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Abstract

The study of topological phases has become one of the most active areas of the field of condensed
matter physics. In the last decade, there has been immense experimental progress, owing to quantum
leaps in materials science and the theoretical understanding of these systems. A remarkable example of
topological phases is topological superconductors. These unusual superconductors are believed to host
exotic Majorana quasiparticles whose underlying physics epitomizes the concept of ”spooky action at a
distance” in quantum mechanics: Simply moving them around one another can change the occupation
of fermionic modes. In fact, by braiding them in a complicated fashion, most of the gates necessary for
building a quantum computer may be implemented. Furthermore, since quantum information is stored in
non-local degrees of freedom, qubits based on Majoranas are believed to be inherently resilient to noise.
Along with other promising future applications, this motivates the need for a better understanding of
Majorana quasiparticles, which is the overarching theme of this PhD dissertation. Apart from providing
a review of the relevant background, the dissertation provides new insights and methods regarding the
physics of Majorana bound states. The original contributions in the thesis are contained in four projects.

Project A tackles the problem of reading out the state of a Majorana box qubit, a minimal qubit
where quantum information is stored in Majorana bound states. By using a novel Lindbladian approxi-
mation, we develop a Markovian theory of the dynamics of the reduced density matrix of a Majorana box
qubit whose parity degrees of freedom has been converted to charge through the coupling of a quantum
dot. This coupling splits the ground state degeneracy, and the dot is subjected to a fermion-number
preserving interaction with environment modes during the readout. Our model contains the dynamics of
the readout apparatus, and we find analytical expressions for the decay rates. These analytical expres-
sions are easily applicable for a wide range of possible experiments, and we provide two experimentally
relevant examples as case studies.

In Project B, we calculate the dephasing dynamics of an isolated Majorana box qubit subjected to
electromagnetic fluctuations in a capacitively coupled electric circuit. These fluctuations are treated as
classically oscillating fields, allowing for an intuitive picture of the dephasing as accrued non-adiabatic
corrections to the time evolution due to the shifting of the Majorana zero-energy mode. Since the exact
form of the noise term is unknown, the corrections are calculated by statistically averaging over different
noise functions by using the fluctuation-dissipation theorem.

The problem of dephasing of Majorana qubits due to electromagnetic noise is refined in Project C,
where we develop a model using a Bloch-Redfield approach, thus keeping the quantum mechanical nature
of the environment modes. This allows us to go to low temperatures, and at zero temperatures we find a
potential source of fidelity loss in Majorana parity readouts stemming from the fact that the zero-energy
modes are dressed by the bosons, while the readout apparatus measures the bare Majorana modes. We
calculate this fidelity loss for a projective measurement of the bare Majoranas, and we find that this
can lead to a considerable source of errors. In proposals using measurement-based braiding of Majorana
qubits, this error source thus enters into all stages of initialization, manipulation and readout of the
qubits.

Finally, in project D we propose a model which generalizes Majorana zero-energy modes. It is con-
structed by starting from a bosonic model analogous to the Ising model, except where the local degrees
of freedom and the global gauge symmetry are related to an arbitrary finite non-abelian group. By con-
structing a generalized Jordan-Wigner transformation, we map the model onto a local model with dyonic
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degrees of freedom, meaning that they carry both a ”magnetic charge” in the form of a group element
index, as well as an ”electric charge” corresponding to an irreducible representation of the group. We find
that the model generically has a topological phase with zero-energy dyonic edge modes. The zero-energy
modes are in general weak zero-energy modes, meaning that their degeneracy does not extend to all
excited states. We discuss conditions under which the ground state is topologically ordered. When these
conditions are not met, the ground states may be locally distinguishable, owing to the appearance of
holographic symmetry operators localized on the boundary. The fusion rules of these dyonic zero-energy
modes are discussed, but determining the braiding statistics remains an open problem.

Together the four projects expand upon our knowledge of Majorana physics in the context of topolog-
ical quantum computation as well as our general understanding of emergent anyonic zero-energy modes.
Hopefully, they will serve to guide theoretical and experimental condensed matter research towards
establishing the existence of non-abelian anyons as a scientific fact.
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Resumé

Studiet af topologiske faser er et af faststoffysikkens mest aktive forskningsområder. I det sidste årti
er der sket store eksperimentelle fremskridt på grund af kvantespring i materialevidenskab og den teo-
retiske forståelse af disse systemer. Et bemærkelsesværdigt eksempel på topologiske faser er topologiske
superledere. Disse usædvanlige superledere forventes at have eksotiske Majorana-kvasipartikler, hvis
underliggende fysik understreger kvantemekanikkens forunderlige ikke-lokale natur: Ved blot at flytte
disse partikler rundt om hinanden kan besættelsen af fermioniske tilstande ændres, og med den type
processer kan man implementere de fleste af de gates, der er nødvendige for at bygge en kvantecom-
puter. Eftersom kvanteinformation lagres i ikke-lokale frihedsgrader, antages qubits, der er baseret på
Majorana-kvasipartikler, at være modstandsdygtige over for støj. Sammen med andre lovende fremtidige
anvendelser motiverer dette behovet for en bedre forståelse af Majorana-kvasipartikler, og dette er det
overordnede tema i denne ph.d.-afhandling. De originale bidrag i afhandlingen er indeholdt i fire projek-
ter.

Projekt A fremstiller en teori for aflæsningen af tilstanden af en såkaldt Majorana box qubit, hvor
kvanteinformation er gemt i bundne Majorana tilstande. Ved at bruge en ny Lindblad approksimation
udvikler vi en Markoviansk teori for dynamikken af den reducerede tæthedsmatrix af en Majorana box
qubit, hvis paritetsfrihedsgrader er konverteret til ladning gennem koblingen af en kvantedot. Denne
kobling splitter de udartede grundtilstande, og kvantedotten udsættes for bosoniske interaktioner under
aflæsningen. Vores model indeholder dynamikken af målesudstyret, og vi udleder analytiske udtryk for
henfaldsraterne. Disse analytiske udtryk kan anvendes til at beskrive mange forskellige eksperimenter,
og vi præsenterer to eksperimentelt relevante eksempler som casestudier.

I Projekt B beregner vi dekohærensdynamikken for en isoleret Majorana box qubit udsat for elektro-
magnetiske fluktuationer i et kapacitivt koblet elektrisk kredsløb. Denne støj behandles som et klassisk
felt, hvilket muliggør et intuitivt billede af dekohærens som ikke-adiabatiske korrektioner til tidsud-
viklingen på grund af en forskydning af Majorana-bølgefunktionen. Da den eksakte form af støjen er
ukendt, beregnes korrektionerne ved en statistisk midling ved hjælp af fluktuations-dissipations teoremet.

Analysen af dekohærens i Majorana-qubits på grund af elektromagnetisk støj forfines i Projekt C,
hvor vi udvikler en model ved hjælp af Bloch-Redfield teorien, og således bevarer den kvantemekaniske
natur af frihedsgraderne. Dette giver os mulighed for at gå til lave temperaturer, og ved nul temperatur
finder vi en potentiel kilde til fejl i Majorana paritetsudlæsninger, der skyldes, at Majorana-pariklerne
er sammenfiltrede med bosonerne, mens måleapparatet måler de uperturberede Majorana-tilstande. Vi
beregner udfaldene for projektive målinger af de uperturberede Majorana-tilstande, og vi finder at denne
effekt kan medføre betydelig fejl. Dette kan potentielt spille en vigtig rolle i Majoranabaserede kvan-
tecomputerarkitekturer baseret på såkaldt “measurement-based braiding”, hvor alle operationer foregår
gennem paritetsmålinger.

Endelig foreslår vi i projekt D en model, der generaliserer bundne Majorana-tilstande. Den er kon-
strueret ved at starte fra en bosonisk model, der er inspireret af Ising-modellen, bortset fra at de lokale
frihedsgrader, samt den globale gaugesymmetri, er relateret til en vilkårlig, endelig, ikke-abelsk gruppe.
Ved at konstruere en generaliseret Jordan-Wigner-transformation afbilder vi modellen til en lokal model
med dyoniske frihedsgrader, hvilket betyder, at de både har en ”magnetisk ladning”, svarende til et grup-
peelement, såvel som en ”elektrisk ladning” svarende til en irreducibel repræsentation af gruppen. Vi
finder her, at modellen generelt har en topologisk fase med dyoniske kanttilstande ved nul energi. Disse
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kanttilstande er generelt svage nulenergitilstande, hvilket betyder, at deres udartethed ikke gælder for
alle anslåede tilstande. Vi diskuterer forhold, under hvilke grundtilstanden er topologisk ordnet. Når
disse betingelser ikke er opfyldt, kan grundtilstanden måles lokalt på grund af holografiske symmetrioper-
atorer, der opstår lokaliseret på kanten. Fusionsreglerne for disse dyoniske nulenergitilstande diskuteres,
men deres “braiding” statistik er stadig et åbent spørgsmål.

Tilsammen udvider de fire projekter vores viden om Majorana-partiklernes fysik og deres anvendelse
i topologiske kvantecomputere, såvel som vores generelle forståelse af emergente anyoner. Forhåbentlig
vil disse projekter kunne vejlede teoretisk og eksperimentel forskning mod at etablere eksistensen af
ikke-abelske anyoner.
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Motivation and scope of thesis

The quote ”more is different” by the late legendary physicist Philip Anderson [9] summarizes the phi-
losophy of the field of condensed matter physics in just three words. Through the complex interplay of
many ordinary electrons, order can emerge which is completely unrecognizable from its constituents.

In some cases this manifests itself in striking behaviour observable in macroscopic systems, a good
example being superconductors levitating in a magnetic field. But other times, one would have to look
through the tip of a tunneling scanning microscope to appreciate the curious effects. However, the results
can be no less dramatic. A beautiful example of this is Majorana bound states, predicted to emerge in
exotic superconductors under the right circumstances. These bizarre quasiparticles in a sense behave
as half electrons, with two of them needed to define a normal fermionic particle. They are their own
antiparticles and are ideally bound to zero energy. But the property for which they are most famous
is their non-abelian braiding statistics. By simply moving Majoranas around one another in various
patterns, non-trivial transformations can be made on the ground state manifold. This property is a
feature of the topology of the ground state many-body wavefunction, and the result of such a process is
independent of the fine geometric details of the paths the Majoranas travel around one another, even if
the Majoranas are very far from each other. Thus, they offer a very clear demonstration of the non-local
nature of quantum mechanics. Presently, Majorana bound states are believed to have been observed,
but actually braiding them and demonstrating their topological properties has yet to be achieved.

The motivation for studying Majorana bound states is two-fold. Firstly, from the perspective of
fundamental science, they behave unlike any known elementary particle, and proving their topological
nature would be a major scientific discovery. Secondly, they have been proposed as a candidate for
implementing topological quantum computation. With this is meant quantum computation carried out
using non-local degrees of freedom, that are inherently resilient to noise, and where operations are
implemented using fault-tolerant procedures. Drawing upon the resources of quantum entanglement
and quantum contextuality [42], quantum computers and have been theoretically shown to be able to
efficiently solve certain problems that regular classical computers cannot. Because of this, building a
quantum computer could potentially have far-reaching consequences for society.

This thesis is dedicated to the study of Majorana bound states, and contributes to our knowledge of
how to read out their quantum information, how that information leaks out when they are subjected to
electromagnetic noise, and how to generalize them to new Majorana-like states with richer structure. It
contains four projects, two of which are published, one which has recently been submitted and one which
is unpublished. It is structured in the following way:

Chapter 1: Introduction reviews the physics of Majorana bound states and where to find them. It
is described how qubits can be built from Majorana bound states, and how operations may be performed
on them to achieve universal quantum computation. The chapter also provides a brief discussion of
previous dephasing studies of Majorana qubits. Next, the mathematical tools used for studying the
open quantum systems in Project A and C are detailed. Finally, the necessary background is given to
motivate Project D. As that project is based upon extending a generalization of Majoranas, known as
parafermions, an introduction to parafermions is provided.

Chapter 2: Project A contains the first scientific paper of the thesis, titled Parity-to-charge con-

version in Majorana qubit readout. The project presents a flexible theory of the readout dynamics of
Majorana qubits. The theory uses a novel Lindbladian approximation, guaranteeing complete positivity.
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Chapter 3: Project B contains a study of the dephasing dynamics of Majorana qubits subjected to
electromagnetic noise, modeled as classically varying potentials in an electric circuit.

Chapter 4: Project C contains the second scientific paper of the thesis, titled Fidelity and visi-

bility loss in Majorana qubits by entanglement with environmental modes, which studies the dephasing
dynamics of Majorana qubits and the fidelity reduction of Majorana qubit readouts due to quantum
electromagnetic noise.

Chapter 5: Project D contains the third scientific paper, titled Dyonic zero-energy modes. This
project introduces a family of models generalizing the Ising model from Z2 degrees of freedom to those
given by a finite non-abelian group G. A generalized version of the Jordan-Wigner transformation maps
the models to dyonic models, which are shown to have topological phases with dyonic zero-energy edge
modes, whose anyonic structure is richer than that of Majorana zero-energy modes.

Chapter 6: Epilogue finally concludes the thesis, summarizing the findings of the four projects and
reflecting on future research prospects.
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Chapter 1

Introduction

1 Majorana zero-energy modes

The ground-breaking idea that many phases of matter may be understood from spontaneous symmetry
breaking has led to a deep understanding of a wide variety of macroscopic phenomena, such as magnetism,
solids and superconductors as well as microscopic phenomena, such as the Anderson-Higgs mechanism
in particle physics. But over the last two decades, there has been a major shift in the condensed matter
community towards studying a new group of phases called topological phases. In contrast with most
ordinary phases, they are characterized by quantum phase transitions, also occuring at zero temperature,
and continuous symmetries largely don’t play a role. These phases typically have physical features which
are encoded in the many-body wavefunctions of the ground states, and which are resilient to most local
perturbations, as long as the gap to the excited states doesn’t close. Two examples of such features
are the edge currents in the integer quantum Hall effect [34] and the chiral counterpropagating edge
modes of the quantum spin Hall effect [70]. In the former case, the edge current is unaffected by local
perturbations in the bulk of the system and doesn’t backscatter on impurities on the edge. In the latter
case, the edge currents are also resilient, but not against magnetic impurities; the topological features are
only protected from perturbations respecting time-reversal symmetry. Many topological systems share
similar behaviour, and the topological features are only robust against perturbations so long as they
don’t break certain discrete symmetries.

A truly striking feature of some topological phases is the emergence of non-abelian anyons. These
are quasiparticles which behave completely different from ordinary fermions and bosons. Majorana zero-
energy modes is an example of such novel quasiparticles, and are the central object of this section, and
indeed, the entire thesis. Before we turn to reviewing the properties and physics of Majorana zero-energy
modes, we would like to dwell for a moment on why anyons are expected to exist in the first place. The
standard textbook introduction to the quantum theory of identical particles argues that the exchange of
two particles shouldn’t affect the probabilities, and together with the constraint that two swaps should
be the identity, fermionic and bosonic statistics are derived as the only possibilities [36]. So why should
there be any room for non-abelian anyons?

In 2D, a more careful argument reveals that there are a host of other options [51, 79, 61]. A math-
ematically beautiful argument was first outlined in Ref. [51] and is concisely explained in Ref. [21].
It takes some very rudimentary algebraic topology, but to the author of this thesis, the aesthetics of
the simplicity with which it leads to the possibility of non-abelian anyons compels him to present it in
Section 1.1.

After this, in the rest of this section we will cover the basics of Majorana bound states, as relevant to
this thesis. In Section 1.2 we discuss the formal definition and their properties, as well as how they can be
used in topological quantum computation. In section 1.3 we discuss prerequisites for finding Majorana
bound states in 1D systems, and we will focus on the Oreg-Lutchyn model for Majorana nanowires
[62, 54] as the main example. Lastly, in section 1.4 we review the role of charging energy in building
useful qubits for topological quantum computation using Majorana nanowires. The Majorana box qubit
is introduced and we discuss how to manipulate and read out the qubit.
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1.1 A very short introduction to anyons
First, we should carefully define the notion of a configuration space Cn(M) for a group of n identical
particles moving on a manifold M. For the classification of particles, we will exclude the measure-0
subspace Dn in which the position of two or more of the n particles coincide, and by virtue of the
particles being identical, we identify points in configuration space which are obtained by permuting the
n particles. Thus we write

Cn = (Mn � Dn)/Sn, (1.1)

where Sn is the n-element permutation group, whose group elements act on configuration space by
permuting the particles’ positions. We would like to find a way to describe how the wavefunctions
behave when the particles are rearranged from an initial configuration x 2 Cn into an indistinguishable
one. That is, we define a loop p : [0, 1] ! Cn, such that p(0) = p(1) = x. We are looking for properties
independent of the details of the particular path, so we say that the loops p(s) and p

0(s) are equivalent
if one can be continuously deformed into the other. This equivalence defines an equivalence relation ⇠,
and the equivalence classes of loops can be given a group structure by defining the following product:

(p ⇤ p
0)(s) =

✓
p(2s) : 0  s  1/2
p
0(2s) : 1/2 < s  1

◆
. (1.2)

The set of loop equivalence classes on Cn(M) equipped with the product ⇤ forms a group ⇡1(Cn(M))
called the fundamental group of Cn(M). The identity element of ⇡1(Cn(M)) is the equivalence class of
contractible loops, and inverse element [p]�1

⇠ of an equivalence class [p]⇠ of a loop p is defined as the
equivalence class of the function p(1 � s); intuitively, the loop is run backwards.

Now, the identification of possible species of identical particles amounts to finding the unitary irre-
ducible representations of ⇡1(Cn(M)). This is a fancy way of saying that we want to figure out which uni-
tary operation the Hilbert space transforms under when one or more particles are exchanged any number
of times, and in any order. In 1D, ⇡1(Cn(R)) itself becomes trivial, since it is not possible for the parti-
cles to avoid one another. In 3D or higher, loops in configuration space are only non-contractible when
particles are exchanged, and there is no notion of an orientation during such an exchange. This implies
that ⇡1(Cn(Rm)) = Sn for m � 3. It turns out that only the one-dimensional unitary irreducible repre-
sentations should be considered for fundamental particles1, which gives two type of particles: Those that
transform under the trivial representation, meaning bosonic statistics, and those that transform under
the antisymmetric, meaning fermionic statistics. In 2D, however, there are many more non-contractible
loops. All non-contractible loops can be generated by considering sequential exchange of particles and
keeping track of the direction of the exchange. For visualization, imagine rotating the plane so the n

particles appear to be positioned on a line next to each other, as shown on Figure 1, and we then label
the particles from left with i = 1, . . . , n. Any non-contractible loop in configuration space can then be
constructed by a series of neighbor exchanges, and we draw the worldlines of the particles by letting
time increase in the direction perpendicular to the plane. If we define the operators ⌧i that exchanges
the position ri and ri+1, with particle i passing in front of particle i+ 1, then those operators generate
⇡1(Cn(R)2). In Figure 1 the worldlines corresponding to the braid ⌧�1

i
⌧i�1⌧i are drawn. Formally, the ⌧i

are defined by the relations

⌧i⌧i+1⌧i = ⌧i⌧i+1⌧i (1.3a)
⌧i⌧j = ⌧j⌧i, |i � j| � 2. (1.3b)

This defines the so-called braid-group Bn = ⇡1(Cn(R2)), and non-abelian anyons are defined as particles
that transform under non-abelian unitary irreducible representations of the braid group under exchange.
Note that if the number of particles n = 2 the braid group itself is abelian, so there has to always
be more than 2 particles in order for the many-body wavefunction to transform in a non-abelian way.
The Majorana modes, which are the concern of the majority of this thesis, are the simplest examples of
non-abelian anyons, allowing for a description using a fermionic Fock space.

Non-abelian anyons still haven’t been discovered as fundamental particles, but they have been pre-
dicted to emerge as quasiparticles in condensed matter systems. Since such systems ultimately consist

1
Higher dimensional representations correspond to so-called parastatistics. It has been conjectured, however, that every

free theory of particles with para-bosonic or para-fermionic statistics is equivalent to a gauge theory of regular bosons or

fermions, which is a possible argument why they should not be considered fundamental [11]. We will nevertheless familiarize

ourselves with parafermions in section 3, as they form the simplest generalization of Majoranas.
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of interacting electrons, the many-body wavefunction of such an anyonic system must encode the non-
abelian braiding statistics in the global entanglement structure. Thus one would maybe suspect that they
should emerge in strongly interacting systems. Indeed, the first proposed physical system with anyons
was the fractional quantum Hall system with filling fraction ⌫ = 5/2 [56]. Incidentally, this system
is predicted to host Majoranas, and by now a whole zoo of anyons have been predicted to emerge for
different filling fractions. These systems all have a ”long-range entanglement”, meaning that the ground
state cannot be transformed into a product state by a series of local unitary transformations [17].

Short-range entangled systems may also have phases with emergent anyonic quasiparticles, but that
requires the system to obey a discrete symmetry, usually time-reversal, particle-hole or chiral symmetry
[8] or crystalline symmetries, such as inversion or discrete rotations [32]. Such a phase is called a
symmetry-protected topological phases.

Asoundingly, this fact provides a ground for realizing Majoranas in mesoscopic systems by cleverly
combining ingredients which in principle have been available for over 60 years. Experimentally, the first
sign of Majorana modes were seen in Delft in 2012 [58], just two years after the theoretical proposal
had been put forward [62, 54]. By 2016, radical development in material science allowed for much
clearer signatures of the zero-bias conductance peak associated with the Majorana bound states, while
simultaneously demonstrating the exponential suppression of the energy splitting of the Majoranas in the
system size [4, 22]. It remains to be explicitly demonstrated that these states are really the theoretically
predicted Majorana modes, although evidence is mounting. For example, last year transport through
the supposed Majorana zero-energy modes was demonstrated to be coherent [78], in accordance with the
theoretical prediction [31].

Figure 1: Representation of how an arbitrary braiding operation in R2 is generated from braiding neigh-
bors. The worldlines of the particles are drawn with time moving in the upwards direction, and in this
figure they represent the braiding operation ⌧

�1
i
⌧i�1⌧i (note the opposite orientation of ⌧i and ⌧

�1
i

in
the figure).

1.2 Formal properties of Majorana modes
In condensed matter systems, Majorana modes are mutually anti-commuting quasiparticles which are
their own antiparticles. For a pair of Majorana modes, this means that their second quantized operators
�1, �2 are Hermitian and anticommute:

�
†
i
= �i, (1.4a)

{�i, �j} = 2�i,j . (1.4b)

Because of the relations (1.4), one cannot define the occupation of a single Majorana mode, but a pair
of Majorana modes �1, �2 define one single Dirac fermionic degree of freedom. If we define

f12 =
�1 ± i�2

2
, (1.5)

then f12 is an ordinary Dirac fermionic annihilation operator. Note that there is an inherent gauge
freedom in choosing the sign in Eq. (1.5). This has important implications for the physics of Majorana
systems: The number of fermions is only conserved modulo 2.
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In systems consisting of several Majoranas, there is a further ambiguity in how to pair the Majoranas
and form the fermionic states. This simple observation is actually at the heart of the remarkable topolog-
ical properties which Majoranas are famous for. To understand this, let us consider a system consisting
of four Majoranas �1, �2, �3 and �4. We assume for now that these four Majoranas constitute all degrees
of freedom of the system, and as long as they are far away from each other, they don’t interact in any way
possible. Hence, the ground states are four-fold degenerate. One basis of the Hilbert space is |ni12|n0i34,
where the states are defined as the eigenvectors of the fermionic number operator, f†

ij
f
ij

|niij = n|niij ,
and we use the sign convention

f
†
34f

†
12|0i12|0i34 = |1i12|1i34. (1.6)

We will now examine what happens to the state when we exchange two Majoranas, which is known as a
braid [27]. We can derive the effect on the state of the system by noticing that the process is essentially
a basis change. Assume for concreteness that the system is initially in the state |0i12|0i34 and consider
the process sketched in Figure 2. First, �2 and �3 are exchanged, which is equivalent to changing to the
basis |ni13|n0i24. Due to the conservation of fermionic parity, we write

|0i12|0i34 = ↵|0i13|0i24 + �|1i13|1i24. (1.7)

We may then calculate ↵ and � by writing f12 and f34 in terms of f13 and f24 and impose

f12|0i12|0i34 = f34|0i12|0i34 = 0. (1.8)

To do so, we need to be careful with the definitions of the fermionic operators. If we define all operators
the same way, say fij = (�i + i�j)/2, then Eq. (1.8) cannot be consistently solved for ↵ and �. If we
define

f12 =
�1 + i�2

2
, f34 =

�3 + i�4

2
, (1.9)

then choosing to define f13 = (�1 ⌥ i�3)/2 imposes f34 = (�2 ± i�4)/2. We associate the sign choice with
the direction of the exchange. For the clockwise direction indicated in Figure 2 we choose

f13 =
�1 � i�3

2
, f34 =

�2 + i�4

2
, (1.10)

which implies that the Majorana operators may be written as

�1 = f13 + f
†
13, �2 = f24 + f

†
24, �3 = i(f13 � f

†
13), �4 = i(f†

24 � f24). (1.11)

With this, Eq. (1.8) leads to

|0i12|0i34 =
1p
2
(|0i13|0i24 + i|1i13|1i24) =

1p
2
(1 � �2�3)|0i12|0i34. (1.12)

As can be straightforwardly verified, braiding any two Majorana modes �i and �j clockwise amounts to
applying the braid operator

Bij ⌘ 1p
2
(1 � �i�j). (1.13)

Therefore braiding allows for non-trivial transformation of the ground-state manifold, implemented in
a purely topological way, without any interactions between the individual Majoranas. If Bij and Bkl

share a Majorana, they don’t commute, and the braid operators in Eq. (1.13) can be shown to form a
unitary irreducible representation of the braid group, satisfying the defining relations in Eq. (1.3). We
can visualize the effect of the braid in Eq. (1.12) on the Bloch sphere, as seen in Figure 2. We take the
state |00i to be the north pole on the z axis, and the state |11i on the south pole. Braiding �2 and �3

clockwise therefore amounts to a rotation around the x-axis by an angle ⇡/2. This immediately leads us
to a stunning conclusion: A successive clockwise braid of �3 and �2 does not return the system to the
initial state; rather, it changes the occupation of both fermionic states,

B
2
23|0i12|0i34 = i|1i12|1i34. (1.14)
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With braiding, Clifford gates, that is Paulies, Hadamard and phase gate, can be implemented in a
topologically protected way. In particular, for four Majoranas with an overall even fermionic parity, we
can represent the basis states as

|0i12|0i34 ⌘
✓
1
0

◆
, |1i12|1i34 ⌘

✓
0
1

◆
, (1.15)

and define a Pauli algebra as

�x = i�1�3, �y = �i�2�3, �z = i�1�2. (1.16)

In this basis we find
B

2
13 = i�x, B

2
32 = i�y, B

2
12 = i�z, (1.17)

and the Hadamard gate Ĥ and phase gate Ŝ are formed as

B12 = e
i⇡/4

✓
1 0
0 �i

◆
= e

i⇡/4
Ŝ, (1.18a)

B12B13B12 =
ip
2

✓
1 1
1 �1

◆
= iĤ. (1.18b)

Universal quantum computation is not possible using only braiding. The reason is that braiding Majorana
modes does not produce entanglement [13]. This statement can be intuitively understood from our
discussion above, since braiding was derived from basis changes. It turns out that CNOT may be
implemented in protected ways by using other means than braiding. But even so, a non-Clifford gate
is needed for running algorhithms which cannot be efficiently simulated on a classical computer [35].
Different gates, such as T -gate, has to be implemented in a non-protected way, such as by magic state
distillation.

The picture we have used to derive the braiding rules is also useful for explaining the process of
Majorana fusion. The definition of this is a projective measurement of the combined parity of a pair of
Majorana modes. This can for example be implemented by bringing a pair close together, allowing them
to overlap and obtain a charge which can be measured, collapsing the state to being either empty or
filled. The possible fusion channels can be found by doing a basis change. From Eq. (1.12), if the state
|0i12|0i34 is prepared and �1 and �3 are fused, the possible outcomes are the vacuum state |0i13 and the
occupied state |1i13, both with probability 1/2.

In the next section we will see how solid-state systems hosting Majorana modes may be constructed.
In all the projects in this thesis, we study the dynamics of one-dimensional systems. The reason is that
by far the greatest experimental progress has been made here, and currently the expectation seems to be
that if we should realize topological quantum computation using Majorana modes, it will most likely be
to be successful using either 1D systems or effectively 1D systems2. For this reason, we will exclusively
focus on 1D in the following section.

1.3 Physical realization in 1D: The Majorana nanowire
Where should we expect these extraordinary quasiparticles to emerge? We need a solid-state system
whose ground state allows for fluctuations of the number of pairs of fermions, and furthermore, in order
to have quasiparticles which are their own anti-particles, there has to be a coupling between electrons and
holes. These conditions are qualitatively fulfilled by superconductors. As we shall see, very particular
superconductors do allow for topological phases where Majorana zero-energy modes are present. In
1D they are bound to the boundary of the system or at interfaces between parts of the system in the
topological and trivial phase. For this reason, they are refered to as Majorana bound states.

Whether Majorana bound states can emerge in a particular superconductor depends crucially on the
symmetries of the Cooper-pair- and bogoliubon wavefunctions, or equivalently of the pairing potential
�k. Conventional s-wave superconductors where the electrons pair up into spin-singlet states do not

2
Based on the previous section, non-abelian anyons should not appear in 1D. The reconciliation happens when one

considers the fact that in order to access the topological properties of Majoranas in 1D systems, one has to effectively

extend the system to 2D, for instance by moving the Majoranas in both dimensions, or through couplings between distant

Majoranas.
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Figure 2: Sketch of a braiding process. Panel a) depicts a system of four Majoranas, �1, �2, �3, �4 sub-
jected to two successive braids, exchanging �2 and �3 twice in a clockwise fashion. Through the process,
the chosen basis is always that of the occupancy of the left-most and right-most pairs of Majoranas. The
initial state is |00i, and after braiding �2 and �3 once, the state is now (|00i+ i|11i)/

p
2. After the final

braid, the state is proportional to |11i. These steps are indicated on the Bloch sphere, with |00i and |11i
being the north- and south poles, respectively. Each braid results in a counter-clockwise rotation by an
angle of ⇡/2 around the x-axis of the Bloch sphere. Panel b) shows the braiding diagram for the process
in panel a), with time increasing in the right direction.

allow for Majorana bound states. Instead, one needs to procure a more exotic pairing, where the pairs
form spin-triplets. Such pairings can happen for example in the presence of ferromagnetic interactions
[19], but in general, it is hard to procure an intrinsic triplet pairing. But in mesoscopic systems, where
materials with different properties are combined, it is theoretically simpler. The idea is essentially that
if a semiconductor with a strong spin-orbit coupling and a strong Zeeman splitting is proximitized by an
s-wave superconductor, it develops a pairing in a single helical band. Since there is only a single band,
this is qualitatively like a spin-triplet pairing. Thus, it is possible to engineer the exotic superconductive
pairing needed for Majorana bound states using readily available ingredients from mesoscopic physics.

Before we turn to this system in more detail, let us familiarize ourself a bit more with unconventional
pairings and the consequences for subgap states. First, to understand the correspondence between
the pairing symmetry and the Cooper-pair wavefunction consider the following BCS Hamiltonian for a
general spin-independent repulsion [19]:

HBCS =
X

k,�

⇠kc
†
k�
c
k�

+
X

k,k0

Vk,k0c
†
k"c

†
�k#c�k0#ck0". (1.19)

Here, � denotes spin-z projection and ⇠k = k
2
/(2m) � µ with µ denoting the chemical potential. We

focus on the inversion-symmetric case where V�k,�k0 = Vk,k0 . The interaction in the BCS Hamiltonian
is understood to only involve states close to the Fermi energy. Up to a constant energy shift, in the
mean-field approximation Eq. (1.19) becomes

HBCS ⇡
X

k

 †
k
HBdG,k k, (1.20)

where the BdG Hamiltonian is

HBdG,k =

 
k
2

2m � µ �k

�⇤
k

� k
2

2m + µ

!
, (1.21)

the Nambu spinor  k is defined by

 k ⌘
✓

ck,"
c
†
�k,#

◆
, (1.22)
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and the pairing potential �k is determined self-consistently through the expression [16]

�k = �
X

k0

Vk,k0 hc�k0#ck0"i . (1.23)

In Eq. (1.23), the expectation value is taken with respect to the ground states, which is a coherent state
for the pair creation operator

| BCS

0 i / exp

 
X

k

wkc
†
k,"c

†
�k,#

!
|FSi, (1.24)

where |FSi is the Fermi sea, containing filled states up to the Fermi level. For the present example, the
gap equation Eq. (1.23) can be cast in the form of the BCS gap equation [19]:

�k = �
X

k0

Vk,k0
�k0

2Ek0
tanh

✓
�Ek0

2

◆
, (1.25)

where Ek =
q
⇠
2
k
+ |�k|2. Note that there is no a priori reason that the BdG Hamiltonian in Eq.

(1.21) should imply that the pairing in Eq. (1.25) should turn out to be an even or an odd function
of k. One should therefore be cautious when concluding from the BCS Hamiltonian in Eq. (1.19)
whether the pairing is singlet or triplet, even though at first glance it appears to be pairing electrons
into spin-singlets. The reason is that the state |k, "i|�k #i is neither a spin-singlet or triplet. One has to
respectively take the antisymmetric or the symmetric state under spin-exchange. To explicitly see that
a generic k-dependent interaction Vk,k0 has pairing in both a singlet and triplet channel, we rewrite the
pairing term in the BCS Hamiltonian before mean-field, casting Eq. (1.19) into the form

HBCS =
X

k,�

⇠kc
†
k�
c
k�

+
1

4

X

k,k0

⇣
V

S

k,k0⇤†
S,k
⇤
S,k

+ V
T

k,k0⇤†
T,k
⇤
T,k

⌘
, (1.26a)

V
S/T

k,k0 =
Vk,k0 ± V�k,k0

2
, (1.26b)

⇤S/T,k = c�k#ck" ⌥ c�k"ck#, (1.26c)

where we have made use of the inversion symmetry V�k,�k0 = Vk,k0 . Hence, there are two different
terms projecting onto singlet- and triplet pairing. In the standard introductory textbook treatment Vk,k0

is taken to be the Coulomb electron-electron repulsion, renormalized by electron-phonon interactions
to yield an effective interaction which is k-independent and attractive for k and k

0 sufficiently close to
the Fermi momenta, and zero otherwise. The gap equation Eq. (1.25) then implies that �k becomes
independent of k, and based on the above discussion, the electrons pair up into spin-singlet states since
this interaction has V T

k,k0 = 0. The leading contribution to the Cooper-pair wave function has zero orbital
angular momentum, meaning that the pair form an s-orbital, which is the origin for the term s-wave
superconductor. With different interactions, there also exist spin-singlet superconductors with pairings
where the Cooper-pairs have an angular momentum. An example is d-wave superconductors where the
Cooper-pairs form d-orbitals. By using a different possibly spin-dependent interaction, it is possible
to have the pairing predominantly be in the triplet channel. Such a pairing is called p-wave when the
Cooper-pairs form p-orbital with a single unit of total angular momentum.

Let us briefly pause to comment on the relation between the Cooper-pair wave function and the
pairing symmetry. Analogous to the above discussion, singling out the term in Eq. (1.24) corresponding
to the factor in the product with wavenumber k does not constitute a properly symmetrized wavefunction,
and one should also include the pair corresponding to �k. We may thus identify the state | CP

k
i with

wavenumber k as
| CP

k
i =

⇣
wkc

†
k,"c

†
�k,# + w�kc

†
�k,"c

†
k,#

⌘
|FSi. (1.27)

Hence, if w�k = wk the Cooper-pair is bound in a spin-singlet state, but if w�k = �wk, then the state
would spin-triplet with zero spin-z projection. Using Eq. (1.24) to evaluate Eq. (1.23), we see

�k /
X

k0

Vk,k0

Y

k,k0

D
FS

���ew
⇤
kc�k0,#ck0,"c�k,#ck,"e

wkc
†
k,"c

†
�k,#

���FS

E
=
X

k0

Vk,k0wk0 . (1.28)
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Using V�k,�k0 = Vk,k0 , we thus see that if ��k = ±�k then w�k = ±wk, and we conclude that a spatially
even pairing results in a spin-singlet pairing while a spatially odd pairing results in a spin-triplet pairing.
For different interactions where electrons and holes with the same spin are paired the same result would
follow.

Next, we turn to the nature of subgap states for the case of purely even or odd �k, that is, for the
singlet and triplet pairing, separately. These cases are described by BdG Hamiltonians in the form of
Eq. (1.21), but their corresponding bases of Nambu spinors differ. Specifically, for the triplet case, we
assume that pairing only happens with spins oriented in one particular direction, say � =". We write
the BdG Hamiltonians in the singlet/triplet case as

H
S/T

BdG,k
=

 
k
2

2m � µ �S/T

k

(�S/T

k
)⇤ � k

2

2m + µ

!
, (1.29)

and the corresponding Nambu spinors are

 S

k
=

✓
ck"
c
†
�k#

◆
,  T

k
=

✓
ck"
c
†
�k"

◆
, (1.30)

respectively. The eigenvalues Ek of the BdG Hamiltonian in Eq. (1.29) are

Ek = ±

s✓
k2

2m
� µ

◆2

+
����S/T

k

���
2
. (1.31)

For real k, these energies are always larger than a superconducting gap, |Ek| � �SC, and this energy
corresponds to the minimum energy of a freely propagating fermionic quasiparticle. There are sometimes
solutions with energies below the gap. Such states are collectively called Andreev-bound states [64], which
in many cases arise in the vicinity of for example impurities, magnetic domains and interfaces outside
of the superconductor. In particular, by definition, there are no states with real wavenumber k below
the superconducting gap. Instead, a sub-gap state requires complex k. Note that for (�S/T

k
)⇤ in Eq.

(1.29), conjugation should happen before evaluating k. The reason is that the momentum operator is
Hermitian, so p

† and p evaluated on a plane wave with imaginary wavenumber should give the same
eigenvalue. The same is true for the expression

����S/T

k

���
2
= (�S/T

k
)⇤�S/T

k
, which enters in Eq. (1.31).

For sub-gap states, the non-zero imaginary value of k implies that the state must be localized inside
the superconductor near for instance a defect or an interface, hence the terminology ”bound state”. The
Majorana states that we are looking for are special subgap states, whose energies are pinned to zero and
whose hole and electron components have equal magnitude. This is guaranteed because of particle-hole
symmetry, which exists for all superconductors, whenever there is only a single state at zero energy, or if
such a state is completely isolated from other zero-energy states. For that to happen, the pairing needs
to be in the triplet channel, as we shall see. For singlet/triplet pairing respectively, the particle-hole
symmetry is described by the simple anti-unitary operator

PS/T = ⌘y/xK, (1.32)

where ⌘i are the usual Pauli operators acting on the two-level system defined by H
S/T

BdG,k
, and K is

complex conjugation. In terms of electrons and holes, both PS and PT change and electron operator
with wavenumber k into a hole operator with wavenumber �k, where we remember that the complex
conjugation operator K on the k-space Hamiltonian flips the sign of k, since Kp = �p. But furthermore
PS also flips the spin. We explicitly see that

KH
S/T

BdG,k
=

✓
k
2

2m
� µ

◆
⌘z + Re(�S/T

�k
)⌘x + Im(�S/T

�k
)⌘y

�
K, (1.33)

meaning that {PS/T , H
S/T

BdG,k
} = 0 in the case of even/odd pairing, which defines particle-hole symmetry.

If there exists a single isolated sub-gap state at zero energy, then that state is pinned to zero energy for
an extended parameter range. In fact, this pinning is topological; it is not possible to move the state
away from zero energy by continuous deformation of the Hamiltonian without closing the gap or breaking
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the symmetry, as long as no other zero-energy solutions are nearby. For that reason, a phase with such
an isolated zero energy state is an example of symmetry-protected topological phases.

To unpack the above claims, assume that | Ei is a sub-gap eigenstate of HT

BdG,k
with energy E. The

particle-hole symmetry then implies that PT | Ei is an eigenstate with energy �E. As mentioned above,
we need a boundary in order to have a normalizable solution, so we will assume that the 1D system
is described by the Hamiltonian H(x) = H

T

BdG,k
for positions x � 0, and the vacuum H(x) = 1 for

x < 0, which is equivalent to imposing the Dirichlet boundary condition  E(x = 0) = 0 for the real-space
wavefunction  E(x) = hx| Ei. If we write

 E(x) =

✓
uE(x)
vE(x)

◆
, (1.34)

then the field operator  ̂E(x) related to | Ei can be written as

 ̂E =

Z 1

0
dx
�
uE(x) vE(x)

�✓  ̂(x)
 ̂†(x)

◆
=

Z 1

0
dx(uE(x) ̂(x) + vE(x) ̂

†(x)), (1.35)

where  ̂(x) is the annihilation operator for an electron at position x. On the other hand, the field
operator  ̂0

E
for the state PT | Ei is

 ̂0
E
=

Z 1

0
dx(v⇤

E
(x) ̂(x) + u

⇤
E
(x) ̂†(x)) =  ̂†

E
. (1.36)

Now here is the punchline: If there only is a single solution at E = 0, then

PT | 0i = e
i✓| 0i, (1.37)

and through an appropriate gauge transformation, we can get rid of the complex phase, after which we
may write

 ̂0 =  ̂†
0. (1.38)

Thus the zero-energy solution is really a Majorana zero-energy bound state! Notice that the condition
in Eq. (1.37) is only possible to fulfill because the components of  T

k
in Eq. (1.30) have the same spin.

Searching for single zero-energy solutions for singlet-pairing would show that there are no solutions since
PS flips the spin of each component.

Suppose there are two isolated zero-energy solutions, localized at very distant boundaries so there is
zero overlap between the two. Then each state still has to individually be eigenstates of the particle-hole
operator since it doesn’t involve any spatial transformations. Thus, both solutions are also Majorana
zero modes. If the two states overlap, however, the two solutions will acquire a finite energy of ±E0.
This energy splitting has to be exponentially suppressed in the system size, because the sub-gap states
decay exponentially, as described above.

If the Hamiltonian with completely isolated Majorana zero-energy modes is continuously deformed
using local perturbations, since particle-hole symmetry would otherwise imply that a new solution ap-
peared, spontaneously changing the dimension of the Hilbert space. Thus, the gap has to close before
the Majorana solutions can disappear.

It should be stressed that the first-quantized Majorana solution | 0i does not describe a fermionic
state in the Fock space. Instead, it describes the profile of the Majorana. In order to have a meaningful
fermionic Fock space, one needs to have an even number of Majoranas, so fermionic states may be defined
between the pairs. Importantly, there is no way to establish the topological nature of the modes through
the spectrum alone. In order to experimentally test whether sub-gap states are majoranas or not, one
ultimately needs to actually demonstrate their non-abelian statistics.

The simplest example with odd pairing is the so-called p-wave superconductor. In 1D, a p-wave
superconductor is governed by the Hamiltonian Hpw obtained from H

T

BdG,k
in Eq. (1.29) when only the

lowest order dependency of k is included in the pairing. Through a gauge transformation the pairing can
be made real valued, meaning �T

k
= vk. Explicitly, the Hamiltonian is defined as

Hpw =

 
p
2

2m �� vp

vp � p
2

2m +�

!
. (1.39)
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This Hamiltonian is used extensively in Chapter 3 and 4, and we will explicitly solve for the eigenstates
in the half-infinite case. As explicitly calculated there, there is a zero-energy solution whenever the gap
is positive � > 0. As � decreases and passes zero, the gap closes and reopens, and there is a topological
phase transition to the trivial phase � < 0 with no Majorana zero-energy modes.

Although the Hamiltonian Hpw looks simple, there are no known simple materials which are intrin-
sically p-wave superconductors. In their seminal paper in 2008, Fu and Kane demonstrated that the
proximity effect from a conventional s-wave superconductor can in principle be used to generate an effec-
tive spin-triplet pairing [33]. Their idea was to proximitize a single band, where the spin is locked to the
momentum. Such a spin-momentum locked system can be found, for instance in the chiral edge modes
of an integer quantum Hall liquid. This setup is still connected with considerable experimental difficulty,
because quantum Hall systems need a large magnetic field compared to the critical field of most super-
conductors. Two years later, Oreg et al. and Lutchyn et al. independently came up with an approach
which would spark a large experimental and theoretical interest [62, 54]. The idea was to use systems
with a large spin-orbit coupling in order to procure the spin-momentum locking. One realization of this
is the so-called Majorana nanowire, which is sketched in Figure 3. Here, a semiconducting material with
a large spin-orbit coupling, usually InAs or InSb, is grown in a hexagonal shape, usually about 100 nm
wide and with a length & 1µm [4]. Along two of the facets, a thin layer of aluminium is grown epitaxially,
meaning that the lattice of the Al matches that of the InAs. When the system is cooled down and the
aluminium becomes superconducting, the epitaxial interface ensures that the induced superconducting
pairing �SC gives rise to a hard superconducting gap. Lastly, a magnetic field is applied along the wire.
Figure 4 demonstrates what happens when these three ingredients are successively added in the case
where the spin-orbit interaction dominates. Note that this limit is only taken for the purpose of visual-
ization. The conclusions that Majorana zero modes emerge is valid regardless of the relationship between
the spin-orbit and Zeeman interaction [62]. The spin-orbit coupling splits the spin degeneracy, and when
the magnetic field is added perpendicular to the spin-orbit direction, it generates a Zeeman splitting B

which causes the dispersion to separate into two helical bands. Importantly, if the Fermi momentum is
large, the spins at the Fermi momenta are approximately anti-aligned, so the system may be proximitized
by an s-wave superconductor. In order to have just a single effective p-wave superconducting band, the
nanowire must have a low electronic density. Specifically, as long as the chemical potential µ is small
compared with the Zeeman splitting µ ⌧ B, there is effectively only a single band, and therefore there
exists only a single zero-energy solution at domain walls. The system should therefore be expected to be
in the topological phase for these parameters. However, as it turns out, the Zeeman splitting must also
dominate over the pairing B > �SC for the zero modes to exist.

Let us examine these statements in a bit closer detail. We describe the proximitized nanowire by the
second quantized Hamiltonian

Hnw =
X

k

 †
k
HBdG,k k

(1.40a)

HBdG,k = H0,k +H�, (1.40b)
H0,k = ⇠k⌧z +B�x⌧z + ↵k�z⌧z, (1.40c)
H� = �SC�z⌧x, (1.40d)

 †
k
=
⇣
c
†
k", c

†
k#, c�k#, c�k"

⌘
, (1.40e)

where ⇠k = k
2

2m⇤ � µ, m⇤ is the effective electron mass, µ is the chemical potential, ↵ is the spin-orbit
coupling parameter and ⌧i and �i are Pauli operators in particle-hole- and spin-space, respectively. The
eigenvalues E

e/h± of H0,k are

E
e

± = ⇠k ± �k, E
h

± = �⇠k ± �k, (1.41a)

�k =
q
B2 +�2

SC
. (1.41b)

The goal is to derive an effective theory for the lowest energetic bands E
e

� and E
h

+ when the supercon-
ducting pairing H� is added. To do so, one can express HBdG,k in the eigenbasis of H0,k and define
projectors P and Q respectively onto the lowest energetic eigenstates of H0,k with energy E

e

� and E
h

�,
and the highest energetic states with energy E

e

+ and E
h

+. When the pairing is added, the projection of
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Figure 3: Sketch of a Majorana nanowire. A semiconductor, usually InAs or InSb, is grown in a hexagonal
shape, here shown in light blue. The wire has a width of around 100 nm and a length on the order of
several µm. Along two facets, a thin shell of Al, shown in dark blue, is grown epitaxially, providing
a clean interface and a hard induced superconducting gap. This interface induces a Rashba spin-orbit
coupling due to the electric field ESOC from the Al interface. This coupling is described by a Hamiltonian
term ↵(p ⇥ ŷ) · � = ↵k�z. The system is cooled below the critical temperature where the Al becomes
superconducting and a magnetic field B perpendicular to the spin-orbit direction is applied. In this way,
the induced superconductivity in the nanowire can be made effectively p-wave. Thus, in the topological
regime the system hosts two Majorana bound states at the opposite ends of the wire. The nanowire is
placed on a dielectric, shown in green, and gated with a voltage Vg, which allows for Coulomb blockading
the system. This is crucial to isolate the zero-energy Majorana degrees of freedom from environment
fermions. This last ingredient is described in Section 1.4.

Figure 4: The effect of adding the ingredients for generating topological superconductivity step by step.
The first graph shows the dispersion of free electrons with spin degeneracy. Next, a spin-orbit coupling
is added in the negative z-direction, splitting the bands according to the spin-z projection. Adding a
Zeeman interaction lifts the degeneracy at k = 0. There are now two helical bands, with the spin-z
projection varying smoothly as a function of k. If B ⌧ ↵kF , where ↵ is the spin-orbit parameter and
kF is the Fermi momentum, then at kF the spins are still approximately anti-aligned in the z-direction.
Next, going to a BdG representation the spectrum is doubled and mirrored, introducing the holes as
separate degrees of freedom. Here, we see that electrons- and hole bands are degenerate at opposite
wavenumber and opposite spin. Adding superconductivity therefore splits the remaining degeneracies,
and it does so in a way that the lowest band effectively doesn’t have a spin-degree of freedom, since the
band is helical. Because of this, the pairing is effectively spinless, which is akin to triplet pairing, leading
to topological superconductivity.
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the eigenstates onto the lowest bands is exactly described by the energy-dependent Hamiltonian HP (E),
given by

HP (E) = PHBdG,kP + PHBdG,kQ (EQ � QHBdG,kQ)�1
QHBdG,kP. (1.42)

We demand that B is the largest energy scale, and we notice that solutions to the nonlinear equation
HP (E)| (E)i = E| (E)i have eigenvalues E = O(Ee

�, E
h

+) + O(�). Using this, we can Taylor expand
HP (E) to leading order in �/B, and the dependence of E drops out, yielding the effective low-energy
Hamiltonian Heff given by

Heff =

0

@

⇣
1

2m⇤ � ↵
2

2B

⌘
k
2 � µ � B + �2

SC
B

↵�SC
B

k

↵�SC
B

k �
⇣

1
2m � ↵

2

2B

⌘
k
2 + µ+B � �2

SC
B

1

A . (1.43)

Thus we see that when B is the dominating energy scale, the proximitized nanowire is a p-wave super-
conductor, described by a Hamiltonian of the form in Eq. (1.39), with the parameters

m =

✓
1

m⇤ � ↵
2

B

◆�1

, � = µ+B � �SC

B
, v =

↵�SC

B
. (1.44)

In this limit, where B dominates, � > 0, so we expect a single exponentially localized Majorana bound
state to be present at each end of the wire. From the above discussion, we know that the Majorana
modes are robust against continuous deformations, as long as the gap doesn’t close. The gap of the
full Hamiltonian HBdG can be shown to close only when µ = ±

p
B2 ��SC, so whenever B > �SC, we

can extend the conclusions to the statement which was given above, that we expect a single Majorana
whenever |µ| <

p
B2 ��SC, and this parameter range, along with B > �SC, thus defines the topological

regime.

1.4 Charging energy and a minimal Majorana qubit
Now that we have an idea of how 1D systems hosting Majorana bound states may be constructed using
experimentally available building blocks, we turn our attention to the next obvious question: How do we
use this to construct a useful qubit?

The first obstacle is to protect the quantum information. The energy cost of switching the Majorana
parity is zero, so one could rightfully worry that fermions from the environment could tunnel into the
p-wave superconductor, causing flips of the Majorana parity. Such processes are called quasiparticle

poisoning. The system may be engineered to have a very small capacitance, in which case Coulomb
repulsion can energetically restrict such processes when the system is carefully gated. This introduces
a different problem, however, since it is not possible to form superpositions of a single Majorana pair
between having odd and even parity without including the quasiparticle continuum, defeating the whole
purpose of the topological qubit. The problem will be fixed by connecting two nanowires by a conventional
superconducting backbone, resulting in the system displayed in Figure 5, which has been dubbed the
Majorana box qubit [63]. This system is in a way a minimal qubit one can construct out of Majorana
nanowires, and it is a key system in this thesis, since it is the central object of study in Project A, B
and C.

But before getting ahead of ourselves, let us first discuss how to isolate the system from the environ-
ment. This is achieved by engineering the system to have a large charging energy EC . This enters from
Coulomb repulsion in the system, and is described by the Hamiltonian HC given by

HC =
e
2

2C
N

2 � VgeN, (1.45)

where N is the operator associated with the total number of electrons on the island and the potential Vg

is tunable by a gate voltage. Up to an irrelevant constant shift, HC may be cast in the following form

HC = EC(N � ng)
2
, (1.46)

where the charging energy EC = e
2
/(2C) and the dimensionless parameter ng = CVg/e can be tuned to

control the number of electrons in the system. In particular, when ng is an integer, and EC dominates
all environmental energy scales, the system is said to be Coulomb blockaded. When superconductivity is
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Figure 5: Sketch of the Majorana box qubit: Two parallel Majorana nanowires, shown in light blue with a
dark blue edge to indicate the Al shell from Fig. (3), are strongly coupled by an s-wave superconducting
backbone, shown in dark blue. This effectively joins the systems together, giving them a common sea of
Cooper-pairs and a common charging energy. The wires are assumed to be in the topological regime, so
the system hosts 4 Majorana fermions, �1, . . . , �4.

added, if ng is odd, the ground state has an unpaired quasiparticle, and if ng is even, the ground state
has no quasiparticles.

If the superconductor is p-wave and in the topological regime, then there is no difference in the
energy of the ground state whether ng is even or odd, since the unpaired fermion may now occupy the
zero-energy state spanned by the Majoranas.

As a side note, one should in principle be careful when adding interactions, as they can completely
change the topological properties of the system. All the above arguments were made in reference to
an effectively non-interacting problem. Adding interactions may in principle cause gap-closings which
can take the system out of the topological regime, or drastically change the topological behaviour [26].
Adding charging energy, however, never closes the quasiparticle gap, although, depending on ng, it may
move the Majorana state away from zero energy. When EC dominates, the charging energy simply
restricts the total number of fermions in the system, but is otherwise still described by the same non-
interacting mean-field Hamiltonian. Thus it doesn’t affect the existence of the Majoranas, but can be
thought of as a constraint on the occupations.

In Chapter 4, when we look at decoherence of isolated Majorana systems, we will have to account for
a thermal distribution of the fermionic quasiparticles, constrained by the charging energy to be either
even or odd. Finding the Fermi distribution function when subject to a parity constraint is in principle
a straightforward, albeit tedious, exercise in thermodynamics. Historically, it was first pointed out by
Tuominen et al. [74, 75, 50] that the free energy Fe/o in the even/odd parity sectors differ by an amount
�F = Fo � Fe approximately equal to [40, 71]

�F = �kBT ln tanh[Neffe
���] ⇡ �� kBT ln(Neff), (1.47)

where � = 1/(kBT ). The effective number of quasiparticle states Neff for a BCS superconductor with
gap � is

Neff = 2

Z 1

�
dE

⇢DE
p
E2 ��2 e

��(E��) ⇡ ⇢D

p
2⇡kBT�, (1.48)

where ⇢D is the normal state density of states at the Fermi energy. All the above approximations are
valid at low temperatures �/(kBT ) � 1. This difference in free energy implies a parity dependent
occupation n

e/o

F
(E) of the continuum quasiparticle states at energy E � � in the even/odd sector. A

direct calculation shows [4]

n
e/o

F
(E) =

1

exp�(E ± �F ) + 1
, (1.49)

where the sign is plus for the even sector, and minus for the odd.
With the ability to Coulomb blockade Majorana nanowires, we now understand how to protect the

ground-state parity from quasiparticle poisoning. In order to form superpositions of different ground-
state parities, we need a way for two Majorana nanowires to have a common large charging energy. This
can be done by connecting them by a conventional s-wave superconductor [63]. Heuristically, this allows
the two nanowires to share a common sea of Cooper-pairs, which may be split at zero energy cost, if the
two electrons can be placed in the Majorana ground states. For example, if the total fermionic parity
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is even, then the states |00i and |11i in the ground states differ by one Cooper-pair. The reason why
it works can be formally understood by first considering two s-wave superconductors connected by a
Josephson junction and with separate charging energies. Let N1 and N2 be the number of Cooper-pairs
in the respective superconductors and let �1 and �2 the phase of their pairing, conjugate to the number
operators [�i, Ni] = i [39]. When the two superconductors are tunneling coupled, the Hamiltonian H1�2

describing the combined system is given by [16]

H1�2 = EC1(2N1 � ng1)
2 + EC2(2N2 � ng2)

2 � EJ cos�, (1.50)

where � = �1 � �2, EJ is the Josephson energy, ECi is the charging energy of the i’th superconductor
and ngi is the corresponding gate parameter. In Eq. (1.50) we have neglected all quasiparticles, which
would otherwise appear separately in the charging energy terms, as well as mutual capacitances, which
we assume to be much smaller than the individual charging energies. Up to a constant energy shift, the
Hamiltonian may be rewritten as

H1�2 = EC(N � n
+
g
)2 + EC(n � n

�
g
)2 +�ECnN � EJ cos�, (1.51)

where

N = N1 +N2, (1.52a)
n = N1 � N2, (1.52b)

EC = EC1 + EC2 , (1.52c)

�EC =
EC1 � EC2

2
, (1.52d)

n
±
g
=

2(ng1EC1 ± ng2EC2)

EC1 + EC2

. (1.52e)

Notice that [N,�] = [N,n] = 0. This implies that if n+
g

is an integer and EC � �EC , then the first
term in (1.51) can pin N be equal to n

+
g
. We will consider the case �EC ⌧ EC , where the interaction

term leads to a small shift of n. Because [n,�] = 2i, in the weakly coupled case EJ ⌧ EC , n is pinned
to n

�
g

, and the phase difference � fluctuates. In the opposite strong coupling limit EJ � EC , the
Josephson energy term pins phase difference to � = 0, making n fluctuate so the number of Cooper-pairs
in the two superconductors is undetermined. Strong Josephson coupling evidently allows for two s-wave
superconductors to obtain a common charging energy.

For topological superconductors with Majorana modes, the occupancy of the zero mode appears in the
charging energy term. However, they may be removed from there by a gauge transformation, after which
the parity of the zero-energy mode is encoded in the boundary conditions of many-body wavefunction
in phase space. Explicitly, for a topological superconductor with Majorana modes �1, �2, the charging
energy term is [1, 12, 31, 39]

HC = EC

✓
2

i

@

@�
+ n12 � ng

◆2

, (1.53)

where n12 = 1�i�1�2

2 is the occupation of the zero-energy fermionic state the Cooper-pair number operator
N has been written explicitly in terms of the superconducting phase �. By unitarily transforming HC

by the operator
U = e

i�n12/2, (1.54)

we see

UHCU
† = EC

✓
2

i

@

@�
� ng

◆2

. (1.55)

The effect of the unitary transformation can be understood in the phase basis

|�, n12i =
1p
2⇡

X

N

e
�i�N |N,n12i, (1.56)

which is the Fourier transform of the number basis, defined through ⇤†⇤|Ni = N |Ni, where the Cooper-
pair operator ⇤ =

P
k,�,�0 wk,�,�0c

†
k,�

c�k,�0 is is defined in analogy with Eq. (1.24), except the pairing is
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Figure 6: A quantum dot with a single level is tunnel coupled to a Majorana nanowire in the topological
regime, with a coupling strength �1. The lowest energetic processes are governed by tunneling through
the Majorana mode �1.

allowed to be in the triplet channel. After the unitary transformation, the phase basis states are

U |�, n12i =
1p
2⇡

X

N

e
�i�(2N�n12)/2|N,n12i. (1.57)

After the transformation, all operators look the same, except for Majorana operators, which are trans-
formed according to

�i ! e
i�(i�1�2)/2�i, (1.58)

and the phase factor reflects the fact that when �i flips the ground state from |n12 = 0/1i to |n12 = 1/0i
the charge on the superconductor is increased/decreased by e. The result of this exercise is that when
a topological superconductor is connected to a conventional superconductor, the result is algebraically
completely similar to Eq. (1.51), albeit with the states on the topological superconductor transformed
according to Eq. (1.54). As a side point, when two topological superconductors with phases �L and
�R are connected, say with the junction between the Majorana zero modes �L and �R, then the same
argument can be made, except Eq. (1.51) is modified by the addition of the so-called fractional Josephson
term HFJ , which tends to dominate over the regular Josephson coupling and is equal to [39]

HFJ = EFJ cos

✓
�L � �R

2

◆
i�L�R. (1.59)

This term is responsible for the 4⇡ periodic Josephson current measured in topological Majorana nanowires.
The appearance of the fractional Josephson term does not alter the argument, however, and if EFJ � EC ,
then the two topological superconductors may be brought to effectively share a common charging energy.

The last point we need to address before turning to the Majorana box qubit is what happens when
a Coulomb blockaded p-wave superconductor is tunnel coupled to a quantum dot. Such a setup will
be important for controlling the Majorana qubit. Since we want to manipulate fermionic paritites, it is
important that there is only one state on each dot. This constraint is motivated by the large magnetic
fields needed to drive the nanowires into the topological regime, since these will gap out the spin degree
of freedom on the dot. Suppose a quantum dot with a single level described by the annihilation operator
d is connected by a tunnel coupling �1 in the vicinity of Majorana �1, as sketched on Fig. 6. After
performing the unitary transformation in Eq. (1.54), the system is described by the Hamiltonian

Hd�pw = ✏d
†
d + EC

✓
2

i

@

@�
� ng

◆2

+
⇣
�1d

†
e
�i�/2

�1 + H.c.
⌘
. (1.60)

This Hamiltonian is obtained after projecting to the energetically lowest states, discarding processes
where the dot electron tunnels to or from continuum quasiparticle states3. After this projection, we have
also discarded the bare Hamiltonian of the p-wave superconductor, since the Majorana states have zero
energy. Transforming Eq. (1.60) by the unitary operator Ud = e

id
†
d�/2, and using

U
d
d
†
U

†
d
= d

†
e
i�/2

, U
d
dU

†
d
= de

�i�/2
, (1.61)

we find

U
d
Hd�pwU

†
d
= ✏d

†
d + EC
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= ✏̃d
†
d + EC
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†
�1 + H.c.

�
+ const. (1.62)

3
The tunneling amplitude �i in Eq. (1.60) is the result after this projection.
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Thus, the Coulomb blockade leads to a shift of the dot energy to ✏̃ = ✏+EC(1+2ng). In this gauge, Eq.
(1.62) allows for only having to consider the occupation of the zero mode and the dot. To understand
this, note that the number basis states have been transformed to

|N,n12, ndi ! |�, n12, ndi0 ⌘ UdU |�, n12, ndi = e
i�(nd+n12)/2|N,n12, ndi, (1.63)

where we denoted the occupation of the zero mode and dot by n12 and nd, respectively. The term in the
Hamiltonian �id†�i +H.c. connects states with the same charging energy but with a different number of
Cooper pairs. To see this, we explicitly calculate

d
†
�1|N, 0, 0i00 / |N, 1, 1i = e

�i�
UdU |N, 1, 1i = |N � 1, 1, 1i0, (1.64)

where we used that e
±i� is the translation operator for N by ±1. Similar calculations show

d�1|N � 1, 1, 1i0 / |N, 0, 0i0,
d
†|N, 0, 1i0 / |N, 1, 0i0,

d�1|N, 1, 0i0 / |N, 0, 1i0. (1.65)

Apparently, the Cooper-pair number is a slave to nd and n12, and the Hamiltonian is block-diagonal,
with the block corresponding to the parity of the dot and the Majorana mode. Also, the charging energy
only differs between these blocks, with the eigenvalue EC(N�ng)2 in the even block and EC(N+1�ng)2

in the odd. The conclusion is, that if charging energy dominates and ng is tuned to an integer, the effect
of the charging energy is simply to restrict the Hilbert space to a two-level system, and the Cooper pairs
can be forgotten.

