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If life seems jolly rotten
There’s something you’ve forgotten
And that’s to laugh and smile and dance and sing
When you’re feeling in the dumps
Don’t be silly chumps
Just purse your lips and whistle, that’s the thing
And ...

Always look on the bright side of life, Eric Idle

The birds they sang
At the break of day
Start again
I heard them say
Don’t dwell on what has passed away
Or what is yet to be
Ah, the wars they will be fought again
The holy dove, she will be caught again
Bought and sold, and bought again
The dove is never free
Ring the bells that still can ring
Forget your perfect offering
There is a crack, a crack in everything
That’s how the light gets in

Anthem, Leonard Cohen
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Preface

Thesis structure

This thesis is written as a compendium of independent research projects.

These projects deal with different biological systems and their dependence on

distinct atmospheric features. The overarching theme of the work presented

here could be though as “spatial environmental ecology” and, contrary to the

classical format, its content was developed as exploratory research, namely

without a pre-defined hypothesis. After all, does research require one?

Concretely, this thesis is structured in three independent parts, partly developed

in two different institutes. The first two parts, chapters 2 and 3, contain a short

synopsis followed by a more extensive and detailed development in the form of

a manuscript. The reader is thus left with the choice to select depth based on

curiosity. The third part, chapter 4, is written in the style of a short monograph.

This thesis is written using nosism and Oxford spelling. References within

manuscripts are not contained in the final Bibliography section but within the

manuscript itself.

v





Acknowledgements

To my family and friends. Mireia, Albert and Irene, trench buddies at NBI. To

the CELS survivors and the wonderful group at the Naturhistoriske museum.

Special mention to Adrian M. Tompkins and Cyril Caminade, the Earth System

Physics group in ICTP and Namiko and Bente, for the always cheerful help. To

Jan O. Haerter, who financed my PhD, making it possible. To my cold-nosed

rillettes-devourer CAI.

Cheers

vii





Abstract

Part 1: Microorganisms are ubiquitous in Nature and constitute key pieces in

global energy and nutrient cycles. An important yet insufficiently understood

interplay is that constituted by bacteria and their most common predator,

the bacteriophages (short: phages). In this study we investigate predation,

competition and diversity in a phage-bacteria spatially structured ecosystem

shaped by intermittent biomass dispersal. Predatory dynamics between a

single phage species and its bacterial host are characterized as a function

of the dispersal parameters. Competition among phages is then studied by

considering the presence of a secondary and less competitive phage species

preying on the same bacterial host. The study reveals that the environmental

context, in the form of habitat connectivity, significantly impacts the com-

petitive outcome, allowing the “weaker” phage to coexist or even dominate

under certain conditions. This research provides insights into the ecological

complexity and potential coexistence mechanisms in microbial communities,

underlining the role of environmental factors, such as dispersal, in shaping

microbial diversity.

Part 2: The Asian tiger mosquito, Aedes albopictus, is known for its status

as invasive species and capable vector of diseases such as dengue, Zika and

chikungunya. Originating from southeast Asia, this species has spread world-

wide due to globalization, adapting to various climates. Our research uses

a climate-aware dynamical model to analyse the mosquito’s life cycle and

distribution in Italy, from 1980 to 2023. The study’s objectives include calibrat-

ing and validating the model with field data, understanding the mosquito’s

geographical distribution and activity duration, and assessing the impact of

heatwaves on its population dynamics. Simulated mosquito hotspots coin-

cide with highly populated areas like Rome and Milan, with climate change
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extending the mosquito’s activity season, especially in the southern Italian

coastal regions. The model’s predictive capabilities have the potential to help

guide public health interventions and improve surveillance and risk assessment

of mosquitoes and, with further model development effort, mosquito-borne

diseases.

Part 3: The mosquito Anopheles gambiae s.s. is a major vector of malaria in

sub-Saharan Africa. As an ectothermic arthropod, its life cycle is susceptible

to local climate variables, the magnitude of which change at a wide range of

time scales, from sub-daily to seasonal and decadal. Using a climate-aware

dynamical model, we investigate how variations in daily air temperature affect

mosquito population by performing a “knock out” experiment, where the daily

variability in air temperature at two-metre height is suppressed. Preliminary

results allow us to i) estimate the seasonal effect of this variability and the

regions where these effects will increase mosquito population and ii) ascertain

a net change in the vector activity duration driven by variability at daily time

scale. Ultimately, this project aims to provide insight into the effects of climate

change on malaria spread.
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Dansk resumé

Del 1: Mikroorganismer er allestedsnærværende i naturen og udgør vigtige

brikker i det globale energi- og næringsstofcyklus. Et vigtigt, men utilstrække-

ligt forstået samspil er det, der udgøres af bakterier og deres mest almindelige

rovdyr, bakteriofagerne (forkortet: fager). I dette studie undersøger vi præ-

dation, konkurrence og diversitet i et rumligt struktureret økosystem mellem

fager og bakterier, der er formet af periodisk spredning af biomasse. Rovdyrsdy-

namikken mellem en enkelt fagart og dens bakterielle vært karakteriseres som

en funktion af spredningsparametrene. Konkurrence mellem fager undersøges

derefter ved at overveje tilstedeværelsen af en sekundær og mindre konkur-

rencedygtig fagart, der jager på den samme bakterielle vært. Undersøgelsen

viser, at den miljømæssige kontekst i form af habitatforbindelser har stor ind-

flydelse på konkurrenceresultatet, så den »svagere« fag kan sameksistere eller

endda dominere under visse forhold. Denne forskning giver indsigt i den

økologiske kompleksitet og potentielle sameksistensmekanismer i mikrobielle

samfund og understreger den rolle, som miljøfaktorer, såsom spredning, spiller

i udformningen af mikrobiel mangfoldighed.

Del 2: Den asiatiske tigermyg, Aedes albopictus, er kendt for sin status som

invasiv art og dygtig vektor for sygdomme som dengue, zika og chikungunya.

Denne art stammer fra Sydøstasien og har spredt sig over hele verden på

grund af globalisering og tilpasning til forskellige klimaer. Vores forskning

bruger en klimabevidst dynamisk model til at analysere myggens livscyklus og

udbredelse i Italien fra 1980 til 2023. Undersøgelsens mål omfatter kalibrering

og validering af modellen med feltdata, forståelse af myggens geografiske

fordeling og aktivitetsvarighed samt vurdering af varmebølgers indvirkning på

dens populationsdynamik. Simulerede mygge-hotspots falder sammen med

tætbefolkede områder som Rom og Milano, og klimaforandringerne forlænger
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myggens aktivitetssæson, især i de syditalienske kystregioner. Modellens

forudsigelsesevne har potentiale til at hjælpe med at guide folkesundhedsin-

terventioner og forbedre overvågning og risikovurdering af myg og, med

yderligere modeludviklingsindsats, myggebårne sygdomme.

Del 3: Myggen Anopheles gambiae s.s. er en vigtig malariavektor i Afrika

syd for Sahara. Som et ektotermt leddyr er dens livscyklus modtagelig for

lokale klimavariabler, hvis størrelse ændrer sig på en lang række tidsskalaer,

fra under daglig til sæsonbestemt og dekadisk. Ved hjælp af en klimabevidst

dynamisk model undersøger vi, hvordan variationer i den daglige lufttem-

peratur påvirker myggebestanden ved at udføre et »knock out«-eksperiment,

hvor den daglige variation i lufttemperaturen i to meters højde undertrykkes.

Foreløbige resultater giver os mulighed for at i) estimere den sæsonmæssige

effekt af denne variation og de regioner, hvor disse effekter vil øge myggebe-

standen, og ii) fastslå en nettoændring i vektoraktivitetens varighed drevet

af variabilitet på daglig tidsskala. I sidste dette projeckt har til formål at give

indsigt i klimaforandringernes indvirkning på spredning af malaria.
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1Introduction

Some thoughts on ecology

Even though the term ecology (from ancient Greek (oîkos) - house, habitation

and (-logía) - the study of) was coined in 1866 by the German scientist Herman

Haeckel [1], observations of ecological nature date back to the ancient Greeks.

A clear example of this somewhat old discipline is Herodotus’ description of

mutualistic interactions between crocodiles and sandpipers [2]. A reflection

of the status of the discipline comes from the change of concepts and nomen-

clature through time. A central concept that has helped shape the current

ecological view is that of ecosystem, introduced by Arthur Tansley in 1935 [3].

In his own words

“ Though the organisms may claim our primary interest, when we are
trying to think fundamentally we cannot separate them from their
special environment, with which they form one physical system. It is
the systems so formed which, from the point of view of the ecologist,
are the basic units of nature on the face of the earth ... there is
constant interchange of the most various kinds within each system ...
These ecosystems, as we may call them, are of the most various kinds
and sizes ... Some of the systems are more isolated in nature, more
autonomous, than others. They all show organisation, which is the
inevitable result of the interactions and consequent mutual adjust-
ment of their components ... The great regional climatic complexes
of the world are important determinants of the primary terrestrial
ecosystems, and they contribute parts (components) to the systems,
just as do the soils and the organisms. In any fundamental consider-
ation of the ecosystem it is arbitrary and misleading to abstract the
climatic factors.”

This fragment underlines the inherent inter-connectedness of organisms and

their physical surroundings. The “constant interchange” could now be viewed
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as energy and nutrient cycles, shaped by distinct “social” interactions (e.g., com-

petition, mutualism, predation, parasitism) taking place in complex dynamic

equilibria and permanently evolving by means of natural selection. Nowa-

days, according to the Ecological Society of America, ecology is “the study of
the relationships between living organisms, ..., and their physical environments”
[4].

Ecology is thus irremediably linked to the study of how species are distributed

across space and time as a function of the environment (Biogeography), includ-

ing the interactions of organisms with the atmosphere (Biometeorology) or, in

other words, with the atmospheric conditions and its downstream products,

such as rainfall. The work presented in this thesis revolves around the last

and moves across spatial and temporal scales: from micrometer-sized inter-

actions among bacteria and their most common parasites or predators, the

bacteriophages, to regional and continental scales, where mosquito dynamics

are affected by large environmental differences in near-surface air temperature

and precipitation patterns.

Thesis scope

The first part of the thesis focuses on the behaviour of a model predator-prey

system, composed of bacteriophages and bacteria, when this is let to disperse

stochastically in a spatially structured habitat. The second part is a regional

modelling study, comprising Italy, of the temporal dynamics and geographical

distribution of the mosquito Aedes albopictus, vector of relevant arboviruses

such as dengue (DENV) [5], Zika (ZIKV) [6] and chikungunya (CHIKV) [7].

We addressed the effect of climate change and short-term heatwave events on

the behaviour of the mosquito. The third and last part focuses on the impact

of climatic variability on the population of the mosquito Anopheles gambiae s.s.,
one of the main malaria vectors in the African continent [8]. The modelling

study takes place in a region of sub-Saharan Africa.

2 Chapter 1 Introduction



2Dispersal-mediated
competition and diversity in
a phage-bacteria
ecosystem

2.1 Synopsis

2.1.1 Introduction

Microorganisms are ubiquitous and numerically dominate in nature, with

estimates of ∼ 1030 prokaryotes and ∼ 1031 viruses on Earth [9, 10]. A

particularly relevant interplay is given by bacteria and their most common

parasite or predator, the bacteriophages (short: phages, namely viruses that

infect bacteria) [10–12]. These constitute key pieces in energy and nutrient

cycles [12–28] and compose a complex ecological network [17, 29–31] still

insufficiently understood. Mathematical models can aid to elucidate some

potential parts of this network by studying factors that maintain microbial

diversity in an isolated manner. For large-scale ecosystems these conceptual

studies are frequently based on well-mixed models, with the competitive

exclusion principle [32] as a theoretical corner stone, e.g., [16, 17]. In the case

of sessile organisms, when the habitat is spatially-structured and exclusion

rules only apply locally, within the domain of individual habitats, a higher

degree of global diversity has been conceptualized [33]. Metapopulation

studies focusing on predator-prey and host-parasite interactions [34, 35] show

that migration between habitats can both drive species to extinction and

maintain global diversity by reintroducing locally extinct species from another

habitat.
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For the case of microorganisms and, in particular, phage-bacteria systems,

the atmosphere can be considered as a vector that promotes their dispersal

[36–38], with the potential to connect otherwise isolated surface habitats

[39]. Aerosolization, dispersal and the subsequent deposition mechanisms

vary greatly among species, e.g., [40–44], with size, hydrophilic and nucleating

properties affecting the transfer rates, and thus typical residence times, from

surface to atmosphere and vice versa [39, 45]. This complex scenario yields a

palette of simultaneous transport regimes, where biomass is passively carried

around in both continuous and discrete manners.

In this chapter we study how the interplay between phages and bacteria

is shaped by intermittent and wind-driven biomass transport in a spatially

structured habitat.

2.1.2 Objectives

The objectives of this study are two-fold:

1.- Baseline dynamics: first, we start by studying whether this biomass

transport regime pushes the system away from its well-mixed local behaviour

and the resulting situation in the spatial system.

2.- Implications for competition and diversity: the observed

departure from well-mixed conditions has the potential to affect

the exclusion principle and, therefore, to have implications on

the competitive and coexistence rules among the species present

in the spatially structured habitat. We study this possibility by

adding a second and, in principle, less fit phage that shares the same bacterial

host and thus competes with the first for a common single resource, adhering

to the exclusion principle.

2.1.3 Methods

A simple conceptual model was developed for this study. In the model, space

is spatially structured as a lattice of 2N habitats. The lattice is arranged as two

1-dimensional layers each containing N points (Fig. 2.1a). In the lower layer

4 Chapter 2 Dispersal-mediated competition and diversity in a phage-bacteria
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Figure 2.1: a) Lattice of 2N discrete habitats b) Reactions specific to the phage-
bacteria system i) Surface reactions ii) Upper layer or “atmospheric”
reactions.

lattice points represent surface habitats, whereas the upper layer aims to model

an idealized atmosphere, where particles are horizontally advected across the

lattice. In the surface layer biomass can only travel vertically and, consequently,

migration from one habitat to another can only happen indirectly, via the upper

layer. Since each layer represents a physically distinct environment, different

reactions (r) can happen within: in the surface bacteria are allowed to grow

(g) while being predated by phages (η) who multiply upon such event (β), but

suffer from decay (δs) and thus need their host to survive (Fig. 2.1b-i); in the

upper “atmospheric” layer microorganisms can only travel (v) and decay (δa),

and thus this layer constitutes a transient habitat (Fig. 2.1b-ii).

Surface dynamics

In the model, phages and bacteria occupy a set of homogeneous and well-

mixed surface habitats where coexistence rules are determined by the set of

Lotka-Volterra equations [46]

2.1 Synopsis 5



dns

dt
= gns

(
1 − ns

K

)
− ηnsms , (2.1)

dms

dt
= (β − 1) ηnsms − δsms . (2.2)

Here, η is the adsorption rate, β is the phage burst size, δs is the phage’s decay

rate, g the bacterial growth rate and K the habitat’s carrying capacity, specific

to the environmental context. System ((2.1)-(2.2)) is globally stable and, upon

perturbations, behaves as a stable spiral. This means biomass fluxes are likely

to force the system into sustained oscillations, as observed in stable systems

subject to demographic noise [47].

Dynamics in the upper layer

Species can be passively dispersed from one surface habitat to another via

an upper layer, representing an idealized role of the atmosphere in biomass

transport. When in this “atmospheric” layer, population densities follow the

advection-reaction equation

∂na

∂t
= −v

∂na

∂x
− δn

a na , (2.3)

∂ma

∂t
= −v

∂ma

∂x
− δm

a ma . (2.4)

Here, δm
a and δn

a are the respective phage and bacterial decay rates, of similar

magnitude, and v is the horizontal advection velocity, taken constant for

simplicity.

Vertical transport

As mentioned before, vertical biomass fluxes could be a composition of different

transport mechanisms. As a conceptual study, however, we have the freedom to

only describe those of interest in order to neatly study their role and associated

emergent behaviour. If, for example, we were interested in the ecological

implications of bacterial nucleation we could model vertical transport to be

6 Chapter 2 Dispersal-mediated competition and diversity in a phage-bacteria
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asymmetric (particles are aerosolized at different rates than they are brought

back to the surface by wet or dry deposition) characterized, perhaps, by a

pronounced seasonality. We could then study species coexistence and spatial

distribution as a function of their nucleating properties. In this study vertical

transport is symmetric and stochastic. This comes from considering fluxes

associated to turbulent eddies. In atmospheric models, sub-grid-scale turbulent

transport is modelled as a diffusion equation, with mass travelling on average

down the gradient. We here adopt this modelling framework. Furthermore,

vertical transport is considered to be intermittent and triggered only when near-

surface wind speed surpasses a given threshold. We do not model this explicitly,

but encompass both the wind regime and the roughness of the surface over

which the air moves in the parameter p, the probability of activating vertical

transport. This is treated as a free parameter and the interplay between phages

and bacteria is studied as a function of its value. Graphically, we can think

of this vertical transport scheme as down-the-gradient fluxes trying to cross a

door that will only be open with probability p.

Extinction threshold

Species’ populations are described in terms of their densities and, as such, are

not treated as individuals. This might drive the system to reach unrealistically

low densities. To avoid this, a truncation is introduced and density values are

set to e.g., zero when a trajectory crosses a given density threshold. In this

study we set the extinction threshold equal to one microorganism per grid

point, i.e.,

ρext. = 1
V

, (2.5)

where V = ∆x3, with ∆x being the linear extend of each surface and atmo-

spheric habitat. We have not studied the sensitivity of our results with respect

to this threshold value.

The introduction of the threshold imposes an upper bound to the distance

biomass can be dispersed. This “signal length” is determined by how biomass

is lost in the upper layer, and is thus determined by the vertical exchanges

with surface habitats, as the signal is advected, and microorganism decays. In

2.1 Synopsis 7



this study we adopt an operational definition, independent on the first: we

define the signal length, x∗, as the distance travelled by a biomass emission of

magnitude K, when p = 0. The tendency equation,

ρ(t) = ρ(t0) · e−δat = K · e−δat , (2.6)

yields

t∗ = − 1
δa

· ln
(

ρext.

K

)
, (2.7)

or, equivalently,

x∗ = v · t∗ . (2.8)

In turn,

x∗ = L · N · ∆x , (2.9)

hence

L = − v

δa · N · ∆x
· ln

(
ρext.

K

)
. (2.10)

Here L stands for the fraction of the total system length, N · ∆x, travelled by

the signal. In this study x∗ is controlled by δa, which acts as a tuning parameter

(Fig. 2.2). Spatial dynamics will reveal to be strongly dependent on the value

of this parameter, which controls the connectivity between surface habitats.

The downside of adopting this definition, and studying the system behaviour

as a function of its value, is that we can only compare cases with equal p’s.

