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A B S T R A C T

This report is concerned with the properties of one and two dimensional
semiconducting materials when brought into contact with a superconduc-
tor. Experimentally we study the 2D electron gas in an InGaAs/InAs het-
erostructure with aluminum grown in situ on the surface, and theoretically
we show that a superconducting 1D nanowire can harbor Majorana bound
states in the absence of spin–orbit coupling.

We fabricate and measure micrometer–sized mesoscopic devices demon-
strating the inheritance of superconducting properties in the 2D electron gas.
By placing a quantum point contact proximal to the interface between the
2D electron gas and the aluminum, we are able to demonstrate quantization
of conductance in units of 4e2/h indicative of perfect Andreev reflection at
the interface. We show that the quantum point contact can be operated
as a tunnel probe to locally measure the density of states in the electron
gas, which shows dramatically suppressed conductance (a hard gap) for
energies below the superconducting pair potential. By fabricating Joseph-
son junctions where the 2D electron gas is flanked by two superconducting
banks, we also study the supercurrent carrying properties of the 2D electron
gas. When a voltage is passed through the Josephson junction, we observe
multiple Andreev reflections and preliminary results point to a highly trans-
missive interface between the 2D electron gas and the superconductor.

In the theoretical section we demonstrate analytically and numerically,
that in a 1D nanowire with a superconducting pairing potential, Majorana
bound states can exist in the absence of spin–orbit coupling. Our proposal
dispenses with spin–orbit coupling at the expense of a locally varying mag-
netic field. The presence of the topological state is demonstrated analyti-
cally by mapping our model onto a superconducting nanowire with topo-
logical properties. We deploy a numerical code using the scattering matrix
approach to demonstrate the topological state for realistic parameters of a
typical nanowire and magnetic fields generated from small permanent mag-
nets.

v



R E S U M E

Denne rapport omhandler egenskaber ved en og to dimensionelle halvle-
dende materialer, når disse bringes i kontakt med en superleder. Eksperi-
mentelt studerer vi 2D elektron gassen som formes i en InGaAs/InAs het-
erostrukture med aluminum groet in situ på overfladen. Teoretisk har vi vist
at en 1D nanowire kan indeholde bundne Majorana tilstande uden spin–
bane kobling i nanowiren.

Vi har fremstillet og målt på mikrometer størrelse mesoskopiske kredsløb,
som viser at 2D elektron gassen har nedarvet egenskaber fra aluminium
superlederen på overfladen. Ved at placere en kvantepunkt–kontakt ved
grænselaget mellem elektrongassen og superlederen, observerer vi at kvan-
tiseringen af konduktansen er i enheder af 4e2/h, hvilket indikerer at An-
dreev reflektionerne er ideelle. Kvantepunkt– kontakten kan bruges som
en tunnel kontakt for tilstandstætheden i elektrongassen. Vi har demon-
streret at når kvantepunktkontakten bruges som en tunnel kontakt, er kon-
duktansen kraftigt reduceret for energier mindre end parrings–potentialet
i superlederen (det såkaldte "hårde gab"). Derudover har vi fremstillet
en Josephson kontakt, og studeret superstrømmen. Når en spænding ap-
pliceres over Josephson kontakten observerer vi adskillige Andreev reflek-
tioner, indikativt for et rent grænselag imellem halvlederen og superlederen.

Teoretisk har vi demonstreret at i en 1D nanotråd med superledende
kontakt kan bundne Majorana tilstande frembringes også uden spin–bane
kobling. Vores model bruger lokalt varierende magnetfelter til at erstatte
spin–bane koblingen. Den topologiske fase, i hvilken bundne Majorana
tilstande kan opstå, demonstreres analytisk ved at vise at det varierende
magnetfelt giver ophav til en effektiv spin–bane kobling. Vi har udviklet pro-
grammel der ved hjælp af spredningsmatrix–formalismen numerisk demon-
strerer hvornår nanotråden overgår til den topologiske fase, under realis-
tiske parameter for nanotråden og det fornødne magnetfelt.
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1
W H Y W O R RY A B O U T S E M I C O N D U C T O R S C O U P L E D T O
S U P E R C O N D U C T O R S ?

The marriage of semiconductors and superconductors unlocks the potential
for controlling and observing novel phenomena in mesoscopic physics. By
the process of Andreev reflection from the interface to a superconductor, a
carrier in the semiconductor can inherit certain properties of the supercon-
ductor while maintaining the semiconducting characteristics, such as tun-
able carrier density, long mean free paths, spin–orbit properties and their
g–factor [1, 2].

In particular, if a semiconductor (say, a 2D electron gas) is sandwiched
between two superconductors, a dissipationless supercurrent can flow be-
tween the two superconductors despite the semiconducting interposer. This
supercurrent is carried by electrons and holes forming a bound state arising
from coherent bounces back and forth between the two superconductors [3].
The magnitude of this supercurrent can be controlled by electrostatically
changing the electron density in the electron gas, showcasing the combina-
tion of superconducting and semiconducting properties.

Also in the single interface superconductor/semiconductor structure does
the inheritance of the superconducting properties in the semiconductor lead
to exotic phenomena. A superconductor is characterized by a gap in its den-
sity of states, usually denoted D, around the Fermi energy, and if the super-
conductor/semiconductor interface is sufficiently pristine, the semiconduc-
tor will also show a gap commensurable with D in its local density of states.
This proximity induced gap can, in concert with properties of the semicon-
ductor, drive a transition into a topological phase, identical to the exotic
p–wave superconductor [4, 5, 6, 7, 8]. The quasiparticle excitations in a p–
wave superconductor are rather exotic, in that they obey non–abelian statis-
tics and have been proposed as qubits in fault–tolerant topological quantum
computing schemes [9, 10, 11].

Between gating a supercurrent in an SNS junction and performing compu-
tation on excitations in the effective p–wave superconductor is a significant
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2 why worry about semiconductors coupled to superconductors?

amount of materials science, quantum transport experiments and theoret-
ical insights. The use of (effective) p–wave superconductors for quantum
computation boils down to the hunt for, and ultimately manipulation of, its
quasiparticle excitations – the Majorana bound state. Within the last few
years, several very encouraging reports on the experimental signatures of
Majorana excitations have appeared [12, 13, 14].

The realization of an effective p–wave superconductor and the under-
standing of the materials and devices associated with it, is the underlying
motivation for both the theoretical and experimental work in this thesis,
so we devote the next section to a brief tour of the allure of the Majorana
excitation.

1.1 the promise of topological quantum computing

The Majorana bound state, named after the Italian physicist Ettore Majo-
rana (1906-1959), is a quasiparticle living at zero energy, which is its own
antiparticle. In second quantization this property translates to

g

† = g (1.1)

What has spurned the increased interest in Majoranas (as they are colloqui-
ally named) is not just their remarkable particle/antiparticle property, but
also their properties under exchange. Namely, their exchange statistics are
non–Abelian (i.e. non–commuting), which means that

y(g1, . . . , gj, gj+1, . . . , gN) = Ûy(g1, . . . , gj+1, gj, . . . , gN) (1.2)

where Û is a matrix representing a rotation in the degenerate subspace of
Majoranas at zero energy. In 2 + 1 dimensions the exchange of Majoranas
can be thought of as strands being weaved around each other (see Figure
1.1), and the process is referred to as braiding. What truly kicked off the
excitement was the realization that braiding non–Abelian anyons is equiva-
lent to implementing logical operations on quantum bits [15, 16, 11]. While
this in itself is remarkable, the nature of the Majorana fermion makes it in-
sensitive to local perturbations, which in turn makes the braid operations
insensitive to local perturbations. In Chapter 6 we will see how this insen-
sitivity comes about (roughly: via the non–local nature of this exotic state).
From a quantum computing stand point this would constitute a milestone:
Many qubit implementations are limited by decoherence effects due to the
environment. While several schemes exist to circumvent the unavoidable
errors due to decoherence from the environment, a qubit architecture that
is fault–tolerant at the hardware level would be superior.

One implementation of an operation on a quantum memory built from
Majoranas, require spatially moving the quasiparticles around to perform
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Figure 1.1: a, Interchange (braiding) of two Majoranas in 2 + 1 dimension. b, The
same braid operation as in a, but now with ”noise” added on top. As
long as the final number of braids is the same, and they’re performed
in the same order, the braiding will not care how large excursions the
particles take from the direct route.

the braiding operations1. Thus, to realize scalable topological quantum com-
puting, the Majoranas should reside in a material where complex geometries
can be carved using top–down approaches. In a number of landmark pa-
pers from 2010 several groups proposed realization of Majoranas in semi-
conducting systems with spin–orbit coupling, in the presence of an external
magnetic field, if the semiconductor is coupled to an s–wave superconductor
[5, 6, 7, 8]. Shortly thereafter, Alicea and coworkers published a "cookbook"
for how braiding operations on Majoranas can be implemented in T–shaped
junctions in the semiconductor/superconductor interface devices [20].

The braiding scheme proposed by Alicea is the motivation for the exper-
imental part of this thesis: We are interested in paving way for materials
and devices, starting from a 2D electron gas, that can harbor and potentially
operate on Majorana particles for quantum computing. The motivation for
the theoretical work in this thesis is that spin–orbit coupling, implied in the
proposals for topological matter discussed above, is a materials–dependent
property which only to a certain extent can be engineered. We have pro-
posed a model that dispenses with the need for intrinsic spin–orbit at the
cost of introducing micromagnets proximal to a nanowire.

1 Other proposals exist that dispense with the need for spatially moving the zero–energy state
around, but here we focus on the intuitive picture offered by envisioning the Majoranas moving
in a 2D plane [17, 18, 19]
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1.2 whats in this thesis

This thesis concerns two major subjects under the umbrella realizing p–
wave superconductivity: The fabrication and measurement of superconduc-
tor/semiconductor devices in a InAs 2D electron gas, with a thin layer of
aluminum grown in situ on top of the quantum well, and a theoretical inves-
tigation into realizing Majorana quasiparticles in semiconducting nanowires
without spin orbit coupling. These subjects are covered in three parts:

i : The technology of growing aluminum in situ on the quantum well rep-
resents a new strategy for forming a highly-transmissive interface be-
tween the semiconductor and the superconductor. We therefore de-
vote Chapter 2 to the basic characterization of the quantum well and
the aluminum film itself, before proceeding to couple them in the sub-
sequent section. The fabrication steps that we have developed for real-
izing the superconductor/semiconductor geometries in this structure
is discussed in Chapter 3, along with the basics of a dilution refrigera-
tor and the electronic setup used to measured the devices.

ii : This part is devoted to measurements of the superconducting prop-
erties of a single super/semi (abbreviated SN) interface and of a su-
per/semi/super device (abbreviated SNS). In Chapter 4, the Andreev
reflection and the Blonder–Tinkham–Klapwijk formalism is introduced
to understand the phenomenology of the SN device. We have ob-
served a doubling of the conductance quantum in a quantum point
contact fabricated in the SN geometry, and we introduce the theoret-
ical framework to understand this behavior. In Chapter 5 we focus
on the supercurrent carrying properties of the SNS device and the ob-
servation of multiple Andreev reflections, which indicate highly trans-
missive transport through the junction.

iii : Finally we review theoretical work on realizing Majorana fermions in
1D nanowires without spin–orbit coupling. In this section we derive
the requirement for a topological phase to appear in nanowires with
p–wave pairing, show that it maps onto a nanowire with s–wave pair-
ing and spin–orbit coupling in the presence of an external magnetic
field. This allows us to study, numerically and analytically, how a
nanowire even without spin–orbit coupling, but in the presence of a
locally oscillating magnetic field formed by micromagnets, can also
exhibit topological properties and harbor Majorana excitations.
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The results reported on the bare 2DEG and the superconducting film in
Chapter 2 is part of a manuscript to be submitted

epitaxial al-inas two-dimensional systems : a platform for

gateable topological superconductivity

J. Shabani, M. Kjaergaard, H. J. Suominen, Y. Kim, F. Nichele, K. Pakrouski,

T. Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans’l, S. Kraemer, C. Nayak,

M. Troyer, C. M. Marcus, and C. J. Palmstrom.

(to be submitted)

Chapter 4 in section ii is also based on a manuscript to be submitted

andreev-enhanced quantum point contact and tunnel

spectroscopy of a hard superconducting gap in a 2d inas

electron gas

M. Kjaergaard, F. Nichele, H. J. Suominen, J. A. Folk, M. P. Nowak, A. R. Akhmerov,

K. Flensberg, J. Shabani, C. J. Palmstrom and C. M. Marcus

(to be submitted)

and likewise, Chapter 5 is based on an ongoing project in the same col-
laboration, where we are currently developing a numerical framework to
reconcile all facets of the data.

Finally, the results in section iii is published as

majorana fermions in superconducting nanowires without

spin-orbit coupling

M. Kjaergaard, K. Wölms and K. Flensberg

Physical Review B: Rapid Communications
85, 020503 (2012)

Disclaimer: The results of section iii have already been reported as part of the mas-
ters thesis on the 4+4 integrated MSc and PhD Program at Copenhagen University.
The text and figures presented in the master thesis have been significantly revised
for the PhD thesis.

Before diving into the main matter, a general remark on the experimental
work presented in this thesis is in order. In the context of coupling supercon-
ductors to 2D semiconductors, one issue has marred the field: the problem
of the interface transparency, and the experimental work in this thesis was
no exception. When this thesis was initiated, we were blissfully oblivious to
the gravity of this obstacle. In particular, the initial hope was to form trans-
missive SN devices out of a high–mobility AlInSb/InSb 2DEG. However,
due in part to the small bandgap, the low growth temperature and the pres-
ence of a Schottky barrier at an exposed edge of the InSb, processing and
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contacting of such wafers is exceedingly difficult. We will show the data on
a quantum point contact fabricated on InSb in Section 6.2.1. The data pre-
sented in Section 6.2.1 represent the most stable device we succeeded in mea-
suring, but (as evident in Figure 6.6) the gates were still hysteretic and we
did not observe quantized conductance in the QPC geometry. Compounded
with problems of leaking devices and opaque contacts to superconductors
we decided to switch materials.

The InSb was replaced with high mobility buried InGaAs/InAs quantum
well heterostructure grown by Javad Shabani, then a post doctoral researcher
working in the group of Chris Palmstrom [21, 22]. With these wafers we suc-
ceeded in making transparent super/semi contacts and measured a "soft"
superconducting gap in the tunneling density of states of the InAs. How-
ever, inspired by the recent experiments and significant progress on the SN
interface using InAs nanowires with epitaxially grown aluminum in situ
[23, 24], Javad Shabani pursued a similar structure in 2D. The new wafers
were based on the wafers in which we had successfully gated and coupled
to superconductors using ex situ cleaning and processing. These new wafers,
with aluminum grown in situ directly onto the surface of an InGaAs/InAs
quantum well, has superior quality in terms of interface transparency and
critical magnetic field (as we show in Chapters 4 and 5) and consequently,
the main matter of the experimental part is based on those wafers. For
completeness the fabrication and an overview of the data on the buried
high–mobility heterostructure is included in appendix A.



Part I

B A S I C C O N C E P T S & FA B R I C AT I O N

This part is devoted to basic concepts and characterization of
the 2D electron gas formed in the InGaAs/InAs quantum well
and the superconducting properties of the aluminum film. In
the 2nd half of this section we turn to device–fabrication and
measurement techniques.





2
M E S O S C O P I C P R O P E RT I E S O F T H E E P I TA X I A L
A L U M I N U M / I N A S S Y S T E M

This chapter is devoted to setting the stage for the experiments on the InAs
2D electron gas (2DEG) coupled to aluminum. Historically, a major obstacle
for coupling superconductors and 2D electron gases has been the processing
of the interface between them. The structure of the wafer reported in this
thesis sidesteps all fabrication concerns regarding this interface, by having
the aluminum grown in situ on the surface of 2DEG in the molecular beam
epitaxy system. Since these wafers constitute a new paradigm with respect
to forming high–transparency contacts we devote this chapter to an intro-
duction to the properties of this "quasi–buried–heterostructure" 2DEG and
the aluminum film.

2.1 basics characterization of the 2d electron gas

A 2 dimensional electron gas is a catch-all term for semiconducting mate-
rials where the density of states is such that at a point along the growth
direction, electrons are confined to a narrow quantum well (QW). The con-
fined electrons will form standing waves in the growth directions and be
free to move in the 2D plane perpendicular to the growth. Most 2DEGs have
engineered band structures formed by introducing dopants during growth,
which contribute electrons to the confined QW and by carefully choosing
the materials in the quantum well and the barriers. In this report we study
InGaAs/InAs, a III-V 2DEG. The two most prevalent flavors of 2DEGs are
the surface–inversion and heterostructure based systems.

2.1.1 Surface inversion 2DEG

The inversion layer 2DEG can be formed in e.g. a hole–doped InAs. At
the surface of an InAs wafer, where translational invariance is broken, the

9
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dangling bonds will reconstruct by forming surface states, to align with the
Fermi level in the bulk. The surface states are formed by an accumulation
of holes, which lead to a bending of the conduction and valence band [25].
For large enough hole concentration, the conduction band dips below the
chemical potential at the surface, and the majority carrier in this region
is electrons, hence the name ’inversion layer’. The band bending effect is
sketched in Figure 2.1. Electrons at the surface are confined to a layer of
thickness comparable to the Fermi wavelength (to be discussed below). The
band bending effect is the reason for the absence of a Schottky barrier when
a metal is deposited onto hole–doped–InAs.

quantum well

growth direction

μ

valence band

conduction band

su
rfa

ce hole-doped InAs

E1

Figure 2.1: Sketch of the band bending effect in hole–doped–InAs leading to a sur-
face inversion layer 2DEG.

We mention surface–inversion 2DEGs here, since the structure of the
epitaxial aluminum / InAs wafers to be studied in this thesis takes cues
from the early insights into surface inversion 2DEGs. Moreover, historically,
in the study of superconductor/2D semiconductor interfaces, the surface–
inversion variant was used predominantly because the surface area of the
superconducting contact to the 2DEG can be orders of magnitude larger
than for heterostructure based contacts. Since the inversion layer forms nat-
urally at the surface, a superconductor can be evaporated directly onto the
wafer–surface and making, in principle, good contact directly to the elec-
tron gas [26, 27, 28, 29]. However, the mobility of surface inversion 2DEGs
is severely limited. Furthermore, since the electrons live at the surface, the
quality of the 2DEG is highly dependent on details of fabrication and pro-
cessing of the wafer. To achieve higher mobilities the quantum well can be
buried deeper in the wafer.

2.1.2 Quasi–buried 2DEG

A different approach to forming confined quantum wells is by engineering
the chemical potential by introducing dopants, in sandwiches of materials
with differing bandgaps. When two such engineered materials with un-
equal bandgaps are brought into contact, the chemical potential of the two
materials will align and can form a quantum well. Here, we use InAs as
the low bandgap material and sandwich it between InGaAs. To align the
chemical potential in the InGaAs/InAs/InGaAs sandwich structure, charge
is transferred from remote dopants, introduced during growth, and into the
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quantum well. The quantum well widths are ⇠7 nm. The flexibility of the
heterostructure over the surface inversion layer is provided by the ability to
change and optimize the growth by introducing buffer layers and dopants.
In particular, the heterostructure studied in this report is shown in Figure
2.2a. The wafers are grown by Javad Shabani (then at Chris Palmstroms
laboratory in UC Santa Barbara) and is based on a high–mobility and gate-
hysteresis free InAs 2DEG heterostructure recently reported [22, 21].

a c
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Figure 2.2: a, Sketch of the wafer structure of the in situ grown aluminum on
InAs/InGaAs quantum well structure. b is the width of the top–barrier,
and a is the width of the aluminum film. b, Self–consistent Poisson equa-
tion calculation showing the wavefunction predominantly living in the
quantum well. c, TEM micrograph of a wafer grown under identical con-
ditions to the one studied in this report. The TEM image was taken of
a wafer with an aluminum thickness of a = 5 nm, and InGaAs barrier
thickness b = 5 nm. TEM image and heterostructure simulation by J.
Shabani.

InAs with a bandgap EInAs
g = 0.372 eV is sandwiched between In81Ga0.19As

with a bandgap EInGaAs
g = 0.52 eV [30]. From the bottom, the quantum well

is confined with In0.81Al0.19As with a large bandgap EInAlAs
g = 0.88 eV, and

on the top an aluminum layer of thickness a caps of the structure.1 The
slightly larger bandgap in In81Ga0.19As localizes the wavefunction predomi-
nantly in the InAs, while it still has a non–zero value at the interface to the
top aluminum layer. We’ll refer to the epitaxial aluminum / In81Ga0.19As /
InAs / In81Ga0.19As hetereostructure as simply the "epi-Al/InAs" quantum
well from now on. Figure 2.2b shows the density of the wavefunction in

1 The bandgaps quoted in this section is taken from [31] and we have linearly interpolated
between the bandgaps of binary alloys to obtain bandgap for the ternary alloys.
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the first subband, using a self–consistent electrostatic Poisson solver. The
aluminum layer is grown in situ in the molecular beam epitaxy chamber.
Since vacuum is never broken and the interface is atomically abrupt and
oxide free, the interface between the superconductor and the semiconduc-
tor is nominally pristine. This strategy of making in situ contact between a
”quasiburied” 2DEG and a superconductor was introduced back in 1999 in
a surprisingly overlooked paper (cited once at the time of writing!) by D.A.
Williams [32] using GaAs as the 2D electron gas, and AlGaAs as the spacer.
The growth of in situ aluminum was also done using a heavily doped GaAs
structures as the semiconductor (but without a barrier) by Taboryski et al.
[33] and in the same group by Kutchinsky et al. [34]. Similar results were
reported by De Franceschi et al. [35].

Javad Shabani supplied several wafers where a few parameters were var-
ied between each growth. The bottom InGaAs barrier was kept fixed at 4 nm
and the InAs QW was always grown with a thickness of 7 nm, while the
thickness of the top barrier and the aluminum was varied. It was not clear
what the quality of the 2DEG grown in the epi-Al/InAs structure would be,
and it was not at all clear if the 2DEG would inherit any of the properties of
the aluminum, via Andreev reflections from the interface (to be discussed
at greater length in Section I I). For this reason we investigated in particular
two wafers: JS113, with no InGaAs barrier (b = 0 nm) between the InAs
and the aluminum, and JS118, with a 10 nm InGaAs barrier (b = 10 nm).
Those two wafers were chosen based on an educated guess that JS118 would
have a higher mobility (due to the InGaAs barrier separating InAs from the
surface), and that if the InAs QW should have superconducting properties,
it should at least work in the wafer with no barrier between the InAs and
the aluminum. Indeed, the material with 10 nm barrier has higher mobility,
but surprisingly both wafers exhibited similar superconducting properties,
as evident through the measurement of a supercurrent in an SNS geometry
and a gap in the local density of states measured using a tunnel probe, in
both wafers. These two results are the subject of Chapters 4 and 5 in Section
I I.

In the following sections we present theory and mesoscopic characteriza-
tion of the 2DEG formed in the epi-Al/InAs quantum well structure. The
aluminum is chemically etched away prior to characterization of the 2DEG.
We’ll focus on the 2DEG and the superconducting films separately, and de-
tails of the fabrication and measurements are relegated to Chapter 3.

2.1.3 Cursory review of mesoscopics of the 2DEG

Usually the quantum well can be modeled as a finite square well2. The dis-
persion relation En(kx, ky) = h̄2k2

2m? +En of a 2D quantum well forms parabolic

2 In the case a surface inversion quantum well, or for heavily doped structures, a triangular
potential shape can be more appropriate.
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bands shifted upwards by the index n, corresponding to the confinement in
the well. In Figure 2.3a we have sketched the parabolic bands.

a

E1 E1

E2 E2

E

EF

kx ky D(E)

b

Figure 2.3: a, Sketch of the dispersion relation in a square quantum well, with the
first two (parabolic) subbands. In the case of quantum well with one
level occupied, the Fermi level EF will be located between E1 and E2. b,
The density of states in 2D.

A few mesoscopic parameters of the 2DEG are key when evaluating prop-
erties of the SN and SNS systems which we analyze later in this report. The
density of states in 2D is constant and given by

D(E) =
dN
dE

=
m?

ph̄2 . (2.1)

where m? is the effective mass. If the dispersion is isotropic, then

1
m? =

1
h̄2

d2E
dk2 (2.2)

and thus for E(k) parabolic the effective mass is a constant. However, if k is
not small and the bandgap is small (as for our InAs), significant deviations
from the parabolic dispersions can occur, due to mixing with other bands.
This effect is relevant for our wafers, as we’ll see below.

