we again refer the reader to [65]. For seven

points, we can think of these coordinates as parameterizing seven momentum twistors

Z =:(z1 · · · z7) according to

Z({eia}):=

1 1 + e36 + e37 e36 + (1 + e26)e
3
7 e26e

3
7 0 0 0

0 1 1 + e26 + e27 e26 + (1 + e16)e
2
7 e16e

2
7 0 0

0 0 1 1 + e16 + e17 e16 + e17 e17 0
0 0 0 1 1 1 1

 ; (3.2)

or, if viewed as coordinates (maps from G+(4, 7) 7→ R6), the parameters {eia} correspond

to the conformal cross-ratios

e16 :=
〈1234〉〈1256〉
〈1236〉〈1245〉

, e26 :=
〈1235〉〈1456〉
〈1256〉〈1345〉

, e36 :=
〈1245〉〈3456〉
〈1456〉〈2345〉

,

e17 :=
〈1234〉〈1235〉〈1267〉
〈1236〉〈1237〉〈1245〉

, e27 :=
〈1236〉〈1245〉〈1567〉
〈1256〉〈1267〉〈1345〉

, e37 :=
〈1256〉〈1345〉〈4567〉
〈1456〉〈1567〉〈2345〉

.

(3.3)

3.2 Divide and conquer: parametric integration via various pathways

The seed integrands expressed in this way can be integrated in terms of hyperloga-

rithms [77–79] (e.g. using HyperInt [63, 64]) if there exists an order of the integration

variables in which the integrand is linearly reducible. Näıvely, however, this turns out not

to be the case for any of the integrals at hand: all require some minor ‘tricks’ of integration

analogous to those discussed in, for example, [65, 66, 71, 78, 80].

Among the integration techniques required are those that allow us to extract the

leading terms in the limit of δ→0+ (for the integrals which require regularization). We were

able to effectively use the methods discussed in [71]; we refer the reader to appendix B.1 and

the ancillary files of that work for a more thorough explanation and illustrative examples.

Of the two infrared finite integral seeds, only I5 required mild cleverness to integrate

directly. For this integral, a strategy which started along similar lines to that described

in [66] worked quite well. Specifically, starting from the Feynman-parametric integrand
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representation of the form (3.1) (provided in the supplementary material), we found that

the integrals over α2, β1, and β2 could each be performed rationally — i.e. without intro-

ducing any algebraic dependence on the remaining integration variables in the arguments

of the hyperlogarithms or their prefactors.

The (projective) two-fold parametric representation of I5 obtained in this way suffers

from a mild problem all-too familiar in these examples: integration in any one of the re-

maining variables would result in some terms with a square root depending (quadratically)

on the final integration variable. Such an obstruction is easy to overcome by changing vari-

ables (Euler substitution) as described in e.g. [78, 80]. But a better pathway to integration

turns out to exist: the individual terms of the two-fold parametric representation of I5 can

be divided into groups which separately avoid this issue with respect to integration in α4

or α1. This results in a final expression with fewer ‘spurious’ algebraic symbol letters —

to be discussed in the next section.

3.3 Refining the results of integration (removing spurious letters)

Following the strategies discussed above, it was fairly easy to obtain hyperlogarithmic

(regulated, if necessary) expressions for integrals {I1, . . . , I4}; but integration of I5 required

some cleverness, resulting in a representation of I5 that is considerably more complicated

in two key aspects: first, the representation we obtained for I5 was not manifestly pure in

the sense of [23, 81] — namely, it was expressed as a sum of hyperlogarithms with non-

constant (algebraic) coefficients; and second, it was expressed in terms of hyperlogarithms

with many (suspected to be ‘spurious’) algebraic branch points. Let us discuss each of

these complications in turn.

The first complication, regarding the non-manifest ‘purity’ of I5 turns out to be

straightforward to deal with. First, we should clarify why we expected I5 to be pure de-

spite its representation. Although the conformal regulator is known to spoil an integrand’s

purity (see the discussion in [71]), we strongly expect the logarithm of the amplitude (the

cyclic sum of all seeds) to be pure; as {I1, . . . , I4} were individually pure, it would require

considerable magic for impurities of I5 to cancel amongst themselves in the cyclic sum.

Setting aside our expectations about I5’s purity, it turns out to be fairly easy to test

whether or not any non-manifestly pure sum of hyperlogarithms is in fact pure. Suppose

that some non-manifestly pure sum of hyperlogarithms I({eia}) depending on parameters

{eia} is in fact pure; then we should be able to re-express it in terms of some basis of

hyperlogarithms {Gβ}:

I({eia}):=
∑
α

Rα({eia})Gα({eia})⇒
∑
β

cβGβ
(
{eia}

)
, (3.4)

where Rα are rational(/algebraic)-function prefactors, cβ are constants, and Gα, Gβ mul-

tiple polylogarithms. In order for (3.4) to be true, there would need to be some relations

among the functions Gα. Crucially, any such relations would necessarily be linear and have

constant coefficients — as all relations between multiple polylogarithms are expected to

preserve transcendental weight and not involve any rational functions of their arguments.
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Now suppose we were to Taylor-expand each coefficient Rα in (3.4) around some point

êia where all the Rα’s are non-singular. Then we would have

∑
α

 ∞∑
j=0

R(j)
α

(
eia − êia

)jGα({eia}) =
∑
β

cβGβ
(
{eia}

)
. (3.5)

Since all purported relations among the {Gα} are linear, this requires that the identity (3.5)

holds for each term in the Taylor series separately. In particular, it must hold at leading

order. Moreover, as each R
(0)
α is just some constant, this term in the left-hand side of (3.5)

is itself pure.

The above discussion shows that when an integral is in fact pure, any representation

like that on the l.h.s. of (3.4) can be replaced by series-expanding each coefficient to leading

order around any non-singular point, resulting in a manifestly pure representation. To test

whether or not an integral is in fact pure, we can simply evaluate both ends of this algorithm

numerically and check that they agree. For I5 we have checked in this way that it is in

fact pure, and have provided a manifestly pure representation (obtained in this way) in the

supplementary material.

The second complication about the representation of I5 obtained in the manner de-

scribed above (namely, divide and conquer) is that this method has a tendency to introduce

‘spurious’ branch points among terms (which cancel between the divided pieces). When

these spurious branch points are not rational in the variables {eia}, we know of no general

strategy to canonically eliminate them (as we would by choosing a fibration basis, for ex-

ample, had they been rational). Removing a dependence on spurious square roots from

polylogarithmic expressions is in general a difficult problem, and one we will not attempt

to solve here.

Although we have not found a representation for I5 free of spurious square-root branch

points, we are able to confirm that all non-rational branch points are indeed spurious. To

do this, we first compute the symbol [37, 82] of I5, resulting in an alphabet of 85 letters, 22

of which involve square roots. These algebraic letters appear in pairs of the form ρ±
√
σ,

which can be multiplied to generate root-free letters, leaving us with only 11 algebraic

letters to analyze.

These 11 spurious letters are not all independent. Unlike for symbols involving only

rational letters, merely factoring square-root letters is not enough to trivialize all identities

due to the absence of a unique factorization domain (for further discussion, see [66]).

Here we do not need to make use of the more mathematically sophisticated methods [66].

Instead, we simply observe that products of pairs of our remaining eleven letters can yield

letters that appear elsewhere in the symbol. By taking into account all such pairings, we

find six relations between the 11 letters, and imposing these results in a manifestly rational

symbol. This rationalized symbol for I5 can now be viewed as canonical, and consists of

47 letters (functions of momentum twistor cross-ratios).

From the symbol of I5, it would be possible to reconstruct a rational, hyperlogarithmic

representation — using essentially the same techniques by which the two-loop heptagon

remainder function was first obtained in [70] from its symbol, which in turn was first
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computed in [67] (see also [68, 69]). We choose not to pursue this for I5 because functional

reconstruction is not our goal here. Rather, we are interested in how far we may push

direct integration of local integrals. One can easily check that the representation we give

for I5 — despite its spurious letters — perfectly matches Monte Carlo integration.

4 The two-loop heptagon remainder function

We are now ready to describe the results of our analysis — to discover the form of the

(all-orders) relationship between the logarithm of the MHV amplitude and the so-called

‘BDS’ remainder function [20] in the conformal regularization scheme. Both for the sake of

comparison and in order to introduce some useful notation, let us first pause to review the

form of this relationship in the so-called ‘Higgs’ regularization scheme described in [83, 84].

4.1 Exempli gratia: Higgs-regulated (logarithms of) MHV amplitudes

At leading order in the coupling a := g2Nc/(8π
2), the MHV amplitude (divided by the tree)

and its logarithm are identical (in any regularization scheme ‘reg.’):

log
(
An,reg.

)
=:
∞∑
`=1

a` log
(
An,reg.

)(`)
= aA(1)

n,reg.+a
2

[
A(2)
n,reg.−

1

2

(
A(1)
n,reg.

)2]
+O(a3) . (4.1)

(Recall our convention that calligraphic symbols such as A denote integrands while italic

symbols such as A denote integrals.) As such, it is useful to first review the form of the

one-loop amplitude in the relevant regularization scheme.

For the Higgs regulator described in [83, 84], one loop MHV amplitudes take the form

A
(1)
n,Higgs =: − 1

4

[
n∑
a=1

log2
(

m2
a

(a|a+ 2)

)]
+ F

(1)
n,Higgs +O(m2

a) , (4.2)

where F
(1)
n,Higgs is the so-called4 ‘finite part’ of the one-loop amplitude in this scheme, and

where we have added an index ‘a’∈ [n] to distinguish between the various internal masses

m2
a (which are typically taken to be the same). Notice that we are using dual-momentum

notation where (a|b):= (xa − xb)
2 := (pa + . . . + pb−1)

2. It is worthwhile to consider the

direction along the Higgs branch where these masses scale according to

m2
a 7→ δ

(a− 1|a+ 1)(a|a+ 2)

(a− 1|a+ 2)
(4.3)

under which

A
(1)
n,Higgs 7−→

(4.3)
−1

4

[
n log2(δ)+log(δ) log(w1 · · ·wn)+

n∑
a=1

log2
(

(a|a+2)

(a|a+3)

)]
+F

(1)
n,Higgs+O(δ) ,

(4.4)

where the cross-ratio wa is given by

wa :=
(a|a+ 2)(a+ 3|a+ 5)

(a|a+ 3)(a+ 2|a+ 5)
. (4.5)

4It is so-called despite the fact that the leading term of (4.2) includes parts finite as m2
a→0.
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This is extremely similar to the form of the one loop amplitude in the conformal regular-

ization scheme. Before we get to that, however, let us first recall a few more facts about

the Higgs regulator and the form that the logarithm (4.1) takes in this scheme.

In [84], the all-order form of the logarithm (4.1) was represented according to the BDS

ansatz [85] as

log(An,Higgs) =: − γc(a)

16
A

(1)
n,Higgs+

G̃0(a)

2

n∑
a=1

log

(
m2
a

(a|a+2)

)
+nf̃(a)+C̃(a)+Rn(a)

7−→
(4.3)
− γc(a)

16
A

(1)
n,Higgs+

G̃0(a)

2

[
n log(δ)+

1

2
log(w1 · · ·wn)

]
+nf̃(a)+C̃(a)+Rn(a)

(4.6)

where γc(a) is the (scheme-independent) cusp anomalous dimension [86, 87]

γc(a) =:
∞∑
`=1

a`γ(`)c = 4a−4ζ2a
2+22ζ4a

3−
(

24ζ32 +4ζ23 +2ζ2 ζ4+ ζ6

)
a4+O(a5) , (4.7)

G̃0(a), f̃(a), C̃(a) are scheme-dependent functions of the coupling and Rn(a) is the remain-

der function [20]. In the Higgs regularization scheme these functions were determined

by [83, 84] to be

G̃0(a) = −ζ3a2 +O(a3), f̃(a) =
1

2
ζ4a

2 +O(a3), C̃(a) = −5

4
ζ4a

2 +O(a3) , (4.8)

at two-loop order. (See e.g. [88, 89] for more recent, higher-order results.)

With this comparison in mind, let us now return to the main purpose of this work and

describe the form the logarithm takes for the conformal regularization scheme.

4.2 Conformally-regulated (logarithms of) MHV amplitudes

Using the conformal regulator described in [24] the divergences of one-loop amplitudes take

a form strikingly similar to that of (4.4). In this scheme, the n-point MHV amplitude is

given by5

A
(1)
n,DCI := −

1

2

[
n log2(δ) + log(δ) log(w1 · · ·wn) + nζ2 + F

(1)
n,DCI

]
+O(δ) , (4.9)

where the cross-ratios wa are the same as those defined in (4.5) and

F
(1)
n,DCI =

[ bn/2c+1∑
b=4

Li2(1− u1,b) +
1

2
log(u1,b) log(v1,b)

]
+ cyclicn

(delete duplicates)

(4.10)

where the cross-ratios ua,b and va,b are given by

ua,b :=
(a+ 1|b)(b+ 1|a)
(a+ 1|b+ 1)(b|a)

, va,b :=
(a− 1|a+ 1)(a|a+ 2)(b− 1|b+ 1)(b|b+ 2)

(a− 1|a+ 2)(a|b)(b− 1|b+ 2)(b+ 1|a+ 1)
. (4.11)

5We have added a factor of 1/2 relative to [24] to match conventions for the coupling a.
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In terms of the regulated amplitude at one loop (4.9), it was suggested in [71] that the

conformally regulated logarithm (4.1) would take the form

log(An,DCI) =: − γc(a)

8
A

(1)
n,DCI+

Bδ(a)

2

[
n log(δ) + n+

1

2
log(w1 · · ·wn)

]
+ nf̂(a) + Ĉ(a) +Rn(a)

(4.12)

where Bδ(a):= 3ζ3a
2 +O(a3) is the so-called virtual anomalous dimension [90, 91], and the

functions f̂(a) and Ĉ(a) are analogous to f̃(a) and C̃(a) — which could not be disentangled

from each other knowing the logarithm for six particles alone.

In [71], the six-point logarithm was shown to take the form6

log(A6,DCI)
(2) =−ζ2A(1)

6,DCI+
3

2
ζ3

[
6log(δ)+6+

1

2
log(w1 · · ·w6)

]
− 49π4

720
+R

(2)
6 ; (4.13)

and for five particles, starting from representation given in (2.6), it is not hard to show

that7

log(A5,DCI)
(2) = −ζ2A(1)

5,DCI +
3

2
ζ3

[
5 log(δ) + 5 + log(w1 · · ·w5)

]
− 17π4

288
+R

(2)
5 . (4.14)

Combining this with our new result for seven particles,

log(A7,DCI)
(2) = −ζ2A(1)

7,DCI +
3

2
ζ3

[
7 log(δ) + 7 +

1

2
log(w1 · · ·w7)

]
− 37π4

480
+R

(2)
7 , (4.15)

allows us to conclude that, in the conformal regularization scheme,

f̂(a) = −1

2

(
ζ4 +

1

4
ζ22

)
a2 +O(a3) , Ĉ(a) = −1

2
ζ22a

2 +O(a3) . (4.16)

Although already mentioned in the introduction, it is worth pausing to note that, in

the representation of the logarithm (4.15), the remainder function R
(2)
7 numerically matches

the analytic expression derived in [70] from the symbol (from [67]).

4.3 Symbology and the alphabets of individual integral contributions

Interestingly, almost all of the seed integrals we compute contain symbol letters that are

not present in the full remainder function. The integral I1 is the only exception: it in fact

requires only the ordinary hexagon-function symbol alphabet. However, each of the other

integrals involve spurious (but rational) symbol letters. Specifically, each of {I2, I3, I4}
involve two ‘new’ letters relative to the remainder function, and I5 involves nine additional

letters (after all the simplifications described in subsection 3.3). In cyclic sum, however, all

these additional letters cancel — and quite nontrivially. For example, among these contri-

butions only the entire cyclic sum of
(
I2 + I3 + I4 + I5

)
is free of ‘spurious’ letters relative

to the 42 letter alphabet expected for heptagon functions [70] (see also [47–49, 92–96]). For

the sake of those readers interested in more details, we have provided the additional symbol

letters that arise for the cyclic seed integrals in the supplementary material attached to

this work.
6Nota bene: for six particles, (w1 · · ·w6) = (w1w2w3)2, with wi more familiarly denoted {u, v, w}.
7Nota bene: for five particles, wa = 1 for all a and R

(`)
5 = 0 for all `.
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5 Discussion

In this paper, we have computed the logarithm of the two-loop MHV amplitude at seven

points in planar, maximally supersymmetric (N =4) super Yang-Mills theory directly from

a local integrand representation. In doing so, we have shown that carefully preserving the

symmetries of the theory makes computations dramatically easier, even when using other-

wise traditional methods. However, these methods are still not optimal: as we have seen, is-

sues of linear reducibility make some of the integrals we find unsuitable for expansion into a

fibration basis (by known methods), resulting in a sometimes unnecessarily-spurious symbol

alphabet. It would be interesting to see whether other common methods (for example, dif-

ferential equations, or integration-by-parts reduction) can simplify this calculation further.

