Cosmic DISSONANCE

Addressing tensions in modern cosmology

Dissertation submitted for the degree of

PHIiLosorPHIZ DOCTOR

to the PhD School of the Faculty of Science,
University of Copenhagen

Nikki Arendse
EXAMINERS SUPERVISORS
Dr. Eleonora di Valentino Prof. Jens Hjorth
Dr. Philip James Marshall Dr. Radostaw Jan Wojtak

Assoc. Prof. Steen Harle Hansen






iii

PUBLICATIONS RELATED TO THIS THESIS

This thesis has used material from the following first- and co-authored publications:

m  “Low-redshift measurement of the sound horizon through gravitational time-delays,”
Nikki Arendse, Adriano Agnello & Radostaw J. Wojtak.
A&A, 632, Ag1 (2019). ArXiv: 1905.12000.

m  “Cosmic dissonance: are new physics or systematics behind a short sound horizon?,”
Nikki Arendse, Radostaw ]. Wojtak, Adriano Agnello, Geoff C.-F. Chen, Christopher D.
Fassnacht, Dominique Sluse, Stefan Hilbert, Martin Millon, Vivien Bonvin, Kenneth
C. Wong, Frédéric Courbin, Sherry H. Suyu, Simon Birrer, Tommaso Treu & Leon V.E.
Koopman.
A&A, 639, A57 (2020). ArXiv: 1909.07986.

m  “Al-driven spatio-temporal engine for finding gravitationally lensed supernovae,”
Doogesh Kodi Ramanah, Nikki Arendse & Radostaw ]. Wojtak.
Under review at Nature Astronomy. ArXiv: 2107.12399.

m  “Inferring the Hubble constant from lensed supernovae in LSST with spatio-temporal neural
networks,”
Nikki Arendse, Doogesh Kodi Ramanah & Radostaw ]J. Wojtak.
Work in progress.

m “Simulation-based inference of dynamical galaxy cluster masses with 3D convolutional neural
networks,”
Doogesh Kodi Ramanah, Radostaw J. Wojtak & Nikki Arendse
MNRAS, 476, 2825 (2021). ArXiv: 2009.03340.


https://arxiv.org/abs/1905.12000
https://arxiv.org/abs/1909.07986
https://arxiv.org/abs/2107.12399
https://arxiv.org/abs/2009.03340




ABSTRACT

N THE early Universe, primordial density perturbations left their imprints on the first visible
Ilight, the Cosmic Microwave Background (CMB) radiation. While the Universe expanded
and cooled down, the density fluctuations evolved under the influence of gravity into stars,
galaxies and large-scale cosmic structures, some of which can be employed today as distance
indicators. When these distance indicators and the CMB are used independently to infer the
cosmic expansion rate, they yield conflicting results. This discrepancy, often referred to as the
‘Hubble tension’, constitutes one of the key mysteries in present-day cosmology.

The aim of this thesis is to investigate the aforementioned tension by means of existing data
sets and forecasts for future observations. In order to do so, the presented doctoral research lies
at the intersection of observations and theory, while drawing from the latest advances in the
field of machine learning (ML). The thesis is organised in three main parts.

In the first part, we employ observations of gravitationally lensed quasars, type Ia super-
novae, Baryon Acoustic Oscillations, and the CMB to study the tension in a broader framework,
in terms of both the Hubble constant and the sound horizon. Moreover, we investigate whether
new cosmological models can resolve the combined tension and find that none of the modifica-
tions to our standard model manage to do so. These findings highlight the importance of novel
independent measurements of the cosmic expansion rate.

The second part of the thesis explores one such new avenue to infer the Hubble constant:
the use of gravitationally lensed supernovae for distance measurements. For this purpose, we
develop a deep learning framework to identify lensed supernovae from optical transient surveys
by means of both their spatial and time-variable features. We demonstrate the improvement
in classification accuracy when using time-series images instead of single-epoch observations.
Additionally, we present a proof of concept of a similar spatio-temporal ML pipeline to infer
the Hubble constant from simulated time-series images of lensed supernovae as expected from
next-generation surveys.

Finally, the third part of the thesis shifts the focus to galaxy clusters, the most massive gravi-
tationally bound cosmic structures, and their potential for cosmological inference. We design a
deep learning mass estimator that exploits the full 3D projected phase-space distribution of
galaxy clusters. As a result, the mass estimator presently yields the most precise cluster mass
estimates among the recent ML-based methods. For the first time, such an ML-based mass
estimator is employed to construct a cluster mass function from real galaxy cluster observations,
yielding results that are consistent with predictions from the standard cosmological model.

\%






DANSK RESUME

I pET tidlige univers efterlod de oprindelige densitetspertubationer deres aftryk pa det forste
synlige lys — den kosmiske mikrobeglgebaggrundsstraling (CMB). Som Universet udvidede
sig og kolede ned, udviklede densitetsfluktuationerne sig under indflydelse fra tyngdekraften
til stjerner, galakser og storskalastrukturer, hvoraf nogle af disse i dag kan anvendes til afs-
tandsmal. Nar disse afstandsmédlere og CMB’en bruges uafthzengigt til at bestemme den kosmiske
ekspantionsrate, giver de modstridende resultater. Denne uoverenstemmelse som ofte kaldes
“Hubble tension”, udger en af hovedmysterierne i nutidens kosmologi.

Mailet med denne afhandling er at udforske den fernsevnte uoverenstemmelse, ved hjaelp af
eksisterende datasat og forudsigelser af fremtidige observationer. For at gore dette placerer
denne forskning sig i intersektionen mellem observationer og teori, mens den treekker pa de
nyeste udviklinger inden for machine learning (ML). Denne athandling bestar af 3 hoveddele.

I den forste del anvender vi observationer af gravitationelt linsede kvasarer til at stud-
ere uoverenstemmelsen i en storre sammenheng — bade i forhold til Hubblekonstanten og
lydhorisonten. Derudover undersoger vi om de nye kosmologiske modeller kan lgse uoveren-
stemmelsen, og vi finder frem til at ingen af modifikationerne til vores standardmodel er en
losning. Disse resultater tydeliggeor vigtigheden af nye, uathangige malinger af den kosmiske
ekspantionsrate.