Having discussed all the necessary ingredients, we are finally ready to introduce the Majorana box

qubit [63], which is displayed on Figure 5. It essentially consists of two parallel Majorana nanowires,
connected by an s-wave superconducting backbone. The system has four Majorana zero-energy states
�1, �2, �3 and �4 and it has a large overall charging energy, meaning that ground state space is subjected
to the parity constraint �1�2�3�4 = ±1. Throughout this thesis, we will always assume that the charging
energy is sufficiently large to completely protect it from quasiparticle poisoning from the outside. Thus,
for example if the overall parity is even, we could choose the basis for the ground states given by
{|00i, |11i}, where |n12n34i is defined through the occupations of the two independent fermionic modes
corresponding to the Majorana pairs �1, �2 and �3, �4. We use the Pauli algebra defined in Eq. (1.16).

This architecture is not useful for implementing operations where Majoranas are physically braided
around one another. Rather, initialization, readout and manipulation of the Majorana box qubit involves
carefully controlling couplings to external quantum dots with single electronic levels. An intuitively
simple way to implement Pauli operations on the system is outlined in panel a) of Figure 7. The
idea is to couple quantum dots to the system and carefully tune dot levels so an electron is forced to
tunnel through, resulting in a tunneling braid operation [29]. It is important that only a single state is
hosted by the quantum dot. Since sequential tunneling is energetically unfavorable, owing to the large
charging energy, the dominant contribution is due to co-tunneling. Close to the boundaries, the electron
annihilation- and creation operators may be written in terms of the corresponding Majorana mode and
the continuum quasiparticles. If the energy gap is large, the dominant contribution will involve only the
Majoranas, and the tunneling braid results in the action of a Majorana bilinear on the Majorana box
qubit ground states, meaning that the Pauli operation in Eq. (1.16) may be implemented. In Figure 7
panel a) the left dot is coupled to two Majoranas �1 and �2 through tunable tunnel couplings �1 and
�2. The right dot is just connected to one Majorana �3. Suppose the left dot is initially occupied while
the right dot is empty. By slowly tuning the dot levels ✏L/R, the final state can be made to have the
right dot occupied and the left empty. If �2 = 0, the only way for the left dot to co-tunnel through the
system is via �1 and �3, and thus the state of the qubit is transformed by �1�3 / �x. If both tunnel
couplings �1,�2 6= 0 then the co-tunneling process instead applies a superposition of �1�3 and �2�3.
The relative weight can be controlled by the relationship |�1/�2| and the phase can be controlled by
inserting a magnetic flux � through the resulting loop, see Figure 7a). Such a general transformation is
not topologically protected.

The drawbacks of this method is that it relies on very acute control of both the quantum dot energies,
the tunneling amplitudes as well as the phases. It turns out, however, that if we know how to measure
and initialize the parity of a Majorana pair, then all braiding operations may be implemented through a

18



Figure 7: Control of a Majorana box qubit using quantum dots. All dots are assumed to host only a
single electronic level.
Panel a) shows a proposed way of implementing Pauli operators as well as arbitrary rotations of the box
qubit state. Two quantum dots are connected to the qubit. The left is connected to both �1 and �2 with
tunneling amplitudes �1 and �2, respectively, and a magnetic flux � is inserted in the loop, resulting
in a non-zero complex phase between the tunneling amplitudes. The right dot is connected to just �3.
By slowly adjusting the two dot energy levels, ✏L/R, an electron can be made to co-tunnel through the
system. Co-tunneling is dominant because of the large charging energy. If �2 = 0 the process applies
the operator �1�3 / �x on the state of the box qubit. For non-zero �2, arbitrary linear combinations of
�1�3 and �2�3 can be achieved, although these operations are not topologically protected.
Panel b) depicts a setup used for measuring the parity i�1�2. A quantum dot is tunnel coupled to both �1
and �2, splitting the ground state degeneracy. The energies of the system depend on the combined parity
of the dot and the coupled Majorana pair, which is a conserved quantity. Measuring the dot occupation
through a fermion-number preserving interaction with a readout device will reflect this joined parity.
Thus, measuring dot population gives a projective measurement of the joined dot- and Majorana pair
parity. Lastly, by adjusting the dot energy level ✏ to empty or fill the dot, the system can be prepared
in a specific parity state.
Panel c) depicts a setup for performing the measurement-based braiding B12 = (1��1�2)/

p
2 using quan-

tum dots. To do so, an auxiliary Majorana pair �a and �b needs to be introduced, sharing a common
charging energy with the box qubit. This is achieved through another Majorana nanowire, connected
through an s-wave superconductor with the box qubit. The braid can be performed by measuring the
parities i�a�b, �a�1 and i�2�a and postselecting for the positive outcomes. To accommodate these mea-
surements, three quantum dots are tunnel coupled to the respective Majoranas, so the above-mentioned
protocol of measuring the pairities may be used.
Panel d) shows a setup for measuring the joint parity �3�4�5�6 of two separate Majorana box qubits.
This effect is achieved by tunnel coupling one dot to �3 and �5 and another dot to �4 and �6. Let’s
say that the bottom dot has a very high energy. Then the leading non-trivial process co-tunnels an
electron all the way around in the loop, implementing the operator �3�4�5�6. Thus, the energy of the
system depends on the combination of this number and the dot occupation, and by measuring the top
dots occupation, the joint parity may be projectively measured. Such a measurement can be used for
implementing a measurement-based entanglement generating gate on the two qubits.
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process called measurement-based braiding [44, 49, 61, 63, 76], which we will elaborate on below. Thus,
if we know how to read out Majorana parities, we can also initialize and perform all one-qubit Clifford
gates, and we will therefore begin with elaborating on how such a readout is envisioned.

To read out the parity of a Majorana pair, one must first find a way to break the degeneracy of the
ground state. One of the most commonly suggested strategies is to connect a quantum dot to a Majorana
pair in a tunable way, as shown in panel b) of Figure 7. Once a quantum dot has been connected, the
parity of the Majorana pair is no longer a good quantum number, since the combined Dirac fermion is
free to tunnel to and from the dot. The combined parity s = (�1)nd+n12 of the dot and the Majorana
pair is, however, still a good quantum number. If the dot energy is ✏ and the dot state is tunnel coupled
to �1 and �2 with tunneling amplitudes �1 and �2, then the energies of the combined dot and box qubit
is

E
s

± =
✏

2
±
r
✏2

4
+ |�1|2 + |�2|2 � 2s Im(�1�⇤2). (1.66)

Thus the ground state energy is split only if there is a non-zero complex phase between �1 and �2,
which can be ensured by applying a magnetic flux � through the loop. Since only the dot occupation
depends on ✏, the expected dot occupation hndi = hdH/d✏i. So, for instance at zero temperature, the
dot expectation is found from the derivative of the energies E

s

� with respect to ✏. If the initial parity of
the dot is known, fermionic-parity conserving interactions on the dot will tend to decohere the Majorana
system, leading to a projective measurement of the combined parity of the dot and the Majorana pair.
If the coupling is in such a way that it is sensitive to hndi the value of s can be read out. If the dot is
finally decoupled in a way that leaves it in a state of definite occupation, then a readout can be infered
on the isolated Majorana system. The details and dynamics of how this happens, including an explicit
modeling of measurement devices, is the subject of Project A in Chapter 2. Here we also discuss the
statements above regarding the energies of the Majorana box qubit split by a dot in detail. It is also
possible to read out the quantum capacitance of the dot

⌦
d
2
H/d✏

2
↵
. This can be done dispersively, by

driving the system far away from resonance, so no transitions are caused in the box qubit system. A way
to understand this readout physically is that the capacitance corresponds to the boundary conditions
for a reflected wave. A high capacitance leads to a phase shift of ⇡, just like how sound waves reflect
with a phase shift at the end of an open tube, while a small capacitance does not lead to a phase shift.
By measuring the phase shift, the value of s can be deduced. If there is dissipation in the system, the
amplitude reduction of the reflected wave can also be used as a readout.

Understanding how to read out Majorana parities, we are now in position to understand how
measurement-based braiding can be implemented physically. We here present a conceptually simple
argument put forward by Vijay and Fu [76]. Figure 7c) shows a setup for implementing the braiding
operation B12 using the process described above for reading out parities via quantum dots.

Measurement-based braiding takes an additional ancillary pair of Majorana states �a, �b connected
with the box-qubit, meaning the 6 Majoranas share a common charging energy. Perhaps it is not a priori
obvious why the Majorana may be braided through a measurement scheme. Physically, it originates
from a topological relation between non-trivial fusion rules and non-trivial braiding statistics. If we
define the operators P

±
ij

= (1+ i�i�j)/2, which project onto the ± eigenstates of i�i�j , then we have for
i, j = 1, . . . 4

P
+
ab
P

+
ai
P

+
ja

=
1

8
(1 + i�a�b � �i�j(1 + i�a�b) � i�i(�a � i�b)) + i�j(�a � i�b). (1.67)

The measurement-based braiding scheme requires the ancillary Majorana pair to be initialized in a state
with definite parity as well as post-selecting for of the outcomes of intermediate measurements. The
latter means that specific outcomes of the measurements are required for the braiding to work. Since the
measurement outcomes are known, it is also known whether the measurement-based braid was successful
or not, and there are ways to undo undesirable measurements without starting all over in a complicated
braiding operation. Suppose the initial state of the four logical Majoranas �1, . . . , �4 is | i and the
ancillary Majorana pair is initialized in the state |i�a�b = +1i. The punchline is now simply that

P
+
ab
P

+
ai
P

+
ja

| i|i�a�b = +1i / 1p
2
(1 � �i�j)| i|i�a�b = +1i = Bij | i|i�a�b = +1i. (1.68)

This implies that if i�j�a, i�a�i and i�a�b are subsequently measured in that specific order and the
measurement outcomes are all +1, then the effect is the same as braiding �i and �j . The mismatch in

20



normalization in Eq. (1.68) simply has to do with the important fact, that measurements in quantum
mechanics always require a normalization by hand after the measurement4. Importantly, since all the
measurements include �a, if the undesirable outcome �1 is returned by any of the measurements, it is
always possible to recreate the state before the measurement by measuring an appropriate Majorana
bilinear. For example, suppose i�j�a returns the unwanted outcome P

�
ja

. Then observe

P
+
ab
P

�
ja

| i|0iab =
1

4
(1 + i�a�b � i�j�a � i�a�ji�a�b)| i|0iab / | i|0iab, (1.69)

so if i�a�b is measured with the outcome +1, then the unwanted measurement i�j�a = �1 is undone.
This potentially implies a bit of back-and-forth action when doing measurement-based-braiding, but
since the speedup from doing quantum computation is exponential, this should not be a major concern
in practice.

In Figure 7c) a setup is shown which allows the measurement-based braiding of �1 and �2. The top
dot connects the distant Majoranas �a and �b, which may be infeasible to do in a coherent manner, since
the tunnel junctions have to be long. To circumvent this problem, one can use a separate Majorana
nanowire, which can function as a non-localized quantum dot, allowing for short tunneling junctions at
the end. This is possible because transport through Majorana nanowires is coherent [31].

For building a quantum computer, one can either do the non-Clifford gate, like T -gate, using magic
state distillation [44] or using the possibility of arbitrary rotations by tunneling braiding [29, 63]. The
only missing ingredient now for universal quantum computation is an entangling operation. One way to
do so is analogous to measurement-based braiding[44], and it requires the ability to measure the joint
parity �3�4�5�6 of four Majoranas. A schematic for how to do this is shown in Figure 7, panel d).
Here, two Majorana box qubits are connected through two quantum dots. Each dot connects to just one
Majorana from each qubit and it is assumed that no tunneling happens from one dot to the other. If one
of the dots is tuned close to resonance and the other is tuned to a very large energy, comparable with
the charging energy, then transport from the resonant dot through the qubits happens by co-tunneling
processes through all Majoranas and the dot. This means that the energy of the combined system
depends on the value of �3�4�5�6, and, similarly to the Majorana pair parity readout, one can read out
the joint parity of the four Majorana by measuring either the charge or capacitance of the dot close to
resonance. Defining the joint parity projection operator P±

3456 = (1⌥�3�4�5�6)/2, an explicit calculation
shows

W3456 ⌘ P
+
ab
P

+
a3P

�
3456P

+
b3P

+
ab

/ (1 � i�3�4�5�6), (1.70)

and the controlled Z gate C(Z) can then be formed in conjunction with braiding as [44]

C(Z) = B12B56W3456. (1.71)

Thus, complete scalable quantum computation is possible with Majorana box qubits.
In Project B and C, we will investigate the decoherence properties of Majorana box qubits when they

are subject to electromagnetic fluctuations, but are otherwise ideal. With this is meant that they are
perfectly protected from quasiparticle poisoning and the wires are infinitely long with neither overlap,
nor errors inside the ground state space originating from excited quasiparticles propagating down the
system from Majorana to Majorana and implementing Pauli errors. To get a better feeling for what is
known regarding the dephasing properties of Majorana qubits, in the next section we give a brief and
non-extensive review of the results from previous studies.

1.5 Dephasing mechanisms for Majorana qubits
We have already encountered one source of dephasing in the previous section in the context of Majorana
parity readouts. This happened when a quantum dot was coupled to two of the four Majorana zero modes
of a Majorana box qubit (MQB), splitting the degerency and converting the parity degree of freedom
to charge. Fluctuating electromagnetic fields in an environment or measurement apparatus could then
destroy the coherence between the different parity sectors of the Majorana system. An example which
is studied in detail in Project A of Chapter 2 has the quantum dot capacitively coupled to a quantum
point contact (QPC). The conductance through the QPC then depends on the charge of the dot. In

4
This innocent-looking fact is at the heart of the ”measurement problem”.
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this example, fermions never enter the system, which is important, since the readout procedure hinges
on fermionic parity of the combined dot-MBQ system being constant. A different setup has also been
proposed [63, 66] where the current is allowed to pass through the system. Here, two quantum dots are
tunneling coupled to one Majorana each. A flux � is inserted through the loop defined by the MBQ and
the two dots. In this system, when a current runs into one dot and out the other, the electrons will either
pass directly from dot to dot, or they will co-tunnel through the MBQ, picking up a phase depending on
the parity of the Majorana pair. The interference between the two paths leads to a detectable difference
in conductance depending on the state of the qubit, and since the degeneracy of the qubit is lifted, the
state dephases to one where the coupled Majorana pair has a definite parity.

The dephasing mechanisms discussed above are all intentional, reflecting the need of the experimenter
to collapse the wavefunction at will. They can theoretically be switched off when this is wanted. Not all
sources of dephasing are wanted though, but reflect obstacles that any useful implementation will have
to overcome. The goal is to engineer the system so the dephasing times from all sources are long enough
that all relevant experiments may be run on a much shorter time scale.

One dephasing mechanism is qualitatively related to the readout procedure detailed in the previous
section. When a Majorana nanowire has a finite length, the two Majorana states will overlap, and this
generically splits the degeneracy and gives charge to the Dirac fermionic state composed of the two
Majoranas. Analogously to how the charge of the dot could couple to electromagnetic fluctuations in the
environment, so can the charge of the zero-mode in small systems. Interestingly, interactions between
such Majorana overlap and bound charges in dielectric surroundings have been theoretically predicted
to push the charge and energy of the Majorana modes towards zero [24]. With this in mind, Knapp et

al. studied decoherence due to couplings to the dipole moment of the overlapping Majoranas [48] and
found that the dominant source of dephasing then is 1/f noise. Theoretically, the lifetime could thus
potentially be significantly extended by implementing a form of spin-echo procedure, which is efficient for
1/f noise [20]. Since the Majorana overlap is exponentially suppressed in the system size, the coherence
time increases exponentially with the length of the wires.

The large charging energy of the Majorana systems was imposed in order to restrict quasiparticle
poisoning, where fermions from the environment tunnel into the Majorana system and flips the par-
ity. Some degree of quasiparticle poisoning is unavoidable, however. An early study that theoretically
investigated the rate of quasiparticles entering from the outside was carried out by Rainis et al. [67].
They point out, that even though the population of quasiparticles should be exponentially suppressed
in the ratio between the superconducting gap and temperature, the lifetime of the quasiparticles scale
inversely with this, and thus if the tunneling rate is sizable at low temperatures, even though there
will tend to be few quasiparticles around, those that are there will have a long time to wreak havoc by
tunneling into and out of the Majorana system. As experiments have been catching up since then, a
better grasp of the issues of quasiparticle poisoning has since been established. Through observations
of negative differential conductance, Higginbotham et al. [40] estimated a parity lifetime of & 0.1µs in
their nanowire sample. Later, Albrecht et al. [3] put a more optimistic bound of a parity-state lifetime
of & 1µs for strongly coupled systems. By comparing the expected 2e-periodic conductance peaks for a
Coulomb blockaded nanowire with ”shadow peaks”, off-set by 1e corresponding to sequential tunneling
through the sub-gap state which is occupied there unless a quasiparticle is excited, they were able to fit
a model which bounded the lifetime for weakly coupled systems by & 10µs.

Quasiparticle poisoning doesn’t need to originate from outside quasiparticles tunneling into the sys-
tem. For example, it is possible for environment phonons or photons to excite a single quasiparticle and
flip the parity of a zero-energy state. In finite-size systems, this can lead to logical errors if the quasipar-
ticle then recombines with a different Majorana. However, it is also a source of error in otherwise ideal
systems of infinite size. We will be investigating the latter type of error in detail in Chapter 3 and 4.

Two early studies of such errors are due to Schmidt et al. in 2012 [69] and Shih-Hao et al. in 2014 [41].
The former uses a Markovian treatment by adopting a Lindblad formalism, while the latter retains some
aspects of non-Markovianity by applying a Feynman-Vernon influence functional approach. In Chapter
4, we will recover many of their qualitative conclusions, and our model will also allow for a calculation
of the non-Markovian dynamics at zero temperature, which leads to a qualitatively new source of errors.

If the chemical potential fluctuates throughout the system, localized Andreev bound states may
appear in the vicinity of Majoranas. In that case, the energy of the excitations is much lower, and errors
are much more likely to happen. Such a system was studied by Aseev et al. in 2018 [10], who showed
that non-uniform chemical potentials may drastically limit the lifetime of Majorana qubits, which could
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provide a serious challenge for proposed braiding experiments that use varying chemical potentials as a
means to move the Majorana zero modes.

Lastly, a recent paper suggests that the dephasing dynamics of Majorana box qubits may depend
qualitatively on the topological nature of the system, and that studying dephasing times could serve as a
first test of whether the zero modes are really Majorana bound states, or rather non-topological Andreev
bound states with energies close to zero [55]. This study suggests that an experimental investigation
of the dephasing dynamics of Majorana qubits should perhaps be a near-time goal which could provide
more evidence to the topological nature of the found zero-energy modes.
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2 Open quantum systems

One of the most famous features of quantum mechanics is that coherence between different states is
destroyed in measurements and that the outcome is probabilistic. The so-called measurement problem
of how one can possibly get to a probabilistic outcome from a deterministic theory was a very divisive
problem in the early days of quantum mechanics, and to some extent still is. But a mathematical
theory has since been formulated that seems to now satisfy most physicists, and which forms the basis
of our modern understanding of quantum measurements. This is the theory of open quantum systems.
Although it doesn’t decisively solve the measurement problem [2], it’s a beautiful and powerful theory
that treats the classical world on equal footing as the microscopic and shows that no new physics than
the Schrödinger equation is needed bridge the gap between the two. It relies on the simple observation
that when a quantum system S interacts with an environment E, entanglement between the two builds
up leading to a non-unitary time evolution of S. If the environment consists of many more degrees of
freedom than the system, this has the effect of giving the system a classical behaviour by destroying the
quantum coherence in the system. The state is then said to decohere. Sometimes, a distinction is made
between relaxation, where states evolve towards lower energy and as such is often thermal in nature,
and dephasing, which purely concerns the coherence. In that case decoherence is a common term for
both processes. We will use the words decoherence and dephasing synonymously. A substantial part
of the work in this thesis is concerned with the dynamics of open quantum systems and the resulting
decoherence.

The system S and the environment E are described by Hamiltonians HS and HE , respectively, which
act on Hilbert spaces HS and HE . The coupling is mediated by a Hamiltonian HI , which generates
the entanglement. The object of interest is the reduced density matrix ⇢S , whose time dependence is
governed by the dynamical map

⇢S(t) = trE [⇢(t)] = trE [U(t, t0)⇢(t0)U
†(t, t0)], (2.1)

with the time evolution operator

U(t, t0) = e
�i(HS+HE+HI)(t�t0), (2.2)

when all Hamiltonians are time-independent. At some initial time t0, the density matrix ⇢(t0) on the
full Hilbert space is often taken to be a product state on HS ⌦ HE , allowing us to write

⇢S(t) = trE [U(t, t0)⇢S(t0) ⌦ ⇢E(t0)U
†(t, t0)], (2.3)

where ⇢E(t0) is the initial state of the environment. Because of the entanglement generated by HI , the
time evolution of the reduced density matrix is in general not unitary, which can lead to decoherence of
the system.

An important distinction in the theory of open quantum systems is whether the dynamics is Markovian
or not. The physical intuition for Markovian dynamics is when the environment doesn’t have a substantial
memory. In this case, the equations of motion are vastly simplified. Simply imposing a Markovian
approximation can break unitarity on the combined system, leading to unphysical behaviour especially
at late times. This problem can be avoided if the equation of motion of the reduced density matrix
can be cast into Lindblad form. In Project A of Chapter 2 we will apply a novel approximation which
guarantees Lindblad form. This approximation has been highlighted a few times over the last couple of
years [46, 59], and has recently been put on a solid theoretical footing by Nathan and Rudner [60].

In Project C, we use the more familiar Bloch-Redfield theory. Here, we will be both interested
in decoherence at finite temperature, which is well-described by a Markovian approximation, but also
in entanglement build-up due to quantum fluctuations at zero temperature. For the latter purpose,
Markovian approximations break down.

In the following sections we will review the techniques that we need for those two projects. But first,
let us address the concept of Markovian dynamics of open quantum systems in some detail.

2.1 Markovian master equations
Physically, the dynamics of an open quantum system is said to be Markovian when the environment has
very short memory compared to the characteristic time scales of the system. This implies that the rate
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of change in the state of the system doesn’t depend on its history, which again means that entanglement
build-up does not contribute to the change in the system state, and that the change is therefore not
dominated by virtual processes. Formally, the dynamics of a quantum system is said to be Markovian
when the equations of motion of the reduced density matrix ⇢S(t) is time-local, meaning that we may
write

⇢̇S(t) = L(t)⇢S(t), (2.4)

where L(t) is the Liouvillian superoperator, acting on ⇢S(t) with operator multiplication from both sides.
In the literature, a Markovian equation of motion is often called master equation. The master equation
(2.4) is a simple differential equation and has the formal solution

⇢S(t) = T e

R t
t0

dsL(s)
⇢S(t0), (2.5)

where T denotes time ordering,

T A(t1)B(t2) = ✓(t1 � t2)A(t1)B(t2) + ✓(t2 � t1)B(t2)A(t1), (2.6)

for arbitrary superoperators A and B. We will only need the theory for cases where HS , HE and HI are
all time-independent, so we assume this from now on. This implies that the Liouvillian L also becomes
time-independent. The dynamical map ⇢S(t0) 7! ⇢S(t) needs to preserve Hermiticity, trace and complete
positivity. As proven by Lindblad [52], this turns out to be true for Markovian systems if and only if the
Liouvillian has a very particular form, called Lindblad form. The Lindblad form is defined by

LO = �i[H,O] +
X

k

�k

✓
�1

2
{L†

k
Lk,O} + LkOL

†
k

◆
, (2.7)

where the decay rates �k are non-negative and the ”jump operators” Lk are traceless and orthonormal
in the sense that

tr[L†
i
Lj ] = �i,j . (2.8)

It’s straightforward to see that Eq. (2.7) preserves Hermiticity and trace, but it is more suprising a priori
that complete positivity is also quaranteed.

Many established approximations, such as the Bloch-Redfield master equation which we will turn to
in Section 2.2, do not guarantee a Lindblad form. Sometimes this is not a big problem, since unphysical
behaviour, such as having an eigenvalue of L with a small positive real value, most often appears at
late times. But depending on which questions are being asked, it is potentially dangerous not to have
the time-evolution on Lindblad form. A standard remedy is to apply further system-dependent approx-
imations that enforce the Lindblad form. The rotating-wave approximation is a famous example [15].
Alternatively, when such approximations are not applicable, phenomenological models are often used,
where jump operators are derived for instance based on detailed balance.

The Lindblad form (2.7) may seem peculiar at first glance, but to see how it naturally emerges in
Markovian dynamics, for the rest of this section we will present an argument [65, 72], which shows how
any Markovian time evolution due to time evolution of the form in Eq. (2.3) must be writable using a
Lindblad form5.

The argument begins by noting that the time evolution in Eq. (2.3) has a neat operator expansion in
terms of so-called Kraus operators. If {|bji}dimHE

j=1 is an orthonormal basis of HE diagonalizing ⇢E(t0),
then we may write

⇢(t0) =
X

j

�j⇢s(t0) ⌦ |bj ih bj | , (2.9)

where {�j} are the eigenvalues of ⇢E(t0). This may be used to rewrite Eq. (2.3) for the time evolution
of the system’s reduced density matrix as

⇢S(t) =
X

k,p

Ak,p(t, t0)⇢S(t0)A
†
k,p

(t, t0), (2.10)

5
Note that this argument doesn’t prove the more useful true statement that Lindbladian time-evolution implies com-

pletely positive and trace-preserving dynamical map.
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where the Kraus operators Ak,p(t, t0) are defined by

Ak,p(t, t0) =
p
�phbk|U(t, t0)|bpi. (2.11)

Note that the Kraus operators are unital
X

k,p

A
†
k,p

(t, t0)Ak,p(t, t0) =
X

k,p

�phbp|U †(t, t0)|bkihbk|U(t, t0)|bpi = 1S , (2.12)

and they depend on the initial state. We wish to construct a similar operator expansion for infinitesimal
time evolution from any later time t1 > t0. The above Kraus operators were derived from a product
state, but at later times the system will be entangled with the environment. There still exist Kraus
operators for the time evolution starting from ⇢(t1), which is not a product state. This can for instance
be seen by using Stinespring’s dilation theorem, which posits the existence of an auxiliary Hilbert space
H̃, a pure state |1̃i 2 H̃, and a unitary operator Ũ(t, t1) such that

⇢S(t) = trH̃[Ũ(t, t1)
�
⇢S(t1) ⌦ |1̃ih1̃|

�
Ũ†(t, t1)], (2.13)

which, completely analogous to the case above, implies the existence of Kraus operators {Ãk(t, t0)} such
that ⇢S(t) =

P
k
Ãk(t, t1)⇢S(t0)Ãk(t, t1). These Kraus operators are again unital,

X

k

Ã
†
k
(t, t1)Ãk(t, t1) = 1S , (2.14)

just as in the unentangled case. Since the Hamiltonian is time-independent, if the dynamics is Markovian,
we should expect to recover a simple differential equation for ⇢(t), and we may get this by using the
Kraus operators to implement an infinitesimal time increment,

⇢S(t+ dt) =
X

k

Ak(dt)⇢S(t)Ak(dt), (2.15)

and only keep contributions linear in dt, before taking the limit dt ! 0. Comparing it with a Taylor
expansion of Eq. (2.1) for infinitesimal time evolution,

⇢S(t+ dt) =
X

k

hbk|U(t+ dt, t)⇢(t)U†(t+ dt, t)|bki

⇡ ⇢S(t) � i

X

k

hbk| [H, ⇢(t)] |bkidt, (2.16)

we see that the Kraus operators may consist both of non-trivial operators acting from only one side, but
also operators acting from both sides, implying that Ak(dt) has contributions proportional to

p
dt. For

convenience, we may collect all terms proportional to the identity as well as all terms linear in dt in one
of the Kraus operators, say A0(t+ dt, t), and write

Ak=0(dt) = 1 + dt(�iHL +K), (2.17a)

Ak 6=0(dt) =
p
dtLk, (2.17b)

where H
†
L
= HL is an effective Hamiltonian generating unitary evolution for ⇢S(t), and K

† = �K. Eqs.
(2.17) imply that

⇢S(t+ dt) = ⇢S(t) + dt

 
�i[HL, ⇢S(t)] + {K, ⇢S(t)} +

X

k>0

Lk⇢S(t)L
†
k

!
, (2.18)

and using unitality, Eq. (2.14), we see that

K = �1

2

X

k>0

L
†
k
L
k
. (2.19)
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Taking dt ! 0 gives the Lindblad equation

⇢̇S(t) = �i[HL, ⇢S(t)] +
X

k>0

✓
�1

2
{L†

k
L
k
, ⇢S(t)} + L

k
⇢S(t)L

†
k

◆
. (2.20)

The orthogonality of Lk can be established from the fact that the Kraus operators may always be chosen
to be orthogonal. Thus, we see that when open quantum systems are governed by a Markovian master
equation, it has to be on Lindblad form. If one forces time-evolution into a Markovian form in a way
that does not yield a master equation on Lindblad form, there is a risk of having secular terms which for
instance can lead to an exponentially slow growth of the density matrix elements, leading to a useless
theory for late time behaviour.

In the following section, we will review the Bloch-Redfield theory of open quantum systems. This will
be useful for deriving a Markovian theory, which will have Lindblad form only in a limited set of cases,
but luckily one that applies to Project C. The theory allows for calculating non-Markovian dynamics of
open quantum systems, which we will also need in Project C. It should be noted, however, that since
there is no equivalent to Lindblad’s theorem for non-Markovian evolution, one should be wary of model
breakdown at late times.

2.2 Bloch-Redfield theory
In the previous section, we took an abstract view on what Markovian dynamics entails, and in this section
we will review a commonly used Markovian approximation. The discussion on the validity is saved for
the next section, where we will review the recent work by Nathan and Rudner [60]. In this section, we
will develop the standard Bloch-Redfield master equation for the reduced density matrix ⇢S(t).

We write the time-independent Hamiltonian H as

H = H0 +HI , (2.21)
H0 = HS +HE , (2.22)
HI = X�, (2.23)

where HS and HE are quadratic Hamiltonians acting on the system and environment, respectively, and
HI is for simplicity taken to be a product of Hermitian operators X and � acting on on the system and
environment, respectively. We will also assume that � is linear in the creation/annihilation operators
corresponding to the environment modes. The quadratic bath is characterized purely by its two-point
correlation function B(t) in these creation/annihilation operators. We take an initial product state

⇢(t0) = ⇢S(t0) ⌦ ⇢E(t0), (2.24)

assuming that ⇢E is a steady state of HE . Thus, the correlation function is defined in the interaction
picture as

B(t � t
0) = h�(t)�(t0)i = trE [�(t)�(t0)⇢E ], (2.25)

where we take the interaction picture with respect to the interaction HI , meaning

�(t) = e
iHEt�e�iHEt

. (2.26)

The environment may be either fermionic or bosonic, and we denote the annihilation operator of the
environmental modes by aq. In terms of these, we write

HE =
X

q

!qa
†
q
aq, (2.27a)

HI =
X

q

X(Mqaq ± M
⇤
q
a
†
q
), (2.27b)

with the convention of + in Eq. (2.27b) for bosons, and � for fermions. We take !q � 0 for simplicity
and stress that the operator X acts only on the system and not on the bath. In the interaction picture
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the Heisenberg equation of motion gives aq(t) = e
�i!qtaq. Thus, we have

B(t) =
X

q,q0

D�
e
�i!qtMqaq ± e

i!qtM
⇤
q
a
†
q

� ⇣
Mq0aq0 ± M

⇤
q0a

†
q0

⌘E

= ±
X

q

|Mq|2
�
e
i!qt

⌦
a
†
q
a
q

↵
+ e

�i!qt(1 ±
⌦
a
†
q
a
q

↵
)
�
. (2.28)

This may be conveniently expressed in terms of the spectral function (or density of states)6

J(!) =
X

q

|Mq|2 �(! � !q). (2.29)

In thermal equilibrium at temperature 1/�, we have

⌦
a
†
q
a
q

↵
=

(
nB(!) : bosons
nF(!) : fermions

, (2.30)

where the Bose and Fermi functions are defined as nB(!) = (exp(�!)�1)�1 and nF(!) = (exp(�!)+1)�1,
respectively. With this, B(t) becomes

B(t) =

Z 1

0
d!J(!)

(
e
�i!t(nB(!) + 1) + e

i!t
nB(!) : bosons

e
�i!t(1 � nF (!)) + e

i!t
nF (!) : fermions.

(2.31)

For bosons, a useful rewriting of the correlation function B(t) is

B(t) =

Z 1

0
d!J(!)

✓
coth

✓
�!

2

◆
cos(!t) � i sin(!t)

◆
, (bosons) (2.32)

and in frequency space, Eq. (2.32) becomes

B(!) =

Z 1

0
d⌫ J(⌫)

Z 1

�1
dte

i!t

✓
coth

✓
�⌫

2

◆
cos(⌫t) � i sin(⌫t)

◆

=
1

2

Z 1

0
d⌫ J(⌫)2⇡

⇣
�(! + ⌫) + �(! � ⌫)

⌘
coth

✓
�⌫

2

◆
�
⇣
�(! + ⌫) � �(! � ⌫)

⌘�

= ⇡

8
>><

>>:

J(!)
⇣
coth

⇣
�!

2

⌘
+ 1
⌘

: ! > 0

2��1 lim!!0
J(!)
!

: ! = 0

J(�!)
⇣
coth

⇣
��!
2

⌘
� 1
⌘

: ! < 0,

(bosons) (2.33)

where we used in the third line that
R1
0 d⌫�(⌫) = 1/2. In all situations we consider, J(!) will be ohmic,

meaning proportional to ! for small frequencies, so the limit in (2.33) is well-defined. Hence, we write

B(!) = ⇡J(|!|)sgn(!)
✓
coth

✓
�!

2

◆
+ 1

◆
, (bosons) (2.34)

which is a form we will see again in Chapter 2. When J(!) is an odd function, we will often absorb
the sgn(!) into J(|!|). As an example of an ohmic environment, in Chapter 2 we study the dynamics
when a split Majorana box qubit is subjected to a bosonic environment with the generic ohmic spectral
density J(!) = ! exp(� |!| /!c)/2, where !c is an ultraviolet cutoff. We may gain some intuition about
B(!) for bosons when we rewrite it as

B(!) = 2⇡J(|!|)sgn(�!)nB(�!). (bosons) (2.35)

The form of B(!) in Eq. (2.35) is suggestive that transition rates in the system due to the bath should be
proportional to B(!), since it contains both the density of states and the occupancy of the environment
modes. This is precisely what Fermi’s golden rule implies, and this observation is helpful in motivating

6
Note, that in Chapter 4, the spectral function is defined with an extra factor of ⇡.

28



the jump operators in the next section. We will return to discuss this in Section 2.3, but for now, we
note that B(!) is non-negative and is not an even function of !, which reflects the fact that for low
temperatures, transitions from higher to lower energetic states happen more frequently than the reverse.

Although we have included just a single coupling in Eq. (2.23), it is straightforward to generalize the
following theory to contain several distinct bath couplings Xi�i as long as the separate bath operators
�i commute.

The starting point for deriving the Bloch-Redfield master equation is the Heisenberg equation of
motion, written in the interaction picture as

⇢̇(t) = �i[HI(t), ⇢(t)]. (2.36)

Eq. (2.36) can be integrated to get

⇢(t) = ⇢(t0) � i

Z
t

t0

dt
0[HI(t

0), ⇢(t0)], (2.37)

which can be inserted back into (2.36), giving

⇢̇(t) = �i[HI(t), ⇢(t0)] �
Z

t

t0

dt
0[HI(t), [HI(t

0), ⇢(t0)]]. (2.38)

For initial product state defined in Eq. (2.24), we assume that

tr[�⇢E(t0)] = 0. (2.39)

We can then find a master equation for ⇢S(t) by tracing Eq. (2.38) over the environment degrees of
freedom:

⇢̇S(t) = �
Z

t

t0

dt
0 trE [HI(t), [HI(t

0), ⇢E(t
0)]]

⌘
Z

t

t0

dt
0�(t, t0)⇢(t0). (2.40)

The superoperator �(t, t0) is denoted the memory kernel, and the standard step is now to perform the
Born approximation, which amounts to approximating the density matrix under the integral in Eq. (2.40)
with a product state at all times, ignoring backaction on the environment. Since we assumed that ⇢E is
a steady state, the Born approximation implies taking the state

⇢(t) ⇡ ⇢S(t) ⌦ ⇢E (2.41)

for all times t in the integrand of Eq. (2.40). This results in a memory-kernel superoperator �B(t, t0) in
the Born approximation, acting just on the system’s reduced density matrix:

⇢̇S(t) =

Z
t

t0

dt
0�B(t, t

0)⇢S(t
0). (2.42)

The approximation is computationally very useful, since it implies that all terms in the integrand of Eq.
(2.40) are proportional to the environment correlation function either with B(t � t

0) or B(t0 � t).
We may conveniently write �B(t, t0) explicitly by introducing the following superoperator notation

[60]: For ordinary operators A and O, let ÂL/R denote the superoperator obtained by left/right multi-
plication of A with the sign convention

ÂLO = AO, (2.43a)

ÂRO = �OA, (2.43b)

where the sign is useful for notational brevity thanks to the commutators in Eq. (2.40). Using this
notation, along with the Einstein summation convention, we can write

�B(t, t
0) = �X̂µ(t)X̂⌫(t

0)Bµ⌫(t � t
0), (2.44a)

Bµ⌫(t � t
0) = trE [1̂µ1̂⌫�̂µ(t)�̂⌫(t

0)⇢E ]. (2.44b)
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Note that Bµ⌫(t) doesn’t depend on µ because of the cyclicity of the trace, and also that the role of the
identity operators is to adjust for the sign. Since B(�t) = B

⇤(t), we have

Bµ,L(t) = Bµ,R(�t) = B(t). (2.45)

Returning to the derivation, B(t) will tend to be a decaying function of |t| with some characteristic
time scale ⌧c. If t � t0 � ⌧c, we may extend the integration limit t0 to �1 in Eq. (2.42). This step is
often done to remove the dependency on t0, but it is strictly speaking not necessary. If ⌧c is very short
compared to the rate of changes in ⇢S(t), the only substantial contribution in the integrand of Eq. (2.40)
is picked up for t

0 ⇡ t. In that case we can implement a Markovian approximation by replacing ⇢S(t0)
with ⇢S(t) under the integral. With the full Born-Markov approximation, we arrive at the Bloch-Redfield
master equation

⇢̇S(t) = DR(t)⇢S(t), (2.46)

where the ”retarded”, or ”right”, dissipator is defined as

DR(t) =

Z
t

�1
dt

0�B(t, t
0). (2.47)

There is no a priori reason why Eq. (2.46) should necessarily be on Lindblad form, except in the special
case where HS = 0. This exception is relevant for Project C of Chapter 4 where H0 will describe an
ideal system of Majoranas, which are exactly at zero energy, and the quasiparticle states are treated as
separate fermionic environments. When HS = 0, the time-evolution of X is trivial, and therefore, in
superoperator notation, the retarded dissipator becomes time-independent and is given by

DR(t) = �X̂µX̂⌫

Z
t

�1
dt

0
Bµ⌫(t � t

0) = �X̂µX̂⌫

Z 1

0
dt

0
Bµ⌫(t

0), (2.48)

and writing Eq. (2.48) out in terms of regular operators yields the simple Lindblad form

DR⇢S = �i⌦[X2
, ⇢S ] + �

⇣
� 1

2
{X2

, ⇢S} +X⇢SX

⌘
, (2.49)

where we defined

Re
Z 1

0
dt

0
B(t0)

�
=

1

2
�, Im

Z 1

0
dt

0
B(t0)

�
= ⌦. (2.50)

The first term in (2.49) is a term that renormalizes the bare Hamiltonian HS , which is absent from
the commutator since we are using the interaction picture. When the environment is bosonic, this
renormalization is often denoted the Lamb shift. Strictly speaking, only the second term in Eq. (2.49)
should be referred to as the dissipator, since this is the part that contributes to non-unitary evolution of
⇢S .

If one were interested in non-Markovian dynamics, Eq. (2.42) serves as a useful starting point. After
switching to the Scrhödinger picture, the equation of motion is

⇢̇S(t) = �i[HS , ⇢S(t)] �
Z

t

t0

dt
0
h
Xe

�iHS(t�t
0)
X ⇢S(t

0) eiHS(t�t
0)
B(t � t

0)

+ e
�iHS(t�t

0)
⇢S(t

0) Xe
iHS(t�t

0)
XB(t0 � t)

� e
�iHS(t�t

0)
X ⇢S(t

0) eiHS(t�t
0)
XB(t � t

0)

� Xe
�iHS(t�t

0)
⇢S(t

0) Xe
iHS(t�t

0)
B(t0 � t)

i

⌘ �i[HS , ⇢S(t)] � (R̂ ⇤ ⇢S)(t), (2.51)

where (R̂ ⇤ ⇢S)(t) =
R
t

t0
dt

0
R̂(t � t

0)⇢S(t0) denotes convolution with respect to the initial time t0. The
convolution theorem for Laplace transforms may then be used to get

⇢S(s) � s⇢S(t0) = �i[HS , ⇢S(s)] � R̂(s)⇢S(s), (2.52)
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meaning

⇢S(s) = sK�1(s)⇢S(t0), (2.53a)

K(s) = 1 + R̂(s) � i

X

µ=L,R

(ĤS)µ. (2.53b)

While Eq. (2.53) is formally simple to write down, the inverse Laplace transform can be a nightmare
to evaluate, especially since the poles are not necessarily isolated. If one is only interested in the non-
Markovian effects at late times, a simplification can sometimes be to approximate K(s) by its form for
s ⇡ 0 and analytically continue to the whole complex plane, although one should be careful with branch
cuts. This can guarantee simple poles, but even so the problem may be intractable, especially at finite
temperatures. This method will be employed in Chapter 4 for Project C.

In Project A in Chapter 2 when we want to study the readout of a Majorana box qubit in the
Markovian limit, the technique in the preceding section is not useful, since it does not yield a Lindblad
form in that case. In the following section we will turn to the novel Lindbladian master equation, recently
treated by Nathan and Rudner [60]. Following their work, we also discuss error bounds for both the
Bloch-Redfield master equation and the effective Lindbladian approximation.

2.3 Effective Lindbladian approximation
In this section, we will discuss an effective Lindbladian master equation which we use in Chapter 2. The
approximation prescribes a specific jump operator L of the form

L =
X

m,n

p
B(En � Em)hm|X|ni |m ihn| , (2.54)

such that the dynamics is given by the master equation

⇢̇S(t) = L⇢S(t) ⌘ �i[HS +HLS , ⇢S(t)] +
�
�{L†

L, ⇢S(t)} + L⇢S(t)L
†�

, (2.55)

where HLS is the Lamb shift. The jump operator in Eq. (2.54) has been seen sparingly in the literature,
see for example [46, 59], and recently the approximation has been put on theoretically solid ground [60],
providing a strict bound for the error introduced by the approximation. Although this form may seem
surprising at first glance, it is actually quite natural since Fermi’s golden rule naturally follows. From
Eq. (2.55), the transition rate �a!b between two eigenstates |a ih a| and |b ih b| of HS becomes

�a!b =
d

dt
|hb|a(t)i|2

���
t=0

= hb|
�
L |a ih a|

�
|bi = |hb|X|ai|2 B(Ea � Eb). (2.56)

As an example, let us check that (2.56) exactly reproduces Fermi’s golden rule for the case of thermalized
bosons, with the bath- and coupling Hamiltonians given by (2.27a) and (2.27b), respectively, and where
the operators aq are bosonic fields. We denote the bath eigenstates by |{ni}i. If initially, the reduced
density matrix is ⇢S(0) = |a ih a| and the environment state is thermal, ⇢E(0) =

P
{ni} e

�
�E{ni}/ZE ,

then the transition probability Pa!b(t) is

Pa!b(t) = hb |⇢S(t)| bi =
X

{n0
j}

⌦
b, {n0

j
} |⇢(t)| {n0

j
}
↵

=
1

ZE

X

{ni},{n0
j}

e
��E{ni}

��⌦b, {n0
j
} |U(t)| a, {ni}

↵��2 , (2.57)

where U(t) is the time-evolution operator. To the lowest order in HI , we find the transition rate using
Fermi’s golden rule [16],

�a,{ni}!b,{n0
j} =

d

dt

��⌦b, {n0
j
} |U(t)| a, {ni}

↵��2 ⇡ 2⇡
��⌦b, {n0

j
} |HI | a, {ni}

↵��2 �(Eb + E{n0
j} � Ea � E{ni}).

(2.58)
With the coupling HI given by Eq. (2.27b), this can be shown to imply

�a!b = 2⇡ |hb |X| ai|2 J(|Ea � Eb|)sgn(Eb � Ea)nB(Eb � Ea). (2.59)
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If we use the expression for B(!) in Eq. (2.35), we recover the transition rate predicted by the effective
Lindbladian approximation in Eq. (2.56).

In Project A in Chapter 2, we make use of this Lindbladian approximation. The work was carried
out based on a private communication with Nathan and Rudner before the publication of their paper.
Since then, they have made some changes in the derivation, leading to a slightly different formula for the
Lamb shift than the one we use in our paper. The two formulas are not equal, but as they are based off
approximations whose validity is governed by the same small parameter, their difference should also only
be of that order. But because of the discrepancies, we will provide a sketch of their earlier derivation
leading to the formula for the Lamb shift used in Project A.

At the heart of the argument lies the observation that the standard implementation of Born-Markov
from the previous section is not unique. A whole family of Born-Markov approximations exist, all equally
valid in the following sense: The difference between the exact value of ⇢̇S(t) and that calculated through
any of these Born-Markov approximation is bounded by the same number. A special symmetric Born-
Markov approximation forms the basis from which a final approximation unveils the Lindblad form. As
we shall see, the validity of this final approximation depends on a different parameter than the other
Born-Markov approximations, however there exists a single quantity which serves as an error bound for
the Born-, Markovian- and effective Lindblad approximations.

The family of equivalent Born-Markov approximations can be derived by finding an ”advanced” version
of Eq. (2.46)

⇢̇S(t) = DA(t)⇢S(t), (2.60)

where the ”advanced” dissipator is

DA(t) =

Z 1

t

dt
0�B(t

0
, t), (2.61)

and showing that the advanced Born-Markov approximation is just as valid as the retarded. After this,
the family of Markov approximations can be parametrically formed by taking combinations of the form

D↵(t) = ↵DR(t) + (1 � ↵)DA(t), (2.62)

with ↵ 2 [0, 1]. The combination with ↵ = 1/2 is the above-mentioned symmetric case, from which the
final approximation can be done, obtaining a master equation on Lindblad form. Let’s first address what
is being meant by ”equally valid”. For all error analysis, a normalization is used such that ||X||  1 in
the singular value norm. This can always be achieved by rescaling �.

Nathan and Rudner show the following exact bound for the rate of change of the reduced density
matrix:

⇢̇S(t)  �0, (2.63)

�0 ⌘ 4

Z 1

0
dt |B(t)| . (2.64)

Note that �0 only depends on details of the environment. They then demonstrate that the Born approx-
imation introduces an error EB , which can be shown to be bounded as

EB  ⌧c�
2
0, (2.65)

⌧c ⌘ 4

�0

Z 1

0
dt t |B(t)| . (2.66)

The derivation of this error bound hinges on the environment being quadratic. The time ⌧c can be
thought of as a characteristic decay time of B(t), which can be heuristically verified in the special case
B(t) ⇠ �0

4⌧c
e
�|t|/⌧c .

The error bound for the Markovian approximation can be found by writing

⇢̇S(t) =

Z
t

t0

dt
0�B(t, t

0)⇢(t0) =

Z
t

t0

dt
0�B(t, t

0)⇢(t) +

Z
t

t0

dt
0�B(t, t

0)(⇢(t0) � ⇢(t)). (2.67)

The first term is what is kept in the Markovian approximation, and using the bound in Eq. (2.63), the
triangle inequality, as well as expression (2.44a), the norm of the second term can be shown also to be
bounded by ⌧c�20. The Markov approximation apparently entails an error of the same size as the one
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already made by invoking the Born approximation. Thus, the full Born-Markov approximation leading
to the Bloch-Redfield master equation (2.46) introduces an error

EM  2⌧c�
2
0. (2.68)

It is in this sense that the advanced Born-Markov approximation may be shown to be equivalent to the
retarded [60]; it comes with an error also bounded by EM .

We now to take the symmetric combination with ↵ = 1/2 and extend the integration limits to ±1,
which introduces a Lamb shift:

D1/2(t) =
1

2

Z
t

�1
dt

0�B(t, t
0) +

1

2

Z 1

t

dt
0�B(t

0
, t)

=
1

4

�
DR(t) + DA(t)

�
� i

4
(⇤R(t) + ⇤A(t)) . (2.69)

Here, we defined

DR =

Z 1

�1
dt

0�B(t, t
0), DA =

Z 1

�1
dt

0�B(t
0
, t), (2.70a)

⇤R(t) = i

Z 1

�1
dt

0
✓(t0 � t) (�B(t

0
, t) ��B(t, t

0)) , (2.70b)

⇤A(t) = i

Z 1

�1
dt

0
✓(t � t

0) (�B(t, t
0) ��B(t

0
, t)) , (2.70c)

where ✓(t) is the Heaviside step function. Using the expression for �B(t, t0) in Eq. (2.44a), the action
of the dissipator in (2.69) can be written as

D1/2(t)⇢S =
1

4

�
DR(t) + DA(t)

�
⇢S � i[HLS , ⇢S ], (2.71)

and the Lamb shift may be written as

HLS ⌘ 1

4
(⇤R(t) + ⇤A(t)) =

i

4

Z 1

�1
ds sgn(t � s)X(t)X(s)B(t � s) + H.c. (2.72)

Evaluating this term gives the Lamb shift we use in Project A. Before doing so, let us briefly comment
on how the derivation continues, as it is relevant for the error discussion. The square root in the jump
operators appear due to a rewriting of B(t),

B(t � t
0) =

Z 1

�1
dsg(t � s)g(s � t

0), (2.73)

where
g(t) =

1

2⇡

Z 1

�1
d!

p
B(!)e�i!t

. (2.74)

Starting from Eq. (2.71), the Lindblad form is uncovered by showing

D1/2(t)⇢S = L⇢S(t) + OL, (2.75)

where L is the Liouvillian superoperator from Eq. (2.55). The norm of the error term OL satisfies the
bound

||OL||  �J⌧J�0, (2.76)

where new time- and energy scales, defined through g(t) rather than B(t) have been introduced:

�J ⌘
✓Z 1

0
dt |g(t)|

◆2

, (2.77)

⌧J ⌘
R1
0 dt t |g(t)|
R1
0 dt |g(t)|

. (2.78)
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By now, we have two separate bounds that both need to be satisfied in order for the effective Lindblad
approximation to be valid. The first is the usual Born-Markov limit ⌧c�0 ⌧ 1, and the second is the
new condition ⌧J�J ⌧ 1. It is possible to express both bounds in terms of a single one. To see this, we
rewrite

�0 =

Z 1

0
dt |B(t)| 

Z 1

�1
dt

Z 1

�1
dt

0 |g(t � t
0)| |g(t0)| = �J , (2.79)

where we introduced the rate

�J =

✓Z 1

�1
dt |g(t)|

◆2

. (2.80)

Furthermore,

⌧c =
1

�0

Z 1

0
dt t |B(t)|  1

�0

Z 1

0
dt t

Z 1

�1
dt

0 |g(t � t
0)| |g(t0)|

 1

�0

Z 1

�1
dt

Z 1

�1
dt

0(|t � t
0| + |t0|) |g(t � t

0)| |g(t0)| = 2

�0
�J⌧J (2.81)

where

⌧J =

R1
�1 dt |t| |g(t)|
R1
�1 dt |g(t)|

. (2.82)

This implies that
�0⌧c  2�J⌧J , (2.83)

and also
�J⌧J  8�J⌧J . (2.84)

This means that if 8�J⌧J ⌧ 1, then both the Bloch-Redfield and the subsequent Nathan-Rudner ap-
proximation are valid. We emphasize that the above limits assume ||X|| = 1.

Finally, let us derive the expression for the Lamb shift, starting from Eq. (2.72). We write this
equation as

HLS(t) =
i

4
X(t)K(t) + H.c., (2.85)

where we introduced the function

K(t) =

Z 1

�1
ds sgn(t � s)X(s)B(t � s). (2.86)

We may rewrite K(t) by shifting the integrals, using the Fourier transforms X(⌫) and B(!) of X(t) and
B(t) and by using the fact that B(t) decays in order to shift the frequencies of B(!) with an infinitesimal
for explicit convergence of the integrals:

K(t) =

Z 1

0
dsX(t � s)B(s) +

Z �1

0
dsX(t � s)B(s)

=
1

4⇡2

Z 1

�1
d!d⌫X(⌫)

Z 1

0
dsB(! + i0�)e�i(t�s)⌫

e
�i(!+i0�)s +

Z �1

0
dsB(! + i0+)e�i(t�s)⌫

e
�i(!+i0+)s

�

= � i

4⇡2

Z 1

�1
d!d⌫X(⌫)


B(! + i0�)

! � ⌫ + i0�
+

B(! + i0+)

! � ⌫ + i0+

�
e
�i⌫t

= � i

2⇡

Z 1

�1
d⌫X(⌫)e�i⌫t

Q(⌫) (2.87)

Here, we defined

Q(⌫) ⌘ 1

⇡
P
Z 1

�1
d!

B(!)

! � ⌫
, (2.88)

where P denotes Cauchy principal value of the integral. Thus, we may rewrite the Lamb shift as

HLS(t) =
1

16⇡2

Z 1

�1
d⌫d⇠X(⇠)X(⌫)Q(⌫)e�i(⇠+⌫)t + H.c., (2.89)
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and using that X
†(⌫) = X(�⌫) as well as Q

⇤(⌫) = Q(�⌫) we find

HLS(t) =
1

16⇡2

Z 1

�1
d⌫d⇠X(⇠)X(⌫)e�i(⇠+⌫)t

�
Q(⌫) +Q(⇠)

�
. (2.90)

In the eigenbasis {|mi} of H0, we can rewrite this in the Schrödinger picture as

HLS =
1

4

X

m,l,n

hm |X| li hl |X|ni
�
Q(Em � El) +Q(El � En)

�
|m ihn| , (2.91)

which follows from the fact that

X(⇠) = 2⇡
X

mn

�(⇠ � Em + En) hm |X|ni |m ihn| . (2.92)

This concludes our discussion of the effective Lindbladian. We had to go to some detail to recover
this equation for the Lamb shift which is used in Project A. But as the dust settles, let us reflect on
what we have learned.

In the preceding two sections we have developed powerful mathematical tools for calculating the
dynamics of open quantum systems, when the bath is described by a quadratic Hamiltonian. One only
needs to know the bath correlation function B(!) to use the techniques. If the system Hamiltonian
is zero, Markovian dynamics is captured by the Bloch-Redfield master equation, but when it isn’t the
master equation doesn’t have Lindblad form, implying a risk of model breakdown at late times. This
problem can be remedied by using the effective Lindblad approximation, which is less accurate, but whose
accuracy, like Bloch-Redfield, is controllable through a parameter that only depends on the details of the
environment. Finally, non-Markovian dynamics may sometimes be calculated in the Born approximation
by going to Laplace space, although it can be hard to obtain analytical results when doing the inverse
Laplace transform.

In the next section we will derive the form of the spectral density when the environment consists of
modes in an electric circuit to which the system is capacitively coupled. We will use this result quite
extensively, as it is used in Chapter 2 and is central to Chapter 3 and 4.

2.4 Electromagnetic environments
A returning theme in the projects of this thesis will be dealing with the decoherence of Majorana systems
who are subjected to the presence of a dissipative electromagnetic environment. Such noise results
for instance from fluctuations in electronic components used to tune and manipulate the Majorana
experiments. The systems are cooled to a low temperature and electric signals are passed through
attenuators to limit the noise, but it is impossible to completely eliminate it. In this section, we assume
that the system is capacitively coupled to an electric circuit and derive a relation between the correlation
function B(!) of the modes in the circuit and the impedance Z(!) of the circuit. With that, the
techniques of the previous sections can be applied to calculate the decoherence of the system.

Figure 8 shows how we imagine the coupling: A capacitor C is coupled to an environment impedance
Zenv(!). The electric potential ' over the capacitor fluctuates both due to thermal- and quantum effects.
The fluctuation in potential energy then couples to our system, playing the role of � in Eq. (2.23). Our
method will be useful only when we ignore backaction from the system onto the circuit, meaning that
the fluctuations of charge and the electric dipole moment of the system must be significantly smaller
than those of the capacitor. If a small external voltage �V (t) is applied to the system, we may use linear
response theory to relate the retarded current-current correlation function G

R

II
(!) to the total impedance

Z(!) of the system [16]. The relation is

Re
1

Z(!)
= � 1

!
Im
⇥
G

R

II
(!)
⇤
, (2.93)

with
G

R

II
(t, t0) = �i✓(t � t

0) h[I(t), I(t0)]i . (2.94)
The total impedance of the circuit displayed in Figure 8 is

Z(!) =
1

1
i!C

+ Zenv(!)
. (2.95)
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Figure 8: Schematic of the coupling of a system, denoted by S on the figure, to an electromagnetic
environment, modeled as an electric circuit. The system is capacitively coupled to a frequency-dependent
environment impedance Zenv(!). Temperature and quantum fluctuations cause the system to feel a time-
dependent potential �V (t), which enters the coupling Hamiltonian.

By definition, �V (!) = Z(!)I(!), and we have �V (t) = '(t), so the retarded potential-potential corre-
lation function G

R

''
(!) is related to G

R

II
(!) through

G
R

''
(!) = |Z(!)|2 GR

II
(!). (2.96)

We can use the fluctuation-dissipation theorem to arrive at an expression for B(!). For completeness,
we derive the result here, following Ref. [16]. The trick is to write the correlation functions in the
Lehmann representation, in terms of the exact eigenstates |ni of HB . For the thermal Gibbs state
⇢B =

P
n
e
��En |n ihn| /Z, where Z is the partition function, we have
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Equivalently, using ' = �/e, the retarded correlation function is
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Using 1
x+i⌘

= P 1
x

� i⇡�(x) in the limit ⌘ ! 0+, we find
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Putting everything together, the correlation function is

B(!) = e
2
!Re

✓
1

Z(!)

◆
|Z(!)|2

✓
coth

✓
�!

2

◆
+ 1

◆
, (2.100)

and using Eq. (2.34), we can read off the spectral density

J(!) =
1

⇡
e
2
!Re

✓
1

Z(!)

◆
|Z(!)|2 . (2.101)

This concludes our discussion of open quantum systems. Before we are ready to get into the projects
of the thesis, we need to set the stage for Project D, in which we discuss generalizations of Majoranas.
In order to appreciate the choices in the model and how they were motivated, we will need to familiarize
ourselves with the simplest generalization of Majoranas, known as parafermions. The next section,
therefore, is a discussion of parafermions and in which sense they generalize Majorana.
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3 Generalizing Majorana bound states

The Majorana modes that we have dealt with so far, have very rich physics. With their non-abelian
braiding statistics, their behaviour is unlike any observed for elementary particles, and the fact that pairs
provide non-local fermionic levels, impervious to local interactions, gives rise to promising architectures
for quantum computation. Majoranas, however, are in a way the simplest possible example of non-abelian
anyons, and one could imagine anyonic systems transforming under more complicated unitary irreducible
representations of the braid group. One theoretical example is Fibonacci anyons [73], whose braiding
group, contrary to that of Majorana fermions, is complete. For applications in quantum computation,
the realization of these complicated anyons would be of immense interest, since all operations could then
be carried out in a way that is topologically protected. Experimentally, we are far away from achieving
this, but theoretical investigations may eventually help pave the way for new breakthroughs.

In Project D of Chapter 5 the story will depart from the subject of readouts and lifetimes of Majorana
architectures, and investigate if new anyons may be theoretically predicted as zero-energy modes in one-
dimensional systems akin to the Majorana nanowires. The simplest generalization of Majoranas is
called parafermions, and architectures for realizing these have been proposed [18, 53]. Mathematically,
parafermions generalize Majoranas in a very intriguing way. As it turns out, Majorana zero-energy
modes appear in the context of the Ising model through a bijective mapping, called the Jordan-Wigner
transformation. This maps the Ising model onto the celebrated Kitaev chain toy model of spinless
fermions jumping on a one-dimensional lattice with superconducting pairing [47]. This model has a
phase, corresponding to the ferromagnetically ordered phase on the Ising side, which has one unpaired
Majorana mode at each end. The Ising model is symmetric under flipping all spins, and on the fermionic
side, this Z2 symmetry corresponds to fermionic number conservation.

The generalization to parafermions happens, when one considers an Ising-like model, called a clock
model, with N states at each site, such that the global symmetry is ZN instead. There exists a transfor-
mation generalizing the Jordan-Wigner transformation, but now the result is not a fermionic model, but
rather a ”parafermionic” model, consisting of operators with fractional exchange statistics. The ground
states of the new model in a sense consists of fractional fermions, implying that physical realizations
of the model have to involve fractionally charged particles in fractional quantum Hall systems. Again,
there is a parameter regime where there are edge zero-energy modes, and these are now parafermions.
Compared to the Ising model however, more care needs to be taken when classifying these zero energy
modes. In particular, when a complex phase is introduced that breaks chiral symmetry, the degeneracy
of the ground state may extend into the excited states.

In Chapter 5, we will introduce a model, which we dub the chiral gauge flux ladder, which neatly
generalizes the clock model for arbitrary finite non-abelian groups G. By introducing a non-abelian
version of Jordan-Wigner transformation we find new zero-energy modes, which are dyonic, meaning
that they are characterized by both a group element and an irreducible representation of G. In the
language of lattice gauge theory, the anyons are both magnetically and electrically charged.

In this section we will review in some detail the story outlined above for Majoranas and parafermions.
It is useful to understand the intricacies in the chiral clock model and the resulting parafermions in order
to appreciate the choices made when constructing our chiral gauge flux ladder model. Finally, we will
review some of the techniques which will be useful for following the story of the paper.

Though we won’t delve deeper into the braiding rules for parafermions and their potential future ap-
plication in topological quantum computation, it is still useful to get a better grasp on what parafermions
physically represent, and which physical quantity their fusion correspond to. The next section is therfore
dedicated to defining ZN parafermions and unpacking one particular physical realization of them. This
particular realization only allows for ZN parafermions where N = 2m.

