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Abstract

The interplay between magnetism and superconductivity poses an interesting problem in
the field of condensed matter physics. In this thesis we study the commensurate and
incommensurate magnetic orders appearing in the iron-based superconductors and em-
phasise the importance of including the orbital content of the bands when determining
the symmetry of the magnetic order parameter. We elucidate the appearance of six new
incommensurate magnetic phases and argue that a number of these are prime candidates
for exhibiting topologically protected edge modes. Within a simplified hybrid model we
include a spin-orbit coupling and propose an explanation for the reorientation of magnetic
moments observed in certain hole-doped compounds. The mechanism of spin-driven ne-
matic order is reviewed and it is shown, using a band structure suitable for the iron-based
superconductors, that the multi-orbital Hubbard model exhibits a spin-driven nematic in-
stability. We then proceed to consider magnetic stripes in cuprate superconductors and
review experimental results on La2−xBaxCuO4 which led to the proposal of pair-density-
wave superconductivity in this material. A recent experiment reported the absence of a
magnetic resonance peak in La2−xBaxCuO4 for x = 0.095 and motivated by this we em-
ploy a simple model to evaluate the magnetic resonance and show that pair-density-wave
superconductivity indeed fails to produce a magnetic resonance. Finally we turn to the
subject of topological superconductivity and the appearance of Majorana end modes. The
concept of topologically non-trivial phases is introduced using the Kitaev chain and we
describe how realistic physical systems can constitute an effective Kitaev chain. One such
system is a chain of magnetic adatoms exhibiting spiral magnetic order deposited on a
superconducting substrate. We study the physical mechanisms responsible for the forma-
tion of a stable spiral magnetic order along the chain and show that this spiral order is
stable against the effects of selfconsistency and the addition of a direct exchange coupling
between the adatoms.
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Introduction

The discovery of superconductivity in 1911 is among the major scientific accomplishments
of the 20th century and this exotic state of matter finds applications in all branches of con-
densed matter physics. The microscopic origin of superconductivity puzzled researchers
for almost 50 years until Bardeen, Cooper and Schriefer presented their theory in which
Cooper pairs are formed by a phonon-mediated electron attraction [1]. With this the
problem seemed to be solved, however when Bednorz and Müller surprisingly discovered
superconductivity in the ceramic compound La2−xBaxCuO4 in 1986 [2] the field was re-
vitalised. The subsequent period yielded a flood of new superconducting materials being
discovered and over time it has become clear that the phonon-induced pairing is inadequate
to describe this new family of superconductors [3]. At the time it was widely believed that
magnetic phases were highly detrimental to superconductivity (cf. the Matthias rules [4])
however the parent compounds of the cuprates are antiferromagnets displaying character-
istics consistent with Mott-insulators. In the Mott-insulating phase electrons are localised
at individual sites due to strong electron-electron repulsion. The Coulomb repulsion there-
fore plays a significant role in these compounds and theoretical attempts to understand
these materials have brought with them significant advances in the field of strongly cor-
related electrons. The strength of interactions along with an observed resistivity linear
in temperature has fuelled speculation that cuprates are not described by the celebrat-
ed Landau-Fermi liquid theory and led to proposals of e.g. marginal Fermi liquids [5],
fractionalised Fermi liquids [6], and resonating valence bond theory [7].

The addition of iron-based superconductors [8] (FeSC) to the family of materials ex-
hibiting unconventional superconductivity added an additional layer of complexity to the
problem. In contrast to the cuprates the parent compounds of these materials are metallic
with a magnetic spin-density-wave (SDW) phase at lower temperatures [9]. A substantial
number of orbitals contribute to the Fermi surface, which exhibits numerous electron and
hole pockets, and multiorbital models are required to describe many of the observed phe-
nomena [10,11]. These materials are believed to be moderately correlated though [12] and
it is unclear whether Fermi liquid theory offers a good description. The interplay between
orbitals and interactions opens up the possibility of some orbitals being more correlated
than others and the quasiparticles associated with these orbitals are therefore less coher-
ent. This has been explored in the context of orbitally selective Mott phases [13, 14] and
more recently in an effort to explain the peculiar gap structure of FeSe [15].

The structure of the superconducting order parameter provides an important piece
of the puzzle regarding the origin of the electron pairing. Experiments on the cuprates
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are consistent with a d-wave gap structure [16, 17], with nodes along the diagonal of
the Brillouin zone. The sign-change allows for a pairing driven by repulsive interactions
such as the one mediated by magnetic fluctuations. In the FeSC the situation is more
complicated. The exact nature of the gap structure in these materials is still unclear
and distinguishing between the two viable candidates is experimentally challenging. One
candidate is the standard s-wave structure well-known from conventional superconductors
(in FeSC called s++), while the other is the more exotic s± which features a sign change
between electron and hole pockets [18–24]. s++ and s± thus only differ by the sign of the
order parameter on the electron pockets and phase-sensitive measurements are therefore
required in order to discriminate between the two. This proves to be rather challenging
since, in contrast to the case of a d-wave order parameter, the phase is unchanged by a
90◦ rotation. Recently however, a proposal based on the qualitative behaviour of certain
quasiparticle interference data with temperature was put forth [25], which appears capable
of distinguishing the s++ gap structure from the s± [15]. The lack of a sign-change in the
s++ case implies that the pairing in this case should be mediated by an effective attractive
interaction, like the phonons for conventional superconductors [24]. On the other hand,
the s± scenario favours a magnetically mediated pairing due to the sign-change between
parts of the Fermi surface [24]. Combining this with the proximity of the magnetic and
superconducting phases in the phase diagrams for unconventional superconductors has
made a magnetically mediated pairing a prime contender for the pairing glue in both
cuprates and FeSC.

Motivated by these links between superconductivity and magnetism, in this thesis we
focus on understanding the magnetic phases of both cuprates and FeSC. While a complete
theoretical understanding is still lacking, the important role of magnetism is undeniable
and elucidating the intricate relationship between magnetism and unconventional super-
conductivity remains one of the most important questions of contemporary condensed
matter physics.

Superconductivity also has an important role to play in the quest for quantum comput-
ers. It allows for the formation of topologically protected states which are stable against
quantum decoherence, a highly desireable property for quantum bits [26]. The existence
of such topological boundary modes depends on the presence of certain anti-unitary sym-
metries and various proposals of how to achieve this experimentally have been put forth.
Amongst the most popular ones is the so-called nanowire setup where a topological phase
is obtained by tuning of an external magnetic field [27–30]. An alternative approach based
on magnetic chains of adatoms is independent of any external parameters, relying instead
on the magnetic order along the chain and thus actualising a self-organised topological
phase [31]. This has both advantages and drawbacks. On the one hand, the independence
of external tuning parameters allows for applications in the presence of magnetic fields
required for other purposes, while on the other hand their absence implies that the system
should be designed to lie in the topologically non-trivial region. This puts rather stringent
constraints on the viable systems and requires a good understanding of the mechanisms
relevant for the formation of a topologically non-trivial regime. To this end, in this thesis
we consider a specific system where a topological phase is possible and outline the relevant
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physical mechanisms responsible for the formation of the appropriate magnetic order.
In this thesis we investigate a number of rather distinct topics related to the interplay

between magnetism and superconductivity in a variety of systems. We provide further
details concerning the FeSC in Chapter 1. After introducing a number of key concepts we
consider the various magnetic orders that arise in the FeSC. Using a renormalisation group
approach we demonstrate the stability of the mean-field phase diagram. We consider in
some detail the various band structures that are used in the description of the FeSC and
highlight the importance of taking into account the orbital content of the bands when
considering the magnetic order. In Chapter 2 we show how spin-orbit coupling affects
the magnetic order and can explain a reorientation of the magnetic moments to lie out-
of-plane, as observed in the magnetic tetragonal phase of some FeSC [32–35]. At last we
extend the usual approach to spin-driven nematicity in Chapter 3 to include orbital content
and demonstrate the existence of a spin-driven nematic instability in the multi-orbital
Hubbard model using a bandstructure appropriate for the FeSC. In Chapter 4 we provide
an overview of the cuprates and outline relevant theoretical and experimental results with
a particular focus on the appearance of a so-called magnetic resonance. This plays an
important role in the study of the interplay between magnetic and superconducting orders
and serves as motivation for the work presented in Chapter 5. Motivated by a recent
experimental result by Xu et al. [36] we here study the shape of the magnetic resonance
in the presence of various magnetic and superconducting orders. In Chapter 6 we briefly
consider the subject of Majorana modes and introduce a number of key concepts in the field
of topological superconductivity using the Kitaev chain. This serves as motivation for the
study presented in Chapter 7 in which we consider a magnetic chain of adatoms deposited
on a two-dimensional superconductor. The mechanisms responsible for the formation of
spiral magnetic order along the chain are described and we further discuss the influence
of selfconsistency on our results. In Chapter 8 we present our conclusions and remark on
future directions.
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Chapter 1

Magnetism in Iron-based
Superconductors

The first iron-based superconductor, LaOFeP, was synthesised in 2006 by Hideo Hosono
and collaborators [8]. The arrival of a new family of unconventional superconductors was
highly anticipated in the high-Tc community and the advent of the FeSC provided a testing
ground for many of the theories that had been developed to describe the cuprates. The
iron-based materials are similar in structure to the cuprates, i.e. they are quasi-2d with
superconductivity having its origin in the Fe-pnictide of Fe-chalcogenide layers. Instead
of the perovskite structure of the cuprates, the crystal structure of FeSC consists of two-
dimensional layers of Fe atoms with pnictogens or chalcogens above or below in a staggered
fashion, as shown in Fig. 1.1. Six electrons occupy the five Fe d-orbitals and while the
tetragonal crystal environment leaves the xz and yz orbitals degenerate, the rest are split
by the crystal field.

The nature of the superconducting order parameter in the FeSC is unclear, the main
contenders are the sign-changing extended s-wave, s± and standard s-wave, or s++. The
two order parameters only differ by a relative sign on the electron pockets of the Fermi
surface, and deciding between them thus requires a phase sensitive measurement of the
superconducting order parameter in the entire Brillouin zone. This is rather challenging
although progress has been made recently with a recent theoretical proposal by Hirschfeld
et al. [25] relying on the temperature dependence of certain quasiparticle interference
data. This method was used in determining the relative sign of the electron and hole
pockets in FeSe in favour of an s± order parameter [15]. Theoretically, an s± order
parameter is obtainable from a pairing mediated by magnetic fluctuations [24]. An s++

order parameter on the other hand is constant in momentum space and does not arise
from repulsive interactions [38].

The parent compounds for the iron-based superconductors are metals typically ex-
hibiting an SDW magnetic stripe order. Such magnetic order is well-described both by
localised and itinerant electrons and both are applied in the literature. In localised models
the starting point is typically a J1 − J2 or J1 − J2 −K effective spin-Hamiltonian [39,40],
where J1 and J2 are respectively the nearest neighbour and next-nearest neighbour ex-

5



Figure 1.1: Structure of the Fe-pnictide or Fe-chalcogenide planes showing the puckering
of the pnictogen (As) or chalcogen (Se) atoms in relation to the Fe-plane. Figure from
Ref. [37].

change couplings, and in general these depend on the orbital content. K is a biquadratic
nearest neighbour coupling controlling the relative spin orientation. Calculations of the
spin-wave spectra using such models yield qualitative agreement with observations but
require unphysical values for the exchange couplings [41]. The localised models also have
issues describing magnetic states where the magnetic moment vanishes on some sites, as
observed in Sr1−xNaxFe2As2 [35].

The mass renormalisation factors of a number of FeSC have been evaluated within
dynamical mean-field theory (DMFT) indicating that some compounds are more strongly
correlated than others evidenced by their comparatively large mass renormalisation fac-
tors [12]. Itinerant models are thus more likely to be applicable to the compounds with
smaller mass renormalisation factors, such as 1111 and 122, while the 11 materials should
be approached with more caution, and are more likely described by a combination of itin-
erant and localised electrons. The multi-orbital nature of the FeSC furthermore implies
that the various orbitals are correlated to different degrees [14]. Within a slave-spin ap-
proximation this leads to the formation of orbitally selective Mott phases in which some
orbitals exhibit itinerant behaviour while others remain completely localised [13,14,42]. In
this thesis we shall not make this distinction and we remain within the itinerant scenario
throughout.

Within the itinerant scenario SDW magnetic order is a consequence of a nested Fermi
surface with nesting vectors (π, 0)/(0, π). Two distinct nesting vectors imply the existence
of two magnetic order parameters, M1 and M2, with ordering vectors (π, 0) or (0, π) and
depending on the details of the band structure these order parameters will either compete
or coexist. The dominant magnetic phase both experimentally and theoretically [19,24] is
the (π, 0)/(0, π) magnetic stripe where the magnetic moments are oriented antiferromag-
netically along one direction and ferromagnetically along the other (see inset in Fig. 1.2),
although more recent observations find tetragonal magnetic phases in a number of hole-
doped compounds [32–35]. The choice of either (π, 0) or (0, π) is associated with a breaking
of a discrete Z2 symmetry resulting in a preemptive electronic-nematic order [43]1. The
origin of this symmetry breaking is challenging to determine as any breaking of rotational

1Note that the term electronic-nematic usually refers to the breaking of a discrete rotational symmetry
unlike nematic liquid crystals which break a continuous rotational symmetry.
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symmetry implies a splitting of the xz/yz orbital degeneracy and an orthorhombic dis-
tortion. Conversely, due to linear couplings in the free energy, several mechanisms can
be responsible for the breaking of rotational symmetry. The phonon-driven orthorhom-
bic distortion can be the primary transition, with the spin- or charge-driven nematic and
orbital order transitions being secondary. In contrast, both the splitting of the xz and
yz orbitals, and the choice of magnetic ordering vector can be attributed to electronic
degrees of freedom. Orbital (charge) fluctuations can drive an instability in the orbital
occupations such that 〈nxz−nyz〉 6= 0, in the literature known as orbital order [44,45]. On
the other hand, spin fluctuations are capable of breaking the Z2 symmetry by becoming
anisotropic such that 〈M2

1 −M2
2〉 6= 0 while still satisfying 〈M1〉 = 〈M2〉 = 0, i.e. there is

no magnetic order and translational symmetry is unbroken [46,47].
The orthorhombic distortion is on the order of 1% [48], however measurements of

the resistivity anistropy in detwinned Ba(CoxFe1−x)2As2 crystals reveal a much larger
difference between the resistivities along a and b directions, and find that the resistivity
along the shorter b axis is greater [49]. While not direct evidence for an electronically
driven mechanism, the large electronic response is certainly indicative of the importance
of electrons in the formation of the symmetry-broken phase. Later measurements of the
nematic susceptibility in Ba(CoxFe1−x)2As2 [50] indicate that this exhibits Curie-Weiss
behaviour around the structural transition and provides more concrete evidence that the
initial symmetry breaking is driven by electronic degrees of freedom.

The so-called spin-nematic scenario is in agreement with many experimental observa-
tions [24, 35, 51–53], however the presence of an orthorhombic phase in FeSe, a material
without long-range magnetic order, has been interpreted in favour of the orbital sce-
nario [54]. Moreover, observations on FeSe indicate that the orbital order 〈nxz − nyz〉 6= 0
has a non-trivial structure factor, and changes sign between hole and electron pockets [55].
Several scenarios explaining this apparent discrepancy between FeSe and other FeSC have
been put forth. It has been shown that including nearest neighbour Coulomb interactions
can account for the formation of a nematic phase in the absence of a magnetic state [56]
and so can the smallness of the Fermi pockets [57]. We will return to the subject of
spin-driven nematic order below and in Chapter 3.

A multitude of models have been applied to understand the iron-based superconduc-
tors, ranging from simple band models devoid of orbital structure to multiorbital models
with a large number of hopping parameters. Before we delve into a description of these
models however, we consider the formation of magnetic order in the iron-based supercon-
ductors. A natural starting point for the study of magnetic order is the Ginzburg-Landau
expansion for the magnetic free energy. The free energy functional is entirely determined
by the point group symmetries of the system; for the iron-based superconductors the
relevant expression, up to fourth order, is

F [M1,M2] =
∑
q

[
U−1 − χ0(q)

]
M(q)2

+u

2
(
M2

1 + M2
2

)2
− g

2
(
M2

1 −M2
2

)2
+ 2w (M1 ·M2)2 (1.1)

in the absence of spin-orbit coupling. The generalisation to a case including spin-orbit
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coupling is considered in Chapter 2. In the quartic and higher-order terms we assume that
the order parameters are momentum-independent and we will return to this assumption
shortly. Hence we denote M1 as the magnetic order parameter with modulation along
Q1 = (π, 0) while M2 is modulated along Q2 = (0, π). Generally, Q1 and Q2 are the
values for which χ0(Q1,2) = U−1. U is the local Hubbard repulsion and χ0(q) is the bare
magnetic susceptibility, where q is a four-vector q = (ω,q). Naive minimisation suggests
that magnetic order occurs when the second order coefficient changes sign, and it would
seem magnetic order can occur simply by lowering temperature until χ0(q, ω = 0) = U−1.
This, however, is an oversimplified conclusion since the effects of order parameter fluc-
tuations have been neglected. Including these will suppress the transition temperature
or, if the dimensionality of the system is too small, even prevent finite-temperature order
entirely. This is the content of the Mermin-Wagner theorem, in one- or two-dimensional
systems thermal fluctuations prevent the condensation of any order parameter whose fi-
nite expectation value breaks a continuous symmetry2. Capturing the order parameter
fluctuations requires the inclusion of higher-order contributions to the free energy. The
fourth order coefficients govern the fluctuations of the order parameters and determine
the symmetry of the magnetic order at the transition temperature and slightly below. As
the magnetic order parameter increases, higher-order terms become important, ultimately
resulting in an expression containing contributions at all orders in M along with an infi-
nite hierarchy of equations governing the feedback of fluctuations on the magnetic order.
Here we will only include the lowest order corrections from the fluctuations as these are
sufficient to describe both the complete suppression of magnetic order in two-dimensional
systems and the occurence of so-called preemptive orders which result from breaking a
discrete symmetry (and are therefore allowed to order in two dimensions).

From the free energy it is evident that three different magnetic orders are possible
depending on the signs and relative magnitude of g and w. Positive g generally favours a
single-Q phase where only M1 or M2 is non-zero. However, for sufficiently negative w such
that |w| > g coexistence of M1 and M2 is favoured, resulting in a state where M1 ‖M2.
If g is negative coexistence is also favoured and the sign of w decides the relative alignment
of M1 and M2 with M1 ⊥ M2 for positive w. Here we follow standard conventions and
denote the state with e.g. M1 6= 0 and M2 = 0 (or vice versa) as a magnetic stripe
(MS), for M1 ‖M2 we use charge-spin-density-wave (CSDW) and designate M1 ⊥M2 as
the spin-vortex-crystal (SVC) phase. The phase diagram summarising the points above is
depicted in Fig. 1.2.

Within a specific microscopic model the coefficients of the free energy can be evaluated
and the magnetic ground state determined. The free energy will play a central part in
our studies of the FeSC allowing us to study in detail the doping dependence of the
magnetic order, see Sec. 1.3, but also the formation of a preemptive nematic order, see
Chapter 3. Extensions of the above expression also permit us to study both the formation
of incommensurate magnetic order (Sec. 1.4) and the effect of spin-orbit coupling on the
orientation of the magnetic moments (Chapter 2). With the free energy playing such

2In one-dimensional systems zero-temperature quantum fluctuations ensure that the order parameter
does not condense even at zero temperature.
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1.1 Renormalisation Group Flow of Quartic Coefficients
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Figure 1.2: Mean-field phase diagram with flows of the quartic coefficients superim-
posed. The colours denote the various phases obtained from mean-field calculations while
the arrows show the flow of the quartic coefficients under the renormalisation group (RG),
described in Sec. 1.1. Note that the flows remain within their respective phases and the
mean-field phase diagram is stable under the RG flow.

a prominent role we briefly consider the behaviour of the quartic coefficients under a
renormalisation group flow to show that the mean-field phase diagram is stable against
the fluctuations of the high-energy order parameter fluctuations.

1.1 Renormalisation Group Flow of Quartic Coefficients

In the expression for the free energy above, the quartic terms were assumed to be momentum-
independent. Allowing for a momentum-dependence can lead to a renormalisation of the
coefficients and the question is whether this renormalisation leaves the mean-field phase
diagram unaltered. To answer this we perform a momentum-shell renormalisation group
(RG) analysis which elucidates the effects of the high-energy order parameter fluctuations
upon the low-energy sector that we typically study. We achieve this by assuming that the
quartic interactions are local in space such that the quartic term in the free energy (in real
space) reads

F (4)[M1,M2] = u

2

∫
x

(
M2

1 + M2
2

)2
− g

2

∫
x

(
M2

1 −M2
2

)2
+ 2w

∫
x

(M1 ·M2)2 .(1.2)

The local nature of the interactions implies that high-momentum fluctuations impact
low-momentum ones and vice versa. To quantify this effect we write the free energy
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1.1 Renormalisation Group Flow of Quartic Coefficients

Figure 1.3: A subset of the diagrams contributing to the renormalisation of u, g and
w. The diagrams shown here both contribute to u and g. The loop in (a) contributes an
additional factor of N due to the sum over components of the magnetic order parameter.

in momentum-space and define

M(k) ≡

M<(k) for 0 < k < Λ/`
M>(k) for Λ/` < k < Λ

(1.3)

where Λ is the UV-cutoff and ` > 1 [58]. With these definitions we obtain the partition
function

Z =
∫
D[M<

1 ,M<
2 ]e−S<〈e−Sint〉> (1.4)

with Sint the action describing interactions between high- and low-momentum modes and
S< (S>) is the action describing the free low-momentum (high-momentum) modes. The
presence of the high-momentum degrees of freedom alters the interactions between the low-
momentum modes through a renormalization of the coupling constants, and integrating
out the high-momentum modes results in equations describing the flow of the free energy
coefficients towards a fixed point describing the low-energy physics. 〈eSint〉> is expressed
in terms of a cumulative expansion up to second order i.e.

〈eSint〉> ≈ e−〈Sint〉>+ 1
2(〈S2

int〉>−〈Sint〉2>) , (1.5)

and the term of interest is 〈S2
int〉>, which yields the one-loop renormalisation of four-

point vertices by the high-momentum modes. A representative subset of the contributing
diagram is depicted in Fig. 1.3. The RG flow equations are obtained by evaluating such
diagrams, and we assume that we are at the quantum critical point implying that the
dynamic critical exponent z = 2 and the effective dimensionality is thus deff = 4. In
this case the wave-function does not renormalise and we can furthermore ignore the finite
momentum transfer in the one-loop diagrams [59]. The resulting flow equations are

du
dt = −4(N + 4)u2 − 8wu− 8w2 + 8ug − 8g2 , (1.6)
dw
dt = −4(N + 2)w2 − 24wu− 8wg , (1.7)
dg
dt = 4(N + 2)g2 + 8gw − 24gu , (1.8)
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Figure 1.4: Flows of the quartic coefficients in the striped case (left), SVC case (middle)
and CSDW case (right). In all three cases u flows to a negative value signalling that the
magnetic transition is first order.

where t ≡ log ` and N is the number of components of the magnetic order parameter which
was left unspecified for completeness. Below we shall confine attention to the N = 3 case.
These equations were studied for a specific set of initial conditions in Ref. [47] and more
recently the influence of superconductivity was considered in Ref. [60].

We here consider the fixed points and trajectories of Eqs. (1.6)-(1.8). This is most easily
achieved by defining ũ ≡ u/g and w̃ ≡ w/g and consider the corresponding equations for
ũ, w̃ and g. This reveals the fixed points

w̃ = 0 w̃ = −1 w̃−1 = 0 . (1.9)

Note that these points correspond to fixed trajectories for the original coefficients. Analysing
the stability of the various fixed points reveals that w̃ = 0 is stable for g > 0 and unstable
for g < 0. The fixed trajectory at w̃−1 = 0 is however unstable for w > 0 but stable for
w < 0 while the trajectory w̃ = −1 is unstable for g > 0 and stable for g < 0. To each sta-
ble fixed point we can associate a basin of attraction corresponding to a specific magnetic
order. From the above analysis we find that the basin of attraction corresponding to the
fixed trajectory w/g = −1 is thus given by w > 0 and g < 0, thus corresponding to the
SVC phase. For the fixed trajectory at g/w = 0, the basin of attraction is given by w > 0
and −w < g, implying CSDW magnetic order. The basin of attraction belonging to the
fixed trajectory at w/g = 0 is given by g > 0 and g > −w, yielding magnetic stripes. As
the fixed lines bounding the various basins of attraction correspond exactly to the phase
boundaries in the mean-field phase diagram, we see that the mean-field phase diagram
remains stable under the RG flow. These conclusions are supported by the numerical
solution of Eqs. (1.6)-(1.8) resulting in the flows depicted in Fig. 1.2. In general u flows
to a negative value (Fig. 1.4) implying that the magnetic transition is first order.

With these simple facts established we now proceed to consider the various models
used in describing the FeSC, ranging from simple band models to complicated multiorbital
models.

1.2 Modeling the Iron-based Superconductors

The Fermi surface for most iron-based compounds consists of two hole pockets at the Γ
point and two electron pockets at respectively the X and Y points, and, in e.g. LaFeAsO,
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1.2 Modeling the Iron-based Superconductors

a hole pocket at the M point [61–63] (in the 1Fe/unit cell). Early studies approximated
this Fermi surface by a three-band model where the two hole pockets at Γ are merged and
the orbital content of the bands is ignored [64]. Cvetkovic and Vafek [65] went beyond the
simple band picture and used the orbitals with dominant weight at the high-symmetry
points, Γ, X, and Y, as a starting point for a k · p-expansion. This results in a model
with t2g-orbital content and provides a controlled way of adding a spin-orbit coupling. In
Chapter 2 we apply this model and show that a finite spin-orbit coupling can account
for the reorientation of magnetic moments observed in the C4-phase of some hole-doped
FeSC [32–35]. However, to more accurately describe the physics of the FeSC, more realistic
models rely on tight-binding fits to density-functional-theory (DFT) calculations using five-
band models [66,67]. Such calculations neglect the effects of correlations, although in most
cases performing a suitable rescaling of the effective masses roughly reproduces the band
structure as observed by e.g. angular-resolved photo emission spectroscopy (ARPES) [68].
An additional complication arises from the puckering of the pnictogen or chalcogen atoms,
as seen in Fig. 1.1. This increases the size of the unit cell to include two Fe atoms.
However, in the absence of spin-orbit coupling there is a glide-plane symmetry [65, 69]
which relates the single Fe atom unit cell with an atom puckered above the plane, to one
with an atom puckered below the plane, implying that a unit cell containing a single Fe
atom is sufficient. Both 1Fe/unit cells and 2Fe/unit cells are applied in the literature,
and throughout this thesis we will work in the 1Fe/unit cell. Below we briefly review
the predictions and limitations of a number of common models for the FeSC. A succint
overview is given in Ref. [37].

1.2.1 Minimal models

A good starting point for the study of the iron-based superconductors is a three-band
model with a single hole pocket at the Γ-point and electron pockets at the X- and Y-
points. The Fermi surface for such a model is depicted in Fig. 1.5 and allows itinerant
magnetism with wavevector (π, 0)/(0, π) to form due to nesting between hole and electron
pockets. Such models have been widely studied [47, 64, 70, 71] and the presentation here
will be rather rudimentary and serves chiefly as motivation and context for introducing
the more complicated multi-orbital models.

The bandstructure given by

εΓ,k = ε0 −
k2

2m − µ (1.10)

εX,k = −ε0 + k2
x

2mx
+

k2
y

2my
− µ (1.11)

εY,k = −ε0 + k2
x

2my
+

k2
y

2mx
− µ (1.12)

enacts the Fermi surface exhibited in Fig. 1.5. Since these models are designed with the
goal of capturing the Fermi surface, they are inapt at describing phenomena relying on
the formation of finite-energy electron-hole pairs. On the other hand these models are
very well suited to capture effects related to the topology of the Fermi surface, although
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1.2 Modeling the Iron-based Superconductors

Figure 1.5: Fermi surface of the three-band model given in Eqs. 1.10–1.12. Magnetism
is driven by nesting between the hole pocket at Γ and the electron pockets at X and Y.
Figure from Ref. [47].

Figure 1.6: Illustration of the Feynman diagrams contributing to the quartic coefficients
of the free energy. The diagrams in (a) and (b) contribute to both u and g while the
diagram in (c) is equivalent to w. Note that the diagram in (c) is subleading since there
is no pocket at the M point in the three-band model. Details can be found in Chapter 2.

the lack of orbital character can in some instances lead to wrong results, as we shall see
below. Using the dispersion above we can evaluate the coefficients of the free energy and
thus determine the symmetry of the magnetic order parameter. The quartic coefficients
are determined by the diagrams shown in Fig. 1.6 and are straightforward to evaluate (see
Ref. [47]):

u = 1
2

∫
k
GΓ(k)2 (GX(k) + GY (k)

)2 (1.13)

g = 1
2

∫
k
GΓ(k)2 (GX(k)− GY (k)

)2 (1.14)

w = 0 . (1.15)

Here k = (k, ωn) where ωn is a fermionic Matsubara frequency,
∫
k = T

∑
n

∫ ddk
(2π)d and

GΓ(k) is the Green function with momentum near the Γ point:

GΓ(k) = 1
iωn − ξΓ(k) . (1.16)

Note that w vanishes due to the lack of a pocket at the M point in this model as this
implies that the propagator GX+Y (k) is off-shell. Further details concerning this result
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1.2 Modeling the Iron-based Superconductors

are given in Chapter 2. A positive g points to a stripe phase and as was shown in the
preceeding section, the mean-field phase diagram is stable under the RG flow. While u
in general flows to negative values under the RG flow, the bare value of u is positive and
the expansion of the free energy to quartic order is well-defined. Taking into account
interactions between the pockets can lead to a different sign of g and give a non-zero value
for w. We note however, that w in general turns out to be positive (see Ref. [47]) resulting
in a tetragonal SVC phase if g is negative. This proves a problem for the model since the
C4 phases observed so far in experiments are CSDW, implying a negative w. In this case
the missing orbital character of the Fermi surface offers an explanation since unrestricted
Hartree-Fock calculations reproduce a CSDW phase [72] and, as is shown below, taking
into account orbital content results in a negative w. The addition of disorder has also been
shown to favour the CSDW phase [73].

The simplicity of the model allows us to go beyond mean-field theory and include
fluctuations when considering the onset of magnetic order. To achieve this we start from
the free energy Eq. 1.1 and introduce additional fields corresponding to the Gaussian (ψ)
and nematic (φ) fluctuations [47]:

ψ = M2
1 + M2

2 , (1.17)
φ = M2

1 −M2
2 , (1.18)

where we have assumed that w = 0 such that the corresponding fluctuation field can be
neglected. Performing a Hubbard-Stratonovich decoupling in these two fields and applying
the large-N approximation we can derive equations of motions for the remaining fields:

ψ

u
=

∫
q

r0 + ψ + q2

(r0 + ψ + q2)2 − φ2 , (1.19)

φ

g
=

∫
q

φ

(r0 + ψ + q2)2 − φ2 , (1.20)

where we ignored contributions from a finite Matsubara frequency. In these equations, r0 is
the distance from the quantum critical point, i.e. the quadratic coefficient for momentum
independent order parameters and q is the momentum. These were solved in Ref. [47]
where it was shown that the feedback of fluctuations upon the magnetic order suppresses
the magnetic transition to zero temperature in 2d, in agreement with the Mermin-Wagner
theorem. More interestingly, nematic order onsets at a finite temperature, even in 2d.
Note that this is not prohibited by the Mermin-Wagner theorem, since nematic order is a
consequence of the spontaneous breaking of a discrete symmetry (the critical dimension
for discrete symmetries is dc = 1). In 3d, magnetism sets in at a finite temperature and
occurs simultaneously with a nematic transition. As the iron-based superconductors are
layered materials, the experimentally relevant scenario is somewhere in between the 2d and
3d cases. In Ref. [47] both the d = 2.5 case and the case with an anisotropic dispersion
were considered and the conclusions are qualitatively the same. As a function of u/g
three seperate regimes are found. For low u/g the magnetic and nematic transitions are
simultaneous and first order, while for intermediate values the transitions split and the
magnetic transition becomes second order. For higher values both transitions become
second order. Further details can be found in Ref. [47].
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1.2 Modeling the Iron-based Superconductors

If one is interested in establishing the appearance of a nematic phase, one can consider
the nematic susceptibility [74]

χnem =
∫
q χmag(q)2

1− g
∫
q χmag(q)2 , (1.21)

where χmag(q) is the magnetic propagator

χmag(q) = U−1 − χ0(q) (1.22)

and U the spin-spin interaction. In the spin-nematic scenario the nematic susceptibility can
be found from summing an infinite series of Aslamazov-Larkin diagrams [75] or equivalently
by introducing a conjugate field to the nematic order parameter φ and taking functional
derivatives [47], a method outlined in the appendix of Chapter 3 (for the multi-orbital
case). In the work presented in Chapter 3 we consider the generalisation of nematic
susceptibility to multi-orbital models and show that such models also exhibit preemptive
nematic phases.