The density of electrons in a 2DEG with one subband occupied can be
calculated using the density of states

n =
Z EF

E1
dED(E) =

m?

ph̄2 (EF � E1) (2.3)

The wavevector corresponding to the states at the Fermi energy is denoted
kF, and is given by EF � E1 = h̄2kF

2m? . Upon plugging kF into Equation (2.3),
we arrive at the relation

kF =
p

2pn. (2.4)

Once the density n of carriers is measured, the Fermi wavevector can be
calculated using Equation (2.4).
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Important derived quantities are the Fermi wavelength, Fermi velocity
and Fermi energy,

lF =
2p

kF
, vF =

h̄kF
m? , EF =

h̄2k2
F

2m? (2.5)

The average time between undergoing elastic scattering is denoted te, and
is given by te = m?

e µ. The quantity µ is the mobility of the 2DEG and has
units [m2/Vs]. The mean free path is then given by

le = vFte =
h̄
e

µ

p
2pn (2.6)
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Figure 2.4: a, Sketch of a hallbar geometry with measurement setup. Gray areas indi-
cate metallic contacts to the 2DEG. b, Cartoon of rxx = (Vxx/I) · (W/L)
and rxy = Vxy/I, with indication of their relationship to mobility and
density. c, Optical micrograph of Hallbar in epi–Al/InAs heterostruc-
ture. Regions without aluminum are dark gray (barely distinguishable
to the etched background), the light orange is Ti/Au gate used to tune
the density, and regions with aluminum left intact is silver. d, Low field
magnetoresistance measurements of rxx and rxy in a hallbar lithograph-
ically identical to the one in c. The L/W ratio is in this case 1.4, where L
is measured from the middle of the Vxx probes.

The two quantities n and µ are measured using a hallbar geometry, shown
in Fig.2.4. From the magnetoresistance we extract the density and mobility
using the relations

n =
1

e drxy(B=0)
dB

, µ =
1

enrxx(B = 0)
(2.7)
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The mesoscopic parameters at Vg = 0 V are tabulated in Table 1 for the
10 nm and 0 nm barrier wafers.

InGaAs rxx(W) n(m�2) µ(cm2/Vs) kF(nm�1) lF(nm) le(nm)

0nm 332 4.5 · 1016 4.130 0.019 11 145
10nm 255 3.2 · 1016 7.500 0.022 14 230

Table 1: Review of mesoscopic data in the two wafers studied in this thesis.

Figure 2.5 shows the mobility and density dependence as the topgate is
used to deplete the 2D electron gas in the wafer JS118 with a 10nm InGaAs
barrier. The derived quantities le and lF correspondingly vary with the top-
gate and are shown in Figure 2.5. The non–monotonic behavior of mobility
as the 2DEG is depleted (Figure 2.5b) is speculated to be the result of push-
ing the wavefunction away from the epi–Al interface and thereby decreasing
the "surface roughness". From the simulations we know that the band edge
of the 2nd subband is around 0.29 eV so the non–monotonicity is not an
effect of the second subband entering the quantum well.

Due to the small bandgap of InAs and the high density in our wafers,
deviations from the parabolic dispersion have to be considered, and the ef-
fective mass is not given by the straightforward relation in Equation (2.2).
Using numerical simulation of the 8 ⇥ 8 Kane model [36], Rafal Skolasinski,
working in the group of Michael Wimmer, has simulated the band structure
of the wafer shown in Figure 2.2a for the case b = 10 nm. The simulation
includes the density and accounts for non–parabolic corrections, but do not
include modifications due to the surface aluminum. The effective mass is
found to be meff = 0.051m0, roughly a factor of 2 larger than the bulk InAs
effective mass of 0.023m0 [36]. Using this effective mass for the 10 nm In-
GaAs barrier wafer, the Fermi energy, Fermi velocity and elastic scattering
time is calculated to be

EF = 0.147 eV, vF = 9.3 · 105 m/s, te = 0.22 ps (2.8)

Many of the properties relating to SN and SNS junctions studied in the
next chapters are limited by the phase coherence length. For electrons mov-
ing in a solid, their phase is randomised on a timescale denoted t

f

. Static,
non–magnetic impurities are time-reversal invariant and does not lead to
dephasing, but phonons and electron–electron interaction will decrease t

f

.
At the base temperature of a dilution refrigerator T ⇡ 30 mK the phononic
degrees of freedom are completely static. However, the e–e interactions will
lead to dephasing. We can estimate a length scale for this process as fol-
lows. After a time t two electrons with energy difference DE will acquire
a relative phase f = tDE/h̄. When f is of order unity, the two electrons
are completely uncorrelated. Due to the Fermi–Dirac statistics, their en-
ergy difference is DE ⇠ kBT. In the time t the electrons will have traveled
l = vFt in a ballistic system and l =

p
Dt, where D is the diffussion con-
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Figure 2.5: a, Density and mobility in wafer JS118 with a 10 nm InGaAs barrier as a
function of topgate voltage. b, Mean free path and Fermi wavelength in
the JS118 wafer.

stant D = vFle/2 in 2 dimensions, in a diffusive system. The thermal phase
coherence length is then

xN,bal =
vFh̄
kBT

, xN,diff =

s
vFleh̄
2kBT

(2.9)

The study of how properties of a mesoscopic sample scales with coherence
length, mean free path and sample size is an exceedingly rich field, and the
cursory review here does not do it justice. The reader is referred to Imry’s
wonderful book [37].

For the remainder of the experimental part of the thesis, we will stick
to measurements on wafer JS118 (10 nm InGaAs barrier), with the high-
est mobility, lowest density and longest mean free path. In all cases, devices
fabricated on JS113 (0 nm InGaAs barrier) showed qualitatively similar prop-
erties to JS118, but were generally more noisy and unstable when gated to
low density.

2.1.4 The quantum point contact

The conductance through a sufficiently narrow constriction in a 2DEG is
quantized in values of G0 = 2e2

h ⇡ 3.87 · 10�5 W�1 ⇡ 1/12906 W. This re-
markable effect was observed in 2DEGs by van Wees et al. [38] and Wharam
et al. [39] in the quantum well in a AlGaAs/GaAs heterostructure and is now
a classic result in low–temperature condensed matter physics. The geome-
try used for these experiments is the split gate quantum point contact. A
negative voltage can be applied on metallic gates electrically isolated from
the 2DEG to form a constriction with an effective width W(Vg) set by the
voltage on the gate. For appropriate dimensions and layout of the gates, as
the voltage is increased3 the effective width of 2DEG will be comparable to

3 Throughout this thesis, by "increasing" gate voltage, it is understood that the voltage is turned
more negative
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the Fermi wavelength, W(Vg) ⇠ lF. If the temperature is low enough that
the level spacing in the QPC is the dominant energy scale, then conductance
becomes quantized. One of the main results of the experimental efforts in
this report is the study of how the fundamental quantization through a QPC
is modified, if it is placed proximal to a superconducting interface.

For quantization to be observable, the quality of the 2DEG and the design
of gate–geometry should be such that le � L, W. Figure 2.6a the split–gate
experimental realization of a QPC in a 2DEG.

a b
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Figure 2.6: a, Sketch of the split gate quantum point contact geometry. Details of the
shape of the gate has direct implications for the observation of quantized
steps. b, Conductance of the first few modes in the saddlepoint constric-
tion model, for a few parameters of the potential landscape. Calculated
using Equations (2.10), (2.12) and (2.13).

For a small applied bias (the linear–response regime), and at low temper-
atures, the conductance through the QPC is given by the Landauer-Buttiker
formula (see e.g. [37, 40] or any other mesoscopic physics book worth its
salt)

G =
2e2

h̄

N

Â
n
Tn(EF). (2.10)

By modeling the potential in the constriction as a saddle point [41, 42],

V(x, y, z) = �1
2

m?
w

2
xx2 +

1
2

m?
w

2
yy2 + V(z), (2.11)

the transmission through each mode can be found analytically

Tn(E) =
1

1 + e�2pen
, (2.12)

where

en =
E � h̄wy(n + 1/2)� Ez

h̄wx
(2.13)

This equation is powerful for building intuition about the behavior of the
steps in a QPC and the underlying potential. Well-developed plateaus in the
QPC will occur if the ratio wy/wx � 1, which also intuitively makes sense:
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Figure 2.7: a, Pinchoff trace at elevated temperature. This trace taken with Voffset =
+1 V, and a series resistance Rc = 1.3 kW have been subtracted. Details
of the series resistance is given in Chapter 4. a, Sketch of the 2DEG when
the gates are set asymmetrically. Stars indicate impurities. The diagram
indicates definitions of Vdiag and Voffset. c, Pinchoff map showing how
the conductance through the QPC varies as the asymmetry between the
gates is varied. The dashed line indicates symmetric gating. We have
applied a perpendicular field B? = 100 mT, because this QPC was fabri-
cated with aluminum contacts in close proximity. d Cuts in the pinchoff
map showing how QPC varies with asymmetric gating.

The level spacing in the QPC is related to the steepness of the potential,
which is set by w

2
y, so a large wy indicates well–separated spacing. The level

spacing in the constriction manifests itself as the width of the conductance
plateaus. Furthermore, h̄wx is related to the smoothness of the potential
(on the scale of lF), which in turn determines sharpness of the transition
between the plateaus. Figure 2.6b shows how the step shape is dependent
on the relative sizes of wy and wx. Other effects than just the shape of
the potential formed by the gates can have detrimental influence on the
quantized conductance. The QPC steps shown in Figure 2.7a and 2.7d are
of unequal size, and show oscillations on top of the plateau structure.

• In the case where le ⇠ L, transport through the constriction is not
fully ballistic and the effect of scattering within the QPC has to be
taken into account. Scattering can lead to resonances, which manifests
themselves as deviations from the idealized monotonic decrease in
conductance with increasing gatevoltage.
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• A local charge impurity close to the constriction can dramatically change
the local potential, again leading to strong deviation from the saddle–
point model. We can sometimes sidestep such resonances by applying
the gate–voltage asymmetrically. This idea is sketched in Figure 2.7b,
and in 2.7a we show a pinchoff curve where the gates are tuned asym-
metrically. In Figure 2.7c and 2.7d the "pinchoff map" shows how res-
onance change in the QPC when the gates are biased asymmetrically.
The resonances can be tracked independently from how the position
of the plateaus move.

By elevating the temperature resonances tend to be smoothed out, due to
thermal averaging, as is evident when comparing the curve in Figure 2.7b
at elevated temperatures, and Figure 2.7d. A magnetic field applied per-
pendicular to the plane of the QPC can also clean up the QPC steps. The
introduction of an Aharanov-Bohm contribution to the phase eliminates the
coherent nature of the backscattering and resonances become suppressed.

Finally we note, that for the data presented in this report the gate–depen-
dence of the devices would shift over time. This has the unfortunate con-
sequence that the gate–voltage in different viewgraphs will not necessarily
line up with each other. This is evident in comparing e.g. Figures 2.7b, 2.7c
and 2.7d.

2.2 crash course in bcs theory

We now turn our attention to superconductivity and the basics of the BCS
theory. In their landmark paper from 1957 Bardeen, Cooper and Schrieffer
successfully worked out a microscopic model to explain superconductiv-
ity [43]. In their model, below a certain critical temperature Tc, electrons
with opposite momentum and spin pairs up and lower the energy of the
system. Such pairs are bosonic particles built from (k ",�k #)–electrons
and are called Cooper pairs. The pair–forming potential is mediated by the
electron–phonon interaction [3]. In the condensed state where Cooper pairs
have formed, the system has a gap of size D in the density of states. The su-
perconducting gap is pinned to the Fermi level, unlike the gap in insulators
and semiconductors, and there are no states available with energy E < D.

Excitations from this condensed state can be described by the Bogoliubov-
de Gennes (BdG) equation [3, 44],

2

4H(r) D(r)

D⇤(r) �H(r)

3

5Yk(r) = EYk(r), (2.14)

where

Yk(r) =

0

@uk(r)

vk(r)

1

A (2.15)
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is a two–component wave function in electron and hole space. The factor uk

(vk) describe the electron (hole) content of the state Yk(r). If |uk|2 > |vk|2
we call the state electron–like (and hole–like in the reverse case). In the
absence of the superconducting gap D the electron and hole parts in (2.14)
decouple into two single–particle states. The bare single–electron hamilto-
nian is given

H(r) = � h̄2

2m⇤ r
2 + U(r)� µ (2.16)

where U(r) is a scalar potential. For a homogeneous superconductor D(r) =
D0eif, where f is the phase of the superconducting order parameter. In the
absence of a scalar potential U(r) = 0, the solutions to Equation (2.14) are
particularly simple and illuminating. The spatial dependence of the wave-
function can be separated out

Y(r) = eik·r

0

@u0

v0

1

A (2.17)

inserting this form of Y(r) into Equation (2.14) yields expressions for the
coherence factors

u2
0 =

1
2

0

@1 +

q
E2 � D2

0

E

1

A (2.18)

v2
0 = 1 � u2

0 (2.19)

and the energies are given by

E = ±
q

x

2
k + |D0|2, xk =

h̄2

2m⇤ k2 � µ. (2.20)

In Figure 2.8 we have plotted the coherence factors and the (positive) en-
ergies of single–particle excitations in a BCS superconductor. From Figure
2.8a it is evident that excitations with k > kF are electron–like and excita-
tions with k < kF are hole–like.

The density of states (DOS) in the superconductor can be determined
heuristically using Equation (2.20). A superconductor is a metal with a gap
around EF, so we can equate the DOS of the superconductor to the DOS in
a normal conductor, but with a gap:

Ns(E)dE = Nn(x)dx (2.21)
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Since we are only interested in physics around EF where the normal state
DOS is constant, Equation (2.21) takes the simple form

rs(E) ⌘ Ns(E)
Nn(0)

=
dx

dE
=

8
><

>:

Ep
E2�D2 E > D

0 E < D
(2.22)

In figure 2.8c the density of states of quasiparticles in the superconductor is
plotted as a function of energy.
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Figure 2.8: a, The value of the coherence factors uk and vk close to k = kF (in
one direction of k). b The energy gap in a superconducting material
compared to a normal metal with D = 0. c, The density of states rs(E)
of the quasiparticles in a superconductor. The states witb |D| < E have
been pushed out of the gap.

The group velocity of a particle is given by

nk =
1
h̄
rkE (2.23)

For electrons with momentum k > kF the energy is positive and for k < kF

their energy is negative and thus, the group velocity and wavenumber k of
electrons have the same sign (relative to kF). For holes, this situation is re-
versed, leading to the observation that they move in reverse direction to the
sign of their wavenumber. This point will lead to interesting consequences
in Chapter 4, when we introduce Andreev reflection and the proximity ef-
fect.

2.2.1 Properties of the thin aluminum film

We close this chapter by briefly discussing the properties of the thin alu-
minum film. In the hallbar shown in Figure 2.4c, a large region of the
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aluminum is left unetched. We have measured the properties of 5 nm and
10 nm aluminum film in a current biased 4–terminal measurement setup,
as a function of temperature and in–plane magnetic field. The results are
shown in Figure 2.9. The alignment of the magnetic field to was performed
with a vector magnet after the samples were loaded. The 5 nm film has a
small finite resistance even at base temperature. This is due to a parallel
conduction path within the wafer leading to a small parasitic resistance.
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Figure 2.9: a, The temperature dependence of the superconducting state in two alu-
minum films. b, The temperature dependence of the in–plane critical
field.

From the critical temperature it is possible to estimate the size of the
superconducting gap at T = 0 within BCS theory [3]

D(0) = 1.764kBTc (2.24)

The slightly awkward–looking numerical factor 1.764 stems from the evalu-
ation of an integral of the form

R
tanh(x)/x whose solution involves Eulers

constant. The critical temperature and critical in–plane magnetic field in
Figure 2.9 show excellent agreement with previously published results on
thin aluminum films [45, 46]. The critical in–plane field Bc can be com-
pared to the theoretical maximal value. In this limit, the spin–singlet pair-
ing of the coopers pairs (in an s–wave superconductor) is broken by the
paramagnetic contribution from the external field, effectively killing super-
conductivity. This effect is was originally discussed by A.M. Clogston and
B.S. Chandrasekhar [47, 48]. For superconductors with negligible spin–orbit
interaction, the Clogston-Chandrasekhar limit is given by [3]

Blimit =
DAlp
2µB

⇡ 2.8 T (2.25)

The critical field of the 5 nm film is reasonably close to the Clogston-Chandrasekhar
limit. Despite the higher Bc of the 5 nm film, we will concentrate on the
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aluminum thickness (nm) Tc (K) Bc (T) DAl (µeV)

5 1.64 2.28 235
10 1.58 1.65 225

Table 2: Properties of the superconducting thin films. ?measured at T = 30 mK

wafer with the 10 nm film, because of the parallel conduction path in 5 nm
aluminum wafer, and due to 2DEG in the 10 nm wafer being of a higher
quality. The temperature, magnetic field and gap properties of the two films
are listed in Table 2.





3
D E V I C E FA B R I C AT I O N & M E A S U R E M E N T T E C H N I Q U E S

This chapter is devoted to the hands–on part of being a low temperature
quantum transport experimental physicist. We go through the fabrication
process of the devices measured in this report, some basics of the Triton
He3-He4 dilution units as well as measurement techniques. The device fab-
rication process is often relegated to appendices in the ph.d. thesis, but the
tough art of producing and designing micron– and nanometer scale devices
has been a key part of the research reported here. Working with new and
unexplored wafers has provided obstacles that we have surmounted as they
became apparent. In the hope of helping other researchers working on sim-
ilar new 2DEG structures hurdling such obstacles, we devote some time to
identifying and avoiding potential issues with a wafer/chip/device.

3.1 fabrication of samples in epi–al/inas material

Fabrication of a device can be split into the following steps:

1. Designing the device

2. Etching mesa

3. Etching aluminum

4. Deposition of insulator

5. Deposition of gates (a 2-step process)

6. Bonding and preparation for cooldown

We will go through each step in more detail below. The fabrication of these
samples require relatively few fabrication steps compared to superconduct-
ing contacts to buried 2DEG heterostructures. For the buried structures, a
separate step for cleaning the interface and depositing the superconductor
is necessary (see e.g. the fabrication recipe in Appendix A). The cleaning of

25
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the interface is perhaps the most crucial point for such devices (indeed, a full
chapter is devoted to this issue in Thomas Schäpers great book Superconduc-
tor/Semiconductor Junctions [44]). The issue of the quality of the interface is
central to many experimental reports on superconductor/2DEG interfaces
[27, 49, 50, 51]. We conjecture that the problem of achieving sufficiently
clean interfaces is part of the reason for the stalled interest in coupling su-
perconductors to 2DEGs. The ohmic contacts in our epi–Al/InAs wafers
are naturally formed via the aluminum grown on the 2DEG, leaving out
another step in fabrication.

3.1.1 Cleaving and preparing a chip

The chips are cleaved from quarter inch wafers, and the optimal chip size
we found is 2.5 ⇥ 5 mm. Cleave them smaller and you run into issues be-
cause the resist edge–beads are of a size that can lead to non–uniform resist
coverage throughout the entirety of the small chip (see Section 3.1.3). A
significant amount of prototyping was necessary to develop the mesa– and
aluminum–etch recipes presented below, so we kept the chip sizes as small
as possible to keep wafer consumption down.

After cleaving the chip it is rinsed in 3–step solvent clean:

• 2 min in TCE (always start with the most aggressive of the solvents)

• 2 minutes in acetone

• 1 minute dunk in IPA

• Finally blow–drying the chip with N2

Before continuing fabrication the chip is inspected under a microscope. A
lot can be learned from carefully looking at the surface of the chip before
further processing. Figure 3.1 shows a few examples of the surface on un-
processed wafers. A few general rules of thumb that we learned the hard
way: stay away from edges of the wafer, where non–uniformity in the sur-
face is most likely to occur. Figure 3.1f shows the transition in color from an
inner, good region (dark) to an outer, bad region (cloudy). Stay away from
regions which has spots/pimples that cannot be attributed to holes in the
aluminum. To check the latter we use an atomic force microscope to image
the pimples. The dots in the photo in e. g. Figure 3.1c and 3.1d are benign
holes in the aluminum surface, because their depth was commensurate with
thickness of aluminum. As long as a device did not have the active region
within a few microns of such a hole, many successful devices (i. e. with
superconducting properties) were fabricated in these regions.
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Figure 3.1: a and b, good surfaces showing hatched pattern indicating that the strain
from growing lattice mismatched compounds is relieved systematically,
which usually entails high(er) quality 2DEG. c and d, a region shown in
both darkfield (with pimples) and brightfield, where the pimples look
like holes in aluminum film. This can be double–checked with AFM. e
and f, two bad regions with pimples and cloudy surface indicative of an
arsenic deficient surface, which can lead to leakage paths and metallic
conduction.

3.1.2 The virtue of a stable schematic

Prototyping and developing devices is an integral part of many experiments
in mesoscopic low–temperature quantum transport. In order to stay efficient
it pays of to plan the fabrication in a consistent way, that will not require
starting from scratch when a device design has to be updated. We found
that a stable solution was to use a template for alignment marks and ohmic
contacts, and relegating all flexibility to the inner parts of the device. Fig-
ure 3.2a shows the alignment–marker and mesa template used for all our
2.5 ⇥ 5 mm chips. The template has an abundance of alignment marks
which often proved useful, and has room for 19 4–terminal devices. The
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spacing between devices is optimized to allow room for routing of gates
in a subsequent step. The bondpads are 100 µm wide, which is close to
the footprint of the bonder with the settings needed to punch through the
40 nm isolating Al2O3 layer (details in Section 3.1.7). Using this template,

a 2.5mm 300μm

300μm

5m
m

b

c

(c)

500μm

100μ

bondpads for
ohmic contacts60

0μ
m

2.5μm

0.4μm

Figure 3.2: a, Template layout for a full 2.5⇥ 5 mm chip. b, Zoom in showing details
of alignment marker sizes. c, Zoom in showing the 4–terminal template
device. Green and red regions exposed and etched using high definition
settings from section 3.1.3 and gray regions exposed and etched using
low definition settings.

variations in device design is implemented simply by changing the layer
highlighted in green, while the remaining template is left identical. The
larger alignment marks is placed with even spacings of 300 µm, making
them easy to locate relative to each other. The smaller alignment marks
are placed (45µ m, 45µ m) relative to the center of the larger alignment
marks. The alternating shape of the contacts on the 4–terminal geometry is
designed to keep the high–definition regions (shown in green) exactly cen-
tered in the write fields of the e–beam lithography system, using equally
spaced writefields throughout the entire chip. The centering is needed to
achieve maximal alignment accuracy. Using 4 point alignment registration
we consistently achieve ⇠30 nm overlay precision between different layers
with these markers and this layout.
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3.1.3 Defining mesas and alignment marks

After cleaving the chip, inspecting it for bad surface regions and preparing
the design file, mesas and alignment markers are etched. For all the steps
we use e–beam lithography due to the flexibility to allow for changes in
geometry without waiting for a new photomask. The chips are cleaned and
resist is spun as follows,

clean : 2 min acetone (swirl chip) / 1 min IPA (swirl chip) / blowdry with
N2 / bake for 3 mins at 185 °C.

spin resist : PMMA A4, 4000 RPM, 45 seconds: Place chip centered in
chuck and turn on vacuum. If chip is not centered properly the resist
will be unevenly distributed, due to the small size of the chip and
the size of edge beads. Start rotation and pause at 500 RPM. Before
accelerating to 4000 RPM dispense ⇠ 2 drops of PMMA A4. Spin 45
seconds at 4000 RPM. Bake for 3 mins at 185°C.

Inspect the chip under a microscope to make sure the resist is uniform (no
color gradient) in the entire active region of the chip. If resist not uniform,
clean chip and start over. For stripping resist I like to start with 2 min swirl
in dioxalene, followed by 2 min acetone and 1 min IPA. Respin until resist
is uniform. Before proceeding to the e–beam system make sure resist has
not crept underneath the chip during spinning. An underside with PMMA
chunks will lead to uneven loading in the e–beam system and bad exposures
/ bad alignment. Scratch any chunks off with a scalpel (carefully). The e–
beam lithography exposure is split into two parts, one for the inner regions
of the devices and the alignment marks, and one for the big features. Load
chip in load lock and check that chip is even by gently pushing on it in the
corner and check that the position of the ceiling lights refracted from the
surface does not change as you push down (indicating the chip is slightly
tilted). If it does, check underside for PMMA residues and scratch with
scalpel as necessary. With chip properly loaded, these settings are used for
the exposure

e–beam lithography – high definition : I = 500 pA, writefield size
= 300 µm (matching exactly the size of an alignment mark), 60.000

dots and dwell time of 0.4 µS/dot, corresponding to a dose of =

800µ C/cm2.

e–beam lithography – low definition : I = 20 nA, writefield size =
600 µm, 20.000 dots and a dwell time 0.36 µS/dot, corresponding to a
dose = 800µ C/cm2.

The doses used here nominally underexposes the PMMA, but because the
exposed areas are large, the proximity effect will add dramatically to the
effective dose. The chip is then developed and plasma cleaned to remove
any leftover resist residues
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develop : 60 second swirl in MIBK:IPA (1:3) followed by 20 second swirl
in IPA and blowdry with N2.

plasma : 60 second plasma ash, removing approximately 15 nm PMMA.

