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Abstract

Efficient quantum communication over long distances requires quantum re-
peaters along the communication line. Quantum repeaters based on room tem-
perature systems offer advantages due to their scalability. However, atomic mo-
tion has until now prevented these systems to reach long lifetimes of heralded
single collective excitations in room temperature systems. We study the charac-
teristics of vapour cells with anti-relaxation coating which allows for long life-
times. We demonstrate efficient heralding and readout of single collective exci-
tations created in warm caesium vapour. Using the concept of motional averag-
ing, we can achieve a lifetime of the collective excitation of 0.27± 0.04 ms, two
orders of magnitude longer than previous warm vapour experiments on the
single photon level. We verify the non-classicality of the correlations between
heralding and readout fields by a significant violation of the Cauchy-Schwarz
inequality with R = (1.4 ± 0.1) > 1. The spectral and temporal analysis of
the noise contributions that contaminate the single photon readout allows us to
identify leakage of excitation light and intrinsic four-wave mixing as two main
contributions. In a proof-of-principle experiment we confirm an experimental
solution to suppress the four-wave mixing noise. We discuss possibilities to
identify and possibly eliminate the remaining noise sources and thus with an
improved setup to advance towards the applicability as an on-demand single
photon source.



Resumé

Effektiv kvantekommunikation over store afstande kræver kvanterepeatere langs
kommunikationslinjen. Kvanterepeatere baseret på systemer ved stuetemper-
atur åbner mulighed for fordele pga. deres skalerbarhed. Dog har atomar
bevægelse hidtil forhindret opnåelsen af lange levetider hos enkeltstående kollek-
tive excitationer i systemer ved stuetemperatur. Vi undersøger de egenskaber
ved dampceller med antirelaksationbelægning, som muliggør oppebærelsen
af lange levetider. Vi demonstrerer effektiv varsling og udlæsning af enkelt-
stående kollektive excitationer skabt i varm cæsiumdamp. Ved at benytte kon-
ceptet bevægelsesmidling kan vi opnå en levetid for den kollektive excitation
på 0.27± 0.04 ms, to størrelsesordner længere end forudgående eksperimenter
med varm damp på enkeltfotonniveau. Vi verificerer ikke-klassikaliteten af ko-
rrelationerne mellem varslings- og udlæsningsfelterne ved et signifikant brud
på Cauchy-Schwarz’ ulighed med R = (1.4± 0.1) > 1. Den spektrale og tid-
slige analyse af støjbidrag, som besmitter enkeltfotonudlæsningen, tillader os
at identificere lækage fra excitationlys og intrinsisk firbølge-mixing som to hov-
edbidrag. I et proof of principle-eksperiment bekræfter vi en eksperimentel løs-
ning til undertrykkelse af støjen fra firbølge-mixing. Vi diskuterer muligheder
for at identificere og muligvis eliminere de tilbageværende støjkilder og derved,
gennem en forbedret forsøgsopstilling, advancere mod anvendelse som en on-
demand enkeltfotonkilde.
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Chapter 1
Introduction

In the last decades, quantum information science has been an area of very active
research. It is seen as one of the cornerstones of the second quantum revolu-
tion [DM03], that is the development of new technologies based on quantum
physics. The work presented in this thesis has emerged in this spirit, com-
bining well-established physics with new ideas to find applicable solutions for
quantum technologies.

The first quantum revolution occurred at the beginning of the 21st century.
Starting from the attempt to describe black-body radiation, quantum mechanics
was born and the well-established classical theory of electromagnetic radiation
was turned upside down. Historically there had been a lot of dispute whether
light was to be consider wave-like or particle like. After the wave theory devel-
oped by Huygens and Hooke was confirmed by experimental results of Young’s
slit experiments and Fresnel’s diffraction experiments, the wide-spread belief
was that this question had finally been answered in favour of the wave theory.
Together with the formalism developed by Maxwell in the second half of the
19th century, the framework for electro-magnetism seemed to be in place. How-
ever, when Planck in 1900 required to introduce a quantization of the energy
of the electro-magnetic field to be able to describe the frequency dependency
of the black-body radiation, this world-view started to change and quantum
physics was born. The quantization was then also successfully applied by Ein-
stein to explain the theory of the photo-electric effect in 1905. While the photo-
electric effect was first seen as a proof of the quantization of light, it was shown
later, that the quantization of the atomic transitions is sufficient to explain the
photo-electric effect [LS69]. It took until the 1970’s for the field of quantum op-
tics to emerge, a discipline dedicated to study the quantum nature of light. It
became apparent that identifying a single photon state and thus contradicting
classical theories is very challenging by measuring the photon number distribu-
tion, and much simpler by observing the correlations between photodetection
events. The main idea for the correlation measurement is that for a classical
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field impinging on a semi-reflective beamsplitter there will be measurable in-
tensity both in the reflected and the transmitted beam path. On the contrary,
a single light quantum will be either reflected or transmitted, leaving the re-
spective other path empty. The resulting correlation of detection events in both
paths allows to identify states of light that cannot be described by classical
theory, so-called non-classical states. In the experiment of [Cla74], two photons
were produced subsequently from an atomic cascade transition with short-lived
intermediate state. The correlations between these two photons were then anal-
ysed and shown to be non-classical. A few years later the "antibunching" effect
itself was observed [KDM77]. [GRA86] performed a single photon interference
effect. They created correlated photon pairs via an atomic cascade transition,
then used the detection of one photon to herald the presence of the other. First
the identified that this setup performed as a single photon source, then they
injected the output into a Mach-Zehnder interferometer and observed single
photon interference. Another milestone was the observation of single photons
heralded from a spontaneous parametric down-conversion photon pair source
on grounds of their statistical properties by [HM86].

We will introduce quantum states of light and their statistical properties in
the next subsection. Then, we will briefly touch upon single photon sources
and their figures of merit. Entanglement and teleportation and their impact
on quantum communication will then be introduced before we move on to
quantum repeaters. A short section about vapour cell applications and a pre-
sentation of the idea of this work will conclude the introduction.

1.1 Quantum states of light

A coherent state of light is described classically as a stable oscillation of the
electro-magnetic field. We can expand any state of light in the basis of coherent
states weighted by a quasiprobability distribution. This expansion is called the
Glauber-Sudarshan P representation [Gla63] [Sud63]. If the quasiprobability
is positive and bounded, then the light is considered classical, otherwise it is
non-classical [GK05]. This means that only coherent states and their statistical
mixtures are classical states. Examples of classical light are light from thermal
sources or coherent laser light. Examples for non-classical light are squeezed
states and photon-number states such as a single photon state.

A photon is defined as an elementary excitation of a single mode of the electro-
magnetic field. A single photon state can be defined [BFMP13] as the light
field for which the measurement with a number-resolving detector of perfect
detection efficiency yields one for the mean number and zero for the variance.
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1.1.1 Statistics of light states

Let us consider a stable and perfectly coherent beam of light. In a quantum
picture one might be tempted to imagine this as a stream of photons with
regular time intervals between them. This is however not the case. The discrete
nature of the photons will lead to statistical fluctuations of the photon flux. It
can be shown that the probability to find k photons within a perfectly coherent
beam of light is given by the Poisson distribution [Fox06]

p(k) =
n̄k

k!
e−n̄ (1.1)

with average photon number n̄. Light states that follow Poissonian statistics are
called coherent states, and typically the output of a laser can be well described
by such a state. The Poissonian distribution has a variance (∆n)2 = n̄. We can
use this fact to classify light by its photon statistics into super-Poissonian, if
(∆n)2 > n̄, and sub-Poissonian, if (∆n)2 < n̄.

It is not difficult to think of light that has super-Poissonian statistics. Any
excess classical intensity fluctuation on a coherent state will lead to an increased
variance. Sub-Poissonian light, on the other hand, has a narrower distribution
than coherent light. There is no classical counter-part for sub-Poissonian light,
thus it is called non-classical.

The electromagnetic radiation emitted by a hot object is known as blackbody
radiation. It can be shown that for such a thermal light field, considering a
single mode, the probability to find k photons is given by [Fox06]

p(k) =
1

n̄ + 1

(
n̄

n̄ + 1

)k

(1.2)

where the average photon number is n̄. This thermal state has a variance
(∆n)2 = n̄ + n̄2 and thus falls into the category of super-Poissonian states.

A sub-Poissonian state of light has to have smaller variance than the coherent
state, and thus has to be even more "stable". Here we can for example imagine a
stream of equidistant photons. This yields the sub-Poissonian variance (∆n)2 =

0 and thus a non-classical photon state, a so called photon-number state. The
main difficulty in the experimental verification of such a sub-Poissonian state
is photon loss, or with a similar effect imperfect detection efficiency. If we
model the loss as a beamsplitter that randomly scatters photons out of the
equidistant photon stream, the transmitted photons will have more and more
random separations, the more losses the beamsplitter causes. This randomness
leads in the limit of high losses to a Poissonian statistics.
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1.2 Single photon source

Many of the experiments mentioned above were done using single photons.
These can be created in many different ways. We refrain here from presenting
a detailed description, which can be found in [MPFB13]. In general, single pho-
tons sources can be divided into two categories: probabilistic and deterministic
sources. Probabilistic sources are based on photon-pair emission, where one of
the photons is used to herald the other. Typically, the probability of photon-
pair emission has to be kept low to avoid the emission of multiple pairs. This
reduces the rate of photons available. Probabilistic sources are still the most
widely used single photon sources [BFMP13]. Deterministic sources that de-
liver single photons on demand are often based on single emitters. Intense
research is conducted to develop these sources.

We will briefly introduce the main figures of merit for the performance of single
photon sources. Single photon sources are ideally emitting single-photon states.
However, emission of multi-photon states remains possible, which can limit the
usefulness of the device. Thus, anti-bunching is an important figure of merit for
a single photon source. It can be quantified with correlation measurements
[BT56]. For multi-photon experiments it is often important to interfere single
photons from different sources e.g. to create entanglement (see section 1.3). To
achieve good interference it is important that the photons are indistinguishable
both spectrally and temporally. In practice, this is typically tested with a Hong
Ou Mandel interference experiment [HOM87], combining two single photons
on a beamsplitter. For many experiments and especially multi-photon exper-
iments, the generation rate and efficiency are crucial parameters. These will not
only determine the experiment duration but low efficiency can also limit the
usefulness of the source for application schemes.

Many experiments require efficient storage and retrieval of light after a vari-
able delay [NLK+13]. Quantum memories are devices with this capability for
non-classical light states. They have been demonstrated using many differ-
ent platforms e.g. rare-earth ion doped crystals [CUB+11] and warm atomic
vapours [RML+11], using a variety of protocols. We refrain from presenting
a complete list here, a broad overview including a discussion of the figures of
merit can be found in [SAA+10].

1.3 Entanglement

In classical physics, a two-state system can be in either one of the two states.
These two states can e.g. be horizontal or vertical polarization of a single pho-
ton. A different example would be the presence of a single photon or vacuum.
We will label the two possible states |0〉 and |1〉. A quantum-mechanical two-
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state system, also called a qubit, can be in the superposition state

|ψ〉 = α |0〉+ β |1〉 (1.3)

A measurement of the state projects it on the measurement basis, e.g. |0〉 , |1〉.
The prefactors α and β will determine the probabilities of the measurement
outcome. Even more interestingly, several systems can be entangled which each
other. This means that their combined state cannot be written as a product of
independent states. The state

|φ+〉 = 1√
2
(|0〉A |0〉B + |1〉A |1〉B) (1.4)

is an example of an entangled state between A and B. A measurement only on
system A (or only on system B) will lead to a mixed state with equal proba-
bilities for projection of system A (or B) on |0〉 or |1〉. However, if we measure
one system, then we also project the state of the other system, thus its mea-
surement outcome will be fixed, if we use the same basis. Since this entan-
glement is independent of the spatial separation of the systems, this "spooky
action at the distance" was questioned sharply in the early days of quantum
physics [EPR35]. Bell proposed a boundary that rules out local hidden vari-
ables as an alternative explanation [Bel64]. Based on this, and similar work
[CHSH69], Aspect performed an experiment falsifying local hidden variable
theories [ADR82]. Recent work with refined experiments is even considered
loophole-free [HBD+15].

Entanglement can be useful for secure quantum communication. The fact that
the measurement outcomes are uncorrelated, if the systems A and B in equa-
tion 1.4 are measured in carefully chosen bases1, allows for quantum commu-
nication that can be immune against intercepting eaves-droppers [BB84]. The
no-cloning theorem states that an arbitrary unknown quantum state, e.g. a state
as in equation 1.3 with unknown α and β cannot be duplicated [WZ82]. It can
however be teleported to a different location as we will see below.

1.4 Quantum teleportation and entanglement swapping

Quantum teleportation is the transfer of quantum information from one lo-
cation to another, only using classical communication and previously shared
entanglement between sending and receiving location [BBC+93].

As an example, let us consider that the qubit in equation 1.3 on system X should
be teleported to system B, while systems A and B are already entangled. Two-

1E.g. polarization state bases {horizontal, vertical} and {diagonal(+45◦), diagonal(−45◦)}
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qubit entanglement can be expanded in the Bell state basis

|φ±〉 = 1√
2
(|0A〉 |0B〉 ± |1A〉 |1B〉) (1.5)

|ψ±〉 = 1√
2
(|0A〉 |1B〉 ± |1A〉 |0B〉). (1.6)

Let us assume that the entangled state of A and B is prepared in |φ−〉. The
initial state can then be described as

|ψXAB〉 =
α√
2
(|0X0A0B〉 − |0X1A1B〉) +

β√
2
(|1X0A0B〉 − |1X1A1B〉). (1.7)

This can be rewritten in terms of Bell states of X and A as

|ψXAB〉 =
1
2
[
|φ+

XA〉 (α |0B〉 − β |1B〉) + |φ−XA〉 (α |0B〉+ β |1B〉)

+ |ψ+
XA〉 (−α |0B〉+ β |1B〉) + |ψ−XA〉 (−α |0B〉 − β |1B〉)

]
. (1.8)

A joint measurement on X and A, determining their Bell state, then projects
the qubit B into the corresponding state. Classical communication about the
outcome of the Bell state measurement of X and A lets B know, which local
operations B has to perform to correct the signs. After performing these local
operations, the initial state of qubit X has been transferred to qubit B, while
there is no entanglement left and the initial state of qubit X has been destroyed.
With linear optics, it is not possible to distinguish all four Bell states [CL01],
which limits the efficiency of successful teleportation to 50%.

Experimental observation of quantum teleportation was first reported with sin-
gle photons [BPM+97].Teleportation using photons is interesting for quantum
information transfer over long distances. Reducing transmission losses by us-
ing free-space coupling to a satellite, the record distance for quantum telepor-
tation (1400 km) has been recently achieved by [RXY+17].

One can extend the range of entanglement by means of entanglement swap-
ping. This can be seen as follows. Let us assume that A and B share a Bell
state, and X and Y share a Bell state. Performing a Bell state measurement on
the qubits of X and A then destroys the initial entanglement, but creates en-
tanglement between B and Y. Again, limited Bell state measurement efficiency
with linear optics reduces the efficiency of entanglement swapping. The con-
cepts presented in this section can be used for quantum communication as we
will we see in the following.

1.5 Quantum repeater and DLCZ-scheme

The natural choice for transmitting quantum information over long distances is
to use single photons as flying qubits. Photons provide information transport
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at the speed of light and they can travel long distances while only being weakly
perturbed by the environment. However, if photons are sent through a fiber,
the transmission losses actually matter and limit the communication distance.
In classical communication, repeater stations are used to amplify the signal and
counteract the losses. This does not work for qubits. Here a chain of quantum
repeaters, as proposed by [BDCZ98] and [DLCZ01] can help to overcome the
limiting exponential scaling with communication distance. The main idea of
the so-called DLCZ-protocol, named after the authors of [DLCZ01], is to split
the total communication distance in many short segments. Entanglement can
be created probabilistically on each short segment. Subsequent entanglement
swapping of neighbouring segments leads after repeating this process to entan-
glement between the sender and the receiver. The successfully entangled links
are required to store their entanglement. The reason is that if entanglement
creation or swapping on some segments fails, only those affected segments
need to start over again. This procedure leads to a speed-up of the entangle-
ment creation over long distances that results in a polynomial growth of the
communication time with distance [DLCZ01].

After the publication of [DLCZ01] a lot of activity was directed towards exper-
imental realization of the DLCZ-protocol with atomic ensembles. Already two
years later [KBB+03] reported non-classical correlations between the heralding
and the readout photons from an ensemble of cold caesium atoms with a vio-
laton of the Cauchy-Schwarz inequality by R ≈ 1.8 > 1 and a write-read delay
of about 400 ns. Non-classical correlations, although not at single-poton level
were also observed by [vdWEA+03]. The performance of the experimental re-
alizations was further improved during the next years. The longest memory
times have been achieved in optical lattices [RDZ+10], reaching up to 0.22 s
[YWBP16]. Cross-correlations have been shown up to g(2)W,R ≈ 600 [LdRF+06],
and retrieval efficiencies exceeding 80% have been reported [YWBP16], [BBV+14],
[STTV07].

The performance of several quantum repeater protocols based on atomic en-
sembles and linear optics has been reviewed in [SSdRG11]. Experimentally,
elementary nodes and links of the DLCZ-protocol have been realized with cold
atomic ensembles [CLD+07], [YCZ+08], [CdRF+05], [LCD+07].

For completeness we mention briefly that there are also other quantum repeater
schemes that are not based on atomic ensembles but e.g. on single ions [SDS09],
single atoms in cavities [BKK+15] or Rydberg atoms [HHH+10]. The challenge
for quantum repeaters is typically the need for quantum memories to be able
to store the entanglement. However, protocols have been developed that work
without the need for quantum memories [MSD+12], [MKL+14].

There has also been a lot of experimental progress with rare-earth ion-doped
crystals as a platform instead of cold atoms. These solid state systems offer the
possibility for spectral multiplexing [SSM+14]. Furthermore, record coherence
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times of nuclear spins of several hours have been reported [ZHA+15]. Recently,
DLCZ-type sources featuring temporal multimode storage have been achieved
in rare-earth ion-doped crystals [KMdR17], with storage times on the order of
1 ms [LJE+17].

As we have seen above, cold atoms and rare-earth ion-doped crystals can serve
as excellent atom-photon interface. However cold atoms require laser-cooling
and solid-state systems require cryogenic temperatures to achieve their excel-
lent properties. This technological complexity impedes the scalability of these
platforms. This drawback makes room-temperature systems such as atomic
vapour cells more interesting.

1.6 Vapour cells

Atomic vapour cells are used for a variety of sensitive sensing applications,
e.g. for magnetic fields [BR07] [SLDR13], [JBT+16]. Glass cells with alkali
atomic vapour, additionally filled with a noble gas as buffer gas are com-
monly used. The buffer gas ensures that the alkali atoms due to frequent
collisions with buffer gas atoms take a long time until they collide with the
cell walls. Collisions with the glass wall affect the atomic state, thus the use
of buffer gas extends the atomic coherence time. Another technique to pro-
long the coherence time is the use of anti-relaxation coating of the cell walls.
This removes the detrimental effect of the wall-collisions and allows for very
long coherence times, which have been reported up to minutes [BKLB10]. The
long coherence times have permitted many interesting experiments, such as
demonstrating quantum memory for light [JSC+04], long-lived entanglement
between macroscopic objects [JKP01] and teleportation between light and mat-
ter [SKO+06]. The disadvantage of anti-relaxation coated cells is that they are
typically more difficult to fabricate, and only sustain a limited temperature
range. Buffer gas cells and anti-relaxation coated cells lead to very different
atomic motion. Buffer gas limits the atomic motion, which makes these cells
suitable for short time-scale experiments.

Buffer gas cells have been used to demonstrate various different types of quan-
tum memories. Electromagnetically introduced transparency (EIT) was re-
ported on the single photon level [EAM+05], [HB10], [PGN08], [MSKT15].
Raman memory providing broadband storage was demonstrated [RML+11],
recently even with cavity-enhancement [SMC+16]. A gradient index quantum
memory was presented by [HCS+11] and recently [KLB+18] presented a noise-
free ultra-fast quantum memory. The four-wave mixing process has been uti-
lized to create correlated photon pairs [POS+17], [ZGS+17].

A different approach is the DLCZ-scheme in buffer gas cells. Here, heralded
creation of excitations and subsequent readout after a delay time has been
achieved with cross-correlations up to g(2)W,R ≈ 28 [DYD+17]. Delay times on
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the order of a few microseconds have been shown [BFV12]. Furthermore, spa-
tial multimode application has been demonstrated [CW12].

1.7 This work

Typically, buffer gas experiments rely on having immobilized atoms during
the experiment duration. This only allows for very short durations on the
microsecond scale. The idea of the experiment presented in this thesis is to
apply a DLCZ-scheme to a vapour cell with anti-relaxation coating. Letting the
atoms cross the interaction beam many times effectively averages the interac-
tion strength. This can be used to create symmetric collective excitations that
are immune to atomic motion. The delay time between heralding and read-out
is set by the coherence time of the created excitation, which typically exceeds
the microsecond range by several orders of magnitude.

This allows for quantum information applications along the lines of the original
DLCZ-proposal, where long storage times are beneficial for long-distance com-
munication. Furthermore, it can be used as a source of narrowband on-demand
single photons.

The thesis is structured as follows. We will start out with an explanation of
the theoretical background in chapter 2. We will then describe the setup of the
experiment in chapter 3. The subsequent chapter 4 discusses vapour cells and
characterization measurements. The main results of the DLCZ-type experiment
will be presented in chapter 5. Chapter 6 is dedicated to the proof-of principle
experiment with improved noise performance. We will discuss the results,
the limitations and possible improvements in chapter 7, and then conclude in
chapter 8.
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Part I

Theoretical background





Chapter 2
Theory

2.1 The caesium atom

In our experiment we work with caesium-133 atoms. It is a stable alkali atom,
that has one valence electron in the 62S1/2 ground state. The single valence
electron leads to a comparably simple electronic level structure. For us the
relevant transitions are the D2 transition to the 62P3/2 level with a wavelength
of about 852 nm and the D1 transition to the 62P1/2 level with a wavelength
of about 895 nm, as shown in fig. 2.1. The interaction of the total electron an-
gular momentum J with the total nuclear angular momentum I = 7/2 splits
the ground state into the hyperfine levels F = 4 and F = 3, where F is the
total atomic angular momentum. Both levels are populated at room tempera-
ture since the ground state hyperfine splitting of hνh f s = h · 9.2 GHz is much
smaller than the thermal energy at room temperature kBT (≈ h·THz). In the

Figure 2.1: Hyperfine level structure for the D1 line and D2 line of caesium. Figure
adapted from [Jul03]
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presence of a weak static magnetic field Bx along the x-direction, the interac-
tion of the total atomic angular momentum F with the magnetic field leads to
the Zeeman effect, splitting each level F into 2F + 1 magnetic sublevels labeled
with the magnetic quantum number mF = Fx/h̄, that is the projection of F on
the magnetic field direction. The energy shift of the atomic levels is given by
[Ste15]

∆E|F,mF〉 = µBgFmFBx (2.1)

where µB is the Bohr magneton and gF the hyperfine Landé factor. The fre-
quency of neighbouring magnetic levels, that is levels with ∆mF = ±1, is thus
shifted by the linear Zeeman frequency νZ = µBgFBx/h. When increasing the
magnetic field, the quadratic Zeeman splitting is no longer negligible. Includ-
ing the quadratic splitting, for two neighbouring levels this yields [JKP01]

E|F,mF+1〉 − E|F,mF〉
h

= νZ −
ν2

Z
νh f s

(2mF + 1) (2.2)

.

2.2 Light-atom interaction

We are interested in the interaction between light and a single atom. This
has been studied in many textbooks e.g. [Ste15], we will recap the derivation
here, following [HSP10]. We assume an atom at position~r with ground states
denoted |gm〉 and excited states |em〉, where we have used Dirac notation for
the atomic states. We use the dipole approximation, where we can write the
interaction Hamiltonian as

Hint = −~d · ~E (2.3)

with the electric dipole operator for the atom ~d and the electric field ~E. We
decompose the electric field in terms oscillating with positive and negative
frequencies

~E = ~E(+) + ~E(−) = ~E(+)
0 e−iωt + ~E(−)

0 eiωt (2.4)

and perform a similar decomposition with the dipole operator

~d = ~d(+) + ~d(−) = ∑
m,m′

~dgm′ em |gm′〉 〈em|+ ~dgm′ em |em〉 〈gm′ | (2.5)

where we have defined the dipole matrix element ~dgm′ em = 〈gm′ |~d|em〉. The
dipole matrix element determines the coupling strength between levels |gm′〉
and |em〉. The dipole-allowed transitions, characterized by non-vanishing dipole
matrix elements can then be combined into a convenient set of selection rules
which can be found in any standard textbook, e.g. [Ste15]. We can perform the
rotating wave approximation, thus neglecting the terms oscillating at twice the
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Figure 2.2: Schematic of three level system.

optical frequency. This yields

Hint = −(~E(−) · ~d(+) + ~d(−) · ~E(+)) (2.6)

For a simple two-level atom1 with one ground state |g〉 and one excited state
|e〉 we can write the interaction Hamiltonian

Hint = −
h̄
2

(
Ωeg |e〉 〈g|+ Ω∗eg |g〉 〈e|

)
(2.7)

where the Rabi frequency Ωeg = 2~dge~E
(+)
0 /h̄ determines the rate at which the

atom gets transferred from |g〉 to the |e〉 and back. Choosing a suitable duration
of the coupling allows to deterministically transfer the atom from one to the
other state. [Ste15]

Our next example is a three level atom with two ground states |g〉, |s〉 and one
excited state |e〉 as shown in fig. 2.2. We assume that the transition |g〉 → |e〉
is driven by an off-resonant light field with Rabi frequency Ωeg, whereas the
transition |s〉 → |e〉 is driven by a vacuum field with coupling g. Including the
atomic Hamiltonian in the rotating frame HA = −h̄∆ |e〉 〈e| with ∆ = ωL − ωe

the detuning between light frequency and excited level, yields an atom-field
Hamiltonian

H = −h̄∆ |e〉 〈e| − h̄
(

Ωeg

2
σeg + gσes + H.c.

)
(2.8)

We have introduced the atomic operators σij = |i〉 〈j| here. The Hamiltonian
can be simplified as follows using adiabatic elimination. We start from the
Heisenberg equations of motion

dσeg

dt
=

i
h̄
[H, σeg] ≈ 0 ;

dσes

dt
=

i
h̄
[H, σes] ≈ 0 (2.9)

where the approximation is valid for weak drive and large detuning. Fur-
thermore, in this case the excited state population will be negligible, that is

1we do not include spontaneous emission here
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σee ≈ 0. Inserting the resulting approximated atomic operators into the initial
Hamiltonian gives an interaction Hamiltonian similar to eq. 2.7. However, now
the coupling between the ground and excited states is given by an effective
Raman-Rabi frequency Ωe f f = Ωg∗

2∆ . Similar to the two-level model, coherent
and deterministic transfer from one ground state to the other is possible [Ste15].

This is in contrast to the incoherent process of spontaneous emission. The rate
of spontaneous emission from the excited state Rsc is given by multiplying the
rate of spontaneous emission γ with the excited state population. As derived in
[Ste15], this gives Rsc ≈ γΩ2/(4∆2), neglecting atomic coherences. We note the
different scaling with detuning compared to the Raman-Rabi coupling. Since
we are interested in a deterministic and coherent transfer of population, we
require the Raman scattering to dominate over spontaneous emission. Due to
the different scalings with ∆, this can be achieved by working at large detun-
ings. We can achieve an increase in the light-atom coupling strength by using
an atomic ensemble instead of just a single atom. This will be the topic in the
next section.