Anden del af afhandlingen udforsker én ny vej til bestemme Hubblekonstanten: Brugen
af gravitationelt linsede supernovaer til afstandsmadlinger. For at stotte os i disse bestrabelser,
udvikler vi et deep learning framework til at identificere linsede supernovaer fra optiske
observationer af transienter ved at udnytte bade deres rumlige og tidsligt varierende egenskaber.
Vi demonsterer forbedringen af klassifikationsnejagtighed ved anvendelse af tidsseriebilleder i
stedet for enkeltepokeobservationer. I tilleg til dette viser vi en lignende rumlig-tidsmaessig
ML pipeline til at bestemme Hubblekonstanten fra simulerede tidsseriebilleder af linsede
supernovaer som forventet fra neeste generation af observationer.

Til slut skifter den tredje del af afhandlingen fokus til galaksehobe, de mest massive gravita-
tionelt bundne kosmiske strukturer, og deres potentielle verdi for kosmologien. Vi designer en
deep learning galaksehobsmasseestimator som udnytter den fulde 3D-projekterede faserums-
fordeling af galaksehobe. Som resultat giver masseestimator i gjeblikket de mest praecise sken
af massen blandt de nyligt foreslaede ML-baserede metoder. For forste gang anvendes en saddan
MI-baseret masseestimator til at konstruere en galaksehobsmassefunktion fra segte galaksehob-
sobservationer. Dette giver resultater, der er konsistente med forudsigelser fra den kosmologiske
standardmodel.
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INTRODUCTION

MOTIVATION

HE Universe came into existence around 13.8 billion years ago in a hot, dense state, as postu-
Tlated by the Big Bang model. Primordial density perturbations grew under the influence of
gravity to form structures and a myriad of astrophysical objects that we observe around us today.
The early Universe was dominated by radiation, followed by a phase of matter domination, both
in the form of visible and dark matter. Today, we are dominated by dark energy, an unidentified
substance that drives the accelerated expansion of the Universe.

Although our current knowledge about the history of the Universe is remarkable, open
questions remain pertaining to its inner-workings, composition and evolution. What is the
nature of dark matter and dark energy, and how does dark energy evolve over time? What is the
current expansion rate of the Universe, i.e. the Hubble constant? Can the Universe be accurately
described by our standard ACDM cosmological model or do we need new physics? What is the
exact expansion history and geometry of the Universe?

Next-generation galaxy surveys, such as the Legacy Survey of Space and Time (LSST) to be
conducted at the Vera C. Rubin Observatory, as well as upcoming missions at the Nancy Grace
Roman Space Telescope, the Dark Energy Spectroscopic Instrument (DESI), and Euclid will
collect an unprecedented amount of high-resolution data. Consequently, there will be many
opportunities to make progress in deciphering the above cosmological puzzles. However, the
sheer volume of data will also pose new challenges. Machine learning techniques have recently
emerged as promising tools to optimally extract information from these large data sets.

The main focus of this thesis is to address the above questions by combining observational
data with simulations and theoretical models, whilst using machine learning methods to link
these three aspects. The underlying philosophy is that challenges in cosmology are most likely
to be solved at the intersection of observations and theory. More specifically, the work presented
in the thesis follows two distinct avenues. The first strategy infers the cosmic expansion history
by connecting distances and redshifts from astrophysical objects, thereby employing existing
data sets as well as forecasts for future observations. The second approach computes the mass
distribution of galaxy clusters, the most massive gravitationally bound objects in the Universe,
with the ultimate goal of constraining the matter density and clustering amplitude.
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THESIS OUTLINE

HE thesis is structured as follows. Chapter 1 provides an introduction to our present view
Tof the formation and evolution of the Universe. It gives an overview of our standard ACDM
model and describes how initial density perturbations are imprinted in the Cosmic Microwave
Background (CMB) radiation and have evolved into stars, galaxy clusters and other astrophysical
objects, some of which can be employed today as distance indicators. The remainder of the
chapter reviews the tension that arises between different measurements of the cosmic expansion
rate, and the prospects of resolving the tension via a new cosmological model.

Chapter 2 outlines the statistical inference and machine learning methods adopted in this
thesis. It begins with a description of Bayesian statistics and Markov Chain Monte Carlo
techniques, and proceeds with the presentation of two types of neural networks. Finally, it
describes two methods that can provide reliable uncertainties for the neural network predictions.

Part I: The Hubble constant & sound horizon tension

In Chapter 3, we present a measurement of the Hubble constant and sound horizon from type
Ia supernovae and Baryon Acoustic Oscillations, calibrated by gravitationally lensed quasars.
The analysis is done in a cosmographic framework without adopting any assumptions about
the underlying cosmology. As a consequence, our results are completely independent of a
choice of cosmological model, CMB observations, and the Cepheid calibration. We find a weak
(~ 20) tension with predictions from CMB measurements and the standard ACDM model.
Additionally, we investigate the effects of including a sample of quasars with standardisable
ultraviolet and X-ray luminosity distances, which produce a slightly higher tension. This study
also demonstrates the potential of constraining the cosmic curvature solely through low-redshift
observations, yielding a result consistent with a flat Universe. The corresponding paper is
published in Astronomy & Astrophysics (Arendse, Agnello, & Wojtak, 2019).