3.1 A physical realization of Z2m parafermions

A major conceptual simplicity with Majoranas lies in the fact that they can be thought of as non-
interacting anyons. For a system with two Majorana zero-energy modes, �1 and �2, the ground states
are given by the eigenstates of P12 = i�1�2, which counts the fermionic parity of the fermionic mode
shared by the two Marjoranas. The fact that there exists a nice Fock space for the ground states makes it
particularly simply to understand their fusion rules and braiding statistics. ZN parafermions generalize
Majoranas when N > 2. Denoting a ZN parafermionic operators by ↵, the generalization lies firstly in
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the fact that
↵
N = 1, (3.1)

and secondly that in 1D they obey the commutation relation [6]

↵(x1)↵(x2) = e
i
2⇡
N sgn(x1�x2)↵(x2)↵(x1). (3.2)

When N > 2, the fact that they don’t anticommute indicates that there is no hope for producing them
as simple linear combinations of holes and electrons in 1D as we could with Majoranas. Luckily, there
exists a fairly simple physical model, proposed by Clarke, Alicea and Shtengel in 2012 [18], which gives
a good intuition for the differences between parafermionic- and Majorana zero-energy bound states.
The basic intuition is to use the edge states of a fractional quantum hall system with filling factor
⌫ = 1/m, and have m be an odd integer. These states are gapless modes which inherently have the
pairwise commutation relation of (3.2) [34], and they are described by creation operators  edge obeying
the commutation relation

 edge(x1) edge(x2) = e
i
⇡
m sgn(x1�x2) edge(x2) edge(x1). (3.3)

Then similar ingredients to what we saw in the construction of the Majorana nanowire in Section 1.3
are added. Figure 9 is adapted from Clarke et al. [18], and shows their proposed setup: Two fractional
quantum Hall systems are connected resulting in counter propagating modes at their interface. The
two systems have opposite g-factors, so the spins of the edge currents are opposite. This allows an
ordinary s-wave superconductor at the interface, shown in green in the figure, to pair the electronic part
of one mode with the hole part of the other, allowing for bound states near the boundary. Insulating
regions, shown on the figure in blue, can be introduced for example by engineering a strong spin-orbit
coupling perpendicular to the magnetic field, since this causes back scattering between the two edge
modes. Zero-energy modes ↵ may then appear in very short trenches between superconducting and
insulating regions, as indicated on Figure 9, panel b). In the analogy with the Majorana nanowires, the
backscattering here plays the same role here as the Zeeman coupling did then, and will ensure that only
a single zero-energy mode exists in the trench. In order to have a pair of parafermionic zero energy
modes, we could then imagine having either a case as on Figure 9, with two insulating regions flanking
a central superconducting region, or interchanging the superconducting and insulating regions. In the
former case the ground states will have a bound fractional charge in the central island, and in the latter
the central island instead has a bound fractional spin. For concreteness, we consider the former setup
with the superconductor in the middle. The following discussion is directly adapted from Clarke et al.

[18].
The gapless edge modes allow for a useful bosonized representation. The creation operator  †

edge,R/L
(x)

for a right/left-moving edge mode at position x may be written as [34]

 
†
edge,R/L

(x) / e
im�R/L(x)

. (3.4)

The fields �R/L(x) are not bosonic, but rather satisfy the so-called Kac-Moody commutation relations
[28]

[�R(x),�R(x
0)] = �[�L(x),�L(x

0)] = i
⇡

m
sgn(x � x

0), (3.5a)

[�L(x),�R(x
0)] = i

⇡

m
, (3.5b)

and they are related to the densities ⇢R/L(x) of the corresponding edge modes through

⇢R/L(x) = ± 1

⇡

d

dx
�R/L(x). (3.6)

The fields �R/L(x) may be rewritten in terms of new fields, '(x) and ✓(x) in the following way

�R/L(x) = '(x) ± ✓(x), (3.7)

and from the Kac-Moody commutation relations, '(x) and ✓(x) inherit the commutation relations

['(x), ✓(x0)] = i
⇡

m
⇥(x � x

0), (3.8)
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Figure 9: Proposal for an experiment featuring parafermions, adapted from Clarke et al. [18]. Panel a)
shows two fractional quantum Hall systems, driven to a filling factor ⌫ = 1/m by a magnetic field B.
The two systems have opposite sign of the g-factor, which means that the resulting edge currents have
opposite spin. The two systems are connected, resulting in counter propagating modes. These modes are
alternately gapped out in insulating regions shown in blue, resulting for instance from a large spin-orbit
interaction, and subjected to an s-wave superconductive pairing in the green regions. Panel b) shows
the emergent Z2m parafermionic zero-energy modes ↵1 and ↵2, which appear in the junctions between
the superconducting and insulating regions. In terms of the bosonized fields, the insulating regions pin
✓i = ⇡n

(i)
✓
/m while the superconducting region in the middle pins ' = ⇡n'/m, where n

(i)
✓

and n' are
integers.

where ⇥(x) is the Heaviside step function, while ' and ✓ commute

['(x),'(x0)] = [✓(x), ✓(x0)] = 0. (3.9)

The derivatives of the new fields have a nice physical interpretation based Eq. (3.6) in terms of the total
charge- and spin density ⇢(x) and s(x) (note, since the counter propagating modes have different spin,
s(x) is also equal to the current density):

s(x) = j(x) = ⇢R(x) � ⇢L(x) =
1

⇡

d

dx
'(x), (3.10)

⇢(x) = ⇢R(x) + ⇢L(x) =
1

⇡

d

dx
✓(x). (3.11)

In the absence of superconducting or insulating regions, the gapless modes are describable by a Hamil-
tonian quadratic in the current- and charge densities [34]:

H0 =
mv

2⇡

Z
dx

"✓
d

dx
'(x)

◆2

+

✓
d

dx
✓(x)

◆2
#
. (3.12)

Using the coordinates in Figure 9b), the superconducting region x 2 XSC = [x1 + l, x2] is governed by
the Hamiltonian

HSC = �

Z

XSC

dx  edge,R(x) edge,L(x) + H.c.

/ ��
Z

XSC

dx cos(2m'), (3.13)

and the two insulating regions x 2 X
(1)
I

= [x0, x1] and x 2 X
(2)
I

= [x2 + l, x3] are governed by a
Hamiltonian HI given by

HI = M

X

i=1,2

Z

X
(i)
I

dx

X

j=R,L

 
†
edge,j

(x) edge,j(x) + H.c.

/ �M

X

i=1,2

Z

X
(i)
I

dx cos(2m✓). (3.14)
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We assume that � and M dominate in the regions where they appear. The point with the whole
bosonization procedure is that the effect of the interactions is then very simple. In superconducting
regions x 2 XSC, ' gets pinned to the values

' =
⇡

m
n', (3.15)

where n' is an integer valued operator. Conversely, in insulating regions x 2 X
(i)
I

, ✓ gets pinned to
values

✓ =
⇡

m
n
(i)
✓
, (3.16)

where again the operator n
(i)
✓

has integer eigenvalues. Thus the effective Hamiltonian describing the
setup is simply

Heff =
X

i=1,2

Heff,i (3.17)

Heff,i =
mv

2⇡

Z
xi+`

xi

dx
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d

dx
'(x)

◆2

+

✓
d

dx
✓(x)

◆2
#
, (3.18)

subject to the boundary conditions set by n
(i)
✓

and n'. Clarke et al. demonstrated that the effective
Hamiltonian Heff,i in (3.18) has an exact zero-energy mode ↵i. When ` is short compared to the coherence
length of the induced superconducting pairing, the mode is simply equal to

↵i / e
i
⇡
m

⇣
n
(i)
✓ +n'

⌘

. (3.19)

The pair ↵1 and ↵2 are ZN parafermions with N = 2m, satisfying the defining relations Eq. (3.1) and
(3.2). This may be verified by using

[n(1)
✓

, n'] = �i
m

⇡
, [n', n

(2)
✓

] = 0, (3.20)

which follows directly from (3.8) and (3.9). Just like the case with Majorana zero-energy modes, the
ground states of the system are given by eigenstates of the product of the two parafermions

P12 = ↵
†
1↵2 = e

�i
⇡
m

⇣
n
(1)
✓ �n

(2)
✓ + 1

2

⌘

, (3.21)

which follows by using the Baker-Cambell-Hausdorff formula. Hence, the ground state is N = 2m fold
degenerate. Labeling the ground states by |ni such that P12|ni = e

i(n�1/2)⇡/m|ni, we may examine the
effect of ↵i on them by using the Baker-Cambell-Hausdorff formula twice to see that

P12e
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⇡
mn' |ni = e

i
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e
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= e
i
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+i
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2m |ni

= e
i
⇡
m e

�i
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mn'P12|ni

= e
i(n+1/2)⇡/m

e
�i

⇡
mn' |ni, (3.22)

which implies
e
�i

⇡
mn' |ni = |n+ 1 mod 2mi. (3.23)

Since ↵†
i

⇠ e
�i

⇡
mn' , we see that the zero-energy modes, just like in the case of Majoranas, cycle through

the ground states. Because of the relation (3.11), the total charge q between the insulating islands is

q = e

Z
x2+`

x1

dx⇢(x) =
e

m

⇣
n
(2)
✓

� n
(1)
✓

⌘
. (3.24)

This means that in a fusion experiment, where the two parafermions ↵1 and ↵2 are made to interact
with each other (possibly through a dot like in the Majorana readouts), if the state |ni is measured, a
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fractional charge q = e

m
n is trapped in the superconducting island

If the insulating and superconducting regions were swapped, then the analysis would follow in exactly
the same way, but ' and ✓ would swap roles, and from (3.10), one would find instead that the middle
insulating region traps a fractional spin. It should be pointed out that the expression for the parafermionic
zero-energy modes in Eq. (3.19) is not exact for finite `. Here, there are contributions from quasiparticles
with an energy gap ⇠ 1/`. Thus it is only in the limit ` ! 0 that the zero-energy mode exactly commutes
with the effective Hamiltonian.

Now that we have a bit of a physical feeling about parafermions, we will now depart from physical
descriptions and work towards the chiral clock model mentioned in the preceding section. Before we get
there, we should first define a few key concepts that will be important for generalizing the clock model.

3.2 About topological order and zero-energy modes
The ground state manifold in both the Majorana nanowires and in the parafermionic system described in
the previous section are topologically ordered. We adopt the definition of topological order provided by
Alexandradinata et al. [5]. In Chapter 5 the precise definition will be provided, so for now it will suffice
to state intuitively what topological order means in the context of Majorana or parafermionic zero-energy
modes. In both cases, the system has a global symmetry Q as well as the boundary zero-energy modes ↵1

and ↵2 at the left- and right boundary, respectively. It is simplest to phrase what topological order entails
in the case of Majoranas. Here, the superconducting pairing means that the number of electrons is not
preserved, but fluctuates modulo 2. The global symmetry Q = (�1)Nf measures the fermionic parity,
and the two edge zero-energy modes cycle between even and odd fermionic parity. In the ground states,
the total fermionic parity is given just by the occupancy of the zero-energy fermionic mode, so Q = i�1�2.
This operator is non-local, meaning that is not expressible in terms of any local operators. In fact, no local
observable can distinguish the ground states. This important property is called local indistinguishability.
Furthermore, operators with support only in the bulk do not cause transitions between the ground states
(but they may cause transitions to excited states). These two properties are taken as the definition of
topologically ordered ground states in 1D systems: i) transitions between ground states are only caused
close to the boundary, and ii) the ground states are locally indistinguishable.

The definition of topological order is intimately tied to the notion of locality. A Hamiltonian obeying
the above two conditions has a ground state degeneracy which is protected under local perturbations
when they do not close the gap to the excited states. If the gap closes, then operators in the bulk can
cause transitions between the ground states. In this way, the definition is compatible with the discussion
about symmetry-protected topological phases in Section 1: No continuous deformations preserving the
energy gap and respecting the symmetry (in Majorana systems the symmetry being fermionic parity
conservation) can remove the feature. For interacting systems, the support of operators, as measured
with respect to the non-interacting system’s modes, will tend to extend. For this reason the definition of
topological order should be refined with the notion of quasi-local operators, whose support exponentially
decays with some characteristic length scale much smaller than the system size.

For the parafermions, the story is very similar, except the global symmetry Q is now the fractional
ZN charge (or spin), which, as we saw in the previous section, is distinguished by the operator Q = P12.
Note that for the parafermions, P12 is not Hermitian, but its eigenvectors are still orthogonal. We know
from the preceding section that P12 is diagonalizable and that the eigenvalues have the form e

i2⇡n/N . It
will be useful for later to note, that this follows directly from the identity

P
N

12 = 1, (3.25)

which immediately gives that P12 is diagonalizable and unitary. Denoting again the eigenvector of P12

with the eigenvalue e
i2⇡(n�1/2)/N by |ni, then consequently

hn0|ni = e
�i

2⇡(n�1/2)
N hn0 |P12|ni = e

i
2⇡(n0�n)

N hn0|ni, (3.26)

so when n
0 6= n mod N , then hn0|ni = 0. Importantly, this confirms that the N degenerate ground states

may indeed be found as orthogonal eigenvectors of P12.
So far we have relied on the intuition from Majorana bound states when discussing zero-energy

modes. These have been taken as operators �, exponentially localized near the boundaries, which in
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second quantization translates to

[�, H] / e
�⇠M/L

, (�1)Nf � = ��(�1)Nf , (3.27)

where ⇠M is the Majorana coherence length. In his seminal paper, Fendley extended this to the case of
parafermionic modes ↵ with the symmetry Q given by the ZN charges, also localized near the boundary.
These modes satisfy [25]

[↵, H] / e
�⇠pf/L, Q↵ = e

i
2⇡
N ↵Q, (3.28)

where ⇠pf is the parafermion coherence length. But since our definition of topological order only involves
the ground state, the definition in (3.28) is stronger than needed, as it implies that the degeneracies also
hold for all the excited states. Zero-modes satisfying (3.28) are therefore said to be strong zero-energy

modes. If the condition is relaxed instead, so ↵ only commutes with H projected onto the ground state
manifold, then ↵ is said to be a weak zero-energy mode [6], and the effect is that some of the excited
states (usually all excited states with an energy above some threshold) have an energy splitting decaying
polynomially in the system size.

When we generalize ZN to a general finite group G, the condition of having strong zero-energy modes
will turn out to be so restrictive, that it seemingly almost never happens. But we will find an extended
regime with weak zero-energy modes.

3.3 The Jordan-Wigner transformation: A map from bosons to anyons
Now that we have a firmer grasp on when ground states are topologically ordered, let us turn to the
proposition from the beginning of the section, that there should be a connection between ZN parafermions
and bosonic lattice models with global ZN symmetry. We start by making some observations regarding
the simpler case of Majorana modes.

In 1-dimensional systems with a pair of Majorana zero-energy modes, there is a global Z2 symmetry,
counting the total number of fermions modulo 2, and we have the edge modes that cycle through the
ground states. Another model with very similar characteristics is the Ising model, consisting of L sites
with a Z2 degree of freedom at each site. The Ising model Hamiltonian is

HIM = �J

LX

i=1

�
z

i
�
z

i+1 � µ

X

i

�
x

i
. (3.29)

In the ordered ferromagnetic regime J > 0 and |µ| ⌧ J and in the thermodynamic limit, the ground
states consist of all sites having spin up |"i1|"i2 . . . or down |#i1|#i2 . . ., while for finite size systems,
the ground states are the symmetric or antisymmetric combination of the two. The ground state may
distinguished by any �z

j
operator, in particular those at the edges. In this model, there is no local operator

that can switch between the ground states, a fact that leads to exponentially small splitting of the ground
state energies in the system size. Perturbation theory shows that the splitting �E0 ⇠ (µ/J)L. The Ising
model, like the Majorana system, has a global Z2 symmetry, generated by the operator Q =

Q
i
�
x

i

which flips all spins. Though the two models at first glance have nothing to do with one another, the
similarities between them is not coincidental. There exists a bijective non-local mapping, called the
Jordan-Wigner transformation [6], which maps the Ising model to the Kitaev chain toy model, which
for low-energies is nothing else than the 1D p-wave superconducting Hamiltonian in Eq. (1.39) that we
studied in Section 1. Throughout this section we will refer to a ”bosonic” and ”anyonic” side. For the Ising
model, the bosonic side is the one in Eq. (3.29), where the operators and states are bosonic spins. The
”anyonic”, or ”Majorana side”, is the Kitaev model considered after the Jordan-Wigner transformation.
The transformation consists of defining [25]

ai =

0

@
i�1Y

j=1

�
x

j

1

A�
z

i
, (3.30a)

bi = �i

0

@
iY

j=1

�
x

j

1

A�
z

i
, (3.30b)
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which are Majorana operators since {ai, aj} = {bi, bj} = 2�ij and {ai, bj} = 0. Using Eqs. (3.30), we
may write the Ising Hamiltonian from Eq. (3.29) as

HIM = iJ

L�1X

i=1

biai+1 + iµ

LX

i=1

aibi. (3.31)

If we define fermionic annihilation operators ci = (ai + ibi) we can equivalently write it up to a constant
as

HIM = 2µ
X

i

c
†
i
c
i
�
"
J

X

i

⇣
c
†
i
c
i+1 + c

†
i
c
†
i+1

⌘
+ H.c.

#
, (3.32)

which is a model of spinless fermions jumping on a chain with superconducting pairing. If we instate a
lattice spacing a, then lattice Fourier transformation gives

HIM = �2
X

k

(J cos(ak) � µ) c†
k
c
k

� J

X

k

h
i sin(ak)c†

k
c
†
�k

+ H.c.
i
. (3.33)

This Hamiltonian may be made real by a gauge transformation, and if we consider just the low energy
subspace with k ⌧ a, then it becomes

HIM,eff =
X

k

✓
Ja

2
k
2

2
� (J � µ)

◆
c
†
k
c
k
+ aJkc

†
k
c
†
�k

�
+ H.c., (3.34)

which is, as advertised, the Hamiltonian for a p-wave superconductor with mass 1/Ja2, chemical potential
J � µ and superconducting pairing aJ . From the discussion of Section 1 we thus expect the model to
have Majorana zero-energy modes whenever J > µ. In terms of the Majoranas, the global symmetry Q
becomes

Q =
Y

j

(�iajbj), (3.35)

so on the Majorana side, Q = (�1)Nf measures the fermionic parity, as expected. When µ = 0, a1

and bL are strong zero-energy modes, since they commute with HIM, and they distinguish the fermionic
parity. If ⇧GS is the projector on the ground state space, then we see that the symmetry operator on
the ground state space concerns only the edge modes:

⇧GSQ ⇧GS = �ia1bL. (3.36)

When a small µ is introduced, these expressions don’t hold anymore, since the zero-energy modes become
perturbed. They remain strong, and the perturbed zero-energy modes can be constructed using an
iterative procedure. For ease of notation let HJ and Hµ be the first and second term in (3.29), respectively.
Roughly, the construction of the left strong zero mode � goes like this: First we define �(0) = a1, which
satisfies

[H,�(0)] = [Hµ,�
(0)] = �2iµb1. (3.37)

By choosing �(1) such that [HJ ,�(1)] = 2iµb1, we then have that

[H,�(0) + �(1)] = [Hµ,�
(1)] / µ

J
µ. (3.38)

� =
P

L

i=0 �
(i) is then iteratively constructed by demanding [HJ ,�(i+1)] = �[Hµ,�(i)]. If this construc-

tion is well-defined, then

[H,�] = [Hµ,�
(L)] ⇠

⇣
µ

J

⌘L
µ, (3.39)

which proves the exponential localization of �. Note that to all iteration levels i, �(i) changes the total
fermionic parity. This follows from the fact that �(i) will always be odd in ai and bi operators.

Let us take a step back and review what has happened. Through a non-local mapping, the bosonic
operators in the Ising model have been mapped onto Majorana fermionic operators. The Hamiltonian is
local both on the bosonic side, where locality is measured by operators being formed of local products of
�
z and �x, and on the Majorana fermionic side, where locality is measured by operators being formed by
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local products of the Majorana operators ai and bi. Let us take a look at the roles of the global symmetry
Q and the edge modes on the Ising- and Majorana side. On both sides, Q is a non-local operator related
to the global Z2 symmetry. On the bosonic side in the ordered phase, it cycles between the ground states
in the basis of eigenstates of �z, and on the Majorana side, it distinguishes the ground states’ fermionic
parity. Also, in the ordered phase, for simplicity when µ = 0, the ground state is distinguished by any
operator �z

i
. On the Majorana side, these operators cycle between the ground states by switching the

fermionic parity, but only the edge operators �z

1 and �
z

L
may be written as local combinations of the

Majorana operators.

The simplest generalization of the above discussion comes when the group Z2 is changed to ZN . This
suggests that we should be able to repeat the above procedure starting now from an Ising-like model
where the local Z2 degrees of freedom are replaced with ZN . This is done by labeling the states |ni, for
n 2 {0, . . . , N � 1}. In place of �z and �x, we take the operators � and ⌧ , defined by their action on the
basis states:

�|ni = !
n|ni, ! = e

i
2⇡
N , (3.40)

⌧ |ni = |n+ 1 mod Ni, (3.41)

implying the commutation relations �⌧ = !⌧�. The Ising model is then generalized to what is called
the ZN chiral clock Potts model, whose Hamiltonian is7

HPotts = �J

LX

i=1

(ei��†
i
�
i+1 + e

�i�
�
i
�
†
i+1) � µ

N�1X

n=1

LX

i=1

⌧
n

i
(3.42)

This Hamiltonian has a global ZN symmetry given by Q =
Q

i
⌧i, which winds all the states once. For

simplicity, let us take J, µ � 0. In analogy to the Ising case described above, this model can be mapped
to another local model through a Jordan-Wigner-like transformation, first introduced by Fradkin and
Kadanoff [30], and here the resulting degrees of freedom will be parafermionic. The phase � will turn
out to be important for the nature of the zero-energy modes. Let us first study the ordered case µ = 0.
On states |mii|nii+1, the first term in (3.42) gives

� J

⇣
e
i�
�
†
i
�
i+1 + e

�i�
�
i
�
†
i+1

⌘
|mii|nii+1 = �2J cos

✓
2⇡

N
(m � n) � �

◆
|mii|nii+1. (3.43)

When � = 0, then the ground state is ”ferromagnetic” as it consists simply of the N states
Q

L

i=1 |mii which
spontaneously break the global ZN symmetry. When � is non-zero, the system is chiral, meaning that
it breaks spatial inversion symmetry. For example, if � = 2⇡

N
the ground states are ”anti-ferromagnetic”,

and in fact helical, as they wind with a relative phase of � down the length of the system. So � allows for
continuous deformation between the ferromagnetically and anti-ferromagnetically ordered ground states.
The role of � for retaining the N -fold ground state degeneracy into the excited states is simply under-
stood when picturing excitations as domain walls [6]. The first excited states have form |. . . aaabbb . . .i.
When � = 0 these states are all degenerate, and by application of the µ term, the kink may be moved
down to the boundary |. . . aaabi, where it can change into a different kink type |. . . aaaci, and eventually
be moved back to the initial location |. . . aaaccc . . .i. The coupling between the states within the degen-
erate subspace leads to a power law splitting (transitions occur already to first order in the degenerate
perturbation theory), but when � gets switched on, the different kink types have different energy, which
leads instead to a splitting exponentially suppressed in the system size [43]. Since the degeneracy is lost
for � = 0, the zero-energy modes cannot be strong.

The Jordan-Wigner transformation for the chiral clock model is very similar to the one for the Ising

7
Fendley writes the Hamiltonian more generally, namely as [25]

HPotts = �J

LX

i=1

N�1X

m=1

Cm(�†
i �i+1)

m � µ

LX

i=1

N�1X

m=1

Dm⌧
m
i ,

but for the purpose of this discussion, we don’t need the full generality.
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model. It consists of defining
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A�i, (3.44)
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1

A�i, (3.45)

which are parafermions, obeying for i 6= j

↵i�j = !
sgn(j�i)

�j↵i, ↵i↵j = !
sgn(j�i)

↵j↵i, �i�j = !
sgn(j�i)

�j�i, (3.46)

while ↵i�i = !�i↵i, so the �i behaves as a parafermion located at a later site than ↵i. On the
parafermionic side, the Hamiltonian becomes [25]
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(3.47)

The funny looking factors of ! are needed to make sure that the Hamiltonian is Hermitian. Again, when
µ = 0, the system has strong zero-energy modes ↵1 and �L. Analogously to the Majorana case, the
symmetry operator may be written Q =

Q
i
!
(1�N)/2

↵
†
i
�i, and on the ground state space

⇧GSQ ⇧GS = !
(1�N)/2

↵
†
1�L, (3.48)

so drawing on the physical discussion of Section 3.1, the symmetry operator distinguishes the fractional
charge or spin of the ground states on the parafermionic side. Through an iterative construction, a strong
zero-energy mode may be defined for µ > 0, but as Fendley showed [25], the first correction now scales
as µ/2J sin(N�). Thus the zero-energy mode cannot be strong whenever � = ⇡n for integer n. But
otherwise the procedure can be formally carried out. The radius of convergence of the series � =

P
i
�(i)

is �-dependent and was later numerically studied by Moran et al. [57]. They found that resonances could
emerge between excited states when � 6= ⇡n, turning the zero-energy modes into weak modes, although
only potentially at very high energies. Moran et al. show that such resonances always happen when
N is not a prime number, except at special ”anti-resonant” points. For prime N the resonances occur
only at isolated values of �, but in the thermodynamic limit the resonance points of � become dense.
This underlines that strong zero-energy modes are exceptionally hard to procure for more complicated
anyonic systems than Majoranas.
That the weak zero-energy modes survive for µ > 0 and finite � was shown by Alexandradinata et al. [5]
by using the technique of quasi-adiabatic continuation, first introduced by Hastings et al. [37]. The idea
is to construct an operator V(µ) that commutes with Q, preserves quasi-locality and maps the ground
states | 0(0)i of H(µ = 0) to the ground states | 0(µ)i of H(µ). The projector ⇧GS(µ) onto the ground
states for finite µ is then simply related to projector ⇧GS(µ = 0) by

⇧GS(µ) = V†(µ)⇧GS(µ = 0)V(µ). (3.49)

For Eq. (3.49) to make sense, the gap �(µ0) of H(µ0) needs to be non-zero for all µ0 2 [0, µ]. Otherwise,
it is not guaranteed that ⇧GS(µ) projects on the ground state manifold of H(µ). The fundamental idea
is that all quasi-local operators that commute with Q must obey

⇧GS(µ = 0)O⇧GS(µ = 0) = c(O)⇧GS(µ = 0), (3.50)

for some complex number c(O). If V(µ) satisfies (3.49), preserves quasi-locality and commutes with Q,
then V†(µ)↵V(µ) and V†(µ)�V(µ) are weak zero-energy modes of H(µ), since for instance

[V†(µ)↵V(µ),⇧GS(µ)H(µ)⇧GS(µ)] = V†(µ)[↵1,⇧GS(µ = 0)V(µ)H(µ)V†(µ)⇧GS(µ = 0)]V(µ)
= c

�
V(µ)H(µ)V†(µ)

�
V†(µ)[↵1,⇧GS(µ = 0)]V(µ)

= 0, (3.51)
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where we used Eq. (3.50) in the second line, and the fact that ↵1 permutes the unperturbed ground
states in the last. V(µ) takes the explicit form [38]

V(µ) = Tµ exp

✓
i

Z
µ

0
dµ

0D(µ0)

◆
, (3.52)

where T is the path-ordering operator of µ, and the generator is

D(µ) = �i

Z 1

�1
dtF (�(µ)t)eiH(µ)t (@µH(µ)) e�iH(µ)t

, (3.53)

for a suitable even filter function F (t), whose Fourier transform obeys F (! = 0) = 1. The purpose
of the filter function is to cut off the time evolution of @µH(µ) for large |t|. As shown by Hastings
[38], this operator preserves quasi-locality, and furthermore, he proves the following bound using linear
perturbation theory8: ���@µ| 0(µ)i � iD(µ)| 0(µ)i

���  C(µ) ||@µH(µ)|| , (3.54)

for a suitable function C(µ), which depends on the filter function and the gap �(µ). Eq. (3.54) then
gives in the adiabatic regime the relation V(µ)| (0)i = | (µ)i. Lastly, the quasi-adiabatic continuation
V(µ) preserves the symmetry by Q, as can be straightforwardly checked.

3.4 Towards general groups
In the previous sections, we studied in detail how parafermions mathematically (and physically) are
generalizations of Majorana fermions. In Chapter 5 we will generalize this further by upgrading the ZN

symmetry to one generated by a finite non-abelian group G. To do this, we employ a Hilbert space which
is particularly suited for the task by considering a basis of states |gi labeled by group elements g of G,
and unitary operators ✓h and ✓̃h corresponding respectively to left- and right multiplication of h:

✓h|gi = |hgi, (3.55)

✓̃h|gi = |ghi. (3.56)

These operators generalize the �x from the Ising model, as it generates transitions between the states.
In order to generalize the operator �z we use the representation operators U

F

mn
defined by

Umn|gi = D
F

mn
(g)|gi, (3.57)

where D
F (g) is the matrix representation of g in the irreducible representation F . Occasionally we will

use the representation basis, defined by
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s
dim J

|G|
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g2G

D
J

mn
(g)|gi (3.58)

for an irreducible representation J . One useful fact is, that the representation basis states are orthogonal

hJmn|J 0
m

0
n
0i = �JJ 0�mm0�nn0 , (3.59)

which follows from Schur’s orthogonality theorem, which states
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s
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mn
= �JJ 0�mm0�nn0 . (3.60)

In order to generalize the Potts clock model Hamiltonian (3.42) one could write

H = �J

X

i

�
Tr(UF (i)UF†(i+ 1)) + H.c.

�
� µ

X

i

X

g2G

✓g(i), (3.61)

8
This is an extension of Lemma 6 in Reference [38]. The Lemma is stated in terms of Gaussian filter functions, but that

is only used in the third line of his Eq. (74). The proof holds for different filter functions, with the effect of changing the

constant C. Furthermore, Hastings proves it for µ close to zero, but it can be straightforwardly extended to give (3.54).

Alternatively, Eq. (3.49) is proven in Ref. [14]
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where the trace is over the matrix indices of U . Note that the last term includes all possible transitions,
a separate term with right multiplication doesn’t change anything. As can be checked, Eq. (3.61) has
a global left- and right symmetry Q =

Q
i
✓g(i) and Q̃ =

Q
i
✓̃g(i). If we pick G = ZN , this reduces

to the non-chiral Potts clock model with � = 0 if we take F to be the fundamental representation,
D

F (m) = e
i2⇡m/N . There are several options for making (3.61) chiral, since we may include matrix

products under the trace. Doing so will tend to break either the left or the right global symmetry. The
last term in (3.61) may also be generalized, but we go into details about this in the paper in Chapter 5.
The trick is now to find an appropriate Jordan-Wigner transformation, find the edge modes, classify
their properties and figure out if they survive for finite µ as either weak or strong zero-energy modes.
This is the subject of Chapter 5.
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Chapter 2

Project A:
Parity-to-charge conversion in
Majorana qubit readout

One of the central experimental goals in the field Majorana research is being able to reliably read out the
parity of a Majorana pair. This would allow for a topologically protected implementation of the full set
of single-qubit Clifford gates through measurement-based braiding protocols. Thus, it would present a
way to finally test once and for all if the zero-bias conductance peaks, reported in proximitized nanowires
for almost a decade, truly stem from Majorana bound states.

A solid theoretical understanding of the readout dynamics of Majorana qubits is therefore important
to reach these goals, but presently, the problem has received surprisingly little attention. By using a
novel Lindbladian approximation, which has recently been put on a mathematically rigorous ground,
we propose a flexible and powerful theoretical framework for calculating the readout dynamics for a
paradigmatic Majorana qubit, whose degeneracy has been split by coupling of a quantum dot. Our
theory provides general analytical expressions, useful for generic environments. We provide explicit
examples in the form of decoherence from coupling to thermal bosonic modes in an environment LC
circuit, as well as coupling to a quantum point contact in a conductance measurement. The latter case
yields measurement-induced dephasing, and serves as a readout of the Majorana parity through the
charge of the quantum dot.
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We study the time-dependent e↵ect of Markovian readout processes on Majorana qubits whose
parity degrees of freedom are converted into the charge of a tunnel-coupled quantum dot. By apply-
ing a recently established e↵ective Lindbladian approximation [1–3], we obtain a completely positive
and trace preserving Lindblad master equation for the combined dot-qubit dynamics, describing re-
laxation and decoherence processes beyond the rotating-wave approximation. This approach is
applicable to a wide range of weakly coupled environments representing experimentally relevant
readout devices. We study in detail the case of thermal decay in the presence of a generic Ohmic
bosonic bath, in particular for potential fluctuations in an electromagnetic circuit. In addition, we
consider the nonequilibrium measurement environment for a parity readout using a quantum point
contact capacitively coupled to the dot charge.

I. INTRODUCTION

In the pursuit of reliable and scalable qubits, Majorana
bound states (MBSs) have received a substantial amount
of attention in the previous decade [4–8]. Using zero-
energy Majorana states, non-abelian many-body braid-
ing statistics could be implemented [9–16], and quantum
information may be encoded in nonlocal degrees of free-
dom which are robust to local noise [4, 11, 16–23]. Sev-
eral physical Majorana platforms have been proposed and
studied over the years [11, 24–35]. Experiments aiming
to verify the presence of MBSs have so far focused pri-
marily on measuring zero-bias conductance peaks [36–43]
and the fractional Josephson e↵ect [44–46]. These phe-
nomena represent key physical e↵ects of zero-energy Ma-
jorana end states in one-dimensional (1D) topological su-
perconductors [11, 25, 26, 47–49]. However, despite pro-
viding necessary indicators, and with the benefit of read-
ily being experimentally accessible even in the coherent
transport regime [50], neither zero-bias peaks nor uncon-
ventional Josephson relations have so far provided con-
clusive evidence for the presence of MBSs [51–61]. The
ultimate goal thus remains to demonstrate non-abelian
braiding statistics, see also Ref. [62].

The crux of the latter problem may be solved by de-
veloping a reliable readout procedure for the fermion
parity of a MBS pair. Indeed, whereas braiding Majo-
ranas locally in space is very challenging from an ex-
perimental perspective, see also Refs. [12, 63], alterna-
tive schemes have been proposed which simulate braiding
purely through parity measurements [22, 64–66]. In or-
der to read out the parity of a MBS pair, however, parity
has to be converted to a physically observable quantity,
such as flux, charge, or capacitance [67]. This paper fo-
cuses on the perhaps simplest Majorana qubit, called the
Majorana box qubit (MBQ) [21, 22], see Fig. 1. The
two-fold degenerate ground state of the MBQ is spanned
by the parities of MBS pairs in a system where one has
four MBSs with constant total parity. As depicted in
Fig. 1 and detailed in Sec. II, one can read out the par-

FIG. 1. Schematic of a Majorana box qubit (MBQ), consist-
ing of two topologically superconducting nanowires (shown in
blue), hosting Majorona zero-energy states (�i) at their ends.
The nanowires are strongly coupled to a common supercon-
ducting ground (green) that e↵ectively provides a common
charging energy for the island. The ground-state degeneracy
is split by a tunnel-coupled single-level quantum dot (red).

ity of a MBS pair for any initially prepared qubit state
by tunnel-coupling a quantum dot to the respective two
MBSs on the island, since this parity in general will a↵ect
the outcome of a dot charge measurement [13, 21, 22, 68].
However, a successful readout crucially relies on the to-

tal parity in the combined dot-MBQ system being con-
stant over a su�ciently long measurement time. This
means that (i) the readout device itself should not ex-
change particles with the dot-MBQ system, and (ii) the
decoherence due to the readout should be fast compared
to decoherence caused by external noise sources which
do a↵ect the total parity. Previous theoretical studies
of measurement-induced decoherence in Majorana qubits
[21, 22, 69–72] have analyzed related questions but with-
out taking into account the detailed quantum dynamics
of the dot and thereby, in particular, neglecting quan-
tum backaction e↵ects [73]. In this paper, we propose
and study a flexible and powerful theoretical approach
which can ultimately provide a unified and quite realis-
tic description of the parity-to-charge conversion process
and the corresponding readout dynamics in such a topo-
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2

logically protected system.
In the main sections II and III of this work, we discuss

how a solely capacitively coupled environment represent-
ing the readout device causes a prepared quantum state
of the dot-MBQ system with fixed total parity to deco-
here in time. To describe the decay dynamics, in Sec. II,
we derive a Markovian quantum master equation [74–79]
for the reduced density operator, ⇢(t), describing the dot
and the two coupled Majorana states. To achieve this, we
employ a recently established [1–3] e↵ective Lindbladian
approximation. Unlike the common secular approxima-
tion [78, 79], this approximation retains nontrivial e↵ects
due to the coupling of coherence and population dynam-
ics, i.e., o↵-diagonal elements of ⇢ in the local energy
eigenbasis couple to diagonal elements, see also Ref. [80].
Moreover, unlike, e.g., the Wangsness-Bloch-Redfield ap-
proximation [74, 75, 81], this scheme is guaranteed to
yield completely positive trace-preserving (CPTP) dy-
namics [76, 77] — an essential requirement for a physical,
probabilistic interpretation of the reduced density matrix
⇢(t). As we are particularly interested in decoherence,
i.e., the decay of o↵-diagonal elements of ⇢(t), this ap-
proximation is particularly well suited here. In contrast
to previous works [21, 22, 69–72], our approach is able
to capture quantum backaction e↵ects on the MBQ state
since the quantum dynamics of the dot fermion is taken
into account.

Experimentally relevant estimates for relaxation and
decoherence rates in this dot-MBS system will be de-
rived for two di↵erent types of measurement environ-
ments in Sec. III. The first is a thermal bath of bosonic
modes [82, 83], for which we discuss electromagnetic po-
tential fluctuations in an electric circuit as a concrete
example. This case also accounts for the fact that even
if the measurement process does not provide the experi-
mentalist with any information, the mere coupling to the
measurement device already leads to decoherence due to
the inevitable noise in the measurement apparatus. Sec-
ond, as an example for a nonequilibrium environment
that does provide information about the system state, we
consider a voltage-biased, capacitively coupled quantum
point contact (QPC) acting as a dot-charge sensor [84–
87]. In the outlook section IV, we then lay out how future
work can extend this analysis to a quantitative descrip-
tion, taking into account also other relaxation mecha-
nisms. Such mechanisms could possibly involve parti-
cle exchange such as quasiparticle poisoning. The paper
closes with some concluding remarks in Sec. V. Finally,
we note that technical details have been delegated to two
appendices.

II. KEY CONCEPTS OF MBQ READOUT

A. Model

The MBQ device of interest is depicted in Fig. 1. It
consists of two topological superconductor nanowires [25,

26], hosting altogether four zero-energy MBSs at their
ends, and an e↵ectively spinless, single-level quantum dot
tunnel-coupled to two of the nanowire ends. With the
superconducting bridge, the two nanowires form a single
floating island subject to Coulomb charging e↵ects. We
assume that on the island, the superconducting gap is
so large that the influence of quasiparticles and subgap
(Andreev) states beyond MBSs can be neglected. The
low-energy Hamiltonian then reads

H = H0 +HB +HI , (1)

H0 = ✏nd +
X

i=1,2

�i

�
�id � �

⇤
i
d
†�

, (2)

HI =
p
gnd'. (3)

The Hamiltonian H0 describes both the local coherent
dynamics of the dot, with level position ✏, occupation
number operator nd = d

†
d, and fermionic annihilation

operator d, and of the two tunnel-coupled MBSs. The lat-
ter are described by Majorana operators, �i = �

†
i
, with

anticommutation relations {�i, �j} = 2�ij . The ampli-
tudes �i=1,2 for tunneling between dot and �i are, with-
out loss of generality, parametrized by the real-valued
quantities �, a, and �,

�1 = � � 0, �2 = a�e
i�
, 0  a  1. (4)

Importantly, the phase di↵erence � is controllable by,
e.g., a variable magnetic flux inside the loop constituted
by the tunneling links and the superconducting back-
bone. As we show in Sec. II B, one can tune this phase
to split the energies of the MBQ in such a way that it
is possible to read out the MBQ state. For this to work,
however, we furthermore require that the charging en-
ergy of the superconducting island is large enough to con-
strain the total fermion parity of the MBQ, (�1)nL+nR ,
where nL/R = f

†
L/R

f
L/R

denotes the occupation of the

left/right fermionic state with fL/R = (�1/3 + i�2/4)/2.
We assume Coulomb valley conditions such that all other
charge states of the superconducting island in Fig. 1 cost
a large excitation energy at least of the order of the charg-
ing energy of the island [21, 22].
The term HB in Eq. (1) describes the environment,

e.g., representing a measurement device, and HI is a ca-
pacitive coupling between the dot charge and the envi-
ronment. Concrete implementations of HB and the spe-
cific degrees of freedom, ', coupling to the dot charge
via HI are discussed in Sec. II C. In general terms, the
dimensionless coupling constant g in HI is determined
by the ratio between a capacitive interaction energy,
Eint, and a model-specific reference energy, Eref. We re-
quire that this reference energy is large in comparison,
0 < Eint/Eref ⌧ 1, such that g ⌧ 1 quantifies a weak
system-environment coupling, justifying a perturbative
expansion in HI . Furthermore, we here only consider
environments HB which are quadratic in field operators,
and that are e↵ectively bosonic from the point of view
of the fermions in the dot-MBQ system. As detailed in
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Sec. II C, this case includes, for example, photons in a
thermal electromagnetic environment as well as the ef-
fective bosonic modes originating from the Coulomb in-
teraction between the dot charge and the local electronic
charge density in a fermionic environment.

B. Readout principle and fidelity

To explain the readout principle for the MBQ state in
concrete terms, in the following we always consider the
sector with even total parity, where the total parity of the
superconducting island is assumed to be conserved dur-
ing the entire measurement. In this case, the MBQ has
two basis states, |0L0Ri with nL = nR = 0 and |1L1Ri
with nL = nR = 1. Given this total-parity constraint,
the readout principle and its fidelity rely mostly on the
fact that fermionic parity is exchanged through the tun-
nel couplings between the dot and the tunnel-coupled left
Majorana pair, corresponding to �1 and �2 in Fig. 1. Im-
portantly, the full Hamiltonian (1) conserves the joined
parity of the dot and these two MBSs,

s = (�1)nd+nL . (5)

We next observe that due to the presence of the phase �
in the tunneling amplitudes (4), eigenstates of the dot-
MBQ system Hamiltonian H0 (defined in the absence of
the environment) in general have di↵erent energies for
s = +1 and s = �1. Denoting the eigenstates of H0 by
|p, si, with p = ±, we have

H0|p, si = Ep,s|p, si, E±,s = (✏± Es) /2,

Es=± =
p
✏2 + 4�2(1 + a2 + sa sin�). (6)

Since s is a conserved quantity, an initial MBQ state with
s = +1 will dynamically relax towards a stationary state
with s = +1 when coupled to the measurement device.
By Eq. (6), this stationary state has an energy di↵erent
from the energy of the state to which an initial state
with s = �1 relaxes. In addition, also the average dot
occupation number,

hndi =
d hHi
d✏

, (7)

depends on this energy di↵erence in the long-time limit.
This fact ultimately enables one to read out the parity
number s = ±1 via measurements of the dot charge,
see Eq. (7), or via its quantum-capacitive e↵ect ⇠
d
2 hHi /d✏2, see Ref. [22].
Suppose now that the dot is initially empty, nd = 0,

and the MBQ has been prepared in the initial state

| 0i = ↵0|0L0Ri + �0|1L1Ri, (8)

with complex-valued coe�cients ↵0 and �0 subject to
|↵0|2 + |�0|2 = 1. In general, the initial state of the com-
bined dot-MBQ system thus corresponds to a superposi-
tion of states with di↵erent values of s = ±1. Since the

FIG. 2. Readout principles for the MBQ device in Fig. 1:
Average steady-state dot occupation number, hndis, vs ✏/�
for di↵erent parities s = ±1 in Eq. (5). Here hndis has been
calculated for the ground state with energy E�,s in Eq. (6),
using a = 1 and � = ⇡/3. Calculating hndis instead for
the thermal states ⇢st,s in Eq. (10), the two curves approach
the constant curve hndi = 1/2 with increasing temperature.
Thereby the readout visibility, i.e., the ability to distinguish
the values s = ±1, will be gradually lost.

energies (6) of the system depend on s, decoherence due
to the coupled bath representing the measurement device
should relax the reduced density matrix of the dot-MBQ
system, ⇢(t), to the stationary limit according to

⇢(t) =

✓
|↵0|2 ⇢s=+ ↵0�

⇤
0⇢c

↵
⇤
0�0⇢

†
c

|�0|2 ⇢s=�

◆

t!1���! ⇢st =

✓
|↵0|2 ⇢st,s=+ 0

0 |�0|2 ⇢st,s=�

◆
. (9)

The diagonal blocks here describe the density matrix pro-
jected to the respective subspace with parity s = ±1,
while the o↵-diagonal part ⇢c describes coherences be-
tween both parity sectors. The steady-state distribu-
tions, ⇢st,+ and ⇢st,�, may in practice be distinguished
by measuring hndi or d hndi /d✏, averaged over some time
interval. In this way, one performs a projective measure-
ment of the initial MBQ state, where s = +1 (s = �1)

occurs with probability |↵0|2
⇣
|�0|2

⌘
. Once the dot is ef-

fectively decoupled from the MBSs by adiabatically ad-
justing ✏ towards the limit of zero occupation nd = 0,
one knows that the MBQ state equals |0L0Ri (|1L1Ri) if
s = +1 (s = �1) has been measured.

To better understand the fidelity and limitations of this
readout, Fig. 2 shows the dependence of hndis on the dot
level energy ✏, as determined by Eq. (7) for the ground
states corresponding to the energies E�,s. We observe
that for ✏/� 6= 0, the ground states in the s = ±1 sectors
can be distinguished by measuring the charge on the dot.
If the system is instead prepared in a thermal state,

⇢st,s =
1

Zs

X

p=±
e
��Ep,s |p, s ih p, s| , (10)
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with Eq. (6) and � = (kBT )�1, the curves in Fig. 2 would
flatten towards hndis = 1/2 as temperature is increased.
Evidently, a charge readout of the dot can still measure
s = ±1 provided that the system has thermalized at a
su�ciently low temperature.

We note that for a more general environment, the long-
term limit need not be represented by a thermal distribu-
tion. Nevertheless, as long as the dot charge ⇠ d hHi /d✏
and/or, depending on the setup, its quantum capacitance
⇠ d

2 hHi /d✏2, di↵er for s = +1 and s = �1, the value
of s may in principle still be distinguished if the system
decoheres to a block-diagonal state as in Eq. (9).

By developing a Lindbladian master equation for the
above model, we show in Sec. II E below that block-
diagonal relaxation similar to Eq. (9) does indeed generi-
cally happen. The missing ingredient for arriving at this
master equation is — as covered in Sec. II C below —
a physical specification of the environment, HB , and its
coupling to the dot, HI . A key advantage of the jump
operator approximation established in Refs. [1–3], and
summarized in Sec. II E, is that we may simply write
down the master equation once we have determined the
environmental correlation function,

B(t) = h'(t)'i . (11)

This correlator is defined with respect to the initial state
of the bath before the measurement begins, where '(t) =
e
iHBt

'e
�iHBt is taken in the interaction picture. We note

that this procedure directly works only for a vanishing
linear moment, h'(t)i = 0. For h'(t)i 6= 0, the linear mo-
ment needs to be time-independent, h'(t)i = h'i. In that
case, one can remove the linear moment, ' ! '�h'i, by
a shift of the dot energy, ✏ ! ✏+ h'i, in Eq. (1). As this
shift does not introduce an explicit time dependence, the
e↵ective Lindbladian approximation in Sec. II E will still
apply upon using the bath correlator

B(t) = h['(t) � h'i]['� h'i]i (12)

instead of Eq. (11).

C. Physical realizations of environments

Let us now precisely formulate the physical systems
representing the readout device. As announced in Sec. I,
we consider two di↵erent cases. The first is an Ohmic
thermal bath of bosonic modes. This can be seen as a
simple phenomenological model for the e↵ects of a mea-
suring apparatus on the dot-MBQ system, such as capac-
itive noise due to voltage fluctuations in the electronic
circuit coupled to the dot, see Fig. 3. A bosonic bath
can, however, also be taken at face value, as a micro-
scopic model of thermal relaxation of the system which
will invariably be present due to charge couplings with
the environment. The second addressed case is that of
a nonequilibrium measurement environment, formed by
two voltage-biased electronic leads coupled by a QPC.

FIG. 3. Schematic circuit representing a typical electromag-
netic environment. The dot-MBQ system (S) is capacitively
coupled to the environmental inductance and resistances. The
resulting potential ' on the capacitor C enters as a charge
coupling in the Hamiltonian (18).

Since the QPC is also capacitively coupled to the dot, see
Fig. 4, the QPC transmission is a↵ected by the Coulomb
interaction with the dot. By monitoring the conduc-
tance through the QPC, one can thereby measures the
dot charge and hence the parity s = ±1.

1. Thermal bath of bosons

Let us first consider a bosonic environment in thermal
equilibrium. This model is useful both for describing
the inherent decoherence due to electromagnetic radia-
tion, but also as a simple phenomenological model for un-
derstanding the dynamics of the system under a generic
readout. The environmental Hamiltonian,

HB =
X

q

!q

✓
b
†
q
b
q
+

1

2

◆
, (13)

in this case consists of non-interacting bosons character-
ized by quantum numbers q and energies !q, where b

†
q

and b
q
are the corresponding creation and annihilation

operators. We assume that the dot charge capacitively
couples to these bosons,

HI =
p
gnd', ' =

X

q

�
M

q
b
†
q
+M

⇤
q
b
q

�
. (14)

The bath operator ' is determined by the mode-
dependent coupling energies Mq. The small dimension-
less coupling constant g, which we have introduced in
Eq. (1), is physically related to the ratio of the capacitive
interaction energy, Eint, of the dot-environment coupling
and the typical frequency !0 of the environmental oscil-
lators, g = g(Eint/!0). The spectral density associated
with the coupling is assumed to be Ohmic with some cut-
o↵ function C(!,!c) determined by a cuto↵ frequency !c
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(where !c ⇡ !0),

J(!) =
X

q

|Mq|2�(! � !q) = !C(!,!c). (15)

An Ohmic spectral density occurs in many di↵erent sce-
narios [82, 83], including, e.g., the capacitive coupling of
the system to an electromagnetic transmission line [79].
The precise form of the cuto↵ function C depends on the
physical nature of the bath, as we further discuss below.
At this stage, it is only relevant in so far as it will regu-
larize integrals at high frequencies in what follows.

The initial density operator of the bath, ⇢B , taken be-
fore the dot couples to the environment at times t � 0,
is assumed to be thermal, ⇢B = e

��HB/Tr
⇥
e
��HB

⇤
. The

expectation value h'(t1) . . .'(tN )i with respect to ⇢B

thus disappears by virtue of Wick’s theorem for any odd
number N of bath operators, with '(t) = e

iHBt
'e

�iHBt.
As stated above and detailed in Sec. II E, the relaxation
of the dot-MBQ system then only depends on the auto-
correlation function,

Bth(t) = h'(t)'(0)i (16)

=

Z 1

0
d⌫J(⌫)

⇥
e
i⌫t

nB(⌫) + e
�i⌫t(nB(⌫) + 1)

⇤
,

with the index “th” indicating the case of a thermal
bath. Equation (16) derives from the vanishing two-point
correlators hb†

q
b
†
q
i = hbqbqi = 0, and the occupations

hb†
q
bqi = hbqb†qi � 1 = nB(!q), with the Bose-Einstein

distribution, nB(!) = (e�! � 1)�1. The relaxation of
the dot-MBQ system is then determined by the Fourier
transform of Eq. (16),

Bth(!) =

Z 1

�1
dtBth(t)e

i!t

=
⇡

2
!C(!,!c)


coth

✓
!

2kBT

◆
+ 1

�
. (17)

To obtain physically meaningful estimates for g and for
the cuto↵ function C, we next observe that in many sit-
uations of practical interest, the dominant bosonic reser-
voir is represented by the electromagnetic modes in the
electric circuit connected to the dot-MBQ system. In
such cases, the specific form of g and J(!) may often
be derived from the electrodynamical properties of the
equivalent classical circuit. As a specific example, con-
sider the case sketched in Fig. 3, where the dot-MBQ
system is placed in an LC circuit and couples through
the voltage drop '/e over the capacitor C to the bath.
The interaction Hamiltonian may then be written as

HI = nd'. (18)

In thermal equilibrium, the correlation function B(t) =
h'(t)'i may be calculated by using the Kubo formula
and the fluctuation-dissipation theorem. The impedance
of the circuit in Fig. 3 is given by

Z(!) =

✓
1

R2
+

1

R1 + i!L
+ i!C

◆�1

, (19)

and B(!) follows as (see also Ref. [83])

BLC(!) = e
2
!Re

 
|Z(!)|2

Z(!)

!
coth

✓
!

2kBT

◆
+ 1

�
.

(20)
Rescaling ' 7! p

g' in Eq. (18) and BLC(!) 7!
BLC(!)/g in Eq. (20), this expression matches the gen-
eral result for a thermal bosonic bath with Ohmic spec-
tral density in Eq. (17), where the coupling constant
g = gLC and the bath cuto↵ frequency !c are given by

gLC =
e
2

2C!LC

, !c = !LC =
1p
LC

, (21)

and !LC is the LC resonance frequency of the circuit in
Fig. 3. As expected, the dimensionless small system-
bath coupling, gLC , follows as the ratio between the
capacitive interaction energy, Eint = e

2
/2C, and the

reference energy set by the LC resonance frequency,
Eref = !LC . Equation (20) predicts a cuto↵ function
C(!̃), with !̃ = !/!c, of the form

C(!̃) = 4

⇡

!̃2 +
!̃1

1+!̃
2
1!̃

2

⇣
!̃2 +

!̃1

1+!̃
2
1!̃

2

⌘2
+ !̃2

⇣
1 � 1

!̃
�2
1 +!̃2

⌘2 , (22)

with !̃i=1,2 = (RiC!LC)�1. Evidently, C(!̃) approaches
a constant for !̃ ! 0 but decays / 1/!̃2 for !̃ ! 1.
This limiting behavior is characteristic for a Lorentzian
cuto↵ function.

2. QPC detector

Next we consider a measurement apparatus defined by
a QPC that weakly couples together two voltage-biased
electronic leads, see Fig. 4. The QPC is also capacitively
coupled to the dot charge. This coupling mechanism in
turn a↵ects the QPC transparency, and hence the mea-
sured conductance through the QPC. One can thereby
perform a readout of the parity s = ±1 in Eq. (5). As
explained above, the outcome of this measurement also
determines the eigenvalue of the MBS parity operator
i�1�2.
To good accuracy, the setup in Fig. 4 can be modeled

by [84–87]

HB =
X

k;`=L,R

✏`kc
†
`k
c
`k

, HI =
p
gnd', (23)

g = (Eint/Eref)
2

, ' = ErefV ⇢̂.

The bath here corresponds to the left and right electronic
leads together with their mutual coupling via the QPC.
The HamiltonianHB contains the annihilation (creation)

operators c(†)
`k

for electrons in single-particle eigenstates of
the combined lead-QPC-lead system. The corresponding
eigenenergies, ✏`k, are labeled by the wave vector k and
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FIG. 4. Schematic Majorana parity readout using a quan-
tum point contact (QPC) connecting two voltage-biased
leads. The dot-MBQ system capacitively couples to the QPC
through a mutual capacitance Cm between the charge den-
sity in the QPC and the charge on the dot. This coupling
decoheres the dot-MBQ system and perturbs the potential
that the QPC feels, leading to a parity-dependent shift of the
conductance through the QPC.

the index ` = L,R. This index specifies whether the scat-
tering state originates from the left or the right lead. The
bath operator ' in Eq. (23) contains the local electron
density operator ⇢̂ in the small (essentially point-like) re-
gion representing the central QPC region, with volume V .
We assume that the capacitive interaction between ⇢̂ and
the dot charge represents the dominant coupling between
the QPC and the dot-MBQ system, see also App. A. The
corresponding interaction energy, Eint = 2e2/(CmV ), is
determined by the mutual dot-QPC capacitance Cm per
volume V , where the factor 2 accounts for the electron
spin. To justify the weak-coupling approximation, g ⌧ 1,
the energy Eint must be small compared to a reference
energy Eref. The latter energy is obtained from the fol-
lowing analysis.

We assume that scattering states originating from the
left/right lead thermalize according to Fermi-Dirac dis-
tributions with equal temperatures, TL = TR = T , but
di↵erent chemical potentials, �µ = µL � µR � 0. This
potential bias induces a stationary charge current across
the QPC. The envisioned readout relies on the fact that
the capacitive coupling of the QPC to the dot a↵ects the
QPC transparency, and hence the current response to the
potential bias depends on the dot occupation [84–86]. As
detailed in App. A, the bath correlators describing the
time-dependent e↵ect of this readout on the dot-MBQ
system are obtained by expressing ⇢̂ in terms of the op-

erators c
`k

and c
†
`k
. We find a time-independent linear

moment, h'(t)i = h'i 6= 0. As pointed out in Sec. II B,
one can absorb h'i by a shift of the dot level energy ✏.
The Fourier transform of the auto-correlation function
(12) is then found as

BQPC(!) =

Z 1

�1
dtBQPC(t)e

i!t (24)

= ⇡

X

`,`0=L,R

J``0(!)


coth

✓
! + µ``0

2kBT

◆
+ 1

�
,

with the lead-dependent spectral densities

J``0(!) =

Z 1

�1
d⌦ �``0

⇣
⌦+ µ``0 � !

2
,⌦+ µ``0 +

!

2

⌘

⇥

nF

✓
⌦� �µ``0 + !

2

◆
� nF

✓
⌦+

�µ``0 + !

2

◆�
,

(25)

where we use the Fermi-Dirac distribution, nF(!) =
(e�!+1)�1, the lead-averaged chemical potentials µ``0 =
(µ` + µ`0)/2, and the potential di↵erences �µ``0 = µ` �
µ`0 . The coupling function

�``0(!,!
0) = E

2
ref

X

kk0

|⌧`k,`0k0 |2�(!�✏`k)�(!0�✏`0k0) (26)

describes how the QPC scatters electrons from lead `

with energy ! into lead `
0 with energy !

0. In App. A,
we explicitly evaluate Eq. (26) for the case of 1D leads
with the QPC approximated by a �-peak potential. In
general, � scales with the energetic densities of states
in the respective lead, D` = D`(E = µ`), and with
the typical transmission coe�cient ⌧ of the QPC, � ⇠
⌧
2(ErefD`)(ErefD`0). A small coupling g can then be re-

alized in two di↵erent ways: The first is to have low QPC
transparency ⌧ ⌧ 1, as set by precise implementation of
the QPC. Alternatively, one needs a reference scale Eref

that is small compared to 1/DL,R but at the same time
large compared to the capacitive energy Eint, thus lead-
ing to g = (Eint/Eref)2 ⌧ 1 according to Eq. (23). Phys-
ically, this corresponds to either a relatively low density
of states or to a large mutual capacitance CmV .

To understand how �``0 in Eq. (25) behaves as a func-
tion of ⌦, and hence how it enters the spectral densities
J``0 , we note that the Fermi functions in Eq. (25) will
e↵ectively restrict the support of the integrand to the
window

� ! + |�µ``0 |
2

< ⌦ <
! + |�µ``0 |

2
. (27)

Under the assumption that the applied voltage bias
and any internal energy scale determining the QPC
transparency (e.g., a potential barrier height) are much
smaller than the average chemical potential with respect
to the band bottom of the leads, �µ``0 ⌧ µ``0 , we
can distinguish two limits, namely the cases |!| ⌧ µ``0

and |!| � µ``0 . For small frequencies, |!| ⌧ µ``0 ,
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the coupling profile �``0 in Eq. (25) can be assumed
⌦-independent within the region (27) where the inte-
grand has significant support, �``0 ⇠ [ErefD`(µ``0)]2 ⇠
(Eref/µ0)2, with the average chemical potential µ0 =
(µL + µR)/2. We here assumed a form of the den-
sity of states as appropriate for a 1D electron gas with
|�µ``0 | ⌧ µ``0 , where one finds D`(µ``0) ⇠ 1/µ``0 . For
large frequencies, |!| � µ``0 , on the other hand, the
coupling factor �``0(⌦ + µ``0 � !/2,⌦ + µ``0 + !/2) in
Eq. (25) is expected to decay as 1/|!| for most ⌦. One
can rationalize this fact by noting that the density of
states decreases, similarly to the case of a 1D Fermi gas,
with 1/

p
|!| for su�ciently strong lateral electron con-

finement in the QPC. Importantly, to regularize Eq. (24)
at high frequencies, we also need to account for the finite
electronic bandwidth that eventually cuts o↵ the integral.

To qualitatively include all the above-mentioned ef-
fects, we now set Eref = µ0/2 with µ0 = (µL + µR)/2
and introduce an exponential cuto↵. We thus consider
the simplified coupling function

�``0
⇣
⌦+ µ``0 � !

2
,⌦+ µ``0 +

!

2

⌘
! 1

4
e
� |!|

!c , (28)

with !c ' µ0. The dimensionless coupling constant in-
troduced in Eq. (1) then equals

g = (2Eint/µ0)
2
, (29)

where Eint = 2e2/(CmV ). The weak-coupling assump-
tion holds for Eint ⌧ µ0. For a quantitatively more pre-
cise calculation, one can resort to a specific QPC model
as shown, e.g., in App. A, followed by a numerical eval-
uation of Eq. (25).

Here we proceed by inserting Eq. (28) into Eq. (25).
We then obtain an Ohmic spectral density with a poten-
tial shift and an exponential cuto↵,

J``0(!) ! 1

4
(! +�µ``0)e

� |!|
!c

�µ``0⌧!c⇡ ! +�µ``0

4
e
� |!+�µ``0 |

!c . (30)

Using this result in Eq. (24), summing over `, `0 = L,R,
and comparing the result to Eqs. (15) and (16), we ob-
serve that BQPC(!) becomes a lead average of bosonic
bath correlators in thermal equilibrium, Bth in Eq. (17),

BQPC(!) =
2Bth(!) +Bth(! +�µ) +Bth(! ��µ)

2
(31)

with the potential bias �µ = µL � µR.
In summary, Eq. (31) states that the readout proce-

dure represented by the potential gradient �µ manifests
itself analogously to the capacitive noise of thermal fluc-
tuations. For �µ � T , and when lead-state energy dif-
ferences ��µ < ! < �µ are most relevant for the read-
out, this contribution to the bath noise and to the relax-
ation of the dot-MBQ system becomes dominant. In this

regime, we show in Sec. III B 2 that �µ plays the role
of an e↵ective temperature for the decay rates. In the
opposite high-temperature limit, T � �µ, the dynam-
ics instead represents a purely thermal decay due to the
two leads, BQPC ⇡ 2Bth. However, the readout may still
work if the dot charge, and hence the QPC conductance,
depends on the final MBQ state, and thus on the parity
of the initial MBQ state.

D. Mapping to spin-boson model

In this subsection, we show that our model (1) is inti-
mately related to the celebrated spin-boson model, which
is a paradigmatic model for describing the dissipative dy-
namics of two-level quantum systems [83]. To that end,
we first observe that the joined parity s in Eq. (5) is
conserved for the model in Eq. (1),

[H, s] = 0, s = (�1)nd+nL . (32)

Our system, defined by the dot and the two coupled
MBSs, can be described in terms of two di↵erent two-level
systems which are both coupled to a common bosonic
bath. Below, we make this connection explicit. The dy-
namical properties of the spin-boson model have been
thoroughly studied in the past [83, 88–91]. In contrast
to those studies, we here encounter two copies of the
spin-boson model, corresponding to the parity eigenval-
ues s = ±1, respectively. The dynamics of coherences
between those two subsectors then represents the quan-
tity of most interest. Note that such coherences do not
violate parity superselection rules [92–94] since they com-
ply with total parity conservation once the parity (�1)nR

of the uncoupled Majorana pair is accounted for.
Introducing the auxiliary Majorana operators ⌘1,2 for

representing the dot fermion, d = (⌘1 + i⌘2)/2, we first
define the Pauli operator algebra

�̃x = �i�1⌘2, �̃y = i�1⌘1, �̃z = �i⌘1⌘2. (33)

Next we write the parity operator (5) as s = ��1�2⌘1⌘2
in order to express Eq. (1) as

H = �1

2
(✏+

p
g')�z � �s

2
�x +HB , (34)

�s=±1 = 2�
p

1 + a2 + 2sa sin�,

where we use the rotated Pauli operators

�↵=x,y,z = e
i✓s�̃z �̃↵e

�i✓s�̃z , (35)

✓s = �1

2
tan�1

✓
a cos�

s+ a sin�

◆
.

We note that a constant energy shift has been neglected
in Eq. (34), along with the term

p
g'/2. Indeed, upon

averaging over the bath degrees of freedom, the last term
yields a contribution ⇠ nd h'(t)i up to order O((

p
g)2).
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Since the average h'(t)i is time-independent for all envi-
ronments considered here, see Sec. II C, such a contribu-
tion only generates a shift of ✏ which can be calibrated
away.