Figure 3.3a shows the surface of a chip after finished plasma ashing. The
resist edge bead is visible as a discoloration of the resist close to the right
edge. After plasma ashing the chip is ready for etching the mesas, which
is a 3–step process: Aluminum etch, followed by mesa etch, followed by
another aluminum etch.

500μ

500μ

a

b

Figure 3.3: a, Mesa etch pattern after e–beam exposure, develop and plasma ashing.
b, Mesa pattern after etching and stripping resist.

prepare etch : For the aluminum etch we use Aluminum Etchant Type
D from Transene. Pour into two small (50 mL) plastic beakers and
set both into 50 °C hotbath. Let it thermalize while the mesa etch
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mixture is being prepared. The mesa etch has an approximate rate
0.5 nm/second, and is a variation on a standard III-V etch:

H2O : citric acid : H3PO4 : H2O2

220 : 55 : 3 : 3

The H2O2 acts as an oxidizing agent and H3PO4 (38%) binds the oxi-
dized surface. The citric acid acts as a surfactant that helps replenish
fresh etch close to the active regions. Figure 3.5 shows SEM image of
mesa etched with, and without, added citric acid added to the etchant.
The mix is created by adding 220 mL H2O to a ⇠ 750 mL beaker
placed on a magnet stirrer. The citric acid is mixed (1M home mixed)
and 55 mL is added to the large beaker with water in. Turn on magnet
stirrer. Get the H2O2 (30% by weight) out of the chemicals refrigerator.
H2O2 should be stored in a cool, dark space due to its volatile nature
and the relative ease with which it decomposes into water and oxygen.
Never use H2O2 that has been opened for more than > 4 weeks or left
out in light (you’ll waste a lot of time trouble shooting your etch, like
we did). Add 3mL H3PO4 to the mixture, use a 5mL measurement
beaker and bottom of miniscus should be level with 3 mL indicator.
Finally add H2O2 and cover mixture with lid. Put H2O2 back in refrig-
erator and clean up. The aluminum Etch Type D should now be 50 °C.
Measure with a thermometer, it should be within ±1.5 °C. The rate of
the aluminum etch is highly dependent on the temperature, so correct
temperature is critical [52].

etch : The following steps were developed by painstaking trial–and-error,
and deviation has lead to (among other bad things): Redeposition
of etched material on chip, bad definition of the mesa edges, and
overhanging aluminum flaps making subsequent gate–deposition very
hard. I encourage following the steps diligently, and moving efficiently.
Figure 3.4 outlines the 10 steps discussed in detail below.

1. 10 second aluminum etch. Use acid tweezer and swirl carefully.

2. 20 second MQ water, swirl vigorously. Keep MQ beaker in the hot
bath next to beaker with aluminum etch, so the chip is exposed to
air for as short a time as possible, while moving between beakers.

3. 40 second fresh MQ water in a large beaker next to hot bath.
After swirling for ⇠20 s, carefully place chip on bottom of beaker
and replace acid tweezer with standard carbon-tipped tweezer,
for better grip in following steps.

4. Blowdry thoroughly with N2, then dry tweezer with cloth and
N2, and finally blowdry chip again.

5. 480 seconds etching in mesa etch. Keep magnet stirrer on at
speed 4. Swirl with frequency ⇠ 1 Hz in a figure "•" motion
and hold chip approximately perpendicular to the bottom of the
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Figure 3.4: Cartoon showing the 10 steps in mesa etching

beaker. This lets the etchant attack surface uniformly, instead of
skating along surface.

6. 40 second dunk and swirl in MQ.

7. Blowdry thoroughly with N2, then dry tweezer with cloth and
N2 and finally blowdry chip again.

The mesa etchant does not etch the aluminum, so to remove over-
hanging aluminum flaps, the chip is once again etched in Alu-
minum etchant Type D. Pick up chip with acid tweezer and fi-
nally go through:

8. 10 second aluminum etch (again, swirl carefully).

9. 20 second MQ water in same hotbath, swirl vigorously.

10. 40 second MQ water while swirling.

11. Same 3–step blowdry as after other etch steps.

resist stripping : Finally, strip the resist mask using ⇠50 °C acetone for
3 mins, followed by 1 min IPA and blowdry.

Figure 3.3b shows a typical mesa surface after the three etch steps outlined
above. Inspecting the etched mesa in a microscope is critical: If there are
halos around the edge of the mesa, if the edge is jagged or cloudy, it is an
indication that something went wrong with the mesa etch, and should be
inspected using SEM and AFM. The height of the mesa is measured in a
profilometer. The mesas should be approximately h = 240 nm ± 10 nm.

3.1.4 Etching aluminum

A chip with the etched mesas is cleaned and spun in the same way as when
preparing for mesa etching, see section 3.1.3.
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e–beam lithography : I = 500 pA, writefield size = 300µ m, 60.000 dots
and dwell time of 0.6µ S/dot, corresponding to a dose of 1200µ C/cm2.
The dose is increased relative to the exposure for mesas. This is be-
cause the area to be exposed is significantly smaller, so proximity effect
will play a less pronounced role. I recommend running a dose– and
etch–test when developing recipes for radically different aluminum
etch windows.

develop : 60 second swirl in MIBK:IPA (1 : 3) followed by 20 second swirl
in IPA and blowdry with N2.

plasma : 60 second plasma ashing, removing approximately 15nm PMMA.

etch : Prepare two small beakers with Transene Aluminum Etchant Type D
and submerge both in 50 °C hotbath. Allow ⇠5 minutes to thermalize.
Measure temperature with thermometer, should be 50 °C ±1.5 °C. Pre-
pare two beakers (one small, one large) with MQ water and submerge
the small in the hotbath next to aluminum etches.

1. 5 second with acid tweezer in beaker 1 with aluminum etchant.
Swirl carefully.

2. Quickly switch to next beaker with aluminum etchant and swirl
another 5 seconds.

3. Dip into 50mL beaker with MQ water in hotbath and take care to
minimize exposure to air. Swirl for 10 seconds.

4. Move chip into large 100mL beaker with plenty MQ water. Swirl
for 20 seconds, place chip on bottom and replace tweezer with
standard carbon–tipped version. Swirl ⇠40 seconds.

5. Three step blowdry: Blowdry chip, dry tweezer with wipe and
blowdry, and finally blowdry chip again.

resist stripping : Strip remaining resist using ⇠50°C acetone for 3 mins,
followed by 1 min IPA and blowdry.

Douple–dipping in the aluminum etchant yielded cleaner sample surfaces
when inspected by SEM after etching. Figure 3.5 shows SEM images of SNS
devices where we compare a device etched using Aluminum Etch Type D
and a device etched using AZ400K. The latter is a photoresist developer that
is commonly used as aluminum etching agent. The addition of citric acid to
the mesa etch, and using Al Etch Type D, instead of AZ400K, proved crucial
for our fabrication of small (< 1 µm) devices.

3.1.5 Insulator deposition

The chip is cleaned using standard solvent clean just prior to being placed
in an atomic layer deposition (Cambridge Nanotech Savannah ALD) ma-
chine. We use 400 pulses of trimethylaluminum (TMA) with H2O as oxidiz-
ing agent, which results in ⇠ 40 nm Al2O3 oxide layer. It’s recommended
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Figure 3.5: a, SNS junction using mesa etch recipe but without citric acid added.
Aluminum etched with AZ400K photoresist developer. b, Mesa etch
with added citric acid and aluminum etched with Aluminum Etchant
Type D from Transene.

to gently pushing down on the ALD lid while starting to pump out the
chamber. This reduces the likelihood of the chip flipping around inside the
chamber, when the vacuum (rather violently) pulls the lid completely shut.
A wait time of 60 seconds between each pulse allows proper purging of the
chamber between TMA and H2O pulses.

In relation to depositing the insulator, we pause to discuss the greatest
unsolved fabrication mystery (and one of the biggest time sinks) through-
out working with these wafers: After finishing a chip (mesa etch, aluminum
etch, insulator deposition, gate deposition) we test the electrical contact and
isolation of the gates in a 4 K liquid helium dunker setup. If the mesa
etch–depth was h . 200 nm two otherwise disconnected mesas would be
electrically connected to each other with R ⇡ 2 kW. This parallel conduction
path only appeared after deposition of insulator. Javad Shabani, the mate-
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rials grower, made test devices at UC Santa Barbara with h . 200 nm and
did not observe the same parallel conduction path after Al2O3 deposition.
Even without a plausible chemical reason, we suspected some aspect of the
insulator deposition process to be the cause of this parallel conduction path.
For posterity, we list the amendments we tried to the ALD deposition to
overcome this obstacle:

• High-temperature (200 °C) Al2O3, which allows us to significantly re-
duce the pulse times, leading to shorter exposure of the chip to ele-
vated temperatures in the ALD machine.

• Dip in ammonium polysulphide to passivate the surface prior to load-
ing chip into ALD machine.

• Replacing TMA with Tetrakis(ethylmethylamido)hafnium(IV) to form
hafnium oxide (HfO2), another commonly used insulator, in case leak-
age was related to the TMA. HfO2 deposited at 90°C.

• Low-temperature HfO2 (40°C) using Argon as carrier gas.

• Low-temperature HfO2 with Argon as carrier gas and IPA instead of
H2O as oxidizing agent.

• Dip in buffered oxide etch (to remove native oxide) followed by dip in
dilute ammonium hydroxide to passivate surface prior to ALD.

• Sputter deposition of Si3N4, to completely avoid the ALD process.

All of the tests above yielded same result: Disconnected mesas had a parallel
conduction path with R ⇡ 2 kW. The problem was ultimately resolved not
by changing the ALD process, but by etching deeper h & 200 nm. As of
writing, it is still unresolved what caused this parallel conduction path, or
why it was not present in samples prepared using the ALD machine at UC
Santa Barbara. The only outstanding difference is that the UCSB machine
was plasma–based ALD, while the ALD machine at QDev is thermal ALD.

3.1.6 Deposition of gates

Finally the metallic gates can be deposited. The process is split into two
steps. First step is depositing the fine structures that forms the innermost
regions of the gates, followed by a second (thicker) metallic layer that forms
bondpads and outer region of gates. The process cannot be done in a single
step, since the gates need to crawl up onto the mesa (h & 250 nm), while
still having small (⇠100 nm) features.

Inner gate regions

clean : 2–solvent clean: 2 minutes in acetone, 1 minute in IPA and 3 min-
utes bake at 185 °C.
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spin resist : PMMA A4, deposited in the same way as for mesa etch, see
section 3.1.3. Spin at 4000RPM for 45 seconds.

e–beam lithography : I = 500 pA, writefield size = 300 µm, 60.000 dots
and dwell time of 0.62 µS/dot, corresponding to 1240 µC/cm2.

develop : 60s MIBK:IPA (1:3) followed by 20 sec IPA and then thorough
blowdry with N2.

plasma ash : 45 seconds, approximately equivalent to 12 nm PMMA re-
moved.

metal evaporation :

• 5 nm titanium at an angle of 10° with a rotation of 50 RPM.

• 20 nm gold at an angle of 10° with a rotation of 50 RPM.

• 30 nm gold at an angle of 0° with a rotation of 50 RPM.

liftoff : Over night in N-Methyl-2-pyrrolidone (commonly referred to as
NMP). Scratch the corner of the chip with a syringe to help the NMP
crawl under the film. This relatively delicate lift off is necessary since
the resist is not a bilayer stack and metal is deposited at an angle,
making it harder to lift off.

Outer gate regions

clean : 2–solvent clean as for the inner gates.

spin resist : Deposit resist using dynamic deposition, same as for all other
e–beam steps, this time with a bilayer:

1. EL-9, 4000 RPM for 45 seconds

2. Bake for 3 minutes at 185°C.

3. PMMA-A4, 4000 RPM for 45 seconds

4. Bake for 3 minutes at 185°C.

e–beam lithography : I = 20nA, writefield size = 600 µm, 20.000 dots
and dwell time 0.36 µS/dot, corresponding to 800µC/cm2.

develop : 60 seconds in MIBK:IPA (1:3) followed by 20 second IPA and
then thoroughly blowdry with N2.

plasma ash : 45 seconds equivalent to roughly 12nm PMMA

metal evaporation : 5 nm titanium at an angle of 10° with a rotation of
50 RPM / 50 nm gold at an angle of 10° with a rotation of 50 RPM /
130 nm gold at an angle of 0° with a rotation of 50 RPM / 20 nm gold
at an angle of 10° with a rotation of 50 RPM.

liftoff : ⇠4 hours in 80 °C NMP

Figure 3.6 shows a finalized chip, fabricated using the steps outlined above.
Data on two devices from the chip in Figure 3.6 is the subject of Chapters 4

and 5, respectively.
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Figure 3.6: a, Full 2.5 ⇥ 5 mm chip with 19 devices. b, c, Optical and SEM zoom of
the SN junction highlighted in blue in a. The superconducting properties
of this device is the subject of Chapter 4. The double–layer gate metal
deposition is visible as a slight change in the intensity of yellow close to
the mesa. d, e, Optical and SEM zoom of the SNS device highlighted
in red in a. The supercurrent and multiple Andreev reflections in this
device is studied in detail in Chapter 5.



38 device fabrication & measurement techniques

3.1.7 Wire bonding and prepping for cooldown

To mount the chip, we use the new QDev sample boards developed by
Morten Madsen and Ferdinand Kuemmeth. The boards were developed to
utilize 48 DC lines. Figure 3.7c shows a QDev sample board with a chip
mounted. The chip is glued onto the QDev board with a drop of PMMA A4
and baked for 3 minutes at 185 °C in the cleanroom.

a b

c

d

Figure 3.7: a, An example of a used pinout schematic for the device JS113EpiAl4.
Only loom 1 was used (loom 2 had not been fitted in the fridge at the
time of this device loading). A blank template is available on the QDev
wiki page. b, c, Sample JS113EpiAl4 bonded on QDev board. d, A
sample mounted on the QDev board in a puck. Notice position of non–
gold plated corner of the QDev board relative to the motherboard, this
sets the orientation to match the pinout.

For bonding we used the settings shown in Table 3 on the bonder to
ensure punching through the Al2O3. We developed a pinout sheet to assist
in keeping track of line numbers and bonding, see Figure 3.7a (a blank
template can be found on the QDev wiki page). After bonding we usually
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Search Power Time Force

1st bond 1.8 3.0 5 3
2nd bond 1.8 3.5 7 7

Table 3: Settings used on wirebonder. The values for the first bond (made on the
chip carrier) should just be set so the bonding is comfortable. The settings
on 2nd bond are necessary to punch through Al2O3.

take optical images through a microscope as shown in Figure 3.7b and 3.7c,
which is useful if troubleshooting is needed, after device is loaded.

Before the puck is loaded into the dilution unit we test the bonds at room
temperature. This is done by loading the puck onto the puck tester, which is
connected with a Fischer connector onto a test breakout box, see Figure 3.8.
Using an AC current bias 2–terminal measurement the room temperature
resistance of the ohmics is then measured. For an ohmic to be working at
base temperature, it should have R2-T

room temp . 2kW. At base temperature the
corresponding contact resistance would be between 0.5 kW and 1 kW. It is
exceedingly helpful to perform this test, since it allows not just checking the
ohmic contacts and bonds, but also ensuring the pinout scheme is correct
prior to loading the chip in the fridge. I highly recommend doing it, no
matter how tired you are when loading a device late at night.

breakout box pucktester pinout sheetpuck

Figure 3.8: Puck tester with puck attached connected to a breakout box for room
temperature tests before loading a device.

3.2 measurement techniques and electronics

All measurements reported in this thesis were done in a Triton cryofree di-
lution refrigerator with base temperatures Tmc = 23 mK, measured using
ruthenium oxide temperature sensor anchored to the mixing chamber. The
refrigerators are bottom-loaded He3–He4dilution units bought from Oxford
Instruments. We’ll refer to them simply as fridges throughout this section.
We start with a brief review of the insides of a typical Triton fridge and
how we have amended them for the low–frequency ( f < 100 Hz) AC+DC
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measurements performed in this thesis and then move to details of the mea-
surement setup and electrical filtering in section 3.2.2.

3.2.1 The guts of a Triton dilution unit

The role of the refrigerator is to decrease the temperature of the sample
until kBT is no longer destroying (or hiding) the quantum effects we are
interested in, and offer a means to inject and collect electrical signals. Here,
we briefly review the process of He3–He4dilution refrigeration. Details can
be found in e.g. Pobells textbook [53]. Roughly, the cooling is achieved by
a two stage process (see Figure 3.9): Precooling down to T ⇠ 10 K on the
mixing chamber (eventually the coldest part of the fridge) by circulating a
mixture of He3–He4 in the gas phase, which is thermalized by contact to a
stage mechanically cooled to 4 K using a pulse tube cooler [54]. Once the
mixing chamber reaches 10 K, a different cooling scheme is deployed. One
of the many famous results on the properties of He3 an He4 is that even as
T ! 0 K, they are still in liquid form and there is a finite solubility of the
two liquids [53, 55]. Roughly speaking, the mixing of these two quantum
liquids requires energy from the surroundings and cools the chamber con-
taining the liquid (this is a gross simplification). This is a fundamentally
quantum mechanical process that relies on the Bose and Fermi statistics of
He4 and He3. By a series of heat exchangers and pumps, the He3 from the
dilute phase in He4 is recirculated through the refrigerator and the cooling
(dilution) process can run perpetually, see Figure 3.9b. What ultimately sets
the temperature limit is the ability to thermally isolate the mixing chamber
and requirements on flow rates in the He3–He4circuit. In practice, lower
than T = 10 mK temperatures is not feasible using the He3–He4 dilution
strategy [53].

The fridge is equipped with 2 looms of 12 twisted pair constantan cables,
for a total of 48 lines usable for AC+DC measurements. There is also space
for 14 coax lines, but none of them are used for our measurements. The
coax lines are terminated at the mixing chamber. Due to the layout of the
twisted pairs in the nano–D connectors, the DC lines are labeled 1–24 and
27–50.

The temperature in the sample is in general not the same as the temper-
ature of the electrons in the electrical signal used to excite the sample, un-
less special care is taken. It’s the electron temperature, Te, that will set the
thermal broadening of our experiments, so we should care about thermal-
ization of the electrical lines. To cool the electrons, we thermalise the loom
by tightly wrapping it around a copper post which is thermally anchored
to the mixing chamber. The loom is fixed in place with dental floss and
painted with GE varnish, see Figure 3.10c. The brackets containing the PCB
boards with the electrical filters is also anchored to the mixing chamber, and
will also contribute to thermalization. Figure 3.10c shows a schematic of the
thermalization and filtering layout in the fridge used for the measurements



3.2 measurement techniques and electronics 41

a still pump to still pumpb

PT1 plate

pu
lse

 tu
be

 c
oo

le
r

PT2/4K plate

still plate

MC plate

mixing chamber

mixing chamber

100mK stage

still

100mK plate

SA
M

PL
E

SA
M

PL
E

heat

He3 rich

>90% He3 vapor

He3 in

He4 / He3 dilute (~6%)

He3 very dilute (<1%)

Figure 3.9: a, Picture of the inner parts of a Triton cryofree dilution refrigerator.
This fridge does not have a coldfinger (indicated by gray box, where
sample would be loaded) and is void of any electrical wiring. b, Rough
schematic of the He3–He4 circulation system inside the fridge. Flow
impedances and details of the design is omitted.

reported in Chapters 4 and 5. The electron temperature was measured us-
ing Coulomb blockade thermometry on a quantum dot in GeSi nanowires
to be Te = 100 mK (measurements performed by the previous user of the
fridge). The filtering consists of two homebuilt 3–stage filter boxes devel-
oped by Ferdinand Kuemmeth (the so–called RF PCB filters and RC PCB
filters). The capacitors and resistors in the RC circuit are chosen to have a
reasonable range in cutoff-frequency when using a large bias resistor, while
the p filters in the RF box are an off-the-shelf item from Mini–Circuits. The
RC filter has a cutoff frequency fc = 1/2pRC ⇡ 15.6 kHz, and the p filters
are 80 MHz, 1450 Mhz and 5000 MHz 7–pole low–pass filters, respectively.
Figure 3.10d shows a schematic of the layout of the filters. Finally we note
that the high–frequency filters are necessary to measure a sharp transition
to the superconducting branch in IV curves in the SNS geometry discussed
in Chapter 5, indicating that high–frequency noise needs to be filtered.
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Figure 3.10: a, Picture of ferdi RF and ferdi RC filters inside gold plated copper
brackets thermally anchored to the mixing chamber. b, the PCB boards
inside the RF and RC filters, showing the 3–stage structure of each fil-
ter. c, diagram of thermalization of loom (indicated in thick black) via
copper posts and filters. d, image of the copper post with loom wound
around it. Zoomin shows the 12 twisted pair cables in the loom.

3.2.2 Measurement strategies

Here we briefly review the measurement techniques and strategies used for
the measurements reported in Chapters 4 and 5. All measurements are done
in a 4–terminal setup, except for cases where a device is operated in the very
pinched off regime, with a resistance R ⇡ 10 MW ⇡ 0.01G�1

0 (as is the case
for the data in Figure 4.10). Such larges resistances are comparable to the
input impedance on the voltage preamplifiers, so current will start flowing
to the voltage probes, instead of the (virtual) ground. In this case we use a
2–terminal DC measurement.

Figure 3.11a show the 4–terminal measurement setup used for measuring
the quantum point contact. The setup is operated in voltage–bias, using a
home–built IV converter that applies the bias Vout symmetrically on either
contact, and simultaneously measures the resulting current through both
contacts. An AC signal, sourced from an Stanford Research SR830 lockin
amplifier, and a DC signal, sourced from a DAC, is applied simultaneously.
The AC component is typically VAC

out ⇠5 µeV. This should be compared to the
superconducting gap, with typical energy scale D ⇠ 200µ eV. In light of this,



3.2 measurement techniques and electronics 43

the value for VAC
out is a trade–off between signal strength (which gets better

with increasing excitation voltage) and broadening (which is proportional
to VAC

out ), with the overall signal scale set by D. The lockin is not comfortable
outputting such a small excitation, so we use a homebuilt resistive divider
with a factor 1/100.000. All measurements in the voltage bias mode are
performed at fout ⇠ 17 Hz, low enough to not worry about phase shift
induced by the RC filters, and high enough to maintain a reasonably low
integration time.

For the DC voltage supply, we use a DAC with a range of ±10 V and
16 bits digitization, leading to resolution dV = (20 V)/216 = 0.3 mV. To in-
crease resolution every second channel on the DAC is used as a fine channel,
using a built–in divider, leading to a resolution of dV = 3 µV. Since the typ-
ical scale for the voltage bias measurements is 200µV, we use a homebuilt
1/1.000 divider to increase resolution and avoid running the DAC at the
lower edge of its resolution. The differential voltage is amplified by a factor
100 from the preamplifiers, and the current is measured with a feedback
resistor Rfeedback = 100 MW. Measuring the DC component simultaneously
is crucial when performing finite source–drain bias measurements, and its
significance will be discussed in chapter 4. The differential conductance
G = dI/dV is found by digitally dividing the AC current readout from the
lockin measuring output on the current preamplifier, with the differential
voltage from the lockin measuring output from the voltage preamplifier.

For the measurements of the supercurrent in Chapter 5 we use a current
bias setup. Since the superconducting state is defined by its absence of a
voltage drop across the junction, voltage bias measurements are not suit-
able. The setup is shown in Figure 3.11b. The critical current at which
the SNS junctions measured in Chapter 5 switches to the normal state is
Ic ⇡ 2 µA. With this typical current scale in mind we use a 440 kW bias
resistor on the DC line and a 500 MWbias resistor with a 2.5 V excitation on
the AC current, leading to IAC = 5 nA. In the current bias setup the drain
electrode is set to ground to minimize noise, but can be hooked up to a cur-
rent preamp for diagnosing potential issues and verifying that the current
source is operating as expected. The AC voltage is measured to calculate
the differential resistance and the DC voltage drop is measured to correctly
scale the multiple Andreev reflections signatures (see Chapter 5 for details).
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Figure 3.11: a, Setup for 4–terminal voltage bias measurement using homebuilt IV
converter with symmetric biasing. The floating connection marked IB
is the current into line B, which is nominally identical to current in line
A (unless there is electrical leakage in device). The IB line is useful for
troubleshooting but is usually kept disconnected. The RF+RC filter is
the PCB filters discussed in the main text, while the filter marked ’VLFX-
80’ is an 80 MHz off-the-shelf filter from Mini–Circuits. We found the
measurements more quiet with this added filter at room temperature.
Finally, the BLP1.9+ is 1.9 MHz low pass filter and the filter marked
’LP’ is a low pass RC filter with an RC time 150 ms filter used for DC
voltages on the gates. b, Current bias 4–terminal setup used to measure
the superconducting state of the SNS geometry. The readout on the
current preamp is not necessary, but can be useful for troubleshooting.
Most of the time we simply ground this contact to minimize noise. The
resistance of the bias resistors is chosen based on the superconducting
properties of the junction being measured.