Similar to the simple three level system, one can derive an effective ground
state Hamiltonian for an atom with several ground and excited states, which
gives according to [HSP10]

H′int = ∑
m,m′

Vm′,m(~r) |gm′〉 〈gm| (2.10)

where the coupling matrix Vm′,m can be expressed as

Vm′,m = −∑
m′′

Ωm,m′′g∗m′,m′′
2∆m′′

(2.11)

We note that [HSP10] sets h̄ = 1 and uses cgs units.

2.3 Light interaction with atomic ensembles

We now consider an ensemble of atoms with two ground states, |g〉 and |s〉,
interacting with a weak quantum field while being driven by a strong classical
field. The two ground states can be expressed in terms of angular momentum
operators. We introduce the atomic collective annihilation operator

aA =
∑k σ

(k)
gs√

2〈Jx〉
(2.12)

where Jx is the collective spin projection Jx = ∑k j(k)x . We can easily see the
effect of this operator by applying its conjugate to an ensemble of N atoms,
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where all atoms are prepared in the ground state.

a†
A |g1 . . . gN〉 =

1√
N

∑
i
|g1 . . . si . . . gN〉 (2.13)

It yields a symmetric superposition where each atom contributes equally to the
single excitation. The resulting state is called a symmetric Dicke state or W-
state [Dic54]. We will combine all other possible collective excitations under
the name "asymmetric" collective excitations. We account for the position of
each atom k, writing σgs(~r) = ∑k σ

(k)
gs δ(~r −~rk) and jx(~r) = ∑k j(k)x δ(~r −~rk) and

redefine the atomic annihilation operator

aA(~r) =
σgs(~r)√
2〈jx(~r)〉

(2.14)

Assuming that classical and quantum field travel both in the z-direction, [HSP10]
show that the Hamiltonian can be reduced to one dimension. Introducing a
complete set of mode functions {um(~r⊥; z)} in the plane perpendicular to z we
can expand the atomic annihilation operator in this basis

aA,m(z) =
∫

d2~r⊥um(~r⊥; z)aA(~r) (2.15)

We can furthermore introduce the annihilation operator for the quantum field
aL,mσ(z) in mode m and polarization σ such that the electric field of frequency
ω0 is given by

~E(~r) =

√
2πω0

c ∑
m,σ

~eσum(~r⊥; z)ei(k0z−ω0t)aL,mσ(z) + H.c. (2.16)

With all the above definitions and assuming all atoms in |g〉, the authors arrive
at the so-called parametric gain Hamiltonian

HG =
∫

dz

[
|Ω(z, t)|2

4∆ ∑
m

a†
A,m(z)aA,m(z)

−
(

g∗(z)Ω(z, t)
2∆ ∑

m
ei∆kza†

L,m(z)a†
A,m(z) + H.c.

)]
(2.17)

with the atomic density n(z) and the coupling constant

g(z) = ~de,s~eq

√
2πωn(z)/c (2.18)

with the quantum field polarized along the unity vector ~eq and the light fre-
quency ω. We have included the frequency difference between the driven and
the quantum mode in the wavenumber difference ∆k in the phase factor. The
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first term in the Hamiltonian is the ac-Stark shift of the atomic ground state.
The second term contains the parametric gain part, creating collective atomic
excitations while simultaneously creating photons.

A parametric gain Hamiltonian H = ξa†
La†

A + H.c. with light-atom coupling ξ

leads to a two-mode squeezed state [GK05]2, which can be expressed in number
states as

|ζ〉2 =
1

cosh ζ

∞

∑
n=0

(− tanh ζ)n |n, n〉A,L (2.19)

where ζ = −iξt/h̄. From this we can draw several conclusions. First, this is an
entangled state between light and atoms. The fact that the number of photons
is deterministically connected with the number of atomic excitations, allows
heralding of the atomic state conditioned on the detection of scattered pho-
tons. This characteristic is fundamental for the employment of this scheme as
a single photon source. Experimentally, limited detection efficiency and excess
noise counts pollute the two-mode squeezed state and hinder the unambigu-
ous heralding of atomic excitations. The effect of noise on the conditioned state
has been described in [CBB+14]. Second, we see that an excitation probability
of p for the single excitation |1, 1〉A,L, results in a excitation probability p2 for
the double excitation |2, 2〉A,L etc. for higher excitations. For unit detection
efficiency and number-resolving detection we could tell the states apart. In
practice, we need to keep the scattering probability low to avoid multiple exci-
tations. Third, if we only consider either the light mode or the atomic mode, it
can be shown [GK05] that the resulting state follows a thermal distribution.

We note that the coupling g in the parametric gain term contains the atomic
density. This confirms the increase of the desired Raman-Rabi coupling with
the number of atoms, compared to the spontaneous emission rate, as mentioned
in the previous section.

Atoms at different z-positions contribute to the scattered field with different
phases according to the phase factor ei∆kz. This can be seen as imprinting a
spinwave with wavenumber ∆k onto the atomic ensemble. We have chosen
here a collinear configuration of drive and quantum field. In a non-collinear
configuration the imprinted phase would be ei∆~k·~r. Already a small angle leads
to considerable size of ∆~k since the contributing~k-vectors belong to optical fre-
quencies (e.g. α = 0.16◦ → |∆~k| ≈ 2π/300 µm−1). Movement of the atoms
on the order of ≈ 1/|∆~k| washes out the imprinted phase. Since the phase is
crucial for efficient readout of the spinwave, atomic motion is a main limitation
for long-time storage of spinwaves.This is why, even though a small angle be-
tween driving and quantum field facilitates the separation of the two fields, we
will focus on the co-propagating design in our experiment. For warm atomic
vapour, co-propagating geometries furthermore eliminate differential Doppler

2See also [Chr14], appendix
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shifts. We note, thate in the co-propagating case there is still a wavenumber dif-
ference along the z-direction. The wavelength of the corresponding spinwave
can limit the allowed length of the atomic ensemble along z. For the hyperfine
transition this has been shown in [BZP+16] to be relevant if the length of the
atomic ensemble is more than about 1/3 of the spinwave wavelength. In our
experiment we will work with spinwaves that have three orders of magnitude
larger wavelength, thus this effect will be negligible.

2.4 Readout

Let us assume that we have stored collective excitations during the write pro-
cess according to the previous section. Now for the readout we swap the classi-
cal drive and the quantum field. [HSP10] derive the Hamiltonian for this case,
yielding

HBS =
∫

dz

[
−|Ω(z, t)|2

4∆ ∑
m

a†
A,m(z)aA,m(z)−

|g(z)|2
4∆ ∑

m
a†

L,m(z)aL,m(z)

−
(

g∗(z)Ω(z, t)
2∆ ∑

m
ei∆k′za†

L,m(z)aA,m(z) + H.c.

)]
(2.20)

The structure of this Hamiltonian is very similar to the write case.3. The first
term is again the ac-Stark shift of the atomic ground state, the second is the in-
dex of refraction of the atomic ensemble. The last line describes a beamsplitter
interaction, where an atomic excitation is annihilated while a photon is created
and vice versa. We have written the wavenumber difference in the readout
Hamiltonian as ∆k′, indicating that it may be different from the write process.

Similar to the write process there is an enhancement of the coupling by
√

NA

from using an ensemble of NA atoms. During the read process there is also
collective interference, that ensures the directionality of the readout. It is based
on the phase factor that appears in the beam splitter part. We can write the
successful read state according to [SSdRG11], [Pet09] as

|ψread〉 =
1√
NA

NA

∑
j=1

cjc′je
i(~kw−~kh)~rj ei(~kr−~ksp)~rj |g1...gNA〉 (2.21)

where we have used the indices w, h for classical and quantum fields in the
write process, and r, sp respectively in the readout. The parameters cj and c′j
signify here the contribution of the individual atoms to the collective excitation.
In order to maximize the readout in a specific direction, the terms of the sum
should add constructively, that means the phase factors should yield unity. This

3For the beamsplitter Hamiltonian the definition aA,m(z) =
∫

d2~r⊥u∗m(~r⊥; z)aA(~r) is chosen
by [HSP10]
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can be achieved with the trivial solution

~kw =~kh and ~kr =~ksp (2.22)

which implies degenerate atomic ground states. This solution is not suitable for
us since we require a frequency separation between the classical and quantum
fields in order to filter the quantum photons from the classical photons before
detection. For stationary atoms, the different terms in the sum will interfere
constructively if the phase-matching condition

~kw −~kh = −(~kr −~ksp) (2.23)

is fulfilled. From this follows, that the direction in which the desired photon
(sp) is scattered, is given by the write and read beams as well as the scattered
heralding photon (h). We will work with co-propagating geometry, where we
detect the forward-scattered heralding photon. Thus the desired scattered pho-
ton in the read process will be also forward-scattered. As discussed in the
previous section, when the atoms move significantly compared to the wave-
length of the stored spinwave, it washes out the phase of the spinwave and
thus ruins the collective interference necessary for efficient directional readout.

In the considered model the collective excitation can either be coherently read
out or incoherently scattered due to spontaneous emission. From the derivation
of [HSP10] it follows, that the coherent readout will dominate for large optical
depth of the ensemble. This enables an efficient interface between atoms and
light.

2.5 Motional averaging

We have seen in the previous sections that atomic motion can be detrimental
to the deterministic readout of stored collective excitations. We have however
also seen, that atomic motion on a length scale significantly shorter than the
wavelength of the spinwave does not affect the readout of a collective excitation
stored in the symmetric mode. The concept of motional averaging developed in
[BZP+16] allows us to address the symmetric mode, enabling efficient readout
of a collective excitation stored in an atomic ensemble at room temperature.

This section describes the main results that have been already presented in
[BZP+16], with the addition of using several excited states. The derivations
and steps in the calculation can be found in more detail in Appendix A.

We will in the following derivation consider an atomic ensemble with two
ground states |g〉 and |s〉 at room temperature inside a low finesse cavity. This
so-called "cell cavity" is in the derivation assumed to be one-sided, that means
all the light is coupled through one of the mirrors. The outcoupled field is sent
through a filter cavity. The setup is sketched in fig. 2.3
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Figure 2.3: Schematic of the setup. A classical field (red) excites the atoms in the cell
cavity (blue). The quantum field (purple) is filtered out and passes through a filter
cavity (green) before hitting the detector.

For the write process we consider all atoms initially in |g〉. A classical field
couples this level to the excited states, while the undriven quantum field cou-
ples |s〉 to the excited states. We start with a Hamiltonian similar to [BZP+16]
adding the relevant levels

Ĥ =
N

∑
j=1

∑
m
−∆mσ̂

(j)
emem −

Ω(m)
j (t)

2
σ̂
(j)
em0 + g(m)

j (t)âcell σ̂
(j)
em1 + H.c.

 (2.24)

where we sum over N atoms and include each excited level |em〉 as well as its
respective detuning ∆m to the light. (In our current D2 scheme m ∈ {1, 2, 3}).
The quantum field inside the cell cavity is described by âcell . For small perturba-
tions we can derive an expression for the field after the filter cavity (Appendix
A) given by

â = −κ2
√

κ1

4

N

∑
j=1

θj(t)σ̂
(j)
10 (2.25)

where κ1 is the decay rate of the cell cavity and κ2 is the decay rate of the filter
cavity. The coefficient θj(t) describes the time-dependent coupling between
light and atoms and is defined as

θj(t) =
∫ t

0
dt′
∫ t′

0
dt′′

∫ t′′

0
dt′′′e−

κ2
2 (t−t′)e−

κ1
2 (t′−t′′) ∑

m
e−(

γ
2−i∆m)(t′′−t′′′)g(m)

j (t′′)Ω(m)
j (t′′′)

(2.26)
Here the integral over t′′′ stems from the equations of motion, the integral over
t′′ comes from the cell cavity build-up and the integral over t′ comes from the
filter cavity build-up. In [BZP+16] they assume a Gaussian transverse beam
profile with a fixed waist radius w along the cell cavity. This yields for the
couplings

Ω(m)
j (t′′) = Ωme

−x2
j (t
′′)−y2

j (t
′′)

w2 sin (kczj(t′′)) (2.27)

g(m)
j (t′′) = gme

−x2
j (t
′′)−y2

j (t
′′)

w2 sin (kqzj(t′′)) (2.28)
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Figure 2.4: a write efficiency versus filter decay rate obtained from simulation. b opti-
mal readout efficiency as a function of the readout duration τread obtained from simu-
lation. Here τread = 3/Γread, where Γread is the readout rate. According to [BZP+16] the
finesse of the filter cavity was varied between 20 and 100 to get the optimal readout
efficiency. The underlying assumption for the simulation was collective excitation into
|3, 3〉. Cell and beam dimensions, detuning and write pulse length correspond to our
typical experimental conditions. Figure adapted from [BZP+16].

where the z-components are given by the standing wave in the cavity. The
write efficiency is defined as the probability of having stored a single collective
excitation in a symmetric Dicke state upon detection of a heralding photon. As
[Pet09] derived, the write efficiency over the write duration tint can be calcu-
lated from |〈θj(t)〉e|2 and 〈|θj(t)|2〉e as shown below. The latter includes corre-
lations between positions of individual atoms. [BZP+16] performed a Monte
Carlo simulation with atoms in a rectangular cell, experiencing collisions with
the cell walls that redistribute the velocity and randomize the direction of mo-
tion. Using dimensions similar to our experimental setup, this yielded an ex-
ponential decay time of the correlations of Γ ≈ 1.3vthermal/w ≈ 2π · 0.75 MHz.
Thus the write efficiency can be written as

ηwrite ≈
∫ tint

0 |〈θj(t)〉e|2dt∫ tint
0 〈|θj(t)|2〉edt

≈ 1

1 + κ2
2Γ+κ2

( 4L2

πw2 − 1)
(2.29)

where 2L is the length of the transverse profile of the cell. In the second ap-
proximation we have assumed L > w, κ1 � (Γ, κ2), and a detuning beyond the
Doppler width of the atomic transition. From this equation we can draw two
conclusions. A better filling of the cell cross section by the beam, reducing the
factor 4L2

πw2 , increases the write efficiency. Furthermore, a good write efficiency
requires a slow decay of the filter cavity with respect to the decay time of the
correlations, such that the factor κ2

2Γ+κ2
decreases. This is visualized in fig 2.4

a. It shows the write efficiency obtained by [BZP+16] via simulation. We note
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that a comparison with the analytical equation 2.29 confirms good agreement
for small κ2. For higher κ2 the analytical expression overestimates the write
efficiency, e.g. for the experimental value of κ2/(2π) ≈ 66 kHz we calculate
ηwrite ≈ 73%.

We can intuitively understand the dependencies in eq. 2.29 as follows. Upon
conditioning, we want to project the atomic state on the symmetric Dicke state.
This requires all atoms to contribute equally to the collective excitation. Since
we have a transverse beam profile across the cell cross section, the light-atom
interaction depends on the transverse atomic position. Without the filter cavity,
the detection of the heralding photon at a specific time gives every atom an
individual coupling strength to the collective excitation. The resulting state has
only little overlap with the symmetric Dicke state. If we however wash out the
timing information of the heralding photon by adding a random delay to the
heralding photon, where the delay is longer than the transverse atomic position
correlations, we ensure that every atom contributes equally to the collective ex-
citation. Thus we create a symmetric Dicke state by averaging over the atomic
positions, which is known as "motional averaging". The write efficiency can be
increased by increasing the beam size, thus faster motional averaging. Alter-
natively the slower the filter cavity decay time, the better the averaging of the
position correlations.

Number of classical photons In the supplementary information of [BZP+16]
there is a derivation to estimate the number of classical photons that need to
be filtered out per scattered heralding photon. In appendix A, the derivation is
extended for several excited states. Similar to the original derivation we relate
the required number of classical photons to d, the hypothetical on-resonant
optical depth in the absence of Doppler broadening. This definition has already
been used previously, e.g. [GALS07b]. The resulting equation is (see eq. A.40)

Nclas =
64Nπ2

γ2d2F2
β′22
β′

1∣∣∣∑m
g(m)Ω(m)

g(i)Ω(i)
1

∆m

∣∣∣2 (2.30)

where F is the cell cavity finesse, γ is the excited state lifetime and β′ and
β′2 include Clebsch-Gordan factors as defined in the appendix. The equation
depends both on the number of atoms N and the optical depth d. These can be
determined experimentally via a Faraday angle measurement or an absorption
spectroscopy measurement. The measurement of the Faraday angle and its
relation to the number of atoms is briefly explained in section 2.7, further details
on Faraday angle and absorption spectroscopy measurements can be found in
e.g. [Jen11], [Jul03] . The relation between Faraday angle and optical depth can
be found in [BZP+16] and in the appendix A. For a typical set of experimental
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Figure 2.5: Example of expected write spectrum. Narrow peak from symmetric collec-
tive excitation with FWHM γ. Broad contribution from assymetric collective excitations
with half width corresponding to the correlation decay time Γ.

parameters, that is an optical depth4 of 412 and a Finesse of F = 18, we estimate
a number of classical photons that is required to be filtered out per scattered
photon of Nclass = 1.2 · 108. These classical photons are very close in frequency
(typical Zeeman splitting 2.4 MHz). Thus we require a dedicated filter setup to
separate quantum and classical fields.

Write spectrum The spectrum of the scattered light field a′ before the filter
cavity can be calculated by Fourier transformation of a′†(t)a′(t) using equation
2.25. This is done in [BZP+16] where it is separated into a contribution from
the averaged couplings and a contribution including the position correlations.
These have very different spectral widths. The rate of the exponential corre-
lation decay Γ gives the width (HWHM) of the latter contribution. For our
parameters we expect a broad Lorentzian of about Γ = 2π · 0.75 MHz. The av-
eraged contribution is according to the derivation in [BZP+16] Fourier limited
by the write pulse duration. If the excitation light itself is not Fourier limited
but is spectrally broader, we expect that the spectrum of the Raman-scattered
light will follow the spectral width of the excitation light. An expected sample
spectrum is shown in fig. 2.5

Readout The authors consider a single excitation stored in the symmetric
mode in the ensemble and a classical drive Ω to read out the excitation and
transform it into a cavity photon. The Hamiltonian for this interaction is simi-
lar to 2.24, with ground and storage state exchanged. The authors separate the
interaction into average time-independent couplings and time-dependent fluc-
tuations. Treating these fluctuations as small perturbations they find that the
cavity field can be expressed as acell ≈ a(0)cell + a(2)cell . The field from the cell cavity
is sent to the filter cavity to remove the excitation light. The authors derive the

4Here we have extrapolated a Faraday angle measurement 1.5◦ at ∆ = 1.6 GHz and room
temperature to the detuning ∆ = 925 MHz and the operating temperature of around 42◦C
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Figure 2.6: Read count rate versus readout time calculated for lowest order of pertur-
bation using the caesium levels |4, 4〉 ↔ |3, 3〉

readout efficiency

ηread =
κ2

2κ1

4

∫ τread

0
dt
∫ t

0
dt′
∫ t′

0
dt′′e−κ2/2(2t−t′−t′′)〈a†

cell(t
′)acell(t′′)〉 (2.31)

where τread is the duration of the readout pulse. To lowest order in perturbation
this yields

ηread,0 ≈
1

π
dF + 1

(2.32)

in the limit of a very weak and very long readout pulse.

The term dF/π is the optical depth multiplied with the number of passes in
the cell cavity. The read efficiency increases when this effective optical depth
increases. We note, that the result is equivalent to the result ηr = C/(1 +

C) for cold atoms given by [GALS07a] with the cooperativity parameter C =

g2N/(κγ).

In [BZP+16] an expression for the field in lowest perturbation order is derived.
We do not rewrite this lengthy expression here. However, we show the resulting
expected read count rate versus time for typical parameters in fig. 2.6 where
we observe that the read count rate decays exponentially. We note that the rate
and the decay of the rate may easily be confused. We try to consistently name
the rate at which photons are created during the read process "read count rate",
while the decay of the created photon rate happens with the "readout rate"
Γread. The scaling of these rates with different parameters is not straightforward.
However, as intuitively expected, higher read excitation light power leads to
faster readout.

In practice the excitation should be read out within a short time to avoid deco-
herence of the stored excitation. This requires to take into account higher order
perturbations which reduces the read efficiency. The read efficiency to second
order is given by a lengthy expression that we refrain from writing here. It can
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Figure 2.7: Level scheme for four-wave mixing

be found in the supplement of [BZP+16]. The resulting read efficiency is shown
in fig. 2.4. Here the horizontal axis is the readout duration τread = 3/Γread.

2.6 Four-wave mixing

The theoretical explanations in [BZP+16] cover most of what is needed for the
single collective excitation experiment in this thesis. This is not a lucky coin-
cidence but it was planned. However, the theoretical explanation was initially
developed to fit the storage of collective excitations on hyperfine states. For
experimental reasons explained in 4.6, we changed the experiment to operate
on Zeeman levels instead. Apart from causing small changes in the coupling
strengths, it also has the following big impact. The classical excitation was for
hyperfine states always very far-detuned (> 9 GHz) from one of the ground
states. Thus we could model the atom as a lambda system. For Zeeman states,
the classical excitation couples to both ground states since the detuning dif-
fers only by the Larmor frequency. This means that e.g. the read excitation
light acts simultaneously as the desired read field and as a write field. This so-
called four-wave mixing process has been studied in detail previously. While
for many experiments four-wave mixing has been an intrinsic noise process
[MCS+15], other experiments have actually used it as a benefit as e.g. for the
creation of correlated photons [POS+17].

For a slightly different system, a vapour cell without any cavity, [DCW14] have
investigated the four-wave mixing process. They do not use motional averaging
but instead buffer gas to keep the atoms from moving and washing out the
stored spinwave phase. Similar to their derivation we consider a four-level
system as shown in fig. 2.7. For the atomic collective excitation we use collective
creation (b†) and annihilation (b) operators. The transitions from the ground
states |g〉 and |s〉 are driven by a classical field E . The scattered photons in
the quantum fields are labelled5 a†

RA and a†
RS. The Hamiltonian describing this

5We use the same names for the quantum fields as [DCW14], even though the original
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Figure 2.8: Squared Raman Rabi Coupling |∑m gmΩmw[∆m+iγ/2
ΓD

]/ΓD|2 for the transi-
tion |4, 3〉 ↔ |4, 4〉 via the D2 line versus light detuning. Zero detuning corresponds
to the D2 line without hyperfine splitting. The black vertical lines show the caesium
hyperfine resonances of |F′ = 2〉 to |F′ = 5〉 from left to right. For the readout we have
χ2 in blue and ξ2 in red.

system is then given by

HR = ih̄χa†
RAb + ih̄ξa†

RSb† + H.c. (2.33)

with the coupling coefficients χ and ξ. The part of the Hamiltonian coupled
via χ is a beamsplitter Hamiltonian, creating a photon upon annihilation of
an atomic collective excitation. The ξ part is a parametric gain Hamiltonian,
creating simultaneously photon and atomic collective excitation. The total
Hamiltonian including both parts is called a "Faraday interaction" Hamiltonian
[HSP10], which is also the basis for the MORS experiment in section 4.5.

Comparing this Hamiltonian with the relevant equations 2.25 and A.21 of the
previous motional averaging case , we infer that the couplings χ and ξ are
proportional to ∑m gmΩmw[∆m+iγ/2

ΓD
]/ΓD with the respective excited levels la-

belled m. The square of this sum is shown in fig. 2.8. We see that far detuned
(≈ 1 GHz � ΓD ≈ 225 MHz) from the resonances, the ratio of the coupling
strengths is on the order ≤ 2. This means that both, beamsplitter and para-
metric gain interaction will have significant contribution to the dynamics of the
interaction.

[DCW14] have calculated an expression for the mean number of scattered quan-
tum photons as a function of time. With the assumption that the incoming
quantum fields are in a vacuum state and the mean number of initial spinwave

"Stokes" and "Anti-Stokes" labelling is not correct here since our initial state is at higher energy.
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Figure 2.9: Readout rate versus readout time according to eq. 2.34 for an example value
of χ = 100

√
Hz. We have chosen ξ = χ/1.36 for the readout of the collective excitation

(blue), the four-wave mixing noise (yellow) and their sum (purple). In red we show
the readout for vanishing ξ.

excitations is nb = 〈b†(0)b(0)〉 they find

〈a†
RA(t)aRA(t)〉 = χ2et(ξ2−χ2)nb +

χ2ξ2

ξ2 − χ2 (e
t(ξ2−χ2) − 1) (2.34)

〈a†
RS(t)aRS(t)〉 = ξ2et(ξ2−χ2)nb +

ξ2

ξ2 − χ2 (ξ
2et(ξ2−χ2) − χ2) (2.35)

During the readout process the desired (single) photon is on the transition la-
belled RA. In the absence of four-wave mixing, i.e. ξ → 0, the second term
in the corresponding line vanishes and we have an exponentially decaying
readout of the stored collective excitation as in the previous section. If four-
wave mixing is significant and χ2 > ξ2, the exponential decay of the readout
is slowed down. Since the initial amplitude of the exponential is still χ2, this
means that the total number of photons scattered during the readout time win-
dow can actually be larger than the number of stored spinwaves. This can be
understood as four-wave mixing that is enhanced by the initial presence of spin-
waves. On top of this, the second term adds a contribution that increases over
time and that is independent of the number of stored spinwaves. An example
of this situation is shown in fig. 2.9.

2.7 Input-output relations

We will later require measurements to characterize the properties of the vapour
cells (see section 4. We will therefore briefly introduce the formalism that has
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been traditionally used in these experiments. We consider an ensemble of N
caesium atoms distributed among the Zeeman levels mF of a single hyperfine
manifold F, with the quantization axis defined by a bias magnetic field along
the x-axis. We can then express the total macroscopic angular momentum J by
[JSSP04]

Jy =
1
2
[J+ + J−] = N

F−1

∑
m=−F

C(F, m)

2
(ρm+1,m + ρm,m+1) (2.36)

Jz =
1
2i
[J+ − J−] = N

F−1

∑
m=−F

C(F, m)

2i
(ρm+1,m − ρm,m+1) (2.37)

Jx = N
F

∑
m=−F

mρmm (2.38)

where C(F, m) =
√

F(F + 1)−m(m + 1) and ρi,j = 1
N ∑N

k=1 |i〉k 〈j|k for i, j ∈
−F,−F + 1, ..., F is the density operator. We have written J± = Jy ± i Jz for the
angular momentum ladder operators.

The evolution of the macroscopic spin J with a large longitudinal component Jx

along the bias field and the transverse components Jy and Jz can be described
by two time constants, T1 and T2. The longitudinal component decays6 as
Jx(t) = Jx(0)e−t/T1 . The transverse components decay exponentially with T2.

We define the atomic polarization similar to [Jul03] as

p =
1
F

F

∑
−F

mρm,m (2.39)

With this definition p = 1 corresponds to all atoms being in the extreme m = F
level.

In contrast to the previous sections, where we focused on counting photons
scattered into a specific mode, here we will use balanced polarimetry to analyse
the light. This allows us to measure the Stokes components of the light. For
light propagating in the z-direction, these are defined as [Jul03]

Sx =
1
2
(nph(x)− nph(y)) (2.40)

Sy =
1
2
(nph(+45◦)− nph(−45◦)) (2.41)

Sz =
1
2
(nph(σ+)− nph(σ−)) (2.42)

where nph(x) is the number of photons with x polarization.

