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Abstract
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream of the Greenland

Ice Sheet, spanning over 600 km and with a drainage basin that covers 16% of the Ice

Sheet. Dynamic mass loss currently accounts for around half of the total mass loss of

the Greenland Ice Sheet and is primarily driven by ice streams that transport ice from

the interior to the coast. Unlike most ice streams, NEGIS is not controlled by the basal

topography, making it extremely difficult to model accurately. The crystal orientation

fabric (COF), describing the way ice crystals are oriented within the ice, is known to be

important for understanding the flow in ice streams, as the stiffness of ice can vary by

two orders of magnitude depending on COF and the orientation of applied stress. The

COF evolves differently under different strains making it valuable to get information

about the flow history of a region. This thesis explores the use of polarized radar to

study the COFs of NEGIS. In the summer of 2022, we conducted a comprehensive survey

of NEGIS using a multi-polarized radar system that was meant to give unique insights

into the dynamics of the ice stream. Two studies are presented based on this data.

In the first study, we developed a novel method for deriving the orientation and

strength of the depth-averaged horizontal anisotropy of the COF from pairs of reflections

that originate from the same physical layers. These ”double reflections” are a direct

consequence of the bulk birefringence of the ice that split incoming linearly polarized

radar waves into two waves with different phase speeds. The results of applying this

method reveal an asymmetry across the NEGIS center flow line that has not previously

been observed. This asymmetry adds to growing evidence for a more variable ice stream

than previously assumed.

In the second study, the task of deriving the COF is formulated as an inverse problem.

Based on a simple model for radar propagation in birefringent ice, we are able to set

up a simple inversion routine for the anisotropic scattering of the ice and orientation of

the COF. The horizontal anisotropy as a function of depth is solved as a linear inverse

problem based on travel time differences derived from cross-correlating co-polarized

signals. Results from four different upstream locations relative to the EastGRIP ice

core are presented. Generally the anisotropic scattering and COF orientation is enough

to adequately explain observations. This is due to the strong birefringence that causes a

loss of coherence. The locations show strong anisotropic scattering and COF orientations

that are rotated between 2◦ and 10◦ relative to flow. The horizontal anisotropy generally

agrees well with the EastGRIP ice core, suggesting a transition from a vertical girdle

with a horizontal maximum to a fabric with weak horizontal anisotropy close to the base

of the ice.
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Resumé
Den nordøstgrøndlandske istrøm, forkortes NEGIS p̊a engelsk, er den største isstrøm i

Grønland og strækker sig over mere en 600 km og st̊ar for 16% af Indlandsisens samlede

afløbsareal. Dynamisk massetab udgør omkring halvdelen af det samlede massetab fra

Indlandsisen og drives primært af isstrømme, der transporterer is fra de centrale regioner

af Indlandsisen og ud til kysten. I modsætning til de fleste andre isstrømme er NEGIS

ikke kontrolleret af bundtopografien, hvilket gør det vanskeligt at modellere. Orienterin-

gen af iskrystalstrukturen, der beskriver hvordan iskrystaller er orienteret i isen, spiller

en vigtig rolle i forst̊aelsen af isstrømmes bevægelse, da isens stivhed kan variere med op

til to størrelsesordener afhængigt af iskrystalstrukturen. Iskrystalstrukturen udvikler sig

forskelligt under forskellige deformationsforhold, hvilket betyder at den kan indeholde in-

formation om omr̊adets strømningshistorik. Denne afhandling undersøger brugen af po-

lariseret radar til at studere iskrystalstrukturen i NEGIS. I sommeren 2022 gennemførte

vi en omfattende undersøgelse af NEGIS med et multipolariseret radarsystem, der skulle

give unikke indsigter i isstrømmens dynamik. Ud fra disse data præsenteres to studier.

I det første studie udviklede vi en ny metode til at udlede orienteringen og styrken

af den horisontale anisotropi af krystalstrukturen fra par af refleksioner, der stammer

fra de samme fysiske lag. Disse ”dobbelte refleksioner” er en direkte konsekvens af isens

dobbeltbrydnings egenskaber, der opdeler lineært polariserede radarbølger i to bølger

med forskellige fasehastigheder. Resultaterne udledt af metoden viser en asymmetri

p̊a tværs af NEGIS’ centrale flydelinje, som ikke tidligere er blevet observeret. Denne

asymmetri føjer til det allerede voksende evidensgrundlag for, at isstrømmen er mere

variabel, end tidligere antaget.

I det andet studie beskriver vi bestemmelsen af iskrystalstrukturen som et invers

problem. Baseret p̊a en simpel model for radarbølgers udbredelse i is er vi i stand til at

opstille en simpel inversionsalgoritme for den anisotropiske spredning og orienteringen

af isens krystalstruktur. Den horisontale anisotropi, forskellen mellem isens to bryd-

ningsindeks, som funktion af dybden løses som et lineært invers problem, baseret p̊a

tidsforskelle der er udledt ved at krydskorrelere copolariserede signaler. Der præsen-

teres resultater fra fire forskellige opstrømslokationer i forhold til EastGRIP iskernen.

Generelt er den anisotropiske spredning og iskrystalorienteringen tilstrækkelig til at fork-

lare observationerne. Dette skyldes den store forskel i brydningsindeks, der for̊arsager et

tab af kohærens. Lokationerne viser stærk anisotropisk spredning og en krystalstruktur

der er roteret mellem 2° og 10° i forhold til flyderetningen. Den horisontale anisotropi

stemmer generelt godt overens med EastGRIP iskernen og antyder en overgang fra en

krystalstruktur med en stor horisontal anisotropi til en med lille horisontal anisotropi

tæt p̊a bunden af isen.
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Abbreviations

ADC Analog-to-digital convert

ApRES Autonomous phase-sensitive radio-echo sounder

c-axis Crystallographic axis, optical axis

COF Crystal orientation fabric

DAC Digital-to-analog converter

EastGRIP East Greenland Ice Core Project

FMCW Frequency-modulated continuous wave

GRIP Greenland Ice Core Project

IRH Internal reflection horizons

NEEM North Greenland Eemian Ice Drilling

NEGIS Northeast Greenland Ice Stream

pRES Phase-sensitive radio echo sounder

RES Radio echo sounder

SAR Synthetic aperture radar

UHF Ultra high frequency

UWB Ultra wide band

Polarization definitions

V V-polarization. Along-track polarization

H H-polarization. Across-track polarization

HH Transmit at H and receive at H

HV Transmit at H and receive at V

VV Transmit at V and receive at V

VH Transmit at V and receive at H

co-polarized Transmit and receive at the same polarization (HH and VV)

cross-polarized Transmit and receive at orthogonal polarizations (HV and VH)
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Chapter 1

Introduction & Background

The Cryosphere

The cryosphere refers to the frozen component in the Earth system (IPCC, 2022) and

includes snow, sea ice, glaciers, ice sheets, permafrost, and more. While the cryosphere

is mostly concentrated in the polar and high mountainous regions, the changes in these

regions can be felt all over. The Earth’s climate system is a balance between the incoming

energy from the sun and energy returned to space by the Earth. Part of the solar

radiation is reflected by the surface of the Earth, and the cryosphere plays an important

role in this due to the high albedo of snow and ice. Changing any component of the

energy balance means that the Earth has to either heat or cool to compensate. A

changing cryosphere due to climate change can be amplified or reduced by feedbacks

in the climate system. Rising temperatures reduce the time with snow on the ground

and ice on the ocean, reducing the amount of energy reflected back out of the Earth’s

system, leading to an energy imbalance causing increasing temperatures and melting.

This feedback mechanism can also be flipped by an increasing snow and ice extent

causing cooling. Melting of the two largest ice masses on Earth, the Greenland and

Antarctic ice sheets, not only reduces the volume of the cryosphere but also increases

the ocean area and volume, which, unlike the cryosphere, is very good at absorbing the

energy from the sun. Of course, this is only one feedback mechanic in the cryosphere

and climate system, and if the balance is this delicate, the Earth would be completely

glaciated or completely ice-free.

Recent history of ice on Earth

For the past 2.6 million years, the Earth has been in an ice age known as the Quaternary

(Ehlers & Gibbard, 2011) period, consisting of a series of colder (glacial) and warmer

periods (interglacial). Our current interglacial period, the Holocene, started around

11.7 thousand years (kyr) ago at the end of the last glacial that started around 115

kyr ago (NEEM community members, 2013). These climatic fluctuations have been

10
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characterized by a 41 kyr cycle for the first part of the Quaternary but switched to

a 100 kyr cycle in the past 800 kyr (Ehlers & Gibbard, 2011), allowing for a much

wider expansion of glaciers and ice sheets. Ice age cycles have been tied to changes in

orbital parameters of the Earth (eccentricity, obliquity, and precession), which cause

fluctuations in the solar energy in The Northern Hemisphere, which can then trigger

the feedback mechanism described above (Rapp, 2011). During the coldest period of

the last glacial, The Last Glacial Maximum, the sea level was about 125-130 meters

lower (Yokoyama et al., 2018), and most of this water was being stored in massive ice

sheets covering large chunks of Northern Europe and North America. This has left

behind traces that can still be seen today, like moraines, lakes, and valleys forming the

current landscape, isostatic adjustment causing large landmasses to lift and depress,

and boulders located far from their origin. At the termination of the last glacial period,

the large ice sheets over Europe and North America retreated, with two large ice sheets

remaining: Greenland and Antarctica. Some evidence shows that around 8-5 kyr ago,

the Greenland Ice Sheet had retreated to an ice volume smaller than today, followed by

a re-advance to a maximum Holocene extent around 1450-1850 CE, and the Antarctic

ice sheet had reached its current position 5 kyr ago (IPCC, 2023).

Current state of ice on Earth

Currently, we are seeing a global retreat in land and sea ice attributed to anthropogeni-

cally driven climate change (IPCC, 2023). Simply put, ice sheets, ice caps, and glaciers

have to be in a balance between mass accumulated through snowfall and mass lost

through melt, sublimation, and calving to keep their size. Increasing temperatures will

change this balance, which is also what we observe as a consequence of climate change.

It is not given that an increase in temperature will result in a net loss, as a warmer

atmosphere can also contain more moisture, which can increase accumulation. Never-

theless, what is being observed is a retreat of most mountain glaciers and ice caps and

a negative mass balance of the Greenland and Antarctic ice sheets. Since 1901, the two

largest contributors to sea level change, excluding the thermal expansion of the oceans,

have been glaciers and the Greenland Ice Sheet, contributing with around 70 mm and 40

mm of sea level change respectively (IPCC, 2023). The glaciers, not including glaciers

in Antarctica and Greenland, have in a period between 1901 to 2009 been estimated to

have reduced in volume by almost 20% (Marzeion et al., 2012).

The future for ice on Earth

The future for ice on Earth, in the form of glaciers, ice caps, ice sheets, and sea ice, is

extremely uncertain, but it has a very important role in the bigger climate system. The

two polar ice sheets have enough freshwater stored to raise the global sea level by more

than 60 meters (Morlighem et al., 2017), making them the largest potential contributors

to future sea level rise. Currently, Greenland is the main driver of sea level change of
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the two, but the potential of Antarctica is massive (IPCC, 2023).

The Greenland Ice Sheet

The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and has

been studied extensively in recent decades.
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(Morlighem, 2022)

The ice sheet is about 2000

km north to south, 1000 km east

to west, and up to more than

3 km thick, resulting in a fresh-

water storage equivalent to rais-

ing the global sea level by 7.4

m (Morlighem et al., 2017). Be-

ing able to predict its future in

a warming world is therefore of

great interest, and the first step

in that process is to look into

its past. Because ice sheets and

glaciers are grown from the sur-

face via precipitation year after

year, the deeper we go, the fur-

ther back in time we can look.

The isotopic composition of the

water molecules gives us a proxy

for the temperature at deposition

(Dansgaard et al., 1969). After

the snow has been compressed

into ice under the weight of the

subsequent year’s snowfall, the

air bubbles trapped inside the

ice are small samples of the past

atmosphere. Not only can we

learn something about the past

ice sheet but also about past cli-

matic conditions. Many ice coring projects in Greenland aim to get a good climate

record as far back in time as possible, starting with the ice core drilled at the American

military base Camp Century (Dansgaard et al., 1969). In the NEEM ice coring project

(NEEM community members, 2013), they were able to reconstruct the temperatures as

far back as the last inter-glacial period (the Eemian), providing valuable information

about what conditions the ice sheet has been subjected to in the past. Another impor-

tant reason to drill ice cores is to better understand the physical properties of the ice,
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which help inform and constrain ice flow models that are used to reconstruct the past

and predict the future of the Greenland Ice Sheet under different warming scenarios

(IPCC, 2023).

Ice dynamics

While we usually think of ice as being a solid, ice behaves like a very viscous fluid as

it slowly deforms under applied stress in a process known as creep (Cuffey & Paterson,

2010) or ice flow. Ice found in glaciers and ice sheets is a polycrystalline material, and

the flow properties are a mixture of the single crystal properties and the interactions

between the crystals.

Single crystal deformation

The water molecules in ice found in glaciers and ice sheets are arranged in layers of

hexagonal rings (Cuffey & Paterson, 2010)1, where the plane parallel to these layers is

called the basal plane of the crystal. The normal vector to the basal plane is referred

to as the c-axis, which is also the optical axis of the crystal. The deformation of single

crystals is dominated by slip parallel to the basal planes (Duval et al., 1983), called

basal slip, see figure 1.2. This process was first described in 1891 by James McConnel

(McConnel, 1891), where he noticed a very rapid deformation of a single ice crystal

under load. He noted that ”the crystal had behaved as if it consisted of an infinite

number of indefinitely thin sheets of paper”, giving rise to the often used deck of cards

analogy. Two other slip systems exist but are extremely difficult to activate as even a

small misalignment of the setup will yield basal slip (Duval et al., 1983). This strong

preference for basal slip translates into ice being a highly anisotropic material.

c⃗

basal slip

c⃗

Figure 1.2: Illustration of basal slip in a single crystal consisting of five hexagonal layers.
c⃗ is the c-axis of the crystal.

1This is not necessarily true for all ice, but ice found in glaciers and ice sheets are predominately of
the type Ih, which is a hexagonal crystal
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Polycrystalline deformation

The deformation of polycrystalline ice is much slower than single-crystal deformation.

The intuitive explanation for this is that crystals are being confined by neighboring

crystals resisting any movements (Glen, 1975). Neighboring crystals may also differ in

orientation, making basal slip for a given stress configuration difficult for one crystal

and easy for another. In fact, because basal slip is so dominating and slip between

crystal boundaries is also fairly easy, a sample of polycrystalline ice can accommodate

deformation by basal slip by having the crystals rotate away from tensional axes (Alley,

1992). A simple sketch of crystal rotation for polycrystals subjected to uniaxial tension

is shown in figure 1.3.

c⃗ c⃗

τii

τii

(a)

c⃗ c⃗

(b)

Figure 1.3: Sketch inspired by Alley (1992) of crystal rotation from polycrystal defor-
mation. (a) shows two crystals under uniaxial tension, τii, just before deformation. (b)
shows deformation accommodated by basal glide and rotation of the c-axes.

This mechanism offers an explanation for how polycrystal deformation is related

to single-crystal deformation, in that a rotation of the c-axis must follow if we only

allow slip along the basal planes. A consequence of this is that ”c-axis always rotate

towards the compressional axes and away from tensional axes” (Alley, 1992). In this

context, isotropic ice is polycrystalline ice where the c-axes of the individual crystals

are uniformly distributed on a unit sphere, i.e., there is no preferred orientation. In

experiments, it is possible to show how isotropic ice can develop a preferred orientation

with increasing strain (Azuma & Higashi, 1985). On scales much larger than individual

crystals, the distributions of crystal orientations are often referred to as crystal ori-

entation fabrics (COFs), crystallographic preferred orientations (CPOs), or sometimes

simply fabrics. Two other important mechanisms for altering the COF are rotational

recrystallization and migration recrystallization. Rotational recrystallization is when

sub-grains (crystals) form close to the grain boundaries with orientations that are simi-

lar but not exactly the same as their parent grains (Richards et al., 2021). The effect of
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rotational recrystallization is an outward diffusion of the c-axis orientation away from

the initial orientations (Richards et al., 2021). Migrational recrystallization is a process

where crystals grow into neighboring crystals depending on their difference in deforma-

tion energy stored in the dislocations within the respective crystals (Richards et al.,

2021). The effect of migrational recrystallization is an increase in the COF intensity

along the orientation of the migrating crystal.

Ice flow

The internal deformations of the polycrystals constitute a flow under applied stress.

From experiments Glen (1952) was able to show that there exists a non-linear relation-

ship between the strain rate and stress, and came up with the relation,

ϵ̇ = Aτn (1.1)

where ϵ̇ is the strain rate, τ is shear stress, n is the creep exponent and A is a prefactor

that depends strongly on temperature and fabric (Cuffey & Paterson, 2010). While

Equation 1.1 is often referred to as Glen’s Law, it is an empirical fit to the laboratory

results where he first found n = 4 (Glen, 1952), and later n = 3.2 (Glen, 1955), and

thereby demonstrating that ice is a non-Newtonian fluid. Equation 1.1 only describes

a single component stress, but for real glaciers and ice sheets, the stress acts in all

three dimensions. A generalized Glen’s Law, also called the Nye-Glen Isotropic Law,

developed by (Nye, 1957), can be written as,

ϵ̇ij = Aτn−1
E τij (1.2)

where ϵ̇ij and τij are the (ith, jth) components of the strain rate and deviatoric stress

tensors, respectively. Deviatoric refers to the stress that deviates from the mean normal

stress (pressure), τii = σii− 1
3(σxx+σyy+σzz), where σ is the true stress tensor. Because

ice is incompressible, the pressure does not contribute to the deformation. τE is the

second invariant of the stress tensor, also called the effective stress. The first invariant

is the trace of τ , which must be zero due to the assumption of incompressibility. A

consequence of n ̸= 1 is that the viscosity of ice, η = 1
2(Aτ

n−1
E )−1, depend on the

effective stress (Cuffey & Paterson, 2010). Ice becomes softer as the stress increases.

Anisotropy

While equation 1.2 is the most commonly used flow law for ice, it ignores an inherent

property of ice - it is anisotropic. In other words, for anisotropic COFs, the viscosity

depends - not only on the magnitude - but also on the orientation of the stress. The

stiffness of glacier ice with a strongly developed COF has been measured to vary by 2

orders of magnitude for different orientations of the applied stress (Shoji & Langway,

1988). The crystal orientation fabric is often presented as Schmidt diagrams, defined
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as an equal area projection of the c-axes intersection with the surface of a sphere, or

sometimes just as an orthographic projection of the orientation density plotted on a

sphere. Only one hemisphere needs to be projected due to the antipodal symmetry of

the ice crystals. When reporting the c-axis measurements for a sample, it is common

to use normalized eigenvalues of the second-order structure tensor, sometimes called

the orientation tensor (Woodcock, 1977). Following Advani and Tucker (1987), the

second-order structure tensor can be written in terms of the c-axis as follows,

⟨c2⟩ = ⟨c⊗ c⟩ =
∫ 2π

ϕ=0

∫ π

θ=0
ĉ⊗ ĉρ(θ, ϕ) sin(θ)dθdϕ (1.3)

where ĉ = [sin θ cosϕ, sin θ sinϕ, cos θ]T is an arbitrary c-axis written in terms of θ and

ϕ, ρ(θ, ϕ) is a density function defined such that ρ(θ, ϕ) sin(θ)dθdϕ is the probability

of finding a crystal c-axis within [θ, θ + dθ] and [ϕ, ϕ + dϕ]. ⊗ is the dyadic (outer)

product. The second-order structure tensor reduces the information from the density

function into a single second-order tensor. In the process, we lose information about

the distribution, and higher-order structure tensors are needed to capture complex dis-

tributions (Advani & Tucker, 1987). The eigenvectors of ⟨c2⟩ (ex, ey, ez) define the

principal axes of the COF, and the corresponding eigenvalues (λx, λy, λz) are used to

characterize the anisotropy of the COF. The eigenvalues are usually normalized such

that λx + λy + λz = 1. See figure 1.4 for examples of COFs commonly found in glaciers

and ice sheets constructed from the eigenvalues and eigenvectors of ⟨c2⟩.

Observations

When working with any model, whether it is Glen’s flow law for modeling ice sheets or a

weather forecast model, one of the most important components is to have observations.

If we do not know how the weather is when we start doing the forecast, our starting point

is wrong, and the forecast will most certainly be wrong, even if the model is representing

real-world physics accurately (which, of course, is never completely true). In this section,

I will give a small overview of three observational methods, among many others, that are

used to gain insights into glaciers and ice sheets, specifically the Greenland Ice Sheet,

and are used to improve ice flow modeling.

Ice cores

The most direct way of getting information from the deeper parts of the ice is to drill

ice cores and bring the ice to the surface for investigation. During the sixties, the U.S.

Army Cold Regions Research and Engineering Laboratory drilled an ice core all the way

through the 1390m thick ice at Camp Century. The ice core was later analyzed by Willi

Dansgaard together with Sigfús J. Johnsen, Jørgen Møller, and Chester C. Langway for

its heavy water isotope composition from which they were able to reconstruct a climate



CHAPTER 1. INTRODUCTION & BACKGROUND 17

eyex

ez

(a)

eyex

ez

(b)

eyex

ez

(c)

eyex

ez

(d)

λx = 1
3

λy = 1
3

λz = 1
3

Isotropic

λx = 0

λy = 0

λz = 1

Vertical
single maximum

λx = 0

λy = 1

λz = 0

Horizontal
single maximum

λx = 0

λy = 1
2

λz = 1
2

Vertical
girdle

c-
ax

is
de

ns
ity

Figure 1.4: Four common COFs found in glaciers and ice sheets generated from the
second-order structure tensor with the indicated eigenvalues and plotted using an or-
thographic projection. For the naming, ez is assumed to be vertical. (a) uniform c-axis
density, or isotropic COF, is often seen close to the surface. (b) A single vertical maxi-
mum is often seen at slow-flowing ice, caused by vertical compression aligning the c-axis.
(c) A horizontal single maximum can be found at high shear zones, such as shear mar-
gins. (d) The vertical girdle can be found where there is an extensional flow, like an ice
stream, causing the c-axis to rotate away from the tensional axis.

record for the past almost 100,000 years (Dansgaard et al., 1969). The Greenland and

Antarctic Ice Sheets have a climate archive stored inside, which has sparked many deep

ice-coring projects. Water isotopes stored in the ice not only contain information about

the climate but also information about the surface elevation of the Greenland Ice Sheet

when the snow was deposited (Vinther et al., 2009), which can work as an important

constraint to ice flow modeling efforts to reconstruct the past ice sheet (Tabone et

al., 2024; Lauritzen et al., 2024). Physical properties of the ice, like crystal size and

orientation, are also recorded and provide very important data when calibrating and

validating anisotropic ice flow models (Richards et al., 2023; Gerber et al., 2023; Lilien

et al., 2023).