Part II

S U P E R C O N D U C T I N G P R O P E RT I E S O F T H E
E P I TA X I A L A L / I N A S Q U A N T U M W E L L

In this part we dive into the transport measurements of the su-
perconducting properties of the 2D electron gas. Chapter 4 is
devoted to quantum point contact spectroscopy of a single SN
interface and in Chapter 5 we investigate the supercurrent carry-
ing and finite–bias properties of an SNS geometry.





4
T H E A N D R E E V E N H A N C E D Q U A N T U M P O I N T
C O N TA C T

In this chapter we study the properties of the InAs 2DEG coupled to the
aluminum grown in situ. The InAs inherits properties of the superconduc-
tor via Andreev reflection when electrons/holes impinge on the aluminum
interface. We start this chapter by reviewing this proximity effect, and intro-
duce the Blonder–Tinkham–Klapwijk formalism for understanding the NS
interface. A tunnel probe can be used to measure the local density of states
in the 2DEG, and we derive explicitly how the tunnel probe behaves when
placed proximal to an NS interface. With these insights we present data on
a QPC that can be continually tuned from approximately unity transmission
of a single mode and down to tunneling regime, where it is used as a probe
of the local density of states in the epi–Al/InAs. We observe doubling of
quantization through the QPC (step size 4e2/h) in the one–channel limit,
and strongly suppressed conductance (the hard gap) when the QPC is used
to probe the local density of states, due to the proximity to aluminum.

4.1 the superconductor/semiconductor interface

When a normal metal (semiconductor) is placed proximal to a superconduc-
tor, the properties of both materials can change dramatically. Here we focus
on how states in the normal metal are affected by the proximity to the su-
perconductor. Consider an electron with energy E & µ impingent on the
NS interface from the normal metal. The fermi energies of the normal metal
and superconductor will align, and for E < D there are no quasiparticle
states available inside the superconductor. Since there is no barrier at the
interface (in this simple model, we’ll change this later), and no quasiparticle
states available, there is no option for the electron to dump its momentum
to change the sign of its wavector and undergo a scattering event. How-
ever, the superconductor can accept Cooper pairs at the Fermi energy. If

47
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the normal metal donates an extra electron with �k " along with the orig-
inal electron, the superconductor can accept the pair (k ",�k #). Due to
momentum conservation, this process will leave the fermi sea with a net
momentum +k. So instead of the normal metal injecting an extra electron
into the superconductor, we can think of the original electron retroreflected
as a hole with +k momenta. This process is sketched in Figure 4.1a and 4.1b
and is known as Andreev reflection [56]. Because the group velocity of a hole
is opposite to that of its wavector, the hole will traverse the same path back
as the incident electron. Since a charge 2e was transfered into the supercon-
ductor, Andreev reflection increases the conductance below the gap. If the
impingent electron has E > D there will be normal scattering in addition to
Andreev reflection.

a bnormal metal normal metal

e E Δ

h

superconductor superconductor

Figure 4.1: a, Real space schematic of the Andreev reflection process. b, Energy
space schematic of electron with energy E > µ but E < D being retrore-
flected as a hole while a Cooper pair is formed in the superconductor.

4.1.1 The Blonder–Tinkham–Klapwijk formalism

The situation outlined above is of course idealized. It is usually the case,
that when a semiconductor is in proximity to a superconductor, the interface
between the two materials will not be ideal (i. e. not every incident electron
is retroreflected as a hole). Two effects can contribute to degrading the
interface:

• The density in the semiconductor is in general lower than in the super-
conductor. This can lead to a fermi velocity mismatch of the carriers.

• The interface between the two materials can (and will) be degraded
due to processing of the sample.

These modifications to the idealized case were studied in the seminal paper
by Blonder, Tinkham & Klapwijk [57]. The same results were independently
found by Zaitsev [58] and Arnold [59], by starting from a microscopic theory.
The BTK derivation provides an intuitive and elegant picture, which we
outline below.

The interface degradation is modeled by a d–function located at the in-
terface. The Fermi velocity mismatch between the superconductor and the
semiconductor is modeled by a potential step across the interface. The scalar
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Figure 4.2: a, The more realistic picture of an SN interface with a degraded inter-
face modeled by a d–function and potential U0 due to Fermi velocity
mismatch. b, Definition of the plane–wave coefficients used in the BTK
analysis of an SN interface.

potential in the Bogoliubov-de Gennes equation (2.14) is therefore modified
to

U(r) = U0q(�r)| {z }
fermi velocity

mismatch

+ Hd(r)| {z }
interface

transparency

(4.1)

We will also assume that the pair potential increases in a steplike manner
D(r) = D0e�if

q(r), where q(r) is the step function. The scenario is sketched
in Figure 4.2a. The strength of the the barrier at the interface can be recast
in dimensionless units by introducing

Z = H
me

h̄kFs
(4.2)

The ”height” of the barrier is given by Z. We will use Z synonymously
with the quality of the SN interface, so that Z = 0 corresponds to perfect
Andreev reflection.

An electron impingent on the super/semi interface now has four options:
scatter as an electron, scatter as a hole (Andreev reflect), transmit as a (quasi)
hole or transmit as a (quasi) electron. Using the plane–wave ansatz these
options give rise to the following wavefunction
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The incoming/outgoing waves are shown in Figure 4.2b.
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The wavenumbers for the electrons and holes can be found by considering
the eigenenergies of the BdG equation, introduced back in Equation 2.20.
Isolating k yields the four solutions

k
t

= ± 1
h̄2

q
2m(µ � U0 + t

p
E2 � D2), (4.4)

where t = 1(�1) corresponds to solutions for electrons (holes). The wavenum-
bers for the planewaves are thus

k
t

=
q

k2
Fn + tE 2m

h̄2 , k0
t

=

r
k2

Fs + t

p
E2 � D2 2m

h̄2 , (4.5)

where kFn =
q

2m
h̄2 (µ � U0) and kFs =

q
2m
h̄2 µ. For E < D, k0

t

is imaginary,
corresponding to evanescent waves in the superconductor. Imposing appro-
priate boundary conditions on the wavefunctions and wrangling Equations
(4.3a)–(4.3c) sufficiently, allows the determination of the Andreev reflection
probability A(E) = a⇤a and normal reflection probability B(E) = b⇤b [57, 1].
We quote the hard labor in Table 4.

A(E) B(E)
Z = 0
E < D 1 0

E > D v2
0

u2
0

0

Z > 0
E < D D2

E2+(D2�E2)(1+2Z2)2 1 � A(E)

E > D u2
0v2

0
g

2
(u2

0�v2
0)

2Z2(1+Z2)
g

2

Table 4: The probability A(E) of Andreev reflection and the probability B(E) of nor-
mal reflection, for the case of ideal Andreev reflection Z = 0 and degraded
interface Z > 0.

The factors v0 and u0 are given in Equations (2.18) and (2.19), and

g = u2
0 +

⇣
u2

0 � v2
0

⌘
Z2 (4.6)

and the Z–parameter is modified to an effective version, including Fermi
velocity mismatch,

Z ! Zeff =
q

Z2 + (1 � r)2/4r (4.7)

where r = vFn/vFs. This effective parameter Zeff includes both the effects
of interface degradation and Fermi velocity mismatch. From here on out,
whenever we discuss the Z parameter, we’ll have in mind the effective ver-
sion, but without explicitly writing Zeff. In Figure 4.3 the quantities A(E)
and B(E) is plotted for several values of Z.
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Figure 4.3: Probabilites of Andreev reflection and normal reflection as a function of
energy of an incoming electron, for a few values of the barrier parameter
Z

So far, the phase of the incoming electrons/outgoing holes have been
ignored. The phase of the hole after Andreev of an electron is dependent on
the energy of th incoming state, the superconducting gap, and the phase of
the superconductor in the following way

fh = fe + arccos (E/D) + fs (4.8)

and similarly for a hole Andreev reflected into an electron:

fe = fh + arccos (E/D)� fs (4.9)

The significance of the phase properties of the Andreev reflection will be-
come particularly important in the next chapter, where we study bound
states in an SNS junctions.

4.1.2 Why does a tunnel probe measure the density of states?

In light of the theoretical considerations in the previous section, it’s now
reasonable to ask: How does the behavior of Andreev reflection and the
shape of A(E) manifest itself in experiments? Electrical transport through
a constriction between two reservoirs with a voltage drop V applied across
them is given by [60]

I =
GN
e

Z •

0
dE [ f (E)� f (E � eV)] , (4.10)

where f (E) is the Fermi function and Gn is a characteristic conductance of
the system. In 2-dimensional systems, GN is given by the Sharvin resistance
[1]:

GN = GSh =
2e2

h
W

2lF
, (4.11)
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Blonder, Tinkham and Klapwijk adapted Equation (4.10) to include the ef-
fects of the proximal superconductor and showed that the current through
the SN is given by

INS =
Gn
e

Z •

0
dE [ f (E)� f (E � eV)] (1 + A(E)� B(E)), (4.12)

where A(E) is the contribution to the current by Andreev reflections and
B(E) is the normal scattering that reduces the current. In the tunneling limit
(i.e. large Z) Equation (4.12) reduces to a particularly useful form from an
experimental perspective. In this limit, the last term in parenthesis reduces
(with some algebra) exactly to the superconducting density of states

(1 + A(E)� B(E))
����

large Z
�! Ep

E2 � D2
= rs(E) (4.13)

Calculating the differential conductance (G = dI/dV) of an NS interface in
the tunneling regime yields

GNS =
dI
dV

����
large Z

= GSh

Z
dE
✓
�d f (E � eV)

dV

◆
rs(E) (4.14)

The derivative of a fermi function is a bell–shaped function with full width
half max ⇠ 4kBT and an area of unity. In the T ! 0 limit, d f (E � eV)/dV
reduces to a d–function that picks out the value of the density of states at
eV. Thus, in the low T limit Equation (4.16) reduces to

GNS(V) =
dINS
dV

= GSh ⇥

8
><

>:

rs(eV) Z � 1, (tunneling regime)

1 + A(eV)� B(eV) Z = 0, (open regime)

(4.15)

Thus, a measurement of the conductance in an NS structure is an important
spectroscopic tool to study the density of states and the Andreev reflection
processes. We will use this method extensively below. In Figure 4.4a and
4.4b we plot the current and differential conductance respectively. It’s ev-
ident that the differential conductance in the tunneling regime shown in
Figure 4.4b is equivalent to the superconducting density of states shown in
Figure 2.8c. In the case of an ideal interface (Z = 0), the subgap conduc-
tance is twice the normal state conductance, because the Andreev process
involves the transfer of 2e across the interface. From the shape of the current
in Figure 4.4a it is evident that the Z–parameter also influences the normal
state conductance, even for energies E > D. By setting D = 0 in Equation
(4.4) we see that the normal state conductance is given by

GNS|D=0 = GSh(1 � B(E)) = GSh
1

1 + Z2 = GShT . (4.16)
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Figure 4.4: a, Current through an NS junction calculated using Eq.(4.12) in the open
(Z = 0) and tunnel (Z � 1) regimes. The gray line indicate the excess
current (see main text). b, Differential conductance in the open and
tunneling regime. Calculated using Eq.(4.14).

Therefore Z also changes the normal state transmission, and is related to the
transmissivity of the junction. The Andreev reflection adds a net current
when a voltage is applied. This is the excess current, and can be used to
deduce the transparency of the interface [57, 61]. The role of the excess
current will be discussed in greater detail in Chapter 5.

4.2 experimental setup of the andreev quantum point con-
tact

The BTK model predicts that for a sufficiently transparent NS interface, the
conductance for eVsd < D increases. In the ideal case of Z = 0 the con-
ductance is exactly doubled due to Andreev reflection. As the interface
becomes more like a tunnel barrier, the conductance at eVsd < D is sup-
pressed. An example of a system that can be tuned between the these two
regimes is the geometry shown in Figure 4.9. The constriction formed by
the QPC can be thought of as an effective, tunable Z–parameter between the
normal region (2DEG) and the superconductor. We will refer to such a de-
vice as an Andreev Quantum Point Contact, and it is the subject of study for
the remainder of the chapter. This tunable Z–parameter is, to some extent,
bounded by the intrinsic Z–value of the SN interface. The simulations of
the effective mass used in Chapter 2 yields a Fermi velocity vF ⇡ 106 m/s,
which in turns means that the fermi velocity mismatch is r ⇡ 0.5 (Fermi ve-
locity in aluminum is vF,Al = 2 · 106 m/s [62]). This gives a lower bound on
Z via Equation (4.7) of Z � 0.35. However, since for Z > 0 an electron im-
pingent on the NS interface can normal reflect, followed by another normal
reflection on the backside of the QPC (or an impurity) giving it yet another
chance at Andreev reflection on the NS interface, the Z of the Andreev QPC
is not strictly bounded by the materials interface.

In Figure 4.6 we present finite bias measurements of the device in Figure
4.5a measured at base temperature of a dilution refrigerator, for two differ-
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Figure 4.5: a, False color SEM image of the Andreev QPC device, fabricated on the
wafer with 10 nm aluminum film and 10 nm InGaAs barrier between
InAs and the aluminum film. b, 3D schematic of the Andreev QPC
highlighting the 2DEG extending under the aluminum contact.

ent values of the QPC gate voltage. The measurement setup is discussed in
detail in section 3.2.2. While the detailed shape of the curves do not map ex-
actly onto the prediction from BTK–theory in Fig.4.4b, it is evident that for
Vg = �8.2 V the conductance is enhanced by a factor of two at Vsd = 0 mV,
while for Vg = �8.87 V there is gap in the local density of states of the
InAs. The peak–to–peak width (highlighted with two vertical arrows) corre-
sponds to a gap D? = 190 µeV, which is commensurate with the gap in the
aluminum film DAl = 225 µeV. In section 4.3 we discuss in greater detail the
properties of the gap in the 2DEG and justify identifying it with the super-
conducting gap (as opposed to coulomb charging physics), and in section
4.4 the properties of the enhanced subgap conductance is discussed.

The best of our knowledge, this is the first observation of a supercon-
ducting gap in the density of states of a semiconducting 2D electron gas
measured via tunnel spectroscopy in an open channel, as well as the first
observation of conductance enhanced by exactly a factor of 2 in an Andreev
QPC geometry. The properties of S-quantum dot-S using a 2DEG has pre-
viously been reported using a gate–defined quantum dot formed in a prox-
imitized region [63, 64]. Before studying the finite bias properties in greater
detail we concentrate on the zero–bias properties of the Andreev QPC.
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Figure 4.6: Finite–bias properties of the Andreev QPC at two different gate voltages.
At Vsd = 0 V the device transitions from the enhanced conductance
regime GNS ⇡ 2GNN to the gapped regime with GNS ⌧ GNN as the gate
is used to tune the transmission through the constriction.
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4.2.1 Beenakkers prediction

In a seminal paper from 1992 Carlo Beenakker studied in detail the zero
bias properties of a geometry identical to the Andreev QPC, shown in Fig-
ure 4.7. One of the key results in that paper is the observation that a QPC
placed proximal to a superconductor should have quantization in steps of
4e2/h. The added factor of two comes from the Andreev reflection at the SN
interface. If we consider just a single mode, and perfect Andreev reflection
at the SN interface, Beenakkers result can be derived quite nicely. Consider
an electron traversing the constriction and the region of the 2DEG after the
QPC with transmission te. It is now Andreev reflected (with probability
1) at the SN interface and is reflected as a hole, which has a phase �ieif

(see Equation (4.8)). Finally, the hole escapes the constriction with trans-
mission th. This process is outlined in Figure 4.7. However, after the first
Andreev reflection, the hole may scatter at an impurity (or the backside of
the constriction), with a reflection rh. The hole will then impinge on the
NS interface, and is again Andreev reflected into an electron (again, costing
a phase) which will traverse the same path back towards the impurity. Af-
ter scattering with reflection re on the impurity it is finally hitting the SN
interface for the 3rd time, and can Andreev reflect to finally leave the con-
striction with th. The two processes just outlined is the 0’th and 1’st order

2DEG superconductor

no impurity scattering

scattering from impurity once

th

th

(2)

(3)

(1)

(1)

te

te

rh re

-ie-iɸ

-ieiɸ

-ieiɸ

-ieiɸ

Figure 4.7: Cartoon depicting trajectories contributing to the Andreev reflection
probability A. The sum is carried out explicitly in Eq.(4.17).

contributions to the Andreev transmission through the constriction:

A = te(�ieif)th + te(�ieif)rh(�ie�if)re(�ieif)th + · · ·
= �ieifte (1 � rhre + · · · ) th

= �ieif teth
1 + rhre

(4.17)

In the last line the geometric series was was summed. By particle–hole
symmetry of the s–matrix we have rh(E) = r⇤e (�E) and equivalent for t.
Since we’re at zero energy we can write teth = tet?e = T (and similar for re),
which yields

A = �ieif T
1 +R = �ieif T

2 � T (4.18)
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where we used R = 1 � T . Finally, since each term in Equation 4.17 entails
the net transfer of 2e across the constriction, the conductance is given by

GAndreev QPC = 2
2e2

h
|A|2 =

4e2

h
T 2

(2 � T )2 , (4.19)

which is the single–channel version of Beenakkers result. In Figure 4.8a, the
conductance in a single channel Andreev QPC is compared with the con-
ductance in a single channel normal QPC, with conductance G = G0T . The
point marked G0 indicates the transmission at which conductance through
the Andreev QPC is greater than the conductance in the normal QPC. The
remarkable factor–of–two doubling of the Andreev QPC is strikingly visible
if we assume the QPC can be modeled by saddle point potential (as in sec-
tion 2.1.4), in which case the T ’s are well known [42]. Figure 4.8b compares
the Andreev QPC and the normal QPC in the multichannel case.
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Figure 4.8: a, The conductance through a normal QPC and an Andreev QPC as the
transmission is increased. By setting GNN = GNS, we find G0 = 0.76G0.
b, By assuming a saddlepoint potential in the constriction to model the
T ’s, the factor-of-two increase in conductance is particularly clear.

The pinchoff traces of two lithographically identical Andreev QPC de-
vices is shown in Figure 4.9. The data labeled Device 1 is the device imaged
using SEM in Figure 4.5. The conductance at the first plateau of the QPC
(corresponding to T = 1) is clearly doubled in the superconducting case.
The aluminum film can be driven normal by three different methods: Ap-
plying a field B? > B?,c, raising the temperature T > Tc or applying a bias
much larger than the gap eVsd � DAl. In each of these regimes, the nor-
mal state QPC’s show steps at NG0 for N = {1, 2, 3}. For Device 2 there is
an extra step at G = 1.8G0 of unknown origin, but with no corresponding
conductance increase in the superconducting state.

The steps in the superconducting state are not particularly flat, except
for the first plateau. This can be explained in part by the dependence of
G on the transmission coefficients, G ⇠ T 2/(2 � T )2. The non–linear de-
pendence of conductance on transmission makes the conductance in the
Andreev QPC particularly susceptible to resonances that decrease T . Fur-
thermore, the geometry of the 2DEG billiard after the constriction will also
lead to resonances. We cannot deploy the trick of applying a field, or in-
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Figure 4.9: Conductance through two lithographically identical Andreev QPC de-
vices. a, Device 1 (on which the remaining data in this chapter is taken).
By increasing temperature above Tc = 1.6K or by applying a large bias,
the QPC is in the normal state and the conductance is quantized in units
of G0. b, A different device, but lithographically identical the device
measured in a, showing qualitatively the same behavior.

creasing the temperature since this will change (and ultimately destroy) the
superdonducting properties of the film. Despite these shortcomings, for De-
vice 1 we extract G0 = 0.7G0 and for Device 2 we extract G0 = 0.8G0, in good
agreement with the Beenakkers prediction.

Some comments on the measurements are in order. Since the voltage
probes are not located immediately after the constriction, there is a finite
series resistance Rs not accounted for, despite the 4–terminal measurement
setup (see Figure 3.11). This series resistance is in principle slightly gate–
voltage dependent, since the size of the 2DEG region contributing to con-
ductance is effectively changed when the gate is energized. However, we
have chosen to counter this by subtracting only a constant series resistance,
chosen to move the first plateau in the normal state to G = 2e2/h. This is
achieved for both devices by subtracting Rs = 1.35 kW from the pinchoff
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curves. The same series resistance is subtracted from the superconducting
state. As discussed in Section 2.1.4 asymmetrically gating the device can
help understand spurious resonances, and avoid them. For device 1 the
QPC gates have an offset Voffset = +1 V between them, so that when setting
e.g. Vg = V0 means Vg,left = V0 � 0.5 V and Vg,right = V0 + 0.5 V. The data
on asymmetrically gating this device is shown in Figure 2.7c. Device 2 has
no offset between the gates.

Beenakkers result can be recast in a particularly illuminating form [24],
which allows quantifying to what extent the conductance in the Andreev
QPC is governed by Equation (4.19). By writing Equation (4.19) as

GNS = 2G0
G2

NN
(2G0 � GNN)2 (4.20)

Beenakkers formula can be used to answer the question "For a given normal–
state conductance, what is the subgap conductance in the superconducting
state if Andreev reflection is perfect?". If the subgap conductance is close
to that given by Equation 4.20 then the superconducting gap is said to be
"hard".

From the pinchoff traces in Figure 4.9a, we see that applying a bias across
the QPC is equivalent to driving the superconducting film normal, and we
can therefore use G(eVsd > DAl) as the normal state conductance GNN. To
this end, we have have measured the finite–bias conductance through the
Andreev QPC as a function of gate–voltage, shown in Figure 4.10a. The
characteristic superconducting gap in the density of states is visible for
Vg < �8.4 V, while at more positive gatevoltages the enhanced conduc-
tance is visible. The finite–bias data in Figure 4.6 is cuts in the dataset from
Figure 4.10, indicated by the red, blue rectangles above the 2D plot. We ex-
tract the normal state conductance as the average conductance in the range
|Vsd| > 0.8. By using this value for GNN in Equation (4.20), we are able
to compare our measured data to the prediction, as shown with green line
in Figure 4.10b. The model has no fitting parameters, and the data mimics
the prediction over almost four orders of magnitude. It is presently un-
clear if the systematic deviation of the measurement from the prediction at
GNN < 0.1 ⇥ 2e2/h is an artifact of the device geometry (the QPC is located
a distance ⇠ 230 nm from the SN interface) or if it presents a fundamental
limit on the finite subgap conductance in this wafer. However, the deviation
may stem from something as mundane as our definition of GNN. We strove
to choose a fair definition of GNN that would not evoke feelings of cherry
picking, and we tested that if the averaging is changed to include more or
less of the data for |eVsd| > 0.5 mV the results are largely unchanged.
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Figure 4.10: a, Finite–bias spectroscopy of the Andreev QPC. The transition from
conductance enhancement to conductance suppression at zero bias is
clearly visible. b, The conductance in the superconducting state as a
function of the conductance in the normal state. The Beenakker theory
(Equation (4.20)) is shown in the green curve. The normal state conduc-
tance is calculated as the average conductance for |eVsd| > 0.8 mV.

Finally, before studying in detail the properties of the superconducting
gap and the enhanced conductance, we briefly mention a detail of the mea-
surement presented in Figure 4.10. Since the conductance in the super-
conducting gap is strongly suppressed, we are measuring a (very) large
resistance. The input impedance on the voltage preamplifiers is 100 MW
DC and approximately 10MW when measured using AC voltages. Since at
G = 0.01G0 the resistance is ⇠10 MW, we change instead to a two–terminal
measurement. Using only DC voltage we sample with a spacing of 4 µV.
The data is then smoothed over 30 µV range and the derivative is calculated
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numerically. Finally, the resistance of the lines is Rline = 4.1 kW and a series
resistance Rs = 800 W is subtracted from the data. This value of Rs is chosen
to move the plateau at Vg = �8.2 V at large bias to 2e2/h, similarly to how
Rs was chosen in Figure 4.9.

4.3 tunnel spectroscopy and the hard superconducting gap

For applications to Majorana devices, the possibility to locally probe the
density of states in the topological superconductor is a key tool. Here
we present detailed data on the gap in the local density of states. From
the large–range gate–scan and the comparison to Beenakkers prediction
in Figure 4.10 it is evident that there are no quantum dot–physics obscur-
ing the measurement of the gap. This is in contrast to many of the su-
perconductor/semiconductor nanowire experiments, where one sometimes
has to disentangle a coulomb blockade gap and the superconducting gap
[13, 24, 65, 66].