Chapter 4 revisits the tension, with additional distance measurements from two gravita-
tionally lensed quasars and calibrations from Cepheids and stars at the Tip of the Red Giant
Branch. The resulting measurements of the Hubble constant and the sound horizon are in
strong (up to 50) tension with CMB observations. In order to address this discrepancy, we
investigate whether modifications of the standard ACDM model can reconcile the tension. We
show that early-time extensions, which alter the physics before recombination, slightly decrease
the tension, but do not manage to dissipate it completely. Models that change the physics after
recombination, i.e. late-time modifications, are often put forward as promising solutions to
the Hubble tension. However, we demonstrate that they fail to address the combined tension
because they are incapable of changing the value of the sound horizon. These findings, which
are published in Astronomy & Astrophysics (Arendse, Wojtak, Agnello, Chen, Fassnacht, Sluse,
Hilbert, Millon, Bonvin, Wong, Courbin, Suyu, Birrer, Treu, & Koopmans, 2020), are crucial to
be taken into account when devising new models to resolve the tension, and may tentatively
point in the direction of systematics as an explanation for the prevailing tension. For this reason,
it is essential to explore independent avenues to measure the cosmic expansion rate, such as the
one described in Part II of the thesis.
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Part II: Gravitationally lensed supernovae

Strong gravitationally lensed supernovae constitute a promising alternative method to constrain
cosmological parameters, such as the Hubble constant, especially in light of the expected
colossal volumes of data from future transient surveys. However, distinguishing between lensed
and unlensed (i.e. normal) supernovae in large quantities of survey data is a daunting task,
particularly considering the lack of lensed supernovae observations that could serve as training
data for a machine learning model. To aid in coping with this challenge, Chapter 5 presents a
deep learning pipeline for the identification of gravitationally lensed supernovae in transient
surveys such as the Young Supernova Experiment (YSE) and the Legacy Survey of Space and
Time (LSST). Our framework uses recurrent convolutional layers to exploit both the spatial
and time-variable features of multi-epoch observations, while drawing from recent advances in
variational inference to quantify approximate Bayesian uncertainties via a confidence score. We
test our pipeline on simulated YSE observations and report an improvement in classification
accuracy of nearly 20 per cent when time-series images are used compared to single-epoch
observations. Another important result is that our machinery is able to discriminate between
lensed and unlensed supernovae with ~ 99 per cent accuracy for mock LSST observations. The
corresponding paper is currently under review at Nature Astronomy (Kodi Ramanah, Arendse,
& Wojtak, 2021).

Chapter 6 focuses on the use of gravitationally lensed supernovae for cosmological inference,
specifically to measure the expansion rate of the Universe. We simulate time-series images
to investigate the constraining power of pure LSST data, without any follow-up observations.
A spatio-temporal convolutional neural network is employed to convert the input data into
estimates of the lens parameters and time delays, which are subsequently used to calculate the
time-delay distance and the Hubble constant. In order to quantify reliable uncertainties for each
neural network prediction, we adopt a simulation-based inference framework. By including
realistic predictions for the lensed type Ia supernovae rates, we forecast to find 400 objects
during the 10 year duration of LSST that are suitable for cosmological inference, yielding a joint
1.2% unbiased estimate of the Hubble constant. We find that doubly imaged supernovae account
for the majority of the constraining power, whereby the dominant source of uncertainty is the
source position and time delays between the lensed images. This proof of concept encourages
the use of pure LSST data in a joint population analysis, and provides a framework to quantify
the dominant sources of uncertainty on the cosmic expansion rate from lensed supernovae.

Part III: Galaxy cluster masses

Chapter 7 shifts the focus to dynamical measurements of galaxy cluster masses, and their
potential for cosmological inference. The cluster mass function is a powerful probe of the matter
density and amplitude of mass fluctuations, although obtaining accurate dynamical cluster
mass estimates is a challenging task, largely due to the presence of interloper (non-member)
galaxies in galaxy clusters. We address this problem by employing the full 3D phase-space
distribution of the projected galaxy positions and their line-of-sight velocities, thereby providing
a better separation between cluster members and interlopers. A 3D convolutional neural
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network is used to optimally exploit the input data, combined with a simulation-based inference
framework to derive cluster mass uncertainties. We generate a realistic mock catalogue that
closely emulates the Sloan Digital Sky Survey (SDSS) Legacy observations and we illustrate
explicitly the challenges posed by interloper galaxies. Moreover, we apply our framework to a set
of SDSS clusters, which constitutes the first time that a machine learning-based mass estimator
is applied to such an extensive set of real galaxy cluster observations. The resulting cluster mass
function is fully consistent with mass estimates from the literature and with the theoretical
halo mass function as predicted for the standard cosmological model. The corresponding paper
is published in Monthly Notices of the Royal Astronomical Society (Kodi Ramanah, Wojtak, &
Arendse, 2021).

Finally, Chapter 8 summarises the main findings of the work presented in the thesis and
proposes some avenues for future studies.



CHAPTER

ASTROPHYSICAL BACKGROUND

“The history of astronomy is a history of receding horizons.”
- Edwin Powell Hubble

s TIME progresses, so does humanity’s ability to look further into the Universe and further

back in time. This has allowed us to establish a compelling picture of the Universe and the
astrophysical objects within it. The elements of this picture that are relevant to the doctoral
work are outlined in this chapter. After an overview of cosmology (Section 1.1), we proceed with
a description of the Cosmic Microwave Background radiation (Section 1.2) and the formation
of galaxy clusters (Section 1.3). Finally, several low-redshift distance indicators are discussed
(Section 1.4), as well as the tension between different data sets in terms of the cosmic expansion
rate (Section 1.5).

1.1 COSMOLOGY

The essence of cosmology, as a field of scientific research, entails pushing the boundaries of our
understanding of the large-scale structure and evolution of the Universe. In order to do so, we
require knowledge of the constituents that make up the Universe and a description of how they
evolve as the Universe expands. When combined with a theory of gravity, this yields our current
cosmological standard model. This section presents the underlying principles of this model,
while drawing inspiration from Arendse (2018), Fumagalli (2018), Gariazzo (2016), Harmark
(2021), Kodi Ramanah (2019), and Lee (2017).
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1.1.1 Einstein’s theory of general relativity

The discipline of cosmology can be traced back to the beginning of the 20th century, when
Albert Einstein presented a completely new interpretation of space, time and gravity.