Seismics

One major limitation of ice cores is that they only provide information at a single point

in the horizontal plane, and due to the cost and time associated with drilling a deep ice

core - they are also very rare. There is no method that can get as much information

about the ice as an ice core, but depending on what you want, other methods provide

much cheaper and faster alternatives. For the case of learning about crystal orientation

fabrics, an alternative to ice cores could be seismic data. Just like ice has anisotropic

rheology due to the strong preference for basal-slip of individual crystals, ice is also
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elastically anisotropic. Wavelengths of typical seismic waves are much larger than the

common crystal size. Therefore, it is appropriate to consider the bulk anisotropy, or the

COF, when deriving the elasticity tensor (Diez et al., 2015). In general, seismic waves

propagate through an elastic medium as three different wave modes, one pressure wave

(P-wave) and a shear wave (S-wave)2 which can be resolved into a horizontal and a

vertical component (sometimes referred to as SH and SV)(Lautrup, 2019). A common

method for characterizing the COF of anisotropic materials from seismic data is to look

at travel-time anomalies from shear-wave splitting, where the shear wave is split into two

components with different phase velocities (Wuestefeld et al., 2010; E. C. Smith et al.,

2017). Other properties can also be derived from seismic data, like the density of the firn

layer (Fichtner, Hofstede, N. Kennett, et al., 2023) and basal conditions (A. M. Smith,

1997). Setting up a seismic survey requires geophones installed in the snow/firn to get a

mechanical coupling with the ice below and then either wait for earth- or ice-quakes or

have an active source like an explosion. An alternative to traditional three-component

seismographs is optical fibers, which can more easily be placed over a large area or down

an ice core borehole (Fichtner, Hofstede, N. Kennett, et al., 2023; Fichtner, Hofstede,

Gebraad, et al., 2023).

Radar

Seismic data can potentially provide detailed estimates of the COF, but they are limited

in their coverage, as installing instruments on the surface is required. The third and last

method can cover large areas as it enables data recording while moving. By now, we

have established that ice is anisotropic in terms of rheology and elastic properties. It is,

therefore, not a surprise that ice is also optically anisotropic, or more specifically - ice

crystals are birefringent. In the next chapter, I will give a more detailed walk-through

of the theory of ice sounding. Radars used for ice sounding generally use frequencies

between ∼ 10 MHz and ∼ 1 GHz as ice is effectively transparent in this range (Plewes

& Hubbard, 2001). Internal reflections, often referred to as internal reflection horizons

(IRH), are caused by sudden changes in the complex permittivity of ice (Fujita & Mae,

1994). It is believed that there are three main mechanisms controlling formations of

IRH - changes in density, acidity, and crystal orientation fabric (Fujita et al., 1999). If

an IRH can be related to a specific event, like a volcanic eruption, for example, it is

called an isochrone, which can be used to extend the depth-age scale from ice cores to

the rest of the ice sheet (MacGregor et al., 2015; Lilien et al., 2021; Gerber et al., 2021).

One of the main advantages of using radar to investigate glaciers and ice sheets is the

logistically simple setup. A radar, consisting of a transmitter, receiver, and antenna

panels, can be flown or driven across the surface of the ice while recording internal

reflections from the ice or from the ice-base interface.

2P originally stands for primary and S for secondary, which refers to the arrival times of the two
wave types when recording an earthquake on a seismogram.
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The Northeast Greenland Ice Stream

There is no clear definition of what an ice stream is, but one definition from Cuffey

and Paterson (2010) is: ”A region of grounded ice sheet in which the ice flows much

faster than in the regions on either side”. In between the fast-flowing ice and the slow-

moving surroundings are the shear margins, which are characterized by high gradients

in the horizontal flow field. A common feature for most ice streams is that their flow is

topographically constrained by troughs in the bed (Cuffey & Paterson, 2010). However,

one exception to this is the Northeast Greenland Ice Stream (NEGIS), first identified

by Fahnestock et al. (1993) from surface features derived from satellite images. The

ice stream extends all the way from the coast to the ice divide of the Greenland Ice

Sheet, more than 600 km, and its drainage basin covers 16% of the ice sheet (Khan

et al., 2014), making it a significant factor in the total mass balance of the Greenland

Ice Sheet. Figure 1.5 shows satellite-derived surface velocities for all of Greenland (a)

and NEGIS (b). The high velocities far inland contrast with the otherwise slow moving

ice surrounding the ice stream. In an effort to better understand ice streams, the East

Greenland Ice Core Project (EastGRIP or EGRIP) set out for the first time to drill an

ice core to the base of an active ice stream (Vallelonga et al., 2014). Having a camp

inside an ice stream has also supported many projects, such as seismic and radar surveys

focused on understanding and gathering data on ice streams (Franke et al., 2020; Zeising

et al., 2023; Fichtner, Hofstede, Gebraad, et al., 2023; Gerber et al., 2023; Jansen et al.,

2024)

The origins of NEGIS are still debated, but one hypothesis is a geothermal hotpot

at the onset of the ice stream. Based on simple ice flow models together with radar-

derived IRH Fahnestock et al. (2001) found basal melt rate at the onset of NEGIS of

0.1 m/yr, which would require a heat flux of 970 mWm−2 at the base. A different radar

study of the basal conditions at NEGIS found similar melt rates inside the ice stream

(Keisling et al., 2014). A later modeling study by Smith-Johnsen et al. (2020) supported

the geothermal heat flux of 970 mWm−2. They found it to be the minimum heat

flux that could reproduce surface velocities of NEGIS and suggested that a geothermal

source in conjunction with hydrothermal circulation could explain this. In response to

Smith-Johnsen et al. (2020) Bons et al. (2021) argued that a heat flux of 970 mWm−2

would be geologically unique and is incompatible with any known geological processes,

even if multiple processes are working together. Another piece of evidence against

the hypothesis of geothermal hotspots is the discovery of a now-extinct NEGIS-type

ice stream well north of the current NEGIS (Franke, Bons, et al., 2022). A coarse

dating of the extinct ice stream suggests it was active during the Holocene and perhaps

active at the same time as NEGIS. A localized geothermal hotspot under the onset of

NEGIS would thereby not explain the initialization of the now-extinct ice stream. While

a geothermal hotspot may not alone explain NEGIS, the modeling results of Smith-

Johnsen et al. (2020) show that something exceptional is needed to initiate a NEGIS-



CHAPTER 1. INTRODUCTION & BACKGROUND 20

Figure 1.5: Surface velocity of the Greenland Ice Sheet (Joughin et al., 2018) (a), and
the surface velocity zoomed in on the Northeast Greenland Ice Stream (b). The location
of the EastGRIP ice core site is marked with a black dot.

type flow, and being able to capture it is essential for being able to do accurate modeling

of the Greenland Ice Sheet. A recent study by Jansen et al. (2024) found that the shear

margins at NEGIS are around 2000 years old. This would mean that the present ice

steam configuration is potentially quite young and has changed flow configuration in the

recent past. This, together with findings of accelerating shear margins from Grinsted

et al. (2022), suggest that NEGIS is not done evolving, highlighting the importance of

better understanding the processes driving and initiating an ice stream like NEIGS if we

are to predict the future of the Greenland Ice Sheet. The current flow can be modeled

by inverting for the basal friction from the surface velocities, thereby fitting the model

to the current surface velocity field. However, when modeling the flow inside an ice

stream, one has to be careful. As discussed earlier, the deformation of polycrystals

will tend to align c-axes along the compressional axis or away from the tensional axis.

Flowlines converge at the ice stream, and inside the ice stream, the ice is sped up,

causing extensional stresses. Following the rule of c-axis alignment to compression, we

would expect a crystal orientation fabric inside the ice stream to form a circle that is

normal to the flow direction, also called a girdle fabric. The girdle fabric hardens the

ice to further deformation. Outside the ice stream, we have ”normal” glacier conditions

where ice is mainly deformed by gravity, causing a vertical alignment, or vertical single
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maximum fabric. At the shear margin, things are slightly less intuitive to explain as

the compressional or extensional axis is not as easy to visualize. If we assume that the

stress on a parcel of ice can be explained by only two non-zero components in the stress

tensor, τxy = τyx, the strain would be equivalently explained by compression/extension

at a 45-degree angle. However, the real strain experienced by the parcel of ice is a mix

of this and a rotation caused by the non-zero vorticity in the velocity field. The result

will be a horizontal single maximum pointing to the shear plane at some angle. This

can soften the shear margins to shear deformation. Not including the hardening and

softening processes of the ice in ice flow models can, for example, result in misleading

basal conditions based on inversion techniques (Rathmann & Lilien, 2022). However,

a very good reason not to include this is the added computational complexity and the

lack of COF observations. A simple sketch of the flow and the three fabric types in

and around an ice stream is shown in figure 1.6. The exterior ice is characterized by

slow-moving ice frozen to the bed, causing a vertical gradient in the horizontal velocity

field. The interior is fast-flowing ice gliding over the bed due to melt water lubrication.
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Figure 1.6: Simple sketch of a NEGIS-type ice stream without any topographical con-
straints. Red arrows and solid lines show a velocity curve at the surface, u⃗s, and as a
function of depth, u⃗(z).



Chapter 2

Ice sounding

Sounding refers to transmitting a signal through a media and waiting for the signal to

be reflected and returned to a receiver that records the echo. An example could be

depth sounding to determine ocean bathymetry by transmitting acoustic waves (sound)

through the water column and recording the return time of the echos generated from

contrasting acoustic properties of the water and the ocean bed. A different approach to

sounding is to use radio waves, also called radio-echo sounding (RES), where acoustic

waves are replaced by electromagnetic waves at radio frequencies. Ice sounding is the

use of radio waves to sound ice. As mentioned in the previous chapter, ice sounding is

done with specially designed radars. Radars that we find at the airport or on ships are

designed to scan the surroundings and track moving objects, but ice sounding radars are,

in a way, much simpler, as they always transmit and receive from the same direction.

One of the most common use cases for ice sounders is to retrieve information about the

depth of the ice and the basal topography by timing the arrival of the basal reflector.

The base of the ice is a very strong reflector, but also internal reflectors have been

showing up on the echograms since the first radar surveys of Greenland in the 60s and

70s (Gudmandsen, 1975). Radars have been used to propose new drill sites (Dahl-

Jensen et al., 1997; Vallelonga et al., 2014), as they are a cheap and fast way to get

information about the depth and approximate age of the ice by transferring a time scale

from an existing ice core to a new location via IRHs and ice flow models (Buchardt

& Dahl-Jensen, 2008; Lilien et al., 2021). This chapter aims to give the theoretical

background on electromagnetic wave propagation in ice, from the governing equations to

the birefringence of single ice crystals to the propagation of radio waves in polycrystalline

ice, and the basics of how an ice sounder works. The general theoretical background

is a mix of relevant chapters from two textbooks, Introduction to Electrodynamics by

Griffiths (2013) and Optics by Hecht (2017), and then related to single ice crystals and

polycrystalline ice. The motivation for this chapter is to provide the background for the

fundamental physics on which this thesis and ice sounding in general, rests.

22
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Electromagnetic wave propagation in ice

We usually think of ice as being transparent because we can see through the ice on

a lake or an ice cube, however even small impurities can make ice cloudy for visible

light. Adding snow and firn on top of the ice makes it impossible to see through glaciers

and ice caps, but for frequencies in the megahertz to gigahertz range - glacial ice and

snow become practically transparent. The wavelengths typically used for ice sounding

are centimeters to meters in the ice. The equations governing the propagation of any

electromagnetic waves are the Maxwell equations, here written as (Griffiths, 2013),

∇ ·D = ρf ∇×E = −∂B
∂t

∇ ·B = 0 ∇×H = Jf +
∂D

∂t

, where





D ≡ ε0E+Pm

H ≡ 1
µ0
B+M

(2.1)

where E is the electric field, Pm is the material polarization, B is the magnetic field,

M is magnetization, Jf is free current density, ρf is the free charge density, µ0 and ε0 is

the permeability and permittivity of free space, respectively. D is known as the electric

displacement. Worth noting is that Pm is the polarization of the medium, defined as

dipole moment per unit volume, and has units C/m2, which is not the same as the

unitless vector defining the polarization of a wave.

Ice is a dielectric material (insulator), meaning that there are no free charges, ex-

pressed as Jf = 0 and ρf = 0. In a dielectric, any charge is associated with an atom

or molecule, and applying an electric field causes these charges to displace (Griffiths,

2013). On top of not having any free charges ice is also a linear dielectric, meaning that

the polarization, Pm is proportional to the electric field, Pm = ε0χE, where ε0 is the

permittivity of free space and χ is the electric susceptibility. For isotropic materials,

χ is just a scalar, but for anisotropic materials like ice, it is represented as a second-

order tensor. In general, the susceptibility depends on position when the material is

non-homogeneous, which is generally the case for polycrystalline ice. From this we see

that the electric displacement reduces to D = ε0εE where ε = (I + χ) and I is the

identity matrix. ε is called the relative permittivity tensor, but from here and onward,

the permittivity is assumed to mean the relative permittivity unless stated otherwise.

It also holds for a linear media that H = 1
µ0µ

B1, where µ is relative permeability, which

for ice is taken to be µ = 1. All this put together, gives Maxwell’s equations for ice,

Maxwell’s equations for ice

(1) ∇ ·D = 0 (3) ∇×E = −∂B
∂t

(2) ∇ ·B = 0 (4) ∇×B = µ0ε0ε
∂E

∂t
.

(2.2)

1Here it is assumed that the permeability of ice is isotropic, which is justified by the susceptibility
being so small that even if it is not isotropic the effect is negligible
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One interesting result of ice being anisotropic is that the polarization Pm does not

necessarily point in the same direction as the applied electric field. Maxwell’s equations,

as presented in equations 2.2, are true for almost all linear dielectric materials, not just

ice.

While it is true that electromagnetic waves in ice obey the first-order coupled differ-

ential equations displayed in 2.2, it is not obvious in their current form what they have

to do with waves. Normally, when we think of waves, we think of a field, u, obeying a

second-order differential equation of the form,

∇2u =
1

c2
∂2u

∂t2
, (2.3)

where c is the propagation speed of the wave, determined from material constants. We

can arrive at the wave equation for the electric field by applying the curl to equations

2.2.3 and inserting equation 2.2.4,

∇× (∇×E) = −∇× ∂B

∂t
= − ∂

∂t
(∇×B) ⇒

∇(∇ ·E)−∇2E = −µ0ε0ε
∂2E

∂t2
.

For an isotropic material the permittivity is a scalar, ε → ε and the electric displacement

is proportional to the electric field, and hence ∇·D = ε∇·E = 0, and the familiar wave

equation pops out,

isotropic wave equation: ∇2E = µ0ε0ε
∂2E

∂t2
, (2.4)

and the propagation speed can be shown to be c = (µ0ε0ε)
−1/2, where the speed of light

in vacuum is c0 = (µ0ε0)
−1/2. For anisotropic materials, the electric displacement is

not generally proportional to the electric field, and hence ∇ · E ̸= 0, resulting in the

anisotropic wave equation,

∇2E−∇(∇ ·E) = µ0ε0ε
∂2E

∂t2
. (2.5)

It is not immediately obvious what the propagation speed is for the anisotropic case,

except that it is not the same in all directions as for the isotropic case. One way to get

a better insight into equation 2.5 is to inset a plane wave solution and solve for the wave

vector k,

E = |E0|P exp (j(k · r− ωt)) , (2.6)

where r = (x, y, z)T is the position in space, E0 is the electric field at time t = 0 and

position r = (0, 0, 0)T , P is the wave polarization and ω is the angular frequency of

the plane wave. The wave vector is a three-dimensional vector, k = (kx, ky, kz)
T , and

the phase speed/propagation speed of a plane wave along the ith direction is ci =
ω
ki
.
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Equation 2.5 is fairly general for wave propagation in anisotropic linear dielectrics, but

what about wave propagation in ice?

Wave propagation in a single ice crystal

Ice is a hexagonal crystal with uniaxial symmetry. General for materials like this is

that they are optically anisotropic, or more specifically, uniaxial birefringent (Hecht,

2017). The symmetry axis is called the optical axis, and it turns out to be the same as

the c-axis defined earlier on page 13. The permittivity of ice consists of two numbers

corresponding to light polarized parallel to the optical axis, ε∥ , and perpendicular to the

optical axis, ε⊥ . In tensor form, the permittivity of a single ice crystal can be written

as (Fujita et al., 2000),

εc =



ε⊥ 0 0

0 ε⊥ 0

0 0 ε∥


 for: c⃗ ∥ z (2.7)

for the z-axis parallel to the optical axis. The permittivities depend on the frequency of

light and temperature but for radio frequencies at -15◦C the real part of the permittivity2

is here taken to be ε⊥ = 3.15 (T. Matsuoka et al., 1996) with an anisotropy of ∆ε ≡
ε∥ − ε⊥ = 0.034 (T. Matsuoka et al., 1997). The permittivities depend slightly on the

frequency and temperature, but the difference ∆ε does not significantly depend on the

frequency, and only very weakly on temperature (T. Matsuoka et al., 1997).

Inserting the plane wave solution into equation 2.5 with ε = εc, yield the following

equation, 


−(k2y + k2z)Ex + kykxEy + kzkxEz

−(k2x + k2z)Ey + kzkyEz + kykxEx

−(k2x + k2y)Ez + kzkxEx + kzkyEy




= −µ0ε0ω2




ε⊥Ex

ε⊥Ey

ε∥Ez




(2.8)

which is a homogeneous system of linear equations and can be written as a matrix

equation,




−(k2y+k
2
z)+

ω2

c20
ε⊥ kykx kzkx

kykx −(k2x+k
2
z)+

ω2

c20
ε⊥ kzky

kzkx kzky −(k2x+k
2
y)+

ω2

c20
ε∥







Ex

Ey

Ez




=




0

0

0




(2.9)

where c20 = (µ0ε0)
−1. Non-trivial solutions, E ̸= (0, 0, 0)T , can be found by setting the

2Relative permittivity. Unless stated, the permittivity always refers to the relative permittivity.
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determinant of the matrix on the left-hand side equal to zero,

∣∣∣∣∣∣∣∣

−(k2y + k2z) +
ω2

c20
ε⊥ kykx kzkx

kykx −(k2x + k2z) +
ω2

c20
ε⊥ kzky

kzkx kzky −(k2x + k2y) +
ω2

c20
ε∥

∣∣∣∣∣∣∣∣
= 0 (2.10)

From this, the non-trivial solutions have to satisfy the following equation (see appendix

A for more details),

(
k2x
ε⊥

+
k2y
ε⊥

+
k2z
ε⊥

− ω2

c20

)

︸ ︷︷ ︸
ordinary wave

(
k2x
ε∥

+
k2y
ε∥

+
k2z
ε⊥

− ω2

c20

)

︸ ︷︷ ︸
extraordinary wave

= 0. (2.11)

There are two solutions to k that satisfy equation 2.9 and are commonly known in optics

as the ordinary and extraordinary waves.3. What characterizes the ordinary wave is that

no matter the direction of k the permittivity is the same, and the propagation speed

of the wave is therefore always c0/
√
ε⊥ . In other words, the ordinary wave effectively

sees an isotropic medium. The extraordinary wave is different because the propagation

speed is c0/
√ε∥ in the xy plane, and c0/

√
ε⊥ along z.

Polarization inside an ice crystal

What happens to the polarization of the electric field inside the ice crystal? It is here

illustrated with two examples.

1. For the simple case where k = (kx, 0, 0)
T both the ordinary wave (O-wave),

kx = ω
c0

√
ε⊥ , and extraordinary wave (E-wave), kx = ω

c0

√ε∥ , gets excited and propagate

at different speeds, but what about the polarization of the two waves? Returning to

equation 2.9 and inserting the two solutions for kx and solving for P yield the following

(see appendix A for derivation),

O-wave: P =



0

1

0


 for k =

ω

c0




√
ε⊥
0

0


 (2.12)

E-wave: P =



0

0

1


 for k =

ω

c0




√ε∥
0

0


 (2.13)

3The terms came from Erasmus Bartholinus, a professor of mathematics from the University of
Copenhagen, in his publication from 1669 where he studied the birefringence of calcite (Garboe, 1954).
When looking through calcite at a dot on an otherwise blank surface, the dot will appear twice with
a small separation. When rotating the piece of calcite, one of the dots stays fixed, and the other dot
circles around the first. Bartholinus called the ray from the stationary dot the ordinary refracted ray,
and the one circling around it he called the extraordinary refracted ray (Garboe, 1954). He called the
phenomenon double refraction.
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The electric field of the ordinary wave is polarized along y, orthogonal to the optical

axis, and the extraordinary wave is polarized along z, parallel to the optical axis.

2. In a bit more general case, consider a wave traveling at an angle α to the optical

axis, k = k0(sinα, 0, cosα)
T . In this case both the ordinary and extraordinary waves

are excited,

O-wave: P =



0

1

0


 for k =

ω

c0

√
ε⊥



sinα

0

cosα


 (2.14)

E-wave: P =



− ε∥ cosα

εeff

0
ε⊥ sinα

εeff


 for k =

ω/c0
√
ε⊥ε∥√

ε⊥ sin2 α+ε∥ cos2 α



sinα

0

cosα


 (2.15)

where εeff =
√
ε⊥ sin2 α+ ε∥ cos

2 α, and assuming that α ̸= 0 which would correspond

to propagation along the optical axis, and no extraordinary wave is excited. The full

derivation can be found in appendix A. For α = π/2, the result for propagation along x

is recovered. The more general case demonstrates that the ordinary wave, no matter the

orientation of k, is always polarized perpendicular to the optical axis and propagates

at a speed independent of α, which is not true for the extraordinary wave. Also, the

ordinary and extraordinary electric fields are always orthogonal.