First we elevate the temperature and study the behavior of the gap, as
shown in Figure 4.11. The critical temperature of the suppressed conduc-
tance exactly matches the aluminum film Tc = 1.58K. At finite temperatures
the density of states is smeared by ⇠ 2kBT due to the Fermi functions in
Eq.(4.14), the conductance at zero bias is dependent on the temperature ac-
cording to

GNS
GNN

=

s
2pD?

kBT
e�D?/kBT (4.21)

for temperatures kBT ⌧ D [3]. We have plotted the zerobias conductance
in Figure 4.11b and compared to Equation (4.21). If we offset to match the
finite subgap conductance at T = 0.1 K, we extract a D? = 150 µeV (the fit is
shown in inset of Figure 4.11), in rough agreement with the peak–to–peak
gap D? ⇡ 190 µeV.

The finite–bias shape of the density of states, Figure 4.11, deviates from
that of the ideal BTK prediction (Figure 4.4). The thermal energy scale is
kBTe = 8 µeV, so it cannot be attributed to a broadening due to tempera-
ture. It could be a manifestation of the ”soft” gap due to a less–than–stellar
interface [67, 68]. However, this would not be reconcilable with the factor–
of–two enhancement (which requires a close–to–stellar interface), nor with
the good agreement at zero bias with Beenakkers prediction in Figure 4.10.
Instead, we propose the separation of the QPC to the NS interface as well
as the billiard in front of the NS interface as the reason for the deviation.

To quantify this, we consider the level spacing (i.e. Thouless energy) in
the billiard formed between the QPC and the NS interface. The Thouless
energy is related to the dwell in the region via,

ETh =
h̄

tD
(4.22)
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Figure 4.11: a, Finite bias spectroscopy as the temperature is elevated. b, Conduc-
tance at Vsd = 0 mV as the temperature is increased, for two different
values of the gate voltage. The critical temperature matches that of the
aluminum film, as measured in Section 2.2.1. Inset shows a fit to Equa-
tion (4.21) for the data at Vg = �9.23 V. The fit gives identical values
for Vg = �9.28 V.

where in the diffusive case, the dwell time is tD = (L · W)/D and in 2D
the diffusion constant is D = vFle/2. Using L = 230 nm and W = 1.1µ m
from the SEM image in 4.5a the Thouless energy is ETh = 290 µeV, slightly
larger than the gap. However, to account for the finite lifetime of electrons
penetrating under the aluminum in the InAs, we define an effective length

Leff = L + xd, where xd =
q

h̄D
D? is the superconducting coherence length in

the semiconductor (in the diffusive case). This coherence length for D? =

190 µeV is xd = 620 nm and consequently the Thouless energy becomes
ETh,eff ⇡ 80 µeV. The spacing of the level in the billiard can thus lead to the
smearing we observe. Since the decay length under the superconductor is
not a quantity we know with certainty, the value of ETh,eff should only be
used for a qualitative assessment. Finally, we mention that in experiments
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on S–S’–S systems, it was demonstrated the the finite–bias shape of the gap
is dependent on the position of the tunnel probe relative to the S–S’ interface,
but the zero–bias conductance was unchanged [69, 70, 71].

We also study the in–plane magnetic field dependence of the gap, shown
in Figure 4.12. For a superconductor/semiconductor device to transition

0.03

0.02

0.01

0.00

G
 (2

e2 /h
)

0.60.40.20.0
B (T)

 By
 Bx

0.06

0.04

0.02

0.00

G
 (2

e2 /h
)

-0.5 0.0 0.50.25-0.25
Vsd (mV)

     By (T)
 0.0
 0.06 
 0.15
 0.21
 0.39

TUNNELING REGIME

Figure 4.12: a, Finite bias spectroscopy as the in–plane field is increased. b, Con-
ductance at Vsd = 0mV as the field is increased in the two different
in–plane direction. Bx is perpendicular to the direction of motion in the
QPC and By is along the constriction. The difference in B?

c for the two
directions could be due to an anisotropic g–factor.

to the topological regime, which harbors Majorana fermions, it is a require-
ment that the Zeeman energy should close the gap in the 2DEG (we’ll explic-
itly derive this result in Chapter 6). Despite the gap in the 2DEG closing, the
parent superconductor should retain its gap. To investigate the feasibility of
reaching this regime, we apply a field in the plane of the chip, as shown
in Figure 4.12 with Bx perpendicular to the direction of motion in the QPC
and By along the constriction. At an in–plane field of B?

c = 350 mT the sub-
gap conductance is no longer dependent on the field magnitude, indicating
Andreev reflections in the 2DEG region is suppressed due to the Zeeman
field. From the measurements of the aluminum film in section 2.2.1, the
in–plane critical field of the bare film was measured to be Bc = 1.65 T, so
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the aluminum itself is still superconducting. If we assume the gap is closed
solely by Zeeman effect in 2DEG, then B?

c = 350 mT would correspond to a
g–factor

gµBB?
c = D? ) g ⇡ 9 (4.23)

roughly consistent with measurements in similar InGaAs/InAs heterostruc-
tures [72, 73, 74]. The reduced value of the g–factor from that of bulk InAs
(gInAs ⇠ �14) could be due to the extension of the wave function into the In-
GaAs regime [74, 75]. It thus seems feasible to drive a device, with suitable
geometry, fabricated on the epi–Al/InAs wafer, into the topological regime
and use electrostatic gates as a tunable probe of the local density of states
in the proximitized InAs.

4.4 one–channel regime of the andreev qpc

We now turn to the one–channel regime of the Andreev QPC. Here, one
channel with a transmission of approximately unity leads to the 2 · G0 con-
ductance at zero bias, as predicted by Beenakker [76]. In Figure 4.13a the
finite bias behavior of the enhanced conductance is shown. Since the con-
ductance at zero bias is enhanced by a factor very close to two, we would
expect Z ⇡ 0 in the naive BTK model. If the system could be described
exactly by the BTK formalism, we then expect the shape of the finite bias
to be peaked at |eVsd| = D? (c.f. Figure 4.4b). On the contrary, we observe
a monotonic decrease of conductance down to 2e2/h at |eVsd| & 2D?. This
deviation is believed to stem from the Thouless smearing effect discussed
for the tunneling regime in the previous section.

From Figure 4.13b, the temperature dependence exhibits a sharp cusp at
T ⇡ 1.6 K, again in good agreement with the superconducting film. In the
inset of Fig.4.13b we have produced a naive model to understand the qualita-
tive features of the temperature dependence. To this end, we have calculated
the conductance through an idealized 1D NS junction using Equation (4.16),
with perfect Andreev reflection Z = 0, and used A(E) from Table 4. The
temperature dependence is implemented with a Fermi–function derivative
and the gap scales with temperature as D(T) = D0

p
1 � (T/Tc)2, where we

used Tc = 1.6 K. Despite the model neglecting all geometrical factors, we
capture the qualitative feature of the kink and can understand the shape in
terms of Andreev reflection from a gap suppressed by thermal population.

We pause to comment on two details of the measurement presented in
Figure 4.13, related to the scaling of the voltage–drop across the device.
The measurement is done in a 4–terminal voltage bias setup (same as for
the tunneling regime). However, unlike in the tunneling regime, the voltage
drop in the 2DEG out to the voltage probes is no longer negligible compared
to the voltage drop across the device. To correct this, we have introduced
a series resistance similar to that of the QPC. The measured voltage can be
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Figure 4.13: a, Temperature dependence of the enhanced conductance in the An-
dreev QPC. b, Zero bias data for the temperature dependence. The
kink happens exactly at T = 1.6K, in good agreement with Tc of the
10nm aluminum film.

decomposed into two components Vmeasured = Vdevice + eV, where eV is the
voltage drop in the 2DEG out to the probe. The voltage across the device is
therefore

Vdevice = Vmeasured � eV =
�

Rmeasured � eR
�

Idc (4.24)

Since Idc is measured, the voltage drop across the device is determined by
fixing eR. We set eR = Rs = 1 kW, the series resistance subtracted to move the
plateau in the normal state to G0. The x–axis in Figure 4.13a is calculated
using Equation (4.24). The kink structure in Figure 4.13b is measured by
simultaneously recording the temperature and conductance as a function
of time while the fridge is cooling. Since T = 1.6 K = Tc is close to the
critical point where the dilute He3–He4-mixture is unstable, temperature
measurements in this regime are tricky. We therefore swept the temperature
through this value several times, and finally plotted the conductance and
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temperature parametrically. For this data set we have again chosen an Rs

such that the conductance at T > Tc is G0.
Finally, we measured the in–plane field dependence of the enhanced con-

ductance, shown in Figure 4.14. The enhanced conductance decays on a
magnetic field scale comparable to the superconducting gap.
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Figure 4.14: a, Finite–bias spectroscopy of the one–channel regime as a function of
in plane magnetic field. b, Conductance at zero bias as the field is
increased.

4.5 conclusion

In this chapter we have introduced the mechanism of Andreev reflection
and the BTK formalism to understand how a normal metal (semiconductor)
can inherit properties of a superconductor. By studying the conductance of
a quantum point contact placed proximal to the superconductor/2D elec-
tron gas interface in the epi–Al/InAs wafers, we demonstrated increased
conductance by a factor of two, as well as suppressed conductance, depend-
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ing on gate–voltage on the QPC. Finally, we investigated the temperature
and in–plane magnetic field dependence of this Andreev QPC geometry.

This electrostatically controllable tunnel probe of the local density of states
in a 2D electron gas with a hard superconducting gap is, to the best of our
knowledge, the first of its kind. Besides observing the quantization in terms
of 4e2/h, due to Andreev reflection, it is a key technological device for mea-
suring Majorana fermions.





5
J O S E P H S O N J U N C T I O N S I N E P I – A L / I N A S

In this chapter we focus on the properties of a device with two superconduct-
ing banks and an exposed region of InAs quantum well in between. Such
"SNS" structures can pass a supercurrent through the normal region, and go
by the name of Josephson Junctions, after Brian Josephson who predicted
the presence of the supercurrent through the SNS sandwich despite the
non–superconducting patty (Josephsons original work was on S–thin insu-
lating layer–S structures, but the S–semiconductor–S cousins have retained
the name). The magnitude and temperature dependence of the supercur-
rent carried through the junction, as well as the conductance at finite bias,
reveal properties of the coupling between the N and S layer. We’ll study
those properties in detail below.

The analysis of the data presented in this chapter is still a work in progress,
so all facets of the data cannot be presented in a coherent framework. The
last section is devoted to a discussion and speculations on the more puzzling
features.

5.1 the supercurrent carrying bound state

For simplicity we start by considering an SNS junction in an ideal 1D system
with no barriers at the SN and NS interfaces, as shown in Figure 5.1. We’ll
subsequently generalize this model to account for non–ideal interfaces. The
supercurrent in the junction is carried by bound states of electron/hole pairs,
formed by Andreev reflection at the left and right superconducting banks
[44, 77]. The value of the supercurrent is dependent on the phase difference
between the superconductors via

I =
2e
h̄

dE
df

(5.1)

69
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where E is the energy of the bound state. To calculate the magnitude of
the maximal supercurrent (the critical current), we have to work out how
the energy of the bound state depends on the phase across the junction. To

superconductor 1D normal region superconductor
e e

h hΔexp(-iφ/2) Δexp(+iφ/2)

0 L x

E

Figure 5.1: Schematic of an ideal 1D SNS junction

derive the eigenstates of the SNS system, we are looking for solutions to the
1D Bogoliubov-de Gennes equation (2.14) with the superconducting order
parameter given by

D(x) =

8
>>>><

>>>>:

D0e�if/2 x < 0

0 0 < x < L

D0e+if/2 x > L

(5.2)

For |E| > D0 there will be a continuum of solutions while for |E| < D0

there is a discrete set of bound states, carrying the supercurrent. Since there
are no states allowed within the gap, states with energy |E| < D0 will be
exponentially decaying solutions in the superconducting region. Following
the original treatment by Kulik [78], the ansatz for the wavefunctions of the
left (�) and right (+) moving states in such an SNS sandwich can be written
as

Y+ =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

A+

0

B@
v0e�if/2

u0

1

CA e+ik0hx x < 0

B+

0

B@
v0e�if/2

0

1

CA e+ikex + B+

0

B@
0

u0

1

CA e+ikhx 0 < x < L

C+

0

B@
v0e+if/2

u0

1

CA e+ik0e(x�L) x > L

(5.3)
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Y� =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

A�

0

B@
v0e�if/2

u0

1

CA e�ik0ex x < 0

B�

0

B@
v0e�if/2

0

1

CA e�ikex + B�

0

B@
0

u0

1

CA e�ikhx 0 < x < L

C�

0

B@
v0e+if/2

u0

1

CA e�ik0h(x�L) x > L

(5.4)

where k is the wave vector in the normal metal and k0 is the wavevector
in the superconducting region. Both are defined in Equation (4.5), and the
subscript e (t = �1) and h (t = 1) refers to electrons and holes, respec-
tively. For energies |E| < D0 the definition of k0

t

has imaginary components,
corresponding to the evanescent waves in the superconductor. Imposing
boundary conditions on the wavefunction yields the following equation for
the energy [44]

E
D0

L
x0

= 2pn ⌥ f + 2 arccos
E

D0
, (5.5)

where we have introduced the superconducting coherence length for the
carriers in the semiconductor,

x0 =
h̄vF
2D0

, (5.6)

and vF is the Fermi velocity in InAs. Deriving Equation (5.5) requires a little
footwork, but the result is very appealing. We can interpret each term as
contributions to Bohr–Sommerfeld quantization in the SNS structure: The
term arccos(E/D0) is the phase acquired from the evanescent waves pene-
trating into the superconductor, the term EL/D0x0 is the phase shift from
traversing the N region, and f is the superconducting phase picked up from
the Andreev reflection. In the limit of a short junction where the phase ac-
quired on traversing the normal region is negligible, i.e.

L ⌧ x0, (5.7)

the two lowest eigenvalues of Equation (5.5) have a simple form

E+(f) = D0 cos f/2

E�(f) = �D0 cos f/2
(5.8)
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and the supercurrent carried by these two modes can now be calculated by
plugging the energies in Equation (5.8) into Equation (5.1). The resulting
equations

I+(f) = � eD
h̄ sin f/2

I�(f) = eD
h̄ sin f/2

(5.9)

gives the current–phase relationship (CPR), and is a key construct for ana-
lyzing an SNS junctions [79].

The ideal interface between the normal- and superconducting metal is not
sufficient to capture key experimental observations about supercurrents in
SNS junctions. P.F. Bagwell extended this ideal model to include scattering
from a d–function impurity in the SNS region [80]. The effect of a degraded
SN interface (due to processing) was tackled by Beenakker who introduced
d–barriers at the interface (similar to the BTK treatment of the SN interface)
[81]. Similar results were obtained by Tang et al. [82]. Here we’ll settle for
quoting the result of these more sophisticated treatments. The model of a
degraded interface in an SNS junction is sketched in Figure 5.2, and the
potential in the BdG equation is modified to

U(x) =
h̄2kFs

m
Z (d(x) + d(x � L)) (5.10)

The barriers lead to the possibility of normal state reflection which reduces

Andreev Reflection

Normal reflection

Δexp(-iφ) Δexp(+iφ)

0 L x

E

Figure 5.2: Schematic of an SNS junction with impurities at the interfaces, leading
to both normal and Andreev reflection at the interface.

the supercurrent through the constriction. Introducing the Z parameter
again, the energies of the bound states in the short junction limit (L ⌧ x0)
are now given by [44]

E±(f) = ±D0

s
cos2(f/2) + Z2

1 + Z2 = ±D
q

1 � T sin2
f/2 (5.11)
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where we introduced the transmissivity T = 1/(1 + Z2) from section 4.1.2.
Equation (5.11) reduces to the ideal case in Equation (5.8) for Z ! 0. The
supercurrent is found similarly to the ideal case and yields

I+(f, T ) = � eD
2h̄

T sin fp
1�T sin2(f/2)

I�(f, T ) = eD
2h̄

T sin fp
1�T sin2(f/2)

(5.12)

The energies of the bound states in Equation (5.11) and the corresponding
current-phase relationships from Equation (5.12) is plotted in Figure 5.3. The
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Figure 5.3: a, The energy of the bound state for different values of the interface
scattering parameter Z. b, The current phase relation with interface scat-
tering.

critical current of an SNS structure is the current through the system when
the phase maximizes the current–phase relationship,

Ic = max
f

[I(f)] (5.13)

We now see how a barrier adversely affects the supercurrent in an SNS
junction: The critical current scales with the maximal value of the CPR, and
the maximal value of the CPR is dependent on T . The study of the current–
phase relationship (which is to say, the study of bound states in an SNS
junction) is a vast subject with numerous refinements and additions to the
simple picture outlined above [79]. For the qualitative discussions below,
this picture will suffice.

5.2 measurements and properties of the supercurrent

We are now in a position to understand the basic behavior of the SNS junc-
tion. Figure 5.4 shows an SEM image of of a junction fabricated in the
epi-Al/InAs wafer. Details of the measurement setup is given back in sec-
tion 3.2.2. As the driving current is increased from zero, the device will
switch from the supercurrent carrying state to a state with a dissipative
current. The maximal current the junction can support without dissipation
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is the critical current, Ic, from the previous section. Due to heating upon
switching from the resistive branch to the superconducting state [83], or dy-
namics of an underdamped Josephson junction [3] the critical current is not
identical when switching from resistive state to superconducting state, as
when switching from superconducting state to resistive state. The analysis
and discussion below will focus on Ic measured at I > 0, and increasing
the current from zero. The junction studied here has separation between
the electrodes of L = 200 nm and a width W = 3 µm. The critical current
is Ic = 1.78 µA. We can estimate the theoretical maximal supercurrent in

c
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Figure 5.4: a, False-color SEM micrograph of the device measured in this chapter.
The region with the aluminum etched away is underneath the gate. b,
3D schematic of the device. c, IV curve of the SNS junction. The inset
shows a zoomin close to transition from the superconducting state to the
normal state. The green line is a linear fit at voltages larger than D and
its intercept with x–axis defines the excess current.

the junction as follows. In a short impurity free constriction which satisfies
x ⌧ L each mode will carry a critical current DIc = eD

h̄ [84, 85]. The number
of modes can be roughly estimated by N = 2W/lF ⇡ 430, which yields
a maximal critical current Itheory

c = 23.5 µA, a far cry from the measured
value. However, this simple argument assumes all modes transmit with
equal probability and that there is no disorder in the junction. Ic is usually
significantly lowered due to a non–ideal interface between the superconduc-
tor and semiconductor and impurities in the normal region [86]. A rough



5.2 measurements and properties of the supercurrent 75

estimate for the transmissivity through the junction is usually found by com-
paring the Sharvin resistance Rsh = h/(2e2) · 2lF/W = 30W to the normal
state resistance Rn = 100W, which yields a rough per–mode transmissivity
of T ⇠ 1/3. The Z parameter from the BTK model can be is estimated from
T via [87]

RSh = T Rn =
1

1 + Z2 Rn =) Z ⇡ 1.5 (5.14)

This value cannot be explained by Fermi velocity mismatch in the normal
metal and the semiconductor, as discussed back in section 4.2. This back–of–
the–envelope result is in stark contrast to the observations made about the
enhanced conductance in the Andreev QPC, indicating the junction proper-
ties are not well described in such a simple picture of many non–interacting
modes with identical transmission. This discrepancy between Z estimated
by other means and Z estimated as the ratio of Sharvin– to normal state–
resistance, was also observed by Taboryski et al. in a Al-GaAs-Al systems
[33].

Another figure of merit for the quality of an SNS junction is the product
of the normal state resistance and the critical current. SNS junctions are
classified by the ordering of the parameters le (mean free path of 2DEG), L
(separation between the electrodes) and x (coherence length in the semicon-
ducting region). These values along with other characteristic length scales
is tabulated in Table 5. Since le sets the shortest length the junction is in the

L (µm) W (µm) le (µm) xb (µm)? xd (µm)†

0.2 3.0 0.23 1.5 0.6

Table 5: Geometrical parameters of the SNS junction. ?
xb = h̄vF/2D is the coherence

length in the ballistic case. †The coherence length in the diffusive case
xd =

p
h̄D/D. Both values calculated using the bulk gap of the aluminum

film DAl = 225 µeV.

short, quasiballistic and dirty regime (L ⌧ x, le ⇠ L, le < xd,b). In the dirty
regime, the supercurrent and normal state resistance is dominated by scat-
tering in the junction, not at the interface, and the value of IcRn is related
to the gap via IcRn = pD/2e (sometimes nicknamed the ”KO-II” result [88],
in contrast to ”KO-I” which is the clean limit [89]). For the present junction
IcRn = 178 µeV, which yields an estimate of DKO-II = 112 µeV, in decent
agreement with the gap from the tunneling experiments of the previous
chapter. However, the IcRn value should only be used as a rough estimate
of the gap, and experimentally, the IcRn often significantly underestimates
the gap in S–2DEG–S junctions [49, 51, 90, 91].

Another stab at understanding the properties of the junction can be de-
rived from the excess current [57]. Roughly, the excess current is the cur-
rent due to the Andreev scattering process involving a charge transfer of 2e
across the junction. Experimentally we find it by fitting a line to the linear
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part of the IV curve in Figure 5.4c for eV � D. The intercept with the x–axis
is the excess current and in this case we find Iexc = 2.0 µA. For the ideal case
of no normal reflection, the excess current was worked out analytically in
the case of a clean junction in the original BTK treatment for an NS junction,
IZ=0
exc Rn = (4/3)(D/e) [57]. A similar result was derived in the case of a

diffusive junction, IexcRn = (p

2

4 � 1)D/e [92, 93]. Using D? the theoretically
expected IexcRn product for a diffusive junction is 280 µeV, in good agree-
ment with our data, for which IexcRn = 200 µeV. The electronic properties
of the Josephson junction is tabulated in Table 6.

D0 (µeV) D? (µeV) Ic (µA) Iexc (µA) IcRn (µeV) IexcRn (µeV)

225 190 1.78 2.0 178 200

Table 6: Electronic parameters of the SNS junction. D0 refers to the gap of the alu-
minum inferred by D(0) = 1.76kBTc and D? refers to the gap inferred via
tunnel spectroscopy in Chapter 4.

5.2.1 Gateability of the supercurrent

We now proceed to energize the topgate covering the entire SNS region.
Figure 5.5a shows the differential resistance as the gate is used to deplete
the 2DEG. The critical current and the IcRn product is shown in Figure
5.5b. The critical current is unchanged down to Vg = �1.7 V despite the
density changing by a factor of ⇠ 2 (c.f. Figure 2.5)). This is consistent
with the observation of the previous section that the critical current cannot
be understood as N ballistic modes, each contributing DIc, but rather, is
limited by scattering in the junction.

Figure 5.5d shows a zoom–in on the critical current in the gate range 0
V to �1.2 V (the corresponding area is highlighted in the light green box
in 5.5a). This behavior again supports the our interpretation of a diffusion–
limited critical current. Finally, the oscillations in the supercurrent as the
2DEG is depleted was investigated theoretically for a clean junction by
Chrestin et al. [94] and are attributed to a changing interference criteria be-
tween Andreev– and normal–reflected particles in the junction. The oscilla-
tions were subsequently observed in two works by Takayanagi et al. [95, 96].
The quantitative theory for these oscillations have, to the best of our knowl-
edge, only been developed for a clean, ballistic junction, and is thus not
applicable to our system, except for use as a general statement about their
origin.
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5.2.2 Temperature dependence of the critical current

To further elucidate the nature of the epi–Al SNS junction we have measured
the temperature dependence of the critical current, as shown in Figure 5.6.
For these measurements the gate is parked at Vg = 0 V. The temperature
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Figure 5.6: a, Resistance through the junction as the bias current is swept. The Ic is
measured as the threshold when dV/dI > 10W. At T = 1.25K there is no
longer a zero voltage state, but the resistance is still decreased relative
to the normal state. Each curve is offset by 20W except for T = 0.1K.
b, Critical current extracted from data in panel a. Inset shows Equation
(5.15) for T = 1 (clean limit) and T = 0.01 (dirty limit) with Tc = 1.58K
and D = DAl.

dependence of the critical current was worked out in the clean limit and
the dirty limit in the two original KO papers [88, 89]. Harberkorn and
collaborators combined the two results a year later [97] and showed that for
a junction with arbitrary transparency, the temperature dependence of the
critical current is given by

I(f) = max

2

4pD(T)
2eRn

sin fq
1 � T sin2 (f/2)

tanh
✓

D(T)
2kBT

q
1 � T sin2 (f/2)

◆3

5

(5.15)

For unity transmission, the Harberkorn result yields a critical current eIc(0) =
5.7 µA using D = 230 µeV and Rn = 100 W. In the inset in Figure 5.6b we
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have plotted Eq.(5.15) in the clean (T = 1) and dirty (T ⌧ 1) limit. Despite
the quantitative difference in the value of Ic, it is clear that the measured
junction exhibits a saturation of the critical current as the temperature is
decreased, indicating the junction is best described by the diffusive limit
[86, 93, 98]. The rich structure at finite voltage is the subject of Section 5.3.