Einstein was inspired by the work of some of the great physicists before him, like the Scottish
scientist James Maxwell, whose equations elegantly described how electric and magnetic fields
are generated from charges (Maxwell, 1865). From the fact that Maxwell’s equations are
invariant with respect to the choice of inertial reference frame, it followed that the speed of
electromagnetic waves is constant for all observers. Einstein decided to embrace the notion
of a constant speed of light to see where this line of reasoning would take him. The second
important postulate that he adopted for his work was the principle of relativity: the laws of
physics are the same in every inertial reference frame. From these two assumptions, Einstein’s
theory of special relativity was born in 1905 (Einstein, 19o5b). As his theory introduces the
speed of light as an absolute quantity that all observers agree upon, the concept of time shifted
from its previously absolute interpretation to something relative. Consequently, moving clocks
tick more slowly than stationary ones. Another outcome of the theory was that space and time
could not be seen as different entities anymore; they formed the universal fabric called spacetime.
Similarly, he came up with the mass-energy equivalence, stating that mass can be converted
into energy as expressed by his famous formula E = mc? (Einstein, 1905a).

In the ten years that followed, Einstein worked on unifying his theory of special relativity
with a theory of gravity. Gravity works instantly in Newtonian physics, which is in contradiction
with Einstein’s universal speed limit. The first step towards this unification was the formulation
of the equivalence principle, which states that gravitational and inertial masses are indistinguish-
able. His resulting theory of general relativity explains gravity as an emergent property of
spacetime when it is curved by mass, energy or momentum. "Spacetime tells matter how to move;
matter tells spacetime how to curve.” (Wheeler & Ford, 1998). Not only is matter affected by
gravity; light rays are deflected and clocks run more slowly in a stronger gravitational field.

The geometrical properties of spacetime can be described via the metric tensor g, which
allows us to calculate the distance ds between two points separated by dx,:

ds? = g, dx*dx". 1.1
S

Here, repeated indices are summed over following the Einstein summation convention. The
metric reduces to 17, = diag(-1,+1,+1,+1) in flat Minkowski space. The degree to which the
metric tensor deviates from flatness is characterised by the Ricci tensor R, :

Ry = 0aT%,, = 9,10, +T% Ty ~T T, (1.2)

rpyv = %gpa (aygva + avg;w - 80&41/)’ (1.3)

where Fp,w is called the Christoffel symbol. The metric tensor with upper indices g/ corresponds
to the inverse of g, and d,, = d/dx* denotes the partial derivative. The trace of the Ricci tensor

is the Ricci scalar: R = RZ = g" Ry, a scalar quantity that represents the curvature of spacetime
and is invariant under any coordinate transformations.



1.1. COSMOLOGY 7

The theory of general relativity proposes that the curvature of spacetime, as described by
guv» Ryy and R, depends on the matter and energy content of the Universe. The latter is given
by the energy-momentum tensor Ty, which is a physical quantity that characterises a continuous
configuration of matter and energy, thus generalising the mass density in Newtonian physics.
Einstein constructed a set of ten equations, known as the Einstein field equations, that quantify
the curvature of spacetime due to the matter-energy content of the Universe (Einstein, 1915), as

follows:

8nG
Ryv - %ngv +Ag;4v = C_4Tyv ’ (1.4)

with G the gravitational constant and c the speed of light in vacuum. A is the cosmological
constant, introduced initially by Einstein to balance the effects of the matter-energy density
and create a static universe. Nowadays, it is used to describe dark energy, as discussed in more
detail in Section 1.1.4. From the definition of the Riemann curvature tensor, which contains
a quadratic term of g,,, one can see that the Einstein equations are non-linear. This is one of
the crucial differences with Newtonian gravity and it can be interpreted as a self-interaction of
the gravitational field. Einstein’s new formalism of gravity can explain previously inexplicable
phenomena, such as the precession of Mercury, and has correctly predicted the existence of
gravitational lensing, gravitational redshift and gravitational waves.

1.1.2 The expanding Universe

Einstein, as many others at the time, believed the Universe to be static and eternal. This
assumption was entirely shattered in 1929, when Edwin Hubble published his paper entitled
"A relation between distance and radial velocity among extra-galactic nebulae” (Hubble, 1929),
an idea that two years earlier was also proposed by George Lemaitre (Lemaitre, 1931). Their
work considered several nearby galaxies and measured their distances using Cepheid variable
stars and their velocities via the Doppler shift of spectral lines. Some nearby galaxies, like the
Andromeda galaxy, were moving towards us, but the vast majority of galaxies were heading
away from us. Figure 1.1 shows Hubble’s famous plot of the recession velocity as a function
of the distance to the galaxy, in which it is evident that galaxies located further away from us
are moving away from us at higher velocities. The slope of the graph gives the proportionality
constant between the velocity and the distance, also known as the Hubble constant Hy. The
Hubble-Lemaitre law is then given by

v=H,D, (1.5)

where v is the recession velocity in km/s, D is the distance to the galaxy in Mpc and H), is the
Hubble constant, or present-day expansion rate of the Universe. The discovery of the Hubble-
Lemaitre law led to a true paradigm shift, since these observations could be explained perfectly
by an expanding Universe. Furthermore, it led to the notion that the Universe is not eternal but
must have had a beginning; the Big Bang.
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Ficure 1.1 — The original plot of the velocity-distance relation among extra-galactic nebulae
(galaxies). The black dots and the black solid line correspond to individual galaxies and their
average slope, the Hubble constant. The open circles and the dashed line correspond to grouped
galaxies and their corresponding Hubble constant. Figure reprinted from (Hubble, 1929).