For �+ 6= �� in Eq. (34), the system state relaxes to
the stationary limit (9) for standard reasons. In partic-
ular, since the energies of the two blocks with s = ±1
do not match, there are no cancellations of dynamical
phases in the o↵-diagonal entries of the density matrix.
The large number of bosonic modes then implies that
these terms will cancel out in the long-time limit. How-
ever, for �+ = ��, the evolution of the o↵-diagonals
blocks is identical to the diagonal blocks, and the long-
time limit of the density matrix is instead given by

⇢(t)
t!1�����!

�+=��
P0 |0d ih 0d| | 0 ih 0|

+P1 |1d ih 1d|
�� 0 ih 0

�� , (36)

where nd is the occupation of the dot, P0,1 the probability
to encounter nd = 0, 1 in the readout, | 0i has been spec-
ified in Eq. (8), and we use | 0i = ↵0|0L1Ri+ �0|1L0Ri.
Thus the dot occupation can be read out, but no infor-
mation will be gained in this case. In fact, the final step
of emptying the dot will simply restore the initial MBQ
state.

E. E↵ective Lindbladian

We are now in a position to derive the quantum mas-
ter equation governing the time evolution of the reduced
density matrix, ⇢(t), describing the dot-MBQ system un-
der the influence of the dissipative environment. In gen-
eral, a master equation describing a CPTP Markovian
time evolution of ⇢(t) can always be cast into Lindblad
form [76–78],

⇢(t) = e
Lt
⇢, (37a)

L⇢ = �i[HLS +H0, ⇢]

+
X

k

�k

✓
L
k
⇢L

†
k

� 1

2
{L†

k
L
k
, ⇢}

◆
, (37b)

where the jump operators Lk describe dissipative tran-
sitions induced by the environment. The corresponding
transition rates are non-negative, �k � 0, thereby guar-
anteeing CPTP time evolution. Furthermore, the Lamb
shift contribution appearing in the coherent part of the
time evolution is captured by a Hamiltonian HLS . This
term encodes system energy renormalizations due to the
dressing of system operators by environmental modes.
Such e↵ects may occur even at zero temperature.

Conventional recipes for deriving Markovian mas-
ter equations for open quantum systems, such as the
Wangsness-Bloch-Redfield approach [74, 75, 81], in gen-
eral do not result in master equations of Lindblad form
and hence do not necessarily yield CPTP evolution. In

contrast, the e↵ective Lindbladian approximation, pre-
viously established in Refs. [1, 2] and very recently put
on a rigorous footing by Nathan and Rudner [3], auto-
matically stipulates a Lindbladian form, and thus does
away with such problems. In this subsection, we give a
brief overview of this approximation and apply it to our
model. In e↵ect, the approximation prescribes the form
of the jump operator,

L =

p
g

2

X

m,n

p
B(En � Em) hm |��z|ni |m ihn| , (38)

where B(!) =
R1
�1 dt e

i!t
B(t). The states |ni = |p, si

are energy eigenstates of the system Hamiltonian H0,
see Eq. (6), and �z has been defined in Eq. (35), see
also App. B for a detailed discussion. The appearance
of the square root of the Fourier transformed boson cor-
relator (12) can be rationalized by noting that Fermi’s
Golden Rule is then immediately recovered for the tran-
sition rates between eigenstate populations. While jump
operators of the form in Eq. (38) have been suggested be-
fore [1], one of the central contributions of Nathan and
Rudner [3] is to put this approximation on solid the-
oretical grounds by providing an error bound on ⇢̇(t).
The approximation consists (i) of a familiar type of
Markovian approximation, which is equivalent to the
Wangsness-Bloch-Redfield approach in the sense that
both approaches share the same error bound EM . How-
ever, Ref. [3] formulates (ii) another approximation that
is not equivalent to the standard secular approxima-
tion [78, 79] but nevertheless yields the desired Lindblad
form of the master equation. Importantly, this second
approximation has a di↵erent error bound, EL, than the
Wangsness-Bloch-Redfield approach. However, there ex-
ists a single quantity, E , which is larger than both EM and
EL, which serves as error bound for the e↵ective Lindbla-
dian approximation.
In order to derive Eq. (37), one starts from the

Wangsness-Bloch-Redfield approximation which can be
written as [74, 75, 78, 81]

⇢̇(t) = DR(t)⇢(t) + EM , (39)

where EM is the error introduced by this approximation.
The retarded dissipator is given by

DR(t) =

Z
t

�1
dt

0�1(t, t
0), (40)

where the bath memory kernel superoperator, �1(t, t0),
is (in the interaction picture) defined by

�1(t, t
0)O = � trB [HI(t), [HI(t

0),O]]. (41)

Here trB indicates a trace over the bath degrees of free-
dom. We note that the Born (weak-coupling) approxi-
mation has been used to derive Eq. (39). The error of
the approximation may be bounded as [95]

EM  2g�̃

Z 1

0
dt t |B(t)| , (42)
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with

�̃ = g

Z 1

0
dt |B(t)| . (43)

The latter quantity serves as bound for the rate of change
of the reduced density matrix in the maximal eigenvalue
norm,

||⇢̇(t)||  �̃. (44)

Nathan and Rudner [3] also show that the Born approxi-
mation alone introduces an error of size EM/2, and thus,
in a sense, is already equivalent to the full Born-Markov
approximation, which accounts for an additional error
bounded by EM/2. We note that this argument only
holds true on short time scales, since small deviations in
⇢̇(t) may lead to very di↵erent long-time limits.

From the above starting point, one then derives the
following bound [3]:

⇢̇(t) = L(t)⇢(t) + EM + EL. (45)

This equation is of Lindblad form, see Eq. (37), with
the single jump operator L in Eq. (38) and the rate
� = 1. The Lamb shift contribution HLS is discussed
in Sec. III C below. The new error term, EL, is bounded
according to

EL  2g�̃

Z 1

0
dtdt

0
t |h(t)| |h(t0)| , (46)

h(t) =
1

2⇡

Z 1

�1
d!

p
B(!)e�i!t

.

Moreover, one finds [3]

EM , EL  E , E = ⌘�̃, (47)

where we define the dimensionless number

⌘ = 2g

Z 1

�1
dtdt

0 |t h(t)| |h(t0)| . (48)

The e↵ective Lindbladian approximation is then justified
for ⌘ ⌧ 1.

We emphasize that the error bound E is conservative.
Taking, e.g., a thermal bosonic bath, the error bound
diverges in the infinite-temperature limit owing to the
presence of nB(⌫) in Eq. (16), even though the Marko-
vian approximation should be valid in this limit. Fur-
thermore, E tends to be at least an order of magnitude
larger than EM in the cases considered below. For the nu-
merical results shown in Sec. III, we have chosen model
parameters in a conservative manner, such that E is at
most comparable to the slowest non-vanishing decay rate
of the problem. However, we expect that the e↵ective
Lindbladian approximation remains accurate even when
less conservative parameters are chosen. Moreover, since
E / g

2, the error bound can always be made arbitrar-
ily small against the relevant relaxation and decoherence
rates by reducing g, since those rates already receive con-
tributions / g. We discuss the error bound in more detail
in Sec. III B 1.

III. RESULTS

A. Results for generic environments

Making use of the e↵ective Lindbladian approxima-
tion, see Eqs. (37) and (38), we obtain an explicit ex-
pression for the Liouvillian, L, that holds for an arbi-
trary bath correlation function B(!). Just as the Hamil-
tonian is a block-diagonal operator, the Liouvillian is a
block-diagonal superoperator. We parametrize the re-
duced density matrix as

⇢ =

✓
⇢+ ⇢c

⇢
†
c
⇢�

◆
, ⇢i =

✓
ai bi

ci di

◆
, i = ±, c, (49)

where the diagonal blocks ⇢± refer to the parity s = ±1
in Eq. (5). Noting that b± = c

⇤
±, the time evolution is

given by (i = ±, c)

⇢i(t) = e
Lit⇢i(t = 0). (50)

We refer the reader to App. B for the explicit form of
the superoperators Li. Their complex-valued eigenval-
ues, {⇤i

j
}, contain information about the rate of change

in the corresponding density matrix block i. Specifically,
the respective decay rates are given by

�i
j
= �Re⇤i

j
. (51)

For the diagonal blocks (i = s = ±), the problem is for-
mally identical to a single spin-boson model, see Sec. IID.
There is one zero eigenvalue, ⇤s

0 = 0, corresponding to
the steady state reached at very long times. To lowest
order in g and using Eq. (51), we obtain the decay rates
describing the approach to the steady state,

⇤s

1 = �g
�2

s

4E2
s

[B(Es) +B(�Es)] + O(g3), (52a)

⇤s

2,± = � g

8E2
s

�
�2

s
[B(Es) +B(�Es)] + 4✏2B(0)

�

± iEs + O(g2), (52b)

with �s in Eq. (34) and Es in Eq. (6). For a parity
readout of the dot-MBS system, these rates describe how
fast the dot charge (or the quantum capacitance) will
reach its final value at long times. The respective density
matrix block in this long-time limit is determined by the
kernel of Li. For the diagonal block with s = ±1, using
the energy eigenbasis (6), we obtain

⇢s(1) =
1

A
+
s +A

�
s

✓
A

�
s

�i
g

Es
A

c

s

i
g

Es
A

c

s
A

+
s

◆
, (53)

with the quantities

A
±
s
=
�2

s

4E2
s

B(±Es), A
c

s
= A

�
s
n
+
s

� A
+
s
n
�
s
, (54)

n
±
s
=
�s✏

8E2
s

p
B(0)

⇣
3
p

B(±Es) �
p

B(⌥Es)
⌘
.
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In addition, to order O(g), the steady-state expectation
value for the dot occupation number in block s = ±1 is
given by

hnd(1)i
s
=

1

2
(1 � h�z(1)i

s
)

=
1

2

✓
1 � ✏

Es

B(Es) � B(�Es)

B(Es) +B(�Es)

◆
. (55)

Similarly, the respective saturation value for the quantum
capacitance follows as d

d✏
hnd(1)i

s
.

Finally, for the coherence block (i = c), one finds only
non-zero eigenvalues. Up to order O(g2) terms, with
p1, p2 = ±1, they are given by

⇤c

p1,p2
= �g

2

�
A

p2
p1

+A
�p1p2
�p1

+ 2Kp1
�
+ ip2f

p1 , (56)

with the quantities A±
s

in Eq. (54) and

K
± =

✏
2(f±)2

2E2
+E

2
�
B(0), f

± =
1

2
(E+ ± E�). (57)

We now proceed by illustrating these general results for
the specific environments in Sec. II C.

B. Results for specific environments

One of the main results of this work is stated in
Eq. (56), which yields the rates �c

p1p2
= �Re⇤c

p1p2
(with

p1, p2 = ±1) governing the decay of quantum coherence
shared by the two parity subblocks s = ±1, see Eq. (5).
Along with the (known) relaxation rates for the spin-
boson model [83], see Eqs. (52a) and (52b), these results
allow one to obtain explicit estimates for the relaxation
and/or decoherence time scales characterizing the dot-
MBQ system coupled to a generic environment with the
correlator B(!). In this subsection, we examine these
results for the specific environments in Sec. II C.

1. Thermal bath of bosons

We begin with a bosonic bath in thermal equilibrium,
see Sec. II C 1. For an Ohmic bath, the correlator Bth(!)
is given by Eq. (17). We choose an exponential cuto↵
function, C(!,!c) = e

�|!|/!c , where !c is the bath cuto↵
frequency.

First, in order to obtain the dimensionless number
⌘ = ⌘th, we have numerically computed the integrals in
Eq. (48) as a function of kBT/!c. The error bounds dis-
cussed in Sec. II E imply the condition ⌘th ⌧ 1 for the
e↵ective Lindbladian approximation. Within the tem-
perature range

0.001!c . kBT . 10!c, (58)

we find ⌘th < 100g, with a broad minimum at ⌘th ⇡ 10g
around kBT ⇡ 0.1!c. For small system-bath couplings,

say, g . 0.001, we conclude that the e↵ective Lindbla-
dian approximation is safely controlled within the tem-
perature window (58). The error bound Eth = ⌘th�̃, see
Eq. (47), is then smaller than the predicted decay rates.
The error bound may, however, become larger for either
very low or very high temperatures. The case of very
high temperatures has already been discussed in Sec. II E.
Moreover, in the zero-temperature limit, one generally
expects the Lindblad equation to break down [78, 83].
However, let us also recall that this error bound is con-
servative, and the actual error introduced by the e↵ective
Lindbladian approximation may in fact be much smaller,
see Sec. II E. Finally, we note that for the numerical cal-
culation of ⌘th, we have used a long-time integration cut-
o↵ tmax in Eq. (48), which physically corresponds to the
total duration of the measurement. Sending tmax ! 1,
one encounters a weak logarithmic divergence of ⌘th, see
also Refs. [2, 3].
For the diagonal blocks Li with i = s = ±1, we recover

from Eqs. (52a) and (52b) the known thermalization rates
of the spin-boson model to lowest order in the coupling
g [83],

�s1,th =
⇡g�2

s

4Es

e
�Es/!c coth

✓
Es

2kBT

◆
,

�s2,th =
1

2
�s1,th +

⇡g

2

✏
2

E2
s

kBT. (59)

These rates tell us how quickly thermalization occurs,
i.e., on which time scales the density matrix of the com-
bined dot-MBS system will approach the thermal state in
Eq. (10). Turning to the coherences between the s = +1
and s = �1 sectors, Eq. (56) yields the corresponding
four decay rates to order O(g). With p1, p2 = ±1, we
find

�c
p1,p2,th =

⇡g

8

(
�2

p1

2Ep1

e
�Ep1

!c


coth

✓
Ep1

2kBT

◆
+ p2

�

+
�2

�p1

2E�p1

e
�

E�p1
!c


coth

✓
E�p1

2kBT

◆
� p1p2

�

+
✏
2(E+ + p1E�)2

E
2
+E

2
�

kBT

)
. (60)

Three of these rates approach a finite value as T ! 0 and
therefore describe parity thermalization of the coupled
dot-MBS system. However, the smallest rate, �c1,th ⌘
�c+,�,th, vanishes in the T ! 0 limit and corresponds
to a dephasing rate for inter-parity quantum coherence.
From Eq. (60), we find the low-temperature behavior

�c1,th(T ! 0) ' ⇡g

8

✏
2(E+ � E�)2

E
2
+E

2
�

kBT. (61)

Figures 5, 6, and 7 illustrate the above results. The de-
cay rates in the diagonal sector, see Eq. (59), are shown
in Fig. 5, while the decay of quantum coherence between
the two parity sectors is shown in Fig. 6, see Eq. (60), and
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FIG. 5. Thermalization rates �s
1/2,th (in units of g!c), see

Eq. (59), vs ✏/� for a thermal boson bath. These rates de-
scribe thermalization of the diagonal density matrix blocks
with parity s = ±1, where blue solid (red dashed) curves are
for s = +1 (s = �1). We use the parameters kBT = � =
0.01!c, a = 1, and � = ⇡/3.

FIG. 6. Rates describing the decay of quantum coherence
between di↵erent parity sectors, see Eq. (60), for a thermal
bosonic bath. We show the four rates �c

p1p2,th (in units of
g!c), see Eq. (60), vs ✏/�, for the parameters in Fig. 5.

in Fig. 7. In Figs. 5 and 6, we show the respective rates at
fixed temperature as a function of the ratio ✏/� between
the dot level energy ✏ and the overall tunneling strength
�. We observe that some of the inter-parity decay rates
are of the same order of magnitude as the thermalization
rates in the parity-diagonal sectors. These inter-parity
rates also do not vanish in the T ! 0 limit and cor-
respond to thermalization rates of the system. In the
long-time limit, the smallest of the rates shown in Fig. 6
dominates the approach to the steady state. The dephas-
ing rate in the o↵-diagonal parity sector, �c1,th, is shown
in Fig. 7 and vanishes according to Eq. (61) as T ! 0.
Our results show that quantum coherence between dif-
ferent parity sectors can persist for long time scales at

FIG. 7. Inter-parity dephasing rate, �c
1,th = �c

+�,th (in units
of g!c), vs kBT/!c for a thermal bosonic bath, see Eq. (60).
We use the parameters in Figs. 5 and 6 with ✏ = �/2. The
low-temperature behavior is given by Eq. (61).

low temperatures.
We also note that in the long-time limit, the expecta-

tion value of the dot occupation number approaches the
thermal equilibrium value. Indeed, Eq. (55) yields

hnd(1)i
s,th =

1

2


1 � ✏

Es

tanh

✓
Es

2kBT

◆�
. (62)

This result holds for arbitrarily small (but finite) g.
As concrete example for a thermal bosonic bath, we

now consider the electromagnetic environment corre-
sponding to the circuit in Fig. 3, where the bath correla-
tor has been specified in Eq. (20). In e↵ect, the respective
decay rates can then be inferred from the above results
by replacing

ge
�Es

!c ! gLC C (Es/!LC) , (63)

with the Lorentzian cuto↵ function C(!̃) in Eq. (22). The
coupling gLC and the LC resonance frequency !LC have
been specified in Eq. (21). For instance, the first of the
two thermalization rates in Eq. (59), for the diagonal
sector with parity s = ±1, is given by

�s1,LC
=
⇡gLC�2

s

4Es

C
✓

Es

!LC

◆
coth

✓
Es

2kBT

◆
, (64)

with �s in Eq. (34). Similarly, we find from Eq. (61)
the low-temperature behavior of the dephasing rate for
inter-parity quantum coherence,

�c1,LC
' gLC

4

!LC

!1 + !2

✏
2(E+ � E�)2

E
2
+E

2
�

kBT, (65)

with !1,2 = 1/(R1,2C).

2. QPC detector

We next turn to the nonequilibrium environment corre-
sponding to the QPC measurement setup shown in Fig. 4,

60



12

FIG. 8. Steady-state dot occupation number, hnd(1)is, vs
potential bias �µ for the QPC parity readout with s = ±1,
see Sec. III B 2, obtained from Eq. (55) with Eq. (66), ✏ =
0.01!c,� = ✏, a = 1, and � = ⇡/3. The system energies E±
in Eq. (6) are shown as green vertical dashed lines. Blue (red)
curves are for parity s = +1 (s = �1). Solid curves are for
kBT = 0.01!c. The corresponding analytical T = 0 results,
Eq. (68), are shown as dashed curves.

see Sec. II C 2. For this QPC charge readout of the par-
ity of the dot-MBQ state, the bath correlator is given by
Eq. (31). For simplicity, we focus on the e↵ect of the
potential gradient �µ = µL � µR > 0 across the QPC,
and neglect the purely thermal contribution to BQPC(!),
which on its own has already been studied in Sec. III B 1.
For �µ ⌧ !c, we thus take the bath correlator responsi-
ble for the QPC charge readout as

BQPC(!) ' ⇡

2

X

p=±
(! + p�µ)e�|!+p�µ|/!c

⇥

coth

✓
! + p�µ

2kBT

◆
+ 1

�
. (66)

In this case, our numerical analysis of Eq. (48) shows
that with increasing potential bias �µ, the parameter
⌘ becomes smaller. In a sense, the bias �µ acts like
an e↵ective temperature and by increasing its value, the
memory time of the bath becomes shortened [96]. For
example, using �µ = 0.1!c and g = 0.001, we find that
in contrast to Eq. (58), the e↵ective Lindbladian approx-
imation stays accurate for all temperatures kBT . 10!c,
down to zero temperature.

Let us now turn to the zero-temperature limit in order
to study how decoherence in our system will depend on
�µ. For T = 0 and 0 < Es,�µ ⌧ !c, Eq. (66) simplifies
to

BQPC,T=0(!) ⇡ ⇡

X

p=±
|! + p�µ|⇥(! + p�µ), (67)

where ⇥(x) is the Heaviside step function. Moreover,
from Eq. (55), we obtain the average steady-state dot

occupation number as

hnd(1)i
s
=

(
1
2 (1 � ✏/Es), �µ < Es,

1
2 (1 � ✏/�µ), �µ � Es.

(68)

In order to read out the parity s = ±1, we evidently
cannot have �µ � Es for both values of s. On the other
hand, if �µ < Es for both s, the dependence on �µ

drops out completely, resulting in the optimal case of
maximum visibility. We illustrate the average steady-
state dot occupation number in Fig. 9, where we observe
that while the above T = 0 argument basically carries
over to the finite temperature case, the sharp changes
at �µ = Es in Eq. (68) are smeared out by thermal
fluctuations.
The smallest non-vanishing decay rate at T = 0 in the

diagonal block with parity s = ±1 is then given by

�s1 =
⇡g

4

�2
s

E2
s

⇥
(
Es, �µ < Es,

�µ, �µ � Es.
(69)

For the optimal visibility case with �µ < Es for both
values of s, this result formally coincides with the small-
est thermal rate at zero temperature, see Eq. (59). Im-
portantly, the decay rate is then insensitive to the value
of the potential bias �µ. For the decay of the o↵-
diagonal coherences, we find that the T = 0 dephasing
rate, �c1(�µ), depends linearly on the potential bias for
�µ < E±,

�c1(T = 0,�µ) ' ⇡g

16

✏
2(E+ � E�)2

E
2
+E

2
�

�µ. (70)

By comparing this result to the thermal rate in Eq. (61),
we observe that the potential bias plays the role of an ef-
fective temperature, as expected on general grounds [96].
In the opposite limit, kBT � �µ, the dephasing rate is
basically described by the results in Sec. III B 1.
Figure 9 illustrates the dephasing rate �c1 for the case

of a QPC detector, as a function of both temperature and
bias voltage. These results were obtained from Eq. (56).
We first observe that at low temperatures, the dephasing
rate increases with increasing potential bias. This behav-
ior is expected because the potential bias acts as e↵ective
temperature. On the other hand, for kBT & �µ, the
potential bias has little e↵ect on the rate which now is
dominated by thermal fluctuations. Next, we note that
in the potential bias window where di↵erent parity states
can be distinguished with good visibility, the time scale
⌧M = 1/�c1 for the o↵-diagonal coherence to decay, and
hence the time it takes to make a projective measurement
of the parity s = ±1, is limited to a time of the order
⌧M ⇡ 106/!c. On the other hand, the readout time is
determined by ⌧R = mins 1/�s1, i.e., in terms of the decay
rates in the diagonal sector. Now ⌧R is typically shorter
than ⌧M , which implies that if the system parameters are
chosen such that the final state allows one to distinguish
the two values of s, the time ⌧M will e↵ectively determine
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FIG. 9. Dephasing rate for parity o↵-diagonal quantum co-
herence, �c

1 (in units of g!c), in the T -�µ plane, for the case
of a QPC readout environment with ✏ = � = 0.01!c, a = 1,
and � = ⇡/3. The dashed horizontal lines correspond to
�µ = Es=±, see Eqs. (6) and (68).

the readout time of the measurement. Finally, we note
that from Fig. 8, one observes that for good visibility,
one needs �µ . E+. This observation suggests that a
readout procedure with an initially larger value of �µ

may be advantageous since in this manner one can speed
up the o↵-diagonal decay. Subsequently using a smaller
potential bias �µ, one can then maximize visibility.

C. Lamb shift

The Lamb shift can be thought of as a renormaliza-
tion of the dot-MBQ energies by the bath modes. This
renormalization does not contribute to decay rates but
contributes to the e↵ective Hamiltonian appearing in the
Liouvillian. So far we have not discussed the correspond-
ing term, HLS , which appears in the coherent time evo-
lution part of Eq. (37). The Lamb shift could potentially
be important for the readout, for instance, by reducing
the visibility in the readout via s-dependent shifts of the
average dot occupation hndis.

In this subsection, we show that for E± ⌧ !c, HLS

only causes an s-independent constant energy shift. As
a consequence, the Lamb shift is not expected to a↵ect
the readout visibility for our dot-MBQ setups.

In the eigenbasis of H0, defined by H0|p, si =�
✏

2 + p

2Es

�
|p, si for p = ±1, see Eq. (6), the Lamb shift in

the e↵ective Lindbladian approximation takes the form

[3]

HLS =
g

16

X

p,q,r,s=±1

Zpq,sZqr,s (71)

⇥

Q

✓
p � q

2
Es

◆
+Q

✓
q � r

2
Es

◆�
|p, s ih r, s| ,

Q(!) =
P
⇡

Z 1

�1
d⌫

B(⌫)

! � ⌫
,

where P denotes the principal part of the integral and
B(⌫) is the bath correlator for the respective environ-
ment. We employ the quantities

Zpq,s ⌘ hp, s |�z| q, si =
(

�p✏/Es, p = q,

�s/Es, p = �q,
(72)

with �s in Eq. (34), such that Eq. (71) can be written
as

HLS =
g

8

X

s

✓
✏
2
Q(0)

E2
s

+
�2

s
[Q(Es) +Q(�Es)]

2E2
s

◆
⇧s,

(73)
where ⇧s is the projector onto the diagonal parity block
with s = ±1. The Lamb shift therefore shifts the energies
in each block.
We next discuss the form of HLS for the di↵erent envi-

ronments introduced above. Using Eq. (73) and symme-
try relations obeyed by B(!) corresponding to Eq. (12),
we find that the Lamb shift HLS is independent of tem-
perature. Crucially, for Es ⌧ !c, we will show that
the energy shift is s-independent for all these cases, and
therefore it indeed is irrelevant with respect to the parity
readout. The Lamb shift is also negligible with regard to
the average dot occupation hnd(1)i

s
, since Eq. (62) is

already determined by contributions of order O(g0).

1. Thermal boson bath

We first evaluate Eq. (73) for thermal bosons. For an
Ohmic bath, using the bath correlator Bth(!) in Eq. (17)
with an exponential cuto↵ function, Eq. (73) yields the
result

HLS =
g!c

8

X

p,s=±


1 +

�2
s

2E2
s

⇠

✓
Es

!c

◆�
|p, s ih p, s| , (74)

where ⇠(x) = xe
x Ei(�x)�xe

�x Ei(x) with the exponen-
tial integral, Ei(x) = �

R1
x

dte
�t
/t. Using ⇠(x) ! 0 for

x ! 0, we find that for E± ⌧ !c, Eq. (74) reduces to
the constant energy shift g!c/8 which does not a↵ect the
parity readout.
Next we turn to the electromagnetic environment in

Fig. 3, with the bath correlator BLC(!) in Eq. (20),
where the Lamb shift takes a more complicated form. Us-
ing the cuto↵ function C(!̃) in Eq. (20) with !c = !LC ,
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we find

Q(0) =
e
2

4C
P
Z 1

�1
d!̃ C(!̃)

Q(Es) +Q(�Es) =
e
2

4C
P
Z 1

�1
d!̃ C(!̃) (75)

⇥
 

!̃

!̃ + Es
!LC

+
!̃

!̃ � Es
!LC

!
.

Using these expressions, we observe that the s-
dependence drops out again in HLS in the parameter
regime E± ⌧ !c = !LC .

2. Lamb shift for QPC

For the QPC case, we find the Lamb shift

HLS =
g!c

8

X

p,s

✓
1 +

✏
2

E2
s

⇠

✓
�µ

!c

◆
+
�2

s

E2
s

⇠

✓
Es

!c

◆◆

⇥ |p, s ih p, s| , (76)

where ⇠(x) has been defined after Eq. (74). As in the
thermal case, in the limit E±,�µ ⌧ !c, the Lamb shift
has no consequences for the parity readout.

IV. OUTLOOK

The model we have introduced provides a flexible
framework, which may be adapted to study other exper-
imental setups and dephasing mechanisms related to the
parity-charge conversion process, see also Refs. [67, 97].
Below we sketch possible extensions of our work that we
find particularly interesting. However, a more detailed
study of these points goes beyond the scope of this pa-
per.

A. Dispersive readout

One could use our framework to model the e↵ect of
dispersive readouts of Majorana qubits [21, 98]. To that
end, we consider the electromagnetic environment shown
in Fig. 3. To include the e↵ects of the dispersive read-
out, however, one should explicitly include the driving
fields into the model for the environment. This step will
modify B(t) significantly, leading to dephasing already
at zero temperature. From this point on, our approach
should then be applicable again. In particular, by cal-
culating hnd(1)i

s
, one can obtain the impedance shift

of the system, from which the resulting amplitude and
phase shifts of the reflected signal corresponding to the
values s = ±1 can be deduced.

B. Other dephasing mechanisms

Above, we have studied dephasing caused by the mea-
surement circuit during the MBQ readout. In this sub-
section, we describe how intrinsic sources of dephasing
can be included in the formalism. In particular, we dis-
cuss how the time evolution of the density matrix will
be changed due to residual Majorana overlap integrals
and/or because of quasiparticle poisoning e↵ects.
When allowing for quasiparticles to relax to or be ex-

cited from the zero-energy MBS sector, we need, because
of total parity conservation, an additional quantum num-
ber describing whether the quasiparticle sector has even
or odd occupancy. The total parity of the MBSs and the
quantum dot is given by

p = �i�1�2�3�4⌘1⌘2, (77)

such that p = ±1 is the quantum number that keeps track
of whether the quasiparticle number parity has changed.
We can then define MBQ Pauli operators s = (sx, sy, sz)
as

sx = �1�3⌘1⌘2 = i�2�4p,

sy = �1�4⌘1⌘2 = �i�2�3p,

sz = �1�2⌘1⌘2 = i�3�4p.

(78)

In a similar way, we can write the original Pauli operators
�̃↵, see Eq. (33), as

�̃x = �i�1⌘2 = �2�3�4⌘1p,

�̃y = i�1⌘1 = �1�3�4⌘1p,

�̃z = �i⌘1⌘2 = p�1�2�3�4.

(79)

The two sets of Pauli operators commute, [s↵, �̃↵0 ] = 0
for all ↵,↵0.

1. Majorana overlaps

Dephasing of a Majorana qubit due to finite MBS over-
laps has been studied before by Knapp et al. [99]. The
Majorana overlaps introduce a Hamiltonian term of the
form

Hoverlap =
X

i<j

tiji�i�j = s · [pd1 + �̃zd2], (80)

where the real-valued vectors d1 = (t24,�t23, t34) and
d2 = (t13, t14, t12) contain the overlap matrix elements
tij . We observe that the MBS overlaps basically cause
the Bloch vector of the MBQ to precess around an axis
defined by the vectors d1 and d2. It is straightforward to
include Eq. (80) in the coherent part of the Liouvillian,
see Eq. (37). For a detailed discussion of the resulting
physics, see Ref. [99].
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2. Quasiparticle poisoning

We now consider quasiparticle poisoning caused by ex-
citations out of the MBS ground state sector and/or
by the relaxation of thermally generated quasiparticles
into the MBS sector. We will assume that the time
scales for these two processes are slow, in particular much
slower than relaxation within the quasiparticle contin-
uum. Moreover, the time scale for the spatial equi-
libration of quasiparticles is also assumed to be much
shorter than the typical time between subsequent poi-
soning events. These two assumptions imply that the
quasiparticle distribution function is identical for all MBS
positions. The Hamiltonian that describes the coupling
between quasiparticles and MBSs is then given by [71]

Hqp = HF +HB +Hpois, HF =
X

k

E
k
↵
†
k
↵
k
,

HB =
X

q

!qb
†
q
b
q
, Hpois =

4X

i=1

�i

X

qk

�iqk'q,

�iqk = v
iqk
↵
k

� v
⇤
iqk
↵
†
k
, 'q = b

q
+ b

†
q
, (81)

where ↵k are fermionic annihiliation operators for above-
gap Bogoliubov quasiparticles with energy Ek. Moreover,
bq are annihilation operators for bosonic modes (phonons
and/or electromagnetic modes) which mediate the cou-
pling between the two fermionic subsystems, !q are boson
energies, and viqk are the coupling matrix elements. A
key point is now that the quasiparticles have di↵erent dis-
tribution functions depending on the total quasiparticle
number being even or odd. Of course, this statement only
holds true for a finite system where parity is conserved,
but for closed MBQs, this is indeed the case. The dif-
ference between the even and odd quasiparticle number
sectors is only significant for temperatures T . T

⇤, where
T

⇤ is the characteristic temperature at which the prob-
ability of having a single quasiparticle on the island ap-
proaches unity. This cross-over temperature is inversely
proportional to the volume VS of the superconductor and
given by [39, 71, 100, 101]

T
⇤ ⇡ �

kBNe↵
, Ne↵ = dSVS

p
2⇡kBT�, (82)

where dS is the density of states and � the pairing gap.

To take total parity conservation into account, we
project the Hamiltonian (81) onto the sector with (say)
total even occupancy, Hqp ! PeHqpPe, where Pe is the
projection operator to total even parity. We also de-
fine separate projection operators for quasiparticles and
MBSs onto the respective even and odd parity sectors,
P

qp,M
e/o

. With Pe = P
M

e
P

qp
e

+P
M

o
P

qp
o

, the projected poi-

soning Hamiltonian becomes

PeHpoisPe =
4X

i=1

P
M

o
�iP

M

e

X

qk

P
qp
o
�iqk'qP

qp
e

+
4X

i=1

P
M

e
�iP

M

o

X

qk

P
qp
e
�iqk'qP

qp
o

. (83)

We can now identify two contributions in Eq. (83). The
first term couples the MBQ via the operator �i,e!o =
P

M

o
�iP

M

e
to a reservoir with an even number of quasi-

particles, while the second term couples it via �i,o!e =

�
†
i,e!o

to a reservoir with odd quasiparticle number.
Equation (83) allows us to directly apply the e↵ective
Lindbladian approximation introduced in Sec. II E. To
that end, we define a jump operator for each of the two
terms in Eq. (83),

Le!o =
X

i

X

mn

hm|�i,e!o|ni
q

g
e

ii
(En � Em)|mihn|,

(84a)

Lo!e =
X

i

X

mn

hm|�i,o!e|ni
q
g
o

ii
(En � Em)|mihn|,

(84b)

where the two bath functions are given by

g
e/o

ij
(t) = �

X

qk

h�iqk(t)�jqk(0)ie/oh'q(t)'q(0)i. (85)

The fermionic expectation value is here taken over quasi-
particle distributions in the respective sector with even
or odd total occupation number. The functions (85) have
also been discussed in Refs. [39, 71, 100–103]. Note that
in Eqs. (84a) and (84b) we have neglected coherent trans-
port of quasiparticles between the ends of the topologi-
cal superconductors. If coherent quasiparticle transfer
between the wire ends is important, it can be included
by creating jump operators from the square roots of the

matrices ge/o
ij

(!) [3].
As final step, we now use the fact that because of the

coupling to incoherent quasiparticle reservoirs, the total
even and odd (p = ±1) sectors of the MBQ have no
quantum-coherent coupling. We can therefore write the
dynamical equations for the MBQ reduced density ma-
trices with even or odd parity, ⇢e/o, as

⇢̇e =(⇢̇e)
(0) � 1

2

�
L
†
e!o

Le!o, ⇢e

 
+ Lo!e⇢oL

†
o!e

, (86a)

⇢̇o =(⇢̇o)
(0) � 1

2

�
L
†
o!e

Lo!e, ⇢o

 
+ Le!o⇢eL

†
e!o

, (86b)

where (⇢̇e/o)
(0) is the time derivative in the absence of

quasiparticle poisoning. Finally, we note that the cou-
pling of the MBS sector to the quasiparticle reservoirs
will also give rise to Hamiltonian corrections of the same
form as the residual overlaps in Eq. (80).
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V. CONCLUSIONS

We have developed a flexible theory for calculating the
thermalization and dephasing rates for arbitrary quan-
tum states of a Majorana box qubit tunnel-coupled to
a quantum dot for parity readout. Our analysis shows
that this parity-to-charge conversion process sensitively
depends on the choice of the readout device connected
to the dot charge. The latter can be thought of as a
generic Markovian bosonic environment (heat bath), ei-
ther in thermal equilibrium or operated under nonequil-
brium conditions. Particular care has been taken to prop-
erly account for the decay of coherences among blocks
with di↵erent fermion number parity s = ±1, where s

refers to the parity of the quantum dot together with the
two tunnel-coupled Majorana states.

By employing a recently developed e↵ective Lindbla-
dian approximation, the resulting quantum master equa-
tion is by construction of Lindblad form, meaning that
complete positivity of the density matrix is guaranteed
during the entire time evolution. We have provided ex-
plicit results for decay rates when the environment con-
sists of a generic thermal boson heat bath. An impor-
tant special case is defined by the electromagnetic fluc-
tuations in a macroscopic electric circuit connected to
the Majorana qubit. In addition, we have examined the
nonequilibrium environment corresponding to a Majo-
rana parity readout via conductance measurements of a
quantum point contact that is capacitively coupled to the
dot. For all these examples, we have derived analytical
expressions for decay rates, which in turn can be related
to experimentally measurable quantities. By taking into
account quasiparticle poisoning and Majorana overlap ef-
fects as sketched in Sec. IV, it stands to reason that this
theoretical approach can allow for a realistic and power-
ful description of quantum decoherence in Majorana box
qubits.

Note added: After completion of this manuscript,
we were informed of a closely related independent
manuscript by Steiner and von Oppen [104]. Their con-
clusions are consistent with our findings. Despite of the
overlap between both works, they are largely complemen-
tary. While we employ the improved jump operators in-
troduced in Refs. [1–3] and use them to investigate ex-
plicit models for the measurement apparatus, Ref. [104]
focuses on the stochastic nature of quantum measure-
ments and provides an in-depth analysis of the measure-
ment current.
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Appendix A: Bath correlator for QPC detector

In this appendix, we derive the bath autocorrelator
BQPC(!) in Eq. (31) for a quantum point contact capac-
itively coupled to the dot-MQB system, see Fig. 4. We
start from the interaction Hamiltonian (23),

HI =
2e2

Cm

⇢̂nd, (A1)

where ⇢̂ =  
†
 is the electron density operator in a small

(approximately point-like) volume V centered around the
longitudinal coordinate x = 0 along the QPC. Near this
point, the capacitive coupling between the QPC charge
density and the dot charge will be most pronounced.
Here,  is the electron annihilation operator for QPC
electrons in this volume, and Cm is the mutual dot-QPC
capacitance per volume. The electron spin is accounted
for by the factor 2 in Eq. (A1).
As concrete example, we model the QPC as 1D fermion

system connected to electron reservoirs on the left and
right side, with chemical potentials µL and µR, respec-
tively. We assume that the capacitive interaction involves
the QPC charge density at x = 0 only, see Eq. (A1). The
QPC itself is modeled by a �-peak barrier of height V0

per unit length. The corresponding contribution to the
first-quantized Hamiltonian is VQPC = V0�(x). We next
express the local QPC fermion operator  as

 =
X

`=L/R,k

 `k(x = 0) c`k, (A2)

where the c`k are fermionic annihilation operators cor-
responding to the single-particle QPC scattering states
 `k(x) with wave number k originating from reservoir
` = L,R. For the 1D QPC model with a �-barrier, one
finds [105]

 `=L/R,k(x) =
1p
L0

h �
e
±ikx + rke

⌥ikx
�
⇥(⌥x)

+ tke
±ikx⇥(±x)

i
, (A3)

rk =
1

i
k

mV0
� 1

, tk =
1

1 + i
mV0
k

,

where L0 is the QPC length, m the electron mass, and
rk and tk are reflection and transmission amplitudes, re-
spectively. The charge density at x = 0 follows as

⇢̂ =
1

V

X

`,`0=L,R

X

kk0

⌧
`k,`0k0 c

†
`k
c
`0k0 , (A4)
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where ⌧
`k,`0k0 quantifies the overlap between  `k and

 `0k0 . For the 1D model with Eq. (A3), we obtain

⌧
`k,`0k0 =

1

4
(1 + rk + tk)(1 + rk0 + tk0), (A5)

which is independent of the lead indices `, `0. For calcu-
lating the bath correlation function, we next assume

D
c
†
`k
c
`0k0

E
= �``0�kk0nF,`(✏`k), (A6)

with Fermi-Dirac distribution functions, nF,`(✏) =
1/(e�(✏�µ`)+1), and the single-particle eigenenergies, ✏`k,
in the bath HamiltonianHB , see Eq. (23). Equation (A6)
e↵ectively enforces the constraint that electrons thermal-
ize before entering the QPC. We then have

h⇢̂(t)i = h⇢̂i = 1

V

X

`,k

⌧
`k,`k

nF,`(✏`k), (A7)

where ⇢̂(t) = e
iHBt

⇢̂e
�iHBt and ⌧

`k,`k
> 0. For the 1D

example with a �-barrier, we have ⌧`k,`k = |tk|2 according
to Eq. (A3). With the bath operator ' in Eq. (23), we
now observe that Eq. (A7) implies a time-independent
linear moment,

h'(t)i = h'i = Eref

X

`,k

⌧
`k,`k

nF,`(✏`k). (A8)

Rewriting the interaction Hamiltonian as

HI =
p
gnd('� h'i) + p

gnd h'i , (A9)

we observe that the linear moment in Eq. (A8) can be
absorbed by a shift of the dot level energy ✏,

HI ! p
gnd('� h'i), ✏ ! ✏� p

g h'i , (A10)

see Eqs. (2) and (23). With respect to the redefined
interaction Hamiltonian, the time-dependent bath auto-
correlator in Eq. (12), BQPC(t), which enters the e↵ec-
tive Lindbladian approximation, can be evaluated by us-
ing c`k(t) = e

�i✏`ktc`k along with Wick’s theorem and
Eq. (A6). The result is

BQPC(t) = E
2
ref

X

`k,`0k0

��⌧
`k,`0k0

��2 ei(✏`k�✏`0k0 )t

⇥ nF,`(✏`k) [1 � nF,`0(✏`0k0)] . (A11)

We now introduce the coupling profile function
�``0(!,!0) as in Eq. (26), which for the 1D case with
a �-barrier is given by

�``0(!,!
0) =

m

4⇡2L
2
0E

2
ref

p
!!0

⇣
mV2

0
2 + !

⌘⇣
mV2

0
2 + !0

⌘⇥(!)⇥(!0),

(A12)

where we use Eq. (A3) and 1
L0

P
k
(· · · ) ! 1

2⇡

R
dk(· · · ).

Identifying the general form (26) of � in Eq. (A11), we
find

BQPC(t) =
X

`,`0

Z 1

�1
d!d!

0 �(!,!0)ei(!�!
0)t

⇥ nB(! � !
0 � µ` + µ`0) [nF,`0(!

0) � nF,`(!)] , (A13)

where we used the identity

nF(⇠) [1 � nF(⇠
0)] = nB(⇠ � ⇠

0) [nF(⇠
0) � nF(⇠)] .

Changing variables in Eq. (A13) to ⌦ = (! + !
0)/2 and

⌫ = ! � !
0, shifting ⌦ by µ``0 = (µ` + µ`0)/2, and fi-

nally performing a Fourier transformation, we arrive at
Eqs. (24) and (25).
Finally, we note that if we evaluate

�``0
�
⌦+ µ``0 � !

2 ,⌦+ µ``0 +
!

2

�
with the coupling func-

tion Eq. (A12) for Eref = µ0/2 with µ0 = (µL+µR)/2 and
mV2

0 ⌧ µ0 as well as 1/(mL
2
0) ⌧ µ0, we can qualitatively

confirm the behavior of �``0
�
⌦+ µ``0 � !

2 ,⌦+ µ``0 +
!

2

�

assumed below Eq. (26) in order to arrive at the
simplification in Eq. (28). For all involved integrals to
converge, � is here assumed to decay su�ciently fast at
large frequencies due to the finite electronic bandwidth
in the leads.

Appendix B: Matrix form of the Liouvillian

In this appendix, we specify the full matrix form of
the Liouvillian. For a generic environmental correlation
function, B(!), using the energy eigenstates |p, si of the
combined dot-plus-coupled-MBS system in Eq. (6) and
the quantities �s in Eq. (34), the jump operator takes
the general form

L = �
p
g

2

X

s=±1

"
✏

p
B(0)

Es

(|�, s ih �, s| � |+, s ih+, s|)

+
�s

p
B(�Es)

Es

|+, s ih �, s|

+
�s

p
B(Es)

Es

|�, s ih+, s|
#
. (B1)

Using the basis in Eq. (49), the matrix form of the Liou-
villian contains the blocks Li with i = ±, c,

L =

0

B@

L+ 0 0 0
0 Lc 0 0
0 0 L⇤

c
0

0 0 0 L�

1

CA , (B2)

with the parity-diagonal blocks (s = ±1),

Ls =
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�gn
+
s

�gBs + iEs gCs gn
�
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s

gA
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�
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1

CA ,

(B3)
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and the matrix
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. (B4)

This matrix contains the following 2 ⇥ 2 blocks:
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Chapter 3

Project B:
Dephasing of Majorana qubits due to
classical noise

In this project we study the effects of local electromagnetic noise on the coherence of Majorana box
qubits. The objective in particular is to understand how quickly information is lost in the most ideal
situation where the Majoranas don’t overlap, and there is no quasiparticle posioning from the outside.
The electromagnetic fields are treated as classically fluctuating fields, and non-adiabatic corrections
from the field fluctuations lead to transitions to excited states, which flip the ground-state parity. Such
processes lead to potential errors in parity readouts. Since the fields are treated classically, the results
are only valid when the temperature is much larger than some characteristic energy scale !0 in the
environment.

The resulting dephasing rate is not found to be exponentially suppressed in the ratio between tem-
perature T and the superconducting energy gap �. A partial summation of higher-order terms suggests
that a small part of the coherence decays with a much faster rate, independent of temperature. This
additional fast loss of coherence scales linearly with temperature. These suprising conclusions may be
taken as an indication of model breakdown for temperatures much lower than the superconducting gap.

The technique of finding the instantaneous Majorana zero-energy modes and the non-adiabatic cor-
rections may prove useful for future studies of Majorana readouts, including the slow coupling of the
measurement apparatus. Our approach was inspired by the work of Karzig et al. [45] and Scheurer et

al. [68] who studied the effect of moving around Majorana modes in topological nanowires by tuning
local chemical potentials. Our technique could expand upon theirs by including statistical averaging of
the noise in the time dependent potentials.

The work of this chapter is adapted from my master’s thesis Dephasing of Majorana Box Qubits,
which was defended August 30th 2017, as part of my integrated master’s and PhD programme.
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1 Introduction

The crux of quantum computation is developing an architecture which is resilient to decoherence. To this
end, topological states of matter provide a conceptually promising direction, since they are inherently
protected against local interactions. Majorana modes offer a viable implementation as they are thought
to have already been experimentally found through zero-bias conductance measurements in proximitized
nanowires with large Zeeman splitting and spin-orbit coupling. Although it remains to be proven that
the measured zero-bias conductance peaks correspond to topological modes, the discoveries have still
sparked excitement for the prospect of scalable, and inherently fault tolerant quantum computation.

One of the suggested architectures for building a quantum computer is based on the so-called Majo-
rana box qubit [63]. This system is in essence a minimal qubit made of Majorana zero-energy modes. It
consists of two topologically superconducting 1D nanowires, hosting Majorana zero-energy edge modes
�1, �2, �3 and �4. The wires are connected by a superconducting backbone, and the system is well
isolated from the environment, with a charging energy term

EC(N̂ � ng)
2
, (1.1)

where N̂ is the electron number operator on the island, EC is very large compared to all other energy
scales, and ng is controlled by a gate voltage. ng is tuned to be very close to an integer, so the system
is Coulomb blockaded and the total fermionic parity P = (�1)N , in the system is conserved. In the
absence of charging energy, the ground states consist of the states |n12, n34i, where nij = f

†
ij
f
ij

is the
occupancy of the fermionic mode spanned by the Majorana operators �i and �j , with the corresponding
annihilation operator fij = (�i + i�j)/2. Adding the charging energy, the ground-state manifold consists
only of linear combinations of |n12, n34i, which obey the constraint ��1�2�3�4 = P .

Since quantum information is encoded in the fermionic parities, there are three types of errors that can
occur. The first is when transitions between the ground states are caused without changing the overall
fermionic parity. The topological nature of the Majorana modes implies that this can only happen using
non-local operations, for instance by coupling two Majorana modes directly, by interacting with a non-
zero overlap between the two modes or by exciting a quasiparticle in one end of the system and letting
it relax at another. The second type of error is when an outside electron enters the system, flipping the
total fermionic parity of the island. This is called quasiparticle poisoning, and is suppressed by the large
charging energy EC . The third type of error is when a quasiparticle inside the system is excited, flipping
the ground-state parity.

In this project, we investigate a source of the third type of errors. We consider an ideal Majorana
qubit, with zero overlap of the Majorana wavefunctions and no external quasiparticle poisoning. Fur-
thermore, we assume that excited quasiparticles do not propagate between the Majorana modes of the
system. Our question is then how a Majorana qubit under such idealized assumptions dephases, or
phrased in another way, how little dephasing it is theoretically possible to have in a Majorana qubit.

Specifically, we consider electromagnetic noise in the system, and model this as a time-dependent
classically fluctuating field �(t). If the field fluctuates very slowly, the adiabatic theorem would imply
that no quasiparticles are excited, and hence no errors occur. One could then diagonalize the system
and find the instantaneous zero-energy modes that diagonalize the system at later times, and the quan-
tum information would be perfectly stored by these. By including non-adiabatic corrections however,
measurements may lead to quasiparticle excitations and a resulting flip of the ground-state parity. Since
�(t) is not known, we functionally average over it, using the classical limit for the correlation function
h�(t)�(t0)i calculated by linear response theory and the fluctuation-dissipation theorem.

2 The model and our measure of dephasing

Consider the setup sketched in Figure 10. The Majorana box qubit is coupled capacitively to an en-
vironment impedance Z0, which for simplicity is taken to be frequency independent. The capacitance
gives rise to a classical electric potential energy drop �(t), which shifts the chemical potential in the
Majorana system. Letting �(0) = 0, the zero-energy- and continuum modes are shifted over time. We
denote the time-dependent instantaneous Majorana zero-energy modes by �̃i,t, and set out to address
the following question: If we initialize the system in a particular eigenstate of, say, i�̃i,t=0�̃j,t=0, what

72



Figure 10: A Majorana box qubit, subjected to a classical potential �(t)/e, which arises from fluctuations
in the electric circuit depicted in the figure. �(t)/e is the voltage drop over a capacitance C, which models
the coupling to the environment. The environment is represented by a frequency-independent impedance
Z0.

then is the expectation value of i�̃i,t�̃j,t? In order to make sense of this question, we will assume that it
is possible to measure i�̃i,t�̃j,t much quicker than the time scale on which �(t) fluctuates.

We are interested in the decoherence effects from this which are independent of finite-size effects.
Thus, we consider the Hamiltonian Hpw,t for a single half-infinite, spinless p-wave superconductor with
the addition of the time-dependent potential energy fluctuations �(t). This enters the Hamiltonian as a
time-dependent linear shift of the energy gap �, so we write the BdG Hamiltonian Ht as

Hpw,t = Hpw � �(t)⌧z, (2.1)

Hpw =

 
p
2

2m �� vp

vp � p
2

2m +�

!
, ⌧z =

✓
1 0
0 �1

◆
, (2.2)

where the Hilbert space is defined only on the non-negative real axis x � 0. We need to impose �(t) ⌧ �
at all times, to ensure that we are not pushed out of the topological regime. Furthermore, we will impose
�̇(t)/� ⌧ �, so non-adiabatic effects don’t dominate. We denote the zero-energy eigenstate of (2.1) at
time t = 0 by | 0i, and the eigenstate corresponding to the excited state with wavenumber k at time
t = 0, as | ki. We denote the matrix element between the zero energy state and the continuum by

h 0|�(t)⌧z| ki = �(t)Wk, (2.3)

With this, we may write Eq. (2.1) in second quantization as

Hpw,t =
X

k

Ek↵
†
k
↵
k
+
X

k

⇣
Vkt↵

†
k

� V
⇤
kt
↵
k

⌘
� + . . . , (2.4)

where we defined

Vkt = ��(t)W ⇤
k
. (2.5)

In Eq. (2.4), ↵k is the annihilation operator associated with the state | ki and � is the Hermitian
Majorana operator associated with the state | 0i. Since the pairing is odd in momentum, it is effectively
spinless. So to be precise, if  (x) is the (spinless) electron annihilation operator at position x, then in
BdG space, � and ↵k are given by

� =

Z 1

0
dxhx| 0iT

✓
 (x)
 †(x)

◆
, (2.6)

↵k =

Z 1

0
dxhx| kiT

✓
 (x)
 †(x)

◆
, (2.7)
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Figure 11: In view of the big system size, the Majoranas �i are modeled as only interacting with a set
of local continuum states ↵i,k.

where we emphasize the BdG vector structure of the wave functions hx| 0,ki. The term that has been
left out in (2.4) has the form

P
k,k0h k|�(t)⌧z| k0i↵†

k
↵
k0 . This term renormalizes the continuum wave

functions, causing transitions within the continuum, and we will neglect this terms, since they only
contribute to a higher order in �/�.

For the full Majorana box qubit, we assume that it is describable as four copies of (2.4), meaning
that here is no overlap between the Majorana wave functions, that each end of the system is subjected
to the same potential �(t) and that the Majoranas interact only with localized quasiparticle continua, as
sketched in Figure 11. This is a conservative approximation, as including the propagation of quasiparticles
throughout the system would lead to non-trivial logical errors in the logical ground state space. It is a
good approximation on time scales much shorter than the time it takes for quasiparticle wave packets to
travel from one end of the system to the other. We denote the local continuum operators ↵i,k and the
Majorana operators �i, and impose the anticommutation relations

{↵
i,k

,↵
†
j,k0} = �i,j�k,k0 (2.8)

{�i, �j} = 2�i,j . (2.9)

With this, the Hamiltonian Ht for the Majorana box qubit with the potential fluctuations becomes

Ht =
X

i=1,4

X

k

Ek↵
†
i,k
↵
i,k

+
X

i=1,4

X

k

⇣
Vkt↵

†
i,k

� V
⇤
kt
↵
i,k

⌘
�i. (2.10)

The initial logical space is the span of the eigenvectors of the Pauli operator �z ⌘ i�1�2, subject to
the parity constraint

�1�2�3�4 = s0, (2.11)

where s0 = ±1. We denote the projection onto the subspace of the ground-state manifold satisfying Eq.
(2.11) by ⇧s0 , such that for general parities

⇧s =
1

2
(1 + s�1�2�3�4). (2.12)

Thus, we label the states of the initial logical space by |p, s0i, where p = ±1 is the eigenvalue of �z.
At a later time t, the logical space has changed, since [�i, Ht] 6= 0. The instantaneous logical space is

instead given by the span of the eigenvectors of the instantaneous Pauli operator

�̃z,t ⌘ i�̃i,t�̃j,t, (2.13)

where the instantaneous Majorana operators �̃i,t satisfy

[�̃i,t, Ht] = 0, �̃i,t=0 = �i, (2.14)

and instantaneous logical space is subject to the parity constraints �̃1,t�̃2,t�̃3,t�̃4,t = s0. Since non-
adiabatic time evolution will tend to make the system leave the instantaneous logical space, we must be
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careful when defining our error probability. If the system is prepared in an initial logical state |p, s0i,
we will define it as the probability of measuring �̃z,t = �p; that is, we define it as the probability of
detecting an error if the measurement can be carried out instantly. Realistically, measurements take
a finite amount of time, which means that it is maybe more realistic to read out in the initial basis,
since this is also the average instantaneous basis because h�(t)i = 0. Our dephasing measure is therefore
conservative, since a realistic measurement could also be affected by the mismatch of bases.

For initial states that are not eigenstates of �z, it is not possible to detect whether an error has
occurred purely by measuring the parities of the ground state manifold. By also measuring i�̃3,t�̃4,t, it is
possible, however, to check if the state has left the logical space. Note that the symmetry of the system
means that we do not lose generality when we choose to initialize in the eigenbasis of �z.

We assume that the system is initialized perfectly, so the Majorana states are completely disentangled
from the continua, whose density matrix is denoted by ⇢c. We assume the continuum density matrix to
be a product state between the four continua,

⇢c =
4O

i=1

⇢c,i, (2.15)

where ⇢c,i contains only the degrees of freedom corresponding to the ↵i,k operators. The initial logical
state |p = +, s0i may then be written

⇢(0) =
1

2
(1 + �z)⇧s0 ⌦ ⇢c, (2.16)

with |r|  1. Time evolving the initial state (2.16), using the Hamiltonian in (2.10), gives us a state
entangled with the continuum, which at time t is

⇢(t) =
1

2
U(t)

�
1 + �z

�
⇧s0⇢cU

†(t), (2.17a)

U(t) = Tte
�i

R t
0 dt

0
Ht0 , (2.17b)

where Tt denotes the time ordering operator, placing terms at later times to the left. Given the state
⇢(t), we want to calculate the probability of measuring �̃z,t = +1, which is an operator only on a part
of the instantaneous ground-state manifold. We denote this by Hp̃ ⌘ trc̃,s̃ H, where H is the full Hilbert
space, trc̃ denotes trace over the instantaneous continuum states, and trs̃ is trace over the instantaneous
ground state’s total fermionic parity. In general, the probability P ,⇢ of measuring a pure state | i,
when the initial state is given by a density matrix ⇢, is

P ,⇢ = h |⇢| i = tr
⇣

| ih | ⇢
⌘
, (2.18)

and hence, when we denote trace over the eigenstates of �̃z,t by trz̃, the probability Pz̃,z of measuring
�̃z,t = + at time t, when the initial state is given by Eq. (2.17), is

Pz̃,z = trz̃
✓
1

2
(1 + �̃z,t) trc̃,s̃

⇣
U(t)

1

2
(1 + �z)⇧s0⇢cU

†(t)
⌘◆

=
1

4
tr
⇣
U

†(t)
�
1 + �̃z,t

�
U(t)

�
1 + �̄z

�
⇧s0⇢c

⌘

=
1

4
tr(⇧s0⇢c) +

1

4
tr
⇣
U

†(t)�̃z,tU(t)�z⇧s0⇢c

⌘
+ 0

=
1

2
� 1

4

⌦
U

†(t)�̃1,t�̃2,tU(t)�1�2⇧s0

↵
c
, (2.19)

where the subscript c indicates that the average is just with respect to the density matrix ⇢c. In the
above we have made use of the fact that trace is basis independent, as well as the fact that terms
containing only either �z or �̃z have vanishing trace. The time evolution operator factorises, and we
write U(t) =

N
i
Ui(t), stressing that [Ui(t), �j ] = 0 when i 6= j. This implies that the average in (2.19)
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becomes
⌦
U
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(2.20)

where trc,i denotes trace over just the degrees of freedom corresponding to the ↵i,k, and we reiterate
that the state |p, si is the eigenstate of i�1�2 and �1�2�3�4 with eigenvalues p and s, respectively. We
introduce the instantaneous Majorana propagator

G�̃i(t; p, s; p
0
, s

0) ⌘ hp, s0| trc,i
⇣
U

†
i
(t)�̃i,tUi(t)�i⇢c,i

⌘
|p0, s0i, (2.21)

which satisfies the initial condition

G�̃i(t = 0; p, s; p0, s0) = �p,p0�s,s0 . (2.22)

In the next section we will use an equations of motion analysis to derive an expression for the
instantaneous Majorana propagator. Because the Hamiltonian is quadratic, we will find that the matrix
structure of G�̃i(t; p, s; p

0
, s

0) seen in Eq. (2.22) extends to finite times, G�̃i(t; p, s; p
0
, s

0) / �p,p0�s,s0 ,
motivating the notation

G�̃i(t; p, s; p, s) ⌘ G�̃i(t). (2.23)

Along with this fact, which we will verify in the end of the next section, the conclusion of this section is

Pz̃,z(t) =
1

2
+

1

2
G�̃1(t)G�̃2(t). (2.24)

G�̃i(t) depends on the field �(t), which is stochastically fluctuating, and thus, we should average Eq.
(2.24) over �(t). To do this, we return to the setup in Fig. 10. The impedance Z(!) of the circuit is

Z(!) =
1

C

1

i! + !0
. (2.25)

We assume that the circuit is in thermal equilibrium at temperature kBT = 1
�
, which causes the potential

energy drop �(t) over the capacitor to fluctuate. We will initially treat � as a quantum mechanically
fluctuating operator and calculate the correlation function

G��(t � t
0) =

1

2
h{�(t),�(t0)}i . (2.26)

We equate this with the correlation function for the classically oscillating fields by taking the classical
limit of large temperatures. The Kubo formula relates the conductance to the retarded current-current
correlation function G

R

II
(t)) � i✓(t) h[I(t), I]i in frequency space:
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using �(!) = 1
e
Z(!)I(!). This can be related to G��(t) by the fluctuation-dissipation theorem,

ImG
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G��(!), (2.28)
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so
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=
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2

◆
. (2.29)

In the next section, when we set out to calculate G�̃i(t), we will change to the instantaneous eigenbasis
and keep track of the non-adiabatic contributions. This means that in practice we will have to average
over �̇(t) rather than �(t). Eq. (2.29) implies

G
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. (2.30)

For large temperatures, kBT � !0, the quantum mechanically fluctuating operator � becomes a classical
object. From (2.30) the high-temperature limit of the propagator G
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The Fourier transform of (2.31) is

G
�̇�̇

(t) =
1

2⇡

Z 1

�1
d!e

�i!t
G
�̇�̇

(!) =
e
2

⇡C
!0kBT

Z 1

�1
d!e

�i!t
!
2

!2 + !
2
0

=
e
2
!0kBT

⇡C

Z 1

�1
d!e

�i!t

⇣
1 � !

2
0

!2 + !
2
0

⌘

=
e
2
!0kBT

⇡C

✓
2⇡�(t) � !