6We note that this exponential decay is a simplification of the expected double exponential
decay with fast and slow decay constants, see [GKR+05].
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Starting from the dipole interaction Hamiltonian one can derive input-output
relations for the atomic and light operators. The details can be found in [Jul03].
Here we will only state the relation that will be used in the Magneto-Optical
Resonance Spectroscopy (MORS) measurement

Sout
y = Sin

y + a(F)Sx Jz (2.43)

where Sx is approximately constant7 and Sin
y can be assumed zero. The su-

perscripts in and out refer to the state before and after the interaction. The
interaction parameter a(F) = −a1γλ2/(8πA∆F) depends on the FWHM γ of
the excited state, the wavelength λ and the beam cross section A. ∆F is the
laser detuning from the excited state F′=5′ when addressing the F=4 manifold,
and from F′=2′ when addressing the F=3 manifold. The parameter a1 is given
by [Jul03]

a1 =
1

120

(
− 35

1− ∆35/∆F
− 21

1− ∆45/∆F
+ 176

)
for F = 4 (2.44)

a1 =
1
56

(
45

1 + ∆24/∆F
− 21

1 + ∆23/∆F
− 80

)
for F = 3 (2.45)

where ∆ij describes the splitting between the excited manifolds i and j. The
laser detunings used here are meant to have positive sign for red detuning of
the laser.

From equation 2.43 we see that the light after the interaction carries information
about Jz. We can thus characterize the transverse atomic spin component and
its decay by analysing the light at the output. We will make use of this when
characterizing vapour cells.

For an atomic ensemble with macroscopic spin component Jz, and a linearly
polarized laser beam propagating along z we can observe Faraday rotation.
The output beam will be linearly polarized with an angle θF between planes of
polarization of input and output. This Faraday angle is given by [Jen11]

θF = − a1γλ2ρL
8π∆

· 〈Jz〉 (2.46)

where ρ is the atomic density and L the length of the ensemble. 〈Jz〉 is the
expectation value of the macroscopic spin component Jz. This relation can be
used for characterization of the longitudinal spin component and its decay.

7Sx is the difference in number of photons polarized along x and along y. Using light linearly
polarized along x makes this approximately constant.
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2.8 Nonclassical correlations

We have in the previous sections investigated the use of an atomic ensemble as
a single photon source. We will now focus on the next step, the analysis of the
output.

We use the normalized second-order auto-correlation function

g(2)RR =
〈I2

R〉
〈IR〉2

=
〈a†

Ra†
RaRaR〉

〈a†
RaR〉2

=
〈a†

RaR(a†
RaR − 1)〉

〈a†
RaR〉2

(2.47)

where we have used the commutation relation for creation and annihilation op-
erators for the last equality. The photon number operator a†a yields for a single
photon state by definition one. This antibunching manifests itself in g(2)RR = 0.
We have seen previously that only the conditional output, that is the readout
photon state conditioned on the detection of a heralding photon is expected
to be a single photon state. We name the corresponding correlation function
g(2)RR|W . For the unconditional output, we expect similar to the heralding photon

state a thermal state which yields g(2)WW = 2 and g(2)RR = 2. The advantage of the
second-order auto-correlation function is, that it is independent of imperfect
detection efficiencies in the limit of low noise. The classical boundary is set by
the coherent state which gives g(2)RR = 1. States with lower second-order auto-
correlation cannot be described in a classical framework and are thus called
non-classical.

We will make use of a non-classicality witness that was pioneered by [Cla74].
He considered the cross-correlation between two fields given by

g(2)WR =
〈IW IR〉
〈IW〉〈IR〉

=
〈a†

W aW a†
RaR〉

〈a†
W aW〉〈a†

RaR〉
(2.48)

For a classical field the Cauchy-Schwarz inequality

〈IW IR〉2 ≤ 〈I2
W〉〈I2

R〉 (2.49)

has to be fulfilled. Thus, if the inequality is violated the two fields are non-
classically correlated. We can rewrite this inequality in terms of correlation
functions as

1 ≤ RCS =
(g(2)WR)

2

g(2)WW g(2)RR

(2.50)

Later [SSB+12] showed that the above inequality still holds in the case of im-
perfect detection efficiencies. This witness for non-classicality has been applied
in the first implementation of a DLCZ-type experiment [KBB+03]. Assum-
ing thermal states for the heralding stage and the unconditional readout with
g(2)WW = g(2)RR = 2, it suffices in general for the verification of non-classicality to
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show g(2)WR > 2. This has been used in many recent experiments, e.g. [BFV12],
probably due to simpler experimental requirements.

2.8.1 Modelling the correlations

We would like to estimate the expected correlations between detection events.
The correct but very cumbersome way would be to combine the four-wave
mixing model with the motional averaging and calculate the distribution of the
scattered photons in the detection mode. We try to use a different approach.
We first identify the different contributions to the detected counts, then assume
(or guess) the distributions for these contributions and finally calculate the ex-
pected correlations. We note that assuming the distributions includes clever
guess-work and we might easily be mistaken. Furthermore, as [MCS+15] have
shown, adding four-wave mixing and readout as incoherent processes can lead
to wrong correlation values. We thus have to take the outcome of this model
with a grain of salt. As we shall see in the experimental section however, the
model predictions yield reasonable agreement with the experimental results.

From the assumption of thermal states for the output both for write and un-
conditional readout, we can calculate the expected cross correlation under the
following conditions. For perfect detection efficiency, photon number-resolving
detection and in the absence of further noise counts this yields

g(2)WR =
〈nWnR〉
〈nW〉〈nR〉

=
∑∞

n=0 n2 p(n)
(∑∞

n=0 np(n))2 = 1 +
1
p0

(2.51)

where we have used nW and nR for the number of photons detected during
write and read, respectively. We have assumed thermal states with the prob-
ability distribution p(n) = (1− p0)pn

0 , such that p0 is the probability to have
at least one photon in the detection mode. We have furthermore assumed per-
fect readout efficiency such that p(nR) = δnW nR . From the above equation, we
see that we can reach higher and higher cross-correlation values the lower the
scattering probability is.

Imperfect detection efficiency and excess noise counts can have significant im-
pact on the cross correlation. We therefore extend our calculation to include
these effects. We start by expressing everything in terms of the probability of
creating spinwaves. This yields

〈nwnr〉 =
∞

∑
x=0

p(x)
∞

∑
nw,nr=0

p(nw|x)p(nr|x)nwnr. (2.52)

where p(x) = (1 − p0)px
0 is the probability of having x spin waves excited.

The probabilities of getting write and read clicks, conditioned on having x spin
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waves excited are

p(nw|x) =
inf{nw,x}

∑
k=0

ηk
d(1− ηd)

x−k
(

x
k

)
p(w)

N (nw − k) (2.53)

p(nr|x) =
inf{nr ,x}

∑
k=0

(ηdηRO)
k(1− ηdηRO)

x−k
(

x
k

)
p(r)N (nr − k) (2.54)

with ηd (ηRO) as the detection (read-out) efficiency and pN(y) as the probability
of getting y noise clicks within a pulse. Similarly the mean number of counts
during the write process can be calculated

〈nw〉 =
∞

∑
x=0

p(x)
∞

∑
nw=0

p(nw|x)nw. (2.55)

The counts during the read process can be be calculated with the same equa-
tion after replacing nw by nr. In practice the probabilities are only calculated
up to a certain cut-off number of spin waves. We should note that in this model
we do not separate heralding photons from symmetric and asymmetric collec-
tive excitations into different distributions, but we use one common thermal
distribution. This approximation is mainly founded on experimental observa-
tions g(2)WW ≈ 1.9. Using two independent thermal processes would result in
an auto-correlation that is significantly lower than 2, which would be the value
expected for a single purely thermal process.

The next step is to calculate the probabilities of the noise counts. There are
different noise processes that can contribute. Leakage (leak) of excitation light
through the filter to the detector, background counts (bg) from detector dark
counts or stray light, and four-wave mixing noise ( f wm). There are two more
noise contributions that we observe during the read in the experiment. We
will now anticipate these findings from sections 5.2 and 5.5. One of them is
spectrally broad, the other narrow. The origin is not yet fully understood.
We suspect that they are both related to a scattering process, thus we assume a
common thermal distribution for them (labelled bc). We further assume that the
photons from the four-wave mixing process also follow a thermal distribution.
We admit that this last approximation is not very well-founded, but rather a
guess. Each thermal distribution is given by

pthermal(pi, k) = (1− pi)pk
i (2.56)

where pi is the probability to have at least one thermal photon. For brevity
we will write pth(k) in the following. For the thermal distribution the mean
number is connected to pi via pi = n̄/(1 + n̄).

The leakage light stems from coherent laser light. Thus it follows a Poisson
distribution. The background counts are in our case dominated by detector
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dark counts, that also follow a Poisson distribution. For this distribution, the
probability to have k events is

pPoisson(n̄, k) = n̄ke−n̄ 1
k!

(2.57)

where n̄ is the mean number of events. We can thus write the noise contribution
in the write process as

p(w)
N (nN) = pPoisson(n̄bg,w + n̄(det)

leak,w, nN) (2.58)

The noise contribution in the read process is

p(r)N (nN) =
nN

∑
f=0

f

∑
b=0

p(bc)
th (b)p( f wm)

th ( f − b)pPoisson(n̄bg,r + n̄(det)
leak,r, nN − f ) (2.59)

We will compare the experimental results with this model in section 5.3.

It is instructive to consider a simple approximation of the model developed
above. We can for low excitation probabilities p0 � 1, and low noise counts
p(w)

N = p(w)
N (1)� 1, p(r)N = p(r)N (1)� 1 and p(w)

N (> 1) = p(r)N (> 1) ≈ 0, simplify
the equations 2.52 and 2.55 to

〈nw〉 ≈ ηd p0 + p(w)
N (2.60)

〈nr〉 ≈ ηRηd p0 + p(r)N (2.61)

〈nwnr〉 ≈ ηRη2
d p0 + 〈nw〉〈nr〉 (2.62)

where in the last line we can identify the first term as the readout of collective
excitations while the second term are the independent coincidences. From these
equations we can calculate

g(2)WR =
〈nwnr〉
〈nw〉〈nr〉

≈ 1 +
ηRη2

d p0

(ηRηd p0 + p(r)N )(ηd p0 + p(w)
N )

(2.63)

We can now draw three conclusions. First, in the absence of noise (p(w)
N , p(r)N →

0), we recover the initial expression g(2)WR = 1 + 1
p0

while allowing for imperfect
detection efficiency. Second, if we consider noise that we can shift such that we
either detect it during the write or during the read process8, then detecting it
during the write process will lead to a higher cross-correlation value since in
practice ηR < 1. However, if there are further noise contributions during the
read process, there will be a trade-off. This is due to the term p(w)

N p(r)N that is
minimal if all the noise is detected either during the write or the read process.

8Here we are anticipating the time-dependent noise from the leakage which we can only
minimize for a short time window.
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Third, if the noise during the read process is dominating over the readout, that
is p(r)N > ηRηd p0, we can approximate the cross-correlation as

g(2)WR ≈ 1 + CηR (2.64)

with the constant parameter C. In the next subsection, we will use this approx-
imation to estimate the decay of the cross-correlation.

2.8.2 Lifetime of collective excitations

One important figure of merit of the envisioned single photon source investi-
gated in this thesis is the programmable delay time between the heralding step
and the single photon readout. It is thus interesting to understand the effects
of a waiting time between the write and read pulse on the collective excitations
and on the readout and we attempt a rough estimate in the following. Ac-
cording to the definitions in section 2.7, the mean number of collective atomic
excitations is given by

〈b†b〉 ∝ 〈∑
j

σ
(j)
sg ∑

k
σ
(k)
gs 〉 ∝ 〈(Jy − i Jz)(Jy + i Jz)〉 ∝ 〈J2

y〉+ 〈J2
z 〉 − 〈Jx〉 ∝ e−2t/T2

(2.65)

where we have used 〈[Jy, Jz]〉 = i〈Jx〉 and assumed that the macroscopic spin
component Jx decays much slower than T2.

The mean number of readout photons is according to equation 2.34 in the ab-
sence of four-wave mixing proportional to the number of collective excitations
at the time of the read pulse. Here we assume that the readout happens on a
timescale much faster than T2. For a delay τD between write and read pulse,
this yields for the mean number of readout photons

〈a†a〉 ∝ 〈b†b〉(τD) = 〈b†b〉(0)e−2τD/T2 (2.66)

The readout efficiency is proportional to the mean number of read out photons,
thus with the approximation 2.64 we expect also the cross-correlation g(2)WR to
decrease for longer delay time with a rate 2/T2.
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Part II

Experiment





Chapter 3
Experimental methods

In this chapter we will mainly describe the setup that is used for the DLCZ-
type experiment. The setups for the cell characterization measurements may be
different and are detailed in the respective sections.

The optical setup can be subdivided into three main parts (see fig. 3.1). To begin
with we prepare the excitation light using a narrowed laser. Then this light is
sent to the atomic part before it continues to the filtering and detection setup.
Each part will be described in detail in the sections below.

3.1 Excitation light

For the creation of the excitation pulses we require a laser that is narrow in
linewidth compared to the filter bandwidth since the scattered photons will
have similar linewidth as the excitation light. Furthermore we need to pulse
the light power and adjust the frequency of the excitation pulses.

3.1.1 Narrowed laser via optical feedback

We use a home-built external cavity diode laser (ECDL) with additional phase-
stabilized weak optical feedback from a cavity transmission. This idea has
been applied in various different implementations, using a Fabry-Perot cavity
[Hua09], a V-shaped cavity [HNB12] or a triangular cavity [Hay11] [LRB+07].
In short, it is related to the operation mode of an ECDL. Spectrally narrow light
is sent back into the laser and stabilizes the emission frequency and decreases
the laser linewidth. A theoretical analysis of the linewidth reduction has been
presented in [LCB89].

We chose the triangular cavity design for two reasons. It avoids direct reflection
of non-resonant light back to the laser as in the case of a Fabry-Perot cavity and
it allows us simultaneously to filter the light going to the experiment. In a
V-cavity this would lead to high losses, since the feedback power is typically
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Figure 3.1: Schematics of the optical setup. Only relevant optical elements drawn. Ab-
breviations are PD: photo diode, AOM: acousto-optic modulator, BS: beamsplitter, PBS:
polarizing beamsplitter, SPCM: single photon counting module, ECDL: external cavity
diode laser. Beamsplitter cubes are polarizing if not indicated otherwise. Drawing
based on svg component library by A. Franzen

small. We tried various implementations with triangular cavities that I will
briefly present. The first version used the light from the ECDL coupled via
mode-matching optics into a triangular cavity. Part of the transmitted light
was then retro-reflected through the cavity into the laser (see also [ED16]). The
disadvantages of this setup are on the one hand the bad mode-matching of
the ECDL output to the cavity. This makes the cavity transmission spectrum
not only hard to understand, but can also lead to mode jumps to different
transversal cavity modes which also experience optical feedback. On the other
hand, the counter-propagating cavity mode that is driven by scattering at the
cavity’s mirror surfaces leads to optical feedback from the cavity itself. This
feedback with random phase will compete with the desired optical feedback
and can lead to instabilities and mode jumps.

For the second iteration we solved the mode-matching problem by introducing
a single mode fiber between the ECDL and the cavity for mode cleaning (see
also [Did14a]). This led to a much cleaner cavity spectrum and better optical
feedback locking. However, on top of the random feedback from the counter-
propagating cavity mode we also noticed scattering from the angled fiber (APC)
leading to competing feedback.
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In the third and final iteration as shown in fig. 3.1 we used an isolator in front
of the fiber to avoid unwanted feedback. Instead of retro-reflecting through the
cavity we coupled part of the transmission through a second single mode fiber
which sent the optical feedback via a PBS to the ECDL. We put neutral density
(ND) filters in front of this second fiber in order to eliminate direct optical feed-
back from the fiber or the cavity. Then we could adjust the power of the desired
optical feedback that only had to pass through the ND filters once. By replac-
ing the ND filters by an optical isolator we would have reduced significantly
the losses of the desired optical feedback. However, the power gain would have
been minimal since the power of the optical feedback is low (about −50 dB of
the laser output power) and the possibility to forward-couple through the fiber
makes the mode-matching between ECDL and fiber mode convenient. In our
setup the lock cavity is simultaneously used as a frequency filter since we use
the light transmitted through the lock cavity for the experiment. This filters out
remaining broadband laser noise [Hay11].

Without optical feedback the linewidth of the ECDL is broader than the cavity
resonance. With optical feedback we observe broadening of the resonances
when scanning the cavity length. The frequency of the ECDL locks via optical
feedback to the cavity resonance and thus keeps high transmission when the
length of the cavity tunes the resonance frequency within the capture range.
The capture range depends on the power of the optical feedback. However,
it is important to send back optical with the correct phase. When the optical
feedback enters the ECDL with the wrong phase it interferes destructively and
keeps the laser away from this frequency. When the ECDL is optically locked
to the cavity, we can estimate the excursions of the transmitted light from the
lock cavity resonance from the in-loop Hänsch-Couillaud signal to be typically
less than 10 kHz.

A more thorough investigation of the locked laser linewidth was performed
for the previous setup iteration in [Did14b] and yielded a linewidth of about
30 kHz over a 10 s window. We assume that the linewidth characteristics did
not change significantly from the previous setup iteration to the one described
here.

There are two feedback loops active in the optical feedback setup. The first one
acts on a piezo-actuated mirror in the feedback path, adjusting the optical path
length of the feedback light, to keep it in the regime of constructive interference.
This is achieved by keeping the laser on resonance with the cavity. The error
signal is derived in a Hänsch-Couillaud setup [HC80], analyzing the circularly
polarized components of the light reflected from the cavity incoupling mirror.
The reason for choosing a Hänsch-Couillaud lock was the technical simplic-
ity. First, the required birefringence is typically given when using a triangular
cavity. Second, a Hänsch-Couillaud setup does not require modulation of the
laser, which might even lead to undesired sidebands. We have thus ensured
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that the laser stays locked to the cavity resonance as long as the cavity length
relative to the free-running laser frequency does not drift out of the capture
range. The free-running laser usually stays within a range of a few tens of
MHz over a day. The length of the lock cavity however easily drifts by a wave-
length over minutes. We therefore implemented a slow (≈Hz) feedback loop
to keep the cavity length stable. The laser light which is locked to the cavity
resonance is overlapped with a reference laser (the "probe" laser) and sent on a
fast photodiode. From the resulting beatnote signal an error signal is derived
in an RF interferometer setup similar to [SEG+99]. Via a proportional-integral
(PI) controller the feedback signal is sent to the piezo-actuated cavity mirror.
The reference laser is stabilized to an atomic reference. Therefore, this second
feedback loop does not only improve the long-term stability of the first feed-
back loop by counteracting cavity drifts, but it also keeps the locked laser stable
relative to an absolute atomic frequency reference.

3.1.2 Lock cavity

The lock cavity is a triangular cavity with a roundtrip length of about 1.5 m. The
single curved mirror is piezo-actuated, the two flat mirrors are used as in and
out-couplers. Astigmatism is kept negligible [RW92] since the opening angle
of the triangular cavity is below 2◦. The cavity spacer is an H-profile made
of aluminium. A wall-thickness of the profile of about 15 mm provides passive
stability. The flat mirrors are glued on home-designed bending plates that allow
alignment while keeping longterm stability. The spacer is simultaneously used
for the lock cavity and the filter cavity in the arrangement shown in fig. 3.2.
This was intended to reduce noise from common-mode length changes of the
spacer and will be discussed in section 3.4. The spacer rests inside a vacuum
tube which is closed on both ends with windows, but not evacuated. There has
been no significant change of the cavity stability whether or not the tube was
evacuated. We have a performed a ring-down measurement at a wavelength of
852 nm and determined the linewidth of the cavity of FWHM= (72± 5) kHz.
For more details see appendix B.

3.2 Vapour cell

The atomic ensemble is in our case an atomic vapour of caesium-133 atoms,
contained in a glass cell as shown in fig. 3.3. The exact design of our glass cells
varies, but the main pieces are a reservoir with a drop of caesium and a chan-
nel where the atom-light interaction takes place. The channel is connected to
the reservoir by a small "micro-hole", that allows the caesium vapour pressure
to equilibrate, while at the same time keeping the rate at which atoms travel
between the two chambers low. The inner walls of the glass cell are coated
with anti-relaxation coating. This coating, which consists in our case of carbon
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Figure 3.2: Lock and filter cavity. a Cross-section and b top view sketch of lock cavity
(blue) and filter cavity (red) arrangement on the same H-shaped spacer (grey). Addi-
tional square mirrors (green) couple the locking beams through the same windows as
the inputs and outputs of the cavity. The lock cavity reflection is sent to the Hänsch-
Couillaud (H.C.) setup. The filter cavity is locked using a counter-propagating beam.
c Photo of the cavity setup.

Figure 3.3: The encapsulated microcell design. a Sketch of components. b Photo of
finished microcell. c Photo of chip. The images are adapted from [ED16] (a) and
[She14] (b), (c).

43



chains (alkanes or alkenes, sometimes simply called paraffin) with roughly 30
carbon atoms, preserves the atomic state upon many wall collisions [BKLB10].
We will investigate the properties of the vapour cells more in detail in section
4.2.

The cells are evacuated prior to filling with caesium and anti-relaxation coating.
It is important that the glass cell is vacuum-tight to avoid oxidizing of the
chemically very reactive caesium.

Although many experiments in our group are still conducted using cells with
relatively large volumes (> (5 mm)3), we will focus here mostly on so-called
microcells with channel dimensions of 300 µm x 300 µm x 1 cm. These dimen-
sions are a compromise between on the one hand a small cross-section for fast
motional averaging and a long length for high optical depth and on the other
hand low clipping losses for the transmitted light. The basis for all our mi-
crocells is the "chip", a rectangular glass substrate with square cross-section
channel, as shown in fig. 3.3 c). The micro-hole is a laser-drilled hole from the
surface to the channel with a minimal diameter of 20 to 30 µm.

Most of the cells are fabricated and filled by the skill-full glass-blowing tech-
niques of M. Balabas. One of the main challenges in the cell fabrication has
been to achieve high quality optical access along the long channel axis. We
present in the following a few solutions to this challenge.

3.2.1 Encapsulated design

The encapsulated design had been developed before the start of this PhD work.
An example of such a cell is shown in fig 3.3 b). The chip with micro-hole is
inserted in a tube and closed off with anti-reflection coated windows on both
ends. This design allows high quality optical access along the cell. The tube is
rather large (half inch diameter) to avoid lens effects for the pump and repump,
and to allow space for glass-blowing without the flame heating up the optically
relevant center part of the window. After the preparation of the glass body, it is
evacuated. Via the attached reservoir ("stem") it is filled with caesium and anti-
relaxation coating and then closed by glass-blowing. The biggest part of our
micro-cells is in the encapsulated design. An investigation of their properties
is presented in section 4.2. Achieving good optical transmission through the
channel is very challenging and requires skilled glass-blowing. It has therefore
been a long-standing idea in our group to connect windows to the channel ends
by some other means. We will discuss possible solutions in the following.

3.2.2 Laser-bonded design

In collaboration with F. Zimmermann and S. Nolte from the University of Jena,
a laser-bonded cell design has been developed and tested. Their group had
shown successful welding of glass by using femtosecond laser pulses at high
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Figure 3.4: The laser-bonded microcell design. a Sketch of components. b Photo of
finished laser-bonded cell in holder. c View through the window. The whitish lines
encircling the channel cross section are the welding seams between chip and window.

repetition rates [RZTN16]. This welding technique was used to connect the
windows on both ends of the chip, and to connect an adapter that allowed
later filling and glass-blowing at a distance of a few cm. The arrangement, the
welding seams and the finished laser-bonded cell are shown in fig. 3.4. Prior
to the welding procedure, the glass pieces had been polished and optically
contacted. After successful preliminary tests of the vacuum-tightness of the
welded connection, a few cells with this design were fabricated. This design
has a few advantages. The optical transmission loss should be given only by
the anti-reflection coating and the loss due to passing through the glass of the
window.1 The fabrication procedure of the glassware can in principle be indus-
trialized and the cell can be miniaturized. The design opens new possibilities
for closely-spaced multichannel cells, providing good spatial resolution and
simplifying large-scale testing of cell properties. We note however, that the fab-
rication method is a complex process, including many steps (polishing, optical
contacting, welding) as well as special equipment (femtosecond laser).

3.2.3 Integrated cavity

One reason for the requirement of high optical transmission is the need for
a cavity around the cell. A cavity around the cell will always be affected by
losses from the window. A different approach is to include the cavity mirrors

1This assumes no further losses due to the later anti-relaxation coating and filling.
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within the encapsulated cell. This solves the issue of window losses at the
expense of reduced cavity length tunability. Furthermore it crucially relies on
initial cavity alignment. We have made preliminary tests with encapsulated
cells with integrated cavities. Due to glass-blowing constraints on the thickness
of the substrates, we actually sandwiched the mirrors between the chip and
the windows, where the windows were connected to the outer tube by glass-
blowing. Instead of a regular chip we used capillaries with an inner diameter
of 1 to 6 mm. The increased diameter compared to the microcells was meant to
reduce the possible clipping losses due to mirror misalignment. The results are
briefly presented in section 4.2.1.

3.2.4 CO2 laser melting and anodic bonding

For completeness we briefly mention two other techniques that have been tested.
Other group members (R. Thomas, K. Jensen and B. Albrecht) have investigated
the use of a focussed CO2 laser to locally melt the interface between window
and chip. Melting along the edge from all four sides should then lead to a
vacuum-tight connection between window and chip. When testing this proce-
dure, cracks appeared along the edges. Even if these cracks did not compromise
the vacuum-tightness at first, they started to do so after hours or days. We as-
sume that the cracks appear due to the high temperature gradients during the
melting procedure, leading to inhomogeneous stress in the glass. A different
approach was the use of anodic bonding, a technique frequently used to con-
nect thin wafers. It has also been shown to work for 7 mm-sized vapour cells
[DKL+14]. Although following a similar procedure as in this reference, our
anodic bonding tests with chips and windows have until now not led to suc-
cessful bonding. Further investigation will be necessary to identify the possible
reasons.

3.2.5 Atomic density

If not indicated otherwise, we use the cell G2 which is an encapsulated cell
with alkane coating for our experiments. We typically heat the cell up to a tem-
perature of about 42.3◦C to increase the atomic density. The current through
the magnetic field coils already heats up the cell to around 38◦C, the additional
heating is done with an high-resistance heating wire wound around the coil
frame. The heating wire is intertwined to suppress the creation of a magnetic
field. The temperature is measured with a temperature sensor placed in the
air inside the shield above the cell. From an absorption spectroscopy mea-
surement at a temperature of 43◦C we determine an atomic density of around
17.5 · 1016 m−3. Comparing this value to the theoretical value given in [Ste10],
we estimate that we overestimate the temperature systematically by 3 to 5◦C.
This may be due to the thermal coupling of the cell to the table via the cell
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holder. The atomic density at our typical temperature is about 7 times higher
than at room temperature.