5.2.3 The Fraunhofer pattern

If we expose the SNS to a perpendicular magnetic field, the role of the
relative phases of the two superconductors become apparent in a beautiful
diffraction–like pattern. In the simplest case of a short junction the origin of
this diffraction can be seen as follows. The supercurrent density is related to
the phase difference between the two superconducting banks via J = Jc sin f,
and the critical current is then

Ic = max
f

ZZ
dydxJc sin f

�
(5.16)

If a magnetic field is applied perpendicular to the SNS, the phase difference
acquires an additional term

f ! f0 +
2p

F0
F, (5.17)

where F = BWL is the flux through the junction with dimension L ⇥ W,
and F0 = h/2e = 2.05mT/µm2 is the magnetic flux quantum. If the su-
percurrent density is assumed to be uniform across the junction, insertion
of the phase in Equation (5.17) into Equation (5.16) yields the form of the
critical current

Ic = Ic(0)
����
sin (pF/F0)

pF/F0

���� (5.18)

Thus, the supercurrent will oscillate with a period related to the area of the
junction (via F = BWL). In Figure 5.7a we have measured these oscilla-
tions for the device shown in Figure 5.4a. The interference pattern shows
oscillating, but not periodic, behavior. We have extracted Ic(B?) as plotted
in Figure 5.4b. Superimposed on the extracted critical current is Equation
(5.18) for an area calculated using the values in Table 5. Only at larger
fields do we find a rough agreement between the measurement and Equa-
tion (5.18) for A = W · L. If we set an effective area A? = 3.2A the first
lobes line up with the theoretical prediction. We attribute this discrepancy
at low fields to a flux focusing effect from the superconducting banks. Due
to the Meissner effect, field lines will be expelled from the superconductor
and lead to a larger effective field in the junction region, which in turn nul-
lifies the simple interpretation offered by the width of the lobes reflecting
the size of the junction [99, 100, 101]. As the field is increased the focusing
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Figure 5.7: a, The measured Fraunhofer pattern. b, Ic vs B? extracted from the data
in panel a. Equation (5.18) is superimposed using A = W · L from the
lithographic dimensions, as well as a version of Equation (5.18) with an
area A? = 3.2A, which matches the position of the first 3 minima.

effect will be less pronounced compared to the overall applied field, and the
period for A = W · L matches the data better.

5.3 the finite–voltage regime : multiple andreev reflection

We now focus on the finite–bias properties of the SNS structure. When there
is a finite bias across the junction, the phase will wind according to

Vdc =
h̄
2e

df

dt
(5.19)

This oscillating phase difference between the superconductors will average
the AC supercurrent to zero. In Figure 5.8a an SNS structure with a bias eVsd

is shown. The sketch can be slightly misleading, since the density of states
of the superconducting refer to quasiparticles while the density of states
in the normal region is electrons. However, we can think of the N region
as simply a region in which a quasiparticles from the filled negative band
in the superconductor can be injected as an electron (or a hole). If a bias
eVsd > 2D is applied, a charge can thus be transfered from the left to right
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superconductor, since the kinetic energy offered to the carrier is greater than
2D. This will lead to a dissipative quasiparticle current. This is sketched in
Figure 5.8b, where we have leveled the Fermi energy and instead include
the bias by incrementing the energy in each traversal by eVsd.

e-like qp

h-like qp

2Δ
eVsd

EF

e/h

S SN

a b

2Δ
eVsd

eVsd 2Δ>~

Figure 5.8: a, The SNS junction in a convoluted "real space / density of state"–space.
The density of states i the superconductor is that of quasiparticles and
the density of states in the normal region is for electrons. A bias eVsd is
applied across the junction. b, The SNS junction with an applied voltage
eVsd larger than the superconducting gap.

As the bias is lowered below D a particle will no longer be able to go
directly from the quasiparticle band in the left superconductor, to the quasi-
particle band in the right superconductor. Instead, it will Andreev reflect,
have its energy mirrored around EF at the cost of an added cooper pair in
the right superconductor and gain an additional eVsd on its way back as hole.
The process is continued a number n times, until neVsd > 2D and the par-
ticle can get out. This phenomenon of multiple Andreev reflection (MAR)
was studied within a semi–classical picture [87, 102] and subsequently a full
microscopic model was worked out [103, 104]. The n = 2 and n = 3 MAR
processes is shown in Figure 5.9a and 5.9b. An n’th order multiple Andreev

EF
2Δ

ba

eVsd
eVsd

eVsd Δ>~ eVsd Δ<~

Figure 5.9: a, 2nd multiple Andreev reflection. b, 3rd order multiple Andreev reflec-
tions.

reflection process involves n � 1 Andreev reflections and n traversals of the
normal region. Thus, whenever the bias is swept through a value

eVsd =
2D
n

(5.20)
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a new resonance peak will occur in the conductance. Equation (5.20) is in
principle satisfied for arbitrarily small Vsd, since n can be arbitrarily large. In
practice, however, the MAR signature is limited by the transmission through
the junction. The n’th order MAR scales with the transmission as T n, so that
non–ideal interfaces severely limit the number of MARs observable.

By simultaneously recording the DC and AC voltage drop on the device
in Figure 5.4a, we are able to map out these resonances. Figure 5.10a is the
DC and AC components of the voltage drop as the bias current is ramped,
and Figure 5.10 shows the MAR signature, by plotting the two components
parametrically. Overlaid on the MAR resonance plot are vertical lines cor-
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Figure 5.10: a, The DC and AC component of the voltage drop across the SNS de-
vice in current–bias configuration. The vertical gray arrow indicates
the position we attribute to the aluminum film going normal. b, Reso-
nant peaks in the conductance indicating the onset of multiple Andreev
reflection normalized to Rn = 100 W. The numbers indicate the corre-
sponding order of MAR. The prolonged dip below Rn for eVsd > 2D is
discussed in section 5.4.

responding to n = {2, 3, 4, 5, 6} of Andreev reflections from DAl = 235 µeV.
It is evident that the MAR resonances measured in the experiment does not
scale with DAl as expected within the naive picture outlined above. Further-
more, we note that there are several more resonances than can be described
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by a series of the form D/n, regardless of which single D is used. We’ll defer
a discussion of these observations to the next section.

Finally, the temperature dependence of the MAR resonances is shown in
Figure 5.11. We observe that the bias value of the resonances decay and
tend toward a temperature T ⇡ 1.6 K, close to the critical temperature of
the aluminum film. For T < 1 K the temperature dependence is very weak,
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Figure 5.11: a, Temperature dependence of the MAR resonances as the temperature
is increased. Labels indicate temperature at mixing chamber. All curves
except T = 0.1 K are offset vertically. b, Tracking the peaks of the
MAR resonances as the temperature is increased. The points labeled
’transition’ correspond to the jump at 6 µA in Figure 5.9a.

and at higher temperatures, the unambiguous determination of the position
of a peak is not possible (hence the different truncations of the curves in
Figure 5.11). Efforts to understand the weak temperature dependence is
currently underway. The low–bias conductance enhancement at T > 1 K is a
precursor to the supercurrent [105]. At low temperatures, the very low–bias
voltage signal is dominated by the first datapoint acquired as the voltage
drop because finite, whose value is compounded by the heating effect of
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switching to dissipative state. For this reason, the low temperature data is
truncated below 0.025 mV.

5.4 where is the sn interface in epi–al/inas devices?

We devote this last section to a qualitative discussion of the nature of the
SN interface in the epi–Al/InAs wafers. The majority of theoretical work on
SN and SNS junctions consider a geometry where the N region terminates
at the interface between the two materials. For the epi–Al/InAs devices
this is manifestly not the case. Figure 5.12a,b compares the two geometries.
An NS structure with an extending normal region, denoted SN’-N-N’S, was
studied theoretically by several groups [106, 107, 108] and more recently in
[109, 110]. Historically, some experimental observations on extended super-
conducting 2DEG geometries could not be reconciled with the picture of the
S-N-S junction, but by invoking the SN’-N-N’S models, several features of
the data were explained [27, 111, 112]. In the paper by Volkov and collab-

a

c

b

N’, Δeff N’, Δeff NN

S-N-S SN’-N-N’S

S, ΔAl 
S, ΔAl S, ΔAl S, ΔAl 

N’, Δeff N’, Δeff N 7nm

S, ΔAl S, ΔAl 

Figure 5.12: a, The canonical S-N-S geometry. Here, the interface between the mate-
rials is well–defined. b, The extended geometry studied in this thesis.
c, Zoomin on the SN’-N-N’S geometry. The transmissivity going from
left superconducting bank to right superconducting bank is denoted
T , while the transmissivity of the interface between S and the 2DEG
immediately under it is denoted t.

orators [108], the geometry of an S–planar 2DEG–S was explicity studied,
and they demonstrated that the Green function in the normal region under
the superconductor is renormalized to have an effective gap, denoted Deff

in its excitation spectrum. The phenomenon of effective gap was first in-
troduced by McMillan [113]. The intuitive picture is that the properties of
the standing wave in the z–direction under the aluminum is modified due
to the boundary conditions, which admit Andreev reflections (with some
probability) on one side, and a potential wall on the other side. The value
of Deff depend on the transmissivity t of the interface underneath the super-
conductor. t should be distinguished from the phenomenological T of the
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previous section (see also Figure 5.12). It is interesting to note that there is
still no pairing potential DN due to phonon interactions within the quantum
well, the appearance of Deff is only a manifestation of Andreev reflections
on one side of the quantum well.1

As sketched in Figure 5.12, electrons(holes) can extend deep into the re-
gion under the superconductor. As long as the process remain phase co-
herent, an electron can perform many attempts at undergoing Andreev re-
flection, before eventually coming out as a hole. With a phase coherence
length of l

f

⇠ 2µm, and with a quantum well thickness of 7nm, the electron
can scatter ⇠300 times before geometry–enhanced retroreflection no longer
occurs. Thus, even if the probability of single Andreev reflection is low, the
geometry can assist the system so it appears (to carriers in the normal re-
gion N) that an electron going under the superconductor will be emitted as
hole with a probability close to unity, despite the single–Andreev reflection
probability is far from unity. Within this model we can somewhat reconcile
the observations of the Andreev QPC and the results of the previous section:
The Andreev QPC only probed the N-N’ interface, which, up to Fermi veloc-
ity mismatch, is an ideal interface where there is no barrier for momentum
to be dumped in a normal reflection.

In a beautiful and simple experiment using the geometry from Figure
5.12b, Nguyen et al. [112] were able to deduce the average distance traveled
in the N’–region before an Andreev process occurred. In an identical system,
the same authors observed MAR behavior [111]. While their experiment did
not show the rich resonance structure of Figure 5.10, they observed another
salient feature of the data in Figure 5.10. When the bias voltage is between
0.4 mV and 1 mV the conductance is decreased relative to the normal state,
as highlighted with the horizontal gray bar in the inset in Fig.5.10b. When
a large bias is applied across the SN’-N-N’S system, the chemical potential
difference between SN’ will vary locally as a function of distance from the
N-N’ interface. At a certain point x0 the chemical will fall below DAl, and to
the left of this point the current will be carried by dissipative quasiparticles,
while to the right Andreev reflection will occur. The Andreev reflected
electron now has to traverse back to the N-N’ interface, and during that time
can recombine with either electrons in the InAs bulk or undergo Andreev
reflection again. Nguyen et al. speculate the reduction in conductance can be
attributed to Andreev reflected particles at x > x0 being recaptured by the
superconductor, before reaching the N-N’ region.

1 There is an unfortunate collusion of words in this context. Sometimes the proximity effect refers
to a modification of a pre–existing pairing potential, as in the case of two superconductors
with different Tc’s coupled. Recently, using STM techniques the spatial profile of the pairing
potential in two superconducting materials with Tc1 > Tc2 was measured at an intermediate
temperature and the proximity effect had altered the gap in the density of states both super-
conductors [71]. For the NS and SNS structures, there is never a phonon–interaction within the
semiconductor that is renormalized due to the proximity effect. Rather, the density of states in
the semiconductor is modified and will have a gap in the local density of states commensurate
with the superconducting gap. This is sometimes referred to as an induced gap and it appears
because of the proximity effect.
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The result of two gaps in the density of states DAl and Deff would also lead
to the addition of a new set of MAR resonances: 2Deff/n, (DAl � Deff)/n
and (DAl + Deff)/n [107, 27]. By setting DAl = 225µeV as measured from
Tc of the film, we choose Deff = 165µeV, which lines up with several of the
resonance, as shown in Figure 5.13. Setting Deff = D? = 190µeV (the gap
measured by tunnel spectroscopy in Chapter 4) does not line up with any of
the measured resonances. Despite the litany of vertical lines in Figure 5.13,
there are still several unexplained resonances in the data. At the time of
writing the origin of these is unresolved, but we are working on numerical
and analytical approaches to understand these features in greater detail.
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Figure 5.13: Multiple Andreev reflections due to the appearance of two supercon-
ducting gaps in the system. The resonance corresponding to Deff and
the combinations DAl � Deff and DAl � Deff is shown. Despite includ-
ing these extra terms, there are still several resonances that seem unex-
plained.

5.5 conclusion

The supercurrent in our 200 nm long Josephson junction in the epi–Al/InAs
material is dominated by diffusive transport, as evident through the gating–
properties and temperature dependence of the critical current. The excess
current in our junction is comparable to theoretical estimates for an SNS
junction in the diffusive regime, but with ideal Andreev reflection [92],
which indicates that reflection from the NS interface is dominated by An-
dreev processes.

The model of multiple Andreev reflection as coherent scattering from the
sides of an S-N-S junction with a well–defined D is not able to account for the
resonances we observe when a bias is applied across the epi-Al/InAs junc-
tion. There are several outstanding questions regarding the interpretation
of the resonances, and we are currently developing a coherent theoretical
framework to understand this behavior.



Part III

M A J O R A N A F E R M I O N S I N N A N O W I R E S
W I T H O U T S P I N – O R B I T C O U P L I N G

This part is dedicated to a theoretical exploration into the feasi-
bility of realizing Majorana bound states in nanowires without
spin–orbit coupling. We explicitly show the topological prop-
erties of Kitaevs p–wave nanowire toy model, and proceed to
derive analytically, and simulate using realistic parameters, that
a nanowire with s–wave superconductivity exposed to a locally
oscillating magnetic field also supports a topological phase.





6
M A J O R A N A F E R M I O N S I N 1 D Q U A N T U M W I R E S

The experimental work in the preceding chapters was broadly motivated by
the notion that exotic quasiparticles (Majorana bound state) exist at the inter-
face between a semiconducting material with spin–orbit coupling (InAs/In-
GaAs), in the presence of an external magnetic field, coupled to an s–wave
superconductor (aluminum). In this chapter we dig into the detailed micro-
scopic theory for the existence of Majorana fermions at this interface. In
particular, we will study the Kitaev model of a nanowire proximal to a p–
wave superconductor [4]. Such a system can, for specific parameters, harbor
unpaired Majorana fermions at its ends. We will then introduce the notion
of a topological quantum number, used to quantify the existence or absence
of Majorana fermions. Two proposals that realizes the Kitaev model without
using the elusive p–wave superconductor came independently from Oreg et
al. [5] and Lutchyn et al. [6]. These proposals form the basis of many of the
recent experimental signatures of Majorana bound states [12, 13, 14]. Some
general features of these proposals are reviewed, before presenting our main
theoretical result: Majoranas can exist in quantum wires without intrinsic
spin–orbit coupling, when the latter is instead imitated by a locally rotating
magnetic field, realized by micromagnets. In developing the model we have
taken care to use experimentally realistic parameters.

6.1 kitaevs p–wave toy model

Consider a 1D quantum wire placed on top of a 3D spinless superconductor.
By ”spinless” we mean that spins of the cooperpairs are aligned, as is the
case for p–wave superconductors where the condensate is made of triplet–
paired electrons. The setup is sketched in Figure 6.1. The proximity to the
superconductor will induce a gap in the density of states of the wire. In
order to interpret the recent experimental results on nanowires coupled to
superconductors, a considerable effort has been put into how to properly
model this proximity gap in the hamiltonian describing the nanowire [67,

89
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L

p-wave superconductor

Figure 6.1: The semiconducting nanowire has, by the proximity to the p–wave su-
perconductor, an effective gap in the density of states.

114, 115]. However, for the present purposes, we simply stick a D in the
lattice hamiltonian for the wire,

H =
L

Â
j=0

✓
�t
⇣

cj c†
j+1 + c†

j+1cj

⌘
� µ

✓
c†

j cj �
1
2

◆
+ Dpcj cj+1 + D⇤

pc†
j c†

j+1

◆
,

(6.1)

where Dp is the p–type pairing term, t is the kinetic energy and µ is the
chemical potential in the wire. The need for the p–wave superconductiv-
ity for this model to have any hope of realizing Majorana fermions can be
seen as follows: For the quasiparticles to obey g

† = g, they should be ef-
fectively spinless, i.e. formed by combinations of electrons and holes with
identical spin. For s–wave superconductivity the pairing term is given by
Ds = hy(r)†

s

y(r)†
�s

ieif, so Andreev reflection from the interface will entail
a spin–flip. Since Majoranas are build by standing waves from Andreev
reflection on the superconducting interface (see section 6.3.1) the quasi-
particles from an interface to an s–wave superconductor have no hope of
forming Majorana bound states. As we shall see below, with the help of
a Zeeman field + spin orbit coupling, or Zeeman field + rotating magnetic
field, the quasiparticles can become effectively spinless. In any case, for the
toy model here, the use of p–wave systems which has pairing of the form
Dp = hy(r)†

s

(�ih̄r)y(r)†
s

ieiq(r), the standing waves formed by retrore-
flected electrons and holes involved in the Andreev process have identical
spin. For the p–wave the asymmetry of the overall wavefunction is ensured
not by opposite spin, but by the oddness of the real space wavefunction. The
non–local nature of the p–wave pairing is evident in Equation (6.1) where
neighboring sites are coupled. We can now build Majorana operators in this
system, made from fermionic operators c and c† and safely disregard the
spin. The phase–dependence of the order parameter can be absorbed with
the following basis change

g2j�1 = eiq/2cj + e�iq/2c†
j

g2j = �ieiq/2cj + ie�iq/2c†
j ,

(6.2)
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note that g2j�1 and g2j act on the same fermionic site and satisfy g

† = g. In
this basis the Hamiltonian Equation (6.1) is

H =
i
2

L

Â
j

�
�µg2j�1g2j + (t + |D|) g2jg2j+1 + (�t + |D|)g2j�1g2j+2

�
(6.3)

Two limiting cases serve to show a remarkable feature of Equation (6.3):

|D | = t = 0 and µ < 0: In this limit Equation (6.3) reduces to

H0 = �µ

i
2

L

Â
j

g2 j�1 g2 j = �
L

Â
j=0

µ

✓
c†

j c j �
1
2

◆
(6.4)

This corresponds to pairing each Majorana operator on every site with
its partner, as shown in Figure 6.2c.

a

b

c d

L

change to ‘Majorana basis’Unpaired Majorana

Majorana lattice site

Fermionic lattice site

2 limiting cases:

Δ = t = 0 and μ < 0 Δ = t > 0 and μ = 0

Figure 6.2: Illustration of the Majorana basis change in Equation (6.3). a, Lattice sites
on the wire in the fermionic basis. b, Doubling the number of lattice sites
and introducing the Majorana basis. c, The limit of no superconducting
gap. d, The limiting case of D = t which has unpaired Majorana end
states.

|D | = t > 0 and µ = 0: In this case, the hamiltonian for the wire is given
by

Hm = i t
L

Â
j

g2 j g2 j+1 (6.5)

This shows more interesting features, since now a Majorana from site
j is paired with a Majorana from site j + 1, c.f. Equation (6.2). A basis
change back to regular fermionic sites yields

c̃ j = 1
2
�

g2 j + ig2 j+1
�

c̃†
j = 1

2
�

g2 j � ig2 j+1
�

9
=

; ! Hm = 2t
L�1

Â
j=1

✓
c̃†

j c̃ j +
1
2

◆
. (6.6)

Note that site j = 0 and j = L does not appear in the sum. At
these sites there is still half a fermion, i.e. a Majorana particle, see



92 majorana fermions in 1d quantum wires

Figure 6.2d. We denote the corresponding operators by gL = g j=0

and gR = g j=L

It is now possible to build a (non–local) fermion of these two states
as cnl = N(gL + igR), with N appropriate normalization. Since the
ground state satisfies c̃j|yi = 0 for j = 1, . . . , L � 1 there are two states
(denote them |yei and |yoi = c†

nl|yei) that satisfy this property. In
the limit L ! • these two states are degenerate, since the overlap of
the wavefunctions of |yei and |yoi is exponentially suppressed with L.
The two states can be distinguished by the occupancy of the non–local
fermion. To quantify the parity we introduce the operator P

P = 1 � 2c†
nlcnl = �igLgR (6.7)

The last equality follows from insertion of the definition of cnl. It is
easily verified that P distinguishes between |yei and |yoi with a sign

P|yei = |yei , P|yoi =
⇣

1 � 2c†
nlcnl

⌘
c†

nl|yei = �|yoi (6.8)

Kitaevs toy model thus harbors a degenerate groundstate with two
quasiparticle excitations that obey g

† = g. The parity of the ground
state is determined by the eigenvalue of P.

For a Hamiltonian H describing non–interacting electrons in a translation-
ally invariant system, the transition to the topological phase, with unpaired
Majoranas, can be quantified by calculating the topological quantum num-
ber M(H) [116, 117]:

M(H) = Pf(UH(k = 0)) =

8
<

:
< 0 Topological regime

> 0 trivial regime
(6.9)

Here Pf(·) is the Pfaffian, which is defined via Pf2(A) = detA for A skew–
symmetric, i.e. Aij = �Aij and zeros on the diagonal. U is the unitary part
of the particle–hole operator. In the present basis, without spin degrees of
freedom, the particle–hole symmetry operator is X = txK, where tx is a
Pauli matrix in p–h space, and K is the operator of complex conjugation. A
p–h invariant Hamiltonian satisfies XH(k)X�1 = �H(�k). The unitary part
of X is thus simply tx.

To evaluate M we start by a fourier–transformation of Equation (6.1) us-
ing

cj = Â
k

e�ikjck, c†
j = Â

k
eikjc†

k , (6.10)

which yields

H = Â
k
(�2t cos(k)� µ) c†

k ck + D
⇣

c†
k c†

�keik + ck c�ke�ik
⌘

. (6.11)
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Introducing the spinor Yk = (ck c†
�k)

T , rearranging indices and restrict-
ing the sum to run over positive k, Equation (6.11) can be written as H =

Âk>0 Y†
kH(k)Yk, where

H(k) =

0

@ �2t cos(k)� µ �2Di sin(k)

2Di sin(k) 2t cos(k) + µ

1

A

= �xktz + 2D sin(k)ty

(6.12)

This equation is a variation on the general Bogoliubov-de Gennes equa-
tion introduced back in Equation (2.14). Sandwiching H between X and X�1

shows that H(k) is particle–hole symmetric (as it better be).
The spectrum of H(k) is found by direct diagonalization to be

e(k) = ±
q
(2t cos(k) + µ)2 + 4D2 sin2(k) (6.13)

In Figure 6.3a and 6.3b the spectrum is plotted for two different values of
µ. At µ = �2t the gap closes and the wire undergoes a topological phase
transition. We see this by evaluating the quantum number M from Equation
(6.9). First the Hamiltonian is rotated with the unitary part of the particle–
hole operator and the limit k = 0 is taken,

UH(k = 0) = tx H(k = 0) =

2

4 0 2t + µ

�2t � µ 0

3

5 (6.14)

This matrix is 2⇥ 2 and skew–symmetric so the is Pfaffian well–defined and
particularly easy to evaluate since Pf

� 0 �c
c 0

�
= c, so we get

M = �2t � µ =

8
<

:
< 0 for µ > �2t

> 0 otherwise
(6.15)

Which shows the phase transition at µ = �2t. The topological phase is also
bounded from above when µ = 2t. At this point the gap closes at k = ±p

and since cos(k±p) = � cos(k) evaluation of M yields the condition µ < 2t
to be in the topological phase.

a b c
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μ = -3t
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t
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-1

k

μ = -2t

-2t 2t μ 

Δ trivial

topological

Figure 6.3: a, Spectrum of the Kitaev wire outside the topological regime. b, Disper-
sion of the Kitaev wire exactly at the phase transition. c, Schematic of
the topological regime for µ < |2t|.
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Now that we’ve established that the Kitaev toy model is in the topological
state for µ < |2t|, the next question is: What are the zero–energy eigenstates
associated with this phase? As is evident from Figure 6.3b, the supercon-
ducting gap D serves to linearize the spectrum close to the phase transition,
and we can use this as the starting point.