1.2.2 Hybrid models

Extending the band models above to include some orbital character results in so-called
hybrid models. These models can be rigorously justified using group-theoretical arguments.
Cvetkovic and Vafek [65] carried out a thorough analysis of the crystallographic space
group P4/nmm and its associated point group D4h relevant for a large number of the
iron-based compounds. In effect, the resulting Hamiltonian can be considered a result of
a k · p-expansion and is thus valid in the vicinity of the high-symmetry points. At the
Γ-point the xz and yz orbitals are degenerate and the k ·p-expansion can be performed in
a basis of these two orbitals. Similarly, at the X (Y) point the yz (xz) and xy orbitals are
dominant and an appropriate low-energy basis can be constructed from these two orbitals.
We thus find the Hamiltonian

H0(k) =


hY (k) 0 0

0 hX(k) 0
0 0 hΓ(k)

 (1.23)

written in the basis

Ψk =


ψY,k

ψX,k

ψΓ,k

 . (1.24)
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Here

hΓ(k) =

εΓ + 2 k2

2mΓ
+ b

(
k2
x − k2

y

)
4ckxky

4ckxky εΓ + 2 k2

2mΓ
− b

(
k2
x − k2

y

)
⊗ σ0 (1.25)

hX(k + Q1) =

ε1 + 2 k2

2m1
+ a1

(
k2
x − k2

y

)
−ivX(k)

ivX(k) ε3 + 2 k2

2m3
+ a3

(
k2
x − k2

y

)
⊗ σ0(1.26)

hY (k + Q2) =

ε1 + 2 k2

2m1
− a1

(
k2
x − k2

y

)
−ivY (k)

ivY (k) ε3 + 2 k2

2m3
− a3

(
k2
x − k2

y

)
⊗ σ0 ,(1.27)

with

vX(k) = 2vky + 2p1ky(k2
y + 3k2

x)− 2p2ky(k2
x − k2

y) (1.28)
vY (k) = −2vkx − 2p1kx(k2

x + 3k2
y)− 2p2kx(k2

x − k2
y) , (1.29)

and the basis spinors of Eq. 1.24 are defined near the Γ, X and Y points respectively, such
that e.g.

ψX,k+Q1 =


cyz,k+Q1↑

cxy,k+Q1↑

cyz,k+Q1↓

cxy,k+Q1↓

 . (1.30)

In these expressions the constants are free parameters which can be chosen to best fit
the results of DFT calculations. This Hamiltonian presented in the preceeding equations
is studied in detail in Chapter 2 where we seek to explain the reorientation of magnetic
moments observed in the tetragonal magnetic phase in Ba1−xNaxFe2As2 [51] and later in
other 122 compounds [32–35]. An illustration of the Fermi surface for a specific choice
of parameters based on Ref. [76] is presented in Fig. 2.2. The model above exhibits
spin-rotational symmetry and to address the issue of reorientation the spin-rotational
invariance should be broken. This is achieved by introducing a spin-orbit coupling, which
was also considered by Cvetkovic and Vafek in Ref. [65]. By taking into account the
non-symmorphic nature of P4/nmm they extended the group-theoretical analysis to also
account for a finite spin-orbit coupling. In the vicinity of the high-symmetry points, the
leading terms in the spin-orbit Hamiltonian are k-independent and due to the smallness
of spin-flip hopping parameters compared to non-spin-flip hopping parameters we can
neglect k-dependent terms. Hence the resulting spin-orbit term is identical to the atomic
spin-orbit coupling following from evaluating L · S in the basis of cubic harmonics:

HSOC =
∑

k
Ψ†kHSOC(k)Ψk , (1.31)
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with

HSOC(k) =


0 hSOC

M (k) 0(
hSOC
M (k)

)†
0 0

0 0 hSOC
Γ (k)

 (1.32)

hSOC
Γ (k) = 1

2λ (τy ⊗ σz) , (1.33)

hSOC
M (k) = i

2λ
(
τ+ ⊗ σx + τ− ⊗ σy

)
, (1.34)

where λ is the spin-orbit coupling, τ± = 1
2

(
τ0 ± τ z

)
, and we have ignored the eg orbitals.

These results are derived in Appendix 2.A and 2.B where we carry out a k ·p-expansion of
a five-orbital model and show that, to third order in k, the Hamiltonian around Γ, X and
Y only includes xz, yz and xy and has a structure identical to the one provided above.

1.2.3 Multi-orbital models

While the above models have the advantage of being rather simple and even provide
analytical answers in some cases, they rely on rather significant approximations. The
minimal models tend to neglect the orbital character of the bands they describe, and while
hybrid models remedy this to an extent, these are still based on k·p expansions around the
high-symmetry points of the Brillouin zone. The last family of models we will consider goes
beyond these approximations and include the orbital character of the entire bandstructure.
These models are generally constructed from tight-binding fits to DFT calculations [66].
It has been shown that neither the two- nor three-orbital models [10,11] correctly capture
all the relevant low-energy physics [37]. The two-orbital models invariable break the glide-
plane symmetry, i.e. a translation through (a2 ,

a
2 ) followed by a mirror reflection in the

xy-plane [65]. Since the three t2g-orbitals are dominant at the Fermi surface, one would
believe that a three-orbital model containing xz, yz and xy would be able to describe the
low-energy physics and here the issue is indeed a bit more subtle. The three-orbital models
correctly reproduce the hole pockets at Γ and the electron pockets at X and Y, however,
an additional hole pocket with xz/yz character is present at the M point, in addition
to a hole pocket with xy character [37]. By changing the tight-binding parameters one
can remove both pockets at M, which is also not desireable since some materials indeed
exhibit an xy hole pocket at M. Taking into account the hybridisation between the t2g
and eg orbitals removes the xz/yz hole pocket at M [57, 65, 77]. With the addition of the
two eg orbitals, x2 − y2 and z2, one is able to reproduce the experimental Fermi surfaces,
however this comes at the cost of having rather complex five-orbital models referencing
all the Fe d-orbitals. The five-orbital models can be constructed from tight-binding fits
to DFT calculations and often involve several neighbour hoppings to achieve a good fit.
Another complication arises from the fact that the crystallographic unit cell contains two
Fe-atoms, due to the puckering of the pnictogens or chalcogens. Hence, fitting the result
of DFT calculations typically requires 10 orbitals from which the five-orbital models are
constructed by folding the 2Fe/unit cell to a 1Fe/unit cell. This subtlety plays a role if
one wishes to include the effects of spin-orbit coupling, in which case one has to work
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1.2 Modeling the Iron-based Superconductors

Figure 1.7: Fermi surface and bandstructure for the five-orbital model used in this
thesis. The filling here is 〈n〉 = 6. Like in the three-band case, magnetism is driven by
the nesting between the hole pockets at Γ and the electron pockets at X and Y, although
in this case the orbital content plays an important role, as we will see below.

with the full 10 orbital models. Since we will not seek to include spin-orbit effects in the
multi-orbital models we shall not dwell further on this fact.

In orbital space we write the Hamiltonian as

H =
∑
kσ
µν

(
εµν(k)− µδµν

)
c†kµσckνσ +Hint , (1.35)

where the εµν(k) are the Fourier transforms of the input parameters from the fit to DFT
calculations and Hint describes the local interactions between electrons occupying different
orbital and spin states:

Hint = U
∑
µ

nqµ↑n−qµ↓ + U ′
∑
µ<ν

nqµσn−qνσ′

+J

2
∑
µ 6=ν

c†k+qµσckνσc
†
k′−qνσ′ck′µσ′ +

J ′

2
∑
µ6=ν

c†k+qµσc
†
k′−qµσ̄ck′νσ̄ckνσ .(1.36)

We will adopt the usual simplifying assumption that U ′ = U−2J and J = J ′ although this
relies on rotational invariance being unbroken and this is not strictly true in the presence
of the crystal field caused by the nearby pnictogens or chalcogens. For the remainder of
this work we shall adopt a specific multi-orbital tight-binding model by Ikeda et al. [61].
The Fermi surface for a filling of six electrons is shown in Fig. 1.7(a) and the bandstructure
in Fig. 1.7(b).

The multi-orbital models with interactions provide a starting point for the study of both
magnetic and superconducting instabilities. Within the fluctuation exchange approach
one can obtain a superconducting pairing vertex and use e.g. the linearized gap equation
or selfconsistent mean-field equations to determine the gap structure [72, 78], typically
resulting in an order parameter with s± symmetry. The occurence of magnetism in multi-
orbital systems has also been extensively studied within mean-field theory [72], capturing
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1.3 Commensurate magnetic order

both the common magnetic stripe phase and the less common tetragonal magnetic phases
as well as the low-energy excitations of these states [79]. At higher energies mean-field
RPA tends to be less accurate and does not capture the spectral weight depletion found
at higher frequences by inelastic neutron scattering [80].

We here provide an alternative method of analysing the magnetic order, based on
evaluating the coefficients of the free energy at the transition temperature. In the absence
of orbital content the symmetry of the magnetic order parameter is determined by two
numbers, g and w. When the magnetic order parameters acquire orbital content, so do the
coefficients of the free energy, and the method outlined below takes this fact into account.

1.3 Commensurate magnetic order

In this part we study the occurrence of commensurate magnetism in the FeSC using an
approach based on a minimisation of the free energy. This method, while only valid in the
vicinity of a magnetic transition, has the advantage of being faster than more traditional
selfconsistent mean-field studies, thus allowing for a more comprehensive study of the
different parameter dependencies. To facilitate this, we adopt a parameterisation of the
free energy slightly different from the one in Eq. 1.1. This is done in order to avoid
the appearance of cross terms when generalising the free energy to orbital space and to
ease comparison with the incommensurate case discussed in Sec. 1.4. Making the internal
indices of the order parameters explicit we have

F =
∑

q

(
(U−1)abcd − χabcd0 (q)

)
Mab(q)Mcd(q)

+ 1
4
(
βabcdefgh1 Mab

1 ·Mcd
1 Mef

1 ·M
gh
1 + βabcdefgh2 Mab

2 ·Mcd
2 Mef

2 ·M
gh
2

)
+ γabcdefghMab

1 ·Mcd
1 Mef

2 ·M
gh
2

+ ωabcdefghMab
1 ·Mcd

2 Mef
1 ·M

gh
2 , (1.37)

reflecting the fact that the order parameters have an orbital structure as well. Here Uabcd

is a matrix comprised of the interaction parameters of the Hubbard-Hund interaction
Hamiltonian (Eq. 1.36), whose exact form is provided in Eqs. (3.30)–(3.33) and χabcd0 (q)
is the static bare spin-spin susceptibility

χabcd0 (q) =
∑
nmk

una(k + q)unb (k + q)∗umc (k)umd (k)∗
nF (ξmk )− nF (ξnk+q)
ξnk+q − ξmk + i0+ , (1.38)

where the una(k) are unitary matrices diagonalising the Hamiltonian in orbital space and
ξn(k) are the eigenenergies. Here we discuss a method to evaluate the quartic coefficients
by writing the magnetic order parameters in terms of their irreducible representations and
identifying which of these is the first to condense. This allows us to project the coefficients
onto the appropriate irreducible representation. The decomposition in terms of irreducible
representations also has the added benefit of providing an understanding of why specific
orbital combinations appear together in the orbitally resolved magnetic order parameter.

The crystallographic space groups appropriate for the iron-based superconductors are
either P4/nmm, for instance LaFeAsO, or I4/mmm, e.g. for BaFe2As2, and in both cases
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the relevant point group is D4h. The absence of a spin-orbit coupling implies that the
point group symmetries act seperately on wavevector and orbital spaces, while spin space
is inert. The relevant wavevectors are QX = (π, 0) and QY = (0, π), which are located at
the Brillouin zone boundary, such that QX,Y = −QX,Y . The relevant irreducible repre-
sentations are A1g, B1g, A2g and B2g and at quadratic order A1g and B1g are degenerate,
and so are A2g and B2g. This degeneracy is simply a manifestation of the inability of
the quadratic term to distinguish between single-Q and double-Q states. The A1g/B1g

correspond to a magnetic order parameter with the following orbital combinations having
non-zero values (written in the basis {xz, yz, xy, x2 − y2, z2}):

MA1g/B1g ∼



Mxz,xz

Myz,yz

Mxy,xy

Mx2−y2,x2−y2
Mx2−y2,z2

M z2,x2−y2
M z2,z2


(1.39)

while for A2g/B2g the orbital composition is:

MA2g/B2g ∼



Mxz,yz

Myz,xz

Mxy,x2−y2
Mxy,z2

Mx2−y2,xy

Mx2−y2,z2


. (1.40)

As these different magnetic order parameters belong to different irreducible representa-
tions, they are mutually exclusive implying that certain orbital combinations never appear
in tandem, at least not as a result of a transition from a paramagnetic phase.

As stated previously, our ultimate goal is to project the quartic coefficients onto the
leading magnetic instability, which can be achieved in any representation. Hence, we write
the magnetic order parameters as

Mab
1,2 = M1,2v

ab
1,2 , (1.41)

where a, b label the internal structure of the order parameter in the chosen representation,
e.g. orbital or irreducible, and this is determined entirely by the vabX,Y . These, in turn,
are found from the quadratic term in the free energy, which we refer to as the magnetic
propagator, i.e. (

χ−1
mag(q)

)abcd
= (U−1)abcd − χabcd0 (q) , (1.42)

diagonalised at q = QX,Y . When written in terms of the irreducible representations
A1g, . . . , B2g this quantity is block diagonal, i.e. there are no elements coupling different
irreducible representations. The magnetic propagator is evaluated as a function of tem-
perature until a magnetic transition, signified by the smallest eigenvalue crossing zero,
occurs. Note that this is equivalent to a divergence of the leading eigenvalue of the RPA
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1.3 Commensurate magnetic order

magnetic susceptibility. The eigenvalues of the magnetic propagator come in degenerate
pairs when evaluated in the space of irreducible representations. This is a consequence of
the aforementioned degeneracy between A1g/B1g and A2g/B2g at the quadratic level. In-
terestingly, for the parameters used here, the smallest pair of eigenvalues always originate
from the A1g/B1g representations, with subleading eigenvalues also belonging to A1g/B1g.
The condensation of the A1g/B1g representations is consistent with unrestricted Hartree-
Fock methods, which find magnetic order parameters with the orbital structure given in
Eq. 1.39 [72], with the only off-diagonal component being smaller than the diagonal com-
ponents by an order of magnitude. Having established the orbital structure of the leading
instability we can proceed to evaluate the quartic coefficients. The relevant Feynman di-
agrams are again the ones depicted in Fig. 1.6. In the present case however, evaluating
the coefficients using a Hubbard-Stratonovich decoupling has a distinct advantage due to
the presence of orbital indices. The quartic coefficients are rank-8 tensors in orbital space
and to determine the symmetry of the magnetic order at the instability we project these
onto the leading instability using the orbital content obtained from the diagonalisation of
the magnetic propagator at the instability:

(χ−1
mag)abcd(QX,Y )vcd1,2 = λvab1,2 , (1.43)

and we define

βabcdefgh1 vab1 v
cd
1 v

ef
1 vgh1 ≡ β , (1.44)

βabcdefgh2 vab2 v
cd
2 v

ef
2 vgh2 ≡ β , (1.45)

γabcdefghvab1 v
cd
1 v

ef
2 vgh2 ≡ γ , (1.46)

ωabcdefghvab1 v
cd
2 v

ef
1 vgh2 ≡ ω , (1.47)

and we note that while the result of the contractions in Eq. 1.44 and 1.45 are identical by
symmetry the orbitally resolved coefficients βabcdefgh1 and βabcdefgh2 are related by C4 rota-
tions since these act non-trivially on orbital space. With this method we can investigate
the parameter dependence of the various coefficients and hence on the different symmetries
attainable.

The starting Hamiltonian is the one provided in Eq. 1.35 and the interaction is decou-
pled in both the q = 0 charge channel and the q = QX,Y SDW channel. The SDW channel
provides the starting point for the Hubbard-Stratonovich decoupling while the contribu-
tion from the charge channel is absorbed into an orbitally dependent shift of the chemical
potential entering the quadratic term. We commence by making contact with known terri-
tory and consider the parameters U = 0.85 eV, J = U/4. These were investigated in detail
in Ref. [72] and therefore provide a benchmark for our results. In Fig. 1.8(a) we show the
doping-temperature phase diagram obtained from the quartic coefficients. The agreement
with the phase diagram presented in Ref. [72] is encouraging except for the electron doped
region which exhibits a CSDW region, contrary to the case in Ref. [72], where this region is
characterised by an SVC phase. This apparent inconsistency is solved by focussing on the
magnetic-paramagnetic boundary within unrestricted Hartree-Fock theory. This reveals a
small CSDW region preempting the larger SVC region, thus confirming the results based

21



1.4 Incommensurate magnetic order

Figure 1.8: Phase diagrams for the bandstructure of Ref. [61] with U = 0.85eV and
J = U/4. The colour corresponds to the symmetry of the magnetic order parameter at
the transition and is the same as the one in Fig. 1.2, red is the CSDW phase, blue is
the magnetic stripe phase, and green is the SVC phase. As the free energy analysis with
only quartic coefficients is only valid in the vicinity of the phase transition the bulk of
the phase diagram is left blank.

on the free energy and providing an indication that the appearance of the SVC phase is a
result of a secondary magnetic transition. Interestingly, a direct PM-SVC transition was
not observed for any of the parameters considered, which is contrary to predictions based
on a simpler three-band model discussed above, which predicts the dominant tetragonal
phase to be the SVC phase. Indeed removing any effect of orbitals from our calculation
by using e.g. vab = δab we find a PM-SVC transition for a large doping range, as evi-
denced in Fig. 1.8(b). The absence of the CSDW phase in the generic three-band models
is an indication that the orbital content of the Fermi surface plays an important role in
deciding the symmetry of the magnetic phase. Finally, in an attempt to mimic the hybrid
models, we consider the five-orbital model only in the vicinity of the Fermi surface (i.e.
within 50 meV), implying that the contribution to the quartic coefficients originates from
the high-symmetry points, Γ, X, Y, and M. The result is evidenced in Fig. 1.8(c) and the
agreement with the case where no projection occured is rather good.

Changing the interaction parameters alters the transition temperature and can change
the symmetry of the leading instability although it seems to be a general trend that the
SVC phase does not occur as a leading instability.

1.4 Incommensurate magnetic order

Part of the material presented in this section is available as a preprint by the author, Brian
M. Andersen and Panagiotis Kotetes at arXiv:1612.07633.

Adding or removing electrons via doping changes the Fermi surface of the system. Within
an itinerant scenario where magnetism is driven by Fermi surface nesting this can lead to a
crossover from commensurate to incommensurate magnetism [81]. Incommensurate mag-
netic phases have been observed using neutron scattering [82–84] and more recently a new
C2 symmetric phase was observed in the incommensurate region of Ba1−xNaxFe2As2 [60].
In addition to the incommensurate generalisations of the commensurate magnetic phases,
the existence of two order parameters allow a number of new phases to appear [85], and
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1.4 Incommensurate magnetic order

Figure 1.9: Illustration of the various new magnetic orders possible once magnetism
becomes incommensurate. In (a)-(c) various magnetic spiral order parameters are shown.
In (b)/(c) the spiral coexists with an in-/out-of-plane IC stripe. In (d) we present the C2-
symmetric coplanar phase and in (e)/(f) the non-coplanar phase with C2/C4 symmetry.

as we show below, a number of these turn out to be non-coplanar. This is interesting in
the context of realising intrinsic topological superconductivity which has been speculated
to appear in a number of compounds such as Sr2RuO4 or CuxBi2Se3 [86].

The case of incommensurate magnetism can be studied in a manner similar to the
commensurate case. Incommensurability in this case refers to the wave vector peaking
away from (π, 0) or (0, π). The expression for the free energy is slightly more complicated
since the wave vectors are not at the Brillouin zone boundary implying that the magnetic
order parameters are no longer necessarily real. Instead we have

MQ1 = M∗
−Q1 , (1.48)

and the invariance of the free energy functional under complex conjugation is not trivially
ensured. The appropriate extension of the quartic term reads (here MQ1 ≡M1)

F (4) = β̃

2 (|M1|2 + |M2|2)2 + β − β̃
2 (|M2

1|2 + |M2
2|2) + (g − β̃)|M1|2|M2|2

+ g̃

2(|M1 ·M2|2 + |M1 ·M∗
2|2) , (1.49)

the quadratic term is unchanged compared to the commensurate case. One might expect
the ground state configurations of the above free energy to simply be the incommensurate
extensions of the MS, CSDW and SVC phases studied above. Indeed these are present
in certain regions of the phase diagram, however, the incommensurability allows for the
appearance of six additional phases, depicted in Fig. 1.9. Parameterising the order pa-
rameters as

M1 = M cos ηn̂1 , (1.50)
M2 = M sin ηn̂2 , (1.51)
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1.4 Incommensurate magnetic order

Figure 1.10: Phase diagrams resulting from a minimisation of the free energy in
Eq. (1.49). Here the phases are: C2 magnetic spiral ( ), C2 IC stripe ( ), C4 collinear
double-Q ( ), C4 non-collinear double-Q ( ), C2 magnetic spiral with in-plane (||) IC
stripe ( ), C2 magnetic spiral with out-of-plane (⊥) IC stripe ( ), C2 coplanar ( ), C4

non-coplanar ( ), and C2 non-coplanar ( ). Note that the IC extensions of the original
three phases ( , , ) are present, however they have yielded large regions of the phase
diagrams to the new phases solely appearing in the IC regime.

and extremising the free energy functional with respect to η we find

sin 2η = 0 , (1.52)

cos 2η = |n̂2
1|2 − |n̂2

2|2

2G+ 2G̃P − (|n̂2
1|2 + |n̂2

2|2)
, (1.53)

where we have introduced the coefficients

G ≡ g − β̃
β − β̃

, (1.54)

G̃ ≡ g̃

β − β̃
, (1.55)

P ≡ |n̂1 · n̂2|2 + |n̂1 · n̂∗2|2

2 . (1.56)

The incommensurate extension of the standard phase diagram resulting from a full min-
imisation of the free energy functional is shown in Fig. 1.10. A significant number of the
new double-Q phases violate C4 symmetry. Interestingly, a C2 symmetric incommensurate
magnetic phase distinct from an incommensurate stripe phase was recently observed in
Na-doped Ba2Fe2As2 [60] and it is conceivable that this phase corresponds to one of the
new phases uncovered although further experimental studies are needed to conclude this
with certainty.

The method outline in Sec. 1.3 can also be applied in the study of the incommensurate
phases, although with a slight modification. Since Q1,2 are not at the Brillouin zone
boundary, the equations for the quartic coefficients involve, in addition to k and k + Q1,2,
also higher harmonics k + nQ1,2 where n is an integer. Here we neglect these terms as
the peaks associated with the higher harmonics are suppressed compared to the leading
harmonic, as seen in Fig. 1.11. An incommensurate phase is found in the band structure
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1.4 Incommensurate magnetic order

Figure 1.11: Plot of the bare physical susceptibility χ0(q) =
∑
ab χ

aabb
0 (q) for two

different fillings using the band structure of Ref. [61]. We see that higher harmonics are
suppressed compared to the dominant peak.

of Ref. [61] for U = 0.95 eV and J = U/4 at large hole doping for which 〈n〉 = 5.75 if
we neglect the orbitally-dependent adjustment of the chemical potential induced by the
interactions as the system is doped3. The resulting phase diagram is shown in Fig. 1.12,
depicting a large commensurate region and an incommensurate region on the hole doped
side of the phase diagram. The C4 non-coplanar magnetic order is given by the expression

M(r) =


M sinλ

[
cos(Qx) + cos(Qy)

]
M cosλ sin(Qx)
M cosλ sin(Qy)

 . (1.57)

This magnetic texture has nodes at four points, r = (±π/Q, 0) and r = (0,±π/Q), and
by application of an external magnetic field in the x-direction these four nodal points are
gapped out and |M(r)| 6= 0 everywhere. With this we can introduce a Chern number for
the magnetic unit vector M̂(r) = M(r)/|M(r)|:

C = 1
4π

∫
dr M̂(r) ·

[
∂xM̂(r)× ∂yM̂(r)

]
(1.58)

with C = ±1 indicating a topologically non-trivial magnetic texture.
Attaining microscopic coexistence between spin-singlet superconductivity and C2 or

C4 non-coplanar magnetic order paves the way for realising intrinsic topological super-
conductivity capable of hosting Majorana edge modes in the iron-based superconductors.
While several of the other magnetic orders made possible by the incommensurate exten-
sion also allow for topological phases in one form or other, the C2 and C4 non-coplanar
orders allow for a strong topological invariant whose existence only relies on the presence
of the anti-unitary generalised charge-conjugation symmetry, as indicated in Table 6.1.
This will be discussed further in Chapter 6 when we introduce the concept of symmetry

3At this point it is worth stressing that the band structure considered is rigid in the sense that the
DFT calculations were only carried out at 〈n〉 = 6. Since doping replaces one kind of element with another
one should carry out new DFT-calculations taking into account this change. When doping the system in
question we assume that the introduction of different elements does nothing to the band structure and
only changes the filling. This is not entirely correct but whether the effect of different elements is best
captured by including or omitting the orbitally-dependent shift of the chemical potential is not clear. Since
the primary goal of the above study is to study an incommensurate phase we will not be concerned further
with this subtlety.

25



1.4 Incommensurate magnetic order

Figure 1.12: Magnetic transition temperature as a function of the filling, 〈n〉, for the
band structure of Ref. [61] showing a dome similar to the ones depicted in Fig. 1.8. In
the commensurate region the leading instability is the standard magnetic stripe. For
〈n〉 ≈ 5.75 we obtain the type of incommensurability investigated here, with Q1,2 =
(π − δ, 0)/(0, π − δ). In the IC region, the dominant magnetic order is the C4 non-
coplanar phase ( ) while the C4 non-collinear phase ( ) becomes stabilized for smaller
filling. The insets show the evolution of the peaks in the RPA susceptibility as the
system moves from the commensurate region with Q1,2 = (π, 0)/(0, π) to the IC with
Q1,2 = (π − δ, 0)/(0, π − δ) and δ ≈ π/10.

classes. The topological invariant for this quantity is a Chern number, however, since
we are dealing with a multi-orbital system, each band has its own Berry curvature and
evaluating the Chern number is cumbersome. In the presence of an s++ superconducting
order parameter Majorana cones are formed at points connected by the magnetic ordering
vector Q1,2, as is shown in Fig. 1.13. In the vicinity of the Fermi surface we can instead
consider the vector

g(k) =


kx

ky

∆−Meff

 , (1.59)

and define a topological invariant∫
dk ĝ(k) ·

[
∂kx ĝ(k)× ∂ky ĝ(k)

]
. (1.60)

Note that this quantity is fractional since it involves only one gap closing in the Brillouin
zone. The Nielsen-Ninomiya theorem [87] ensures that the gap closes at an even number of
points in the Brillouin zone such that the sum of these numbers add up to an integer. Here
Meff is an effective order parameter decided by the value of the magnetic order parameter
in the overlapping orbitals. In the present case the magnetic gap is due to an overlap
between electron and hole parts of the Fermi surface. For Majorana cones to appear as
shown in Fig. 1.13(b) the order parameter must have the same sign on electron and hole
pockets, as shown in Fig. 1.13(c)-(e), while the configuration shown in Fig. 1.13(f) would
not lead to a topologically non-trivial phase.
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1.4 Incommensurate magnetic order

Figure 1.13: (a) Fermi surface for the filling exhibiting incommensurate magnetism.
The main contributions to nesting along Q1 (Q2) arise in the xy and yz (xz) orbitals.
(b) Fermi surface after folding once along both Q1,2. The inset shows the evolution of the
energy dispersion when moving away from a nested point with direction along ky, in the
presence of magnetic order (M = 20meV and λ = π/5) and two different values for the
superconducting gap ∆ = 10meV (dashed) and ∆ = 5meV (full). In the latter we have
chosen a SC gap value yielding a bulk Majorana cone associated with the occurrence of a
topological phase transition. (c)-(f) Relative sign structure of the superconducting order
parameter on the pockets, leading to topological (c)-(e) or trivial (f) phases.

In this chapter we have been introduced to the vast subject of magnetism in the
FeSC. We reviewed various relevant models for the study of the FeSC and illustrated the
importance of including the orbital character of the bands when determining the symmetry
of the magnetic order parameter. Additionally, the concept of incommensurate magnetism
was introduced in the context of the FeSC and we saw that such phases naturally arise
in the phase diagram of a band structure suitable to describe the FeSC. Using the hybrid
model introduced in Sec. 1.2.2 we investigate the role of a finite spin-orbit coupling in the
FeSC in Chapter 2. Employing the multi-orbital model of Ref. [61] we show in Chapter 3
that the multi-orbital Hubbard model exhibits a spin-driven nematic instability akin to
the one described in Sec. 1.2.1.
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Chapter 2

Spin reorientation driven by the
interplay between spin-orbit
coupling and Hund’s rule coupling
in iron pnictides

This chapter has been published by the author and Jian Kang, Brian M. Andersen, Ilya
Eremin and Rafael M. Fernandes in Phys. Rev. B 92 214509 (2015).

Motivated by the observation of a tetragonal magnetic phase exhibiting a reorientation of
the magnetic moments we study the effect of spin-orbit coupling on the magnetic order.
To this effect we use the hybrid model introduced in Sec. 1.2.2. We show that the interplay
between Hund’s coupling and the spin-orbit coupling is responsible for a reorientation of
the magnetic moments from in-plane to out-of-plane. A tetragonal phase with reoriented
magnetic moments is found for a range of chemical potentials corresponding to hole-
doped materials. The appendices contain a number of technical derivations including
k ·p expansion of a five-orbital model resulting in the hybrid model used, and a derivation
of the spin-orbit term.
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2.1 Introduction

In the iron pnictides, unconventional superconductivity appears in close proximity to a
magnetic instability [18,19,22,88]. As a result, much of the research into these compounds
has been devoted to understanding the magnetic properties of these systems [9, 53, 89,
90]. Experimentally, the spin-density wave (SDW) magnetic order of most iron pnictides
has orthorhombic (C2) symmetry and corresponds to stripes of parallel spins modulated
either along the x̂ direction (i.e. ordering vector Q1 = (π, 0) and staggered magnetic
order parameter M1) or along the ŷ direction (i.e. ordering vector Q2 = (0, π) and
staggered magnetic order parameter M2), in the coordinate system of the Fe square lattice
[9,90]. Theoretically, this state has been described by a variety of approaches, from purely
localized Heisenberg spins [39, 44, 46, 91, 92] to itinerant nesting-based scenarios [47, 64,
70, 93–99] to hybrid models mixing local moments and itinerant carriers [45, 89, 100–103].
Common to nearly all these approaches is the assumption that the magnetic degrees of
freedom have an underlying O(3) spin-rotational symmetry. From a phenomenological
perspective, this implies that the magnetic free energy Fmag depends only on the absolute
value of the magnetic order parameters, i.e. Fmag

(
M2

1 ,M
2
2

)
[104].

Despite the success of these approaches in describing many magnetic properties of
the iron pnictides – such as the onset of a preemptive nematic transition [24] and the
appearance of a tetragonal magnetic ground state [95] – there are important features that
remain largely unaddressed. In particular, the O(3) rotational symmetry of a free spin does
not hold for a magnetic moment in a crystal. Instead, the symmetries of the underlying
lattice induce anisotropies in spin space that may be significant [105]. Indeed, in most
iron pnictides, the magnetic moments are observed to point parallel to the modulation
vector of the stripes, i.e. Mi ‖ Qi [9,90]. Attesting the significance of this spin anisotropy,
a sizable spin gap of the order of 10 meV is also found at low temperatures deep in the
magnetically ordered state [106–109]. Interestingly, recent experiments in hole-doped iron
pnictides have reported a spin reorientation near optimal doping, in which the direction
of the magnetic moments flip from in-plane to out-of-plane [32–35]. Remarkably, this spin
reorientation takes place in a region of the phase diagram in which the magnetic ground
state changes from stripe/orthorhombic to tetragonal.