3.3 Cell cavity

The cell cavity is placed around the cell and consists of two mirrors that are
mounted on the optical table. Both mirrors have a radius of curvature of
110 mm. Their spacing of 218 mm leads to a waist radius of 55 µm, which
has been experimentally confirmed to yield a good compromise between clip-
ping losses and filling factor of the cell cross section. The incoupling mirror
has a reflectivity of Rin = 0.997, and the outcoupling mirror has a reflectivity of
Rin = 0.8. This yields an empty cavity finesse of Fe ≈ 28. If a cell is placed in-
side the cavity, then the transmission losses of the cell reduce the cavity finesse.
We measure a finesse FG2 ≈ 18 for the cell cavity with cell G2. This is less than
what we expected since we had measured the single pass cell transmission to
be 98% in a previous experiment. We attribute the reduction in transmission
to the fact, that this transmission measurement was performed with a power-
meter and did thus not take into account possible wavefront distortion which
matters when placed inside a cavity. The cell cavity is by design asymmetric
in reflectivities to ensure efficient outcoupling through the outcoupling mirror.
Dividing the output coupler transmission by the total loss yields an outcou-
pling efficiency of ηout ≈ Tcell(1− Rout)/(1− RinRoutT2

cell) ≈ 62%, where we
have multiplied the expression by Tcell since a photon has to cross the cell on
average once before arriving at the output coupler.

The FWHM of the cell cavity is 38 MHz. Since it is significantly larger than
the Zeeman splitting it should allow us during a Raman scattering process
within the Zeeman levels to have both, excitation and scattering frequency,
nearly resonant in the cell cavity. We note that atomic phase shifts can make
this slightly more complicated, see section 4.4.

We lock the cell cavity with the probe laser. As mentioned in section 3.1.1, the
probe laser is stabilized with respect to an atomic transition. At the same time
it is far detuned (≈ 1.6 GHz) from the atomic resonance, which reduces the
interaction of the atoms in the cell with the probe laser. This makes the probe
laser a good choice for locking the cell cavity. The probe laser is modulated by
±300 kHz around the center frequency with a modulation frequency of 10 kHz.
The transmitted light (in the case of a MORS measurement the reflected light)
is detected with a photodiode. The error signal is extracted with a lock-in
amplifier and sent to a PI controller that gives feedback on the piezo-actuated
outcoupling mirror to stabilize the cavity length. The cell cavity and the mag-
netic shield are covered in a box to protect them against temperature drifts and
acoustic noise.
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3.4 Filtering and detection

In the DLCZ-type experiment, the scattered photons will be collinear with the
excitation light. Hence, we need to filter around 108 excitation photons per
heralding photon (see section 2.5) after the output from the cell cavity. Our
filtering includes two stages: polarization filtering and spectral filtering.

As shown in fig. 3.6 a), the magnetic field is oriented perpendicular to the exci-
tation and scattered light propagation direction. For the excitation light we use
linear polarization in vertical (y) direction. This is perpendicular to the mag-
netic field direction, which gives σ+ + σ−-polarization for the atoms. As shown
in fig. 3.6 c) and d), we choose the scattered heralding and readout photons to
be π-polarized. Thus, we can use a polarization selective element to separate
excitation and scattered photons. In our setup, we use a Glan-Thompson po-
larizer that can reduce the transmission of the excitation light down to 5 · 10−5.
We need to carefully adjust the output polarization from the cavity with a half-
wave plate and a quarter-wave plate to reach this reduction. We note that we
typically cannot reach this extinction level for both write and read pulse. We
suspect, that remaining birefringence in the cavity leads to polarization-rotation
of the output light. This rotation depends on the atomic state, hence it changes
over time when the atomic state decays (see section 4.4). Optimizing the polar-
ization extinction during the write pulse, we have typically at least one order
of magnitude worse extinction during the read pulse.

The spectral filtering consists of two cavities, the filter cavity and the extra cav-
ity. Both cavities are intended to filter out the excitation light during write and
read pulses. We will refer to the remaining transmission of this light as leakage.
The filter cavity also serves a second purpose. It is a narrowband cavity with a
linewidth of FWHM= (66± 1) kHz to achieve motional averaging (see section
2.5). The extra was added later, when the filter cavity with an expected leakage
reduction to about 2 · 10−4 at a Zeeman splitting of 2.4 MHz proved not be suf-
ficient, hence the name "extra" cavity. Both cavities are triangular cavities with
flat incoupling and outcoupling mirrors and piezo-actuated curved mirror. The
filter cavity uses the same spacer as the lock cavity and is oriented as shown in
fig 3.2.

The filter cavity is situated in a vacuum tube. This was intended to shield
the lock cavity and filter cavity from acoustic noise. Since we do not see any
noise performance improvements whether the tube is evacuated or not, we
conclude that most of the noise is transmitted via the holders that support
the cavities mechanically. Closing off the tube however helps against pressure
drifts, that occur e.g. when opening the door. When we lock the narrow laser
via optical feedback to the lock cavity and then send it through the filter cavity,
we observe substantial noise at a frequency around 400 Hz. The magnitude
of this noise is such, that the average transmission through the filter cavity

48



Figure 3.5: Fundamental bending mode, visualized via Autodesk Inventor modal anal-
ysis. Displacement is coloured from small (blue) to large (red). We considered gravity
acting on the whole spacer which is supported by resting on the bottom feet and being
slightly clamped (with a force of 1 N) at the top

decreases to 66%, considerably lower than the maximum transmission of 90%.
We attribute this noise to the vertical bending motion of the spacer. This claim is
supported by a modal analysis of the cavity structure with Autodesk Inventor.
The eigenfrequencies of the fundamental bending mode is according to the
modal analysis at 445 Hz. The corresponding displacement is visualized in
fig. 3.5. Using the same spacer for lock cavity and filter cavity was meant to
reduce relative drifts of the cavities. In the bending mode, the cavity lengths
are anti-correlated, which yields the opposite of the intended advantage.

Compared to the filter cavity with a round trip length of about 1.49 m, the extra
cavity is significantly shorter with a round trip length of 198 mm. A block of
aluminium with holes drilled for the optical path serves as a spacer for the extra
cavity. The flat mirrors are mounted in adjustable gimbal mounts screwed to
the spacer. This design has been presented previously in [ED16]. The linewidth
of the extra cavity is FWHM= (894± 2) kHz which yields a leakage reduction
to 3.5 · 10−2 at a Zeeman splitting of 2.4 MHz. Further specifications of the
cavities can be found in appendix B.

Both cavities are locked using modulated light coupled into the counter-pro-
pagating mode. The modulation is similar to that of the cell cavity lock light,
achieved by stepping the frequency of the lock light via an AOM with a rate
of 10 kHz. The frequency step of ±3 kHz is here much smaller than for the
cell cavity due to the narrower linewidth. The AOM used for the modula-
tion is the "signal" AOM (see fig. 3.1). For each cavity the transmitted lock
light is detected, the signal demodulated and fed back on the cavity piezo via
a PI controller. An optical isolator between the cavities avoids cross-talk of
lock light between the cavities. Even though the lock light is in the counter-
propagating mode, scattering on the mirror surfaces can end up in the forward

49



mode. Hence, a chopper wheel blocks the lock light during the experiment to
avoid excess noise counts in the SPCM.

The scattered photons are sent to a single photon counting module2 (SPCM),
which is an avalanche photodiode operating in Geiger mode. The dark count
rate of the detector is only 10 Hz. We experimentally determined the quantum
efficiency ηSPCM = 52% of the detector at a wavelength of 852 nm. This was
done by comparing the detector counts of an attenuated beam with a power
meter measurement of the non-attenuated beam with the help of calibrated
attenuators. The pulse-width of the SPCM output is 15 ns, the dead-time of the
detector is according to the specifications 43 ns.

Since the SPCM is operating in Geiger mode, it is typically not photon number
resolving. However, the temporal shape of the photons is in our case compara-
ble to the photon lifetime in the filter cavity which is about 2 µs. This is much
longer than the dead time of the detector. Thus, for low photon rates we can
consider the SPCM effectively as photon number resolving.

The photons have to pass many optical elements from the output of the cell
cavity to the SPCM. The detection efficiency (including the quantum efficiency
of the SPCM) is measured individually during each measurement run in situ by
sending a "check pulse" with calibrated power through the setup (see section
3.6). Typically this leads to a detection efficiency from the cell cavity output
to the detected count of typically around 9%. A big part of the transmission
losses is due to the filter cavity (T ≈ 66%). The other main contributors are the
isolators (each T ≈ 88%), the extra cavity (T ≈ 90%) and the fiber connection
(≈ 78%). The latter is present, since the cell cavity, due to historical reasons and
space constraints, is on a different optical table than the lasers and the other
cavities.

3.5 Optical pumping and magnetic field

For the DLCZ-type experiment, we need to initialize the atoms in one Zeeman
sublevel. We have chosen the state |4, 4〉 as the initial ground state. Two diode
lasers are used to optically pump the atoms into this state. The repump laser is
locked on the F=3 to F’=2,3 crossover transition of the D2 line. Its main task is to
bring the atoms that have dropped into F=3 back into the F=4 manifold, hence
the name "repump". The pump laser is locked on the F=4 to F’=4 transition of
the D1 line. The beams are overlapped on a non-polarizing beamsplitter before
they are expanded with a pair of cylindrical lenses to achieve good overlap with
the elongated channel. The pump and repump beams are sent on the cell "from
the side", that is perpendicular to the excitation beam. Pump and repump light
are collinear with the magnetic field and σ+ polarized. They optically pump
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Figure 3.6: a Setup schematics, overview. b Experimental sequence. c Level scheme
for write process, d level scheme for read process. Only relevant levels shown.

the atoms into the state |4, 4〉, which is a dark state for the pump light. We
typically achieve an atomic spin polarization of > 98%.

Our experiments will mainly address Zeeman transitions. Since the splitting
depends on the magnetic field, it is crucial that the atoms experience a sta-
ble and homogeneous magnetic field. In our lab environment there are many
sources of potential magnetic field noise. The cell is therefore residing in a
magnetic shield to protect it against these disturbances from the outside. The
shields and coil systems have been used in many previous experiments and a
detailed description can be found in [Fab14]. We will only give a brief overview
here. The magnetic shield consists of three layers of µ-metal and one layer of
iron, shielding against low frequency noise. The innermost layer is an alu-
minium cylinder, shielding against high frequency noise, while providing at
the same time the frame for various sets of coils. We typically have two of these
sets of coils in use. The main Bx coil creates a bias field in x-direction. Since the
field Bx decreases along the z-axis, which is the long direction of the cell, we use
a double saddle coil to compensate these inhomogeneities. We perform most
of the presented experiments at a Zeeman splitting of νZ ≈ 2.38 MHz, which
corresponds to a magnetic field of 6.8 G. We note that this yields a quadratic
Zeeman splitting of around 1.43 kHz. Hence, we are not resolving the Zeeman
levels with our spectral filtering. Besides the static magnetic field coils we also
have a Helmholtz coil pair inside the aluminium layer, which is used to drive
radio-frequency (RF) transitions.
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3.6 Experimental control and sequence

The DLCZ-type experiment requires us to apply a sequence of light pulses.
This sequence is shown in fig. 3.6. The general timer of the experiment is the
chopper wheel. It rotates with a constant speed, opening the lock path for
24 ms and blocking it for 41 ms. The state of the chopper is detected by an
FPGA, which accordingly controls the experiment.

The FPGA runs with a clock frequency of 80 MHz and reads out the SPCM
counts every clock cycle. The pulse sequence actions are executed every 1 µs.
The frequencies for all AOMs are created by a DDS board. For historical rea-
sons, the DDS board is connected to a different FPGA, which we will call DDS-
FPGA to avoid confusion. In the DDS-FPGA we pre-set a table of possible fre-
quencies. The FPGA communicates to the DDS-FPGA via TTL signals which
frequencies to pick. The DDS-FPGA checks for these TTL signals every 1 µs.
An overview over the chosen frequencies is given in section 3.6.1.

The only parts of the experiment that are not affected by the chopper are the
laser sources. For the narrow laser this means, that the optical feedback and
the beatnote lock are constantly active. If the laser lock fails, it relocks auto-
matically. Probe, pump and repump frequency stabilizations are completely
independent. We will briefly outline the experimental sequence below.

Locking: This phase starts when the chopper has opened the lock beams. The
first task here is to verify that the laser, filter cavity and extra cavity are locked.
If not, the cavities are scanned to find the maximum transmission and then
locked. The cell cavity has to be checked and relocked manually. If yes, this
is the duration where the PI controllers are active and feedback is sent to the
cavities, including the cell cavity, to stabilize their length. This implies that
the narrow laser and the probe laser frequencies are dithered. The pump and
repump lights are off. The phase stops by freezing all the locks shortly before
the chopper blocks the lock beams.

Initial optical pumping: When the chopper has blocked the lock beams, the
FPGA shuts off all the beams and opens the pump and repump beam via their
respective AOMs. The duration of this stage is about 4 ms.

DLCZ-type: Each sequence consists of up to 56 repetitions of the following
steps. The number of repetitions is chosen such that we utilise fully the time
window given by the chopper wheel.

• State initialization: The state initialization only differs from the previ-
ous optical pumping in terms of the duration. We have experimentally
confirmed, that pumping the atoms into |4, 4〉 takes longer initially when
starting from a thermalized ensemble, than when only write and read
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pulses have disturbed the atomic state. Therefore we have in each repeti-
tion a short state initialization phase of typically 350 µs. Since the pump
and repump light do not increase the SPCM counts, we use this duration
also to determine the background counts if the SPCM is gated on.

• Write: We turn off pump and repump beams before the write process
starts. For the write pulse we use the "control" AOM (see fig. 3.1) with a
frequency tuned one Zeeman frequency below the lock light frequency.
To avoid spectral broadening, the beginning and the end of the pulse are
shaped smoothly over about 15 µs by controlling the RF power sent to the
AOM. The pulse duration is 33 µs, measured from half-on to half-off time.
We gate on the SPCM and start detecting counts with the start of the first
repetition of the write pulse. In section 6.1, we will replace the optical
write pulse by a RF excitation of similar duration.

• Delay: During the following delay time τD, all beams are turned off. The
duration is variable, with a lower limit of 30 µs to avoid overlapping write
and read pulses.

• Read: For the read pulse we use again the "control" AOM, now with
a frequency tuned one Zeeman frequency above the lock light frequency.
The smoothly shaped pulse with similar switching time as the write pulse
has a duration of 200 µs, measured from half-on to half-off time. For the
data analysis we can choose a shorter time window for the read.

Check pulse: After the end of the last repetition there is one last state initial-
ization phase, followed by the check pulse. For this pulse, we use π-polarized
light, i.e. with the polarization of the scattered photons, at the expected fre-
quency of the scattered photons. This allows us to check the detection efficiency
for each measurement individually. The pulse is switched by the "signal" AOM
and the pulse duration is 1 ms. The light power is chosen very low (about 1 pW)
to ensure that there is no leakage during the write and read pulses. After the
end of the check pulse we gate off the SPCM .

3.6.1 Frequencies

We will give a brief overview of the frequencies used in the experiment. Pump
and repump light are locked on atomic transitions as detailed in section 3.5.
Before being sent on the atoms, they are shifted up in frequency by 80 MHz by
an AOM used for switching. The probe laser is stabilized with respect to an
atomic transition. The resulting detuning on the atoms after being shifted down
in frequency by an AOM is ∆Probe ≈ 1.52 GHz blue from the F=4 to F’=5 caesium
D2 transition. We have chosen a beatnote frequency of fbeatn = 750 MHz, such
that the narrow laser ends up with a detuning of ∆Narrow = 928 MHz blue
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Figure 3.7: Overview of the frequencies used in the experiment. The origin of the
frequency axis is the frequency of the narrow-band scattered photons. Expected cavity
transmissions are plotted in relevant regions as Lorentzians. The lower graph zooms
into the center region of the upper graph.

from the F=4 to F’=5 caesium D2 transition. The detunings and the relevant
resonances of cell cavity and filter cavity are plotted in fig. 3.7
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Chapter 4
Characterization of cells

4.1 Figures of merit

There are three main figures of merit for us determining the quality of the
vapour cells: on-resonant optical depth, coherence time and cross section. The
optical depth is set by the length of the cell, the temperature and the finesse of
the cavity around the cell. The lower the losses due to the cell windows and
body, the higher finesse and thus the higher interaction strength we can achieve
with this cavity. The length of the cell is a easily accessible design parameter.
The maximum achievable temperature depends on the chemical properties of
the anti-relaxation coating. The cell transmission has shown considerable vari-
ation and will be covered in the section below. The coherence time T2 limits in
the end the storage time of the collective excitation, thus the time-bandwidth
product. The cross section sets the timescale of motional averaging, simulta-
neously affecting T2 and the transmission due to clipping. The cross section is
also a well-defined design parameter. Thus, with all the above interconnections
we can translate the initial figures of merit into new experimental figures of
merit. For given cell dimensions these are: maximum achievable temperature,
off-resonant transmission and coherence time.

In the following we will present an investigation of the transmission properties
of encapsulated microcells. Then we will address the issue of disappearing
atoms that can occur at elevated temperatures. Regarding the atomic state and
the coherence time we will present two experiments. The first demonstrates
a - to the best of our knowledge - novel technique to measure populations in
different atomic states after some waiting time. This allows an estimate of the
purity of the readout. The second is a microwave spectroscopy measurement
that measures the coherence time on the hyperfine transition.
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4.2 Cell transmission

We investigated the transmission of the cells by following the properties of 20
encapsulated microcells (J1-J20) through the fabrication process. We measured
the transmission of the cells and of its components in two different ways. Either
by simply measuring the power in front and behind with a powermeter. The
measurement with the powermeter was quickly to perform, the precision was
however limited to about 1%. Alternatively we inserted the cell into a testing
cavity with similar parameters compared to the cell cavity, except for a higher
output coupler reflectivity (97%) for more precise transmission measurements.
We then compared the linewidth of the empty cavity with the linewidth when
the cell was aligned inside the cavity and calculated the single pass loss. The
advantage of the cavity measurement was besides higher precision that the
transmission was measured in an environment similar to the later experiment,
accounting for possible mode distortion. If a lower transmission is not due
to absorption or scattering but due to reflection, this will change the cavity
spectrum. Depending on the phase of the reflection this can lead to elaborate
cavity spectra, especially in the case of multiple reflecting surfaces.

We started with measuring the transmission of the initial components, yielding
0.6% single pass loss for a single antireflection-coated window of 1.6 mm thick-
ness and 0.1% single pass loss for a 10 mm long glass chip with a 300 µm square
channel. The glass pieces were then assembled with careful glass-blowing tech-
niques by M. Balabas, before annealing at 560◦C. While cells from generation
E (2013) only showed a typical transmission of 93% to 95%, probably limited
by the hot flame affecting the anti-reflection coating, the assembly technique
reached typical transmission of above 97% for generation J (2016) cells.

Before filling with anti-relaxation coating the cells are washed with hydrochlo-
ric solution. This had been tested previously by co-workers not to have any
effect on the anti-reflection properties of the window.

We then tested the cells again after coating with anti-relaxation coating and
filling with caesium vapour. The applied coatings were all carbon chain coat-
ings. We tested standard paraffin, alkene, alkene with specified carbon chain
length (25-55) and a mixture of alkane and alkene (C30). These coatings had
been evaporated into the cells at different temperatures. A higher evapora-
tion temperature leads to a higher vapor pressure and thus more carbon chain
molecules available in the cell after closing it off from the paraffin reservoir.
The resulting thickness of the coating has an impact on the coherence time. The
range of evaporation temperatures had been chosen for each coating type indi-
vidually such that the coating resulted in reasonable coherence times. In fig. 4.1
on the left we show the cell transmission after the application of anti-relaxation
coating and filling with caesium vapour versus the evaporation temperature
and in fig. 4.1 on the right we show the difference between the transmission of
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Figure 4.1: Left: transmission of filled cells versus anti-relaxation coating evapora-
tion temperature, Right: Difference in cell transmission before and after anti-relaxation
coating versus coating evaporation temperature. Circles (crosses) measured with pow-
ermeter (cavity). Cell J9 not shown in left figure had transmission lower than 90%.
Cells not included on the right have not been measured before filling. Cells E3...5 from
previous generation are shown for reference.

the empty cell and the filled cell versus evaporation temperature. We do not
observe a clear trend of the transmission with the evaporation temperature. As-
suming that a higher evaporation only leads to a thicker anti-relaxation coating
we conclude that either this thickness does not have significant influence on
the transmission or that the reduced transmission cannot be simply explained
by extra absorption by the coating. We note that in one case (J15) we even get
an improvement of the cell transmission after coating. This could be due to
residuals in the channel that were cleaned away during the coating procedure.

We further investigated the relation between transmission and coherence time.
This is shown for about 36 encapsulated microcells and one laser-bonded cell
with different coating materials in fig. 4.2. We notice that the alkene cells on
average have longer coherence times than paraffin cells, that in turn have longer
coherence times than cells with C30 coating. It occurs rarely that a cell has both
long coherence time and high transmission simultaneously. The results from
the exceptional cells I16 and F1 however speak against a potential hard limit
of simultaneous excellence. The spread of the results shows that there is no
straightforward relationship between coherence time and transmission. Other
parameters (curing time, microhole diameter, cleanliness) that have not been
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Figure 4.2: Coherence time versus cell transmission. Shown are the results from 36 en-
capsulated microcells and one laser-bonded cell (J24) with different coating materials.

investigated here, seem to have significant influence on the results.

The measured reduction in transmission can be either due to losses (absorp-
tion, scattering) or reflections. We verify that both can have relevant influ-
ence by measuring the reflections from two empty laser-bonded cells, and from
two coated and filled laser-bonded cells under zero degree angle of incidence.
While the empty cells showed a reflection of 0.2% and 0.4%, we measured re-
flections of 1% and 2% for the filled cells respectively. Inside a cavity this can
lead to coupled cavity effects. Even if the reflectivity of the window is much
lower than the reflectivity of the cavity mirrors, it can have a significant effect
on the transmission of the cavity. As an example, a surface inside a cavity sim-
ilar to the cell cavity with 0.8% reflection into the cavity mode could change
the cavity transmission by about 10% depending on the phase of the reflection
due to its exact position [Rak00]. Tilting the cell to avoid reflections into the
cavity mode typically leads to increased losses by clipping. However, the issue
of variations in transmission is solved by using a cell design where windows
are attached at a slight angle. This was implemented starting from cell K13.
For previous cells exhibiting the reflection issue the cavity can usually be op-
timized to obtain maximum transmission, by adjusting the cell position and
angle. This was typically done in the transmission measurements presented
above.1 It should be noted, that also for the cell G2 that was chosen for the

1Chronologically, we only realized later that reflections are probably causing the sensitivity
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DLCZ-type experiment, the reflection could cause a relative change in trans-
mission by up to 10%.

4.2.1 Integrated cavity cell

Towards the end of this PhD project we had the opportunity to measure the
characteristics of three integrated cavity cells, that are cells with mirrors in-
side the encapsulation. We measured the finesse after the assembly via glass-
blowing, and after coating with alkene/paraffin coating and filling with cae-
sium.

The cell L8 has a capillary with an inner diameter of d = 1 mm, one high-
reflective mirror (RHR = 99.7%) and one lower-reflectivity mirror (RPR = 99%).
Compared to a measurement with the bare mirrors, the finesse dropped by a
factor 5 after glass-blowing, resulting in Finesse of F = 117. This reduction
is attributed to clipping losses. After the subsequent filling with caesium and
coating with alkene, the finesse dropped again by more than a factor 5. It is
unclear if second drop in finesse is related to the anti-relaxation coating, or due
to clipping in the narrow capillary, since the parts inside the cell appeared not
to be well fixed in place.

The other two cells with a capillary of d ≈ 6 mm, each with a pair of high-
reflective mirrors, showed very good finesse after the glass-blowing assembly
(F ≈ 1100), only marginally worse than measured for the bare mirrors. For
one of the cells (L9), the transmission was however only 13%, indicating that
the glass assembly outside the cavity introduced significant losses. One could
also observe cracks in one of the mirror substrates. They probably appeared
due to the glass-blowing flame, inhomogeneously heating up the few mm thick
mirror substrate. The cracks did not seem to affect the high reflective surface
at the beam position, such that the finesse could still be high. After filling
with caesium and coating with alkene, the finesse dropped to F ≈ 260. This is
equivalent to a total intracavity loss of 2.4%. The cell transmission on resonance
dropped even further to 0.4%.

For the third cell (L4), filling with anti-relaxation coating failed. After the cell
had been emptied and cleaned with hydrochloric acid (10%), we observed a
significant drop in finesse by about a factor of three. Repeating the cleaning
process decreased it even further. We therefore conclude that the hydrochloric
acid attacks the high-reflective coating.

The conclusion we draw from the preliminary results with the integrated cavity
cells is two-fold. On the one hand, it is encouraging that we have reached a
total intracavity loss of 2.4%. On the other hand, this is only marginally better
than for the top-performing encapsulated cells. At the same time we have
only managed to produce cells with rather large capillaries. Reliable alignment

of alignment.
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and fabrication of microcells with integrated cavities and low clipping losses
remains a distant prospect.

4.3 Issue of disappearing atoms

It occurred several times, that the caesium atoms seemed to disappear from
the channel of the microcells since there was no atomic signal (spectroscopy
or MORS) from the channel. This happened for various microcells with dif-
ferent coatings and it only happened when the cell was at temperatures above
30◦C. However, it seemed to occur at random times and was not correlated
with a specific temperature. When the atoms disappeared from the channel we
could still measure an atomic signal from the encapsulated volume outside the
chip. This lead to the conclusion that the microhole became clogged by anti-
relaxation coating. The caesium atoms inside the channel are slowly (within
minutes) absorbed by the anti-relaxation coating and in this case cannot be re-
placed by atoms from the reservoir. The clogging may happen more easily at
elevated temperatures because the anti-relaxation coating becomes less viscous.
However, assuming a simple flow of melted coating into the microhole does not
provide a full explanation since the clogging happened with the microhole ori-
ented up as well as down. Typically after heating the cell to about 80◦C, we
can observe atoms inside the channel again. We assume that a homogeneous
redistribution of anti-relaxation coating has then opened the microhole again.
We also have cases were this heat treatment is not successful. For one of the
cells, the laser-bonded cell J24, we have tested a different method to free the
microhole. Inspired by [HK02] we focused a laser with wavelength λ = 460 nm
and a power of P ≈ 1 W into the microhole. With a spot diameter of around
100 µm we did not achieve any success, even for very long (≈ 20 s) illumination
duration. However, with tighter focussing down to about 30 µm the unclog-
ging was successful. Photos from before, during and after are shown in fig.
4.3. The top row displays a side view. The vertically oriented channel is con-
nected by the conical microhole to the reservoir that is on the left, outside of
the picture. In a) the surface of the conical shape has a homogeneous matt
finish and we observe a lot of scattered light from the channel. The bright spot
of scattered light is caused by the room light. The violet laser that is then di-
rected from the left through the conical part into the center of the microhole.
b) shows the situation after the 0.9 s long laser pulse. We see that the matt
finish has become more transparent in the conical part, and the distribution of
light scattered from the channel has changed as well. We claim that this shows
the anti-relaxation coating having been cleaned away from parts of the conical
microhole, and from parts of the inside of the channel. Even though we cannot
observe the coating distribution inside the minimal diameter section of the mi-
crohole, this claim is confirmed by two effects. Firstly, we observed an atomic
signal from inside the channel after this process, speaking for an unclogged
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Figure 4.3: Unclogging the microhole by laser heating. Top row: side view with chan-
nel vertically and conical microhole connecting reservoir (left out of picture) to channel.
a: before, b: after laser pulse. Bottom row: diagonal view through reservoir onto con-
ical microhole and channel (horizontal). c: before, d: 0.4 s after start of, e: 0.9 s after
start of, f: after laser pulse

microhole. Secondly, we measured short coherence times that could be signif-
icantly increased by recuring, that is heating the cell to higher temperature to
homogenously distribute the coating. This confirms, that the coating distribu-
tion inside the channel was changed significantly by the violet laser pulse. We
can also observe these changes in real time. The bottom row shows frames
from a webcam video that was taken during the experiment. The view is from
a different angle. This time we look through the reservoir chip into the wide
opening of the conical microhole (frosted bell shape in the center). The channel
is oriented horizontally behind the microhole. This camera view was mainly
meant for alignment of the violet laser focus at reduced powers and makes it
less obvious to see changes between before (c) and after (f) the laser pulse. A
close look reveals a darker shade on microhole and channel after the pulse. It is
however interesting that we can observe a change even during the laser pulse.
After the automatic brightness adjustment of the camera we observe figure d)
0.4 s after the start of the laser pulse. The bright spot is scattering of the vi-
olet laser from the channel. During the laser pulse this bright spot grows in
size while the scattered light from the microhole reduces. This is shown in e),
taken half a second after d). We chose a minimal laser pulse duration of 0.9
seconds simply because the violet laser was activated and deactivated with a
mechanical push-button switch.
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4.3.1 Conclusion

We have been able to confirm that atoms disappearing from the channel can
be caused by a clogged channel and we have demonstrated a solution for the
issue by cleaning with a laser pulse. We have strong indications that there is
an intensity threshold for the cleaning process to be successful and we have
been able to monitor the process in real time. A thorough investigation beyond
the scope of this project, applying different pulse durations and powers while
monitoring with better quality imaging, may reveal interesting effects and lead
to new methods of locally treating the anti-relaxation coating.