8 Chapter 2 Dispersal-mediated competition and diversity in a phage-bacteria
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...

ρext.

L ·N

N

∆x

x

ρ
ρ(x0, t0)

ρ(x0 + L ·N ·∆x, t0 + t1)

δa ±∆δa

Figure 2.2: Schematic of the distance travelled by a biomass emission, ρ, as a function
of the spatial and tuning parameters relevant to define the signal length,
L.

2.1.4 Results

1.- Baseline dynamics: within the framework of the spatial model, single

surface habitats undergo extinction and re-population events, both driven by

biomass fluxes. Upon gain and loss of biomass, surface densities experience

sustained oscillations which are at times amplified, pushing the system into

the extinction threshold. Spatially, the system reaches a statistical steady state

where the fraction of habitats occupied by both phages and bacteria, C (of

coexistence), that occupied solely by bacteria, F (as in free), and the frac-

tion of empty habitats, E, remain constant. Individual habitats are however

permanently changing status and for this, the spatial steady state is “dynami-

cal”. Furthermore, the value of each fraction is found to be dependent on the

phage-bacteria intrinsic parameters (Fig. 2.3), with potential implications for

competition and diversity.

2.- Implications for competition and diversity: the consequences of these

baseline dynamics on diversity are investigated by introducing a second and,

2.1 Synopsis 9
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Figure 2.3: Fraction of habitats in a coexistence (up) and extinct (down) state
as a function of the signal length, L, for three different phage’s decay
rate in the surface, δs. Each dots represents the steady-state values of
independent simulations. (Cc, Ec) stands for the control case, (Cw, Ew)
and (Cs, Es) for two set of simulations performed with 10-fold increases
and decreases in δs, respectively.

in principle, lesser phage in the spatial system. Our results show that, not only

does the “weaker” phage manage to coexist but, in some biomass transport

regimes, it dominates over the “stronger” competitor. This underlines that

fitness is here dependent not only on their intrinsic parameters, but on the

environmental context and that coexistence rules, as inferred from the exclu-

sion principle, are dependent on the connectivity and stability of local surface

habitats. Furthermore, the observed spatial coexistence affects the presence of

the stronger phage in regions of the spatial system where the “weaker” phage

is not present, creating new, indirect competitive dynamics.

2.1.5 Discussion

The conceptual model presented here is a strong tool to unveil potential links

introduced by dispersal in the complex coexistence network composed by

phages and bacteria. The framework is flexible and can be modified to further

understand the ecological implications of asymmetric transport, driven by the

empirically observed differences in aerosolization and deposition properties

of diverse microorganisms, as well as to further understand the net role of

intrinsic parameters in the global spatial context.

10 Chapter 2 Dispersal-mediated competition and diversity in a phage-bacteria

ecosystem
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Airborne dispersal of microorganisms is a ubiquitous
migration mechanism, allowing otherwise independent
microbial habitats to interact via biomass exchange. Here,
we study the ecological implications of such advective
transport using a simple spatial model for bacteria–phage
interactions: the population dynamics at each habitat are
described by classical Lotka–Volterra equations; however,
species populations are taken as integer, that is, a discrete,
positive extinction threshold exists. Spatially, species can
spread from habitat to habitat by stochastic airborne
dispersal. In any given habitat, the spatial biomass exchange
causes incessant population density oscillations, which, as
a consequence, occasionally drive species to extinction. The
balance between local extinction events and dispersal-induced
migration allows species to persist globally, even though
diversity would be depleted by competitive exclusion, locally.
The disruptive effect of biomass dispersal thus acts to
increase microbial diversity, allowing system-scale coexistence
of multiple species that would not coexist locally.

1. Introduction
Microbes are involved in global nutrient and energy cycles and
constitute a key functional group in the ocean’s food web [1–3].
For example, half of the oxygen in the atmosphere is gener-
ated by photosynthetic bacteria [2]. There are a total of ∼1030

prokaryotes on Earth [4], of which ∼1029 are oceanic bacteria [4]
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permanently hunted down by bacteriophages (short: ‘phages’, i.e. viruses that infect bacteria), which
constitute their most common ‘predator’, or parasite [5–7]. Indeed, studies point to the ubiquity of viral
infections [5,8], for example, 20–30% of marine bacteria are believed to be infected at any given time
by phages [5]. Beyond regulating their host’s population and community structure [9–12], and despite
their lack of metabolism, viruses also influence energy and nutrient cycles by modifying the microbial
metabolism [7,13–16] and by directly impacting microbial mortality [15,17–23].

However important, the interplay between phages and bacteria, reflected in the size and complex-
ity of their ecological network [12,24–26], is still poorly characterized. Mathematical modelling is
a strong tool to unveil possible mechanisms that maintain microbial diversity. When considering
large-scale aquatic ecosystems (e.g. [11,12]), much work is based on well-mixed models, where the
competitive exclusion principle [27] dominates the coexistence rules. However, when the habitat is
spatially structured, these rules are altered and a higher degree of diversity is allowed [28]. Metapopu-
lation studies of predator–prey and host–parasite systems [29,30] have shown that migration between
habitats can support global coexistence by reintroducing locally extinct species from another habitat,
but also trigger species extinction by provoking large-amplitude predator–prey oscillations.

In phage–bacteria systems, dispersal due to aerosol transport has the potential to cover vast
distances [31,32], before returning to the surface via wet or dry deposition [33]. Indeed, models suggest∼1024 particles containing bacteria to be emitted globally every year into the atmosphere [34] with
residence times estimated to vary from days to weeks [34]. In this sense, we can consider the atmos-
phere as a vector that promotes microbial dispersal across otherwise spatially disconnected habitats
[35], with the potential ability to impact an ecosystem’s composition [28,35–37] despite the much lower
advected concentration numbers as compared to surface populations [33,34,38,39].

In this work, the focus is on the atmosphere’s role in biomass transport and its potential to shape
microbial community structure, in particular, the predator–prey system composed of phages and
bacteria. We view the atmosphere as a habitat where these microbes are carried around stochastically
as sessile organisms and can only survive transiently, that is, do not replicate but suffer from decay.
Passive dispersal thus provides a migration mechanism for these microorganisms, which are transpor-
ted across the surface, considered to be physically homogeneous and spatially subdivided. Our goal
is to understand the ecological implications of such a system. For this, we here develop a simple
two-layer neutral dispersal [40] model. Within the framework of our model, we first address the
baseline dynamics emergent from these dispersal-mediated stochastic biomass fluxes, which effectively
connect surface habitats. Extinction within a given habitat as a result of stochastic migrations is shown
to be of utmost importance in shaping community structure. Second, we study the implications of
such dynamics on competition and diversity, focusing, for simplicity, on a two-phage system sharing a
common bacterial host. We find biodiversity to self-organize, even under conditions where competitive
exclusion would rule out coexistence.

2. Methods
2.1. Model concept
Our quasi-one-dimensional model consists of two coupled one-dimensional layers, or linear habitats
(see figure 1a), each subdivided into N sites. In the lower layer, each of these sites constitutes a surface
habitat, where basic chemical or physical nutrients are sufficiently available and species can replicate
and interact. These discrete surface habitats are connected only by airborne dispersal via the upper
layer. This layer, representing the atmosphere, is only relevant for directed advective transport, as well
as decay, disregarding replication or predation processes. Microbes thus only spread passively. The
exchange between the two layers is enabled through vertical stochastic population fluxes.

Our model is, therefore, a hybrid between a continuous formulation, taking place for replication
and decay in the surface layer as well as transport within the atmospheric layer, and stochastic
processes, which occur when biomass is transported vertically. Decay is possible in both layers and in
practice likely more pronounced in the atmospheric layer due to UV radiation exposure there [41].

2.2. Model formulation
In both linear habitats, the spatial coordinate x is discretized into N positions xi = iΔx, with the integeri ∈ [0,N) and the spatial extent of each habitat Δx.
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2.2.1. Surface dynamics

Within each grid box at a given discrete position xi, the lower-layer (surface) bacterial and phage
population densities, ns(xi, t) and ms(xi, t), respectively, are assumed to follow the set of Lotka–Volterra
equations [42]

(2.1)dns
dt = gns 1 − nsK − η nsms ,

(2.2)dms
dt = (β − 1)ηnsms − δsms ,

where we have dropped the explicit reference to spatial and temporal coordinates for simplified
notation. In equations (2.1) and (2.2), η is the reaction kernel or the adsorption rate, and captures the
reaction-limited nature of phage infection, that is, how often viruses can both find and infect their host;β is the phage replication number, typically referred to as burst size; δs the phage decay rate (see figure
1b(i) for a zoom into these local dynamics). Furthermore, in this predatory dynamics, we tacitly assume
lytic [43] phages and well-mixed populations within each grid box. We thus ignore the high degree
of spatial heterogeneity one could find in different environments [44–47] and its associated ecological
impact [48,49]. We put the focus on bulk and large-scale behaviour, setting our scale of interest to a few
metres.

The zeroth trophic level, representing basic chemical or physical energy sources, is not explicitly
modelled. Instead, in equation (2.1), we assume bacteria follow logistic growth [50] with maximum
growth rate g and a constant maximum carrying capacity, K. K is thereby specific to the environmental
context of the system. We do not have an explicit bacteria decay term here because, in a determinis-
tic system with species described in terms of population densities, the bacterial decay rate can be
absorbed into the growth rate without loss of generality.

N

υ

p, j
0
,τ

φ

φ

φ

φ: dead

η

β

δ
a

δ
a

g(1-n
s
 / K)

(b) (ii)

(b) (i)

(a)

Figure 1. Schematic representation of the spatial model. (a) Two different types of biomass transport are modelled: continuous
advective flow, v, in the upper layer and vertical stochastic transport, described with three parameters (p, j0, τ), that allows particles
to ‘jump’ across layers, effectively coupling them. (b) Bacteria undergo a layer-dependent palette of events. (i) When in the surface,
they are exposed to phage predation (η), and have access to enough nutrients to grow logistically (g, K). (ii) As an aerosol, they avoid
predation but are exposed to a much higher decay rate (δa), accounting for the more extreme conditions found in the atmosphere.
Aerosolized phages follow an analogous behaviour, whereas when on the surface, they predate and multiply (η, β), as well as decay
(δs), requiring the presence of the host to survive.
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2.2.2. Dynamics in the upper layer

We assume the transport of bacteria and phages present in the upper layer to take place by passive
advection following the atmospheric flow. The population densities will thus follow the advection-
reaction equation, that is,

(2.3)∂na
∂t = − v∂na∂x − δanna ,

(2.4)∂ma
∂t = − v∂ma

∂x − δamma .

In contrast to the surface layer, here we consider explicit positive δan and δam, of similar magnitude,
representing the respective bacterial and phage decay rates in the atmosphere (figure 1b(ii)). v is the
horizontal advection velocity, which we have set constant for simplicity.

2.2.3. Vertical transport

Vertical transport is taken as a stochastic process. We build our parameterization of microorganism
emissions on literature [51] based on an empirical dust emission formulation [52,53]. The key concept
we take from this work is a critical threshold value for near-surface wind speed above which vertical
transport is finite. As a threshold phenomenon, this wind-driven emission mechanism is considered to
be intermittent. Conceptualizing, aerosolization events are taken as discrete on-/off-like processes that
occur with some activation probability, p, a parameter that aims to capture the frequency with which
the wind speed is above the given threshold. Since this threshold might depend on the type of terrain,
a given value of p qualitatively encompasses both the wind regime in a given location as well as the
roughness of the surface over which the air is moving. In our model, we treat p as a free parameter.

On top, we shall consider net vertical exchanges to be qualitatively similar to eddy-like mixing,
and triggered by this critical threshold on wind speed. In turbulent eddies, often parameterized as
down-the-gradient fluxes [54], downward fluxes are fully correlated with emission events since mass
transport is modelled to act in a similar way to molecular diffusion, but at a much larger scale.
Consequently, in our scheme, the net exchange of biomass across layers is not only intermittent but,
when finite, proportional to the vertical density gradient in each particular column. The proportional-
ity constant, or rate of exchange, j0, is also taken as a free parameter.

The duration of these discrete events remains to be defined. In reality, their length is not necessarily
fixed but, for simplicity, we here consider a constant exchange time scale, T. Consequently, when
active, vertical transport will have a typical duration of τ ∼ T. This exchange is set to be independent
among species, and of stochastic nature, that is, it will only happen with our probability, p. For
simplicity, this is taken to be independent of the state of the system in the previous time interval.

2.2.4. Vertical transport algorithm

Biomass exchange between the two levels of a specific column is therefore temporally discontinuous or
intermittent and regulated by the three free parameters (see figure 1a):

(1) p, the probability of having a particle flux between layers for a given duration;
(2) τ, the duration of this intermittent biomass exchange between layers;
(3) j0, the rate at which these microbes are exchanged when vertical transport is active.

Summarizing, each location experiences biomass fluxes between same-column grid boxes with a
frequency set by p. When this flux is active, particles are exchanged at a constant rate j0 for a timeτ. In practice, we evaluate the net intermittent bacterial and phage fluxes between layers, jn(x, t) andjm(x, t), respectively, with the following algorithm:

For each horizontal position xi and each species separately, with i ∈ [0,N), draw α ∈ U[0, 1), then,
during the time t→ t + τ
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— If α ≤ p, the downward and upward fluxes are set to jdown = j0 ⋅ na(xi, t) and jup = j0 ⋅ ns(xi, t), with
the net flux being jn(xi, t) = jup − jdown.

— If α > p, there is no biomass exchange in column xi, that is, jn(xi, t) = 0.

This allows for particle fluxes along the gradient, leading to discrete aerosolization or colonization
events whose frequency, duration and magnitude are free parameters. The final system reads as

(2.5)∂ns
∂t = gns 1 − nsK − ηnsms − jn ,

(2.6)∂ms
∂t = (β − 1)ηnsms − δsms − jm ,

(2.7)∂na
∂t = − v∂na∂x − δanna + jn ,

(2.8)∂ma
∂t = − v∂ma

∂x − δamma + jm .

Parameter values for equations (2.5)–(2.8) can be found in table 1 (appendix A). For the simulation of
this model, population densities are randomly initialized across the spatial system (see appendix A),
which is solved with periodic boundary conditions.

2.2.5. Extinction threshold

Even though we work with population densities, we consider species populations to be integer
numbers. For this, we manually introduce an extinction threshold equal to one individual per grid
box, that is, ρext ≡ 1/V , V  being the volume of the box. Whenever a particular trajectory drops belowρext, the species’ population is immediately set to zero.

2.2.6. Main model assumptions

It is informative to briefly summarize the main model assumptions and limitations:

(1) Net vertical fluxes are proportional to vertical population density differences. Furthermore,
vertical transport is considered to be completely uncorrelated among species, that is, each species
undergoes vertical transport independently of the other species. The model can be extended to
study the effect of correlated emissions/depositions among species.

(2) The frequency (p) and rate (j0) of aerosolization or deposition events are assumed to be equal
among species. This could be generalized to allow for the empirically observed species-specific
parameters [55–59].

3. Results
3.1. Core dynamics
We now look at the emerging dynamics of such a system and the resulting ecological consequences.
However, the full complexity of the spatial model is better understood in terms of the behaviour of its
individual components.

3.1.1. Single column

Let us first focus on single surface grid-boxes in two different scenarios in order to decouple: (i) the
effect of biomass loss to the upper layer (negative fluxes) and (ii) the effect of biomass gain from
upstream sources into a populated habitat (positive fluxes).
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3.1.1.1. Negative fluxes

Let us consider habitats to be completely disconnected from their neighbours, that is, once aerosolized,
microbes are advected and lost. Vertical transport thus represents a net loss of surface biomass. We
shall study the effect of these intermittent fluxes by looking at the deviation of the population densities
with respect to some deterministic expectation. More concretely, for this, let us look at the limit where
fluxes are continuous (τ→ 0) and a fraction p of the time vertical transport is active. This limit yields
the deterministic equations

(3.1)
dns(t)

dt = gns 1 − nsK − ηnsms − pj0 ⋅ ns ,

(3.2)
dms(t)

dt = (β − 1)ηnsms − δsms − pj0 ⋅ms .

It is known that systems (equation 2.1)–(equation 2.2) and (equation 3.1)–(equation 3.2) contain a
globally stable coexistence fixed point [60] (appendix B). Further, upon small perturbations, their
transient relaxation to the steady state can be described as a stable spiral (appendix C), that is, popula-
tion density trajectories oscillate back to this coexistence fixed point. This yields a clear picture of the
deterministic dynamics when habitats are nudged away from their steady state. In this frame, the study
of discrete transport comes from comparing the behaviour of system (equation (3.1))–(equation (3.2))
against its stochastic counterpart—equations (equation (2.5)) and (equation (2.6)) with jdown = 0—as we
move between the well-mixed (p→ 0) scenario, where surface habitats are isolated, and the continuous
flux (p→ 1) case. This is done by looking at the behaviour of both systems for different (p, j0) values
while keeping the product pj0 = const. Since the parameters p and j0 appear as a product in (equation
(3.1))–(equation (3.2)), they effectively behave as one, and any combination fulfilling this restriction is
equivalent in the deterministic system, that is, it will result in the same dynamics. For convenience, let
us now define an ‘equivalent deterministic line’ (EDL) as that where pj0 = const. If we move along an
EDL, as we tend to either p = 1 or p = 0, both continuous and discrete scenarios converge, but, we will
show that the behaviour is rather different for finite p owing to stochasticity in fluxes and the existence
of the extinction threshold.

When subject to intermittent fluxes, stochastic effects appear: the original transient oscillatory
relaxation to the coexistence fixed point is now substituted by trajectories which systematically show
sustained oscillations and become unstable in some regions of the EDL. As seen in figure 2a,b(i) (right),
the continuous case converges to the coexistence fixed point (nst,mst) from equations (B 3) and (B 4)
whereas trajectories subject to intermittent biomass fluxes oscillate, eventually driving the system to
extinction. We find two distinct types of extinction: (i) bacterial extinction, thus also causing parasite
extinction; (ii) phage extinction and bacterial survival. Negative fluxes therefore open the possibility
for coexistence among phages and bacteria (C), phage-free (F) and extinct (E) habitats, where neither
species is present. In figure 2a,b(i) (left), we show the distinct explored phase space of each of the two
types of extinction events. Given the stochastic nature of these fluxes, one particular realization might
significantly differ from another. For this, the ensemble average of many independent repetitions
is depicted in figure 2a,b(ii) (bottom). By counting the number of extinctions in time, figure 2a,b(ii)
(top), we find the extinction rate to be exponentially distributed, and dependent on the pair (p, j0). A
broader analysis is represented in the (p, j0) phase diagram of figure 3a, in which the region where
these transitions take place is mapped out. We can define three distinctly different (p, j0) regions. (i)
A deterministically unstable region, where even in a phage-free environment logistic growth cannot
sustain bacterial biomass loss to the upper layer. The system is therefore driven to extinction. This is
a deterministic prediction (appendix D). The connected purple dots in figure 3a show the limit where
a finite density fixed point is still feasible. (ii) A stable region with permanent coexistence among
phages and bacteria. Discontinuous fluxes make the system oscillate incessantly. (iii) A stochastically
unstable region where, depending on the manner biomass is lost, that is, the (p, j0) pair, habitats with
coexisting species transition either towards a phage-free state (dark blue diagonal) or an extinction of
both phages and bacteria (white upper left, also in figure 3a). The border region between stable and
extinct states shows a colour gradient reflecting the different extinction rates within the stochastically
unstable region (a lower population average among independent habitats indicates the mixed presence
of both extinct and populated habitats). This underlines the temporal aspect of the phase diagram, that
is, for sufficiently long times, every habitat is susceptible to suffer from a concatenation of events that
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drive it to extinction. As seen in the diagram (and previously explored in figure 2a,b(ii) (top)), this time
scale is set by (p, j0).