In using the dual conformal regularization of [71], we have checked the conjectures for

the scheme dependence of the logarithm of the amplitude put forward in that paper. It

would be interesting to check these conjectures at higher loop orders, and more generally,

to understand in detail the relationship between the conformal regulator and the Higgs

regulator.
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1. Introduction

Understanding the interplay between supersymmetry and inte-
grability in the AdS/CFT correspondence might hold the key to un-
derstanding the deeper reason for the integrability of the systems 
involved. Motivated by such considerations we will be pursuing a 
line of investigation which involves breaking the supersymmetry of 
N = 4 SYM in a simple way by introducing a domain wall, a co-
dimension one defect, separating two regions of space-time with 
different vacuum expectation values (vevs) for the scalar fields. To 
be more precise, we will assign vevs in a particular way to either 
five or to all six of the scalar fields on one side of the defect while 
keeping the vevs zero on the other side. In the language of in-
tegrability the defect can be described as a matrix product state 
or a boundary state [1] and for one of the set-ups the bound-
ary state has been found to be integrable [2], for the other one 
not [3], where the notion of integrability of a matrix product state 
was introduced in [4]. The string theory duals of these defect 
CFTs are two D3-D7 probe brane systems, named I and II, with 
non-vanishing background gauge field flux and instanton number 
respectively, cf. Table 1.

Our aim will be to calculate a non-local observable, the expec-
tation value of a Wilson line, running parallel to the defect, both 

* Corresponding author.
E-mail addresses: sara.bonansea@nbi.ku.dk (S. Bonansea), khalil903@gmail.com

(K. Idiab), kristjan@nbi.dk (C. Kristjansen), mvolk@nbi.ku.dk (M. Volk).

from the gauge theory- and the string theory perspective. A double 
scaling limit, invented for a related supersymmetric D3-D5 probe 
brane set-up in [5] and generalized to the two relevant D3-D7 
probe brane set-ups in [6] will allow us to compare the results 
of the two calculations. We remark that the gauge theory calcula-
tions are rather involved due to the non-vanishing vevs which mix 
color as well as flavor components of the N = 4 SYM fields but the 
perturbative framework necessary for the calculations has been set 
up in [7] and [8].

Earlier studies of Wilson loops in domain wall versions of N =
4 SYM have been limited to the supersymmetric and integrable 
case of the D3-D5 probe brane system. For the D3-D5 case using 
the perturbative set-up developed in [9,10], agreement between 
gauge and string theory calculations in the double scaling limit 
was found for a single Wilson line in [11,12], a pair of Wilson 
lines in [13] and a circular Wilson loop in [14], see also [15].

With the present work we are able to address AdS/dCFT while 
eliminating both supersymmetry and (boundary) integrability. In-
terestingly, we find agreement between the gauge- and string the-
ory result to two leading orders in the double scaling parameter 
for both of the non-supersymmetric set-ups and in particular both 
for the integrable and the non-integrable case.

Our paper is organized in the following simple way. In sec-
tion 2 we compute the expectation value of the Wilson line for 
our two defect set-ups from the gauge theory perspective where-
after in section 3 we perform the computations from the string 
theory perspective. Finally, section 4 contains our conclusion and 
outlook.

https://doi.org/10.1016/j.physletb.2020.135520
0370-2693/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Table 1
The probe brane configurations dual to the dCFT versions of N =
4 SYM theory considered in this paper and their corresponding 
double scaling (d.s.) parameters. The discussion of the integrability 
properties of the associated boundary states can be found in [2,3].

D3-D7 set-up I II

Supersymmetry None None

Brane geometry AdS4× S2 × S2 AdS4× S4

Flux/Instanton no. k1,k2
(n+1)(n+2)(n+3)

6

D.s. parameter λ

π2(k2
1+k2

2)

λ
π2n2

Boundary state Non-integrable Integrable

2. The gauge theory computation

2.1. The defect theories

The gauge theory duals of the two probe-brane setups of Ta-
ble 1 are obtained as defect versions of N = 4 SYM in which 
(some of) the scalar fields are assigned a non-vanishing vacuum 
expectation value for x3 > 0. The vevs are solutions to the classical 
equations of motion,

∇2φcl
i (x) =

[
φcl

j (x),
[
φcl

j (x),φcl
i (x)

]]
. (1)

For system I (cf. Table 1), the relevant solution to (1) with 
SO(3) × SO(3) symmetry is [6]

ϕcl
i (x) = − 1

x3

(
t(k1)

i ⊗ 1(k2) 0
0 0(N−k1k2)

)
, i = 1,2,3,

ϕcl
i (x) = − 1

x3

(
1(k1) ⊗ t(k2)

i−3 0
0 0(N−k1k2)

)
, i = 4,5,6.

(2)

Here the matrices t(k)
i constitute the k-dimensional irreducible rep-

resentation of the Lie algebra su(2) and we denote by 0(N−k1k2) the 
zero matrix of dimension (N − k1k2) × (N − k1k2). We will only 
need the explicit form of the diagonal matrix t(k)

3 ; its eigenvalues 
are

d j,k = 1

2
(k − 2 j + 1), j = 1, . . . ,k. (3)

For system II (cf. Table 1), the solution to (1) with SO(5) sym-
metry is given by [16,17]

φcl
i (x) = 1√

2x3

(
Gi6 0
0 0(N−dG )

)
, i = 1, . . . 5; φcl

6 (x) = 0. (4)

The matrices Gi6 together with Gij = −i 
[
Gi6, G j6

]
form the dG =

1
6 (n + 1)(n + 2)(n + 3) dimensional irreducible representation of 
the Lie algebra of SO(6). For the purpose of this paper, we only 
need an explicit representation of G56. This matrix can be taken to 
be diagonal [18]; its eigenvalues η j,n and the corresponding mul-
tiplicity μ j,n are

η j,n = −n

2
+ j − 1, μ j,n = j(n − j + 2), j = 1, . . . ,n + 1.

(5)

Note that for both systems, the classical solutions (2) and (4)
pertain to x3 > 0. The vevs for all other fields in N = 4 SYM are 
zero in this region. For x3 < 0, the vevs for all fields vanish.

We shall calculate the expectation value of the Wilson line per-
turbatively in λ at tree level and at one-loop, and in both cases 
consider only the leading order in respectively n and k1, k2 as 
n, k1, k2 → ∞. This is motivated by a string theory analysis [5,6], 
which introduced the following double scaling limits (d.s.l.)

Fig. 1. Diagrams at tree level and one-loop order. (Figure adapted from [12].)

I : λ → ∞, k1, k2 → ∞,
λ

π2
(
k2

1 + k2
2

) finite, (6)

II : λ → ∞, n → ∞,
λ

π2 n2
finite , (7)

where in case I also the ratio k2/k1 has to be taken finite. Impos-
ing the d.s.l. on the string theory side allows one to expand string 
theory observables, such the expectation value of the Wilson line, 
as a power series in the double scaling parameter and formally 
compare the result to a perturbative gauge theory computation.

2.2. Wilson line setup

As in [11,12], we consider a straight Wilson line parallel to the 
defect parametrized by γ (t) = (t, 0, 0, z), i.e. a straight line at a 
fixed distance z from the defect. For this case, the Wilson line is 
given by

tr U (α,β) = tr

⎡
⎣Pexp

β∫
α

dt A(t)

⎤
⎦ , (8)

with

A(I)(t) = i A0(t) − ϕ3(t) sin(χ) − ϕ6(t) cos(χ), (9)

A(II)(t) = i A0(t) − φ5(t) sin(χ) − φ6(t) cos(χ), (10)

for the two set-ups respectively. We will be interested in the gauge 
invariant infinite line given by

W = lim
T →∞ tr U

(
− T

2
,

T

2

)
, (11)

which is related to the physical particle-interface potential. In or-
der to compute the expectation value of the Wilson line, we ex-
pand the fields around the classical solution as

A(t) = Acl(t) + Ã(t). (12)

To one-loop order, the path-ordered exponential becomes

U (α,β) = U cl(α,β) +
β∫

α

dt U cl(α, t)Ã(t)U cl(t, β)

+
β∫

α

dt

β∫
t

dt′ U cl(α, t)Ã(t)U cl(t, t′)Ã(t′)U cl(t′, β) +O
(
Ã3
)

,

(13)

where U cl(α, β) is the path-ordered exponential for the classical 
solution. The corresponding diagrams are illustrated in Fig. 1 and 
the following subsections will be devoted to dealing with each of 
the terms.
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2.3. Tree-level

The tree level contribution is given by the first term of (13) and 
is now evaluated in the large T limit,

〈W 〉tree = lim
T →∞ tr Pexp

T /2∫
−T /2

dt Acl(t) (14)

= lim
T →∞

[
exp

(
TAcl

)]
i,i

, (15)

since the classical solutions are time-independent. In the large T
limit, only the largest eigenvalue of Acl contributes, which gives

〈W 〉tree = μexp
(

T
η

z

)
, (16)

where η/z is the largest eigenvalue of Acl and μ its multiplicity. 
For the first setup, we have 2η(I) = (k1 −1) sin(χ) + (k2 −1) cos(χ)

and μ(I) = 1. For the second setup, we have η(II) = n√
8

sin(χ) and 
μ(II) = (n + 1). We may thus write the tree level results as

〈W 〉(I)
tree = μ(I) exp

(
T

(k1 − 1) sin(χ) + (k2 − 1) cos(χ)

2z

)
, (17)

〈W 〉(II)
tree = μ(II) exp

(
T

n sin(χ)√
8z

)
. (18)

They lead to the following particle-interface potentials

V (I)
tree = − lim

T →∞
1

T
log 〈W 〉(I)

tree = −k1 sin(χ) + k2 cos(χ)

2z
, (19)

V (II)
tree = − lim

T →∞
1

T
log 〈W 〉(II)

tree = −n sin(χ)√
8z

, (20)

having taken the limit k1, k2 → ∞ in (19) as implied by the double 
scaling limit.

2.4. Lollipop

The focus of this subsection is the second term of (13), which 
involves the one-loop expectation value of Ã and which we call 
the lollipop contribution.

〈W 〉lol = lim
T →∞

〈
tr

T /2∫
−T /2

dt U cl (− T
2 , t

)
Ã(t)U cl (t, T

2

)〉
(21)

= lim
T →∞ T

[
eTAcl

]
i j

〈[
Ã
]

ji

〉
1−loop

, (22)

where we have used the fact that the expectation values are time 
independent. The one-loop corrections to the vevs for the two 
set-ups are given in [7,8]. Notice that as opposed to what was 
the case for the supersymmetric D3-D5 probe brane set-up [9,10], 
these corrections are non-vanishing. In the large T limit, only the 
components multiplying the fastest growing exponential will con-
tribute, which in both conventions is also the first component

〈W 〉lol = TμeTη/x3
〈[
Ã
]

11

〉
1−loop

. (23)

Given the one-loop correction to the vevs, we find

〈W 〉(I)
lol = −μ(I) λT eTη(I)/z

4π2z
(
k2

1 + k2
2

)3

(
k1k4

2 sin(χ) + k2k4
1 cos(χ)

)
,

(24)

〈W 〉(II)
lol = −μ(II) λT eTη(II)/z

4
√

8π2zn
sin(χ), (25)

having again taken the double scaling limit in (24).

2.5. Tadpole

As in [12], the third term of (13) is the least straight forward 
term to compute. However, the same techniques can be employed 
with just minor complications. The tadpole term is

U tad(α,β) =
β∫

α

dt

β∫
t

dt′U cl(α, t)Ã(t)U cl(t, t′)Ã(t′)U cl(t′, β).

(26)

The fields are all N × N matrices; decomposing them into the block 
structure given by the classical solutions (2) and (4) and writing 
out the matrix indices explicitly, we find

〈tr U tad(α,β)〉 =
β∫

α

dt

β∫
t

dt′〈[Ã(t)]μρ [Ã(t′)]ρμ〉 (27)

+
β∫

α

dt

β∫
t

dt′ [e(t′−t)Acl
]

cd
〈[Ã(t′)]dμ[Ã(t)]μc〉

+
β∫

α

dt

β∫
t

dt′ [e(β−α+t−t′)Acl
]

eb
〈[Ã(t)]bρ [Ã(t′)]ρe〉

+
β∫

α

dt

β∫
t

dt′ [e(β−α+t−t′)Acl
]

eb

[
e(t′−t)Acl

]
cd

〈[Ã(t)]bc[Ã(t′)]de〉.

For the first setup the latin indices run from 1 to k1k2 and the 
greek indices run from k1k2 + 1 to N , while for the second setup 
the latin indices run from 1 to dG and the greek indices run from 
dG + 1 to N . In the large N limit only the second and third term 
contribute, given the propagators found in [7,8]. We thus have

〈W 〉tad = lim
T →∞

T /2∫
−T /2

dα

T /2∫
α

dβ

[
e−(α−β)Acl + e(α−β+T )Acl

]
cd

〈[Ã]dμ(α)[Ã]μc(β)〉.
(28)

For both setups the propagator has the form

〈[Ã]dμ(α)[Ã]μc(β)〉 =
∑

n

Dn
dc

∑
i

λi,n K m2
i,n (α,β), (29)

where D is a diagonal prefactor and K m2
i,n is the spacetime part of 

the propagator given in (31) below. This means we have to perform 
integrals of the form

〈W 〉tad = lim
T →∞

T /2∫
−T /2

dα

T /2∫
α

dβ

[
e−(α−β)Acl + e(α−β+T )Acl

]
cd

∑
n

Dn
dc

∑
i

λi,n K m2
i,n (α,β). (30)

Following [12], we proceed by using the following representation 
of the propagator
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K m2
i (α,β) = g2

Y M z

4π2

∞∫
0

dr r
sin(δr)

δ
Iνi (rz)Kνi (rz), (31)

νi =
√

m2
i + 1

4
, (32)

having defined δ = β − α. We may now plug this back into (30), 
change variables α = δ − T /2, rescale r → r/z and do the β inte-
gration,

〈W 〉tad = g2
Y M

4π2z
lim

T →∞

T∫
0

dδ (T − δ)

∞∫
0

dr r
sin(δr/z)

δ

[
eδAcl + e(T −δ)Acl

]
cd

∑
n

Dn
dc

∑
i

λi,n Iνi,n (r)Kνi,n (r).

(33)

Integration by parts is performed on the r integration in order to 
cancel the 1

δ
such that the integration over δ can be carried out,

〈W 〉tad = g2
Y M

4π2z2
lim

T →∞

T∫
0

dδ (T − δ)

[
eδAcl + e(T −δ)Acl

]
cd

(34)

∑
n

Dn
dc

∞∫
0

dr cos(δr/z)

∞∫
r

dr′r′∑
i

λi,n Iνi,n (r
′)Kνi,n (r

′).

Using this antiderivative makes the boundary term vanish at infin-
ity, whilst the sin(δr/z) part makes the boundary term vanish at 
r = 0. We can now perform the δ integration. In the large T limit 
we have

T∫
0

dδ (T − δ)

[
eδAcl + e(T −δ)Acl

]
cd

∑
n

Dn
dc cos(δr/z)

= μeηT /z T z
η

η2 + r2

∑
n

Dn
1,1, (35)

since for our two setups the largest eigenvalue of D coincides with 
the largest eigenvalue of Acl . We use this result in (34),

〈W 〉tad = μ
g2

Y M T eηT /z

4π2z

∞∫
0

dr
η

η2 + r2

∑
n

Dn
1,1

∞∫
r

dr′ r′∑
i

λi,n Iνi,n(r
′)Kνi,n (r

′). (36)

It is here and in the following implicit that T is large. We will 
now perform the r′ integration in the double scaling limit and for 
convenience we define the functions A and F

A(r) =
∞∫

r

dr′ r′∑
i

λi,n Iνi,n (r
′)Kνi,n (r

′) (37)

= −
∑

i

λi,n Fνi,n(r) + lim
r′→∞

∑
i

λi,n Fνi,n (r
′), (38)

Fνi,n (r) =
r∫

0

dr′ r′ Iνi,n(r
′)Kνi,n (r

′). (39)

By doing the integral from (39), we find Fνi,n (r) to be

Fνi,n (r) = − νi,n

2
+ 1

2

(
r2 + ν2

i,n

)
Iνi,n (r)Kνi,n (r)

− 1

2
r2 I ′νi,n

(r)K ′
νi,n

(r). (40)

In the double scaling limit, we can use the behavior of the Bessel 
functions at large order and finite argument [19] and find

Fνi,n (r) = −νi,n

2
+ 1

2

(
ν2

i,n + r2
)1/2 +O

(
ν−1

i,n

)
. (41)

We note that A(r) is divergent unless 
∑

i λi,n = 0, but by properly 
bunching our terms we can show that this condition is satisfied. 
Then, we find

A(r) = −1

2

∑
i

λi,n

(
ν2

i,n + r2
)1/2 +O

(
ν−1

i,n

)
. (42)

This result is now plugged into (36) and the final integral is per-
formed

〈W 〉tad = −μ
g2

Y M T eηT /z

8π2z

∑
n

Dn
1,1 (43)

∞∫
0

dr
η

η2 + r2

∑
i

λi,n

(
ν2

i,n + r2
)1/2

= −μ
g2

Y M T eηT /z

16π2z

∑
n

Dn
1,1 (44)

∑
i

λi,n

[
2
√

ν2
i,n − η2 arccot

(
η√

ν2
i,n−η2

)
− η log

(
ν2

i,n

)]
,

where we again used 
∑

i λi,n = 0 in the second line. We finally 
plug in the coefficients for the first setup, let k2 = k1 tan(ψ0) and 
take the large k1 limit

〈W 〉(I)
tad = −μ(I) λT eTη(I)/z cos(ψ0)

4π2z k1

sin2(ψ0 + χ)

4 cos3(ψ0 + χ)

(2ψ0 + 2χ − π + sin(2ψ0 + 2χ)) , (45)

notice that cos(ψ0)/k1 = (
k2

1 + k2
2

)−1/2
gives the combination ap-

pearing in the double scaling parameter. For the second setup in 
the large n limit we find

〈W 〉(II)
tad = −μ(II) λT eTη(II)/z

4
√

8π2zn

sin2(χ)

cos3(χ)
(2χ − π + sin(2χ)) . (46)

2.6. Full one-loop result

The full one-loop result is now obtained by adding the lollipop 
and the tadpole contribution

〈W 〉(I)
1−loop

= −μ(I) λT eTη(I)/z cos(ψ0)

4π2zk1

[
cos(χ) sin(ψ0) cos4(ψ0)

+ sin(χ) cos(ψ0) sin4(ψ0)

+ sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(2ψ0 + 2χ − π + sin(2ψ0 + 2χ))

]
,

(47)

having also expressed the lollipop contribution in terms of ψ0 =
arctan(k2/k1). For the second setup we have
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〈W 〉(II)
1−loop = −μ(II) λT

4π2n

eTη(II)/z

√
8z[

sin(χ) − sin2(χ)

cos3(χ)
(π − 2χ − sin(2χ))

]
. (48)

The corresponding correction to the particle-interface potential is 
given by

V 1−loop = − lim
T →∞

1

T

〈W 〉1−loop

〈W 〉tree
, (49)

which concludes the gauge theory computation with the following 
results:

V (I)
1−loop = V (I)

tree

(
λ

π2
(
k2

1 + k2
2

)
)

1

2 sin(ψ0 + χ)
(50)

[
sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(π − 2ψ0 − 2χ − sin(2ψ0 + 2χ))

− cos(χ) sin(ψ0) cos4(ψ0) − sin(χ) cos(ψ0) sin4(ψ0)

]
,

V (II)
1−loop = V (II)

tree

(
λ

π2n2

) [
sin(χ)

4 cos3(χ)
(π − 2χ − sin(2χ)) − 1

4

]
.