Therefore, elucidating the origins of these spin anisotropies and their impact on the
normal state properties is paramount to advance our understanding of the iron pnictides.
A natural candidate to account for these effects is the spin-orbit coupling (SOC) term
λS · L [65, 69, 110, 111], which converts the lattice anisotropies into anisotropies in spin
space. Recent ARPES measurements of the SOC λ have reported values of the order
of 20 meV [112], which is not far from the typical magnetic energy scale of the problem
(as extracted for instance from optical conductivity measurements [113, 114]). To include
the SOC term in theoretical models, it is necessary to account for the puckering of the
As atoms along the FeAs plane, which effectively doubles the unit cell of the Fe-only
square lattice. In this paper, instead of working with the cumbersome ten-band model
relevant for the 2-Fe unit cell, we consider a simpler low-energy microscopic model that
respects all the symmetries of the FeAs plane and focuses only on the states near the
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2.2 Low-energy microscopic model

Fermi level. Such a model, which relies on the smallness of the Fermi surface pockets of
the iron pnictides, was previously derived by Cvetkovic and Vafek using rigorous group
theoretical arguments [65]. Here, we show how the main ingredients of the model can be
derived from a straightforward expansion of the usual five-orbital model for the pnictides.
By computing microscopically the magnetic free energy in the paramagnetic state, we find
the leading-order magnetic anisotropic terms:

δF = α1
(
M2

1,x +M2
2,y

)
+α2

(
M2

1,y +M2
2,x

)
+α3

(
M2

1,z +M2
2,z

)
. (2.1)

The anisotropic coefficients αi are proportional not only to the square of the SOC
term, λ2, but also to the Hund’s rule coupling J . Evaluation of the coefficients reveals
that α1 < α3, α2 for most of the temperature-doping phase diagram, implying that the
magnetic moments have a general tendency to lie in the plane. Interestingly, in the hole-
doped side of the phase diagram, we find a small region in which α3 < α1, α2, indicating a
spin reorientation from in-plane to out-of-plane. Both results are in qualitative agreement
with the observations discussed above, providing evidence that the SOC term, with the
aid of the Hund’s rule coupling, is sufficient to account for the magnetic anisotropies of
the iron pnictides. This conclusion contrasts with previous proposals that orbital and/or
nematic order are necessary to explain the observed magnetic moment orientation [105].

For completeness, we also analyze the nature of the magnetic ground state across the
phase diagram. We find a general tendency of electron-doped compounds to form an
orthorhombic uniaxial (single-Q) stripe state (i.e. either

〈
|M1|

〉
= 0 or

〈
|M2|

〉
= 0),

whereas hole-doped compounds favor a tetragonal biaxial (double-Q) magnetic state (i.e.〈
|M1|

〉
=
〈
|M2|

〉
). Such an electron-hole asymmetry is also qualitatively consistent with

experiments – and in particular with the recent observation that the spin reorientation
takes place in a region of the phase diagram in which the magnetic ground state is tetrag-
onal.

The paper is organized as follows: In section 2.2 we introduce the low-energy micro-
scopic model with the SOC term and the electronic interactions. Section 2.3 is devoted to
the analysis of the coefficients of the free energy responsible for the magnetic anisotropy
within leading-order. In section 2.4 we refine the phase diagram by including fourth order
contributions to the free energy that allow us to distinguish between stripe and tetragonal
magnetic ground states. Concluding remarks are presented in section 2.5. Details of the
calculations are included in four appendices.

2.2 Low-energy microscopic model

We start with a low-energy microscopic model that focuses only on the electronic states
near the Fermi level, while respecting the symmetries of the FeAs plane. Such a model
was originally derived in Ref. [65] using the symmetry properties of the non-symmorphic
space group P4/nmm of a single FeAs plane. Here, we present an alternative derivation
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based on the typical 5-orbital tight-binding model used for the iron pnictides [66]:

H0 =
∑

kµνα
εµν (k) c†µ,kαcν,kα (2.2)

where k is the momentum, α is the spin, and µ, ν denote one of the five Fe orbitals, xz,
yz, x2 − y2, xy, and 3z2 − r2. The matrix εµν (k) corresponds to the Fourier-transformed
tight-binding dispersions involving up to fourth-nearest neighbor hoppings. Its explicit
expression is given in Appendix A. Note that this Hamiltonian is based on the single-Fe
square lattice (i.e. it refers to the “unfolded” Brillouin zone), and that the coordinate sys-
tem is defined such that kx and ky are parallel to the nearest-neighbor Fe atoms directions.
The actual crystallographic unit cell contains two Fe atoms due to the puckering of the
As atoms, resulting in the so-called “folded” Brillouin zone, described by the coordinates
Kx,Ky (see Fig. 2.1). Note that the two coordinate systems are related by:

Kx = kx + ky

Ky = −kx + ky (2.3)

where the momentum in the unfolded zone is measured in units of its inverse lattice
constant 1/a, whereas the momentum in the folded zone is measured in units of the its
inverse lattice constant 1/

(√
2a
)
.

The key properties that allow us to derive a simpler low-energy model are the facts that
the Fermi surface pockets are small and that the orbitals that mostly contribute to the
Fermi surface are xz, yz, xy. In particular, the idea is to start at the high-symmetry points
of the unfolded Brillouin zone (namely, Γ = (0, 0), X = (π, 0), and Y = (0, π)), where the
band states are pure orbital states, and perform an expansion of the corresponding matrix
elements εµν (k) for small momentum. Note that, to focus on a general and analytically
tractable model, we follow Ref. [65] and ignore the states near the (π, π) point of the
unfolded Brillouin zone. While it is true that some iron pnictides display a hole-pocket
with xy-orbital character centered at this point, this pocket is not usually present for all
values of kz, and is absent in many of the iron-based materials with a single FeAs plane
per unit cell. Correspondingly we consider in this work the doping range in which this
pocket lies below the Fermi level.

Consider first the Γ point; the two states closest to the Fermi level are the xz and yz
orbitals, which form a degenerate doublet in the absence of SOC. Thus, for small k, we
define the spinor:

ψΓ,k =


cyz,k↑

−cxz,k↑
cyz,k↓

−cxz,k↓

 . (2.4)

Projecting εµν (k) on this sub-space and expanding for small k then yields the 4 × 4
Hamiltonian:

H0,Γ =
∑

k
ψ†Γ,khΓ (k)ψΓ,k (2.5)
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with

hΓ(k) = εΓ+2 k2
2mΓ

+b(k2
x−k2

y) 4ckxky

4ckxky εΓ+2 k2
2mΓ
−b(k2

x−k2
y)

⊗ σ0 (2.6)

where σ0 is a Pauli matrix acting on spin space. The coefficients εΓ, mΓ, b, and c can
be obtained directly from the tight-binding parameters (see Appendix A). Note, however,
that as we move away from the high-symmetry points of the Brillouin zone, other orbitals
start to contribute to the electronic states. Consequently, the coefficients of the expansion
(as derived in Appendix 2.A) will be slightly renormalized by the hybridization with the
orbitals not included in the expansion, although the form of the expansion remains invari-
ant. To account for this issue, we can consider the coefficients to be free parameters that
can be fit directly to the first-principle band dispersions.

Near the X point, the low-energy states correspond to the orbitals yz and xy. Defining
the spinor:

ψX,k+Q1 =


cyz,k+Q1↑

cxy,k+Q1↑

cyz,k+Q1↓

cxy,k+Q1↓

 . (2.7)

and expanding the projected εµν (k) near Q1 = (π, 0) yields:

H0,X =
∑

k
ψ†X,k+Q1

hX (k + Q1)ψX,k+Q1
(2.8)

with

hX(k + Q1) = ε1+2 k2
2m1

+a1(k2
x−k2

y) −ivX(k)

ivX(k) ε3+2 k2
2m3

+a3(k2
x−k2

y)

⊗ σ0 (2.9)

and:
vX(k) = 2vky + 2p1ky(k2

y + 3k2
x)− 2p2ky(k2

x − k2
y) . (2.10)

Similarly, near the Y point, the low-energy states involve the orbitals xz and xy:

ψY,k+Q2 =


cxz,k+Q2↑

cxy,k+Q2↑

cxz,k+Q2↓

cxy,k+Q2↓

 . (2.11)

Projecting and expanding εµν (k) near Q2 = (0, π) gives:

H0,Y =
∑

k
ψ†Y,k+Q2

hY (k + Q2)ψY,k+Q2
(2.12)
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2.2 Low-energy microscopic model

Figure 2.1: (Left) Illustration of the 2-Fe (dotted line) and 1-Fe (solid line) unit cells.
The black dots denote iron atoms, while the pnictogens form two sublattices, one above
the iron-plane (dark blue) and one below the iron-plane (light blue). (Right) Brillouin
zones corresponding to the 1-Fe and 2-Fe unit cells. The dotted line is the “folded”
Brillouin zone, corresponding to the 2-Fe unit cell, while the solid line is the “unfolded”
Brillouin zone, corresponding to the 1-Fe unit cell.

with

hY (k + Q2) = ε1+2 k2
2m1
−a1(k2

x−k2
y) −ivY (k)

ivY (k) ε3+2 k2
2m3
−a3(k2

x−k2
y)

⊗ σ0 (2.13)

and:
vY (k) = −2vkx − 2p1kx(k2

x + 3k2
y)− 2p2kx(k2

x − k2
y) . (2.14)

Having established the low-energy states in the unfolded Brillouin zone (i.e. the one
referring to the 1-Fe unit cell), it is now straightforward to fold the states into the 2-Fe
unit cell (see Fig. 2.1). Despite working in the folded Brillouin zone, described by the
coordinates Kx,Ky, we will still make use of the coordinates kx, ky of the unfolded zone.
From Eq. (2.3), we find that upon folding, both momenta Q1 = (π, 0) and Q2 = (0, π) are
identified with the same momentum QM = (π, π). It is straightforward to show that the
spinors X and Y now combine to form two new degenerate doublets at the M = (π, π)
point of the folded zone:

ψM1,k+QM
=


cxz,k+Q2↑

cyz,k+Q1↑

cxz,k+Q2↓

cyz,k+Q1↓

 ; ψM3,k+QM
=


cxy,k+Q2↑

cxy,k+Q1↑

cxy,k+Q2↓

cxy,k+Q1↓

 (2.15)

Hereafter, we will consider the momentum of any spinor as measured relative to the high-
symmetry points, as appropriate. Then, the non-interacting Hamiltonian becomes:

H0 =
∑

k
Ψ†k

[
H0(k)− µ1

]
Ψk , (2.16)

where we defined the enlarged spinor:

Ψk =


ψY,k

ψX,k

ψΓ,k

 (2.17)
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2.2 Low-energy microscopic model

Figure 2.2: (upper panel) Cut of the low-energy band dispersion from the Γ = (0, 0) to
the M = (π, π) point of the folded Brillouin zone with parameters fit to the tight-binding
model of Ref. [76]. The corresponding Fermi surface is shown in the lower panel.

and the Hamiltonian matrix:

H0(k) =


hY (k) 0 0

0 hX(k) 0
0 0 hΓ(k)

 (2.18)

where µ is the chemical potential and 1 is the identity matrix. We note that this model
has the same properties of the Hamiltonian derived by Cvetkovic and Vafek in Ref. [65]
combining a k · p expansion and the symmetry properties of the P4/nmm space group
(note, however, that the definition of the spinors X and Y are switched in Ref. [65] with
respect to the notation adopted here). In the group-theory language, the spinor ψΓ belongs
to the two-dimensional Eg representation of P4/nmm near the Γ point, whereas ψM1 and
ψM3 belong to the two-dimensional EM1 and EM3 representations of P4/nmm near theM
point. Hereafter, we will use for the coefficients of the Hamiltonian the parameters given
by Table IX in Ref. [65]. Those were obtained by direct fitting of the band dispersions to
first-principle calculations. The resulting band dispersions, as well as the Fermi surface,
are shown in Fig. 2.2. Note also that this low-energy model is fundamentally different than
two-orbital models that restrict the Hamiltonian to the subspace of the xz and yz orbitals.
Our model, derived from the five-orbital tight-binding model as shown in Appendix A, not
only obeys all the symmetries imposed by the P4/nmm space group, but it also contains
information about all the orbitals that contribute to the Fermi surface, including the xy
orbital.

Besides the band dispersions, the non-interacting Hamiltonian must also contain the
SOC term λS ·L, with S denoting the spin angular momentum operator and L, the orbital
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2.2 Low-energy microscopic model

angular momentum operator. Note that this atomic-like term preserves the Kramers
degeneracy of each state. To proceed, we project this term from the L = 2 cubic harmonic
basis to the orbital basis (see Appendix B for more details). At the Γ point, we obtain an
admixture of the xz and yz orbitals:

λ

2
∑
kαβ

(
ic†yz,kασ

z
αβcxz,kβ + h.c.

)
=

λ

2
∑

k
ψ†Γ,k (τy ⊗ σz)ψΓ,k (2.19)

where, in the last step, we used the definition of the spinors. At the M point, we obtain
the admixture of xz/yz and xy orbitals:

λ

2
∑
kαβ

(
ic†xz,kασ

x
αβcxy,kβ + h.c.

)
=

λ

2
∑

k

[
iψ†Y,k+Q2

(
τ+ ⊗ σx

)
ψX,k+Q1

+ h.c.
]

(2.20)

as well as:

λ

2
∑
kαβ

(
ic†xy,kασ

y
αβcyz,kβ + h.c.

)
=

λ

2
∑

k

[
iψ†Y,k+Q2

(
τ− ⊗ σy

)
ψX,k+Q1

+ h.c.
]

(2.21)

with τ± = 1
2 (τx ± iτy). Therefore, the SOC becomes:

HSOC =
∑

k
Ψ†kHSOC(k)Ψk , (2.22)

with:

HSOC(k) =


0 hSOC

M (k) 0(
hSOC
M (k)

)†
0 0

0 0 hSOC
Γ (k)

 (2.23)

such that:

hSOC
Γ (k) = 1

2λ (τy ⊗ σz) , (2.24)

hSOC
M (k) = i

2λ
(
τ+ ⊗ σx + τ− ⊗ σy

)
, (2.25)

in agreement with the group-theoretical arguments of Ref. [65].
The interacting part of this low-energy model is rather complex, involving 30 different

possible biquadratic terms in the fermionic operators. Here, we will focus on the interac-
tions coupling the Γ and the M points, since those are the ones that will be relevant for
the calculation of the magnetic action in the next section. Defining τ̃1,3 ≡ 1

2(τ0 ± τ z), the
interacting terms coupling the Γ and M points are written as (see Ref. [65]):
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2.2 Low-energy microscopic model

Hint = 1
2
∑
kσ

[
v13

(
ψ†Xσ(k)τ−ψΓσ(k) + h.c.

)2

+v13
(
ψ†Y σ(k)τ̃3ψΓσ(k) + h.c.

)2

+v15
(
ψ†Xσ(k)τ̃3ψΓσ(k) + h.c.

)2

+v15
(
ψ†Y σ(k)τ−ψΓσ(k) + h.c.

)2

+v17
(
ψ†Xσ(k)τ+ψΓσ(k) + h.c.

)2

+v17
(
ψ†Y σ(k)τ̃1ψΓσ(k) + h.c.

)2

+v19
(
ψ†Xσ(k)τ̃1ψΓσ(k) + h.c.

)2

+v19
(
ψ†Y σ(k)τ+ψΓσ(k) + h.c.

)2
]
, (2.26)

Note that all terms are diagonal in spin space. In terms of the more usual multi-
orbital Hubbard model with onsite interactions, the first three coefficients originate from
the Hund’s rule coupling, v13 = v15 = v17 = J , while the last one arises from the intra-
orbital Hubbard term, v19 = U/2 [65]. Here, we are not interested in which interactions
will drive the SDW transition. Rather, we will assume a nearby SDW instability and
compute how the interplay between these interactions and the SOC affect the magnetic
action.

Finally, in order to be able to derive the magnetic action in the next sections, we need
also to establish how the magnetic order parameters M1 and M2, corresponding to (π, 0)
and (0, π) order in the unfolded zone, couple to the low-energy electronic states. Here,
we will consider only intra-orbital magnetism. Indeed, previous Hartree-Fock investiga-
tions of the five-orbital Hubbard model have shown that the dominant contributions to
the magnetic instability arise from intra-orbital couplings [72, 115]. Therefore, the SDW
vertices become:

HSDW = M1 ·
∑
kαβ

(
c†yz,kασαβcyz,k+Q1β

+ h.c.
)

+M2 ·
∑
kαβ

(
c†xz,kασαβcxz,k+Q2β

+ h.c.
)

(2.27)

which, transformed to the spinor representation, yields:

HSDW = M1 ·
∑

k

[
ψ†Γ,k

(
τ̃1 ⊗ σ

)
ψX,k+Q1

+ h.c.
]

+M2 ·
∑

k

[
ψ†Γ,k

(
−τ− ⊗ σ

)
ψY,k+Q2

+ h.c.
]

(2.28)

Note that, in the language of Ref. [65], the SDW Hamiltonian transforms under the EM4

two-dimensional irreducible representation of P4/nmm.
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2.3 Anisotropic magnetic free energy

Figure 2.3: Sketch of the different uniaxial (i.e. stripe-like) magnetic configurations
corresponding to the different anisotropic terms in the magnetic free energy (2.30) with
coefficients α1, α2, and α3.

2.3 Anisotropic magnetic free energy

To understand the origin of the magnetic anisotropies, we first review the group theoretical
arguments of Ref. [65]. In the absence of SOC, all the components of the magnetic order
parameters belong to the same irreducible representation EM4 , as shown above, and the
free energy depends only on the invariant form M2

1+M2
2. However, with the introduction of

SOC, the spin and orbital degrees of freedom are no longer independent. Consequently, the
components of Mi must belong to different irreducible representations of P4/nmm, if one
enforces the combination of the spin and orbital parts of the magnetic order parameter
to still transform under EM4 . As a result, the individual components of M1 and M2

transform according to the following two-dimensional irreducible representations [65]

EM1 :

M1,x

M2,y

 EM2 :

M1,y

M2,x

 EM3 :

M1,z

M2,z

 . (2.29)

Because these components belong to different irreducible representations, they will, in
general, have different transition temperatures. Therefore, the free energy must acquire
the leading-order anisotropic terms:

δF = α1
(
M2

1,x +M2
2,y

)
+α2

(
M2

1,y +M2
2,x

)
+α3

(
M2

1,z +M2
2,z

)
. (2.30)

The smallest αi coefficient determines which type of magnetic order condenses first. In Fig.
2.3, we show separately the real-space spin configurations corresponding to the components
of M1 and M2 associated with each coefficient αi. Specifically, if α1 < α2, α3, then Mi

points parallel to the ordering vector Qi (of the unfolded zone); if α2 < α1, α3, Mi still
points in-plane, but perpendicular to the ordering vector Qi. Finally, if α3 < α1, α2, Mi

38



2.3 Anisotropic magnetic free energy

Figure 2.4: Schematic representation of the two distinct type of Feynman diagrams at
O(v, λ2): two-loop diagrams (a) and one-loop diagrams (b). Only the one-loop diagrams
contribute to the anisotropic terms.

points out-of-plane. Note that this analysis does not reveal whether only either M1 or
M2 condense, or if both condense simultaneously. To establish the actual ground state, it
is necessary to go to higher order in the free energy. We will come back to this point in
Section 2.4. Note that the spin-anisotropic terms preserve the tetragonal symmetry of the
system.

Here, our goal is to evaluate microscopically the αi coefficients using the model of the
previous section. Within the non-interacting part of the model, we find that even the
presence of spin-orbit coupling does not introduce magnetic anisotropies. The reason is
that the model effectively has an enlarged P4/nmm⊗P4/nmm symmetry, since the states
at Γ and the states at M are treated independently. Of course, the fact that these states
are connected in realistic tight-binding models ensures that some level of spin-anisotropy
will be introduced at the non-interacting level. Such an effect will be likely a high-energy
effect, as it involves states away from the Fermi level [116]. Here, instead, we focus on
the low-energy contributions to the spin anisotropy. Consequently, they must come from
interactions – particularly, from the interaction terms that couple the states at Γ and at
M , and therefore remove the enlarged P4/nmm⊗P4/nmm symmetry. These are precisely
the terms listed in Eq. (2.26).

We proceed with a straightforward diagrammatic approach by dressing the non-interacting
particle-hole bubble with the SOC term λ in Eq. (2.23) and with the interactions vi in Eq.
(2.26). The SDW vertices coupling the magnetic order parameters to the non-interacting
Green’s functions are those derived in Eq. (2.28). Both λ and vi are treated perturbatively
to leading order. Because terms of the order O(λ) are forbidden by symmetry, we consider
the diagrams of the orders O(λ2) and O(vi).

To orderO(vi), there are two distinct types of interaction-dressed diagrams, as depicted
in Fig. 2.4. On top of that, to order O(λ2), each of the two diagrams can be dressed by a
pair of SOC legs in eight different ways. Because symmetry requirements forbid terms that
couple directly M1 and M2 at the quadratic level, the pair of SOC legs must correspond to
the same SOC term, i.e. either hSOC

Γ (k) or hSOC
M (k) in Eq. (2.23). Explicit calculation of

the traces over the Pauli-matrices reveals also that the only combinations of SOC legs that
yield anisotropic magnetic terms are those in which one SOC leg appears in the upper-
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2.3 Anisotropic magnetic free energy

Figure 2.5: Illustration of distinct second-order one-loop diagrams in the case where
the electron-electron interaction is given by v13 and the magnetic order parameter is M1.
Note that the electron-electron vertex depends on the direction of momentum, i.e. the
upper left and upper right diagrams are not identical.

right (lower-right) part of the diagram and the other SOC leg appears in the lower-left
(upper-left) part of the diagram.

We find that all two-loop diagrams (i.e. those represented in Fig. 2.4a) vanish, and
therefore do not contribute to the magnetic anisotropy term (2.30). We show this explicitly
in Appendix 2.C. Therefore, all that is left is to compute the one-loop diagram represented
in Fig. 2.4b. The calculation is tedious but straightforward. To illustrate it, consider the
interaction v13. The one-loop diagrams contributing to the anisotropic terms M2

1,µ are
shown in Fig. 2.5. As mentioned above, there are two possible placements for the two
SOC legs, in opposite sides of the loop. For each diagram, one has to also consider its
hermitian-conjugate partner, since the interaction vertices and the SDW vertices are not
adjoint operators. Furthermore, the diagrammatic rules derived for this problem impose
an overall minus sign to each one-loop diagram, and enforce the trace over the Pauli
matrices to be taken in the direction opposite to the arrows. Finally, to compute these
traces, it is useful to employ the following Pauli matrix identity:

tr
(
σiσjσkσl

)
= 2

(
δijδkl − δikδjl + δilδjk

)
(2.31)

A straightforward evaluation of these four diagrams gives then three different anisotropic
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2.3 Anisotropic magnetic free energy

terms for the magnetic free energy:

δF = − v13
λ2

2
∑
kk′
ωnωn′

[
tr
(
τ̃1G′Xτ

−G′Γτ
yG′Γτ̃

1GXτ
−GΓτ

yGΓ
)

+ tr
(
τ̃1G′Γτ

yG′Γτ+G
′
X τ̃

1GΓτ
yGΓτ

+GX
) ] (

M2
1,z −M2

1,x −M2
1,y

)
+ v13

λ2

2
∑
kk′
ωnωn′

[
tr
(
τ̃1G′Xτ

−G′Y τ̃
3G′Γτ̃

1GXτ
−GY τ̃

3GΓ
)

+ tr
(
τ̃1G′Γτ̃

3G′Y τ
+G′X τ̃

1GΓτ̃
3GY τ

+GX
) ] (

M2
1,x −M2

1,y −M2
1,z

)
+ v13

λ2

2
∑
kk′
ωnωn′

[
tr
(
τ̃1G′Xτ

+G′Y τ̃
3G′Γτ̃

1GXτ
+GY τ̃

3GΓ
)

+ tr
(
τ̃1G′Γτ̃

3G′Y τ
−G′X τ̃

1GΓτ̃
3GY τ

−GX
) ] (

M2
1,y −M2

1,x −M2
1,z

)
δF = v13λ

2
( ∑

k,ωn

[GX ]12[GY ]12[GΓ]21

)2 (
M2

1,x −M2
1,y −M2

1,z

)
. (2.32)

Here, the primed Green’s functions are short-handed notations for G′i = Gi
(
k′, ω′n

)
. The

Green functions are given by

[GA]ij =
∑
m

aim(k)Aajm(k)∗A
iωn − (εA,m(k)− µ) , (2.33)

where εA,m(k) are the eigenenergies of the matrix hA(k) and aim(k)A is the unitary trans-
formation between the spinor basis and the band basis. In Eq. (2.32), the coefficient
of the term

(
M2

1,z −M2
1,x −M2

1,y

)
vanishes because of the antisymmetry of the GΓτ

yGΓ

matrix in spinor space, whereas the coefficient of
(
M2

1,y −M2
1,x −M2

1,z

)
vanishes because

[GΓ]12 (k) ∝ kxky, causing the sum over momentum to vanish.
Note that while the upper diagrams shown in Fig. 2.5 introduce the anisotropy between

the in-plane and out-of-plane components of the magnetic order parameter, the lower
diagrams contribute to the anisotropy between M1,x and M1,y. The reason for this is the
character of the SOC in the effective model, which remains diagonal in the spin sector
near the Γ-point due to xz- and yz-orbital characters of the electronic states. As a result,
particle-hole excitations involving fermions from the Γ−point and from the X/Y -point
do not allow for a spin-flip, which would be necessary to generate the anisotropy between
M1,x andM1,y. Only the inclusion of the particle-hole excitations between the two electron
pockets, as described by the lower diagrams, generates the anisotropy between the x and
y components of the magnetization.

Repeating the same calculation for M2 gives the same result, but with M1,x → M2,y

and M1,y →M2,x, as expected by symmetry. Therefore, we can recast this contribution to
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the free energy in the form of Eq. (2.30) via differences in the anisotropic coefficients α:

α
(v13)
2 − α(v13)

1 = −2v13λ
2
M

( ∑
k,ωn

[GX ]12[GY ]12[GΓ]21

)2
(2.34)

α
(v13)
3 − α(v13)

1 = 0 . (2.35)

The same procedure applied to the other interactions v15, v17, and v19 reveals that only
the first two give rise to anisotropic terms. The final result for the anisotropic coefficients
is:

α2 − α1 = 2v15λ
2
( ∑

k,ωn

[GΓ]11[GX ]11[GY ]22

)2

−2v13λ
2
( ∑

k,ωn

[GΓ]21[GX ]12[GY ]12

)2
, (2.36)

α3 − α1 = 2v17λ
2
( ∑

k,ωn

[GΓiτ
yGΓ]12[GX ]11

)2

−2v13λ
2
( ∑

k,ωn

[GΓ]21[GX ]12[GY ]12

)2
. (2.37)

Mapping these interactions back to the more familiar multi-orbital Hubbard model, as
done in Ref. [65], reveals that v13 = v15 = v17 = J , while the non-contributing term
is v19 = U/2. Thus, our microscopic calculation reveals that the low-energy magnetic
anisotropy arises from a combination of the SOC and of the Hund’s rule coupling. This
anisotropy is present in the paramagnetic tetragonal phase, and does not require orbital
or nematic order.

It is now straightforward to determine which of the three terms in the free energy Eq.
(2.30) dominates. For instance, if both α2−α1 > 0 and α3−α1 > 0, α1 is the smallest of
the three coefficients and the ordered components of the magnetic moments will be M1,x

and/orM2,y. By evaluating the expressions in Eqs. (2.36) and (2.37) numerically, using the
parameters that give the band dispersions and Fermi surface of Fig. 2.2, we can establish
an effective “doping-temperature phase diagram” for the dominant anisotropy term as
function of different values of the chemical potential µ and of the magnetic transition
temperature T . Because the phase boundaries of this phase diagram are given by the
conditions α2 = α1 or α3 = α2, and because these coefficients are independent of U and
have J as an overall pre-factor (see Eqs. (36) and (37)), the phase boundaries do not
change by varying U and J . The phase diagram, shown in fig. 2.6, reveals that for most
of the parameter space considered here, the α1 term is the smallest one, implying that
the magnetic moments point parallel to their ordering vectors Qi below the magnetic
transition. There is a small range of parameters in which the moments lie in-plane, but
perpendicular to their ordering vectors (i.e. α2 is the smallest). Such a parameter regime is
likely not relevant for the iron pnictides, since it would require an “undoped” composition
(i.e. µ = 0) to display a rather small magnetic transition temperature. Most interestingly,
we find a robust region in which the moments point out-of-plane (i.e. α3 is the smallest).
This happens at any temperature, but always in the hole-doped side of the phase diagram
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2.4 Tetragonal vs stripe magnetic order

Figure 2.6: Doping-temperature phase diagram displaying the smallest magnetic
anisotropy coefficient α. When α1 is the smallest, the moments point in-plane and par-
allel to the ordering vectors; when α2 is the smallest, the moments point in-plane but
perpendicular to the ordering vectors; finally, when α3 is the smallest, the moments point
out-of-plane. The corresponding uniaxial configurations are shown in Fig. 2.3. Note that
temperature here actually refers to the magnetic transition temperature, as our model
approaches the onset of long-range magnetic order from the paramagnetic state.

(µ < 0). In Fig. 2.7, we plot a zoom of the behavior of α2 − α1 and α3 − α1 as function
of the chemical potential for two fixed temperatures to illustrate the different regimes
obtained. Note that, for most of the phase diagram, (α2 − α1) � (α3 − α1), regardless
of the value of Jλ2, which appears as an overall prefactor of all αi terms. This implies
that the spin anisotropy behaves effectively as an easy-plane anisotropy. The fact that α3

becomes the smallest coefficient in a narrow region of the phase diagram can be attributed
to the fact that the term ∑

k,ωn [GΓiτ
yGΓ]12[GX ]11 in Eq. (2.37) changes sign from hole-

doping to electron-doping. This behavior can be understood qualitatively by considering a
hypotethical band structure in which all pockets are perfectly nested, GΓ = (iωn + ε)⊗ τ0

and GX = GY = (iωn − ε) ⊗ τ0. A straightforward calculation reveals that the three-
Green’s function term above has different signs for µ > 0 and µ < 0, implying that it must
vanish for a certain chemical potential value in the case of a realistic band structure.

Our results reveal not only an important asymmetry between electron- and hole-doping,
but also agree qualitatively with experiments. In particular, neutron scattering measure-
ments in hole- and electron-doped BaFe2As2 [32–35] find generally in-plane moments par-
allel to Qi in the magnetically-ordered state, except at a narrow hole-doping range in
which the moments reorient and point out-of-the-plane.

2.4 Tetragonal vs stripe magnetic order

The previous section established the direction of the magnetic moments, but not the
magnetic ground state. For instance, from the analysis of the second-order terms of the
free energy, it is impossible to distinguish the cases in which either M1 or M2 condense (i.e.
M2 = 0 or M1 = 0) from the case in which both condense simultaneously (M1 = M2 6= 0).
The former case gives the striped orthorhombic magnetic phases shown in Fig. 2.3, whereas
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2.4 Tetragonal vs stripe magnetic order

Figure 2.7: Plots showing the dependence of α3 − α1 (red curve) and α2 − α1 (green
curve) for two distinct temperatures (see the dashed lines in Fig. 2.6) as function of the
chemical potential.

Figure 2.8: Sketch of the three possible biaxial tetragonal magnetic phases. Here SVC
is the spin vortex crystal phase (with non-collinear magnetic moments) and CSDW is the
charge-spin density wave phase (with non-uniform magnetic moments).

the latter case gives rise to a double-Q (i.e. biaxial) magnetic state that preserves the
tetragonal symmetry of the system. From the form of the anisotropic terms in the free
energy (see Sec. 2.3), there are three different types of tetragonal magnetic ground states,
as shown in Fig. 2.8. Two of them correspond to the so-called spin-vortex crystal phase
(SVC), a non-collinear state in which M1,x = M2,y 6= 0 or M1,y = M2,x 6= 0, whereas the
third one corresponds to the so-called charge-spin density-wave phase (CSDW) [117], a
non-uniform state in which M1,z = M2,z 6= 0.