3.1.1.2. Positive fluxes

Next, we analyse the system’s response against the stochastic migration of phages or bacteria into
a habitat populated by either bacteria or both phages and bacteria. From the system (equation 3.1)–
(equation 3.2) nullclines we can see that, when pushed beyond some critical trajectory (figure 3b,
in blue), the system will deterministically cross the extinction threshold. The critical trajectory thus
provides a conceptual basis to understand the migration dynamics in our system. For example, if the
bacterial habitat is in its carrying capacity, K, any migration attempt on the phage’s side will result in
a complete deterministic depletion of the host (as seen from the phase portrait), thereby driving the
full habitat to extinction. However, if the bacterial habitat has not yet reached the carrying capacity,
it is possible for the parasite to successfully migrate, that is, push the trajectory into a region within
the area encompassed by the critical trajectory. The transition F → C is thus conditional. Based on this
discussion, we see that depending on the migrated population, a particular habitat can transition to any
of the three possible states (except E → C). This yields a more complex dynamical scenario as compared
to the initial unique absorbing state (see figure 3c). Let us now look at the consequences of such a
scenario in a connected system.
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Figure 2. Negative fluxes. (a) (i) Right. Time series of phage and bacteria population densities for deterministic (p = 1) and stochastic
(p = 10−4) vertical transport cases along the same equivalent deterministic line, p ⋅ j0 ⋅ τ = 1.6 × 10−5. Here, the oscillations reach
the bacterial extinction threshold, after which the phage population density decays to zero, as they need their host to survive. Left.
Explored phase space of a C → E transition. (ii) Population density average of 103 and 104 independent surface habitats for the same
deterministic (p = 1) and stochastic (p = 10−4) transport cases, respectively. Decaying trajectories, corresponding to the stochastic
case, are the result of individual extinction events, counted in the histogram above (shared time axis). (b) (i,ii) Analogously to the
previous case, a C → F  transition is shown (p = 10−3) and compared to its deterministic limit (p = 1) in the p ⋅ j0 ⋅ τ = 2 × 10−4

equivalent deterministic line. Notice the decay time-scale difference with respect to the previous case. Here, decay events happen
much faster.
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3.1.2. Multiple columns

3.1.2.1. Connectivity effect

We now focus on the (p, j0) region of the phase diagram where coexistence states become extinct upon
negative fluxes in the single column case, that is, C → E transitions (white zone in the stochastically
unstable region). Let us study their collective behaviour by allowing a finite degree of connectivity,
that is, biomass emissions will get advected a finite fraction of the system length, L, before decaying,
and thus dynamically ‘interact’ with downstream locations. This length is defined in a simple way,
to provide a clear operational definition (see explicit derivation in appendix F). In short, it gives the
distance, x∗, an emitted flux of magnitude K would travel before its density reaches the extinction
threshold, ρext, if p = 0. This is, the only biomass loss in the upper layer comes from the decay compo-
nent, δa. This scenario yields the relation

(3.3)x∗ = L ⋅ N ⋅ Δx = − vδa ⋅ ln ρextK ,

with N being the total system size. This length is effectively controlled with δa, which is chosen
as a tuning parameter to modulate the system’s connectivity. In figure 4, we show individual contig-
uous habitats of a connected system with L = 0.5. From this, we see that, when biomass is allowed
to disperse, the spatial system simultaneously splits into the three possible states, thus surviving
local extinctions. Locally, each habitat is susceptible to transition from one state to another while the
global system self-organizes into a statistical steady state. Two examples are shown in figure 5a. Even
though first neighbours are uncorrelated, the fraction of the spatial system belonging to either state
is a function of the system’s connectivity (L), figure 5b, reflecting the effect of dispersal distance for
coexistence.
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Figure 3. Single habitat dynamics. (a) Phase diagram of the single grid-box system. Each pixel represents the bacterial population
average over 103 independent habitats at t = 150 years. Below, colours are matched to the corresponding state of the system: C,
coexistence; F, phage-free; E, extinct. The black dashed line is an example equivalent deterministic line. (b) Positive flux framework
imposed by the critical trajectory. Any migration event, or concatenation of migration events, must push the trajectory into the area
encompassed by the critical trajectory, otherwise, the habitat is doomed to cross the extinction threshold. This limits, for example,
the manner in which phages can migrate into a habitat populated by their host without driving that same habitat to extinction. (c)
Available transitions of individual habitats. (i) Without an extinction threshold, a habitat can only undergo E → F  bacteria-mediated
transitions and F → C  phage-mediated transitions. C  is therefore an absorbing state. (ii) Diagram of new dynamical possibilities.
These constitute the aggregate of negative and positive fluxes onto a system with a finite extinction threshold.
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3.2. Implications for competition and diversity
The new dynamical possibilities (figure 3c(ii)) drive the spatial system towards a new set of steady
states (figure 5a,b). Fundamentally, these configurations might not only depend on the biogeographic
connectivity, L, but also on the system’s response to biomass fluxes, that is, the way trajectories
converge back to the coexistence fixed point. Since this response is set by the deterministic parameters
(g, β, η, δs,K), these steady states might be sensitive to a change in, at least, one of them. Interestingly,
these parameters are also a measure of fitness, or competitive ability. A higher competitive trait for
the phage, such as a bigger burst size, β, or a lower decay rate in the surface layer, δs, might even
be detrimental, since, by changing the system’s convergence to the steady state, it could increase the
chance of crossing the extinction threshold, and thus alter the habitat’s longevity. This line of thought
underlines the non-trivial effects intra-population variability might have on the spatially structured
habitat, and the complexity of understanding the net role of intrinsic or system-specific parameters.
We now look at the dynamical role intrinsic parameters have in the spatial steady states, and the
implications for competition and diversity. For the latest, we focus on the simplest extension of our
study, that is, we introduce an extra phage which infects the same host and thus represents a direct
competitor.

3.2.1. Dynamical role of deterministic traits

Let us focus, for simplicity, on the aforementioned decay rate, δs. To understand the grounds of
the conceptualized competition–longevity trade-off, we briefly go back to the system (equation 2.1)–
(equation 2.2) and summarize the effect of δs in an isolated deterministic system.

First, from a linear stability analysis of system (equation 2.1)–(equation 2.2) (appendix C), we can
show that the decay time scale of small perturbations, τper, is proportional to δs−1. Systems with fitter
viruses (smaller δs) will thus take longer to fall back into their steady-state population densities. This
might allow future fluxes to further amplify an initial departure from the steady state.

Second, given the existence of an extinction threshold, the stability of coexistence states is also
related to the amplitude of their oscillations. This happens to increase for lower values of δs (see
appendix G). Consequently, the stability of the habitat decreases for systems with stronger (smaller δs)
viruses.
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Figure 4. Connectivity effect. Time evolution of neighbouring surface habitats of a system with N = 1000 and L = 0.5. Here,
p = 10−4 and j0 = 6 × 10−3 s−1. Different examples of extinction mechanisms are depicted to the right—for example, migration
of the parasite, driving the system into the extinction threshold (F → E, two cases shown); phages migrating into an empty habitat,
thus causing them to decay (E → E); bacteria migrating into empty habitats and colonizing them (E → F, two cases shown); an
unstable habitat upon negative fluxes (C → E). For this particular spatial system, ∼ 93% of phage migrations into an F habitat
resulted in extinction, reflecting the role of the critical trajectory introduced by the extinction threshold.
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3.2.2. Effect of phage decay rate in the spatial system

Having the effect of δs on local population dynamics in mind, let us now look at the behaviour of
the connected system in the two distinct scenarios of increasing and reducing by 10-fold the phage
decay rate in the surface, δs. A comparison between these two independent spatial systems and the one
with untouched δs value (control) is depicted in figure 5c. We can see that, for any given value of the
system’s connectivity, L, the number of E habitats increases (decreases) for the stronger (weaker) phage
case. A better competitive ability, having a clear local destabilizing effect, has detrimental effects on a
spatial level. Intrinsic parameters thus clearly modify the spatial steady state and might therefore have
an impact on global competition and diversity.

3.2.3. Competition of two phage types in a spatial system

Let us now evaluate direct competition among phages with distinct competitive abilities. Examining
the effect of phage migration into an isolated C habitat populated by the competitor we see that,
as expected, competitive exclusion applies and the stronger phage takes over (appendix E). In the
following, we demonstrate that the full spatial model can allow the global coexistence of these
competing phage species.

To study direct competition, we choose an arbitrarily small non-zero value of δs (the absolute zero

would be biologically unfeasible) for the stronger phage, δsstr . . We then simulate the spatial system for

a range of δs values for the weaker phage, δsw, with δsw ≥ δsstr . . This is initially done for a fixed (p, j0)
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Figure 5. Steady states. (a) Relaxation to a steady state. Example trajectories for the L = 0.1, 0.5 cases for C  and F  fractions.
Fluctuations correspond to transitions of individual habitats to a different state. (b) The fraction of columns in each state is a function
of the system’s connectivity, L. Here, trajectories are simulated for 350 years with periodic boundaries until a steady state is ensured.
From this, we neglect the first 50 years and compute the mean. Scattered points are complemented with lines of width equal to 2 ⋅ σ,
to exemplify the signal noise and thus the rate at which columns transition between states. (c) Steady-state dependence on the phage
decay rate. Analogously to the previous case, we now show the steady-state C  and E fractions in three spatial systems, each containing
either the control (c), the weaker (w) or the stronger (s) phage.

10
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231301

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 J

un
e 

20
24

 b
y 

M
ig

ue
l G

ar
ri

do
 Z

or
no

za
 



pair and different connectivities, L. In figure 6a(i), we show the ability of the weaker phage to coexist
in the spatial system. This coexistence is only possible in a given range of δsw values, establishing a
limit to how similar the weaker competitor can be in order for coexistence to be achieved. We also
find the existence of an optimal decay rate value that maximizes the fraction of occupied sites by the
weaker competitor, to the detriment of the stronger. That is, even though competitive exclusion applies
and competitive dynamics act on a much faster time scale than biomass transport (see figure 6a(i)
white dots), the weaker phage indirectly affects the number of habitats where the stronger competitor
is present, thus creating new competitive dynamics. Furthermore, we learn that not only does the
intrinsically less fit strain manage to coexist in the spatial system, but, for low connectivities, it even
dominates over its stronger competitor (figure 6a(ii)). Fitness is therefore not fully determined by the
intrinsic deterministic parameters, but also by the biomass transport regime, and thus the aggregate
context of the particular habitat.

In figure 6b, we calculate the weaker phage species’ optimal decay rate for a given (p, j0) region
to illustrate this idea. This same exercise can be done for the rest of the system’s intrinsic parameters,
such as the phage’s burst size, β, or the bacterial growth rate, g, in order to understand the role each
parameter plays on a global scale.

4. Discussion
In our simple two-layer model, the predatory bacteria–phage system we study is subject to discrete,
intermittent, wind-driven gain and loss of biomass corresponding to migrations from upwind habitats
and local aerosolization events, respectively. The stochastic fluxes introduced by such gain and loss
processes provoke sustained oscillations in the population densities, observed in otherwise stable
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Figure 6. Direct competition of two phage types. (a) (i) For a fixed pair (p, j0) = (0.1, 3.2) × 10−3, we compute the fraction

of habitats occupied by the weaker phage strain in the steady state , Cw, for δs
w /δs

str . ∈ [101–105]. From this, we take

Cw
max . = max (Cw). The black dashed line marks the upper deterministic limit for the feasibility of the coexistence fixed point.

(ii) Analogous analysis for different system connectivities, L. A clear transition appears as a function of L, from a dominance of the
stronger phage to a dominance of the weaker competitor. The low fraction of habitats shared by both phages (white scattered
dots) points towards local competitive dynamics acting on a much faster time scale than habitat connectivity. (b) Effective fitness
landscape. We systematically estimate the optimal δs value for the weaker phage strain for different (p, j0) pairs for L = 0.1. This can
be considered a measure of the effective fitness, as opposed to the intrinsic fitness, measured only from the deterministic parameters.
Red shades indicate a dominance of the weaker strain, that is, a higher number of habitats occupied by it than its stronger competitor.
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systems when subject to demographic noise [61]. These oscillations push individual habitats far from
their coexistence fixed point, occasionally driving them to extinction. On a spatial level, the system
reaches a new balance between local extinctions and dispersal-mediated migration, leaving a finite
fraction of habitats either unpopulated or phage free. Overall, dispersal comes in as a source of
instability as well as a driver for global microbial persistence in locally ephemeral habitats. Further-
more, these baseline dynamics are revealed to be crucial for microbial diversity. Even though competi-
tive exclusion applies within individual habitats, conditions exist where, by persisting longer in local
habitats, weaker phage strains manage to coexist in the spatial system and even dominate to the
detriment of the stronger competitor, that is, indirectly reducing its presence in habitats where the first
are not present.

In the framework of the model, inter-specific differentiation in competitive ability and its conse-
quent change in habitat longevity is suggested to be important in allowing multi-species coexistence.
This differentiation, however, seems to only be allowed if bounded, qualitatively aligning with the
limiting similarity suggested by Tilman [28]. There are, however, a few elements linked to the
particularities of the phage–bacteria system of study. (i) Whereas the limiting similarity concept
suggests the existence of an upper bound to the fitness distance for species coexistence, we here
observe that not only adjacent competitors (in our case the two phage species) are not allowed to be
too close, but also too far from each other. We thus find that coexistence is allowed within a fitness
interval, that is, there is also a lower bound to the fitness distance. (ii) Within this interval, there is an
optimal fitness value, where the number of inhabited habitats by the weaker competitor is maximized.
This is, however, not the highest possible value the competitor could have in order to coexist. This
introduces the interesting idea of not having a clear evolutionary strategy for the weaker competitor.
(iii) The spatial presence of the stronger phage decreases with the presence of the weaker counterpart,
even though competitive exclusion applies and competitive dynamics work at a faster time scale than
migration. In consequence, competition not only takes place locally, but also via the re-arrangement of
the spatial structure.

In the atmosphere, the fate of a microorganism is related to the aerosolization, atmospheric
processing and deposition circumstances, such as the drying conditions upon aerosolization or
deposition [62], atmospheric temperature and humidity [63–65], salinity (osmostic pressure) [66,67],
UV exposure [41] and nutrient availability [35]. All these traits likely represent environmental dispersal
filters, a role supported by the suggested non-neutrality of dispersal [40,68–70], affecting the travel
distance and survival rates, or the biogeographic connectivity. On top, we note that, despite compara-
bly harsh conditions, the atmosphere has been proposed as a habitat where microorganisms can be
metabolically active and grow [71–74] as well as contribute to physical [75–77] and chemical [78,79]
transformations, potentially modifying cloud formation processes [76,77,80] and thereby affecting the
hydrological cycle [81] and Earth’s global energy budget. These are all mechanisms susceptible to
affect system-specific parameters such as the typical dispersal distance or the growth rate in a species-
dependent manner. Our case study thus constitutes a proof of concept of the role microbial dispersal
can play for community longevity and diversity.
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Appendix A. Simulation details
A.1. Transport scheme
For our choice of spatial length scale, Δx = 50 m, and typical diffusion coefficients for phages
and bacteria (see caption in table 1), relevant timescales for crossing one habitat boundary are∼ Δx2/D = 108–109 years and thus molecular diffusion can safely be neglected as a dominant trans-
port mechanism. The choice of grid box size implicitly constrains the typical length scale of the
phenomenon driving the vertical transport of biomass. We assume vertical transport events among
neighbouring columns to be uncorrelated. In order for this assumption to hold the effective length over
which a single mixing event takes place should not be bigger, or much smaller, than Δx. Turbulent
eddies can vary greatly in size, from millimetres to hundreds of metres, suggesting that, in a more
realistic setting, these compartments should be size distributed and their size should change in time. In
this work, for simplicity, we assumed they are all of the same size.

A.2. Time step
In practice, we set τ to the numerical time-step when integrating (equation 2.5)–(equation 2.8). This is,τ = Δt. With this, in the algorithm, for every time step, we allow for vertical exchange at each column
with probability p. This choice reduces the dimensionality of the explored parameter space, since τ is
kept fixed throughout the study.

A.3. Numerical scheme
Advection was in principle treated with a Lax–Wendroff scheme and a flux limiter correction to avoid
spurious oscillations. However, in order to deal with ‘delta-like’ peaks from stochastic sources, which
created density differences of up to ∼ 1012 − 14 in contiguous grid boxes, we decided to instead set
the Courant number (≡ v ⋅ Δt/Δx) to unity, a trade-off that allowed us to better advect particles but
constrained the time-step, and thus the numerical efficiency. For the time-stepping scheme, we used a
fourth-order Runge–Kutta algorithm.

A.4. Initial density profile
The initial density profile of species X  is selected by drawing uniformly distributed values from the
interval [0, Xst), where Xst is the steady state calculated in equations (B 3) and (B 4).

Appendix B. Lyapunov stable
We here show that the averaged equations (equation 3.1)–(equation 3.2) contain a globally asymptoti-
cally stable coexistence fixed point. For clarity, we write population densities in units of the carrying
capacity, K, that is, x ≡ n ⋅ K−1 and y ≡ m ⋅ K−1. By re-scaling the parameters accordingly, the equation
reads as

(B 1)ẋ = g~x ⋅ (1 − x) − η~xy − c~x ,

(B 2)ẏ = (β~ − 1) ⋅ η~xy − δ~y − c~y .

The coexistence fixed points are

(B 3)xst = δ~ + c~β~η~ ,

(B.4)η~yst + g~xst = g~ − c~ .