(51)

3. The string theory computation

As summarized in Table 1, we will be considering two different 
D3-D7 probe brane systems. In the set-up I, the probe D7-brane 
has geometry AdS4 × S2 × S2, and a background gauge field has k1
and k2 units of magnetic flux through the two S2 spheres, respec-
tively. In the second configuration, II, the D3-branes are intersected 
by a (small) number of D7-branes with AdS4 × S4 geometry and a 
background gauge field supports a non-vanishing instanton num-
ber on S4. In both cases, the system is stabilized for sufficiently 
large values of the flux or instanton number.1

It is convenient to write the AdS5 × S5 metric in two different 
ways, depending on the D7 geometry that we are considering

ds2
I = 1

y2

(
dy2 + dxμdxνη

μν
)

+ dψ2 + cos2 ψ d�2
S2

+ sin2 ψ d�̃2
S2 , (52)

ds2
II = 1

y2

(
dy2 + dxμdxνη

μν
)

+ dψ2 + cos2 ψ d�2
S4 , (53)

where d�2
S2 and d�̃2

S2 are the metrics of the two S2 spheres 
and d�2

S4 denotes the metric of the S4 inside the S5. In both 
cases xμ = (x0, x1, x2, x3) and the boundary of AdS5 is located at 
y = 0. In the set-up I, the D7-brane has world volume coordinates 
(x0, x1, x2, y, �S2 , �̃S2 ), while in the configuration II the D7-branes 
wrap the four-sphere and extend in the (x0, x1, x2, y) directions. 
The embedding of the D7 in the target space is given by [16,20,6]

I: y = x3

�I
, �I = f1 f2√

( f 2
1 + 4 cos4 ψ)( f 2

2 + 4 sin4 ψ) − f 2
1 f 2

2

,

(54)

where f1,2 = 2πk1,2√
λ

and the angle ψ has to satisfy

1 We notice that the perturbative regime for the double scaling parameter, con-
sidered in the gauge theory computations, lies within the region of stability of the 
probe brane systems [7,8].

Fig. 2. The minimal surface corresponding to the Wilson line for the set-up II. In 
the AdS5 factor, the minimal surface (green) stretches from the Wilson line (black) 
on the boundary (red) to the D7 brane (blue). In the S5 factor, it stretches from 
the S4 wrapped by the D7-brane (blue) along the perpendicular direction for an 
angular extent of π

2 − χ . For the set-up II, the minimal surface in the AdS part of 
the geometry looks similar whereas in the spherical part it is somewhat different, 
cf. eqns. (52), (53). (Figure adapted from [12].)

( f 2
1 + 4 cos4 ψ) tan2 ψ = ( f 2

2 + 4 sin4 ψ) , (55)

II: y = x3

�II
, ψ = 0, (56)

when n → ∞ : �II ∼ πn√
2
√

λ
−

√
λ

4
√

2πn
+O

(
λ3/2

π3n3

)
.

In both cases, the D7-brane intersects AdS5 along an AdS4 hyper-
plane, tilted with respect to the boundary y = 0 at an angle that 
depends on �I or �II . In the supergravity limit λ → ∞, following 
the idea of [21–23], the Wilson line expectation value is described 
by the area of a minimal surface stretching from the boundary of 
AdS5 to the D7-brane in the interior. Notice that the minimal sur-
face attaches to the D7-brane along a straight line in its AdS part 
as well as along an arc in its spherical part, cf. Fig. 2.

We parametrize the worldsheet using coordinates (τ , σ) with 
τ ∈ [− T

2 , T
2 ] and σ ∈ [0, σ̃ ]. For the straight Wilson line (parallel 

to the defect) we make the following ansatz for the embedding of 
the string [11,13]

t = τ , y = y(σ ), x3 = x3(σ ) and ψ = ψ(σ ). (57)

A new feature in the defect set-up is that the extremal surface has 
to satisfy two different sets of boundary conditions. At the bound-
ary of AdS5, which is approached when σ → 0, the usual Dirichlet 
boundary conditions must be imposed

y(0) = 0, x3(0) = z and ψ(0) = π

2
− χ . (58)

The second set of boundary conditions ensures that the extremal 
surface intersects the boundary brane at σ̃ orthogonally

I: y(σ̃ ) = x3(σ̃ )

�I
, y′(σ̃ ) + �Ix

′
3(σ̃ ) = 0, ψ(σ̃ ) = ψ1, (59)

II: y(σ̃ ) = x3(σ̃ )

�II
, y′(σ̃ ) + �IIx

′
3(σ̃ ) = 0, ψ(σ̃ ) = 0 , (60)

where σ̃ is the maximum value of the worldsheet coordinate σ
and ψ1 has to satisfy eq. (55) and ψ1 ∈ [0, π/2]. The construction 
of the solution follows the idea of [11]. The Euclidean Polyakov 
action in conformal gauge reduces to

S = 1

4πα′

∫
dτdσ

1

y2

(
1 + y′2 + x′2

3 + y2ψ ′2) . (61)

The Euler-Lagrange equations of motion for the action (61) must 
be combined with the Virasoro constraint

y′2 + x′2
3 + y2ψ ′2 = 1. (62)
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Since the coordinates x3 and ψ are cyclic variables, cf. (61), their 
equations of motion immediately translate into two conservation 
laws

x′
3(σ ) = −cy2(σ ) and ψ ′(σ ) = j, (63)

where j and c are two integration constants to be determined. The 
equation of motion for y(σ ) is given by

yy′′ − y′2 + 1 + c2 y4 = 0 . (64)

Using the Virasoro constraint we get the following first order dif-
ferential equation for y′(σ )

y′ =
√

1 − j2 y2 − c2 y4 . (65)

The solutions to eqs. (63) and (65) are2

y(σ ) =
√

m + 1

j2
sn

⎛
⎝
√

j2

m + 1
σ

∣∣∣∣∣∣m

⎞
⎠ , (66)

x3(σ ) = z −
√

−m + 1

m j2

[
E

(
am

(√
j2

m + 1
σ ,m

)
,m

)

−
√

j2

m + 1
σ

]
, (67)

ψ(σ ) = jσ + π

2
− χ , (68)

where to determine the form of the solutions we have used the 
boundary conditions at σ = 0. The parameter m is the elliptic 
modulus and it ranges from 0 to −1. The boundary conditions on 
σ̃ fix the remaining parameters (σ̃ , j, m) in terms of the geomet-
rical data (z, �I or �II, χ)

I : σ̃ = 1

j

(
ψ1 + χ − π

2

)
, 0 ≤ ψ1 + χ ≤ π

2
, (69)

II : σ̃ = 1

j

(
χ − π

2

)
, 0 ≤ χ ≤ π

2
, (70)

j2 =
⎛
⎝�

z

√
m + 1 sn

⎛
⎝
√

j2

m + 1
σ̃

∣∣∣∣∣∣m

⎞
⎠+

+
√

m + 1

z
√−m

[
E

(
am

(√
j2

m + 1
σ̃ ,m

)
,m

)

−
√

j2

m + 1
σ̃

])2

, (71)

�I, (II) =
cn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
dn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
√−m sn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)2
. (72)

Choosing the convention in which σ̃ is positive, for the value of 
the angles considered in (69) and (70), j has to be negative.
The area of the minimal surface is obtained by evaluating the 
Polyakov action on the classical solution. As usual, one has to in-
troduce a cut-off ε in the y coordinate such that the regularized 
area is given by an integral in the region y ≥ ε and then remove 

2 Our notation for elliptic functions and integrals follows that of the Wolfram 
Language of Mathematica.

the divergent piece before comparing to the field-theory computa-
tion. The expression for the regularized action is

SI, (II) =
√

λT

2π

√
j2

m + 1

⎡
⎣
√

j2

m + 1
σ̃I, (II)−

− E

⎛
⎝am

⎛
⎝
√

j2

m + 1
σ̃I, (II)

∣∣∣∣∣∣m

⎞
⎠
∣∣∣∣∣∣m

⎞
⎠−

−
cn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
dn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)

sn

(√
j2

m+1 σ̃I, (II)

∣∣∣∣m

)
⎤
⎥⎥⎦ . (73)

We can rewrite SI, (II) in a more compact form using eq. (71) to 
replace the incomplete elliptic integral of the second kind and 
noticing that

y′(σ̃ ) = cn

⎛
⎝
√

j2

m + 1
σ̃I, (II)

∣∣∣∣∣∣m

⎞
⎠dn

⎛
⎝
√

j2

m + 1
σ̃I, (II)

∣∣∣∣∣∣m

⎞
⎠ , (74)

we get

SI, (II) = −
√

λT

2π
z c , (75)

where c = j2 √−m
m+1 . To compare the supergravity and the gauge the-

ory results, we have to expand our results in the double scaling 
parameter given in eqns. (6) and (7). One can get the expansion 
for �I in powers of λ

π2(k2
1+k2

2)
looking at its definition in eq. (54). 

Notice that eq. (55) is satisfied in the large flux limit if

ψ1 = ψ0 + cosψ0(sinψ0 − sin 3ψ0)

4π2

λ

k2
1 + k2

2

+O
(

λ2

π4
(
k2

1 + k2
2

)2

)
, (76)

where tan ψ0 = k2
k1

. Thus, the expansion for �I is

�I =
√

k2
1 + k2

2

λ
π − sin2 2ψ0

8π

√
λ

k2
1 + k2

2

+O
(

λ

π2(k2
1 + k2

2)

)
.

(77)

The double-scaling expansion for �II can be read off from eq. (56). 
Notice that in this limit also �I,II have to be large. Namely, we re-
quire that the denominator in eq. (72) vanishes. This occurs when 
m goes to zero. Moreover, we can assume the following expansion 
for m

m =
∞∑

l=1

a2l

�2l
I,II

, (78)

in such a way that eq. (72) is satisfied. The coefficient in the above 
expansion can be determined by solving iteratively equation (72). 
In the end, we get the following expansions for the particle-defect 
potential in the two different cases I and II

V (I) = −k1 sin(χ) + k2 cos(χ)

2z

{
1 + λ

π2
(
k2

1 + k2
2

) 1

2 sin(ψ0 + χ)[
sin2(ψ0 + χ)

4 cos3(ψ0 + χ)
(π − 2ψ0 − 2χ − sin(2ψ0 + 2χ))
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− cos(χ) sin(ψ0) cos4(ψ0) − sin(χ) cos(ψ0) sin4(ψ0)

]

+O
(

λ2

π4(k2
1 + k2

2)
2

)}
, (79)

V (II) = −n sin(χ)

2
√

2z

{
1 + λ

π2n2

[
sin(χ)

4 cos3(χ)
(π − 2χ − sin(2χ))

− 1

4

]
+O

(
λ2

π4n4

)}
. (80)

We thus find perfect agreement with the field theory results to 
two leading orders in the double scaling limit. Notice also that 
when ψ0 → 0 (namely k2/k1 → 0), the expansion for the action 
in (79) reduces to the result for the Wilson line in the D3-D5 
case [11,12]. For the set-up II the correction to the potential looks 
similar to the one of the D3-D5 brane case up to a replacement 
of n by 

√
2k. This is a peculiarity of the one-loop approximation 

where only the first term in the expansion in eqn. (56) contributes, 
and it will not remain true at higher loop orders. Finally, we men-
tion that for the set-up I there is no particular point of symmetry 
where the potential vanishes. This is due to the fact that for set-
up I all scalar fields get vevs, and it is not possible to choose a 
direction on the sphere which is unaffected by these.

4. Conclusion and outlook

Our investigation of Wilson lines provides an example that the 
AdS/dCFT dictionary for non-local observables remains valid upon 
breaking of both supersymmetry and (boundary) integrability. In 
addition, it serves as an important consistency check of the pertur-
bative framework that was set up in references [7,8] for the dCFTs 
involved. We stress that having a perturbative framework for these 
defect CFTs is indispensable as these theories, due to the lack of 
supersymmetry, are not amenable to methods such as localization. 
For other defect versions of N = 4 SYM, conserving part of the 
supersymmetries, such as the D3-D5 probe brane model, impor-
tant progress on the use of localization has recently been made in 
[26].

With the perturbative framework and the AdS/dCFT dictionary 
in place, possibilities for further scrutiny of the present defect CFTs 
open up. F.inst. one can scan the parameter spaces of the mod-
els for the presence of Gross-Ooguri like phase transitions [24]
as it was done for the supersymmetric D3-D5 probe brane set-
up in [15,14,25]. It would likewise be interesting to study the 
transport properties of the various defect CFTs, supersymmetric or 
not, by calculating correlation functions of the stress energy tensor 
across the defect or other related quantities.
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1 Introduction

While it was initially hoped that the integrals which appear in computations in planar

N = 4 SYM are expressible in terms of generalized polylogarithms, it has by now become

clear that this is not the case.1 Not only are the generalized polylogarithms insufficient

but, by any reasonable measure, most of the integrals in N = 4 SYM seem to require more

complicated classes of functions, which are as of yet very poorly understood.

One class of integrals which is relatively well-understood is the class of pure integrals.

These integrals have leading singularities (see ref. [3]) which are pure numbers such as 0 or

±1. In all known examples they are computable in terms of generalized polylogarithms.

Recall that to obtain leading singularities one takes residues in the propagators of the

integral. Doing so, Jacobian factors are generated in which one can often take further

residues. If we start with an integral with fewer propagators than integration variables,

two things can happen. Either one can generate enough Jacobian factors to take residues

in, so that the integral localizes, or not. If the integral does not localize, then the process

1Work on the Kontsevich conjecture by Belkale and Brosnan [1] had given good reasons to be pes-

simistic. More recently, Brown and Schnetz [2] have given explicit examples in φ4 theory, which contain K3

geometries.
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of taking residues ends with a holomorphic form. This form may however develop poles

for special kinematics.

The leading singularity locus, when it is not a set of points, turns out to be an in-

teresting variety of Calabi-Yau type. The discussion above makes it plausible that one

is more likely to find integrals which do not localize if we consider examples with as few

propagators as possible. Since triangles are not possible in a dual-conformal expansion in

planar N = 4 SYM, the examples we consider are box integrals. As it turns out, ladder

integrals are computable in terms of classical polylogarithms (see ref. [4]). The simplest

integral which can not be localized by taking residues is the elliptic double box integral,

studied in refs. [5, 6]. It is part of a family of integrals, called traintrack integrals (see

figure 1). There are many other examples in the literature, where Calabi-Yau geometries

have been identified in loop integrals, see e.g. [2, 7–14].

The traintrack integrals were studied in ref. [15]. This reference studied three- and four-

loop integrals using Feynman parametrization. The leading singularity loci were defined

as hypersurfaces in various weighted projective spaces, whose coordinates were related to

the Feynman parameters of the original integral. The constructions in ref. [15] were pretty

involved, in that they required complicated changes of variables which did not seem to fit

a pattern that could be generalized to all loops.

In this paper we study the leading singularity locus by using the momentum twistor

description of the traintrack integrals. Momentum twistors were introduced by Hodges [16]

in order to make the dual conformal symmetry [17–19] more manifest. The translation from

momentum space to twistor space proceeds as follows. Given a planar Feynman integral

such as the one in figure 1, we introduce dual coordinates x`i for each loop and xi for each

external region. Under the twistor correspondence, each of these dual points corresponds

to a projective line P1 inside a P3 space. This P3 is called momentum twistor space. Under

this dictionary, the action of the conformal group on the dual space with coordinates x

becomes the familiar PSL(4) action on P3.