If the chemical potential varies as a function of position, the nature of
the zero–energy states associated with the phase transition are particularly
illuminating. To this end, we set µ = �2t + µ(x), such that for µ(x) > 0
the wire is topological and for µ(x) < 0 the wire is in the trivial state. If we
linearize around k ⇠ 0, then Equation (6.12) in real space reads

H(x) =

2

4�µ(x) �2D d
dx

2D d
dx µ(x)

3

5 (6.16)

where the basis is j(x) = (u(x) v(x))T . The zero–energy states are the
solutions to the coupled differential equations

�µ(x)u(x)� 2D
d

dx
v(x) = 0

2D
d

dx
u(x) + µv(x) = 0

(6.17)

which admits two solutions,

f1 = eb(x)

0

@1

1

1

A , f2 = ie�b(x)

0

@ 1

�1

1

A (6.18)

where b(x) =
R x dx0d(x0)/2D. Whether f1 or f2 is the normalizable solu-

tion depends on details of the shape of µ(x). However, the states in Equation
(6.18) have three crucial features. They are their own particle–hole partner,
i. e. f

†
1 = Xfi, they live at zero energy and they are located around wherever

µ(x) changes sign. In the physical picture of a wire, this would correspond
to the ends of the wire, or at the ends of regions where the density is modu-
lated by an electrostatic gate. These are the unpaired Majorana end states. If
µ(x) has the opposite sign in Eq.(6.17) (i.e. the wire is in the trivial regime),
there exists no normalizable solutions at zero energy. Finally, to see that the
states satisfy the "canonical Majorana relation" (g† = g) from Chapter 1, we
can rewrite the states in Equation (6.18) in k–space, gi =

R
dxf

†
i Yk, with

Yk = (ck c†
�k)

T and we see that indeed the zero–energy solutions to Kitaevs
toy model are Majorana quasiparticles.

6.2 nanowires with superconductivity and spin orbit cou-
pling

In this section we study the proposal due to Oreg, Refael & von Oppen
[5]. A related idea was introduced at the same time by Lutchyn, Sau & Das
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Sarma [6]. The former is the most closely related for our proposal, and we
proceed by investigating their model, and in particular show that it maps
to the Kitaev model, indicating that for certain parameter–values the Oreg
model supports Majorana Fermions. Oreg et al. considered a geometry as
the one shown in Figure 6.4. A nanowire with Rashba–type spin–orbit cou-
pling is deposited on a slab of s–wave superconductor. Again, it is assumed
that the Andreev reflection process is ideal, and the effect of the supercon-
ductor can be included by naively sticking a D in the hamiltonian. The
electron is confined in the transverse direction, and we consider only states
propagating along y.

x

z

B = B z
^

y

s-wave superconductor

Figure 6.4: The system discussed by Oreg et al., with the Hamiltonian given by Equa-
tion (6.19). The wire is superconducting due to the proximity–effect with
the s–wave superconductor.

Using the Nambu basis Y =
�
y" y# y

†
# � y

†
"
�T

=
�
ȳ Qȳ

†�T , where Q is
the time–reversal operator, Q = isyK, and sy is a Pauli matrix in spin–space,
the Hamiltonian for the system in Figure 6.4 is given by H =

R
dyY†HY

where

H =

"
k2

y

2m
� µ + a(k⇥E) · �

#
tz + Bsz + Dtx

=


k2

2m
� µ + uksx

�
tz + Bsz + Dtx

(6.19)

where in the last equation the subscript y was dropped and it is assumed
that the electrical field that gives rise to the Rashba spin–orbit interaction
is oriented along the x–axis (see Figure 6.4). The velocity u is related to
Rashba parameter by a = h̄u. Throughout this section we take the B field
perpendicular to the Rashba field. In the basis of time–reversed states the
p–h symmetry operator is now given by X = sytyK, where sy is included
because of the spin–component. Inspection shows XH(k)X�1 = �H(�k).
We again expect all eigenenergies to come in ± pairs.

6.2.1 The helical state in nanowires

Even without the superconducting pairing the spectrum of Eq.(6.19) is ex-
ceedingly interesting, and exhibits rich features which precede the Majorana
physics. The spectrum is given by

E± =
k2

2m
+ s
q

B2 + (uk)2, (6.20)



96 majorana fermions in 1d quantum wires

where s = ±1 for spin up/down. The spectrum is plotted in Figure 6.5. For
u > 0 the minima of the dispersion is offset, and the new k for E(k) minimal
is

d
dk

✓
k2

2m
± up

◆
= 0 ) kso = ⌥mu (6.21)

which yields Eso = E(kso) = 1
2 mu2. If the externally applied magnetic

field is perpendicular to the spin–orbit field, it opens a gap in the spec-
trum at k = 0. If we park the chemical potential in this gap, the carriers
will have their spin locked to the momentum. This helical mode is the ’su-

a b c

k kso-kso

0 0 0

k k

E

Eso

Eso > 0, B = 0 Eso > B > 0 Eso>B >

E E

helical regime

Figure 6.5: a, The spin–orbit interaction shifts the parabolas of each spin species. b,
The combination of magnetic field and spin–orbit interaction creates an
avoided crossing the spectrum. The arrows indicate the spin–direction
far from the avoided crossing. c, For fields much greater than the spin–
orbit field, each band is fully polarized along the external field.

perconductorless’ prelude to the Majorana fermion in the Oreg model. An
experimental signature of the helical gap is a non–monotonic increase in the
conductance through a quantum point contact [118, 119] as µ is varied. The
initial project undertaken as part of the experimental work in this report
was focused on observing the helical state. By using the 2D electron gas
in InSb – a material with a nominally large g–factor and large spin–orbit
coupling – we hoped to form a QPC and observe the non–monotonic be-
havior indicative of the helical gap. However, InSb 2DEGs is a notoriously
finicky class of materials, and even the mesoscopic basics (such as good,
reproducible ohmic contacts and gating without appreciable hysteresis) is
still not trivial [120, 121, 122]. At QDev we never succeeded in making sta-
ble gateable structures without significant hysteresis (and not for want of
trying). However, we fabricated a hallbar in a wafer grown by Mike Santos
of University of Oklahoma, and measured the weak antilocalization signa-
ture. A collaborator used the ILP model [123] to fit weak antilocalization
data and extracted EInSb

so = 2.9 µeV= 33 mK. With such a small Eso, we
abandoned hope of measuring the helical gap in this InSb wafer. It is cur-
rently not understood why the we measured spin–orbit was so significantly
reduced from the theoretical expectation, given that from a pure band struc-
ture calculation aInSb ⇡ 4.5aInAs and gInSb ⇡ 28gInAs [36]. In a separate InSb
wafer, fabricated by HRL Laboratories [122], we succeeded in measuring
the pinchoff curve in a split–gate QPC geometry with W = 300 nm and no
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gate leakage. The measurements were performed at 6 K in a dunker setup,
and all device processing and fabrication was done by HRL, except for QPC
gate deposition. The pinchoff was still hysteretic, see Figure 6.6, and we ob-
served no signs of quantized conductance, despite the InSb wafers having a
mobility µInSb ⇡ 200.000cm2/Vs and density nInSb ⇡ 2 · 1011cm�2 [122]. As

V (V) -0.6
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0-1.8
0
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-1.2
g

1st scan (down sweep)
 2nd scan (up sweep)
 3rd scan (down sweep)
 4th scan (up sweep)

dI
/d
V 

(2
e2 /h

)

Figure 6.6: Pinchoff curve in a 30nm InSb quantum well with a standard split–gate
QPC geometry with a separation of 300nm measured at 6K in a helium
dunker setup.

mentioned in the introduction, the compounding materials problems with
the InSb 2DEG lead us to abandon those wafers in favor of the epi–Al/InAs
wafers.

6.2.2 Majorana fermions in the Oreg model

We now return to the full Oreg model, and show that it maps to the Kitaev
model, and thus supports Majorana bound states. The dispersion of the full
Oreg hamiltonian in Equation (6.19) is

E2
± = x

2 + B2 + (uk)2 + D2 ±
q
(uk)2

x

2 + B2(D2 + x

2), (6.22)

where x = k2

2m � µ. At small k the gap in the spectrum is particularly clear

E±(k ⇠ 0) =

r
B2 + D2 + µ

2 ± 2B
q

D2 + µ

2

=
q

D2 + µ

2 � B
(6.23)

This indicates that the gap closes exactly when B =
p

D2 + µ

2. In Figure
6.7 the dispersion is plotted for three different cases: 1; in the absence of
the superconducting pairing, 2; in the presence of the pairing and 3; at the
gap–closing point B =

p
D2 + µ

2. The linearity of the spectrum at small k
at this phase transition looks very similar to the behavior of the Kitaev wire
at µ = 2t, see Figure 6.3. To confirm this we proceed to linearize the Oreg
model for the two lowest bands, highlighted in the dashed box in Figure
6.7b and show that this subspace maps onto the Kitaev model.
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Figure 6.7: a, The dispersion relation of the Oreg wire with Eso > 0 in the absence of
an applied magnetic field. The superconducting pairing makes a gap in
the spectrum. The dashed lines are the hole–bands. b, When a magnetic
field is applied perpendicular to the spin–orbit field, the gap at k = 0
closes. c, At the phase–transition B = D the dispersion is linear at k = 0
and the low–energy sector can system can be mapped onto the Kitaev
chain. d, The phase diagram of the Oreg wire. The ? and •indicate the
parameters used in b and c.

We start by leaving aside the superconductivity, so that electron and hole
blocks decouple,

H0 = t

k2

2m
+ tupsx + Bsz, (6.24)

with t = ±1 corresponding to electrons/holes respectively. H0 is diagonal-
ized by the unitary transformation

U = exp
�
�ig/2sy

�
= cos

g

2
� isy sin

g

2
, (6.25)

where sin g = up/
p
(uk)2 + B2 and cos g = B/

p
(uk)2 + B2. In the new

basis, H0 takes the form

eH0 ! UH0U�1 = t

k2

2m
�
q
(uk)2 + B2

sz (6.26)

This basis is sometimes referred to as the helical basis, with elements de-
noted {|e+i, |e�i, |h�i, |h+i} (labeled in Figure 6.5b), and the eigenstates
are given by

|t+i = U†

0

@1

0

1

A =

0

@ cos g/2

�t sin g/2

1

A , |t�i = U†

0

@0

1

1

A =

0

@t sin g/2

cos g/2

1

A (6.27)
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The gap between the two helical states |e�i and |h�i at k = 0 scales with
D � B, as highlighted in the dashed box in Figure 6.5c, for the special case
D = B. By projecting the original Hamiltonian in Equation (6.19) onto the
subspace spanned by {|e�i, |h�i} yields the 2 ⇥ 2 matrix describing the
low–energy sector of the system:

eH2⇥2 =

✓
k2

2m
+
q
(uk)2 + B2

◆
tz +

ukp
(uk)2 + B2

Dtx. (6.28)

The final step is to take the limit k ! 0. In the limit B � Eso, the two other
helical modes are far removed, and the low–energy sector takes the form

eH = Btz �
uk
B

Dtx (6.29)

This is 2⇥ 2 equation linear in k, so it already looks promising. Rotating the
Pauli matrices by p/2 around the z axis with the operator

R = ei p

4 tz (6.30)

and recalling the identity sisj = ieijksk and that Pauli matrices anticommute,
we see that Equation (6.29) becomes

eHR = R eHRR�1 = Btz +
u
B

kDty, (6.31)

which is indeed equivalent to Equation (6.12), for which we explicitly de-
rived the topological quantum number M and the existence of the edge
states.

Confident that the Oreg model maps onto Kitaev model, this concludes
our discussion of Majorana Fermions in nanowires with spin–orbit coupling.
The goal of the next section is to present an alternative route to the Oreg
model.

6.3 majorana bound states in wires without spin–orbit cou-
pling

We will now discuss in detail our model for realizing Majorana fermions
in nanowires without intrinsic spin orbit coupling. The idea is inspired
by a proposal due to Choy et al. [124] who showed that an array of mag-
netic nanoparticles, with non–collinear arrangements of the magnetic mo-
ments, could harbor Majorana quasiparticles. Related, Braunecker et al.
[125] showed that in one dimension, a spiralling magnetic field is equiva-
lent to a Rashba–type spin–orbit interaction. We take these two works as
inspiration and analytically show the the mapping onto the Oreg model, as
well numerically calculating the topological quantum number Q (discussed
below), using a model with permanent micromagnets.
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The punch–line of our study is the following: For a 1D nanowire, with
proximity induced superconductivity, a spatially varying effective magnetic
field can be mapped to a Rashba–type spin–orbit interaction term, thus pro-
ducing the same model as described by Oreg et al.. In light of the discussion
in the previous section we’re confident such a setup will also have Majorana
particles. The system we have in mind is depicted in Figure 6.8. We note,
that a bent nanowire with an anisotropic g–factor, can also be mapped onto
the Oreg model in the presence of uniform external magnetic field. However,
the micromagnet proposal allows more flexibility in tuning the fabrication
and parameters, so we study this in detail below. In the Nambu basis of

Lw

d

Ls
rs

ds s-wave superconductor

Figure 6.8: A nanowire of length Lw deposited on an s–wave superconductor. The
in–plane magnetic fingers will produce an effective spin–orbit interaction
term in the Hamiltonian of the nanowire.

Section 6.2 the Hamiltonian is written as H = 1
2
R

dxY†HY, with

H =

 
p2

x

2m
� µ

!
tz +

1
2

gµBB(x) · � + Dtx, (6.32)

where x is the coordinate that parametrizes propagation along the direc-
tion of the wire. To keep this section relatively close to experiment I have
re–introduced g and µB. The part of H diagonal in particle–hole space is
denoted H0 and superconducting part is denoted HS. To see that this sys-
tem is equivalent to a Rashba–type spin–orbit interaction, a little footwork
is needed. The following section is essentially the theory equivalent of a
fabrication recipe. So, start with a unitary rotation

U = eifsxy/2, sxy =
B ⇥ ẑ
|B ⇥ ẑ|�, cos f =

B

|B| ẑ (6.33)

Applying U to Equation (6.32) yields

eH0 ⌘ UH0U † =

 
p2

x

2m
� µ

!
tz +

1
2

gµBBsz + eHR + eH2, (6.34)

where

eH2 = � 1
2m

U †
∂

2
xUtz, eHR = � i

m
U †

∂xU p
x

tz. (6.35)
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Noting sxysxy = 1, the term ∂

x

U can be evaluated to

∂

x

U = ∂

x

�
cos f(x)/2 + isxy(x) sin f(x)/2

�

= i
f

0(x)
2

sxy(x)U + is0
xy(x) sin f(x)/2, (6.36)

where 0 denotes derivative with respect to x. Plugging back into Equation
(6.35) yields

eHR =
1
m

✓
1
2

f

0
sxy + U †

s

0
xy sin f/2

◆
p

x

tz. (6.37)

Before we evaluate eH2 we consider a slightly more concrete model, namely,
we choose the field–lines of B to lie in a single plane, and choose ẑ to be
in this plane, which yields s

0
xy = 0. To avoid a sign–change exactly when

B k ẑ we choose sxy = s? as a constant and let f(x) vary. In this model we
evaluate eH2 to

eHR =
1

2m

✓
i
2

f

00
s? +

1
4
�
f

0�2
◆

. (6.38)

The first term is an imaginary magnetic field, which keeps the overall Hamil-
tonian hermitiean, and the second term renormalizes the chemical potential.
Using sxy = s? the eHR reduces to

eHR = aeffs?p
x

tz, aeff =
h̄

2m
df

dx

(6.39)

Where we have reintroduced h̄. This equation is the main result of our
analytical work: An in–plane varying magnetic field produces an effective
spin–orbit like term in the rotated frame of the electron, and the value is
governed by the curvature of the field. The full effective Hamiltonian within
this model is thus

eH =

 
p2

x

2m
� µ̃ + aeffs?p

x

� i
2

f

00
s?

!
tz +

1
2

gµBBsz + Dtx. (6.40)

The superconducting term is not affected by the rotation in spin–space,
since the s–wave superconducting wavefunction is spherically symmetric,
so eHs = Hs. The chemical potential is renormalized to eµ = µ� (1/8m)(f0)2

To estimate the value of aeff for realistic parameters, we assume an (op-
timal) model, given by a sinusoidally oscillating magnetic field Bsine(x) =

B0 [sin x/R 0 cos x/R]T . Within this concrete model, eH0 reduces to [125]

eHsine
0 =

 
p2

x

2m
� µ̃ +

h̄2

2mR
p

x

sy

!
tz +

1
2

gµBBcs3. (6.41)

Using values R ⇡ 100 nm and m = 0.014me relevant for InSb, the value
for aeff/h̄ ⇡ 3 · 104 m/s. The effective spin orbit parameter from the si-
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Figure 6.9: Magnetic field lines and intensity from a solenoid. The permanent mag-
net of corresponding dimensions is drawn on top.

nusoidal field is thus comparable to the intrinsic spin orbit coupling in
InAs nanowires [126, 127] and the epi–Al/InAs wafers of the preceeding
chapters [128]. In the Oreg model, the transition to the topological regime
happened when B >

p
D2 + µ

2. The renormalization of the chemical po-
tential in the oscillating field model leads to the modified requirement:

B0 >
q

D2 + (µ � h̄2/8mR2)2.

Inspired by the sine–model, we imagine an arrangement of magnetic fin-
gers alternating in their polarization, as in Figure 6.8. The magnetic field
from one finger is modeled as the field from a solenoid, Bsol = B0

⇥
B

r

Bz
⇤T ,

with

B
r

=
r

rS
L2

s r


a

2 � 2
a

E1(a
2) +

2
a

E2(a
2)

�
z+

z�

Bz = � 1
2
p

Lsr


z

✓
E1(a

2) +
rS � r

rS + r

E3(a
2, b

2)

◆�
z+

z�
,

where Ls is length of solenoid, rS is radius of solenoid (see Figure 6.8),
z = z ± LS/2, Ei is the elliptical integral of the i’th kind, and finally

a =

s
rSr

(r2
S + r

2) + z

, b =
r

rSr

rS + r)2 . (6.42)

Figure 6.9 shows the magnetic field from a single finger, using these (un-
wieldy) expressions.

We proceed by numerically diagonalizing Equation (6.32) in the presence
of six solenoids, whose magnetic fields are found using Bsol. The exact ori-
entation and placement of the solenoids were chosen to mimic the behavior
of Bsine. The transition into the topologically non–trivial state is character-
ized by i) a sign–change of the topological quantum number Q, derived
from the scattering matrix (see below) and ii) the occurrence of a zero–
energy state, which remains gapped to the continuum. We will investigate
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both these effects for our model. In the next section we derive the quantum
number Q, and show that its sign gives the parity of Majorana modes in a
wire. The derivation of the scattering matrix used in our numerical models
to calculate Q is derived in Appendix B.

6.3.1 A topological quantum number

To quantify the existence of Majorana fermions in the model without spin–
orbit coupling, we employ a technique proposed by Akhmerov et al. [129]
and Fulga et al. [130]. The scattering matrix relates incoming wavefunctions
impingent on a potential to outgoing wavefunctions, see Figure 6.10a.

0
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0

@y+L

y�,R
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A , S(E) =

0

@ r(E) t0(E)

t(E) r0(E)

1

A (6.43)

The definitions of the components of the vectors are given in Figure 6.10a.
Expanding this equation to electron–hole space yields (suppressing depen-

a b normal metalscattering region superconductor

rNSrN

Figure 6.10: a, Incoming and outgoing waves impingent on a potential. The scat-
tering matrix S given in Equation (6.43) relates the two wavefronts. b,
The standard NS sandwich, indicating how Andreev reflection and nor-
mal reflection can lead to a standing wave at the interface. See text for
details.
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In the following we will be particular interested in the scattering matrix r.
In the case of an electron–hole symmetric hamiltonian, the reflection matrix
can be simplified. Consider sending in an electron on the left and looking
at the reflection

y

e
�,L(E) = r(E)ye

+,L(E). (6.45)
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Applying the electron–hole symmetry operator X yields

Xy

e
�,L(E) = Xr(E)X�1Xy

e
+,L(E) , (6.46)

y

h
�,L(�E) = txr⇤(E)txy

h
+,K(�E). (6.47)

Making the replacement E ! �E allows us to compare coefficients with
S(E) and we see that rhh(E) = r⇤ee(�E) and rhe(E) = r⇤eh(�E).

In Figure 6.10b we have sketched the theory–version of an SN interface,
and we assume the contacts to be semi–infinite away from the interface, such
that there is no transmission of quasiparticles from one end to the other. In
this picture, a bound state at the interface at the Fermi–energy EF (equal to 0
for sake of argument) would correspond to setting a barrier on the left–hand
side of the metal, and looking for states that satisfy

rN(0)rNS(0)Y = Y, (6.48)

where rN gives the scattering from the metal–barrier and rNS gives the scat-
tering of the superconductor interface, i.e.

rN =

0

@N(E) 0

0 N⇤(�E)

1

A , rNS =

0

@ree reh

rhe rhh

1

A =

0

@ ree(E) reh(E)

r⇤eh(�E) r⇤ee(�E)

1

A .

(6.49)

Here N is reflection coefficients for electrons, and for the p–h symmetric sys-
tems studied here, N⇤ is the corresponding matrix for holes. As discussed
in Chapter 4, for perfect Andreev reflection, the diagonal blocks of rNS are
zero. The requirement for a bound state to form at zero energy can be re-
formulated as a state for which det(1� rN(0)rNS(0)) = 0. We will suppress
the energy–dependence throughout the remaining of the section. The trick,
introduced in [129, 130] is change to the ”Majorana” basis, like so

r = WrNSW†, W =

r
1
2

0

@ 1 1

�i i

1

A (6.50)

The row–vectors of W are the Majorana states in electron–hole space that
we already saw in the Kitaev model. Inspection shows that r is now a
real matrix r = r⇤, as it should for Majorana states living at zero energy.
Determinants are independent of basis, so the basis change of W does not
alter the determinental requirement to find the bound state. Changing basis
on the product rNrNS in the determinant yields

det(1� WrNW†WrNSW†) = det(1+Or) = 0. (6.51)

By simple insertion, it can be seen that O is an orthogonal matrix, OOT = 1.
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A determinant of a matrix A is the same as the product of eigenvalues of
A. Furthermore, if A is an orthogonal matrix, AAT = 1, its determinant
must be ±1, as can be seen from,

1 = det1 = detAA�1 = detAAT = detAdetAT = detAdetA = (detA)2

(6.52)

so that detA = ±1. Assume there is N bound states, corresponding to N
eigenvalues of Or equal to �1. The remaining eigenvalues must be either
1 or come in pairs e±iq since Or is orthogonal. Furthermore, since O is a
unitary transformation of a p–h symmetric scattering matrix rN , which must
preserve probability, its determinant must be unity. Therefore detOr =

detO det r = det r. Collecting all this, we have

det r = (�1)N (6.53)

which gives the parity of the number of Majorana bound states. For an odd
number, there will be an unpaired Majorana at the NS interface, and det r
changes sign. We therefore define

Q = sign det r =

8
><

>:

1 No Majorana bound states

�1 Majorana bound states
(6.54)

In the case of a clean system, in which the momentum is a good quantum
number, this result can be mapped to the topological invariant of Kitaev,
M(H) (for details, see [129]). Even though the scattering matrix of the
bound state derived in the previous section is real, and the state lives at
E = 0 , we have not formally shown that the bound state is a Majorana state.
However, since the underlying Hamiltonian is p–h symmetric, and is devoid
of spin–rotation or time–reversal symmetries (due to the external magnetic
field) the model is in the Altland–Zirnbauer symmetry class D [131], which
in d = 1 supports bound states that are Majorana quasiparticles [4].

In the next section we present results and discussion on the topological
phase and the associated Majorana end states in the model.

6.3.2 Numerical results on the zero–energy bound state

Using the results of the preceeding subsection and the results of the deriva-
tion in Appendix B we can quantify what we set out to: Calculate Q of a
nanowire without intrinsic spin–orbit coupling, and study the lowest eigen-
values at the phase transition. Making the replacement

�h̄2

2m
∂

2
x

y(x) ! �t (y(x + a)� 2y(x)� y(x � a)) , (6.55)
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where t = h̄2/2ma sets the bandwidth, and a is the lattice–spacing, the
tight–binding model corresponding to Equation (6.32) is given by

H =
N

Â
i=1

⇣
Y†

i hiYi + Y†
i tYi+1 + h.c.