2
0

Z
d!

e
�i!t

(! + i!0)(! � i!0)

◆

=
e
2
!0kBT

⇡C

✓
2⇡�(t) � ⇡!0e

�!0|t|
◆

=
2e2!0kBT

C

✓
�(t) � !0

2
e
�!0|t|

◆
. (2.32)

If we denote average over � by h·i
�

and hG�̃i(t)i� = G�̃i(t), we need to assume hG�̃1(t)G�̃2(t)i� =

G�̃1(t)G�̃2(t) in order to evaluate (2.24). This assumption means that the electromagnetic fields don’t
correlate the wavefunctions for the distant Majoranas �1 and �2. If, for example, G�̃i(t) then decays to
zero for large times, then Pz̃,z(t) is initially 1, and decays to 1

2 , corresponding to complete randomness.
In order to estimate the effect of dephasing due to the potential fluctuations, we ultimately want to

derive an expression for the averaged propagator G�̃i(t). In the next section, we will derive an expression
for the instantaneous Majorana operators �̃i,t, and then calculate its propagator G�̃i(t).
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3 Instantaneous Majorana operators

In this section we will derive expressions for all the ingredients related to the Majorana modes that are
needed in order to calculate the decoherence. We start by deriving an expression for the instantaneous
Majorana mode �̃i,t, which can then be used for deriving an expression for the instantaneous Majorana
propagator G�̃i(t; p, s; p

0
, s

0) by evaluating its equations of motion. The Hamiltonian in Eq. (2.10) may
be simplified by introducing the following operator
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⌘
. (3.2)

Since we assume that the fluctuations �(t) are small compared to the gap �, the topological protection
of the zero-energy modes implies that there must be unitary operators St, allowing us to write �̃i,t as

�̃t,i = S
†
t
�iSt

. (3.3)

Note that (2.14) is equivalent to

[H̃t, �i] = 0, (3.4a)

H̃t ⌘ StHtS
†
t
, (3.4b)

which suggests the more convenient problem of unitarily transforming the Hamiltonian to a form that
commutes with �i. We start with the ansatz
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. Thus, we may write
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Transforming the second term in (3.2) gives
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The second term in (3.8) may be simplified by noticing that
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We impose that Fkt and Vkt have the same complex phase, so that the expression (3.10) vanishes. We
will later find this to be self-consistent. With this, Eq. (3.9) becomes
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⇤
kt
)
⌘

= 2�i,t⌦i,t, (3.12)

where we used that the last term in the third line is again zero from the assumption that Fkt and Vkt

have the same phase. Using (3.11) and (3.12), we finally get

St⌦i,t�iS
†
t
= cos 2at⌦i,t�i � sin 2at

at
�i,t⌦i,t. (3.13)

Next, we define ni,k ⌘ ↵
†
i,k
↵
i,k

and transform the first term in (3.2), obtaining

Stni,kS
†
t
= Si,tni,kS

†
i,t

=
�
cos(at) +

sin(at)

at
�i,t�i

�
ni,k

�
cos(at) � sin(at)

at
�i,t�i

�

= cos2(at)ni,k +
sin2(at)

a
2
t

�i,tni,k�i,t +
sin(2at)

2at
�i[ni,k,�i,t]

= cos2(at)ni,k +
sin2(at)

a
2
t

�
�i,t[ni,k,�i,t] + �

2
i,t
ni,k

�
+

sin(2ai,t)

2ai,t
�i[ni,k,�i,t]

= ni,k +
⇣ sin2(at)

a
2
t

�i,t +
sin(2at)

2at
�i

⌘
[ni,k,�i,t]

= ni,k +
⇣ sin2 at

a
2
t

�i,t +
sin 2at
2at

�i

⌘�
Fkt↵

†
i,k

� F
⇤
kt
↵i,k

�
. (3.14)

Putting together (3.13) and (3.14), the transformed Hamiltonian H̃t defined in Eq. (3.4b) becomes

H̃t =
X

i


� sin 2at

at
�i,t⌦i,t +

X

k

Ek

⇣
ni,k +

sin2 at
a
2
t

�i,t
�
Fkt↵

†
i,k

� F
⇤
kt
↵i,k

�⌘

+
X

k

⇣
cos 2at⌦i,t � sin 2at

2at
Ek

�
Fkt↵

†
i,k

� F
⇤
kt
↵i,k

�⌘
�i

�
. (3.15)

Equation (3.4a) is satisfied when the second term vanishes, so we choose

cos 2at
�
Vkt↵

†
i,k

� V
⇤
kt
↵i,k

�
� sin 2at

2at
Ek

�
Fkt↵

†
i,k

� F
⇤
kt
↵i,k

�
= 0, (3.16)
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which is satisfied when

cos(2at)Vkt =
sin 2at
2at

EkFkt, (3.17)

which finally gives us the expression for Fkt:

Fkt = 2at
Vkt

Ek

cot 2at. (3.18)

Eq. (3.18) verifies the self-consistency of choosing Vkt Fkt to have the same phase, and together with
Eq. (3.6) it implies

a
2
t
= 4a2

t

X

k

✓
|Vkt|
Ek

◆2

cot2 2at, (3.19)

which gives us an expression for at:

tan2 2at = 4
X

k

✓
|Vkt|
Ek

◆2

. (3.20)

Using (3.18), we can write the remaining terms left in the Hamiltonian as

H̃t = StHtS
†
t
=
X

i,k

Ekni,k +
X

i

⇣
� sin 2at

at
�i,t⌦i,t +

X

k

Ek

sin2 at
a
2
t

�i,t2at
1

Ek

cot 2at
�
Vkt↵

†
i,k

� V
⇤
kt
↵i,k

�⌘

=
X

i,k

Ekni,k +
X

i

1

at

⇣
2 sin2 at cot 2at � sin 2at

⌘
�i,t⌦i,t. (3.21)

This could in principle now be diagonalized, so that but we won’t need that level of detail. The instan-
taneous zero-energy mode is

�̃i,t = S
†
t
�iSt = S

†
i,t
�iSi,t

=
�
cos(at) +

sin(at)

at
�i,t�i

�
�i

�
cos(at) � sin(at)

at
�i,t�i

�

= cos2(at)�i � sin2(at)

a
2
t

�i,t�i�i�i,t�i +
sin(2at)

2at
[�i,t�i, �i]

= cos2(at)�i � sin2(at)�i +
sin(2at)

2at
(�i,t�i�i � �i�i,t�i)

= cos(2at)�i +
sin(2at)

at
�i,t. (3.22)

In order to evaluate G�̃i(t; p, s; p
0
, s

0), it turns out to be much more useful to stay in the original basis,
and instead transform the time-evolution operator, defining

Ũi(t) ⌘ Si,tUi(t)Si,t=0 = Si,tUi(t), (3.23)

which corresponds to time-evolution, followed by changing to the basis of the instantaneous modes. Using
this, we can rewrite

U
†
i
(t)�̃i,tUi(t)�i = Ũ

†
i
(t)�iŨi(t)�i, (3.24)

which is a simpler starting point for writing the equations of motion for G�̃i(t; p, s; p
0
, s

0). The time-
evolution operator may be split into infinitesimal time slices of size �t. By transforming Ht at each time
step into the basis of the instantaneous modes, we write

U(t) = Tte
�i

R t
0 dt

0
Ht0 = e

�i�tHte
�i�tHt��t . . . e

�i�tH0 + O(�t
2)

= S
†
t
e
�i�tH̃tStS

†
t��t

e
�i�tH̃t��t . . . e

�i�tH̃0 . (3.25)
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This is as far as we can get exactly. We need to evaluate S
t
S
†
t��t

, but it is very complicated in its full
generality. The Baker-Campbell-Hausdorff formula lets us write

St S
†
t��t

=
Y

i

e
�i,t�ie

��i,t��t�i =
Y

i

e
(�it��i,t��t)�i+...

=
Y

i

e
�t�̇i,t�i+...

. (3.26)

The terms left out in (3.26) are also proportional to d

dt
�(t). For the equations of motion analysis to

close, we can only include up to the second order term

� 1

2
[�i,t,�i,t��t] = �t[�i,t, �̇i,t] + O(�t

2). (3.27)

The contribution from this term to the equations of motion of G�̃i(t; p, s; p
0
, s

0), however, can be shown
to exactly cancel. Higher orders are all proportional to a

2
t
ȧ
t
, and we neglect these terms in (3.26). Using

the identity

e
�i�tH̃te

�t�̇i,t�i = e
�i�t(H̃t+i�̇i,t�i)+O(�t

2)
, (3.28)

we find the following expression for the rotated time-evolution operator

Ũ(t) = St Ui(t) = StS
†
t
Tte

�i
R t
0 dt

0(H̃t0+i
P4

i=1 �̇i,t0�i). (3.29)

Now we are all set to calculate the instantaneous Majorana propagator. For now, we will suppress the
p- and s-indices of G�̃i(t; p, s; p

0
, s

0), and we use Eq. (3.24) to write

G�̃i(t) =
D
Ũ

†(t)�iŨ(t)�i
E
. (3.30)

The Heisenberg equation of motion gives

i@tG�̃i = �
D
Ũ

†(t)[H̃t + i�̇i,t�i, �i]Ũ(t)�i
E

= �i

D
Ũ

†(t)[�̇i,t�i, �i]Ũ(t)�i
E
= �2i

D
Ũ

†(t)�̇i,tŨ(t)�i
E
. (3.31)

To be consistent, we should only evaluate (3.31) to order O(a2
t
). Equation (3.20) tells us that

�̇i,t =
d

dt

X

k

✓
2at cot(2at)

Vkt

Ek

↵
†
i,k

+ 2at cot(2at)
V

⇤
kt

Ek

↵i,k

◆

=
X

k

⇣
V̇kt

Ek

↵
†
i,k

+
V̇

⇤
kt

Ek

↵i,k

⌘
+ O(a2

t
ȧt). (3.32)

Using this, (3.31) becomes

i@tG�̃i = �2i
X

k

⇣
V̇kt

Ek

G
↵

†
i,k,�i

(t) +
V̇

⇤
kt

Ek

G↵i,k,�i(t)
⌘
, (3.33)

where we have defined the propagator

G
↵̃

(†)
i,k,�i

⌘
D
Ũ

†(t)↵(†)
i,k

Ũ(t)�i
E
. (3.34)

The Heisenberg equation of motion for G↵i,k,�i gives1

i@tG↵i,k,�i = �
D
Ũ

†(t)[H̃t + i�̇i,t�i,↵k]Ũ(t)�i
E

= �
D
Ũ

†(t)[H̃t,↵k]Ũ(t)�i
E
+ i

D
Ũ

†(t){�̇i,t,↵k}�iŨ(t)�i
E
. (3.35)

1
In this step, the inclusion of the term in Eq. (3.27) would cancel.
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The first term may be evaluated using (3.21), and we see

[H̃t,↵i,k] = �Ek↵i,k + O(a2
t

·�), (3.36)

while the second term simplifies, thanks to Eq. (3.32), giving

{�̇i,t,↵i,k} =
V̇kt

Ek

+ O(a2
t

· ȧt). (3.37)

Thus, Eq. (3.35) becomes

(i@t � Ek)G↵i,k,�i = i
V̇kt

Ek

G�̃i . (3.38)

The solution to this differential equation, with the boundary condition G↵i,k,�i(0) = 0, is

G↵i,k,�i(t) =

Z
t

0
dse

�iEk(t�s) V̇ks

Ek

G�̃i(s). (3.39)

Going through the same calculation for G
↵

†
i,k,�i

leads to

G
↵

†
i,k,�i

(t) =

Z
t

0
dse

iEk(t�s) V̇
⇤
ks

Ek

G�̃i(s), (3.40)

and plugging (3.39) and (3.40) into (3.33), we get

i@tG�̃i = �2i
X

k

Z
t

0
ds

0
⇣
V̇kt

Ek

e
iEk(t�s

0) V̇
⇤
ks0

Ek

+
V̇

⇤
kt

Ek

e
�iEk(t�s

0) V̇ks0

Ek

⌘
G�̃i(s

0). (3.41)

We can solve this by integration, using the boundary conditions in Eq. (2.22), and we obtain

G�̃i(t; p, s; p
0
, s

0) = �p,p0�s,s0 � 2
X

k

Z
t

0
ds

Z
s

0
ds

0
⇣
V̇ks

Ek

e
iEk(s�s

0) V̇
⇤
ks0

Ek

+
V̇

⇤
ks

Ek

e
�iEk(s�s

0) V̇ks0

Ek

⌘
G�̃i(s

0),

(3.42)

which may be solved iteratively, by repeatedly inserting the left-hand side into the right-hand side.
As long as

���V̇kt

��� ⌧ E
2
k
, then the series converges. When p 6= p

0 or s 6= s
0, G�̃i(t; p, s; p

0
, s

0) becomes
zero, and so we are justified in the simplified notation we have used in the previous section, writing
G�̃i(t; p, s; p

0
, s

0) = �p,p0�s,s0G�̃i(t). In conclusion,

G�̃i(t) = 1 +

Z
t

0
ds

Z
s

0
ds

0
K(s, s0)G�̃i(s

0) (3.43a)

K(s, s0) = �4
X

k

|Wk|2

E
2
k

cos(Ek(s � s
0))�̇(s)�̇(s0) = �4

Z 1

�
dE

|WE |2

E2
⌫(E) cos(E(s � s

0))�̇(s)�̇(s0),

(3.43b)

where L is the system size which we take to be infinite in the end, and ⌫(E) = L

2⇡
dk

dE
is the density of

states.
Let us reiterate the approximations we needed to arrive at the result in Eq. (3.43a). We assumed that

�(t) ⌧ �, and �̇(t)/� ⌧ �, and included only contributions to second order in either of these. Averaging
over �, and using the correlation function in Eq. (2.32), the precise statement is that e

2

C
kBT!

2
0 ⌧ �4.

This can be seen from Eq. (3.43), since the integral kernel K(t, t0) rapidly oscillates with frequency
E � �, which implies that the dimensionless second term in (3.43a) scales as ⇠ e

2

C
kBT!

2
0/�

4.
Since we use the high-temperature result for the propagator in Eq. (2.32), we should have !0 ⌧

kBT . �. The ratio e
2

C� defines how well isolated the Majorana box qubit is from the environment
and should therefore be small. If we furthermore assume !0 ⌧ �, the analysis is simplified to the point
where we can derive analytical expressions for the decay rates. Doing this is the objective of the next
section.
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4 Evaluating the Majorana propagator

With the work of the last sections, we are at last in position to calculate the instantaneous Majorana
propagator G�̃i(t). Introducing the functions

A(t) = �4

Z 1

�
dE m(E) cosEt, (4.1)

m(E) =
|WE |2 ⌫(E)

E2
, (4.2)

Eq. (3.43a) takes the form

G�̃i(t) = 1 +

Z
t

0
ds

Z
s

0
ds

0
�̇(s)�̇(s0)A(s � s

0)G�̃i(s
0). (4.3)

Repeated insertion of the left-hand side of (4.3) into the right-hand side yields

G�̃i(t) = 1 +

Z
t

0
ds1

Z
s1

0
ds2�̇(s1)�̇(s2)A(s1 � s2)

+

Z
t

0
ds1

Z
s1

0
ds2

Z
s2

0
ds3

Z
s3

0
ds4�̇(s1)�̇(s2)�̇(s3)�̇(s4)A(s1 � s2)A(s3 � s4) + . . . (4.4)

At this stage, we average over �̇(t), using the correlation function in Eq. (2.32), and we get

G�̃i(t) =1 +

Z
t

0
ds1

Z
s1

0
ds2G�̇�̇

(s1 � s2)A(s1 � s2)

+

Z
t

0
ds1

Z
s1

0
ds2

Z
s2

0
ds3

Z
s3

0
ds4

✓
G
�̇�̇

(s1 � s2)G�̇�̇
(s3 � s4) +G

�̇�̇
(s1 � s3)G�̇�̇

(s2 � s4)

+G
�̇�̇

(s1 � s4)G�̇�̇
(s2 � s3)

◆
A(s1 � s2)A(s3 � s4)

+ . . . , (4.5)

which we represent diagrammatically by introducing

ti tj = 1,

ti tj = G
�̇�̇

(tj � ti),

ti tj = A(tj � ti). (4.6)

We will suppress the time variables for notational clarity, since the external times are always 0 and t. At
every vertex there is a new time variable, and the whole diagram should be time-ordered, so intermediate
times are latest to the right. A sample diagram is

= 0 t4 t3 t2 t1 t

=

Z
t

0
dt1

Z
t1

0
dt2

Z
t2

0
dt3

Z
t3

0
dt4A(t3 � t4)A(t1 � t2)G�̇�̇

(t1 � t4)G�̇�̇
(t2 � t3). (4.7)

Using this, Eq. (4.5) becomes

G�̃i(t) = + +

+ + + . . .

(4.8)
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The constraint that the time variables are nested implies that the three fourth order diagrams in (4.8)
are distinct.

We cannot analytically solve Eq. (4.8) as it is. If !0 ⌧ �, then, as detailed below, we may discard
all crossing diagrams to leading order in !0/�, and the resulting Dyson series may be solved in the usual
way [16]. Subleading orders contain crossing diagrams, complicating the analysis. Let us unpack these
statements by introducing the following new propagator lines

ti tj ⌘ ti tj + ti tj , (4.9a)

ti tj =
2e2!0kBT

C
�(tj � ti), (4.9b)

ti tj = �2e2!0kBT

C

!0

2
e
�!0(tj�ti), (4.9c)

corresponding to the two terms in Eq. (2.30). First note that diagrams vanish if they contain a dotted-
line propagator and it crosses any other line. This is because of the nesting of the time variables; when
the dotted-line connects to time which is not adjacent to its own, it collapses the integration range of
the intermediate integral to a measure 0 set. Secondly, terms containing the curly propagator in Eq.
(4.9c) are suppressed by (!0/�)2, since those diagrams contain at least one more time integral. So at
each order in e

2
/(C�), corresponding to the half the number of vertices in the diagram, to the lowest

order in !0/� we may neglect the curly-line propagators and only keep the diagrams with the dotted
lines, which we will refer to as delta diagrams. Thus, at this order the crossing diagrams vanish.

If curly-line propagators are included, only some of the crossing diagrams may be dropped. These
diagrams consist of a single curly-line propagator, crossing over any number of dotted-line propagators.
An example is the following diagram:

. (4.10)

Here, because the dotted-line propagator is not aligned with the oscillating wavy-line propagator, after
time integration a cos(�⇠t) survives to the lowest order in !0/�. After integrating over ⇠, this brings out
another factor of 1/�, making it supressed compared to, for example, the related non-crossing diagram

, (4.11)

which appears to the same order in e
2
/(C�). We will refer to the non-crossing diagram with a single

curly-line propagator as a sheep. Keeping the curly-line propagator and only the non-crossing diagrams
means retaining the sheep diagrams. However, diagrams where only curly-line propagators cross, like
the following

, (4.12)

are not suppressed. In Section 4.1, we calculate the leading order terms of G�̃i(t) in !0/� by only
summing the delta diagrams. In Section 4.2, we will sum all non-crossing sheep- and delta diagrams to
get a flavor of what this qualitatively changes in the result for G�̃i(t).

Dropping the crossing diagrams in 4.8, we have

G�̃i(t) ⇡ + +

+ + . . .

= +

 
+ + . . .

!

= 1 +

Z
t

0
ds1

Z
s1

0
ds2G�̇�̇

(s1 � s2)A(s1 � s2)G�̃i(s2), (4.13)
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which means that
@tG�̃i(t) =

Z
t

0
dsG

�̇�̇
(t � s)A(t � s)G�̃i(s). (4.14)

Since the right-hand side of Eq. (4.14) is a convolution, it may be solved by Laplace transformation. We
denote the Laplace transformed propagator Gi(z) = L[G�̃i ](z). Using the boundary condition G�̃i(0) = 1,
we find

Gi(z) =
1

z � R(z)
, (4.15a)

R(z) = L[G
�̇�̇

(t)A(t)]. (4.15b)

4.1 Leading order in !0/�

To leading order in !0/�, we keep only the first term of G
�̇�̇

(t) in Eq. (2.32). Evaluating Eq. (4.15b),
we find

R(z) = �8
e
2
!0kBT

C

Z 1

�
dE m(E)

Z 1

0
dt cos(Et)�(t)e�tz = �4

e
2
!0kBT

C

Z 1

�
dE m(E), (4.16)

Let us simplify this with a bit of dimensional analysis. The matrix element WE and density of states
⌫(E) are calculated in Appendix 6. In terms of the dimensionless energy ⇠ = E/� and wavenumber
k̃ = k/mv, we write

WE =
1p
mvL

�H̃0,⇠, (4.17a)

⌫(E) =
Lmv

�

1

2⇡

dk̃

d⇠
=

Lmv

2⇡�
⌫̃(⇠), (4.17b)

where the notation �H̃0,⇠ and ⌫̃(⇠) is used to indicate that only the dimensionless part is included, and
the factor of 1

2⇡ has been taken out of the density of states. With this notation, we may write

m(E) =
1

2⇡�3
m̃(⇠), (4.18a)

m̃(⇠) =
|W⇠|2

⇠2
⌫(⇠). (4.18b)

Using this, we rewrite Eq. (4.16) to
R(z) = �pD!0, (4.19)

where we introduced the quantities

p = 2
e
2
kBT

⇡C�2
, (4.20a)

D =

Z 1

1
d⇠m̃(⇠). (4.20b)

From Eq. (4.15a), the Laplace transformed propagator is

Gi(z) =
1

z + 4p
. (4.21)

Picking a real � > �4p, then the inverse Laplace transform is given by the Bromwich integral

G�̃i(t) =
1

2⇡i
lim

A!1

Z
�+iA

��iA

dze
zt

1

z + pD!0
, (4.22)

from which we have
G�̃i(t) = e

�pD!0t. (4.23)

Going back to Eq. (2.24), if we denote the Majorana box qubit lifetime by ⌧ , we arrive at the main
result
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⌧
�1 = 2pD!0 =

4e2kBT!0

⇡C�2

Z 1

1
d⇠m̃(⇠). (4.24)

Note that the expression depends on the energy mv
2, which is hiding inside m(⇠).

4.2 Partial summation for higher order terms

Next, let us try to get a feeling for what happens if we include some higher order terms and keep
the full form of G

�̇�̇
(t). We still only keep the non-crossing diagrams, so it amounts to summing the

delta diagrams of the previous section along with all sheep diagrams. As explained above, this is an
uncontrolled approximation since we are missing some diagrams of the same order. Still, we may obtain
a qualitative understanding of how G�̃i(t) is modified by sheep diagrams.

We simplify A(t) by using the saddle-point approximation. What this will accomplish is to pick out
a single frequency component for A(t). We write

A(t) ⌘ I+(t) + I�(t), (4.25a)

I± = � 1

⇡�2

Z 1

1
d⇠e

±i�⇠t+log(m(⇠))
. (4.25b)

If we define the positive/negative Wick rotations W±(f(t)) = f(⌥it), we can rewrite A(t) as

A(t) = W+

⇣
W�

�
I+(t)

�⌘
+ W�

⇣
W+

�
I�(t)

�⌘
= W+

⇣
I(t)

⌘
+ W�

⇣
I(t)

⌘
, (4.26)

where

I(t) = � 1

⇡�2

Z 1

1
d⇠e

��⇠t+log(m(⇠))
. (4.27)

At any time t, the exponent ��⇠t+ log(m(⇠)) has a global maximum ⇠ = ⇠0(t) > 1. This is illustrated
on Figure 12, where ��⇠t + log(m(⇠)) is plotted for a few different times and with �

mv2 = 0.3. At
later times, the maximum is sharper, which makes the saddle-point approximation more accurate. The
saddle-point approximation gives [7]

I(t) ⇡ � 1

⇡�2

e
��⇠0t+log(m(⇠0))

r
� 1

2⇡
d2

d⇠2

���
⇠=⇠0

(��⇠t+ logm(⇠))

= � 1

⇡�2

m(⇠0)r
1
2⇡

⇣
m0(⇠0)
m2(⇠0)

� m00(⇠0)
m(⇠0)

⌘e
��⇠0t

⌘ � 1

⇡�2
C⇠0(t)e

��⇠0t. (4.28)

As can be numerically verified, limt!1 ⇠0(t) = 1 and limt!1 C⇠0(t) = 0. After the Wick rotation,
this function will shift the frequency of A(t). For simplicity, we will approximate it as an exponentially
decaying function, and write

C⇠0(t) ⇡ D⇠0e
�!Ct

. (4.29)

Figure 13 shows a plot of C⇠0(t) against a few exponentially decaying functions for �/mv
2 = 0.3. As can

be seen, D⇠0 = C⇠0(t = 0) ⇡ 0.08. The plot suggests that C⇠0(t) decays polynomially. However, on the
appropriate time scales, !C may be chosen conservatively, so the resulting decay rates are overestimated,
and while a polynomial could be fitted better, we don’t need that level of accuracy in this uncontrolled
approximation. So we limit the accuracy of the model to times t . 30/�, and take !C ⇡ 0.6�. With
the saddle-point approximation, we therefore have

A(t) ⇡ � 2

⇡�2
D⇠0 cos(!mt), (4.30)

where !m = (�+ !C)⇠0, and from the discussion above, we have !m ⇡ 2�.
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Figure 12: The exponent of the integrand in equation (4.27), evaluated for � = 0.3 at time �t = 0, 1, 2,
in solid blue, dashed red and dotted green, respectively. Qualitatively similar behaviour is observed for
different values of �.

Figure 13: Plot of C⇠0(t) in solid blue, along with two exponentially decaying functions in red dashed
and green dotted. The true behaviour of C⇠0(t) appears to be polynomial decay, but for the purpose
of this section, we approximate the function by an exponential. This means that the decoherence is
underestimated at late times.
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With this, we can use (2.32) to calculate

R(z) = � 2

⇡�2
D⇠0

Z 1

0
dte

�tz
G
�̇�̇

(t) cos(!mt) = �2pD⇠0!0

Z 1

0
dte

�zt

⇣
�(t) � !0

2
e
�!0t

⌘
cos(!mt)

= �pC⇠0!0

 
1 � !0

2

X

d=±

Z 1

0
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�(z+!0+id!m)t

!
= �pD⇠0!0

 
1 � !0

2

X

d=±

1

z + !0 + id!m

!

= �pD⇠0!0
z(z + !0) + !

2
m

(z + !0)2 + !2
m

, (4.31)

where again we used the dimensionless parameter p, introduced in Eq. (4.20a). Using this, Eq.(4.15)
becomes

Gi(z) =
1

z + pD⇠0!0
z(z+!0)+!2

m
(z+!0)2+!2

m

=
(z + !0)2 + !

2
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z(z + !0)2 + !2
m
z + pD⇠0!0(z(z + !0) + !2

m
)

=
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2
m
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⇣
pD⇠0 + 2

⌘
!0z

2 +
⇣
(1 + pD⇠0)!

2
0 + !2

m

⌘
z + pD⇠0!0!

2
m

. (4.32)

This may be written as

Gi(z) =
(z + !0)2 + !

2
m

(z � z1)(z � z2)(z � z3)
, (4.33)

where zi are the solutions to the cubic equation

z
3 + (pD⇠0 + 2)!0z

2 +
�
(1 + pD⇠0)!

2
0 + !

2
m

�
z + pD⇠0!0!

2
m

= 0. (4.34)

To obtain the inverse Laplace transform, we now need to perform the Bromwich integral choosing a real
� > max{Re(zi)}. We then have

G�̃i(t) =
1

2⇡i
lim

A!1

Z
�+iA

��iA

dze
zt

(z + !0)2 + !
2
m

(z � z1)(z � z2)(z � z3)
, (4.35)

from which we get

G�̃i(t) =
(z1 + !0)2 + !

2
m

(z1 � z2)(z1 � z3)
e
z1t +

(z2 + !0)2 + !
2
m

(z2 � z1)(z2 � z3)
e
z2t +

(z3 + !0)2 + !
2
m

(z3 � z1)(z3 � z2)
e
z3t. (4.36)

The expression (4.36) only makes sense for all times if all the roots zi have non-positive real values. To
figure out whether this condition holds, we introduce the dimensionless quantities ⇣ ⌘ z

!0
and ⌫ ⌘ !m

!0

and rewrite Eq. (4.34) as

f(⇣) ⌘ ⇣
3 + a⇣

2 + b⇣ + c = 0, (4.37a)
a = pD⇠0 + 2, (4.37b)
b = 1 + pC⇠0 + ⌫

2
, (4.37c)

c = pD⇠0⌫
2
. (4.37d)

Notice that all coefficients a, b, c are positive in the third-degree polynomial (4.37). This means that
f(⇣) > 0 for all ⇣ � 0. We also have f

0(⇣) = 3⇣2 + 2a⇣ + b > 0 when ⇣ � 0. Because of this, all real
roots need to be negative or equal to 0. In particular it means that there is always at least one negative
real root ⇣0. The discriminant df of f is given by

df = a
2
b
2 � 4b3 � 4a3c � 27c2 � 18abc. (4.38)

When df > 0, all roots are real, distinct and non-positive, and G�̃i(t) thus always decays without
oscillating.

In the marginal case df = 0, there is the negative real root⇣0, as well as a non-positive real double
root. Equation (4.36) doesn’t hold in this case since Gi(z) then has a second order pole. This is not a
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Figure 14: Plot of the sign of the discriminant df for the polynomial defined in Eq. (4.37). When
df > 0, all the rates are real and non-positive. In most of the parameter space where df < 0, the rates
are complex with non-positive real part, implying an oscillating decay.

computational problem, but this case will be excluded since it only matters in a measure 0 part of the
parameter space.

In the last case, when df < 0, there is a negative real solution ⇣0 < 0 as well as two complex conjugate
solutions ⇣± = r ± is. We need to check when r  0. Factoring Eq. (4.37a), we write

f(⇣) = (⇣ � ⇣0)(⇣ � r � is)(⇣ � r + is)

= ⇣
3 + ⇣

2(�⇣0 � 2r) + ⇣(r2 + s
2 + 2r⇣0) � (r2 + s

2)⇣0. (4.39)

Comparing this to Eq. (4.37) gives r = �⇣0�a

2 , which is negative when �a < ⇣0. This can be numerically
verified to always hold. Figure 14 shows a plot of the sign of df , as a function of ⌫ and p. Since ⌫ is
assumed to be large, df will tend to be negative, and we thus expect an oscillatory decay of G�̃i(t).

Now that we have checked the consistency of Eq. (4.36), let us see what the addition of the sheep
diagrams have changed. Taylor expanding the exact solutions of Eq. (4.37a) in ⌫

�1, the solutions are

⇣0 = �pD⇠0 + O
⇣
p

⌫2

⌘
, (4.40a)

⇣± = �1 ± i

✓
⌫ � 1

2⌫
pD⇠0

◆
+ O

⇣
p

⌫2

⌘
. (4.40b)

Substituting these solutions into Eq. (4.35), we get

G�̃i(t) =


1 + (1 � 2pD⇠0)

!
2
0

!2
m

�
e
�pD⇠0!0t � !

2
0

!2
m

pD⇠0e
�!0t cos(!mt). (4.41)

The partial summation by including all non-crossing diagrams leads to a slowly decaying part, just like
we found in the previous section, as well as a faster decaying and oscillating part. This suggests that the
decoherence has a fast initial time scale ⌧1, given by

⌧1 = !
�1
0 , (4.42)

on which a fraction of the coherence quickly dies. This fraction is controlled by the system parameters,
and is suppressed by the large energy gap. After this initial quick decay, the rest of the coherence dies
on a time scale ⌧2 given by

⌧2 = pD⇠0!0, (4.43)

which has a similar structure to what we found in the previous section in Eq. (4.24). Figure 15 shows
a plot of both D and D⇠0 as a function of �/(mv

2), and we see D⇠0 < D, so the partial summation
predicts a slower decay rate. This is probably partly an artifact of the saddle-point approximation, since
this picks out only a frequency close to the gap, when there should actually be larger contributions.
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Figure 15: Plot of dimensionless factors D and D⇠0 = C⇠0(t = 0), defined in Eq. (4.20b) and Eq. (4.29),
respectively, against �/(mv

2). The partial summation with the saddle-point approximation apparently
predicts a slower decay.

5 Conclusions

We have calculated the decoherence times for a Majorana box qubit under the influence of electromagnetic
noise from fluctuations in a capacitively coupled circuit. The noise was modeled as a classically fluctuating
electric potential, and the time-dependency shifts the eigenstates of the system, lead to time-dependent
instantaneous Majorana zero-energy modes.

The error probability P
ĩ,i
(t) = 1

2 + 1
2G

2
�̃i
(t) was defined through a correlation function G�̃i(t) of the

instantaneous Majorana modes, and it captures the probability of measuring the parity of the instan-
taneous zero-energy modes at time t to be identical to the parity of Majorana pair at initialization.
After statistically averaging over the potential fluctuations, an equations of motion analysis lead us to
a diagrammatic expansion of G�̃i(t). The order of the diagramatic expansion is controlled by the small
parameter e

2
/(C�).

If the environment frequency is much smaller than the gap !0 ⌧ �, the decoherence could be
calculated by a partial summation of diagrams to leading order in !0/�. From this we concluded G

2
�̃i
(t) =

e
�2t/⌧ , where ⌧ / �

e2/C

�
kBT

!
�1
0 . This result requires the parameters to obey e

2
/C,!0 ⌧ kBT . �. The

eventual decay to a completely mixed state is thus expected because of the high temperature, and from
the tendency of driven systems to heat up.

A partial summation of the diagrams to next-leading order in !0/� suggested an additional much
shorter time scale ⌧i = !

�1
0 , set purely by the circuit frequency, on which G�̃i(t) is reduced by an amount

proportional to !2
0e

2
kBT/(C�4). If true, this fast decay could be important in practical implementation

of quantum computation, since this needs a low error rate to be practical.
Notably, the dephasing times are not found to be exponentially suppressed in temperature, which is

a clear qualitative difference from what we will conclude by a Markovian treatment in the next chapter.
This could be taken as an indication of a model breakdown for temperatures much smaller than the gap.
In that case, the model has dubious applicability, since such temperatures would also imply substantial
errors from quasiparticle poisoning [67].

Similar techniques to those we have used in this project have been used to study the problem of
moving Majorana bound states by tuning local chemical potentials [45, 68]. Such studies could possibly
be complemented by our models ability to handle additional random fluctuations from noisy gates.
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6 Appendix: Deriving the matrix element

In this appendix we will calculate the matrix element in Eq. (2.3) in order to obtain an expression for
the matrix element WE = WE(k) = h 0|⌧z| E(k)i, as defined in Eq. (2.5). We use the Hamiltonian Hpw

from Eq. (2.2) for a single 1-dimensional p-wave superconductor in Eq. (2.2). We take the system to be
half-infinite, with the position coordinate x constrained to x 2 [0,1), and impose � > 0, which, as we
shall see, corresponds with having the system in the topological phase. This means that we expect Hpw

to have a single eigenstate  0(x) with zero energy, exponentially localized at x = 0. For computational
simplicity we calculate WE under the assumption 0 < µ <

m�2

2 . It will be useful to write Hpw in the
form

Hpw = �

 
p̃
2

2� � 1 p̃/�

p̃/� � p̃
2

2� + 1

!
, (6.1a)

� =
�

mv2
, p̃ =

p

mv
, (6.1b)

in order to explicitly keep track of the dimensions. First, we calculate  0(x). The eigenvalue equation
at zero energy reads  

p̃
2

2� � 1 p̃/�

p̃/� � p̃
2

2� + 1

!
 0 = 0. (6.2)

The solution has the form  0(x) =
P

q
 0,q(x) =

P
q

✓
u1,q

u2,q

◆
e
iqx =

P
q
�
iqx

0,q , and we impose the Dirichlet

boundary conditions that  (0) = limx!1  (x) = 0. Each  0,q(x) satisfies Eq. (6.2) and are linearly
independent. This gives us

 
q̃
2

2� � 1 q̃/�

q̃/� � q̃
2

2� + 1

!
�0,q = 0, (6.3)

with q̃ = q/mv. Eq. (6.3) implies
q̃ = i

⇣
s1 + s2

p
1 � 2�

⌘
, (6.4)

where s1, s2 = ±1. In order to have a normalizable solution, the imaginary part of q̃ must be positive.
With the assumption 0 < � <

1
2 , we have 1 >

p
1 � 2�, and so

q̃ = q̃± = i

⇣
1 ±

p
1 � 2�

⌘
. (6.5)

The boundary condition  (0) = 0 implies that �0,q+ = ��0,q� ⌘ �0. Noting that both components of

�0 must be non-zero for a non-trivial solution, we write �0 = 1
N0

✓
1
b

◆
. With this, we can solve Eq. (6.3),

and find

 0(x) =

p
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e
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�
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⌘
, (6.6)

where the normalization N0 is

N0 =

r
1 � 2�

�
. (6.7)

Note, that in the case with � < 0, corresponding to negative �, there is no normalizable solution at zero
energy compatible with the boundary conditions, since that would imply Im q̃� < 0. This underlines the
fact that the topological phase transition happens at � = 0, where the gap also closes.

Above the energy gap, the wavefunctions  E(x) have a similar form  E(x) =
P

k
�ke

ikx, where
k = k(E) is a continuous function of the energy E. The Schrödinger equation for each term is now

 
k̃
2

2� � 1 k̃/�

k̃/� � k̃
2

2� + 1

!
�k = ⇠�k, (6.8)
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where ⇠ = E/� and k̃ = k(E)/mv. The eigenvalue equation (6.8) leads to the following relation

k̃ = s1

p
2

q
�1 + � + s2

p
1 � 2� + �2⇠2 ⌘ s1k̃s2 , (6.9)

where s1, s2 = ±1. Since ⇠ � 1 we see k̃+ is real. Furthermore,
�
1 � �

�2
+ �

2(⇠2 � 1) > 0, so the
assumption that � < 1

2 implies that k̃� is purely imaginary. For the wave number k+, the corresponding
normalizable wave functions are found from (6.8):

 ±k+(x) / e
±ik+x
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2
+

2� + 1

!
. (6.10)

Since k̃� is imaginary, the only normalizable solution with k̃� is

 +k�(x) = e
ik�x
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2
�
2� + 1

!
. (6.11)

For convenience we rename k+ ⌘ k and k� ⌘ i and write the wave function at energy E as

 E(x) =
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e
ikx

 
k̃/�

⇠ � k̃
2

2� + 1

!
+Ae

�ikx

 
�k̃/�

⇠ � k̃
2

2� + 1

!
+Be

�x
✓

i̃/�

⇠ + ̃
2

2� + 1

◆⌘
. (6.12)

We can use the continuity equation to simplify Eq. (6.12). Since the state  E(x) is stationary,
the continuity equation imposes @xjE(x) = 0, where the probability current jE(x) is proportional to
 
⇤
E
(x)@x E(x) �  E(x)@x ⇤

E
(x). At positions far away from the left edge x, the last term in (6.12) has

completely decayed. The probability current there is
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�
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The continuity equation demands jE(x1) = jE(x2) for all x1, x2, and in particular, using that the
wavefunction is zero for x < 0, we must have that Eq. (6.13) vanishes. This means |A| = 1, and so, we
write A = e

i✓k . Imposing the Dirichlet boundary conditions  E(0) = 0, we get two equations for B:
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These two equation yield the following

B = i
k


(1 � e

i✓k), (6.15a)

B = �✏k(1 + e
i✓k), (6.15b)
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The Eqs. (6.15) imply

tan
✓k

2
=
̃

k̃
✏k, (6.17)

and so the wave function above the gap is
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1p
LNE

⇣
e
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where we explicitly pulled the dimensionful factor
p
L, anticipating its emergence from the normalization.

Next we need to determine the normalization NE . This is regularised by cutting off x at L, which we
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will later take to infinity. Note, that when taking the norm of (6.18), the x-independent terms will be
proportional to L after integration and thus will dominate all other terms. Thus, we approximate the
normalization as

NE ⇡

vuut2
k̃2

�2
+ 2

 
⇠ � k̃2

2�
+ 1

!2

. (6.19)

Now we are in position to calculate WE = h 0|⌧z| Ei. The algebra is lengthy, and we will omit the steps
here. Keeping only the terms to order 1/

p
L we find
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p
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where
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Chapter 4

Project C:
Fidelity and visibility loss in Majorana
qubits by entanglement with
environmental modes

Inspired by the previous project, we set out to understand the coherence properties of ideal Majorana
qubits better and to overcome some of the restrictions presented by the classical treatment. The central
model of this paper is very similar to that studied in the previous chapter, with electromagnetic fluctu-
ations in the environment causing quasiparticle excitations which result in parity flips of the Majorana
modes. Like we saw in the previous chapter, the zero-energy modes get shifted by the electromagnetic
fluctuations, but in this project, we treat the full quantum mechanical problem, which implies that the
exact zero-energy modes are dressed by gapless bosonic modes in the environment. Using a Markovian
approximation, we calculate the decay rates at finite temperatures. In contrast with the results of Project
B, we find that the decay rates are exponentially suppressed in the ratio between the energy gap and
temperature.

Even at zero temperature, the dressing of the zero-energy mode has consequences for the visibility
of parity readouts that rely on quantum dots coupled to the bare Majorana modes. Intuitively, if the
bosonic modes are heavily populated, energy can be extracted from them and excite a quasiparticle.
This can lead to errors in readouts, but in the most optimistic cases it only leads to a drop of visibility in
the readout. By including the full non-Markovian dynamics at zero temperature, we explicitly calculate
the decoherence at late times, in the extreme case where the parity of the bare Majorana modes is
projectively measured. We find a potentially significant loss of coherence in this case.

Our calculation demonstrates that the coupling and decoupling of measurement apparatus must be
carefully implemented: Not only is there a risk of exciting quasiparticles directly, but also bosons, which
can lead to a higher risk of errors and a lower readout visibility. Since the bosonic modes are gapless,
some level of visibility loss is unavoidable.
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We study the dynamics and readout of topological qubits encoded by zero-energy Majorana bound states
in a topological superconductor. We take into account bosonic modes due to the electromagnetic environment
which couple the Majorana manifold to above-gap continuum quasiparticles. This coupling causes the degenerate
ground state of the topological superconductor to be dressed in a polaronlike manner by quasiparticle states and
bosons, and the system to become gapless. Topological protection and hence full coherence is only maintained if
the qubit is operated and read out within the low-energy spectrum of the dressed states. We discuss reduction of
fidelity and/or visibility if this condition is violated by a quantum-dot readout that couples to the bare (undressed)
Majorana modes. For a projective measurement of the bare Majorana basis, we formulate a Bloch-Redfield
approach that is valid for weak Majorana-environment coupling and takes into account constraints imposed
by fermion-number-parity conservation. Within the Markovian approximation, our results essentially confirm
earlier theories of finite-temperature decoherence based on Fermi’s golden rule. However, the full non-Markovian
dynamics reveals, in addition, the fidelity reduction by a projective measurement. Using a spinless nanowire
model with p-wave pairing, we provide quantitative results characterizing these effects.
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I. INTRODUCTION

Currently, there is a large interest in topological phases
with defects that can nonlocally store quantum information
and thus possibly offer avenues to topologically protected
quantum information processing [1,2]. One such example
is a topological superconductor (TS) wire which supports
Majorana bound states (MBSs) at its ends [3]. Because it
takes two MBSs to form a fermionic level, the occupancy of
this level is stored nonlocally when the MBSs are spatially
well separated. As a consequence, under ideal conditions, the
quantum information can neither be retrieved by a local mea-
surement nor be destroyed by local noise sources. The search
for MBSs has intensified since the appearance of theoretical
proposals in hybrid systems made of superconductors and
semiconductors [4–10] or topological insulators [11]. Sev-
eral tunneling spectroscopy experiments have already been
published and appear to be consistent with the existence of
MBSs [12–17].

The prospect of robust MBS realizations in solid-state
systems has spurred many proposals for Majorana-based
qubits [18–22] and for error-correction schemes [23–29]. The
latter can correct errors due to, e.g., quasiparticle poisoning
caused by spurious fermionic excitations. Majorana-based
architectures do not have a universal set of topologically
protected gates and are limited to Clifford gates only. The
above-mentioned schemes must therefore be augmented by
nonprotected gates in order to achieve universal quantum
computation [18,21,27,30–32]. More complex anyon excita-
tions, e.g., Fibonacci anyons, would allow to implement a
universal set of topologically protected gates [2]. However,
such systems are still far from experimental realization.

Majorana qubits are often argued to have long coher-
ence times because of the underlying topological protection.

The usual reasoning is that because no local operator can
split the topological ground-state degeneracy, the quantum
information is protected against local perturbations as long
as the MBSs are nonoverlapping. For finite MBS overlap,
the protection of the ground-state degeneracy is lifted and
protection is lost. This case has recently been analyzed in
Ref. [33]. Even when direct MBS overlaps are negligibly
small, as will be assumed in our work, boson-mediated
couplings of MBSs to above-gap quasiparticles cause a co-
herence decay at finite temperatures [34–43]. The bosonic
modes could represent, for instance, phonons or fluctuating
charge degrees of freedom. This finite-temperature decoher-
ence mechanism follows from a Markovian approximation,
i.e., by assuming a negligible memory time of the envi-
ronment. Available estimates of the corresponding decoher-
ence rate !, obtained by assuming either uniform [36,37]
or nonuniform [43] gate voltage fluctuations, suggest that
coherent qubit operation may be hard to achieve on above-
microsecond timescales even though the rate is exponentially
small, ! ∝ T exp(−"/kBT ), with the TS gap " and temper-
ature T (see, e.g., Ref. [37]). Recent work has also studied
the fault tolerance threshold for Majorana qubits in a similar
setting [44].

One of our goals is to address what happens in the non-
Markovian case, both at T = 0 and finite T . We consider a
specific encoding, which we denote a bare-Majorana qubit
[Fig. 1(a)], where the qubit space is addressed by quantum
dots that couple to the uncoupled and undressed MBSs, as
schematically illustrated in Fig. 1(a). This setup has, for
example, been proposed for measurement-based manipula-
tions of a topological quantum computer [20,21]. In such
setups, MBSs couple both to readout devices, e.g., the dot in
Fig. 1(a), and to bosonic and quasiparticle environments.
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FIG. 1. Basic setup and two types of qubit readouts with M = 4
MBSs. Each MBS is coupled to independent local charge fluc-
tuations. The blue horizontal bars represent TS wires which are
connected by a conventional superconductor bridge (green vertical
bar). The basic mechanism for decoherence is also illustrated for
bosons representing voltage fluctuations ϕ1(ω), which cause cou-
pling between the MBS sector and the gapped quasiparticle sector.
(a) Bare Majorana readout. With a tunnel-coupled quantum dot (red
circle), one can read out iγ1γ3 [20,21,31]. (b) Total fermion-parity
encoding where the qubit information is stored in the combined par-
ity of the MBS plus the local quasiparticle continua, mathematically
represented by the modified Majorana operators γ̃i. In principle, this
qubit is immune to local charge fluctuations. However, manipulation
and readout by, e.g., control of total charge in each arm is practically
very difficult. In this paper, we focus on case (a).

In order to analyze the non-Markovian dynamics of the
bare-Majorana qubit, we develop and apply a modified Bloch-
Redfield master-equation approach [45] which is valid for
weak Majorana-environment coupling. Moreover, we also
analyze the readout protocol by using perturbation theory.
Employing the Bloch-Redfield equations, we investigate the
dynamics of bare-Majorana qubits formed from M nonover-
lapping MBSs in the presence of local (quantum) charge
fluctuations. The interaction between these fluctuations and
the MBSs implies that eigenstates of the entire system exhibit
entanglement between the MBS sector and the environment.
(The latter is formed by quasiparticles and the bosonic modes
describing charge fluctuations.) Because of this entangle-
ment, topological protection is only preserved for a combined
fermion-parity degree of freedom (combined continua and
MBSs) [cf. Fig. 1(b) and Sec. II B below] and not for the
isolated MBS manifold.

The entanglement of MBSs and environmental modes
can physically be understood as result of virtual (off-shell)

processes. As a consequence, all coherences of the bare
(undressed) Majorana system will be reduced by a factor
1/(1 + η) at long times. For the ground state, the reduction
factor corresponds to the squared overlap between the true
polaronlike ground state and the bare ground state and it
is relevant for a projective measurement of the state of the
bare MBS. We discuss qualitatively how this theory can be
adapted to the case of slow turn-on of the measurement
circuit. Even though the system is gapless, it should still be
possible to minimize the effect of quasiparticle generation if
one effectively reads out the entangled (polaronlike) states by
carefully timing the readout device. Moreover, by engineering
of the electromagnetic environment, it would be possible to
improve on the adiabaticity condition, for example by creating
a gapped or reduced low-energy environment spectrum.

The minimal setup with M = 4 is illustrated in Fig. 1(a),
where the MBSs forming the qubit are individually coupled
to independent local charge fluctuations. The qubit state can
then be read out, for example, by coupling a MBS pair to a
nearby quantum dot [20,21,31]. We emphasize that the four
edge regions of the qubit are not coupled in our analysis.
Therefore, the effects we consider all result from a system
which in principle has topological protection. Effects beyond
this model, for example, finite overlap of the MBSs or the
quasiparticle states, come on top of our analysis. The topolog-
ical protection here means that if one operates and reads out
the qubit in a total-parity basis, coherence is fully maintained.
This could, for example, be done by a charge readout after
disconnecting sections of the Majorana system as suggested
by Aasen et al. [19].

The paper is organized as follows. In Sec. II, we define
the bare-Majorana qubit encoding and discuss an alternative
fermion-parity qubit encoding [46], which would be free
from decoherence but seems difficult to realize in practice.
In Sec. III, we then explain the physics of the Majorana-
environment coupling. In Sec. IV, we give a simple physical
argument for the reduction of fidelity based on first-order
perturbation theory. In Sec. V, we consider projective readout
of the bare MBS. For this purpose, we develop in Sec. V B
a Bloch-Redfield master-equation approach for studying the
dynamics of a bare-Majorana qubit. The Markovian limit is
discussed in Sec. V C, followed by a study of non-Markovian
effects Sec. V D. In Sec. V E, we apply this theory to a specific
case where MBSs and quasiparticles originate from a spinless
TS wire with p-wave pairing symmetry [7]. In Sec. V E 1, we
address the finite-T case, and in Sec. V E 2 our T = 0 results
are presented. The paper closes in Sec. VI with a summary and
concluding remarks. Technical details have been delegated to
several appendices.

II. QUBIT READOUT

In this section, we discuss how the quantum information
is addressed in Majorana-based qubits and we distinguish
between two different principles. The first relies directly on
the zero modes such that coupling to MBSs, for example,
via quantum dots [20,21], is used to read out or initialize
the qubit state. We refer to this setup as a bare-Majorana
qubit. The second method represents a total-parity qubit.
The latter requires measurements of total parities which in
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turn necessitate tunable Josephson junctions as, e.g., in the
proposal of Ref. [19]. The difficulty is therefore in choosing
the right timescales for switching on and off the coupling
between the various segments of the qubit, a problem analyzed
in Ref. [47]. In this paper, we investigate the decoherence
dynamics of a bare-Majorana qubit.

A. Bare-Majorana qubit

Consider a Majorana island as the one depicted in Fig. 1(a),
where MBSs correspond to self-adjoint Majorana operators
γ j = γ †

j , with j = 1, . . . , M and anticommutation relations
{γ j, γ j′} = 2δ j j′ . For more detailed device layouts and mea-
surement schemes, see Refs. [20,21]. A quantum dot is tunnel
coupled to two MBSs for the purpose of reading out the
joint MBS parity. The qubit with attached readout device is
described by the Hamiltonian

H = εd c†
d cd +

∑

i

(t∗
i c†

d)(ri) + H.c.)

+ Hqubit + EC (Nqubit − Ng)2, (1)

where cd is the fermionic dot-level annihilation operator,
)(ri ) is the electron operator in the TS taken at the position of
the tunnel coupling to MBS i, ti is the corresponding tunneling
amplitude, Hqubit describes the qubit with its coupling to other
environments (see Sec. III), Nqubit is the qubit total electron-
number operator, Ng is a dimensionless gate potential, and,
finally, EC is the charging energy of the Majorana island.
If the readout is done measuring the quantum charge by a
charge sensor, the readout device is effectively distinguishing
the derivative of the energy:

⟨nd⟩ = d⟨H⟩
dεd

. (2)

Similarly, if instead the capacitance of a circuit is measured,
the readout device effectively reads out the second derivatives
d2⟨H⟩/dε2

d [21].
We assume the system is tuned so that the charge config-

uration (nd , Nqubit ) is near (0,0) and (1,−1). In this case, the
Hamiltonian (1) becomes (up to a constant)

H = ε̃d c†
d cd +

∑

i

(t∗
i c†

d)(ri) + H.c.) + Hqubit, (3)

where ε̃d = εd + EC (1 + 2Ng).
When projecting the qubit to its low-energy subspace,

we replace the electron operator by the respective Majorana
operator )(ri ) ≈ aiγi, where ai is the value of the electron
component of the MBS wave function at ri. We then include
the ai in the definition of the tunnel couplings ti.

We can only solve for the energy in the case where Hqubit =
0, i.e., for the ideal situation without environmental degrees
of freedom. In this case, assuming that the quantum dot is
tunnel coupled to γ1 and γ3 only, the energies Es=± of the
split ground-state manifold are given by

Es = ε̃d

2
−

√(
ε̃d

2

)2

+ |t1|2 + |t3|2 − 2s Im[t1t∗
3 ], (4)

where the combined parity s = (−1)(iγ1γ3−1)/2+nd is a good
quantum number.

When the qubit Hamiltonian is nonzero, we need to study
the tunneling Hamiltonian perturbatively. For small ti, and
assuming that Ng is tuned to a value where the quantum dot
is empty (c†

d cd = 0) without tunneling, second-order pertur-
bation theory gives the effective Hamiltonian [21]

H (2) =
∑

i, j

2iγi γ j Im[ti t∗
j ] − |ti|2 − |t j |2

2ε̃d
+ Hqubit. (5)

The expression (5) is perturbative in the tunneling coupling
and valid away from the charge-degeneracy point. Evidently,
in this regime, when the dot is only coupled to γ1 and γ3, then
iγ1γ3 = ±1 is a good quantum number.

To summarize, in this section we have discussed various
readout schemes of Majorana qubits. When reading out the
parity of two MBSs using a quantum dot, the readout device
couples (for M = 4) to the Pauli operators

σx = iγ1γ2, σy = iγ2γ3, σz = iγ1γ3. (6)

However, when the Majorana qubit is coupled to other degrees
of freedom, the qubit as defined in Eq. (6) is no longer well
defined (because the Pauli operators σi do not necessarily
commute with Hqubit) and one needs to discuss the influence
on the readout fidelity and/or readout visibility. This is the
main purpose of this paper. In Sec. III, we set up our model
for the qubit (6) in the presence of environmental modes.
In the subsequent sections, we then study the influence of
qubit-environment entanglement on the qubit dynamics.

B. Total-parity qubit

As an alternative to the bare-Majorana readout discussed
above, one can define a set of Pauli operators based on the total
number parity of each region which is fully protected against
decoherence. This approach was pointed out by Akhmerov
[46] who showed that topological protection is maintained as
long as different MBSs do not interact directly or via con-
tinuum states. Instead of Eq. (6), one defines Pauli operators
by taking into account the total number of fermions in each
spatial region,

σ̃x = σx(−1)N1+N2 , σ̃y = σy(−1)N2+N3 ,
(7)

σ̃z = σz(−1)N1+N3 , Ni =
∑

k

α†
k,iαk,i,

where the operator Ni counts the number of above-gap quasi-
particles in the respective region (cf. Sec. III). It is easy to
check that the σ̃x,y,z satisfy the Pauli algebra, e.g.,

σ̃xσ̃y = iσz(−1)N1+2N2+N3 = iσ̃z. (8)

In addition, all σ̃ matrices commute with the full Hamiltonian
H (including the environmental degrees of freedom), which in
turn conserves all parities associated with pairs of regions,

Pi j = [(iγiγ j − 1)/2 + Ni + Nj]mod2. (9)

Another way to understand this fact is to verify that the
modified Majorana operators

γ̃ j = γ j (−1)Nj (10)

commute with H . We refer to Fig. 1(b) for an illustration of
the total-parity Majorana operators.
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The new Pauli operators (7) represent quantum information
that is topologically protected and can only be corrupted
by finite-size effects, causing MBS wave-function overlap
or transfer of quasiparticles between different MBS regions.
However, in practice this protection can only be employed if
one is able to manipulate and read out in this basis. This could
in principle be performed by using the charging energy to fuse
two MBSs [18,19] which would require tunable Josephson
junctions that can be tuned to the closed regime, thereby
limiting the allowed timescales [47]. However, the coupling
to environmental bosons imposes further restrictions because
of the absence of a gap.

III. COUPLING OF MAJORANA STATES
TO ENVIRONMENT

We now describe a general model for studying how the dy-
namics of a Majorana-based qubit is affected by the coupling
between MBSs and environmental degrees of freedom. By
environmental modes, we here mean above-gap TS quasipar-
ticles and bosonic modes corresponding to electric potential
fluctuations. Let us begin with the unperturbed superconduct-
ing system in the absence of charge fluctuations. It is governed
by the Hamiltonian

H0 = 1
2

∫
dr )†(r)HBdG)(r), (11)

where we define 4-spinors

)(r) = ()↑(r),)↓(r),)†
↓(r),−)†

↑(r))T , (12)

with the electron annihilation operator )σ (r) for spin σ =↑
,↓ and position r. We use Pauli matrices τx,y,z in Nambu
(particle-hole) space. The Bogoliubov–de Gennes (BdG)
Hamiltonian appearing in Eq. (11) corresponds to the Nambu
matrix

HBdG =
(H0 "

"† −T H0T −1

)
, (13)

where H0 is the spinful single-electron Hamiltonian in the ab-
sence of pairing (and, of course, without charge fluctuations),
" is the pairing potential in BCS mean-field approximation,
and T is the time-reversal operator. After diagonalizing the
BdG Hamiltonian, the Hamiltonian (11) can be written in
terms of BdG quasiparticle eigenmodes corresponding to a
set of annihilation operators αk . The αk operators describe
fermionic eigenstates with energy Ek > ", where quantum
numbers k label different eigenmodes. Consequently, Eq. (11)
takes the form

H0 =
∑

k

Ek α†
k αk + constant. (14)

In the topological phase, an even number M of localized
zero-energy MBSs can be present in addition. In particular,
for one-dimensional (1D) TS wires, MBSs exist at each end
of a topological wire segment. As the Majorana operators γ j
describe zero-energy modes, they do not appear in H0 and thus
also commute with the unperturbed Hamiltonian [H0, γ j] = 0
[6–10].

We next note that H0 implicitly includes the electric po-
tential in the superconducting material. If this potential can

change due to fluctuations mediated by other (bosonic) de-
grees of freedom, it must be included in the model. The full
Hamiltonian H = Hqubit is then given by

H = H0 + Hϕ + Hint, Hint =
∫

dr ρe(r)ϕ(r), (15)

where ϕ(r) is an operator that describes the electric po-
tential fluctuations caused by a set of bosonic modes. The
potential fluctuations occur, in principle, on all length scales.
For simplicity, we here focus on the most important compo-
nents, namely, the potential fluctuations with length scales
of order the coherence length. Hence, we replace ϕ(r) by
M-independent fluctuating potentials ϕ j , one for each region
j = 1, . . . , M. The bare dynamics of these fluctuations is
governed by a noninteracting bosonic Hamiltonian Hϕ . In
principle, one could also include fields describing fluctuations
of the magnetic field, but for simplicity we focus on electrical
fluctuations below.

Expressing the electron density ρe(r) in Eq. (15) in terms
of BdG quasiparticle operators, we get two contributions
Hint = H1 + H2, with

H1 =
M∑

j=1

γ j! jϕ j, ! j =
∑

k

(Wk, jα
†
k, j − W ∗

k, jαk, j ) (16)

and

H2 =
∑

k,k′, j

(
V (1)

kk′ jα
†
k, jαk′, j + V (2)

kk′ jα
†
k, jα

†
k′, j

)
ϕ j + H.c. (17)

We here define the W matrix elements as

Wk, j = ⟨k, j|τz|MBS, j⟩, (18)

where |k, j⟩ (|MBS, j⟩) denotes a BdG quasiparticle (MBS)
spinor wave function in the jth region. For concrete results,
one has to consider a specific model for the TS nanowire.
In Sec. V E (see also Appendix B), we discuss the matrix
elements (18) for a semi-infinite spinless TS wire model with
p-wave pairing.

To recapitulate, the above model Hamiltonian describes
coupling between a TS and bosonic potential fluctua-
tions. To emphasize the important physics studied in this
paper, we have made the following key simplifications:
(i) All MBSs are treated as nonoverlapping zero-energy states.
(ii) Quasiparticle modes described by the fermionic operators
αk, j are assumed to have no significant support in spatial
regions where other MBSs reside, and hence no MBS-MBS
interactions are mediated through continuum states either.
(iii) The charge density ρe(r) in the region near the jth MBS
couples to an operator ϕ j describing the long-wavelength
component of the field in that region. Given the typically small
size of these regions, we neglect the spatial dependence of ϕ j .
(iv) We assume that different ϕ j operators are uncorrelated,
i.e., each MBS is independently coupled to its own fluctuating
electric field. (v) The V (1,2) matrix elements in Eq. (17) are not
important for the Bloch-Redfield approach used below, and
we will assume that the main effect of H2 is to contribute to
the fast quasiparticle relaxation processes.

Finally, the Gaussian Hamiltonian Hϕ is fully determined
by first noting that ⟨ϕ j⟩Hϕ

= 0 and then specifying the two-
point bath correlation function [45]. For simplicity, we here
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FIG. 2. Equivalent circuit for the electromagnetic environment
coupled to the Majorana operator γ1. The environments near the other
MBSs are not shown.

assume that the different environments in the various regions
( j = 1, . . . , M) can be characterized by the same spectral den-
sity J (ω). By assumption (iv) above, the only nonvanishing
correlator is given by

B(t ) = ⟨ϕ j (t )ϕ j (0)⟩Hϕ

=
∫ ∞

0

dω

2π
J (ω){e−iωt [1 + nB(ω)] + eiωt nB(ω)}, (19)

where nB(ω) = 1/(eβω − 1) with β = 1/kBT is the Bose-
Einstein function. The spectral density J (ω) of the electro-
magnetic environment is taken for the equivalent circuit in
Fig. 2, where fermions couple through the capacitance C0 to
the electromagnetic environment with resistance Z0. We note
that other spectral densities, for example, containing a 1/ f
component could be more relevant, but here we focus on the
so-called Ohmic case for simplicity. Using linear response
theory, B(t ) in Eq. (19) can be related to the impedance of
the circuit [45]. We thereby obtain the spectral density

J (ω) = 2e2ω0

C0

ω

ω2 + ω2
0
, ω0 = 1

C0Z0
. (20)

The linear low-frequency dependence is characteristic of an
Ohmic environment. It is of course possible to engineer the
environment spectral function, such that it is has low-energy
modes suppressed. This would be relevant if one wants to
improve on the adiabaticity conditions for the qubit
operations.

IV. READOUT OF THE MAJORANA QUBIT
WITH ENVIRONMENTAL COUPLING

A. General remarks

In this section, we discuss on a general level the princi-
ples of Majorana-qubit readout when the qubit Hamiltonian
does not commute with the degree of freedom that is being
measured. As we saw above, the qubit in principle still has
topological protection in the sense that the total-parity qubit
operators σ̃i in Eq. (7) are conserved and cannot be measured
by any local operator (when the readout device is detached).
However, when attached to the readout device, the topological
protection is of course broken and care must be taken if
the measurement device should not give the wrong readout
yielding a loss of fidelity.

We define a basis |p, σ̃ ⟩ using eigenstates of the Pauli oper-
ator σ̃z = iγ̃1γ̃3 which is the basis natural for the quantum-dot
coupling in Fig. 1,

iγ̃1γ̃3|p, σ̃ ⟩ = σ̃ |p, σ̃ ⟩, (21)

where p refers to environmental quantum numbers (see below
for a concrete calculation to first order). The states {|p, σ̃ ⟩} are
also eigenstates of the Hamiltonian

Hqubit =
∑

p,σ̃=±1

0p|p, σ̃ ⟩⟨p, σ̃ |, (22)

where 0p are the eigenenergies. The even and odd eigenstate
sectors are related by

|p,−1⟩ = γ̃1|p, 1⟩. (23)

Next, we wish to express the operator σz = iγ1γ3, which
couples to the quantum dot see Eq. (4) in the eigenbasis of the
topological qubit. First, we note that

⟨p,−1|iγ1γ3|p′,−1⟩ = −⟨p, 1|iγ1γ3|p′, 1⟩, (24a)

⟨p,−1|iγ1γ3|p′, 1⟩ = 0. (24b)

The first relation follows from Eq. (23) and the definition
of γ̃1 in Eq. (10), while the second one follows from parity
conservation. These relations now allow us to write the oper-
ator iγ1γ3 as

σz = iγ1γ3 =
∑

pp′

App′ [|p, 1⟩⟨p′, 1| − |p,−1⟩⟨p′,−1|]. (25)

For an example of App′ , see below where we calculate it in
perturbation theory.

Let us now discuss the readout procedure using a quan-
tum dot that effectively couples to the operator in Eq. (25).
Clearly the bare-Majorana Pauli operator σz does in general
not commute with the Hamiltonian of the qubit Hqubit in
Eq. (22). However, if we consider the situation where the
energy scales of the quantum dot, the inverse timescales for
switching on the readout circuit τ−1 and temperature kBT ,
all are well within the gap of the topological superconductor
(εd , t1, t2, τ−1, kBT ) ≪ ", we should project Eq. (25) to the
low-energy sector determined by these energy scales. More-
over, for the case without splitting of the topological qubit,
the initial density matrix of the qubit is assumed to be in a
thermal (low-temperature) state of the form

ρqubit =
∑

p

(α|p, 1⟩ + β|p,−1⟩)(α∗⟨p, 1| + β∗⟨p,−1|)Pp,

(26)

which has full coherence in the topologically protected sector.
Here, Pp ∝ exp(−0p/kBT ) is the thermal distribution.