Two dual points are light-like separated if their corresponding lines in momentum

twistor space intersect. This simple geometric fact, which is manifestly invariant under

PSL(4) transformations, will be central to our discussions below. Indeed, the leading

singularity locus is obtained by imposing a number of light-like conditions between the dual

points. Using the momentum twistor constructions these constraints yield a configuration

of intersecting lines, which is much easier to describe than the set of quadratic equations

which one has to solve in momentum space or dual space.

Another advantage of the momentum twistor description is that it automatically picks

for us a compactification and complexification of the dual space which is compatible with

the dual conformal symmetry. The complexification is essential as well since all the varieties

we will describe below are complex varieties.

Our analysis is similar in spirit to the analysis done by Hodges [20] for the one-loop box

integral. The one-loop box example is however much simpler, since its leading singularity

locus is a set of two points.

In this paper we obtain the following results. We describe the leading singularity locus

of the elliptic double box as an intersection of two quadrics in P3. We compute the j-
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Figure 1. The traintrack integrals.

invariant of this intersection and compare with the answer obtained in ref. [6]. Next, we

analyze the three-loop case and we identify the leading singularity locus with a K3 surface.

The K3 surface is described as a branched surface over the union of two genus-one curves in

P1×P1. We compute its Euler characteristic and the number of moduli. Then, we analyze

the leading singularity locus in the four-loop case. We obtain a Calabi-Yau three-fold which

can be realized as a complete intersection. We analyze its topology using the methods of

Batyrev and Borisov. Finally we end with short discussions of the higher-loop cases and

of the supersymmetrization.

2 Two loops: the elliptic double box

2.1 Construction

We consider the two-loop traintrack diagram, i.e. the two-loop version of the class of di-

agrams depicted in figure 1. Its leading singularity is determined as follows. There are

three dual points x1, x2, x3 corresponding to the left loop and three dual points x4, x5, x6
corresponding to the right loop. The left loop internal dual point x`1 has to be light-like

separated from the three dual points x1, x2, x3. The right loop internal dual point x`2 has

to be light-like separated from the three dual points x4, x5, x6. Finally, the points x`1 and

x`2 have to be light-like separated.

In momentum twistor space this can be described as follows. To each dual point xi
we associate a line Ai ∧ Bi in momentum twistor space P3. Two dual points are light-like

separated if their corresponding lines in P3 intersect. At first, we assume that all the lines

corresponding to external dual points are skew (do not meet in P3). When some of these

lines intersect, the geometry simplifies.

Given three skew lines, there is a one-dimensional family of lines which intersect all of

them. This can be seen by using several fundamental results about quadrics in P3. The

first fact is that three skew lines uniquely determine a non-singular quadric Q. The second

fact is that a non-singular quadric Q in P3 contains two families of lines where the lines

in a given family are skew while two lines in different families always intersect. Finally,

– 3 –
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x`

x1

x2

x3

Figure 2. Relationship between the endcap of the traintrack and the quadric.

through a given point passes a unique line from each family of lines. Such families of lines

on a quadric are called rulings.

More concretely, given three skew lines Ai∧Bi for i = 1, 2, 3, the quadric they determine

can be written as

Q(Z) = 〈ZA1B1A3〉〈ZA2B2B3〉 − 〈ZA1B1B3〉〈ZA2B2A3〉. (2.1)

Here Z, Ai and Bi are points in P3 and 〈ABCD〉 = det(A,B,C,D) is the usual four-bracket

of momentum twistors. The three lines appear symmetrically, but this is not manifest in

the formula above. Using Plücker relations one can show that the symmetry holds.

Then, to the dual points x1, x2, x3 neighboring the left loop we can associate a quadric

QL and to the points x4, x5, x6 neighboring the right loop we can associate a quadric QR;

cf. figure 2. Next, consider the intersection C := QL ∩ QR ⊂ P3 of these two quadrics,

which is a curve. To each point on C we can associate a line in QL which intersects all the

three lines determining QL. This line corresponds to the interior dual point x`1 of the left

loop. Similarly, through the same point of C we can construct a line which intersects all

the lines in QR corresponding to the interior dual point x`2 . The line in QL and the one in

QR intersect in a point in C so their corresponding dual points are also light-like separated

as required for the leading singularity.

The intersection of two quadrics in P3 is a genus-one algebraic curve, see figure 3.

We can connect this construction to the more familiar picture of a cubic curve in P2 as

follows: without loss of generality, we can take the point [X0 : X1 : X2 : X3] = [0 : 0 : 0 : 1]

to belong to both quadrics. Then the equations for the two quadrics can be written as

QL = X3LL +ML, QR = X3LR +MR, (2.2)

where LL and LR are of homogeneous of degree one and ML and MR are homogeneous

of degree two in X0, X1 and X2. When eliminating X3, we obtain LLMR − LRML = 0,

which is a cubic in P2.

– 4 –
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Figure 3. Two intersecting quadrics. Their intersection is the genus-one curve C in the elliptic

double box.

2.2 Analysis of the two-loop leading singularity locus

Having constructed a genus-one curve C as the intersection of two quadrics in P3, we now

proceed to analyze its properties.

The holomorphic differential one-form on the curve can be found by taking Poincaré

residues,

ωC = ResQL
ResQR

ωP3

QLQR
. (2.3)

Here ωP3 is the PSL(4)-invariant, weight-four holomorphic three-form on P3. The quadrics

QL and QR both have weight two so that the ratio
ωP3

QLQR
is invariant under rescaling of

the homogeneous coordinates of P3. Then, we take two Poincaré residues which yields a

one-form localized on C. This is in fact the unique holomorphic one-form on C so the curve

C is indeed a genus-one curve. A genus-one curve is characterized by only one modulus,

which can be taken to be its j-invariant.

We can also see that there is only one modulus by counting parameters as follows:

there are six dual points, each with four coordinates. From this, we need to subtract the

dimension of the four-dimensional conformal group, which is 15. In total we obtain 6×4−
15 = 9, assuming the conformal group acts effectively. However, there are configurations of

the three skew lines in the left quadric which generate the same quadric. Indeed, consider

a line inside QL which intersects all the lines which determine QL. We can displace any

of these three lines along the chosen line without changing QL. Hence, there is a three-

dimensional space of three skew lines which parametrize the same quadric QL. The same

holds for QR. Moreover, the same curve C can be obtained by considering any two members

– 5 –
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of the so-called pencil of quadrics generated by QL and QR.2 In other words, instead of

using QL and QR we can use linear combinations of them, λLQL+λRQR and µLQL+µRQR,

where [λL : λR] and [µL : µR] are homogeneous coordinates on a projective line. This

amounts to two extra parameters which do not appear in the moduli of C. In the end, C

has 9− 3− 3− 2 = 1 moduli.

The pencil of quadrics λLQL + λRQR also allows us to compute the j-invariant of the

curve C. As mentioned above, C is obtained as the intersection of any two members of the

pencil. We now think of each of the quadrics as a 4×4 symmetric matrix of the coefficients

in the defining equation (2.1) and consider the determinant

det(λLQL + λRQR). (2.4)

This is a polynomial of degree four in the homogeneous coordinates [λL : λR] of P1. Hence,

it vanishes at four points in P1 and we conclude that there are four singular members of the

pencils.3 The cross-ratio of these four points is an invariant of the pencil. More concretely,

let us denote the four points where (2.4) vanishes by λi := [λiL : λiR]. Then, we can form

the cross-ratio z = 〈12〉〈34〉
〈13〉〈24〉 , where 〈ij〉 = det(λi, λj), and the j-invariant

j = 256
(z2 − z + 1)3

z2(z − 1)2
. (2.5)

As pointed out above, the curve C is obtained as the intersection of any two members

of the pencil of quadrics λLQL + λRQR. Thus we can characterize isomorphism classes

of C by completely characterizing the pencil. The cross-ratio z formed above classifies

the isomorphism classes of four ordered points on P1 up to projective equivalence. The

j-invariant formed in (2.5) has the correct symmetries for the corresponding elliptic curve:

in defining the cross-ratio z, we have the freedom of permuting three of the points λi on

P1 while keeping one fixed without changing C. This permutation acts on z by sending

z 7→ z′ ∈
{
z, 1z , 1− z, 1−

1
z ,

1
1−z , 1−

1
1−z

}
. One can check that the j-invariant in (2.5) is

invariant under this map.

In [6], the elliptic double box integral was analyzed using the method of direct inte-

gration. Starting from a dual-conformally invariant expression, Feynman parameters were

introduced and as many integrations as possible were performed in terms of multiple poly-

logarithms. Eventually, the authors found a representation of the double box integral of

the form ∫ ∞
0

dα
H3(α)√
Q(α)

. (2.6)

Here H3 is a combination of weight-three multiple polylogarithms and Q(α) is a polynomial

in α of degree four with coefficients depending on conformal cross-ratios. The equation

y2 = Q(α) thus defines an elliptic curve. We have checked that the j-invariant of this

2A pencil is a set of subvarieties, in this case quadrics, which are parametrized by a line [21].
3Note that we assume that the quadrics QL and QR are in general position such that the four roots

of (2.4) are distinct. If they are not, then the intersection degenerates and the integral can be computed in

terms of generalized polylogarithms.

– 6 –
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Figure 4. Quadrics and lines defining the K3 surface in the three-loop traintrack diagram.

curve matches the j-invariant of the curve constructed directly in momentum twistor space

above. This is an encouraging result as it means that the geometry is not merely an artifact

of the chosen parametrization but an intrinsic property of the leading singularity of the

double box integral.

3 Three and more loops

3.1 K3 surface

3.1.1 Construction

The construction of a geometry for the three-loop traintrack integral is similar to the one

for the two-loop case presented in section 2. This time, however, we have two extra lines

in momentum twistor space corresponding to the two additional external dual points. The

geometry in this case is given by two quadrics QL and QR, constructed in the same way as

at two loops, together with two lines `1 and `2. Given points P1 ∈ `1 and P2 ∈ `2, we can

construct a line P1 ∧ P2 whose corresponding dual point is light-like separated from both

dual points corresponding to `1 and `2. The line P1 ∧P2 corresponds to the middle loop in

the three-loop traintrack integral. The moduli space of these lines is P1×P1 corresponding

to the freedom in choosing P1 and P2. We illustrate the construction in figure 4.

The rest of the light-like constraints for the leading singularity can be imposed as

follows. By Bezout’s theorem, the line P1 ∧P2 intersects the quadric QL in two points and

the quadric QR in two points.4 Choosing one of these intersections in QL and one in QR,

we obtain a leading singularity configuration. In total, there are four choices. The total

4Bezout’s theorem states that n hypersurfaces of degrees d1, . . . , dn in complex projective space Pn

intersect in d1 · · · dn points, if the number of intersection points is finite [21]. In our case, the quadric has

degree two, while a line can be seen as the intersection of two hyperplanes, each of degree one. Hence, the

intersection consists of two points.
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space of leading singularities is therefore a four-fold cover of P1 × P1, branched over the

curves where the line P1 ∧ P2 is tangent to QL or QR.

To find out where this branching arises, consider the points α1P1 + α2P2 on the line

P1 ∧ P2. The intersection with QL is given by the equation

α2
1QL(P1, P1) + 2α1α2QL(P1, P2) + α2

2QL(P2, P2) = 0. (3.1)

The line P1 ∧P2 is tangent to QL if this has a double root, i.e. when the discriminant with

respect to α1 or α2 vanishes,

∆L := QL(P1, P2)
2 −QL(P1, P1)QL(P2, P2) = 0. (3.2)

The polynomial ∆L is homogeneous of bidegree (2, 2) in the coordinates of P1 × P1 that

parametrize the points P1 ∈ `1 and P2 ∈ `2.
A similar analysis can be done for the right quadric and we obtain another polynomial

∆R of bidegree (2, 2). The curves determined by ∆L and ∆R intersect in eight points.5 At

these eight points, all the branches of the surface meet. Over the remaining points of the

curves determined by ∆L and ∆R there are only two branches, while over the remaining

points of P1 × P1 there are four branches.

The curves in P1 × P1 defined by the vanishing locus of ∆L and ∆R are themselves

genus-one curves as can be seen as follows. If we choose coordinates x = [x0 : x1] and

y = [y0 : y1] on P1 × P1, then we can write the equation for a biquadratic as

∆(x, y) =
1∑

a,b,a′,b′=0

Aab,a′b′ xaxb ya′yb′ , (3.3)

where A is symmetric in the first and second pair of indices independently and thus has 9

independent components. We now embed P1×P1 into P3 using the Segre map. Concretely,

we identify the homogeneous coordinates [z0 : z1 : z2 : z3] on P3 with the coordinates on

P1 × P1 as

z0 = x0y0, z1 = x0y1, z2 = x1y0, z3 = x1y1. (3.4)

The image of P1×P1 is then a quadric in P3 given by z0z3−z1z2 = 0. The biquadratic (3.3)

becomes

∆(z) =

3∑
i,j=0

Ãij zizj , (3.5)

where Ã is a 4×4 symmetric matrix that depends on the original coefficients Aab,a′b′ . This

defines another quadric in P3. The intersection of these two quadrics is a genus-one curve

with only one modulus, as we have discussed before.

5To see why, consider first the intersection of such a genus-one curve with a line in P1 × P1 which sits

at a point in the first or the second P1. It is easy to see that this intersection consists of two points. Now,

consider a degeneration of the biquadratic into four lines. Two of the lines sit at a point in the first P1

while the other two sit at a point in the second P1. Each one of them intersects the biquadratic in two

points. In total, there are eight intersection points. As we deform from a singular curve consisting of four

lines to a non-singular one, the number of intersections is conserved. This type of argument is often used

in Schubert problems (see ref. [22] for a detailed discussion).
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3.1.2 Analysis

The holomorphic two-form on the surface is

ωK3 =
ωP1 ωP1√
∆L

√
∆R

. (3.6)

Notice that this ratio has the right homogeneity in P1×P1: the first ωP1 has bidegree (2, 0)

while the second one has bidegree (0, 2). The polynomials ∆L and ∆R both have bidegree

(2, 2) so that (3.6) has homogeneity zero as required.

An analogous construction can be done for the simpler case of a genus-one curve in P2

as a two-fold branched cover over four points in P1. In that case, we can define a polynomial

P whose roots are the four points and the holomorphic form is
ωP2√
P

.

Euler characteristic. It is well-known that the Euler characteristic χ of a K3 surface

is 24, but we can directly compute this from the construction in momentum twistor space.

To do so, we will use the basic fact that χ is additive under surgery.

According to the branching described above, the K3 surface S has only one branch on

the points P1 × P1 where the two curves ∆L and ∆R meet, i.e. for the points in ∆L ∩∆R.

For the points that lie on either of the two curves, i.e. for ∆L ∪∆R \∆L ∩∆R, there are

two branches. In the complement of the two curves, i.e. in P1 × P1 \∆L ∪∆R, there are

four branches. It follows that

χ(S) = 4
[
χ(P1 × P1)− χ(∆L ∪∆R)

]
+ 2 [χ(∆L ∪∆R)− χ(∆L ∩∆R)]

+ χ(∆L ∩∆R)

= 4χ(P1 × P1)− 2χ(∆L ∪∆R)− χ(∆L ∩∆R).

(3.7)

Next, we use the fact that χ(P1 × P1) = χ(P1)2, χ(P1) = 2 and χ(∆L ∪∆R) = χ(∆L) +

χ(∆R) − χ(∆L ∩ ∆R). The Euler characteristic of a point is one and the intersection

∆L ∩∆R consists of eight points, thus we get χ(∆L ∩∆R) = 8. Moreover, ∆L and ∆R are

genus-one curves, thus χ(∆L) = χ(∆R) = 0. Finally, we get

χ(S) = 4× 2× 2− 2× (−8)− 8 = 24. (3.8)

This is the expected number for a K3 surface which has Betti numbers b0 = 1, b2 = 22 and

b4 = 1 with the odd Betti numbers vanishing.

Counting the number of moduli. We would now like to count the number of moduli

of these K3 surfaces. This amounts to a counting of degrees of freedom of two genus-one

curves in P1 × P1, intersecting in eight points. On top of that, there are moduli that

roughly speaking describe the position of the quadrics corresponding to the endcaps of the

traintrack integrals.

Before solving the first problem, recall the more familiar case of two cubic curves in the

projective plane P2. A cubic curve in the projective plane is a non-zero linear combination

of ten monomials. Hence, the set of cubic curves forms a P9. The condition that a point

belongs to a cubic curve imposes a linear condition in P9. Given nine points in general

position, there is a single cubic curve which contains all of them. The condition that the
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nine points be generic is essential here. In fact, consider two cubics in the projective plane.

By Bezout’s theorem, they intersect in nine points. In this case, these nine points can not

be generic since they do not uniquely determine a cubic curve. In fact, they determine a

pencil of cubics.

The theorem of Cayley-Bacharach states that if two plane cubics intersect in nine

points, then any other cubic which passes through eight of them automatically passes

through the ninth [21].6

Let us now return to genus-one curves in P1 × P1. A biquadratic curve in P1 × P1 is

a linear combination of nine monomials of bidegree (2, 2). Hence, these curves form a P8.

As before, the condition that a point belongs to such a curve is a linear condition in P8.