To determine whether the ground state corresponds to an orthorhombic uniaxial SDW
(i.e. either M1 6= 0 or M2 6= 0) or to a tetragonal biaxial SDW (i.e. M1 = M2 6= 0),
we need to go to higher order in the free energy expansion. Symmetry requires the free
energy to have the form (in the absence of SOC):

F (4)(M1,M2) = u

2
(
M2

1 + M2
2

)2
− g

2
(
M2

1 −M2
2

)2
+ 2w(M1 ·M2)2 . (2.38)

Minimizing this expression shows that the tetragonal biaxial state is realized when g < 0
or g < −w, whereas the orthorhombic uniaxial state takes place when g > 0 and g > −w.

The same model was derived by different itinerant approaches for the magnetic insta-
bilities of the iron pnictides, revealing different parameter regimes in which the uniaxial
or the biaxial states are the ground states [64, 72, 79, 94, 95, 118, 119]. In this regard, the
novelty of our approach relies on the relationship between these ground states and the
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2.4 Tetragonal vs stripe magnetic order

Figure 2.9: Illustration of the three distinct fourth order diagrams that contribute to
F (4). Note that the right diagram has a symmetry factor of two, while the symmetry factor
of the middle and left diagrams is one. One might expect there to be a fourth diagram
with alternating M1 and M2, however, the vertex coupling the SDW order parameter
and the fermions forbids it (see Appendix 2.D for more details).

magnetic anisotropies, and also on the employment of a low-energy model that respects
all symmetries of the FeAs plane, including the As puckering that enhances the size of the
Fe unit cell. Because u and g are non-zero even for vanishing SOC and interactions, we
compute only the contributions arising from the non-interacting part of the Hamiltonian.
This is achieved either by standard diagrammatics or by explicitly integrating out the
electronic degrees of freedom. We find:

F (4) = M4
1
∑
k,ωn

tr
(
τ̃1GΓτ̃

1GX τ̃
1GΓτ̃

1GX
)

+ M4
2
∑
k,ωn

tr
(
τ+GΓτ

−GY τ
+GΓτ

−GY
)

+2M2
1M2

2
∑
k,ωn

tr
(
τ+GΓτ̃

1GX τ̃
1GΓτ

−GY
)

F (4) = M4
1
∑
k,ωn

(
[GΓ]211[GX ]211

)
+ M4

2
∑
k,ωn

(
[GΓ]222[GY ]211

)
+2M2

1M2
2
∑
k,ωn

(
[GΓ]12[GX ]11[GY ]11

)
, (2.39)

with the corresponding diagrams shown in Fig. 2.9. Rewriting the free energy in the form
(2.38), we can readily obtain u, g, and w:

u =
∑
k,ωn

(
[GΓ]212[GY ]11[GX ]11 + [GΓ]211[GX ]211

)
(2.40)

g =
∑
k,ωn

(
[GΓ]212[GY ]11[GX ]11 − [GΓ]211[GX ]211

)
(2.41)

w = 0 . (2.42)

One might expect the third diagram in Fig. 2.9 to result in a non-vanishing w, however,
contraction of the Pauli matrices (see Eq. 2.31) reveals that the M1 ·M2 term cancels.
More generally, w = 0 is a robust property of our model, a consequence of momentum
conservation and the absence of a Fermi pocket at (π, π) (see Appendix 2.D). Including a
hole-pocket at (π, π) or interactions will however lead to a non-zero contribution to w [79].

We can now compute numerically the value of g for the same “doping-temperature
phase-diagram” studied in the previous section, see Fig. 2.6. The combined result, shown
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2.4 Tetragonal vs stripe magnetic order

Figure 2.10: Doping-temperature phase diagram of the different types of magnetic
ground state (stripes or tetragonal) and their corresponding spin orientation (in-plane
or out-of-plane). The color-code corresponds to the magnetic configurations shown in
Figs. 2.3 and 2.8. Note that temperature here actually refers to the magnetic transition
temperature, as our model approaches the onset of long-range magnetic order from the
paramagnetic state.

Figure 2.11: The quartic coefficient g as a function of the chemical potential µ for a
constant temperature (see the dashed line in Fig. 2.10). When g is negative the system
chooses a tetragonal biaxial magnetic phase whereas for positive g, the system selects an
orthorhombic uniaxial stripe state.

in Fig. 2.10, accentuates the asymmetry between hole- and electron-doping discussed
previously. In particular, while hole-doping tends to favor a tetragonal biaxial SDW state,
electron-doping tends to favor an orthorhombic uniaxial SDW state. A cut with the
behavior of g as function of µ for a fixed temperature is also shown in Fig. 2.11. To
gain more insight into the behavior of g, we consider once again the hypothetical case of
perfectly-nested bands, GΓ = (iωn + ε)−1 ⊗ τ0 and GX = GY = (iωn − ε)−1 ⊗ τ0. In this
case, from the equations above, g < 0. Building on the results of Ref. [64], we expect
that the sign of g will change once the two hole pockets become rather different in size,
such that one of them becomes poorly nested with the electron pockets. Our calculations
indicate that, for the general tight-binding model studied here, this is favored by hole
doping rather than electron doping.

It is important to emphasize that these results should be understood as general trends
as function of the chemical potential, rather than a full determination of the ground state
for each specific value of µ. This is because, in contrast to the previous section, in which
the lowest order contribution to the spin anisotropy arises solely from the SOC and the
interactions, there are other potential contributions to g beyond the scope of the cur-
rent work. Among these contributions, we highlight the sizable magneto-elastic coupling,
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2.5 Discussion and Conclusions

which should extend the stripe phase to wider doping ranges [74, 120], and interaction
corrections, which can also favor the uniaxial over the biaxial state [64, 79]. With this
word of caution, we note that the tendency observed here that hole-doped compounds
are more favorable to a tetragonal magnetic phase as compared to their electron-doped
counterparts is in qualitative agreement with experiments, which observe a small region
of tetragonal magnetism near the optimally-hole doped pnictides Ba1−xNaxFe2As2 [51],
Sr1−xNaxFe2As2 [35], Ba1−xKxFe2As2 [52, 121], and Ba(Fe1−xMnx)2As2 [122].

Interestingly, in the first three compounds, neutron scattering has shown that the onset
of a tetragonal magnetic state takes place in a region in which the magnetic moments
reorient from in-plane to out-of-plane. Within our analysis, this can be attributed to the
robust region in parameter space in which α3 is the smallest anisotropic coefficient (see
Fig. 2.10). More importantly, this anisotropic coefficient removes the degeneracy between
the two types of tetragonal SDW phase – the SVC and the CSDW states (see Fig. 2.8)
– by favoring the latter. This is expected to happen even if w 6= 0, since the latter is a
quartic coefficient, whereas α3 is a quadratic coefficient. Therefore, at least near the onset
of the magnetic transition, it is the SOC and the Hund’s rule coupling that select the
CSDW phase. Recently, Mössbauer [35] and µSR [123] experiments in Sr1−xNaxFe2As2
and Ba1−xKxFe2As2, respectively, have reported direct evidence that indeed the CSDW
state is realized in the regime where the spin is reoriented and the magnetic long-range
order preserves tetragonal symmetry.

2.5 Discussion and Conclusions

In summary, we have shown that within a low-energy model that respects the symme-
tries of the FeAs plane, magnetic anisotropy arises naturally from the combination of the
spin-orbit coupling and the Hund’s rule coupling. The magnetic anisotropy consists of
three terms (see Sec. 2.3). Although it cannot be mapped generally on an easy-axis or
an easy-plane term, it effectively behaves as an easy-plane term for a large part of the
parameter region studied here, since (α2 − α1) � (α3 − α1). We found that, for most
of the temperature-doping phase diagram, the spin anisotropy is such that the magnetic
moments point in-plane and parallel to the direction of the ordering vector. For a small
doping range in the hole-doped side, across all temperatures studied, the magnetic mo-
ments tend to reorient and point out-of-plane. These features are consistent with those
observed experimentally, including the spin reorientation observed in the hole-doped pnic-
tides Ba1−xNaxFe2As2 [32], Sr1−xNaxFe2As2 [35], Ba1−xKxFe2As2 [34]. We also found a
general tendency of tetragonal double-Q magnetic order for the hole-doped side of the
phase diagram, whereas the orthorhombic single-Q stripe magnetic order is favored in
the electron-doped side. Although this is in general agreement with the experimental
observations in Ba1−xNaxFe2As2 [51], Sr1−xNaxFe2As2 [35], Ba1−xKxFe2As2 [52], and
Ba(Fe1−xMnx)2As2 [122], our results seem to overestimate the size of the region in which
the tetragonal magnetic state is stable. A possible reason for this discrepancy is that our
model does not account for other factors that usually favor the stripe over the tetragonal
magnetic state, such as the magneto-elastic coupling [74,120] and the residual interactions
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2.5 Discussion and Conclusions

not directly responsible for the SDW instability [64, 79]. Yet, our results provide a clear
connection between the spin reorientation and the type of tetragonal magnetic state ob-
served in the hole-doped iron pnictides – namely, the charge-spin density-wave state with
a non-uniform magnetization [35,123].

An important consequence of our results is that the spin anisotropy is not necessarily
tied to the orbital order that is triggered across the nematic/structural transition [105].
Although it is plausible that such an orbital order affects the spin anisotropy, the latter
exists already in the tetragonal paramagnetic state as a result of the symmetry properties
of the FeAs plane. In this regard, it would be interesting to investigate how the spin
anisotropies in the tetragonal-paramagnetic phase studied here are connected to the spin
anisotropies in the low-temperature phase, after both magnetic and nematic orders are
well established. Finally, our results open the important question of how this particular
form of magnetic anisotropy impacts the normal state properties of the iron pnictides.
In particular, the onset temperatures and the characters of the coupled nematic-magnetic
transitions are expected to be strongly affected by any form of spin anisotropy [47,105,124].
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2.A Expansion of tight-binding Hamiltonian for small k

Appendices

2.A Expansion of tight-binding Hamiltonian for small k

In this appendix we derive explicitly the non-interacting Hamiltonian H0 introduced in
sec. 2.2. As explained in that section, we need to project and expand the 5-orbital tight-
binding dispersion εµν(k), where µ, ν = 1, ..., 5 are the orbital indices corresponding to xz,
yz, x2 − y2, xy and 3z2 − r2, respectively. The dispersions are given by [66]

ε11 = εxz/yz + 2t11
x cos kx + 2t11

y cos ky + 4t11
xy cos kx cos ky + 2t11

xx/yy

(
cos 2kx − cos 2ky

)
+ 4t11

xxy cos 2kx cos ky + 4t11
xyy cos kx cos 2ky + 4t11

xxyy cos 2kx cos 2ky , (2.43)
ε22 = εxz/yz + 2t22

x cos kx + 2t22
y cos ky + 4t22

xy cos kx cos ky − 2t22
xx/yy

(
cos 2kx − cos 2ky

)
+ 4t22

xxy cos 2kx cos ky + 4t22
xyy cos kx cos 2ky + 4t22

xxyy cos 2kx cos 2ky , (2.44)
ε33 = εx2−y2 + 2t33

x/y

(
cos kx + cos ky

)
+ 4t33

xy cos kx cos ky2t33
xx/yy

(
cos 2kx + cos 2ky

)
,(2.45)

ε44 = εxy + 2t44
x/y

(
cos kx + cos ky

)
+ t44

xy cos kx cos ky + 2t44
xx/yy

(
cos 2kx + cos 2ky

)
+ 4t44

xxy/xyy

(
cos 2kx cos ky + cos kx cos 2ky

)
+ 4t44

xxyy cos 2kx cos 2ky , (2.46)
ε55 = εz2 + 2t55

x/y

(
cos kx + cos ky

)
+ 2t55

xx/yy

(
cos 2kx cos 2ky

)
+ 4t55

xxy/xyy

(
cos 2kx cos ky + cos kx cos 2ky

)
+ 4t55

xxyy cos 2kx cos 2ky , (2.47)
ε12 = 4t12

xy sin kx sin ky + 4t12
xxy/xyy

(
sin 2kx sin ky + sin kx sin 2ky

)
+ 4t12

xxyy sin 2kx sin 2ky , (2.48)
ε13 = i2t13

y sin ky + i4t13
xy cos kx sin ky − i4t13

xxy/xyy

(
cos kx sin 2ky − cos 2kx sin ky

)
,(2.49)

ε14 = i2t14
x sin kx − i4t14

xy sin kx cos ky + i4t14
xxy sin 2kx cos ky , (2.50)

ε15 = i2t15
y sin ky − i4t15

xy cos kx sin ky − i4t15
xxyy cos 2kx sin 2ky , (2.51)

ε23 = i2t23
x sin kx + i4t23

xy sin kx cos ky − i4t23
xxy/xyy

(
sin 2kx cos ky − sin kx cos 2ky

)
,(2.52)

ε24 = −i2t24
y sin ky + i4t24

xy cos kx sin ky − i4t24
xyy cos kx sin 2ky , (2.53)

ε25 = −i2t25
x sin kx + i4t25

xy sin kx cos ky + i4t25
xxyy sin 2kx cos 2ky , (2.54)

ε34 = 4t34
xxy/xyy

(
sin kx sin 2ky − sin 2kx sin ky

)
, (2.55)

ε35 = 2t35
x/y

(
cos kx − cos ky

)
+ 4t35

xxy/xyy

(
cos 2kx cos ky − cos kx cos 2ky

)
, (2.56)

ε45 = 4t45
xy sin kx sin ky + 4t45

xxyy sin 2kx sin 2ky . (2.57)

Here εi are the onsite energies associated with each orbital and tµνij are hopping param-
eters from orbital µ on site i to orbital ν on site j. The above expressions are accompanied
by constraints on the coefficients tµνij due to tetragonal symmetry:

t11
x = t22

y t11
y = t22

x t11
xy = t22

xy t11
xx/yy = t22,xx/yy

t11
xxy = t22

xyy t11
xyy = t22

xxy t11
xxyy = t22

xxyy t13
y = t23

x

t13
xy = t23

xy t13
xxy/xyy = t23

xxy/xyy t14
x = t24

y t14
xy = t24

xy

t14
xxy = t24

xyy t15
y = t25

x t15
xy = t25

xy t15
xxyy = t25

xxyy .

(2.58)

We are now in a position to expand the elements of εµν(k) around the Γ, X and Y

points. At the Γ point the orbitals xz and yz dominate, corresponding to the elements
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2.B Spin-orbit coupling in orbital basis

ε11, ε12, ε21 and ε22. Similarly, at the X (Y ) point the dominant orbitals are yz (xz)
and xy. To obtain these parts we expand ε22 (ε11), ε24 (ε14) and ε44 around (kx + π, ky)
((kx, ky + π)):

hΓ =
(
C1+C2(k2

x+k2
y)+C3(k2

x−k2
y) C4kxky

C4kxky C1+C2(k2
x+k2

y)−C3(k2
x−k2

y)

)
(2.59)

hX =
(
C5+C6(k2

x+k2
y)+C7(k2

x−k2
y) −ivX(k)

ivX(k) C11+C12(k2
x+k2

y)+C13(k2
x−k2

y)

)
(2.60)

hY =
(
C5+C6(k2

x+k2
y)−C7(k2

x−k2
y) −ivY (k)

ivY (k) C11+C12(k2
x+k2

y)−C13(k2
x−k2

y)

)
, (2.61)

where

vX(k) = C8ky + C9ky
(
k2
y + 3k2

x

)
− C10ky

(
k2
x − k2

y

)
(2.62)

vY (k) = −C8kx − C9kx
(
k2
x + 3k2

y

)
− C10kx

(
k2
x − k2

y

)
(2.63)

As a function of the tight-binding parameters, the constants C1, . . . , C13 are

C1 = εΓ = εxz/yz + 2
(
t11
x + t11

y

)
+ 4

(
t11
xxy + t11

xyy + t11
xy + t11

xxyy

)
(2.64)

C2 = 2 1
2mΓ

= −1
2
(
t11
x + t11

y

)
− 5

(
t11
xxy + t11

xyy

)
− 2t11

xy − 8t11
xxyy (2.65)

C3 = b = 1
2
(
t11
y − t11

x

)
+ 3

(
t11
xyy − t11

xxy

)
− 4t11

xx/yy (2.66)

C4 = 4c = −4
(
t12
xy + 4t12

xxyy + 4t12
xxy/xyy

)
(2.67)

C5 = ε1 = εxz/yz + 2
(
t11
x − t11

y

)
− 4

(
t11
xxy − t11

xyy + 4t11
xy − 4t11

xxyy

)
(2.68)

C6 = 2 1
2m1

= 1
2
(
t11
y − t11

x

)
+ 5

(
t11
xxy − t11

xyy

)
+ 2t11

xy − 8t11
xxyy (2.69)

C7 = a1 = 1
2
(
t11
x + t11

y

)
− 3

(
t11
xxy + t11

xyy

)
+ 4t11

xx/yy (2.70)

C8 = 2v = 2
(
t14
y + 2t14

xy − 4t14
xxy

)
(2.71)

C9 = 2p1 = − 1
12 t

24
y −

25
6 t

24
xy + 7

3 t
24
xyy (2.72)

C10 = 2p2 = −1
4 t

24
y + 3t24

xyy (2.73)

C11 = ε3 = εxy + 4
(
−t44

xy + t44
xx/yy + t44

xxyy

)
(2.74)

C12 = 2 1
2m3

= 2
(
t44
xy − 2t44

xx/yy − 4t44
xxyy

)
(2.75)

C13 = a3 = t44
x/y − 6t44

xxy/xyy . (2.76)

The overall minus sign in the coefficient C4 arises due to the minus sign in the definition
of the spinor in Eq. (2.4). The coefficients can be obtained either by using the relations
above with the coefficients tµνij determined from tight-binding fits to DFT calculations, or
by directly fitting the coefficients to DFT calculations.

2.B Spin-orbit coupling in orbital basis

Here we express the standard spin-orbit coupling term λS · L in the orbital basis, which
leads to Eqs. (2.19)-(2.21) of the main text. Denote the eigenstates of Lz by |m〉 where
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2.B Spin-orbit coupling in orbital basis

m = −L, . . . , L. The spin-orbit Hamiltonian is then

HSOC =
∑
mn
αβ

〈mα|λS · L|nβ〉d†mαdnβ . (2.77)

where d†mα creates an electron with spin α and angular momentum projection m. Using
the fact that S · L = LzSz + 1

2(L+S− + L−S+) and

Sz|nα〉 = ±1
2 |nα〉 , S±|nα〉 = δα,∓ 1

2
|n, α± 1〉 , (2.78)

the Hamiltonian becomes

HSOC = λ

2
∑
mn

[
〈m|Lz|n〉d†m↑dn↑ − 〈m|Lz|n〉d

†
m↓dn↓

+ 〈m|L+|n〉d†m↓dn↑ + 〈m|L−|n〉d†m↑dn↓
]

= λ

2
∑
mn
αβ

Aαβmnd
†
mαdnβ , (2.79)

with the matrix elements:

A↑↑mn = −A↓↓mn = 〈m|Lz|n〉 = nδmn (2.80)

A↓↑mn =
√

(L− n)(L+ n+ 1)δm,n+1 (2.81)

A↑↓mn =
√

(L+ n)(L− n+ 1)δm,n−1 . (2.82)

We can transform the Hamiltonian in Eq. 2.79 to the basis spanned by the cubic harmonics
(i.e. the orbital basis) using

dmα =
∑
µ

Umµcµα (2.83)

d†mα =
∑
µ

U∗mµc
†
µα , (2.84)

where Umµ ≡ 〈m|µ〉 and |µ〉 is the basis states in the space of cubic harmonics. The
transformed Hamiltonian is

HSOC = λ

2
∑
µν
αβ

Ãαβµν c
†
µαcνβ , (2.85)

with Ãαβ = U †AαβU .
To proceed we specialize to the case L = 2, resulting in the well-known d-orbitals. The

basis states are 〈µ| = 〈xz|, 〈yz|, 〈xy|, 〈x2 − y2|, 〈z2| with

〈xz| = 1√
2
(
−〈1|+ 〈−1|

)
(2.86)

〈yz| = i√
2
(
−〈1| − 〈−1|

)
(2.87)

〈xy| = i√
2
(
−〈−2|+ 〈2|

)
(2.88)

〈x2 − y2| = 1√
2
(
〈−2|+ 〈2|

)
(2.89)

〈z2| = 〈0| , (2.90)
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2.B Spin-orbit coupling in orbital basis

and U † can be read off as the coefficients of these equations. Thus, we find U to be

U = 1√
2



0 0 −i 1 0
−1 i 0 0 0
0 0 0 0

√
2

1 i 0 0 0
0 0 i 1 0


, (2.91)

yielding the three independent Ã-matrices:

Ã↑↑ =



0 −i 0 0 0
i 0 0 0 0
0 0 0 i2 0
0 0 −i2 0 0
0 0 0 0 0


, (2.92)

Ã↓↑ =



0 0 i 1 −
√

3
0 0 1 −i −i

√
3

−i −1 0 0 0
−1 i 0 0 0√

3 i
√

3 0 0 0


, (2.93)

Ã↑↓ =



0 0 i −1
√

3
0 0 −1 −i −i

√
3

−i 1 0 0 0
1 i 0 0 0
−
√

3 i
√

3 0 0 0


. (2.94)

Considering only the |xz〉, |yz〉 and |xy〉 orbitals, corresponding to the upper left 3 × 3
blocks in the above matrices results in the restricted matrix Ã′αβµ′ν′ :

Ã′ =



0 −i 0 0 0 i

i 0 0 0 0 −1
0 0 0 −i 1 0
0 0 i 0 i 0
0 0 1 −i 0 0
−i −1 0 0 0 0


, (2.95)

Decomposing it into spin and orbital parts gives:

Ã′ =


0 0 i

0 0 0
−i 0 0

⊗ σx +


0 0 0
0 0 −i
0 i 0

⊗ σy +


0 −i 0
i 0 0
0 0 0

⊗ σz . (2.96)

Finally, applying this expression to the Hamiltonian (2.85) gives [65,125]:
λ

2
∑
µ′ν′

Ã′µ′ν′c
†
µ′cν′ = i

λ

2 c
†
xz,ασ

x
αβcxy,β + i

λ

2 c
†
xy,ασ

y
αβcyz,βi

λ

2 c
†
yz,ασ

z
αβcxz,β + h.c. ,(2.97)

which leads to Eqs. (2.19)–(2.21).
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Figure 2.12: Illustration of the decomposition of a two-loop diagram into irreducible
diagrams.

2.C Evaluation of Two-loop Diagrams

Diagrams of the two-loop type, as shown in Fig. 2.4a, can be split into irreducible diagrams.
As a result, all two-loop diagrams for a given interaction can be obtained by squaring the
sum of irreducible diagrams, as illustrated in Fig. 2.12. To illustrate the cancelation of the
two diagrams in the sum, we choose the interaction v17 and the order parameter M1. In
this case, the sum in the brackets in Fig. 2.12 is, for the SOC leg related to the Γ spinor:

λ

2
∑
k,n

M1,itr[σzσi]tr[τ+GΓτ
yGΓτ̃

1GX ] + λ

2
∑
k,n

M1,itr[σzσi]tr[τ−GX τ̃1GΓτ
yGΓ]

= λ
∑
k,n

M1,z

(
[GΓτ

yGΓ]21[GX ]11 + [GΓτ
yGΓ]12[GX ]11

)
, (2.98)

This term vanishes since GΓτ
yGΓ is an antisymmetric matrix. For the contribution from

the diagrams with the SOC leg related to the X/Y spinors, we find:

−iλ
∑
k,n

(
M1,xtr

(
τ̃1GY τ

−GX τ̃
1GΓ

)
+M1,ytr

(
τ̃1GY τ

+GX τ̃
1GΓ

))

= −iλ
∑
k,n

(
M1,x[GY ]12[GX ]11[GΓ]11 +M1,y[GY ]11[GX ]21[GΓ]11

)
, (2.99)

which is also zero as the off-diagonal elements of the Green functions GX and GY are odd
functions of k. Similar arguments apply in the case when the electron-electron interaction
is given by either v13, v15 or v19 and when the magnetic order parameter is M2. Thus, all
contributions from the two-loop diagrams vanish, and we are left with only the one-loop
diagrams shown in Fig. 2.4b.

2.D Diagrams contributing to w

In this appendix we explain in more details the statement made in the main text concerning
the vanishing of the quartic coefficient w in Eq. (2.38). Let us consider a generic diagram
which would contribute to the coefficient w, as shown in Fig. 2.13. Note that we do
not specify any vertices, i.e. the coupling between the electrons and the SDW order
parameters do not necessarily arise from Eq. 2.28. Due to the Pauli matrix contraction,
the diagram must have alternating M1 and M2 legs in order for it to contribute to w.
Indeed, performing the trace over spin indices gives:

M i
1M

j
2M

k
1M

l
2 tr

(
σiσjσkσl

)
. (2.100)
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Figure 2.13: Illustration of a generic diagram contributing to the coefficient w. Here
Q1 = (π, 0) and Q2 = (0, π). On the right diagram we have imposed momentum conser-
vation at each vertex, resulting in the appearance of G(k + Q1 + Q2).

Using Eq. 2.31, we find:

2 (M1 ·M2)2 −M2
1M2

2 , (2.101)

thus resulting in a (M1 ·M2)2 term. This contrasts to the third diagram in Fig. 2.9,
which gives no contribution of the form (M1 ·M2)2 after tracing over the Pauli matrices.

Let us now consider the internal lines of the diagram. Since M1 carries momentum
(π, 0) and M2 carries momentum (0, π), the only way for momentum to be conserved is if
one of the lines corresponds to a propagator with momentum Q1 + Q2 = (π, π). However,
in the absence of a Fermi pocket at M = (π, π) (of the unfolded Brillouin zone), this will
be an off-shell contribution. Thus, contributions to w must arise from the electronic states
near M = (π, π).
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Chapter 3

Spin-Driven Nematic Instability of
the Multi-Orbital Hubbard Model:
Application to Iron-Based
Superconductors

This chapter has been published by the author and Jian Kang, Brian M. Andersen, and
Rafael M. Fernandes in Phys. Rev. B 93 085136 (2016).

In this chapter we establish the existence of a nematic phase in the multi-orbital Hubbard
model. This is done by generalising the result for the nematic susceptibility, introduced in
Sec. 1.2.1, to orbital space. This requires the evaluation of the quartic coefficients of the
free energy, and since there is no magnetic order, we cannot project these onto the leading
instability, as done in Sec. 1.3 and Sec. 1.4. We therefore assume that the magnetic order
parameters are diagonal in orbital space and as shown in Sec. 1.3 this is a well justified
since the only non-zero off-diagonal element tends to be suppressed. Contrasting the
nematic susceptibility with the ferro-orbital order susceptibility we show that the leading
instability is a spin-driven nematic phase. Additionally we demonstrate that the inclusion
of high-energy magnetic fluctuations can drive a nematic instability even in the absence
of magnetic order.
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3.1 Introduction

The elucidation of electronic Ising-nematic order [43] – the state in which electronic de-
grees of freedom spontaneously lower the point-group symmetry of the system – has be-
come an important problem in unconventional superconductors [24, 126]. In both pnic-
tides [49, 50, 127–130] and cuprates [131–133], the experimentally observed nematic order
has been proposed to arise from the partial melting of an underlying spin density-wave
(SDW) [39, 46, 47, 91] or charge density-wave (CDW) [134–136] stripe-order. This mech-
anism is based on robust symmetry considerations. Consider for concreteness the stripe
SDW case: the ground state has an O (3)×Z2 degeneracy, with O(3) denoting the direction
of the magnetic order parameter in spin space, and Z2 denoting the selection of the SDW
ordering vector QX = (π, 0) or QY = (0, π) (in the CDW case, the system has an O (2)×Z2

degeneracy). Fluctuations in layered systems suppress the continuous (O(3) or O(2)) and
the discrete (Z2) symmetries differently, favoring an intermediate regime in which only
the Z2 symmetry is broken [47]. Because the Z2 symmetry distinguishes between two or-
dering vectors related by a 90◦ rotation, its breaking implies a tetragonal-to-orthorhombic
transition, and therefore nematic order.

Although this mechanism for spin-driven (or charge-driven) nematic order has been
established in simplified low-energy models for pnictides [46, 47, 64, 91, 104] and cuprates
[135, 136], it remains hotly debated whether more realistic microscopic models display
nematic order as the leading electronic instability. For the cuprates, a sensible microscopic
model is the single-band Hubbard model, whose phase diagram has been reported to
display nematic correlations in the strong-coupling regime [137,138]. For the pnictides, due
to the 3d6 configuration of Fe and to the small crystal field splittings, a five-orbital Hubbard
model, including Hund’s rule interactions, is a more appropriate starting point [139,140].
Furthermore, because many pnictides display metallic behavior, a weak-coupling analysis
of this intricate model can reveal important information about the underlying physics of
these materials. Indeed, conventional RPA approaches have been employed to study the
onset of SDW, CDW, and ferromagnetism. However, in contrast to these usual electronic
instabilities, the standard RPA approach does not capture the nematic instability even
qualitatively, as we show below, making it difficult to assess whether the realistic multi-
orbital Hubbard model has a tendency towards nematic order.

In this paper, we extend the standard RPA approach and derive the nematic suscep-
tibility of an arbitrary multi-orbital Hubbard model. The fluctuations included in this
formalism arise solely from the non-interacting part of the Hamiltonian, such that interac-
tions are treated at the same order as in the typical RPA method. We apply this formalism
to the case of SDW-driven nematicity in iron pnictides, and establish that the leading in-
stability of the five-orbital interacting model is a spin-driven nematic phase for a wide
range of parameters. In general, we find that nematic order exists in a narrow T range
above the magnetic transition line, in agreement with experiments in the pnictides [19–23].
However, magnetic fluctuations at higher energies can induce a sizable splitting between
the two transitions, particularly in the regime where the SDW transition is suppressed to
zero. We propose that this effect may be relevant to understanding the unusual nematic
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3.2 Orbitally resolved nematic susceptibility

phase of FeSe [141–145]. Previously, the investigation of the multi-orbital Hubbard model
in Ref. [104] revealed the importance of the orbital content of the Fermi surface in the
low-energy spin-nematic model of the pnictides. Here, we find from the orbitally-resolved
nematic susceptibility that whereas the dxz, dyz, and dxy orbitals contribute almost equally
to the SDW instability, the dxy orbital plays a stronger role in driving the nematic insta-
bility. Finally, we compare the nematic susceptibility with the RPA-derived ferro-orbital
order susceptibility. Our work provides a promising route to search for nematicity in dif-
ferent compounds, as it is compatible with ab initio approaches and also with methods
that include the effects of moderate interactions, such as LDA+DMFT [42,146].

3.2 Orbitally resolved nematic susceptibility

Our starting point is the multi-orbital Hubbard model with onsite interactions [72, 140].
The non-interacting part is given by H0 = ∑

µ,ν

(
εµν(k)− ε̃δµν

)
c†kµσckνσ, where c†kµσ

creates an electron with momentum k and spin σ at orbital µ = 1, ..., Norb and the
hopping parameters εµν(k) are determined from tight-binding fits to ab initio calcula-
tions (sums over spin and momentum indices are left implicit). The four onsite inter-
action terms correspond to the intra-orbital Hubbard term, HU = U

∑
µ nqµ↑n−qµ↓, the

inter-orbital Hubbard term, HU ′ = U ′
∑
µ<ν nqµσn−qνσ′ , the Hund’s rule coupling, HJ =

J
∑
µ<ν c

†
k+qµσckνσc

†
k′−qνσ′ck′µσ′ , and the pair-hopping termHJ ′ = J ′

∑
µ<ν c

†
k+qµσc

†
k′−qµσ̄ck′νσ̄ckνσ.