In order to describe such an expanding Universe, it is convenient to introduce a coordinate
system that moves along with the expansion; comoving coordinates. The scale factor a(t) de-
scribes the relative size of the Universe and relates the comoving coordinates x to the physical
coordinates r according to

r=xa(t). (1.6)

By definition, the scale factor is normalised to unity at present time, ay = a(tg) = 1. The time
evolution of the scale factor can be used to describe the cosmic expansion history, characterised
by the Hubble parameter H(t):

H() =22, (17)

where d = da/dt is the time derivative of the scale factor. The Hubble parameter evaluated at
the present time corresponds to the Hubble constant, Hy = H(t), which is often expressed in
a dimensionless form as h = Hy / (100 km s™'!Mpc™!). The exact value of Hj is still an open
question in cosmology, as discussed further in Section 1.5.

1.1.3 The Friedmann equations

A fundamental assumption that allows us to solve Einstein’s equations for the entire Universe
is the cosmological principle; which states that there is nothing special about our place in the
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Universe and that the matter distribution at sufficiently large scales is spatially homogeneous
(invariant under translations) and isotropic (invariant under rotations). Since we observe every
part of the Universe around us to be approximately the same (isotropic) and because we assume
that we are not privileged observers, this implies isotropy around every point in the Universe;
therefore, the Universe must also be homogeneous (Peacock, 1998). Strong evidence for the
cosmological principle comes from the Cosmic Microwave Background radiation, which is
discussed in Section 1.2.

The scientists Alexander Friedmann, Georges Lemaitre, Howard P. Robertson and Arthur
Geoffrey Walker independently applied the cosmological principle to the geometry of spacetime
and constructed the maximally symmetric FLRW metric (Friedmann, 1922, 1924; Lemaitre,
1927, 1931, 1933; Robertson, 1935, 1936a, 1936b; Walker, 1937), which in spherical comoving
coordinates (t,7,0, ) is given by:

dr?

1—kr?

ds® = dt? —a(t)? +7r2(d6% +sin?6d¢?)|, (1.8)

where k refers to the global spatial geometry or curvature of the Universe and can assume three
values:

m  For k =1, the spatial part of the FLRW-metric describes a three-dimensional (3D) sphere
$3 with radius a. This corresponds to a finite, closed Universe, where the sum of the
angles of a triangle exceeds 180 degrees and parallel lines eventually converge. In a
closed Universe, the energy-matter content is large enough to overcome the expansion in
a finite time, which will lead the Universe to recollapse.

m For k = 0, the spatial part of the metric reduces to 3D Euclidean space R® and the
geometry of the Universe is flat. In such a Universe, the energy-matter content is exactly
enough to stop the expansion of the universe, but only after an infinite amount of time.
The rate of expansion will be slowing down and will asymptotically approach zero.
Observational data, such as the Cosmic Microwave Background radiation and the results
from gravitationally lensed quasars and type Ia supernovae as presented in Chapters 3
and 4, indicate that we live in a flat Universe.

m For k = —1, the spatial part of the metric defines a 3D hyperboloid IH?, corresponding to
an open Universe in which the angles of a triangle add up to less than 180 degrees and
parallel lines diverge. In this case, there is not sufficient energy-matter content to halt
the initial expansion.

Friedmann subsequently used the FLRW-metric (eq. (1.8)) to find a solution to Einstein’s equa-
tions of general relativity (eq. (1.4)). He assumed that at larger scales, the Universe can be
approximated as a perfect, isotropic and homogeneous fluid described by energy-density p
and pressure P, thereby reducing the energy-momentum tensor to T, = diag(p, P, P, P). With
these conditions, there are two independent solutions to Einstein’s field equations, known as
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the Friedmann equations:

8nG k A
2 _
Hi==p-0+3 (1.9)
a 417G A
=5 (p+3P)+§. (1.10)

By combining the two Friedmann equations, or by adopting conservation of the energy-
momentum tensor V¥T,, = 0, the continuity equation can be derived:

p+3H(p+P)=0. (1.11)

This equation tells us that the Universe expands adiabatically, i.e. with conservation of energy.
Most of the fluids in the Universe can be described by a simple equation of state of the form P = wp.
Adopting this relation, the continuity equation can be solved to yield the the cosmological
evolution of the fluid:

p oca 31w, (1.12)
The three main substances that make up our Universe are radiation, matter and dark energy,
whose properties and cosmic evolution are described in the following subsection.

1.1.4 Constituents of the Universe

m  Matter. Stars, planets and nearly all matter that we experience in everyday life is
composed of baryons and is therefore called baryonic matter. However, the majority of
matter is non-baryonic dark matter, which provides an extra mass density that accounts
for the rotation curve of galaxies, the growth of cosmic structures and various other
astrophysical phenomena. Both types of matter have a negligible pressure compared
to their energy density and thus have equation of state parameter w = 0, such that the
matter density evolves with a=3. Intuitively, this can be understood as the dilution of
matter due to space expanding in three dimensions.

m  Radiation. For radiation, which consists of relativistic massless particles, the equation
of state parameter is equal to %, resulting in a density evolution of p « a~*. Radiation
decays by a factor a faster than matter, because the expansion of space does not only
cause light to dilute away in three dimensions, it also stretches its wavelength, thereby
making it less energetic. Although radiation was the dominant component in the first
~ 50,000 years after the Big Bang, the current radiation contribution to the total energy
budget is negligible due to its rapid decrease in energy density.

m  Dark Energy. When Hubble and Lemaitre discovered the expansion of the Universe,
initially it was assumed that the gravitational effects of matter must be slowing down
the expansion. It would take another 7o years to disprove this assumption. In 1998, two
research teams used type la supernovae to show that the expansion of the Universe is
accelerating (Perlmutter et al., 1998; Riess et al., 1998; Schmidt et al., 1998). This strange
discovery led to the term dark energy being coined; an unidentified component with
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negative pressure that drives the accelerated expansion of the Universe. At the present
time, dark energy is estimated to constitute 69% of the Universe and its energy density
appears to remain constant over time (Planck Collaboration, Aghanim, et al., 2018), in
which case it is referred to as a cosmological constant. The cosmological constant used in
Einstein’s equations, initially introduced to create a static Universe, was assigned the new
function to account for the accelerating cosmic expansion. Dark energy has equation of
state parameter w < —% and if it corresponds to a cosmological constant, w = —1. Since
the radiation and matter densities are decreasing, dark energy is currently the dominant
component in the Universe and its relative contribution will continue to increase.