Hence, eight points in general position uniquely determine a genus-one curve in P1 × P1.

Next, consider two such biquadratic curves. They intersect in eight points. If the

equations of the two biquadratics in homogeneous coordinates x = [x0 : x1] and y = [y0 : y1]

of P1 × P1 are

∆00(y)x20 + 2∆01(y)x0x1 + ∆11(y)x21 = 0, (3.9)

∆′00(y)x20 + 2∆′01(y)x0x1 + ∆′11(y)x21 = 0, (3.10)

then the intersection points have y coordinates satisfying

(∆′00∆11 −∆00∆
′
11)

2 + 4(∆′00∆01 −∆00∆
′
01)(∆

′
11∆01 −∆′01∆11) = 0. (3.11)

Here ∆ij and ∆′ij are quadratic in y such that this is a degree-eight polynomial and that

generically there are eight such intersection points. For each of these values of y the

corresponding value of x ∈ P1 is given by

2(∆′00∆01 −∆00∆
′
01)x0 + (∆′00∆11 −∆00∆

′
11)x1 = 0. (3.12)

These eight points can not be in general position, otherwise there would be a unique

biquadratic curve containing them. For this case, we have a variant of the Cayley-Bacharach

theorem, stating that if two biquadratic curves meet in seven points then they meet in the

eighth as well.

Returning to the problem of counting the moduli, we see that we have to specify seven

points in P1 × P1 which amounts to 14 parameters. From this we have to subtract 2 × 3

parameters due to PSL(2) transformations on each P1. Moreover, we need to pick two

members of the pencil of quadrics λLQL + λRQR which adds two additional moduli. It

turns out that there is one more modulus corresponding to the relative position of the left

and right quadric along the middle line through the points P1 and P2. In total, the number

of moduli is

14− 2× 3 + 2 + 1 = 11. (3.13)

There is another, more direct way to establish 11 as an upper bound for the number

of moduli: the K3 surface only depends on the left and right quadrics and the two lines `1
6The Cayley-Bacharach theorem is essential in proving the associativity of the group law on a genus-one

curve.
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and `2. In dual space we have 8 × 4− 15 = 17, where we subtracted 15 due to the action

of the conformal group. As discussed in section 2.2, we can move each of the three lines

defining a quadric up and down along a line from the opposite ruling without changing the

quadric. Thus we can subtract 2 × 3 = 6 coordinates. In total we get 8 × 4− 15− 6 = 11

moduli.

For algebraic K3 surfaces, the sum of the dimension of the moduli space and the generic

Picard rank has to equal 20 (see ref. [23]). Since we found a moduli space of dimension 11,

then the generic Picard rank should be 9. Below, we find the same answer by looking at

Nikulin involutions.

In [15], the authors analyzed the three-loop traintrack integral using Feynman param-

eters and identified a K3 surface as a hypersurface in a certain weighted projective space.

For a generic hypersurface in this space they found an upper bound of 18 for the number

of moduli which is compatible with the number that we found above. In the case of the

elliptic curve we were able to compare the momentum twistor construction to the one found

in Feynman-parametric integration using the j-invariant of the curve and found that they

give the same geometry. For the K3 surfaces, a more thorough study of their characteristics

is needed to conclude whether or not they are equal.

Automorphisms and Nikulin involutions. To further characterize the K3 surface S,

we study its automorphisms, in particular those automorphisms that leave the holomorphic

two-form on S invariant. Such automorphisms are called symplectic. If f is a symplectic

automorphism of finite order n and f 6= id, then one can show that the set of fixed

points Fix(f) ⊂ S is non-empty and finite. Moreover, the number of fixed points satisfies

1 ≤ |Fix(f)| ≤ 8 and depends only on the order n of f , see for example ref. [24]. Nikulin [25]

also showed that the order n can at most be eight, i.e. n ≤ 8, which means that only the

combinations of n and |Fix(f)| in table 1 are possible.

Symplectic automorphisms of order two are called Nikulin involutions and the corre-

sponding number of fixed points is eight. Such involutions are realized in our K3 surface

as follows.

Consider the left quadric QL and the line P1 ∧ P2 transversal to `1 and `2, see also

figure 4. P1 ∧ P2 intersects QL in two points and exchanging these two points constitutes

an involution of the left quadric. Recall that the points of intersection are given by the two

roots of (3.1). Since this in a quadratic equation, the difference between the two roots is√
∆L. Thus, exchanging the two points of intersection, sends

√
∆L to −

√
∆L. The fixed

points of this involution of the left quadric are the points of QL at which P1 ∧ P2 becomes

tangent, i.e. the points described by the genus-one curve ∆L = 0 in P1×P1. Since the map

we described so far changes the sign of
√

∆L, the holomorphic two-form (3.6) also changes

sign and we only obtain a Nikulin involution of the K3 surface if we perform the same

involution on the right quadric. The fixed points are then the eight intersection points of

the curves ∆L and ∆R in P1 × P1.

An involution which is not symplectic is the exchange of the two P1 corresponding to

the lines `1 and `2. Indeed, under this transformation the holomorphic two-form in eq. (3.6)

picks up a sign.
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The existence of automorphisms implies a lower bound for the Picard number ρ(S) of

the K3 surface [24]. For a Nikulin involution, i.e. a symplectic automorphism of order two,

the bound is ρ(S) ≥ 9 (see appendix A). Since the Picard number plus the dimension of

the moduli space are equal to 20, this bound is consistent with the counting of the moduli

above. In fact in our case the bound is satisfied, i.e. ρ(S) = 9; for this case a complete

description of the Picard lattice of S can be found in ref. [26].

3.2 Three-fold and beyond

In this section, we demonstrate how we can build a Calabi-Yau manifold embedded in a

toric variety for the four- and higher-loop traintrack integrals. It was shown by Batyrev

that mirror families of Calabi-Yau manifolds can be constructed as anticanonical hyper-

surfaces in toric varieties and that their Hodge numbers can be computed combinatorially

by counting points in an associated pair of reflexive polytopes [27]. This construction was

generalized to complete intersection Calabi-Yau (CICY) manifolds by Batyrev and Borisov

using the nef-partitions of a reflexive polytope pair [28, 29]. The Hodge numbers in this

case can be computed by means of a recursive generating function; an implementation of

this function is available in PALP [30].7

3.2.1 Three-fold

The leading singularity configuration for the four-loop traintrack integral is depicted in

figure 5. Compared to the three-loop case discussed in section 3.1, we have two new lines,

`3 and `4, corresponding to the two extra external dual points.

Let us introduce coordinates ([α1 : α2], [β1 : β2]) for the P1 × P1 corresponding to the

lines `1 and `2 and similarly ([γ1 : γ2], [δ1 : δ2]) for the lines `3 and `4. Then the embedding

space is a toric variety defined by the relations

(α1, α2, β1, β2, yL) ∼ (t1 α1, t1 α2, β1, β2, t1 yL),

(α1, α2, β1, β2, yL) ∼ (α1, α2, t2 β1, t2 β2, t2 yL)
(3.14)

for the left part of figure 5 and

(γ1, γ2, δ1, δ2, yR) ∼ (t3 γ1, t3 γ2, δ1, δ2, t3 yR),

(γ1, γ2, δ1, δ2, yR) ∼ (γ1, γ2, t4 δ1, t4 δ2, t4 yR)
(3.15)

from the right part. Here t1, t2, t3, t4 ∈ C \ {0} and the role of yL and yR will be clarified

momentarily. Since we have ten coordinates and four relations, we are left with a six-

dimensional space.

Following the same construction as for the three-loop (K3) case, we obtain two poly-

nomials ∆L and ∆R of bidegree (2, 2) in P1 × P1 from the left and right outermost loop

of the traintrack. In the six-dimensional toric variety constructed above, the Calabi-Yau

manifold is defined as a codimension-three subvariety by means of the constraints

y2L = ∆L, y2R = ∆R, 〈P1P2P3P4〉 = 0. (3.16)

7Note that technically the generating function computes the stringy Hodge numbers introduced in [31].
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Figure 5. Quadrics and lines defining the CY three-fold in the four-loop traintrack diagram.

The last condition forces the two transversals P1 ∧ P2 and P3 ∧ P4 to intersect, see also

figure 5.

The toric variety defined by the relations (3.14) and (3.15) can be described by a

polytope with ten vertices in a six-dimensional integer lattice. Explicitly, the vertices are

given by the columns of the matrix

1 0 0 1 −1 0 0 0 0 0

0 1 0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 −1

0 0 0 0 0 0 1 0 1 −1

0 0 0 0 0 0 0 1 −1 0


. (3.17)

The Hodge numbers of a generic codimension-three subvariety in this space can be

obtained by computing the nef-partitions of the polytope defined by (3.17). Using PALP [30],

in particular the component nef.x,8 we find that there are 22 nef partitions. Out of

these, we identify three that have defining equations with degrees compatible with the

constraints (3.16). The Hodge numbers are h11 = 12 and h12 = 28 which gives a Euler

characteristic of χ = −32.

3.2.2 General case

The construction used for the three-fold, i.e. the four-loop case of the traintracks, gen-

eralizes to higher loops. For L ≥ 4, we build a toric embedding space as follows: there

are 2 + 4(L − 2) coordinates, 2 from yL and yR and 2 × 2(L − 2) from the two external

8Note that we had to set VERT Nmax to 96 in Global.h for the computation to succeed.
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dual points added with each loop. The number of relations between these coordinates is

2(L− 2); thus the dimension of the embedding space is 2 + 4(L− 2)− 2(L− 2) = 2(L− 1).

In this space, we impose 2 quadratic constraints, namely y2L = ∆L and y2R = ∆R, as well as

L − 3 multilinear constraints. Thus, the Calabi-Yau manifold is obtained as a subvariety

of codimension L− 1 in a toric variety of dimension 2(L− 1). Note that the dimension of

the manifold is also L− 1.

As above, we can describe the embedding space by a polytope with vertices in an

integer lattice. The dimension of this lattice equals the dimension of the embedding space,

i.e. 2(L−1), while the number of vertices is equal to the number of coordinates, 2+4(L−2).

The vertices are given in the general case by the columns of a block-diagonal matrix
A 0 0 · · · 0

0 A 0

0 0 B
...

. . .
...

0 · · · B

 , A =

1 0 0 1 −1

0 1 0 1 −1

0 0 1 −1 0

 , B =
(

1 −1
)
. (3.18)

Note that in the case of the threefold (i.e. L = 4) that was discussed above, B does not

appear and the matrix reduces to (3.17).

We note that the codimension grows with the loop order and this makes the analysis

of these varieties in terms of complete intersections more challenging. One may hope for a

more “efficient” description of these varieties, but it remains to be seen if this is possible

in way which is compatible with supersymmetry, as described in section 4.

4 Supersymmetrization

The constructions presented so far are manifestly dual-conformal invariant. Indeed, this

is one reason why it makes sense to use momentum twistors to describe their geometry.

However, we know that the scattering amplitudes in N = 4 are in fact dual super -conformal

invariant. It is then natural to ask what becomes of the supersymmetry.

In order to describe the supersymmetrization, we will redo the previous analysis in

such a way that the various incidence relations are described in terms of PSL(4)-invariant

delta functions. The basic ingredient will be the delta function of two points on P3, which

we denote by δ3P3(P1;P2), where P1, P2 ∈ P3.

This quantity can be used to define δ2P3(L;P ), which has support when the point P

lies on the line L. If the line P contains two points P0 and P1, then we have

δ2P3(L;P ) =

∫
ωP1(α)δP3(α0P0 + α1P1;P ). (4.1)

Similarly, we can define δP3(L1;L2), which has support when the two lines L1 and L2

intersect.

To define a delta function with support on a quadric, we use the fact that the quadric

is determined by three skew lines L1, L2 and L3. The quadric is ruled by a family of lines

which intersect L1, L2 and L3. Moreover, through any point on the quadric passes one line
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in this ruling. We can then describe the conditions that a point P belongs to the quadric

Q determined by the skew lines L1, L2 and L3 by the following integral

δP3(Q;P ) =

∫
µP3(L)δP3(L;L1)δP3(L;L2)δP3(L;L3)δ

2
P3(L;P ), (4.2)

where µP3(L) is the integral over the space of lines in P3. This integral is four-dimensional

so, after performing the integrals, we are left with a single constraint. This is expected

since a quadric is of codimension one in P3.

To obtain the genus-one curve we simply take the product of the two delta functions

corresponding to QL and QR. This is a distribution which has support on the intersection

of the two quadrics QL ∩ QR. We can also obtain the holomorphic top form, but instead

of taking Poincaré residues, we proceed as follows. We look for a one-form ωC such that∫
C
ωC(Z)f(Z) =

∫
ωP3(Z)δP3(QL;Z)δP3(QR;Z)f(Z), (4.3)

for any meromorphic function f on P3 whose poles lie outside QL ∩QR.

This construction is rather unnatural when done in P3, but its advantage lies in the fact

that it can be pretty straightforwardly supersymmetrized to P3|4. Indeed, in P3|4 we have

a delta function δ
3|4
P3|4(Z1;Z2), and so on. These supersymmetrizations were introduced in

ref. [32]. For the superquadric we obtain δ
1|8
P3|4(Q,Z). Pursuing the same strategy as in the

P3 case, we finally define ω
1|12
C using∫

C
ω
1|12
C (Z)f(Z) =

∫
ωP3|4(Z)δP3|4(Ql;Z)δP3|4(Qr;Z)f(Z), (4.4)

where Z = [Z0 : Z1 : Z2 : Z3 |χ1 : χ2 : χ3 : χ4] and ωP3|4(Z) = ωP3(Z)dχ1dχ2dχ3dχ4 is the

PSL(4|4)-invariant form on P3|4.

This construction can be generalized to higher dimensions.

5 Summary and outlook

We have presented a few examples of Calabi-Yau varieties arising as the leading singularity

loci of the class of traintrack integrals.

For the elliptic double box we have a pretty explicit understanding of the moduli space

and how it relates to the external kinematics of the integral. We believe this should be a

useful ingredient in the computation of these integrals.

The moduli space of algebraic K3 surfaces has a global description as a double coset of

an orthogonal group (see ref. [23]). This moduli space should be somehow parametrized by

the external kinematics, but this global description does not seem to arise naturally from

the twistor representation of the kinematics. So, while we have described the topology of

these varieties in some detail, our description of their moduli space has not been as detailed

as we would like. One approach we have sketched is to use a parametrization where 10

moduli arise from an intersection of two genus-one curves in P1×P1 and an extra modulus

arises from the intersections of transversals to these P1 with the two quadrics QL and QR.
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It remains to be seen if this parametrization will be useful for expressing the corresponding

integral.

One slightly mysterious aspect remains in connection with Calabi-Yau varieties encoun-

tered in non-planar integrals. The twistor methods are well-adapted for studying planar

integrals. How should non-planar integrals be described in this language? It is not clear

yet if the momentum twistor approach is a useful description for the leading singularity

locus of these integrals. We hope to report on this issue in future work.

We have also discussed supersymmetrization. The approach to supersymmetrization

we have sketched generalizes to other cases as well. Clearly supersymmetry imposes some

restriction on the geometry of these varieties and it would be interesting to understand this

better.
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A Automorphisms of K3 surfaces

For an account of the automorphisms of K3 surfaces see for example ref. [24, chapter 15].

In the following we summarize some of the most important facts.

When studying the group of automorphisms Aut(S) of a K3 surface S, one distinguishes

between symplectic and non-symplectic automorphisms. An automorphism f : S → S of a

K3 surface S is symplectic if the induced action on H0(S,Ω2
S) is the identity, i.e. if it leaves

the holomorphic two-form on S invariant. One can show that Aut(S) is discrete and that

the subgroup Auts(S) ⊂ Aut(S) of symplectic automorphisms is of finite index, at least

for projective K3 surfaces.

One can moreover show the following result: let f ∈ Auts(S) be of finite order n and

f 6= id. Then the set of fixed points Fix(f) is non-empty and finite and

|Fix(S)| = 24

n

∏
p|n

(
1 +

1

p

)−1
. (A.1)

Moreover the number of fixed point satisfies 1 ≤ |Fix(f)| ≤ 8 and only depends on the

order n of f .

Nikulin also proved that for f ∈ Auts(S), the order n of f satisfies n ≤ 8. This

means that only the combinations of n and |Fix(S)| shown in table 1 can occur. For each

n, one can also derive a lower bound for the Picard number ρ(S) which is also shown in

table 1. One can see that the Picard number of K3 surfaces with automorphisms tends to

be quite high.
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Order n 2 3 4 5 6 7 8

|Fix(S)| 8 6 4 4 2 3 2

ρ(S) ≥ 9 13 15 17 17 19 19

Table 1. Symplectic automorphism orders and number of fixed points for a complex K3 surface S.

Here ρ(S) is the Picard number of S. Table from ref. [24].