Index of refraction

The index of refraction for a material is the ratio of the speed of light in a vacuum and

the speed of light in the medium. For ice, there are two: one for the ordinary wave

and a second for the extraordinary wave. The index of refraction can be related to the

wave vector as n = |k|c0/ω, and the two indices of refraction can then be derived from

equations 2.14 and 2.15,

no =
√
ε⊥ , ne =

no√
1 +

(
n2
o√
ε∥

− 1

)
sin2 α

(2.16)

where no is the index of refraction of the ordinary wave and ne is the index of refraction

of the extraordinary wave, here rewritten in terms of no and ε∥ . ne and the polarization

of the electric field depend on α. This means that the polarization and the difference

between no and ne (the birefringence) depend on the c-axis orientation relative to an

incident wave. This result is the foundation for measuring the crystal orientations of thin

slices of ice by using interference coloration (Owen & Hendrikse, 2023). The practical

nature of measuring the crystal orientations is quite complicated, but it stems from the

fact that the index of refraction of the extraordinary wave depends on the misalignment

of the c-axis and the incident wave vectors.
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Wave propagation in a polycrystalline ice

Ice sheets and glaciers consist of millions of individual ice crystals, and as discussed

above, the propagation speed in ice depends on the orientation of the crystals. For

radio-echo sounding, the wavelengths of light used are usually tens of centimeters, and

the diameter of individual ice crystals is usually in the millimeter range (Thorsteinsson

et al., 1997; Svensson et al., 2009). Therefore, the wavefront of a wave traveling through

the ice will feel the effect of hundreds of individual crystals during a single oscillation.

While the individual crystals are birefringent, in the case of polycrystalline ice with

an isotropic COF (see figure 1.4a), the ice would appear isotropic to radio waves. On

the other hand, if the ice has a preferred orientation, it would show some form of

birefringence. Or at least that is the basic assumption. Hargreaves (1978) derived a

relation between the permittivity of individual ice crystals and the bulk permittivity of

polycrystalline ice,

εb =
∑

i

fiε
(i)
c (2.17)

where fi and ε
(i)
c are the volume fraction and permittivity tensor of the ith crystal

inside a given volume of ice, respectively. While equation 2.17 seem somewhat intuitive,

the bulk permittivity is a weighted sum of individual crystal permittivity, it is not a

trivial or general result. From this equation, it is clear that if all crystals are evenly

sized and randomly oriented, then the three diagonal components εb are equal, and the

ice is isotropic. Equation 2.17 can also be written in an integral form using a density

function, ρ(θ, ϕ), similarly to equation 1.3. The bulk permittivity tensor then becomes

(Hargreaves, 1978),

εb =

∫ 2π

ϕ=0

∫ π

θ=0
εc(θ, ϕ)ρ(θ, ϕ) sin θdθdϕ (2.18)

where εc(θ, ϕ) = Rz(ϕ)
TRy(θ)

TεcRy(θ)Rz(ϕ) is the single crystal permittivity rotated

into an arbitrary orientation on a unit sphere (θ, ϕ), and Rz(ϕ) and Ry(θ) are the

rotation matrices for rotations about the z and y axis by ϕ and θ, respectively. For

isotropic ice the density distribution is uniform, ρ(θ, ϕ) = ρ0 =
1
4π , and it can be shown

that,

Isotropic COF: εb =
1

3
(2ε⊥ + ε∥)I, (2.19)

where I is the (3x3) identity matrix. Rathmann et al. (2022) showed how equation 2.18

can be written in terms of the second-order structure tensor,

εb =
1

3
(2ε⊥ + ε∥)I+∆ε

(
⟨c⊗ c⟩ − 1

3
I

)
. (2.20)
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which then can be written in terms of its eigenvalues,

εb =



ε⊥ +∆ελx 0 0

0 ε⊥ +∆ελy 0

0 0 ε⊥ +∆ελz


 , (2.21)

which is a parametrization of the permittivity, which was first suggested by Fujita et al.

(2006). Using εb in equation 2.9 and solving equation 2.10 does not yield a nice result

that can be factorized into an ordinary and extraordinary wave as for the single crystal.

This is because polycrystalline ice is not uniaxial like single ice crystals but instead

biaxial. However, if one of the components of k is set to zero, it can be factorized into

two distinct waves,

(
k2x
εy

+
k2z
εy

− ω2

c20

)

︸ ︷︷ ︸
ordinary wave

(
k2z
εx

+
k2x
εz

− ω2

c20

)

︸ ︷︷ ︸
extraordinary wave

= 0 for: k = (kx, 0, kz)
T , (2.22)

where εi = ε⊥ + ∆ελi. Expressing the wave vector as for the single ice crystal case,

k = k0(sinα, 0, cosα)
T , will yield a very similar result, just where ε⊥ is replaced with

εy for the ordinary wave, and for the extraordinary wave ε⊥ is replaced by εx and ε∥ is

replaced by εz.

Polarization and permittivity for ice sounding

In ice sounding, the wave propagation is usually perpendicular to the surface, which will

most likely be along the vertical direction, kz = (0, 0, kz)
T . This, combined with the

fact that common COFs, as seen in figure 1.4, usually have an eigenvector that is very

close to being vertical, reduces the problem such that any bulk permittivity tensor can

be written as,

εb(ϕ) =



ε⊥+∆ελx−∆ε∆λ sin2 ϕ ∆ε∆λ cosϕ sinϕ 0

∆ε∆λ cosϕ sinϕ ε⊥+∆ελy+∆ε∆λ sin2 ϕ 0

0 0 ε⊥+∆ελz


, (2.23)

where εb(ϕ) = Rz(ϕ)
TεbRz(ϕ) and ∆λ = λx−λy. For propagation along the z-axis will

reduce equation 2.22 to,

(
k2z
εy

− ω2

c20

)(
k2z
εx

− ω2

c20

)
= 0 for: k = (0, 0, kz)

T , (2.24)



CHAPTER 2. ICE SOUNDING 30

where it no longer makes sense to characterize the waves as ordinary and extraordinary.

The polarization for the two solutions is as follows,

P =



cosϕ

sinϕ

0


 ≡ Px for: k =

ω

c0




0

0
√
εx


 (2.25)

P =



− sinϕ

cosϕ

0


 ≡ Py for: k =

ω

c0




0

0
√
εy


 (2.26)

which, perhaps not surprisingly, corresponds to the two horizontal eigenvectors of εb(ϕ).

This means that only two orthogonally polarized waves can exist in horizontally anisotropic

ice, εx ̸= εy, and they propagate at phase speeds c0/
√
εx and c0/

√
εy. This fact can

be used to derive the anisotropy of ice using polarized radar, which will be discussed in

much more detail later. The results of equations 2.25 and 2.26 are illustrated in figure

2.1.
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Figure 2.1: Polarizations in birefringent polycrystalline ice. The incoming wave, the
black curve, is polarized according to the horizontal principal axes of the COF, x and
y. (a) and (b) are incoming polarizations along x and y, respectively. In both cases, the
wave keeps its polarization. In (c), the incoming wave is polarized at an angle and split
into two waves polarized along x and y. The phase speed differs along the two principal
axes, illustrated by different wavelengths and offsets in the ice.

Radar systems for ice sounding

A radar is a system capable of transmitting and recording electromagnetic radiation,

usually in the microwave frequency (Skolnik, 2007). Within this broad definition, there

exist countless different systems designed for specific applications, like a Doppler radar
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for measuring the speed of an object or a rain radar detecting and quantifying the

severity of rain. Within these many applications, different radar designs/principles are

utilized to balance accuracy and signal-to-noise ratio with practical constraints such as

cost, size, and energy consumption. Within the field of radioglaciology, two systems are

commonly used, the mono-pulse and chirped-waveform systems (Schroeder et al., 2020).

A mono-pulse system transmits a monochromatic wave for a short time interval, where

the length of the time interval is called the pulse length. The pulse length determines how

close two objects (layers in the ice) can be before their recorded echos overlap. A short

pulse gives a good range resolution but a poor signal-to-noise ratio. This is because the

signal-to-noise ratio of the output from the radar receiver depends on the total energy

of the received signal (Skolnik, 2007). Increasing the power during transmission can

compensate for the short pulse, which only works until a certain limit. That means that

a mono-pulse system has to find a compromise between the range resolution and the

needed signal-to-noise ratio to sound at a given depth. One solution to this problem

is using a frequency-modulated or chirped pulse. In this case, the range resolution is

inversely proportional to the bandwidth of the chirp and does not depend on the pulse

length (Skolnik, 2007). If B is the bandwidth and cice is the speed of light in ice for

radar waves, then the range resolution can be written as,

∆R =
cice
2B

. (2.27)

This means that much longer pulses can be used without compromising the range res-

olution. The range resolution of the frequency-modulated radar systems is due to a

process called pulse compression, where the received pulse is correlated with a copy of

the transmitted signal. Pulse compression will be discussed in more detail in the next

chapter. The frequency-modulated continuous wave radar (FMCW) is a different type

of chirped-waveform radar system. It does not transmit pulses but a continuous wave

that modulates its frequency throughout transmission. FMCW systems have the same

theoretical range resolution as a chirped pulse with the same bandwidth, but due to the

long transmit time, they can use very low power and achieve a good signal-to-noise ra-

tio. The low power also enables simultaneous transmission and receiving, which is often

not possible for pulse-based systems because the high transmit power could destroy the

receiver.

The mono-pulse systems are arguably the simplest radar design and have been used

for many ice-sounding applications, such as ice thickness (Gudmandsen, 1969; Karls-

son et al., 2024), internal layers (Gudmandsen, 1975; Fujita et al., 1999), birefringence

and anisotropy (Hargreaves, 1977; Fujita & Mae, 1994; Fujita et al., 2006). However,

most modern radar systems for ice sounding utilize frequency modulation in combina-

tion with the ability to detect the phase of the return signal (Gogineni et al., 2001;

Rodriguez-Morales et al., 2014; Brennan et al., 2014; Yan et al., 2020). In connection

with computers becoming more powerful and digital storage becoming much faster and
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at a much greater capacity, it has become possible to record an almost raw signal of

amplitude and phase which is stored as a complex number. These systems allow for

processing steps that were previously done analog before writing to disk, like pulse com-

pression and downsampling, to be done digitally after recording. Of course, everything

comes at a price, and these types of radar systems require powerful servers with an

array of data drives to keep up with the massive amount of information being collected.

Processing all this data can be a computationally demanding task.



Chapter 3

Data acquisition and processing

In this chapter, I will give an overview of the 2022 survey of NEGIS, which forms the

basis of my work with radar-derived COF, and the radar system used. During the PhD,

I also participated in a radar survey of Müller Ice Cap in arctic Canada in 2023 (Lilien

et al., 2024). Common for both surveys is the radar system used, namely the ultra-

wideband (UWB) quad-polarized radar system developed by the University of Alabama

(Yan et al., 2020; L. Li et al., 2020). At NEGIS, we also deployed a second radar system,

the UHF Mills-T radar, which the University of Alabama also developed. I have not

included any data from or discussion of the UHF Mills-T radar.

UWB radar

The ultra-wideband quad-polarized radar system, referred to as the UWB radar, is a

multichannel coherent ice sounder capable of transmitting and receiving at two mutually

orthogonal polarizations. We called it quad-polarized because it can record four different

configurations of transmit-receive polarizations, so strictly speaking, it is dual-polarized,

but the ability to switch polarization between transmit and receive makes it relatively

unique. It uses frequency-modulated pulses (chirps), and during both the NEGIS and

Müller ice cap campaigns, the radar was working at a center frequency of 330 MHz

and a bandwidth of 300 MHz. The high bandwidth gives it an extremely good range

resolution, and using equation 2.27 with cice = 1.69 ·108 m/s gives it a theoretical range

resolution of around 30 cm, i.e., being able to distinguish between layers in the ice only

separated by 30 cm. The pulse length can be configured digitally, and for NEGIS in

2022, it was set to alternate between 10 µs and 1 µs chirps, and at the Müller ice cap, we

used 2 µs chirps. In both cases, the radar was set up to have a pulse-repetition frequency

of 5 kHz. A figure of the UWB radar, as it was operated at NEGIS in 2022, can be found

in figure 3.1. The radar consists of a digital-to-analog converter (DAC) that converts

8 digital channels to 8 analog signals that are then sent to the transmitter, where the

signals are amplified. The transmitter splits the signals into 10 channels before entering

the high-power switch, where the signals are either sent through the H or V ports to the

33
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antenna panels. The return signal enters the antenna elements and is sent back to the

high power switch where the signal from H or V is combined into 8 channels, sent to

the receiver for amplification, and finally sent to the analog-to-digital convert (ADC).

The switch is controlled by the digital system, and polarizations can be configured by

the radar operator.

The antenna panels consist of 12x12 dual-polarized antenna elements capable of

transmitting and receiving at along-track (V) and across-track (H) polarizations.

V

H

2
.8

 m

G
P
S

PolyPod

Antenna panels

Generator Survival box

GPS port antenna 

GPS starboard antenna 

Radar electronics
and operator

(a)

(b)

Figure 3.1: (a) Picture of the UWB radar as operated during the NEGIS field campaign
in 2022. (b) A sketch of the setup, as seen from above, with the antenna panels towed
behind the PolyPod with all the radar electronics (block diagram) and operator, and a
small sled with a generator and survival box. On top of the antenna panels are mounted
two GPS antennas used for precision orientation. H and V indicate the two polarization
directions.

Data processing

Before the signal is written to disk, the system does 128 hardware integrations to boost

the signal strength and reduce storage needs. The data is written to 8 solid state drives,

one for each channel. After data collection, the raw files all run through the same

processing. First, the raw data is coherently decimated, where neighboring traces are

summed together, assuming coherence. The number of traces is variable and depends

on the conditions. Next, the decimated data is frequency shifted to center the frequency

spectrum around 0 Hz. For the UWB radar, the signal is shifted by a local oscillator from
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Raw data
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Figure 3.2: Processing diagram for the UWB radar. Text next to arrows in the red
block refers to the number of signals, or channels, that are being passed on between the
radar elements. Light blue blocks are optional/variable processing steps, and dark blue
blocks are obligatory/fixed processing steps.

330MHz to 80MHz before being written to disk, and the frequency shift is then there

to remove the 80MHz offset. Assuming that the recorded signal can be represented as

a sum of complex exponentials of different frequencies and amplitudes, then a constant

frequency shift of fshift can be achieved by multiplying the signal with exp(j2πfshiftt),

(∑

i

Ai exp (j2πfit)

)
exp(j2πfshiftt) =

∑

i

Ai exp (j2π(fi + fshift)t)

where Ai is the amplitude of the signal with frequency fi, and t is time. Next, a lowpass

filter is applied to dampen any signal outside the frequency range [-150 MHz,150 MHz].

This is followed by pulse compression, where a digitally generated chirp, identical to the

one transmitted by the radar, is cross-correlated with the signal. A linear frequency-

modulated chirp has an instantaneous frequency curve on the form,

f(t) =
B

T
t− B

2
+ fc for: t ∈ [0, T ] (3.1)

where T is the chirp length and fc is the center frequency, or carrier frequency. After

frequency shift fc = 0. The phase of the chirp is proportional to the integral of the

frequency curve, resulting in the following expression for the chirp,

schirp(t) = exp

(
j2π

(
B

2T
t2 − B

2
t+ fct

))
for: t ∈ [0, T ]. (3.2)

Frequency shift, lowpass filtering, and pulse compression are the three processing steps

that are always done in the same way across surveys. After pulse compression, the data

is again decimated, but we do not assume coherence this time. Instead, we do a sub-
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sample time shifting of neighboring traces to match a reference trace before integrating.

Matching the traces is done by calculating the correlation between the target trace and

the reference trace for each subsample time shift and picking the time shift correspond-

ing to the highest correlation. Subsample time shifting is explained in appendix B. Until

now, every processing step has been done individually for each channel, but to achieve

an even better signal-to-noise ratio, the 8 channels are combined. They are combined

through the exact same process as the incoherent decimation, where one of the channels

is picked as the reference channel.

In reality, there is a step that is not included in the diagram in figure 3.2, as it is

not always necessary, namely filtering out bad traces. During the field season in 2022

at NEGIS, we would sometimes experience quite a lot of interference, making some of

the recorded traces unusable. These traces can be filtered out if necessary by removing

any trace with a 99th percentile amplitude above a certain threshold, which natural

reflections cannot cause.

Channel combining is the last step in the standard processing line, and the last two

steps included in figure 3.2, convert to decibel and along-track interpolation, are mostly

for convenience when plotting the final echograms. Converting to dB can also be skipped

and then, after along-track interpolation, can be followed by a migration algorithm, for

example, wavenumber domain algorithms or range-Doppler algorithms (Bamler, 1992).

We have not had much success implementing such algorithms that improve the overall

data significantly, even though it should be possible if done carefully. For the data

collected at the Müller Ice Cap, we implemented a simple range-Doppler algorithm that

managed to focus the bed reflector and get a more accurate estimate of the ice thickness.

This was necessary due to the highly varying basal topography of the ice cap.

NEGIS in 2022

In June and July of 2022, we did a radar survey of NEGIS with the UWB radar, with

a focus on the anisotropic properties of the ice stream, and a smaller survey with the

UHF radar focusing on imaging the large folds in the ice just outside the southeastern

shear margins of NEGIS (Franke, Jansen, et al., 2022; Jansen et al., 2024). Figure 3.3

shows an overview of the radar lines we drove in 2022, approximately 500 km of UWB

lines and 260 km of UHF lines.

Figures 3.4 and 3.5 show HH, HV, VV and VH echograms collected with the UWB

radar along and across NEGIS, respectively. The vertical scale is two-way travel time

(TWT) relative to the surface. From the data collected parallel to flow, it is evident

from a visual inspection of the echograms that polarization matters, clearly showing

some form of anisotropy. The VV data’s return power is lower than the HH data,

made more evident by the A-scope comparison (Figure 3.4e). Hargreaves (1977) show

that the returned signal for a receive antenna perpendicular to the transmit antenna,

cross-polarization, will have a 90-degree periodicity in the return amplitude with antenna
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Figure 3.3: Overview of radar lines driven with the UWB and UHF radars at NEGIS in
2022 plotted on top of surface velocities. Colored Solid lines are UWB data, and colored
dashed lines are UHF data. Flow lines are shown in solid dark gray lines, approximate
locations of shear margins are shown in black dashed lines, and the location of EastGRIP
is shown as a blue dot. The black square on the full Greenland map shows the outline
of the borders of the main plot.

orientation in a birefringent medium. In other words, the return power in the HV and VH

data is expected to be identical, as they are just 90-degree rotations of each other. This

looks to hold true upon inspection of Figure 3.4(c,d). What is also worth noting for the

HV and VH echograms in figure 3.4 is that the return power at greater depths is greatly

reduced from around 35 km along-track distance and onwards. Following Hargreaves

(1977) we would expect no return power for HV and VH in a birefringent medium when

the polarizations are along the principal components of the COF, assuming constant



CHAPTER 3. DATA ACQUISITION AND PROCESSING 38

orientation of the principal components with depth. There are always small variations

in the orientation as the COF develops from isotropic at the surface to an anisotropic

COF with depth. This, combined with continuous variations in antenna orientation due

to driving imperfections, will never yield a full power extinction, even if noise is absent.

The fact that the bed can be easily detected in the cross-polarized echograms in figure

3.4(c,d) is evidence that the antenna polarizations are not completely aligned with the

principal components. This could be due to the driving imperfections causing random

perturbations in the antenna orientation during collection, the principal components

are not constant with depth, the transmit polarization is not purely H or V (cross-

polarization leakage). The cross-polarization leakage for the UWB antenna panels is -30

dB or better for most of the frequency spectrum (L. Li, 2021), suggesting it is a minor

issue.

The echograms across NEGIS, Figure 3.5 look significantly different compared to

along NEGIS. The slope of the layers changes a lot within a relatively short distance,

and there are areas where the internal reflections almost disappear. These areas are

the shear margins, and the loss of reflections is due to steeply sloping layers (Jansen

et al., 2024) that reflect all the energy away from the nadir, causing almost echo-free

zones. Because the radar is moving, the steep layers are potentially detected as off-nadir

reflections. Through carefully constructed SAR processing or migration, it should be

possible to partially recover the true locations of these reflections.
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Figure 3.4: Two co-polarized echograms (a,b) and two cross-polarized echograms (c,d)
collected along NEGIS with the UWB radar. EGRIP is located around 20 km along-
track distance, marked by the blue dot on the HH and VV echograms (a,b) and velocity
map (f). The echograms are compiled using lines 2022/07/01 and 2022/07/04 as seen
in figure 3.3. (e) shows A-scopes of the HH and VV signals at locations indicated by
the blue and orange vertical lines on (a,b) and a star on (f).
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Figure 3.5: Two co-polarized echograms (a,b) and two cross-polarized echograms (c,d)
collected across NEGIS with the UWB radar. EGRIP is located around 16 km along-
track distance, marked by the blue dot on the HH and VV echograms (a,b) and velocity
map (f). The echograms are compiled using lines 2022/06/27 and 2022/06/28 as seen
in figure 3.3. (e) shows A-scopes of the HH and VV signals at locations indicated by
the blue and orange vertical lines on (a,b), and a star on (f).



Chapter 4

Radar derived COF

In chapter 2, the polarization and propagation of radio waves in ice were derived for

COFs with a vertical principal component. The two equations 2.25 and 2.26 derived for

a bulk permittivity tensor with a vertical eigenvector and arbitrarily oriented horizontal

eigenvectors. These two equations form the basis for deriving information about the

crystal orientation fabrics in ice sheets and glaciers. Assuming horizontal anisotropy,

εx ̸= εy, then any transmitted radar wave will be polarized according to Px and Py, and

the propagation speed of these two waves will be determined by the bulk permittivities,

εx and εy, which we write in terms of the horizontal eigenvalues of the second-order

structure tensor, λx and λy. In figures 3.4 and 3.5, it is evident from visual inspection

that the polarization of the radar matters for the return signal, but it is not obvious

that the echograms also contain evidence of birefringence. The visual difference in the

return power is more related to the anisotropic scattering of the ice, i.e., the reflection

coefficient along the different polarization orientations is different. The most apparent

evidence of birefringence comes when comparing the travel times of the reflectors in the

HH and VV echograms.