For each of the above species, we can express their density in terms of the critical density p,,
which is the average density the Universe should have in order to be flat, and so defines the
critical point between an expanding and contracting Universe. The dimensionless density
parameter (); for each different species i is defined as the ratio between the absolute energy
density p and the critical density p.:

pi _ 8mGp;

Q,=—-= ,
" p. 3H?

(1.13)

where i = m,r, A, k for matter, radiation, cosmological constant and curvature, respectively. The
density parameters satisfy O, +Q, +Q +Qy = 1. In terms of these parameters, we can rephrase
the Friedmann equation (eq. (1.9)) in the form

Qr,O Qm,O " Qk,O

2 2
H*(a) = H o e 22

+Qa0] (1.14)
where (); ) denotes the density parameter evaluated at the present time. The concepts reviewed
so far form the basis of the current standard model in cosmology, the ACDM model. It assumes
a flat Universe with general relativity as a description of gravity, the cosmological constant as
dark energy to explain the accelerating expansion of the Universe, and cold (i.e. non-relativistic)
dark matter to account for the growth of cosmic structures. Within the ACDM model, the
expansion history of the Universe is elegantly and simply described by eq. (1.14) with Qy (=0,
which has been remarkably successful at explaining a series of astrophysical and cosmological
observations.

1.1.5 Cosmological distances and redshift measurements

Another remarkable consequence of the expansion of the Universe is cosmological redshift; the
stretching of light as it travels through expanding space. Consequently, photons emitted at
a wavelength A, at time f, will be observed with redshifted wavelength A, at time t,. The
fractional change in wavelength is related to the scale factor and cosmological redshift z as:

Ao _ alto)

/\—e:a(te):l+z. (1.15)

Usually, the observer is located at Earth at the present time and therefore, the scale factor a(t,)
equals 1, providing the convenient relation of 1 + z = 1/a between the redshift and scale factor
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at emission. An additional effect that can induce a Doppler shift in the observed wavelengths of
light is due to relative velocities between the observer and the source. By observing the shift in
the spectral lines of distant astronomical objects, we can compute their redshifts, which include
both the effects of relative velocities and the cosmic expansion.

The cosmological redshift of an object provides an indication of its distance from us. Several
useful distance measures are defined below, all under the assumption of the cosmological
principle leading to the FLRW metric.

m  The comoving distance d¢ can be calculated from the redshift in the following way:
z dzl

dc(z)=c  H@Z) (1.16)

Within the ACDM framework, H(z) is given by eq. (1.14).

m  Correcting for the curvature of the Universe yields the transverse comoving distance

dMZ
%sinh(%) Q>0
dyi(z) = {dc(2) Q=0 (1.17)
dy oo [ VIQuldc(2)
\/lle_lem( ;HC ) Q<0
diy = Hio' (1.18)

where dy is the Hubble horizon, beyond which objects move away from us faster than the
speed of light. The trigonometric function ‘sinh’ accounts for hyperbolic curvature of
space in an open Universe ((Qy > 0) and ‘sin’ for spherical curvature in a closed Universe
(Qg <0). A flat Universe corresponds to {2y = 0.

m The angular diameter distance d, stems from the notion that objects appear smaller
when they are further away, and can be obtained by comparing the angular size 66 of an
object to its physical size R:

R

dp = 50" (1.19)
The angular diameter distance is related to the transverse comoving distance by:
_ dw(2)
da(z) = T2 (1.20)

In astrophysical distance measurements, the angular diameter distance can be deter-
mined when the physical size of an object is known, such as for the Baryon Acoustic
Oscillations as discussed in Section 1.4.2.

m  Finally, the luminosity distance dy is based on the fact that objects appear fainter as
they are further away. The observed flux F of a source is inversely proportional to the
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square of its distance:

L

- 1.21
4ndﬁ ( )

where L is the absolute luminosity of the source and 4y is the luminosity distance, which
is related to the transverse comoving distance by:

dp(z) = (1 +2)dm(2). (1.22)

Measuring the luminosity distance to an object requires knowledge of its absolute
luminosity. A particular class of astrophysical sources, called standard candles, have a
known intrinsic brightness and therefore, allow for such a measurement. Examples of this
class of astrophysical sources, including Cepheid variable stars and type Ia supernovae,
are reviewed in Section 1.4.

1.1.6 Cosmography

Although the ACDM model is highly successful at describing observations, controversies remain
regarding the exact value of the Hubble constant and the nature of dark energy and dark matter.
In order to address these problems, several extensions to the standard ACDM model have been
put forward, as discussed in more detail in Section 1.5. An alternative to assuming a certain
underlying cosmological model is cosmography; a mathematical framework that describes the
Universe in a purely observationally driven way. Introduced by Weinberg (1972) and extended
by Visser (2004), cosmography abandons all assumptions about general relativity and the
constituents of the Universe and relies only on the cosmological principle. By doing so, it should
be able to encompass ACDM and all its extensions.