When adding the measurement circuit, the Hamiltonian has
additional terms. For example, for weak dot tunneling and
ε̃d > 0, the Hamiltonian is given by Eq. (5), which in the qubit
eigenbasis follows from Eqs. (22) and (25):

H (2) =
∑

pp′,σ̃

(0pδpp′ + σ̃App′1)|p, σ̃ ⟩⟨p′, σ̃ | − |t1|2 + |t3|2

ε̃d
,

(27)
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FIG. 3. The measured dot occupation ⟨nd⟩ as a function of the dot
potential ε̃d for the readout protocol shown in Fig. 1. The outcomes
for the two parity states are illustrated with the blue and red curves.
The full lines show the result without environmental coupling, while
the shaded areas illustrate the possible outcomes for when the bare-
Majorana parity iγ1γ3 does not commute with the qubit Hamiltonian.
If the shaded regions do not overlap, the coupling to environments
gives rise to a visibility reduction, while when they do overlap the
fidelity is reduced. Note that |ε̃d | must be smaller than the gap
(vertical lines) for the readout to be valid.

where we defined the energy scale that splits the topological
degeneracy

1 = 2 Im[t1t∗
3 ]

ε̃d
. (28)

The sensor measures the charge on the dot, which is given by
the operator nd = dH (2)/d ε̃d .

After the quantum-dot readout circuit has been switched
on, the population of the energy spectrum is not necessarily
a thermal population of the eigenstates as in Eq. (27), but
depends on the protocol for attaching the dot. The readout
fidelity then depends on both this population and on the
structure of the matrix A.

For small dot-qubit coupling (which means that 1 is
small compared to kBT and h̄τ−1), one can treat the parity-
dependent term in Eq. (27) as a perturbation. Therefore, if
the diagonal elements App for the relevant energies have
a definite sign, the total-parity degree of freedom η can
in principle be read out with perfect fidelity. This corre-
sponds to the situation depicted in Fig. 3 where the pos-
sible outcomes for the two parity states do not overlap. In
this situation, the environmental coupling only leads to a
reduction of visibility. However, if the sign of App varies
for the populated energies, the two distribution functions
of possible readouts overlap and, as a result, the fidelity is
reduced.

For stronger 1, the full matrix App′ is important for deter-
mining the eigensystem of the Hamiltonian (27). Again, if the
signs of the diagonal elements of A in this new basis are not
unique for the energies that are populated, the fidelity of the
readout procedure is reduced.

B. Perturbative treatment of the entangled
environment-qubit basis

In this section, we present a perturbative analysis of
the entanglement between the MBS manifold and the en-
vironment and discuss the consequences for the readout
visibility/fidelity. For concreteness, we discuss the case
M = 4 and use the basis |n13, n24⟩ ⊗ |{k, j}, {q, j}⟩env, where
{k, j}, {q, j} label states in the quasiparticle and boson envi-
ronments, respectively. On the other hand, n13 and n24 refer to
the fermion level occupations corresponding to the respective
fermion operators

d13 = (γ1 + iγ3)/2, d24 = (γ2 + iγ4)/2, (29)

where the number states |n13, n24⟩ follow from the empty state
|00⟩ as

d†
13|00⟩ = |10⟩, d†

24|00⟩ = |01⟩, d†
24d†

13|00⟩ = |11⟩.
(30)

The bosonic environment is in diagonal form written as

Hϕ =
∑

q, j

ωq, jb
†
q, jbq, j, (31)

where bq, j are boson annihilation operators. The potential
fields ϕ j are given in terms of the bosons as

ϕ j =
∑

q

(M∗
q, jbq, j + Mq, jb

†
q, j ). (32)

For the arguments in this section, we do not need the explicit
form of the matrix elements Mq, j .

We take the case of even total fermion-number parity.
The two degenerate even-parity unperturbed ground states are
|00⟩ ⊗ |0⟩env and |11⟩ ⊗ |0⟩env. First-order perturbation theory
then gives that the ground states of the interacting system are

|G0⟩ = 1√
C

⎛

⎝|00⟩|0⟩env −
∑

ikq

Wk,iMq,i

Ek + ωq
γi|00⟩α†

k,ib
†
q,i|0⟩env

⎞

⎠,

|G1⟩ = 1√
C

⎛

⎝|11⟩|0⟩env −
∑

ikq

Wk,iMq,i

Ek + ωq
γi|11⟩α†

k,ib
†
q,i|0⟩env

⎞

⎠,

(33)

with

C = 1 +
∑

ikq

|Wk,iMq,i|2

(Ek + ωq)2
≡ 1 + η. (34)

For simplicity, we here assume that the energies Ek and ωq are
identical in different regions j = 1, . . . , 4.

The excited states can be written in a similar way. For ex-
ample, let us consider the unperturbed excited states b†

q, j |ss⟩ ⊗
|0⟩env (with s = 0, 1), where the corresponding entangled
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excited states are to first order given by

|Eq js⟩ = 1
√

Bq, j

⎛

⎝b†
q, j |ss⟩|0⟩env −

∑

ikq′

Wk,iMq′,i

Ek + ωq′
γi|ss⟩

×α†
k,ib

†
q′,ib

†
q, j |0⟩env−

∑

k

Wk, jM∗
q, j

Ek − ωq
γ j |ss⟩α†

k, j |0⟩env

)

,

(35)

with the normalization factor

Bq, j = 1 +
∑

ikq′

|Wk,iMq′,i|2

(Ek + ωq′ )2
+

∑

k,z=±1

|Wk, jMq, j |2

(Ek + zωq)2
. (36)

Similarly, one can generate the corrections to the unperturbed
two-boson excited states: b†

q, jb
†
q′, j′ |ss⟩ ⊗ |0⟩env, etc.

With the above perturbative results for the eigenstates, one
can now construct the corresponding matrix elements of the
matrix A. As we saw in Eq. (25), the matrix elements are
identical for the two topologically degenerate sectors. For
example, we have for the diagonal elements

AG0,G0 = AG1,G1 = ⟨G0|iγ1γ3|G0⟩, (37)

Aq10,q10 = Aq11,q11 = ⟨Eq10|iγ1γ3|Eq10⟩, (38)

that

AG0,G0 = 2 − C
1 + C

= 1 − η

2 + η
, Aq10,q10 = 2 − Bq,1

1 + Bq,1
. (39)

Off-diagonal elements between the excited states in
Eq. (35) are

Aq10,q′10 = −
∑

k,z=±1

|Wk,1|2Mq,1M∗
q′,1

(Ek + zωq)(Ek + zωq′ )
(40)

for q ̸= q′.
From the above, we conclude that for weak measurements

and weak coupling to the environment, there is no loss of
fidelity (only visibility) as long as the diagonal elements
remain positive, whereas for strong measurement one has
to investigate the structure of the eigenvalue spectrum of
A more carefully. However, it is not well understood when
the assumption of weak measurements is valid. It depends
on both the strength of 1 and the timescale τ , and it is
an interesting topic for further studies. Here, we focus on
establishing the result for the limit of an instantaneous and
projective measurement of the bare MBSs, i.e., the bare Pauli
operator σ . This is the topic of the next section.

V. READOUT OF A MAJORANA BASIS
IN THE SUDDEN APPROXIMATION

In this section, we discuss the limit where the operator
σz = iγ1γ2 is measured projectively. This is relevant when the
energy scale 1 in Eq. (27) is larger than temperature and the
timescale τ for turning on the measurement device is short
compared to all scales, including ". As discussed above, this
therefore constitutes a worst case scenario and slower turn-on
would reduce the fidelity loss even though full adiabaticity is

never possible because the combined fermion-boson system is
gapless.

A. Perturbative estimate

Let us start by assuming that the system has been initialized
in a linear superposition of the two dressed ground states (33)
(at T = 0),

|ψ⟩ = α|G0⟩ + β|G1⟩. (41)

A projective measurement of σz then yields the outcome +1
with probability

P(σz = 1) = Tr(31|ψ⟩⟨ψ |), (42)

where the projection operator 31 is

31 =
∑

n24=0,1

|0, n24⟩⟨0, n24| ⊗ 1env, (43)

and 1env denotes the identity operator in the Hilbert space of
the environment. The probability in Eq. (42) thus becomes

P(σz = 1) = |α|2

1 + η
+ |β|2η

1 + η
, (44)

and similarly for the probability to measure σz = −1,

P(σz = −1) = |β|2

1 + η
+ |α|2η

1 + η
, (45)

where the decoherence parameter η has been defined in
Eq. (34). Equations (44) and (45) show that the readout error
is of order η. Moreover, because there is no value of α for
which P(σz = 1) = 1, they also demonstrate that reading out
σz does not simply correspond to reading out the qubit defined
by the basis states {|G0⟩, |G1⟩} in some other direction.

At finite temperature, we have instead of Eq. (41) a mixed
state with contributions from excited states as in Eq. (35).
The resulting density matrix is still coherent within the topo-
logically protected set of degenerate states because no local
perturbation (say, for region j = 1) mixes the two sectors
{|00, even⟩, |10, odd⟩} and {|11, even⟩, |01, odd⟩}, where odd
and even refer to the parity of the quasiparticle continua. How-
ever, even though coherence in the topologically protected
subspace is maintained, the coefficients α and β can again not
be read out truthfully using the projection (43) because the
projection operators 3±1 do not commute with the interacting
Hamiltonian.

To summarize this section, the reduction factors in
Eqs. (44) and (45) are caused by reading out in the bare (un-
dressed) basis {|00⟩, |11⟩} instead of using the true (dressed)
states (33). The factor 1/(1 + η), which here was determined
by first-order perturbation theory, will appear in the non-
Markovian Bloch-Redfield approach below (see Sec. V D).
We note that a similar dressing of the ground state by en-
vironmental modes has been studied in detail for the related
but simpler spin-boson model [45,48], where the coherence
reduction is well established even at zero temperature.
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B. Bloch-Redfield approach to sudden readout
of a bare-Majorana qubit

We now study the decoherence dynamics of Majorana
qubits in terms of a modified Bloch-Redfield approach. The
main difference between our approach and standard quantum
master equations for, e.g., a qubit coupled to a bosonic bath
[45,49], arises from the fact that the fermion numbers in the
Majorana sector and in the environment are not independent
since the total fermion-number parity of each spatial region
( j = 1, . . . , M) is conserved by the full Hamiltonian H . In
this section, we discuss the Bloch-Redfield approach for the
general class of models in Sec. III. In Sec. V E, we will then
apply these results to a specific TS wire model.

By adopting the standard derivation of quantum master
equations [49] to the case of our Hamiltonian H , we obtain
the equation of motion for the reduced density matrix ρM (t ),
describing the MBS sector

d
dt

ρM (t ) = −
∫ t

0
dt ′ Trenv[Hint (t ), [Hint (t ′), ρ(t ′)]]. (46)

For M = 4, the space spanned by the MBSs is equivalent to
two fermions and ρM can be represented by a 4 × 4 matrix. In
Eq. (46), Hint (t ) is the MBS-environment coupling Hamilto-
nian in the interaction picture, with H0 + Hϕ as unperturbed

part, ρ(t ) is the full density matrix of the entire system,
and Trenv indicates a trace over environmental degrees of
freedom. In Eq. (46), we assume the weak MBS-environment
coupling limit such that the standard Born approximation
applies [45,49].

If relaxation processes in the environment are much faster
than the timescale for changes in the reduced density matrix
ρM , the density matrix ρ(t ′) appearing in Eq. (46) effectively
separates into ρM (t ′) and an environmental part, and we can
neglect MBS-environment entanglement in ρ(t ′). Assuming
that above-gap quasiparticles quickly decohere because of
H2 in Eq. (17), ρ(t ′) will therefore factorize into ρM (t ′) and
an equilibrium environmental density matrix ρenv. Since the
main role of H2 is to decohere quasiparticles, we also replace
Hint (t ) → H1(t ) [see Eq. (16)] in Eq. (46).

However, there is an important catch: the parities of the
Majorana subsystem and of the environmental sector are not
independent because of total-parity conservation. In what
follows, we always take the conserved fermion-number parity
of the entire system as even such that

ρ(t ′) = ρe
M (t ′) ⊗ ρe

env + ρo
M (t ′) ⊗ ρo

env, (47)

where the superscripts e/o refer to even–plx-sol-plxodd-parity
sectors of the respective subsystem. Next, we insert Eq. (47)
into Eq. (46). Noting that coherent contributions with different
parities in the Majorana sector are absent, we obtain

d
dt

ρe/o
M (t ) = −

∑

i, j

∫ t

0
dt ′[ge/o

i j (t − t ′)γiγ jρ
e/o
M (t ′) + ge/o

i j (t ′ − t )ρe/o
M (t ′)γiγ j −

(
go/e

i j (t − t ′) + go/e
i j (t ′ − t )

)
γiρ

o/e
M (t ′)γ j

]
(48)

with the functions (i, j = 1, . . . , M )

ge/o
i j (t − t ′) = −⟨!i(t )ϕi(t )! j (t ′)ϕ j (t ′)⟩e/o, (49)

where ⟨. . . ⟩e/o = Trenv(ρe/o
env . . . ) and !i(t ) has been defined in

Eq. (16).
We now use two properties of the environment which

follow from the conditions specified after Eq. (17). First, all
MBSs are assumed to be so far away from each other that
there is no phase coherence between quasiparticles in different
regions. As a consequence, gi j ∝ δi j . (Nonetheless, quasi-
particles may incoherently diffuse throughout the device.)
Second, quasiparticles and bosonic modes are taken to be
uncorrelated, implying that the expectation value (49) can be
factorized. This assumption is equivalent to disregarding the
Hamiltonian H2 when evaluating ge/o

i j (t ). (As discussed above,
the main role of H2 is to induce quasiparticle relaxation.) After
those steps, we obtain

ge/o
i j (t − t ′) = F e/o

i (t − t ′)B(t − t ′)δi j, (50)

with the boson correlation function B(t ) in Eq. (19) and the
quasiparticle correlator

F e/o
i (t ) = −⟨!i(t )!i(0)⟩e/o =

∫ ∞

"

dE ν(E )|Wi(E )|2

×
[
e−iEt [1 − ne/o

F (E )
]
+ eiEt ne/o

F (E )
]
. (51)

Here, ν(E ) =
∑

k δ(E − Ek ) is the quasiparticle density of
states. From Eq. (18), we then obtain

ν(E )|Wi(E )|2 =
∑

k

δ(E − Ek )|Wk,i|2. (52)

The Fermi-Dirac functions in Eq. (51) are given by

ne/o
F (E ) = 1

eβ(E±δF ) + 1
, (53)

where δF is the free-energy difference between the even- and
odd-parity cases, δF = Fodd − Feven. The thermodynamics of
a superconducting island with fixed total parity has been
considered in Refs. [50–52]. At low temperatures, one can
parametrize δF by the number Neff of quasiparticle states on
the island,

δF = " − kBT ln Neff , Neff ≃
∫ ∞

"

dE ν(E )e−β(E−").

(54)

Assuming a BCS form for ν(E ), one obtains the estimate

Neff ≈ dSVS

√
2πkBT ", (55)

where dS is the normal density of states and VS the volume of
the superconductor. We note that Neff determines the tempera-
ture T ∗ at which the probability of having the first quasiparti-
cle in the system approaches unity, T ∗ ≈ "/(kBNeff ). Recent
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experiments have reported the value T ∗ ≈ 0.3 K for a single
nanowire [52].

C. Markovian approximation

The integrodifferential equation (48) includes memory
effects because the change of ρM (t ) depends on ρM (t ′) at
earlier times t ′ < t . One can in principle solve this equation,
but in order to have simple results (and to reproduce results
obtained by earlier studies), we first turn to the Markovian
approximation. The standard Markovian approximation for
the Bloch-Redfield master equation (48) involves two steps
[45,49]. First, the density matrix ρM (t ′) under the integral is
replaced by ρM (t ). Second, the upper limit in the time integral
is replaced by infinity. In addition, to simplify notation, we
again take identical but uncorrelated environments for differ-
ent MBSs. With these steps, the master equation (48) is given
in Lindblad form

d
dt

ρe/o
M = −!e/oρe/o

M + !o/e

M

∑

i

γi ρo/e
M γi , (56)

with the rates [cf. Eq. (50)]

!e/o = M
∫ ∞

−∞
dt ge/o(t ) = M

∫ ∞

"

dE f e/o(E ). (57)

We here define the auxiliary functions

f e/o(E ) = ν(E )|W (E )|2J (E )
(
nB(E ) + ne/o

F (E )
)
. (58)

For low temperatures T ≪ T ∗, we now have

nB(E ) + ne/o
F (E ) ≃

{
e−βE , even

N−1
eff e−β(E−"), odd.

(59)

From Eq. (57), we thus obtain the asymptotic low-temperature
expressions

!o ≈ kBT N−1
eff S ("), !e ≈ kBT S (")e−"/kBT , (60)

with S (") = Mν(")|W (")|2J ("). We observe that in gen-
eral, !o ≫ !e due to the absence of the exponential suppres-
sion factor in !o. To understand this result, note that for even
total parity, the odd-parity Majorana sector must come with
at least one quasiparticle excitation. For T > 0, this above-
gap excitation can now quickly relax and thereby bring the
Majorana subsystem to the energetically favorable even-parity
sector.

To explicitly obtain the decoherence dynamics from the
Lindblad equation (56), we take M = 4 and parametrize ρe/o

M
in the basis introduced in Eqs. (29) and (30). With real
coefficients ae/o

± and complex numbers be/o,

ρe/o
M =

(
ae/o

+ be/o

(be/o)∗ ae/o
−

)

, (61)

where pe/o = ae/o
+ + ae/o

− is the probability for the Majorana
sector having even/odd parity, respectively. We next note that
the last term in Eq. (56) can be written as

∑

i

γi ρe/o
M γi = 2pe/oPo/e, (62)

where Po/e is the projector onto the odd–plx-sol-plxeven-
parity Majorana subspace. The identity (62) follows directly
by using the basis defined in Eq. (30) along with the definition
of d13 and d24 in Eq. (29). We will see below that for t → ∞
and T > 0, Eq. (62) implies that the bare-Majorana qubit will
fully decohere. The simple form of Eq. (62) is a consequence
of our assumption that different environments are identical
and uncorrelated. If they have different spectral functions, the
long-time limit of ρM (t ) is also affected.

Let us now assume that at time t = 0, we start from
the even-parity Majorana sector, i.e., ρo

M (0) = 0. The off-
diagonal components of ρe

M will then show an exponential
decay with rate !e:

be(t ) = e−!et be(0). (63)

Using the normalization condition pe + po = 1, the dynamics
of the diagonal elements ae

± follows from

ȧe
± = −!eae

± + !o

2
(1 − ae

+ − ae
−). (64)

By adding those equations, we obtain

ṗe = −!e pe + !o(1 − pe), (65)

with the solution

pe(t ) = e−(!e+!o)t (1 − peq ) + peq, (66)

where the equilibrium probability reached for t → ∞ is

peq = 1
1 + !e/!o

. (67)

Inserting Eq. (66) back into Eq. (64) one easily finds ae
+(t )

and ae
−(t ), given their initial values at t = 0. Equation (66)

shows that the decay toward equilibrium involves two separate
contributions. One is due to the rate !e which is exponen-
tially small at low temperatures. The other is due to !o

which does not contain the exponential suppression factor
and thus implies a faster decay (for T > 0). In addition, we
observe from Eq. (67) that for kBT ≪ ", the probability for
remaining in the even-parity sector at t → ∞ is very close
to unity, peq ≃ 1 − Neffe−"/kBT [see Eq. (60)]. In particular,
at T = 0 the bare-Majorana qubit does not decohere at all
within the Markovian approximation. This conclusion and
some of the above results have been reported before (see, e.g.,
Refs. [34,37]).

D. Non-Markovian case

1. T = 0 case

We next turn to the T = 0 qubit dynamics and take into
account non-Markovian memory effects. In Sec. IV B, we
have presented a fidelity reduction mechanism for the bare-
Majorana qubit state due to entanglement of the MBS sector
with environmental degrees of freedom. Within the Marko-
vian approximation, this effect is exponentially suppressed at
low temperatures due to the energy difference " between both
sectors. For our system, this conclusion equivalently follows
under a Fermi golden rule approach with on-shell scattering
between the two parity sectors. However, we will show below
that the fidelity of the bare-Majorana qubit is affected even

155419-9

104



MUNK, EGGER, AND FLENSBERG PHYSICAL REVIEW B 99, 155419 (2019)

at T = 0 due to virtual off-shell processes which give rise to
non-Markovian dynamics.

Our starting point is Eq. (48), where we again assume
that the environments coupled to different MBSs are iden-
tical but uncorrelated. Setting M = 4, we parametrize ρe/o

M
using the real Bloch vector components d e/o

α and population
factors pe/o,

ρe/o
M (t ) =

∑

α=x,y,z

d e/o
α (t )σ e/o

α + 1
2

pe/o(t )Pe/o, (68)

where the Pauli matrices σ e/o
α act in the even/odd 2 × 2 spaces

defined in Eq. (61) and Pe/o projects to the even/odd Majorana
sector. From Eq. (48), we then obtain the non-Markovian
T = 0 master equation

d
dt

ρe/o
M (t ) = −4

∫ t

0
dt ′ g(t − t ′)

(
ρe/o

M (t ′) − pe/o(t ′)
2

Po/e

)
.

(69)

The function g(t ) = ge/o(t ) + ge/o(−t ) follows from Eq. (50),
where we notice that ge/o(t ) does not depend on parity (e/o)
for T = 0:

g(t ) = 1
π

∫ ∞

0
dω

∫ ∞

"

dE ν(E )|W (E )|2J (ω) cos[(ω + E )t].

(70)

Let us first consider the dynamics of dα (t ). The equations
of motion are obtained by multiplying Eq. (69) with σ e/o

α and
taking the trace

ḋ e/o
α (t ) = −4

∫ t

0
dt ′ g(t − t ′)d e/o

α (t ′). (71)

The solution follows by Laplace transformation

d̃ e/o
α (s) = 1

s + 4g̃(s)
d e/o

α (t = 0), (72)

where h̃(s) denotes the Laplace transform of a function h(t ).
For the asymptotic long-time behavior, we thereby find

d e/o
α (t → ∞) = 1

1 + η
d e/o

α (t = 0), (73)

with the dimensionless decoherence parameter

η = 4
π

∫ ∞

0
dω

∫ ∞

"

dE
J (ω)ν(E )|W (E )|2

(ω + E )2
. (74)

The coherences encoded by d e/o
α (t ) are thus reduced for t →

∞ due to the coupling of MBSs to quantum fluctuations of
the environment, even at zero temperature. Quantitatively, this
effect is described by the number η as explained in Sec. IV B.
Although d e/o

α (t ) does not decay all the way down to zero for
t → ∞, it is reduced by a finite amount. Note that this result
equally applies to both parity sectors.

Likewise, the equations of motion for the population fac-
tors follow as

ṗ e/o(t ) = −4
∫ t

0
dt ′ g(t − t ′)[pe/o(t ′) − po/e(t ′)]. (75)

After Laplace transformation, we have

sp̃e/o(s) − pe/o(t = 0) = −4g̃(s)[ p̃ e/o(s) − p̃ o/e(s)]. (76)

FIG. 4. Time dependence of the coherences d e/o
α (t )/d e/o

α (0), at
T = 0, where results are independent of the parity (e/o) sector
and of the component (α = x, y, z). For three values of ω0/" [cf.
Eq. (20)], the curves have been obtained numerically by inverse
Laplace transformation of Eq. (72), with B = 1 in Eq. (C5). Dashed
lines show the respective long-time asymptotic value 1/(1 + η).

Noting that p̃ e/o(s) + p̃ o/e(s) = 1/s because of pe/o(t ) +
po/e(t ) = 1, Eq. (76) yields

p̃ e/o(s) = pe/o(t = 0) + 4g̃(s)/s
s + 8g̃(s)

. (77)

From this expression, the asymptotic long-time behavior fol-
lows in the form

pe/o(t → ∞) = pe/o(t = 0) + η

1 + 2η
. (78)

Starting, say, from the even-parity sector, the probability to
end up with odd parity is given by po(∞) = η/(1 + 2η) 6
1/2. For η → ∞, the full parity mixing limit with pe(∞) =
po(∞) = 1/2 is realized. In that case, also all coherences
die out, de/o

α (∞) → 0. Importantly, these predictions are
in marked contrast to the corresponding T = 0 Markovian
results in Sec. V C.

In order to obtain the full time dependence of the T = 0
coherences in the non-Markovian case, the inverse Laplace
transformation of Eq. (72) has been performed numerically by
using a simplifying assumption for the E integral in Eq. (70),
replacing E → " in the cosine. The rationale behind this
approximation is that for the p-wave nanowire model in
Sec. V E, the function ν(E )|W (E )|2 has a clear peak at E
slightly above " (see Fig. 10 in Appendix B). Using Eq. (20),
the ω integral can then be performed (see Appenidx C for
details). The corresponding numerical results are shown in
Fig. 4 and illustrate how Eq. (73) is approached at long
times. We observe that the coherences oscillate and decay
on timescales corresponding to fractions of "−1. For smaller
η, we find that both the oscillations and the decay become
slower.

We conclude that at T = 0, non-Markovian effects can
be very important. In particular, they induce a coherence
reduction and cause parity mixing between the bare-Majorana
qubit and the environment, especially for large η in Eq. (74).
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2. Finite T

For finite T , we have to distinguish ge(t ) and go(t ). In the
Laplace domain, this parity-dependent correlation function
can be calculated for Re(s) > 0 and subsequently be analyti-
cally continued to Re(s) < 0. From Eq. (50), we then find

g̃e/o(s) = s
π

∫ ∞

0
dω

∫ ∞

"

dE ν(E )|W (E )|2J (ω)

×
(

nB(ω) + ne/o
F (E )

s2 + (E − ω)2
+

1 + nB(ω) − ne/o
F (E )

s2 + (E + ω)2

)

.

(79)

Keeping track of the differences between ge and go leads to
modifications of Eqs. (72) and (77). We find

d̃ e/o
α (s) = 1

s + 4g̃e/o(s)
d e/o

α (t = 0), (80)

p̃ e/o(s) = pe/o(t = 0) + 4g̃o/e(s)/s
s + 4[g̃e/o(s) + g̃o/e(s)]

. (81)

We now observe that d̃ e/o
α (s) has a pole at s = 0, and that the

first term within the brackets in Eq. (79) is divergent for ω =
E when Re(s) = 0 and T > 0. As shown in Appendix A, this
implies d e/o

α (t → ∞) = 0 for all finite T , in accordance with
the Markovian results discussed in Sec. V C. For asymptoti-
cally long times, t → ∞, the decay law follows by expanding
g̃e/o(s) for s → 0, as we show in detail in Appendix A. All
coherences then die out exponentially,

d e/o
α (t ) ∝ e−!e/ot , (82)

where we obtain the same decay rates !e/o as from the
Markovian approach [see Eq. (57)]. As expected intuitively,
environmental memory effects are thus erased at very long
times.

Finally, we discuss the long-time behavior of pe/o(t ) which
illustrates the equilibration of the system. Again, the result
follows by expanding p̃ e/o(s) in Eq. (81) for small s (see
Appendix A for details). We find that at T = 0, Eq. (78) is
recovered. However, for T > 0, we get

pe/o(t → ∞) =
∫ ∞
"

dE f o/e(E )
∫ ∞
"

dE [ f e/o(E ) + f o/e(E )]

= !o/e

!e/o + !o/e
, (83)

with the function f e/o(E ) in Eq. (58). Equation (83) also
matches the corresponding result in the Markovian limit [see
Eq. (67)].

E. Case study

Here, we provide concrete estimates to illustrate the above
results for a specific TS nanowire model. To that end, we use
a spinless model for a TS wire with p-wave pairing symmetry.
One can write the corresponding BdG Hamiltonian in the
form [7]

HBdG = p2

2m
τz − "τz + vpτx. (84)

FIG. 5. Decay rates !e/o vs temperature T obtained from Eq. (57)
for the spinless p-wave TS wire model in Eq. (84). We use ω0 = ",
"/(mv2) = 0.2, dSVS"Al = 850, and E0 = e2/C0 [see Eq. (20)].

We focus on a semi-infinite wire in order to obtain the zero-
energy MBS wave function |MBS⟩, as well as the above-gap
quasiparticle wave functions |k⟩. Given these wave functions,
we then compute the W matrix elements needed in Eqs. (18)
and (52). The result can be found in Appendix B, where
Fig. 10 shows a plot of ν(E )|W (E )|2. In order to evaluate
δF from Eqs. (54) and (55), we assume the dimensionless
parameter dSVS"Al = 850. To obtain this value, we employed
the Fermi energy for Al (11.7 eV) and the volume VS as for the
experimental setup in Ref. [14]. The nanowires in the latter
experiment were fairly short, but since we are interested in
describing the states at just one nanowire end, such a reduced
volume should be appropriate. We use the gap value for Al,
"Al = 2 × 10−4 eV, and throughout focus on the topological
parameter regime " > 0. For simplicity, we will consider the
case of relatively small TS gap, "/(mv2) 6 1/2, since the
solution described in Appendix B otherwise becomes slightly
more involved. Finally, the electromagnetic environment is
fully characterized by specifying the frequency ω0 and the
energy scale E0 = e2/C0 [see Eq. (20)].

1. Finite-T decay rates

In Fig. 5, we show the temperature dependence of the
decay rates !e/o [Eq. (57)] when using the BdG Hamiltonian
in Eq. (84). For kBT < 0.1", we observe that !e(T ) remains
exponentially small, in contrast to what is found for the rate
!o in the odd-parity sector. We thus expect that in this low-
temperature regime, the T = 0 results presented in Sec. V D
should also apply for the even-parity sector at intermediate
times. In particular, for long times but subject to the condition
t ≪ !−1, where ! = (!e + !o)/2, the off-diagonal entries of
ρe

M (t ) are expected to remain approximately constant d e
α (t ) ≃

Re
α (with α = x, y, z). Neglecting the effects of early-time

transients, Re
α is given by the residue of d̃ e

α (s) [Eq. (80)] at the
pole s = −!e. Keeping for the moment both parity sectors,
we have

Re/o
α = lim

s→−!e/o

s + !e/o

s + 4g̃e/o(s)
d e/o

α (t = 0). (85)
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FIG. 6. Decoherence parameter η [see Eq. (74)] vs "/(mv2)
for the p-wave TS nanowire model in Eq. (84). We assume an
environmental frequency ω0 = ", other parameters are described in
the text. All coherences are reduced by a factor 1/(1 + η) at long
times. Since we have rescaled η by E0/" in the plot, the shown
results hold for arbitrary ratio E0/".

Using the fact that !e/o ≪ ", Eq. (85) can be simplified to

Re/o
α = d e/o

α (t = 0)
1 + ζ e/o(T )

, (86)

with

ζ e/o(T ) = 4
π

∫ ∞

"

dE
∫ ∞

0
dω ν(E )|W (E )|2J (ω)

×
(

1 + nB(ω)−ne/o
F (E )

(E + ω)2
+

nB(ω) + ne/o
F (E )

(!e/o)2 + (E − ω)2

)

.

(87)

Noting that ζ e/o(T = 0) = η [see Eq. (74)], we first confirm
that Eq. (86) correctly recovers the T = 0 result (73). For
finite but low T and focusing on the even-parity sector, the
coherence reduction saturates at the value Re

α in Eq. (86)
for intermediate-to-long times, "−1 ≪ t < !−1. However, for
t > !−1, all coherences will ultimately decay to zero.

2. Zero-temperature fidelity reduction

We found in Sec. V D that even at zero temperature, quan-
tum fluctuations in the electrodynamic environment can gen-
erate virtual (off-shell) processes that, on the non-Markovian
level, cause a fidelity reduction in the readout of the bare-
Majorana qubit. The efficiency of this process is encoded by
the dimensionless parameter η in Eq. (74), where all long-time
coherences d e/o

α (t → ∞) are reduced by a common factor
1/(1 + η) with respect to their initial value [see Eq. (73)] and
the qualitative discussion in Sec. IV B. In Figs. 6 and 7, we
show the dependence of η on the dimensionless parameters
"/(mv2) and ω0/", respectively. Since η has been rescaled
by E0/" in both figures, these results are valid for arbitrary
E0/". In fact, for large values of E0/", one gets large
values of η and hence a strong suppression of the coher-
ences. To minimize the reduction, one should thus minimize
E0 = e2/C0.

FIG. 7. Decoherence parameter η vs ω0/" for "/(mv2) = 0.1
and "/(mv2) = 0.45 (cf. the caption of Fig. 6).

Apart from its significance for quantum information pro-
cessing applications, the T = 0 fidelity reduction for bare-
Majorana qubits is also of importance from a theoretical point
of view. Figure 7 indicates that this effect is most pronounced
for ω0 ≈ ", where quantum fluctuations of the Ohmic
electromagnetic environment can almost resonantly match the
TS gap. In addition, Fig. 6 shows that η grows with decreasing
TS gap. This can be rationalized by noting that the Ohmic
spectral function (20) includes gapless low-energy bosons that
can participate in the coherence reduction (see Sec. IV B). In
Fig. 8, we illustrate the value of d e/o

α (t ) reached at long times
in the T = 0 limit. We observe that especially for large E0/"
and ω0 ≈ ", the coherence reduction is quite significant.
Finally, Fig. 9 depicts the ω0/" dependence of the T = 0
probability for staying in the even-parity Majorana sector at
very long times, pe(t → ∞), provided that one has started out
from this sector, pe(0) = 1. The analytical prediction for this
quantity is given by (1 + η)/(1 + 2η) > 1/2 [see Eq. (78)].
We find that for large E0/", the parity reduction can be rather
large. Taking, say, E0/" = 10 and ω0 ≈ ", a parity leakage
of ≈ 0.35 from the even- into the odd-parity Majorana sector
is observed in Fig. 9.

FIG. 8. Asymptotic T = 0 long-time coherences d e/o
α (t → ∞)

[in units of d e/o
α (0)] vs ω0/". Results are shown for several pa-

rameter sets (E0/", "/mv2) [cf. Eq. (73)], and neither depend on
α(= x, y, z) nor on the parity (e/o) index.
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FIG. 9. Long-time T = 0 probability for staying in the even-
parity sector pe(t → ∞) in Eq. (78) vs ω0/", for pe(0) = 1,
"/mv2 = 0.2, and two different values for E0/".

VI. CONCLUSIONS

We have reexamined the issue of decoherence of qubits
formed by zero-energy Majorana bound states when coupled
to an electromagnetic environment that causes transition ma-
trix elements between the qubit and the above-gap states.
The environment is described by a Caldeira-Leggett bath of
noninteracting bosons with an Ohmic spectral density [45].
Concrete estimates have been provided in Sec. V E for a
specific microscopic superconductor model, where the topo-
logical superconductor corresponds to a spinless nanowire
with p-wave pairing.

We have pointed that if the MBSs do not overlap, there
is still in principle full topological protection, but the parity is
not shared between the MBS and the quasiparticle continuum.
Therefore, in order to take advantage of the protection, it is
necessary that the readout couples to the dressed states, i.e.,
the MBS dressed by bosons and continuum quasiparticles.
Related proposals for the operation of topological qubits in
this basis were discussed in Refs. [19,46], and we have here
pointed out that there are limitations when using quantum-
dot readout because of lack of adiabaticity. The timescale of
switching on the quantum dot will be extremely important for
the fidelity of the readout.

We have studied in detail the situation for a projective
measurement of the bare (undressed) MBS. Our theoretical
approach is based on a modified Bloch-Redfield quantum
master equation for the reduced density matrix of the bare-
Majorana qubit, and it holds for weak coupling between the
Majorana sector and the environment. In formulating this
theory, we have carefully accounted for the fact that total
fermion-number parity is conserved (within our model) and
we have emphasized that it is necessary to keep track of the
entanglement between the Majorana subsystem and environ-
mental degrees of freedom. For a quantitative description,
the virtual off-shell scattering processes behind this physics
require a full non-Markovian master-equation approach. From
this approach, we find that the off-diagonal elements of the re-
duced density matrix of the isolated Majorana subsystem (the
bare-Majorana qubit), taken at T = 0, become suppressed

by a factor 1/(1 + η) at long times, where η is defined in
Eq. (74). The fidelity therefore saturates at a reduced but
finite value at T = 0. On a qualitative level, this conclusion
already follows from a simple perturbative consideration (see
Sec. IV B). Likewise, the probability to remain in a given
parity sector of the Majorana subsystem will be reduced by
a finite amount. With minor modifications, our T = 0 results
also describe the case of very low but finite temperatures
when considering the decoherence dynamics on intermediate-
to-long timescales "−1 ≪ t < !−1 (see Sec. V E 1). At
finite temperatures, the asymptotic long-time behavior of the
decoherence dynamics is well described by the Markovian
approximation which has also been used in most previous
theories [34–43].

The important fidelity-reduction parameter η in Eq. (74)
depends on the spectral density of the electromagnetic en-
vironment, on the quasiparticle density of states, and on a
function W (E ) which encodes the transition matrix elements
between Majorana and quasiparticle states. Physical condi-
tions for when η becomes significant have been specified in
detail in Sec. V E.

We conclude by noting that fluctuating gate charges are
ubiquitous in candidate devices for realizing Majorana qubits.
For that reason, the fidelity reduction discussed in this paper
may constitute an important limitation for the coherent op-
eration of Majorana qubits. However, our theory also shows
the fidelity-reduction parameter η could be minimized by
proper parameter choices and we point out that it would be
extremely interesting for future studies to determine how one
can minimize the fidelity reduction by careful timing of the
readout protocol.
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APPENDIX A: ON THE FINITE-T
NON-MARKOVIAN CASE

We here provide additional details concerning Sec. V D 2.
We first give a detailed derivation of Eq. (82) describing
the long-time dephasing dynamics. In general, the long-time
limit is dominated by small-s contributions in the Laplace
transformed picture. We start by examining the small-s form
of the Laplace transformed functions g̃e/o(s) in Eq. (79).
To lowest order in s, the second term of Eq. (79) equals
2sAe/o with

Ae/o =
∫ ∞

0

dω

2π

∫ ∞

"

dE
J (ω)ν(E )|W (E )|2

(ω + E )2

×
[
1 + nB(ω) − ne/o

F (E )
]
. (A1)

For the first term of Eq. (79), we change variables to ω± =
(ω ± E )/2, with integral limits ω+ ∈ ["/2,∞) and ω− ∈
[−ω+,ω+ − "]. For s = 0, the integrand in Eq. (79) diverges

155419-13

108



MUNK, EGGER, AND FLENSBERG PHYSICAL REVIEW B 99, 155419 (2019)

as ω− → 0. This divergence happens outside the integration
limits when ω+ < ". The contribution from ω+ ∈ ["/2,")
can thus safely be evaluated by putting s = 0 in the integrand.
The result is written as sKe/o/4 with

Ke/o = 2
π

∫ "

"/2
dω+

∫ ω+−"

−ω+

dω−

ω2
−

ν(ω+ − ω−)

× |W (ω+ − ω−)|2J (ω+ + ω−)

×
[
nB(ω+ + ω−) + ne/o

F (ω+ − ω−)
]
. (A2)

In the remaining part of g̃e/o(s), the dominant contribution
from the ω− integral is picked up around ω− = 0, and so we
approximate the integrand by evaluating all terms except for
the 1/(s2 + ω2

−) factor at ω− = 0. With f e/o(ω) in Eq. (58),
this results in a third contribution to g̃e/o(s) of the form

s
2π

∫ ∞

"

dω+ f e/o(ω+)
∫ ω+−"

−ω+

dω−

s2 + 4ω2
−

.

Performing the ω− integration, renaming ω+ → E , and
collecting all terms, we arrive at the small-s expansion

g̃e/o(s) = 2sAe/o + sKe/o

4
+ 1

4

∫ ∞

"

dE f e/o(E )

− s
8π

∫ ∞

"

dE f e/o(E )
2E − "

E (E − ")
+ O(s2). (A3)

From Eq. (80), we then find a pole for the Laplace transform
of the coherences d̃ e/o

α (s). This pole dictates the long-time
behavior of d e/o

α (t ). For t → ∞, we thereby arrive at Eq. (82)
where the rates are given by

!e/o =
M

∫ ∞
"

dE f e/o(E )

1 + 8Ae/o + Ke/o −
∫ ∞
"

dE
2π

f e/o(E ) 2E−"
E (E−")

≃ M
∫ ∞

"

dE f e/o(E ). (A4)

In the last step, we have used that the coupling between the
Majorana system and the environment is weak. The final result
for these rates coincides with the corresponding Markovian
result (57).

Next, we address the asymptotic values pe/o(t → ∞),
which follow by inserting the small-s expansion of g̃e/o(s)
in Eq. (A3) into Eq. (81). We then find that p̃ e/o(s) has a
pole at s = 0. At finite T , only the s-independent term in
Eq. (A3) contributes to the residue of p̃ e/o(s) at s = 0, and
thus Eq. (83) follows. On the other hand, the T = 0 result for
pe/o(t → ∞) [see Eq. (78)] is recovered by noting that the
only nonvanishing T = 0 term in Eq. (A3) comes from Ae/o.
Some algebra then leads to Eq. (78).

APPENDIX B: SOLUTION OF TS NANOWIRE MODEL

In what follows, we discuss the solution of the specific
TS nanowire model in Eq. (84) and determine the W ma-
trix elements which encode the energy-dependent transition
matrix elements between the MBS subsystem and the quasi-
particle sector. These results have been used for generating
the numerical data shown in Secs. V B and V E. We consider
the BdG Hamiltonian (84) for a spinless semi-infinite TS

nanowire with 1D coordinate x > 0. We first write Eq. (84)
in the equivalent form

HBdG = "

[(
p̃2

2δ
− 1

)
τz + p̃

δ
τx

]
, (B1)

where we define

p̃ = p
mv

, δ = "

mv2
. (B2)

Similarly, we use the notation k̃ = k/(mv) below. The zero-
energy MBS wave function is denoted by ψ0(x) = ⟨x|MBS⟩,
and quasiparticle wave functions by ψk (x) = ⟨x|k⟩. With
the ansatz ψ0(x) = χ0eik0x, normalizable MBS solutions are
found for k0 with positive imaginary values k0 = iκ±

0 , where

κ±
0 = mv(1 ±

√
1 − 2δ). (B3)

We only consider the regime 0 6 δ 6 1/2 here and in
Sec. V E.

Taking a linear superposition of the two states correspond-
ing to Eq. (B3), and imposing Dirichlet boundary conditions
ψ0(0) = 0, we obtain the Nambu spinor wave function for
the MBS

ψ0(x) = 1
N0

(e−κ+
0 x − e−κ−

0 x )
(

1
−i

)
, N0 =

√
1 − 2δ

mvδ
.

(B4)

As expected, this wave function is exponentially localized
near the boundary at x = 0. Similarly, quasiparticle wave
functions follow from the ansatz ψk (x) = χkeikx , with Ek > "
given by

Ek = "

[(
k̃2

2δ
− 1

)2

+ k̃2

δ2

]1/2

. (B5)

We then find four solutions k = ±ks (with s = ±),

ks =
√

2mv

√
δ − 1 + s

√
1 − 2δ + δ2ξ 2, (B6)

with ξk = Ek/". For 0 6 δ 6 1/2, we observe that k− = iκ
(with κ > 0) is purely imaginary while k+ is purely real.
Dropping the non-normalizable states with k = −iκ , we write
k+ = k. We now impose Dirichlet boundary conditions at
x = 0. Exploiting the continuity equation at large x, we find

Nkψk (x) =
(

k̃/δ

ak

)

eikx +
(

−k̃/δ

ak

)

e−ikx+iθk

− εk

(
iκ̃/δ

bk

)
(1 + eiθk )e−κx, (B7)

with

ak = 1 + ξk − k̃2/(2δ), (B8a)

bk = 1 + ξk + κ̃2/(2δ), (B8b)

and

εk = ak

bk
, tan

θk

2
= κ

k
εk . (B9)
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FIG. 10. Transition matrix element ν(E )|W (E )|2 vs energy E for
the TS nanowire model (84) with "/(mv2) = 0.2.

The normalization constant follows from

N 2
k = 2Lk̃2/δ2 + 2La2

k . (B10)

Here, L is wire length, where we let L → ∞ in the end.
Equation (18) then yields

Wk = 4ie−iθk/2

Ñ
√

mvL

[
1

(2δ − k̃2)2 + 4k̃2

[
(2k̃2/δ − ak (2δ − k̃2))

× cos
(

θk

2

)
− (2akk̃ + 2k̃ − k̃3/δ) sin

(
θk

2

)]

− εk cos
(

θk

2

)
κ̃/δ − bk

κ̃2 + 2(κ̃ + δ)

]
, (B11)

where

Ñ =

√
2
δ

(
k̃2

δ2
+ a2

k

)
. (B12)

Finally, ν(E )|W (E )|2 follows from Eq. (52) by observing
that the density of states is with k = k+(E ) in Eq. (B6)
given by

ν(E ) =
∑

k

δ(E − Ek ) = L
2π

dk
dE

. (B13)

Note that the L-dependent prefactors in |W (E )|2 are canceled
by those in ν(E ). Figure 10 shows a plot of the resulting
product ν(E )|W (E )|2.

APPENDIX C: APPROXIMATE LAPLACE TRANSFORM

We here provide details about the numerical inverse
Laplace transformation used for generating Fig. 4. We start
with the Laplace transformed function g̃e/o(s) in Eq. (79),
which at T = 0 becomes parity independent and given by

g̃0(s) = s
π

∫ ∞

0
dω

∫ ∞

"

dE
ν(E )|W (E )|2J (ω)

s2 + (E + ω)2
. (C1)

Since ν(E )|W (E )|2 is peaked at E = "p, where "p is slightly
above " (see Fig. 10), we write

g̃0(s) ≈ s
π

∫ ∞

0
dω

J (ω)
s2 + ("p + ω)2

∫ ∞

"

dE ν(E )|W (E )|2.

(C2)

Inserting J (ω) from Eq. (20), we encounter the auxiliary
function

h̃0(s) = 2s
∫ ∞

0
dω

ω

ω2 + ω2
0

1
s2 + ("p + ω)2

. (C3)

For Re(s) > 0, this yields

h̃0(s) = ω0
−π"p

[
"2

p + (s + ω0)2
]
+ 2"p

[
"2

p + s2 + ω2
0

]
tan−1("p/s) + s

(
"2

p − ω2
0 + s2

)
ln

[
(s2 + "2

p)/ω2
0

]
[
"2

p + (s − ω0)2
][

"2
p + (s + ω0)2

] . (C4)

For the Laplace transformed coherences in Eq. (72), we then
obtain

d̃ e/o
α (s) = d e/o

α (t = 0)

s + Bh̃0(s)
, B = E0

π

∫ ∞

"

dE ν(E )|W (E )|2.

(C5)

At this stage, the inverse Laplace transform can be performed
numerically in an efficient manner (see Fig. 4).

For finite but very low temperatures, kBT ≪ ", we should
keep the Bose function nB(ω) in Eq. (79). The function h̃0(s)

should then be replaced by h̃(s) = h̃0(s) + h̃1(s), where

h̃1(s)=2s
∫ ∞

0
dω

ωnB(ω)
ω2+ω2

0

(
1

s2+("p+ω)2
+ 1

s2+("p−ω)2

)
.

(C6)

We see that the saturation value d e/o
α (t → ∞), which follows

by setting s = 0, now vanishes because h̃1(0) diverges. This
feature is a general result of the exponential decay of all coher-
ences in the Markovian case with T > 0. Finally, we remark
that finite temperature also gives only minor modifications to
the dynamics shown in Fig. 4.
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Chapter 5

Project D:
Dyonic zero-energy modes

In this project we seek to further generalize Majorana zero-energy modes. The approach is based on the
mathematical fact that the Ising model is isomorphic to the Kitaev chain through the Jordan-Wigner
transformation. This relationship is generalized by the so-called Potts chiral clock model, which is
isomorphic to a parafermionic model with a topological phase featuring zero-energy ZN parafermionic
edge modes. This generalization serves as the inspiration for the work in this project.

The generalization we propose in this paper provides a Jordan-Wigner-like mapping from a bosonic
model with a global gauge symmetry given by an arbitrary finite group G, to a one-dimensional lattice
model of dyonic modes. Crucially, G is allowed to be non-abelian. That the modes are dyonic means
they carry both a ”magnetic charge”, that is a group element, and an ”electric charge”, which means
an index corresponding to an irreducible representation of G. Our model has a topological phase with
zero-energy edge modes, which are also dyonic. We show that this phase has a topologically ordered
ground state when specific conditions are met.

The fusion rules of the dyonic zero-energy modes are discussed, although a full understanding of the
braiding rules remains an open problem, since standard arguments relying on the spin-statistics theorem
are ruled out, owing to the fact that our model is not inherently build out of fermions or bosons.

The zero-energy modes are in general weak, meaning that the degeneracy corresponding to the modes
does not continue indefinitely into the excited states. Numerical evidence is provided for the smallest
non-abelian group S3, which agrees with our theoretical conclusions.
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One-dimensional systems with topological order are intimately related to the appearance of zero-energy modes
localized on their boundaries. The most common example is the Kitaev chain, which displays Majorana zero-
energy modes and it is characterized by a twofold ground-state degeneracy related to the global Z2 symmetry
associated with fermionic parity. By extending the symmetry to the ZN group, it is possible to engineer systems
hosting topological parafermionic modes. In this work, we address one-dimensional systems with a generic
discrete symmetry group G. We define a ladder model of gauge fluxes that generalizes the Ising and Potts
models and displays a symmetry broken phase. Through a non-Abelian Jordan-Wigner transformation, we map
this flux ladder into a model of dyonic operators, defined by the group elements and irreducible representations
of G. We show that the so-obtained dyonic model has topological order, with zero-energy modes localized at
its boundary. These dyonic zero-energy modes are in general weak topological modes, but strong dyonic zero
modes appear when suitable position-dependent couplings are considered.

DOI: 10.1103/PhysRevB.98.245135

I. INTRODUCTION

With his seminal work [1], Kitaev gave life to the study
of one-dimensional models with topological order. These are
models displaying degenerate ground states, without any local
order parameter able to distinguish them. Their prototypical
example is, indeed, the Kitaev chain, a fermionic model
characterized by the presence of zero-energy Majorana modes
localized at its edges. These modes commute with the Hamil-
tonian but anticommute with each other, thus enforcing a
twofold degeneracy of the energy spectrum up to exponential
corrections in the system size.

The unpaired Majorana modes in Kitaev’s model are pro-
tected by a global Z2 symmetry, which corresponds to the
conservation of the fermionic parity; once embedded in a
two-dimensional system, these zero-energy modes behave like
non-Abelian anyons, thus opening an invaluable scenario for
topological quantum computation [2–4].

In the search for richer kinds of non-Abelian anyons, the
Kitaev chain has been generalized to a family of models with
global ZN symmetries [5]. These models can be build from a
nonlocal representation of the chiral ZN Potts model in terms
of parafermions, which are a generalization of the Majorana
modes to the ZN case. Through an iterative procedure, Fend-
ley argued that these ZN -symmetric chains are characterized
by localized zero-energy parafermionic modes [5] and, con-
sequently, their ground states are N -fold degenerate, up to
exponential corrections due to finite size effects [6–8] (see
also Ref. [9]).

Is it possible to generalize further these systems and
build one-dimensional topological models characterized by
an underlying non-Abelian symmetry group? What are the
corresponding zero-energy modes?

These are the questions addressed in this paper. We will
define one-dimensional topological models whose Hamilto-

nian is invariant under the action of a discrete non-Abelian
symmetry group G and, based on an iterative expansion,
we will show the presence of localized zero-energy modes.
These zero-energy modes can be characterized based on their
transformation rules under the action of the global symmetry
group G; similarly to anyons in a two-dimensional quantum
double model [10], they will be labeled by both a group
element g and an irreducible representation K of G. For this
reason we call them dyonic zero-energy modes.

Our strategy to build these exotic 1D models with topo-
logical order is inspired by the duality between the Ising
and Kitaev chains and its generalization to the Potts and
parafermionic models: it is known that the Kitaev chain can
be described in terms of the Ising model through a Jordan-
Wigner transformation mapping spins into fermions; in the
same way, the parafermionic chains are equivalent to ZN

clock models based on a generalized Jordan-Wigner (JW)
transformation [11,12]. In both situations, the JW transforma-
tion maps a bosonic (spin or clock) model, characterized by
spontaneous symmetry breaking in an ordered phase, into a
model with topological order built from operators (fermionic
or parafermionic), which do not commute when spatially
separated. The JW transformation is nonlocal and it maps the
degeneracy of the ground states in the ordered (ferromagnetic)
phase of the bosonic models into a degeneracy caused by
localized zero-energy modes in the topological models.

Our construction will be based on an analogous mapping:
we will begin from the “bosonic” side and we will first define
a G-symmetric ladder model, inspired by quantum double
models [10] and lattice gauge theories. G will be a global
non-Abelian gauge symmetry, which will be spontaneously
broken, thus resulting in an ordered phase. In this ladder
model, the ground states are |G|-fold degenerate, where |G|
is the order of the symmetry group, and they can be lo-
cally distinguished. We will argue that, for chiral models,
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TABLE I. The table represents the relation between the topological models by Kitaev and Fendley and their nontopological counterparts
given by the Ising and Potts models. The related Jordan-Wigner mapping preserves the corresponding global symmetries. The scope of this
paper is to define analogous models with a non-Abelian symmetry and verify the existence of localized zero-energy modes.

Global symmetry Bosonic model Mapping Topological model Zero modes

Z2 Ising
JW←→ Kitaev [1] Majorana modes

ZN Chiral Potts
ZN JW←−−−−−−→ Fendley [5] Parafermionic modes

Non-Abelian G Chiral gauge flux ladder
Non-Abelian JW←−−−−−−−−−−−−−−−−→ Chiral dyonic model Dyonic modes

the ground-state degeneracy is preserved up to corrections
exponentially suppressed in the system size. Then we will
proceed by defining a non-Abelian JW transformation, which
maps the bosonic “gauge” degrees of freedom into dyonic op-
erators labeled by an element g ∈ G and transforming under
the symmetry group G based on its fundamental (standard)
irreducible representation F .

Based on both a quasiadiabatic continuation and an iter-
ative construction, we will show that localized dyonic zero-
energy modes emerge in the system and we will investigate
their fusion rules, which can be understood in terms of the
effect of the symmetry transformations and are consistent with
the |G|-fold degeneracy of the ground state.

Let us summarize the content of this paper. Section II
is devoted to the introduction and analysis of the “bosonic”
gauge-flux ladder model. In Sec. II A, we interpret the Ising
and Potts models in terms of flux ladder models to set the
stage for the more complicated non-Abelian case; Sec. II B
introduces the building blocks for the non-Abelian flux ladder
Hamiltonian, which is built and analyzed in Secs. II C and
II D; Sec. II E finally deals with the example provided by
the smallest non-Abelian group, S3. Section III is dedicated
to the construction of the dyonic model; in Sec. III A, we
introduce the JW transformation for discrete non-Abelian
groups and the resulting dyonic operators which allow us to
build the dyonic Hamiltonian; in Sec. III B, we define the
notion of topological order for one-dimensional systems with
a non-Abelian global symmetry. Section IV is devoted to the
analysis of the zero-energy modes of the dyonic model; in
Sec. IV A, we show that the dyonic model fulfills the criteria
for topological order and presents protected weak zero-energy
edge modes; in Secs. IV B–IV E, we present the construction
of strong topological zero-energy modes and we discuss di-
vergences that hinder their appearance and the conditions the
Hamiltonian must fulfill to avoid these divergences; Sec. IV F
analyzes the fusion properties of the topological modes. Sec-
tion V discusses further properties of the family of models
we introduced and the appearance of additional holographic
and local symmetries in the dyonic Hamiltonian. Section VI
presents a numerical analysis of the lowest energy excitations
of the model for G = S3 in the single-flux approximation.
Finally, in Sec. VII, we summarize our results and Appendices
provide additional analyses of some technical aspects.

II. NON-ABELIAN GAUGE FLUX LADDERS

A. Ising and Potts models as gauge-flux ladders

Before beginning the construction of models with non-
Abelian symmetries, it is useful to provide a description of

the Ising and Potts models in terms of gauge-flux ladders
for the Abelian gauge groups and summarize some of their
properties. This construction is based on associating each site
of the Ising or Potts models with a rung in a ladder and
interpreting its states in terms of a gauge degree of freedom
related to the Z2 or ZN group. In particular, let us consider
the Ising model:

H = −J

L∑

r=1

σz,rσz,r+1 − h

L∑

r=1

σx,r . (1)

For each site r , we can consider the state |↑⟩ as representing
the identity element e ∈ Z2 and the state |↓⟩ as the non-
trivial element −1 ∈ Z2. Under this point of view, the term
−Jσz,rσz,r+1 is minimized if the gauge degrees of freedom
in neighboring sites are equal. Therefore, by interpreting the
ladder as a set of plaquettes in a gauge theory, we can state
that this term is minimized if no gauge flux is present in the
plaquette r , such that a hypothetical particle coupled to this
gauge degrees of freedom undergoes a trivial gauge trans-
formation when moving around the plaquette: a gauge flux
thus corresponds to a domain wall in the usual ferromagnetic
description. The effect of the h term, instead, is to allow
for transitions between the |↑⟩ and |↓⟩ states. This can be
interpreted as an electric field term in the Z2 gauge theory
and it amounts to a local gauge transformation acting on a
single gauge degree of freedom. In this work, we will mostly
be interested in the ordered phase J > h of these models. In
such a phase, the term J provides a mass for the Z2 gauge
fluxes, whereas the term h nucleates pairs of these fluxes and

†

(f  g)

-2 /Ng f

-1

+ 2 /N

z z
x

+ +

Ising

Potts

FIG. 1. The Ising (first row) and Potts (second row) models are
interpreted as ZN gauge-flux ladders. The nearest-neighbor (green)
terms assign a mass to the nontrivial gauge fluxes ! and can be
interpreted as plaquette operators. The on-site h terms have the effect
of adding a pair flux-antiflux to the neighboring plaquettes; π fluxes
in the Ising case, a pair of ±2π/N fluxes in the Potts case.
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constitutes their kinetic energy (see Fig. 1). The related global
gauge symmetry is given by the string operator Q =

∏
r σx,r .

An alternative interpretation of the Ising model / Z2 gauge-
flux ladder is provided by the toric code [10]. The gauge-flux
ladder is a row of the toric code in which all the horizontal
degrees of freedom have been frozen into the |↑⟩ state (cor-
responding to the identity transformation in G) and do not
appear in the Hamiltonian. Only the rung degrees of freedom
are dynamical and describe the dynamics of the Z2 magnetic
fluxes moving along the ladder.

The same flux-ladder description can be applied to the
Potts model:

H = −J

L∑

r=1

(eiφσ
†
r+1σr + H.c.) − h

N−1∑

n=1

L∑

r=1

τ n
r , (2)

where we introduced the ZN clock operators σ and τ obeying
the commutation rule σrτr ′ = ei 2π

N
δr,r′ τr ′σr and the relations

σN = τN = 1. This model is symmetric under the global ZN

transformations Qk =
∏

r τ k
r and can be interpreted as a ZN

flux-ladder model with the magnetic fluxes taking N different
values. In the Potts model, we can associate the N eigenstates
|g⟩ of the operator σ , such that σ |g⟩ = ei2πng/N |g⟩, with the
N elements g of the group ZN ; also in this case, we can
interpret the states of each site as gauge degrees of freedom
lying on the rungs of a ladder. For φ = 0, the J term of the
Hamiltonian is minimized if the gauge degrees of freedom of
neighboring rungs coincide, thus no domain walls are present.
This corresponds to a situation in which all the plaquettes host
a trivial gauge flux. As in the Ising case, the gauge fluxes
correspond to the domain walls of the system and they belong
to N inequivalent kinds, one for each element of the group
ZN .

Let us consider a single plaquette (see Fig. 1). For a generic
product state |g⟩r |f ⟩r+1, the operator σ

†
r+1σr has eigenvalue

ei2π (ng−nf )/N . Therefore this state corresponds to a ZN gauge
flux !(f −1g) = 2π (ng − nf )/N and the J term of the
Hamiltonian returns an energy −2J cos[2π (ng − nf )/N +
φ] which determines its mass. By embedding the model in
a lattice gauge theory, this gauge flux would correspond to the
transformation in ZN of a hypothetical matter particle moving
clockwise around the ladderplaquette.

Generalizing the Ising case, the h term in the Hamiltonian
corresponds to the sum of the nontrivial local ZN gauge trans-
formations that can be applied to each local gauge degree of
freedom. In the gauge theory interpretation it is an energy term
associated to the electric field in the rung. In particular we
have τ nh

r |g⟩r = |hg⟩r . The Potts model can thus be interpreted
as a ladder of ZN magnetic fluxes in the spirit of the ZN toric
code [13] (see also [14] for an analogous stripe model).

In the case φ = 0 the system is invariant under both
the time-reversal symmetry τ → τ †, σ → σ † and the space
inversion symmetry τr → τL−r , σr → σL−r , where L is the
system size. This implies that the fluxes !(g) and !(g−1)
have the same mass. When introducing φ ̸= 0, both the
symmetries are violated and the model becomes chiral. In
general, for φ ̸= 0, the global ZN transformations are the
only nonspatial symmetries preserved and it was showed that
only in this chiral case zero-energy modes can be stable

in the corresponding parafermionic theory [5]. Therefore, to
extend the ZN theory to a non-Abelian group, we will adopt
a similar approach and consider Hamiltonians violating the
time-reversal and space-inversion symmetries.

For both the Ising and Potts models, the phase diagram
includes an ordered ferromagnetic phase when h ≪ J and a
disordered paramagnetic phase for J ≪ h (the ZN symmetric
models include additional gapless phases for N > 4). The re-
lated symmetries are unbroken in the paramagnetic phase and
become spontaneously broken for the ferromagnetic phases
such that the eigenstates of the models are, in general, not
invariant under the gauge group ZN . The disorder operator
introduces a domain wall in the system, which corresponds
with the gauge flux in the ladder [11]. We define the disorder
operators as the product of local gauge symmetries from the
left edge of the system to the position of the flux: Lg (r ) =∏

j<r τ
ng

j . These disorder operators are dual to the order
operators σr and, from their product, it is possible to build the
Abelian Jordan-Wigner transformations mapping the clock
into the parafermionic models [5].

B. The rung Hilbert space and operators

The construction of the flux-ladder model is based on
lattice gauge theories and quantum double models [10] (see
also Ref. [15]). In particular, we will exploit the formalism
adopted for the quantum simulations of lattice gauge theories
(see, for example, the reviews [16,17]) and we will adopt the
notation developed in Refs. [18,19] for their tensor-network
study.

Our aim is to define a chiral flux-ladder model invariant
under a global gauge group G, with G being a discrete group.
In analogy with the previous section, we consider degrees
of freedom associated with the rungs of the ladder. Each of
these rung degrees of freedom spans a local Hilbert space
of dimension |G|, the order of the group G, and a basis for
the local states in each rung is given by {|g⟩, g ∈ G}. This is
the group element basis which allows us to easily define the
gauge-fluxes populating the plaquettes of the ladder.

For the construction of our model, we want to generalize
both the τ and the σ operators from ZN to a generic non-
Abelian G. These are extended by defining, for each rung: (i)
local operators θg and θ̃g that implement left and right local
gauge transformations and play the role of the τ operators;
(ii) local matrices Umn of operators which constitute gauge-
connection operators and are associated to the fundamental
irreducible representation F of G; the operators U generalize
the σ operators in the Potts model.