Symplectic automorphisms of order two were studied by Nikulin [25] and are called

Nikulin involutions. According to table 1, a Nikulin involution of a complex K3 surface has

eight fixed points and Picard number ρ(S) ≥ 9. A classification of all algebraic K3 surfaces

with Picard number satisfying the lower bound, i.e. ρ(S) = 9 can be found in ref. [26].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction

There has recently been a flurry of interest in Feynman integrals associated with elliptic
curves. Many different ways to represent these integrals have been developed [1–24], cul-
minating in bases of functions that are believed to be powerful enough to represent all such
integrals [25–27]. A common feature of most of these representations is the characteriza-
tion of each integral in terms of a single, specific family of elliptic curves depending on
the kinematic data of the Feynman integral. With the family specified, relations can be
found between functions defined on the same family, allowing for the choice of a linearly
independent basis.
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What these representations typically do not consider are relations between Feynman
integrals associated with distinct families of elliptic curves.1 This deficit is thrown into
sharp relief by a pair of papers, one by Adams and Weinzierl [15], and the other by Bogner,
Müller-Stach, and Weinzierl [28], investigating the two-loop sunrise integral with all equal
masses and with distinct internal masses respectively. These integrals have long been
known to involve elliptic curves [1, 2, 4–6, 8, 13, 29–43]. What they found was that the
sunrise integral can in fact be described by two distinct elliptic curves in different contexts,
with the curves related by a quadratic transformation, characterized in the latter paper as
an isogeny [28]. One curve appeared when analyzing the integral in terms of its Feynman-
parametric representation, while another emerged from the maximal cut expressed in the
Baikov representation [44] (see also [45–50]). They refer to these as the curve from the
graph polynomial and the curve from the maximal cut, respectively.

In this work, we investigate the origin of the distinction between these two curves:
whether they differ because one comes from the maximal cut, or due to their origin in
different representations. We examine two diagrams, the sunrise with all distinct internal
masses and the elliptic double-box [51, 52], in a variety of representations. In particular,
we compare maximal cuts of these diagrams both in Baikov representations and in other
representations (a light-cone representation in two dimensions, and a momentum twistor
representation in four dimensions). We find that in general these representations can
all give identical elliptic curves. Instead, we explain the observations of refs. [15, 28] as
a consequence of a particular choice those references made when extracting an elliptic
curve from the Baikov representation, involving combining two square roots. If we instead
rationalize one of the roots, we find not an isogenous curve, but an identical curve to that
found in Feynman parametrization.

The paper is organized as follows: after a quick review of the relevant mathematics in
section 2, in section 3 we consider the sunrise integral with three distinct masses. We review
the Feynman-parametric representation in subsection 3.1, and the loop-by-loop Baikov
representation found in ref. [28] in subsection 3.2. We then derive two more representations,
the traditional Baikov representation in subsection 3.3 and a representation in light-cone
coordinates in subsection 3.4, and compare the resulting curves. In subsection 3.5 we
explain the differing curves as a result of combining distinct square roots, and extract an
alternate curve by rationalizing a quadratic root instead, finding consistency with other
methods. We give another view on the relation between the curves that avoids introducing
square roots in subsection 3.6. In subsection 3.7 we close with a brief discussion of how
the elliptic j-invariants of these curves shed light on the singularities of the diagram. In
section 4 we investigate the elliptic double-box, where we compute Baikov representations
of the maximal cut to compare to curves extracted in prior work. Specifically, we compare
a d-dimensional Baikov representation (subsection 4.1) and a Baikov representation derived
in strictly four dimensions (subsection 4.2) finding agreement between the two. We then
conclude and raise some topics for future investigation in section 5.

1From here on, we will in a slight abuse of language refer to distinct elliptic curves instead of distinct
families of curves. This terminology is typical in the physics literature, and can be justified in cases where
one compares representatives of both families at the same, fixed kinematic point.
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Our paper also includes an appendix, reviewing both the loop-by-loop and the standard
approach to the Baikov representation in A.2 and A.3 respectively, as well as deriving our
d-dimensional Baikov representation of the elliptic double-box in A.4 and presenting more
details of our four-dimensional derivation in A.5. We also include two files as supplementary
material: doublebox_curve.txt, presenting the elliptic curve for the double-box, and
doublebox_baikov_rep.txt, presenting the Baikov representation for the double-box.

2 Lightning review: elliptic curves and isogenies

An elliptic curve is a smooth projective algebraic curve of genus one, together with a
rational point which serves as the origin for its group structure.

There are many ways to represent such curves. One can write them as the vanishing
loci of cubic polynomials in projective plane, or in terms of a quartic in a single variable
with no repeated roots. One standard form is the so-called Weierstrass normal form, the
equation

y2 = 4x3 − g2x− g3 , (2.1)

for some coefficients g2 and g3.
Two elliptic curves are called isogenous when there is a non-constant map between them

given by rational functions which sends the origin of the first to the origin of the second. To
every isogeny corresponds a dual isogeny and their composition is a homomorphism from
an elliptic curve to itself. If this homomorphism is the multiplication by two, we call the
initial isogeny a two-isogeny. If an isogeny has an inverse (that is, when the inverse map
is also rational), one further calls the two curves isomorphic [53]. Isomorphic curves have
the same j-invariant, which can be specified in terms of the coefficients of the Weierstrass
normal form as follows2

j = 1728g
3
2

∆ , (2.2)

where the elliptic discriminant ∆ = g3
2−27g2

3. The elliptic curve defined by the Weierstrass
model (2.1) is smooth if and only if ∆ 6= 0.

3 The elliptic sunrise integral

The two-loop sunrise integral shown in figure 1 is given by

I(p2,m2
1,m

2
2,m

2
3) =

∫ d2k1d2k2(
k2

2 −m2
1
) (

(k1 − k2)2 −m2
2
) (

(p− k1)2 −m2
3
) . (3.1)

This integral is finite in two dimensions, so it is often studied in that context. In this
section we will extract an elliptic curve from this integral in several ways, constructing the
j-invariant for each such curve. We will find that the different methods we use provide
only two distinct j-invariants, and are grouped as follows:

2The factor of 1728 = 26× 33 is required for various number theoretic reasons which will not be relevant
for us. We choose to keep it in order to minimize confusion, but also because some of the formulas we will
find below actually look nicer when including this factor.
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p k1 − k2 p

k2

p− k1

Figure 1. Sunrise integral. All internal propagators are massive and we consider the most general
case where all masses can be unequal. The momentum labeling is chosen such as to make the
loop-by-loop Baikov representation easier to derive.

• Feynman parametrization (subsection 3.1), solving the cut equations in light-cone
coordinates (subsection 3.4)

• Loop-by-loop Baikov representation with 4 inverse propagators (subsection 3.2), full
Baikov representation with 5 inverse propagators (subsection 3.3)

These two j-invariants correspond to two distinct elliptic curves, which are not iso-
morphic. However, as described in [28], the two curves are related by a two-isogeny.

In the rest of this section, we will describe how to extract an elliptic curve using each
of these methods, and finish by reconciling the Baikov representations with the first set of
methods, before briefly discussing this integral’s Landau singularities.

3.1 Feynman-parametric representation

We begin by reviewing the two representations considered in ref. [28]. The first representa-
tion considered in that reference was for the full integral expressed in Feynman parameters.
In Feynman parameters, the integral can be written as

∫ ω
F where F is the second graph

polynomial,

F = m2
1x

2
1(x2 + x3) +m2

2x
2
2(x3 + x1) +m2

3x
2
3(x1 + x2) + (−p2 +m2

1 +m2
2 +m2

3)x1x2x3
(3.2)

and

ω = x1dx2dx3 − x2dx1dx3 + x3dx1dx2. (3.3)

The variables x1, x2 and x3 are homogeneous coordinates on P2 and the equation F = 0
defines an elliptic curve in P2.3

To compute the j-invariant of this curve we may first divide by p2 to make the ex-
pression dimensionless, then transform to the Weierstrass normal form. For the purpose of
writing the j-invariant for this curve, we define the following notation: writing µ2

i = m2
i

p2 ,
we then write,

ξ0 = µ1 + µ2 + µ3, ξ1 = −µ1 + µ2 + µ3, ξ2 = µ1 − µ2 + µ3, ξ3 = µ1 + µ2 − µ3.

(3.4)
3In this paper we always write Pn for the complex projective space Pn(C).
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With this notation, we can specify the j-invariant:

jF =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 16µ2

1µ
2
2µ

2
3
]3

µ4
1µ

4
2µ

4
3 (ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) (3.5)

where we have used a subscript F to indicate that this is computed from the Feynman
parameter representation.

3.2 Loop-by-loop Baikov representation

Ref. [28] presented the maximal cut of the two-loop sunrise integral in a loop-by-loop
Baikov representation (as distinct from the traditional, or “full” Baikov representation, see
ref. [49], appendix A, or the next section to clarify the difference). We review below how
to derive this representation in the case of this integral.

In the Baikov representation we want to change the integration variables in the integral
I(p2,m2

1,m
2
2,m

2
3) from the loop momenta k1 and k2 to the inverse propagators. For the

integral in eq. (3.1) the inverse propagators are

D1 = k2
2 −m2

1, D2 = (k1 − k2)2 −m2
2, D3 = (p− k1)2 −m2

3, D4 = k2
1, (3.6)

where we had to add D4 to be able to express all scalar products between the momenta. In
the following we consider the integral in the Euclidean region which corresponds to p2 < 0
and m2

i > 0 for all masses.
The first step is to decompose the loop momenta into a part that is parallel and one

that is orthogonal to the external momentum p:

k1 = xp+ k1,⊥, k2 = yp+ k2,⊥. (3.7)

The orthogonal parts satisfy p · ki,⊥ = 0. As we are in two dimensions, k1,⊥ and k2,⊥ are
proportional and we can write them as k1,⊥ = up⊥ and k2,⊥ = vp⊥. Here p⊥ is chosen
so that p · p⊥ = 0 and p2

⊥ = p2. Expressing the inverse propagators in terms of the
dimensionless quantities x, y, u and v we obtain

D1 = p2(y2 + v2)−m2
1 , D2 = p2(x− y)2 + p2(u− v)2 −m2

2 ,

D3 = p2(x− 1)2 + p2u2 −m2
3 , D4 = p2(x2 + u2) . (3.8)

Moreover, the integration measure becomes d2k1d2k2 = p4 dx dy du dv.
We now want to change integration variables from (x, y, u, v) to (D1, D2, D3, D4) under

which the measure transforms as dx dy du dv = J−1 dD1 dD2 dD3 dD4. For the Jacobian
factor J we get

J ≡
∣∣∣∣∂(D1, D2, D3, D4)

∂(x, y, u, v)

∣∣∣∣ = −16p8u(uy − vx). (3.9)

This Jacobian now has to be expressed in terms of the new variables Di. The equations (3.8)
are quadratic in (x, y, u, v) and J can therefore not be expressed rationally in terms of the
Di. However, one can solve for the squares of u and uy − vx in eq. (3.9) rationally. While
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this is possible for the full integral, here we only give the expression for the maximal cut
corresponding to D1 = D2 = D3 = 0:4

Q1 := u2 = − 1
4p4

[
D4 − (m3 − p)2

] [
D4 − (m3 + p)2

]
,

Q2 := (uy − vx)2 = − 1
4p4

[
D4 − (m1 +m2)2

] [
D4 − (m1 −m2)2

]
.

(3.10)

Note that in the Euclidean region p2 is negative implying that the equation D1 = 0 does not
have a real solution. In order to impose the cut conditions we are thus forced to consider
the analytic continuation of the integral.

Multiplying Q1 and Q2 from the previous two equations we obtain an expression for
J2 as a polynomial of degree four in D4. This approach was followed in refs. [15, 28] and is
equivalent to extracting the square root of each line in eq. (3.10) and combining the square
roots under a common square root, i.e. to writing J = −16p8√Q1Q2. Another, inequivalent
approach is to keep the square roots separate, i.e. to write J = −16p8√Q1

√
Q2. As Q1

and Q2 are quadratic in D4, one can again change variables to rationalize either
√
Q1 or√

Q2. In subsection 3.5 we will show that this connects the elliptic curve arising from the
first approach to the curve defined by the vanishing of the F-polynomial in subsection 3.1.

Following the approach taken in ref. [28], we define an elliptic curve by the equation
J2 = (−16p8)2Q1Q2. We can transform it to Weierstrass form and compute its j-invariant
as in the previous section, obtaining:

jB =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 256µ2

1µ
2
2µ

2
3
]3

µ2
1µ

2
2µ

2
3 (ξ2

0 − 1)2(ξ2
1 − 1)2(ξ2

2 − 1)2(ξ2
3 − 1)2 , (3.11)

where we have again made use of µ2
i = m2

i
p2 and the variables ξi defined in eq. (3.4). This

clearly differs from the j-invariant computed in the previous subsection, see eq. (3.5).
However, as observed in ref. [28], the two curves are isogenous. This has been checked in
ref. [28] by computing the complex structure parameter τ of the elliptic curve. Here we
check it by using the relations between the j-invariants of the two elliptic curves. The j-
invariants for a pair of two-isogenous elliptic curves are related by the modular polynomial
Φ2(X,Y ) (see e.g. [54, Chapter 5])

Φ2(X,Y ) =X3 + Y 3 −X2Y 2 + 1488
(
X2Y +XY 2

)
− 162000

(
X2 + Y 2

)
+ 40773375XY + 8748000000 (X + Y )− 157464000000000.

(3.12)

See ref. [55] for details about how these modular polynomials are computed. It can be
checked that Φ2(jF , jB) = 0. This is an infinite precision test of two-isogeny. Ref. [28]
used the approach of comparing the periods which are computed using elliptic integrals.
This involves transcendental functions while the approach we followed here only requires
algebraic operations with rational functions.

4By abuse of notation we are here writing p for the absolute value of the momentum pµ.
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3.3 Full Baikov representation

For a “full” Baikov approach to an L-loop integral with E + 1 external legs one needs
1
2L(L+ 1) +LE Baikov variables Da. In the present case (L = 2, E = 1, M = L+E = 3),
the variables areD1, . . . , D5 and the maximal cut corresponds to setting D1 = D2 = D3 = 0
at the end of the computation.

We now follow [49] to derive the Baikov representation. The inverse propagators are

D1 = k2
2 −m2

1 , D2 = (k1 − k2)2 −m2
2 , D3 = (p− k1)2 −m2

3 ,

D4 = k2
1 , D5 = (p− k2)2 . (3.13)

Loosely following the notation of the paper above we set q1 = k1, q2 = k2 and q3 = p and
write sij = qi · qj . The Gram determinant5 is

G(k1, k2, p) = det

s11 s12 s13
s12 s22 s23
s13 s23 p2


= s11

(
p2s22 − s2

23

)
− s12

(
p2s12 − s13s23

)
+ s13 (s12s23 − s13s22) .

(3.14)

The Baikov polynomial is obtained by rewriting the Mandelstam variables sij in terms of
the inverse propagators Da in this Gram determinant,

P (D1, . . . , D5) = G(k1, k2, p)
∣∣∣
sij(Da)

. (3.15)

The cut integral (D1 = D2 = D3 = 0) is of the form∫ dD4dD5
Dα4

4 Dα5
5
P (0, 0, 0, D4, D5)(d−M−1)/2. (3.16)

Where α4 and α5 are the exponents of D4 and D5 in the original integral respectively.
Since M = 3, d = 2 and α4 = α5 = 0 we get∫ dD4dD5

P (0, 0, 0, D4, D5) , (3.17)

where P is a polynomial of overall degree three in D4 and D5,

P = 1
4
[
−D2

4D5 +D5(m2
1 −m2

2)(m2
3 − p2)− (m2

1m
2
3 −m2

2p
2)(m2

1 −m2
2 +m2

3 − p2)

−D4(D2
5 + (m2

2 −m2
3)(m2

1 − p2)−D5(m2
1 +m2

2 +m2
3 + p2))

]
. (3.18)

The equation P = 0 defines an elliptic curve. We may again transform this curve to
Weierstrass form. As it turns out, this curve has the same j-invariant as that from the
loop-by-loop Baikov computation in the previous section. Rather than repeating it here
we thus refer back to eq. (3.11).

5The astute reader may notice that this Gram determinant vanishes when in strictly two dimensions. If
one is uncomfortable with this one can instead derive a Baikov representation strictly in two dimensions.
We will do something similar for the elliptic double-box in section 4.2. Details relevant for either case (in
particular, how to handle cases when the internal momenta are spanned by the external momenta) are
presented in appendix A.5.
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3.4 Light-cone coordinates

One convenient way to enforce on-shell conditions in two dimensions is via light-cone co-
ordinates. We wish to enforce the conditions for the maximal cut:

k2
2 −m2

1 = 0, (k1 − k2)2 −m2
2 = 0, (p− k1)2 −m2

3 = 0. (3.19)

We define the auxiliary momentum k3 = k1−k2 and use that in light-cone coordinates
the square of a momentum is given by k2

i = k+
i k
−
i . Then the first two conditions in

eq. (3.19) are solved by

k−2 = m2
1

k+
2
, k−3 = m2

2
k+

3
. (3.20)

The last condition in eq. (3.19) becomes

(p+ − k+
2 − k

+
3 )(p− − k−2 − k−3 )−m2

3 = (p+ − k+
2 − k

+
3 )
(
p− − m2

1
k+

2
− m2

2
k+

3

)
−m2

3 = 0.