These coefficients are related by U ′ = U −2J and J ′ = J . Previous approaches considered
the nematic susceptibility of a spin-fermion model [103]; here, we will focus on the Hub-
bard model within RPA. The mechanism in which nematic order arises from the partial
melting of an SDW or a CDW requires fluctuations at two momenta related by 90◦, in
general Q1 =

(
π
n , 0

)
and Q2 =

(
0, πn

)
, with integer n. Although our formalism can be

extended in a straightforward way to arbitrary n, hereafter we focus on n = 1. to make
contact with the pnictides, we consider the SDW channel. Performing a Hartree-Fock
decoupling of H in both the q = 0 charge channel and the q = Qi SDW channel:

HMF =
∑

k

(
εµν(k)− ε̃νδµν

)
c†kµσckνσ −

1
2
∑
kq

Mi
q µ · c

†
k−q+Qiµσ

σσσ′ckµσ′ , (3.1)

where ε̃ν incorporates the changes in the mean-field densities and

Mi
q µ = 1

2
∑

k
Uρµ〈c

†
k+q+Qiρσ

σσσ′ckρσ′〉 (3.2)

are the SDW order parameters with i = X,Y . The interaction matrix Uρµ is Uaa = U

and Uab 6=a = J . We consider only intra-orbital magnetism, since previous Hartree-Fock
calculations revealed that in the ground state the intra-orbital SDW order parameters
are the dominant ones [72]. In the standard RPA approach for the SDW instability,
the electronic degrees of freedom are integrated out, yielding the quadratic magnetic free
energy:

F (2)
mag[Mi

µ] =
∑

q,i=X,Y

[
χµνi (q)

]−1
Mi

q,µ ·Mi
−q,ν , (3.3)
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3.2 Orbitally resolved nematic susceptibility

with the magnetic propagator χµνi (q)

χµνi (q) =
[

(Uµν )−1 +
∑
k

Gνµ(k)Gµνi (k + q)
]−1

, (3.4)

where Gµνi (k) ≡ Gµν(k + Qi) is the Green’s function in orbital basis, q = (q,Ωn), ∑q =
T/Nq

∑
q
∑

Ωn , and Ωn = 2nπT is the Matsubara frequency. The RPA magnetic sus-
ceptibility

〈
Mi

q,µ ·Mi
−q,ν

〉
is proportional to and diverges at the same temperature as the

magnetic propagator χµνi (q). Note that the tetragonal symmetry of the system implies that
a peak of χµνi (q) at QX = (π, 0) will be accompanied by an equal peak at QY = (0, π).
Therefore, at this order in perturbation theory, the system does not distinguish the case
in which either QX or QY is selected (single-Q order) from the case in which both are
selected (double-Q order), i.e. the standard RPA approach is blind to nematicity. To
remedy this problem, we go beyond the second-order expansion of the free energy and
calculate the quartic-order terms:

F (4)
mag[MX

µ ,MY
µ ] = 1

2u
ρνηµ

(
MX

ρ ·MX
ν + MY

ρ ·MY
ν

) (
MX

η ·MX
µ + MY

η ·MY
µ

)
− 1

2g
ρνηµ

(
MX

ρ ·MX
ν −MY

ρ ·MY
ν

) (
MX

η ·MX
µ −MY

η ·MY
µ

)
+ 2wρνηµ

(
MX

ρ ·MY
ν

) (
MX

η ·MY
µ

)
, (3.5)

The quartic coefficients, whose expressions are shown explicitly in Appendix 3.A, de-
pend only on the non-interacting Green’s functions. Although interactions can also con-
tribute to them, as shown in Refs. [79,147], within the RPA approach these contributions
are sub-leading and can be neglected. The most relevant coefficient for the nematic insta-
bility is gρνηµ, whose term distinguishes between single-Q and double-Q order. Specifi-
cally, a Hubbard-Stratonovich transformation of this term reveals the nematic order pa-
rameter 〈φµν〉 ∝

〈
MX

µ MX
ν

〉
−
〈
MY

µ MY
ν

〉
, a rank-2 tensor in orbital space that breaks the

tetragonal symmetry of the system by making X 6= Y . The term with coefficient uρνηµ

is related to Gaussian magnetic fluctuations in both SDW channels, while the term with
coefficient wρνηµ mainly distinguishes between the two types of double-Q order [79]. Eq.
(3.5) is the multi-orbital generalization of the magnetic free energy previously obtained in
effective low-energy models in the band basis, where the coefficient g becomes a scalar [47].

It is now possible to compute the static nematic susceptibility χρνηµnem ∝
〈
φρνφηµ

〉
in the

paramagnetic phase (see Appendix 3.B for details of the derivation):

χρνηµnem = χηαµβnem,0

(
δρβδνα − gρνγδχγαδβnem,0

)−1
, (3.6)

χρνηµnem,0 ≡ 1
2

∑
q,i=X,Y

χρνi (q)χηµi (−q) . (3.7)

The orbitally-resolved nematic susceptibility χρνηµnem is a rank-4 tensor that generalizes the
scalar nematic susceptibility derived previously for effective low-energy models [74, 148–
150]. The impact of the magnetic fluctuations encoded in the coefficient gρνγδ is clear: if
this term were absent, then the (bare) nematic susceptibility would be merely a higher-
order convolution of the magnetic propagator, χρνηµnem,0, and therefore diverge at the same
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3.3 Results

Figure 3.1: (Color online) Normal-state Fermi surface based on the parameters of Ikeda
et al. [61]. The colors indicate the dominant orbital contribution.

T as the SDW susceptibility. To establish whether the nematic susceptibility diverges
already in the paramagnetic phase, one needs to compute its leading eigenvalue λ(n) from
χρνηµnem Φ(n)

ρν = λ(n)Φ(n)
ηµ , with n = 1, ..., N2

orb. The structure of the corresponding eigen-
matrix Φ(n)

ηµ reveals which orbitals promote the nematic instability, and which orbitals
favor a double-Q structure with no underlying nematicity. We note that in principle the
Gaussian fluctuations associated with the term with coefficient uρνηµ can also renormalize
the magnetic propagator χρνi . However, because this effect merely renormalizes the SDW
transition temperature, we do not include it hereafter.

3.3 Results

Equation (3.6) is the RPA-generalized nematic susceptibility, which can be compared on
equal-footing with other RPA instabilities of a weakly-interacting system described by a
multi-orbital Hubbard model. We apply this formalism to a five-orbital model for the iron-
based superconductors and contrast the nematic susceptibility to the ferro-orbital RPA
susceptibility. The hopping parameters are those from Ref. [61], whereas the interactions
are set to U = 0.95 eV and J = U/4 [72]. Small changes in these parameters do not alter
our main results. The Fermi surface for the occupation number n = 6 is presented in Fig.
3.1, consisting of three hole pockets at the center and the corner of the Brillouin zone,
and two electron pockets at the borders of the Brillouin zone. that the dxy hole pocket at
(π, π) is not present in all materials, as it depends on the Fe-As distance [67,151].

We evaluate Eqs. (3.4) and (3.6) numerically as functions of T for various values of
the occupation number n. Consider first n = 6: in Fig. 3.2(a), we plot the T dependence
of the largest eigenvalue of the static magnetic propagator χµνi (0) as well as the largest
eigenvalue of the bare nematic susceptibility χρνηµnem,0. Despite having different T dependen-
cies, both eigenvalues diverge at the same temperature Tmag, confirming our assertion that
the standard RPA is blind to the nematic instability. In Fig. 3.2(b), we plot the largest
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3.3 Results

Figure 3.2: (Color online) The largest eigenvalues λ of (a) the bare nematic susceptibil-
ity χρνηµnem,0, the QX/Y magnetic propagator χmag, and (b) the full nematic susceptibility
χρνηµnem as a function of T for the case n = 6. The inset in (a) shows the upturn of the
magnetic susceptibility as it diverges.

eigenvalue of the full nematic susceptibility χρνηµnem , as given by Eq. (3.6). Clearly, the
eigenvalue diverges at T > Tmag: this is exactly the nematic transition temperature Tnem.

Interestingly, our results reveal a relatively small splitting between Tnem and Tmag, with
Tnem ≈ 1.14Tmag, which resembles the small T -range in which a nematic-paramagnetic
phase is observed experimentally in the iron pnictides [19–23]. We caution, however,
that this value should be understood as an upper boundary for the splitting between the
nematic and the actual magnetic transition, since T̃mag calculated inside the nematic state
is generally larger than Tmag calculated in the tetragonal state. Furthermore, the value
for Tmag obtained via RPA overestimates the actual transition temperature due to the
absence of Gaussian fluctuations, as discussed above.

While the largest eigenvalue λ(n) determines Tnem, the structure of the correspond-
ing 5 × 5 eigen-matrix Φ(n)

ηµ reveals the orbital-resolved nematic order parameter driving
the transition, since Φ(n)

ηµ ∝
〈
MX

η MX
µ

〉
−
〈
MY

η MY
µ

〉
. In Fig. 3.3 we plot the normalized

elements of the leading eigen-matrix Φ(n)
ηµ for both the full and the bare nematic suscepti-

bility – which, as shown above, contains information only about the magnetic instability.
In both cases, the dominant processes involve the dxz, dyz, and dxy orbitals.

There is however one important difference: the relative weight of the dxy orbital is
larger for χρνηµnem than for χρνηµnem,0, i.e. while the three orbitals seem to contribute equally
to drive the magnetic instability, the dxy orbital plays a more important role in driving
the nematic instability. We interpret this in terms of the nesting properties of the orbital
content of the Fermi surface in Fig. 3.1: while the dxy hole-pocket at (π, π) can form a
single-Q SDW by combining with either the X or Y electron-pockets, since both have
dxy spectral weight, the two dxz/dyz hole-pockets at (0, 0) can form a double-Q SDW by
combining with both the X and Y pockets, since they have dyz and dxz spectral weight,
respectively.
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3.3 Results

Figure 3.3: (Color online) Color plot of the normalized elements of the eigen-matrix
Φ(n)
ηµ corresponding to the leading eigenvalue of the bare (left) and of the full (right)

nematic susceptibilities. The dominant contributions arise from the dxz, dyz, and dxy
orbital, with the dxy being the most important for nematicity.

Having analyzed the n = 6 case, we present in Fig. 3.4(a) the complete (n, T ) phase
diagram for the magnetic and nematic transitions. We restrict our analysis to n > 5.75,
since below this value we find incommensurate magnetic order. Accounting for the nematic
transition in this regime requires changes in the formalism beyond the scope of this work.
Note that, in contrast to experiments, Tmag is not peaked at n = 6. This is likely due
to the absence of disorder effects introduced by doping, which are known to suppress
Tmag [152,153]. Most importantly, across the entire phase diagram the nematic transition
line tracks closely the magnetic transition line, in agreement with the phase diagrams of
the iron pnictides.

An important issue in obtaining this phase diagram is that, as shown in Eq. (3.7), the
computation of the nematic susceptibility requires summing the magnetic fluctuations not
only over the entire Brillouin zone, but also over energy (i.e. over Matsubara frequencies).
Although the propagator χµνi (q,Ωn) is strongly peaked at Ωn = 0 (see Appendix 3.C),
within RPA it saturates to a finite value for large energies [see Eq. (3.4)], requiring a
frequency cutoff Ωc. Near a finite-T magnetic transition, due to the very sharp peak in
χµνi

(
QX/Y ,Ωn

)
, it is reasonable to take only the Ωn = 0 contribution – the low-energy

magnetic fluctuations – resulting in the solid line of Fig. 3.4. However, near the region
where Tmag → 0, ignoring the high-energy magnetic fluctuations (Ωn 6= 0) is not justified.
To address this problem, we introduce a cutoff Ωc = 1 eV, at which the propagator reaches
values close to its saturation value, as shown in Appendix 3.C. The corresponding nematic
transition line is shown as a dashed line in Fig. 3.4. Near the regime where the magnetic
transition takes place at finite T , the only effect of the cutoff is to increase the nematic
transition temperature, as expected. However, near the regime where Tmag → 0, the
nematic transition is stabilized even in the absence of long-range magnetic order. Although
the precise value of Tnem depends on the cutoff value, the main result is that higher-energy
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3.3 Results

Figure 3.4: (Color online) (a) Occupation number-temperature (n, T ) phase diagram
for the bare magnetic and nematic phase transitions, evidencing the narrow region dis-
playing nematic-paramagnetic order. The solid Tnem line takes into account only the
contribution from low-energy (Ωn = 0) magnetic fluctuations, whereas the dashed line
includes contributions from higher energies (Ω < Ωc = 1 eV). For n < 5.75, an incommen-
surate magnetic order appears. (b) Ferro-orbital order susceptibility χoo a function of T
for various values of the occupation number n. In contrast to the nematic susceptibility
shown in Fig. 3.2, χoo is nearly featureless and T -independent at low energies.

magnetic fluctuations are essential to promote nematic order without magnetic order. In
this regard, it is interesting to note that, in FeSe, the only parent material in which nematic
order is observed in the absence of magnetic order, NMR measurements find no evidence
for low-energy magnetic fluctuations [54, 154], whereas neutron scattering reports sizable
fluctuations at modest energy values [155,156].

A remaining question is whether or not the spin-driven nematic instability is the leading
instability of the system. In particular, an ongoing debate [24,44,147,157–159] concerning
iron-based materials is whether ferro-orbital order, signaled by an unequal occupation of
the dxz and dyz orbitals, ∆n ≡ nxz−nyz 6= 0, could drive the nematic transition, instead of
the spin-driven mechanism explored above. To investigate this issue, we calculate the q = 0
static component of the RPA orbital order susceptibility, χoo(q) =

〈
∆n(q)∆n(−q)

〉
for

the multi-orbital Hubbard model [145], of which a brief derivation is included in Appendix
3.D. As shown in Fig. 3.4(b), our results reveal a nearly T -independent χoo for the doping
range and interactions investigated. This is not unexpected, since for reasonable values
of U and J , there is no attraction in the RPA charge channel. Therefore, within RPA,
ferro-orbital order is unable to drive the nematic instability. Of course, once the coupling
to magnetic fluctuations is included, which requires going beyond RPA, χoo will diverge
at the same T as χnem [104, 145, 160]. In this regard, by effectively decoupling these two
channels, RPA provides an interesting route to investigate which instability is the leading
one – at least for weak or moderate interactions.
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3.4 Conclusions

In summary, we developed an appropriate extension of the RPA approach to obtain the
orbital-resolved spin-driven nematic susceptibility of an arbitrary multi-orbital Hubbard
model. Application to the case of iron-based superconductors reveals that the leading
instability of the system is an interaction-driven nematic phase. The dxy orbital plays a
leading role in promoting the nematic instability, and higher-energy magnetic fluctuations
are essential to stabilize nematic order in the absence of long-range magnetic order. Com-
parison with other RPA susceptibilities reveals that the nematic and magnetic transitions
follow each other closely, and that the ferro-orbital susceptibility does not diverge on its
own. More generally, our formalism can also be combined with first-principle approaches
to search for other materials that may display electronic nematicity. Furthermore, because
interactions appear only in the determination of the magnetic propagator, Eq. (3.4), this
formalism can be combined with other approaches that specifically include moderate elec-
tronic interactions, such as DFT+U or LDA+DMFT [42,146].
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Appendices

3.A Fourth order coefficients

To derive the form of the free energy given in Eqs. (2) and (4) in the main text, we
perform a Hubbard-Stratonovich (HS) decoupling thereby obtaining the electron-mediated
interactions between the magnetic order parameters. Formally the HS decoupling relies
on inserting unity in the partition function, where unity, in the present case, is given by

1 =
∫
D[MX

µν ,MY
µν ]

exp
[
−
∫
q

(
MX

µν(q)
(
U−1

)µν
ρλ

MX
ρλ(−q)

+MY
µν(q)

(
U−1

)µν
ρλ

MY
ρλ(−q)

)]
, (3.8)

and
∫
D[MX

µν ,MY
µν ] is chosen such that the path-integral evaluates to unity and q = (q,Ωn)

(Ωn being a bosonic Matsubara frequency). The electrons are then integrated out resulting
in an effective action for the magnetic order

Seff[MX
µν ,MY

µν ] =
∑
i

∫
q

Mi
µν(q)

(
U−1

)µν
ρλ

Mi
ρλ(−q)

− Tr ln
[
G0
µν(k)−1 − Vµν(q)

]
, (3.9)

where i = X,Y , µ and ν are orbital indices, k = (k, ωn), ωn = (2n+ 1)πT is the fermionic
Matsubara frequency, and the trace is over all external indices (the spin indices have
been suppressed, the Green’s function is diagonal in spin). G0

µν(k) is the matrix Green’s
function, obtained from the first term in Eq. (1) of the main text, and V originates from
the coupling between the magnetic order parameters and the electrons, the second term.
In the basis

Ψ(k) =


ψ(k)

ψ(k + QX)
ψ(k + QY )

ψ(k + QX + QY )

 (3.10)

these are given by the matrices

G0
µν(k) =


G0
µν(k + q) 0 0 0

0 G0
µν(k + q + QX) 0 0

0 0 G0
µν(k + q + QY ) 0

0 0 0 G0
µν(k + q + QX + QY )

(3.11)

Vµν(q) =


0 −1

2MX
µν(q) · σαβ −1

2MY
µν(q) · σαβ 0

−1
2MX

µν(q) · σαβ 0 0 −1
2MY

µν(q) · σαβ

−1
2MY

µν(q) · σαβ 0 0 −1
2MX

µν(q) · σαβ

0 −1
2MY

µν(q) · σαβ −1
2MX

µν(q) · σαβ 0

 ,(3.12)
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where each element of the matrices should be understood as an Norb × Norb matrix in
orbital space, with the Green function being

G0
µν(k) =

∑
m

〈µ|m〉〈m|ν〉
iωn − ξm(k) , (3.13)

where m refers to band basis and µ, ν refer to orbital basis. Expanding the trace-log to
fourth order in the magnetic order parameters and applying the Pauli matrix identity

σiαβσ
j
βδσ

k
δγσ

l
γα = 2

(
δijδkl − δikδjl + δilδjk

)
(3.14)

yields the magnetic free energy as written in Eqs. (2) and (4) of the main text, with the
fourth order coefficients

uρνηµ = 1
16
∑
k

(
2GµρGρνX G

νηGηµX − G
µρGρηX G

ηνGνµX + GµρGρνX G
νηGηµY

+ GνρGρµX G
µη
X+Y G

ην
X − G

µρGρηX G
ην
X+Y G

νµ
Y

)
+ (X ↔ Y ) , (3.15)

gρνηµ = − 1
16
∑
k

(
2GµρGρνX G

νηGηµX − G
µρGρηX G

ηνGνµX − G
µρGρνX G

νηGηµY

− GνρGρµX G
µη
X+Y G

ην
X + GµρGρηX G

ην
X+Y G

νµ
Y

)
+ (X ↔ Y ) , (3.16)

wρνηµ = 1
16
∑
k

(
− 2GµρGρηX G

ηνGνµY + 2GνρGρηX G
ηµGµνY − 2GηρGρµX G

µν
X+Y G

νη
X + 2GηρGρνX G

νµ
X+Y G

µη
X

+ GρµGµηY G
ην
X+Y G

νρ
X + GρνGνηY G

ηµ
X+Y G

µρ
X + GµρGρνX G

νη
X+Y G

ηµ
Y + GνρGρµX G

µη
X+Y G

ην
Y

)
, (3.17)

where repeated orbital indices are not summed. Here all the Green functions are implicit
functions of k and Gµνj (k) = Gµν(k + Qj) and ∑k = T/Nk

∑
k
∑
ωn .

3.B Nematic susceptibility

Preparing for an additional HS-decoupling we introduce two bosonic fields ψρν and φρν

with the partition function

Z =
∫
DφDψ exp

[ 1
2 (uρνηµ)−1 ψρνψηµ −

1
2 (gρνηµ)−1 φρνφηµ

]
, (3.18)

with integration measures chosen appropriately such that Z = 1. By performing the shifts

ψρν → ψρν − uρνηµ
(
MX

η ·MX
µ + MY

η ·MY
µ

)
, (3.19)

φρν → φρν + gρνηµ
(
MX

η ·MX
µ −MY

η ·MY
µ

)
, (3.20)

the terms quartic in M cancel accordingly. Following the standard procedure we introduce
a field (hρν) conjugate to MX

ρ ·MX
ν −MY

ρ ·MY
ν and define φ̃ρν = φρν +hρν . The resulting

action is then

S[Mi
µ, ψµν , φµν ] =

∑
q,i=X,Y

(
rµνi (q) + ψµν

)
Mi

µ ·Mi
ν −

1
2 (uρνηµ)−1 ψρνψηµ

+ 1
2 (gρνηµ)−1

(
φ̃ρν − hηµ

) (
φ̃ηµ − hηµ

)
− φ̃ρν

(
MX

ρ ·MX
ν −MY

ρ ·MY
ν

)
. (3.21)
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3.C Frequency dependence of the magnetic susceptibility

Here rµνi (q) = (Uµν )−1 + ∑
k Gνµ(k)Gµνi (k + q) and Gµνi (k) ≡ Gµν(k + Qi). It is now

straightforward to compute the nematic susceptibility:

χρνηµnem = lim
h→0

(
δ2 lnZ
δhρνδhηµ

)

=
(
gρνικgηµφλ

)−1 〈
φικφφλ

〉
− (gρνηµ)−1 , (3.22)

where we used the fact that
〈
φρν

〉
= 0 as we are above the nematic instability. To continue

we note that

δ2F

δφρνδφηµ
=
〈
φρνφηµ

〉−1
, (3.23)

where the free energy is

F = −T lnZ, (3.24)

obtained by integrating out the magnetic degrees of freedom and taking the large N limit.
We find the effective action

Seff[ψµν , φµν ] = 1
2 (gρνηµ)−1 φρνφηµ + 1

2Tr ln
[
χ−1
ικ,Y χ

−1
κλ,X − φικφκλ

+ χ−1
ικ,Y φκλ − φικχ

−1
κλ,X

]
, (3.25)

where we have ignored the Gaussian fluctuations ψρν and (χµνi (q))−1 = rµνi (q). Finally

〈
φρνφηµ

〉−1 = (gρνηµ)−1 − 1
2

∑
q,i=X,Y

χρµ,i(q)χνη,i(−q) (3.26)

and after some manipulations we arrive at the expression given in the text for the nematic
susceptibility.

3.C Frequency dependence of the magnetic susceptibility

In this section we illustrate the frequency dependence of the magnetic propagator at various
temperatures for representative filling factors of the (n, T ) phase diagram (Fig. 4(a) of the
main text). Because the magnetic propagator peaks at (π, 0)/(0, π), we focus on QX . For
n = 5.90 as we approach the instability (at kBT = 45 meV), the frequency dependence
of the propagator ∑µν χ

µν
X (QX ,Ωn) has the form shown in Fig. 3.5, where the bosonic

Matsubara frequency is given by Ωn = 2πnT . The gray area denotes the region included
in the cut-off Ωc = 1 eV, and the dotted line indicates ∑µν χ

µν
X (QX ,Ωn →∞). The plots

in Fig. 3.5 justify the statement made in the main text that near a finite-temperature
magnetic transition, one can safely neglect the higher frequency contributions.

To illustrate the importance of including high frequency contributions in the case where
magnetic order is absent, in Fig. 3.6 we also plot the frequency dependence of the magnetic
propagator for n = 6.04. It is clear that the peak is broadened, implying that it is no
longer justified to ignore the contributions originating from finite frequencies.
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3.D Derivation of the ferro-orbital order susceptibility

Figure 3.5: Frequency dependence of the magnetic propagator
∑
µν χ

µν
X (QX ,Ωn) for

n = 5.90 at different temperatures. The parameters used are quoted in the main text. The
magnetic instability takes place at kBT = 45 meV. From (a) we see that the contribution
to the bare nematic susceptibility comes mostly from the zero frequency part of the
magnetic susceptibility.

Figure 3.6: Frequency dependence of the magnetic propagator
∑
µν χ

µν
X (QX ,Ωn) for

n = 6.04 at different temperatures. The parameters used are quoted in the main text.
As is evident in (a), the peak broadens as zero temperature is approached. However,
even at higher temperatures, shown in (b) and (c), finite Matsubara frequencies provide
considerable contributions to the bare nematic susceptibility.

3.D Derivation of the ferro-orbital order susceptibility

Ferro-orbital order is characterized by the breaking of the degeneracy between the dxz and
dyz orbitals. In the itinerant framework this is seen by an inequivalent occupation of the
two orbitals, i.e. nxz 6= nyz. Defining ∆n(q) ≡ nxz(q) − nyz(q) as in the main text, the
ferro-orbital susceptibility is given by 〈∆n(q)∆n(−q)〉. Using the definition of ∆n(q), we
find that this is nothing but a linear combination of specific components of the charge
susceptibility, (χc)µνρλ . In the standard RPA approach, the full expression is [145,160]

χoo = (χc
RPA)xz,xzxz,xz + (χc

RPA)yz,yzyz,yz

− (χc
RPA)xz,yzxz,yz − (χc

RPA)yz,xzyz,xz , (3.27)

where the RPA charge susceptibility is given by the usual expression [140]

(χc
RPA)µνρλ =

(
[1 + χ0Uc]−1

)µδ
ργ

(χ0)δνγλ , (3.28)
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3.D Derivation of the ferro-orbital order susceptibility

where χ0 is the standard particle-hole bubble

(χ0(q))µνρλ = −
∑
k

Gµν(k)Gρλ(k + q) (3.29)

and Uc is the interaction matrix in the charge channel. The latter differs from the inter-
action in the SDW channel and is given by (a 6= b)

(Uc)aaaa = U , (3.30)
(Uc)aabb = 2U ′ − J = 2U − 5J , (3.31)
(Uc)abab = 2J − U ′ = 4J − U , (3.32)
(Uc)baab = J ′ = J . (3.33)

We note that, due to the implicit summation over repeated indices in Eq. (3.28), all
orbitals contribute to the RPA orbital order susceptibility. The static part of Eq. (3.27)
at q = 0 is the quantity plotted in Fig. 4(b) in the main text.
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Chapter 4

Interplay of Magnetism and
Superconductivity in Cuprate
Superconductors

The discovery of superconductivity in a ceramic compound in 1986 [2] led to intense re-
search into new superconducting materials. The first high-temperature superconductor,
La2−xBaxCuO4, has a critical temperature of Tc ∼ 35 K. Soon after the initial discov-
ery, other ceramics such as YBa2Cu3O6+x and HgBa2Ca2Cu3O8+x, were also shown to
be superconductors and within the first few years the record critical temperature was
increased to above 100 K, making liquid nitrogen the coolant of choice. The parent com-
pounds of these materials are antiferromagnetic Mott-insulators making the appearance
of superconductivity highly unexpected. Furthermore, conventional wisdom at the time
held that magnetism was detrimental for superconductivity [4]. Nonetheless, as the anti-
ferromagnetic phase is suppressed with carrier doping, a superconducting dome emerges,
and in some compounds a phase with coexisting superconductivity and magnetism even
appears. These puzzling facts hinted at a mechanism substantially different from the cel-
ebrated phonon-mediated attraction between electrons underlying the formation of the
superconducting state in conventional superconductors. With this, the field of unconven-
tional superconductors was born and Bednorz and Müller were awarded the Nobel Prize
in Physics in 1987 for their paradigm-changing discovery.

Cuprates are materials with a perovskite structure as shown in Fig. 4.1, and super-
conductivity emerges in the CuO2-layers. The oxygen octahedra are elongated along the
direction perpendicular to the planes making the in-plane Cu-O bonds dominant and
justifies considering the materials as quasi-2d. Considering for concreteness the parent
compound La2CuO4. Here the oxygen atoms are in the O2− state while the lanthanum
atoms are in the La3+ state. Thus, the copper atoms are in the Cu2+ state such that
nine electrons are occupying the Cu d-orbitals. The octahedral environment breaks the
rotational invariance and the degeneracy of the d-orbitals is lifted with the dx2−y2 being
the highest in energy, and the remaining hole occupies this state. Replacing lanthanum
by barium or strontium reduces the number of electrons available and thus corresponds to
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Figure 4.1: Unit cell of La2−xSrxCuO4 showing the perovskite structure and highlight-
ing the CuO2. Figure from Ref. [161].

hole doping. Similarly, increasing the amount of interstitial oxygen in YBa2Cu3O6+x also
adds additional holes to the system. A generic phase diagram for a cuprate superconduc-
tor is shown in Fig. 4.2. Electron doping generally leads to a lower critical temperature.
Since the magnetic phases of interest to the study presented in Chapter 5 are found in the
hole-doped regime the remaining discussion will focus on hole-doped cuprates.

A robust antiferromagnetic phase is formed due to the superexchange interactions
between the copper and the oxygen atoms. With an odd number of electrons in a unit cell,
one might naively expect these compounds to be metals. However, due to the presence of
strong Coulomb interactions that serve to confine the electrons, the materials are charge-
transfer insulators with a charge-transfer gap W smaller than the Coulomb repulsion.
Upon slight hole-doping a pseudogap phase appears. In this phase, Fermi arcs centered
on the Brillouin zone corners evolve signifying the fact that electrons moving parallel to
the Cu-O bonds remain gapped, while electrons moving along the diagonal are unaffected.
Due to the superconducting gap having nodes along the diagonal direction, the pseudogap
has been interpreted as a signature of preformed electron pairs which display large phase
fluctuations preventing the onset of actual superconducting order. However, this viewpoint
is controversial and the origin of the pseudogap has also been attributed to phenomena
not directly related to superconductivity, such as electronic stripes [162], loop-current
order [163,164], or d-density wave states [165].

A superconducting dome emerges as the antiferromagnetic order is suppressed by dop-
ing. The maximum value of Tc has been shown to depend on the number of CuO2 layers
in a unit cell, with more layers implying a higher value of Tc, up to a maximum of three,
after which Tc decreases again [166]. As in the case of conventional superconductors, the
onset of superconductivity is signified by the condensation of electrons into spin-singlet
Cooper-pairs. In the case of cuprates however, the form-factor is of d-wave nature and the
gap has nodes along the diagonal of the Brillouin zone [16, 17]. The origin of the pairing
responsible for the condensation of electrons is still unclear, although the nodal d-wave
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Figure 4.2: Schematic phase diagram of a cuprate superconductor. The transition to
the pseudogap phase is here denoted by T ∗. In Chapter 5 we consider the small blue
SDW region where the magnetic and superconducting regions overlap.

gap is consistent with one mediated by magnetic fluctuations. This can be seen from the
gap equation

∆k = −1
2
∑
k′
Vkk′

∆k′√
|ξk|2 + |∆k′ |2

, (4.1)

where Vkk′ = Vk−k′ for an effective (repulsive) electron interaction mediated by the mag-
netic fluctuations, and exhibits a peak in the vicinity of k − k′ = Q, where Q is the
magnetic ordering vector. In this case a solution to the gap equation can be found for
∆k = −∆k+Q, e.g. an order parameter with dx2−y2 symmetry:

∆k = ∆0
2
(
cos kxa− cos kya

)
, (4.2)

where a is the lattice constant. In real space this corresponds to a bond order parameter
where the bonds along x have the opposite sign of the bonds along y.

At this point it is useful to consider a model capable of capturing at least some of
the salient features described above. The first attempt at this came with a three-orbital
model by Emery [167] and simultaneously by Varma et al. [168] using the hole states in
the Cu dx2−y2 orbital and the O px and py orbitals. The interaction part was made up
of two on-site repulsion terms, for holes on the Cu or O sites, along with an additional
nearest neighbour repulsion between holes on Cu and O sites. This model was refined and
simplified by Zhang and Rice [169] who argued that a local singlet forms by hybridisation
between a hole at the Cu site and a hole formed on each square of O atoms. The associated
triplet state can be projected out due to the large energy difference between the singlet and
the triplet [169]. The resulting Hamiltonian is the one-band t− J-model, the well-known
limit of the one-band Hubbard model in the case of large interactions U :

H = −
∑
ij

(
tij − µδij

)
c†iσcjσ + U

∑
i

ni↑ni↓ . (4.3)
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4.1 Magnetic Susceptibility in the Superconducting State

In this approximation the study of cuprate superconductors thus becomes the study of the
two-dimensional single-band Hubbard model. It should be noted however, that the single-
band approximation, while widely accepted, neglects the O p-orbitals completely and the
validity of this approximation has been questioned by a number of authors [170–173].
Nevertheless, we will adopt a version of the single-band Hubbard model in Chapter 5.