Travel-time difference

In figure 4.1 are the approximate travel-time differences of the bed reflector in the along

and across NEGIS profiles. The bed reflectors were picked using ImpDAR (Lilien et

al., 2020). The travel-time difference, ∆t, was calculated as the difference in two-way

travel time between the HH and VV echogram. Positive values mean the travel time

is greater in HH than in VV. Along the center flow-line of NEGIS (A-A′), the travel-

time difference is positive and relatively constant with an average of ≈ 80 ns, and

perhaps a slight increase upstream. Across NEGIS (B-B′), the travel-time difference is

more variable but with an average of ≈ -50 ns. At both shear margins, the travel-time

difference almost disappears, and at the southwestern margin (close to B′), it even turns

positive. It should be noted that there is a high degree of uncertainty when tracing the

basal reflector, especially when the tolerance is in the order of tens of nanoseconds. The

41
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base of the ice sheet is an inconvenient reflector to compare travel times, as is evident

from the broad and less defined peaks from the basal reflector compared to internal

reflectors in the A-scopes of figure 3.4e and 3.5e. However, the basal reflector is almost

always in the data. It is clear that there is a non-zero travel-time difference, and both

the along and across profiles show that the travel times for polarizations parallel to the

general flow tend to be shorter compared to polarizations perpendicular to flow. In

other words, the propagation speed is greater for polarizations parallel to flow due to

a lower permittivity. The relationship between the bulk permittivity and second-order

structure tensor, see equation 2.21, provides a way to convert the travel-time difference

to information about the horizontal eigenvalues of the second-order structure tensor, as

will be explored in the following.

Horizontal eigenvalue difference

The two-way travel time of a wave can be expressed as the slowness, S , integrated over

the propagation path. For a nadir-sounding radar, it can be expressed as follows,

t(d) = 2

∫ d

0
S (z)dz, (4.1)

where the factor two comes from the fact it is a two-way travel time, and d is the depth

of the reflector. For a birefringent medium like ice, the waves are polarized along the

horizontal eigenvectors of the second-order structure tensor of the COF, which define

the x and y-axis for the following. Their travel times can be expressed in terms of the

eigenvalues as follows,

tx(d) = 2

∫ d

0
Sx(s)dz, Sx(z) =

1

c0

√
ε⊥ +∆ελx(z) (4.2)

ty(d) = 2

∫ d

0
Sy(s)dz, Sy(z) =

1

c0

√
ε⊥ +∆ελy(z) (4.3)

Because ∆ελi ≪ ε⊥ is always true, the first order Taylor expansions of Sx and Sy

about ∆ελi = 0 are a very accurate approximations. The travel-time difference can then

be related to the eigenvalue differences,

∆t(d) = tx(d)− ty(d) =
2

c0

∫ d

0

(√
ε⊥ +∆ελx(z)−

√
ε⊥ +∆ελy(z)

)
dz

≈ 2

c0

∫ d

0

(
√
ε⊥ +

∆ελx(z)

2
√
ε⊥

−√
ε⊥ − ∆ελy(z)

2
√
ε⊥

)
dz

=
∆ε

c0
√
ε⊥

∫ d

0
∆λ(z)dz =

d∆ε

c0
√
ε⊥

∆λ(d)

(4.4)

where ∆λ(d) ≡ 1
d

∫ d
0 ∆λ(z) is the mean eigenvalue difference at depth d. Rearranging
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Figure 4.1: Travel-time difference derived from the bed reflectors of the HH and VV
echograms collected along (b,c) and across (e,f) NEGIS. Blue and orange lines in (b-f)
mark the location of the bed reflectors in the respective echograms. Thin black lines in
(d) and (g) show the two-way travel-time difference between the bed reflectors in HH
and VV, and the colored lines are the smoothed travel-time difference using a Gaussian
filter with a standard deviation of 1km. Green and purple colors indicate the strength
of travel-time difference and are plotted on top of a NEGIS velocity map (a).
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this yields the mean eigenvalue difference as a function of the travel-time difference,

∆λ(d) =
c0
√
ε⊥

d∆ε
∆t(d) . (4.5)

The inclusion of the depth in equation 4.5 makes things slightly complicated because the

depth will, in most cases, need to be determined by the travel time of the radar wave,

which depends on the eigenvalue difference. However, for most cases, the difference

in the depth estimate you get from assuming the most anisotropic case compared to

isotropic is less than 0.5%. The sampling frequency of the UWB radar is 500MHz,

which is a sampling interval of 2ns, and the travel time is on the order of tens of ns. It

is, therefore, appropriate to assume isotropic ice for determining d, as the uncertainty

of ∆t will dominate the result.

Assuming isotropic propagation speed for determining d will yield the following re-

sult,

d =
c0

2
√
ε
(tx + ty)/2 for: ε = 2

3ε⊥ + 1
3ε∥ .

∆λ(d) =
4
√
ε⊥ε

∆ε

∆t(d)

tx(d) + ty(d)

A slightly different approach can also be taken, where instead of approximating

the slowness with a first-order Taylor expansion, the eigenvalue difference is assumed

constant with depth, ∆λ(d) = ∆λ, in which case,

∆λ =
∆t(d)

tx(d) + ty(d)

4ε

∆ε
. (4.6)

The two approaches are identical for any practical application, as the difference between

ε⊥ and ε is less than 0.3%.

Limits of travel-time difference

Travel-time differences provide a very direct way to estimate the eigenvalue difference

of the COF, but there are a few limitations to the method described above. First,

you need two orthogonal co-polarized signals. This can be achieved by having the

capability to switch between polarizations as you go, like the UWB radar, finding points

where survey tracks cross orthogonally (Gerber et al., 2023), or being able to rotate the

antennas and repeat the measurement (Zeising et al., 2023). A second limitation is that

the polarization of the two signals has to be sufficiently parallel to the principal axes of

the COF. As illustrated in figure 2.1, a misalignment will cause a mix of the two allowed

waves. For the case of 45-degree misalignment, the HH and VV signals will look close to

identical, and no travel-time difference will be observed. From the travel-time difference

in figure 4.1, it seems like there is no anisotropy at the shear margins, which is where
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the greatest horizontal anisotropy is expected to be (Gerber et al., 2023). This can

be interpreted as evidence that the radar is oriented sufficiently far from the principal

axes of the COF, but how far? In the next chapter, I will present a new method for

using the areas where the apparent anisotropy disappears, not only to get the horizontal

eigenvalue difference but also to estimate the orientation of the horizontal eigenframe of

the COF.

Phase-sensitive polarimetric radar

A set of radar types that are specifically suitable for studying the anisotropy of ice is

phase-sensitive polarimetric radars, a category that the UWB radar falls under, as well

as the popular ApRES systems (Brennan et al., 2014; Nicholls et al., 2015) originally

developed for studying basal melt rates. Due to its ease of use and possibility to rotate

the receive and transmit antennas independently, it has also been used in studying COF

(Jordan et al., 2020; Ershadi et al., 2022; Zeising et al., 2023). What is often done with

these types of systems is to rotate the antennas in small increments through 180 degrees

to get an azimuthal dependence on the recorded signals, similar to what was done in

the early days of studying polarization of radar waves in ice (Hargreaves, 1977). Ice

sheets were first discovered to be birefringent as George R. Jiracek (1967) discovered

that the return power from the base of the ice was not independent of the orientation

of the transmitter and receivers. However, with phase-sensitive radar, it is possible to

study not only the signal strength but also the phase, and with digital recording, the

phase and amplitude of the signals can be tracked throughout the ice column. The

phase difference of the slow and fast waves is naturally related to the COF anisotropy,

which is the basic idea behind the coherence methods described below.

The coherence of two orthogonal co-polarized signals, sHH(t) and sV V (t), can be

expressed as (Dall, 2010),

CHHV V (t) =
⟨sHH(t)s∗V V (t)⟩√

⟨|sHH(t)|2⟩
√
⟨|sHH(t)|2⟩

(4.7)

where ⟨. . . ⟩ is the expectation value and ∗ is the complex conjugate. The expectation

value is taken to be over some finite time window of length T , in which case equation

4.7 can be rewritten as,

CHHV V (t) =

t+T∫
t

sHH(t
′)s∗V V (t

′)dt′

√
t+T∫
t

|sHH(t′)|2dt′
√

t+T∫
t

|sV V (t′)|2dt′
(4.8)

The coherence, CHHV V , is a complex number with magnitude between 0 and 1, and

phase that estimates the phase difference between the two signals sHH and sV V . The
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coherence can be considered a measure of how similar the two signals are. The coherence

phase is naturally related to the phase speeds of the two wave components, and mul-

tiple studies have used the gradient of the coherence phase to estimate the eigenvalue

difference as a function of depth (Jordan et al., 2019, 2020; T. J. Young et al., 2021;

Ershadi et al., 2022). It requires that the principal axes of the COF are known, but

this can, in some cases, also be derived from the same method. The method is very

elegant, as it can get the eigenvalue difference as a function of depth without the need

for strong reflectors to trace, like the travel-time difference, and has been proven to give

good results. One limitation is that azimuthal coverage of both HH and VV is required,

or a full polarimetric radar (HH, HV, VV, VH) is required to synthesize the azimuthal

response. However, when Zeising et al. (2023) tried to apply the method presented by

Ershadi et al. (2022) to ApRES data collected at NEGIS near the EastGRIP camp, it

proved problematic and was abandoned. In Zeising et al. (2023), they mention that this

was due to the COF rotating several times with depth. However, a recent study Zeising

et al. (2024) found that the issue was related to the strength of the anisotropy versus

the radar’s range resolution. NEIGS is unique compared to most other places where

this method has been used before because it has a very strong horizontal anisotropy

combined with depths of more than 2 km. This means that the difference in phase

speed between the two waves will separate them to such a degree that a reflection in HH

has no overlap with the same reflection in VV, in the COF-aligned case, and hence no

coherence. The issue stems from comparing the received signals in travel time and not

in true depth. Migrating the signals to true depth requires us to know the anisotropy

of the ice, which is what we try to estimate in the first place.

Radar model

A model for how a radar wave’s phase and amplitude evolve through birefringent ice can

be a useful tool in interpreting radar data. This section summarizes the model presented

by Fujita et al. (2006) in a framework used in chapter 6.

The model is based on sequential matrix multiplication that describes the evolution

of the phase and amplitude of a radar wave traveling through a layered medium, where

each layer has predefined permittivity, conductivity, and scattering coefficients. The

electrical field transmitted by the antennas, ET , is written in the reference system of

the antennas, i.e., the electric field component parallel, EPT , and orthogonal, EOT , to

the antenna orientation,

ET =

(
EPT

EOT

)
. (4.9)

The downward propagating wave incident to the scattering boundary at the ith layer is

called

Ei =

(
EP,i

EO,i

)
. (4.10)
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The upward propagating wave scattered from the boundary of the ith layer is called,

E′
i =

(
E′
P,i

E′
O,i

)
. (4.11)

The received signal from the ith layer at the antenna is called,

ERi =

(
EPR,i

EOR,i

)
. (4.12)

The model then consists of a 2x2 transmission matrix T and a 2x2 scattering matrix

S, which, for convenience, is written in the eigenframe of the ice and then rotated into

the reference frame of the antennas.

The transmission, through the ith layer, is written as1

Ti =

(
Ti,x 0

0 Ti,y

)
,

Ti,x = exp (−jk0∆zi + jki,x∆zi)

Ti,y = exp (−jk0∆zi + jki,y∆zi)
(4.13)

where ki,x and ki,y are the wavenumbers in the ice along the two horizontal principal

components of the COF, ∆zi is the thickness of the ith layer, and k0 = 2π/λ0 = 2πf0/c

is the wavenumber in vacuum.

The wavenumbers in the ice can be written in terms of the permittivities along x

and y for the layer, εi,x and εi,y,

ki,x =
√
ε0µ0εi,xω2 + jµ0σi,xω

ki,x =
√
ε0µ0εi,yω2 + jµ0σi,yω

where σi,x and σi,y is the conductivity of the ice along x and y. A 2x2 matrix describes

the scattering at the boundary of layers i and i+ 1,

Si =

(
Si,x 0

0 Si,y

)
. (4.14)

The full radar model can then be expressed with the following three relations,

En =
exp(jk0z)

4πz

n∏

i=1

[R(θi)TiR(−θi)]ET

E′
i = R(θi)SiR(−θi)Ei

ERn =
exp(jk0z)

4πz

1∏

i=n

[R(θi)TiR(−θi)]E′
n

(4.15)

1Transmission is perhaps a little confusing name in the context of optics as it does not reference the
transmission at a reflective interface. It is the evolution of the phase as the wave travels through a layer
of a given thickness and electrical properties.
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where R(θ) is the 2D rotation matrix, and it is assumed that the reference frame of

the scattering matrix and transmission are the same, i.e., scattering anisotropy happens

along the same axis as the birefringence. The three relations above can be summarized

as matrix operators acting on electric field vectors. The operators can be defined and

combined into a single matrix operator as follows,

T̃n =

n∏

i=1

R(θi)TiR(−θi)

S̃n = R(θn)SnR(−θn)

T̃R
n =

1∏

i=n

R(θi)TiR(−θi)





⇒ Mn = D(zn)
2T̃R

n S̃nT̃n (4.16)

where D(zn) =
exp(jk0z)

4πz . The relation between the transmitted and received signal

from layer n is then simply ERn = MnET . If only one component in ET is non-zero,

then the elements of Mn are proportional to the polarimetric signal,

Mn ∝
(
sHH,n sHV,n

sV H,n sV V,n

)
. (4.17)

A change in antenna orientation can be modeled as a constant shift of θ(z) by an angle

γ, which can be written as Mn(γ) = R(−γ)MnR(γ), see appendix C.



Chapter 5

Double Reflections

In the previous chapter, we found that the travel-time difference recorded between the

HH and VV echograms can be translated to a depth-averaged horizontal eigenvalue

difference for the COF. However, the method relied on the H and V polarizations being

closely aligned with the horizontal eigenvectors of the COF. When following layers in

the HH and VV echograms throughout the UWB survey (see figure 3.3), we noticed

that sometimes single layers in the ice would split into two, or vice versa. Most of

these occurrences are connected to a change in the driving direction, i.e., the antenna

orientation. Figure 5.1 shows an example of this, where two reflections turn into one

reflection after the radar changes driving direction. The double reflections represent

a mixed state between the pure COF-aligned HH and VV signals, meaning there is no

travel-time difference between the HH and VV echograms. However, if the reflections can

be recognized as double reflections, then the separation between the two reflections gives

the birefringence-induced travel-time difference. On top of this, the relative amplitude

of the two reflections must, in some way, be related to how misaligned the antennas are

to the COF orientation. In the paper included below, we use the travel-time separation

of the double reflection pairs, together with their relative amplitude, to derive both the

depth-averaged eigenvalue difference as well as the absolute orientation of the COF. This

is the first time double reflections have been described and used to derive the orientation

and eigenvalue difference of the COF. The method is unique because it only relies on the

amplitude of the return signal and can be used on radars with a single polarization. If a

survey were designed to get double reflections, which the 2022 NEGIS survey was not,

it would be possible to get continuous estimates of the COF without the need for the

full polarimetric signal. It opens the possibility of going back and looking at older data

where only a single polarization is recorded and using the double reflections method to

derive information about the COF. In the case of single polarization surveys, it is only

possible to get eigenvalue differences and not the orientation.

49
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Figure 5.1: An example of double reflections observed inside NEIGS at the survey line
labeled 2022/06/27 in figure 3.3. (c) shows the driving line with the two axes being
along- and across-flow distance from EastGRIP. (a-b) show the HH and VV echograms
collected along the line shown in (c) zoomed in on two layers that produce two pairs of
double reflections. The first pair is around 23.5 µs, and the second is around 25.0 µs.
Echograms have been convolved along vertical and along-track with a Gaussian with a
4ns and 40 m standard deviation, respectively. (d-e) show individual HH and VV traces
at a location with double reflections; see blue and orange lines in (a) and (b). (f) shows
individual HH and VV traces a bit further along track at a location without double
reflections; see green and red lines on (a) and (b).
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Implications for radar surveys

The implications of recording reflections from both the slow and the fast waves in radar

surveys have not been discussed before. For typical glacial conditions with relatively

weak horizontal anisotropy, the two reflections may overlap and not present themselves

as separate reflections but as one broad reflection. However, as radar bandwidth in-

creases, so does the detectability of double reflections. One obvious implication of this

is matching isochrones in echograms to layers in an ice core. At EastGRIP, if the radar

survey is not aligned with the COF, the echogram may become cluttered by double

reflections, making it difficult to unambiguously match a reflection to a layer. Similarly,

having double reflections come and go with the changing orientations of the antennas will

undoubtedly challenge even the most sophisticated algorithm for automated tracking of

internal reflections. Even a manual tracker can struggle to know what to do, which is

precisely how we came to notice the double reflections in the first place. An interesting

point that Nicholas Holschuh brought up in the review process of the manuscript was

the problem of comparing the phase of repeat measurements using ApRES, for example,

when calculating basal melt rates. Double reflections represent a mixed state of propa-

gating speeds and, therefore, also wavelengths. If you consider the delta phase of repeat

measurements, then the signal’s wavelength matters for converting the delta phase to a

change in depth. The exact implications need more thought, but double reflections in

the data could cause trouble when tracking the delta phase throughout the ice column.

The paper

First submitted to Geophysical Research Letters on 30 May 2024; submitted in revised

form on 26 August 2024, and again on 5 December 2024; accepted 6 December 2024.

While the manuscript is accepted for publication, it has not yet been published. The

included text below is the accepted version. The supporting information is included in

Appendix D



manuscript submitted to Geophysical Research Letters

Double reflections in polarized radar data reveal ice

fabric in the North East Greenland Ice Stream

Niels F. Nymand1, David A. Lilien2,3, Tamara A. Gerber1, Christine S.

Hvidberg1, Daniel Steinhage4, Prasad Gogineni5, Drew Taylor5, Dorthe

Dahl-Jensen1,2

1Niels Bohr Institute, University of Copenhagen
2Centre for Earth Observation Science, University of Manitoba

3Department of Earth and Atmospheric Sciences, Indiana University
4Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

5Remote Sensing Center, University of Alabama

Key Points:

• We present a novel method for deriving strength and orientation of crystal orientation

fabric using double reflections in birefringent ice.

• Method reveals a 12-degree rotation of the crystal orientation fabric relative to flow

at the center of the North East Greenland Ice Stream

• An asymmetry of the crystal orientation fabric across center of the ice stream indicates
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Abstract

The orientation of ice crystals within large ice masses has a strong influence on their mechan-

ical properties, but cannot be directly observed from the surface. The bulk birefringence

of anisotropic ice allows us to infer information about the crystal orientation fabric (COF)

from polarized radar measurements. Here, we show a new approach for determining the ori-

entation and strength of horizontal COF anisotropy from two radar reflections originating

from the same physical layer in birefringent ice. We apply this method to data collected

as part of a ground-based radar survey of the North East Greenland Ice Stream. We ob-

serve a 12-degree clockwise rotation of the fabric at the center of the ice stream, and a

tendency towards a flow-aligned COF further southeast. This asymmetry across the ice-

stream centerline adds to growing evidence for a more variable ice stream than previously

assumed.

Plain Language Summary

The ice in glaciers and ice sheets is composed of crystals, small pieces of ice which can

differ in shape and orientation. How ice crystals are arranged is closely linked to how ice

sheets move and behave, which is important for predicting changes in polar ice sheets and

their impact on sea level rise. Even though the arrangement of the crystals is not directly

observable from the surface of ice sheets, we can use specific types of radar measurements to

extract general information about how the crystals are arranged. In this study, we present a

new approach for doing this. We test the method on data collected as part of a survey of the

North East Greenland Ice Stream, which drains 16% of the area of the Greenland Ice Sheet.

Our results show that the crystals are not aligned in the way we expected, suggesting that

the flow pattern of the ice stream has changed in the past and is not as stable as previously

thought.

1 Introduction

The orientation of grains within polycrystalline ice, or crystal orientation fabric (COF),

is a fundamental property that governs ice flow. Ice is mechanically anisotropic (Duval

et al., 1983), so good estimates of the COF in dynamically interesting areas, such as ice

streams, are crucial for constraining the directional viscosity of ice. If ignored, directional

hardening or softening caused by the COF can lead to errors when inferring basal conditions

(Rathmann & Lilien, 2022), modeling depth-age relationships at ice divides (Mart́ın et al.,

2009), or considering the strength of shear margins (Grinsted et al., 2022; Minchew et al.,

2018). Improved understanding of the COF can thus contribute to more accurate modeling

of ice stream behavior. Since flow variability causes half of the Greenland ice sheet’s annual

mass loss (Shepherd et al., 2020), this understanding helps reduce uncertainties in future

sea level projections.

COF can be measured or inferred in multiple ways. The most direct is using ice cores to

derive the orientation of individual grains in the ice (Durand et al., 2006; Montagnat et al.,

2014). However, except with highly resolved layering, cores provide only point measurements

and absolute orientation is usually lost (Westhoff et al., 2021). Seismics offer an alternative

to ice cores by utilizing the elastic anisotropy of ice (Picotti et al., 2015; Smith et al., 2017) to
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estimate the COF. Another commonly used, and logistically simpler, method for estimating

the COF is with polarized radar measurements.

Radar sounding has long been used to recover information about the COF (Hargreaves,

1977). In glacial ice, the dielectric anisotropy of individual ice crystals can alter the po-

larization state of the transmitted radar waves (Jiracek, 1967). Anisotropic COFs inherit

this property, which affects both the travel-time and polarization state of radar waves. It is

common to approximate the COF using a second-order structure tensor, using its eigenvec-

tors and eigenvalues to describe the orientation and strength of the COF. The propagation

of radar waves in ice is only sensitive to the second-order structure tensor (Rathmann et al.,

2022). In recent years, fully polarimetric radar sounding, including both the co-polarized

(transmitting and receiving at the same polarization) and the cross-polarized (transmitting

and receiving at orthogonal polarizations) orientations, has become a powerful tool in deriv-

ing the horizontal eigenvectors and eigenvalues (Fujita et al., 2006; Jordan et al., 2019; Dall,

2020; Ershadi et al., 2022) using simple radar models together with radar-derived coher-

ence and power anomalies. A new and simpler approach involves measuring the travel-time

difference in reflections from the bed or internal layers (Gerber et al., 2023; Zeising et al.,

2023) between multiple co-polarized measurements. In anisotropic ice, radar energy must

be polarized along the principal axes of the COF, so if the transmitted wave is misaligned

with the COF it is split into two waves. These waves have slightly different propagation

speeds (Fujita et al., 2006).