4.4 Cell cavity drift due to atomic relaxation

The cell cavity resonance depends on the atomic state despite the large detun-
ing of ≈ 1 GHz. We conclude this from the following observations. If the atoms
are pumped, the resonances for horizontal and vertical polarization do not over-
lap. Furthermore we see that the resonance is shifted, depending on whether
the atoms are pumped or unpumped. The observed birefringence is an atomic
effect and not due to the cell windows, since it vanishes for very large detun-
ing or for an unpumped ensemble. We also see that this birefringence and the
resonance shift reduce when the atoms thermalize after the pumping has been
turned off. This is shown in fig. 4.4. The phase shift depends on g2/∆, thus
it depends on the number of atoms and the atomic coupling. Horizontal and
vertical polarization couple to different excited states. Although for very large
detuning the coupling of horizontal and vertical light to the atoms will be sim-
ilar, it matters for detunings that are comparable to the excited state splitting,
which is apparently the case for our detuning of ≈ 1 GHz. When the optical
pumping stops, the atomic state starts to thermalize. Partly atoms decay into
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Figure 4.5: Expected cell cavity resonance for light at write (red) and read (cyan)
frequency in y polarization and single photon (blue) and four-wave mixing (green)
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periment (frequency-axis shifted arbitrarily). y-polarized light is shifted relative to π
by 14 MHz as typically observed in the experiment. Assuming linear change of phase
shift over time, the cavity resonance shift for the respective frequencies is displayed
(circles).

F=3 and are be much further detuned, and atoms redistributing in the Zeeman
levels of F=4 will contribute with different couplings. When the ensemble has
reached the thermal state, which reacts similar to any light polarization, the
phase shift has vanished. What are the consequences that the phase shift will
have on our pulsed experiments?

First of all we have to be careful when locking the cavity. The atomic phase
shift on the lock light can depend on the power of pump and repump light.
A drift in their power can then move the locked cavity resonance frequency.
Furthermore, we have to choose where we want to lock the cell cavity. In the
DLCZ-type experiment we consider four relevant frequencies. During the write
process it will be the excitation and the scattering. The desired scattering dur-
ing the read is at the same frequency as during the write. During the read
we then also have the excitation and the undesired scattering due to four-wave
mixing. The excitation beams will be polarized orthogonal to the scattered pho-
tons. In fig. 4.5, we have sketched the transmission of these four fields against
frequency (including the birefringent effect) and against time. According to
[NMT+17], the interaction strength of a Raman transition involving to tran-
sition frequencies A and B will in a cavity depend on

√
TATB where TA and

TB are the cavity transmissions at the respective frequencies. We also need to
consider, that the atomic phase shift changes on a time scale similar to our
experimental timescale. Thus we need to choose a locking frequency for the
cell cavity, where we have good interaction with the required frequencies at the
relevant durations. We have chosen the conditions according to fig. 4.6. The
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plot was obtained by fitting a Lorentzian2 to the transmission of the read exci-
tation light. Then the transmission was inferred for the other frequencies and
polarizations, while assuming constant birefringence.

4.5 Atomic decay and coherence times

4.5.1 Continuous MORS

The magneto-optical resonance spectroscopy (MORS) is our workhorse for de-
termining the atomic properties of caesium inside the cells. The simplest way
is the continuous MORS described in [JSSP04]. Here the atoms are polarized
with a circularly polarized repump parallel to the magnetic field. The result-
ing collective spin can be excited by an RF coil to precess around the magnetic
field, when the RF coil current is modulated at the Larmor frequency. Linearly
polarized probe light, far-detuned from atomic resonance, passes through the
atoms perpendicular to the magnetic field. The polarization modulation of this
light due to the atoms is analysed with balanced polarimetry3. When the fre-
quency of the RF excitation is slowly swept across the Larmor frequency, the
polarimetry after lock-in detection yields the MORS signal (example shown in
4.9). The coherence time in the dark T2 between magnetic sublevels can be de-
termined from the peak width extrapolated to zero probe and RF power. The

2This is a linear approximation for the decay of the phase shift.
3The setup for continuous MORS is until here similar to the pulsed MORS setup in fig. 4.7.
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name "continuous" comes from the fact that the light beams are all continuously
on.

The continuous MORS allows to measure the coherence time T2 with a sim-
ple experimental setup. One should note that the repump is on during this
measurement, however the pump is turned off to avoid light-induced decoher-
ence. Therefore the coherence time is only measured for a not so well polarized
atomic ensemble. Nevertheless we typically use the continuous MORS to adjust
pump and repump alignment and polarization by tuning the pump frequency
to be resonant with the F = 3 manifold, thus acting similar to the repump.
Furthermore the continuous MORS can be easily performed when the cell is
residing inside a cavity, making it a handy tool for us.

MORS Theory We will briefly present the theoretical derivation of the MORS
signal as shown in [JSSP04]. In subsection 4.5.3 we will then build upon this
derivation for the pulsed MORS signal.

We consider atoms distributed among the Zeeman levels mF of a single hy-
perfine manifold F, with the quantization axis defined by a bias magnetic
field along the x-axis. The macroscopic spin ~J will couple to the magnetic
field via H = gFµB~J · ~B + O(B2) with the Bohr magneton µB and the hyper-
fine Landé factor gF. We apply a magnetic radio frequency field Br f e−iωr f t

with frequency ωr f , amplitude Br f = |Br f |e−iφ and phase φ. This contributes
gFµB Jy|BRF| cos (ωt + φ) to the interaction. With the definitions of Jy and Jz

from section 2.7 this yields the Hamiltonian [JSSP04]

H =
F

∑
m=−F

h̄ωmρmm +
gFµB

4

F−1

∑
m=−F

C(F, m)ρm+1,mBr f e−iωr f t +C(F, m)ρm,m+1B∗r f e
iωr f t

(4.1)
where ωm is the resonance frequency of the m-th level. The Heisenberg equa-
tion of motion for the atomic coherences then yields

∂ρm,m+1

∂t
=

1
ih̄
[ρm,m+1, H]− Γ

2
ρm,m+1 (4.2)

where we have added a decay of the coherences. We introduce slowly varying
operators with ρij = ρ̃ije−iωr f t and we neglect second order coherences ρm,m+2

and ρm−1,m+1, which is a valid approximation for small excitations. We can
then write

∂ρ̃m,m+1

∂t
= (i(ωr f −ωm+1,m)− Γ/2)ρ̃m,m+1 + i

gFµB

4h̄
C(F, m)Br f [ρm+1,m+1 − ρmm]

(4.3)
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where ωm+1,m = ωm+1 −ωm. The solution for this equation is

ρ̃m,m+1(t) = ρ̃m,m+1(0)e(i∆−Γ/2)t

− iχ
i∆− Γ/2

[ρm+1,m+1(t)− ρm,m(t)](1− e(i∆−Γ/2)t) (4.4)

where ∆ = ωr f −ωm+1,m and χ =
gFµBC(F,m)Br f

4h̄ .

In the continuous MORS case, where all laser beams and the RF excitation are
continuously on, the oscillations dampen out and we reach the steady state
solution

ρm,m+1(t) =
−iχ

i∆− Γ/2
[ρm+1,m+1 − ρm,m]e−iωr f t (4.5)

which leads as explained in [JSSP04] to the MORS signal

MORS(ωr f ) ∝

∣∣∣∣∣N F−1

∑
m=−F

C(F, m)

i∆− Γ/2
[ρm+1,m+1 − ρm,m]

∣∣∣∣∣
2

(4.6)

4.5.2 Pulsed MORS - characterization of state initialization

The pulsed MORS measurement is performed in a very similar setup as the
continuous MORS. For the pulsed MORS measurement we start out with a si-
multaneous repump and pump pulse, polarizing the atoms. After switching it
off, we apply a short RF pulse at the Larmor frequency. The pulse is spectrally
broad enough to address all Zeeman sub-levels. The Zeeman levels are at high
Larmor frequencies resolved and separated by the quadratic Zeeman splitting.
The RF pulse excites the collective spin that now starts precessing around the
magnetic field. Linearly polarized probe light, far-detuned from atomic res-
onance passes through the atoms perpendicular to the magnetic field. The
polarization modulation of this light due to the atoms is analysed with bal-
anced polarimetry. The setup for pulsed MORS is shown in fig. 4.7, here for
twait = 0. The decoherence of the collective spin precession leads to an out-
put signal that is a damped oscillation. If the Zeeman levels are resolved by
their quadratic splitting we observe a beating between the respective oscilla-
tions. Extrapolating to zero probe power allows us to measure the coherence
time in the dark, T2. A pulsed MORS measurement method has already been
described in [JSSP04]. However, in contrast to their method, we use a pulsed RF
excitation. This seemingly small, but important difference renders the snapshot
experiment, described below, possible.

We typically perform a pulsed MORS measurement to determine the atomic
state achieved by the pump and repump procedure. For the microcells we
can achieve an atomic polarization of about 98% (see [Fab14]). Pulsed MORS
allows us to measure the coherence time of this very well polarized atomic state.
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Figure 4.7: Pulse sequence and setup for pulsed MORS measurement.

This is different for the continuous MORS measurement, where we typically
only use the repump to avoid pump-induced broadening. The coherence times
measured by MORS and PMORS can differ if the coherence time depends on
the atomic polarization, e.g. if atom-atom collisions are frequent.

The main disadvantage of the pulsed MORS measurement is the complicated
behaviour when measuring an atomic ensemble inside a cavity. The beating
signal from the pulsed MORS leads to revivals of the oscillation every time the
oscillations rephase. At the same time the atomic decay changes the optical
path length and therefore the resonance condition of the optical cavity. The
resulting change of the transmission shifts the signal amplitude of the revival.
Furthermore, the changing intracavity power can lead to varying light-induced
decoherence. The interplay of these parameters can lead to interesting features
as the line-broadening or narrowing depicted in fig. 4.8. Even though a thor-
ough investigation of this feature might reveal some interesting physics, this is
beyond the scope of this project. More importantly this feature is not hindering
us from obtaining the relevant parameters.

Since we expect the coherence time not to be limited by spin exchange col-
lisions, we can use continuous MORS to determine the coherence time. If re-
quired we could perform a simple pulsed MORS measurement by reflecting the
probe light that has passed through the cell out of the cavity. For balanced po-
larimetry on this light we would not have to consider any cavity effects. For the
snapshot experiment described below we have chosen a third alternative. We
took the cell out of the cavity setup and measured it in a different experimental
setup.

4.5.3 Pulsed MORS - snapshot of time evolution

In this section we present a novel experiment that allows to measure the atomic
distribution among Zeeman and Hyperfine levels over time. With regard to the
DLCZ-type experiment, the main motivation for us is to know the fraction of
atoms that has decayed to the storage state until the collective excitation is read
out. As [BZP+16] points out, this fraction contributes excess photons to the
single photon read out. Setting a lower limit for the single photon fidelity then
allows to give a maximum storage time for the collective excitation.
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Figure 4.8: Pulsed MORS spectra from F=4 of cell inside cavity for different initial
cavity resonance frequencies. The cavity is only locked during the pumping sequence
using the "probe" laser, blue-detuned from F=4 by about 1.6 GHz. The pulsed MORS
signal is measured using the "control" laser, which is tuned closer to the caesium line
by the beatnote frequency. We observe several features of the atomic signal depending
on the initial "control" laser detuning from the cavity: narrowing and broadening of
the lines, change in height of the secondary peaks relative to the main peak and shift
of the main peak center frequency.

The pulsed MORS experiment can be used to determine the atomic state dis-
tribution at the time of the RF excitation. The main idea of this experiment is
to let the atomic state evolve for some variable time twait before applying the
RF excitation. From a series of these snapshots of atomic distributions, we can
determine the evolution of the atomic distribution.

Pulsed MORS Theory The pulsed MORS that we will focus on now, is differ-
ent from the case considered in [JSSP04], where the RF excitation was continu-
ously on. We consider an experimental sequence where we turn off pump and
repump at t0. Then after a possible waiting time we turn on a short RF pulse
from t1 to t2, and then directly start measuring the polarization rotation with
probe light.

The pumping procedure relies on spontaneous emission and destroys all co-
herences. We assume that during the following waiting time we do not have
mechanisms creating any coherences, thus we have ρm,m+1(t1) = 0. However,
the level populations may have changed due to collisions. Using the correct
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timings, equation 4.4 then yields after the RF excitation yields

ρ̃m,m+1(t2) ≈ −
iχ

i∆− Γ/2
[ρm+1m+1(t1)− ρmm(t1)](1− e(i∆−Γ/2)(t2−t1)) (4.7)

where we have assumed that the RF pulse is so short and weak that we can
neglect any population transfer during the pulse and therefore approximate
ρmm(t2) ≈ ρmm(t1). The RF pulse is off during the following probing hence the
coherence will simply show damped oscillations

ρm,m+1(t) = ρ̃m,m+1(t2)e(−iωm+1,m−Γ/2)(t−t2) (4.8)

Inserting4 this result into the collective spin Jz defined in equation 2.37 yields

Jz(t) =
F−1

∑
m=−F

Im[rF,me(−iωm+1,m−Γ/2)(t−t2)] (4.9)

where we have collected all the prefactors into

rF,m = − 1
2i

NF,mC(F, m)
iχ

i∆− Γ/2
[ρm+1m+1(t1)− ρmm(t1)] (4.10)

with NF,m as the number of atoms in the respective level. We have thus trans-
ferred the difference of atomic populations at the moment of the RF pulse into
the collective spin Jz, which we then read out. This resembles taking a snapshot
of the atomic population difference at time t1. Now we only need to link the
collective spin to the balanced polarimetry output. We have already introduced
this connection in equation 2.43.

Analysis In the experiment we send the polarimetry signal to a lockin ampli-
fier and record both quadratures. Therefore we multiply the balanced polarime-
try expression Sout

y from equation 2.43 including the sum over both manifolds
with a sine at the lockin frequency ωLI yielding

X′ ∝ ∑
F

a(F)
F−1

∑
m=−F

Im[rF,me(iωm+1,m−Γ/2)(t−t2)] sin(ωLIt) (4.11)

and with a cosine giving P′ accordingly. We neglect the fast oscillating terms
and get expressions for the outputs X and P. For operational simplicity we do
not fit these expressions directly to the time traces of the lockin output, but we

4We use here ρm+1,m(t) = ρ∗m,m+1(t), thus ρm+1,m(t)− ρm,m+1(t) = −2 Im[ρm,m+1(t)]
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Figure 4.9: Comparison of PMORS, Lorentzian and MORS for high atomic polarization
(left) and low atomic polarization (right)

calculate

|Ft(X + iP)(ω)|2 ∝
∣∣∑

F
a(F)

F−1

∑
m=−F

rF,m (4.12)

√
2/π (Γ + 2iωLI − 2iωm+1,m)

(Γ− 2i(ω−ωLI)− 2iωm+1,m)(Γ + 2i(ω + ωLI)− 2iωm+1,m)

∣∣2
where Ft is the Fourier transform. We will call this expression the PMORS
function in the following.

Comparing MORS, PMORS, Lorentz The description of the complicated spec-
trum can be simplified significantly by assuming a distribution of the pop-
ulations as ρmm ∝ εm. This model has been applied successfully previously
[JSSP04] and we will use it in the following. The parameter ε is directly related
to the atomic polarization. We note that the PMORS function can be approxi-
mated by a Lorentzian of similar width in the case of high atomic polarization,
as shown for F=4 in fig. 4.9 on the left. The agreement with the MORS function
from equation 4.6 is even better. If they were both plotted they would overlap
within the drawn line. On the right we observe that for very low atomic polar-
ization the MORS and the PMORS function differ slightly, most notably in the
tails.

The full resulting spectrum shows eight peaks for F=4 and six peaks for F=3.
Each peak stems from two neighbouring Zeeman levels and is centred at the
respective Larmor frequency νL. The separation between the peaks is given
by the quadratic Zeeman splitting, νQZ = 2ν2

L/νh f s, where νh f s is the hyper-
fine splitting. The separation between the manifolds stems from the different
Landé factors, gF=3 being about 0.3% bigger than gF=4 in amplitude, and having
opposite sign. We typically work at Larmor frequencies where the quadratic
splitting is bigger than the peak width, such that the lines are resolved.
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Figure 4.10: PMORS spectra for different waiting times before applying the RF excita-
tion. The signal on the right of the dotted line has been multiplied by 10. The signal
attributed to F=4 (F=3) is on the left (right). For longer waiting times the signal from
F=4 decreases, the signal from F=3 first increases, then decreases.

Results We demonstrate the snapshot method with an experiment performed
in the following way. We apply the pump and repump light with a power
of 6 µW and 100 µW respectively for about 5 ms to initialize the atoms. After
a variable delay twait a switch opens the RF excitation at around 1.4 MHz for
25 µs. The short duration of the RF excitation ensures that its spectral width is
much broader than the splitting of the Larmor frequencies at around 1.4 MHz.
Then the probe light is sent and the polarimetry signal recorded for a duration
of 20 ms. This experiment was conducted without a cavity around the cell to
simplify the analysis. The probe power was low enough that probe-induced
decoherence can be neglected, and the probe frequency was tuned to about
3 GHz red from the 3-3’ transition. This detuning was chosen to have sufficient
signal from both manifolds.

The resulting PMORS signal is shown in 4.10. The data points are connected
by lines to guide the eye. The signal above 1.4158 MHz, that is right of the
dotted line, has been multiplied by 10 for better visibility. The peaks on the
left stem from the F=4, the peaks on the right from the F=3 manifold. For a
minimal waiting time of 44 µs, we see a strong signal from a well-polarized
F=4 manifold, and no signal from population in F=3. As the waiting time is
increased, the signal from F=4 reduces while the signal from F=3 first grows,
before it also reduces.

We fit the datasets for each twait with the PMORS function including an added
background offset. An example of dataset and fit is shown in fig 4.11. The
data points are averaged from eight sets of data with 10000 averages each. The
errorbars represent the standard deviation of the sample mean obtained from
these 8 datasets. We note that the fit function does not completely agree with
the data for the shape of the very small peaks. However, we expect these small
peaks to represent a minor contribution to the atomic population which renders
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Figure 4.12: Fitted parameter ε for each manifold versus waiting time.

the disagreement negligible. Furthermore, we emphasize that we achieve this
good agreement by only using a single parameter for each manifold to describe
the relative peak heights. We observe that this parameter ε changes over time
as shown in fig. 4.12.

We note that we obtain a linewidth of Γ = 122 ± 5 Hz for minimal waiting
time, corresponding to a coherence time T2 = 2.5 ms. After a few ms waiting
time and thus considerable spread of the atomic population we only have an
insignificant increase to Γ = 129 ± 5 Hz. This is a strong hint that spin ex-
change collisions are not the main limitation for the coherence time under the
conditions of this experiment.

With the pulsed MORS we are able to measure the population differences
of neighbouring Zeeman levels. In order to determine the population frac-
tion in each level we need to make additional assumptions. We assume that
the pumping works so well that we have a negligible population fraction for
minimal waiting time in the depumped extreme states |F, mF〉 = |4,−4〉 and
|F, mF〉 = |3,−3〉. This is strongly confirmed by the observed MORS signal.
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Figure 4.13: Atomic population fractions plotted versus waiting time for F=4 (left)
and F=3 (right). The data points are fit results from the PMORS fits. The error bars
represent the standard deviation from four to nine independent measurements, each
with 10000 averages. The solid lines show the fitted model. The grey part is the
expected equal distribution calculated from the data.

Since the populations are changing this assumption is not valid for longer wait-
ing times. For increased waiting times we observe an overall decrease of the
signal which can be explained by the build-up of atomic population distributed
equally among the Zeeman levels of a hyperfine manifold. We assume that this
is mainly an effect of complete randomization of the atomic state when collid-
ing with the wall. The assumption of a complete randomization process has
been applied successfully previously [GKR+05]. The assumption implies that
the atoms are distributed equally among all Zeeman levels of both hyperfine
manifolds.

We can then determine the fraction of population in each level. This is shown
for different waiting times in fig. 4.13, on the left for F=4, on the right for F=3.
The grey area is the fraction of equally distributed atoms calculated from signal
reduction. As expected, we observe a decrease of population in |4, 4〉, as the
atoms distribute into the other levels. The level |3, 3〉 shows a rapid increase in
atomic population before decaying to the long-time level of equal distribution.
We note that the population in |3, 3〉 even outnumbers the population in |4, 3〉
after a few ms. Furthermore, we see that we start out with about 85% of the
atoms initialized in |4, 4〉. This corresponds to an atomic polarization in F=4
of p = ∑F=4,m mρm,m/4 = 0.955. Further, tedious adjustment of the pumping
light polarization probably would have increased this number to the typically
achieved p = 0.98 if required.
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Modelling We now present a simple rate equation model, including only two
parameters, explaining the observed evolution of the atomic population. A
model that bases only on complete randomization of the state after a certain
number of wall bounces fails to explain the initial increase and then decay of
e.g. N3,3. Inspired by [GKR+05] we assume a model that has a rate for total
randomization Γr, and a rate for electron flips Γe. We then use the rate equations
to get a system of 16 differential equations. We have e.g.

Ṅ4,3 = −ΓeN4,3 − Γr N4,3 + ∑
i 6=4,3

1
15

Γr Ni +

(
1
8

ΓeN4,4 +
7
32

ΓeN4,2 +
21
32

ΓeN3,2

)
(4.13)

where the prefactors of the term in brackets are the modulus square of the
product of the two Clebsch-Gordans involved. These Clebsch-Gordans come
from our model of electron spin randomization. We start in a level |F, mF〉.
This level can be written in the basis of spins of nucleus and electron with
corresponding projections |j1, m1, j2, m2〉

|F, mF, j1, j2〉 = ∑
m1m2

|j1, m1, j2, m2〉 〈j1, m1, j2, m2|F, mF, j1, j2〉 (4.14)

= ∑
m1m2

|j1, m1, j2, m2〉Cm1,m2
F,mF

(4.15)

In the case of caesium the nuclear spin is fixed to be j1 = 7/2 and the electron
spin is j2 = 1/2. We have included it here for completeness. We can think of the
electron randomization process as an operator that randomizes the orientation
of the electron spin, i.e. m2. In our case of j2 = 1/2 this operator can only
flip m2 or not flip m2. We define an operator Oes f lip that will flip the spin
m2 → −m2. Finally, we have to write the new state in the |F, mF〉 basis. In total
we have

Oes f lip |F, mF〉 = ∑
m1,m2

Cm1,m2
F,mF ∑

F′,m′F

Cm1,−m2
F′,m′F

|F′, m′F, j1, j2〉 (4.16)

If we are interested in the probability w to transfer from one state to the other
we have

w(|F, mF〉 → |F′, m′F〉) = | 〈F, mF|Oes f lip|F′, m′F〉 |2 (4.17)

which leads to the fact that we need the modulus squared of the product of the
Clebsch-Gordans involved.

We fit the resulting system of coupled differential equations to the popula-
tion fractions. This yields the best fit parameters Γe = 240± 10 Hz and Γr =

214± 8 Hz, which gives the solid lines in fig. 4.13. Comparing the fitted model
to the data, we observe that there is very good agreement with the decay of
the population in |4, 4〉. The model also captures well the overall shape of the
initial increase and later decrease of the population evolution in |3, 3〉. We note
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however, that the decay of the population in |3, 3〉 appears faster in the mea-
sured data than in the model, and the population evolution of |4, 3〉 is not well
captured by the model. We have used a few assumptions to calculate the popu-
lation. The assumption that the fraction of equal population is not only equally
distributed within one hyperfine manifold, but at all times between all sixteen
levels, may have distorted our population distribution. However, it is not obvi-
ous, how a shift of the equal distributions, that is the grey areas in fig. 4.13, will
improve the agreement between the data and the model. It is possible, that a
small contribution from spin-exchange collisions has already significant impact
on the details of the population evolution. One could, similar to [GKR+05],
use a measurement of the decay of the Faraday angle to derive the rates of
electron-randomization, complete randomization and spin-exchange collisions,
and compare these results with the presented data. Even though this will be
helpful to support our claims, we refrain from continuing this investigation
here.

Conclusion of snapshot pulsed MORS We have in this section demonstrated
a novel method that allows to easily access and track atomic distributions of
an initially pumped atomic ensemble over time. We have presented a simple
model explaining the evolution of atomic distribution.

For us with respect to the DLCZ-type experiment, we note that storing in |3, 3〉
will lead to much more extra scattering. In the ideal case of perfect initial
pumping we can use the prediction of the model to estimate the atomic popu-
lation. This is shown in fig. 4.14. We note that already after 1.2 ms, which is in
this case similar to half the coherence time T2, we have about 15% of the atoms
in the state |3, 3〉. Assuming similar filtering, the reasoning of [BZP+16] leads
to a probability to read out a photon from an asymmetric collective excitation
equal to the fraction of population in the storage state. This clearly favours
choosing |4, 3〉 as a storage state over |3, 3〉.

4.6 Microwave spectroscopy

In this section we present the results of a preparatory experiment, character-
izing the coherence time on the hyperfine transition. The storage time of a
collective excitation is closely connected to the coherence time of the respec-
tive atomic transition. In order to estimate the performance of this storage we
used a microwave spectroscopy measurement as shown in fig. 4.15, similar to
[BHK+05]. Probe light on-resonant with the D2 line is sent through the cell.
The cell is in a magnetic field that splits the Zeeman levels. A microwave is
sent on the cell and drives hyperfine transitions. The microwave frequency is
scanned across all Zeeman transitions, while the probe transmission is detected
with a photodiode. The Doppler broadening for the probe (> 200 MHz) leaves
the excited state hyperfine splitting unresolved, while for the microwave the
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Figure 4.14: Atomic population fractions plotted versus waiting time for F=4 (left) and
F=3 (right). The solid lines show the model predictions for perfect state initialization.