Based on the group element basis, the previous operators
are defined in the following way:

θg|h⟩ = |gh⟩, θ †
g |h⟩ = |g−1h⟩, (3)

θ̃g|h⟩ = |hg⟩, θ̃ †
g |h⟩ = |hg−1⟩, (4)

Umn|h⟩ = Dmn(h)|h⟩, U †
mn|h⟩ = D†

mn(h)|h⟩ (5)

for any g, h ∈ G. In Eq. (5), the matrix Dmn(h) is the unitary
matrix which represents the element h ∈ G in the fundamental
representation F of the group. More generally, DK

mn(g) will
label the dim(K ) × dim(K ) unitary matrix representing the
element g in the representation K of the group; these matrices
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generalize the Wigner matrices of SU(2). For any irreducible
representation K , we define operators

UK
mn|h⟩ = DK

mn(h)|h⟩, UK†
mn |h⟩ = DK†

mn (h)|h⟩. (6)

When the irrep index is not specified, the fundamental repre-
sentation is assumed.

We observe that all the connection operators U are diago-
nal in the group element basis, consistently with our previous
description of the ZN models; furthermore, we emphasize that
UlmU

†
mn = δln1, where 1 is the identity operator. Hereafter

the Einstein summation convention (summation on repeated
indices) is used for the matrix indices.

The operators θg and θ̃g are unitary operators, which trans-
form the state |h⟩ based on the group composition rules. In
particular, they fulfill θg = θ

†
g−1 and θ̃g = θ̃

†
g−1 .

From the previous relations, it is easy to calculate the
commutators of these operators:

Umnθg = θg[D(g)U ]mn, (7)

Umnθ̃g = θ̃g[UD(g)]mn, (8)

θg θ̃h = θ̃hθg. (9)

Following the convention in Ref. [18], we finally point
out that the matrices DK

mn(g) allow us to define a Fourier
transformation that changes the basis for the rung Hilbert
space from the group to the irreducible representation basis,
and, in particular, from the eigenstates of U to the eigenstates
of θ and θ̃ . This unitary transformation is given by

|Kmn⟩ =
∑

g∈G

√
dim K

|G|
DK

mn(g)|g⟩. (10)

For the states |Kmn⟩ of this basis, we have

θg|Kmn⟩ = DK
ml (g

−1)|Kln⟩, (11)

θ̃g|Kmn⟩ = DK
ln (g−1)|Kml⟩. (12)

To describe the flux ladder model, we label the connection
operator by U (r ) and the gauge transformations acting locally
on the rung r by θg (r ) and θ̃g (r ). In particular, the global left
and right gauge transformations assume the form

Qg =
∏

r

θg (r ), Q̃g =
∏

r

θ̃g (r ), (13)

for any nontrivial group element g ̸= e ∈ G, with e ∈ G
labeling the identity element.

Besides the U and θ operators, we introduce for later
convenience the family of “dressed” gauge operators, acting
on a single rung:

"K
g,ac = U

K†
ab θgU

K
bc = θgU

K†
amD

K†
mn(g)UK

nb. (14)

Hereafter we will use different fonts for the matrix indices
associated to the dressed gauge operators. The operators " ap-
pear in the study of bond-algebraic dualities for non-Abelian
symmetric models developed by Cobanera et al. [20], and
obey the same group composition rules of the gauge operators

θg . In particular, it is easy to verify that

"K
g,ab"

K
h,bc = U

K†
amθgU

K
mbU

K†
bn θhU

K
nc = "K

gh,ac, (15)

for any irreducible representation K , and

"K
g,ab"

K†
g,bc = δac1 ; (16)

from these relations we get, in particular "
†
g = "g−1 . From

the definition (14), it is easy to derive that the behavior of the
" operators under the global left transformations matches the
behavior of the gauge operators θ :

Q†
h"

K
g (r )Qh = "K

h−1gh(r ). (17)

For Abelian representations K, "g is reduced to θgD
K (g−1).

C. The flux Hamiltonian and its symmetries

By exploiting the operators introduced above, we define
the flux-ladder model through the Hamiltonian:

H = −J

(
∑

r

Tr[U (r + 1)CU †(r )] + H.c.

)

− µ
∑

r

∑

g ̸=e∈G

χA(g−1)θg (r ), (18)

where J and µ are real coupling constants and C is a unitary
matrix responsible for the chiral nature of the system. In this
expression,

χA(g−1) = Tr DA(g−1) (19)

labels the character of an auxiliary irreducible representation
A of the group element g. Its role will be important in the
definition of the dyonic topological model and it will be
discussed in detail in Section V.

In the following, we label the first term in the Hamiltonian
(18) by HJ and the second term by Hµ. In this work we are
mostly interested in the ordered regime J ≫ µ where HJ

dominates and the system presents degenerate ground states
in the thermodynamic limit.

In the following, we discuss the main features of HJ and
Hµ, the role of the C matrix and the symmetries of the
Hamiltonian H . A pictorial representation of the system is
provided in Fig. 2.

1. HJ and the flux masses

The first term in the Hamiltonian (18) is responsible for the
definition of the mass spectrum of the fluxes in the ladder and
it generalizes the J term in the chiral Potts model (2). Each
operator acts on neighboring degrees of freedom, therefore, it
is useful to consider the two-rung state |gr⟩r |gr+1⟩r+1: such a
state defines a flux !(r ) in the r th plaquette which corresponds
to the element g−1

r gr+1 of the group G. In our model, the
fluxes are indeed in one-to-one correspondence with the group
elements, thus, to define their mass, we exploit the connection
operators U , which are diagonal in the group element basis.
Analogously to the Kogut and Susskind formulation of lattice
gauge theories [21], we consider the trace of these operators
as a building block for the masses mg associated to the fluxes.
In the simple case of C = 1, the operator Tr[U (r + 1)U †(r )]
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FIG. 2. (Top) Graphical representation of the operators in the
flux-ladder Hamiltonian. The nearest-neighbor (green) terms define
HJ and assign a mass to the gauge fluxes: these terms are plaquette
operators built from the connection operators U . The rung θh terms
in Hµ modify the fluxes in the two neighboring plaquettes. Bottom:
the dyonic model is obtained by redefining each rung based on two
kinds of operators, α and β. The Hamiltonians HJ and Hµ act on
different pairs of dyonic operators.

returns the character χF (!(r )) of the group element !(r ) =
g−1

r gr+1 associated to the fundamental representation F . The
character is maximized by the identity, thus the trivial flux,
but it cannot distinguish between group elements in the same
conjugacy class, leading to degeneracies in the mass spectrum.
To avoid these degeneracies, we introduce the unitary C
matrix, of dimension given by dim(F ) × dim(F ), such that,
in general, we can define nondegenerate flux masses:

mg = −J (Tr[D(g)C] + Tr[C†D†(g)]). (20)

For our analysis, it will be important to consider the following
conditions on the mass spectrum.

C1: For the sake of simplicity, we impose that the
mass of the trivial flux e ∈ G is the lowest. This means that
the ground states of HJ are states with no fluxes, thus no
domain walls in the group element basis. This condition is not
necessary for our results, but it simplifies our analysis because
it implies that the ordered phase is ferromagnetic-like rather
than helical-like. This is analogous to choosing |θ | < π/3 in
the Z3 chiral Potts model.

C2: We impose the mass spectrum to be nondegenerate.
As we will discuss in the next sections, this is a necessary but
not sufficient requirement for the definition of strong zero-
energy modes in the corresponding topological models. This
condition implies that we must choose a C matrix such that

Re (Tr[CD(g)]) ̸= Re (Tr[CD(h)]), (21)

for any g ̸= h ∈ G.
It is now important to define the left and right global gauge

transformations of the operators in HJ based on Eqs. (7) and
(8):

Q†
gTr[U (r + 1)CU †(r )]Qg

= Tr[D(g)U (r+1)CU †(r )D†(g)]=Tr[U (r + 1)CU †(r )],

(22)
Q̃†

gTr[U (r + 1)CU †(r )]Q̃g

= Tr[U (r+1)D(g)CD†(g)U †(r )] ̸= Tr[U (r+1)CU †(r )].

(23)

From these equations, we see that, in general, HJ is invariant
under left global transformation but it is not invariant under
right transformations. This is true if C is not a multiple of the
identity, since the matrices D(g) are an irreducible representa-
tion of the group. The matrix C breaks the global right gauge
symmetry, and this is a manifestation of the chiral nature of
the model. We observe that, by exchanging the order of C and
U (r + 1) in the Hamiltonian, we would get a corresponding
model with right rather than left gauge symmetry.

2. About the C matrix

The C matrix is a unitary dim(F ) × dim(F ) matrix that
generalizes the role of the phase eiθ in the chiral Potts model
(2) to the non-Abelian case. By expressing the matrix C =
e−iγj Tj as a function of the generators Tj of U (dim(F )), we
see that C is a collection of dim(F )2 parameters. C must
be chosen to fulfill the condition (21) and, a priori, it is not
evident that such a matrix exists for all G. In the following,
we provide a geometrical interpretation of C aimed at showing
its existence for groups whose fundamental representation has
dimension 2. These include, for example, the group S3, which
is the smallest non-Abelian group. In this case, any matrix
D(g) can be parametrized as a function of four parameters:

D(g) = eiηg,0σ0+iη⃗g σ⃗ = eiηg,0 (cos |η⃗g|σ0 + i sin |η⃗g|η̂gσ⃗ ),

(24)

where σ0 is the 2 × 2 identity, σ⃗ is the vector of the Pauli
matrices, and η̂g is the three-dimensional unit vector in the
direction of η⃗g . A similar decomposition holds for C =
e−iγ0σ0−iγ⃗ σ⃗ . We define four-component vectors in the unitary
S3 sphere:

D(g) =
(

cos |η⃗g|
sin |η⃗g|η̂g

)
, C =

(
cos |γ⃗ |

sin |γ⃗ |γ̂

)
. (25)

Based on this parametrization, the mass of the g flux is

mg = −4J cos(η0,g − γ0)D(g) · C. (26)

Hence the condition (21), for any g ̸= h, becomes

[cos(η0,g − γ0)D(g) − cos(η0,h − γ0)D(h)] · C ̸= 0. (27)

We fix a value of γ0 such that cos(η0,g − γ0) ̸= 0 for every
g and we define a set of rescaled vectors D′

g = cos(η0,g −
γ0)D(g). In particular, if F is orthogonal (as in the G =
S3 case, or any dihedral group), η0,g = 0,π/2, and we can
choose γ0 = π/4 such that all the cosines become 1/

√
2. The

equations (27) fix |G|(|G| − 1)/2 conditions that the vector C
must fulfill: the unit vector C cannot be orthogonal to any of
the vectors defined by the differences D′

g − D′
h in (27). Each

of these |G|(|G| − 1)/2 vectors define a great circle on the
S3 sphere of orthogonal vector. Therefore we conclude that
we can choose any C matrix corresponding to a C vectors
on the S3 sphere that does not belong to any of these great
circles. When C approaches one of these great circles, one of
the mass gap closes, thus violating (21). A similar geometric
interpretation can be build for any irreducible representation
in U(N ) (see Appendix A).
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3. The Hµ term

The Hµ term of the Hamiltonian is meant to provide a
dynamics to the fluxes in the ladder, it does not commute with
HJ and, differently from HJ is diagonalized in the irreducible
representation basis of the rung degrees of freedom, based on
Eq. (11).

We observe that, since θg = θ
†
g−1 , Hµ is Hermitian. Fur-

thermore, for g = e, the gauge transformation is just an iden-
tity and it provides only an overall energy shift. Therefore we
can choose to include or not this term in the Hamiltonian.

Hµ is meant to generalize the h term in the Potts model (2):
for A corresponding to the trivial irreducible representation,
Hµ is the sum of all the possible gauge transformation opera-
tors over all the degrees of freedom and it directly generalizes
(2). For a different representation A, the resulting Hamiltonian
is instead related to a more general form of ZN symmetric
models studied in Ref. [5].

The Hµ term in the Hamiltonian (18) corresponds to a
projector over the subspace of the states of the rung r cor-
responding to the irreducible representation A. We recall that
the projector over a generic irreducible representation K is
given by

#K = dim(K )
|G|

∑

g∈G

χK (g−1)θg =
∑

mn

|Kmn⟩⟨Kmn|. (28)

Such expression is invariant under both left and right gauge
transformations, and Hµ is thus symmetric under both global
transformations. Therefore the (left) set of transformation Qg

corresponds in general to the global symmetry group for the
whole Hamiltonian H when C ̸= 1.

The form of Hµ we have chosen in (18) is not the most
general preserving such gauge symmetry. We could extend Hµ

to

H ′
µ = −µ

∑

r, Cl

fCl

∑

g∈Cl

θg (r ) = −µ
∑

r, A

f ′
A#A(r ), (29)

where Cl runs over the conjugacy classes of G, and A runs
over the irreducible representations. For the purpose of defin-
ing a model with topological order, it is sufficient to consider
a single non-Abelian irreducible representation A as in (18).

4. The symmetries of the system

We have already emphasized that the Hamiltonian (18) is
invariant under the action of the global left gauge transfor-
mation for arbitrary C, whereas the right transformations do
not constitute a symmetry of the system. Analogously to the
Potts case, the matrix C breaks also the time-reversal and
space-inversion symmetries. The time reversal T transforms
the connection and local gauge operators in the following
way:

T †U (r )T = U †(r ), T †θg (r )T = θg (r ). (30)

Therefore Hµ is time-reversal invariant, whereas it is easy to
verify that HJ is not for any C ̸= 1, due to the representation
F being irreducible. Space inversion P can be defined by

P †U (r )P = U (L − r ), P †θg (r )P = θg (L − r ), (31)

with L being the system size. Hµ is invariant also for
the inversion transformation, whereas P †HJ (C)P = HJ (C†);
therefore H is symmetric under P only if C is Hermitian.
For generic unitary C matrices, the system is invariant neither
under P and T , nor under PT . Therefore we do not expect
exact degeneracies in the spectrum besides the ones dictated
by the global symmetries Qg .

Concerning the exact degeneracies of the system caused
by the global gauge group G, each eigenstate of H must
transform under G following one of its irreducible represen-
tations. Therefore, in general, the spectrum will present exact
degeneracies given by the dimensions dim(K ) of the group’s
irreducible representations.

D. The ordered phase

Let us consider first a system with µ = 0. In this case, the
gauge fluxes have no dynamics and we can associate each
state to a collection of fluxes {!}. In a ladder of length L,
the spectrum of HJ is given by the energy levels:

E({!}) =
∑

g∈G

ngmg, (32)

where ng counts how many times the flux g appears in the set
{!} for a given state of the ladder, and

∑
g ng = L − 1. This

is analogous to the analysis of the ZN symmetric case in [9].
When the identity flux is the flux with the lowest mass

(condition C1), HJ presents |G| ground states corresponding
to ferromagnetic states, i.e., without domain walls, in the
group element basis. We label these ground states as

||g⟩⟩ =
⊗

r

|g⟩r . (33)

To emphasize the transformation properties of the ground
states under the global symmetries Qg it is convenient to
introduce also a representation basis, analogous to (10), for
the ground states,

||Kmn⟩⟩ =
∑

g∈G

√
dim K

|G|
DK

mn(g) ||g⟩⟩ (34)

such that

Q†
h||Kmn⟩⟩ = DK

mm′ (h)||Km′n⟩⟩. (35)

When we introduce a weak Hµ perturbation, the exact
degeneracy of the ground states is split: the |G| ground states
are perturbed and separate into a set of families; if C is
not a multiple of the identity, the right gauge symmetry is
broken and there are dim K families for each irreducible rep-
resentation K . Each of these families has dimension dim K .
On the other hand, for a trivial C matrix, the right gauge
symmetry is restored and there is one family of ground states
per irreducible representation, with dimension (dim K )2.

The states within each family maintain their exact degen-
eracy due to the global symmetry, but, for finite-size systems,
small energy gaps are introduced between different ground-
state families. Similarly to the ZN systems, this splitting of
the energies of the ground-state manifold is exponentially
suppressed in the system size and it is roughly proportional
to µL/JL−1. This can be deduced by a perturbative approach:
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in order for the Hµ perturbation to turn one ground state into
another, it must be applied L times. In this way a flux can be
introduced into the system and can propagate from one edge
to the other similarly to the domain walls in the ZN case [6].
Other terms that introduce multiple fluxes are suppressed by
their higher energy. Quantitatively, we find that the ground-
state splitting is given by the effective Hamiltonian:

⟨⟨gh||H ′||h⟩⟩

= −
[

(χA(g−1)µ)L

(mh−1gh − me )L−1
+ (χA(g−1)µ)L

(mh−1g−1h − me )L−1

]
,

(36)

where the masses mg are defined in Eq. (20) and are propor-
tional to J .

The situation is more complicated for the excited states, in
which processes of order lower than L can cause transitions
between different flux configurations, thus opening gaps that
potentially may depend on the specific states involved and
break the |G| quasidegeneracy of the spectrum.

In particular, this may happen between degenerate flux
configurations, which are states with different flux multiplic-
ities ng and n′

g , but the same energy. In Ref. [9], it has
been shown that, in the presence of these resonances among
excited states of HJ , there may be perturbation processes of
low order (namely with an order that does not scale with
the system size), which may split these degeneracies in the
ZN symmetric model (2). Similar processes can imply that
the energy splitting of the excited states is not exponentially
suppressed with the system size in the non-Abelian model as
well.

E. The S3 flux ladder

To exemplify the flux ladder models in Eq. (18) and verify
our analysis of the spectrum of the ordered phase, we consider
the smallest non-Abelian group, namely the symmetric group
S3 of all the permutations of three elements (s1, s2, s3). S3
has six elements and can also be considered the group of
transformations that leave an equilateral triangle invariant.
It is generated by two elements, b and c, which satisfy the
relations b2 = c3 = e, where e is the identity element, and
bc = c2b.

Using the latter relation, one can write every element of S3
in “normal form”: g = bncm. In particular, we choose b to per-
mute the first two elements, b : (s1, s2, s3) 0→ (s2, s1, s3), and
c to cyclically permute the three elements, c : (s1, s2, s3) 0→
(s3, s1, s2). We denote the representations of this group by I
and write the representation matrices as DI . There are three
irreducible representations of S3. The trivial representation,
where each element is represented by the number 1, the parity
representation, where elements g = bncm are represented by
(−1)n, and the two-dimensional (fundamental) irreducible
representation, which is defined below. We denote these rep-
resentations by I = 1,−1, 2, respectively. To construct the
Hamiltonian, we use the fundamental representation I = 2
for the definition of the operators U . This representation is

a subgroup of O(2) and we have

D(2)(b) =
(

1 0
0 −1

)
, D(2)(c) = 1

2

(
−1 −

√
3√

3 −1

)
. (37)

One can think of D(2)(c) as the rotation matrix for a 2π/3
rotation about the z axis, and D(2)(b) as a two-dimensional
mirror symmetry about the x axis.

The terms of the Hamiltonian HJ are diagonal in the group
element basis. We decide to work in this basis and to use,
for each rung, the following ordering of the group elements:
{|e⟩, |c⟩, |c2⟩, |b⟩, |bc⟩, |bc2⟩}. The states may be conveniently
expressed in the tensor product structure |n⟩ ⊗ |m⟩ ≡ |bncm⟩,
with n = 0, 1 and m = 0, 1, 2. From the point of view of the
transformations of the equilateral triangle in itself, the states
with n = 0 correspond to the orientation-preserving transfor-
mations (rotations), whereas n = 1 labels the transformation
inverting the orientation of the vertices (inversions). In the
basis |n⟩ ⊗ |m⟩, we may write the local gauge transformations
as

θb =
(

0 1
1 0

)
⊗ 1, (38)

θc =
(

1 0
0 0

)
⊗

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ +
(

0 0
0 1

)
⊗

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠.

(39)

All other gauge transformations can be found by compositions
of these.

To illustrate the energy features of the ground-state mani-
fold, we consider the cases C = 1 and C = C0, with

C0 ≡ e−iπ/4

√
2

(
1 + i√

3
σx + i√

3
σy − i√

3
σz

)
. (40)

The choice C = 1 is the trivial case with fluxes in the same
conjugacy class being degenerate, while C = C0 is a choice
that satisfies conditions C1 and C2, and presents the following
mass spectrum in units of J , using the same ordering of the
group elements as above: {−2, 0, 2, 2/

√
3, 1 − 1/

√
3,−1 −

1/
√

3}.
We calculated the ground-state energies via exact diag-

onalization as a function of the system size and µ, for
C = 1, C0 and the auxiliary representations A = 1, 2. Due
to the global symmetries, for generic values of the ma-
trix C and µ ≪ J , the six ground states present a de-
generacy pattern 1,1,2,2 corresponding to the nondegener-
ate states ||K = 1, 11⟩⟩, ||K = −1, 11⟩⟩, ||K = 2, j1⟩⟩, and
||K = 2, j2⟩⟩ based on their behavior under the symmetry
group expressed in Eq. (35). For C = 1, when the right gauge
symmetry is restored, the four ground states with K = 2
become exactly degenerate.

We define the ground-state splitting $E as the difference
between the energies of the highest and lowest state in the
ground-state manifold. Based on the perturbative result in
Eq. (36), the dominant contribution in this splitting must scale
as $E ∝ µ(γµ/J )L−1 for a suitable numerical coefficient
γ . The ground-state splitting $E as a function of L is
shown in Fig. 3 for µ = 0.03J . For all the analyzed cases,
we numerically find the expected exponential suppression of
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FIG. 3. Maximal splitting of the six ground states in units of J

of the model with G = S3 and µ/J = 0.03, shown on a semiloga-
rithmic plot. There are four different cases, depending on the matrix
C [see Eq. (40) for the matrix C0] and the irreducible representation
A. In all cases, the exponential decay of the energy splitting with the
system size is evident.

the ground-state splitting with the system size. In Fig. 4,
we illustrate instead the ground-state splittings as a function
of µ for L = 7. The power law behavior for small µ is
clearly evident. For all the analyzed cases, the energy splitting
approximately behaves like δE ∝ µα with the exponent α in
the range between 7 and 9, compatible with the dominant
contribution in Eq. (36). For larger values of µ and C ̸= 1,
our numerics suggest a change in the exponent, signaling a
transition into a different phase.

The study of the full phase diagram as a function of the
matrix C and the auxiliary irreducible representation A is an
interesting and highly nontrivial problem, which goes beyond
the scope of this paper. We observe, however, that for µ →
∞, Hµ projects each site on the subspace spanned by the
states |Amn⟩. For A Abelian, this implies the existence of a
paramagnetic phase for µ ≫ J with a nondegenerate ground
state. For A non-Abelian, instead, Hµ presents a ground-state

FIG. 4. The ground-state splitting in units of J , as a function of
µ/J for seven sites, shown on a logarithmic plot, in the same cases
as Fig. 3. The lines are linear fits based on the points with lowest µ,
and the change of slope for larger values of µ is a possible signature
of phase transitions.

degeneracy, which grows as (dim(A))2L; these ground states
are then split by the introduction of a weak HJ . Between
the regimes dominated by Hµ and HJ , other phases may be
present. For example, in analogy with the Zn case, we expect
that, for suitable choices of C, critical incommensurate phases
(see, for instance, Refs. [22–25]) and phase transitions with
dynamical critical exponent z ̸= 1 [25,26] may appear.

III. NON-ABELIAN MODELS WITH
TOPOLOGICAL ORDER

A. The non-Abelian Jordan-Wigner transformation
and the dyonic modes

A model with topological order can be defined by a non-
local transformation which maps the flux-ladder operators
into dyonic operators, characterized by a group element g
and by the fundamental representation F . These dyonic op-
erators display nontrivial commutation relations even when
spatially separated, thus they are nonlocal in the original
degrees of freedom of the ladder Hamiltonian. In this respect,
they constitute a generalization of the parafermionic operators
from ZN to non-Abelian groups. In the ZN model [5], the
definition of the parafermionic operators is based on a ZN JW
transformation that amounts to the multiplication of order and
disorder operators [11]. The definition of disorder operators,
in turn, can be rigorously based on a bond-algebraic duality
transformation [27]. Inspired by the bond-algebraic dualities
for non-Abelian models [20], we introduce the following
disorder operators for the non-Abelian flux-ladder, which is
defined in terms of the dressed gauge operators (14):

LA
g,a1ar+1

(r )

= "
A†
g,a1a2 (1)"A†

g,a2a3 (2) . . . "
A†
g,arar+1 (r )

=
[

r∏

x=1

θ †
g (x)

]

U †(1)D(g)U (1)U †(2) . . . U †(r )D(g)U (r ),

(41)

where we omitted the representation superscript A in the
second row. The string operator L introduces a flux g
in the rth plaquette of the system and returns the matrix
D(h−1

1 gh1h
−1
2 gh2 . . . h−1

r ghr ) in the auxiliary representation
A when applied to any state |h1⟩1 . . . |hr⟩r . These operators
Lg fulfill the following properties for any A:

Lg,ab(r )L†
g,bc(r ) = L†

g,ab(r )Lg,bc(r ) = δac1, (42)

Q†
hLg (r )Qh = Lh−1gh(r ), (43)

Lg,a1a2Lg,a2a3 . . . Lg,a|G|a|G|+1 ≡
(
L|G|

g

)
a1a|G|+1

= δa1a|G|+11.

(44)

The last equation is easily proved by considering that, in the
third row of Eq. (41), the gauge operator string [

∏r
x=1 θ

†
g (x)]

commutes with the string of matrix operators.
We are now ready to define the dyonic operators through

a generalized JW transformation obtained by the product of
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order operators U † and disorder operators L. In full generality,
we express the dyonic operators as

αK,A
g,mn,ab(2r − 1) = LA

g,ab(r − 1)UK†
mn (r ), (45)

βK,A
g,mn,ab(2r ) = LA

g,ab(r )UK†
mn (r ), (46)

for every g ̸= e. These operators carry two pairs of matrix
indices, (mn) and (ab), which are associated with the two
irreducible representations K and A respectively. If we do
not specify otherwise, we will consider K = A = F and we
will not specify the irreducible representation superscripts.
However, it is necessary to keep the two representation dis-
tinguished: we adopt different fonts for their matrix indices
and we will label by TrK/A the trace over the matrix indices of
the two irreducible representations, respectively.

In analogy with the Kitaev and parafermionic chains, each
site r of the flux ladder hosts two kinds of operators, U and
θ , and it is decomposed in this dyonic description into a pair
of sites, 2r − 1 and 2r , each hosting the tensors of operators
α and β, living in the odd and even sublattice respectively
(see Fig. 2). In the Abelian case, however, all the irreducible
representations are one-dimensional, and no tensor structure
of this kind appear.

We call these modes dyonic because their transformation
relations under the global gauge symmetries are similar to
the ones of the irreducible representations of the Drienfield
quantum double of G [10], as can be derived from Eqs. (7)
and (43):

Q†
hαg,mn,abQh = αh−1gh,ml,abD

†
ln(h), (47)

Q†
hβg,mn,abQh = βh−1gh,ml,abD

†
ln(h), (48)

for any site r . These relations are obtained by considering
that the disorder operators L are conjugated by the global
symmetry, whereas the operators U transform following the
fundamental irreducible representation F (or a different irre-
ducible representation K in the most general case). We also
observe that the first operator α(1) = U †(1) does not have
a dependence on any group element, differently from all the
other operators.

Similarly to parafermionic modes, the following relations
hold:

αg,lm,abα
†
g,mn,bc = α

†
g,lm,abαg,mn,bc = δlnδac1, (49)

βg,lm,abβ
†
g,mn,bc = β

†
g,lm,abβg,mn,bc = δlnδac1. (50)

The commutation relations between α and β operators can
be obtained from the commutations between L(r ) and U †(r ′)
and the non-Abelian JW transformations, but, for general
auxiliary representations A, they do not assume a simple form.
In the following, we report the results for the special case of
Abelian auxiliary representations, which offers the possibility
of comparing the dyonic modes to ZN parafermionic modes.
When A is Abelian, we can omit its trivial indices. Collec-
tively denoting α(x) and β(x) by γ (x) for odd and even x

respectively, we get for y > x:

γg,mn(x)γh,pq(y) = γh,pq(y)γhgh−1,ml (x)Dln(h), (51)

γg,mn(x)γ †
h,pq(y) = γ

†
h,pq(y)γ

h−1gh,ml
(x)D†

ln(h), (52)

γ †
g,mn(x)γh,pq(y) = γh,pq(y)D†

ml (h)γ †
hgh−1,ln

(x), (53)

γ †
g,mn(x)γ †

h,pq(y) = γ
†
h,pq(y)Dml (h)γ †

h−1gh,ln
(x), (54)

where only the l indices are summed over. The commuta-
tion relations for y < x can be derived by conjugation. The
relations for x = y and g ̸= h, instead, differ for α and β
operators:

αg,mn(r )αh,pq(r ) = αh,pq(r )αhgh−1,mn(r )

= αg−1hg,pq(r )αg,mn(r ), (55)

βg,mn(r )βh,pq(r ) = βh,ps (r )D†
sq(g)βhgh−1,ml (r )Dln(h)

= βg−1hg,ps (r )D†
sq(g)βg,ml (r )Dln(h). (56)

These commutation rules can be seen as a non-Abelian ex-
tension of the parafermionic commutation relations. For non-
Abelian A representations, the algebra of the dyonic modes
is more complicated. Furthermore, differently from their
Abelian counterpart, the dyonic operators α and β present
different algebraic properties. In particular, for any choice of
A, we observe that

αg,m1m2,a1a2αg,m2m3,a2a3 . . . αg,m|G|m|G|+1,a|G|a|G|+1

=
(
α|G|

g

)
m1m|G|+1,a1a|G|+1

= δm1m|G|+1δa1a|G|+11, (57)

βg,m1m2,a1a2βg,m2m3,a2a3 . . . βg,m|G|2 m|G|2+1,a|G|2 a|G|2+1

=
(
β |G|2

g

)
m1m|G|2+1,a1a|G|2+1

= δm1m|G|2+1
δa1a|G|2+1

1. (58)

The tensor of operators β |G| is not proportional to the iden-
tity in general, due to the nontrivial commutation relations
between L(r ) and U †(r ).

The definitions of the α and β modes allow us to express
the Hamiltonian H as a local Hamiltonian of the dyonic
operators. In particular, the following relation hold for any
h ∈ G:

TrA[α†
h,mn,ab(2r + 1)Cnoβh,op,bc(2r )]

= Umn(r + 1)CnoU
†
op(r ) dim(A). (59)

Here we are tracing only over the indices of the auxiliary rep-
resentation A characterizing the disorder operators and the ef-
fect of this trace is indeed to cancel out the operators L based
on Eq. (42). The product with the C matrix instead affects the
indices of the K representation. The mapping from the dyonic
to the θ operators instead is based on the following relation:

β
†
g,lm,ab(2r )αg,mn,bc(2r − 1)

= UK
lm(r )"A

g,ac(r )UK†
mn (r )

= U
A†
ab (r )θg (r )UA

bc(r )DK
ln (g)

= θg (r )UA†
ab (r )DA†

bb′ (g)UA
b′c(r )DK

ln (g), (60)

245135-9

122



MUNK, RASMUSSEN, AND BURRELLO PHYSICAL REVIEW B 98, 245135 (2018)

where we applied (7). By taking the trace over A, we get

TrA[β†
g,lm(2r )αg,mn(2r − 1)] = θg (r )χA(g−1)DK

ln (g).

(61)

Therefore, by taking A = K = F , we can re-express the
Hamiltonian (18) as

H = − J

dim(F )

(
∑

r

TrK TrA[α†
h(2r + 1)Cβh(2r )] + H.c.

)

− µ

dim(F )

∑

r

∑

g ̸=e∈G

TrK TrA[β†
g (2r )αg (2r−1)DK†(g)],

(62)

where, in the first term, we can choose any h ∈ G and, in
the second, the dimension of F appears because we have
chosen to adopt a trace to sum over the matrix indices of the
representation K = F in (61). Both HJ and Hµ are the sum
of local commuting operators in terms of the dyonic modes
α and β. See Fig. 2 for a graphical representation of the
Hamiltonian.

We observe that Eq. (60) implies that the operator "g is a
local operator in the dyonic modes. The operators θg , instead,
can be obtained as a linear function of β

†
g (2r )αg (2r − 1) only

if χA(g−1) ̸= 0, as evident from Eq. (61). Therefore, for a
generic choice of the group G and the auxiliary irreducible
representation A, it is possible that some of the operators θg

cannot be defined as local functions of the dyonic modes. We
will discuss in detail the role of the auxiliary representation A
in Sec. V.

B. Topological order

The nonlocal mapping [(45) and (46)] transforms
the quasidegenerate ground states in the spontaneously
symmetry-broken phase of the flux ladder Hamiltonian (18)
into topologically protected ground states of the dyonic
Hamiltonian (62). To clarify this point it is useful to introduce
a formal definition of topological order for the dyonic system,
which is able to generalize the notion of topological order of
the Kitaev and parafermionic chains. We consider a gapped
one-dimensional system defined on an open chain of length
L, with a set of orthogonal quasidegenerate ground states
{|ψq⟩} whose energy splitting decays superpolynomially in
the system size. We define the system topologically ordered
if it fulfills the following conditions.

T 1: For any bounded and local operator V (r ), and for
any pair of ground states |ψq1⟩, |ψq2⟩:

⟨ψq1 |V (r )ψq2⟩ = V̄ δq1,q2 + c(r, q1, q2), (63)

where r specifies the position of the support of V , the constant
V̄ does not depend on the ground states, and c(r, q1, q2) is a
function, which decays superpolynomially with the distance
of r from the boundary of the system (thus with the minimum
between r and L − r).

This condition imposes that no local operator in the bulk
of the system can cause transitions between the ground states,
up to corrections c that are strongly suppressed with the
distance with the boundary. A typical example may be given

by considering the Kitaev chain in the topological phase
and the annihilation operator of a fermion in the system:
if such operator is applied close to the boundary, with a
considerable overlap with the zero-energy Majorana modes,
then it can cause a transition between the two ground states;
if instead it is applied in the bulk, with a negligible overlap
with the exponentially localized zero-energy modes, then this
transition is exponentially suppressed with the distance with
the edges.

T 2: Any local observable cannot distinguish the ground
states. To formalize this local indistinguishability require-
ment, we must carefully define what is the set of operators
that constitute legitimate observables in the presence of a
non-Abelian symmetry. In the case of fermionic systems, the
observables are Hermitian operators that commute with the
fermionic number; thus they have vanishing matrix elements
between states with different fermionic parities. This property
is maintained in the parafermionic ZN generalization, where
the set of observables is restricted to the set of operators com-
muting with the conserved ZN charge and, in general, with the
symmetry transformations [7]. In the case of a non-Abelian
symmetry, the requirement of commuting with the whole
symmetry group is very strong, because the group transfor-
mations themselves do not fulfill it. Therefore it is useful to
weaken this requirement to the purpose of defining a broader
set of observables. Instead of considering a set of operators
which commute with the conserved charges, we demand that
the observables do not allow for transitions between states
transforming under different irreducible representations. For
our purposes, the irreducible representations play indeed the
role of the conserved charges. In particular, we define two
distinct sets of operators we label with C and C̃.

The set C includes the rank-2 tensor operators OL that
are block diagonal in the irreducible representation basis and
transform under the group symmetry by conjugation, such that

QhOLQ†
h =

⊕

I

DI (h)OI
LDI†(h) (64)

and

Q̃hOLQ̃†
h = OL, (65)

for a suitable decomposition OL =
∑

I OI
L into components

OI
L = #IOL#I , where I labels the irreducible representa-

tions and the projectors #I are defined in (28). As a particular
case, we observe that the elements Qg of the symmetry group
belong to C since they fulfill the transformation relations (64)
and (65).

The set C̃ is the right counterpart of C and it includes the
operators transforming as Q̃g . Namely, C̃ is the set of the rank-
2 tensor operators OR transforming by conjugation as

Q̃hORQ̃†
h =

⊕

I

DI†(h)OI
RDI (h) (66)

and

QhORQ†
h = OR. (67)

We observe that, for both sets, these operators reduce to the
set of observables invariant under the symmetry group in the
Abelian case. The non-Abelian structure of the symmetry
group provides in this case an additional richness to the
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system since it is not possible to define a single conserved
charge in the G-invariant models.

Finally, we can define the following condition for the local
indistinguishability of the ground states in systems with a
non-Abelian symmetry group: for any local observable O(r ),
belonging to either C or C̃, and any pair of ground states, the
following equation must be satisfied:

⟨ψq1 |O(r )ψq2⟩ = Ōδq1,q2 + o(L, q1, q2), (68)

where the parameter Ō does not depend on the ground states,
and the function o(L, q1, q2) decays superpolinomially in the
system size L.

This condition properly generalizes the requirement of the
local indistinguishability of the ground states under symmet-
ric observables for the Abelian symmetric systems [7] to the
non-Abelian case.

Both the conditions T 1 and T 2 are related to the notion
of locality and, for the dyonic model, we will consider an
operator local if it can be defined as a function of the α and β
modes in a small (nonextensive) domain.

In the dyonic model, analogously to the flux ladder model
with J ≫ µ, we can label the quasidegenerate ground states
as ||Imn⟩⟩ based on their transformations (35) under the
global symmetry group. This is indeed a property that does
not depend on the definition of locality and it is not affected by
the nonlocal nature of the JW transformation. In this basis, the
matrix ⟨ψq1 |Ṽ ψq2⟩ in Eq. (63) is diagonal for any operator W
which preserves the symmetry under G, such that [W,Qg] =
[W, Q̃g] = 0 for any g ∈ G:

⟨⟨Imn||W ||Rpq⟩⟩ ∝ WI δRI δmpδnq. (69)

This is analogous to the effect of operators preserving the
fermionic parity in the Kitaev chain and operators preserving
the ZN symmetry in the parafermionic chains [7]. For the
same reason, any observable O that is invariant under the
action of the symmetry group, presents all the off-diagonal
terms in (68) equal to zero if we choose the ground-state
basis {||Imn⟩⟩}. For any observable O in the set C (or in its
right counterpart C̃), instead, the matrix ⟨⟨Imn||O||I ′m′n′⟩⟩
in Eq. (68) has vanishing entries for I ̸= I ′ but the elements
of C and C̃ enable transitions between m and m′, and between
n and n′, respectively. We conclude that, under this point of
view, the condition T 2 can be considered a stronger condition
than its Abelian counterpart [7].

Both the conditions T 1 and T 2 are intimately related to
the existence of a set of topologically protected zero-energy
modes, localized on the boundaries (or, more accurately, on
the interface between gapped topological and nontopological
regions), which transform nontrivially under the symmetry
group G. The transitions between ground states driven by
all the local operators V must be understood in terms of the
overlap with these zero-energy modes, and the local indistin-
guishability of the ground states is justified by the fact that
these states differ only by the application of these boundary
modes. In the next section, we will discuss the properties of
these boundary modes and we will show that the dyonic model
fulfills the previous criteria for topological order.

IV. THE TOPOLOGICAL ZERO-ENERGY MODES

A. Weak zero-energy modes

The condition T 1 for the system to be topologically or-
dered is the most immediately related to the existence of
zero-energy modes localized on the boundary of the system.
In general, it is necessary to distinguish two kinds of topo-
logically protected zero modes and, consequently, two kinds
of one-dimensional topological order [6,7]. A system enjoys
weak topological order, and it possesses weak zero-energy
modes, if the ground-state manifold is |G|-degenerate up to
an energy splitting which is exponentially suppressed in the
system size, whereas we speak of strong topological order
when the whole energy spectrum is |G|-degenerate up to
exponentially small corrections in the system size.

Therefore the weak topological order is a property only
of the ground states. The excited states may present no
specific regularity in their energy. In the Z3 parafermionic
model in proximity of the nonchiral point in parameter
space, for example, it is known that excited states labeled by
different eigenvalues of the symmetries have relevant energy
differences which decay only algebraically with the system
size [6]. The strong topological order is instead a property of
the whole spectrum.

The strong or weak kind of topological order are related to
the presence of a strong or weak kind of localized zero-energy
modes. Both these kind of modes must fulfill the following
properties.

(1) To cause transitions between the quasidegenerate
ground states, these modes must transform nontrivially under
the global symmetries of the Hamiltonian. We denote these
modes with %; in the simplest case, they can be associated
to a (nontrivial) irreducible representation K of the symmetry
group G in such a way that

Qh%
KQ†

h = %KDK (h), (70)

or more general nontrivial transformation relations. In the
ZN Abelian case, this requirement reduces to the condition
Q1%

K = e
i2πK

N %KQ1, where K , for an Abelian group, can be
interpreted simply as a power, Q1 is the ZN charge of the
system and DK = e

i2πK
N [5].

(2) The zero-energy modes must be bounded operators,
localized on the edge of the system (or at an interface between
different gapped phases).

Besides these common requirements, weak and strong
zero-energy modes must, respectively, satisfy the following
conditions.

(1) Weak topological modes %W must satisfy

[%W, P0HP0] 6 γ e−L/ξ , (71)

where P0 is the projector operator over the ground-state
manifold, γ is a generic (bounded) operator acting on the
ground-state manifold, L is the system size, and ξ is a
suitable length scale. This requirement imposes that the weak
zero modes quasicommute with the Hamiltonian projected
on the ground-state manifold. Therefore, when we consider
the subspace of the ground states, the projected Hamiltonian
commutes with the symmetries Q and quasicommute with the
mode %W , but %W and Q do not commute with each-other due
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to the condition (70). This implies the quasidegeneracy of the
ground-state manifold.

(2) Strong topological modes %S must satisfy the stronger
requirement

[%S,H ] 6 γ e−L/ξ . (72)

This requirement, together with (70), implies the |G|-
degeneracy of the whole spectrum up to exponentially sup-
pressed corrections.

Let us discuss how the notion of topological order and
weak zero-energy modes apply to the dyonic system. The
topological order of the model can be easily verified for the
Hamiltonian HJ : the Hamiltonian HJ is a sum of commuting
terms and its |G| ground states ||Imn⟩⟩ are determined by
imposing that

TrA[α†
h,m2m3

(2r + 1)βh,m1m2 (2r )]||Imn⟩⟩
= δm1m3 dim(A)||Imn⟩⟩, (73)

for every r and h ̸= e. This implies that the bulk properties of
all the ground states are the same. Like in the parafermionic
case, the operators α(1) and βg (2L) do not appear in HJ and
commute with it: this can be derived by the definitions in
(45) and (46). Therefore α(1) and βg (2L) constitute localized
zero-energy modes. Specifically for the case of HJ , they
satisfy the requirements of strong topological modes, but,
analogously to the ZN case, their strong behavior is not stable
against the addition of a small term Hµ in the Hamiltonian,
and in general they must be considered weak zero modes.

Let us first analyze what happens for the unperturbed
Hamiltonian HJ . The bulk operators by definition are inde-
pendent of α(1) and βg (2L), and a generic bulk operator
therefore is either composed only by terms independent of
the operators "A

g , like the ones in Eq. (73), or includes terms
which are functions of some of the operators "A

g . In the
first case, the operator is proportional to the identity when
projected on the ground-state manifold; in the second, instead,
the operators "A

g introduce domain walls in the corresponding
flux-ladder model, thus completely driving any ground state
into excited states. We conclude in both cases that bulk oper-
ators do not violate the condition T 1 for topological order.

The ground states cannot be distinguished by observables
that do not involve either α(1) or the operators βg (2L). Taken
singularly, α(1) and βg (2L) do not allow us to build nontrivial
observables that belong to the set C [see Eqs. (64) and (65)]
or to its right counterpart C̃. Therefore operators, which are a
function of α(1) or βg (2L) only, do not violate condition T 2.

Hence, the only possible way to build observables in C or
C̃ that distinguish the ground states is to multiply either α(1)
or βg (2L) with suitable bulk dyonic modes. These additional
modes, however, necessarily introduce domain walls in the
model, as it can be seen from the action of their JW strings
in Eqs. (45) and (46) on the ground states of HJ . Therefore,
under the action of these operators, the ground states are fully
transformed in excited states and the expectation values of the
kind (68) vanish.

The only observables which can distinguish the ground
states and belong to C are the ones build by products of the
form α(1)β†(2L). In particular, for µ = 0, it is convenient to
define the operators

ϒg = TrK TrA[α(1)β†
g (2L)] = χA(gL)Qg, (74)

where the last equality can be derived from Eq. (41). ϒg trans-
forms as QhϒgQ†

h = ϒhgh−1 and it belongs to C. From these
operators it is possible to build observables that generalize the
conserved ZN charge in the Abelian systems and allow us to
distinguish the ground states. All these observables, though,
are crucially nonlocal. We conclude therefore that also the
condition T 2 is fulfilled by HJ . Hence HJ fulfills the criteria
to be topologically ordered.

We additionally remark that in the flux-ladder model the
symmetry breaking order parameter is provided by the opera-
tors U (r ). Such operators are nonlocal in the dyonic model
if and only if the auxiliary irreducible representation A is
non-Abelian. In the following, we restrict to this condition,
which is necessary to fulfill the criteria T 1 and T 2, thus to
have topological order. We will discuss the nontopological
system defined by A being the trivial representation in Sec. V.

The existence of weak zero-energy modes for the full
Hamiltonian H for µ ≪ J can be inferred by a quasiadiabatic
continuation [28] by following the same procedure presented
in [7] for the ZN symmetric models. In particular, in the
presence of a gap $(µ) separating the ground-state manifold
from the excited states, it is possible to define a quasiadiabatic
continuation V (µ), which is a unitary mapping preserving
locality and symmetry under the group G that maps the
ground states of HJ into the ground states of H : ||Imn⟩⟩µ =
V (µ)||Imn⟩⟩µ=0. Therefore the continuation V (µ) allows us
to map the projector P (0) over the ground states of HJ

into the projector P (µ) = V (µ)P (0)V†(µ) over the ground-
state manifold at finite µ. Through the continuation V (µ)
it is possible to define the new weak zero-energy modes
V (µ)α(1)V†(µ) and V (µ)βg (2L)V†(µ) and verify that the
conditions for topological order hold also for H as long as
the energy gap $(µ) does not close. The arguments presented
in Ref. [7] extend straightforwardly to the non-Abelian case
and show the persistence of topological order for the dyonic
mode at finite µ.

By following the approach in Ref. [7], we obtain the
following first-order expression in µ/J for the left weak zero-
energy modes in the case C = 1:

V (µ)α(1)V†(µ) = α(1) + µ
∑

h ̸=e

TrK,A[β†
h(2)αh(1)DK†(h)]
mh − me

×α(1)(1 − DK†(h)) + O

(
µ2

J 2

)
, (75)

and an analogous expression holds for the right edge modes
(see Appendix B for more detail). These weak zero modes de-
pend on the ratio of µ and the energy gaps mh − me between
the ground states and the first excited states at µ = 0. For µ ≪
min [mh − me], this result suggests that the weak zero modes
survive and maintain their localization when introducing the
Hµ perturbation, in analogy with the Abelian models [7]. This
is consistent with the perturbative result in Eq. (36).

We notice that the left weak zero-energy mode, originating
from α(1), does not carry a group index, differently from
the right modes, which originate from βg (2L). This appar-
ent discrepancy is due to the open boundary conditions we
are using in the analysis of our system. However, we can
generalize our investigation by embedding the topological
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phase in a larger nontopological system: in this case, also the
weak left zero-energy modes would acquire a nontrivial JW
string, thus acquiring a full dyonic character like the right
modes. In Appendix C we present the first-order calculation
of the left zero-energy mode at the interface between a non-
topological and a topological region and we verify that the
introduction of this different kind of boundary does not spoil
the localization of the mode.

B. Strong zero-energy modes

So far, we considered only the existence of weak zero-
energy modes. In the following, we will investigate under
which conditions it is possible to define strong zero-energy
modes. In particular, inspired by the approach in Ref. [5], we
will present a constructive iterative technique for µ ≪ J to
build strong zero modes. Such approach will in general result
in unbounded operators that, consequently, do not satisfy
the criteria for the definition of topological modes. We will
show however that by modifying the Hamiltonian (62) and
introducing additional constraints, it is possible to find strong
topological modes on the edges of the system.

Our goal is to derive zero modes of the form

%(r ) = %0 + %1 + · · · + %r (76)

such that
(1) %x has support on the first 2x + 1 α and β dyonic

modes starting from the edge. For the zero modes local-
ized on the left edge, this implies that %x is a function of
α(1),β(2), . . . α(2x + 1). In the right case instead we search
for a function of β(2L),α(2L − 1), . . . β(2L − 2x).

(2) The mode %(r ) must asymptotically fulfill

[%(r ),H ] < µρr , (77)

where ρ < 1 is a suitable parameter obtained in general as a
function of µ, J , and C. In this way, the requirement (72) is
satisfied for r → L.

(3) The zero modes %
(r )
g,mn,ab may be characterized by a

group element g, and, analogously to α and β operators, they
are tensors of operators defined by four matrix indices, which
in general obey dyonic transformation rules with respect to
the K irreducible representation:

Qh%
(r )
g,mn,abQ

†
h = %

(r )
hgh−1,mm′,abD

K
m′n(h). (78)

The indices ab of the auxiliary representation A are invariant
under transformations of the symmetry group and, in the
following, we will omit them.

The requirement (78), analogously to the condition (70),
implies for r → L the quasidegeneracy of the whole energy
spectrum. Furthermore, starting from the symmetry invariant
ground state ||000⟩⟩, we obtain

%(L)
g,mn||000⟩⟩ ∈ Span{||Kpq⟩⟩, p, q = 1, . . . , dim K}. (79)

This implies that the zero modes allow for transitions between
ground states ||Rpq⟩⟩ with different irreducible representa-
tions R. By applying the zero modes multiple times, the
resulting ground states are defined by the Clebsch-Gordan
series of the group G [29] and we will show that it is possible
to span the whole ground-state manifold, thus extending the

behavior of zero-energy Majorana and parafermionic modes
to the non-Abelian case.

In the following, we will use '(r ) to label the strong zero-
energy modes localized on the left boundary of the system,
and ((r )

g to label the ones on the right boundary. Analogously
to their weak counterpart, only the strong right modes carry
a group index. This is again due to the chosen boundary
conditions (see Appendix C for more detail).

The first step of the iterative procedure is to impose the first
term to be the zero-energy mode of HJ . Therefore we have
'0 = α(1) and (g,0 = βg (2L) for the left and right bound-
aries, respectively. In this way, ['0,HJ ] = [(g,0,HJ ] = 0.

Let us consider the right boundary as example. Following
Ref. [5], we define the commutator

C1(g) ≡ [(g,0,H ] = [(g,0,Hµ]. (80)

C1 is of order µ and it transforms under the symmetry group
as (g,0 = βg (2L), from which it inherits the dyonic character:

QhC1(g)Q†
h = [Qh(g,0Q†

h,QhHµQ†
h]

= [(0,hgh−1D(h),Hµ]

= C1(hgh−1)D(h). (81)

The next step is finding an operator (1,g obeying the above
conditions such that

[(1,g, HJ ] = −C1(g). (82)

In this way, we get

[(0,g + (1,g, H ] = C1 − C1 + [(1,g, Hµ] ≡ C2. (83)

In general, (1,g is of order µ/J and, due to the Hamiltonian
being symmetric, it is always possible to define it in such a
way that it obeys the same transformation rules of (0,g . In
general, at each iteration step, we evaluate the commutator
Cr (g) = [((r−1)

g ,H ] and we construct the corresponding op-
erator (r,g such that

[(r,g, HJ ] = −Cr = −[(r−1,g, Hµ]. (84)

The resulting operators (r,g are suppressed by a factor of
order (µ/J )r .

This procedure guarantees the fulfillment of the constraints
(77) and (78) and, as we will show in the following, of
the localization constraint. In the following sections, we will
express all the zero-energy modes in terms of the operators θg

and U to exploit their commutation relations. It is important
to stress, however, that the resulting modes ' and ( are
localized based on the notion of locality obtained by the
dyonic operators α and β.

C. Iterative procedure for strong modes on the left boundary

The starting point for the left strong zero mode is '0 =
α(1) = U †(1) and we have

C1 = ['0,Hµ] = µ
∑

h1 ̸=e

χA
(
h−1

1

)
[U †(1), θh1 (1)]

= −µ
∑

h1 ̸=e

χA
(
h−1

1

)
θh1 (1)U †(1)(D†(h) − 1). (85)
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We must identify an operator '1 with support on α(1), β(2), and α(3), such that its commutator with HJ cancels C1.
We observe that HJ commutes with any function of the operators U , therefore we may assume that '1 inherits a factor
U †(1)(D†(h) − 1) from C1. Hence we adopt the following ansatz for '1:

'1 = µ

J

∑

h1 ̸=e

F1(h1)χA
(
h−1

1

)
θh1 (1)U †(1)(D†(h1) − 1), (86)

where F1 is a function only of the operators U(1) and U(2) and the matrices D(h1), in such a way that [F1,HJ ] = 0. The
commutator ['1,HJ ] gives

['1,HJ ] = µ
∑

h1 ̸=e

F1(h1)χA
(
h−1

1

)
[θh1 (1), Tr[U (2)CU †(1)] + H.c.]U †(1)(D†(h1) − 1)

= µ
∑

h1 ̸=e

F1(h1)χA
(
h−1

1

)
(Tr[U (2)CU †(1)(D(h1) − 1)] + H.c.)θh1 (1)U †(1)(D†(h1) − 1), (87)

which is equal to the desired value −C1 when we take

F1(h1) = (Tr[U (2)CU †(1)(D(h1) − 1)] + H.c.)−1. (88)

In the group element basis, the operator F1 always cor-
responds to the inverse of the difference of two different
flux masses (20), since h1 ̸= e. Therefore in order to obtain
a bounded operator '1, it is necessary to choose a matrix
C such that all the flux masses in the model are different
[condition (21)]. Hence, similarly to the Abelian case [5], it is
necessary to break the chiral symmetry in order to have strong
zero-energy modes.

In the second iterative step, the commutator C2 results

C2 = −µ
∑

h2 ̸=e

χA
(
h−1

2

)
['1, θh2 (1) + θh2 (2)]. (89)

It is convenient to split this commutator into two pieces,
C2 = Cin,2 + Cout,2, representing the contributions given by
the term in θh2 (1) and θh2 (2), respectively. These two terms
of C2 are defined on different supports: Cout,2 includes all
the dyonic modes up to β(4), whereas Cin,2 has support only
up to α(3). Based on this difference, we can distinguish two
contributions also for the operator '2 = 'in,2 + 'out,2, such
that ['in/out,2,HJ ] = −Cin/out,2. The operator 'in,2 defines
the inner part of '2, with support up to α(3), thus with the

same support of '1; 'out,2, instead, is the outer part and it
includes all the terms of '(2) that extend its support to α(5).

This distinction between inner and outer contributions can
be extended to all the iteration levels and, in general, we have

Cout,n = −µ
∑

hn ̸=e

χA
(
h−1

n

)[
'n−1, θhn

(n)
]
, (90)

Cin,n = −µ
∑

i<n

∑

hi ̸=e

χA
(
h−1

i

)[
'n−1, θhi

(i)
]
. (91)

Correspondingly, we define 'n = 'in,n + 'out,n such that

['in/out,n, HJ ] = −Cin/out,n. (92)

The operator 'out,n includes all the outer terms with domain
extending from α(1) to α(2n + 1), whereas 'in,n includes the
inner terms with the same domain of 'n−1. At the nth level of
iteration both 'out,n and 'in,n appear to be of order (µ/J )n,
therefore only the outer modes define the spatial penetration
of the zero-energy modes in the bulk.

Let us focus first on the calculation of the outer modes:
in the second iteration step, 'out,2 is determined from the
commutator Cout,2 in Eq. (90). The only part of '1 that does
not commute with θh2 (2) is F1 [see Eq. (86)], and we denote
[F1, θh2 (2)] = F̃1θh2 (2). Concretely,

F̃1(h1, h2) = (Tr[U (2)CU †(1)(D(h1) − 1) + H.c.])−1 − (Tr[U (2)CU †(1)(D(h1) − 1)D†(h2) + H.c.])−1, (93)

which implies

Cout,2 = −µ2

J

∑

h1,h2 ̸=e

χA
(
h−1

1

)
χA

(
h−1

2

)
F̃1(h1, h2)θh1 (1)θh2 (2)U †(1)(D†(h1) − 1). (94)

Similarly to the first step, we assume that the outer mode 'out,2 takes the form

'out,2 =
(µ

J

)2 ∑

h1,h2 ̸=e

χA
(
h−1

1

)
χA

(
h−1

2

)
F̃1(h1, h2)F2(h1, h2, h3)θh1 (1)θh2 (2)U †(1)(D†(h1) − 1), (95)

where we introduced a new function of the U operators F2(h1, h2, h3). By taking

F2 =
(

Tr
[
U (2)CU †(1)

(
D

(
h1h

−1
2

)
− 1

)
+ H.c.

]
+ Tr[U (3)CU †(2)(D(h2) − 1) + H.c.]

)−1
, (96)

we ensure that ['out,2,HJ ] = −Cout,2.
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From this expression we deduce that the condition (21)
on C is not strong enough to guarantee the existence of the
strong zero-energy modes. This condition only ensures that
each term in (96) do not cancel individually, but they may
still cross cancel. This happens when the action of h1 and
h2 results in a swap of the gauge fluxes in the first two pla-
quettes of the ladder model. For instance, F2|g1, g2, g3, . . .⟩
is singular when h2 = g2g

−1
1 g2g

−1
3 and h1h

−1
2 = g1g

−1
2 g3g

−1
2 .

For a given group G, these two equations will be compatible
with the requirement h1, h2 ̸= e for some state, thus causing a
divergence of the operators F2 and '2. To avoid this problem,
we can introduce a suitable position dependence in either the
parameters J or C; we will discuss the problem of the possible
divergences of the zero-energy modes in Sec. IV D, based on
the final result for 'out,n.

When calculating Cout,3 by computing ['2, θh3 (3)], only
F2 is modified by the action of θh3 (3), and we define a new
function F̃2 analogously to the previous term. In general,
all the outer modes follow the same pattern and, at the nth

iteration step, we can define

'out,n =
(µ

J

)n ∑

h1,...,hn ̸=e

χA
(
h−1

1

)
. . .χA

(
h−1

n

)
F̃1

. . . F̃n−1Fnθh1 (1) . . . θhn
(n)U †(1)(D†(h1) − 1), (97)

where

Fn(h1, . . . , hn)

≡
(

1
J

[HJ , θh1 (1) . . . θhn
(n)]θ †

h1
(1) . . . θ

†
hn

(n)
)−1

=
(

n∑

r=1

Tr[U (r + 1)CU †(r )(D(hrh
−1
r+1) − 1) + H.c.]

)−1

,

(98)

with the constraint hn+1 = e. The function F̃ is defined in turn
as

F̃n−1(h1, . . . , hn) = Fn−1 − θhn
(n)Fn−1θ

†
hn

(n). (99)

From the following expression, it is easy to verify that
the operator 'out,n is a function of the dyonic modes from
α(1) to α(2n + 1) based on the relations (59), (61), which
map all the operators of the flux-ladder Hamiltonian into local
combinations of the dyonic modes. A similar result is obtained
for the inner modes (see Appendix D) which display similar
terms with suitable modifications of the F and F̃ functions.

D. Divergences of the strong modes
and space-dependent Hamiltonians

The previous expressions we derived for the strong zero-
energy modes are ill-defined at all the iteration orders after
the first. There are two kinds of divergences that affect the
operators Fn and F̃n entering in the definition of 'out,n. Let us
analyze for simplicity the case of Fn defined in Eq. (98), since
F̃n is given by the difference of two analogous operators, and
the same conclusions hold for both. For ease of notation we
adopt J = 1 and µ ≪ 1 in the following analysis.

Given a state of the flux ladder |ψ⟩ = |h1 . . . hn⟩, the de-
nominator of Fn returns the difference of the HJ eigenenergies

of |ψ⟩ and |ψ ′⟩ =
∏n−1

r=1 θ
†
hr

(r )|ψ⟩. This denominator can go
to zero in two different cases: (i) ψ and ψ ′ are characterized
by different sets of gauge fluxes {!} and {!′} but their
energy is the same; (ii) ψ and ψ ′ are defined by two different
permutations of the same gauge fluxes, thus {!} = {!′}.

The case (i) corresponds to resonances of the kind
∑

g

ngmg =
∑

g

n′
gmg. (100)

with {ng} ̸= {n′
g}. This kind of resonance corresponds to the

same divergences met in the Abelian Z3 model analyzed in
Ref. [9] and, in general, it hinders the formation of strong
modes for large system sizes, although their effects is usu-
ally relevant only at large energies. To avoid this kind of
resonance, in principle, we could strengthen our requirement
C2 on the C matrix by imposing that the C matrix must
be such that all the flux masses mg are incommensurate
with each other. In this case, the condition (100) can never
be fulfilled, although the difference between the energies
of the two fluxes configurations can be arbitrary small for
sufficiently long systems. In particular, we can estimate that
the energy splitting becomes smaller than a quantity ϵ at
order O(1/ϵf (|G|)) of the iteration process, where f is a
suitable function of the group order only. This kind of splitting
implies that the norm of the strong mode contribution 'n

behaves like ∼nf (|G|)[(|G| − 1)µ/J ]n, thus displaying an
exponential decay for large n. Therefore we conclude that,
under the previous incommensurability assumption for the
flux masses, strong zero-energy modes are, in general, not
critically affected by this kind of resonance.

The case (ii) is characteristic of the non-Abelian groups
only. For the Abelian models, the requirements h1 ̸= e and
hn+1 = e in Eq. (98) would imply that the sets of fluxes
defining |ψ⟩ and |ψ ′⟩ cannot be the same. This does not hold
for non-Abelian groups because, by changing the order of
the fluxes in the ladder, it is possible to modify the total flux
!tot = g−1

1 gn+1. Therefore there can be choices of h1, . . . , hn

and of the state ψ such that ψ and ψ ′ share exactly the same
fluxes, {!} = {!′}. We emphasize, however, that the reso-
nances of kind (ii) require that ψ and ψ ′ present at least two
nontrivial fluxes. If we assume that ψ and ψ ′ are both states
with a single nontrivial flux of the kind !(g), a divergence
would entail that !tot = !′

tot = !(g), but this is impossible
since !tot and !′

tot differ by an overall multiplication of the
nontrivial group element h1. We conclude that, similarly to the
ground states, also the single-flux states are protected against
this kind of divergence.

For multiflux states, the resonances of the case (ii) are un-
avoidable in uniform systems. To obtain well-defined strong
zero-energy modes is thus necessary to consider adding a po-
sition dependence to the Hamiltonian parameters. We decide,
in particular, to focus on the case of a space-dependent J
of the form Jr = (1 + ηr ) with |ηr | ≪ min [|mg − mh|] for
g, h ∈ G. To show that strong zero-energy modes can, indeed,
exist in such a situation, we consider the fine-tuned case
ηr = η0/2r . In this situation, the maximum value of Fn is

max [Fn] = 2n

2$η0
, (101)
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where we labeled the minimum of the absolute values of the
differences between two flux masses with $. This value is
reached when all the group elements hk are the same for
k < n − 1, such that the first n − 2 terms in Eq. (98) cancel,
whereas hn−1 and hn are chosen to exchange the last two
fluxes. In a similar configuration, it is possible to check that all
the denominators assumed by the operators F̃r with r < n are
out of resonance, thus bounded by |F̃r | < 2/$ without any
dependence on the η coefficients. We conclude that

∑

h1...hn ̸=e

|F̃1| . . . |F̃n−1||Fn| <
1

4η0

(
4
$

)n

. (102)

Therefore, for µ/$ < (4(|G| − 1))−1, the strong zero-energy
mode is exponentially suppressed in the bulk of the system.

This result is achieved through an exponential fine-tuning
of the coupling constants, however, we expect that the zero-
energy modes exist also for disordered setups, in which the
parameters ηr become random variables with a suitable distri-
bution. This corresponds to assigning a small random contri-
bution to the flux masses which depends on the plaquettes of
the model, thus avoiding the possibility of resonances of the
second kind. The inner terms of the strong zero-energy modes
do not introduce additional resonances and, therefore, do not
qualitatively modify the general decay behavior of the modes
we discussed (see Appendix D).