A Lyapunov function, V(x, y), exists for int ℝ+
2. Commonly used trials have the form [60]

(B 5)V(x, y) = H(xst, yst) − H(x, y) ,

with
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(B.6)H(x, y) = xstlog(x) − x + ystlog(y) − y .

With this choice equation (B 5) is definite positive and V(x→st) = 0. By making the slight modification

(B.7)H(x, y) = xstlog(x) − x + 1β~ − 1
ystlog(y) − y ,

we can see that V̇(x→st) < 0 ∀ x→ ∈ ℝ+
2 − {x→st}. Given that

(B.8)∂V
∂x = 1 − xstx  ,

(B 9)∂V
∂y = 1β~ − 1

⋅ 1 − ysty  ,

we have

(B 10)V̇ = (x − xst) ⋅ (g~(1 − x) − η~y − c~)

+ (y − yst) ⋅ ((β~ − 1) ⋅ η~x − η~ − c~) ⋅ 1β~ − 1

= − g~ ⋅ (x − xst)2 .

In the last equality, we used (equation B 3) and (equation B 4). The coexistence fixed point is therefore
globally asymptotically stable.

Appendix C. LSA of the well-mixed system
System (equation 2.1)–(equation 2.2), which we shall label as ‘well-mixed’, is known to have a
coexistence fixed point:

(C 1)nsst = δsη(β − 1) ,

(C 2)msst = gη 1 − nstK ,

which is globally stable (appendix B) when feasible, that is, nst < K.1 Upon a small perturbation, the
transient relaxation to the fixed point can be described as a stable spiral with a decay time scale of

1The prey population required to sustain the predator is smaller than the system’s carrying capacity.

Table 1. The diffusion coefficients used to roughly estimate the travelling time across grid-boxes are
Dn ∼ D||

2 + D⊥2 = 0.17 × 10−12 m2 s−1 [83] for bacteria (Escherichia coli) and Dm = 2.76 × 10−12 m2 s−1 [84] for phages. The decay

parameter in the upper layer, δa ∼ 0.01 min−1, is shared among bacteria [63] (E. coli) and viruses [33, §2.4]. These parameters have
not been picked as an attempt to fully characterize a particular system but to set the typical scales (the order of magnitude of
the different rates). For this, we also used δs ∼ 0.005 h−1 [85] (T5-E. coli or order of magnitude from table), β ∼ 100 [85] (order of
magnitude from table) E. coli, η ∼ 100 × 10−15 m3 h−1 [85] (order of magnitude from table) E. coli. For the growth rate and the carrying
capacity, we assume the system to be embedded in an ocean-like context in terms of nutrient availability; with this in mind, we set
K ∼ 106 ml−1 = 1012 m−3 and g ∼ 0.5 d−1[86–89].

system-specific parameters

K (m−3) β g (d−1) η (m3 d) δs (d−1) δa (d−1)

1012 [86–89] 100 [85] 0.5 [86–89] 2.14 × 10−12 [85] 0.12 [85] 864 [33,63]

spatial parameters

∆x (m) ∆t (s) Nx Ny v (m s−1) τ (s)

50 50 1000 2 1 ∆t
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∼ 21.7 years and an oscillation period of ∼ 25 days. This can be seen from a linear stability analysis.
The Jacobian is

(C 3)
g(1 − 2ns/K) − ηms −ηns

(β − 1)ηms 0 
 ,

from which we obtain the eigenvalues, λi. Given the system parameters (see appendix A, table 1) the
eigenvalues are complex:

(C 4)λi = γ ± iω .

Here γ = − 1
2gα and ω = 1

2 4ηδsmsst, with α = nsst/K. This classifies the fixed point as a stable spiral with

an oscillation period of

(C 5)T = 2πω = 0.07 years ∼ 25 days,

and a time scale for the decay of small perturbations of

(C 6)τper = 1|β| ∼ 21.7 years .

Equations (3.1)–(3.2) can be mapped to system (2.1)–(2.2) with an effective growth rate

(C 7)geff . = g − pj0  ,

carrying capacity

(C 8)Keff . = g
(g − pj0) ⋅ K  ,

and phage’s decay rate

(C 9)δseff . = δs + pj0 .

Consequently, this analysis also applies to system (3.1)–(3.2).

Appendix D. Phage-free survival limit
In the absence of bacteriophages and any sort of spatial structure (and therefore any grid-scale
transport scheme), the bacterial density will, in its logistic growth, asymptotically reach the carrying
capacity, K. However, when allowed to vertically move across layers a new contribution behaving
as a sink might keep the system from reaching a finite density fixed point. This is the first layer of
complexity with respect to the 0-dimensional well-mixed case, that is, two ‘vertically’ aligned grid
points where only bacteria are present and vertical transport fluxes are continuous. Analogously to
(equation 3.1)–(equation 3.2), the system reads as

(D 1)
dna(t)

dt = − δana + pj0(ns − na) ,

(D 2)
dns(t)

dt = gns 1 − nsK − pj0(ns − na) .

The steady state is

(D.3)nast = gδansst 1 − nsstK  ,

(D.4)nsst = 1 − δa ⋅ pj0
(δa + pj0) ⋅ g ⋅ K .

This yields an extra limit to the feasibility of coexistence:

(D 5)δa ⋅ pj0
(δa + pj0)

< g ,

in this case, exclusively related to the capability of bacteria to survive on their own.
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Appendix E. Migration experiments
Migration into a downstream habitat: 2 phages case. Here, we study the sytem’s response to positive
fluxes for the following cases: (i) the stronger phage migrates into a C habitat inhabited by the weaker
phage; (ii) the weaker phage migrates into a C habitat inhabited by the stronger phage. As expected,
competitive exclusion applies, that is, the stronger phage dominates on both scenarios, as depicted
in figure 7a. However, the critical trajectory of the migrating phage determines a value over which
the host’s population density is doomed to cross the extinction threshold, and thus the whole habitat
becomes extinct, as seen in figure 7b. This introduces the possibility for the weaker phage to drive its
competitor to extinction.

Appendix F. Signal length
Operational definition: To study the effect of local connectivity without interfering with the vertical
biomass scheme, one could fine-tune the δa parameter. Let us define the signal length, L, as the
maximum distance travelled by a biomass emission of magnitude equal to the system’s carrying
capacity, K, in the p = 0 case. From the tendency equation

(F 1)n(t) = Ke−δαT ,

(F 2)t∗ = L ⋅ N ⋅ Δt = − 1δa ⋅ ln ρextK  .

From this, we obtain L. A schematic illustration is depicted in figure 8. This is the definition of signal
length that we shall use in the main text (§3.1.2.1). It is of importance to have in mind that only same
pair (p, j0) cases can be compared when studying the ecological effects of the system’s connectivity, L.

106

10–3

101

105

109

1013

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

107

108

109

1010

1011

1012

1013

P
o

p
. 

d
en

si
ty

 (
m

{
–

3
}
)

n
 (

m
–

3
)

10–3

10–5 10–2 101 104 107 1010 1013

101

105

109

1013

n
(t

 =
 4

) 
(m

–
3
)

106

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

107

108

109

1010

1011

1012

1013

P
o

p
. 

d
en

si
ty

 (
m

{
–

3
}
)

m (m–3)

∆m (m–3)

10–3

10–5 10–2 101 104 107 1010 1013

101

105

109

1013

n
(t

 =
 4

) 
(m

–
3
)

∆m (m–3)

10–3

101

105

109

1013

n
 (

m
–

3
)

m (m–3)

(a)

(b)

Strong phage influx Weak phage influx
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Appendix G. Amplitude of oscillations
The amplitude of the transient oscillatory behaviour back to the steady state is a function of the
system’s deterministic parameters. Here, we explore, in an illustrative manner, how it depends on the
values of the phage’s decay rate in the surface layer, δs. In figure 9, we see that, for lower values of
the decay rate, and thus higher competitive ability, the oscillations approach the bacterial population
density extinction threshold. This is taken as a sign for the decrease in stability of habitats with
stronger viruses figure 9.
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32 Chapter 2 Dispersal-mediated competition and diversity in a phage-bacteria

ecosystem



3A regional study on the
Asian tiger mosquito,
Aedes Albopictus

3.1 Synopsis

3.1.1 Introduction

In this chapter we study an insect of the order Diptera (di- “two”, pteron

“wing”, or, in the common language, fly) and family Culicidae, i.e., a mosquito

(small mosca, or fly, from Portuguese and Spanish). Mosquitoes have a complex

life cycle, comprising 4 distinct stages: egg, larva, pupa and adult. The first

three are aquatic stages, whereas the last is mostly “aereal”. Eggs are laid by

adult mosquitoes in water bodies with specific characteristics, such as odour,

taste, flow or shade, either at the surface or the edge of the body, depending on

the species [48]. When eggs hatch, motile larvae emerge to feed, being capable

of inter- [49] and intra-specific [49, 50] predation, and grow until they become

pupae. The future adult develops within and, when fully formed, emerges as

the pupa floats in the surface. Some mosquitoes are capable to enter a state

of dormancy known as diapause [51], which has been observed at different

developmental stages, depending on the species. Diapause is triggered by

adverse environmental conditions, such as drought or short photoperiods [51].

Upon re-activation, triggered in return by some advantageous environmental

factor, e.g., a long enough photoperiod [52], indicating the end of winter and

beginning of spring, development continues, providing the mosquito, in this

case, with an overwinter mechanism.

From this description one can realize that environmental variables, such

as near-surface air temperature, water temperature, rainfall (marking the

potential creation of temporary water bodies) or solar irradiation may be
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used as proxies to describe the dynamics of the mosquito in its different life

stages. Indeed, many studies use this information to build models that help

us understand the current and future geographic distribution as well as the

temporal dynamics of diverse mosquitoes [52–55], most of which act as vectors

of disease, such as malaria [56], posing a significant risk to public health. Let

us now focus on the topic of this study.

The mosquito Aedes albopictus (Skuse, 1894) (Genus: Aedes, species: Aedes
albopictus), commonly known as the Asian tiger mosquito, originates in tropical

and subtropical forested areas of the Asian southeast [57]. Globalization has,

however, enabled this mosquito to successfully colonize all continents except

Antarctica [58], including temperate regions of North America [59] and Europe

[60]. Given its role as capable vector of diverse arboviruses such as dengue

(DENV) [5], Zika (ZIKV) [6] and chikungunya (CHIKV) [7], understanding

the geographical distribution and activity of the arthropod constitutes an

important challenge, relevant for public health activities such as the design of

guided intervention strategies.

Similar to other diptera the tiger mosquito’s life cycle, including the larval and

the gonotrophic (egg development within the adult) cycles, is affected by local

climatic conditions, such as the availability of rain-fed temporary ponds and

near-surface air temperature. In this chapter we used a regional climate-aware

dynamical model of the ecology of Ae. albopictus to tackle climate-related

problems. The region of study is Italy during the years 1980-2023, with the

possibility to extrapolate the tools developed here to other regions.

3.1.2 Objectives

In particular, the goal of this study was four-fold:

0.- Adapting the model to the Asian tiger mosquito: The dynamical model

used in this study was initially formulated for Anopheles gambiae s.s. and the

associated P. falciparum parasite. The model structure is however generic to

other mosquito species and we here adapted it to describe temperate Aedes
albopictus populations. This adaptation exercise has successfully been per-

formed before [54] and encompassed the re-evaluation of model parameters
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Figure 3.1: (Ovi)trap sites used in the model calibration (black crosses) and occur-
rence data derived from the data bases [65] (red circles) and [66] (green
squares).

and implementation of temperature-driven and vector-specific mortality rates

for adult vectors, larvae and eggs.

1.- Calibration and validation: The model contains a set of mosquito-related

parameters that can be constrained by field and laboratory observations. These,

nevertheless, have a remaining range of uncertainty which can be exploited

to perform a constrained optimization employing the genetic algorithm (GA)

developed in [61]. During the optimization process parameter values are

sampled within their uncertainty range to minimize the difference between

a chosen model’s output and an observation database, in this case, temporal

egg data collected by a network of traps spread across ten Italian cities in the

Emilia-Romagna region [62–64]. This is the calibration step. Once calibrated,

the model was validated against the same temporal database as well as against

spatial information on the presence of the vector in the region of study. The

spatial occurrence information was obtained from the two databases [65, 66]

(Fig. 3.1). Once validated we addressed climate-related questions.
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2.- Average and long-term behaviour: What is the geographical distribution

and average density of the vector? What is the activity season duration and is

this length changing in time as a consequence of climate change?

3.- Short-term response to heatwaves: What is the impact of extreme heat-

wave events on the behaviour of the vector? Are these warm events beneficial

or detrimental for the population of the mosquito?

3.1.3 Methods

The dynamical model used in this study is the VECtor-borne disease community

model of ICTP, TRIeste (VECTRI) [53]. The model was initially developed for

Anopheles gambiae and P. falciparum malaria [67–69] and has been, in this

study, adapted for Ae. albopictus. At any particular location, the dynamics of

the mosquito in its adult (V ), egg (E) and larval (L) stages is modelled as the

set of coupled differential equations

dE(t)
dt

= Negg · Rgono(T2m) · V (t) − δE(Twat) · E(t) − gE · E(t) , (3.1)

∂L(f, t)
∂t

= [f = 0] · gE · E(t) − δL(Twat) · L(f, t) − δcrowd(Rd, L) · L(f, t) − RL(Twat) · ∂L(f, t)
∂f

,

(3.2)

dV (t)
dt

= RL(Twat) · ∂L(f, t)
∂f

∣∣∣∣∣
f=1

− δV (T2m) · V (t) . (3.3)

Here, Negg is the average number of laid eggs per batch that result in female

vectors, Rgono the rate of the gonotrophic cycle, δi decay rates associated to

temperature (E, V and L) and crowding effects (crowd), gE the egg hatching

rate, [∗] the Iverson bracket with f describing the fractional developmental

stage of larvae, whose evolution is modelled as an advection equation along f ,

bounded to [0, 1], and RL the advection velocity of larvae development. The

dependencies T2m, Twat and Rd are the two-metre air temperature (◦C), the

pond water temperature (◦C) and the daily rainfall (mm/day), respectively.

The model is summarized in the schematics of Fig. (3.2). For numerical

treatment, the fractional development stage interval, [0, 1], is discretized into
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Figure 3.2: Schematics of VECTRI’s climate-aware dynamical model of the ecology
of mosquitoes.

NL boxes and we will refer to f in terms of the associated integer-valued index

i ∈ {1, 2, ..., NL}.

The model does not account for vector movement across grid points and

assumes the mosquito has been introduced everywhere, giving its density

solely as a function of the local climatic features. VECTRI needs two-metre

air temperature, rainfall and human population density values as input data

to drive its dynamics. The human population density, ρh, is used to estimate

part of the larval carrying capacity, discussed further in the text. In this

study temperature and rainfall are functions of time, i.e., T2m = T2m(t) and

Rd = Rd(t), while human population values are kept constant. These can

either be idealized or realistic, depending on the goal of the study. In this

thesis we used realistic values for temperature and rainfall obtained from the

E-OBS data set version 28.0e [70] with a 0.1° × 0.1° spatial resolution. Human

population density values were obtained from the Gridded Population of the
World GPwv4 project [71] and interpolated to the grid defined by the climate

variables using the CDO software [72].
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Figure 3.3: Vector (V ), larval (L) and egg (E) survival probabilities fitted in [52]
and implemented for this study in VECTRI for the parameterization of Ae.
albopictus.

Mortality scheme

• Temperature: temperature drives mortality among eggs, larvae and

mosquitoes (e.g., [73]). In the model this is factored in as a set of decay

rates, {δE, δL, δV }, whose values are taken from empirical functions fitted

from field and laboratory studies. These functions vary greatly among

vectors and are typically reported as daily survival probabilities [52] (Fig

3.3).

• Predation and overcrowding: the parameter δcrowd encompasses larval

predation and crowding effects. The first is modelled as a constant

survival probability, PL,surv0 = 0.9, and the second takes the form of

a logistic term, whose carrying capacity is determined by a maximum

larval biomass surface density, Mmax (mg m−2), and the fractional area

of potential breeding sites in a particular location, w(Rd), i.e.,

Pcrowd(L, Rd) =
(

1 −
∑NL

i=1 MLi

w(Rd) · Mmax

)
. (3.4)
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Here, MLi
is the total surface biomass of larvae in the i-th fractional

developmental stage, with

MLi
= i

NL

· L4 . (3.5)

L4 is the biomass of a single larva in its fully-grown stage, typically

referred to as stage 4. From now on, the notation “L” stands for L =∑
i Li.

• Flushing: heavy rainfall flushes out larvae and contributes to their

mortality [74]. This is represented in VECTRI as a survival probability

function of the local daily rainfall, Rd. The final expression accounting

for predation, overcrowding and flushing effects reads as

PL,surv = Pcrowd(L, Rd) · PL,surv0 · Pflush(Rd) , (3.6)

with δcrowd = 1 − PL,surv. For more information on the flushing function

the reader is referred to [53].

Pond fraction estimation

A proper estimation of the fraction of potential breed-

ing sites in each grid point is of major importance,

since it affects larval development via the carrying

capacity. Distinct vectors have different breeding pref-

erences. For example, Anopheles gambiae is known

to prefer rural areas [75], whereas the Asian tiger

mosquito, Ae. albopictus, is a urban-adapted species [76] and benefits from

the presence of human-made objects. Based on this variety, VECTRI builds the

fraction as a contribution of three sources:

• Permanent: breeding sites related to features such as rivers or natural

lakes.

• Temporary: precipitation-fed temporary ponds.
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• Urban: human-related features that can cause water storage, like used

tires, plant pots or gutters.

Each source, i, is weighted by a vector-specific “usage” coefficient, ri ∈ [0, 1],
representing the breeding habitat preference of a particular vector in that

source. The total availability of breeding sites reads as

w(Rd) = rurbn ·wurbn(ρh)︸ ︷︷ ︸
stationary

+rperm · wperm︸ ︷︷ ︸
stationary

+rpond · wpond(Rd)︸ ︷︷ ︸
dynamic

. (3.7)

In braces are pointed the stationary and dynamic terms. wperm is by default

set to a very low value (10−6) and one has to manually feed the model a file

containing these features. The logarithm of human population density is used

as a proxy for the availability of human-related breeding sites,

wurbn(ρh) = s · ln
(

ρh

τ
+ 1

)
, (3.8)

with s and τ being free and tunable parameters. Since the human population

density in this study is constant, the only fraction that changes over time is that

determined by rainfall. To see an explicit development of the dynamic term

the reader is now referred to [77, 78]. Usage coefficients are highly uncertain

and must be calibrated for each vector against empirical data.