4.1 Magnetic Susceptibility in the Superconducting State

The transverse magnetic susceptibility provides a useful probe of the magnetic fluctuations.
Since this quantity is important for the considerations in Chapter 5 we here provide a few
important results. The magnetic susceptibility is a measure of the spin-spin correlation
and it is given by

χ+−(ri, rj , τ) = 〈S+(ri, τ)S−(rj , 0)〉 , (4.4)

where S+(ri, τ) (S−) creates (annihilates) a spin excitation at position ri and imaginary
time τ . Evaluating the above expectation value using the random-phase-approximation
(RPA) yields

χ+−(q, ω) = χ+−
0 (q, ω)

1− Uχ+−
0 (q, ω)

, (4.5)

where χ+−
0 is the bare susceptibility (in the superconducting state):

χ+−
0 (q, ω) = 1

V
∑

k

1
4

(
1− ξkξk+q + ∆k∆k+q

EkEk+q
+ ξk
Ek
−
ξk+q
Ek+q

)
1− nF(Ek)− nF(Ek+q)
ω + Ek + Ek+q + i0+

+1
4

(
1− ξkξk+q + ∆k∆k+q

EkEk+q
− ξk
Ek

+ ξk+q
Ek+q

)
nF(Ek) + nF(Ek+q)− 1
ω − Ek − Ek+q + i0+

+1
2

(
1 + ξkξk+q + ∆k∆k+q

EkEk+q

)
nF(Ek)− nF(Ek+q)
ω − Ek + Ek+q + i0+ , (4.6)

written in momentum and frequency space with V being the volume of the system and
E2

k = ξ2
k + ∆2

k. The infinitessimal i0+ originates from an analytical continuation from
Matsubara frequency, iωn → ω + i0+. The imaginary part

Imχ+−(q, ω) = Imχ+−
0 (q, ω)(

1− UReχ+−
0 (q, ω)

)2
+
(
U Imχ+−

0 (q, ω)
)2 (4.7)

contains information concerning the dynamics of the spin excitations and exhibits very
distinct behaviour in the superconducting state. For non-zero Imχ+−

0 (q, ω) this becomes
a Lorentzian with a peak at 1− UReχ+−

0 (q, ω). However, the imaginary part of the bare
susceptibility is (considering only Fermi surface scattering for simplicity)

Imχ+−
0 (q, ω) = 1

V
∑

k

1
4

(
1− ∆k∆k+q
|∆k||∆k+q|

)
δ(ω − |∆k| − |∆k+q|) (4.8)

which is non-zero only for ω > ∆k + ∆k+q and if the gap changes sign between k and
k + q. For d-wave superconductivity with nodes along the diagonal of the Brillouin zone
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4.2 Magnetic Stripes in Cuprates

as in Eq. 4.2, this implies the opening of a spin-gap in the superconducting state for
frequencies ω < 2∆0 and the formation of a resonance peak at approximately ω = 2∆0,
due to transfer of spectral weight. The appearance of the resonance peak has become a
hallmark of unconventional superconductivity, appearing in both cuprates, heavy-fermion
compounds and iron-based superconductors [174]. While a resonance is indicative of a
sign-changing order parameter, an alternative explanation attributes the appearance of a
peak in certain FeSC to dissipationless quasiparticles and suggesting that an s++ order
parameter is not inconsistent with the observed magnetic resonances in FeSC [175].

4.2 Magnetic Stripes in Cuprates

In Chapter 5 we will focus on the crossover region between magnetism and superconductiv-
ity for a particular cuprate superconductor, La2−xBaxCuO4 (LBCO). Upon hole-doping
the magnetic order in this compound changes from a simple (π, π) antiferromagnet to
a striped antiferromagnetic phase in which the magnetic order is modulated along one
direction in a manner dependent on the doping, while the other direction remains anti-
ferromagnetic [176]. Evidence for the existence of static stripe order was first obtained
from neutron scattering experiments on La1.6−xNd0.4SrxCuO4 [177] and later it was also
observed in various other derivatives of La2CuO4, including LBCO at x = 0.125 [178,179].
The periodicity of the magnetic stripes depends on the doping such that the magnetic
wavevector is Q ≈ π(1± 2x, 1) [180]. In addition to the modulation of the magnetic order
there is a modulation of the charge order with twice the periodicity. This is manifested
as areas containing a surplus of carriers, so-called rivers of charge, divided by areas of
localised moments as shown in Fig. 4.3. The neighbouring CuO2-layer exhibits similar be-
haviour, only the stripes are along the orthogonal direction. In the next-nearest neighbour
layer, the charge rivers have shifted in an effort to minimise the Coulomb repulsion, such
that they are above the magnetic stripes of the first layer as indicated in Fig. 4.3.

The stripe phases originally attracted attention as an effort to explain an observed
anomalous suppression of the critical temperature around x = 0.125 in LBCO [181, 182].
Using transport and magnetization measurements, Li et al. [183] showed that while the
resistivity in the in-plane direction vanishes around 40 K, the Meissner effect is absent
and bulk superconductivity does not occur until 4 K. Bulk superconductivity typically
occurs as a consequence of 2D superconductivity due to the inter-layer Josephson coupling.
The large disparity between the 2D superconducting temperature and the onset of bulk
superconductivity was therefore interpreted as a vanishing of the Josephson coupling. Berg
et al. [184] proposed a superconducting order parameter which coexists with the magnetic
stripes but exhibits a phase difference across the intervening charge stripes, a so-called pair-
density-wave (PDW) state [184, 194] (see Fig. 5.1(a) for an illustration). The orthogonal
orientation of adjacent planes along with this phase difference imply that the Josephson
couplings between a plane and its three nearest neighbours vanish by symmetry [184,
185]. Note that the PDW state also exhibits d-wave symmetry. This can be seen from
the bond order parameter in real space, where the value on bonds in the x-direction is
opposite that of bonds in the y-direction (compare Figs. 5.1(a) and 5.1(b)). Observing
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4.2 Magnetic Stripes in Cuprates

Figure 4.3: Schematic illustration of the intertwined charge and magnetic stripes occur-
ing in LBCO around x ∼ 1/8. Each plane denotes a CuO2-layer with stripes running in
the direction indicated. The stripes are shifted by one quarter of a period in next-nearest
neighbour planes so as to minimise the Coulomb interactions.

such an order parameter experimentally is rather challenging although progress in this
direction came recently with STM experiments using a superconducting tip, and signs of
a PDW state was reported [186]. In 2014 Xu et al. [36] used inelastic neutron scattering
to measure the dynamic susceptiblity of LBCO at x = 0.095, and found that a magnetic
resonance does not form as the material becomes superconducting. As mentioned above,
the absence of a resonance peak is highly unexpected and is in stark contrast to results
for numerous other materials all exhibiting a resonance at roughly 2∆0 [174]. The authors
conjectured that this discrepancy was due to the existence of a PDW state. To investigate
whether this is consistent with theory we calculated the dynamic susceptibility with a
PDW superconducting order parameter, both in the absence of any magnetic order and
for the case when a PDW state coexists with a magnetic stripe. We find that in both
cases a magnetic resonance is absent for PDW superconductivity thus agreeing with the
experimental results.
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Chapter 5

Magnetic fluctuations in pair
density wave superconductors

This chapter has been published by the author and Henrik Jacobsen, Thomas A. Maier,
and Brian M. Andersen in Phys. Rev. Lett. 116 167001 (2016).

In an effort to establish the potential existence of a PDW phase in cuprate superconductors
we compute the dynamic magnetic susceptibility for a number of different magnetic and
superconducting orders. As argued in Chapter 4 the magnetic resonance is a useful probe
for the existence of a sign-changing order parameter. Here we illustrate the appearance
of a spin-gap and a magnetic resonance for standard d-wave superconductivity and show
that neither appears in the case of PDW order. As PDW order is conjectured to arise
in connection with the magnetic striped state in LBCO we additionally compute the
resonance in the coexistence phase for which the presence of Goldstone modes precludes
the opening of a spin-gap, however the resonance is still absent for PDW superconductivity
coexisting with magnetism. This implies that the absence of a magnetic resonance reported
in by Xu et al. in Ref. [36] is consistent with a PDW phase.
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5.1 Introduction

Superconductivity can have significant effects on the structure of the spin fluctuations.
This includes, for example, the opening of a spin-gap at low energies and the appearance of
a magnetic neutron resonance when the gap exhibits sign changes along the Fermi surface
as in cuprates and iron-based materials [187]. Similarly, the structure of the magnetic
fluctuations can have important consequences for the superconducting state, even possibly
its mere existence [188]. Thus, spin fluctuations and unconventional superconductivity are
intimately linked, and the question of exactly how they are connected and what this tells
us about the pairing mechanism [187] remains a challenging and relevant problem in the
field of high-temperature superconductivity.

The pseudogap regime of the underdoped cuprates is highly susceptible to spin and
charge order. Unidirectionally (striped) modulated spin and charge order was first dis-
covered near a hole doping of x = 1/8 in La1.6−xNd0.4SrxCuO4 [176], and subsequent-
ly in other cuprates also exhibiting low-temperature tetragonal crystal structure, in-
cluding La2−xBaxCuO4 [178, 182, 189, 190]. However, stripe correlations appear to be
present in many other cuprates, and the universal hour-glass spin excitation spectrum ob-
served in inelastic neutron scattering experiments has been explained within stripe mod-
els [126, 191, 192]. On the other hand, calculations based on purely itinerant models that
include d-wave superconductivity but no static stripe order also find a neutron resonance
with an hour-glass dispersion [193]. At present, a detailed quantitative description of
the spin dynamics of the cuprates, and its evolution from antiferromagnetic spin waves
in the parent compounds to itinerant paramagnons with a clear spin-gap and a neutron
resonance in the overdoped regime, remains an unsettled problem. Hence it is important
to study the intermediate doping regime where prominent stripe correlations coexist with
superconducting order.

An experimental study of the transport properties of striped La1.875Ba0.125CuO4 [183]
reported 2D superconductivity coexisting with stripe order at temperatures above the 3D
superconducting transition temperature. This was taken as evidence for an anti-phase or-
dering of the superconducting order parameter between the CuO2 layers, which suppresses
the inter-layer Josephson coupling required for 3D superconductivity. The existence of pair
density wave (PDW) order, in which striped charge, magnetic and superconducting orders
are intertwined with unusual sign changes of the superconducting phase [194, 195], has
been proposed as a possible explanation of these findings [184, 185]. In the PDW state,
the superconducting order parameter has a finite Cooper pair momentum with periodicity
equal to that of the magnetic stripe order as illustrated in Fig. 5.1(a) [162]. This is to be
contrasted with a more ordinary modulated d-wave superconductor (dSC), in which the
superconducting order parameter is in-phase across the stripe domains, and modulated in
amplitude with the same periodicity as the charge stripes, i.e. half the wave length of the
PDW state as shown in Fig. 5.1(b).

The possibility of a PDW state was investigated within microscopic models, and numer-
ical studies of the t-J model generally find that this state is energetically competitive with
other more ordinary modulated superconducting states [196–199]. Similar conclusions were
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reached within an extended version of BCS theory above a critical pairing strength [200],
while subsequent Hartree-Fock studies focused on the single-particle electronic properties
of phases of combined PDW order and AFM stripes [201, 202]. More recently, finite mo-
mentum superconducting PDW order has resurfaced in theoretical studies of the charge
density wave (CDW) order detected in underdoped cuprates [136,203,204]. The existence
of an entangled CDW/PDW phase was found and analyzed both in the context of an emer-
gent SU(2) symmetry of the fermionic hot-spot model [204, 205], and in the spin-fermion
model close to the onset of antiferromagnetism [206,207].

Experimentally, a recent neutron scattering study of the low-energy spin response in
stripe ordered La1.905Ba0.095CuO4 [36] found a number of remarkable results that were
taken as evidence for a PDW state: (1) gapless spin excitations coexisting with supercon-
ductivity, and (2) the absence of a neutron resonance in the superconducting state. These
results are highly unusual since both a spin-gap and a neutron resonance are expected in
unconventional superconductors like the cuprates [187].

Motivated by the experimental findings of Ref. [36], we perform a theoretical study
of the fingerprints of a putative PDW state on the inelastic neutron scattering spectrum.
We focus on the consequences of the PDW state rather than its microscopic origin. We
find that the PDW state in the absence of magnetic and charge order exhibits neither
a spin-gap nor a neutron resonance, contrary to the standard dSC phase. For the state
where PDW superconductivity coexists with striped magnetic order, we find qualitatively
similar results. In particular, the neutron scattering spectrum in this coexistence phase
is almost identical to that of the normal state. In the standard dSC phase, on the other
hand, we show that the neutron resonance is robust to coexisting stripe order. These
findings support a scenario where the absence of a spin-gap and a magnetic resonance in
underdoped La1.905Ba0.095CuO4 [36] is explained by the existence of a PDW condensate.

5.2 Model

The stripe phase coexisting with superconductivity is studied within a phenomenological
mean-field one-band Hubbard model

HMF = −
∑
ijσ

(
tij + µδij

)
c†iσcjσ + U

∑
iσ

〈niσ̄〉niσ

−
∑
〈ij〉

[
∆jic

†
i↑c
†
j↓ + H.c.

]
, (5.1)

with U > 0. For the hopping integrals tij , we include NN t = 1 (setting the unit of
energy) and NNN couplings t′ = −0.3. The details of the bandstructure are not important
for the results discussed below. The associated Fermi surface of the tight-binding model
is depicted in Fig. 5.1(c). The Hamiltonian (5.1) and its generalizations have been used
previously to study the stripe phase of the cuprates [208–211], including the electronic
properties of the PDW phase [201,202], but an analysis of the spin response in the PDW
phase has not previously been addressed theoretically.

Here we use an 8 × 2 supercell to study the effects of stripe and PDW order on the
magnetic excitation spectrum. The periodicity of the magnetic (charge) stripe order is
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Figure 5.1: (Color online) (a)-(b) Illustration of the unit cells with charge and spin
order, and either PDW (a) or dSC (b) superconducting order. The arrows denote the
magnetization, the diameter of the circles the hole density, and the colors on the bonds
indicate the sign of the superconducting order parameter, green is positive and magenta
is negative. (c) Normal state Fermi surface with a doping of 12.5%.

therefore restricted to 8 (4) lattice sites along x̂ and 2 (1) sites along ŷ. This restriction
limits the possible solutions and a selfconsistent iterative procedure in general only obtains
a saddle point in the free energy landscape. The actual minimum is often located at a
different periodicity which is inaccessible due to the restriction to 8× 2 periodic unit cells.
In such cases the Goldstone modes either remain gapped or the spin-wave branches cross
zero energy before reaching the ordering vector [212]. To study the spin response in the
presence of 8× 2 periodic stripes we therefore adopt an alternative approach: we impose
a density modulation 〈niσ〉, corresponding to site-ordered magnetic and charge stripes,
and a superconducting order parameter, |∆ij | = 0.05, corresponding to either dSC or
PDW order, as shown in Fig. 5.1(a)-(b). For each chosen configuration, we subsequently
adjust the bare interaction U such that Goldstone’s theorem is satisfied, i.e. such that
the denominator of the real part of the RPA susceptibility exhibits a zero eigenvalue at
qx = π ± π

4 (see Appendix 5.B for further details). This procedure guarantees a stable
energy minimum in the energy landscape of 8 × 2 periodic stripes, and has the benefit
of allowing us to study PDW-, dSC-, and non-superconducting solutions within the same
region of parameter space and the same assumed density modulations. This allows us to
single out the effects of just the PDW order on the spin susceptibility.

We apply a supercell formalism, where the total N ×N (here N = 96) system consists
of supercells of size 8 × 2. The dynamical spin susceptibility χ+−(q, ω) = χ+−(q, iωn →
ω + iδ) that determines the neutron scattering intensity may be obtained from

χ+−(q, iωn) =
∑
ri,rj

e−iq(ri−rj)χ+−(ri, rj , iωn), (5.2)

which contains terms originating from both the intra- and inter-supercell structure. Here
ri = Ri + i where Ri yields the supercell containing site ri and i gives the site of ri in
that supercell. The site dependent susceptibility is obtained from

χ+−(ri, rj , iωn) =
∫ β

0
dτeiωnτ

〈
S+(ri, τ)S−(rj , 0)

〉
,

where S+(ri, τ) = c†ri↑(τ)cri↓(τ) is the spin raising operator at position ri at (imaginary)
time τ and S−(ri, τ) the corresponding spin lowering operator. The bare susceptibility
takes the standard form, consisting of contributions from both normal and anomalous
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5.3 Results

Figure 5.2: (Color online) (a)-(c) Imaginary part of the spin susceptibility Imχ+−(q, ω)
with only dSC order. Here we have set qy = π and plot Imχ+−(qx, π, ω) versus qx/π and
ω/t with (a) U = 0, (b) U/t = 1.8, and (c) U/t = 2.2. For clarity the intensity of the first
two cases has been rescaled. (d)-(e) show the imaginary part of the q-integrated bare
(red dashed) and RPA (blue solid lines) susceptibilities.

Green functions as detailed in Appendix 5.A. At the RPA level, the site-dependent sus-
ceptibility is given by

χ+−(ri, rj , ω) = χ+−
0 (ri, rj , ω) (5.3)

+ U
∑
rl
χ+−

0 (ri, rl, ω)χ+−(rl, rj , ω) ,

where χ+−
0 (ri, rj , ω) is the bare susceptibility calculated with respect to the mean-field

Hamiltonian in Eq. (5.1).

5.3 Results

In order to disentangle the effects of superconductivity on the spin response from those
of the striped magnetic order, we start by considering systems with either only dSC or
only PDW order, i.e. without coexisting charge and magnetic order. In Fig. 5.2 we show
the imaginary part of the RPA susceptibility for the dSC phase at qy = π. As evident
from the results for the bare susceptibility χ0 (red dashed curve) in Fig. 5.2(c)-(d), one
clearly sees the opening of a spin-gap below 2∆ (at U = 0). At finite U a resonance peak,
which shifts to lower energies as U increases, appears at energies slightly below the bare
spin-gap as seen more clearly from Fig. 5.2(e)-(f), as expected for a superconducting gap
that changes sign under translation of Q = (π, π) [187,193].

The corresponding results for the case with only PDW order are plotted in Fig. 5.3,
and seen to be in stark contrast to the phase with only dSC order (Fig. 5.2). In the PDW
phase, although the system is superconducting, a spin-gap is clearly absent. Without a
spin-gap, quasiparticle damping is not suppressed which further implies that a magnetic
resonance should be absent, consistent with the RPA results displayed in Fig. 5.3. As
seen, the spectral weight is rather structureless and distributed over a wider range in
both frequency and momentum. A comparison of the PDW phase with the normal (non-
ordered) case, shown in Fig. 5.3(d-f) by the dotted black lines, reveals that the spin
response of the normal state and the PDW state are in fact remarkably similar.

79



5.3 Results

Figure 5.3: (Color online) (a)-(c) Imaginary part of the spin susceptibility Imχ+−(q, ω)
versus qx/π and ω/t for a system with only PDW order for the same values of U as in
Fig. 5.2. (d)-(f) Imaginary part of the q-integrated susceptibilities corresponding to (a)-
(c). The black dashed lines show the integrated RPA susceptibility in the normal state.

Figure 5.4: (Color online) (a)-(c) The spectral function A(k, ω = 0) for a system with
PDW order and increasing magnitude of the site-averaged magnetic moment. (d)-(f) Com-
parison of the DOS for the PDW and dSC phases for the same parameters corresponding
to panels (a)-(c).

One may understand the absence of a spin-gap in the PDW state from the zero fre-
quency single-particle spectral weight A(k, ω = 0) and the associated density of states
(DOS) displayed in Fig. 5.4(a) and 5.4(d). The dSC phase (not shown) exhibits the usual
gap structure, with gap nodes along the |kx| = |ky| lines in A(k). In contrast, the PDW
phase exhibits states on large parts of the Fermi surface [Fig. 5.4(a)] and the DOS clearly
does not exhibit a suppression of states near the Fermi level [202]. The low-energy states
in the PDW state are caused by the mismatch of the real-space pairing bonds seen in
Fig. 5.1(a), which are known to produce low-energy Andreev-like zero-energy states [213].

We now turn to the full coexistence phase with 8 × 2-periodic magnetic and charge
stripes as well as PDW or dSC orders present. Combining superconductivity with magnetic
and charge order leads to a reconstruction of the Fermi surface, evidenced in Fig. 5.4(b,c).
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5.3 Results

Figure 5.5: (Color online) Imaginary part of the spin susceptibility Imχ+−(q, ω) in the
presence of stripe charge and magnetic order without superconductivity (left column),
and with superconductivity (middle and rightmost columns), for increasing magnetic
order; (a)-(c) show the case where the site-averaged magnetic moment M ∼ 0.05, (d)-(f)
corresponds to M ∼ 0.1, and (h)-(i) has M ∼ 0.4.

The effect of a finite (weak) magnetization on the DOS is relatively minor, as seen in Fig.
5.4(e)-(f). The system with a PDW does not exhibit a full gap, even at ω = 0, while the
gap present in the dSC case is only altered quantitatively by the addition of magnetism.
Similar conclusions hold for the spectral function: the PDW state still exhibits states on
large parts of the Fermi surface, while only states along the nodal lines are present in the
dSC phase.

Proceeding to study the spin-wave spectrum of the coexistence phase, we first note that
the presence of Goldstone modes necessarily excludes the opening of a spin-gap. This is
clearly seen in Fig. 5.5, where we show the imaginary part of the susceptibility χ+−(q, ω)
versus qx with qy = π for an increasing magnitude of the site-averaged magnetic moment.
The Goldstone modes are seen by the high intensity peaks at ω = 0 for qx = π ± π/4 for
all the cases shown. In Fig. 5.5, panels (a)-(c) corresponds to a site-averaged magnetic
moment of M ∼ 0.05, panels (d)-(f) has M ∼ 0.11, and panels (g)-(i) has M ∼ 0.4 (see
Appendix 5.B for the exact order parameters used). In the dSC phase, there is still a
resonance indicated by the region of high intensity at qx = π visible as the region of
high intensity bridging the two spin wave branches as seen most clearly in Figs. 5.5(c,f).
This is in stark contrast to the PDW case [Figs. 5.5(b,e)] where this coherent excitation
is completely washed out, similar to the case shown in Fig. 5.3 without charge and spin
order. For larger magnetic moments the magnetic excitations approach the standard spin-
wave branches of the stripe phase [214–216], but a significantly broadened dispersion at
the resonance point (qx = π) is seen to remain present in the PDW phase compared to
the dSC phase, as seen by comparison of Fig. 5.5(h)-(i).

1In the two cases in Figs. 5.5(a)–(c) and Figs. 5.5(d)–(f), a slightly different value of t′ = −0.22 was
used to facilitate the satisfaction of Goldstone’s theorem.
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Figure 5.6: (Color online) Comparison of the integrated neutron resonance for the
PDW and dSC cases. The blue curve shows the difference between the PDW and the
non-superconducting case, while the red curve shows the difference between the dSC case
and the non-superconducting case. The dSC shows clear signs of a resonance, which is
absent for the PDW case.

To illustrate this more clearly, we show in Fig. 5.6 the difference in the q-integrated
spin susceptibility between the superconducting and normal state for both the PDW (solid
blue) and dSC orders (dotted red). These results are for the case where the site-averaged
magnetic moment M ∼ 0.1 [cases (d)-(f) in Fig. 5.5]. As seen, the dSC phase exhibits a
clear resonance around w/t ∼ 0.18, while the PDW phase is structureless. In fact, the
PDW case has an almost identical spin response to the normal state, a result that is in
good agreement with the experimental data measured on LBCO at x = 0.095 by Xu et
al [36].

5.4 Conclusions

To summarize, we have studied the distinct signatures of a PDW state with intertwined
striped spin, charge, and anti-phase superconducting bond order on the dynamic spin sus-
ceptibility. We find that in the PDW state both a spin-gap and a neutron resonance are
absent, in contrast to the coexistence phase with standard in-phase d-wave superconduc-
tivity where the neutron resonance is preserved. This absence of the usual fingerprint of
a sign-changing superconducting gap in the PDW state can be traced back to its gapless
single-particle excitation spectrum. These results are in agreement with recent neutron
scattering results on x = 0.095 LBCO [36], where neither a spin-gap nor a resonance were
observed below the superconducting critical temperature.
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5.A Transverse magnetic susceptibility with supercells

Appendices

5.A Transverse magnetic susceptibility with supercells

Here we provide the details of the derivation of the transverse susceptibility in real-space
on a superconducting ground state. The bare transverse susceptibility is

χ+−
0 (ri, rj , τ) =

〈
TτS

+(ri, τ)S−(rj , 0)
〉

0
, (5.4)

where S+(ri, τ) [S−(ri, τ)] is the spin creation [annihilation] operator at position ri at
(imaginary) time τ ,

S+(ri, τ) = c†ri↑(τ)cri↓(τ) . (5.5)

Applying the Bogoliubov-de Gennes (BdG) transformation

ciσ =
∑
nk

(
unkσ(i)γnkσ + v∗nkσ(i)γnkσ̄

)
e−ik·Ri , (5.6)

where the momentum k is contained in the reduced Brillouin zone of the superlattice, and
using the fact that

χ+−
0 (ri, rj , ω) = 1

β

∫ β

0
dτeiωnτχ+−

0 (ri, rj , τ) (5.7)

results in the expression

χ+−
0 (ri, rj , ω) =

∑
kk′

f0
kk′(i, j)e−i(k−k′)·(Ri−Rj) , (5.8)

where f0
kk′(i, j) is the following real space matrix (after analytical continuation, ωn →

ω + iη)

f0
kk′(i, j) = −1

N2
s

∑
nm

[
vnk↓(j)u∗nk↑(i)v∗mk′↓(i)umk′↑(j)− unk↑(j)u∗nk↑(i)v∗mk′↓(i)vmk′↓(j)

]
×

nF(Enk↑) + nF(Emk′↑)− 1
ω − Enk↑ − Emk′↑ + iη

(5.9)

with Ns = NsxNsy is the number of supercells, and i and j denote sites within one supercell
and η is an artificial broadening. The real-space Dyson equation yields

χ+−
RPA(ri, rj , ω) = χ+−

0 (ri, rj , ω) +
∑
ra
χ+−

0 (ri, ra, ω)Uχ+−
RPA(ra, rj , ω) , (5.10)

and since the dependence of the supercell vector R should be the same for the bare and
RPA expressions, this expression can be used to derive an expression for fRPA:∑

k
fRPAk k+p =

[
1− UNs

∑
k′
f0

k′ k′+p

]−1∑
k
f0

k k+p , (5.11)

note that this is really just the standard RPA expression in momentum space, but the
“susceptibilities” now have matrix structure. Application of Eq. (5.8) for the RPA case
results in

χ+−
RPA(ri, rj , ω) =

∑
kk′

fRPAk k′ (i, j)e−i(k−k′)·(Ri−Rj) . (5.12)
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5.B Selfconsistent determination of U

To make contact with the cross section as measured by neutrons we take advantage of the
fact that neutrons are not a local probe and in the Fourier transform to momentum space
we average over sites, as indicated in Eq. (5) in the main text.

5.B Selfconsistent determination of U

When solving for self-consistent striped solutions, an assumption about the periodicity of
the stripes has to be made. Hence, for a set of input parameters, the periodicity of the
ground state might differ from the input periodicity, implying that the solution given from
solving the self-consistent equations is not necessarily the ground state of the system.

In the present case we are interested in stripes with a certain periodicity (8 × 2) and
varying magnetization and since we are interested in the dynamics of the spin-waves,
ensuring that they remain gapless is critical. The regular iterative selfconsistent approach
typically results in saddle points in the free energy due to the enforced periodicity, and we
therefore adopt an approach focused on enforcing gapless Goldstone modes. In practice
this means that we choose a modulation of the electron densities corresponding to an
8× 2–periodic state and adjust U such that the smallest eigenvalue of

1− UNsRe

∑
k
f0

k k+q(i, j, U)

 , (5.13)

the real part of the denominator of the RPA susceptibility, is zero. The gapless excitations
should appear at q = (π ± π

4 , π) as the underlying state exhibits 8× 2–periodicity, and µ
is adjusted to ensure that this is the case. Here we included U as a dependent in f0 to
remind the reader that f0 also changes as a function of U , as is seen from the mean-field
Hamiltonian.

This procedure allows us to vary the size of the magnetic moments and the type of
superconducting order independently, while remaining in the same parameter regime and
simultaneously satisfying Goldstone’s theorem. In practice this is carried out by choosing
a certain density modulation, i.e. the values of 〈niσ〉, and solving Eq. (5.13) for either no
SC order, dSC or PDW order. The chosen density modulations are based on selfconsistent
solutions for a given U and superconducting is imposed on top, without accounting for
feedback effects. The values obtained for U and µ by finding the zero eigenvalues of
Eq. (5.13) will therefore depend slightly on which type of superconducting order (if any)
was assumed. Below the exact densities for the three cases (a) M ∼ 0.05 (Tab. 5.1), (b)
M ∼ 0.10 (Tab. 5.2) and (c) M ∼ 0.4 (Tab. 5.3) are provided, along with the various
values of U and µ following from this procedure. Note that for cases (a) and (b) a slightly
different value of t′ = −0.22 was used in order for Eq. 5.13 to yield a zero eigenvalue.

Case (a)

Case (b)

Case (c)
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5.B Selfconsistent determination of U

0.4070 0.4372 0.4680 0.3948 0.4680 0.4372 0.4070 0.4808
0.4680 0.4372 0.4070 0.4808 0.4070 0.4372 0.4680 0.3948

0.4680 0.4372 0.4070 0.4808 0.4070 0.4372 0.4680 0.3948
0.4070 0.4372 0.4680 0.3948 0.4680 0.4372 0.4070 0.4808

non-SC dSC PDW
U 1.9467 2.2303 1.9074
µ −0.1 0.131 −0.1

Table 5.1: (top) 〈ni↑〉, (middle) 〈ni↓〉 for the 8× 2 sites in the supercell, and (bottom)
parameters resulting in a zero eigenvalue solution of Eq. 5.13 for the various choices of
superconducting orders.

0.3650 0.4300 0.5100 0.3250 0.5100 0.4300 0.3650 0.5650
0.5100 0.4300 0.3650 0.5650 0.3650 0.4300 0.5100 0.3250

0.5100 0.4300 0.3650 0.5650 0.3650 0.4300 0.5100 0.3250
0.3650 0.4300 0.5100 0.3250 0.5100 0.4300 0.3650 0.5650

non-SC dSC PDW
U 2.1519 2.3564 2.1
µ 0.02 0.15 0.02

Table 5.2: (top) 〈ni↑〉, (middle) 〈ni↓〉 for the 8× 2 sites in the supercell, and (bottom)
parameters resulting in a zero eigenvalue solution of Eq. 5.13 for the various choices of
superconducting orders.

0.2200 0.4400 0.6600 0.1800 0.6600 0.4400 0.2200 0.7200
0.6600 0.4400 0.2200 0.7200 0.2200 0.4400 0.6600 0.1800

0.6600 0.4400 0.2200 0.7200 0.2200 0.4400 0.6600 0.1800
0.2200 0.4400 0.6600 0.1800 0.6600 0.4400 0.2200 0.7200

non-SC dSC PDW
U 3.16 3.3097 3.2235
µ 0.25 0.25 0.25

Table 5.3: (top) 〈ni↑〉, (middle) 〈ni↓〉 for the 8× 2 sites in the supercell, and (bottom)
parameters resulting in a zero eigenvalue solution of Eq. 5.13 for the various choices of
superconducting orders.
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Chapter 6

Topological Superconductivity and
Majorana End Modes

The prospect of performing quantum computations - the coherent manipulation and read-
out of quantum bits of information - has stimulated intense research in recent years.
Ordinary bits can take one of two values, 0 or 1, while quantum bits, or qubits, can be in a
superposition of two states |0〉 and |1〉. Prior to any measurement the quantum bit there-
fore samples all accessible states while a classical bit is confined to a single value. Such
behaviour provides distinct advantages and quantum algorithms to factorise large num-
bers, search databases or solve systems of linear equations have already been shown to yield
significant advantages over their classical counterparts [26, 217]. Amongst the problems
currently faced by researchers striving to achieve quantum computation is the relatively
short coherence time of the states comprising the qubits. A decoherence time of the order
of milliseconds is desireable in order to perform most logical operations, and this is only
realised in ideal scenarios. A possible way to circumvent such decoherence is to employ
topologically protected qubits [218]. These are comprised of anyons obeying non-Abelian
exchange statistics. One option to achieve this is to use zero-energy Majorana modes. The
non-Abelian exchange statistics allow for logic gates to be constructed by braiding of the
Majorana modes, and since the logic gate relies on the topological properties of the braid,
it is in principle decoherence free if the braiding is performed adiabatically.

Majorana particles first appeared in 1937 as real solutions to the Dirac equation [219].
This implies that Majorana particles are their own anti-particles, meaning that creat-
ing and annihilating particles are essentially equivalent, hence γ†E = γ−E . Whether any
elementary particles are Majorana particles are still debated in the particle physics com-
munity [220, 221], however it was realised recently that Majorana modes could exist as
quasiparticle excitations of certain condensed matter systems [222–224]. By virtue of
the above, Majorana quasiparticles must be equal superpositions of particles and holes,
thus making superconductors a natural place to look for such quasiparticle excitations.
This also implies that a particle or a hole can be seen as two Majorana modes locally
bound together, and one would naively conclude that neighbouring Majorana modes al-
ways hybridise to form particles or holes, thus making sole Majorana modes unobservable.
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6.1 Majorana Modes in the Kitaev chain

Figure 6.1: Sketch of the two distinct ways the Majorana modes at each site can pair
up in a one-dimensional system. In (a) the modes pair up at each site and a topologically
trivial phase results. In (b) Majorana modes from different sites are paired up resulting
in a topologically non-trivial phase with localised modes at either end.