Figure 4.15: Microwave spectroscopy level scheme (left) and set-up (right). Shown
are all ground state Zeeman sub-levels, the unresolved excited states are indicated by
the grey box. The microwave transitions (red) and the probe light (blue), are only
shown coupling a few Zeeman states as example. The microwave from a microwave
generator (MW Gen.) is sent through a microwave antenna on the cell residing in a
magnetic field (B) inside a magnetic shield. The probe transmission is detected with a
photodiode (PD).
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Figure 4.16: Microwave spectroscopy. Top: spectroscopy signal of all ground states,
110 averages with 20 seconds sweep duration, bottom: spectroscopy of 0-1 transition,
50 averages with 2 seconds sweep duration. In top and bottom the zero reference of
the frequency-axis was centred on the 0-0 and 0-1 resonance respectively, the probe
power was 4 µW and the microwave power −4 dBm.

Doppler broadening is only around 10 kHz, much less than the typical Zee-
man splitting. We performed spectroscopy measurements on four different
cells. We were of course mostly interested in the micro-cell performance, how-
ever we also measured on bigger cells with longer coherence times to exclude
limitations due to technical issues like microwave frequency noise, inhomo-
geneous magnetic fields etc. In total, we measured one standard micro-cell
(length 10mm, cross section 0.3 mm x 0.3 mm), two 5 mm-sized cubic cells and
one even bigger cylindrical cell (length 20 mm, diameter 12.7 mm). Although
microwave antenna positioning, magnetic fields and data acquisition were dif-
ferent, the measurement procedure was similar. As a typical example we show
the results from the cubic cell cA2 in the following figures of this section. In
fig. 4.16 we show the microwave absorption spectrum. In the upper part we ob-
serve 8 main dips, corresponding to the sigma transitions between the ground
states. The Larmor frequency of 86 kHz leads to a quadratic Zeeman splitting
that is much smaller than the linewidth, thus the transitions |3, mF〉-|4, mF + 1〉
and |3, mF + 1〉-|4, mF〉 are unresolved and will be referred to as mF-mF + 1. Due
to the microwave polarization the dips from the π transitions are only barely
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Figure 4.17: FWHM from the fit result of the microwave spectroscopy of the 0-1 tran-
sition measured for different probe powers. Linear fit with extrapolation to zero probe
power. The microwave power was −4 dBm.

visible above the noise in the middle between the main dips. The bottom part
shows a sweep across the 0-1 transition and the according fit with a Lorentzian
subtracted from an offset. From the fit result for the width we can calculate
the coherence time T2 of the respective hyperfine transition. We measure the
width for different probe powers and microwave powers and extrapolate the
results to zero power. The probe power scan in figure 4.17 can be well ap-
proximated linearly. We then performed a microwave power scan shown in
figure 4.18. Here the microwave power Pmicrowave is the output power of the
microwave generator. Although the power dependence of the width appears
to be nonlinear for high powers, it allows a linear approximation for low pow-
ers. The extrapolation to zero microwave power and zero probe power yields a
FWHM of ∆νh f ,cA2 = 2.2(1) kHz.

The results of the spectroscopy measurements are listed in the following table:

cell shape coating ∆νh f [kHz] T2,h f [ms] T2,Zm [ms] trans shield

L1 cyl. Alkene 0.8(1) 0.40(5) 53 0-0 no

cA3 cubic Paraffin 3.4(1) 0.094(3) 15 0-0 no

cA2 cubic Paraffin 2.2(2) 0.14(1) 9 0-0 no
2.2(1) 0.14(1) 0-1 yes

H2 micro Paraffin 15(2) 0.021(3) 2 3-4 yes

where we use the abbreviations ∆νh f for the FWHM of the microwave spec-
troscopy signal extrapolated to zero power, T2,h f for the corresponding coher-
ence time in ms, and T2,Zm for the coherence time of the Zeeman transition
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Figure 4.18: FWHM from the fit result of the microwave spectroscopy of the 0-1
transition measured for different microwave powers. Linear fit to the values below
Pmicrowave < 0.5 mW with extrapolation to zero microwave power. The probe power
was 4 µW.

in ms. The column called trans specifies the microwave transition m-m + 1
and the last column lists whether magnetic shielding was used or not for the
microwave absorption measurements. The Zeeman T2 times were determined
from continous MORS measurements using magnetic shielding.

We should briefly explain why we measured on different microwave transi-
tions. We were obviously most interested in the coherence time of the 3-4 tran-
sition since this is the transition used in the DLCZ-type experiment. However
we did not see a significant difference in linewidth for the different transitions.
As shown in figure 4.16 the microwave antenna setup with the magnetic shield
led to good absorption signals on the sigma transitions. Without the shield we
set the microwave polarization such that we got a good signal to noise ratio on
the magnetically insensitive 0-0 transition to minimize the influence of possible
magnetic field inhomogeneities.

4.6.1 Discussion of microwave spectroscopy results

We have observed hyperfine coherence times well below 1 ms. Apart from the
question, if such a cell will be suitable for a DLCZ-type experiment, we can also
ask for the reason of these low coherence times. As we have seen in section 4.2,
the coherence time on the Zeeman transition may very a lot from cell to cell. We
thus expect similar behaviour for the hyperfine coherence times. However, if
the anti-relaxation coating determines both coherence times, we might assume
a constant ratio.
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If the coherence time is dominated by electron spin randomization during wall
collisions, we expect up to seven times shorter coherence time on the hyperfine
transition (see also eq. 4.13). For complete spin randomization dominating the
ratio should be one. Previous results from other groups have reported up to
one order of magnitude larger coherence times on the Zeeman transition, con-
firming that the electron spin randomization dominates. [BHK+05] [CKBB13]

We measure however a much larger ratio of about 60 . . . 160 between the Zee-
man and the hyperfine coherence time.

As presented above, we have taken different measurements with different cells.
We can use these to check various possible contributions to the decoherence
rate and we will discuss these qualitatively in the following.

One expects that the hyperfine transition is more sensitive to magnetic field
fluctuations than the Zeeman transition by a factor 7 · νZ for the 3-4 hyper-
fine transition. On the other hand, the 0-0 transition should be insensitive to
magnetic field fluctuations. We have measured similar widths for both of them.

Technical limitations as frequency noise from the microwave or electronic noise
in the detection are excluded for the microcell and the cubic cell by the mea-
surement of even narrower linewidths for the bigger cylindrical cell.

Magnetic field inhomogeneities that do not average out completely due to slow
diffusion of the atoms should have bigger linewidth contribution for bigger
cells. Probe, microwave and RF power broadening are excluded by extrapola-
tion to zero power.

If atoms at different positions in the cell are subject to different microwave and
RF phase, then atomic motion washes out this phase and can lead to broad-
ening. [FVC83] This plays a role when the wavelength is comparable to the
cell size. For the Zeeman transition the wavelength is more than hundreds of
meters, for the hyperfine transition it is only 3 cm. If the phase has any in-
fluence, we should get more sensitive to such inhomogeneity for bigger cells.
Furthermore we have measured with and without shield which might act as a
microwave cavity, and with different microwave antenna placements. Thus it
is unlikely that this effect is leading to the increased hyperfine to Zeeman ratio
we observe.

The reservoir effect, that is atoms leaving the cell into the stem where they can
rapidly decohere by collisions with solid caesium droplets on the cell walls,
should have similar contributions to Zeeman and hyperfine decoherence.

4.6.2 Conclusion of microwave spectroscopy

In our current setup, the coherence time on the hyperfine transition is about 100
times shorter than on the Zeeman transition. This leaves us with a coherence
time that is only slightly bigger than the time required for motional averaging
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in the DLCZ-type experiment. Thus, hyperfine storage does not provide a
practical solution for us.

We do not know the reason for the short hyperfine coherence time and further
investigation will be necessary. We emphasize however, that even if we reach
the factor of one order of magnitude between Zeeman and hyperfine coherence
time, reported by other groups, we will reach a hyperfine coherence time of
about 1 ms for the currently top-performing micro-cells. This will severely limit
the maximum storage time in the DLCZ-type experiment.
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Chapter 5
DLCZ-type experiment

We present in this section an experiment where we create and read-out a col-
lective atomic excitation, detecting the scattered photons. This is very simi-
lar to the fundamental step of the original idea presented in the DLCZ paper
[DLCZ01]. The results presented here were measured mainly in two experi-
mental runs. The first run focussed on measuring for minimal write-read de-
lay with good statistics. The second run focussed on measuring for different
write-read delays. This experiment was a collaborative work together with
Boris Albrecht and Karsten Dideriksen. The results from this section have been
partly published in [ZDS+18] and have also been partly presented in Karsten
Dideriksen’s thesis [Did17]. The analysis is divided in different parts, starting
with power scaling and a spectral analysis. We then investigate the photon
statistics via correlations and demonstrate a long lifetime of the collective exci-
tation. Finally, we study the time dependency of the read photon.

During the experiment, the counts detected by the single photon counter are
acquired with timestamps and can be plotted in a histogram. As an example,
a typical set of data including 2400 sequences is shown in fig. 5.1. For better
signal-to-noise ratio we have already folded all 56 repetitions of write, read and
background detection windows, present in each sequence, onto each other. We
observe a significant number of counts during the write and the read detection
windows, whereas the background counts appear to be negligible. As an im-
portant test we perform an experiment with the same experimental parameters,
however without sending any excitation light during the write window. This
leads to less counts during the read (shown in gray). We conclude that only the
difference of counts during the read between "with write" and "no write" can
be attributed to excitations during the write.

In the following sections we will investigate in detail the various contributions
to both write and read detection events. In fig. 5.1 we also show the beginning
of the "check pulse". This is a 500 µs long, very weak pulse of light, resonant
with the filter cavity and linearly polarized orthogonally to the excitation light.
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Figure 5.1: Histogram of counts during detection windows. Counts are shown for
"with write", and during read window also for "no write" experiments. The exper-
iments include about 2400 sequences with Pread = 21 µW and "with write" Pwrite =
32.2 µW. For write, read and background all 56 repetitions are folded together. The
beginning of the non-folded check pulse is shown for comparison on the right of the
dotted line.

It is sent at the end of each sequence and allows us to determine the detection
efficiency for each experiment individually.

5.1 Scaling with power

For characterization purposes we conducted the DLCZ experiment with differ-
ent optical powers of the write and read pulses. We focus on the difference
in read countrates with and without write pulse since this is the contribution
attributed to the actual write process, and it is insensitive to common noise
counts. We fit a simple exponential decay fi(t) = ci exp(−t/τ) to the differ-
ence. We will motivate this procedure with equation 2.34 further below. The
result is shown in fig. 5.2 where we plot against the first 100 µs of the read out
pulse, which appears to be the time window that captures the complete read-
out for the read power chosen for this plot. The data for different write powers,
shown in different colors, is fitted simultaneously with common decay time,
yielding τ = 25± 4 µs. The parameters ci are plotted in the right plot versus
the total write pulse energy1 with respective colors. The plotted error bars are
the 95% confidence intervals from the fit. The good agreement with a linear fit
confirms that we are within a linear regime. From the spectral analysis, that
will be presented in the next section, we can infer that we create about 0.6 sym-
metric collective excitations per pulse per nJ of write energy. Therefore, the

1Write pulse energy and write and read powers are defined in front of the cell cavity.
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Figure 5.2: Left: Difference in count rate with and without write versus readout time.
Plotted is the data (markers blue; red; yellow; purple corresponding to write pulse
energy 0.4;0.7;1.1;1.6 nJ respectively) together with exponential fits (solid lines). The
range of time for fitting only started after 20 µs to avoid the turn-on transient of the
excitation pulse. The cell cavity input power during the read process was 39.5 µW.
Right: Fit parameter c versus energy of write pulse with corresponding colors and
linear fit (solid line). Error bars show 95% confidence intervals.

data presented in fig. 5.2 includes up to about one stored symmetric collective
excitation.

We repeat the same experiment with a similar analysis, but for various read
excitation powers. For simplicity, we define the read power as the input power
to the cell cavity. We plot the readout rate rread = 1/τ in fig. 5.3 versus read
power. The uncertainties on the readout rates are too large to faithfully extrap-
olate the decay rate in the dark. However, we expect that the decay rate in the
dark is at least as high as the decay rate of the atomic population in the initial
ground state. We therefore fit a line with fixed offset 1/T1 to the data. The
agreement strongly hints at a linear scaling of the readout rate with read power
in the range of interest. The data point from RF excited read out was added for
reference and will be covered in section 6.1.

Although we phenomenologically chose a simple exponential decay function to
describe the observed rates, we note that the exponential decay function used
here can be derived from the four-wave mixing model function (eq. 2.34). We
pull out the Rabi frequency Ω of the excitation field from the coupling and
introduce the primed couplings via ξ = ξ ′Ω and χ = χ′Ω. Then a compar-
ison shows that the observed linear dependence between readout power and
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Figure 5.3: Readout rate versus read power. The blue (red) data was measured with
optical (RF) write excitation. Pread is the read excitation input power to the cell cavity.
The error bars represent 95% confidence levels. A line with fixed offset 1/T1 was fitted
on the optical excitation data.

readout rate is predicted by this model via

1
τ
= −(ξ ′2 − χ′2)Ω2 (5.1)

since the read out power is proportional to the square of the Rabi frequency
Ω. An extra offset 1/T1 comes from approximating the atomic decay with
χ2 ∝ N(t) ∝ e−t/T1 . The amplitude of the exponential decay function can be
identified in the model as

ci = ηχ′2Ω2n(i)
ce (5.2)

where we have combined intrinsic readout, escape and detection efficiency in
η. The model confirms the observed linear dependence between amplitude c
and read out power. Furthermore, we expect the amplitude to be proportional
to the number of collective excitations nce.

The results of this section allow us to scale the write excitation power according
to an average number of desired collective excitations. Furthermore we can (in
principle at least) choose the read power high enough to have efficient readout
after a specific duration.

5.2 Spectrum of write and read fields

The necessity of narrow spectral filtering of the scattered photons (section 2.5)
also gives the opportunity to spectrally analyse these using the filter cavities.
The linewidth of the filter cavities is by design broader than the photons scat-
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tered from the collective excitation. However, measuring the photons that are
coupled out from the cell cavity at different filter cavity detunings allows us to
identify the various contributions to these photons. By tuning the frequency
of the lock light for the filter cavities we can detune the filter cavities from
the write and read frequencies. Choosing a detuning close2 to the write ex-
citation frequency leads to a substantial write leakage, that is transmission of
write excitation light through the spectral filters. This allows us to adjust the
waveplates after the cell cavity to optimize polarization filtering for the write
step. As explained in the method section, the polarization filtering cannot be
optimized for the write and the read step simultaneously due to birefringence
from the atoms. Since this birefringence depends on the optical pumping and
the temperature, it turns out to be necessary to readjust the waveplates for po-
larization filtering on a daily basis. We optimized the polarization filtering for
the write excitation instead of the read excitation since we then observed higher
cross correlation g(2)w,r. This is expected (see section 2.8.1), since we detect higher
additional noise contributions from other sources during the read process.

Fig. 5.4 (a) shows the detected counts per pulse during the write process mea-
sured for different frequencies of the filter cavities. Here ∆FC = 0 corresponds
to the filter cavities’ resonance being one Larmor frequency above the write
excitation frequency. Centered at this detuning, we observe a narrow contribu-
tion nws from the symmetric collective excitations above a broad background
nwa from asymmetric excitations. The leakage contribution nwl is here negligi-
ble and the background counts nwb (magenta circles), measured independently
by not sending a write pulse, only give a minor, spectrally flat contribution. We
fit the spectrum with a sum of these four contributions.

nw(∆FC) = LFX(∆FC) + Lwa(∆FC) + LFX(∆FC + νL) + nwb (5.3)

We assume that the width of the scattered photon from the symmetric exci-
tation follows the laser linewidth. The filter cavity is shaking relative to the
laser (see section 3.4), resulting on average in an approximated Lorentzian L′
with 40% broader linewidth. We model the contribution from the symmetric
excitations as LFX = L′LXCav, where LXCav is the extra cavity Lorentzian with
about 10 times broader linewidth. The broad contribution from asymmetric
spinwaves is in equation 5.3 described by the second term Lwa, a Lorentzian
with an expected width 1.5 MHz according to 2.5. Even though it has negligi-
ble contribution we have included the third term LFX(∆FC + νL)), expressing
the leakage contribution, here for completeness. It is shifted in frequency to be
centred at the write excitation detuning. The amplitudes of the first three terms
are the three free fit parameters. The resulting fit together with the individual

2The chosen detuning should allow for a compromise between reducing contributions other
than leakage, and risking to overexpose the single photon counter with leakage, in our case
about 1 MHz count rate.
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Figure 5.4: Detected counts per pulse versus detuning of the spectral filter resonance.
Zero detuning is one Zeeman splitting above (below) the write (read) excitation fre-
quency. Each point represents around 1000 experiments with 55 repetitions each. The
points on resonance with the write pulse include 60 times as many experiments. a
Heralding photon detection. b Photon detection in the readout, considering only the
first 40 µs. Blue crosses show data with write pulse present, magenta circles with write
pulse off. The solid (dashed) lines show a fit with (without) write, containing scattered
photons (blue, red), contribution from asymmetric excitations (grey), leakage (yellow)
and background (unfilled), figure and caption published in [ZDS+18]
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contributions is shown in fig. 5.4 (a).

Together with the cell cavity outcoupling efficiency of 62% and the detection
efficiency of 9.6%, we can calculate the mean number of scattered photons nce =

0.23 per pulse. From the ratio of detected counts from symmetric collective
excitations to the total detected counts from scattered photons we can deduce
the write efficiency of (63± 1)% at ∆FC = 0.

In fig. 5.4 (b) we show the corresponding spectrum for the detected counts dur-
ing the first 40 µs of the read step. We will explain why we limit ourselves
to this length of detection window in section 5.3. The narrow peak centred
at zero detuning is expected to be related to symmetric collective excitations.
Besides the broad feature from asymmetric collective excitations, we also ob-
serve a significant leakage contribution from the read excitation. This shows up
asymmetrically in the figure since we only see the tail of the Lorentzian centred
at ∆FC = +νL. However, running the experiment without a write pulse, we still
observe the narrow peak (magenta circles). We attribute this noise partly to a
four-wave mixing process, where the read excitation simultaneously acts as a
write pulse. Furthermore, excess scattering into the readout mode from im-
perfectly pumped atoms can contribute here. This will be discussed in section
5.5. The counts connected to the read out of the stored symmetric collective
excitation are then the difference between the counts of the experiment with
write pulse and the counts of the experiment without write pulse. The fit func-
tion for the read process is similar to the write process. However, the leakage
Lorentzian is centred at ∆FC = +νL. Here, we fit the data with write pulse and
the data without write pulse with common fit parameters except for the peak
height of the narrow contribution.

Estimating the linewidth of the narrowband scattered photons during write
and read steps is not straightforward, since here we cannot distinguish the
linewidth contributions from filter cavity shaking and from the photons them-
selves. However, from the broadening of the filter cavity linewidth we can give
an upper bound of 26 kHz.

The write excitation also addresses the storage state and thus simultaneously
reads out the created excitation. This four-wave mixing process causes the
number of stored collective excitations at the end of the write pulse to be lower
than the number of created photons. We can apply the four-wave mixing model
to estimate the correct value

nce =
∫ twrite

0
〈a+RSaRS〉dt−

∫ twrite

0
〈a+RAaRA〉dt. (5.4)

The first term is the number of photons created in the heralding mode, while
the photons corresponding to the second term are the read out photons that are
not detected since they are filtered out by the filter cavities. We can estimate
the required coupling strength by setting the number of heralding photons

89



0 5 10 15 20 25 30 35 40

PWrite in W

0

0.2

0.4

0.6

0.8

1

nu
m

be
r 

of
 s

ca
tte

re
d 

ph
ot

on
s

Total
Corresp. exc.

Figure 5.5: Expected power dependence of the total number of forward-scattered pho-
tons from symmetric collective excitations (blue) and number of stored symmetric col-
lective excitations (red) after a 34 µs write pulse of constant power, using the four-wave
mixing model.

obtained from the spectral analysis above equal to the first term. We further
assume a fixed ratio of the coupling strengths χW/ξW = 1.36 · 0.96 given by the
Clebsch-Gordan coefficients and the respective cell cavity transmission. This
yields in our case a coupling strength of ξW = 0.0216 µs−1/2 ·

√
P[µW]. With

this coupling strength we can calculate the corrected value of the number of
collective excitations nce which is shown in fig. 5.5 for different write powers.
For high write powers, there is a substantial relative difference between scat-
tered photons and stored excitations. For the write power used for the filter
cavity scan shown in fig. 5.4, the correction factor is 0.9, yielding 0.13 stored
symmetric collective excitations. We note that the corrected number of excita-
tions can be well approximated linearly, which is confirmed by the previous
power scan in fig. 5.2.

5.3 Violation of Cauchy-Schwarz inequality

From fig. 5.4 we can see, that the typical count rates in our experiment are on
the order of 0.02/40 µs. Since this is several orders of magnitude lower than
the maximum count rate of the single photon detector with a dead time of
below 50 ns, we can well assume number-resolving detection. This allows us to
investigate the auto-correlations and cross-correlation of the detected photons
during write and read process. These correlation functions are calculated from
the numbers of counts by g(2)i,j = 〈ni(nj − δij)〉/(〈ni〉〈nj〉) with i, j ∈ w, r where
nw (nr) is the number of detector counts during the write (read) process and we
average over the experimental repetitions. From the correlation functions we
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can in turn calculate the Cauchy-Schwarz parameter R = (g(2)w,r)
2/(g(2)w,wg(2)w,r).

We define the retrieval efficiency ηR as the difference between the average num-
ber of detected counts during the read conditioned on the detection of a write
count in the same trial, and the unconditioned average number of detected
counts during the read ηR = 〈nr|w〉 − 〈nr〉.

In the experiment we send read excitation pulses with a duration of about
200 µs. For the analysis of correlations, it can be advantageous to shorten the
read detection window. During the read process, the stored collective excita-
tion is read out, thus its contribution to the total output field decreases over
time. However, the four-wave mixing contribution grows over time (see fig. 2.9
or section 5.5). Thus, we expect a better read-out to noise ratio at the begin-
ning of the read pulse, which leads to better correlations between write and
read detection events. We can in particular expect stronger violations of the
Cauchy-Schwarz inequality at the beginning of the pulse. On the other hand
the retrieval efficiency and the number of detected scattered photons grows
when we increase the read duration. This leads to a lower relative uncertainty
on the Cauchy-Schwarz parameter for a longer read detection window. To
choose a good detection window, we plot both the retrieval efficiency ηR and
the Cauchy-Schwarz parameter R in fig. 5.6 (a). For a length of the read detec-
tion window of τR = 40 µs, we observe the best Cauchy-Schwarz parameter in
terms of number of standard deviations above the non-classical boundary of
1. We therefore choose this detection window for the remainder of this and
the next section. The corresponding retrieval efficiency of ηR = (1.55± 0.08)%
leads to an intrinsic retrieval efficiency of ηi

R = (16.1± 0.9)% at the cell cavity
output when accounting for the detection efficiency of ηd = 9.6%. The resulting
values for the Cauchy-Schwarz parameter and the correlation functions are

R = 1.4± 0.1 (1.33) g(2)w,r = 1.97± 0.05 (1.77)

g(2)w,w = 1.86± 0.07 (1.93) g(2)r,r = 1.45± 0.05 (1.23)
(5.5)

where the numbers in parentheses are the outcomes of the model introduced in
section 2.8.1. The main experimental conclusion is that we have g(2)w,r < 2, albeit
we are within one standard deviation. We can thus not infer non-classical cor-
relations between the output fields of write and read from this alone. However,
using the auto-correlations, we can calculate the Cauchy-Schwarz parameter
which is above 1 by four standard deviations. This allows us to claim non-
classically correlated write and read output fields.

The write autocorrelation fits well with the model, assuming a thermal state
with a small Poissonian contribution from background counts. The read auto-
correlation is much lower than for a single thermal state. Modelling the read
counts as presented previously in section 2.8.1, that is readout of the stored
collective excitation plus noise terms as following: a Poissonian state for leak-
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Figure 5.6: a Cauchy-Schwarz parameter (blue asterisks, left axis) and retrieval ef-
ficiency (red circles, right axis) versus the read detection window duration τR. The
write-read delay time was τD = 30 µs. b Retrieval efficiency (blue circles) versus delay
time τD between write and read pulse. The exponential fit (black solid line) yields a
characteristic decay time of τ = (0.27± 0.04)ms. The read detection window was cho-
sen to be τR = 40 µs. The two subfigures are from different datasets, hence the points
at τD = 30 µs and τR = 40 µs do not overlap. The top graph dataset corresponds to
∆FC = 0 in fig. 5.4. This Figure has been published in [ZDS+18].
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age and background, a thermal state for the four-wave mixing contribution and
another uncorrelated thermal state for the broad- and narrow-band noise (the
contribution of narrowband noise will be determined in section 5.5). This un-
derestimates the autocorrelation g(2)r,r which suggests that it might be incorrect
to add these processes as uncorrelated contributions, similar to the findings
of [MCS+15]. The same reason might lead to the observed underestimation
of the cross-correlation by the model. Since we underestimate the read auto-
correlation and the cross-correlation by approximately the same fraction, the
modelled Cauchy-Schwarz parameter agrees with the observed value to within
one standard deviation. For completeness we also state the expected value for
the ideal, noise-free model of equation 2.51. Here we would expect3 a cross-
correlation of g(2)w,r = 1 + 1/p0 ≈ 6.

It should be noted, that we cannot claim that we have a single photon state
in the read process. The read autocorrelation conditioned on a write click is
g(2)rr|w = 1.3± 0.2. This is not below one, as for a non-classical state. On the
contrary we see bunching of the photons. We attribute this to the big fraction
of excess noise, that appears to follow thermal distributions.

We note, that we observe an increased cross-correlation of g(2)w,r = 2.08± 0.07 >

2 by choosing only the last 20 µs of the write pulse for the write detection
window. The reduced statistics does however not allow us to apply this analysis
to all our data. The increased cross-correlation value could simply come from
the shorter average delay time between the heralding event and the readout.
We will investigate this delay time dependency in the next section.

5.3.1 Error estimation on correlation values

We apply a bootstrapping technique to estimate the uncertainty on the corre-
lation function values and the Cauchy-Schwarz parameter. From the original
set of ne experimental trials we sample and replace random trials until we
have a new set of ne trials. We calculate the correlation function values and
the Cauchy-Schwarz parameter on this random subset. We repeat this proce-
dure at least 1000 times, sampling every time from the original set. This yields
normally-distributed values. We quote the standard deviation of these values as
the error estimate on the correlation function values and the Cauchy-Schwarz
parameter.

5.4 Spinwave decay

In this section we present the results of an experimental run where we changed
the delay time τD between the write and the read process. We show the values

3Here we take the average number of created collective excitations of n̄ = 0.23 which yields
p0 = n̄/(n̄ + 1) ≈ 0.19.
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Figure 5.7: Cross-correlation between write and read detection events versus delay
time. The solid line is a fit with the function g(2)WR = 1 + Ce−τD/τg which yields the
decay constant τg = (0.17± 0.02)ms. This figure has been published in [ZDS+18]

of the cross-correlation g(2)WR versus τD in fig. 5.7. We observe a decay of the
cross-correlation which is in good agreement with a fit of an exponential decay
which for long delay times goes to g(2)WR → 1. This asymptotic behaviour is
expected since after a very long waiting time the stored collective excitation will
have decohered and the read counts will be independent of the write counts.
The fitted decay time is τg = (0.17± 0.02)ms.