Numerics

In VECTRI, equations (3.1-3.3) are not integrated simultaneously, instead,

the different terms are integrated sequentially and fed into the next. This

technique is called operator splitting and is frequently used in, e.g., atmospheric

sciences. Symbolically, the integration algorithm for, e.g., equation (3.1) can

be written as

E(t + ∆t) = E(t) +
(

∂E

∂t

)
gono

· ∆t +
(

∂E

∂t

)
decay

· ∆t +
(

∂E

∂t

)
hatch

· ∆t . (3.9)
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In practice, as mentioned before, these are solved one by one, and each result

is fed into the next term. The model has a fixed time step of one day, i.e.,
∆t = 1 day, and time-stepping is performed with an explicit Euler scheme.

One time-step integration of equation (3.1) would be

Egono = E(t) +
(

∂E(t)
∂t

)
gono

· ∆t (3.10)

Edecay = Egono +
(

∂Egono

∂t

)
decay

· ∆t (3.11)

E(t + ∆t) = Edecay +
(

∂Edecay

∂t

)
hatch

· ∆t . (3.12)

Mortality rates associated to temperature and overcrowding, δi, are written

as daily survival probabilities, pi, and the corresponding densities, ϕ, are

integrated as

ϕa = ϕb − (1 − pi) · ϕb · ∆t︸︷︷︸
= 1

= pi · ϕb . (3.13)

For example,

Edecay = Egono − δE(T2m) · Egono · ∆t = Egono − (1 − pE(T2m)) · Egono (3.14)

= pE(T2m) · Egono , (3.15)

with pE(T2m) being the survival probability shown in Fig. 3.3. The integration

order, in model version 1.11.3, is the following:

1. Gonotrophic cycle

2. Temperature-driven mortality for the vector

3. Vector oviposition

4. Pond model

5. Crowding mortality for larvae
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6. Larval progression/development

7. Larval and egg mortality (predation, overcrowding and water tempera-

ture)

8. Larval hatching/ vector emergence

Aquatic stages

In VECTRI, two-metre air temperature is used as a proxy to estimate pond

water temperature, assumed to have a permanent shift of +2K with respect to

the first. This relation is however highly dependent on the features of the water

body and can be improved with external hydrology models, not included in

VECTRI’s core code. In turn, water temperature is used as a proxy to estimate

egg and larval developments.

For larvae, the advection velocity, RL, follows the degree-day concept from

Detinova [79, 80], a measure of accumulated heat above a given developmen-

tal threshold. Particularly, it follows the linear function of water temperature

RL = Twat − TL,min

KL

∈ [0, 1] . (3.16)

Here TL,min is the minimal water temperature for larval development, below

which growth ceases, and KL (K day) the necessary number of degree-days

for a complete progression into the pupal stage. The advection velocity can

thus be interpreted as a fractional growth rate.

The default advection algorithm for larval development is a simple “integer

box-shifting” algorithm, namely, if Twat > TL,min, all larvae are advected a

number of boxes

⌊NL · ∆L⌋ , (3.17)

with ⌊∗⌋ being the floor function and ∆L the fractional shift, set by the advec-

tion velocity, i.e.,
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∆L = min(max(0.0, RL · ∆t), 1) . (3.18)

The duration of both egg hatching and pupal development stages are of the

order of one day [81, 82] and thus not well resolved by VECTRI. In order to

avoid truncation issues these are set to be constant and equal to the time step.

As we can see from the model equations (3.1-3.3), pupae are not explicitly

modelled, instead all larvae advected into the final fractional growth stage,

f = 1, become adults (first term in the right hand side of equation (3.3)).

Adult stage

Adult mosquitoes are those coupled to the “disease side” of the model. We

will, however, not dive into it and will stay focused on the ecology side. We do

have to know that, in the model, the vector density, V , is split into a number

of stages, Ninfc, reflecting the development of the parasite within. An explicit

description of the gonotrophic cycle would then require V to have a matrix

structure (meaning to be a 2-dimensional vector), one dimension for parasite

development and the other for egg development. From v1.8 VECTRI stopped

having the former and V is just 1-dimensional. Equation (3.3) thus reffers

to the sum of this vector, and the advected larval influx (typically known as

emergence rate) feeds into its first element. Even though the gonotrophic

cycle is not explicitly resolved, egg development within the mosquito and

the subsequent oviposition has kept the numerical treatment of having a

discretized structure and is treated in the same manner as larval advection.

The egg laying rate, which follows as well a degree-day concept, reads as

Rgono(T2m) = T2m − Tgono,min

Kgono

∈ [0, 1] . (3.19)

Here, Tgono,min is the minimal air temperature for the gonotrophic cycle and

Kgono the necessary number of degree-days for a full egg development. Con-

ceptually, the advection velocity, Rgono, may be interpreted as the fraction of

vectors ready to lay eggs. Consequently, the update rule reads as
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(
∂E

∂t

)
gono

· ∆t = Negg ·

∆gono ·
Ninfc∑
i=1

V (i)
 · ∆t , (3.20)

with

∆gono = min(max(0.0, Rgono · ∆t), 1) . (3.21)

Calibration process

As mentioned above, some parameters are subject to a high degree of un-

certainty, such as the usage coefficients. Others, on the other hand, are

constrained by field and/or laboratory measurements, but remain neverthe-

less undetermined, within a narrower degree of uncertainty. Optimization

tools can here be used to adjust the value of these parameters to improve the

model’s performance against empirical data. The performance can generally be

thought as the degree of discrepancy between an observed signal and that of

the model’s output. This signal can take many forms, from the number of egg

counts in an ovitrap to the number of recorded malaria cases in a village. In

this study ovitrap data (data of trapped mosquito eggs) was used to calibrate

model parameters using the genetic algorithm (GA) from [61]. The algorithm

allows for a set of specified model parameters to be adjusted within the bounds

of their assessed uncertainty and, in this sense, differs from a free parameter

search, i.e., it is a constrained optimization tool.

3.1.4 Results

0.- Adapting the model to the Asian tiger mosquito: The temperature-driven

mortality was obtained from the study [52] (Fig. 3.3) and vector-specific life

cycle parameters were obtained from literature (see Electronic Supplementary

Material in the manuscript). These parameters, among others, were then

calibrated.

1.- Calibration and validation: Once calibrated, the model could success-

fully reproduce the seasonal activity of the vector for all Italian sites where
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ovitrap data was available and, to a lesser extend, the inter-annual variability

in population density. Spatially, the model also reproduced the geographical

distribution of the vector, inferred from the occurrence data bases and, impor-

tantly, scored higher with the one that is most complete and up-to-date.

2.- Average and long-term behaviour: Populated areas such as Rome, Naples

and Milan are modelled to be the main vector hotspots (Fig. 3.4a). The Po

Valley as well as regions in Firenze and Apulia show moderate values whereas

highland areas such as the Central Apenine mountains and the Alps remain

low. The model describes a pronounced north-south gradient in the mosquito’s

seasonal activity length, with especially high values in southern coastal areas

of ∼ 30-40 weeks (Fig. 3.4b). A risk map integrating average mosquito

density and activity length is provided in Fig. 3.4c. Overlaid, we show densely

populated areas, which coincide with risk hospots such as Rome, Naples,

Foggia, Catania, Palermo, Lecce and Cagliari, among others. The mosquito’s

seasonal activity duration is modelled to experience a linear increase in time

(Fig. 3.4d), with a higher rate of increase, of around ∼ 2-3 weeks per decade,

in the south. Some southern coastal regions are modelled to be homodynamic,

namely the vector is active all year-round.

3.- Short-term response to heatwaves: Warm events

considered as heatwaves have three distinct effects on the

modelled population dynamics of Ae. albopictus. They

can be Consistently beneficial, namely remain in a temper-

ature range where growth terms overcome temperature-

dependent mortality rates and thus experiment higher

population densities than a counterfactual equivalent,

where the heatwaves have been suppressed ; Consistently detrimental, the

opposite of the previous ; Temporarily detrimental, where vector populations

experience an initial decrease followed by a rebound, partly driven by the

age-structured description of larval development in the dynamical model.

3.1.5 Discussion

In this study the climate-sensitive dynamics of the mosquito Ae. albopictus were

modelled. The arthropod, vector of diverse arboviruses, poses a significant

threat to public health. Consequently, the development of calibrated tools with
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Figure 3.4: a) Mean vector density for the 1980-2023 period. The Italian sites used
for the model calibration are depicted with black crosses. b) Average
season duration (weeks), defined as the number of days in the year were
the vector density is above 1.5 · 10−4m−2 (see manuscript for threshold
selection discussion). c) As a plausible metric to describe the average
level of risk we here show the product of a) and b). d) Linear regression
coefficients of simulated activity season duration (weeks/decade) across
Italy. In black we have masked regions where the season has already
reached 365 days at least for one year throughout the simulated period.

the ability to describe its geographic distribution and temporal dynamics have

the potential to be used as useful guide for surveillance activities, to generate

risk estimates and forecast sort and long-term future trends in mosquito activity.

Future model developments could include the implementation of egg diapause,

since, contrary to those found in tropical places, temperate Ae. albopictus
strains are capable of entering such state [83]. For further details, in-depth

development and discussion the reader is now referred to the manuscript

included in the next section.
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Abstract

The Asian tiger mosquito, Aedes albopictus, has spread widely throughout Italy since its introduction, with
significant public health implications. We examine how decadal temperature trends and sub-monthly heatwave
events affect its climate-driven geographical distribution and temporal dynamics using a new regional-scale dy-
namical Aedes model. The model is calibrated using 12 years of ovitrap data for Emilia-Romagna, reproduces
the vector seasonality and, to a lesser extent, its inter-annual variability. Simulated vector density hotspots
overlap with densely populated areas in Rome, Milan, Naples, Foggia, Catania, Palermo, Lecce, Cagliari, Genoa,
Turin and large urban centres in Emilia-Romagna. Lower risk is simulated over the Central Apennine mountains
and the Alps. At decadal time-scale, we simulate a lengthening of the active mosquito season by 0.5-3 weeks per
decade, with the vector becoming homodynamic in southern Italy. Depending on the climatic setting, heatwaves
can increase or reduce vector populations and, in some locations, can temporarily decrease mosquito populations.
Such decreases can be followed by a population rebound and overshoot. Given the model skill in reproducing
key spatio-temporal Ae. albopictus features, there is potential to develop an early warning system to inform
control efforts at national scale.

Keywords: Aedes albopictus; climate change ; temperature extremes ; regional modelling ; vector-borne diseases
; dynamical modelling

1 Introduction1

Aedes albopictus (Skuse, 1894)(Diptera: Culicidae), most commonly known as the Asian tiger mosquito, is indige-2

nous to tropical and subtropical regions of southeast Asia [1]. Even though it originates from forested areas, it is3

extremely well adapted to the urban environment [2], being able to use man-made artificial objects, such as tires4

and gutters as breeding sites [3]. By increasing movement of goods, globalization has enabled this mosquito species5

to successfully invade many parts of the world [1], including temperate areas of Europe [4] and North America [5].6

The colonization of Europe by the Asian tiger mosquito involved three independent introductions, very likely from7

used tyres in containers shipped from China. The first one occurred in Albania during the late 1970s, followed by8

introductions in northern and central Italy during the 1990s [6]. Ae. albopictus then rapidly spread from Albania9

and Italy to neighbouring European countries using motored vehicles and ships [7].10

The establishment of the Asian tiger mosquito is of special public health concern due to its role as a com-11

petent vector of arboviruses such as dengue (DENV) [8], chikungunya (CHIKV) [9] and Zika virus (ZIKV) [10].12

Autochthonous cases of dengue and chikungunya have been reported in southern France, Italy, Croatia and Spain13

over the past decade [11]. The first outbreak of chikungunya was reported in the province of Ravenna in Italy in14

2007, with about 200 cases [12]. In 2023, about 80 dengue cases were reported in Lombardia and in the Lazio region15

of Italy [13].16

Similar to other ectothermic arthropods, Ae. albopictus proliferates at a set range of temperatures determined17

by the sensitivity of the gonotrophic cycle as well as survival rates during aquatic and aerial life stages. Thus,18
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climate change in terms of the increase in both global surface temperature and changes in the occurrence of weather19

extremes, e.g., the frequency and intensity of heatwaves [14], not only has a significant direct impact on human20

health [15] but may also have it indirectly by affecting Ae. albopictus populations [16, 17].21

Past modelling studies, published in the early 2010s and based on environmental data, anticipated the spread22

of the Asian tiger mosquito in Europe [16, 18, 19], and have primarily focused on long-term impact of climate23

on mosquito population dynamics. These studies underlined that recent climate change caused more favourable24

overwintering conditions, longer activity seasons, as well as a potential spread of this species to central-northern25

European countries. More recently, modelling studies have shown that Ae. albopictus could become homodynamic,26

namely able to breed all year round, over southern Europe in the future [20]. Another recent global ecological27

niche study confirmed that Ae. albopictus could contribute to the emergence of chikungunya outbreaks and clusters28

of dengue autochthonous cases in southern France, Spain and Italy [21]. The Lazio region, that includes the29

metropolitan city of Rome and its international airport, with established Ae. albopictus populations, has already30

experienced autochthonous cases of dengue and chikungunya, and could potentially be at risk of Yellow Fever31

infections [22].32

In contrast to longer-term climate change, relatively few studies have investigated the impact of short-term33

weather extremes, such as heatwaves, on Ae. albopictus population dynamics on a long time period. In previous work34

a mechanistic mathematical model was used to show that heatwaves might be beneficial for mosquito development35

in the short-term while having an overall detrimental impact [23]. Results are however strongly dependent on36

heatwave timing and intensity. Another study highlights that winter heatwaves favoured off-season survival of37

diapausing eggs [24].38

In this study, we aim to further understand the impact of heatwaves in the context of a warming climate, in-39

vestigating the effect of daily temperature on Ae. albopictus populations. We use a climate-sensitive mathematical40

vector model to simulate population dynamics at different mosquito life stages in Italy, a major hotspot for this41

invasive species [25]. Spatio-temporal ovitrap monitoring data is available over a 12y time period for the Emilia-42

Romagna region, thus allowing a stringent validation and calibration of the model. The objectives of this study43

are two-fold. First, following a thorough validation of the model, we aim to determine trends in seasonal activity44

and mosquito abundance hotspots in the vicinity of densely populated regions of Italy. Second, we conduct sensi-45

tivity experiments to tease out detrimental from beneficial effects of heatwaves on mosquito dynamics, providing a46

mechanistic interpretation based on the mosquito life cycle as well as the aggregated overall effect of these extreme47

events at decadal time scale. Finally, we provide recommendations for public health stakeholders and discuss future48

perspectives of this work.49

2 Methods50

2.1 Model51

We use the VECtor borne disease community model of ICTP, TRIeste (VECTRI) model, which was originally52

developed for modelling the life cycle of An. gambiae s.s. and associated P. falciparum malaria transmission [26–53

29]. The model explicitly resolves the mosquito life cycle, including the gonotrophic and larval cycles and has been54

progressively expanded to model additional mosquito species. From v1.11, it includes a parameterization suite for55

the Asian tiger mosquito, Ae. albopictus, including a new temperature-dependent survival scheme [30]. The model56

version used here is v1.11.3.57

The key model inputs are two-metre air temperature, which impacts the gonotrophic and larval growth rates, as58

well as larvae and vector mortality, and precipitation, which provides breeding sites. An important parameter in the59

model is the water coverage of each model grid cell which can serve as potential breeding sites, given as a fraction60

w(λ, ϕ, t) ∈ [0, 1], since it controls the instantaneous carrying capacity of larvae biomass. The parameter represents61

a subset of all water coverage since large bodies of water are unsuitable for mosquito breeding. This potential62

breeding site coverage, or fraction of potential breeding sites, is built using a variety of climatic, hydrological and63

human-related features as proxies for the presence of potential breeding sites, constituting their aggregated value.64

Concretely, from v1.10 of VECTRI, this fraction is composed of 3 categories: the presence of sites that can occur65

along the borders of permanent features such as rivers or natural lakes (wperm), urban reservoirs such as water66

storage containers and plant pot drip trays (wurbn) and precipitation-fed temporary ponds (wpond). The wpond67

category is the only one that evolves dynamically in time in response to rainfall [31, 32]. In rural environments68

this category refers to ephemeral pools while in urban environments it also includes rain-fed sites such as road side69

ditches and poorly draining gutters. In contrast, wurbn and wperm are time-invariant. The first simply relates the70

availability of urban breeding sites proportionally to the logarithm of human population density [33, 34], similar71
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to other models that use human presence to estimate part of the local carrying capacity [35, 36] . The permanent72

fraction, wperm, is derived from aggregating water-land border pixels using metre-scale resolution Sentinel-derived73

land-cover maps aggregated to 5km tiles, but is not used in this study. The model does not account for land surface74

cover, nor it represents the transport of vectors over long distances, for example by motored vehicles, currently75

assuming a small seed vector population in each location when initialising from an artificial initial state. We note76

that the carrying capacity related to breeding site availability is one of the greatest sources of uncertainty in the77

model, as it is very difficult to evaluate from observations.78

For a given mosquito vector parameterized in VECTRI, the total availability of breeding sites, w, is the sum of79

each water body class i, weighted by a species-specific usage coefficient, ri, which represents the relative breeding80

habitat preferences of this vector:81

w = rpond · wpond + rurbn · wurbn + rperm · wperm . (1)82

Thus, An. gambiae s. s. that is primarily found in rural settings [37], would have a high coefficient of rpond,83

close to unity, while rurbn is close to zero. An. funestus would instead have a larger value for rperm [38–40], while84

urban-adapted species such as An. stephensi [41, 42] or Ae. albopictus [43, 44] should have larger rurbn values but85

also a non-zero pond usage fraction, while rperm is set to zero. The ri usage coefficients are highly uncertain and86

subject to the calibration process outlined in section 2.3.87

2.2 Input data88

The model is driven by daily rainfall (mm) and two-metre air temperature, T2m (◦C). As climate data input, we89

used the daily E-OBS data set version 28.0e [45] for the period 1980-2023, with a ∼ 0.1◦×0.1◦ spatial resolution. We90

used population density estimates from the Gridded Population of the World GPwv4 project [46] to calculate wurbn.91

Population data (per km2) was interpolated to the climate data grid resolution using a conservative interpolation92

method with the CDO software v2.30 [47].93
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Figure 1: a) The Italian sites used for the model calibration (black crosses) and map of reported observations of
Ae. albopictus based on data from [48] (red circles) and [49] (green squares). b) Egg abundance (2 weekly totals
per trap) as a function of the bi-weekly average T2m for the ten Italian cities. The mean (dotted-solid) and mean ±
one standard deviation (dashed) are shown using 1◦C bins. On top we show the associated temperature histogram.