Cosmography aims to reconstruct the expansion history of the Universe, while only having
access to the current value of the scale factor and its derivatives. We have already encountered
the first derivative of the scale factor in eq. (1.7), which describes the cosmic expansion rate and
is expressed as the Hubble parameter. In mechanics, the first four time derivatives of position
are often referred to as velocity, acceleration, jerk, and snap. Analogously, we can define the
first four time derivatives of the scale factor as the Hubble H(t), deceleration g(t), jerk j(¢), and
snap s(t) parameters:

H( =+ 5 (1.23)
Q(t):—%j—iz :%%:_2 (1.24)
j=+ide %3 (1.25)
S(t):_%% :%%:_4, (1.26)
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where Hj, q¢, jo and sy denote the cosmographic parameters evaluated at the current time.
Since the expansion of the Universe is accelerating, the present-day deceleration parameter
qo actually takes on a negative value. Within the ACDM model, gy = —0.55. There are many
different approaches of how cosmography can be carried out. One commonly used strategy is
to combine the above derivatives of the scale factor with a Taylor expansion around t = ¢, to
construct the evolution of the scale factor:

da 1d%a , 1d% 3 4
a(t):a0+a O(t_t0)+iﬁ O(t—to) +§E O(t—to) +O(t—t0) (1.27)
1 1.
=4 {1 + Ho(t — to) - EqOHoz(t — to)z + gjng(t — t0)3 +O(t — t0)4}. (1.28)

Similarly, the Hubble parameter as function of redshift can be rewritten in terms of the cosmo-
graphic parameters (Chiba & Nakamura, 1998):

dH 1d’°H| , 1d°H| , 4
H(Z):Ho‘l'g OZ+ Ey OZ +§ dz3 OZ +O(Z ) (1.29)
. z? . z3
= Ho{l +(1+90)z+ (jo —qg)? + [3q8 + 3q(2) —jo(3+4q0) —50] < +(9(z4)}. (1.30)

After several Taylor expansions and reversions of the power series, the luminosity distance can
be written as a function of redshift in the following way (Visser, 2004; Weinberg, 1972):

2 2

cz z . kes |z
dL(Z)ZH—O{l+[1—610]E—[1—%—3(J(2)+]0+W g+[2—2610
0%
. . 2kc?(1+3qp) | 22
—15q(2)—15q8+5]o+10q0]0+50+#]ﬁ-ﬁ)(z‘l)}. (1.31)
0%

Using egs. (1.22) and (1.20), this can be converted to angular diameter distances and transverse
comoving distances.

There are several challenges surrounding the use of cosmography as described above, i.e.
through polynomial parametrisations. Firstly, the order of truncation of the Taylor expansions
affects the resulting cosmographic parameters. Higher orders of expansions can better approxi-
mate the full extent of the data, but also introduce more free parameters and therefore larger
uncertainties. Furthermore, the fact that the expansion is carried out around z = 0 means that
it is ill-suited to describe high-redshift data (z X 1), as they are far removed from the interval
of convergence of the Taylor expansion (Busti et al., 2015; Capozziello et al., 2020). The intro-
duction of auxiliary variables, which expand the convergence radius of the Taylor expansion,
can partly alleviate this problem. The latter approach is further described in Chapters 3 and 4,
where cosmographic expansions are used to constrain cosmological parameters using lensed
quasars, type la supernovae and Baryon Acoustic Oscillations in a cosmology-independent
manner. Convergence tests, as performed in Appendix A.2, are required to find the optimal
polynomial truncation order and to ensure that the chosen parametrisations do not introduce
any biases.



1.2. THE COSMIC MICROWAVE BACKGROUND RADIATION 15

1.2 THE COSMIC MICROWAVE BACKGROUND RADIATION

FTER the previous section’s overview of the science of cosmology, this section continues by

describing the physics of the early Universe and the information we can extract from light
relics of the Big Bang. It draws inspiration from Hu (2001), Kodi Ramanah (2019), Lee (2017),
Tojeiro (2006), and Wallisch (2018).

1.2.1 The early Universe

Although the cosmological principle provides us with essential tools to describe our Universe,
we know that it cannot hold true perfectly because we observe cosmic structures around us. In
order for gravity to be able to create these, there must have been some density perturbations in
the early Universe. In our current best picture of the beginning of the Universe, it started out in
an initial state of high density and temperature, known as the Hot Big Bang. Almost immediately
after the Big Bang, the Universe underwent a period of rapid expansion known as cosmic inflation,
during which it grew by a factor of 102° in around 10732 seconds (Albrecht & Steinhardt, 1982;
Guth, 1981; Linde, 1982). In the first fraction of a second, the four fundamental forces, namely
the electromagnetic force, the strong nuclear force, the weak nuclear force, and the gravitational
force, were unified as one and started to decouple as the Universe expanded and cooled down.
The period of exponential growth, as driven by cosmic inflation, is necessary to explain why the
Universe is so flat, since any initial curvature was stretched to near flatness, and homogeneous,
since the Universe originated from a small region in thermal equilibrium. It also provides
a natural mechanism for creating primordial density perturbations that formed the seeds of
cosmic structures. Microscopic quantum fluctuations, as predicted by Heisenberg’s uncertainty
principle, were magnified into cosmological perturbations.

The early Universe consisted mostly of hydrogen, some helium and small traces of lithium,
which were all ionised due to the high temperatures and densities. Thomson scattering of the
photons with free electrons caused the Universe to be opaque, trapping the photons and baryons
in a primordial plasma. Any overdensity or gravitational potential well would first initiate
gravitational collapse, until radiation pressure would build up and drive the baryons outwards
again. These counteracting forces of gravity and pressure produced oscillations, similar to
sound waves moving at a speed c; of

Cc
3(I+R)

where R = 3p,/4p,, is the ratio of the baryon density py, to photon density p,. As illustrated in
Figure 1.2, the sound waves oscillated between two states:
m compression in potential wells and rarefaction in the surrounding potential peaks;

(1.32)

Cs =

m rarefaction in potential wells and compression in potential peaks.
The resulting fluctuations in the baryon density are known as the Baryon Acoustic Oscillations.

About 370,000 years after the Big Bang, at the epoch of recombination, the Universe had
cooled down enough for the protons and electrons to combine into neutral hydrogen. At the
drag epoch (z = z4), the baryons and photons decoupled and the radiation pressure fell away.
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FiGUre 1.2 — A visualisation of the oscillations in the primordial photon-baryon plasma. The
potential well in the centre of the figure oscillates between two states: 1.) Gravity compresses
the baryons in the centre, leading to a rarefaction in the surrounding potential peaks; 2.) Radi-
ation pressure drives the baryons outwards, creating a rarefaction in the central region and a
compression in the surrounding potential peaks.