We can also observe a decay over delay time in the Cauchy-Schwarz parameter
shown in fig. 5.8. In the ideal case we expect the Cauchy-Schwarz parameter
to decay twice as fast as the cross-correlation, since R ∝ (g(2)WR)

2. However,
we refrain from fitting an exponential here, since the asymptotic value, which
depends on the auto-correlations of the write and read fields, is not obvious
in fig. 5.8. We note however, that we measure a non-classical Cauchy-Schwarz
parameter until τD ≈ 80 µs.

The decay time of the cross correlation or the Cauchy-Schwarz parameter could
be used as an estimate for the lifetime of the collective excitation. However,
these values are influenced by τD-dependent noise. We have seen in section
4.4 that the leakage contribution depends on the time that has passed since the
pumping has stopped. Thus, the leakage contribution will change with τD.

A better indicator for the decay time of the collective excitation is the decay of
the retrieval efficiency which we defined above as the difference between the
number of average read counts conditioned on a write click and the uncondi-
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Figure 5.8: Cauchy-Schwarz parameter versus write-read delay. The read detection
window duration was τR = 40 µs. This figure has been published in [ZDS+18]

tional average number of read clicks ηR = 〈nr|w〉 − 〈nr〉. It is a better indicator,
since it does not depend on uncorrelated noise that changes with τD, e.g. leak-
age noise. In fig. 5.6 (b) we plot the retrieval efficiency versus the delay time
τD. We observe good agreement when fitting with an exponential decay and
we extract the 1/e collective excitation lifetime τCE = (0.27± 0.04).

5.5 Time evolution of pulses

In order to identify the contributions to the read-out photons we investigate
the temporal shape of the counts detected during the read process. In the first
section we have mainly focused on the difference between read counts when
there was a write compared to when there was no write. Now we will con-
sider the total number of detected read counts. Two examples, one for similar
powers as for the previous sections, and one for high write and read power
are shown in fig. 5.9 on the left and right, respectively. The red bars show the
counts with write, the unfilled bars show the counts without write. First, we
perform the spectral analysis presented in section 5.2 on the corresponding fil-
ter cavity scans for different time slices during the read pulse, excluding the
regions where the pulse is switched on and off. From the resulting fits we
can extract the leakage and the broad contribution. The leakage contribution
changes linearly over the read time, while the broad background stays approx-
imately constant. The extrapolated contributions are shown as overlay areas in
fig. 5.9. The contribution for the high power example is smaller relative to the
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Figure 5.9: Photon shapes versus time. Left (right) for low (high) write and read power.
Red bars show counts when the write pulse had been present, unfilled bars when
not. The yellow and gray overlay are respectively leakage and broad contributions,
estimated from corresponding filter cavity scans. Green (cyan) line shows the model
with (without) previous write above an added part (blue) that is constant over time.
Write power 7.1 µW (32 µW) , read power 8.6 µW (39 µW) on the left (right).

total counts, since here the polarization filtering had been optimized for the
read pulse.

We now use the four-wave mixing model together with the previously esti-
mated coupling strength and the number of collective excitations derived from
the filter cavity scans. We assume constant read power during the pulse and
account for the different average cell cavity detuning for each light field, for
atomic state decay and for outcoupling and detection efficiencies. The result-
ing model underestimates the count rate significantly. This suggests that there
is an extra contribution that we have to consider. We choose this extra con-
tribution (shown as the blue line) constant over time, such that for the low
power case the cyan and the green lines, representing the model contributions
for readout and four-wave mixing respectively, agree well with the data. As
starting time for the model we choose the half-rise time of the respective read
excitation pulse. We note, that for the high power case a similar ratio of extra
part and broad contribution seems to be a good choice, leading to good agree-
ment of the model and the data without write - at least for the first part of the
pulse. For the data with write, the read out appears less efficient as the model
prediction. For later times during the pulse, the model also overestimates the
counts. We emphasize, that the extra contribution is at this point only a guess
based on these two datasets. We note however, that the ratio between extra

96



Figure 5.10: Conditional read count rate versus time. The measurement is the same
as for the unconditioned data shown in fig. 5.9, left. Red bars show counts when the
write pulse had been present, conditioned on at least one count during the write pulse.
To guide the eye, the unconditional data without write is displayed again as unfilled
bars. The yellow and gray overlay are respectively leakage and broad contributions,
estimated from corresponding filter cavity scans. Green (cyan) line shows the model
with (without) previous write above an added part (blue) that is constant over time.
For the conditional model, we have assumed on average 0.92 symmetric collective
excitations.

part and broad contribution is approximately similar to the ratio of narrow and
broad peak during the write.

One might be disappointed by the very small fractional area of the pulse, that
is actually attributed to good readout of the collective excitation. However, we
have to keep in mind that the aim is to have good performance when condition-
ing on the detection of a heralding photon. When we condition the same low
power data on the detection of at least one count during the write, this yields
the red bars shown in fig. 5.10. Here, the fraction of good readout counts has
increased because we disregarded the pulses without detection during write,
thus reducing the number of experimental trials from 3 248 135 to 45 774. We
have plotted the unconditional counts for the no write case as unfilled bars
to guide the eye. Leakage, broad and model contributions are kept similar to
the unconditional case, except for the good readout. Here we observe good
agreement of data and model having assumed on average 0.92 stored collective
excitations when conditioning on at least one detection during the write pulse.

We conclude that the four-wave mixing model can approximate the dynam-
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ics of the read out counts when adding leakage, broad and extra contribution.
While the leakage, the readout and the four-wave mixing are straightforward
to understand, it is still unclear where the other contributions originate from.
The added parts could come from atoms that are imperfectly pumped and ini-
tially residing in magnetic sublevels other than mF = 4. Similar to the write
process, the read pulse could then scatter photons into the detection mode,
causing the extra and the broad contributions. Comparing the write and read
powers and coupling strengths we expect for a population fraction of 6% in
|4, 3〉 (corresponding to an atomic polarization of about 98.5%) a contribution
which is roughly 1/3 of the observed contribution. Scattering from atoms re-
siding in F=3 is even weaker due to the large detuning, that is about 10 times
larger than for the F=4 manifold. For future experiments, it will be interesting
to check the dependency of the added contributions on the quality of initial
optical pumping.

We note that the cell cavity was not explicitly included in the model. More
importantly we emphasize that the model does not include decay of the col-
lective excitation. Since the duration of the read pulse is a substantial fraction
of the previously determined decay time of 0.27 ms, we expect that this decay
is significant. Furthermore, the model does not take into account the broad
background from the four-wave mixing that leads to asymmetric collective ex-
citations with even shorter coherence time.

How do we continue from here? We need to test our different hypotheses
about the origin of the broad and the extra contribution. Other than that, one
way to continue would be to improve the model to explain our findings. We
had started out based on the motional averaging theory of [BZP+16]. Since it
does not include four-wave mixing, we then switched almost exclusively to the
model by [DCW14]. It might be useful to implement the four-wave mixing into
the motional averaging theory. This would probably explain our results more
accurately. However, it also seems to be a major undertaking to recalculate the
motional averaging theory including four-wave mixing. A different approach
would be to experimentally eliminate the four-wave mixing contribution. This
will make it easier to explain the results with theory, and at the same time we
will reduce a noise source which might lead to better correlations or even single
photons. Furthermore, reducing the four-wave mixing contribution might also
make it easier to investigate and identify the origin of the broad and the extra
contribution. To us as experimentalists, the latter approach seems much more
appealing.4

4It may seem confusing that we first set out to reduce four-wave mixing before we identified
the source of broad and extra contribution, since the latter seem to contribute a larger fraction.
This is mainly due to chronological reasons. We first attributed all the narrowband noise to four-
wave mixing and changed our setup to suppress four-wave mixing. Only then did we realize
through careful analysis, that there appears to be another narrowband contribution.
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Chapter 6
Suppression of four-wave

mixing

6.1 Readout of RF-excitations

In the previous sections we have used optical Raman scattering to create col-
lective excitations that we could then read out. Instead of optical excitation we
can also use an RF pulse at the Larmor frequency to transfer atoms from |4, 4〉
to |4, 3〉. The RF coil used for excitation produces a very homogeneous field
across the cell. Thus, we expect that the RF excitation has much better over-
lap with the symmetric collective excitation compared to the optical excitation.
However, there is no heralding photon emitted during the RF excitation. There-
fore this method cannot be used to read out single photon states, that require
conditioning on heralding detection. Nevertheless, the RF excitation method is
a very valuable tool, because we can extract many setup parameters while at
the same time the method is simpler, more robust and allows us to reach higher
excitation powers.

We performed an experiment, measuring the readout counts for different RF
powers. The resulting count rates during the readout detection window are
shown in fig. 6.1, where we have subtracted the data obtained without sending
any excitation pulse. We follow the same procedure as the one used in the
power scaling analysis in section 5.1. The subtraction makes it easier to com-
pare across different sets of measurements that may include different leakage
contributions. Excluding the transient edges of the the pulses, we fit the data
with a simple exponential decay function fi(t) = ci exp(−t/τ), with i indexing
the respective RF power. We combine all RF power datasets in a single fit with
a common decay time given by τ = (146 ± 1)µs. From the fact that all RF
powers agree well with a common decay time, we can infer that the readout
rate is constant for the range of powers that was used. This is a promising re-
sult since measuring at higher excitation powers leads to higher countrates and
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Figure 6.1: Readout countrate of RF excitations. The points show the difference in
countrates during the readout between with and without RF excitation. The different
colors represent different RF powers (same color coding as in fig 6.2). The respective
solid lines are fits given by exponential decays fi(t) = ci exp(−t/τ) with common
decay time. The time axis starts with the read detection window.

thus allows shorter measurement durations for similar signal-to-noise ratios.
We note that the exponential decay function used here is a simplification of the
model used in eq. 2.34 similar to section 5.1. Assuming time independence of
the Rabi frequency ΩR and of α = ξ/χ together with the approximation the
atomic decay, we have

1
τ
= −(ξ2

r − χ2
r )Ω

2
R +

1
T1

(6.1)

This allows us to identify the apparent readout rate (χ2
r − ξ2

r )Ω2
R = 5.9 kHz. For

α only given by the ratio of Clebsch-Gordan coefficients, thus neglecting cavity
detuning effects, we achieve an intrinsic readout rate of the collective excitation
(i.e. in absence of four-wave mixing contribution) of Γ(int)

read = χ2
r Ω2

R = 8.6 kHz.
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Figure 6.2: Readout amplitude versus RF power.

We note that this rate is of course dependent on the power during the readout
pulse. During this experiment we used 8.4 µW input power to the cell cavity.

The amplitude c of the exponential fit is plotted against the RF power in fig.
6.2. We include a linear fit confirming a proportional dependency. Using the
same approximation as above we can from eq. 2.34 derive

ci = ηχ2
r Ω2

Rn(i)
ce (6.2)

where we have combined intrinsic readout, escape and detection efficiency in η.
Thus, the fit amplitude c should be directly proportional to the average number
of collective excitations nce. To determine the proportionality constant we take
a small detour via the optical excitation experiments presented in previous
sections. When exciting optically, the number of collective excitations can be
well determined from the spectrum and the escape and detection efficiency.
We use an optical excitation dataset and a RF excitation dataset with equal
read power. We perform the above-mentioned exponential fit for each of them.
The fit amplitudes ci can then be used to determine the proportionality constant
to translate the RF fit amplitudes to average numbers of symmetric collective
excitations. This yields the y-axis on the right side of fig. 6.2. We note that we
have spanned a range of nce of on average only 1 up to on average 40 excitations.
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Figure 6.3: Four-wave mixing suppression schemes. a Hyperfine storage on D2 line.
b Polarization selection on D1 line. c Magic detuning on D1 line. The read excitation
light in red is drawn thinner for reduced Raman coupling transitions. hν (purple) and
f wm (blue) signify the desired read-out and the undesired four-wave mixing scattering
respectively. Only relevant caesium levels are shown.

6.2 Options to suppress four-wave mixing

In chapter 5 we have seen that four-wave mixing is one of the main sources
contributing noise to the readout. The way to suppress four-wave mixing is to
reduce the undesired coupling ξ while having a strong desired coupling χ. We
will discuss in the following different options that we can choose to achieve
this.

6.2.1 Hyperfine storage

We can increase the splitting between ground and storage state to make it com-
parable or bigger than the detuning. Then the undesired coupling will be re-
duced due to the larger detuning. 6.3 This can be achieved by storing the col-
lective excitation on the hyperfine transition as shown in fig. 6.3(a), where the
detuning for the undesired coupling (≈ 10 GHz) will be about 10 times larger
compared to the desired coupling (≈ 1 GHz). The hyperfine transition stor-
age has been used in many experiments. One of the main advantages besides
four-wave mixing suppression is also the simplification of leakage suppression,
since the scattered photon will be much further detuned from the excitation
light frequency. The hyperfine transition storage is the design that has been
studied in [BZP+16]. We are therefore confident that it can be successfully set
up. However, there are technical reasons that make this experiment more chal-
lenging. The cell cavity requires to be double-resonant on the excitation light
and the scattered photon. The atomic phase shift will probably be different
for the two frequencies, and it might show different time-evolution while the
atomic state decays. Using only a single filter cavity seems to be very challeng-
ing, since this requires to carefully match all cavity resonances, detunings and
the atomic phase shift. Thus it will most likely require a second filtering setup.
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Beyond these purely technical reasons, there is also a much more fundamental
reason. The expected coherence time on the hyperfine transition is for vapour
in anti-relaxation coated cells one order of magnitude shorter than for Zeeman
transitions. We measured in section 4.6 even shorter coherence times. This is
the main reason why we had decided not to continue on the hyperfine storage
in the first place.

6.2.2 Cavity suppression

The undesired coupling can be suppressed by having the frequency of the
corresponding scattered photon off-resonant in the cell cavity. This has been
experimentally used to suppress four-wave mixing by [SMC+16], [NMT+17].
The challenge is, that the undesired scattering frequency is different from the
desired frequency by twice the Zeeman splitting (≈ 5 MHz). For efficient sup-
pression, the spectral width of the cell cavity has to be narrower than this.
Increasing the Zeeman splitting will require a new, possibly more massive coil
system to produce the magnetic field, and might reduce the coherence time due
to magnetic field inhomogeneities. Increasing the length of the cell cavity on
the other hand will reduce its stability.

6.2.3 Four-wave mixing detection

During the read-out, one could filter and detect both the desired and the un-
desired scattered photon on separate detectors. If we then stop the read-out
process as soon as the first undesired scattered photon has been detected, we
will be able to observe a nearly four-wave mixing free read-out. The downside
is of course, that we will only be able to read-out a small fraction until the
first four-wave mixing photon is generated. This will reduce the read-out effi-
ciency significantly. Furthermore, imperfect detection efficiency will still lead
to a four-wave mixing contribution. These disadvantages render this concept
not very useful.

6.2.4 Polarization selection rules

By using |4, 4〉 as the initial ground state and |4, 2〉 as the storage state, and
by using σ+ polarization for the excitation light and σ− polarization scattered
light during the read process (polarizations vice versa during the write pro-
cess), we can suppress four-wave mixing [WEA+07]. The corresponding level
scheme is shown in fig. 6.3(b). In our current setup, the magnetic field per-
pendicular to the excitation light propagation makes it impossible to drive σ+
and σ− polarization independently. We will need to change the geometry, such
that magnetic field, pumping and excitation light are collinear. However, a
major issue is that for far-detuned excitation the coupling via σ+, σ− transition
vanishes [VB13]. This is due to the Clebsch-Gordan coefficients that interfere
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destructively. One solution is to use the D1 line of caesium. Here the excited
state hyperfine splitting (≈ 1.2 GHz) is comparable to the detuning (≈ 1 GHz),
thus the contributions from the different hyperfine states do not interfere com-
pletely. This four-wave mixing suppression scheme requires very clean light
polarizations. Further disadvantages of the scheme are the reduced interaction
strength and the need for major rearrangement of the setup, including chang-
ing the wavelength.

6.2.5 Magic detuning

The coupling suppression because of destructive interference of several excited
states was nuisance in the previous subsection. However, we can also use it to
our advantage and suppress only the undesired coupling.

In a multilevel atom Raman scattering can be driven via different excited states
i. The respective Raman-Rabi frequency that couples the ground states {1, 2}
is given by [Ste15] (see also section 2.2)

ΩRR = ∑
i

Ω1iΩ2i

2(∆− δi)
(6.3)

where the common detuning ∆ is adjusted by the detuning of the light field to
each state i to ∆− δi. Each Rabi frequency Ωji with j ∈ {1, 2} is proportional
to the respective dipole matrix element d. This in turn can be expressed by a
multiplication of the reduced dipole matrix element with the Clebsch-Gordan
coefficient C as

dF,mF ,F′,m′F
= 〈J||er||J′〉C (6.4)

where the reduced dipole matrix element 〈J||er||J′〉 is 3.8 · 10−29 Cm for the D2

line, and 2.9 · 10−29 Cm for the D1 line [Ste10]. The transitions via the differ-
ent excited states can thus add constructively to the Raman-Rabi frequency,
or interfere destructively, depending on the signs of the contributing Clebsch-
Gordan coefficients. Whenever Clebsch-Gordan coefficients of two or more
transitions have different signs, there will be at least one "magic detuning"
where the resulting coupling strength is vanishing. However, since we work
with atoms at room temperature, we need to consider atomic motion. We re-
call from chapter 2 that this leads to a Faddeeva function of the detuning. The
resulting coupling is shown for the D1 line in fig. 6.4. This figure is analog to
the previously shown fig. 2.8 for the D2 line. For us it is important to work at
a large detuning compared to the Doppler width therefore we require a magic
detuning outside of the Doppler width. For the D2 line of caesium, the excited
state splitting is too small to achieve this condition. However, for the D1 line, as
indicated in fig. 6.3(c), the transitions from |4, 4〉 to |3, 3〉 via |4′, 3′〉 and |3′, 3′〉
cancel at a detuning of ≈ 924 MHz blue from |4′, 4′〉.
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Figure 6.4: Squared Raman Rabi Coupling |∑m gmΩmw[∆m+iγ/2
ΓD

]/ΓD|2 for the transi-
tion |4, 3〉 ↔ |4, 4〉 via the D1 line versus light detuning. Zero detuning corresponds
to the D1 line without hyperfine splitting. The black vertical lines show the caesium
hyperfine resonances of |F′ = 3〉 on the left and |F′ = 4〉 on the right. For the readout
we have χ2 in blue and ξ2 in red.

6.3 Read-out on D1 line

We note that currently the optical write excitation is driven via the transitions
corresponding to the coupling ξ. Thus by suppressing ξ we also suppress the
write excitation. Changing the polarization of the excitation light such that the
write excitation also couples to the atoms via χ seems an obvious choice, but
comes along with technical complications. We would either have no polariza-
tion filtering or it requires a second detection setup or polarization switching.
However, for a proof-of-principle experiment about four-wave mixing reduc-
tion we can apply the technique presented in the section 6.1. We excite the
collective excitation via an RF pulse and then read out optically.

6.3.1 Setup at 895 nm

The optical setup was not initially designed to be compatible with both D1 and
D2. First of all we had to replace the laser. Using a Ti:Sapph laser fiber-coupled
from a different lab seemed the easiest solution, but the long fiber (≈ 40 m)
turned out to contribute too high polarization noise. We therefore replaced
the previously used ECDL by a home-built ECDL set up for a wavelength of
895 nm. The ECDL output was coupled into the previously used forward and
backward fibers - and the optical feedback setup worked straight-away. We
could obviously not use the same reference laser for absolute stabilization via
a beatnote signal. We therefore switched to using the pump laser as a refer-
ence laser. Previously, the reference laser, which was the so-called probe laser,
was also used to lock the cell cavity. Since the pump laser is resonant with the
atoms, it is not suitable for locking. Thus, we continued using the far-detuned
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Figure 6.5: Expected cell cavity resonance for light at write (red) and read (cyan)
frequency in y polarization and single photon (blue) and four-wave mixing (green)
frequency polarized along π, shown for light detuned from the D1 line as in the exper-
iment (frequency-axis shifted arbitrarily). y-polarized light is shifted relative to π by
21 MHz. Assuming linear change of phase shift over time, the cavity resonance shift
for the respective frequencies is displayed (circles).

probe laser for locking the cell cavity. Changing the length of a resonant cav-
ity by half a wavelength only changes the longitudinal modenumber, the light
frequency is still on resonance with the cavity. In our case the wavelength
of the light used for locking and the light for the experiment are different by
5%. Changing the longitudinal modenumber by one thus shifts the cavity from
double-resonant to single-resonant. Therefore care has to be taken to keep the
cell cavity locked on the same mode. Nearly all of the standard optical compo-
nents could be still used with the new wavelength since they had broadband
antireflection coatings. We tested the cavities that fortunately performed simi-
larly well at 895 nm, except the extra cavity that exhibited worse transmission
due to the reduced reflectivity of the high-reflective curved mirror (see spec-
ifications in Appendix B). Together with the lower quantum efficiency of the
single photon detector, as specified for longer wavelength, we measured an
overall detection efficiency of 1.5%. We briefly note, that we observed a differ-
ent phase shift and a different time-evolution of the phase shift for light on the
D1 line (shown in fig. 6.5) compared to the D2 line (shown in fig. 4.5).

The conclusion of this subsection is, that with manageable amount of changes
we could in reasonable time change the complete setup to run preliminary tests
at a different wavelength.

6.3.2 Comparison of D1 and D2: Filter cavity scan

First, we performed a filter cavity scan, similar to the experiment presented
in section 5.2, but with RF write excitation instead of optical write excitation.
The resulting spectrum is shown in fig. 6.6. The data is shown in red for the
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Figure 6.6: Read counts during 60 µs window for different detunings of the filter cav-
ities. For fixed non-zero (top) and zero (bottom) RF excitation power the read counts
using D1 (red) or D2 (green) line are shown. The solid lines are fits with the contribu-
tion of leakage and broad background shown as dashed lines.

D1 line and in green for the D2 line. The upper figure shows the filter cavity
scan when the RF write pulse was present, the bottom figure shows the result
without RF write pulse. The RF write excitation powers were similar for the D1

and D2 experiments. The read excitation power for the D2 experiments was the
same as for the RF measurement in the previous section. We had about 1.65
higher intracavity read excitation power for the D1 experiment than for the D2

experiment. The considered detection window of the read pulse was 60 µs long.
The y-axes in the figure are scaled to each other by the respective detection
efficiencies. In the top graph, for both wavelengths we observe the narrow peak
from the desired readout above the background attributed to broad and leakage
contribution. Accounting for the different detection efficiencies, we observe
similar peak heights from the desired readout and infer that the strength of the
atomic response is about the same order of magnitude.

We observe a leakage contribution which is about four times higher for the D1

than for the D2 experiment, probably mostly due to worse polarization filtering.
The leakage contribution was also drifting during the course of the experiment.
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This is obvious when comparing the leakage with write and without write.
Chronologically the data points were taken for D1 from high to low detunings
with write and then from low to high detunings without write. The relative
change in leakage from the start of the experiment to its end was more than
50%. We can also see a drift of the leakage in the D2 experiment, where the data
with write and without write was taken with about half an hour of separation.
The relative change was less, but still about 40%.

In the case where we did not have a write excitation pulse (fig. 6.6 bottom),
for both wavelengths we observe a narrow peak at zero detuning. The ratio
between the counts attributed to the narrow peak without write and with write
is similar for both wavelengths. However, concluding from this, that there is no
four-wave mixing suppression for D1, is not correct. As we have observed in
section 5.5, there is an extra narrow linewidth contribution. For further inves-
tigation, we therefore take the same strategy as for the D2 line. We fit the filter
cavity scans for different time slices of the read window, extract the leakage
and broad contributions and then focus in the following on the evolution of the
readout count rate at zero detuning over time.

6.3.3 Comparison of D1 and D2: Read-out pulse shape

We investigate the time evolution of the readout pulse for the D1 experiment
and the D2 experiment for similar RF write excitation power. The detected
count rates are shown in fig. 6.7, where the filled red bars show the data when
there was a write excitation present, and the black unfilled bars show the data
when there was no write excitation. Both for the D2 data on the left and the
D1 data on the right, we have shown the leakage and the broad contribution
in yellow and grey respectively. These are extracted from the filter cavity scan
and linearly approximated. On top of these contributions we then apply the
four-wave mixing model as discussed previously in section 5.5. As input pa-
rameters we choose the number of symmetric collective excitations nce = 5.7,
extracted from fig. 6.2. For D2, we furthermore use the same couplings χ, and
ξ as in the previous readout pulse shape analysis and we add an extra constant
offset which is, as previously, a factor 1.8 higher than the broad contribution.
For the D1 line we scale the coupling χ with three terms: with the reduced
dipole matrix element | 〈J||er||J′〉 |2 , the Clebsch-Gordans for the respective
transitions weighed by the detuning |∑m gmΩm/∆m| and the cell cavity trans-
mission of the different light fields at different detunings. We have assumed
that ξ is about 14 times smaller than χ. This is a conservative estimate. Ac-
cording to fig. 6.4 we should expect a much bigger suppression. We reduce
the added constant contribution for D1 to only 1.2 times the broad contribu-
tion, otherwise we would overestimate the case without write. The resulting
contributions from the model are shown in green and cyan for with and with-
out write, respectively. The blue line shows the added constant contribution.
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Figure 6.7: Photon shapes versus time. Left (right) for D2 (D1) with similar RF power
for write excitation. Red bars show counts when the write RF pulse had been present,
unfilled bars when not. The yellow and gray overlay are respectively leakage and
broad contributions, estimated from corresponding filter cavity scans. Green (cyan)
line shows the model with (without) previous write above an added part (blue) that is
constant over time.

For both wavelengths we observe good agreement with the model. Both the
count rate and the shape over time of the readout collective excitations are as
expected from the model. The "no write" case is slightly underestimated for
the D2 experiment. This could easily come from the drift of the leakage during
the experiment. Most importantly, we can clearly identify a significant four-
wave mixing contribution in the D2 case. Contrarily, in the D1 case not only
the model predicts negligible four-wave mixing (the cyan line is not visible due
to the overlapping blue line), but also in the data we see a constant evolution
over time. The absence of a rising contribution, which would be the signature
of four-wave mixing, confirms that we have suppressed four-wave mixing. This
is a promising conclusion regarding future creation and verification of single
photons.

With the current data, it is not possible to give a experimental number for the
ratio between χ and ξ. This could be achieved with a much bigger dataset,
thus reduced fluctuations in the countrate. However we expect a suppression
of the four-wave mixing by more than two orders of magnitude compared to
the desired readout. Even after a possible increase of the detection efficiency
to a value similar to the D2 experiment, confirming this would require a mea-
surement over several hours. An alternative option would be to measure the
four-wave mixing contribution for different detunings, where the ratio is not as

109



favourable, then compare with the theoretical expectations and extrapolate to
the chosen detuning.
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Chapter 7
Discussion

We have presented here the first implementation of the readout of a heralded
excitation in an anti-relaxation coated vapour cell based on motional averaging
with efficient heralding and readout. The concept of motional averaging has al-
lowed us to achieve a life-time of the collective excitation of 0.27± 0.04 ms. This
is two orders of magnitude longer than the previous record with room tem-
perature experiments using atomic vapours with buffer gas by [DYD+17] and
[BFV12]. We have verified the non-classicality between heralding and readout
fields by a significant violation of the classical bound of the Cauchy-Schwarz
parameter with R = (1.4± 0.1) > 1.