2.3 Model calibration and ovitrap surveillance data94

VECTRI has a set of mosquito-related constant parameters which can be constrained by field and laboratory95

observations but are nevertheless uncertain. Employing a particle filter genetic algorithm (GA) methodology [50–96

52], we performed a constrained optimization and calibrated these parameters against temporal egg data, which97

are monitored by a network of ovitraps deployed in ten Italian cities of the Emilia-Romagna region [53–55] (black98
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crosses in Fig. 1a). This extensive surveillance network was setup shortly after the 2007 Chikungunya outbreak99

caused by Ae. albopictus [56–58]. We used median ovitrap data for the cities of Bologna, Cesena, Forli, Modena,100

Ferrara, Parma, Piacenza, Ravenna, Reggio and Rimini, from which the first half were used in the calibration and101

the rest were left as independent data for a posterior validation of the model. This data is recorded bi-weekly and102

we used the period 2010-2022 for calibration. In this study we adjust rurbn, given the preferential affinity of Ae.103

albopictus for urban sites [2] and rpond. The remaining adjusted parameters and further details on the calibration104

process are provided in Supp. S1.105

Once calibrated against ovitrap data, VECTRI was validated against this temporal data, including all cities, as106

well as against spatial information on the presence of Ae. albopictus in the Italian peninsula and Sardinia (see 2.4).107

Spatial occurrence data was derived from two sources: the study by [48] and the Global Biodiversity Information108

Facility (GBIF) [49] (Fig. 1a).109

2.4 Validation metrics110

To validate our model temporally, we calculated Pearson correlation coefficients between simulated and observed111

egg abundances, e(t), for the ten Italian sites, as follows.112

2.4.1 Seasonality113

The first correlation coefficient, r2site,all, calculates the correlation for all bi-weekly time points over the study period114

(2010-2022) where data is present and sufficiently continuous, i.e., there are no large missing data gaps throughout115

June-July-August (JJA). This metric is frequently employed in model validation to quantify the model’s ability to116

accurately reproduce observed trends [30, 59, 60]. Since the vector population density signal is strongly seasonal117

these coefficients assess how well the model captures the mosquito seasonality.118

2.4.2 Inter-annual variability119

Complementary to the seasonality metric, we also calculate Pearson correlation coefficients using standardized120

annual mean egg abundances in order to remove seasonality and focus on the ability of the model to represent121

inter-annual variability. Given that data was missing for Parma, Piacenza, Reggio and Rimini, the calculation is122

made for the multi-year time domain 2014-2021 for individual sites and referred to as r2site,y.123

Assessing inter-annual variability is extremely challenging, however, as non-climatic factors such as vector control124

measures, micro-climatic features as well as large uncertainties associated with ovitrap data, will cause site-to-site125

differences that may considerably exceed those driven by climate data, available at coarser spatial scales [55, 61].126

One way to try to account for such differences is to consider the spatial scales of climate temperature anomalies,127

since inter-annual variability and decadal trends of temperature will be relatively uniform across the scale of the128

ovitraps sites, that is, the inter-trap distances are relatively small compared to the spatial scale of temperature129

anomalies. This assumption holds for precipitation, but to a lesser degree, since precipitation can be more spatially130

heterogeneous with respect to temperature on inter-annual timescales (see Supp. S2.1). Thus, by constructing the131

correlation between each model site and the ensemble mean across all Italian observation sites, r2ens,y, we aim to132

isolate the climate-driven signal from other factors and data errors that operate on the sub-regional scale. These133

statistics are calculated as well over the period 2014-2021.134

A perfect match between the observed and simulated vector density would mean r2 ∼ 1. A lower value of either135

indicates flaws in different aspects of the simulated signal, as described above.136

2.4.3 Spatial validation137

To measure the ability of our model to discriminate regions where Ae. albopictus is present against regions where138

it is absent we constructed Receiver Operating Characteristics (ROC) curves [62] using the aforementioned spatial139

occurrence data. This spatial validation metric, used extensively in species’ distribution modelling [63], required140

the conversion of our model outputs into a binary format, i.e., into presence-absence data. This synthetic presence-141

absence data was then compared against actual occurrence data to quantify their overlap (see Supp. S2.2). Specif-142

ically, to map our continuous data into 0s and 1s (stating the absence or presence of the mosquito in a particular143

site, respectively) we used the vector density variable, averaged over the simulated period, as a classifier. If a144

given threshold value in the vector’s density (which was changed para-metrically to construct the curve) was (not)145

exceeded by the modelled vector density, then the mosquito was considered to be present (absent) in that site.146

Finally, if this agreed with the observations we then marked it as a true positive (negative), otherwise we considered147

the model had failed to properly predict the absence (presence) of the mosquito in that site, i.e., the test was148
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considered a false positive (negative). From this, we report the Area Under the Curve (AUC), i.e., the integral of149

the ROC curve. As an integrated quantity, the AUC is a threshold-free indicator of the general ability of the model150

to weight areas particularly suited for a given species. A random predictor model has an AUC of 0.5, a good model151

lies between ∼ 0.6-0.8 and an excellent predictive model is above 0.9.152

2.5 Experimental setup153

Once calibrated and validated, we analysed two simulations. First, a control simulation, termed cntl hereafter,154

with unmodified observed daily values for temperature and rainfall. Second, a counterfactual simulation, where155

the temperature series has been modified to remove warm events, and thus does not contain their contribution156

to simulated mosquito’s population density. Heatwaves are events with extreme temperature values. There are,157

however, many ways to define an extreme [64, 65], most revolving on the choice of threshold. Some studies work with158

fixed thresholds, such as 25
◦
C [66, 67] , trending thresholds, to correct for the non-stationary baseline provoked159

by global warming, or thresholds based on the local distribution of the variable [65, 68], such as percentile-based160

thresholds. In this study we used the boreal summer JJA 90th percentile for the period 1980-2023 as a simple161

heatwave threshold in each grid cell. Threshold values are therefore local and, by construction, 10% of all events162

are considered to be extreme. In practice, temperature values exceeding the 90th percentile were clipped to this163

value, i.e., if T2m > T90th then we set T2m = T90th. We shall denote this second simulation as clipped. Our choice164

of threshold is based on the interest to capture the effect of heatwaves relative to local conditions in a changing165

climate while keeping the physiological characteristics of the mosquito constant.166

3 Results167

3.1 Ovitrap data168

The relationship between observed bi-weekly egg abundance and two-week average temperature for cities monitored169

in the Emilia-Romagna region is depicted in Fig 1b. Even though some eggs were found below 10◦C, most eggs170

were trapped at temperatures exceeding ∼ 11◦C. The average across all sites surpasses 1 egg per trap in the171

11 − 12◦C bin, denoted by a vertical dashed line. These temperature thresholds are consistent with early risk172

modelling assumptions for this species in the UK [69] and Japan [70]. The peak egg densities appear to occur173

between 25 − 26◦C after which the egg density starts to decline. In the period and location where eggs were174

sampled, average bi-weekly temperature never exceeded ∼ 30◦C. Egg abundance values for the ten Italian cities175

are relatively homogeneous, with the largest abundance values being recorded in Rimini.176

3.2 Model validation177

3.2.1 Seasonality178

The seasonality of the observed egg population is well-captured at the ovitrap sites (Bologna in Fig. 2a and Supp.179

S3). Importantly, our model captures the start and end of the observed egg activity season for all studied sites with a180

small delay in the onset phase relative to the data. In table 1 (left, first column) we report the seasonal performance181

of the model for the ten different Italian sites. Most correlation coefficients exceed 0.8 (except Ravenna) and all are182

significant at the 99% confidence interval. We emphasize that the calibration technique only allows the specified183

constants of the mathematical dynamical model to be adjusted within the bounds of their assessed uncertainty184

[50], the prior, and in this respect contrasts with a free parameter search or the free fitting of a statistical model185

such as commonly-used generalized linear models. In this sense, the constrained optimization approach resembles186

a Bayesian inference method, such as the one used in a similar study [35], from the use of prior and bounded187

information in the search for an optimal, yet realistic, solution. The fact that the model is able to simulate the188

seasonal evolution is only possible if the underlying equations that describe the larvae-adult life cycles are reasonable189

approximations of the biological system under scope.190

3.2.2 Inter-annual variability191

r2ens,y correlation coefficients at inter-annual time scale are moderate, and mostly significant except for Forli and192

Modena, where the model clearly disagrees with the observed variability (table 1 left, second column). Most points193

of the simulated ensemble mean, however, lie within 1σ of the observed ensemble mean (Fig. 2b), indicating that194

part of the climate-driven variability signal is captured by the model. r2site,y correlation coefficients for Cesena195
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Figure 2: a) Example of the temporal calibration in the Bologna site using the GA. Observed egg data is
shown against re-scaled model output (see Supp. S1) as well as their respective annual means. b) Standardized
ensemble annual means of the observed and simulated (cntl) egg densities in the ten Italian sites. c) Example
Receiver Operating Characteristics (ROC) curves for the whole Italian domain, the mid-altitude and highland
regions (550m >) and the lowland areas (550m <) using baseline data from [48].

and Ferrara are lower than their ensemble equivalent, due to some years having opposite trends between on site196

simulated and observed signals (2017, 2020 for Cesena and 2017 for Ferrara). Ravenna, Reggio, Piacenza, Forli and197

Parma show an improvement that misrepresents the quality of the simulated signal, given that sporadic missing198

data in these locations during the peak vector activity weights the metric towards a seasonality estimate (see Fig.199

S3 in Supp. S3). Six out of ten site-to-site correlation coefficients (r2site,y) are significant at the 95% confidence level,200

denoting the model’s capability in reproducing low-high egg abundance years per city. However, these correlation201

values but should be considered carefully, given the small sample size (8y) and the amount of missing data.202

3.2.3 Spatial validation203

The spatial validation is performed using different subdomains, each defined for different altitude ranges (Fig. 2c).204

In table 1 (right) we report the area under the (ROC) curve, AUC, for the different altitude strata and data205

sets. Most AUC exceed 0.7, and there are differences depending on the observed occurrence data that was used as206

baseline. Notably, AUC exceed 0.75 when using the latest, most up to date, occurrence database from the Global207

Biodiversity Information Facility as baseline. Consequently, the model is able to reproduce the geographical extent208

of the vector to a good degree, especially accounting for the limitations of such databases and the fact that the209

vector is still in a phase of expansion and may still not have invaded all possible climatically suitable niches within210

the country, as reflected by its recent spread to higher altitude regions of Italy [71].211
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Temporal Spatial
Location r2site,all r2ens,y r2site,y AUC Height

Bologna 0.79∗∗∗ 0.50∗∗ 0.84∗∗∗ [48]
Cesena 0.69∗∗∗ 0.61∗∗ 0.12 0.77 All
Ferrara 0.72∗∗∗ 0.70∗∗∗ 0.48∗ 0.76 550m <
Forli 0.71∗∗∗ 0.06 0.53∗∗ 0.66 550m >
Modena 0.68∗∗∗ 0.22 0.14 [49]
Parma 0.78∗∗∗ 0.49∗ 0.63∗∗ 0.77 All
Piacenza 0.81∗∗∗ 0.50∗ 0.77∗∗∗ 0.75 550m <
Ravenna 0.63∗∗∗ 0.47∗ 0.67∗∗ 0.84 550m >
Reggio 0.72∗∗∗ 0.43∗ 0.51∗∗ [48] & [49]
Rimini 0.80∗∗∗ 0.50∗∗ 0.11 0.69 All

0.66 550m <
0.72 550m >

Table 1: Left. Temporal validation of the VECTRI model against egg data from the Italian sites. We report
r2site,all, r2ens,y and r2site,y for each city. We mark significant results at the 90% (*), 95% (**) and 99% (***)
confidence intervals. Right. Spatial validation of the model against two occurrence databases of observed Ae.
albopictus.

3.3 Average risk: 1980-2023212

We examine the averaged vector density for the cntl simulation (Fig. 3a.), recalling that the model assumes that213

Ae. albopictus has been introduced at all locations and thus simulates population dynamics solely based on the214

local climatic conditions.215

Densely populated urban areas such as Milan, Rome and Naples are simulated to be the main Ae. albopictus216

hotspots. The Po valley, the Firenze area and the Apulia region (SE) also show large simulated density values217

whereas highland areas such as the Central Apennine mountains, show low density values. There is a pronounced218

north-south gradient in the simulated length of the vector activity season (Fig. 3b). Longest activity seasons219

(∼ 30-40 weeks) are simulated over southern coastal areas (Puglia, Basilicata and Calabria), the Lazio region, most220

of Sicily and parts of Sardinia. Northern regions including the Po valley are simulated to experience shorter activity221

seasons (∼ 20-30 weeks). Since the average vector density in the Po Valley is however high this indicates a shorter222

but therefore more pronounced activity, as compared to southern regions that might have a longer season with223

lower vector population density values.224

We provide a metric assessing integrated risk of mosquito density and the length of its activity season in Fig225

3c, where we overlaid regions with human population densities above 1500km−2, following the EU criterion for226

urban centers [72]. This map highlights regions where high simulated risk values coincide with densely populated227

areas. Largest simulated risk values coincide with population hotspots in Rome, Naples, Foggia, Catania, Palermo,228

Lecce and Cagliari. To a lesser extent, Milan, Genoa, Turin and large urban centres in the Emilia-Romagna region229

(Bologna, Modena and Ravenna) are also concomitant with high risk values.230

3.4 Decadal trends231

We observe a linear trend in the mosquito season length, defined as the period where the vector density is higher232

than a small threshold value (1.5 ·10−4 m2, see Fig. S4 in Supp. S4 for further details about threshold selection). In233

Fig. 3d we show the heatmap of linear regression coefficients (slopes) across Italy. Most of the Italian peninsula and234

Sardinia experience an increase in the season length, with the exception of lower Tuscany and upper Lazio regions.235

The largest increasing trend is shown over the southernmost regions, with a lengthening of the activity season that236

ranges between 2 and 3 weeks per decade over the study period. According to the model, climatic factors can be237

suitable for the vector to remain active all-year round (homodynamic activity) over a few southern coastal areas238

(depicted by black squares in Fig. 3d).239
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Figure 3: a) Mean vector density for the 1980− 2023 period. The Italian sites used for the model calibration are
depicted again with black crosses. b) Average season duration (weeks), defined as the number of days in the year
were the vector density is above 1.5 · 10−4m−2. c) As a plausible metric to describe the average level of risk we here
show the product of a) and b). d) Linear regression coefficients of simulated activity season duration (weeks/decade)
across Italy. In black we have masked regions where the season has already reached 365 days at least for one year
throughout the simulated period.

3.5 Impact of short-term heatwave events240

3.5.1 Mean seasonal effect241

By comparing cntl and clipped simulations, we can measure the integrated effect of warm temperature events across242

Italy. We see that, on average, heatwaves are beneficial to the vector and result in a net increase of the mosquito243

population (see Fig. S5 in Supp. S4). The increase is non-linear in time with the mean impact of heatwaves being244

larger in the 2010s with respect to the earlier period. This is the result of having a fixed 90th percentile threshold245

over the studied period, which is thus exceeded more frequently and by further in later years due to global warming.246

The spatial distribution of temperature-driven effects on vector density populations can be quantified by calculating247

the temporal covariance of the temperature difference and the rate of change of the egg density difference, between248

cntl and clipped, i.e.,249

c(λ, ϕ) = cov

[
∆T2m(λ, ϕ, t) · d(∆e(λ, ϕ, t))

dt

]
. (2)250

251

252

Here ∆T2m(λ, ϕ, t) ≡ T2m(λ, ϕ, t)− T 90th
2m (λ, ϕ, t) and ∆e(λ, ϕ, t) ≡ e(λ, ϕ, t)− e90th(λ, ϕ, t), with 90th denoting the253

clipped experiment. We chose to use the egg density in the covariance calculation since this variable shows a faster254
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Figure 4: Temporal distribution of temperature-driven effects on mosquito populations in three Italian cities:
Macerata (E), Turin (NW) and Catania (SE).

response to temperature changes than the vector density, which presents a small delay with temperatures due to255

inherent biological lags. Importantly, if the rate of change was calculated on the temperature difference instead of256

on the egg difference our metric would miss-represent the effect of increased temperatures, namely the first term257

could then be negative (positive) while the actual temperature difference, and thus the perturbation, was positive258

(negative) and the second term could be positive (negative) even though the last increased temperature had a259

detrimental (beneficial) effect on the egg population. An example case for three cities in distinct regions shows how260

temperature-driven effects are temporally distributed and its effect can vary widely across the Italian peninsula261

(Fig. 4). For Turin, covariance values are mostly positive over the study period, while they are mostly negative262

for Macerata (Fig. 4). For Catania, these can either be positive or negative depending on the year. Since we have263

already observed a long-term trend in the length of the mosquito activity season, we split the covariance calculation264

into decades 1980s, 1990s, 2000s and 2010s (Fig. 5). There are discernible spatial heterogeneities, which are265

accentuated in time. Despite representing a suitable habitat for Ae. albopictus, southern coastal regions, especially266

in Sicily, include areas where warm events increase the net mortality and thereby have a net detrimental effect on267

mosquito population. There is, however, a clear tendency of these events to be beneficial elsewhere. Particularly,268

parts of the Po valley and northern lowland regions, central valley areas in Trentino and the Rome-Naples coastal269

urban areas have experienced a clear beneficial effect of warm events on mosquito population at decadal time scales.270

3.5.2 Sub-monthly dynamics271

The long-term mean responses mask short-term impacts that can be positive or negative for the mosquito, as272

suggested by Fig. 4. In order to demonstrate this, we have identified three types of short-term responses that we273

illustrate with three case studies.274

275

Case 1: Consistently beneficial events276

277

In this example, the warm events remain within a “beneficial” temperature suitability range. Namely, the278

temperature-induced vector mortality is secondary compared to temperature-induced increases in the larval and279

adult growth rates and thus mosquito populations tend to increase incrementally throughout the whole duration of280

the heatwave. In Fig. 6a we show an example for Genoa where the aforementioned criterion is true for the whole281

activity season. At the start of the season, vector density values for both cntl and clipped experiments remain282

identical. However, in late June 2019, temperatures start rising above the 90th JJA percentile, as depicted by the283

cumulative number of degree days (black line), and population densities start to diverge between cntl and clipped284

simulations. This beneficial effect, namely that the vector density in the cntl simulation is systematically larger285

than the clipped analogue, remains the same until September 2019. In other words, temperatures did not reach286

values large enough to have a net detrimental effect on the simulated vector density in Genoa in 2019.287

288
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Figure 5: Covariance of the temperature difference and the rate of change in the egg density difference between
the cntl and the clipped simulations for the 1980s, 1990s, 2000s and 2010s. Positive values mean that the increased
temperature conditions, that we define as heatwaves, translate into an increase in simulated egg density, whereas
negative values indicate a detrimental effect of higher temperatures. Here we show the integrated effect per decade.
We mark the location of the cities shown in the previous figure.