Here, we demonstrate that travel-time and amplitude analysis of double reflections

in co-polarized data offers a way of inferring the horizontal anisotropy and orientation of

the COF, assuming no rotation with depth. First, we present the observations of double

reflections, caused by birefringence, collected as part of a larger ground-based radar survey of

the North East Greenland Ice Stream (NEGIS), which form the basis of the analysis. Second,

we explain why double reflections arise and present a method to use them to infer information

about the COF. Third, we derive orientation and horizontal eigenvalue differences of the

COF inside NEGIS by applying the new method to the observed double reflections. Lastly,

we compare our results to the ice core from the East Greenland Ice Core Project (EastGRIP)

(Westhoff et al., 2021; Zeising et al., 2023) and a fabric evolution model presented in Gerber

et al. (2023).
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Figure 1: Overview of the 2022 ground-based radar campaign near the EastGRIP drill
site, located in the interior, southwestern region of NEGIS. The black rectangle outlines the
survey area. Black dashed lines show the estimated location of the NEGIS shear margins.
Black lines with arrowheads show the flow lines. Velocity data was obtained from the NASAs
MEaSUREs multi-year dataset (Joughin et al., 2016, 2018)

2 Data: Ground-based UWB polarized radar

The data used in this study were recorded with a ground-based, ultra-wideband, quad-

polarized radar system developed by the University of Alabama (Li et al., 2020). Over the

course of two weeks in June and July 2022, we collected more than 500 line-km of radar

at NEGIS (Figure 1). The radar operated at center frequency 330 MHz with bandwidth

300 MHz. In this survey, the entire radar system was dragged behind a Skidoo at a speed

of about 10 km/h. The radar electronics and operator were towed inside an enclosed sled

(PolyPod, Figure 2). The antenna panels were dragged on an inflatable balloon behind the

PolyPod.
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The radar switched between four polarization modes (HH, HV, VV, VH), where V and

H indicate along-track or across-track polarization of the transmit and receive antennas,

at a pulse repetition frequency of 5kHz. Along with the four polarization modes, we also

alternated between two chirp lengths, 10µs and 1µs. We only use the 10µs data here as

it penetrates deeper and, as we will show below, the separation between double reflections

depends on the integrated anisotropy of the ice through which the radar waves travel. The

antenna is able to distinguish polarizations with a cross-polarization leakage of -30 dB or

better for most of the frequency spectrum (Li, 2021).

Processing of the raw radar data was done using custom scripts and consists of coherent

integration, pulse compression, incoherent integration, channel integration and interpolation

to a consistent grid.

2.1 Double reflections

In connection with tracking layers, we noticed that layers sometimes split and merge,

making the tracking ambiguous. Because we could compare HH and VV, it became appar-

ent that this was most likely an effect of birefringence. This could potentially make the

process of automated tracking very difficult, and complicate matching layers between ice

core conductivity or dielectric measurements and radar layers.

We interpret these split layers as single physical layers in the ice that reflect two orthogo-

nally polarized waves, split by the birefringence, and returning to the receiver at different

times depending on the strength of the birefringence. The partitioning of energy of the two

waves, and thereby the recorded amplitudes, is determined by the degree of alignment of

the radar antennas and horizontal eigenvectors of the COF. An example of observed double

reflections is shown in Figure 2, together with a sketch of the ideas presented here.

Only a very small subset of the data convincingly show these double reflections, most

likely due to insufficient misalignment between horizontal eigenvectors of the COF and radar

antennas, and most internal reflectors disappear near shear margins where we might expect

radar antennas to be misaligned with the COF.

In the following, we provide the theoretical basis for double reflections and demonstrate

how it can be used to derive an estimate for the COF.
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Figure 2: UWB radar and double reflections at NEGIS. (a) shows the radar as it was
operated in 2022. (c,d) show the driving direction of the radar relative to the local flow
vector. (e,f) is a side by side comparison of HH and VV radargrams collected along the
wide pink line on the velocity map in (b), zoomed in on a double reflection (B′ −B′′). (k,l)
show the HV and VH radargrams. (g-j) show a sketch of double reflections.

3 Theory

To explain these double reflections, we need to consider the electromagnetic proper-

ties of ice in the VHF to UHF frequency range. In this frequency range, ice crystals are

birefringent with permittivity ε∥ and ε⊥ parallel and perpendicular to their optical axis,

respectively. However, the typical size of individual ice crystals is on the order of 0.5 mm

to 10 mm (Thorsteinsson et al., 1997; Svensson et al., 2007), which is around two orders

of magnitude smaller than the center wavelength of the radar system (∼0.5 m in ice). It

is therefore appropriate to describe the ice by its bulk properties. For the following we

assume that the COF has a vertical eigenvector, pointing along z, and x and y define the

two horizontal eigenvectors. The bulk permittivity of ice can be related to the permittivity
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of a single ice crystal through the bulk permittivity tensor (Fujita et al., 2006),

εb =



ε⊥ +∆ελx 0 0

0 ε⊥ +∆ελy 0

0 0 ε⊥ +∆ελz


 , (1)

where ∆ε = ε∥ − ε⊥ , λx, λy and λz express the normalized eigenvalues of the COF, within

the eigenframe of the COF, (x,y,z). We assume the commonly used values ∆ε = 0.034 and

ε⊥ = 3.15 (Fujita et al., 2000).

In the case that λx ̸= λy and the radar waves propagate vertically, the electrical fields

are polarized according to the horizontal principal axes of the permittivity tensor (Fujita et

al., 2006), and differently polarized waves will be split. In other words, when the polarization

of a radar wave is not aligned with the horizontal eigenvectors, the bulk birefringence of the

ice splits the wave into two waves, polarized along x and y. The two waves have different

propagation speeds, due to the difference in permittivity. As a result we see two reflections

at different travel times from the same layer in the ice.

3.1 Travel time difference

If the travel-time difference exceeds the range resolution of the radar we can use it to

derive the horizontal eigenvalue difference, ∆λ = λx − λy, where we define λx > λy. The

two way travel-time (TWT) for polarizations along the two horizontal principal axes, x and

y, can be expressed as,

tx(d) =
2d

c

√
ε⊥ +∆ελx, ty(d) =

2d

c

√
ε⊥ +∆ελy, (2)

where d is the depth measured from the surface of the ice and c is the speed of light in

vacuum. These relations can be rearranged to derive ∆λ given the observed travel times,

∆λ = λx − λy =
( c
2d

)2 t2x − t2y
∆ε

=
tx − ty
tx + ty

4ε̄

∆ε
, for d =

c√
ε̄

1

4
(ty + tx), (3)

where we define λx > λy and ε̄ = 2
3ε⊥ + 1

3ε∥ (permittivity of isotropic ice). The error in ∆λ

from assuming isotropic travel speeds for estimating d is small compared to the uncertainty

from estimating tx and ty.

3.2 Relative amplitude of double reflections

The initial relative amplitude of the two downward-propagating waves is determined

by ϕ. For the H wave the amplitudes of the two waves, Hx and Hy, can be related to the

amplitude of the transmitted wave, HT , as,

Hx = HT cosϕ, Hy = HT sinϕ. (4)

The components of the V wave are computed analogously. As these waves travel through the

ice column, each encounters reflectors that reflects a fraction of the wave back towards the

surface. If the travel-time difference and amplitudes are large enough, they will appear as

two separate reflections to an antenna not aligned with the principal axes. At the surface,

the waves will have decreased in amplitude, which we parameterize by two pre-factors,

Lx and Ly, which might differ due to anisotropic scattering. The returned amplitudes of
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the two waves are then LxHx and LyHy. For a co-polarized measurement, the recorded

amplitudes are LxHx cosϕ and LyHy sinϕ. The ratio of the amplitudes for the co-polarized

measurements can be written as

RHH =
Lx

Ly
cot2 ϕ, RV V =

Lx

Ly
tan2 ϕ. (5)

For an illustration of the relative amplitudes at transmit and receive, see Supplementary

Figure S1. Amplitudes are usually presented on a logarithmic scale defined by PdB(a) =

10 log10 |a|2, where a is the amplitude of the recorded signal and PdB is a measure of the

power of the recorded signal expressed in dB. We therefore use a rewritten version of equation

5,

∆PHH = 20 log10

(
Lx

Ly

)
− 40 log10(tanϕ)

∆PV V = 20 log10

(
Lx

Ly

)
+ 40 log10(tanϕ),

(6)

where ∆PHH and ∆PV V is the power difference in dB between the second and first reflection

in HH and VV mode, respectively (Figure 2).

Cross-polarized measurements can be used to eliminate the term depending on Lx

and Ly. Following the derivation of equation 6, the power differences for cross-polarized

measurements are,

∆PHV = ∆PV H = 20 log10

(
Lx

Ly

)
. (7)

If cross-polarized measurements were not available, ∆PHH − ∆PV V could be used to

derive ϕ independent of Lx and Ly. If only one co-polarized measurement were available,

cross points might be used to eliminate the first term in equation 6.

4 Methods

We now apply this theory to the data collected at NEGIS to derive ϕ and ∆λ. First, we

trace pairs of reflections. The travel-time difference of the reflections allows us to derive the

eigenvalue difference using equation 3. For lines without double reflections the eigenvalue

differences is derived by comparing travel-times for layers in HH and VV, similar to cross-

point analysis (Gerber et al., 2023).

Determining the fabric orientation from the amplitude of the reflections is more com-

plicated. First, the amplitude is calculated as the maximum value in a 5 sample window

centered around the picked reflection. We use the mean and standard deviation of the signal

amplitude between the two reflections to define the noise level. Locations where the ampli-

tude of either picked reflector does not exceed the noise level by at least 4 dB are discarded.

A schematic of the workflow can be found in the supplementary Figure S2.

We use the cross-polarized data to calculate a corrected power difference,

∆PHH = ∆PHH − 1
2 (∆PHV +∆PV H) = −40 log10(tanϕ)

∆PV V = ∆PV V − 1
2 (∆PHV +∆PV H) = 40 log10(tanϕ).

(8)
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ϕ can then be estimated independently for HH and VV by rearranging equation 8 to get

|ϕHH | = arctan
(
10−∆PHH/40

)

|ϕV V | = arctan
(
10∆PV V /40

)
,

(9)

where ϕHH and ϕV V are independent estimates of ϕ derived from the HH and VV radar-

grams, respectively.

Equation 9 has two solutions; the sign of ϕ is ambiguous without additional information.

Minor fluctuations in the driving direction, and consequently in radar orientation during

data collection, allow the sign to be determined. If we assume that the orientation of the

COF changes over much greater distances than the radar orientation, we can determine

the sign of ϕ by cross-correlating the along-track gradient of the power difference with the

along-track gradient of |ϕ|. For the HH case,

ϕ > 0, if sign

(
d(∆PHH)

ds

)
= −sign

(
∂|ϕHH |
∂s

)

ϕ < 0, if sign

(
d(∆PHH)

ds

)
= +sign

(
∂|ϕHH |
∂s

) (10)

where s represents the along-track coordinate. For VV we just flip the signs of equation

10. To determine the COF orientation, we thus calculate two estimates of ϕ, each following

equation 9 to get |ϕ| and equation 10 to find sign(ϕ).

Because the energy is split between two waves, we need strong reflectors for the signal

to rise above the noise. Across different radar lines, we found three reflectors that were

consistently well suited to carry out the analysis. They are approximately 2 km deep at

EastGRIP and have been found all over Greenland (Jacobel & Hodge, 1995; Dahl-Jensen

et al., 2003, 2013; Gerber et al., 2021). Because they are strong reflectors and lie in an

otherwise relatively echo-free zone, they are easily picked and rise well above the noise. They

are also deep enough for the travel-time difference to be significant at the COF strength

around NEGIS. We thus obtain up to six independent estimates of the fabric strength and

orientation (two polarizations times three layers) at every radar trace.

This method relies on these reflections originating from one physical layer, not two

closely spaced, orthogonally scattering layers that mimic the relative amplitudes of double

reflections. Having multiple layers showing the same pattern can help distinguish between

these possibilities. The HV or VH data can also reveal if the layers are subject to strong

anisotropic scattering.

5 Results

Across the center of the ice stream, we observe a small increase in the rotation of the

COF with respect to flow as we move from B′′ towards the center at B′ and a constant

rotation of 12 ± 5◦ from the center at A′′ to A′. This is followed by a generally increasing

eigenvalue difference from ∆λ = 0.42 at B′′ to ∆λ = 0.7 at A′. Unlike most glacier settings,

this implies that c-axes are primarily horizontal, associated with flow convergence and lat-

eral compression. Upstream with increasing proximity to the southeastern shear margin (C ′′

to C ′), we find a more flow-aligned COF that tends to counterclockwise rotation of the COF

at C ′. The signal-to-noise ratio generally decreases from C ′ to C ′′, decreasing confidence
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in the orientation estimates towards C ′′. Our uncertainty estimates do not fully capture

this variation (see supplementary Text S1 and Figure S8 for details). At the northwestern

shear margin (D′ to D′′), we find a constant clockwise rotation of the COF of about 40◦

with a small increase in the eigenvalue difference from ∆λ = 0.65 to ∆λ = 0.75 towards

D′′. Figure 3b includes flow parallel and perpendicular lines with no observed double reflec-

tions. Eigenvalue differences for these lines were derived by comparing travel times between

the HH- and VV-radargrams for the same three layers used to analyze double reflections.

Comparison of HH and VV travel time indicates nearly constant eigenvalue difference along

the ice-stream center. The across flow line is asymmetric about the ice-stream center, with

a general increase from the southeast to the northwest. Results derived for radar lines

2022/06/27 and 2022/07/05 in Figure 1, are omitted due to overlap with 2022/06/28 and

2022/06/30, respectively. The overlapping lines agree within their respective uncertainties,

and detailed results can be found in Supplementary Figures S4-S8.
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mean plotted on top in black. (d) horizontal eigenvalue difference based on the travel-time
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6 Discussion

Our results suggest that the eigenframe of the COF is rotated about 12 degrees relative

to flow close to the center of the ice stream. This seemingly contrasts with the reconstruction

based on visual stratigraphy of the EastGRIP ice core (Westhoff et al., 2021), which finds

that the COF is generally aligned with flow. However, a 12-degree rotation is small compared

to the spread of reconstructed c-axis azimuths (Westhoff et al., 2021, Figure 10c3). The COF

above 1375 m, where the ice core orientation has been reconstructed, may be rotated relative

to the COF below, though the radar only records a cumulative effect. Only the top 1714 m

of the ice-core eigenvalues have been published (Weikusat et al., 2022; Zeising et al., 2023),

and assuming a constant COF below 1714 m and isotropic at the surface, the depth-averaged

horizontal eigenvalue difference from the ice core is ∆λ = 0.53 ± 0.01 at the depth of the

three radar layers. This is in near-perfect agreement with our closest estimate to EastGRIP

(A′′) which gives ∆λ = 0.52±0.01, which is also in good agreement with the results derived

from ApRES (Zeising et al., 2023).

Method limitations

Our new method leverages characteristics of the study site and radar to overcome limi-

tations that may prove problematic when attempting to apply the method in other settings.
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The method assumes that the orientation of the eigenvectors remains constant throughout

the illuminated ice column. This is partly supported by the ice-core reconstruction, which

does not suggest a changing eigenframe in the interval 1375 m-2120 m (Westhoff et al.,

2021). The method works best at relatively large misalignment with the eigenvectors, ap-

proximately 45◦ ± 15◦, to produce sufficient amplitude differences to estimate orientation.

A radar with cross-pol leakage comparable to the amplitude difference (∼5-10 dB) may not

observe power differences between the two layers, and thus might be confined to estimating

∆λ but not orientation. Radars with low range resolution or low transmit power might

struggle to produce strong double reflections at a depth where the travel-time difference

exceeds the range resolution. The eigenvalue difference resolvable for a given bandwidth,

B, can be expressed as,

∆λmin =
c

z B

√
ε̄

∆ε
≈





0.26 for: B = 30MHz, z = 2km

0.09 for: B = 85MHz, z = 2km

0.04 for: B = 200MHz, z = 2km

0.026 for: B = 300MHz, z = 2km

(11)

where the range resolution of a radar system with bandwidth B is c
2B

√
ε̄
(Skolnik, 2001).

Supplementary Figure S3 shows a radargram from the MCoRDS radar (Paden et al., 2014),

which has been flown for thousands of kilometers over Greenland and Antarctica, with

probable double reflections. For radar data with double reflections, every sample is a su-

perposition of scattering events of the two wave components, making interpretation difficult

except for bright isolated layers. The layers that we have used (see Figure 4) are found all

over Greenland, and are located in an otherwise relatively echo free zone (Jacobel & Hodge,

1995; Dahl-Jensen et al., 2003, 2013; Gerber et al., 2021), suggesting that the method

might work in other sections of the ice sheet with strong horizontal anisotropy. We encour-

age future studies using ice penetrating radar data to consider how double reflections may

influence their interpretations.

Comparison with a fabric development model

Comparison between our results and the horizontal anisotropy predicted by a fabric de-

velopment model offers potential insight into the glaciological conditions at NEGIS (Figure

3(b,c)). We compare our results to a model that simulated COF development under the

assumptions that flow has been steady for the past ∼10k years and COF develops solely by

lattice rotation. In contrast to the observations, which show symmetry of the orientation

and horizontal eigenvalue difference across a plane parallel to but southeast of the current

ice-stream centerline, the model predicts symmetry across the ice-stream centerline. That

two independently observed parameters, the horizontal eigenvalue difference and orienta-

tion, disagree with the model results for the southeastern part of the ice stream suggests

that model assumptions do not hold. While there is some uncertainty in the robustness of

the modeled eigenvalue difference due to recrystallization (Richards et al., 2023), the lack

of rotation of the COF relative to flow is tied to the fundamental physics of COF devel-

opment and the assumption of steady flow. Since the modern centerline does not cross a

shear margin, the ice does not experience shear or rotation, so current understanding of

COF development under lattice rotation or recrystallization suggests that if flow has been

steady there should be symmetry about the ice-stream centerline. We thus suggest that the

–13–
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assumption of steady-state flow is mainly responsible for the disagreement between model

and observations.

The widening of the shear margins observed in Grinsted et al. (2022) suggests a variable

ice stream rather than one in steady state. Franke et al. (2022) observed relic ice streams

north of present day NEGIS that were likely active during the Holocene. Jansen et al.

(2024) found that the current shear margins of NEGIS were fully formed only 2000 years

ago. These three independent lines of evidence all support recent flow changes in or around

NEGIS. Conversely, the model results from Gerber et al. (2023) assumed steady flow in the

past, so mismatch between model and data could suggest that the COF has not yet adjusted

to the new flow configuration. For example, a recent northward migration of the ice stream

could explain why the COF is rotated relative to modern flow. Thus, the mismatch between

our results and the model could be evidence of an ice stream with a more variable past than

commonly assumed.

7 Conclusion

Using double reflections recorded at NEGIS with a new, high-resolution radar system,

we have derived information about the COF, namely the orientation of the horizontal eigen-

frame and the horizontal eigenvalue difference. This new method may enable simpler radar

systems with a single, linearly polarized antenna to estimate COF along a radar line, subject

to the conditions that ∆λ is large enough and the radar has sufficient power and sensitivity

to sound layers deep enough that travel-time differences exceed the range resolution of the

radar. We find a strong asymmetry in both the orientation and eigenvalue differences across

the modern center of NEGIS. This contrasts with a fabric development model (Gerber et

al., 2023), which shows approximate symmetry across the center of the ice stream under

the assumption that ice flow has remained steady for the last ∼ 10 kyr; the model/data

mismatch likely stems from that assumption. Together with recent studies about the age

and present-day widening of the NEGIS shear margins (Jansen et al., 2024; Grinsted et al.,

2022), as well as the discovery of relic ice streams in northern Greenland (Franke et al.,

2022), this work is another piece of evidence for a more variable NEGIS than previously

assumed.
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Chapter 6

Polarimetric inversion

In this chapter, I present some unpublished work on formulating the estimation of COF

anisotropy as an inverse problem. The chapter should be viewed as a natural continua-

tion of the previous chapters rather than as a self-contained manuscript. The methods

presented here have been developed by Niels F. Nymand in collaboration with David

A. Lilien (University of Indiana) and Dorthe Dahl-Jensen (University of Copenhagen

and University of Manitoba). Data used here was collected by Niels F. Nymand, David

A. Lilien, Tamara A. Gerber (University of Copenhagen, now University of Lausanne),

Daniel Steinhage (Alfred Wegener Institute) and Dorthe Dahl-Jensen, with technical

assistance and input from Drew Taylor and Prasad Gogineni (University of Alabama).

This chapter has been written by Niels F. Nymand.
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Double reflections and travel-time analysis, as described above, are useful methods

because relatively simple radar systems can derive information about the depth-averaged

eigenvalue difference and potentially the orientation of the COF. Modern phase-sensitive

polarimetric radar systems have been used to develop methods capable of directly track-

ing the phase difference of co-polarized signals throughout the ice column (Jordan et

al., 2019). A different approach to deriving COF information came from Ershadi et

al. (2022), where the problem was formulated as an inverse problem, solving for the

orientation, eigenvalue difference, and anisotropic scattering coefficient. However, this

method relied on the coherence method described in Jordan et al. (2019). For areas like

NEGIS, the horizontal anisotropy is so strong that coherence is lost within the first few

hundred meters, depending on the frequency and bandwidth (Zeising et al., 2024). In

this chapter, I present a different approach to the inverse problem aimed at solving for

the anisotropic scattering, orientation, and eigenvalue difference.