The observed spectrum of the scattered photons during the write process con-
sists of a narrow and a broad contribution corresponding to the symmetric
and the asymmetric collective excitations, and is in accordance with the the-
ory developed in [BZP+16]. This allows us to determine the write efficiency
of (63± 1)%. This experimental value agrees with the theoretical expectation.
It lies in between the value from the analytical expression (eq. 2.29) of 73%
and the simulated value for excitation into |3, 3〉 of around 60% (see fig. 2.4).
For a time-window of the readout of 40µs, we have determined the retrieval
efficiency of ηi

R = (16.1± 0.9)%, which has been corrected for the detection ef-
ficiency. Increasing the time-window to 200µs leads to a three-fold increase of
the retrieval efficiency, at the cost of higher noise contributions, thus lower sin-
gle photon fidelity. We can infer the number of symmetric collective excitations
from the spectrum and the detection efficiency. The number of classical photons
at the cell cavity output per symmetric collective excitation agrees within 10%
with the estimate given in section 2.5 of 1.2 · 108 classical photons per quantum
photon. We have partly succeeded in the challenge of filtering the classical pho-
tons. Their leakage has been suppressed during the write process. However,
birefringence and atomic decay have led to a significant leakage contribution
during the the read process.

We have to acknowledge that we have not succeeded in creating a single pho-
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ton source. Even though we have verified the non-classicality of the corre-
lations between write and read fields, we have not been able to demonstrate
non-classicality of the heralded readout. The measured read autocorrelation
conditioned on a write click is g(2)RR|W = 1.3± 0.2 which is higher than the clas-
sical bound of one. We attribute this to the big fraction of excess noise, that
appears to follow thermal distributions.

We have investigated the noise contributions via spectral and temporal analy-
sis. We could identify the leakage contribution, furthermore a broadband and
a narrowband contribution. The narrowband contribution consists of two dif-
ferent parts, one constant and the other increasing over time. The latter one can
be well described by a model of [DCW14] and has been identified as four-wave
mixing noise. The four-wave mixing noise is intrinsic to our excitation scheme.
We have presented different strategies to eliminate four-wave mixing noise.

We have shown that we can read out collective excitations created by a RF pulse
and we have used this for a proof-of-principle experiment that has confirmed
the suppression of four-wave mixing.

7.1 Quantum repeater compatibility

We have initially motivated this work with the need for scalable room temper-
ature quantum repeaters. Using atomic vapour cells at around 40◦C, we have
indeed presented a room temperature system. In terms of scalability we have to
consider the total setup. The narrowband laser is in in this experiment a bulky
prototype which leaves room for optimization and commercial solutions with
comparable linewidth and better reliability are available. Careful engineering
will also lead to more robust and miniaturized filter cavities.

Apart from these technical details there are relevant intrinsic parameters. We
have reported a significant increase in storage time compared to buffer gas
systems. However, a photon will only travel over a distance of 81 km dur-
ing the storage duration of 0.27 ms that we have measured. For the initial
DLCZ scheme [SSdRG11] calculate the crossover point where the quantum re-
peater performance will beat the direct transmission1 to be at 630 km requiring
a entanglement distribution time of 340 s. For other protocols considered in
[SSdRG11], the crossover requires shorter storage times on the order of sec-
onds. This suggests, that our storage duration is still more than three orders of
magnitude too low to reach the crossover.

The time bandwidth product of our system is currently limited by the read
pulse duration. If we take into account the initialization duration of 350 µs be-
fore each write-read sequence and the write pulse duration of 33 µs, the effec-

1[SSdRG11] make a few assumptions here, e.g. 90% efficiency for detection efficiency and
memory efficiency, 10 GHz repetition rate of the single photon source, 4 repeater link segments.
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tive time-bandwidth product drops for our system even below one. According
to theoretical derivation of [BZP+16] (see also fig. 2.4) a readout duration of
100 µs should yield a read efficiency close to 90%. Assuming negligible initial-
ization duration this gives for our storage duration a time-bandwidth product
on the order of 2. This is significantly lower than the time-bandwidth product
reported for buffer gas cells, that have reached more than 1000 [RML+11].

In our experiment we use the D2 line of caesium at around 852 nm, the last
section uses the D1 line. These wavelengths are not in the telecom bands above
1260 nm which are used for communication via optical fiber due to low trans-
mission loss. However, the connection of quantum interfaces with frequency-
converted photons has been demonstrated [RDZ+10], [AFFG+14], although
leading to reduced efficiency. Furthermore, the caesium wavelengths are suit-
able for free-space quantum communication [FUH+09].

Motional averaging eliminates the readout of the asymmetric modes. One the
one hand this allows for efficient readout, on the other hand this also eliminates
spatial multi-mode capability [CW12] or temporal multiplexing [Alb15]. Due
to the given atomic level structure, the spectral multiplexing capabilities of our
system are very limited. A huge advantage of our source is the technological
simplicity that allows spatial multiplexing operating many sources in parallel.
We acknowledge, that engineering challenges, as the mass-production of cells
and filter cavities, need to be overcome.

7.2 Limitations and improvements

Our spectral and temporal analysis has shown, that there is a significant contri-
bution of noise to the output field during the readout. We can divide the noise
sources into intrinsic and extrinsic sources. As extrinsic, we count the contribu-
tions that are not connected to atomic scattering, in our case background and
leakage. Background counts have a negligible contribution to both write and
read output fields thanks to a state of the art avalanche photo diode. Further
reduction of the background counts would require super-conducting photo de-
tectors which introduce technical complexity. The leakage of excitation light is
reduced by our filtering. We can only eliminate the leakage contribution either
during the write or the read process due to birefringent effects. We typically
eliminate it during the write which leads to a leakage contribution of about 1/3
to the total readout field (see fig. 5.4). We expect that a narrower spectral filter
will greatly reduce this leakage. An obvious step for the future of this exper-
iment is the replacement of the extra cavity that has shown suboptimal trans-
mission on the D1 line by a more narrowband version. The following intrinsic
noise sources are typically more difficult to eliminate. Four-wave mixing noise
has been observed in our DLCZ-type experiment. It is increasing over time and
has contributed nearly up to one half of the intrinsic noise at the end of the
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read pulse, averaged over the read pulse roughly one quarter (see fig. 5.9). We
have presented a variety of possible solutions to eliminate four-wave mixing
noise in section 6.2 and we have performed a proof-of-principle experiment in
section 6.3 that experimentally confirms the suppression of four-wave mixing.
This leaves two noise contributions, the broadband and the narrowband "extra"
part. The origins of both of them are still unclear, however the constant ratio
may indicate that they have a common origin. One hypothesis is scattering
from the initial population in |4, 3〉. However, given a typical atomic polariza-
tion of 98.5%, we estimate a contribution that is only about 1/3 of the actually
observed experimental value. Further experimental investigation is needed to
determine the origin. We propose a test experiment with a microwave pulse
after the state initialization that transfers population from |4, 3〉 to |3, 2〉. Since
the microwave allows to specifically address individual Zeeman sublevels, this
should yield a convenient way to analyse the influence of population. Another
possibility is to change the pumping duration or power to measure for different
populations in |4, 3〉.

Another noise contribution is the scattering from asymmetric collective excita-
tions during the write. These false heralding events during the write will lead
to a higher noise fraction in the conditional readout field. The write efficiency
can be improved by increasing the waist inside the cell 2. However, the trade-off
between increased clipping losses and better efficiency has not been thoroughly
investigated, yet.

The optical depth can be further increased by increasing the cell temperature.
This will lead to less excitation photons that need to be filtered, and thus less
leakage noise. On the other hand it will also lead to more phase shift by the
atoms, increasing the cavity drift with atomic decay. Furthermore, there are
technical obstacles as e.g. the possibility for disappearance of the atoms from
the cell (see section 4.3).

We can use the model from section 2.8.1 to predict the correlation values for the
improved parameters. If we improve the leakage reduction during the read by a
factor of 10 and assume reduction of four-wave mixing noise by a factor of 100,
the model predicts a non-classical conditional read autocorrelation of g(2)RR|W <

0.9. If we further assume a reduction of the broadband and narrowband noise
by a factor 4, the model predicts g(2)WR ≈ 4.3, R > 7 and g(2)RR|W < 0.5 which
indicates a strong contribution of a single photon state [Ste13]. We emphasize
again that the model presents a simplification and its predictions should be
taken with care (see section 2.8.1).

2As an example, an increase from 55 µm to 60 µm will increase the write efficiency by 4%
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7.2.1 Increasing the storage time

One of the main results of our experiment is the lifetime of the stored excitation.
We have estimated in section 2.8.2 that the lifetime is limited by half of the
coherence time T2. In fig. 4.2 we can see that there are other cell candidates
with close to an order of magnitude longer coherence time and similar coating
(e.g. F1). It will be straightforward to replace the cell and test if the storage
performance is improved. Other cells with alkene coatings have shown even
longer coherence times, however their performance at around 40◦ has to be
verified. We expect that such a change of the cell will lead to an improvement
of the storage time by about one order of magnitude.
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Chapter 8
Conclusion and outlook

In this thesis we have studied the heralding and readout of collective excita-
tions in a room temperature vapour cell with anti-relaxation coating. We have
characterized the performance of vapour cells and concluded that the Zeeman
transitions are most promising in our setup for the storage of collective ex-
citations. This is due to slower population transfer into the storage state by
collisions and due to order of magnitudes longer coherence time. We have then
demonstrated efficient heralding and readout of collective excitations on the
single photon level by successfully utilizing the concept of motional averag-
ing. The non-classicality of the correlations between the write and read output
fields has been shown by violation of the Cauchy-Schwarz inequality. We have
achieved a lifetime of the collective excitation of 0.27± 0.04 ms which is two
orders of magnitude longer than previous DLCZ-type experiments with room-
temperature vapour cells. We have analysed the contributions to the readout
field both spectrally and temporally to identify the contributing noise sources.
One of these sources, the leakage of excitation light, can be eliminated straight-
forwardly by improving the filtering stage, e.g. by adding another cavity. The
intrinsic four-wave mixing noise also contributes to the readout field. We have
discussed possible solutions and we have demonstrated in a proof-of-principle
experiment the successful suppression of the four-wave mixing noise. Further
investigation will be necessary to identify the origin of the remaining noise.
One main part of this noise is probably due to imperfect atomic state initializa-
tion.

We expect that combining the demonstrated four-wave mixing suppression
scheme with the heralded creation of collective excitations and improved filter-
ing will bring us a huge step forward towards the generation of non-classical
photon states. Identifying the remaining noise will allow us to judge its pos-
sible reduction paving the way towards a single photon source. The most in-
teresting future of this experiment lies in the connection to other experiments.
This could be a similar setup that would allow us to investigate the fidelity of
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the single photon output or maybe to continue along the lines of the DLCZ-
proposal to entangle two cells. A setup including several cells could also be
used to demonstrate multi-photon experiments. Another idea is the connec-
tion to a different system, e.g. a mechanical oscillator, to demonstrate a hybrid
experiment where a single excitation is distributed between an atomic system
and an opto-mechanical system.

118



Part III

Appendix





Appendix A
Write process for Zeeman

transition

We extend the calculation from [BZP+16] to include several excited states. We
focus on the usage of Zeeman states for storing the collective excitation. We do
not include any four-wave mixing. This makes sense for the hyperfine transi-
tion but does not hold true for the Zeeman transition. However at least for the
write process in the limit of low excitations it should be a valid approximation.

A.1 From Hamiltonian to light-atom coupling θ

We start with the Hamiltonian as in equation (1) of [BZP+16] adding the rele-
vant levels

Ĥ =
N

∑
j=1

∑
m
−∆mσ̂

(j)
emem − (

Ω(m)
j (t)

2
σ̂
(j)
em0 + g(m)

j (t)âcell σ̂
(j)
em1 + H.c.) (A.1)

where we sum over N atoms and include each excited level em. (In our current
D2 scheme m ∈ {1, 2, 3}). The quantum field inside the cell cavity is described
by âcell From this Hamiltonian we obtain the equations of motion

dâcell

dt
= −κ1

2
âcell + i

N

∑
j=1

∑
m

g(m)∗
j (t)σ̂(j)

1em
+ F̂κ1 (A.2)

dσ̂
(j)
1em

dt
= −(γm

2
− i∆m)σ̂

(j)
1em
− ig(m)

j (t)âcell(σ̂
(j)
emem − σ̂

(j)
11 ) + i

Ω(m)
j (t)

2
σ̂
(j)
10 + F̂(j)

1em

(A.3)

dσ̂
(j)
10

dt
= ∑

m
(−ig(m)

j (t)âcell σ̂
(j)
em0 + i

Ω(m)∗
j (t)

2
σ̂
(j)
1em

(A.4)
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We assume a small perturbation thus σ̂
(j)
emem ≈ σ̂

(j)
11 ≈ 0 for all m and we assume

that the decay rates of the m excited levels are similar: γm ≈ γ for all m. We
neglect the noise operators F̂ since they will not lead to clicks in the detector.
With these approximations we formally integrate the first two equations of
motion.

âcell(t) = âcell(0)e−
κ1
2 t +

∫ t

0
dt′e−

κ1
2 (t−t′)[i

N

∑
j=1

∑
m

g(m)
j (t′)σ̂(j)

1em
] (A.5)

σ̂
(j)
1em

(t) = σ̂
(j)
1em

(0)e−(
γ
2−i∆m)t +

∫ t

0
dt′e−(

γ
2−i∆m)(t−t′)[i

Ω(m)
j (t′)

2
σ̂
(j)
10 ] (A.6)

We insert the second equation into the first and use that âcell(0) = 0 and
σ̂
(j)
1em

(0) = 0. This yields

âcell(t) = −
1
2

N

∑
j=1

∫ t

0
dt′
∫ t′

0
dt′′e−

κ1
2 (t−t′)[∑

m
e−(

γ
2−i∆m)(t′−t′′)g(m)

j (t′)Ω(m)
j (t′′)σ̂(j)

10 ]

(A.7)
When we are working on the D2 line we can simplify the expression by assum-
ing the same detuning from each excited state since we have ∆1 ≈ 750 MHz,
∆2 ≈ 1 GHz and ∆3 ≈ 1.2 GHz. However, for the D1 transition the excited
level hyperfine splitting is about 1.2 GHz and thus comparable comparable to
our typical detuning. To find the field at the detector we need to propagate
the field through the filter cavity which has a decay rate κ2. The input-output
relation for the filter cavity are

dâ f ilter

dt
= −κ2

2
â f ilter +

√
κ2κ1/2 âcell (A.8)

â =
√

κ2/2 â f ilter (A.9)

where â f ilter describes the field inside the filter cavity, and â is the field after the
filter cavity, i.e. at the detector. Formal integration then yields

â = −κ2
√

κ1

4

N

∑
j=1

θj(t)σ̂
(j)
10 (A.10)

where

θj(t) =
∫ t

0
dt′
∫ t′

0
dt′′

∫ t′′

0
dt′′′e−

κ2
2 (t−t′)e−

κ1
2 (t′−t′′) ∑

m
e−(

γ
2−i∆m)(t′′−t′′′)g(m)

j (t′′)Ω(m)
j (t′′′)

(A.11)
To calculate the expression for 〈θj(t)〉e, we assume that The z-component of
the couplings g and Ω are given by the standing wave in the cavity and thus
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approximated by

Ω(m)
j (t′′′) = Ω(j,m)

xy (t′′) sin (kc(zj(0) + v(j)
z (0)t′′′)) (A.12)

g(m)
j (t′′) = g(j,m)

xy (t′′) sin (kqzj(t′′)) (A.13)

where kc, kq are the wavenumbers of the classical and quantum field respec-

tively, g(j,m)
xy (t),Ω(j,m)

xy (t) are the radial dependency of the couplings. The time
scale of the t′′′ integral is given by 1/∆. The radial dependency of the coupling,
given by the beam waist, is assumed constant over this timescale. This is not
the case for the z-component that changes over the length scale of the standing
wave. We assume that the velocity of the atoms does not change during this
timescale and therefore zj(t′′) = zj(0) + v(j)

z (0)t′′′. We can then perform the
integral over t′′′ yielding

θj(t) =−
1
4

∫ t

0
dt′
∫ t′

0
dt′′e−

κ2
2 (t−t′)e−

κ1
2 (t′−t′′) ∑

m
g(j,m)

xy (t′′)Ω(j,m)
xy (t′′) (A.14)

·
[

e−i(kc−kq)zj(t′′) − e−i(kc+kq)zj(t′′)

−γ/2 + i(∆m + kcv(j)
z (t′′))

+
ei(kc−kq)zj(t′′) − ei(kc+kq)zj(t′′)

−γ/2 + i(∆m − kcv(j)
z (t′′))

]
(A.15)

where we have adiabatically eliminated the atomic decay since we are far de-
tuned. We now calculate 〈θj(t)〉e, taking the ensemble average. We assume that
the atoms are spatially equally distributed over the cell of dimensions LxLxLz

and the velocities follow the Maxwell-Boltzmann distribution. The x, y depen-
dence is only in the couplings that are assumed to follow a Gaussian beam
profile with waist w. This yields for the ensemble average of this part

1
L2

∫ L/2

−L/2
dx
∫ L/2

−L/2
dy ∑

m
gme

−xj(t
′′)2−yj(t

′′)2

w2 Ωme
−xj(t

′′)2−yj(t
′′)2

w2 (A.16)

= ∑
m

gmΩm
π

2
w2

L2 Erf
(

L
w
√

2

)2

≈∑
m

gmΩm
π

2
w2

L2 (A.17)

where we have in the last approximation ignored any small portion of the beam
outside of the cell. We assume that kc ≈ kq = k, and we assume that kLz >> 1.
For the average over z the ensemble average of the relevant part 〈e±2ikz〉 ≈ 0
vanishes. For the remaining velocity average we have

−1√
π

∫ +∞

−∞

√
m

2kBT
e−

mv2
2kBT

[
1

γ/2 + i(kv− ∆m)
+

1
γ/2 + i(kv− ∆m)

]
dv (A.18)

= −
√

π

ΓD

[
i
π

∫ +∞

−∞

e−t2

∆m+iγ/2
ΓD

− t
dt− i

π

∫ +∞

−∞

e−t2

−∆m+iγ/2
ΓD

− t
dt

]
(A.19)

=
2
√

π

ΓD
(w
[

∆m + iγ/2
ΓD

]
− e−(

∆+iγ/2
ΓD

)2
) (A.20)
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where w[z] = i
π

∫ +∞
−∞

e−t2

z−t dt is the Faddeeva function. We have introduced
ΓD = k

√
2kBT/m and we have used the variable change t = v

√
m/(2kBT)in

the calculation. Combining all the parts together we can now express

〈θj(t)〉e =
1

κ1κ2
π3/2 w2

L2
1

ΓD
∑
m

gmΩmw
[

∆m + iγ/2
ΓD

]
·
(

1
4

)
(A.21)

where we have assumed e−tκ1/2 ≈ e−tκ2/2 = 0. We note that the Faddeeva
function for large detuning ∆ � γ, ΓD can be approximated w

[
∆m+iγ/2

ΓD

]
≈

iΓD
∆m
√

π
. From this we can calculate for large detuning

|〈θj(t)〉|2 ≈
1

κ2
1κ2

2
π2 w4

L4 ∑
m

gmΩm

∆m
∑
n

gnΩn

∆n
·
(

1
16

)
(A.22)

The second expression required for the write efficiency and for the number of
classical photons is 〈|θj(t)|2〉. Similar to [BZP+16] we can write

〈|θj(t)|2〉 =
(

1
16

) ∫ t

0
dt′1

∫ t′1

0
dt′′1

∫ t

0
dt′2

∫ t′2

0
dt′′2 e−

κ2
2 (t−t′1)e−

κ1
2 (t′1−t′′1 )e−

κ2
2 (t−t′2)e−

κ1
2 (t′2−t′′2 )

· 〈∑
m

∑
n

XY∗j,m(t
′′
1 )XYj,n(t′′2 )Z∗j,m(t

′′
1 )Zj,m(t′′2 )〉e (A.23)

where we have defined

XYj,m(t) = g(j,m)
xy (t)Ω(j,m)

xy (t) (A.24)

Zj,m(t) =
1− e−2ikzj(t)

−γ/2 + i(∆m + kcv(j)
z (t))

+
1− e2ikzj(t)

−γ/2 + i(∆m − kcv(j)
z (t))

(A.25)

We can pull out the sums from the ensemble average. Then we can have again
the same expression as [BZP+16] and can apply the same strategy, separating
into large average parts and small time-dependent perturbations and assuming
exponential decay of the correlations with rate Γ.

We note that the decay rate of the correlations in our cell geometry had been
found with numerical simulation to be Γ = 1.3vthermal/w, where vthermal is the
average thermal velocity of the atoms.
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A.2 Number of classical photons

We follow the calculation from [BZP+16] starting from equation (S23)

Nquant = 〈a+atint〉 =
1
16

κ2
2κ1N〈|θj|2〉etint (A.26)

where the second equality sign follows from equation (2) of [BZP+16]. Accord-
ing to Johannes we still have

|Ω(i)|2 · tint = Nclas
|g̃i|24

κ1
(A.27)

Where we have expressed Ω(i) on a fixed driven transition i as proportional
to the number of photons times the single photon Rabi frequency g̃i on the
transition. (The reference transition for both Ωi and g̃i is e.g. |4, 4〉 → |5′3′〉)
The division with κ1 comes from the input output relations of the cavity or in
other words, we have to take the cavity decay rate into account since the faster
this is, the weaker the effective interaction described by Ωi is. The factor of 4
comes from input/output relations and relation between intensity/amplitude

decay rates. We define β′ = |g̃i |2
|g(i)|2 =

|µg̃i |
2

2|µ
g(i)
|2 where µk is the Clebsch-Gordan

coefficient of transition k and the factor two comes from the fact that the input
light is linearly polarized, thus only coupling with half the strength to the σ

transition expressed by g̃i. This yields

Nclas = |Ω(i)|2tint
κ1

4β′|g(i)|2
(A.28)

Note that now g(i) is the reference transition |4, 3〉 → |5′3′〉. We insert eq. A.26,
eliminating tint, and get

Nclas = |Ω(i)|2
16Nquant

κ2
2κ1N〈|θj|2〉e

κ1

4β′|g(i)|2
(A.29)

We set Nquant = 1, approximate 〈|θj|2〉e = |〈θj〉|2 and use its approximation for
large detuning.

Nclas =
64
π2

L4κ2
1

Nw4
1

β′|g(i)|4
1∣∣∣∑m

g(m)Ω(m)

g(i)Ω(i)
1

∆m

∣∣∣2 (A.30)

This can also be written in terms of the cell cavity Finesse F and round trip
time τ with κ1 = 2π/(τF)

Nclas =
256L4

Nw4τ2F2
1

β′|g(i)|4
1∣∣∣∑m

g(m)Ω(m)

g(i)Ω(i)
1

∆m

∣∣∣2 (A.31)
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A.3 Nclas in terms of optical depth

Expressing Nclas in terms of the optical depth requires on (S18) and (S19) of
[BZP+16]. Where do those two equations come from and how do they need
to be changed? We usually measure the optical depth with π-polarized light,
therefore the derivation of (S18) in the paper should still hold true. We will
have a close look on how to get from (S18) to (S19). We start from (S18)

d =
Nτ

γ

πw2

8L2 (|g̃(d)1 |
2 + |g̃(d)2 |

2) (A.32)

where τ = 2Lcav/c. We have added the index d to distinguish that these cou-
pling coefficients are for the π-polarized transitions used for the optical depth
measurement. (|4, 4〉 → |5′, 4′〉 and |4, 4〉 → |4′, 4′〉) We use the definition of the
atom-single mode coupling [TSLSS+11]

|g̃(d)n |2 = d2
g,en

ω

2h̄ε0V
(A.33)

where V is the cavity mode volume. According to [TSLSS+11] this can be
written as

V =
∫

exp(−2ρ2/w2) sin2(k0z)2πρdρdz =
πw2

4
Lcav (A.34)

Furthermore we have the reduced dipole matrix element

d2
g,en

=
3πε0h̄c3

ω3 γ
(d)
0,n (A.35)

Combining the three above equations yields

|g̃(d)n |2 =
6c3

ω2 γ
(d)
0,n

1
w2Lcav

(A.36)

Inserting this into the first equation of this subsection gives

d =
6πc2

(2L)2ω2
1
γ ∑

n
γ
(d)
0,n =

6πλ̃2

(2L)2
1
γ ∑

n
γ
(d)
0,n (A.37)

where we have reached (S19) by using the rescaled wavelength λ̃ = λ/(2π).

We can use (S18) to relate optical depth and number of atoms via the coupling
strength. Now we would like to solve the equation for the coupling strength.
We define

β′2 =
|g̃(d)1 |2 + |g̃

(d)
2 |2

|g(i)|2
(A.38)
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and can then rewrite (S18) as

|g(i)|2 =
∑n |g̃

(d)
n |2

β′22
=

8L2γd
Nτπw2β′22

(A.39)

From this we can calculate |g(i)|4 and insert it into the previous equation for
Nclas yielding

Nclas =
64Nπ2

γ2d2F2
β′22
β′

1∣∣∣∑m
g(m)Ω(m)

g(i)Ω(i)
1

∆m

∣∣∣2 (A.40)

This now depends on the number of atoms N and the optical depth d. Both of
them can be inferred from the measured Faraday angle.
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Appendix B
Tables of cavity specifications

We list the following cavity specifications: LRT Roundtrip length, L length,
FSR free spectral range, FWHM full width at half maximum, R reflectivity,
ROC radius of curvature, t(I0/e) intensity decay time, Tres transmission on
resonance, T(2.382 MHz) transmission at 2.382 MHz detuning.

Cavity Parameter Value Comment
FCav LRT 1.49201 m designed

FSR 200.93 MHz from LRT

R f lat 99.91% Manufact. specs for s-pol. [M85]
Rcurved 99.995% Manufact. specs for 0◦ AOI [M86]
ROC 1 m Manufacturer specs [M86]

t(I0/e) (2.4± 0.04) µs Ringdown [9-3-2017]
FWHM 66 kHz From ringdown

Tres 66% [31-1-2017]
T(2.382 MHz) 1.92 · 10−4Tres Theory

XCav LRT 198 mm drawing (ext. vers.) [10-1-2017]
FSR 1514 MHz from LRT

R f lat 99.91% Manufact. specs for s-pol. [M85]
Rcurved 99.996% Manufact. specs for 0◦ AOI [M84]
ROC 5 m Manufact. specs [M84]

FWHM 894 kHz spectrum w. sidebands [10-1-2017]
Tres 90% [31-1-2017]

T(2.382 MHz) 3.52 · 10−2Tres Theory

Table B.1: Specifications of all the filter cavity (FCav) and extra cavity (XCav). Com-
ments for internal use.
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Cavity Parameter Value Comment
CCav L 0.218 m measured

FSR 688 MHz from L
Rin 0.997 Manufacturer specs [M83]

Rin,895 0.992 Manufacturer specs [M83]
Rout 0.8 Manufacturer specs [M83]

Rout,895 0.77 Manufacturer specs [M83]
ROCin 110 mm Manufacturer specs
ROCout 110 mm Manufacturer specs
Finesse ≈ 18 From full spectrum [05-09-2017]
FWHM 38 MHz From L and finesse

Tres 1.4% [31-1-2017]
LCav LRT 1.49405 m designed

FSR 200.658 MHz from LRT

R f lat 99.91% Manufact. specs for s-pol. [M85]
Rcurved 99.996% Manufact. specs for 0◦ AOI [M84]
ROC 5 m Manufact. specs [M84]

FWHM 72± 5 kHz From ringdown [Karsten’s thesis]

Table B.2: Specifications of the cell cavity (CCav) and the lock cavity (LCav). Comments
for internal use.
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