Case 2: Consistently detrimental events289

290

Analogously to the previous case we find situations where extreme temperatures have a detrimental effect to291

vector populations. Such is the case in Macerata in 2000 (Fig. 6b), where temperatures exceeded the 90th percentile292

twice, in early July and late August, both resulting in a simulated decrease in mosquito populations. This example293

case study of Macerata, where the two major heat events are separated by a long period, enables us to ascertain294

a lag between the climate and Ae. albopictus population, observed in a different Ae. albopictus modelling study295

focused on sub-tropical regions of China (Guangzhou) [23]. The extreme heat starts to have an immediate impact296

on vector populations due to the increase in mortality, but the effect of the heatwave continues to be felt for the297

first eight days after the event termination due to the recovery associated with the vector life cycle (Fig. 6b). The298

recovery timescale will itself be dependent on temperature, being higher at cooler temperatures given the decreased299

larval and gonotrophic development rates.300

301

Case 3: Temporarily detrimental302

303

In this category, warm events occasionally lead to periods of lower vector density due to the detrimental impact304
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of extreme temperatures on mosquito survival. These periods are however followed by a population density rebound305

in cntl which, in some cases, exceeds the clipped equivalent. In Fig. 6c-i we show an example for Lecce, in the region306

of Apulia. During the heatwave that occurred in August 1999, vector and larval densities are initially reduced in307

cntl with respect to clipped (Fig. 6c-ii,iii). This is especially true for larvae in their early development stage (Fig.308

6c-iii), where increased temperatures act to decrease young larval density while increasing the older larval density309

and the emergence rate (the rate at which larvae transition to adult vectors). Such increases are concomitant310

with a higher survival probability due to lower overcrowding effects and indicate a shift of the distribution towards311

further developed larvae. A couple of days later, this effect leads to the simulated overshoot in vector and larval312

populations. The cause of these transient dynamics might therefore be related to the bin-resolved age structure of313

larval development in the VECTRI model which is investigated further below.314

Overall, such differences occur during periods when the cntl two-metre air temperature, T2m, is above the clipped315

analogue. When both temperatures are again identical, simulated vector population densities of cntl and clipped316

tend towards the same value, with some transient relaxation caused by the finite memory of the model. Further317

examples of detrimental/beneficial cases are shown in Supp. S5.318

3.6 Conceptual models319

In order to better understand the underlying mechanisms driving the observed system response to warm events320

(case 3), we study the dynamics of two simplified models of the ecology of the vector, eggs and larvae. The aim is321

to identify the key features that provoke the transient behaviour observed in the VECTRI model. The most basic322

representation that explicitly resolves vector (V ) egg (E) and larval (L) densities, is a three-state model of the type323

dV

dt
= αL · L(t)− δV (t) · V (t) (3)324

dE

dt
= Neggs · αV · V (t)− αE · E(t)− δE(t) · E(t) (4)325

dL

dt
= αE · E(t) ·

(
1− L(t)

K

)
− αL · L(t)− δL(t) · L(t) , (5)326

with αi being the transition (larval and gonotrophical cycle development) rates, Neggs the average number of laid327

eggs per batch, K the system’s carrying capacity and δi(t) a time-dependent mortality rate. The time dependence328

in the former is incorporated with the aim to model a transient increase, mimicking the effect of a detrimental329

warm event, on vector, larvae and egg mortality. As in VECTRI, larvae are here modelled to grow logistically up330

to a certain carrying capacity, K, specific to the environmental context. In VECTRI, the transition/growth and331

mortality rates are a function of temperature, given by relationships derived in laboratory experiments, while here332

are modelled to be constant. Furthermore, since the observed system response in the climate-aware model is not333

specific to a particular location or year we can safely assume transition rates are not fundamental and thus set them334

to unity, i.e., αi = 1 ∀i ∈ [V,E, L]. Time is therefore expressed in normalized generational units.335

We study the dynamics of our conceptual model against a transient increase in the decay rate, modelled as336

δi(t) = δ0 ·
(
1 + w · e

−(t−t0)2

τ

)
+ δi , (6)337

i.e., as a Gaussian-like transient pulse centred at t0 and with a spread of ∼ τ . The second term in the right hand338

side of the decay rate is let to be specific to the state (i = V , E or L). The magnitude of the pulse is controlled339

by the parameter w. The response of the conceptual model against this pulse is shown in Fig. 7a. Logistic growth340

does not suffice to qualitatively describe the observed behaviour. We thus expand the model to describe the age341

structure in larval populations, introducing two larval (L) stages: L1 and L2, that can be considered as an idealized342

analogue of 1st/2nd and 3rd/4th instar populations, respectively:343

dV

dt
= L2(t)− δV (t) · V (t) (7)344

dE

dt
= Neggs · V (t)− E(t)− δE(t) · E(t) (8)345

dL1

dt
= E(t) ·

(
1− L1(t) + α · L2(t)

K

)
− L1(t)− δL(t) · L1(t) (9)346

dL2

dt
= L1(t) ·

(
1− L1(t) + α · L2(t)

K

)
− L2(t)− δL(t) · L2(t) . (10)347
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Figure 6: a) Consistently beneficial warm events. We here show the cntl and clipped vector densities in Genoa
during the summer of 2019, their difference, ∆vector, and the cumulative number of degree days when the cntl
temperature has exceeded the clipped one. The former indicates the time, magnitude and duration of warm events.
b) Consistently detrimental warm events. c) Temporarily detrimental warm event. i) Example case in Lecce in
2007. ii) Zoomed-in vector density throughout the heatwave accompanied by the emergence rate, i.e., the rate
at which larvae transition to the vector state. As before, population densities are the difference between cntl and
clipped. iii) Larvae dynamics for the total population, ∆L, young larvae ∆L1 (aggregate of the first 12 bins of
VECTRI’s bin-resolved larval age structure) and old larvae ∆L2 (aggregate of the remaining bins).

A key element of this model is the two larval stages sharing the available resources. Since older larvae tend to have348

a higher biomass and energy requirements, their contribution to the total carrying capacity should in principle be349

weighted by a factor ∼ α · L2. However, without altering the model behaviour, for simplicity we take α = 1.350

The dynamics of this age-structured model are shown in Fig. 7b-i. The bin-resolved age structure is a fun-351

damental driver for the observed rebound, overshoot and relaxation dynamics. In Fig. 7b-ii we show the larval352

density split in L1 and L2: upon the passing of the “heatwave” pulse, younger larvae, whose steady-state population353

densities are higher, undergo a steep decrease, driven by the larger decay rate, d1 (negative contribution in equation354

(9)), as compared to the growth term, g1 (positive contribution in the same equation). This is not the case for355

older larvae, L2, whose decay and growth rates (analogously determined from equation (10)) remain of the same356

magnitude, with the growth rate initially being slightly higher. This is caused by the respective decay and growth357

rates being proportional to distinct population densities, i.e., to L1 and L2 in equation (10). The shared carrying358

capacity acts now as a boost for older larvae, which find an empty niche to grow, increasing above their steady-state359

12



point and leading to the subsequent overshoot in vector population. The system parameters can be found in table360

2.361

This simplified model thus highlights a weakness in the dynamical VECTRI model. In reality, environmental362

resource limitations are mitigated for late stage larvae through cannibalism of early stages [73] which can have a363

net benefit for larvae numbers reaching emergence [74, 75]. This would act to smooth the impact of heatwaves on364

larvae numbers, and could indicate that the rebound effect produced in some settings is exaggerated in the VECTRI365

model simulations.366

K δ0 Neggs τ t0 δV δE δL
102 0.01 100 1 50 1 0 0

Table 2: System parameters used in the logistic and age-structured models. The remaining parameters shown in
the equations are provided in the main text.

4 Discussion367

We have modelled the population dynamics of the Asian tiger mosquito, Ae. albopictus, an invasive species which368

is currently a threat to public health in Europe given its competence to transmit arboviruses. The climate-sensitive369

VECTRI model has been calibrated and validated against ovitrap field data, successfully reproduces the seasonal370

cycle and, to a lesser extent, the year-to-year variability in observed vector population. Importantly, our model371

accurately simulates the start and end of the mosquito activity season for the ten Italian cities located in the372

Emilia-Romagna region. Spatially, the model captures the observed distribution of Ae. albopictus in Italy, with373

AUC values above 0.7. Our findings underline that simulated mosquito abundance hotspots coincide with densely374

populated centres in Rome, Naples, Foggia, Catania, Palermo, Cagliari, Lecce, Milan, Genoa, Turin and in most375

large cities of the Emilia-Romagna region.376

Regarding global warming trends, we show a lengthening in the seasonal activity of Ae. albopictus in Italy which377

is more pronounced over southern regions, and can reach about 3 extra weeks per decade. Furthermore, we demon-378

strate that heatwave summer conditions can have both beneficial and detrimental impacts on simulated mosquito379

densities depending on the location and year under focus. Beneficial impacts tend to occur when temperatures380

increase larvae growth rates and decrease the gonotrophic cycle time, which dominate decreases in vector survival.381

On the other hand, detrimental effects occur when temperatures tend to increase larval mortality in the model to382

such an extent that they overcome the increased growth rates. In some cases, such effects can be followed by a383

subsequent rebound related to a decrease in the system’s carrying capacity and biological delays intrinsic to the384

bin-resolved larval scheme, although our model does not consider larval cannibalism, and thus could exaggerate the385

magnitude of this rebound effect.386

Our model still does not consider other environmental factors such as photoperiods. Photoperiod is an important387

factor that triggers a diapause in Ae. albopictus in temperate regions [30]. The non-inclusion of photoperiods could388

explain simulated year-round activity of this mosquito in southern Italian cities, such as Palermo, where recent field389

observations tend to suggest a 10-months activity season [76]. However, modelling studies have highlighted that390

Ae. albopictus could become homodynamic in southern Mediterranean countries in the near-future [20], a claim391

supported by the recently reported activity of Ae. albopictus during the 2022-2023 winter season in Attica (Greece),392

where it was found in large numbers [77]. Even though most winter observations in Italy, Albania and Spain are393

sporadic and in low numbers, Ae. albopictus has shown a remarkable degree of ecological plasticity in the past [78],394

with diapause adaptation to local climatic conditions [79, 80]. There is thus a need to extend surveillance periods395

outside the usual expected activity range of Ae. albopictus.396

We have modelled mosquito dynamics but we did not consider pathogen transmission in our modelling frame-397

work. However, simulated hotspots coinciding with densely populated areas match reported autochthonous cases398

of chikungunya in Ravenna in 2007, and recently observed transmission of dengue virus in the Lazio region and399

in Lombardia in 2023. Future modelling efforts could focus on developing early warning tools based on numerical400

weather prediction systems as well as producing higher resolution risk estimates to guide control and surveillance401

activities.402
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Data accessibility. All data used in this study are open source and freely accessible from their respective citations.408

The model is open source and can be found, installed and used at AMT’s webpage https://users.ictp.it/∼tompkins/vectri/.409

Instructions on how to reproduce our results, including the model inputs and post-processing files can be found at410

https://osf.io/3gcfb/. The ovitrap surveillance data used in this study was last accessed on the 2nd of February,411

2023, and is publicly available at https://zanzaratigreonline.it/it/monitoraggio/dati-di-monitoraggio.412
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occurrence data, distribution maps and bionomic précis”. en. In: Parasites & Vectors 4.1 (Dec. 2011), p. 89.564

issn: 1756-3305. doi: 10.1186/1756-3305-4-89. url: https://parasitesandvectors.biomedcentral.565

com/articles/10.1186/1756-3305-4-89 (visited on 08/15/2024).566

[42] M. E. Sinka et al. “A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi567

and identifying the urban populations at risk”. en. In: Proceedings of the National Academy of Sciences568

117.40 (Oct. 2020), pp. 24900–24908. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.2003976117. url:569

https://pnas.org/doi/full/10.1073/pnas.2003976117 (visited on 08/15/2024).570

[43] Yiji Li et al. “Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Develop-571

ment and Survivorship”. en. In: PLoS Neglected Tropical Diseases 8.11 (Nov. 2014). Ed. by Pattamaporn572

Kittayapong, e3301. issn: 1935-2735. doi: 10.1371/journal.pntd.0003301. url: https://dx.plos.org/573

10.1371/journal.pntd.0003301 (visited on 08/14/2024).574

[44] Julien B. Z. Zahouli et al. “Urbanization is a main driver for the larval ecology of Aedes mosquitoes in575
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S1 Comparison with observations and genetic algorithm calibration

In this study we use ovitrap data from [1–3] to calibrate the temporal dynamics of the vector, as simulated by the
model. The ongoing field campaigns behind this dataset have distributed ovitraps in the vicinity of a number of cities
in the Emilia-Romagna region (Italy). Ovitrapped eggs are counted and emptied every two weeks. Consequently,
for each ovitrap, the available information is the two-week sum of newly laid eggs, i.e., the integrated flux. We here
use the median of this flux among all ovitraps in a given city, which we shall denote as O(x⃗, t). Here, x⃗ = (λ, ϕ)
points to the geographical location of the cities where the campaign takes place. The median number of observed
eggs per unit area of potential breeding sites is thus given by

O(x⃗, tk)

Aovitrap
, (S1)

with Aovitrap being the area covered by one ovitrap. The assumption here is that the quantity provided by O(x⃗, tk)
is a perfect proxy for the usage of breeding sites in any other Ae. albopictus breeding habitat. This is not necessarily
true and is accounted for in the calibration process, as discussed below. Eqn (S1) is then compared against the
simulated equivalent, i.e.,

∑

two-week sum




[
Simulated number of newly
laid eggs in the grid cell

]

[
Estimated area of potential
breeding sites in the grid cell

]


 =

13∑

i=0

e(x⃗, tk−i) ·���Acell

w(x⃗, tk−i) ·���Acell
≡ S(x⃗, tk) , (S2)

where e(x⃗, t) and w(x⃗, t) are the newly laid egg density and the fraction of potential breeding sites, respectively.
The role of the parameter calibration is to make the difference between (S1) and (S2) as small as possible while

keeping model parameters, K⃗, within realistic values, i.e.,

K⃗ s.t.
O(x⃗, tk)

Aovitrap
− S(x⃗, tk; K⃗)→ 0 , (S3)

K⃗min. ≤ K⃗ ≤ K⃗max. . (S4)

Even though the ovitrap area, Aovitrap, is a known value (∼ 0.0095m−2, see referenced sources), ovitraps might
not be representative enough for the average “quality” or usage of potential breeding sites found by Ae. albopictus
mosquitoes in urban and sub-urban environments. In the language of the model, if all urban breeding sites, wurbn,
were ovitraps, then rurbn → 1. For this, we allow this parameter (Aovitrap) to be calibrated as well, with a maximum
allowed value of 0.15m−2. In this study we maximize the Pearson correlation coefficient, r2site,all, the student’s T-
Test p-value of the difference in annual means (null hypothesis being the difference is zero), pT , and the Pearson
correlation coefficient of the standardized annual means, r2ens,y for the observed and simulated egg density signals.
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With this, we aim to both, capture the seasonality in the vector activity as well as the inter-annual variability in
population densities. In table (S1) we report the ensemble mean and standard deviation resulting from the best
6 out of 60 models of the aforementioned constrained optimization. From these we use the best member’s model
parameters throughout the study. In Figure (S1) we can see an example convergence of the genetic algorithm to
the final values.
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Figure S1: Example convergence of the genetic algorithm calibration. Numbers correspond to those from table
S1. Dashed lines indicate upper (Max.) and lower (Min.) parameter constrains in the optimization process.
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S2 Validation metrics

S2.1 Correlation matrices for temperature and rainfall
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Figure S2: Correlation matrices for two-metre air temperature (upper row) and rainfall (bottom row) among all
Italian sites where ovitraps are deployed. Monthly and yearly averages are used (left and right, respectively) to
compute the correlations for rainfall and for the detrended and deseasonalized temperature z-score. We indicate
significance at the 90% (X), 95% (□) and 99% (*) confidence intervals. Most values for all matrices are significant
at the 99% confidence interval, indicating a high degree of spatial homogeneity in monthly and yearly averaged
rainfall and in monthly and inter-annual temperature variability among cities in the Emilia-Romagna region.
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S2.2 Constructing the ROC curve

The observation datasets [14, 15] contain the longitude and latitude of reported Ae. albopictus observations,
{(λ, ϕ)}o. In this study we assume Ae. albopictus to be absent in locations without a reported observation, being
aware of the potential bias introduced by imperfect detection [16]. Each observation point is mapped to the closest
box in the model (m) grid {(λ, ϕ)}m. This box is then considered as “positive” (1), whereas the remaining are
considered to be “negative” (0). Several observation points can be mapped into the same model grid box.

Model output is somewhat continuous (species are reported as densities) and needs to be transformed into
the binary representation of the observation dataset in order to make a comparison. Since occurrence reports
are based on mosquito observations we chose the vector population density as the model output to be compared
against. In particular, the time average over the study period (1980-2023), V (λ, ϕ). For this, a threshold value of
population density, Vth, is selected and all model values above (below) it are transformed into 1s (0s). In this way
one gets two binary maps, one for the observations and the other for the modelled vector densities. The overlap of
both maps is used to compute the true (TPR) and false (FPR) positive rates, as explained in the main text. By
iteratively changing the threshold value one can get a set of {(TPR, FPR)} pairs to build the ROC curve. The
interval of sampled threshold values depends on the problem at hand. The lower bound, V l

th, must be such that
V l
th < V (λ, ϕ) ∀(λ, ϕ) ∈ {(λ, ϕ)}m, which means the model predicts Ae. albopictus to be present everywhere. In this

limit the TPR is equal to one, since each occurrence spot is matched with a positive prediction by the model. The
downside is that the FPR is also one, since true negatives will be missed (this scenario is the upper right corner in
the ROC curve of Fig. 2c). The opposite argument applies when defining an upper threshold value, V u

th. Typically,
one has to compromise with a threshold value V l

th < Vth < V u
th when calibrating a diagnostic tool.

In Alg. (1) we present the pseudocode used to build the ROC curve.