(3.21)

Introducing dimensionless quantities as k+
2 = p+x, k+

3 = p+y and again using µ2
i = m2

i
p2 ,

the previous equation becomes

(1− x− y)
(

1− µ2
1
x
− µ2

2
y

)
− µ2

3 = 0. (3.22)

In homogeneous coordinates [x : y : z] and after multiplying by xyz we are left with a cubic
curve in P2 given by the equation

PL ≡ xyz
(
1 + µ2

1 + µ2
2 − µ2

3

)
+ x2

(
µ2

2z − y
)

+ y2
(
µ2

1z − x
)
− z2

(
µ2

2x+ µ2
1y
)

= 0.
(3.23)

This is an elliptic curve whose defining equation is closely related to the F-polynomial
in (3.2). Specifically, their discriminants with respect to z are related by

discz PL(x, y, z) = discz F(y, x, z). (3.24)

Once again we can transform the curve to Weierstrass form, and evaluate its j-invariant.
As suggested by the relationship in eq. (3.24), we find it has the same j-invariant as the
Feynman parametric representation (given in eq. (3.5)), and a distinct (but isogenous)
j-invariant to those in the two Baikov representations.

3.5 Rationalizing the square roots in the Baikov representation

In subsection 3.2 we derived a loop-by-loop Baikov representation of the sunrise integral
and explained how the equation J = −16p8√Q1Q2 defines an elliptic curve isogenous to
the one obtained by Feynman parameters and the light-cone computation as in ref. [28].
Combining

√
Q1 and

√
Q2 in this way is safe if both Q1 and Q2 are positive. However, for

complex kinematics it may lead to an incorrect phase.
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Instead of combining the two roots, we can rationalize one of them. Recall that Q1
and Q2 were given in eq. (3.10) as

Q1 = − 1
4p4

[
D4 − (m3 − p)2

] [
D4 − (m3 + p)2

]
,

Q2 = − 1
4p4

[
D4 − (m1 +m2)2

] [
D4 − (m1 −m2)2

]
.

(3.25)

Choosing to rationalize
√
Q2, the change of variables amounts to replacing

D4 → 2t
[
m2

1
t− 1 + m2

2
t+ 1

]
,

√
Q2 →

(t(m1 −m2) + (m1 +m2))(t(m1 +m2) + (m1 −m2))
2p2(t2 − 1) .

(3.26)

It turns out that the Jacobian from the change of variables cancels against the trans-
formed

√
Q2 and a factor of t2 − 1 coming from

√
Q1. In the end we obtain

I(p2,m2
1,m

2
2,m

2
3)
∣∣∣
cut

= p4
∫ dD4

J
= − 1

16p4

∫ dD4√
Q1
√
Q2

= − 1
16p2

∫ dt√
R
, (3.27)

where R is a polynomial of degree four in t,

R ≡ 1
64p4

[(
(m3 − p)2 − 2(m2

1 +m2
2)
)
t2 − 2(m2

1 −m2
2)t− (m3 − p)2

]
×
[(

(m3 + p)2 − 2(m2
1 +m2

2)
)
t2 − 2(m2

1 −m2
2)t− (m3 + p)2

]
.

(3.28)

The equation y2 = R(t) defines an elliptic curve as a hypersurface in a weighted projective
space P1:1:2. It turns out that this curve has the same j-invariant as that from the graph
polynomial (given in eq. (3.5)). Note that this is not the same j-invariant as in the Baikov
representations above, even though the loop-by-loop Baikov representation was our starting
point: by rationalizing instead of combining roots we have achieved agreement with the
graph polynomial and light-cone derivations of the elliptic curve.

Another way to think about how the two curves emerge is to track what happens
to the branch points of the curves under the change of variables above. In ref. [28] and
subsection 3.2 the elliptic curve arising from the Baikov representation is defined by J2 =
(−16p8)2Q1Q2. This is a double cover of P1 branched over four points. Since Q1 and Q2
are already factorized, the branch points are easy to read off:

D
(1)
4,± = (m1 ±m2)2, D

(2)
4,± = (m3 ± p)2. (3.29)

These are four points on a projective line parametrized by the coordinate D4. They have
a cross-ratio λ with corresponding j-invariant j = 256 (λ2−λ+1)3

λ2(1−λ)2 . This approach gives the
“Baikov” j-invariant shown in eq. (3.11).

On the other hand, when rationalizing the quadric Q2 we write x as the image of a
map from a different P1 with coordinate t,

t 7→ x(t) = 2t
[
m2

1
t− 1 + m2

2
t+ 1

]
. (3.30)
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Under this change of variables, Q1 becomes a polynomial of degree four and we again define
an elliptic curve as a double cover of P1, but this time the P1 has coordinate t. The branch
points are the preimages of the two points D(2)

4,+ and D(2)
4,−. Since the change of variables is

quadratic each point has two preimages and we indeed get four branch points as required.
As we now again have four points on a projective line, we can form a cross-ratio and the
corresponding j-invariant. This is the j-invariant that comes from the F-polynomial and
the light-cone approach in eq. (3.5).

The analysis presented here applies to the loop-by-loop Baikov representation, and
at first this may make the full Baikov result seem mysterious, as unlike the loop-by-loop
representation it does not obviously involve combining square roots. However, if one derives
the Baikov representation by dividing each loop momentum into perpendicular and parallel
subspaces, as for example in ref. [46], then one naturally passes through a form closely
related to the loop-by-loop representation in which there are indeed multiple square roots.
In particular, the individual equations that need to be solved to land on the cut solution
will be the same. If one understands the Baikov representation as a result of this kind of
procedure, then the elliptic curve we found for it earlier can be explained in the same way
as the loop-by-loop curve, and a similarly more careful treatment (especially one along
the lines of the next section) will result in the same curve as was found from Feynman
parameters and light-cone coordinates.

3.6 Derivation of the double cover relation

In this section we study the relation between the two genus-one curves from a different point
of view. We describe the curves purely by polynomial equations and we avoid introducing
square roots.

On the maximal cut we have D1 = D2 = D3 = 0 and these equations together with
D4 = p2(x2 + u2) define a curve. We introduce a dimensionless variable d4 = D4

p2 . Then,
the equations (3.8) can be simplified by solving

x = d4 − µ2
3 + 1

2 , (3.31)

u2 = − 1
4(d4 − (1 + µ3)2)(d4 − (1− µ3)2), (3.32)

v2 =µ2
1 − y2, (3.33)

uv = (1− y)d4 − µ2
3 + 1

2 + µ2
1 − µ2

2 + µ2
3 − 1

2 . (3.34)

We now obtain the equation for the curve in variables y and d4, by substituting the ex-
pressions above in (uv)2 = u2v2. This equation is

P (y, d4) = − 4y2d4 + 2yd2
4 + 2

(
µ2

1 − µ2
2 − µ2

3 + 1
)
yd4 −

(
µ2

1 + 1
)
d2

4

+ 2
(
−µ2

1µ
2
3 + µ2

2µ
2
3 + µ2

1 − µ2
2

)
y + 2

(
µ2

1µ
2
3 + µ2

2

)
d4

− µ2
1µ

4
3 − µ4

1 + 2µ2
1µ

2
2 − µ4

2 + 2µ2
1µ

2
3 − µ2

1 = 0, (3.35)
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and is a cubic equation in y and d4. It is not in Weierstrass form. The expression for the
Jacobian can also be written in the variables y and d4:

J = p8

4
(
4yd4 − (d4 + µ2

1 − µ2
2)(d4 − µ2

3 + 1)
)
. (3.36)

Note that this approach avoids introducing square roots, at the cost of working with
two variables constrained by an algebraic relation.

Let us show that dd4
J is the holomorphic one-form on this curve. Taking the differential

of P (y, d4) = 0 we obtain(
∂P

∂y

)
dy +

(
∂P

∂d4

)
dd4 = −2J(y, d4) dy +K(y, d4) dd4 = 0, (3.37)

where

K(y, d4) = −4y2 + 4yd4 + 2(µ2
1 − µ2

2 − µ2
3 + 1)y − 2(µ2

1 + 1)d4 + 2µ2
1µ

2
3 + 2µ2

2. (3.38)

Since we assume that the curve described by P = 0 is nonsingular, we have that
∂P
∂y = −2J and ∂P

∂d4
= K can not vanish simultaneously. Then, we have dd4

J = 2dy
K . Hence,

one can see that at the zeros of J this holomorphic form does not have poles, when written
with the denominator K. It can be checked that this curve is the same as the one obtained
by the more traditional Baikov approach.

However, one can see that the curve we started with, in the variables x, y, u, v and
d4 is a double cover of the curve P (d4, y) = 0. Given a point (d4, y), we can uniquely
find x and u2, v2 and uv. This allows us to solve for u and v up to a sign. Hence, to
a point on the curve P (d4, y) = 0 correspond two points on the initial curve defined by
D1 = D2 = D3 = 0 and d4 = x2 + u2.

To find a one-to-one projection of the curve which is easily recognizable as an elliptic
curve, we proceed as follows. We can use a kind of Euclidean lightcone construction and
transform the equations to

y + iv = µ2
1

y − iv
, (3.39)

(x− y) + i(u− v) = µ2
2

(x− y)− i(u− v) , (3.40)

(x− 1) + iu = µ2
3

(x− 1)− iu . (3.41)

Combining them, we find

µ2
1

y − iv
+ µ2

2
(x− y)− i(u− v) −

µ2
3

(x− 1)− iu = 1. (3.42)

If we introduce ζ = y − iv and ξ = x− iu, we have a curve

µ2
1
ζ

+ µ2
2

ξ − ζ
− µ2

3
ξ − 1 = 1, (3.43)
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which is a cubic equation in (ζ, ξ). Once we have ζ and ξ we obtain

y = 1
2

(
ζ + µ2

1
ζ

)
, v = 1

2i

(
− ζ + µ2

1
ζ

)
, (3.44)

and similarly for x and u. Finally, we obtain d4 = x2 + u2. This time, given a point (ζ, ξ)
we can find a unique point on the initial curve.

This second curve looks very similar to the lightcone solution of section 3.4 and indeed
it has the same j-invariant.

3.7 Singularities of the geometry and Landau analysis

Recall that the j-invariant of an elliptic curve is

j = 1728g
3
2

∆ , (3.45)

where ∆ is the elliptic discriminant. When ∆ vanishes, j is singular, and the elliptic curve
degenerates.

For the curve arising from Feynman parametrization and the light-cone computation
we obtained

jF =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 16µ2

1µ
2
2µ

2
3
]3

µ4
1µ

4
2µ

4
3 (ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) (3.46)

while for the curve arising from the Baikov representation we obtained

jB =
[
(ξ2

0 − 1)(ξ2
1 − 1)(ξ2

2 − 1)(ξ2
3 − 1) + 256µ2

1µ
2
2µ

2
3
]3

µ2
1µ

2
2µ

2
3 (ξ2

0 − 1)2(ξ2
1 − 1)2(ξ2

2 − 1)2(ξ2
3 − 1)2 . (3.47)

The denominators of these expressions are distinct, but they clearly have the same
zeros, just with different multiplicities. These zeros all correspond to physical singularities
of the diagram, either to thresholds, pseudo-thresholds, or vanishing internal masses. Each
corresponds to a consistent Landau diagram, for particular choices of the sign of the energies
of each particle. The easiest to recognize are the thresholds, occurring when (ξ0)2 = 1 and
thus (m1 +m2 +m3)2 = p2, which is the condition for energy conservation when all of the
intermediate particles are traveling in the same direction. The Landau analysis also reveals
that there are other singularities, arising at pseudo-thresholds p2 = (−m1 + m2 + m3)2,
p2 = (m1 − m2 + m3)2 and p2 = (m1 + m2 − m3)2. In terms of variables ξ these are
(ξ1)2 = 1, (ξ2)2 = 1 and (ξ3)2 = 1. Finally, the singularities arising when one of the masses
vanishes are of a different type. They arise due to the fact that when one of the masses
vanishes the integral becomes divergent.

4 The elliptic double-box integral

The elliptic double-box integral has previously been analyzed in ref. [52] from the point of
view of direct integration in a Feynman parametric representation, and in ref. [56] from the
point of view of the maximal cut in twistor space. In both papers the same elliptic curve
was found using very different methods. In this section we derive a Baikov representation
of the double-box, and show that it also defines the same curve.
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p2

p3
p4

p1
p6

p5

k2 + p12 k1 + p123

k1 + p12345k2

k2 + p1 k1 − k2 k1 + p1234

Figure 2. Double-box integral in momentum space. Incoming momenta are assumed to be off-
shell, i.e. p2

i 6= 0, and pi1···in
≡ pi1 + · · ·+ pin

. The internal propagators are massless.

4.1 Baikov representation

The Baikov representation is a rewriting of Feynman integrals where the integration is
over Lorentz-invariant quantities, such as dot products. In appendix A we derive such
a representation for the elliptic double-box integral shown in figure 2 (see in particular
appendix A.4).

The maximal cut of the elliptic double-box can be written in a loop-by-loop Baikov
representation as an integral over two Baikov parameters. The cut integrand takes the
following form:

J
√
G1 dx8dx9

B1(x8, x9)
√
B2(x8, x9)

, (4.1)

where x8 and x9 are the two remaining Baikov variables after all propagators have been
cut. The polynomials B1 and B2 are of degree two in x8 and also of degree two in x9. The
factors J and G1 only depend on the external kinematics. We include expressions for these
polynomials in the supplementary material, doublebox_baikov_rep.txt.

To obtain an elliptic curve, we may begin by taking a residue around B1(x8, x9) = 0.
Without loss of generality, let us take this residue in x9. Solving B1(x8, x9) = 0 for x9
introduces a square root that contains x8, and this square root can be rationalized by
Euler substitution as done in subsection 3.5 for the sunrise integral. Denoting by t the
variable that replaces x8 to rationalize the square root we find that B2(t) becomes a quartic
polynomial in t. We can therefore define an elliptic curve by y2 = B2(t) and compute its
j-invariant through standard changes of variables.

The problem with this approach is that the change of variables from x8 to t may itself
introduce a square root in the kinematic parameters. Since the j-invariant of the elliptic
curve is expected to be a rational function of the kinematics, this root is spurious and must
cancel in j.

The spurious kinematic root can be avoided if we view x8 and x9 as a subset of the
coordinates on a P3 with homogeneous coordinates [x8 : x9 : y : z]. From the denominator
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in the integrand in eq. (4.1) we define the two quadrics6

S1 :=
{

[x8 : x9 : y : z] ∈ P3 | B1(x8, x9, z) = 0
}
,

S2 :=
{

[x8 : x9 : y : z] ∈ P3 | y2 − B2(x8, x9, z) = 0
}
.

(4.2)

The integrand in eq. (4.1) corresponds to a differential form on the intersection of S1 and
S2. For generic quadrics S1 and S2 this intersection is a smooth curve of genus one.

We now review briefly how this curve may be characterized and refer to [57, Chapter
22] for further details. The quadrics S1 and S2 generate a family of quadrics{

λ0s1 + λ1s2 | [λ0 : λ1] ∈ P1, s1 ∈ S1, s2 ∈ S2
}
. (4.3)

This family is called the pencil of quadrics and the intersection C = S1 ∩ S2 is called the
base locus of the pencil. The members Sλ of the pencil are quadrics in P3 and for some
choices of λ ∈ P1 they may be singular. If S1 and S2 intersect transversely, there are four
such singular members Sλi with i = 0, . . . , 3. Out of the four points λi we can form a
cross-ratio κ and subsequently the invariant combination

j = 256(κ2 − κ+ 1)3

κ2(κ− 1)2 , (4.4)

which characterizes the pencil of quadrics up to isomorphism. One can now moreover show
that the base locus C of the pencil is isomorphic to a genus-one curve in the plane with
the same j-invariant as the pencil.

An advantage of this description is that it allows us to compute the elliptic discriminant
of the curve using only rational operations. Writing S1 and S2 for the 4 × 4 symmetric
matrices associated to the quadrics S1 and S2 in eq. (4.2) respectively, the locations λi
of the singular members of the pencil are given by the eigenvalues of the matrix S−1

2 S1.
The curve degenerates if two of those points in P1 are the same, i.e. if S−1

2 S1 has a double
eigenvalue. This leads to the expression

∆ = discλ det(λ− S−1
2 S1) (4.5)

for the elliptic discriminant. Moreover, a defining equation for the curve is given by y2 =
det(x−S−1

2 S1) = 0. This depends rationally on the kinematic variables contained in S1 and
S2 and a Weierstrass form and the j-invariant can subsequently be computed by rational
transformations.

It turns out that the elliptic curve obtained in this way has the same j-invariant as
those computed from twistor space in ref. [56] and from the parametric representation of
ref. [52]. As we do not need to combine distinct square roots in this representation, this is
consistent with our observations in the previous section.

In the supplementary material of this paper, we provide the file doublebox_curve.txt
that contains an expression for the defining equation of the curve. With minor modifications
the file should be readable with most computer programs.

6Note that here we are writing B1(x8, x9, z) for the homogenization of the polynomial B1 in eq. (4.1)
and similarly for B2.
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4.2 Four-dimensional derivation of the Baikov form

In this section we present a derivation of the Baikov form without using dimensional reg-
ularization. This avoids having to take the potentially somewhat tricky limit d → 4.
Equivalently, one can obtain the cut integrand as a one-form and it is not necessary to take
one extra residue as in section 4.1.