However, considering for simplicity finite one-dimensional systems there are two distinct
ways of pairing up the Majorana modes, as emphasised in Fig. 6.1. Classifying the cases
in which the Majorana modes pair up such that a localised mode is left at each end was
achieved by Kitaev using a simple model outlined below. The great insight came with
realising that the appearance of localised modes at the ends is a topological property of
the system and not tied to the details of any microscopic model [218, 224–229]. A topo-
logical classification of the model in question is therefore sufficient to determine whether
localised edge modes will appear in some region of parameter space. As a simple example
of these concepts we consider the Kitaev chain [224], which can be mapped to the system
considered in Chapter 7 and is considered topologically equivalent. Exactly what is meant
by topologically equivalent will be made clear below when we discuss symmetry classes.

6.1 Majorana Modes in the Kitaev chain

In this section we describe the celebrated Kitaev chain and how this can lead to localised
Majorana end modes. We review two ways to achieve an effective Kitaev chain in realistic
physical systems and present various experimental results showing indications of Majorana
modes being present. We then proceed to motivate the study presented in Chapter 7.
In this work we consider a chain of magnetic adatoms deposited on a two-dimensional
superconducting substrate and elucidate the mechanism responsible for the formation of
spiral magnetic order leading to self-organised topological superconductivity. The work
presented in Chapter 7 thus contributes to understanding how Majorana modes are realised
in self-organised systems. Specifically, the focus is on the interplay between the Yu-Shiba-
Rusinov (YSR) bound states due to the adatoms and the formation of magnetic order in
the absence of external tuning parameters.

The simplest model hosting topological states in the form of Majorana modes is the
Kitaev chain [224]. This is a one-dimensional lattice model of spinless fermions with p-wave
superconducting pairing, a sketch of which is shown in Fig. 6.1. Kitaev showed that for
a chemical potential smaller than the bandwidth, one could achieve a system supporting
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6.1 Majorana Modes in the Kitaev chain

localised end modes. The Hamiltonian in question is

H = −µ
N∑
i=1

ni −
N−1∑
i=1

(
tc†ici+1 + ∆cici+1 + h.c.

)
, (6.1)

where N is the number of sites in the chain and ni is the number operator c†ici at site i.
Since only one spin-species is included superconductivity is odd under inversion symmetry.
Transforming to the Majorana representation [230]

γi,1 = c†i + ci ,

γi,2 = i
(
c†i − ci

)
, (6.2)

we obtain the Hamiltonian in the Majorana representation

H = −iµ2

N∑
i=1

γi,1γi,2 − i
t

2

N−1∑
i=1

(
γi+1,1γi,2 − γi+1,2γi,1

)
+ i

∆
2

N−1∑
i=1

(
γi+1,2γi,1 + γi+1,1γi,2

)
(6.3)

note the presence of the i which implies that the Hamiltonian matrix is antisymmetric.
Following Kitaev [224], two distinct cases are identified corresponding to either the presence
or absence of localised edge modes. By taking t = ∆ = 0 we recover the topologically
trivial case in which no localised edge modes are present

H = −iµ2

N∑
i=1

γi,1γi,2 , (6.4)

i.e. the Majorana operators at each site pair up. The topologically non-trivial case is
found from taking µ = 0 and e.g. t = ∆ for which

H = −it
N−1∑
i=1

γi+1,1γi,2 , (6.5)

where Majorana operators on consequtive sites are paired up. Note that neither γ1,1 nor
γN,2 enter the Hamiltonian, and that these are sitting at opposite ends of the wire (see
Fig. 6.1). This constitutes the sought after edge mode, which, in the limit of an infinite
wire is localised at each end and has zero energy.

The two phases uncovered are topologically distinct, implying that one cannot be
recovered from the other without closing the bulk energy gap. A more thorough analysis
reveals that the system is in the topologically trivial phase, i.e. localised Majorana modes
are absent, when 2|t| < µ. For 2|t| > µ the system is topologically non-trivial and hosts
localised Majorana edge modes. In this more general case the end modes attain a finite
energy resulting from a weak hybridisation between either end. This is evidenced in an
exponential decay of the Majorana modes into the interior of the wire, with a decay
length inversely proportional to the energy of the mode. It turns out that the existence of
boundary modes can be determined from an analysis of the translationally invariant (bulk)
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6.1 Majorana Modes in the Kitaev chain

Class Θ Ξ Π 1 2 3 4 5 6 7 8
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

Table 6.1: Table of the symmetry classes relevant for the discussion of Majorana bound-
ary modes. The symmetries present are classified by ±1 depending on whether Θ2 = ±1,
Ξ2 = ±1. If the symmetry is absent it is denoted by a 0. The Z or Z2 denotes the type
of topological invariants in the cases where one can be defined. Note that the table is
periodic with period 8 with respect to dimensionality. Table is adapted from Ref. [229].

Hamiltonian. This is a massive simplification since it removes the need to diagonalise the
system in real space to determine whether Majorana boundary modes are present. The
topological invariants used to determine the presence of boundary modes are part of a
grander classification scheme based on the action of the (generalised) charge-conjugation
(Ξ) and time-reversal (Θ) anti-unitary operators on the Hamiltonian [231, 232]. A third
symmetry can be defined, which is the unitary chiral symmetry Π and for systems in which
both charge-conjugation and time-reversal symmetry are present this is given by Π = ΞΘ.
Under this scheme, Hamiltonians are divided into ten symmetry classes each with an
associated topological invariant. In Table 6.1 we show the symmetry classes relevant for
the study of Majorana boundary modes, i.e. the three cases for which Ξ2 = 1. While the
topological invariant can change by closing and reopening the gap, the symmetry class is
based on the discrete symmetries of the system and is thus unaffected. Hence, physical
systems exhibiting Majorana edge modes in one dimension can be found by looking for
systems in the same symmetry class as the Kitaev chain, which is BDI [233–235]. In the
discussion of incommensurate magnetic order in the FeSC we encountered a system in
symmetry class D. The boundary modes in the non-trivial phase of this two-dimensional
system are so-called chiral edge modes. This was discussed in Sec. 1.4.

The topological invariant associated with class BDI in one dimension is a winding
number, however this is not so easily accessible using numerical methods as it relies on
evaluating derivatives of eigenstates. This can be numerically unstable in the sense that
it is sensitive to finite-size effects, unless very large grids are used. In the work presented
in Chapter 7, instead of the winding number we use the Majorana number to discern the
topological phases from the trivial ones. The Majorana number is defined by

M = sign
{
Pf
[
A(0)

]
Pf
[
A(π)

]}
, (6.6)

where A(k) is the Hamiltonian matrix written in the Majorana representation. Here
M = 1 indicates a trivial phase whileM = −1 indicates a non-trivial phase. The Majorana
number has the advantage of being easily accessible with numerics, however it is a Z2

invariant and not a Z invariant. This means that it is only capable of distinguishing an
odd number of Majorana modes from an even one. For the work presented in Chapter 7
we supplemented the evaluation of the Z2 invariant with real space calculations to check
that theM = 1 cases did not harbour an even number of Majorana modes.
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6.2 Magnetic Adatom Chains on Superconductors

One model that fulfills the requirement of being in the same symmetry class as the
Kitaev chain is the so-called nanowire setup, consisting of a one-dimensional wire with
strong spin-orbit coupling proximity-coupled to an s-wave superconductor and subjected
to a magnetic field. This was suggested as a possible experimental realisation of the Kitaev
chain in 2010 [27–29]. Signatures of Majorana modes were first reported for this system by
Mourik et al. [236] and more recently the exponential localisation of the Majorana modes
was elucidated in Ref. [237].

6.2 Magnetic Adatom Chains on Superconductors

Here and in Chapter 7 we focus on an alternative method by which an effective Kitaev chain
is constructed by deposition of a chain of magnetic adatoms on the surface of an s-wave
superconducting substrate, thus inducing Yu-Shiba-Rusinov (YSR) bound states within
the superconducting gap [238]. A chain consisting of such magnetic adatoms was recently
studied experimentally in Ref. [239] using Fe-atoms deposited on a Pb substrate and
observations consistent with the presence of localised Majorana end modes were reported.
If the electrons experience a spatially varying local exchange field the superconducting
pairing acquires a p-wave component and the system is in symmetry class BDI. An effective
spatial variation can be accomplished in two ways, either through spin-orbit coupling in the
substrate combined with a ferromagnetic or antiferromagnetic alignment of the adatoms,
or if the ground state configuration of the magnetic adatoms exhibits a spiral structure. In
fact, for one-dimensional substrates the two ways are identical, simply related by a gauge
transformation. Going beyond one-dimensional substrates the relation between the two is
no longer exact, however it can still be applied in the limit of weak spin-orbit coupling,
as we show in Sec. 7.A. In the experiment of Ref. [239] the magnetic moments were
oriented ferromagnetically although the presence of a spin-orbit coupling on the surface of
Pb ensured that the system was in class BDI. For the majority of the work presented in
Chapter 7 we assume that the spin-orbit coupling vanishes.

In the absence of any spin-orbit coupling in the system the magnetic order along the
chain therefore presents a crucial ingredient to the formation of a topologically non-trivial
state. In Chapter 7 we study the mechanisms underlying the formation of spiral magnetic
order for a chain deposited on a two-dimensional substrate. Interactions between adatoms
are mediated by the electrons via so-called indirect exchange. The most well-known exam-
ple of such exchange, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [240–242],
is a consequence of the polarizability of the electron gas; a single magnetic adatom polar-
izes the spin of the surrounding electrons in a position dependent manner. In a normal
metal, this favours either alignment or anti-alignment of neighbouring electronic spins, de-
pending on their distance from the adatom. In a superconductor, the RKKY interaction is
supplemented by a weaker, albeit longer-ranged, component originating from the Cooper
pairs in the superconductor. The presence of spin-singlet superconductivity implies that
electrons of opposite spin can lower their energy by forming pairs, resulting in a purely
antiferromagnetic contribution to the indirect exchange interactions. For quadratic dis-
persions and to lowest order in the adatom strength J , the exchange coupling between
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adatoms in two dimensions is thus

J(r) = J2e−
2r
ξ

[
− vF

2πr2 sin (2kF r) + ∆
r

sin2 (kF r + π/4
)]
, (6.7)

where the first term is the standard RKKY interaction and the second is the purely
antiferromagnetic contribution. Here kF (vF ) is the Fermi momentum (velocity) and ξ is
the coherence length of the superconductor. Constructing a chain of magnetic adatoms
introduces additional complexity as each adatom hosts a YSR bound state which hybridize
with the neighbouring YSR states thus forming a YSR band in the superconducting gap.
The origin of the magnetic order along the adatom chain thus depends on the YSR band.
Prior to the YSR band crossing the Fermi energy, the system is in the trivial regime.
In this case superconductivity destabilises a ferromagnetic arrangement and results in a
spiral since the system tries to balance out the ferromagnetic contribution from the first
with the antiferromagnetic contribution from the second term in Eq. 6.7. On the other
hand, an antiferromagnetic alignment of the spins is stable against superconductivity since
both terms in Eq. 6.7 have the same sign. As the YSR band crosses the Fermi level
and the hybridisation between neighbouring YSR states causes the effective spin model
underlying Eq. 6.7 to break down. After the YSR band-crossing the system is in the
topologically non-trivial regime provided the chain exhibits spiral magnetic order. In this
case, a ferromagnetic chain is also unstable to the formation of spiral order since this leads
to the opening of a gap in the YSR band resulting in a net energy gain for the system [243].

6.3 Bound States induced by Magnetic Adatoms

Evidently the YSR bound states play an important role in the formation of magnetic
order, and we therefore provide some further details. For illustrative purposes we confine
attention to a single magnetic adatom located at the origin. In terms of Nambu-Gor’kov
Green functions we can write the Dyson equation in real space as [244]

Gij = G(0)
ij + Gi0Himp

0 G(0)
0j , (6.8)

where we note that the bare Green function G(0)
ij is translationally invariant and Himp

0
is the Hamiltonian matrix for a magnetic adatom at the origin written in Nambu space,
(ci↑ c†i↓)T :

Himp
0 =

V (0) 0
0 V (0)

 . (6.9)

An exact solution to Eq. 6.8 is given by

Gij = G(0)
ij + G(0)

i0

(
1−Himp

0 G(0)
00

)−1
Himp

0 G(0)
0j , (6.10)

which provides a powerful way of studying the effect of a single adatom in a superconductor
and can even be extended to arrays of adatoms [243]. The effect of the adatom is captured

92



6.3 Bound States induced by Magnetic Adatoms

Figure 6.2: Plot showing the behaviour of the energy of the bound state energy (blue),
the local order parameter (red) and the total spin of the system (black) as a function of
adatom strength (J) divided by the nearest neighbour hopping (t). Selfconsistency implies
a discontinuous jump in these quantities clearly visible at J/t ≈ 1.5. The magnitude of
the jump was shown to depend on the coherence length in Ref. [245], such that a longer
coherence length implies a smaller jump.

by the so-called T -matrix:

T0 =
(
1−Himp

0 G(0)
00

)−1
Himp

0 . (6.11)

The bare Green function exhibits no poles for |ω| < |∆| and the occurrence of bound
states within the gap is due to the poles of the T -matrix for |ω| < |∆|. Thus we look for
solutions to the equation

Det
(
1−Himp

0 G(0)
00 (ωB)

)
= 0 (6.12)

with |ωB| < |∆| and find

ωB = ±∆1−
(
V (0)πN(0)

)2
1 +

(
V (0)πN(0)

)2 . (6.13)

Note that no bound states are induced due to non-magnetic adatoms. This is because the
interaction matrix for a non-magnetic adatom is given by

Himp
0 =

V (0) 0
0 −V (0)

 (6.14)

in Nambu space, and the associated T -matrix has no in-gap poles.
The T -matrix provides an efficient way of studying single adatoms. However, in an

interacting system this approach is not exact and neglects the feedback from the adatom on
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the electron-density and pair-potential. This can be ratified by employing Green functions
dressed by Hartree and Fock self-energies evaluated in the presence of an adatom, which
makes a closed-form solution difficult to obtain. Another strategy is to solve for the
density and pair-potential in a selfconsistent manner, which is the approach we shall adopt
below. In the remainder of this chapter we neglect local electron-electron interactions and
restrict attention to an attractive nearest-neighbour interaction which stabilises s-wave
superconductivity. The effects of selfconsistently including the feedback from the adatom
on the s-wave pair-potential have been thoroughly studied elsewhere [245–247] and here
we simply summarize these effects. A magnetic adatom leads to a suppression of the local
pair-potential, and for increasing adatom strength, results in a π phase-shift of the local
superconducting order parameter. Secondly, the energy of the bound state as function of
adatom strength is modified and exhibits a jump from positive to negative energy at the
critical adatom strength where also the local order parameter changes sign. These effects
are summarised in Fig. 6.2, which also depicts the first order transition from an S = 0
to an S = 1

2 state first discussed by Sakurai [248]. One of the questions addressed in the
work presented in Chapter 7 is whether these effects play a role for the magnetic ground
state of a chain of adatoms.
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Chapter 7

Spiral magnetic order and
topological superconductivity in a
chain of magnetic adatoms on a
two-dimensional superconductor

This chapter has been published by the author and Michael Schecter, Karsten Flensberg,
Brian M. Andersen, and Jens Paaske in Phys. Rev. B 94 144509 (2016).

In this chapter we elucidate the nature of magnetic order appearing in one-dimensional
magnetic adatom chains deposited on two-dimensional superconducting substrates. If the
chain exhibits spiral magnetic order or if there is spin-orbit coupling in the substrate the
symmetry class is BDI and the models can exhibit topologically nontrivial phases. Indi-
cations of Majorana end modes were observed in such a system by Nadj-Perge et al. [239]
although for a ferromagnetic chain with spin-orbit coupling in the substrate. Here we
show that a topologically nontrivial phase arises in the subgap YSR states. This phase
is stabilised by the presence of spiral magnetic order along the chain due to the competi-
tion between a short-range ferromagnetic component and a long-range antiferromagnetic
component in the exchange interactions. We find that the exchange interactions along
the diagonal directions exhibit behaviour similar to the one-dimensional case when close
to half filling. In addition we show the stability of the topological phase diagram to the
effects of selfconsistency and weak spin-orbit coupling and illustrate the effect of adding a
direct ferromagnetic exchange interaction between adatoms. For a wide range of interac-
tion strengths we find this to enlarge the topologically nontrivial region by aiding in the
formation of a spiral magnetic state.
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7.1 Introduction

The study of magnetic order in adatomic chains deposited on superconducting substrates
has recently attracted widespread attention due to the ability of these systems to host
Majorana bound states [31, 235, 239, 243, 249–263]. The local moments of the adatoms
induce Yu-Shiba-Rusinov (YSR) bound states within the superconducting gap [238, 264–
268], thus constituting an effective Kitaev chain [224] with long-range hopping and pairing
amplitudes [252]. A topologically non-trivial phase is possible with the addition of a
further crucial ingredient, namely an effective spatial variation of the local exchange field
experienced by the electrons along the chain [252]. This can be achieved either by spin-
orbit coupling (SOC) within the superconductor [235,239,249,259], or without SOC if the
moments order into a magnetic spiral [31,243,255–257,260–263] (see also [30,269–271]). In
the latter case, spiral order is driven by electron-mediated indirect exchange interactions
that in turn support topological superconductivity and give rise to the notion of self-
organization.

The development of magnetic order in an adatom chain due to electron-induced ex-
change interactions has been studied analytically for both one- and three-dimensional
superconductors [243,255–257,262,263,272]. In one-dimensional (1D) conductors, adatom
spiral order has been shown to arise from the RKKY interaction [240–242] due to the singu-
lar behavior of the susceptibility at 2kF [255–257,263]. Effects beyond the RKKY approx-
imation were recently considered and also support the formation of spiral order away from
points of commensurability, and for weak adatom-electron exchange coupling [262, 272].
The three-dimensional (3D) case was studied in Ref. [243] where it was found that spi-
ral order indeed forms due to indirect exchange interactions, however, the mechanism is
distinct from the 1D case since there is no 2kF peak in the adatom susceptibility [258].
In 3D spiral order arises from the interplay between the shorter-ranged RKKY exchange,
and the longer-ranged antiferromagnetic exchange due to singlet superconductivity [243].

In two-dimensional (2D) systems the existence of self-organized topological phases
was established numerically for finite systems [260], but the mechanism and conditions
under which spiral magnetic order forms are not yet fully understood. In addition, single
YSR states were recently imaged in the layered superconductor 2H-NbSe2 [273], which
demonstrates how the effectively reduced dimensionality enhances the spatial extent of
the YSR states. This is expected to lead to a larger YSR pairing hybridization, and thus
to a relatively larger gap protecting the topological superconducting phase.

In this paper we bridge the gap between the previous 2D numerical and 3D analytical
calculations by providing comprehensive studies of the magnetic adatom and electronic
ground states in a two-dimensional tight-binding model. We map out the magnetic phase
diagram as a function of exchange coupling and electron chemical potential by minimizing
the electron free energy within a classical spiral ansatz for the adatom chain. We find that
the indirect exchange interactions generally follow behavior similar to 3D studies, favoring
collinear order of the adatom chain in the normal state, while destabilizing ferromagnetism
to spiral formation in the presence of superconductivity. This gives rise to a broad region of
the phase diagram where the set of subgap YSR states exists in a topologically nontrivial
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superconducting phase with Majorana bound states. The exchange interaction along the
diagonal (11) direction is distinct near half filling due to Fermi surface nesting. As a result,
the effective dimensionality of the substrate is reduced, and the magnetic order along the
chain exhibits 2kF spiral order known from 1D systems. Furthermore, we ascertain the
effects of a direct exchange interaction between adatoms, finding that even a substantial
direct exchange term can promote spiral order in the chain. This is contrary to 3D systems,
where a spiral state in general only occurs when the direct exchange interaction is smaller
than the indirect exchange.

Lastly, we elucidate the differences between performing the calculations selfconsistently
and non-selfconsistently for the local pairing potential. The two cases are found to be
qualitatively the same, i.e., suppression of the local pairing potential near the adatom
chain leads only to minor modifications of the magnetic order and subgap states. This
modification is interpreted in terms of a lowering of the effective chemical potential for the
subgap YSR states induced by the suppression of the local pairing potential.

The paper is organized as follows: In Section 7.2 we introduce the model and methods.
In Section 7.3 we study the indirect exchange interactions between two adatom spins
mediated by the electron gas, and determine the dependence on chemical potential and
exchange coupling both along (10) and (11) directions. We proceed to consider chains of
magnetic adatoms in Sec. 7.4. We present magnetic and topological phase diagrams for
different values of the superconducting order parameter in the plane of exchange coupling
and chemical potential. These indicate that spiral order on a chain along (10) is formed by
a mechanism similar to the 3D case. In this section we also contrast the behavior of chains
along (10) and (11), and reveal substantial differences that arise due to the anisotropic
Fermi surface. Additionally, we discuss the effects of a ferromagnetic direct exchange
between the adatoms. In Sec. 7.5 we perform a detailed comparison between selfconsistent
and non-selfconsistent approaches, and find that the two approaches yield qualitatively
similar results. We discuss the influence of substrate spin-orbit coupling in the Appendix.
Conclusions and outlook are presented in Sec. 7.6.

7.2 Model

To model the 2D superconducting substrate we use a tight-binding model with an on-site
attractive interaction V to stabilize superconductivity. The magnetic adatom potentials
are assumed to be local and are arranged into a chain along either the (10) or (11) direc-
tions, depicted in Fig. 7.1(a). The Hamiltonian is

H = H0 +HSC +Himp , (7.1)
H0 = −t

∑
〈ij〉
α

c†iαcjα − µ
∑
iα

c†iαciα , (7.2)

HSC = −V
∑
i

c†i↑c
†
i↓ci↓ci↑ , (7.3)

Himp = Jimp
∑
i∈I
αβ

Si · c†iασαβciβ , (7.4)
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Figure 7.1: (a) Schematic illustration of the system under consideration. In this paper
we consider both the (10)-direction and the (11)-direction, for respectively 120×71, and
81×81 systems. (b) Fermi surface of the model in Eq. (7.2) for various values of the
chemical potential.

where c†iα, ciα are fermionic creation/annihilation operators with spin α and coordinate i, µ
is the chemical potential, I is the set of adatom locations, 〈〉 signifies that the summation
is taken over nearest-neighbors, and σ is the vector of Pauli matrices. We choose t = 1
as the unit of energy and the lattice constant a = 1 as the unit of length. The adatom
spin is denoted by S = Sn̂ where n̂ is a unit vector in the direction of the spin and S

is the length. Throughout the paper we work in the large spin (classical) approximation,
S → ∞, Jimp → 0 with the product J ≡ JimpS = const. A mean-field decoupling in the
Cooper channel is performed on the superconducting term Eq. (7.3) resulting in

HMF
SC = −

∑
i

[
∆ic

†
i↑c
†
i↓ + h.c.− |∆i|2

V

]
, (7.5)

where the superconducting order parameter is obtained via the selfconsistency equation

∆i = V 〈ci↓ci↑〉 . (7.6)

The Fermi surfaces (with V = J = 0) for various representative values of the chemical
potential are shown in Fig. 7.1(b). The dispersion inherits the point group symmetries of
the square lattice, and a circular Fermi surface with quadratic dispersion is only achieved
near the bottom of the band. We note that the tight-binding model has a finite band-width
W = 8t and is particle-hole symmetric around µ = 0, implying that our results do not
depend on the sign of µ. For purposes of determining both indirect exchange interactions
and the magnetic order of the adatoms, we consider the thermodynamic potential Ω at
zero temperature

Ω = 〈H〉 . (7.7)
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Figure 7.2: (Color online) The function IQ in Eq. (7.8) calculated from Eq. (7.1) to
leading order in J at µ = −3.8 and for different values of ∆. The two adatoms are
arranged along the (10) direction with lattice spacing aad = a. In the normal state
(∆ = 0), the magnetic ground state of the adatom chain is a ferromagnet (q = 0). The
presence of superconductivity leads to a spiral magnetic ground state (q 6= 0) of the
adatom chain. Here we assume a homogeneous pairing potential ∆i = ∆. The effects of
the selfconsistency condition, Eq. (7.6), are addressed in Sec. 7.5.

Below we study Ω{n̂i} for different adatom configurations n̂i and determine the magnetic
ground state for a chain of adatoms by minimizing Ω. To obtain an iterative selfconsistent
solution to the Hamiltonian (7.1) we solve Eq. (7.6) for a given V and ∆i and iterate until
the difference between consecutive solutions is < 10−3 at each site. This procedure includes
the feedback of the adatoms on the superconducting order parameter and suppresses it in
the proximity of the chain, as depicted in Fig. 7.11 below. This leads to the well-known
π–phase shift of the superconducting order parameter at the adatom site [245, 247, 266].
As will be made clear in Sec. 7.5 this effect has no qualitative impact on the magnetic
order along the chain, or the subgap YSR states. In Secs. 7.3 and 7.4 we therefore simplify
the calculations and use the non-selfconsistent approximation.

7.3 Weak exchange interactions

To understand the magnetic phases of the adatom chain, we first consider the case where
the adatom spacing aad is larger than the inverse Fermi wavevector, kFaad � 1, and the
exchange coupling to electrons is weak. The indirect exchange coupling between adatoms
can then be computed perturbatively in J , resulting in an effective Heisenberg model for
the adatoms given by

HHeis =
∑
i,j

I(i−j)Si · Sj =
∑
Q

IQ|SQ|2, (7.8)
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where the second equality is written in the momentum representation for an infinite ring.
For a chemical potential near the band bottom, the leading order in J indirect exchange
coupling between adatoms separated by distance r is (~ = 1)

Ir ∝ J2e−
2r
ξ

[
− vF

2πr2 sin(2kF r) + ∆
r

sin2(kF r + π/4)
]
, (7.9)

where vF is the Fermi velocity and ξ = vF /∆ is the coherence length of the superconductor.
The first term in the square brackets of Eq. (7.9) is the well-known Rudermann-Kittel-
Kasuya-Yosida (RKKY) interaction [240–242] mediated by a 2D electron gas [258, 274].
The second term is purely antiferromagnetic and arises from singlet superconducting cor-
relations that disfavor the pair-breaking effect of a polarized exchange field [275–277]. The
magnetic ground state Sq can be determined to second order in J by finding the minimum
Fourier component of the exchange interaction IQ, see Fig. 7.2. Here we label a generic
magnetic wavevector by Q, and denote the configuration minimizing the thermodynamic
potential by q.

7.3.1 Exchange interactions along the (10) direction

In the normal state (∆ = 0) the magnetic ground state calculated from Eq. (7.9) is a
ferromagnet (q = 0) in the range n < kFaad/π < n + 1/2 with integer n and an antifer-
romagnet (q = π/a) otherwise. In the presence of superconductivity the antiferromagnet
is stable, while the ferromagnet becomes unstable to the formation of a spiral with fi-
nite q 6= 0. Indeed, for ∆ 6= 0, ξ−1 � Q � π/aad the exchange interaction scales like
IQ ∝ cot(kFaad)vFQ2/kF − ∆ln(Qaad)/(kFaad), so that the ground state wavevector is
shifted from zero to q ∝

√
∆.

This magnetic instability is akin to the Anderson-Suhl transition in 2D and 3D spin lat-
tices [275,276,278] and results from two competing ordering mechanisms having different
strengths and effective ranges: ferromagnetism from the RKKY exchange and antiferro-
magnetism due to superconductivity. The development of spiral order due to the presence
of superconductivity is illustrated in Fig. 7.2. The spiral formation of a 1D spin chain
on a 3D superconductor was recently demonstrated in Ref. [243], where the wavevector
scales as q ∝ ∆ in contrast to q ∝

√
∆ found above. One can easily generalize this result

to a superconductor/adatom lattice of arbitrary dimensions to find q ∝ ∆1/(3−D∗), where
0 ≤ D∗ ≤ 2 is the codimension of the adatom lattice in the s-wave superconductor (the
case of nodal d−wave superconductors requires a separate analysis [275]). The famous
Anderson-Suhl scaling q ∝ ∆1/3 [278] is obtained only when the adatom lattice and super-
conductor have the same dimension, D∗ = 0. This indicates that for the adatom chain,
the influence of superconductivity on the magnetic order is substantially enhanced for a
2D substrate as compared to a 3D substrate.

We illustrate the dependence of q on ∆ in Fig. 7.3, calculated for the model of Eq. (7.1)
to leading order in J , for a dense set of adatoms along the (10) direction (aad = a). The
black lines illustrate the proposed square-root behavior of q(∆). The dependence of q on µ
can be traced back to Eq. (7.9). For µ close to half filling we have 1/2 < kFaad/π < 1 and
the resulting state is antiferromagnetic. For µ = −2, we find kFaad/π = 1/2 and there is a
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Figure 7.3: (Color online) Ground state wavevector q of an adatom chain along the
(10) direction (aad = a) calculated from Eq. (7.1) to leading order in J as a function of
∆ for different values of µ. The data points for qa/π . 0.2, ∆ . 0.05 are well-fit by the
form q ∝

√
∆ (black lines), as predicted from the analysis of Eq. (7.9).

first order transition from an antiferromagnetic to a ferromagnetic (spiral) configuration in
the normal (superconducting) state. Minimizing Eq. (7.9) as a function of q yields q ∝

√
∆

with a constant of proportionality that increases as µ = −2 is approached, consistent with
Fig. 7.3.

Higher order terms in J represent multiple-scattering processes which, in particular,
lead to the formation of localized subgap YSR states around each adatom with energy
ε(J) [238, 264–266, 277] (e.g. for a parabolic band and delta-function magnetic potential
one finds ε = ±∆1−(πJνF /2)2

1+(πJνF /2)2 where νF is the normal-state density of states at the Fermi
level). Heuristically, one can understand the role the YSR states play in modifying the
adatom magnetic order by appealing to the general results found for the case of a 3D
substrate [243]. In particular, it was shown that the overlap of the YSR states can reinforce
the spiral formation, due to the renormalization of the antiferromagnetic exchange term
that arises from superconductivity [277]. Essentially, the hybridization of a pair of YSR
states with a Cooper pair in the substrate leads to an enhancement of the second term
in Eq. (7.9), which amounts to replacing the prefactor ∆ by ∆2/|ε|. As a result, the
wavevector increases as q ∼

√
∆(∆/|ε|) and is thus enhanced by the factor

√
∆/|ε| > 1.

In the limit of a large substrate coherence length ξ � aad, this scaling of q is applicable for
|ε| > ∆/

√
kFaad; for smaller values of |ε| the YSR band (of width ∝ ∆/

√
kFaad) crosses

the Fermi level where ferromagnetic YSR double exchange occurs and favors a smaller
value of q [243]. The double exchange mechanism, discussed more in Sec. 7.4, is controlled
by the kinetic energy of the YSR band and is not captured by the effective Heisenberg
model Eq. (7.8).

We thus find that the spiral wavevector exhibits a small peak as a function of ε (or J)
near the topological superconducting transition of the order qmax ∼ (kFaad)1/4q(J → 0),
i.e. there is a weak relative enhancement of q proportional to (kFaad)1/4 compared to
q in the small J limit. Consequently, for a 2D substrate, q depends very weakly on
small to moderate exchange couplings, and only deviates substantially from the q(J → 0)
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value when the YSR band crosses the Fermi level and activates the ferromagnetic double
exchange. Thus, in contrast to the case of a 3D substrate (where the dependence of q on
ε, J is much stronger [243]), for a 2D substrate the magnetic order of the adatom chain at
the topological transition can be understood rather well simply by studying the adatom
magnetic susceptibility for weak exchange coupling, as shown in Figs. 7.2, 7.3. For chains
along the (10) direction this conclusion is consistent with the numerical data presented
in Sec. 7.4 even for the case kFaad < 1, and for chemical potentials away from the band
bottom (cf. Figs. 7.5 and 7.7).