The inverse problem

The goal of formulating the task as an inverse problem is to find a set of model param-

eters, m, that can explain a set of observations, dobs, given a model that can relate the

two. This model is called the forward model because it takes a set of model parameters

as input and produces a set of observables, d, as output. In general, the forward problem

can be expressed as,

d = g(m) (6.1)

where g represents the forward model. Most models do not have an inverse, especially

when the forward model is a numerical solution to a set of differential equations, but

even for simple linear problems, the inverse is often not defined. Even if an inverse

exists, real data is subject to random perturbations of the observations due to noise.

In most cases, it is more useful to find a set of model parameters that in some way

minimize the difference between the real observables, dobs, and the modeled observables.

A mathematically convenient way of defining a so-called loss function is with the squared

norm of the residual together with a regularization term (Menke, 2018),

L (m) = ∥dobs − g(m)∥2 + η2∥Γm∥2. (6.2)

where Γ is a regularization matrix and η is a regularization parameter. The idea of

the regularization term η2∥Γm∥2 is to impose on the solution some desired property

by penalizing solutions that do not. The property being penalized is described by the

product Γm, and η dictates how much this property should be penalized. The choice

of η is somewhat subjective, as is the design of Γ, and can significantly influence the

solution and should therefore be carefully justified.
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Radar observables

Following Ershadi et al. (2022), this work uses the co- and cross-polarized azimuthal

power anomalies as the observables. The power anomaly at the nth layer is defined as,

δlPij,n(γ) = 20 log10

(
|sij,n(γ)|l

1
π

∫ π
0 |sij,n(γ′)|ldγ′

)
, (6.3)

where i, j = {H,V } and l = 1 corresponds to the definition in (Ershadi et al., 2022);

however, l = 2 will allow an analytical expression of the integral to be easily evaluated

for constant θ(z). sij,n = sij(tn) for tn = n∆t is the discretized return signal. The

coherence phase can be expressed as the argument of the coherence,

ϕHHV V,n(γ) = arg
(
CHHV V,n(γ)

)
. (6.4)

We will see later that the coherence phase has no real value for inverting the UWB data

at NEGIS, but it is included here because it could be useful for other radar surveys.

The power anomalies, δPHH,n(γ) and δPHV,n(γ), and phase coherence, ϕHHV V (γ),

can be calculated directly from the observed radar signals and from the radar model.

Because none of these observables depend on the magnitude of the signals, the model

operator described in Chapter 4 can be used as the signal matrix,

Mn(γ) =

(
sHH,n(γ) sHV,n(γ)

sV H,n(γ) sV V,n(γ)

)
. (6.5)

Radar observables for θ(z) = θ0

The Fujita et al. (2006) radar model can be significantly simplified for a constant ori-

entation with depth, which allows for analytical expressions for the HH and HV power

anomalies, as well as the coherence phase, to be derived. Whether or not θ(z) = θ0 is

actually a valid assumption is up for debate, but at least for the part of the EGRIP ice

core where the orientation has been reconstructed, there seems to be no evidence of a

rotating eigenframe (Westhoff et al., 2021). However, as demonstrated by the synthetic

model shown in Ershadi et al. (2022) (Fig. 3), even a small rotation can have a large

and somewhat unexpected impact on the return signal.

Assuming θ(z) = θ0 the equations in 4.16 can be reduced to (see appendix E),

Mn(γ) = D(zn)
2R(θ0 − γ)

(
exp[jψn,x]Sn,x 0

0 exp[jψn,y]Sn,y

)
R(−θ0 + γ) (6.6)

where ψn,x = 2
∑n

i=1∆zi(ki,x − k0) and ψn,y = 2
∑n

i=1∆zi(ki,y − k0), are the phases of

sHH,n(γ = θ0) and sV V,n(γ = θ0), respectively. The full polarimetric signal can then be
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written as,

sHH,n(γ) = cos2(θ0 − γ)sHH,n(θ0) + sin2(θ0 − γ)sV V,n(θ0)

sV V,n(γ) = cos2(θ0 − γ)sV V,n(θ0) + sin2(θ0 − γ)sHH,n(θ0)

sHV,n(γ) = sV H,n(γ) =
[
sHH,n(θ0)− sV V,n(θ0)

]
cos(θ0 − γ) sin(θ0 − γ)

(6.7)

where sHH,n(θ0) = D(zn)
2 exp[jψn,x]Sn,x and sV V,n(θ0) = D(zn)

2 exp[jψn,y]Sn,y, are

the COF aligned HH and VV signals. From these equations analytical expressions for

δP 2
HH(γ), δP

2
HV (γ) and ϕHHV V,n, can be derived. In the following, the scattering ratio,

rn = Sn,y/Sn,x, adopted from Ershadi et al. (2022), is used, and ψn,x and ψn,y are

assumed real, which is equivalent to assuming zero conductivity, σn,x = σn,y = 0. The

analytical expressions are as follows,

δP 2
HH,n(γ)=20 log10

[
cos4(θ0−γ)+r2n sin4(θ0−γ)+ 1

2
rn sin2(2[θ0−γ]) cos(ψn,x−ψn,y)

1
8
[3+3r2n+2rn cos(ψn,x−ψn,y)]

]
, (6.8)

δP 2
HV,n(γ) = 20 log10

[
8 cos2(θ0 − γ) sin2(θ0 − γ)

]
, (6.9)

ϕHHV V,n(γ) = arctan

[
rn sin(ψn,x−ψn,y)

(
1−tan4(θ0−γ)

)

rn cos(ψn,x−ψn,y)
(
1+tan4(θ0−γ)

)
+tan2(θ0−γ)

(
1+r2n

)
]

(6.10)

The full derivations of these expressions can be found in appendix E. One obvious

takeaway from the expressions in equations 6.8-6.10 is a high degree of non-linearity

with respect to the eigenvalues, which are embedded in ψn,x and ψn,y. One of the

biggest issues is that ψn,x and ψn,y depend on the eigenvalues for all layers i ≤ n.

The observables also have a non-linear relationship with the scattering ratio, but

unlike the eigenvalues, δP 2
HH,n(γ) and ϕHHV V,n(γ) do not depend on ri for i ̸= n. The

impact of rn on δP 2
HH,n(γ) is quite significant because it controls the periodicity of the

signal. For rn = 1, the azimuthal periodicity of co-polarized power anomaly is π
2 , as

δP 2
HH,n(θ0) = δP 2

HH,n(θ0 ±mπ
2 ), where m ∈ Z. For any rn ̸= 1 the periodicity changes

to π, as δP 2
HH,n(θ0) = δP 2

HH,n(θ0±mπ). In Gerber et al. (2024), they use this to derive

the scattering and orientation by fitting the amplitude and phase of a sine wave to the

HH power anomaly at different depths.

The orientation θ0 represents a translation in the azimuth of the observables, suggest-

ing it is a well-behaved parameter and the only parameter that the HV power anomaly

depends on. In total, the equations 6.8-6.10 constitute the forward model and have

2N + 1 parameters, where N is the number of layers in the model.

Iterative linearisation

We have already established that the inverse problem in non-linear, however, it might be

valid to assume that some model parameters are weakly non-linear, in which case a first-

order Taylor expansion of the forward model around some initial guess, m0, might prove

a reasonable approximation. The first-order Taylor expansion of the general forward
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problem is,

g(m) ≈ g(m0) +∇g(m0)∆m for:
(
∇g(m0)

)
ij
=
∂gi(m0)

∂mj
(6.11)

where ∆m = m −m0. Because the problem is now linear the loss function defined in

equation 6.2 can be written as a matrix equation, and the least squares formulation has

a closed-form solution, which can be written as,

∆m =
[
GTG+ η2ΓTΓ

]−1
GT
[
dobs − g(m0)

]
, (6.12)

where Gij =
(
∇g(m0)

)
ij
is the Jacobian matrix of g evaluated at m0. The advantage of

formulating the problem like this is that we have analytical expressions for the forward

model, and the Jacobians can, therefore, also be derived analytically. The Jacobians

are included in appendix E. Depending on the non-linearity and initial guess, it might

take multiple iterations to converge to a solution to the original forward problem. The

strategy is called iterative linearisation (Fichtner, 2021) and is sketched in algorithm 1.

Algorithm 1 Iterative linearisation

1: m0 = [∆λ
(0)
1 ,∆λ

(0)
2 , . . . ,∆λ

(0)
N , r

(0)
1 , r

(1)
2 , . . . , r

(1)
N , θ

(0)
0 ] ▷ initial guess

2: (G0)ij =
∂gi(m0)
∂mj

▷ Generate Jacobian

3: for k = 1 to kmax do
4: ∆mk =

[
GT
k−1Gk−1 + η2ΓTΓ

]−1
GT
k−1

[
dobs − g(mk−1)

]

5: mk = mk−1 + α∆mk ▷ Update model
6: a = 1
7: while L(mk−1) ≤ L(mk) do ▷ Unsuccessful update
8: mk = mk−1 +

(
1
2

)a
α∆mk ▷ Reduce step size

9: a = a+ 1
10: if

(
1
2

)a
α > 10−5 then ▷ 1. Termination condition

11: return mk−1 ▷ Solution found
12: end if
13: end while
14: if

L(mk−1)−L(mk)
L(mk)

< 10−4 then ▷ 2. Termination condition
15: return mk−1 ▷ Solution found
16: end if
17: end for

The step size, or how far along the direction ∆mk to go, is controlled by the parame-

ter α. The while loop on lines 7-13 is there to adjust the step size in case α∆mk actually

increases the loss function. It will continue to half the step size until the loss function

yields a smaller value than the previous iteration or the step size reaches a threshold,

in which case we assume that the previous iteration had converged. The algorithm will

also terminate if the change in the loss function is below a predetermined threshold.

The termination thresholds on lines 10 and 14 are free to be picked differently, but these
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were used for the inversions presented below.

Depending on the level of non-linearity, the initial guess, m0, can prove to be very

important for the success of the method. To explore this further, a synthetic model

based on ice core eigenvalues from EastGRIP is designed to test the method under ideal

conditions.

Inversion of synthetic EastGRIP model

A simple model, based on ice core data from EastGRIP (Weikusat et al., 2022), is

designed to test the inversion algorithm described above. The model presented here is

more or less identical to the synthetic model presented in Gerber et al. (2024), and the

details are therefore left out here. δP 2
HH , panel (a) in Figure 6.1, is greatly influenced by

the scattering ratio, but the birefringence is clearly visible from the co-polarization nodes

(Fujita et al., 2006). δP 2
HV is of course only influenced by θ0 with a azimuthal periodicity

of 90◦. ϕHHV V , panel (b), is strongly influenced by ∆λ, but the angular width of the

nodes is influenced by the scattering ratio and decreases for any r ̸= 1 (Ershadi et al.,

2022). In principle, the model parameters could be determined, perhaps ambiguously,

from either ϕHHV V or δP 2
HH . In reality, it may prove difficult to let the two observables

influence every parameter right away as the non-linearity of the observables could pull

the model parameters in opposite directions. It might, therefore, be advantageous if

0 45 90 135 180
γ [deg]

0

200

400

600

800

1000

1200

1400

1600

D
ep

th
[m

]

(a)

0 45 90 135 180
γ [deg]

(b)

0 45 90 135 180
γ [deg]

(c)

−180 −90 0 90 180
θ [deg]

(d)

−20 −10 0 10 20
S y/S x [dB]

(e)

-40 0 40
δP2

HH [dB]
-40 0 40

δP2
HV [dB]

-π 0 π
φHHVV

0.00 0.25 0.50 0.75 1.00
λx−λy

Figure 6.1: Synthetic model based on ice core data from EGRIP (Weikusat et al., 2022).
θ0 is set to 12◦. See (Gerber et al., 2024) for more details on how the scattering ratio
was derived. Vertical spacing is 5 m, and azimuthal spacing is 5 degrees.



CHAPTER 6. POLARIMETRIC INVERSION 76

the scattering ratio and orientation can be inverted for without having any information

about the eigenvalue difference. Figure 6.2 is an attempt at doing exactly this. The

eigenvalue difference is kept constant at ∆λ(z) = 0.0 throughout the inversion, and as

initial guesses the scattering ratio is r(0)(z) = 1, and the initial guess for the orientation

is θ
(0)
0 = −20◦. The observables used in the inversion are δP 2

HH(γ) and δP 2
HV (γ) with

equal weight. δP 2
HH(γ) influences both the scattering ratio and orientation, and δP 2

HV (γ)

only influences the orientation. It is evident from figure 6.2 that the method does quite

well at inverting for θ0, and does a reasonable job at inverting r(z). The inverted r(z),

black solid line in figure 6.2, suffers a bit from overfitting as it attempts to fit the

co-polarization nodes as seen in figure 6.1a.

A potential limitation is that if the initial guess for θ0 is too far from the true value,

the inversion will search in the wrong direction and land at a solution that is π/2 away

from the true value, which just corresponds to flipping the eigenvectors. This can, for

example, be solved by allowing for ∆λ to be negative or by following Ershadi et al.

(2022) and using the sign of the phase gradient at the estimated orientation. In reality,

any prior information we may have about the orientation of the two eigenvectors can

help inform the initial guess of θ0.

Note on eigenvalue inversion and loss of coherence

Attempting to use the same method of linearized iterations with ϕHHV V,n(γ) to invert

for ∆λ yields poor results compared to the scattering ratio and orientation. The forward

problem is most likely too non-linear for the linearization to be valid for any realistic

initial guess. If the radar signals retain coherence, then the vertical gradient of the

coherence phase can be used to derive the eigenvalue difference (Jordan et al., 2019;

Ershadi et al., 2022). It might also be advantageous to formulate this as an inverse

problem to better incorporate noisy data. For eigenvalue differences at NEGIS, the

coherence of HH and VV is lost at relatively shallow depths for the bandwidth and

center frequency of the UWB radar. If the coherence is lost, the coherence phase cannot

be used to derive the eigenvalue difference. No coherence means that the phases of the

HH and VV signals are not interacting. For the UWB data, we can incorporate the loss

of coherence into the model when inverting for the scattering ratio and orientation by

setting ∆λ(z) = 0.0.

Cross-correlation method

Due to the loss of coherence, a different method for deriving the eigenvalue difference is

needed, and a method that has been shown to work for the strong anisotropy present

at EastGRIP is a cross-correlation method introduced by Zeising et al. (2023). It is

a continuation of the simple travel-time difference presented in chapter 4, allowing for

the eigenvalue difference as a function of depth to be derived and not just the depth-
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Figure 6.2: Synthetic EGRIP model inverted for scattering ratio and orientation with
∆λ held constant. Top row (a′)-(e′) of figures show misfits as a function of iteration
normalized by misfit of initial guess. (a′)-(c′) are the misfits of the observables and (d′)-
(e′) are misfits of the inverted model parameters. (a)-(c) show the estimated observables
based on the inverted parameters. (d)-(e) show the inverted parameters in black solid
lines together with the true and initial guess plotted as dashed red lines and solid
red lines, respectively. The regularization term was set to zero. The step lengths are
indicated in the bottom right corners of panels (d) and (e).

averaged eigenvalue difference. The basic idea is to cross-correlate segments of a sample

length N of the two orthogonal co-polarized signals. The lag between the HH and VV

signals that causes the maximum correlation magnitude (normalized like the coherence

magnitude) is related to the travel-time difference between the two signals. Doing this

over the entire signal range for subsequent segments having a sample overlap of Noverlap

will give a travel-time difference as a function of depth. The method works very well

for stationary systems like the ApRES and could potentially also work for the UWB

radar. In the following, I will present a slightly different approach adapted to the UWB

data but the same basic idea as presented in (Zeising et al., 2023). The cross-correlation

method returns travel-time differences as a function of depth, which can be converted

to a depth-averaged eigenvalue difference as a function of depth, ∆λ(z). This can be

related to the depth-resolved eigenvalue difference, ∆λ(z), as,

∆λ(z) =
1

zn

n∑

i=1

∆λ(zi)∆zi, where
∆zi = zi − zi−1

z0 = 0m
(6.13)
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which in turn can be related to the travel-time difference through equation 4.5,

∆t(zn) =
∆ε

c0
√
ε⊥

n∑

i=1

∆λ(zi)∆zi . (6.14)

This can be formulated as a matrix equation and solved as a linear inverse problem.

The forward problem can be expressed as,

dobs = Gm (6.15)

dobs =
[
∆t(z1),∆t(z2), . . . ,∆t(zn), . . . ,∆t(zN )

]T
, (6.16)

m =
[
∆λ(z1),∆λ(z2), . . . ,∆λ(zn), . . . ,∆λ(zN )

]T
, (6.17)

G =
∆ε

c0
√
ε⊥




∆z1

∆z1 ∆z2
...

. . . 0
...

. . .

∆z1 ∆z2 ∆z3 · · · ∆zn
...

. . .

∆z1 ∆z2 ∆z3 · · · ∆zn · · · ∆zN




. (6.18)

(6.19)

To solve the inverse problem, the following loss function is used,

L (m) =
[
dobs −Gm

]T
C−1
d

[
dobs −Gm

]
+ η2∥Γm∥2 (6.20)

where Cd is a data covariance matrix whose function is to describe the uncertainties

in dobs. Cd is chosen to be a diagonal matrix, where the elements are the squared

inverse correlation magnitudes. The idea is that a large correlation magnitude gives

high confidence in the estimated ∆t. A least squares solution for the loss function in

equation 6.20 can be written as (Menke, 2018),

m =
[
GTC−1

d G+ η2ΓTΓ
]−1

GTC−1
d dobs. (6.21)

Unlike the linearized inversions of the scattering ratio and θ0, the regularization matrix

and parameter can not be set to zero. The issue is that a relatively small error in the

estimated ∆t can lead to a nonphysical ∆λ. The way the problem has been framed, the

estimated eigenvalue difference, ∆λ(zn), is actually the mean eigenvalue differences in

the depth interval determined by ∆zn. For this reason, the solution is expected to have

a certain level of smoothness, which can be expressed as the solution having a small
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gradient magnitude. To achieve this, the regularization matrix is written as,

Γ =




−1
∆z2

1
∆z2
−1
∆z3

1
∆z3

0
. . .

. . .

0 −1
∆zN

1
∆zN




⇒ Γm =




∆λ(z2)−∆λ(z1)
∆z2

∆λ(z3)−∆λ(z2)
∆z3
...

∆λ(zN )−∆λ(zN−1)
∆zN



. (6.22)

The regularization parameter, η, has to be large enough to enforce a ”reasonable” so-

lution without dominating the result. If we think of the observable as a sum of a pure

signal and a noisy component, i.e., dobs = dpure + n, then the goal of the inversion

should be to let the noise influence the solution as little as possible. In other words, the

objective is to find the η that satisfies ∥dobs − Gm∥2 ≈ ∥n∥2. While it is impossible

to determine n, it might be possible to estimate ∥n∥. The accuracy of the travel-time

difference is limited by the range resolution of the radar, and any travel-time estimate

must therefore have a minimum uncertainty of ± 1
2B , where B is the bandwidth of the

radar and 1
2B is half the range resolution converted to two-way travel time. A simple

line search over a wide range of η is performed to find the η that satisfies,

∥dobs −Gm∥2 ≈ N

(
1

2B

)2

. (6.23)

The advantage of describing the cross-correlation as an inverse problem is the robustness

towards noisy data. Specifically, the phase information might not be well preserved after

coherent and incoherent integration due to sloping layers and rough surface conditions.

The method in Zeising et al. (2023) uses the minimum coherence phase to accurately

track the correlation lag as a function of depth, which was not found feasible for the

UWB data in their current state. The ApRES systems have the advantage of being

able to record while transmitting, making it possible to get layers all the way to the

surface where the lag must be zero, giving a tracking algorithm a fixed starting point

independent of fabric.

Results

The azimuthal response for the data is synthesized from the HH, VV, HV and VH data

by a rotation of the signal matrix. Any azimuth γ of the observed signal is calculated

as,

(
sobsHH,n(γ) s

obs
HV,n(γ)

sobsV H,n(γ) s
obs
V V,n(γ)

)
= R(γ)

(
sobsHH,n

1
2(s

obs
HV,n + sobsV H,n)

1
2(s

obs
HV,n + sobsV H,n) sobsV V,n

)
R(−γ), (6.24)

where sobsHH,n, s
obs
V V,n, s

obs
HV,n and sobsV H,n are the observed HH, VV, HV and VH data. It is

assumed that HV and VH are identical. This has been shown to accurately reconstruct
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any azimuth from only these four signals; see Ershadi et al. (2022) and Gerber et al.

(2024) for the UWB data.

A slight modification to the forward calculation of δP 2
HV has been made to include

the effect of noise. The model predicts zero return when aligned with either eigenvector,

creating a singularity in the current definition (see equation 6.9). This will undoubtedly

cause issues for the inversion. The real minimum of δP 2
HV is determined by the noise

which has been parameterized as,

δP 2
HV,n(γ) = 20 log10

[
8 cos2(θ0 − γ) sin2(θ0 − γ) + nHV

]
, (6.25)

where nHV is the cross-polarized noise magnitude. nHV is defined as the minimum of

the observed δP 2
HV . This will also affect the Jacobian, but as nHV does not depend on

θ0 it is a trivial modification and not shown here.

The inversion results are carried out in two rounds: first, the linearized iterations to

invert for the scattering ratios and orientation, r and θ0, and second, the cross-correlation

method to invert for the eigenvalue difference ∆λ. Figure 6.3 shows the inversion of r

and θ0 at a location about 10 km upstream from EastGRIP. At this location, the radar

was stationary, resulting in a relatively high mean coherence1. Iterations are terminated

once the second termination condition is met, see Algorithm 1. The inverted scattering

ratio shows a high degree of anisotropic scattering throughout most of the ice column.

Large fluctuations in the scattering ratio is found at most depths, and most prominently

at the basal reflection at around 2.8 km. These local maxima are not necessarily related

to anisotropic scattering but rather to bright layers affected by a travel-time difference,

which will be discussed further later. The orientation is estimated to be θ0 = −4.2◦.

This orientation is in the reference system of the antennas, i.e., the rotation you would

have to apply to the antennas to be aligned with the COF eigenvectors.