Consider the loop parametrized by k2 in the elliptic double-box. This loop has
denominators

D1 = k2
2, D2 = (p1 + k2)2, D3 = (p12 + k2)2, D4 = (k1 − k2)2. (4.6)

It has “external” momenta p1, p2, k1 + p12 and k1. The integral measure ddk2 decomposes
into an integral d3k

‖
2 over the space spanned by the independent “external” momenta p1,

p2 and k1, and an orthogonal integral dd−3k⊥2 . The dot products of k2 with the “external”
momenta are

k2 · p1 = 1
2(D2 − p2

1 −D1), (4.7)

k2 · p2 = 1
2(D3 −D2 − p2

12 + p2
1), (4.8)

k2 · k1 = −1
2(D4 −D1 − k2

1). (4.9)

Using identities from appendix A.5, it follows that

d3k
‖
2 = d(k2 · p1)d(k2 · p2)d(k2 · k1)

detG(p1, p2, k1) 1
2

= −1
8

dD2dD3dD4 + dD1(· · · )
detG(p1, p2, k1) 1

2
, (4.10)

dd−3k⊥2 = 1
2Ωd−3

(detG(k2, p1, p2, k1)
detG(p1, p2, k1)

) d−5
2

dD1. (4.11)

Of course, we do not need to keep the dimension d arbitrary and we can set d = 4 here. In
that case we have Ω1 = 2.

When computing the full d4k2 measure the extra terms in d3k
‖
2 proportional to dD1

drop out:

d4k2 = −2 1
16dD1dD2dD3dD4

(
detG(p1, p2, k1)

)− 1
2

(detG(k2, p1, p2, k1)
detG(p1, p2, k1)

)− 1
2
. (4.12)

Note that we have not canceled the factor detG(p1, p2, k1) since we do not allow ourselves
to combine square roots. Note also that we have some Gram determinants whose entries
contain k1 · p1, k1 · p2 and k2

1. We need to keep these dot products in mind when analyzing
the k1 integral, to which we turn next.

For the k1 integral we have new denominators

D5 = (k1 + p123)2, D6 = (k1 + p1234)2, D7 = (k1 − p6)2, (4.13)

while in the Jacobian of the ddk2 integral we have k2
1, k1 · p1 and k1 · p2. We introduce two

new Lorentz-invariant quantities D8 = k2
1 and D9 = (k1 + p12)2.
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However, not all quantities D5, . . . , D9 can be independent; there are five such quanti-
ties and only four components for the vector k1. The relation connecting these quantities
can be obtained by computing the Gram determinant detG(k1, p12, p123, p1234, p12345) = 0.
Equivalently, we can antisymmetrize in five different vectors to obtain

kµ1 ε(p12, p123, p1234, p12345)− pµ12ε(k1, p123, p1234, p12345) + pµ123ε(k1, p12, p1234, p12345)

− pµ1234ε(k1, p12, p123, p12345) + pµ12345ε(k1, p12, p123, p1234) = 0. (4.14)

When decomposed over the basis p12, p123, p1234 and p12345, k1 has components k1 ·p12,
etc., with a metric given by the inverse of the Gram matrix G(p12, p123, p1234, p12345). The
scalar products k2

1, k1·p1 and k1·p2 can be computed from this decomposition. In particular,
this implies that we can compute D8 = k2

1 in terms of the other Di (since here there are
no transversal components there is no need to introduce D8 at all). Let us compute the
measure d4k1 in terms of D9, D5, D6 and D7. Using eq. (A.39), we find

d4k1 = 1
24

(detM0)− 1
2 detM0(

detM1 detM0
) 1

2
dD9dD5dD6dD7, (4.15)

where

M0 = G(p12, p123, p1234, p12345), (4.16)

M1 =


D9

1
2(D9 +D5 − p2

3) 1
2(D9 +D6 − p2

34) 1
2(D9 +D7 − p2

345)
D5

1
2(D5 +D6 − p2

4) 1
2(D5 +D7 − p2

45)
D6

1
2(D6 +D7 − p2

5)
D7

 . (4.17)

Here we have written only some of the matrix entries, the others can be determined from
these by symmetry.

When taking the cuts we need to set D1 through D7 to zero, and thus we only need
the expression for detM1 when D1 = · · · = D7 = 0. Then detM1 is a quadratic polynomial
in D9. Taking the squares of the Jacobians obtained in this section we obtain a genus-one
curve as an intersection of two quadrics. This curve has the same j-invariant as the one
obtained by considering the curve embedded in momentum twistor space as described in
ref. [56].

5 Conclusions

We have shown that the maximal cut and the Feynman parametrization of the two-loop
sunrise integral do not necessarily correspond to different elliptic curves. The observation of
different curves for these two objects in the literature was an artifact due to combining two
square roots, and a more careful treatment shows the same curve for both the Feynman-
parametric and Baikov representation, reinforced by the observation of the same curve in
a light-cone parametrization of the maximal cut. We have shown that similarly the Baikov
and twistor representations of the elliptic double-box also describe the same elliptic curve.
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In some ways, the appearance of the same curve in different representations of these
integrals should not be surprising. If one thinks of the maximal cut as a variety in loop mo-
mentum space, that variety should already define an elliptic curve. Whether we parametrize
it with Baikov, light-cone, or twistor coordinates, we are performing changes of variables
which should preserve invariant features of the geometry, such as the j-invariant. From this
perspective, the surprise is actually that this curve is preserved in Feynman parameters.
Feynman parameters do not correspond straightforwardly to a change of variables from
the initial loop momenta, so the fact that they apparently preserve the geometry deserves
further explanation.

One of the implications of our work is that analytic continuation of the Baikov repre-
sentation away from the Baikov integration domain has to be done with some care. Inside
this domain the Jacobians involved in changing coordinates are positive and one can pick
the positive solution of any square roots that appear. However, while this is possible for
Euclidean kinematics, there is no canonical choice of square roots outside this region.

In ref. [58], an extension of the notion of leading singularity was put forward which
applies to integrals containing genus-one curves as well. The construction in that reference
implicitly assumes a fixed geometry for the genus-one curve. If there were a genuine
ambiguity in the underlying genus-one curve it is not clear how one should modify their
construction. Fortunately, the results of this paper imply that such a modification may
not be necessary.

In previous investigations of the elliptic double-box, conformal symmetry served as
an important constraint that allowed for particularly clean representations. The Baikov
representation is by its nature not conformal, as it uses momentum invariants as variables.
It would be interesting to find a variant of Baikov that preserves conformal symmetry,
to make better use of this kind of representation in the context of, e.g., N = 4 super
Yang-Mills.

Finally, there is a broader concern raised by the observations of refs. [15, 28] that we
do not fully address. While we do find the same curve for both the cut and Feynman
parametrization of the sunrise integral, this by no means shows that isogenies are never
relevant to the elliptic integrals that occur in physics. In particular, while our work suggests
that each elliptic Feynman integral has a preferred curve, it may be that there exist distinct
diagrams whose corresponding curves are isogenous. If such an example were to be found,
it would suggest the need for a formalism that relates not merely iterated integrals on the
same elliptic curve, but iterated integrals on isogenous curves as well.
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A Baikov representations with derivations

In this appendix we carefully derive the Baikov representation in its loop-by-loop and
its standard forms. This derivation mostly follows ref. [46] and the loop-by-loop part
additionally ref. [49].

A.1 The one-loop case

As both the loop-by-loop and standard Baikov representations build off of the Baikov
representation at one loop, we will start by reviewing the situation there. Writing a generic
one-loop integral,

I =
∫ ddk
iπd/2

N(k)
P1(k)a1 · · ·PP(k)aP

(A.1)

we then split the integral up in parts parallel and perpendicular to the space spanned by
the E independent external momenta:

ddk = dEk‖dd−Ek⊥ (A.2)
= dEk‖ |k⊥|d−E−1 d|k⊥| dd−E−1Ω. (A.3)

Using ∫
dn−1Ω = Ωn = 2πn/2

Γ(n/2) (A.4)

we get

I = 2
Γ((d− E)/2) iπE/2

∫
N(k) dEk‖ |k⊥|d−E−1 d|k⊥|

P1(k)a1 · · ·PP(k)aP
. (A.5)

We may write the parallel component as

k‖ =
E∑
i=1

zipi, (A.6)

which implies that

k‖ · pj = k · pj =
E∑
i=1

zipi · pj . (A.7)

We introduce the Gram matrix G with entries Gij = pi · pj . This allows us to write,

zi =
E∑
j=1

G−1
ij (k · pj). (A.8)
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We further have that

k2
‖ =

E∑
i,j=1

zizjGij =
E∑

i,j=1
(k · pi)(G−1)ij(k · pj). (A.9)

We may pick a basis in which the quantities

ςi := k · pi . (A.10)

are the components of the vector k‖. In that case, the metric is nontrivial and is given by
the inverse of the Gram matrix. The integration measure is then

dEk‖ = (detG−1)
1
2

E∏
i=1

dςi. (A.11)

The orthogonal part has norm k2
⊥ = k2 − k2

‖. Including the expression for k2
‖ we have

k2
⊥ = k2 −

E∑
i,j=1

(k · pi)(G−1)ij(k · pj). (A.12)

Let us form the (E + 1)× (E + 1) Gram matrix,

Ĝ =
(

k2 k · pi
k · pj Gji

)
. (A.13)

Using the expression for the determinant of a matrix written in terms of blocks, we have that

det Ĝ =
[
k2 −

E∑
i,j=1

(k · pi)(G−1)ij(k · pj)
]

detG. (A.14)

Hence, (k⊥)2 = det Ĝ
detG .

Using the expression of k2
⊥ from eq. (A.14), we find that |k⊥|d|k⊥| = |k|d|k| + . . . ,

where the missing terms contain components dςi which vanish when wedged into dEk‖.
This means that we get the relation

d|k⊥|dEk‖ = 1
2 |k⊥|

−1dς0 dEk‖ (A.15)

where we have used the notation ς0 = k2.
Inserting eqs. (A.15), (A.12), (A.11) into eq. (A.5) we get

I = G(E−d+1)/2

Γ((d− E)/2) iπE/2

∫
N(ς) B(ς)(d−E−2)/2 dE+1ς

P1(ς)a1 · · ·PP(ς)aP
, (A.16)

where we have defined

B := det Ĝ = detG(k, p1, . . . , pE) , G := detG = detG(p1, . . . , pE) , (A.17)

with G denoting the Gram matrix.
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Now the only step left is to change to the Baikov variables xi, which equal the propa-
gators. If there are too few propagators (P < E + 1) one will need to introduce additional
variables, but this is mostly relevant at higher loops. The Jacobian J for the change
of variables will depend on the exact expressions used for the propagators, but for most
conventions it equals,

J = ± 2−E . (A.18)

Thus the final result for a one-loop Baikov representation is

I = J G(E−d+1)/2

Γ((d− E)/2) iπE/2

∫
N(x) B(x)(d−E−2)/2 dE+1x

xa1
1 · · ·x

aP
P

. (A.19)

A.2 Multi-loop, the loop-by-loop approach

With this representation in hand, we now want to apply it to multi-loop cases. A multi-loop
Feynman integral is given by

I =
∫ ddk1
iπd/2 · · ·

ddkL
iπd/2

N({k})
P1({k})a1 · · ·PP({k})aP

(A.20)

Our strategy will be to go through the steps from the previous section one loop at a time,
starting with loop number L and then going down towards 1. We call El the number
of momenta external to loop number l. This may include the loop momenta of lower-
numbered loops. We will denote with Gl the Gram-matrix of the momenta external to loop
l, while Bl is the same but with the loop-momentum kl included. If we follow the steps of
the previous section with this notation, we arrive at the correspondence

ddkl
iπd/2 →

G(El−d+1)/2
l Bl(ςl)(d−El−2)/2

Γ((d− El)/2) iπEl/2 dEl+1ςl (A.21)

where ςl corresponds to the set of dot-products between kl and itself along with the mo-
menta external to the lth loop. Putting this together for each loop gives

I = (−i)L π−(
∑

i
Ei)/2∏L

l Γ((d− El)/2)

∫ N(ς)
(∏L

l G
(El−d+1)/2
l B(d−El−2)/2

l

)
d(
∑

i
Ei)+Lς

P1(ς)a1 · · ·PP(ς)aP
(A.22)

and changing to the Baikov variables gives the final expression for the loop-by-loop Baikov
representation:

I = J (−i)L π−(
∑

i
Ei)/2∏L

l Γ((d− El)/2)

∫ N(x)
(∏L

l G
(El−d+1)/2
l B(d−El−2)/2

l

)
d(
∑

i
Ei)+Lx

xa1
1 · · ·x

aP
P

(A.23)

where the Jacobian for the final variable change still depends on the specific expressions
used for the propagators, but is usually given as

J = ± 2−(
∑

i
Ei). (A.24)

The expression of eq. (A.23) may also be found in ref. [59].
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A.3 Multi-loop, the standard approach

The standard approach to multi-loop Baikov parametrization can be thought of as a version
of the loop-by-loop approach, but with the assumption that all loops depend on all lower
loop-momenta and all external momenta. This means

El = E + l − 1 (A.25)

If this is the case then Gl = Bl−1 since their definitions will be the same. We also have that
the power of Gl which appears in the expression, (El−d+1)/2, is equal to minus the power
with which Bl−1 appears, making the two contributions cancel. This will happen pairwise
for each loop, leaving only BL and G1. Renaming these to B and G means we have

B = detG(p1, . . . , pE , k1, . . . , kL) and G = detG(p1, . . . , pE). (A.26)

Then eq. (A.23) becomes

I = J (−i)L πL−n G(E−d+1)/2∏L
l=1 Γ((d+1−E−l)/2)

∫
N(x) B(d−E−L−1)/2 dnx

xa1
1 · · ·x

aP
P

(A.27)

where we have used and defined

n ≡ L+
∑
i

Ei = EL+ L(L+ 1)/2 (A.28)

and where we (usually) have J = ±2L−n. We see that for L = 1 eq. (A.27) reduces nicely
to eq. (A.19).

A.4 The elliptic double-box

Let us look at the example of the elliptic double-box shown in figure 2. We have the
propagating momenta

q1 = k2, q2 = k2 + p1, q3 = k2 + p12,

q4 = k1 + p123, q5 = k1 + p1234, q6 = k1 + p12345, (A.29)
q7 = k1 − k2, q8 = k1, q9 = k1 + p12.

The last two q8 and q9 do not actually appear in the diagram, but they are needed to
express all scalar products in terms of the Baikov variables.

We have E2 = 3, counting the three momenta k1, p1, p2 that are external to the k2-
loop, while E1 = 4 since this is the maximum number of independent momenta in four
space-time dimensions. The four Gram determinants appearing are

B2 = detG(k2, k1, p1, p2), G2 = detG(k1, p1, p2),
B1 = detG(k1, p3, p4, p5, p6), G1 = detG(p3, p4, p5, p6). (A.30)

We have J = ±2−7
(

detG(p1,p2,p3,p4)
detG(p3,p4,p5,p6)

) 1
2 . Putting this together in eq. (A.23) we obtain the

expression

I = J π−7/2 G(5−d)/2
1

Γ((d−3)/2) Γ((d−4)/2)

∫
N(x)G(4−d)/2

2 B(d−5)/2
2 B(d−6)/2

1 d9x

xa1
1 · · ·x

a7
7

. (A.31)
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A.5 Derivation of a four-dimensional Baikov representation

In this section we consider the case when there is no orthogonal component k⊥ = 0,
which will be needed for our derivation of a Baikov representation in four dimensions. We
also introduce the vectors vi which are defined from the denominators Di = (k − vi)2,
corresponding to massless propagators. We take all of these vectors to be nonvanishing.
In other words, we will use as new coordinates the quantities Di, but k2 will not be one of
these coordinates.

Then, we have

ddk = (detG−1)
1
2

d∏
i=1

d(k · vi). (A.32)

We want to express this in terms of Di = (k − vi)2 instead of k · vi. We have
d∏
i=1

dDi =
d∏
i=1

2(k − vi) · dv = 2d
d∏
i=1

(k · dk − d(k · vi))

= (−2)d
[

d∏
i=1

d(k · vi)−
d∑
j=1

(−1)j−1(k · dk)
∏
i 6=j

d(k · vi)
]
.

(A.33)

Plugging in k · dk = ∑
k,l(k · vk)(G−1)kld(k · vl), we obtain

d∏
i=1

dDi = (−2)d
[
1−

d∑
j,k=1

(k · vk)(G−1)kj
]

d∏
i=1

d(k · vi). (A.34)

Let us rewrite the Jacobian in a simpler way[
1−

d∑
j,k=1

(k · vk)(G−1)kj
]

detG = det
(

1 k · vj
1 Gji

)
= det

ij
((vi − k) · vj). (A.35)

To compute this last determinant, consider the decomposition of k − vi and k − vj on the
basis of vectors vk. Upon taking the dot product in this basis we obtain

(k − vi) · (k − vj) =
d∑

k,l=1
((k − vi) · vk)(G−1)kl((k − vj) · vl), (A.36)

whence
det
ij

((k − vi) · (k − vj)) =
(
det
ik

((k − vi) · vk)
)2(detG)−1. (A.37)

Since

(k − vi) · (k − vj) = 1
2
[
(k − vi)2 + (k − vj)2 − (vi − vj)2

]
= 1

2
[
Di +Dj − (vi − vj)2

]
,

(A.38)
the determinant detij((k − vi) · (k − vj)) can be written in terms of D variables and con-
stants (vi − vj)2. This determinant is the Cayley-Menger determinant which arises when
computing the volume of a simplex in Euclidean space.

In the end, we find

ddk = (−1)d
2d

(detG)− 1
2 detG(

detij((k − vi) · (k − vj)) detG
) 1

2

d∏
i=1

dDi. (A.39)
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