Algorithm 1: Pseudocode to build the ROC curve

input : {V (λ, ϕ)}m, {(λ, ϕ)}o
output: TPR(Vth), FPR(Vth)

1 Map observation locations to closest point in the model grid ;
2 M(λ, ϕ) = 0 ∀(λ, ϕ) ∈ {(λ, ϕ)}m; /* Initialize observed map (M) */

3 for (λi, ϕi) ∈ {(λ, ϕ)}o do /* For all observed points */

4 (λm, ϕm) ←(λi, ϕi); /* get closest coordinates of model grid */

5 if M(λm, ϕm) ! = 1 then
6 M(λm, ϕm) = 1 ; /* Update if no previous iteration has mapped an observation here */

7 else
8 Pass ; /* Otherwise, pass */

9 end

10 end

11 Compute True and False Positive Rates for all thresholds, Vth, in the list Vlist = [V l
th, V

1
th, V

2
th, ..., V

u
th];

12 for Vth in Vlist do /* For all sampled thresholds */

13 Np =
∑

(V >Vth)
1 ; /* Sum over all places where density is bigger than threshold */

14 Nn =
∑

(V <Vth)
1 ; /* Equivalently: number of predicted negatives */

15 Ntp =
∑

(V >Vth & M=1) 1 ; /* Number of true positives */

16 Nfn =
∑

(V <Vth & M=1) 1 ; /* Number of false negatives */

17 Nfp = Np −Ntp ; /* Number of false positives */

18 Ntn = Nn −Nfn ; /* Number of true negatives */

19 TPR =
Ntp

Ntp+Nfn
; /* True Positive Rate */

20 FPR =
Nfp

Nfp+Ntn
; /* False Positive Rate */

21 end
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S3 Temporal validation of the model against egg data in Italian sites
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Figure S3: Temporal validation of the Italian sites (excluding Bologna). We show the 2-week total simulated
(orange) and observed (blue) average egg density. The r2site,all coefficent is reported for each site.
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S4 Season duration threshold and bulk net effect of warm events
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Figure S4: Time series of the vector density in Palermo and Turin throughout 10y of the cntl simulation. In
VECTRI, the lowest population densities are around ∼ 10−4 m−2, marking the inactive state of the mosquito. We
here define the density threshold of 1.5 · 10−4 m−2 as the start of the mosquito season. With this metric, locations
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S5 Further examples of short-term heatwave dynamics
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events.
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4The role of climatic
variability on Anopheles
gambiae s.s. populations

4.1 Introduction

Malaria is a mosquito-borne infectious disease caused by 5 Plasmodium 1

species, from which Plasmodium falciparum is the deadliest [84]. The former is

transmitted through the bite of an Anopheles mosquito. The species Anopheles
gambiae s.s. (sensu stricto) (hereafter An. gambiae) is widespread across

most sub-Saharan Africa [85] and, given its antropophilic bitting behaviour,

constitutes one of the most important malaria vectors in the continent [86].

As with other ectothermic arthropods, the life cycle of this mosquito is shaped

by climatic factors and, consequently, climate-aware models can be used to

study some aspects of its behaviour [80]. In this chapter we explore how

air temperature variability at two-metre heigh, or two-metre air temperature

variability, affects the population of the mosquito An. gambiae.

The underlying idea is that any given time series of this variable, T2m(t), is

a composition of processes acting on different time scales. On top of the

anthropogenically-driven trending background (climate change) [87] we find:

changes in Earth’s physical processes that manifest over periods of ∼ 1-10
years, driven by, e.g., changes in Solar activity [88], volcanic eruptions [89,

90] or ocean-atmosphere interactions, such as El Niño [91, 92] ; processes with

sub-daily time scales, like the diurnal cycle, convective processes or frontal

systems. By suppressing the signal’s variability for the desired time scale we

aim to understand its effect on the population of the mosquito.

1A genus of eukaryote obligate parasites of vertebrates and insects.
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The layout of this study is broad and unfinished. From the aforementioned

time scales we here present some explorations of the effect of daily variability.

Ultimately, the goal of this study is to gain insights on how climatic changes, at

different time scales, affect the population of An. gambiae and, consequently,

malaria dynamics.

4.2 Objectives

The objective of this study is thus one:

1.- Knock out experiment: In order to understand the impact of two-metre

air temperature variability we perform a knock out experiment, namely a

simulation where the variable of interest, in our case T2m, lacks variability in

the targeted time scale. The resulting signal is then compared against a control
counterpart, i.e., a simulation where no modifications have been made to the

temperature series. Both experiments are performed with linearly detrended

air temperature time series.

4.3 Methods

4.3.1 Model

We will here use the uncalibrated VECTRI model. In this study the model is set

to describe the ecology of An. gambiae [53, 61, 68]. The main differences with

respect to the description of Ae. albopictus rely on the temperature-dependent

mortality scheme for adult vectors, larvae and eggs, the development rates

and the preferred breeding sites. The mathematical structure describing the

dynamics is however the same.

The usage coefficients for permanent and urban-related ponds, rperm and rurbn,

respectively, are set to a very low number (10−6), establishing the focus on

rainfall-related temporary ponds.
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4.3.2 Daily variability: knock out experiment

Time filters

It is our objective here to split a stochastic process, X(t), into certain compo-

nents characterized by distinct time scales, e.g., fast (F ) and slow (S),

X(t) = X(t)F + X(t)S . (4.1)

This is the general purpose of time filters, where an input signal, X(t), is

transformed into an output with, ideally, the required suppressed variability,

Y (t). We will focus on linear filters, which are operators of the type

Y (t) =
∞∑

k=−∞
akXt+k , ak ∈ R , (4.2)

with
∑∞

k=−∞ |ak| < ∞. Particularly, since in practice one works with a finite

time series,

Y (t) =
K∑

k=−K

akXt+k . (4.3)

The weights, ak, are free parameters that can be chosen so that the signal

retains the desired time scales, filtering out the rest. Filters that retain high,

short and intermediate time scales are typically known as short-, high- and

band-pass filters. The notions of high, short and intermediate depend on the

problem at hand. It is important to understand the effect filters have on the

spectral density of our signal. For the case of filter (4.3), the input and output

spectral densities are related by

Γyy(w) = |c(w)|2 Γxx(w), (4.4)

(see section 4.A) where c(w) is the so-called frequency response function
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c(w) =
K∑

k=−K

ake2πikw . (4.5)

On a side note, a perfect filter that suppresses all frequencies above (below) a

certain threshold, ω0, would have a box-shaped frequency response function,

equal to unity below (above) that threshold, c(w) = 1 for ω < ω0 (> ω0), and

zero otherwise. It would also require infinitely non-zero weights and thus

one has to compromise with a less abrupt cut-off that has a finite number of

weights.

The structure of c(w) will therefore determine the effect and quality of our

filter. For a more extended discussion we refer the reader to [93].

The “Running Mean” filter

The running mean or moving average is a simple filter used to suppress high-

frequency variability. This time filter has weights

ak = 1
2K + 1 , −K ≤ k ≤ K , (4.6)

is symmetric (ak = a−k) and preserves the mean of the signal, since

a0 + 2
K∑

k=1
ak = 1 . (4.7)

A linear filter with weights (4.6) is commonly known as centred running mean,

as opposed to forward or backward where the weights would be on either side

of the time stamp. The response function of this filter is

c(ω) =
K∑

k=−K

1
2K + 1 · e2πikω . (4.8)
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Figure 4.1: Modulus of the running mean’s response function for three filter lengths,
2K + 1.

This low-pass filter is far from perfect, since the response function has strong

side lobes that allow for some high frequency leakage (Fig. 4.1). Our knock

out experiment will be a two-week centred running mean applied to the

two-meter air temperature time series, T2m(t), i.e.,

T rm
2m (tl) ≡

7∑
k=−7

1
15 · T2m(tl+k) . (4.9)

Example on a real time series

Let us now look at the effect of filter (4.9) on an archetypical T2m(t) time series.

We first linearly detrend the process, accounting for the linear increase caused

by global warming. On the resulting series we apply a centred two-week

running mean (Fig. 4.2). We use a periodogram as estimator of the spectral

density. The effect of the linear filter is obtained by multiplying the spectral

density estimation with the modulus of the response function, |c(ω)|2 (Fig.

4.2). As expected, higher frequencies are damped with clearly visible side

lobes remaining.
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Figure 4.2: Upper panel: control versus running mean linearly detrended two-metre
air temperature in Sierra Leone, (λ, ϕ) = (12.5° W, 8° N) (see section
4.3.3 for input data). Lower panel: periodogram of either series and
modulus of the response function.

4.3.3 Input data

Daily two-metre air temperature and rainfall values are obtained from the

ERA5 global reanalysis data set [94]. We used data for the years 1990-2019.

The region of study is a highly populated area in sub-Saharan Africa (Fig. 4.3).

Particularly: Senegal, Gambia, Guinea-Bissau, Guinea, Sierra Leone, Liberia,

Ivory Coast, Burkina Faso, Mali, Ghana, Togo, Benin and Nigeria. Human

population density estimates, necessary in VECTRI, are obtained from the

Gridded Population of the World GPwv4 project [71] and interpolated to the

climate grid using a conservative interpolation method with the CDO software

[72].
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Figure 4.3: Human population density across the region of study.

4.4 Results

4.4.1 Control run

Long-term average behaviour

Let us denote □ as the average over the total time period (1990-2019) and ⟨□⟩τ

as the τ -climatological operator, i.e., a multi-year operation over the subset τ

within each year 2. Before comparing both experiments let us first look at the

control’s average behaviour. Sub-Saharan Africa is a region where, temperature

wise, conditions are suitable for year-round mosquito activity 3. Consequently,

rainfall, necessary for the creation of temporary breeding sites, represents the

main driver controlling the spatial distribution of the arthropod’s activity. In

our simulations, mean vector populations, as expected, are mainly driven by

rainfall occurrence (Fig. 4.4).

Seasonality

2If τ is, e.g., day-climatological mean, then by this we mean an average over all 1st of January,
2nd, ... and so on for all days in the year, using all years (in our case from 1990 until 2019)
to compute each average. If we instead had a day-climatological median we would then
calculate the 50th percentile over a same-day 30y sample.

3In VECTRI, temperature thresholds for An. gambiae larval and egg development are 12.16 °C
and 7.7 °C, respectively. The minimum air temperature in the ERA5 dataset for the studied
region from 1990-2019 is 11.05 °C and 13.56 °C in the running mean experiment. The
minimum water temperature is, therefore, 9.05 °C.
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Figure 4.4: Time average of a) the vector population density and b) rainfall.

As a phenomenon partly driven by rainfall, the simulated population of An.
gambiae shows a pronounced seasonality, with high values coinciding with the

rainy season (Fig. 4.5 & 4.6). Simulated hotspots are located in the western

coast, covering Senegal, Gambia, Guinea-Bissau, Guinea and Sierra Leone, as

well as the coastal areas of Nigeria. Inland hotspots include the southernmost

region of Mali and a western area of Nigeria. This is, however, not a risk

estimate, since it lacks a description of the vectorial capacity 4.

4.4.2 Daily variability

Seasonality

The effect of daily two-metre air temperature variability on the average popula-

tion of the mosquito is highly seasonal as well (Fig. 4.7). Averaged differences

between control and running mean (rm hereafter) experiments yield values one

to two orders of magnitude below absolute numbers. Month-climatological

4Understood as “the number of potential new malaria cases originating per day from each
existing malaria case, owing to transmission by a particular vector species” [86, 95].

86 Chapter 4 The role of climatic variability on Anopheles gambiae s.s. populations



mean temperatures, ⟨T2m⟩month, seem to be a good proxy to estimate the geo-

graphical areas where this variability will have either a positive or a negative

effect on the mosquito population. When these temperatures are too high

or too low daily variability acts to the detriment of the mosquito, whereas

temperatures around 297.5 K seem to be a sweet spot for positive effects,

i.e., increased populations (Fig. 4.8a). These temperature-delimited regions

are heterogenously spread across the study area (Fig. 4.8b). To test whether

the month-climatological mean is a good diagnostic tool to delineate the re-

gions where ∆V > 0 on a monthly basis, we compare it against all individual

monthly means in the 30-year time series. This is performed by quantifying

their spatial overlap in terms of the number of grid points where both ∆V ’s

are positive, or the number of true positives (TP), the number of grid points

where both ∆V ’s are negative, or the number of true negatives (TN), and so

on. Each individual month in the 30-year time series can then be reduced to

one number (if we look at the TPs), each month of the year (January, February,

...) to a mean (calculated with 30 values) with standard deviation and the

30 years of data to a simple time series (4.8c) that allows us to ascertain the

goodness of ⟨T2m⟩month as a good diagnostic tool.

Season length

Warm heat events and cold snaps, acting on daily to weekly time scales

and, therefore, damped in the rm experiment, have the potential to either

benefit or impair vector populations, potentially anticipating or delaying the

mosquito season. Temperature wise, the region of study is suitable for vector

activity all year-round and, consequently, this effect might only be visible

with the advent of the rainy season. We count active vector days, τV , as the

number of days the vector density remains above 1.5 · 10−4 m−2 (threshold

selection was discussed in the Supplementary material of the manuscript

of the previous chapter). The month-climatological mean of the difference,

⟨∆τV ⟩month = ⟨τ cntl
V − τ rm

V ⟩month, marks regions where variability typically

increases or decreases activity duration. The rm experiment presents a higher

number of active days and a negative boundary appears and moves northward,

following the rain (Fig. 4.9). Some regions present a positive value. Both

positive and negative cases are related to a low population of the vector (Fig.

4.10, top and middle) and these effects are highly asymmetric in time, namely

activity differences appear mainly at the beginning of the vector season and

not at the end (Fig. 4.9 & 4.10, top). In Fig. 4.10, middle and bottom, we
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show how the positive (∆V > 0) and negative effects (∆V < 0), discussed

in the previous section, alternate as the system moves in and out of distinct

temperature regimes.

4.5 Discussion

At this point, we have studied a few traits of the sensitivity of the uncali-

brated VECTRI model against two-metre air temperature daily variability. We

started by looking at the average behaviour of the vector and understood its

pronounced rain-driven seasonality. The effect of variability on An. gambiae
populations is highly seasonal as well, with net effect and location well de-

scribed by the monthly temperature climatology. Furthermore, variability is

also shown to affect the number of days of vector activity, mainly in areas of

low vector density at the start of the rainy season.

Future prospects

This project is in its starting phase and further inquiries are required for a

complete view.

1. Mechanistic understanding: one of the advantages of using a dynam-

ical model is the possibility to give a mechanistic interpretation to the

observed behaviour. Ultimately, we should formulate links between the

observed model behaviour and the vector, larval and egg temperature-

dependent mortality schemes as well as the larval breeding site model,

where rainfall plays a crucial role.

2. Extremes: beyond the average behaviour one should also address the fre-

quency and magnitude of variability-driven “extremes”, since these might

have a higher importance for vector forecasting and risk assessment.

3. Variability over a trending climate: by re-introducing the background

linear temperature trend onto the two-metre air temperature series one

would progressively move the seasonal cycle and daily-weekly fluctua-

tions towards different temperature intervals, potentially altering the
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net effect of these fluctuations. This more realistic scenario should be

studied once the aforementioned points are fully understood.

4. Risk estimates: it is important to notice that our vector maps report

the population density instead of the so-called vectorial capacity. Despite

being a more realistic risk estimate, its complexity and dependence on

traits such as host preference or vector competence make it accessible

only under further model development. Future development should,

therefore, focus on building a metric with this “epidemiological” dimen-

sion if one is to relate changes in vector population to potential changes

in malaria dynamics.
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Figure 4.5: Month-climatological mean of the control’s vector population density.
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Figure 4.6: Rainfall month-climatological mean.
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Figure 4.7: Month-climatological mean of the difference between control and rm experiments.

92
C

hapter4
The

role
ofclim

atic
variability

on
Anopheles

gam
biae

s.s.populations



15°W

15°W

10°W

10°W

5°W

5°W

0°

0°

5°E

5°E

10°E

10°E

6°N

8°N

10°N

12°N

14°N

16°N

296.0
296.4
296.8
297.2
297.6
298.0
298.4
298.9
299.3
299.7 T

2m
m

onth [K]

2 4 6 8 10 12

Month

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

s TP
TN
FP
FN
TP+TN

290 292 294 296 298 300 302 304 306
T2m month [K]

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

V
m

on
th

[m
2 ]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ra
in

fa
ll

m
on

th
[m

m
da

y
1 ]

Climatology - August Testing the climatology estimatea) c)

b)
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Figure 4.9: Month-climatological mean of the season length difference between control and rm experiments.
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Figure 4.10: Top. Day-climatological median of the fractional coverage of potential breeding sites, ⟨w50th⟩day wrapped by its 10th and 90th
percentiles and the day-climatological cumulative sum of the difference in season length expressed as a percentage, ⟨∆τV [%]⟩day.
Middle. Day-climatological median of absolute vector densities for cntl and rm experiments with the 10th and 90th percentiles
as envelope and the day-climatological mean difference ⟨∆V ⟩day. Bottom. Two-metre air temperature time series of the day-
climatological median for the cnlt and rm experiments.
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4.A Appendix: Relating spectral densities

It is straight forward to prove (4.4). We express the output’s spectral density

in terms of its auto-covariance function, γyy(τ) [93],

Γyy(w) =
∞∑

τ=−∞
γyy(τ)e−2πiτω . (4.10)

The auto-covariance function of the output can in turn be expressed in terms

of that of the input

γyy(τ) = Cov (Y (t), Y (t + τ)) = (4.11)

= Cov

 K∑
k=−K

akX(t + k),
K∑

l=−K

akX(t + τ − l)
 = (4.12)

=
K∑

k=−K

K∑
l=−K

akal · Cov (X(t + k), X(t + τ − l)) = (4.13)

=
K∑

k=−K

K∑
l=−K

akal · γxx(τ + k − l) . (4.14)

Substituting (4.14) into (4.10) we obtain the desired result

Γyy(w) =
∞∑

τ=−∞

 K∑
k=−K

K∑
l=−K

akalγxx(τ + k − l)
 e−2πiτω = (4.15)

=
K∑

k=−K

ake2πikw
K∑

l=−K

ale
−2πilw

∞∑
τ=−∞

γxx(τ + k − l)e2πi(τ+k−l)w =

(4.16)

= |c(ω)|2Γxx(ω) q.e.d. (4.17)
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5Conclusion

This thesis has explored the implications of some atmospheric features on three

distinct biological systems, ranging from a purely conceptual to an applied and

empirically validated approach. Overall, the work presented here provides

insights on the complex role of environmental conditions on species’ diversity,

abundance and distribution.

The role of stochastic dispersal on microbial diversity was investigated in Chap-

ter 2. In Chapter 3 we switched focus to a particularly interesting mosquito

species, Aedes albopictus, and the role that climate change and temperature

extremes play in its life cycle and geographical distribution in Italy. Lastly, in

Chapter 4, we investigated how air temperature variability affects Anopheles
gambiae s.s. populations in a region of sub-Saharan Africa.

Collectively, the thesis contributes to a deeper understanding of how spa-

tial structure, environmental variability and climatic factors influence the

behaviour and distribution of relevant biological populations. The mathe-

matical and simulation approaches developed and employed throughout this

work offer valuable frameworks for further exploration of these biological

systems.
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