7.3.2 Exchange interaction along the (11) direction

Along the (11)-direction the exchange interaction behaves quite differently when the sub-
strate is near half-filling, µ = 0. This is because the Fermi surface contains segments along
the diagonals with very little curvature in the (kx, ky)-plane as well as segments along the
axes with large curvature, see Fig. 7.1. This implies that the Fermi surface is nested and
the electron Green function has spectral weight focused along the (11) and (-11) directions
in real space [274] and thus displays effectively 1D behavior along the adatom chain. As a
result, one expects the adatom chain to exhibit a 2kF singularity in susceptibility, leading
to q = 2kF spiral order even in the absence of superconductivity [255–257,272]. Here kF is
defined as the Fermi momentum along the chain direction (i.e., for a (11) chain, kF is tak-
en along the diagonal kx = ky). The q = 2kF spiral order, based on perturbation theory,
should be valid away from points of commensurability between 2kF and π/aad [272]. For
small |µ| (where 2kFaad ≈ 2π), this implies that perturbation theory is valid for J � |µ|
(where q ≈ 2kF ), while for J & |µ| we expect the system to lock into the commensurate
ferromagnetic state [272]. This is consistent with the numerical data presented in Sec. 7.4
for the adatom chain where the magnetic order is determined by minimizing the total
energy, Eq. (7.1), for large J and |µ| (cf. Fig. 7.7).

We now verify the q = 2kF behavior that exists for small J by computing q from
Eq. (7.1) to leading order in J with adatoms placed along the (11)-direction, i.e. aad =√

2a. In Fig. 7.4 the evolution of q and 2kF as a function of chemical potential is plotted
and confirms the q = 2kF behavior near µ = 0. The deviation of q from 2kF is expected
as |µ| increases since the Fermi surface becomes more isotropic. Below a critical value of
the chemical potential, |µ| ≈ 1.5 a transition to an antiferromagnetic state occurs. We
cannot determine within our resolution whether this transition is first or second order, as
indicated by the error bars in Fig. 7.4. As |µ| is increased further a second transition occurs
to a spiral state that exists in the interval 2.6 . |µ| . 3.1, before finally transitioning into
a ferromagnet for larger |µ|. According to Eq. (7.9) there should be a transition between
ferromagnetic and antiferromagnetic phases when kFaad = π/2 (corresponding to the
integer n = 0 above), or |µ| = 2

√
2 ≈ 2.8. This is roughly consistent with Fig. 7.4, except

that the first order antiferromagnet to ferromagnet transition at |µ| ≈ 2.8 is broadened into
a narrow region of spiral order. Similar to the (10) direction, we find that antiferromagnetic
order is stable against superconductivity, while ferromagnetic order is unstable to spiral
formation with q ∝

√
∆. This is to be expected since ferromagnetic order in Fig. 7.4
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Figure 7.4: (Color online) Ground state wavevector q (green curve) of an adatom chain
along the (11) direction calculated from Eq. (7.1) to leading order in J as a function of µ
for ∆ = 0. The black dashed line is 2kFaad, where kF is defined as the Fermi momentum
along the (11) direction (kx = ky). The black dotted lines represent error bars inferred
from the region of Ω(Q) which is essentially flat and therefore does not allow a reliable
determination of the minimum.

occurs when the Fermi surface is approximately isotropic.

7.4 Magnetic adatom chain

As a chain of impurities is formed, the YSR subgap states localized at the impurities
hybridize and a band develops inside the superconducting gap. To account for the effects
of this band, we go beyond the two-spin exchange approximation considered above, and
numerically calculate from the total electronic energy, Eq. (7.7), the preferred magnetic
order for a chain of magnetic adatoms within a coplanar variational ansatz

Si = S
(

cos(Qxi), sin(Qxi), 0
)

(7.10)

parametrized by the wavevector of the chain Q = 2π
Na , where N is an integer divisor of

the number of adatom impurities. The choice of spin rotation axis as in Eq. (7.10) can be
made without loss of generality in the absence of SOC. Including the SOC shifts the value
of q but does not affect the topological phase boundaries, see Appendix 7.A. Along the
(10) direction we let the chain extend over the entire length (120 sites) of the system, and
we impose periodic boundary conditions, as indicated in the left panel of Fig. 7.1(a). A
system width of 71 sites along the (01) direction is used. For chains along (11) we employ
a 71 × 71 system and place adatoms along the x = y line. Periodic boundary conditions
are imposed in this case as well, but contrary to the (10) case we carry out all calculations
in real space, making them more demanding.

To facilitate efficient computations, we follow Ref. [260] and perform a local spin-
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Figure 7.5: (Color online) Phase diagram for a chain along (10) with ∆ = 0.1 (left)
and ∆ = 0.5 (right), and Nx ×Ny = 120× 71. Grey (blue) denotes an antiferromagnetic
(ferromagnetic) state. The red lines denote the border between domains of Majorana
number M = 1 (trivial) and M = −1 (non-trivial). For low fillings and small J the
behaviour depicted is consistent with the expectation that superconductivity aids in the
formation of a spiral phase. The transition between spiral and antiferromagnetic phases
is first order.

rotation,

ciσ → c̃iσ = ei
σ
2 qxiciσ , (7.11)

which leaves HSC invariant and transforms H0 and Himp to

H̃0 = −
∑
〈ij〉
α

t̃ij,αc̃
†
iαc̃jα − µ

∑
iσ

c̃†iαc̃iα , (7.12)

H̃imp = JimpS
∑
i∈I
αβ

c̃†iασ
x
αβ c̃iβ. (7.13)

In the rotated basis the spin chain is a ferromagnet polarized along x̂, while the hopping
amplitude becomes spin- and wavevector-dependent

t→ t̃ij,σ = te−i
σ
2 q(xi−xj) , (7.14)

where xi−xj = ±1 in units of the lattice constant. This transformation renders the Hamil-
tonian translationally invariant along the x-axis, and allows one to partially diagonalize
the Hamiltonian using the Fourier transform

c̃iα =
∑
kx

eikxxi c̃kxα(yi) , (7.15)

with kx ∈ [−π/a, π/a[. This reduces the time needed to obtain the full spectrum by a
factor of ∼ N2

x . In the following, we evaluate the free energy of the system for 31 values
of q ∈ [0, π/a], which now enter exclusively via the hopping amplitudes t̃ij,σ.
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7.4.1 Phase diagram

Here we consider the evolution of the magnetic order of the chain with changing chemical
potential, adatom potential strength and superconducting order parameter. As is shown
in Sec. 7.5, including the feedback from the impurities on the local pairing potential in
a selfconsistent manner does not significantly alter the magnetic or topological phases.
Selfconsistency is therefore neglected in the remainder of this section. This also implies
neglecting the other effect of selfconsistency, namely an overall suppression of the super-
conducting order parameter with changing chemical potential due to a reduction of the
number of states available for pairing. The magnitude of the order parameter can thus
be varied independently of the chemical potential. In Fig. 7.5 we show phase diagrams
corresponding to ∆ = 0.1 and ∆ = 0.5, which reveal behavior consistent with the general
trends found in Ref. [243] when the Fermi surface is approximately isotropic, as discussed
in Sec. 7.3.

In particular, the analysis of Sec. 7.3 predicts the magnetic order to be antiferromag-
netic for kFaad > π/2, where kF is the Fermi momentum along the chain direction. This
translates to antiferromagnetic order for 0 < |µ| . 2 and spiral order for |µ| & 2, which
for small J agrees well with the phase diagrams in Fig. 7.5 determined by minimizing
Ω(Q). The superconductivity induced antiferromagnetic contribution to the exchange in-
teraction, which is proportional to ∆ [see Eq. (7.9)], slightly shifts the boundary between
antiferromagnetic and spiral phases, thus accounting for the small difference between the
∆ = 0.1 and ∆ = 0.5 cases in Fig. 7.5. For J � 1 and a (10) chain, the magnetic order
weakly depends on J (see Figs. 7.5 and 7.7), however, as J is increased the YSR band
eventually crosses the Fermi level. As mentioned in Sec. 7.3, this activates the ferromag-
netic YSR double exchange mechanism [243] and leads to a decrease in the wavevector q
with increasing J . This behavior is shown in the last column of Fig. 7.7.

The transition to an antiferromagnetic state at larger J occurs in the absence of super-
conductivity. It is also reflected in the two-spin exchange coupling, indicating that it is not
a multi-spin effect. Therefore, one could capture this effect by mapping the evolution of q
as a function of µ and J including higher-order corrections in J to the two-spin exchange
interaction, Eq. (7.9). In our model, the decrease of the antiferromagnetic phase boundary
line occurs already at quartic order in J , but whether this particular behavior is generic
remains an open problem.

As discussed in Sec. 7.3.2, there can be substantial differences between forming the
adatom chain along the (10) and (11) crystallographic directions. In addition to a modi-
fication of the adatom spacing, the (11) direction also nests the Fermi surface near half-
filling and this leads to the possibility of spiral order in the absence of superconductivity.
In Fig. 7.6 we plot q for ∆ = 0.1 and ∆ = 0.5 for a chain along (11). Behavior distinct
from the (10) direction is evident in particular for |µ| . 2 where the Fermi surface nesting
is the most prominent. For |µ| ≈ 3 the spiral phase appears and yields to an antiferro-
magnetic phase as J is increased. At this point the Fermi surface is nearly isotropic and
the system exhibits behavior similar to the (10) direction with a slightly larger adatom
spacing compared to the case considered above. To highlight the differences between (10)
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Figure 7.6: Phase diagrams for a chain along (11) with ∆ = 0.1 (left) and ∆ = 0.5
(right). Here Nx×Ny = 48×48. For |µ| . 2 the behavior is found to match expectations
from 1D, where a spiral yields to a ferromagnet when J ∼ |µ|. 2D behavior is recovered
for |µ| & 2, although recall that the adatom spacing is modified. The red lines denote the
border between domains of Majorana numberM = 1 (trivial) andM = −1 (non-trivial).
The resolution is different from Fig. 7.5 as the determination of q is substantially more
demanding in real space.

and (11) we plot q in both cases as a function of J for cuts at fixed values of µ in Fig. 7.7.
For µ = −1, ∆ = 0.1, where Fermi surface nesting is still active, one finds the wavevector
for J → 0 in Fig. 7.7 to differ only slightly from the value qaad/π ≈ 0.45 shown in Fig. 7.4
(the discrepancy is due to finite ∆ = 0.1 in the case of the former). As J is increased,
however, q rapidly decreases until J ≈ 2, beyond which it saturates. This is consistent
with the result of Ref. [262, 272] for a 1D substrate that predicts a second order transi-
tion from a spiral into a ferromagnetic state at a critical value of J proportional to the
deviation from commensurability. For a chain along the (11) direction this would occur
for J ∼ |µ|, which appears to be consistent with Fig. 7.6 and Fig. 7.7. Contrary to a
chain along (10), the ferromagnetic state along (11) for µ = 0 is more robust towards the
addition of superconductivity. We found a ferromagnetic ground state for systems up to
100 × 100. This suggests that if spiral order occurs for larger systems, the value of qa is
smaller than π/50.

7.4.2 Topological phases

By evaluating the Majorana number we can distinguish phases of trivial and non-trivial
topology. The Majorana number is defined as [224]

M = sign
(
Pf[A(0)]Pf[A(π)]

)
, (7.16)

where H̃(k) = i
4A(k) is the Hamiltonian in the Majorana representation and Pf denotes

the Pfaffian. In Fig. 7.5 regions with negative Majorana number, denoting the non-trivial
phase, are bounded by red lines. We remind the reader that this is not a sufficient condition
for the phase to support localized Majorana modes, as there should also be a quasiparticle
gap, i.e. the Majorana modes should be separated from the bulk YSR spectrum by an
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Figure 7.7: (Color online) Comparison of the ground state wavevector q of an adatom
chain along the (10) (blue) and (11) (green) directions. Data for the (10) chain correspond
to cuts at fixed µ through the phase diagrams in Fig. 7.5. The light-blue shaded regions
indicate the topologically non-trivial phase for the (10) direction, as well as the onset of
YSR double exchange. Data for the (11) chain are consistent with the concept that the
substrate behaves effectively as a 1D superconductor near µ = 0 (cf. Fig. 7.4 and the
discussion in Sec. 7.3.2).

energy gap. The topological gap depends sensitively on the magnetic order of the adatom
chain [252]. As q decreases and the magnetic order approaches ferromagnetism, the topo-
logical gap decreases and is strictly zero for q = 0. This is because singlet Cooper pairs
in the substrate cannot tunnel into a spin-polarized YSR chain. We generally find that
the presence of strictly ferromagnetic, q = 0, configurations in Fig. 7.5 appear to be a
consequence of finite size effects, which quantize the value of q under periodic boundary
conditions. We have confirmed that with increasing system size (to Nx×Ny = 240× 101)
the ferromagnetic phase for a (10) chain indeed becomes a weak spiral.

In Fig. 7.8(a) we plot the electron energy spectrum as a function of J for µ = −2.6, ∆ =
0.5, showing the energy gap closing and reopening across the topological transition. Within
the non-trivial phase there exists a pair of states near zero energy, which indicate the
presence of Majorana bound states weakly hybridized due to the finite extent of the chain.
A first order transition to the antiferromagnetic phase occurs at larger J (indicated by
the grey region) and coincides with the abrupt termination of the zero energy state, see
Fig. 7.8(a). This differs substantially from the case when the topological gap closes due
to the formation of a ferromagnetic state, see Fig. 7.8(b). We note that the closing of the
topological gap for J & 2 in Fig. 7.8(b) reflects the decrease of q with J in Fig. 7.5.

The remaining subgap states seen in Fig. 7.8 in the antiferromagnetic phase can be
understood in terms of an effective two-channel p-wave superconductor, where each channel
supports a Majorana bound state at each end of the chain. The hard-wall boundary
condition hybridizes these states to create a single localized fermionic state at each end of
the chain [252].

The (11)-direction also exhibits Majorana bound states, albeit for different parameter
values, consistent with the fact that the chain is parallel to the nesting wavevector and
has a larger lattice spacing. Thus, the topologically non-trivial region already occurs for µ
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Figure 7.8: (Color online) Electron energy spectrum as a function of J for a (10) chain
and two values of µ (here ∆ = 0.5). (a) The topological phase terminates at large J
due to a first order magnetic transition into an antiferromagnetic state, indicated by the
grey region. Two fermionic subgap states persist in the antiferromagnetic region and are
localized to the chain boundaries. (b) The Majorana modes delocalize and hybridize when
the topological gap closes as a result of ferromagnetic order q = 0, however ferromagnetic
order appears to be a finite size effect.

close to half filling (but not for µ = 0), and for J ≈ 1. In Fig. 7.9 the bound states along
the two different directions are illustrated.

7.4.3 Effect of direct exchange interaction

Motivated by the close proximity of the adatoms, we briefly remark on the consequences of
having an additional direct, nearest neighbor ferromagnetic exchange interaction between
them. We assume the adatoms to lie along the (10) direction with aad = a and minimize
the total energy

Etot(Q) = Ω̃(Q)− Jex cosQaad , (7.17)

where Jex > 0 denotes the strength of the direct exchange interaction and Ω̃ = Ω/Nad is
the thermodynamic potential per adatom. In Fig. 7.10 we show how the direct exchange
modifies the phase diagram for increasing values of Jex. We find that as Jex is increased
the antiferromagnet/spiral phase boundary line shifts to make the antiferromagnetic region
smaller, and the ferromagnetic or weak spiral phases larger. At the same time, new regions
of strong spiral order with qa/π ∼ 0.5 open near half-filling, previously occupied by the
antiferromagnetic phase. This occurs for a moderate exchange coupling Jex ∼ 5 · 10−4,
which is roughly 1/4 of the scale set by the indirect exchange coupling in that region
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Figure 7.9: (Color online) (a) Majorana end mode for a chain along (10) for µ = −2.6
and J = 2.1. (b) Majorana end mode for a chain along (11) for µ = −0.65 and J = 1.8.
In both cases ∆ = 0.1. The localization length along the chain depends sensitively on the
chosen parameters.

Figure 7.10: (Color online) Phase diagrams illustrating the effect of adding a ferromag-
netic direct exchange term between the adatomic impurities. The red outline denotes the
boundaries between regions ofM = 1 andM = −1.

of parameters. The latter can be estimated, e.g., by calculating the magnetic energy
bandwidth near µ = −1, J = 1.5 (cf. Fig. 7.10), defined as the difference between the
maximum and the minimum of Ω̃(Q).

Another interesting feature to observe is that the spiral phase can survive in the pres-
ence of rather large Jex. In the case with ∆ = 0.1 the spiral phase remains for Jex . 15·10−4

in a narrow vertical region near J ≈ 0.7 in Fig. 7.10. For ∆ = 0.5 the spiral phase can be
found for Jex . 8 · 10−3 in a wider vertical region near J = 1.5. For ∆ = 0.1, the maximal
value of Jex exceeds the indirect exchange coupling (evaluated in the narrow region where
the spiral last existed) by a factor of 8-10, while for ∆ = 0.5 the maximal value of Jex is
4 times larger than the indirect exchange.

The robustness of spiral order with respect to such large values of the direct exchange
interaction can be traced back to the long-range nature of the indirect antiferromagnetic
exchange coupling in Eq. 7.9. Adding a direct exchange interaction leads to a total energy
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that may be expressed for ξ−1 � Q� π/aad as

Etot(Q) = 1
2(Jex + JRKKY)(Qaad)2 − JRKKY

aad
ξ

ln(Qaad) (7.18)

where for J ∼ 1 we have JRKKY ∼ vF /(kFa2
ad) (cf. Sec. 7.3). Minimizing Etot leads to

qaad =
√
aad
ξ

JRKKY
Jex + JRKKY

. (7.19)

The expression in Eq. (7.19) holds only for q > ξ−1, or Jex < JRKKY(ξ/aad − 1), while for
larger Jex the true ground state is a ferromagnet. If the chemical potential lies within the
YSR band, an exponentially small q, with exponent proportional to Jex/∆, is expected
due to a gain in YSR condensation energy [243]. For the topologically trivial regime we
find for ξ/aad � 1 that a spiral phase exists even for parametrically large Jex,

Jex < JRKKY(ξ/aad) (7.20)

implying that a window exists in which the direct exchange interaction exceeds the indirect
RKKY exchange interaction but a spiral phase still occurs. The existence of this window
ultimately stems from the scaling law q ∝

√
∆ discussed in Sec. 7.3. For a 3D substrate

one has q ∝ ∆ and the window in Eq. (7.20) is absent (i.e. the adatom chain becomes
ferromagnetic once Jex & JRKKY). We also note that although the window becomes
larger with increasing ξ (decreasing ∆), it also has the adverse effect of decreasing the
magnitude of q, see Eq. (7.19). These considerations appear qualitatively consistent with
the numerical data shown in Fig. 7.10 and discussed above.

7.5 Effects of selfconsistency

Within selfconsistent mean field theory, the pair-breaking magnetic adatoms will give rise
to a local suppression of the superconducting pair potential near the adatom chain [245,266,
279]. This is illustrated in Fig. 7.11, where we plot the spatial profile of the pair potential
across the width of the system, with the adatom chain along the (10) direction located on
site number 36 along the (01) direction. For fixed chemical potential, the suppression is
seen to increase with J , and even lead to an on-chain negative pair potential at J = 2.
For fixed J = 2, on the other hand, the spatial modulation of the pair potential is seen
to extend further from the chain when µ is lowered and the Fermi wavelength increases.
Both of these trends are consistent with expectations based on results of Refs. [245,266].

To determine to what extent the local suppression affects the magnetic order along the
chain we compare the q-vector for selfconsistent and non-selfconsistent evaluations of the
thermodynamic potential in Fig. 7.12(a)-(b). The effect of selfconsistency is seen to be
minor and dependent on the magnitude of the bulk gap ∆, which is defined here as ∆i

evaluated far from, or in the absence of, the adatom chain. The effect of local suppression
of the pairing potential can be understood as follows: The local pairing potential on the
chain is suppressed leading to a decrease of the effective chemical potential, ε(J), for
the subgap YSR states [252]. For a single adatom the YSR state crosses zero energy at
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Figure 7.11: (Color online) Effect of self-consistency on the superconducting order pa-
rameter for V = 2.5 for a chain along (10). (a)–(d) Evolution of the superconducting order
parameter as J is increased for a fixed value of the chemical potential. As J is increased
above Jc, the order parameter along the chain changes sign. (e)–(h) Superconducting
order parameter for different values of µ for fixed J = 2. The extent of the suppression is
seen to vary with the chemical potential [245].

J = Jc. Selfconsistency effectively reduces Jc to J̃c, which, for an adatom chain, causes the
YSR band to cross the Fermi level at a smaller value of J as depicted in Fig. 7.12(c)-(d).
Hence, ferromagnetic double exchange sets in at a lower J , leading to a reduction of q.
This behavior is evident in Fig. 7.12. We note that, as before, the appearance of a strictly
ferromagnetic state in the selfconsistent calculation is a consequence of finite-size effects
and increasing system size reveals a weak spiral state. As ∆ is reduced, the renormalization
of the effective chemical potential of the YSR band is reduced as well, thus making the
effect less prominent. This is indicated in Fig. 7.12 and consistent with Ref. [245].

Selfconsistency does not alter the phase boundary between spiral and antiferromagnetic
states within the step-size used for J (= 0.1). The onset of antiferromagnetic order
occurs even in the absence of superconductivity and can be understood by the higher-
order corrections to the exchange interaction, as explained in Sec. 7.4.1. This does not
depend on the details of the gap and hence selfconsistency does not significantly shift
the onset of antiferromagnetism. This is confirmed by comparing selfconsistent and non-
selfconsistent calculations at a higher value of µ (not shown). These observations allow us
to disentangle the effects of superconductivity from those arising solely from varying the
chemical potential when considering the magnetic order along the chain, as was done in
Sec. 7.4.

Due to the reduction of Jc by the local suppression of the pairing potential, selfconsis-
tency also has an effect on the topological gap, as depicted in Fig. 7.13. The topological gap
exhibits non-monotonic behavior as a function of J , increasing from zero at the topological
phase transition to a maximum at J ∼ Jc before decreasing to zero as antiferromagnetic
order sets in and the topological phase ceases to exist. As above, the effect of selfconsisten-
cy is proportional to the magnitude of ∆, and for ∆ = 0.1 (not shown) the two cases are
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Figure 7.12: (Color online) (a)–(b) Comparison of selfconsistent and non-selfconsistent
approaches when evaluating the minimum of the thermodynamic potential for an adatom
chain. The selfconsistent approach accounts for the local suppression of the order pa-
rameter depicted in Fig. 7.11. Both cases depicted are for µ = −3.8. Here ∆ refers to
pairing potential far away from the chain, ∆ = 0.1 requires V = 3.09 while ∆ = 0.5
implies V = 4.80. The effect depends on the magnitude of ∆ as the suppression of the
effective chemical potential felt by the subgap YSR states is smaller for smaller ∆. (c)–(d)
Illustration of the reduction of Jc for a single adatom by selfconsistency. The dependence
on the magnitude of ∆ is evident, the reduction in (d) is much more pronounced than in
(c).
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Figure 7.13: (Color online) Illustration of the shift of the maximum of the topological
gap towards lower J as the local pairing potential is suppressed by selfconsistency, while
the bulk gap is kept fixed at ∆ = 0.5. The full curves correspond to the case where the
q-vector is determined by minimizing the energy (see Fig. 7.5). To illustrate the entire
evolution of the dome, the faded curves were computed for a fixed q-vector (qa = 14π

30 ).
The faded dotted red curve has ∆ = 0.5 on all sites while for the faded dotted blue curve,
the pairing potential was suppressed locally at the chain sites to ∆(ri∈I) = 0.2. In these
plots µ = −2.8.

barely distinguishable. Together with the Fermi velocity of the YSR band, v∗F , the topo-
logical gap controls the Majorana localization length ` ∼ v∗F /∆top. However, ` appears
to depend sensitively on parameters despite the fact that the topological gap exhibits the
simple shape shown in Fig. 7.13, which could be explained by a sensitivity to parameters
in v∗F .

7.6 Conclusions

In this paper we performed a detailed study of the indirect exchange interactions between
impurities deposited on two-dimensional superconducting substrates. We showed that
spiral order can form along a chain of adatoms due to such interactions. One component
of these is antiferromagnetic and owes its origin to the presence of superconductivity, while
the other is the standard oscillating RKKY component. Unless the chain nests the Fermi
surface the spiral order does not arise from a 2kF peak in the susceptibility but instead
from the competition between the superconducting antiferromagnetic component and the
oscillating RKKY component. For a chemical potential near the band bottom we found
the dependence q ∝

√
∆, implying a pronounced effect of superconductivity on the spiral

q-vector. The exchange interactions along (11) for a system close to half filling were shown
to exhibit behavior consistent with a chain of adatoms deposited on a 1D conductor; spiral
order with q ∝ 2kF forms for |µ| < 1 as seen in Fig. 7.4. This is in stark contrast to the
exchange interactions along (10) which display antiferromagnetic behavior close to half
filling.
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For a chain of impurities we contrasted selfconsistent and non-selfconsistent approach-
es and found that the local suppression of the pairing potential induced from the feedback
of the impurities on the superconducting order parameter only affects the magnetic order
around J ∼ Jc where the YSR band crosses the Fermi level. This allows us to study
the phase diagram of the chain (in Fig. 7.5) without imposing selfconsistency and thus
decoupling the chemical potential from the superconducting order parameter. For J . Jc,
when the chemical potential lies outside the YSR band, the magnetic order is described
by two-spin exchange interactions. The validity of the weak-coupling description is a con-
sequence of the relatively weak dependence of the magnetic ordering vector q on the YSR
energy ε (see Sec. 7.3.1). As the YSR band crosses the Fermi level, the exchange picture
breaks down however, and q is reduced by ferromagnetic double exchange. Including a
direct exchange coupling between the adatoms allow the formation of spiral phases even
for Jex > JRKKY due to the strong dependence q ∝

√
∆ behavior found for a 2D substrate.

Topologically non-trivial regions of the phase diagrams are found in the spiral phases
and exhibit Majorana bound states. The topological transition occurs as the YSR band
crosses the Fermi level, at which point double exchange becomes a factor and q is sup-
pressed, see Fig. 7.7. The topological gap in the non-trivial regions were found to exhibit
a weak dependence on selfconsistency through the reduction of Jc by the suppression of
the local pairing potential.
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Appendix

7.A Effect of spin-orbit coupling

The presence of a finite spin-orbit coupling term breaks the spin SO(3) symmetry and
introduces a preferred direction in the model. We study a Rashba-type spin-orbit coupling
due to its relevance for systems with adatoms deposited on surfaces of bulk systems. The
aim is to understand the circumstances under which the spin-orbit coupling can be gauged
away and the effect absorbed into the spiral magnetic order. We note that for substrates
with dimensionality greater than one such a transformation cannot be achieved exactly
due to the presence of multiple non-commuting Pauli matrices in the Hamiltonian Eq. 7.21.
The additional SOC-term we consider is

HSO = tso
∑
i
αβ

ic†iασ
x
αβci+δyβ

−ic†iασ
y
αβci+δxβ + h.c. , (7.21)

and once again consider two adatoms placed on the substrate a certain distance apart.
The spin of one is kept fixed perpendicular to the plane and we use the Ansatz

S2 = S


sin θ cosφ
sin θ sinφ

cos θ

 (7.22)

to describe the other. Here φ describes the azimuthal, and θ the polar angle with respect
to the first spin. The total energy is evaluated for values of φ and θ corresponding to
165 distinct points on a sphere, and the corresponding energy landscape is mapped out in
Fig. 7.14(a). At a glance, the energy landscape indicates a non-trivial dependence on the
azimuthal angle, φ. To understand if this is caused by the choice of rotation plane (and
therefore can be gauged away), we consider the simple Hamiltonian

H = − 2(cos kxa+ cos kya)
+ α(σy sin kxa− σx sin kya)− µ , (7.23)

and observe that, when the spin-orbit coupling is weak, the modification to the Green
function can be approximated as G(x) ≈ G0(x)e− i

2 tsoxσy , where G0(x) is the electron
Green function at vanishing SOC [28, 235, 280]. An evaluation of the RKKY exchange
interaction reveals that it still contains only a term proportional to the angle between the
two spins, S1 · S̃2 = cos θ̃, where the tilde refers to a new frame, related to the old frame
via

θ̃ = arccos (cosφ sin θ sinαaad + cos θ cosαaad) , (7.24)

φ̃ = arctan
(

sin θ sinφ
cosφ sin θ cosαaad − cos θ sinαaad

)
. (7.25)

Here α can be related to the lattice parameter tso through α = Ctso where C is a constant.
For weak spin-orbit coupling, C ≈ 1. As the spin-orbit coupling tso is increased, C is
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Figure 7.14: (Color online) Energy as function of both polar and azimuthal angles in
the presence of spin-orbit coupling with tso = 0.1 and J = 0.1 and the distance between
the two adatoms aad = 5. In (a) the energy landscape is depicted prior to the application
of the map in Eqs. (7.24) and (7.25) indicating a non-trivial φ dependence. In (b) the
map has been applied resulting in a manifestly φ̃ independent energy landscape.

renormalized through higher order contributions to the relation between G(x) and G0,
until the point where the approximation breaks down, and the effect of spin-orbit coupling
can no longer be gauged away. In Fig. 7.14(b) we show the energy landscape in the
transformed frame for tso = 0.1 and J = 0.1, in which it is clear that the energy does not
depend on φ̃. Thus, as long as spin-orbit coupling is weak, its effect can be included as an
additional pitch of the order along the magnetic chain.
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Chapter 8

Concluding Remarks and Outlook

In this thesis we considered a number of subjects, some rather distinct while others were
more closely linked. Here we summarise some of the key findings and consider possible
future directions.

In Sec. 1.1 we saw that the phase diagram obtained from mean-field theory is stable
under the renormalisation group flow of the quartic coefficients. We reviewed both com-
mensurate and incommensurate magnetism and saw that the magnetic order is sensitive
to the presence of orbitals. In Chapter 2 we used a hybrid model to include the effect of a
finite spin-orbit coupling and showed that a phase where the magnetic moments reorient
out of the plane is present on the hole doped side, consistent with experimental observa-
tions [32–35,51]. In the experiments however, the reorientation only occurs in the tetrag-
onal phase, unlike the approach presented in Chapter 2 which also exhibits a reoriented
stripe phase. Pinpointing the reason for the simlutaneous magnetic moment reorientation
and appearance of the tetragonal phase presents an interesting problem, which could pos-
sibly be addressed using a more realistic model. In Chapter 3 we evaluated the nematic
susceptibility within the multi-orbital Hubbard model and demonstrated the existence of
a spin-driven nematic instability. While this was done for a specific band structure in a
case where a magnetic instability is present, extensions to other band structures and cases
where a magnetic instability is absent are possible. For instance, taking a band structure
suitable for FeSe and appropriate interaction parameters such that a magnetic transition
is absent one could evaluate the nematic susceptibility and check for the presence of a
nematic phase.

From the FeSC we proceeded to consider the cuprates in Chapter 4 and Chapter 5.
Following Berg. et al. [184] we introduced the PDW phase as a possible explanation
for the observed resistivity anisotropy in LBCO. Motivated by neutron scattering exper-
iments which indicated the absence of a magnetic resonance we evaluated the dynamic
spin susceptibility in the presence of both ordinary d-wave superconductivity and PDW
superconductivity and showed that a resonance is absent in the case of a PDW phase.
In this context it is interesting to note that a recent experiment on Bi2Sr2CaCu2O8+x

using Josephson STM reported signatures of a PDW phase [186]. However, the interplay
between a superconducting tip in the PDW phase and a bulk PDW superconductor is
currently not well understood and presents a promising venue for further investigation.
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The concept of Majorana modes was introduced in Chapter 6 and a brief overview of
possible experimental setups was provided. To improve our understanding of the mecha-
nisms responsible for spiral magnetic order in adatom chains deposited on superconductors
we mapped out the phase diagram as a function of chemical potential and adatom strength.
Aligning the magnetic chain both along the (10) and the (11) directions we found that the
(11) direction displays behaviour reminiscent of magnetic chains on one-dimensional sub-
strates. Contrasting different values of ∆ it was seen that the region with spiral magnetic
order is rather robust against the addition of superconductivity with only the angle be-
tween adjacent adatoms changing. The addition of a direct exchange interaction between
the adatoms yielded regions with stable spiral order which were shown to support Majo-
rana end modes. Advances in STM techniques have made it possible to construct arrays
of magnetic adatoms and adjust the distance between individual adatoms. The individual
control of each adatom also allows for more complicated structures such as T-junctions or
magnetic islands to be constructed. The techniques employed in Chapter 7 can be used in
the study of such structures as well. In particular, given the importance of the T-junction
for braiding of Majorana modes, it would be pertinent to investigate the magnetic order
of such a structure and how it changes once a junction is formed. With the discrepancy
between (10) and (11) directions highlighted in Chapter 7 one could even consider junc-
tions with legs grown along seperate directions. The observation of Majorana modes at
the end points of adatom chains was a landmark discovery for the field, and the prospects
of using STM tips to control individual adatoms is sure to bring further revelations.
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