⌘
, (6.56)

where Y is a four–spinor, and

hi = (2t � µ)tz + Dtx +
1
2

gµBB(xi) · s (6.57)

t = �ttz. (6.58)

For our specific calculations we have used solenoids with parameters rS =

600 nm, LS = 330 nm and dS = 200 nm. In the case of alternating alignment
of the micromagnets we set d = 100 nm, and d = 50 nm in the aligned
case. These values were chosen to optimize the transition to the topological
regime whilst still being possible to microfabricate. The length of the wire
Lw is set to 5µm, and the induced superconducting gap is D = 0.3 meV.
Figure 6.11(a) shows the field–lines of of the alternating and aligned cases,
with the micromagnets and wire superimposed. The scale of the device is
approximately that used in the calculations. In Figure 6.11b the magnetic
field (measured in units of the bare field B0 of the magnets), is plotted as
a function of x. We have also calculated the effective value of spin–orbit
term in both geometries, shown in blue in figure 6.11b. For the antiparallel
alignment we used N = 1000 and for the parallel we used N = 1500 to
ensure proper definition of the discrete version of the derivative involved
in calculating aeff. We are indebted to A.P. Higginbotham for pointing out
a numerical mistake in the original version of the plot in Figure 6.11. The
version of the figure printed here is corrected, and we have published an
erratum (M. Kjaergaard et al. , Phys. Rev. B., 90, 059901 (2014))

Using the technique for finding the scattering matrix outlined in Append
B, the scattering matrix at E = 0, corresponding to a Majorana mode, is
found by calculating

S(E = 0) = U

1+ ipnW

†
H

�1
W
��1 

1� ipnW
†
H

�1
W
�

U
T

, (6.59)

where W is the coupling to the leads, which for the one–channel system we
study is a 2 · 4 ⇥ N–matrix with the structure

W =

2

4 14⇥4 0 · · · 0 0

0 0 · · · 0 14⇥4

3

5 , (6.60)

where the identities correspond to the connection to the leads. They are
4–dimensional due particle–hole space and spin space. n is the density of
states of the leads, and due to finite–difference effects, the results presented
below are not independent of this value, and we have chosen one that most
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Figure 6.11: a, The field–lines originating from six solenoids, in two different config-
urations calculated using our code. The dimensions of the micromag-
nets is overlayed on the field lines. b, The effective magnetic field along
the wire (in units of the field at the end of the permanent magnets) and
the effective spin–orbit coupling induced by these magnetic fields. Note
that in the case of aligned magnets the effective spin–orbit changes sign.

clearly show the transition. Furthermore U U
T

is the scattering matrix in
the absence of the coupling to device. In Figure 6.12 we present results for
the determinant of r as a function of µ and B0. r is found by extracting the
4⇥ 4 subblock of S(E = 0), calculated via Equation (6.59). A clear transition
from the trivial (det r = 1) to the topological (det r = �1) region is seen.
For µ = 0.3D ⇡ 0.09meV the transition happens at gB/2D ⇡ 2.2 which cor-
responds to a magnetic field from the magnets of B ⇡ 0.3T for InSb wires
with g ⇡ 50. Recently, in the setting of quantum hall interferometry, an
experimental setup using permanent magnet fingers of the same size as the
ones envisioned in our proposal were fabricated [132]. The authors of [132]
report magnetic fields on order comparable to what is needed in this pro-
posal. In Figures 6.12b, 6.12c we show results of a numerical diagonalization
of the full tight–binding Hamiltonian. The lowest and next positive eigen-
value is plotted as a function of magnetic field, together with line cuts from
the det r–plot. It is evident that the lowest eigenvalue goes to zero, while
the other remain gapped, exactly at the transition point predicted from the
topological quantum number analysis. This is indicative of the onset of a
zero–mode arising in the spectrum. Interestingly, it is clear from Figure
6.12c that also in the model of aligned magnets, a phase–transition occurs,
even though the effective spin–orbit term changes sign several times along
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Figure 6.12: a, The value of det(r) as a function of µ and B (in units of D = 0.3
meV) using the alternating orientation of the magnets (see inset). The
phase transition into the topological phase is evident. b,c, The two
lowest positive eigenvalues calculated by numerical diagonalization of
the full tight–bind Hamiltonian for aligned and alternating orientation
of the micromagnets. The lowest eigenvalue goes to zero at the phase–
transition, signaling the onset of a zero–energy mode, simultaneously
with det(r) changing sign.

the length of the wire, see Figure 6.11b. This robustness was not studied in
greater detail.

Finally we have studied the spin–structure of the Majorana fermion end
states. Due to the finite size of the wire, there is a finite, but exponentially
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small, overlap between the two lowest eigenmodes. Hence, the lowest eigen-
states from the numerical diagonalization procedure, are not localized. De-
noting these g1 and g2, the localized modes are found by ga = (g1 +g2)/

p
2

and gb = i(g1 � g2)/
p

2. In Figure 6.13 we show the weight |ga/b(x)|2 of
the two localized end–mode. Furthermore, inspired by [133], we numeri-
cally calculate the spin–polarization of the Majorana operators via

Sa/b(xi) = hxa/b|xiihxi|s ⌦ 1
2
(1+ tz)|ga/bi. (6.61)

That is to say, we numerically project onto the electronic part of Majorana
wavefunctions, and calculate the expectation value of the spin–operator. The
inset in figure 6.13 shows the polarization of the Majorana operators. By
comparing with Figure 6.11 we note that the polarization follows the field–
lines of the permanent magnets. The spin–polarization plays a role for e.g.
spin–specific tunneling [134], manipulation [17] and detection [133] of Ma-
jorana fermions.

10 2 3 4 5

Sa

Sb

ξ (μm)

0.5μm

nawowire

Figure 6.13: The density of the two localized Majorana modes for a Lw = 5µm wire,
by numerical diagonalization of the Hamiltonian in Eq.(6.32) subject to
the magnetic field from six permanent magnets (see upper left inset).
Middle inset: The spin–projection Sa/b of the two localized Majorana
states.

6.4 conclusion

We have shown that in wires subject to a spatially rotating field, the effec-
tive Hamiltonian has a spin–orbit like term, scaling with the field–gradient.
This model can be mapped back to that discussed by Oreg et al. [5], which
can again be mapped back to Kitaevs toy model [4], which we showed ex-
plicitly has Majorana fermions as its zero–energy solutions in the topolog-
ical regime. A numerical investigation of a realistic model involving six
micromagnets of dimensions and strength that are experimentally feasible
showed that for parameters previously reported for such systems, the wire
can undergo a phase transition and thereby support Majorana fermions as
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its end states. Finally we briefly studied the spin–structure of the localized
Majorana modes.
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A
S U P E R C O N D U C T I N G C O N TA C T S T O B U R I E D I N A S
2 D E G

In this appendix we’ll briefly review the fabrication and measurements us-
ing a high–mobility, buried InAs 2DEG heterostructure. On a wafer grown
under identical conditions to the one discussed in this chapter, the density
and mobility was measured to be n = 3 · 1011 cm�2 and µ = 200.000 cm2/Vs.
The wafer structure is shown in Figure A.1. The growth was optimized for
gateability and is described in detail elsewhere [21, 22]. The data on an SN
device fabricated on this wafer is discussed in Section A.1 and the fabrica-
tion recipe is given in Section A.2.

In       Al      As (90 nm) 0.75 0.25

In       Al      As (50 nm) 0.75 0.25

In       Al      As (50 nm) 0.84 0.16

In  Al    As x 1-x 

In       Ga      As (8 nm) 0.75 0.25

In       Ga      As (8 nm) 0.75 0.25

InAs (4nm)

step graded buffer

Sem insulating InP

superlattice

Figure A.1: Wafer structure of the high–mobility buried InAs heterostructure.
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a.1 gateable supercurrent and soft gap

The geometry of the device is shown in Figure A.2a and an SEM picture of
the device after measurements is shown in Figure A.2b. The philosophy of
the device was to form an effective 1D channel along the supercondutcing
interface using the plunger gates. The QPC gates on either side would then
operate as tunnel probes. The gold extension lines were used to minimize

a

b

ohmic ohmic

ohmicohmic

Al Al

QPC gates

plunger
gates

superconducting
contacts

Au extension lines

unintentional 
short

1μm

InAs mesa

unintentional 
shortBx

By

Figure A.2: a, Device schematic of the quasi 1D wire with superconducting contacts.
b, SEM image of the device, taken after measurements.

the total area of the aluminum superconducting contacts, to increase Bc. The
plunger gates and the bottom QPC gates on either side were unintentionally
shorted during fabrication, most likely at the tip, where the gates meet the
InAs mesa (see SEM in Figure A.2b). The ohmic contacts are deposited in
the same step as the extension lines from the superconducting pads (fabri-
cation details in section A.2), and has a typical contact resistance Rc ⇠ 1 kW.
Despite the short between plunger and QPC, we could pinch off all 3 QPCs
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separately, as shown in Figure A.3. These measurements were done using a
4–terminal voltage bias setup, as indicated on the schematic in Figure A.3,
with Vac = 5 µV. The drain is connected to a current preamplifier, and the V+

and V� are connected to voltage preamplifiers. The superconducting con-
tacts were left floating for these traces. The hysteretic behavior of the gates
were less pronounced when the gates were operated close to pinch off point.
When we moved the voltage probes to the aluminum pads we observed a

Al Al
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Figure A.3: The pinchoff behavior of all 3 QPCs in the device.

supercurrent with Ic ⇡ 20 nA. These measurements were performed in a
current biased setup with Iac = 5 nA. Engaging the middle QPC the su-
percurrent pinchoff had a rich behavior, shown in Figure A.4. Finally, the
behavior of the QPCs in the highly pinched off (tunnel) regime are shown
in Figure A.5. We clearly observe suppressed conductance with an energy
scale comparable to, but significantly smaller than, the gap in aluminum.
By applying an in–plane field, the gap decays on a scale of ⇠ 300 mT, com-
mensurate with expectations for an gap induced from Andreev reflections
on InAs/aluminum interface. The middle QPC were too unstable in time
to perform proper bias spectroscopy. The amount of subgap conductance
(i.e. the "hardness" of the gap) could to some extent be tuned by energiz-
ing the plunger gates and using only the top half of the QPC to actively
pinch off. The harder we pushed with the plunger gate, the more strongly
suppressed the subgap conductance (but the gap would overall remain soft).
The most strongly suppressed subgap conductance we were able to measure
using this technique is shown in Figure A.6, and was done using the left-
most N–QPC–S device. The gap is approximately D? = 80 µeV. For reasons
unknown, the right side of the device was significantly more unstable and
we were never able to generate a 2D map as the one in Figure A.6 for the
left side.
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It was the plan to fabricate a next set of device using a similar geometry,
but replacing aluminum with NbTiN, a high Bc superconductor, as well as
optimizing the dielectric for less noise and switching behavior. At this point
we were supplied with the epi–Al/InAs wafers of Sections I and I I. Given
their superior interface and ease of fabrication, all subsequent devices were
fabricated on those wafers.
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Figure A.4: a, Indication of measurement setup for measuring the supercurrent be-
tween the two tunnel probes. b, DC voltage drop as the QPC gates
are energized. The magnitude of the critical current decreases, and the
normal state resistance increases. c, Differential resistance between the
superconducting contacts as the middle QPC is energized. The scaling
on the x–axes is different in the range Vg 2 [�3.6,�2.5] V, to emphasize
the structure near pinchoff.
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Figure A.5: a, Measurement setup for measuring density of states on the left device.
The red circle indicates the tunnel probe. The right arm of the mesa is
depleted using VR plunger. b, Measurement setup for measuring density
of states on the right device. Red circle indicates the tunnel probe. The
left arm of the mesa is depleted using VL plunger. c, Density of states on
the left side as the in–plane field is ramped. The right plunger gate was
parked at VR plunger = �7 V, to suppress any influence from the right
side of the device. e, Cut at Bx = 0mT in c. d, Density of states measured
with the right tunnel probe. This side was significantly more unstable (a
switch is also visible in the data), and we had to set VR plunger = �12 V
to properly see a gap. The conductance in these measurements is an
order of magnitude larger than a, because the right side device was
unstable at very low conductances. f, Cut at Bx = 0mT from panel d.
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Figure A.6: a, The "hardest" gap we were able to measure. By parking the bottom
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the properties of the junction over a wide range of conductances could
be traced out. b, Linecuts in the data in a. The curves are not offset. The
overall upwards trend of the data as the pincher is pulled back is the
background conductance of the device increasing. The data is scaled by
the voltage drop measured across the constriction. The horizontal shift
on the x–axis (the data is not ± symmetric) is due to a DC offset on the
output of the DAC used to generate the DC signal.
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a.2 fabrication of superconducting contacts to buried inas

The fabrication of devices with superconducting contacts to the buried het-
erostructure, as reported in the previous section, follows these 5 steps,

1. Wet etching to define mesas

2. Clean surface and deposit superconductor

3. Deposition of ohmic contacts and gold extension lines from the alu-
minum contacts

4. Atomic layer deposition

5. Gate deposition

Two steps in particular took significant work to overcome: the problem of
the wet etch creeping under the resist, causing bad mesa definition and the
problem of forming a clean interface to the superconductor. Both will be
highlighted in the recipe below. We note in passing that these wafers also
suffered from the surprising problem of leakage between two mesas, after
deposition of the ALD (discussed back in Section 3.1.5), if they were not
etched deeper than ⇠ 250 nm. Just as for the epi–Al/InAs the problem was
ultimately resolved simply by etching deeper.

In all steps involving e–beam lithography the chip is cleaned prior to
depositing resist. The standard 2–solvent clean we use is: 2 min acetone
(swirl chip) / 1 min IPA (swirl chip) / blowdry with N2 / bake for 3 min-
utes at 185°C. For the e–beam exposure, all high–definition exposures were
made with I = 500 pA 300 µm writefield, 60.000 points/writefield an vary-
ing dosetime depending on the design of what is exposed. For the low–
definition large area exposures we use I = 20 nA, 500 µm writefield and
20.000 points/writefield. Again, the dose–time is dependent on what is
exposed.

Wet etching mesas

clean : Standard 2–solvent clean

spin adhesion promoter : this step is crucial! Apply ⇠ 3 drops of adhe-
sion promoter ar 300-80 (from AllResist) while spinning at 500 RPM.
Then spin 45 seconds at 4000 RPM. Bake 3 minutes at 185°C. Dip in
dioxalene for 1 minute to strip excess promoter. IPA for 30 seconds,
blowdry and then bake for 3 minutes at 185°C.

spin resist : Dispense A4 at 500 RPM, then spin at 4000 RPM for 45 sec-
onds. Postbake 3 minutes at 185°C.

e–beam lithography :
High definition: Dwelltime of 0.4 µs/dot. Slightly underexposing the
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PMMA, but because of the proximity effect when exposing large re-
gions it will be properly exposed anyway.
Low definition: Dwelltime of 0.36 µs/dot.

develop : 60 seconds MIBK:IPA followed by 20 seconds IPA and blowdry.

wet etch : The wet etch is a variation on the etch used for the epi–Al/InAs
wafer:

H2O : H3PO4 : H2O2

80 : 1 : 1

As always for H2O2 store it in a cool dark place, and don’t use it if it’s
been open for more than ⇠ 4 weeks. Add phosphoric acid to a larger
beaker of water on a magnet stirrer. Then add H2O2 and let it mix for
⇠ 2 mins before dunking chip. Etch rate is approximate 1nm/second,
so etch for at least 5 minutes, while keeping magnet stirrer on. Then
dip into milliQ water and swirl for 30 seconds. Blowdry and then into
hot acetone to strip resist. Measure height using AFM/profilometer
and check it is greater then 250 nm.

Surface cleaning and superconductor deposition

clean : Standard 2–solvent clean

spin resist : Dispense A4 at 500 RPM, then spin at 4000 RPM for 45 sec-
onds. Postbake 3 minutes at 185°C.

e–beam lithography : High definition: Dwelltime of 0.6 µs/dot.

develop : 60 seconds MIBK:IPA followed by 20 seconds IPA and blowdry.

predeposition etch clean : crucial step. Using same etchant recipe as
when etching mesas, dip for 20 seconds to clean of oxides from the sur-
face. Move chip into milliQ beaker and swirl. Walk to the deposition
machine with chip still in milliQ. Vent the machine. Only when you’re
ready to load, remove the chip from water, blowdry heavily and make
sure all water is off (if not, it will boil once loadlock is pumping down).
Load into evaporator labeled AJA 2.

predeposition plasma clean : Rotate to 0 degree and start 50RPM. Open
substrate shutter and strike plasma at 100 sccm, 30 mTorr and 50 W
power. Once on, change pressure to 3 mTorr. Let run for 60 seconds.
Visually inspect that the plasma is on and that the reflected power is
⇠0 W.

superconductor deposition : Without breaking vacuum now commence
following deposition: 5 nm titanium at 5 degree, at 50 RPM. Then tilt
to 30 degree and deposit 30 nm aluminum while still rotating. Finally
deposit 30nm aluminum at 0 degree.
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liftoff : Overnight in room temperature acetone. Corners of the chip can
be scratched with a syringe.

Aluminum contacts

mesa

etched region

Figure A.7: SEM image of 60nm thick aluminum contacts to buried InAs quantum
well.

Ohmic contacts and bondpads to superconductors

The ohmic contacts are formed by mechanically removing the surface layer
of the exposed InAs meas in large regions, far from the main part of the
device. The metals used for the ohmics and bondpads for aluminum super-
conductors is Ti/Pt/Au. Since Al/Au forms the "purple death" intermetallic
at elevated temperatures, we deposit the platinum as a spacer.

clean : Standard 2–solvent clean

spin resist : Use a bilayer this time: Dispense EL-6 at 500 RPM, then spin
at 4000 RPM for 45 seconds. Bake 3 minutes at 185°C, then dispense
A-4 at 500 RPM, then spin at 4000 RPM for 45 seconds. Bake 3 minutes
at 185°C,

e–beam lithography :
High definition: Dwelltime of 0.6 µs/dot.
Low definition: Dwelltime of 0.44 µs/dot.

develop : 60 seconds MIBK:IPA followed by 20 seconds IPA and blowdry.

predeposition mechanical clean : crucial step. We use the argon Kauf-
mann mill to mechanically remove the oxide from the surface of the
aluminum contacts, as well as from the surface of exposed InAs on
the ohmics. Rotate stage at 50 RPM with Kaufmann mill pointed
perpendicular to the plane of the chip. Use 30 sccm argon, setpoint
0.6 mTorr. Turn on Kaufmann gun with a 300 V and check that emis-
sion is ⇠46 mA. Clean for 150 seconds.
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semiconductor deposition : Without breaking vacuum, rotate the sam-
ple to point towards e–beam targets. Use following deposition, all
while rotating at 50 RPM: 5 nm titanium at 0 degree / 15 nm platinum
at 10 degree tilt / 20 nm gold at 10 degree tilt / 60 nm at 0 degree tilt.

liftoff : Scratch corners with syringe and then overnight in room temper-
ature acetone. The liftoff can be tricky because the MMA/PMMA will
have deteriorated from the Kaufmann milling. Check under micro-
scope before blowdrying. If

Atomic layer deposition

Rinse the chip in IPA and blowdry thoroughly before loading. Deposit 400
pulses of TMA at 90 °C with a wait time of 1 minute between each pulse.

Gate deposition

The gate exposure and gate deposition is similar to those in Section 3.1.6,
and the dwelltime and resist stack will depend on the detailed design of
the gates. For the device reported in the previous section we used same
bilayer stack as for ohmic contacts, with 0.72 µs/dot dwelltime for high
resolution and 0.44 µs/dot dwelltime for low resolution. The gates are made
of Ti(5 nm) / Au(65 nm).

ohmic
contact

gates

gate

extension lines
of superconducting

contacts

Figure A.8: Optical image of the finalized device, whose superconducting contacts
are shown in Figure A.7. The SEM image in Figure A.2b is a zoom in
on the inner region of this device.
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D E R I VAT I O N O F T H E S C AT T E R I N G M AT R I X F O R A
G E N E R A L 2 – L E A D S Y S T E M

In this appendix we derive the formula used for numerically calculating
the scattering matrix of a device with the general structure "lead–device–
lead" needed to calculate Q in Section 6.3.1. The derivation is a little heavy
handed, but the punchline, given in Equation (B.16) is extremely powerful,
so we work out the details explicitly in this appendix.

To calculate the scattering matrix we follow Aleiner et al. [135]. The
electronic states in a 1D model of the ”lead–device–lead” device can be
written as

y(x) =
Z dk

2p

⇣
U ⇤ei(kF+k)x + U e�i(kF+k)x

⌘
y(k) (B.1)

The unitary matrix U describes scattering in leads in the absence of cou-
pling to the device. Note that U could seem like scattering matrix, but
rather UTU is the scattering matrix. The terms Uy(k) is to be understood as
ÂNch

j,l=1 Uijyj(k), with Nch being the number of channels. We take the bound-
ary condition that y(x = 0) = 0 corresponding to a p–phaseshift at the
boundary. If we neglect channel mixing U is a diagonal matrix with i on the
diagonal, U = i1. To generalize the scattering matrix in Equation (6.43) to
the case of many modes, we use write the incoming and outgoing states as

aout = S(e)ain, (B.2)

where S is now an Nch ⇥ Nch–matrix, and a’s are Nch ⇥ 1 vectors. At energy
e = vFk the states in the lead takes the form

y(x) = ainei(kF+e/vF)x + aoute�i(kF+e/vF)x (B.3)
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The Hamiltonian for the lead–device system is H = HD + HL + HLD, where

HL = vF

Z dk
2p

ky

†(k)y(k) (B.4)

HD = Hf

†
f (B.5)

HLD =
Z dk

2p

⇣
Wf

†
y(k) +W†

y(k)f
⌘

(B.6)

States in the device are denoted by f, and H is an N ⇥ N–matrix, de-
scribing interactions on the device, such that Hf

†
f is to be understood

as ÂN
a,b Ha,bf

†
a

f

b

. The leads are assumed to be metallic so the momentum
is linear around kF. The matrix W has dimension N ⇥ Nch and gives the
coupling between the states in the leads and states in the device. We are
now interested in working out S in terms of U ,W and H. To this end, we
Fourier–transform the field–operators

y(k) =
Z

dxy(x)eikx , y

†(k) =
Z

dxy

†(x)e�ikx, (B.7)

in the definition of H. We now take x > 0 to mean a wave moving towards
the device, and x < 0 moving away from device see Figure B.1.

a bdevice lead

ain

UainUcout

cout

~

aout
S(ε)

ainaout
device

Figure B.1: a, The generalized multimode scattering matrix. b, The journey for a
left–moving state as described by Equation (B.12).

The field operators are split into lead and device–space i.e. Y = y(x)⌦ f,
we evaluate the Schrödinger equation [H, Y] = ey term–by–term, to find

lead: ey(x) = ivF
∂

∂x y(x) +W†
d(x)f

device: ef = Wy(0) +Hf

(B.8)

With the sign convention used for the Fourier transform, this equation cor-
responds to a left–moving state with speed vF. Such a state can in general
be written as

y(x) =

8
<

:
e�ikxU ain , x > 0

e�ikx eU cout , x < 0
(B.9)

The generalized outgoing wave eU cout after scattering in the device can be
mapped back to the basis of aout as follows: By appealing to figure B.1
the identification eU cin = aout , cin = eU †aout is made. eU is a unitary. eU
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is the same as U except that the notion of left and right are interchanged.
Mathematically, this correspond to

0

@ain
L

ain
R

1

A! tx

0

@ain
L

ain
R

1

A =

0

@ain
R

ain
L

1

A (B.10)

Thus we may rewrite the scattering equation as follows

0

@aout
L

aout
R

1

A = U

0

@ain
L

ain
R

1

A!

0

@aout
R

aout
L

1

A = txUtx| {z }
= eU

0

@ain
R

ain
L

1

A . (B.11)

Under the assumption r = r0 we see that eU = UT , and hence the left–moving
state can be written as

y(x) =

8
<

:
e�ikxU ain , x > 0

e�ikxU ⇤aout , x < 0
(B.12)

To use this wavefunction in Eq.(B.8), we need to evaluate y(0) and we will
use the regularization y(0) = (y(0�) +y(0+)/2. The Schrödinger equation
for Eq.(B.12) is impossible to solve by matching boundary conditions, since
the d(x) in Eq.(B.8) introduces a kink. Instead, we employ the ”standard”
trick of integrating the Schrödinger equation from 0 � h to 0 + h and take
the limit h ! 0. Using this, we arrive at

lead: 0 = ivF
�
U ain � U ⇤aout�+W†

f

device: ef = 1
2W

�
U ain + U ⇤aout�+Hf

. (B.13)

The device wavefunctions can be isolated from these equations, by rewriting
the latter to

f = (e1�H)
1
2
W
⇣
U ain + U ⇤aout

⌘
=

1
2
G(e)W

⇣
U ain + U ⇤aout

⌘
, (B.14)

where we introduced the Green function G = (e1�H). Insertion into equa-
tion (B.13) and combining terms involving ain and aout yields

✓
ivF +

1
2
W†GW

◆
U ⇤aout =

✓
ivF �

1
2
W†GW

◆
U ain. (B.15)

Finally, introducing the density of states n = 1/2pvF of the wire, and utiliz-
ing that for a unitary matrix (U ⇤)�1 = UT the final result is

aout = UT
h
1 + ipnW†G(e)W

i�1 h
1 � ipnW†G(e)W

i
U ain (B.16)

By comparing with Eq.(B.2) the scattering matrix can identified.
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