Figure 6.4 shows the cross-correlation method applied to the same location as the

results in figure 6.3. Because the UWB radar records 8 channels, the method is applied

to all individual channels, as well as a combined channel, to obtain some additional

statistics. The length of the segments used for the cross-correlation is N = 151, and

subsequent segments overlap by Noverlap = 145. Any channel, where the regularization

parameter η, determined from equation 6.23, lies outside the predetermined search range,

or where the inverted eigenvalue differences are not within [0,1], is discarded. Figure 6.4

shows only the results from one channel. Figure 6.5 shows the full inversion result with

the eigenvalue differences calculated as a channel mean and compared to the published

EastGRIP ice core data (Weikusat et al., 2022). The observation point is located 10 km

upstream from the ice core. The inverted eigenvalue differences show a steady increase

up to a depth of approximately 2 km with a maximum difference of 0.64 ± 0.03, followed

1The COF aligned coherence of HH and VV is still zero, but at orientations not aligned with the COF
they are similar due to double reflections. If the coherence is close to zero for all azimuth, it indicates
that the radar is only recording noise
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by a decrease until the base of the ice at approximately 2.8 km with a minimum difference

of around 0.05 ± 0.05.

Figure 6.6 shows inversion results for four different locations: 1) 1.6 km, 2) 10 km,

3) 20 km, and 4) 30 km upstream from EastGRIP. Side by side are the eigenvalue

differences, scattering ratio, and mean coherence. The radar was more or less stationary

in the locations, which significantly improved the mean coherence. The location closest

to EastGRIP was a short stop and, therefore, fewer traces to integrate, which partly

explains the relatively low coherence. Locations 1 and 2 in Figure 6.6 both show a

steep decline in the eigenvalue difference from 2000-2250 m and down to the base, with

location 2 almost reaching zero at the base. Both also show a transition from a reflection

ratio of around -7.5 dB to -15 dB at a depth of around 1250 m, and in both cases, this

is accompanied by an increase in coherence. Locations 3 and 4 both show an eigenvalue

difference characterized by a smaller variation and a minimum eigenvalue difference

above 0.25 close to the base. At the four locations, the orientation is calculated relative

to the local surface flow vector, θflow0 . A positive θflow0 means that the COF eigenvector

located at θ0 (as seen by the antennas H pol), is rotated counter-clockwise by an angle

θflow0 relative to the surface flow vector given by (Joughin & University Of Washington,

2016). The θflow0 presented is the orientation of the slow axis, i.e., the horizontal axis

with the highest concentration of c-axes. A θflow0 that is a multiple of ±π/2 indicates a

flow-aligned eigenframe of the COF.

Discussion

Orientation and scattering ratio

A first-order Taylor expansion of the forward models for the co- and cross-polarized

power anomalies provides an efficient method for estimating the orientation, θ0, and

scattering ratio, r. The forward model assumes that there is no change in orientation

with depth, which is partially supported by a fairly constant cross-polarized power

anomaly with depth. However, close to EastGRIP the cross-polarized power anomaly

exhibits a sudden rotation at around 1200 m depth, see Figure 6.7. It is unclear what

causes this sudden rotation, as it seems unlikely to be an abrupt rotation in the COF

eigenframe of more than 30◦. Such a rotation would imply a decoupling of the two

ice masses above and below this transition, suggesting that the younger ice would be

less aligned with the present-day flow. The coherence suggests that the signal above

1200 m is not necessarily informed by the fabric. The co-polarized power anomaly also

does not suggest a changing orientation. Additionally, around 8.5 km further upstream,

this rotation of the cross-polarized power anomaly is not observed. Figure 6.6 shows

an increasing misalignment with the flow as the distance to EastGRIP decreases. The

orientation of the antennas are calculated from two GPS receivers located on the port

and starboard side of the antenna panels, see figure 3.1. At location 4, approximately
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30 km upstream from EastGRIP, the COF is almost aligned with the flow, with only

a difference of about 2◦. At location 1 the COF is rotated more than 10◦ relative to

flow, which aligns very well with the findings of the double reflections that predicts an

eigenframe rotation of approximately 12 ± 5◦ near EastGRIP, as well as the scattering

orientations (Gerber et al., 2024). The uncertainties stated in Figure 6.6 are based only

on the uncertainty in surface velocity (Joughin & University Of Washington, 2016) and

do not reflect method uncertainty or GPS uncertainty.

The inverted scattering ratio, for the eigenvalue difference set to zero, is able to

almost perfectly explain the recorded co-polarized power anomaly (see Figure 6.3), sug-

gesting that birefringence nodes are not contributing, or at least not significantly, to the

data. As was also shown by Gerber et al. (2024), the anisotropic scattering is by far

the dominant signal in the co-polarized power anomaly. However, the model predicts

some clearly visible birefringence nodes (see Figure 6.5), which we do not see in the

data. This is due to the loss of coherence, which justifies inverting for the scattering

ratio with zero eigenvalue difference. In areas of weaker anisotropy where coherence is

preserved, the inversion of the scattering ratio should be run again after estimating the

eigenvalue difference, to avoid to issue of overfitting as seen in Figure 6.2.

In Zeising et al. (2024), they discuss how it might be possible to recover coherence by

reducing the bandwidth, thereby increasing the width of the pulse-compressed pulses in

the processing stage, which also effectively lowers the center frequency. Following Zeising

et al. (2024), a bandwidth of around 12 MHz would enable the coherence method to

be used for 2.5 km of ice assuming an average eigenvalue difference of 0.5. While it is

worth experimenting with, a 12 MHz bandwidth would only utilize 4% of the received

pulse, potentially reducing signal-to-noise below a usable level.

At locations with strong reflectors, for example, the bed (around 2.8 km depth in

Figure 6.3 and 6.5), the scattering ratio increases significantly. This is not because the

bed exhibits anisotropic scattering, but rather an artifact of the bed reflector arriving at

different travel times for HH and VV in the COF aligned case. The results are plotted

on a depth scale, but it is not a true depth scale, because in order to get a true depth

scale the traces would have to be migrated based on the eigenvalue differences. So, at a

location with a strong reflector, its apparent position in depth will not be the same at

γ = θ0, as for γ = θ0 + π/2 due to the travel-time difference. Because the radar model

is in depth, and not travel time, this effect is not accounted for. However, the general

backscatter, not originating from bright reflectors, do convincingly show anisotropy. The

magnitudes align very well with Gerber et al. (2024).

Eigenvalue differences

The cross-correlation method, adapted from Zeising et al. (2023), does a seemingly

good job at reconstructing the eigenvalue difference as a function of depth. At all

four locations in Figure 6.6, the eigenvalue differences show a similar pattern: Steadily
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increasing from 1000 m towards a maximum between 1500 m - 2000 m, followed by

a decrease towards the bed. The locations closest to EastGRIP both have estimated

eigenvalue differences below 0.2 near the base, with the second location, Figure 6.6a2,

reaching values as low as 0.05. This matches well with the eigenvalues derived from the

ice core (Stoll et al., 2024), where the fabric changes from a vertical girdle with a hori-

zontal maximum to a fabric with a higher degree of randomness at around 2500 m due

to migrational recrystallization. Further upstream (locations 3 and 4), the eigenvalue

differences never get below 0.3, suggesting slightly different conditions near the base,

perhaps lower temperatures reducing the degree of recrystallization.

The two locations closest to EastGRIP are compared to the published ice core eigen-

values (Weikusat et al., 2022), see Figures 6.5 and 6.7. While neither of the two locations

are directly over the EastGRIP ice core, they do lie on the same flow line, with the clos-

est being only 1.6 km away, or about 30 years, assuming annual flow at around 55 m/yr

(Hvidberg et al., 2020). The estimated eigenvalue differences presented here are consis-

tently underestimated compared to the ice-core-derived ones. This could be explained

by too aggressive regularization, which flattens the curve more than necessary. They

do, however, match the ice core better where the curves start to flatten, which might

suggest that the gradient is not the optimal attribute to minimize when inverting for

the eigenvalue differences.

The eigenvalue differences estimated from the cross-correlation derived travel-time

differences enforce smooth solutions through regularization. The travel-time differences

depend on the average eigenvalue differences, which means the depth-resolved eigen-

value differences are poorly constrained. This makes regularization necessary to find

well-behaved solutions. The ice core has a relatively large variation in the horizon-

tal eigenvalue difference and is believed to be the cause of the anisotropic scattering

(Gerber et al., 2024). The inverted scattering ratio might, therefore, provide a means

of reconstructing the non-smooth component of the eigenvalue differences. In Ershadi

et al. (2022), they were able to reconstruct all three eigenvalues from the scattering

ratio and eigenvalue difference; however, this was only possible because they had data

starting at the surface where, where they assumed isotropic ice. Careful consideration

of applicable assumptions would be needed to attempt such a reconstruction here, and

it is not attempted here.

Method limitations

In order to derive analytical expressions for the co-polarized and cross-polarized power

anomalies, the orientation cannot change with depth, making it an inherent assumption

for the inverted scattering ratio as well. Previous radar surveys have sometimes used

the minimum of the cross-polarized power anomaly to get the orientation of the two

horizontal eigenvectors as a function of depth (J. Li et al., 2018; T. J. Young et al.,

2021; Ershadi et al., 2022), or assumed a constant orientation and used the coherence
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phase gradient transition zones between positive and negative (Jordan et al., 2019,

2020). Following the Fujita radar model (Fujita et al., 2006), using the cross-polarized

power minima as eigenvector orientations is only valid if the orientation is constant with

depth, also demonstrated by (Ershadi et al., 2022). The somewhat chaotic behavior of

the return signal for changing orientations with depth in the radar model might not

be the case when coherence is lost, as the phase of the two waves no longer interact.

However, it is not immediately obvious how one should go about reliably estimating a

changing eigenframe with depth. The inverted orientation presented here is the constant

orientation with depth that best represents the co- and cross-polarized power anomalies.

In the same way the orientations derived from the double reflections are the orientations

that best explain the relative amplitudes of the two reflections. For stationary data

collection, the cross-correlation method, as implemented here, gives consistent estimates

of the travel-time lags between all eight radar channels. However, the method is more hit-

and-miss at locations where the radar is moving. To achieve a better correlation, allowing

for subsample travel-time lags when computing the cross-correlation could improve this.

Conclusion

We have presented a method for efficiently estimating the anisotropic scattering, param-

eterized as a scattering ratio, and orientation of the COF eigenvectors by formulating

it as a non-linear inverse problem and solving it with linearized iterations. Analytical

expressions of the observables, co- and cross-polarized power anomalies, and coherence

phase, for a layered medium were derived from the Fujita radar model (Fujita et al.,

2006), by assuming a constant orientation with depth. This allows for fast evaluation of

the forward model and estimation of the Jacobians needed for the linearization of the

forward model. The inversion of the scattering ratio and orientation was first tested on a

synthetic model based on published EastGRIP ice core data, where it was demonstrated

that information about the eigenvalue differences was not needed to reconstruct reason-

able estimates of the scattering ratio and orientation. The eigenvalue differences are not

well constrained by the observables, even in the synthetic case, and a different method

based on the cross-correlation method from Zeising et al. (2023), was instead employed.

The cross-correlation method was formulated as a linear inverse problem subjected to

regularization to incorporate uncertainty related to the range resolution of the radar.

Applied to real data collected at NEGIS in 2022, it showed that the scattering ratio and

orientation estimates are able to accurately reproduce the power anomaly data, suggest-

ing little to no influence of birefringence-induced interference of the co-polarized data,

as also shown by Gerber et al. (2024). In fact, this is because the co-polarized coherence

is lost at shallow depths due to the exceptionally strong anisotropy at NEGIS.

At four different locations upstream of NEGIS, where the radar was stationary, the

cross-correlation method was able to reconstruct the eigenvalue difference as a function

of depth with a high degree of confidence, based on the 8 different receiver channels
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of the radar showing the same pattern. The method is able to reconstruct the eigen-

value differences from around 1000 m and down to the base of the ice at more than

2500 m. The four locations show similar depth evolutions with a steady increase from

1000 m and down to 1500 m - 2000 m, followed by a decrease towards the base. Com-

pared to the published ice core eigenvalue data from EastGRIP (Weikusat et al., 2022)

and previous implementation of the method (Zeising et al., 2023), the cross-correlation

method presented here tends to underestimate the eigenvalue differences, especially in

regions of non-zero gradients, most likely due to an insufficient regularization condition.

The orientation becomes increasingly aligned with the flow as the upstream distance

from EastGRIP increases. The orientation of the slow axis changes from 79.6◦ to 87.8◦

relative to flow at upstream distances of 1.6 km and 30 km, respectively.
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Figure 6.3: Inversion results for scattering ratio r and orientation θ0 for a fixed ∆λ. The
top row of panels shows observations (a-d) and (e) show the location of observation, black
star, and EastGRIP, blue dot, on a surface velocity map (Joughin & University Of Wash-
ington, 2016). Panel (d) is the coherence magnitude, |CHHV V |. The observations are
located around 10 km upstream from EastGRIP. (f-h) display the estimated observables
calculated from the inverted model parameters. (i) show the inverted orientation θest0

plotted as a solid black line, and the fixed eigenvalue difference is plotted as a dashed
gray line. (j) shows the inverted scattering ratio plotted as a solid black line and the
prior scattering ratio as a solid red line.
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Figure 6.5: Inversion results for scattering ratio r, orientation θ0 and eigenvalue differ-
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timated using the cross-correlation method, dashed gray line in panel (i). The entire
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comparison (Weikusat et al., 2022).
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Abstract

Müller Ice Cap sits on Umingmat Nunaat (Axel Heiberg Island), Nunavut, Canada, ∼80◦N.

Its high latitude and elevation suggest it experiences relatively little melt and preserves an

undisturbed paleoclimate record. Here, we present a suite of field measurements, complemented

by remote sensing, that constrain the ice thickness, accumulation rate, temperature, ice-flow

velocity, and surface-elevation change of Müller Ice Cap. These measurements show that some

areas near the top of the ice cap are more than 600 m thick, have nearly stable surface elevation,

and flow slowly, making them good candidates for an ice core. The current mean annual surface

temperature is -19.6◦C, which combined with modeling of the temperature profile indicates that

the ice is frozen to the bed. Modeling of the depth-age scale indicates that Pleistocene ice is

likely to exist with measurable resolution (300-1000 yr m−1) 20-90 m from the bed, assuming

that Müller Ice Cap survived the Holocene Climatic Optimum with substantial ice thickness

(∼400 m or more). These conditions suggest that an undisturbed Holocene climate record could

likely be recovered from Müller Ice Cap. We suggest 91.795◦W, 79.874◦N as the most promising

drill site.
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I contributed to Lilien et al. (2024) by participating in the planning and execution of

the fieldwork at the Müller Ice Cap in Nunavut, Canada. At the ice cap, we conducted

a survey with the UWB radar to locate a potential drill site. I processed the radar

data in the field and contributed to picking the most promising drill site. At the chosen

site, I assisted in drilling a shallow core used to measure δ18O to estimate accumulation

at the site. After the fieldwork, I helped trace the bedrock reflections from the AWI

airborne radar data and worked on implementing a simple range-Doppler algorithm to

better focus the basal reflector in the UWB data, ultimately providing a more accurate

measurement of the depth at the chosen drill site. I read and commented on the final

manuscript.
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Abstract

Anisotropic scattering and birefringence-induced power extinction are two distinct mechanisms

affecting the azimuthal power response in Radio Echo Sounding (RES) of ice sheets. While

birefringence is directly related to the crystal orientation fabric (COF), anisotropic scattering

can, in principle, have various origins. Although both mechanisms can appear separately, they

often act jointly, complicating efforts to deduce the COF strength and orientation from RES sig-

nals. In this study, we assess the relative importance of anisotropic scattering and birefringence

using quad-polarized ground-based RES measurements collected in the Northeast Greenland Ice

Stream (NEGIS). We employ curve-fitting techniques to analyze the synthesized full azimuthal

response, revealing insights into the dominance and orientation of the two different mechanisms

at various depths between 630 m and 2500 m. We find that anisotropic scattering clearly dom-

inates the radar signal in most depths larger than 1000 m, while birefringence effects are only

important at shallower depths and in the vicinity of the ice-stream shear margins. We further find

that the co-polarized power difference follows the ice-sheet stratigraphy with a notable transi-

tion in strength and/or direction at the Wisconsin-Holocene transition and in folded ice outside

the ice stream, possibly indicating inverted stratigraphy in these folded units. We conclude

that small-scale fluctuations in the horizontal COF eigenvalues is the most likely mechanism

responsible for the anisotropic scattering observed in our survey area. Mapping the strength

and orientation of scattering in quad-polarized measurements thus have the potential to provide

independent estimates of the COF orientation and distinguish ice units with different scattering

properties, e.g. from different climatic periods.
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current preprint version of the manuscript.
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Conclusion and outlook

The work presented in this thesis demonstrates how polarized radar data can be used

to derive valuable information about the crystal orientation fabric (COF). This work

has helped provide new insights into the flow dynamics of the Northeast Greenland Ice

Stream (NEGIS).

Because the orientation of ice crystals has the potential to soften and stiffen ice

to an applied stress by around two orders of magnitude, it plays an important role in

our ability to accurately model the flow of ice. This is especially true for fast-flowing

regions, like ice steams, where highly anisotropic COFs are developed by large strains.

NEGIS plays an important role in the dynamic mass loss of the Greenland ice sheet,

but it is notoriously difficult to model for large-scale ice flow models. This is because

NEGIS, unlike other ice streams in Greenland, is not topographically confined by the

bedrock. What initiated the ice steam is still debated, and with every new finding,

more questions seem to emerge. From the widening and relatively young age of the

shear margins (Grinsted et al., 2022; Jansen et al., 2024) to the discovery of an extinct

NEGIS type ice stream hundreds of kilometers north of the current ice stream (Franke,

Bons, et al., 2022). The work presented in this thesis adds to this growing evidence of

an ice stream with a more complicated recent flow history than previously assumed.

In the summer of 2022, we conducted a comprehensive survey of NEGIS with an

ultra-wideband polarimetric radar system, the UWB system. Utilizing the data collected

here, two studies are presented in this thesis to obtain valuable estimates of the COF.

The first study presents a novel method for deriving the depth-averaged eigenvalue

difference and the orientation of the COF by utilizing double reflections. It has long

been known that anisotropic COFs will split any incoming polarized wave into two

orthogonally polarized components propagating at different phase speeds, a slow and a

fast wave. In this study, we show that under certain conditions, these two waves may

get separated to a degree where the radar system can resolve two distinct reflections

originating from the same physical reflector/layer in the ice. The relative amplitude of

the two recorded reflections can be related to the relative angle between the antenna

panels of the radar and the horizontal eigenvectors of the COF. This method provides a
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way to estimate the eigenvalue differences without needing multiple polarizations. This

opens the possibility to go back and look for double reflections in radar data that was

not originally intended for estimating COF. For estimating the orientation it is not

quite enough with single co-polarized data, as anisotropic scattering and attenuation

can affect the relative amplitude, and orthogonally co-polarized or cross-polarized data

is needed to account for this. The method applied to the radar data from NEGIS showed

evidence that the COF was not completely flow-aligned at the center of the ice stream

near EastGRIP and a general asymmetry across the ice stream. It also showed an almost

45-degree rotation of the COF relative to flow near the northwestern shear margin. The

results were compared to a fabric development model (Gerber et al., 2023), which was

able to reproduce our results of the northwestern part of the ice stream but failed for

the center and southeastern part. The model predicts that the COF of the ice stream

is more or less symmetric about the center flow line, with a flow-aligned COF at the

center. The model assumes that ice flow has remained steady for the last ∼ 10 kyr,

and we believe that the mismatch between the model and our findings stems from this

assumption. This study is another piece of evidence that the flow and shape of NEGIS

are more variable than previously assumed.

In the second study, we formulate the problem of deriving the COF from the full po-

larimetric signal as an inverse problem. Based on the radar model developed by Fujita

et al. (2006) we derive analytical expressions for the co-polarized and cross-polarized

power anomalies as well as the coherence phase for an arbitrary number of layers, by

assuming a constant orientation with depth. With these expressions, a simple inversion

algorithm, based on an iterative linearization of the forward model, is set up to inverte

for the orientation and anisotropic scattering ratio. Without information about the

eigenvalue differences, the inverted scattering ratio and orientation can accurately re-

produce co- and cross-polarized power anomalies. Due to the unusually high horizontal

anisotropy at NEGIS relative to the bandwidth and center frequency of the radar, the

coherence between orthogonal co-polarized signals disappears at polarizations closely

aligned with the COF. This means that the coherence phase is not usable for deriving

eigenvalue difference as a function of depth, as done by other studies in other glaciologi-

cal conditions (Jordan et al., 2019; T. J. Young et al., 2021; Ershadi et al., 2022), except

for perhaps the very top 100 m of the ice sheet (Zeising et al., 2023). For the eigenvalue

difference, the problem was formulated as a linear inverse problem to find the eigenvalue

differences that best explain the travel-time differences as a function of depth, derived

from the cross-correlation method described in Zeising et al. (2023). The inversion was

applied at four different locations upstream of the EastGRIP ice core. Near the ice core,

the orientation matches the double reflections’ findings, suggesting a COF rotation of

more than 10◦ relative to flow. However, at increasing upstream distance, the COF

tends towards being flow aligned, with only a few degrees offset 30 km upstream from

EastGRIP. The eigenvalue differences generally showed a gradual increase from around

1000 m to a maximum located between 1500 m - 2000 m, followed by a decrease to-
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wards the base. While the estimated eigenvalue differences are generally underestimated

compared to the ice-core-derived ones, they show a similar trend, and our estimates are

generally consistent with the depth evolution of the eigenvalue differences derived from

the ice core (Stoll et al., 2024).

Outlook

Double reflections have the potential to be used for already collected data in Greenland

and Antarctica, where thousands of kilometers of flight lines have been collected. Some

of these flights cross over areas of high horizontal anisotropy, like ice streams, where the

method might be able to give depth-averaged eigenvalue differences, depending on the

bandwidth of the radar system.

If the cross-correlation method can be improved to better handle nonstationary data,

perhaps through a different processing of the data and/or an improved method of corre-

lation, the polarimetric inversion can be extended to all parts of our 2022 NEGIS survey,

providing the most detailed map of COF data ever compiled for NEGIS. Combined with

fabric development models, this dataset has the potential to greatly improve our under-

standing of the flow history of NEGIS. The UWB data contain many more stationary

points to provide valuable information, even without using non-stationary locations. If

the method is to incorporate a potential change of eigenframe with depth, a modified

radar model that can incorporate the loss of coherence is needed.