E. Iterative procedure for strong modes on the right boundary

The construction of the strong zero-energy mode (g lo-
calized on the right boundary of the system is very similar
to the left modes, except for the fact that it carries a JW
string LA

g and, consequently, a group index. The starting point
is (g,0 = βg (2L) = LA

g (L)UK†(L). It is important to notice

that the full JW string LA
g (L) commutes with all terms in

the Hamiltonian: it is easy to prove that [LA
g (L),HJ ] = 0;

concerning the commutator with Hµ, instead, it is useful
to rewrite Hµ as a sum of projectors #A(r ) over the aux-
iliary representation [see Eq. (28)] and exploit the relation
["g (r ),#A(r )] = 0. Therefore LA

g (L) is a symmetry of the
system, and the iterative definition of the right modes can
proceed in the same way of the left modes. We define the
commutators

C1(g) = [(g,0,Hµ]

= −µLA
g (L)U †(L)

∑

h1 ̸=e

χA
(
h−1

1

)
θh1 (L)(1 − D(h1)),

(103)

and we build the first-order correction of the strong mode:

(g,1 = −µ

J
LA

g (L)U †(L)
∑

h1 ̸=e

χA
(
h−1

1

)
P1θh1 (L)(1 − D(h1)),

(104)

with

P1 = (Tr[U (L)CU †(L − 1)(D†(h1) − 1)] + H.c.)−1,
(105)

such that [(g,1,HJ ] = −C1(g).
Also, in this case, it is convenient to distinguish inner

and outer contributions of the operators, where the outer
contributions are the ones defining the decay in the bulk of
the system:

C2(G) = [(g,1,Hµ] = Cin,2(g) + Cout,2(g) (106)

with

Cout,2(g) = −µ

[

(g,1,
∑

h2

χA(h2)θh2 (L − 1)

]

= −µ2

J
LA

g (L)U †(L)
∑

h1,h2

χA(h1)χA(h2)P̃1θh1 (L)θh2 (L − 1)(1 − D(h1)),

(107)
where

P̃1(h1, h2) =
[
P1, θh2 (L − 1)

]
θ

†
h2

(L − 1)

= (Tr[U (L)CU †(L − 1)(D†(h1) − 1)] + H.c.)−1 − (Tr[U (L)CU †(L − 1)D(h2)(D†(h1) − 1)] + H.c.)−1,

(108)

and the corresponding outermost term at second order is

(g,out,2 = −µ2

J 2
LA

g (L)U †(L)
∑

h1,h2

χA(h1)χA(h2)P̃1P2θh1 (L)θh2 (L − 1)(1 − D(h1)). (109)

The general construction of all the iterative terms in the right modes follows from the one for left modes with a suitable
substitution of the functions F and F̃ with their right counterparts P and P̃ :

(g,out,n =
(µ

J

)n

LA
g (L)U †(L)

∑

h1,...,hn ̸=e

χA
(
h−1

1

)
. . . χA

(
h−1

n

)
P̃1 . . . P̃n−1Pnθh1 (L) . . . θhn

(L − n + 1)(1 − D(h1)), (110)

where

Pn(h1, . . . , hn) ≡ J
(
HJ − θh1 (L) . . . θhn

(L − n + 1)HJ θ
†
h1

(L) . . . θ
†
hn

(L − n + 1)
)−1 (111)
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and

P̃n(h1, . . . , hn+1) = Pn − θhn+1 (L − n)Pnθ
†
hn+1

(L − n).
(112)

It is easy to observe that these operators are local in the
dyonic modes: they all result proportional to βg (2L) and all
the terms in the sum in Eq. (110) can be expressed as products
of dyonic operators through Eqs. (59) and (61). The operators
P and P̃ are subject to the same kind of divergences of their
left counterparts and an analogous space dependence of the
coupling constant J can be adopted to achieve the exponential
suppression of the right modes in the bulk.

F. Properties of the dyonic zero-energy modes

The strong zero-energy dyonic modes are characterized in
general by the irreducible representation K , which determines
the transformation relation (78) through the matrices DK (h),
and by the group index g, which appears in the right modes
through the operator LA

g in (110). A group index characterizes
also the left modes at the interfaces with nontopological re-
gions of the system (see Appendix C), however, for simplicity,
we will restrict our analysis to the uniform case with open
boundaries.

The commutation relation between left and right modes is
given by

'm1m2(g,m3m4 = (g,m3m4'm1m
′
2
D

K†
m′

2m2
(g), (113)

up to corrections exponentially suppressed in the system
size. Here and in the following we will explicitly write
only the indices related to the representation K , since the
auxiliary representation indices are left invariant under this
commutation. The commutation relation (113) corresponds
to the commutation relations between α(1) and βg (2L) and
it generalizes the commutation relations of Majorana and
parafermionic zero-energy modes to the non-Abelian case. It
can be derived by observing that all the contributions of '
and ( are proportional to α(1) and βg (2L) respectively; thus,
Eq. (113) results from the commutation between the factor
α(1) and the JW string in the factor βg (2L). Other corrections
may appear in the commutation relation due to the overlap of
the zero modes for µ ̸= 0, but they are all of order (µ/J )L.

It is important to observe that the zero-energy modes 'm1m2

and (g,m1m2 do not exhaust all the possible localized zero
modes of the model. Different localized zero-energy modes
are generated by multiplying left or right modes with each
other. This additional modes are associated, in general, with
irreducible representations of the group G different from
K , therefore, in the following, we will label left and right
modes by 'm1m2 (I ) and (g,m1m2 (I ) with I belonging to the
irreducible representations of G. The zero modes built in the
previous section correspond to the case I = K .

The analogy with Majorana and parafermionic modes
suggests that also the dyonic modes can be considered as
extrinsic topological defects with projective non-Abelian any-
onic statistics [30,31] and their algebra provides information
about the corresponding fusion rules. Let us consider first the
products obtained by multiplying different left modes:

'm1m2 (K )'m3m4 (K ) ; (114)

this is the product of two rank-2 operators which transforms
following the irreducible representation K under global gauge
symmetries:

Qh'm1m2 (K )'m3m4 (K )Q†
h

= 'm1m
′
2
(K )'m3m

′
4
(K )DK

m′
2m2

(h)DK
m′

4m4
(h). (115)

To understand the nature of this operator, we exploit the
Clebsch-Gordan series relation [29]:

DI1
m′

2m2
(h)DI2

m′
4m4

(h)

=
∑

I,n,n′

⟨I1m
′
2I2m

′
4|In′⟩⟨In|I1m2I2m4⟩DI

n′n(h). (116)

Here, we introduced the notation ⟨I1m
′
2I2m

′
4|In′⟩ and

⟨In|I1m2I2m4⟩ for the Clebsch-Gordan coefficients of the
group and their conjugate, respectively. By combining the
previous two equations, we get

Qh'm1m2 (K )'m3m4 (K )Q†
h

=
∑

I,n,n′,m′
2,m

′
4

'm1m
′
2
(K )'m3m

′
4
(K )

×⟨Km′
2Km′

4|In′⟩⟨In|Km2Km4⟩DI
n′n(h). (117)

This demonstrates that the product of two zero-energy modes
' is a linear superposition of operators transforming ac-
cording to the irreducible representations I allowed by the
Clebsch-Gordan series. Therefore, in general, we must define
a family of zero-energy operators localized on the left edge,
'n1n2 (I ), such that

'm1m2 (I1)'m3m4 (I2)

=
∑

I,n1,n2

⟨I1m1I2m3|In1⟩⟨In2|I1m2I2m4⟩'n1n2 (I ) (118)

and

Qh'mn(I )Q†
h = 'mn′ (I )DI

n′n(h). (119)

Based on this transformation relation, we obtain that, starting
from the gauge-invariant ground state ||000⟩⟩, the ground state
'

†
mn(I )||000⟩⟩ = ||Imn⟩⟩ will transform as Qh||Imn⟩⟩ =

D
I†
mm′ (h)||Im′n⟩⟩.
From Eq. (119), it is also easy to show that '|G|(I )

is invariant under the symmetries Qh. Therefore, for any
irreducible representation I and any ground state ||Rmn⟩⟩,
we obtain '|G|(I )||Rmn⟩⟩ ∝ ||Rmn⟩⟩. This suggests that the
operators 'n1n2 (I ) behave like the dyonic operator αK=I (1).

The situation is more complicated for the right modes: also
in this case, we can consider modes associated with any irre-
ducible representation I , but, with respect to the left modes,
we must account also for the group element conjugation in
(78) and the indices of the irreducible representation A:

Qh(g,m1m2,ab(I1)(k,m3m4,cd(I2)Q†
h

=
∑

I,n,n′,m′
2,m

′
4

(hgh−1,m1m
′
2,ab(I1)(hkh−1,m3m

′
4,cd(I2)

×⟨I1m
′
2I2m

′
4|In′⟩⟨In|I1m2I2m4⟩DI

n′n(h). (120)
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From this relation, we deduce that (g (I1)(k (I2) is indeed
proportional to

∏
r θ

†
kg (r ) and can be decomposed into a linear

superposition of dyonic operators associated to the irreducible
representations I . For non-Abelian auxiliary representations,
however, the set (g (I ) does not exhaust all the possible
right zero-energy modes due to the nontrivial composition
of the disorder operators LA. Moreover, given the previous
composition rule for g = k, it is possible to show that the
modes (g (I ) behave like the operators βK=I

g (2L), and, in

particular (
|G|2
g (I ) ∝ 1I1A is a symmetric operator, similarly

to Eq. (58).
The previous rules dictate how left modes fuse with left

modes, and right modes with right modes. Concerning the
fusion of a left with a right mode, it is convenient to introduce
the operator

ϒ(g) ≡ TrK ['(K )(†
g (K )], (121)

where the indices of the auxiliary representation do not play
any fundamental role. These operators generalize (74) to
the general case with µ ̸= 0. Their transformation under the
symmetry group results in

Qhϒ(g)Q†
h = Qh TrK ['(K )(†

g (K )]Q†
h

= TrK ['(K )(†
hgh−1 (K )] = ϒ(hgh−1). (122)

The operators ϒ(g) extend the usual idea of ZN parity from
the Abelian to the non-Abelian case: in analogy with the
gauge transformations Qg themselves, they transform under
conjugation and they belong to the class of operators C
characterizing the condition T 2 for topological order. In par-
ticular, the operators ϒg are block diagonal in the irreducible
representation basis and can be decomposed in the following
way:

ϒ(g) =
∑

I,m,n

DI∗
mn(g)ϒ̃ (I )m,n, (123)

with ϒ̃ (I )m,n = υI

∑
l |Iml⟩⟨Inl| (where υI are suitable con-

stants) and

Qhϒ̃ (I )Q†
h = DI (h−1)ϒ̃ (I )DI (h). (124)

The decomposition (123) can be considered the fusion rule
for left and right zero modes: ϒ(g), which plays the role of
their operator product, results in a set of fusion channels in
one-to-one correspondence with the irreducible representa-
tions I of the group, which can be schematically represented
as

' × ( = ⊕I )I . (125)

Each channel )I has a quantum dimension given by dim(I )2,
such that, in total, we can attribute the quantum dimension√

|G| to the zero-energy mode '(K ) and ((K ). This is
analogous to the case of Majorana and parafermionic zero
modes.

We observe that the decomposition (123) holds true inde-
pendently of our choice of the irreducible representation of the
zero modes '(I ) and ((I ): our definition of ϒ(g) can indeed
be extended to the operators ϒ(I, g) ≡ TrI ['(I )(†

g (I )].
These operators behave under gauge transformations in the

same way, and can be decomposed in terms of the same
operators ϒ̃ (R).

It is possible to extend our analysis also to the case of a
topological region embedded in a nontopological environment
(see Appendix C). In this situation, the left modes acquire
a group index too, and the operators ϒ(g) must be defined
by contracting 'g and (

†
g taken with the same group index.

In this way, the JW strings LA
g cancel outside the topological

region, and all the previous observations still hold.
This situation is analogous to the study of twist defects

in symmetry-enriched phases with topological order [32–
34]. Majorana and parafermionic modes behave like twist
defects in the Z2 and ZN toric codes, respectively [32,34];
this suggests that the dyonic modes in the system (62) may
be interpreted as twist defects in a suitable two-dimensional
topological system. The requirement of combining 'g and
(

†
g corresponds to having two twist defects with opposite

flux which identify a g-defect branch line [32], and, in this
scenario, the study of the topological and braiding properties
of the dyonic zero-energy modes must be framed in a G-
crossed braided tensor category theory [32].

V. THE ROLE OF THE AUXILIARY REPRESENTATION

The analysis of the topological models in Eq. (62) crucially
relies on the choice of the group G and of the auxiliary
irreducible representation A. The auxiliary representation A
enters the definition of the disorder operators LA, which,
in turn, define the dyonic modes (45) and (46). Because
we define locality through the dyonic modes α and β, the
selection of A directly determines which operators are local
in the dyonic model.

The connection operators U(r ) constitute order parameters
able to distinguish the ground states of the flux-ladder Hamil-
tonian (18) in its ferromagnetic phase. Importantly, these
operators are nonlocal in the dyonic modes if and only if the
irreducible representation A is non-Abelian. This implies that,
in case of an Abelian representation A, the topological order
of the system (62) is lost.

The operators "g (r ), instead, are always local in terms of
the dyonic modes [see Eq. (60)]. Furthermore, from Eq. (61),
we obtain that also the operators θg (r ) are local, provided that
χA(g−1) ̸= 0. For χA(g−1) = 0, instead, θg may be local or
nonlocal depending on the group properties. This is related to
certain additional symmetries which may appear in the flux-
ladder Hamiltonian (18) for particular combinations of G and
A, as for example, the choice G = S3 with its non-Abelian
irreducible representation A = 2.

In the following, we will first examine the features of
the systems with a trivial auxiliary representation A, which
exemplifies what happens for all the Abelian auxiliary repre-
sentations, then we will consider in more detail the case of
non-Abelian irreducible representations A with elements with
vanishing character χA(g−1) = 0.

A. Trivial auxiliary representations: absence of topological
order and appearance of holographic symmetries

In the case of an Abelian auxiliary representation A, the
Hamiltonian (62) loses its topological order. This is due to the
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properties of the Jordan-Wigner strings LA. For A Abelian
and irreducible, the matrices DA in (41) become just phases.
The composition rules of the disorder operators then simplify,
LA

g1
LA

g2
= LA

g2g1
, thus we obtain

U †(r ) = βhg−1 (2r )β†
h(2r )βg (2r ). (126)

This relation is fulfilled because the Abelian JW strings in the
β modes annihilate. Equation (126) proves that the operators
U †(r ) are local in the dyonic operators, and, from these opera-
tors, it is possible to build local operators and observables that
violate both the conditions T 1 and T 2 for topological order.

On the contrary, when A is non-Abelian, the only combina-
tions of JW strings which allow for their annihilation are given
by Eqs. (42) and (44) and it is impossible to find operators
local in the dyonic modes that return U †(r ).

Let us focus on the trivial case A = 1 such that LA
g (r ) =

∏r
x=1 θ

†
g (x), without additional indices related to the auxiliary

representation. In this case, we obtain the apparent inconsis-
tency:

βkg−1 (2r )β†
k (2r ) =

r∏

j=1

αg (2j − 1)β†
g (2j ) ; (127)

this relation is paradoxical because the left-hand-side is a
local operator, expressed as a function of β’s only, but it is
equivalent to a nonlocal string operator when expressed in
terms of both β’s and α’s. This contradiction is solved by
taking into account that, for A = 1, the operators α and β are
not independent from each other. In particular, it is possible to
express any operator α as a function of the operators β:

α(1) = βk̃h̃−1 (2)β†
k̃
(2)βh̃(2), (128)

αg (2r − 1)

= βk (2r − 2)β†
kg−1 (2r − 2)

︸ ︷︷ ︸
Lg (r−1)

βhg−1 (2r )β†
h(2r )βg (2r )

︸ ︷︷ ︸
U †(r )

,

(129)

for r > 1 and any arbitrary choice of h̃, k̃, h, k ̸= e such that
h̃ ̸= k̃ and k, h ̸= g.

Equations (128) and (129) allow us to solve the apparent
inconsistency of Eq. (127): for the sake of simplicity, we can
take k = h = k̃ and h̃ = g; in this case, it is easy to see that
the right-hand side of Eq. (127) reduces telescopically to the
left-hand side, thus verifying its local nature in terms of the β
operators.

We conclude that, for the case A = 1, the notion of locality
must be based on the β operators only: the α operators can be
expressed as local combination of the β operators and all the
Hamiltonian terms are local in turn. Based on this notion of
locality, also the symmetry operators Qg become localized:

Qg = βkg−1 (2L)β†
k (2L), (130)

for an arbitrary k ̸= g, e. This relation establishes a map-
ping from the global (thus nonlocal) gauge symmetry in the
flux-ladder Hamiltonian (18), to a set of symmetry operators
localized on the last site of the system (62). This is an example
of holographic symmetry [35].

As a result, all the operators of the form (130) are local-
ized and exact zero-energy modes of the Hamiltonian (62),
independently on the values of µ, J , or C. Therefore it
is possible to identify the behavior of any eigenstate of the
system under the symmetry group G just by considering
expectation values of suitable observables localized on the
last site, thanks to Eq. (130). This also implies that any local
perturbation of the form Qg can split the ground-state degen-
eracy of the system in the J -dominated phase. For example,
by exploiting the projector (28), we can build the following
symmetry-invariant operator, which separates in energy the
gauge-invariant ground state ||000⟩⟩ from the others:

#
(1)
tot = −

∑

g∈G

Qg. (131)

This perturbation splits the ground-state degeneracy, despite
preserving the group symmetry. We observe, however, that
the holographic zero-energy modes can be used to build
observables that determine only the global behavior under the
symmetry transformation (as in the case of the total fermionic
parity in the Kitaev chain); when considering a nonuniform
system with alternating µ-dominated and J -dominated seg-
ments, the number of degenerate ground states scales with
the number of interfaces and the holographic modes cannot
distinguish all the ground states.

B. Non-Abelian auxiliary representations
and additional symmetries

For a non-Abelian group G and a non-Abelian auxiliary
representation A, in general, there will be a set of conjugacy
classes such that the character χA vanishes for their elements.
Let G0 denote the set of group elements g with vanishing
character χA(g−1):

G0 = {g ∈ G s. t. χA(g−1) = 0}, (132)

and by Gc
0 its complement:

Gc
0 = {g ∈ G s. t. χA(g−1) ̸= 0}. (133)

For all the elements g̃ ∈ G0, θg̃ does not appear in
the gauge-flux Hamiltonian (18). Furthermore, θg̃ (r ) can-
not be expressed simply in terms of the trace over A of
β

†
g̃ (2r )αg̃ (2r − 1), because the right-hand side of Eq. (61)

vanishes.
Depending on the choice of G and A, we must distinguish

two cases: (i) Gc
0 is not a proper subgroup of G and (ii) Gc

0 is
a proper subgroup of G.

An example of the kind (i) is the S4 group, corresponding to
the 24 orientation-preserving symmetries of the cube, associ-
ated with its fundamental representation A = 3 of dimension
3. When Gc

0 is not a proper subgroup, the elements of G0 can
be generated by the products of elements of Gc

0. Therefore,
in case (i), all the operators θg (r ) can be expressed in a
local form in terms of the dyonic modes: for g ∈ Gc

0, it is
enough to apply Eq. (60); for g̃ ∈ G0, instead, we can express
g̃ = g1 . . . gl with all the gi’s belonging to Gc

0; in this way
θg̃ (r ) = θg1 (r ) . . . θgl

(r ) results from the product of the local
terms θgi

and it is local in turn.
The case (ii) can be exemplified by the group S3 with its

fundamental representation A = 2 (and analogously by all the
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groups Dn). In this case, the operators θg̃ (r ) with g̃ ∈ G0
cannot be obtained in this way because Gc

0 is closed under
composition. This implies that the operators θg̃ (r ) are not
local operators as a function of the dyonic modes. Therefore,
adding to the Hamiltonian small perturbations that include the
operators θg̃ (r ) may in general destroy the topological order.

Furthermore, in case (ii), the system acquires additional
local symmetries. To examine the appearance of these sym-
metries, it is useful to consider the flux-ladder Hamiltonian
(18). The operators θg̃ (r ) (with g̃ ∈ G0) do not appear in the
Hamiltonian and cannot be obtained as products of the other
operators θg . Let us consider the unitary operator

V (r ) = exp

⎡

⎣ i
∑

g̃∈G0

α(r )|g̃(r )⟩⟨g̃(r )|

⎤

⎦ . (134)

This is a U(1) local transformation that multiplies the wave
function by a phase eiα(r ) if the r th rung is in a state belonging
to G0. It is easy to see that V †(r )HV (r ) = H : V (r ) is
diagonal in the group element basis, it trivially commutes with
HJ and, in case (ii), there are no terms in the Hamiltonian
mixing the states in G0 and Gc

0 due to Gc
0 being closed under

composition. Therefore there is an extensive set of conserved
quantities Q(r ) =

∑
g̃∈G0

α(r )|g̃(r )⟩⟨g̃(r )|, which split the
Hilbert space in 2L subspaces. In each of these subspaces, the
Hamiltonian has a reduced global symmetry group Gc

0 rather
than the full symmetry group G.

In the case G = S3 and A = 2, for example, the degrees
of freedom |m⟩ and |n⟩ introduced in Sec. II E decouple: the
conserved charges Q(r ) correspond to the n = 0, 1 degrees of
freedom and the dynamics in each subspace is characterized
by an Abelian Z3 symmetry generated by the global c trans-
formations only. The global b transformations, instead, map a
subspace into its complementary with charges 1 − Q(r ).

In this case (in a system with open boundary conditions),
the left zero-energy modes ' and their weak counterpart do
not include any of the operators θh̃(r ) with h̃ ∈ G0 and act
only within a single subspace. Their role becomes analogous
to the Z3 parafermionic zero modes. The right zero modes (g̃

and their weak counterparts, instead, map a subspace into its
complementary through the JW string in Eq. (110). In case
(ii), therefore, it is possible to decompose the dyonic modes
into the product of Z3 parafermionic zero modes with Z2
operators. An analogous situation is verified for any group
Dn with A = 2. We conclude, therefore, that the groups Dn

are unsuitable to study the genuine non-Abelian nature of
the zero-energy dyonic modes. The groups with non-Abelian
irreducible auxiliary representations of the kind (i), instead,
offer the suitable playground to study the topological ordered
phases of the dyonic models in their full extent.

VI. ANALYSIS OF THE SINGLE-FLUX
SUBSPACE FOR THE GROUP S3

In this section, we numerically investigate some of the
features of the system for the specific case of the S3 flux ladder
introduced in Sec. II E: we discuss the roles of the matrix C
and the auxiliary irreducible representation A in the spectrum

of the lowest excited states and in the definition of the strong
zero-energy modes.

We follow the approach presented in Ref. [6] for Abelian
symmetries, and we restrict our analysis to the subspace of
the states with a single-flux excitation in the ladder. This is
a strong limitation in the study of the overall system, but,
despite that, it is useful to verify some of the analytical
results of the previous sections and to investigate the onset
of resonances in the first step of the iterative definition of the
strong zero-energy modes in Eqs. (86) and (88).

For small values of µ/J , the energy spectrum of the
single-flux excitations presents |G| − 1 energy bands, each
associated with one of the nontrivial fluxes g ∈ G of the
model. Each energy band includes (L − 1) × 6 states, corre-
sponding to the choice of the plaquette r of the flux g and the
background group element h, namely the state of the last rung
of the ladder. We can represent a basis of the single-flux states
based on the domain-wall picture:

|g, h, r⟩ = |hg⟩1 . . . |hg⟩r |h⟩r+1 . . . |h⟩L, (135)

with g ̸= e.
The flux-ladder Hamiltonian, projected into the single-flux

subspace, includes three contributions related to the masses of
the fluxes (20), their kinetic energy, and the boundary terms
of the system. We label these contributions by M, K , and B,
respectively, such that

Hsf = M + K + B, (136)

with

⟨g1, h1, r1|M|g2, h2, r2⟩ = δg1,g2δh1,h2δr1,r2mg−1
2

, (137)

⟨g1, h1, r1|K|g2, h2, r2⟩ = δg1,g2δh1,h2δr1±1,r2

[
−µχA

(
g±1

2

)]
,

(138)

⟨g1, h1, 1|B|g2, h2, 1⟩ = δh1,h2

(
1 − δg1,g2

)[
−µχA

(
g2g

−1
1

)]
,

(139)

⟨g1, h1, L − 1|B|g2, h2, L − 1⟩
= δh1g1,h2g2

(
1 − δg1,g2

)[
−µχA

(
g1g

−1
2

)]
. (140)

The resulting spectrum is characterized by three different
energy scales. The largest energy scale is determined by the
differences of the masses mg in Eq. (20), which establish
the gaps among the energy bands in the limit µ → 0. The
second energy scale is related to the kinetic energy of the
fluxes and is approximately proportional to µ/L; it defines
the typical energy gaps appearing within each band in finite
size system as effect of the dispersion of the fluxes. Finally,
the smallest energy scale is given by the splitting of the
quasidegenerate states corresponding to the same fluxes but
different backgrounds and it is determined by the effect of the
boundary terms.

The scaling of the smallest energy splitting is related to
the onset of resonances that hinder the formation of the strong
zero-energy modes. In a system with well-defined strong zero-
energy modes, all the states must be |G|-fold degenerate up to
exponentially suppressed corrections in the system size. If the
splitting among quasidegenerate states decays in a slower way
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with L, therefore, no strong zero-energy modes can be present
in the system.

Analogously to the Abelian case [6], we expect in general
a large splitting of the |G|-plets of quasidegenerate states
in regions of the spectrum in which at least two different
bands overlap. The most common scenario is that the related
splitting may decay algebraically in the system size, as in the
case of the nonchiral Z3 model [6]. This is due to the effect of
the boundary terms: the term (140) allows for transitions be-
tween states with different fluxes and different backgrounds,
whereas the term (139) allows for transitions between states
with different fluxes and the same background. The combined
action of the both of them, therefore, couples states with
the same flux and different backgrounds, thus splitting the
|G|-plets. This effect, though, is exponentially suppressed in
the system size if there is an energy gap between the bands
of different fluxes (as it can be derived through perturbation
theory) and it becomes relevant only when two energy bands
overlap. Stronger modifications of the spectrum may also
occur in the presence of more overlapping band.

In the following, we analyze the case G = S3 and we verify
that, indeed, in the presence of overlapping bands, the splitting
of the 6-plets of quasidegenerate single-flux states does not
decay exponentially with the system size. On the contrary, for
well-separated bands, such splitting decays exponentially. We
observe that the exponential decay of the single-flux splitting
is certainly not sufficient to assess the presence of strong zero-
energy modes: It is only related to the absence of resonances
between states with a single flux. This implies, for example,
that the first order of the iterative procedure (86) is well-
defined, but it does not provide information about the presence
of resonances at higher orders. We analyze the spectrum of
the single-flux Hamiltonian (136) for different two different
choices of matrix C and the auxiliary representation A.

A. Case A = 1

We begin by analyzing the single-flux Hamiltonian in the
case of trivial auxiliary representation A = 1. This case is
nontopological, as discussed in Sec. V A, but it provides an
example of the general behavior of the single-flux energy
bands.

For C = 1, the S3 model displays only two single-flux
energy bands due to the degeneracy of the masses of the
fluxes corresponding to the rotation (c and c2) and inversion
(b, bc and bc2) elements of the groups. The doubly degenerate
rotations have mass mc = 2J , whereas the threefold degen-
erate inversions have mass mb = 0 [see the definition (20)
and the matrices (37)]. Both the bands acquire a bandwidth
proportional to µ due to the kinetic energy K .

The spectrum for C = 1 is represented in Fig. 5(a). The
lowest (inversion) band includes 18(L − 1) states correspond-
ing to the six different backgrounds h in (135) and the three
degenerate fluxes at mass 0. Some of these states are localized
at the edges of the system and they include, for instance, the
separate branch at the bottom of the band with a 12-fold de-
generacy. The remaining states, instead, can be distinguished
into families of 18 states with a degeneracy pattern 8-8-2,
except for the 24 state closest to the upper edge of the band,
which are instead orgainzed in the degeneracy pattern 8-8-8.

(a)

(b)

FIG. 5. (a): Spectrum of the single-flux Hamiltonian for C = 1
and A = 1 for 19 sites. The bottom band consists of the group
elements containing inversions, and the top band consists of the
rotation fluxes. The branch separating from the lower band consists
of 12 exactly degenerate states. (b): Energy splittings in the middle
of the two bands for varying system sizes, shown on a logarithmic
plot. The red squares indicate splittings between the last set of eight
and two degenerate states in the 18-plet in the middle of the lower
band, and the brown triangles indicates splittings between the last
four and two degenerate states in the 12-plet in the middle of the
upper band. In both cases, the energy splitting decays roughly as
1/L. The splitting between other sets of adjacent degenerate states
behave similarly throughout the band.

For C = 1, indeed, the first-order resonances in (86) hinder
the formation of strong modes, and the states in the lowest
band are not arranged in the typical 6-plets. Our numerical
analysis shows that both the splitting of the energies within
and between the 18-plets of states decay algebraically and
approximately as 1/L in the system size [see Fig. 5(b)].

The upper band is constituted by the two degenerate rota-
tion fluxes. In this case, the spectrum displays families of 12
states with a typical degeneracy pattern 2-4-4-2, and again all
energy differences inside and between these 12-plet families
decay algebraically [see Fig. 5(b)].

To split the degeneracies of these the single-flux energy
bands for small values of µ/J we introduce a C matrix that
fulfills conditions C1 and C2. In particular, we choose

C1 ≡ e−iπ/4

√
2

(
1 − i√

3
σx + i√

3
σy + i√

3
σz

)
. (141)

The corresponding masses (in ascending order) are
{−2,−2/

√
3,−1 + 1/

√
3, 0, 1 + 1/

√
3, 2}, and we have
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(a)

(b)

(c)

FIG. 6. (a) Spectrum of the single-flux Hamiltonian for C =
C1 and A = 1 as a function of µ/J for 19 sites. The bands are
nondegenerate by construction of C1. (b) Energy splitting $E in
units of J as a function of system size L, shown on a semilogarithmic
scale; its exponential decay is evident. The splitting is taken between
the six quasidegenerate states in the middle of the bottom band at
µ = 0.15 [red square in (a)]. (c) Splitting as a function of system
size L shown on a logarithmic plot and taken within a region of
overlap between the bottom and next-lowest band at µ = 0.3 [brown
triangle in (a)]. The splitting decays approximately algebraically, and
we conclude that the zero-energy modes are weak.

chosen this matrix in such a way that the gap between the triv-
ial and the first excited fluxes is larger than the gap between
the first and second excited fluxes. In this way the predictions
of the single-flux Hamiltonian are more accurate for what
concerns the lowest band since the transitions with the
ground-state manifold and the two-flux states are less relevant
than the boundary-term mixing between the first two bands.

The five resulting single-flux bands are well separated for
small µ [see Fig. 6(a)] and all the states are now organized into

(a)

(b)

FIG. 7. (a) Spectrum of the single-flux Hamiltonian for C = 1
and A = 2 for 19 sites. At µ = 0, the states associated with the
inversions have zero energy (lowest band). These fluxes have no
dynamics in the bulk. At the boundary, however, they mix and
the boundary states acquire a finite energy when µ is increased.
The energies of these edge states are given by the eigenvalues of
the boundary terms (139) and (140): six states acquire the energy
E = 2µ and 12 states the energy −µ. These values are indicated by
the straight orange lines. (b) Energy splitting $E in units of J shown
on a logarithmic plot. The splitting is taken between two sets of
fourfold degenerate states in the middle of the top band at µ = 0.15
(red square in the top panel). The splitting is algebraically suppressed
in the system size. We conclude that the zero-energy modes are weak.

6-plets separated by gaps scaling as µ/L due to the kinetic
energy. For small µ, in the regions where the bands do not
overlap, we observe an exponential decay of the splitting of
the 6-plets with the system size [see Fig. 6(b)]. The C1 matrix
removes the resonance at the first level of iteration in the
definition of the strong-zero energy modes and, consequently,
the single-flux spectrum behaves as in the presence of strong
modes (whereas states with more than one flux are subject to
higher-order resonances). When we consider larger values of
µ and we study the spectrum of the states in a region with two
overlapping bands, however, a weaker decay reappears [see
Fig. 6(c), which approximately shows an algebraic decay] and
the division into 6-plets is no longer precise.

B. Case A = 2

True topological order is expected to arise when A is non-
Abelian, and therefore we consider the case A = 2 (the case
A = −1 is analogous to A = 1). For the group S3, though,
the choice A = 2 implies that no operator θgb

corresponding
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(a)

(b)

FIG. 8. (a) Spectrum of the single-flux Hamiltonian for C = C1

and A = 2 for 19 sites in units of J . The flat bands correspond
to the inversions, and the branches separating from these bands
correspond to boundary states. In analogy to the situation in Fig. 7,
these boundary states have energies derived from (139) and (140)
(orange curves), which are not linear in µ in this case. (b): Energy
splitting $E of two 6-plets in the middle of the two rotation bands at
µ = 0.4 (red square and brown triangle in the top panel) shown on a
logarithmic plot. $E is exponentially suppressed in the system size
in both cases.

to the inversion group elements appears in the Hamiltonian,
since they have vanishing character in that representation.
Consequently, the single-flux inversion bands become flat.
This can be seen for both C = 1 (Fig. 7) and C = C1 (Fig. 8).

For C = 1, the system displays a dispersing band corre-
sponding to the degenerate rotation fluxes, and a flat band
corresponding to the zero-energy fluxes. Two sets of edge
modes branch from the inversion band, with energy 2µ and
−µ, as an effect of the boundary terms T .

The degeneracy structure of the rotation band is slightly
different from the A = 1 and C = 1, as the states in this band
are fourfold degenerate with the exception of the states at
the edges of the band displaying a twofold degeneracy. The
splitting between the fourfold degenerate states is algebraic in
the system size [see Fig. 7(b)].

For C = C1, instead, the five bands are well separated. The
bands corresponding to the inversions are still dispersionless
and, also in this case, branches of edge modes depart from
them [see Fig. 8(a)]. The behavior of the rotation bands is
analogous to the case A = 1; the states are arranged in 6-plets
and, for values of µ such that these two bands do not overlap,
their splitting is exponentially suppressed in the system size.

VII. CONCLUSIONS

In this work, we defined two models with a global non-
Abelian group symmetry. The first is the chiral ladder model
for gauge fluxes in Eq. (18). Based on our assumptions on
its parameters, this model displays a ferromagnetic symmetry
broken phase with |G| degenerate ground states. The second
is the model (62) built through dyonic operators whose prop-
erties are determined by the symmetry group. The two models
are unitarily equivalent through a nonlocal Jordan-Wigner
transformation based on the non-Abelian group G. Such trans-
formation maps the ferromagnetic phase of the ladder model
into a phase of the dyonic model that displays topological
order and weak zero-energy dyonic modes localized on the
boundary of the system. This is analogous to the topological
one-dimensional chains of Majorana [1] and parafermionic
[5] modes and our construction generalizes these systems
and defines a new kind of one-dimensional topological order
based on discrete non-Abelian symmetry groups.

To examine the properties of the dyonic model, we ex-
tended the definition of one-dimensional topological order
(see, for example, Ref. [7]) to systems with non-Abelian
symmetries. The appearance of topological order in the dyonic
model crucially relies on the notion of locality determined by
the dyonic modes. For this purpose, the Jordan-Wigner trans-
formation adopted for the definition of the dyonic modes must
rely on an auxiliary irreducible representation A, which must
be non-Abelian. In case of Abelian auxiliary representations,
the dyonic model displays holographic symmetries.

We examined the weak localized dyonic topological modes
appearing in the system through a quasiadiabatic continuation
technique and we presented a constructive approach to investi-
gate the appearance of strong zero-energy modes. We showed
that the definition of strong modes is in general flawed by
divergences originating from two kinds of resonances between
excited states: besides the resonances appearing in the study of
the Abelian models [6,9], the non-Abelian dyonic and ladder
models suffer from the degeneracy of states characterized by
different permutations of the same set of gauge fluxes. This
hinders the formation of strong zero-energy modes unless
these degeneracies are removed through the introduction of
coupling constants with a weak position dependence.

The gauge-flux ladder models have been inspired by lattice
gauge theories and quantum double models. They may dis-
play, in general, very rich phase diagrams and it is possible
to envision schemes for their quantum simulation in ultra-
cold atom setups based on the protocols developed for the
quantum simulation of lattice gauge theories [16,17] (see, for
example, the proposal [36] for the simulation of systems with
S3 symmetry). The realization of the dyonic model, instead,
must rely on topological systems in higher dimensions with
one-dimensional edge states with the required G symmetry.
Based on matrix-product-state results in Refs. [37–39], it is
indeed possible to show that there cannot exists a purely one-
dimensional realization of these gapped topological phases of
matter.

The systems we built are based on discrete symmetry
groups. We observe, however, that the flux-ladder model can
be extended to truncated Lie groups through suitable modifi-
cations of the operators U in the Hamiltonian (18) [18] (see
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Ref. [40] for the specific SU(2) case), and we can envision
extensions to quantum groups as well. The generalization of
the dyonic models to these scenarios is an interesting open
problem which may connect our model to different systems
of interacting anyons.

Finally, we point out that the dyonic modes we defined
constitute a particular one-dimensional realization of the ex-
trinsic anyonic twist defects studied in the context of two-
dimensional symmetry-enriched systems with topological or-
der [32–34]. Based on the analogy with quantum double
models, we suppose that their projective non-Abelian braiding
statistics is universal for a suitable choice of the symme-
try group. The braiding of dyonic modes can be studied
by embedding the dyonic models in appropriate tri-junction
geometries or two-dimensional systems, thus extending the
known results for parafermionic modes [41,42].
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APPENDIX A: THE C MATRIX IN HIGH-DIMENSION
REPRESENTATIONS

In the main text, we proved the existence of a unitary
matrix C satisfying Eq. (21) when the representation ma-
trices DF (g) of G belong to U(2). In this section, we will
extend the proof to the case with DF (g) ∈ U (N ). We will
exploit the decomposition U(N ) = U (1) × SU(N ), implying
that any matrix U ∈ U (N ) is generated by a phase and
the generators of SU(N ). SU(N ) in turn is generated by
N2 − 1 traceless, Hermitian matrices Ta satisfying [Ta, Tb] =
i
∑

c fabcTc, where fabc are the structure constants of SU(N ).
These matrices Ta satisfy

TaTb = δab1 + 1
2

N2−1∑

c=1

(ifabc + dabc )Tc, (A1)

such that we can write

DF (g) = eiηg,01eit η⃗g ·T⃗ = eiηg,01(dg,01 + d⃗g · T⃗ ). (A2)

Here, dg0 and d⃗g are in general complicated functions of η⃗g

and the structure constants. For simplicity, let us consider the
case C ∈ SU(N ). We can write

C = v01 + v⃗ · T⃗ . (A3)

From (A1), we see that

Kg = Tr(CDF (g)) = eiηg,0

(

Nv0dg,0 + N
∑

i

vidg,i

)

= ND(g) · C, (A4)

where the N2 dimensional vectors are defined in analogy with
the two-dimensional case:

D(g) = eiαg0

(
dg,0

d⃗g

)
, C =

(
v0
v⃗

)
. (A5)

Since

1 = 1
N

Tr[C†C] = |v0|2 +
∑

i

|vi |2 = ||C||2, (A6)

the vector C lies on the (N2 − 1)-sphere. The condition Kg ̸=
Kh amounts to

(D(g) − D(h)) · C ̸= 0, (A7)

and the demand that this holds for all g ̸= h gives at most
n = |G|(|G| − 1)/2 vectors, which C cannot be orthogonal to,
or in other words, there are n great circles on the (N2 − 1)-
sphere which C cannot lie on. For all the vectors C that do
not belong to these great circles, the corresponding matrix C
satisfies the condition (21). If we include a general overall
phase to the matrix C, this does not affect v0 and v⃗, hence
the conditions (A7) are unaffected and the extension to C ∈
U (N ) is straightforward.

APPENDIX B: QUASIADIABATIC CONTINUATION OF
THE WEAK ZERO-ENERGY MODES AT FIRST ORDER

By applying the quasiadiabatic continuation technique
[7,28,43], we evaluate the first order correction of the weak
zero-energy modes of HJ after the introduction of a small
perturbation Hµ such that µ ≪ J . We consider for simplicity
the case C = 1.

For the left edge, the unperturbed zero energy mode is
α(1). We will calculate V (µ)α(1)V†(µ) where the unitary
operator V (µ) is defined as the path ordered evolution

V (µ) = Texp
[
i

∫ µ

0
D(µ′) dµ′

]
(B1)

generated by the operator

D(µ) = −i

∫ +∞

−∞
dt eiHtF (∂µH )e−iH t . (B2)

In the previous relation, H = HJ + Hµ and the function F is
meant to introduce suitable filter functions [43], depending on
the different kinds of excitations of the ground states, to cut off
the time the time evolution of ∂µH for large |t |. In particular,
we adopt

F (∂µH ) = −
∑

r

∑

h ̸=e

F [(mh − me )t]χA(h−1)θh(r ), (B3)

where mg labels the flux masses (20) and F (t ) is an imag-
inary, odd and analytical filter function such that its Fourier
transform results in

F̃ (ω) =
∫ +∞

−∞
dt eiωtF (t ) ≈ − 1

ω
for |ω| > 1, (B4)

and F̃ (0) = 0 [43]. From Eq. (B1), we get

V (µ)α(1)V†(µ) = α(1) + iµ[D(0),α(1)] + . . . . (B5)

245135-24

137



DYONIC ZERO-ENERGY MODES PHYSICAL REVIEW B 98, 245135 (2018)

The commutator results in

[D(µ = 0),α(1)] = i

∫ +∞

−∞
dt

⎡

⎣ eiHJ t
∑

h ̸=e

F [(mh − me )t]χA(h−1)θh(1)e−iHJ t , U †(1)

⎤

⎦

= i

∫ +∞

−∞
dt eiHJ t

⎡

⎣
∑

h ̸=e

F [(mh − me )t]χA(h−1)θh(1)U †(1)
(
1 − D†(h)

)
⎤

⎦ e−iHJ t

= i
∑

h ̸=e

χA(h−1)θh(1)U †(1)(1 − D†(h))
∫ +∞

−∞
dt F [(mh − me )t]e−iJ (Tr[U (2)CU †(1)(D†(h)−1)+H.c.])t . (B6)

We expressed all the terms in the previous relations as a function of the flux operators U †(1) = α(1) and χA(h−1)θh(1) =
TrA [β†

h(2)αh(1)]D†(h). The weak zero-energy modes are defined based on their commutation relation (71) with the Hamiltonian
projected on the ground-state manifold. Therefore we can specialize the previous expressions by considering their effect on the
ground states of H only. To the purpose of evaluating the first-order correction in (B5), we can consider in turn the effect of
the commutator on the ground states of HJ , since dealing with the eigenstates of H would imply the introduction of a further
correction of order µ/J based on the relation P (µ) ≈ P (0) + iµ[D(0), P (0)], where P (µ) is the projection operator onto the
ground-state manifold for finite µ. Under this assumption, in the case C = 1, we obtain

[D(µ = 0),α(1)]P (µ) ≈ i
∑

h ̸=e

χA(h−1)θh(1)U †(1)(1 − D†(h))P (0)
∫ +∞

−∞
dt F [(mh − me )t]ei(mh−me )t + O(µ/J ). (B7)

After considering this ground-state restriction, by applying Eq. (B4) and considering that F̃ (1) ≈ −1, we finally obtain

V (µ)α(1)V†(µ) = U †(1) +
∑

h ̸=e

µ

mh − me

χA(h−1)θh(1)U †(1)(1 − D†(h)) + O

(
µ2

J 2

)
. (B8)

This relation corresponds to Eq. (75) once we express the θ and U † operators in terms of the dyonic modes. We also observe that
this first-order correction coincides with the first-order term '(1) in Eq. (86) when we apply the strong zero-energy mode to the
ground-state manifold of HJ in the limit C → 1. The case with a general C matrix in the Hamiltonian can be investigated with
the same approach. The final result indeed matches '(1) in Eq. (86).

For C = 1, a similar calculation can be performed for the right edge modes. For this purpose, it is necessary to generalize the
functional F (t ). Instead of considering the set of functions F (mh − me )t in Eq. (B3), we define F based on a set of operators
fJ :

F (∂µH ) = −
∑

r

∑

h ̸=e

F (fJ (h, r )t )χA(h−1)θh(r ), (B9)

where

fJ (h, r ) = HJ − θh(r )HJ θ
†
h(r ). (B10)

The role of the operators fJ is to extract the correct spectral gap of the unperturbed Hamiltonian HJ to be associated with each
term of ∂µH .

The key property in the definition (B9) is that both F (∂µH ) and the resulting D(0) commute with the string operator Lg (L)
appearing in βg (2L). By exploiting this property and [βg (2L),HJ ] = 0, we get

[D(µ = 0),βg (2L)]P (µ) ≈ i

∫ +∞

−∞
dt

⎡

⎣ eiHJ t
∑

r,h ̸=e

F [fJ (h, r )t]χA(h−1)θh(r )e−iHJ t ,Lg (L)U †(L)

⎤

⎦ P (0)

= i

∫ +∞

−∞
dt

⎡

⎣
∑

r,h ̸=e

eifJ (h,r )tF [fJ (h, r )t]χA(h−1)θh(r ),Lg (L)U †(L)

⎤

⎦ P (0)

= iLg (L)
∑

h ̸=e

∫ +∞

−∞
dt eifJ (h,L)tF [fJ (h,L)t]χA(h−1)[θh(L), U †(L)]P (0)

= −i
∑

h ̸=e

Lg (L)U †(L)[D(h) − 1]
∫ +∞

−∞
dt eifJ (h,L)tF [fJ (h,L)t]χA(h−1)θh(L)P (0)

≈ i
∑

h ̸=e

Lg (L)U †(L)[D(h) − 1]χA(h−1)θh(L)
1

mh − me

P (0). (B11)
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FIG. 9. Schematic representation of the interface between triv-
ial (r < 1) and topological (r > 1) interface. The dotted/full lines
represent weak/strong couplings and the resulting weak zero-energy
modes is localized around αg (1).

Thanks to the definitions (B9) and (B10), the last line holds
also for C ̸= 1 and can be derived by commuting fJ with θh

and applying it to the projector P (0). We conclude, in general:

V (µ)βg (2L)V†(µ)

= βg (2L) + βg (2L)
∑

h ̸=e

µ

mh − me

(D(h) − 1) TrK TrA

× [β†
h(2)αh(1)DK†(h)] + O

(
µ2

J 2

)
, (B12)

which is also consistent with the form of the right zero-energy
strong mode (104) applied to the unperturbed ground states.

APPENDIX C: THE WEAK MODES AT THE INTERFACE
BETWEEN NONTOPOLOGICAL AND

TOPOLOGICAL REGIONS

The analysis in Sec. IV assumes a finite and uniform chain
in its topological phase with µ ≪ J . For µ = 0, the left
zero-energy mode is α(1) which, based on the definition (45),
does not carry a Jordan-Wigner string, and, consequently, a
group element index. This property is inherited by all the left
weak zero-energy modes defined by adiabatic continuation in
Appendix B and it holds also for the calculation of the strong
zero-energy modes in Sec. IV.

In this appendix, we analyze what happens when we con-
sider a boundary between a nontopological region, located
at r < 1 and a topological region at r > 1. In this case,
the system is infinitely extended in both directions and the
Jordan-Wigner strings must be redefined by extending them

to r = −∞: Lg (r ) =
∏r

x=−∞ "g (x) where the product is an
ordered product generalizing Eq. (41).

We model the system through the Hamiltonian

H = HL(µL, JL) + HR (µR, JR ), (C1)

where the left Hamiltonian HL is defined for r < 1 and is in
the trivial regime µL ≫ JL, whereas the right Hamiltonian
HR is defined in the topological region r > 1 with µR ≪ JR

(see Fig. 9). For µR = JL = 0, the operators αg (1) do not ap-
pear in H and constitute zero-energy modes. In the following,
we will discuss how these zero-energy modes evolve quasiadi-
abatically, at first order, when introducing perturbations given
by JL and µR .

The unperturbed Hamiltonians HL(µL, 0) and HR (0, JR )
commute, since they are defined in nonoverlapping domains.
This makes it possible to evaluate the two first-order contribu-
tions resulting in Eq. (B5) separately. The contribution given
by µR coincides with the result in Eq. (B8). Therefore we
focus on the introduction of JL only. For ease of notation,
we drop the subscript L referring to the domain r < 1. The
operator D(J = 0) is defined as

D(J = 0) = i

∫ +∞

−∞
dteiHµtF ($t )

×
[
∑

r<1

(Tr[U (r + 1)CU †(r )] + H.c.)

]

e−iHµt .

(C2)

Since we are interested in the weak modes, the operator $
represents the gap caused by the application of the plaquette
operators over the ground states of Hµ. By using the projectors
(28), we can rewrite

Hµ = − µ|G|
dim A

∑

r<1

#A(r ), (C3)

therefore the ground states of Hµ corresponds to states in
which all the sites in the ladder model are in an arbitrary state
|Aab⟩. We conclude that the gap operator $ can be defined as

$ = µ|G|
dim A

∑

r<1

(1 − #A(r )). (C4)

We observe that the projector over the ground states of Hµ

is P (J = 0) =
∏

r<1 #A(r ) and it commutes with αg (1).
Therefore, by following the approach in Appendix B, we
obtain

[D(J = 0),αg (1)]P (J ) ≈ i

∫ +∞

−∞
dtF ($t )ei$t [(Tr[U (1)CU †(0)] + H.c.),Lg (0)]U †(1)P (0)

= −i
dim A

µ|G|
(1 − #A(0))(Tr[U (1)CU †(0)(1 − D†(g))] + H.c.)αg (1)P (0), (C5)

where we exploited that F̃ (0) = 0. The first-order correction to αg (1) on the trivial region results in

V (JL)αg (1)V†(JL) = αg (1) + JL dim A

µL|G|
(1 − #A(0))(Tr[U (1)CU †(0)(1 − D†(g))] + H.c.)αg (1) + O

(
J 2

L

µ2
L

)
. (C6)
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This relation can be fully recast in a local form as a function
of the operators αg (1), αg (−1) and βg (0) and it suggests
that, under quasiadiabatic evolution, the weak zero-energy
modes at the interfaces between topological and nontopolog-
ical regions maintain their locality. A similar approach can
be applied to estimate the strong-zero energy modes at such
interface. Also, in this case, the left modes acquire a group
index g and the result is fully dyonic.

APPENDIX D: INNER TERM OF THE ZERO MODES

In Sec. IV D, we discussed the resonances appearing in the
definition of the outer modes 'out,n. Here we investigate the
behavior of the inner modes. To this purpose, it is necessary to
refine our definition of the inner part of the commutators Cn

and of the inner modes 'in,n.
We introduce the notation c a2 ...

a1 a3 ... to label all the terms
of the commutator Cn appearing at level n =

∑
i ai in the

iteration process. The set a1, a2, . . . , an is an ordered partition
of n where lower and upper indices refer to the number of
consecutive times that the outer or inner operators θ have
been considered in the definition of this contribution of the
commutator Cn. In particular, cn ≡ Cout,n, whereas all the
other contributions belong to Cin,n.

To define in detail c a2 ...
a1 a3 ..., let us consider first the second

order of iteration. The operator C2 can be decomposed into

c2 = −µ

[

'1,
∑

h2

θh2 (2)

]

= Cout,2, (D1)

c 1
1 = −µ

[

'1,
∑

k1

θk1 (1)

]

= Cin,2. (D2)

The notation for c 1
1 refers to the fact that, in the first order

of iteration, we considered the outermost θ operator available
(θh1 (1)) in this case, whereas in the second order of iteration,
we considered the commutator with the inner term θk1 (1).

In a similar way, we can define different contributions for
the inner part of the strong mode 'in,n. In particular, we build
the following operators:

λ2 = 'out,2 such that [λ2,HJ ] = −c2, (D3)

λ 1
1 = 'in,2 such that [λ 1

1 ,HJ ] = −c 1
1 . (D4)

In the following iteration steps, we can define

cn = −µ

⎡

⎣ λn−1,
∑

hn

θhn
(n)

⎤

⎦ = Cout,n, (D5)

c 1
n−1 (r ) = −µ

[

λn−1,
∑

k1

θk1 (r )

]

, (D6)

c 2
n−2 (r1, r2) = −µ

[

λ 1
n−2 (r1),

∑

k2

θk2 (r2)

]

. (D7)

More in general, given λ a2 ...
a1 a3 ..., we will define a set of

commutators c a2 ...
a1 a3 ..., increasing the last upper index when

. . . . . . . . . . . .
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FIG. 10. Diagram of the structure of the terms at each order in
µ

J
. For a given term, its commutator with Hµ is canceled by the

subsequent terms’ commutator with HJ . The notation keeps track
of which term is derived from this. At each successive order, the
support may be extended compared to the previous step, in which
case a lower index is added. If the support is unchanged, an upper
index is added instead. The sum of all the indices gives the order of
the term in µ

J
, and the support of a given term is given by the sum of

lower indices plus one.

considering the commutator with an inner θ operator, and
increasing the last lower index when considering the commu-
tator with an outer θ operator. If the last index is not of the type
which is increased, a new index of 1 is added at that position
instead.

The construction of λ a2 ...
a1 a3 ... follows accordingly, based

on the relation
[
λ a2 ...

a1 a3 ..., HJ

]
= −

∑

r1...

c a2 ...
a1 a3 ...(r1, . . .), (D8)

where we are summing over all the possible position indices
of the inner part of the commutator.

This construction implies that the modes λ a2 ...
a1 a3 ... have

support in the first ain = a1 + a3 + a5 + . . . sites of the flux-
ladder model, and they range from α(1) to α(2ain + 1).

This construction is summarized in Fig. 10. We observe
that the order of the indices matters, so each term in Figu. 10
at any given order are in general not equal.

Because of the factor U †(1) in λn there is a difference
between c 1

n (1) and c 1
n (j ) for n > j > 1. To get an idea of the

structure of all these many terms, it is illustrative to calculate
a few of them, and by using (97), we see

c 1
2 (1) = −µ3

J 2

∑

h1,h2 ̸=e

∑

k1 ̸=e

χA
(
h−1

1

)
χA

(
h−1

2

)
χA

(
k−1

1

)

× [F̃1F2θh1 (1)θh2 (2)U †(1)(D†(h1) − 1), θk1 (1)]

= −µ3

J 2

∑

h1,h2 ̸=e

∑

k1 ̸=e

χA
(
h−1

1

)
χA

(
h−1

2

)
χA

(
k−1

1

)

× (F̃1F2θh1k1 (1)θh2 (2)U †(1)D†(k1)(D†(h1) − 1)

− G̃1(k1, 1)G2(k1, 1)θk1h1 (1)θh2 (2)U †(1)

× (D†(h1) − 1)), (D9)
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where

G̃1(k1, 1) = θk1 (1)F̃1θ
†
k1

(1)

= (Tr[U (2)CU †(1)D(k1)(D(h1) − 1) + H.c.])−1

− (Tr[U (2)CU †(1)D(k1)(D(h1) − 1)D†(h2)

+ H.c.])−1) (D10)

and

G2(k1, 1) = θk1 (1)F2θ
†
k1

(1)

=
(

Tr
[
U (2)CU †(1)D(k1)

(
D(h1h

−1
2

)
−1)+H.c.

]

+ Tr[U (3)CU †(2)(D(h2) − 1) + H.c.]
)
. (D11)

The crucial point to notice is that no new conditions
are required on the Hamiltonian in order have this term
finite. The next order correction λ 1

2 (1) is also finite, since
the only difference from (D9) is that the two terms have
an added factor of ([θh1k1 (1)θh2 (2),Hj ](θh1k1 (1)θh2 (2))−1)−1

and ([θk1h1 (1)θh2 (2),Hj ](θk1h1 (1)θh2 (2))−1)−1, respectively.
There is a subtlety we should address however. If for instance

we look at c 2
2 (1, 2), there are commutators of the form

[θh1k1 (1)θh2k2 (2),HJ ]

= (Tr(U (2)CU †(1)(D(h1k1(h2k2)−1 − 1) + H.c.)

+ (Tr(U (3)CU †(2)(D(h2k2−1) + H.c.))θh1k1 (1)θh2k2 (2),

(D12)

and the above is zero for k2 = h−1
2 and k1 = h−1

1 . Therefore,
when constructing λ 2

2 (1, 2), we would only have to sum over
the k1 and k2 such that c 2

2 (1, 2) ̸= 0.
In conclusion, all the inner terms can be expressed as the

sum of terms similar to the outer modes, through a redefinition
of the domain and the correct conjugations of the F functions
generating suitable G functions. As long as Fn and F̃n are
bounded, their conjugated counterparts Gn and G̃n are as well,
and all the inner terms are well-defined to all orders. All the F
and G operators assume the general form (

∑
i (mgi

− mhi
))−1

in the group element basis, and the only resonances which
may appear are the ones described in Sec. IV D. Consequently,
the inclusion of the inner modes does not qualitatively modify
the general behavior of the decay of the strong modes in the
bulk.
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Chapter 6

Epilogue

In this thesis we have investigated aspects of Majorana physics, which are crucial to understand in the
practical application of quantum computation. In the four projects we have firstly tackled the problem of
modeling the readout dynamics of Majorana qubits, presenting a flexible model which explicitly includes
the measurement apparatus. Secondly, we have extensively studied the decoherence rates for noisy ideal
Majorana qubits, finding non-Markovian effects that may constitute a significant reduction of readout
fidelity persisting at zero temperature. Thirdly, we have introduced and discussed a model generalizing
the notion of Majorana zero-energy modes by hosting more complicated dyonic zero-energy modes with
richer structure.

Once the experimental milestone of consistent Majorana parity readout has been successfully achieved,
we are in position to finally establish whether the putative zero-energy modes found in proximitized
nanowires [4, 22, 23, 58] truly stem from Majorana zero-energy modes, by using the procedure of
measurement-based braiding. Thus, we are on the verge of possibly proving the existence of a species
of quasiparticles that are fundamentally very different from ordinary electrons, phonons and so on. Fur-
thermore, if this is successfully demonstrated, it opens the door for applications of Majorana zero-energy
modes in topological quantum computation.

Project A, B and C contribute towards these goals by furthering our understanding of the dynamics
of Majorana qubits. These projects complement each other, since a high-fidelity readout has to happen
quicker than the information loss. On the other hand, one of the central findings of Project C is that
readouts have to be carried out gently, as entanglement with excess bosonic modes lead to visibility- and
potentially fidelity loss. In all four projects, there remain open questions suggesting interesting future
avenues of theoretical research.

In Project A, we mapped the problem of readouts of Majorana box qubits onto a variation of the spin-
boson model. The variation consists in there being two copies of the spin-boson model, corresponding
to the two different parity outcomes of the measurement, as well as coherence between the two sectors.
On the parity-diagonals therefore, the dynamics is highly detailed in the literature [77], and thus there
may very well exist more sophisticated theoretical tools which are immediately applicable to our case.
It would be curious to see these methods adapted to also describe the off-diagonals. However, one of the
strengths of our project is the simplicity of the results; one can quite easily adapt our theory to describe
different setups of reading out parities using a dot.

In the project we dealt with the experimentally relevant readout procedure where the conductance of
a capacitively coupled QPC is used to projectively measure the parity of the split dot-Majorana system.
We derived a microscopic model for the effective spectral density as seen from the dot-Majorana system,
but this complicated expression was unwieldy for the purpose of obtaining workable analytical results,
and we approximated the function with a much simpler Ohmic one. Thus, a possible follow-up project
would be to numerically tackle the problem of the exact QPC spectral density. In such a numerical
study, one could also include other error sources, using the methods outlined in the paper. Essentially,
one could include errors of the type studied in Project B and C, as well as a host of other sources of
dephasing for a complete quantitative treatment of the dynamics of the readouts.

Another type of readout which is also experimentally relevant, is dispersive readouts. Here, the dot is
capacitively coupled to an LC circuit, which is driven. In the steady state configuration, the capacitance
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of the dot reflects a shift of the impedance of the system, resulting in a phase- and amplitude shift of
reflected and transmitted signals through the circuit. While we modelled the decoherence due to a circuit
without driving, the time-dependency of the environment in the driven case leads to non-trivial changes
of the effective bosonic spectral function. Treating this problem beyond the rotating-wave approximation
would be immensely interesting, and would cover an important open theoretical problem in Majorana
qubit readouts.

For Project B and C, we developed a model of the decoherence in an ideal Majorana box qubit
subjected to electromagnetic noise. In Project B we used an intuitively simple model, treating the fluc-
tuations as classically varying potentials and calculating the leading order of non-adiabatic contributions
to the decoherence. This model relies on temperatures being comparable with the frequencies of the en-
vironmental modes, and thus it is maybe not realistic in practical applications. In contrast, in Project C
the electromagnetic noise was represented by bosonic modes, which gave us the possibility of calculating
that non-Markovian contributions to decoherence at zero temperature when the bare Majorana degrees
of freedom are measured projectively. In this case, the true eigenmodes of the system are dressed by
the bosons, and the question about the fidelity and visibility loss at zero temperature thus depends on
whether or not it is possible to perform a readout of the dressed modes. Here, we stress that the bosonic
spectrum is gapless, such that there is no meaningful way of adiabatic operations with respect to the
bosonic frequencies. Working out the dynamics of coupling the measurement apparatus and performing
the readout in the presence of these bosonic interactions is arguably the main outstanding problem. It
appears to be a hard problem as non-Markovian dynamics played an important role. Expanding upon the
calculation of the instantaneous zero-energy modes in Project B, it could maybe be possible to calculate
the consequences of switching on the dot coupling in a readout experiment, thus paving a way towards
solving the problem. Following the techniques of Project B, the formalism could also potentially allow
for including noise in the coupling parameters through statistically averaging over such terms.

If topological quantum computation can be proven possible using Majorana bound states, it opens
the possibility of using more exotic anyons with complete braiding statistics. In that case, all quantum
gates could be implemented in a topologically protected manner, which would for example vastly limit
the overhead expected from magic state distillation. Project D contributes to establishing the necessary
theoretical groundwork for achieving this very long term goal.

Here, we introduced an abstract model with a local dyonic representation hosting zero-energy modes
that generalize the Majorana bound states in the Kitaev model. In contrast with Majoranas, the modes
are in general weak zero-energy modes, but we found that adding a spatial dependency on the parameters,
for instance through disorder, might make the zero-energy modes strong. We did this through an iterative
construction of the zero-energy modes, and one question that went beyond the scope of our study was
how far into the excited states disorder would preserve the degeneracy. On one hand, as the system
size increases, so does the risk of destructive resonances, but on the other hand, the support of the
terms decrease exponentially. It would be an interesting question for a follow-up study to investigate the
interplay of these two effects to see whether strong zero-energy modes are possible in principle.

While we understand the fusion rules of the dyonic zero-energy modes, we still don’t know their
braiding statistics. If this could be figured out, our model could present a paradigmatic framework for
collectively describing 1-dimensional systems with anyonic zero-energy modes. Parafermions are natu-
rally described by our model, and it could be interesting to investigate if there can be made a connection
with other types of anyons, such as Fibonacci anyons. Also, if the braiding rules of the dyonic zero-energy
modes corresponding to any finite groups G is worked out, it could be interesting to investigate what
restrictions are necessary on G and its representations in the model, for the dyons to have a computa-
tionally complete set of braiding rules.
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Collectively the four projects of this thesis expand upon our knowledge of anyonic zero-energy modes,
and it is the hope of its author that the findings will help guide experiments as well as theory towards
achieving the goal of demonstrating non-abelian anyons. The fields of topological phases of condensed
matter and topological quantum computation are very active fields of research, both theoretically and
experimentally, and following the developments over the coming years will be very interesting.
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