The UWB data have great potential for further exploration beyond COF analysis.

One special area of interest for NEGIS is the basal conditions, and previously, radar

surveys have been used to estimate the presence of meltwater at the base (Jacobel et

al., 2009; K. Matsuoka et al., 2012; D. A. Young et al., 2016). In the summer of 2023,

the base of the ice at EastGRIP was reached, and logging of the borehole again in 2024

suggests no gradient in the horizontal velocity with depth. If the ice is not shearing

at EastGRIP, it must be supported by some form of lubrication at the base of the ice.

Perhaps the radar reflectivity can help map the extent of block flow at NEGIS.

In the summer of 2025, the UWB radar will be brought back to EastGRIP to get a

complete flow line coverage from EastGRIP to the GRIP borehole located at the summit

of the Greenland Ice Sheet. A full flow line profile will potentially help better constrain

the upstream flow effects of the EastGRIP ice core (Gerber et al., 2021). It can hopefully

also shed some light on the exceptionally high basal melt rates that were first suggested

by Fahnestock et al. (2001).
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Appendix A

Wave propagation in ice

The determinant shown in equation 2.10 can be expanded as follows,

∣∣∣∣∣∣∣∣

−(k2y + k2z) +
ω2

c20
ε⊥ kykx kzkx

kykx −(k2x + k2z) +
ω2

c20
ε⊥ kzky

kzkx kzky −(k2x + k2y) +
ω2

c20
ε∥

∣∣∣∣∣∣∣∣
=

ω2

c20

(
ω2

c20
ε⊥ − k2x − k2y − k2z

)(
ε⊥

(
ω2

c20
ε∥ − k2x − k2y

)
− ε∥k

2
z

)
= 0

⇒
(
ω2

c20
ε⊥ − k2x − k2y − k2z

)(
ω2

c20
ε∥ − k2x − k2y −

ε∥
ε⊥
k2z

)
= 0

⇒
(
k2x
ε⊥

+
k2y
ε⊥

+
k2z
ε⊥

− ω2

c20

)(
k2x
ε∥

+
k2y
ε∥

+
k2z
ε⊥

− ω2

c20

)
= 0

For the simple case where k = (kx, 0, 0)
T the electric field polarization can be found

by inserting the two wave solutions, kx = ω
c0

√
ε⊥ and kx = ω

c0

√ε∥ ,

Ordinary:




ω2

c20
ε⊥ 0 0

0 0 0

0 0 ω2

c20
∆ε







Ex

Ey

Ez




=




0

0

0




⇒ P =




0

1

0




Extraordinary:




ω2

c20
ε⊥ 0 0

0 −ω2

c20
∆ε 0

0 0 0







Ex

Ey

Ez




=




0

0

0




⇒ P =




0

0

1



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A more general case with k = k0(sinα, 0, cosα)
T . The ordinary wave is then,

Ordinary:

k0
ε⊥

(sin2 α+ cos2 α) =
ω2

c20
⇒ k0 =

ω

c0

√
ε⊥




k20(1− cos2 α) 0 k20 cosα sinα

0 0 0

k20 cosα sinα 0 ω2

c20
ε∥ − k20 sin

2 α






Ex

Ey

Ez


 =



0

0

0


⇒ P =



0

1

0




Ex and Ez have to satisfy the following two equations, and the only solution is Ex = 0

and Ez = 0,

Ex = −Ez
k20 cosα sinα

k20 sin
2 α

= −Ez
cosα

sinα

Ex = −Ez
ω2

c20
ε∥ − k20 sin

2 α

k20 sinα cosα
= −Ez

(
ε∥

ε⊥ sinα cosα
− sinα

cosα

)

For the extraordinary wave,

Extraordinary:

k20

(
1

ε∥
sin2 α+

1

ε⊥
cos2 α

)
⇒ k20 =

ω2/c20
1
ε∥

sin2 α+ 1
ε⊥

cos2 α
=

ω2/c20ε⊥ε∥

ε⊥ sin2 α+ ε∥ cos
2 α




ω2

c20
ε⊥ − k20 cos

2 α 0 k20 cosα sinα

0 ω2

c20
ε⊥ − k20 0

k20 cosα sinα 0 ω2

c20
ε∥ − k20 sin

2 α






Ex

Ey

Ez


 =



0

0

0




(i): Ex

(
ω2

c20
ε⊥ − k20 cos

2 α

)
= −Ezk20 sinα cosα⇒ Ez = −Ex

(
ω2/c20ε⊥

k20 sinα cosα
− cosα

sinα

)

⇒ Ez = −Ex
(
ε⊥ sin2 α+ ε∥ cos

2 α

ε∥ sinα cosα
− cosα

sinα

)
= −Ex

(
ε⊥ sin2 α

ε∥ sinα cosα

)

⇒ Ex = −Ez
ε∥ cosα

ε⊥ sinα

(ii): Ex = −Ez
(

ω2/c20ε∥
k20 sinα cosα

− sinα

cosα

)
= −Ez

(
ε⊥ sin2 α+ ε∥ cos

2 α

ε⊥ sinα cosα
− sinα

cosα

)

⇒ Ex = −Ez
ε∥ cosα

ε⊥ sinα

Assuming sinα ̸= 0. Now there is a non-trivial solution to Ex and Ez. The normalization

condition, |P| = 1, and of course Ei = PiE0 exp j(k · r− ωt), yield the following,
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P = P0



− ε∥ cosα

ε⊥ sinα

0

1


 (A.1)

|P|2 = P 2
0 + P 2

0

ε2
∥
cos2 α

ε2
⊥
sin2 α

= 1 (A.2)

P 2
0 =

1

1 +
ε2
∥
cos2 α

ε2
⊥

sin2 α

=
ε2
⊥
sin2 α

ε2
⊥
sin2 α+ ε2

∥
cos2 α

(A.3)

P0 =
ε⊥ sinα

εeff
(A.4)

and the electric field polarization becomes,

P =
1

εeff



−ε∥ cosα

0

ε⊥ sinα




where εeff =
√
ε⊥ sin2 α+ ε∥ cos

2 α for α ̸= 0. For α = π/2, which corresponds to a prop-

agation vector along x, the electric field for the extraordinary wave is E = (0, 0, Ez)
T .

In case α = 0 there will be no extraordinary wave, as it will be the same as the ordinary

wave.

Wave propagation in polycrystalline ice

The single crystal permittivity at an abitrary orientation can be written as follows,

εc(θ, ϕ) = RT
z (ϕ)Ry(θ)

TεcRy(θ)Rz(ϕ) ⇒

=




ε⊥ +∆ε cos2 ϕ sin2 θ 1
2∆ε sin 2ϕ sin

2 θ 1
2∆ε cosϕ sin 2θ

1
2∆ε sin 2ϕ sin

2 θ ε⊥ +∆ε sin2 ϕ sin2 θ 1
2∆ε sinϕ sin 2θ

1
2∆ε cosϕ sin 2θ

1
2∆ε sinϕ sin 2θ ε⊥ +∆ε cos2 θ




where the rotation matricies are defined as follows,

Ry =



cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 Rz =




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 (A.5)



Appendix B

Data acquisition and processing

Subsample time delay

Let s̃(ω) be the Fourier transform of s(t), and δt be an arbitrary time delay, then the

Fourier transform of s(t− δt) can be written as,

∫ ∞

−∞
s(t− δt) exp(−jωt)dt =

∫ ∞

−∞
s(u) exp(−jω(u+ δt))du, (B.1)

where u ≡ t− δt. This can then be rewritten as,

exp(−jωδt)
∫ ∞

−∞
s(u) exp(−jωt)du = exp(−jωδt)s̃(ω), (B.2)

which shows that an arbitrary time delay can be applied to a signal, s(t), by applying

a phase shift to its Fourier transform.
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Appendix C

Radar model

The orientation of the principal axes of T and S are described by θ = θ(z). If we want to

synthesize the rotation of the antennas at the surface, it is equivalent to doing a constant

shift of θ with depth, i.e., θ(z) → θ(z) + γ. In the following, we use the relation,

R(θ)R(γ) = R(θ + γ) = R(γ)R(θ) (C.1)

Applying a constant shift in orientation the T̃n, yield the following,

T̃n(γ) =
n∏

i=1

R(θi + γ)TiR(−(θi + γ)) =
n∏

i=1

R(θi)R(γ)TiR(−θi)R(−γ)

= R(γ)R(θ1)T1R(−θ1)R(−γ)R(γ)R(θ2)T2R(−θ2)R(−γ) · · ·

= R(γ)
n∏

i=1

[
R(θi)TiR(−θi)

]
R(−γ) = R(γ)T̃nR(−γ)

(C.2)

We can, therefore, just rotate the operators, T̃n, T̃
R
n and S̃n, to get a constant shift in

the orientation, which is equivalent to rotating the antennas. From the model operator,

Mn(γ), we can synthesize any antenna orientation by simply applying a rotation to Mn,

Mn(γ) = R(γ)T̃R
nR(−γ)R(γ)S̃nR(−γ)R(γ)T̃nR(−γ)

= R(γ)T̃R
n S̃nT̃nR(−γ) = R(γ)MnR(−γ)

(C.3)
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Double reflections
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Introduction This supporting information includes text, eight figures and one GIF.

• Text S1 explains how uncertainty estimates are calculated for the orientation results.

• Figure S1 gives a more detailed view of the double reflections at transmit and receive

for HH and HV.

• Figure S2 illustrates the workflow for deriving the amplitudes and noise estimates

from the radargrams needed for deriving the orientation.

• Figure S3 is a radargram from the MCoRDS radar showing double reflections near

EastGRIP

• Figure S4-S8 are detailed overviews of the results derived from double reflections.

• Movie S1 is a GIF that rapidly flips the between HH and VV radargrams from Figure

1 of the main text.
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Text S1: Uncertainty estimates for orientation

The HH- and VV-radargrams have up to three double reflections, each used to derive

an orientation estimate. We therefore have a maximum of six independent orientation

estimates. These estimates are combined into a single along-track orientation estimate for

each of the four lines (A, B, C, andD). Each line is divided into three along-track sections.

The mean orientation for each section is presented with the crosses and white numbers

in Figure 3. The uncertainty for each section is calculated as the standard deviation

multiplied by
√

6/avg. # of layers used. The avg. # of layers used refer to how many

double reflection layers (out of a maximum of six) are on average contributing to the

orientation estimates within the section. This is done to more fairly compare between

double reflection lines and give less confidence to lines with less evidence.
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Figure S1: (a) shows an incoming linearly polarized wave in dark gray that is split into

two waves, red and blue, polarized along the horizontal principal components of the COF

(x, y). (b)-(e) illustrate four different polarization scenarios. (b) is transmit at the H

polarization where the two waves are excited with amplitude Hx and Hy, and then later

received (c) after experiencing a loss due to attenuation and scattering, Lx and Ly, while

traveling through the ice. We call this HH. (d) and (e) shows the same but for the HV

polarization, transmit at H and receive at V. (f) shows the ratio of the received amplitudes

for the HH and HV scenarios (see equations 6 and 7 of the main text), where Lx = 3
4
Ly

represent anisotropic scattering or attenuation.
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Echogram Trace reflections Estimate amplitude Estimate local noise

(a) (b) (c) (d)

Figure S2: The workflow for deriving the amplitudes from the two reflections starts with

picking the two reflections (b). Next, a window is applied around the reflections to iden-

tify the maximum value, which is used as the amplitude of the reflection (c). Finally, the

region between the two reflections is used to estimate the background noise level (d).
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Figure S3: Radargram from MCoRDS (IRMCR1B 20190418 01 017) showing probable

double reflections. The top panel displays a radargram crossing NEGIS with the two

rectangular black boxes showing the outline of the zoomed radargrams in (c) and (d) with

visible double reflections. (b) shows a surface velocity map of NEGIS, with the flight path

in black and the along-track locations of c and d shown in gray.
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Figure S4: Detailed overview of results from the part of line 2022/06/27 that overlap

with line A in Figure 1 of main manuscript. (a) HH-radargram where visible double

reflections have been picked in pairs (0,1),(2,3) and so on, with the corrected amplitude

differences plotted below in (b) for each layer. (c) calculated orientations of the smallest

eigenvalue relative to flow for each layer with a smoothed mean plotted on top in black.

(d) horizontal eigenvalue difference based on the travel-time difference of the reflection

pairs picked in (a). (e)-(h) as in (a)-(d), but for VV. a′ is the closest point to EastGRIP

and a′′ the furthest.
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Figure S5: Detailed overview of results from line A in Figure 1 of main manuscript. (a)

HH-radargram where visible double reflections have been picked in pairs (0,1),(2,3) and

so on, with the corrected amplitude differences plotted below in (b) for each layer. (c)

calculated orientations of the smallest eigenvalue relative to flow for each layer with a

smoothed mean plotted on top in black. (d) horizontal eigenvalue difference based on the

travel-time difference of the reflection pairs picked in (a). (e)-(h) as in (a)-(d), but for

VV. A′′ is the closest point to EastGRIP and A′ the furthest.
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Figure S6: Detailed overview of results from line D in Figure 1 of main manuscript. (a)

HH-radargram where visible double reflections have been picked in pairs (0,1) and (2,3),

with the corrected amplitude differences plotted below in (b) for each layer. (c) calcu-

lated orientations of the smallest eigenvalue relative to flow for each layer with a smoothed

mean plotted on top in black. (d) horizontal eigenvalue difference based on the travel-time

difference of the reflection pairs picked in (a). (e)-(h) as in (a)-(d), but for VV.
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Figure S7: Detailed overview of results from the part of line 2022/07/05 that overlap

with line B in Figure 1 of main manuscript. (a) HH-radargram where visible double

reflections have been picked in pairs (0,1) and (2,3), with the corrected amplitude dif-

ferences plotted below in (b) for each layer. (c) calculated orientations of the smallest

eigenvalue relative to flow for each layer with a smoothed mean plotted on top in black.

(d) horizontal eigenvalue difference based on the travel-time difference of the reflection

pairs picked in (a). (e)-(h) as in (a)-(d), but for VV.
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Figure S8: Detailed overview of results from line D in Figure 1 of main manuscript. (a)

HH-radargram where visible double reflections have been picked in pairs (0,1),(2,3) and

so on, with the corrected amplitude differences plotted below in (b) for each layer. (c)

calculated orientations of the smallest eigenvalue relative to flow for each layer with a

smoothed mean plotted on top in black. (d) horizontal eigenvalue difference based on the

travel-time difference of the reflection pairs picked in (a). (e)-(h) as in (a)-(d), but for

VV.
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Movie S1: GIF of double reflections observed at NEGIS. Top panel is showing double

reflections by rapidly flipping between the HH and VV radargrams also shown in Figure

1 of the main manuscript. The bottom panel shows the driving direction of the radar

relative to flow. This demonstrated the two reflections marked by arrows stay fixed in

travel-time but change amplitude when flipping between the HH and VV radargrams.
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Appendix E

Polarimetric inversion

Analytical radar observables for θ(z) = θ0

The HH power anomaly is for convenience defined defined as (l = 2),

δ2PHH,n(γ) = 20 log10

(
|sHH,n(γ)|2

1
π

∫ π
0 |sHH,n(γ′)|2dγ′

)
(E.1)

where |sHH,n(γ)|2 can be calculated from equation 6.7,

|sHH,n(γ)|2 = sHH,n(γ)s
∗
HH,n(γ)

=
[
cos2(θ0 − γ)sHH,n(θ0) + sin2(θ0 − γ)sV V,n(θ0)

][
cos2(θ0 − γ)s∗HH,n(θ0) + sin2(θ0 − γ)s∗V V,n(θ0)

]

∝ cos4(θ0 − γ)S2
n,x + sin4(θ0 − γ)S2

n,y + cos2(θ0 − γ) sin2(θ0 − γ)Sn,xSn,y
(
ej(ψn,x−ψn,y) + e−j(ψn,x−ψn,y)

)

= cos4(θ0 − γ)S2
n,x + sin4(θ0 − γ)S2

n,y +
1
2 sin

2(2(θ0 − γ))Sn,xSn,y cos(ψn,x − ψn,y)

= S2
n,x

(
cos4(θ0 − γ) + r2n sin

4(θ0 − γ) + 1
2rn sin

2(2(θ0 − γ)) cos(ψn,x − ψn,y)
)

where rn ≡ Sn,y
Sn,x

. The proportionality factor is D(zn)
2 but has been left out as it will

be canceled out anyway. The integral then follows as,

1

π

∫ π

0
|sHH,n(γ)|2dγ ∝ S2

n,x

1

8

[
3 + 3r2n + 2rn cos(ψn,x − ψn,y)

]

Combined it yields an analyitical expression for the HH power anomaly,

δP 2
HH,n(γ)=20 log10

[
cos4(θ0−γ)+r2n sin4(θ0−γ)+ 1

2
rn sin2(2[θ0−γ]) cos(ψn,x−ψn,y)

1
8
[3+3r2n+2rn cos(ψn,x−ψn,y)]

]

The HV power anomaly is defined as,

δ2PHV,n(γ) = 20 log10

(
|sHV,n(γ)|2

1
π

∫ π
0 |sHV,n(γ′)|2dγ′

)
(E.2)

128
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where |sHV,n(γ)|2 can be calculated from equation 6.7,

|sHV,n(γ)|2 = sHV,n(γ)s
∗
HV,n(γ)

=
(
|sHH,n(θ0)|2+|sV V,n(θ0)|2−sHH,n(θ0)s∗V V,n(θ0)−s∗HH,n(θ0)sV V,n(θ0)

)
cos2(θ0−γ) sin2(θ0−γ)

∝ S2
n,x

(
1 + r2n − 2rn cos(ψn,x − ψn,y)

)
cos2(θ0 − γ) sin2(θ0 − γ)

The proportionality constant is D(zn)
2 but has been left out as it will be canceled out

anyway. The integral then follows as,

1

π

∫ π

0
|sHV,n(γ)|2dγ ∝ S2

n,x

1

8

(
1 + r2n − 2rn cos(ψn,x − ψn,y)

)

The HV power anomaly can then be written as,

δP 2
HV,n(γ) = 20 log10

[
8 cos2(θ0 − γ) sin2(θ0 − γ)

]
, (E.3)

The last observable, ϕHHV V,n(γ), can simply be expressed as, arg(sHH,n(γ)s
∗
V V,n(γ)).

sHH,n(γ)sV V,n(γ)
∗ ∝
[
cos2(θ0−γ)ejψn,x+rn sin2(θ0−γ)ejψn,y

][
rn cos2(θ0−γ)e−jψn,y+sin2(θ0−γ)ejψn,x

]

= rn

(
cos4(θ0 − γ)ej(ψn,x−ψn,y) + sin4(θ0 − γ)e−j(ψn,x−ψn,y)

)

+cos2(θ0 − γ) sin2(θ0 − γ)
(
1 + r2n

)

= rn cos(ψn,x − ψn,y)
(
cos4(θ0 − γ) + sin4(θ0 − γ)

)
+ cos4(θ0 − γ) sin2(θ0 − γ)(1 + rn)

2

+jrn sin(ψn,x − ψn,y)
(
cos4(θ0 − γ)− sin4(θ0 − γ)

)

The argument is then just the inverse tangent of the imaginary part divided by the real

part, and slightly rewritten it becomes,

ϕHHV V,n(γ) = arctan

[
rn sin(ψn,x−ψn,y)

(
1−tan4(θ0−γ)

)

rn cos(ψn,x−ψn,y)
(
1+tan4(θ0−γ)

)
+tan2(θ0−γ)

(
1+r2n

)
]

We see that for γ = θ0 the expression reduces to,

ϕHHV V,n(γ = θ0) = arctan

(
sin(ψn,x − ψn,y)

cos(ψn,x − ψn,y)

)
= ψn,x − ψn,y

which corresponds to the difference in the COF-aligned signal phases, as we would

expect.

Jacobians

∂δP 2
HH,n(γ)

∂rn
=

40

ln 10
(r2n−1) cos(4x) cos(y)−cos(2x)((r2n+1) cos(y)+6rn)

(3r2n+2rn cos(y)+3)(rn(2rn sin4(x)+sin2(2x) cos(y))+2 cos4(x))
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∂δP 2
HH,n(γ)

∂θ0
=

40
(
4r2n sin

3(x) cos(x) + rn sin(4x) cos(y)− 4 sin(x) cos3(x)
)

log(10)
(
rn
(
2rn sin

4(x) + sin2(2x) cos(y)
)
+ 2 cos4(x)

)

where x = θ0 − γ and y = ψn,x − ψn,y

∂δP 2
HV,n(γ)

∂θ0
=

40

ln 10

(
cot(θ0 − γ)− tan(θ0 − γ)

)

∂ϕHHV V,n(γ)
∂y =

2rn sec4(x)(8(r2n+1) cos(2x) tan2(x) cos(y)+rn(7 cos(2x)+cos(6x)) sec4(x))
r2n sec8(x)((cos(4x)+3)2 cos2(y)+16 cos2(2x) sin2(y))+8rn(r2n+1)(cos(4x)+3) tan2(x) sec4(x) cos(y)+16(r2n+1)2 tan4(x)

where x = θ0 − γ and y = ψn,x − ψn,y, and then,

∂ϕHHV V,n(γ)

∂∆λi
=
∂ϕHHV V,n(γ)

∂y

∂y

∂∆λi

y = 2

n∑

i=1

[
∆zi(ki,x − k0)

]
− 2

n∑

i=1

[
∆zi(ki,y − k0)

]

= 2
n∑

i=1

[
∆zi(ki,x − ki,y)

]

ki,x = ω
c0

√
ε⊥ +∆ελi,x ≈ ω

c0

(√
ε⊥ +

∆ελi,x
2
√
ε⊥

)

ki,y =
ω
c0

√
ε⊥ +∆ελi,y ≈ ω

c0

(√
ε⊥ +

∆ελi,y
2
√
ε⊥

)


 = ki,x − ki,y =

ω

c0

∆ε

2
√
ε⊥

∆λ

y ≈ ω∆ε

c0
√
ε⊥

n∑

i=1

∆zi∆λi

∂y

∂∆λk
=

ω∆ε

c0
√
ε⊥

∆zk

and finally,
∂ϕHHV V,n(γ)

∂∆λi
=
∂ϕHHV V,n(γ)

∂y

ω∆ε

c0
√
ε⊥

∆zi
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