Oscillatory modes that reached extrema at this point in time (such as the ones visualised in
Figure 1.2) contained a high density contrast and, therefore, enhanced temperature fluctuations.
The longest mode, for which the oscillations had exactly enough time for one compression
between the Big Bang and recombination, defines the characteristic distance scale rq4:

® cydz
H(z) ’

r4 =15(zq) = (1.33)

Zd

where 1y is the sound horizon; the maximum distance the sound waves could have travelled
in the primordial plasma. During the oscillations of the photon-baryon plasma, dark matter
remained in the potential well at the centre of the oscillations, since it only reacts gravitationally
and is not affected by radiation pressure. Therefore, the structures that were created consisted
of a large perturbation at the centre with a small perturbation in a spherical shell around it.
After recombination, the gravitational interaction between the dark matter and the baryons
caused them to redistribute, with some of the baryons returning to the centre of the overdensity
and some of the dark matter ending up at the overdense shells. In this way, overdensities were
formed that would eventually collapse to form stars and galaxies, with the sound horizon scale
as a preferred separation between structures. Nowadays, we can observe the Baryon Acoustic
Oscillations in the clustering of galaxies, as reviewed in Section 1.4.2.

1.2.2 Light relics from the Big Bang

Concurrently, the photons were completely decoupled from the baryons after recombination
and could propagate predominantly freely through space. They have been travelling ever since,
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while the expansion of space redshifted their wavelengths to the microwave region. Today, we
can observe these photons, constituting the afterglow of the Big Bang, as the Cosmic Microwave
Background radiation (CMB). Detected in 1965 by Penzias and Wilson (1965a), the CMB provides
the most compelling evidence for the Big Bang theory and cosmic inflation.

Alpher and Herman reasoned in 1948 that if the beginning of the Universe followed the Big
Bang scenario, the leftover radiation would look like a black body spectrum of approximately
five Kelvin (Alpher & Herman, 1948). In fact, the CMB spectrum can be almost perfectly
described by a black body with temperature of T = 2.7255+0.0006 K (Fixsen, 2009), and small
perturbations of order 10™. Cosmic inflation theory predicts that these perturbations are
adiabatic, i.e. that the fractional number density of each type of particle is the same everywhere.
Observations of the CMB confirm this adiabatic nature of the perturbations. Additionally, since
the fluctuations are so small in size, it also shows us that the early Universe was extremely
homogeneous and isotropic.

The primordial density perturbations are imprinted on both the temperature and polari-
sation of the CMB radiation, but in this thesis, we only focus on the temperature fluctuations.
These were first observed by the COsmic microwave Background Explorer (COBE) (Smoot et al.,
1992) and later with more precision by the Wilkinson Microwave Anisotropy Probe (WMAP)
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FiGure 1.3 — The Cosmic Microwave Background radiation intensity map at 5 arcmin resolution as
observed by the Planck satellite (Planck Collaboration, Adam, et al., 2016). A strip of the galactic
plane is masked and filled in using the same statistical properties as the rest of the sky. The small
temperature fluctuations correspond to over and under densities that are the seeds of cosmic
structures.
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(e.g. Dunkley et al., 2009) and Planck satellites (e.g. Planck Collaboration, Akrami, et al., 2018),
as depicted in Figure 1.3.

1.2.3 CMB power spectrum

Besides confirming the Big Bang theory, cosmic inflation and the cosmological principle, the
CMB contains another wealth of information when considering the angular size distribution of
the temperature fluctuations. Light that we receive from the CMB originates from a celestial
sphere at the edge of our observable Universe corresponding to the last photons to be scattered,
and is, therefore, referred to as the surface of last scattering. In order to study the sizes of the
fluctuations, it is convenient to use the spherical analogue of Fourier analysis, i.e. spherical
harmonics. The temperature fluctuations AT can be expanded as a function of direction on the
sky 71 in terms of spherical harmonics Yy, (1) as:

AT() =) anYem(#), (1.34)

,m

where m describes the orientation of the nodes on the sphere and ¢ is the multipole, which
represents a given angular scale in the sky, with higher values of ¢ corresponding to smaller
angular sizes. Under the assumption that the initial perturbations are statistically isotropic,
such that there is no dependence on m, the variance of the harmonic coefficients a,,, can be
written as:

(aembem) = 000 O mm Ces (1.35)

where C, corresponds to the angular power spectrum of the temperature fluctuations, as shown
in Figure 1.4 for the 2018 Planck data release. The most defining feature of the power spectrum
are the acoustic peaks formed by the gravitational compression and radiation pressure felt by
the primordial plasma. These peaks reveal an abundance of information about our Universe and
can be perfectly described by the ACDM model with 6 free parameters: the baryon (Qy,) and
dark matter (Q4,,) densities, the Hubble constant, the scalar spectral index ng, the curvature
fluctuation amplitude Ay, and the reionization optical depth 7.

The amplitude of the acoustic peaks scales with the physical density of dark matter. As
shown in Figure 1.4, the second peak is much lower than the first. This can be explained by
the presence of baryons, which enhance the compression in the potential wells (left panel of
Figure 1.2) but rebounce to the same position in the potential peaks (right panel of Figure 1.2).
The odd numbered (first, third, fifth, ...) peaks in the power spectrum are associated with
the compression of the waves, so they are intensified by the presence of baryons. The even
numbered (second, fourth, sixth, ...) peaks correspond to the rarefactions of the plasma, or in
other words, how far it rebounds. Since the maximum rarefaction does not depend on mass,
these peaks are relatively suppressed by a higher baryon content. As a result, the ratio of the
first to second peak amplitude provides information about the baryon fraction of the Universe.

At smaller angular scales (higher ¢), the acoustic peaks are exponentially damped by photons
that travelled from dense to underdense regions and dragged protons and electrons along. This
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FIGURE 1.4 — Angular power spectrum of the CMB temperature fluctuations from the 2018 Planck
mission (Planck Collaboration, Akrami, et al., 2018). The blue line is the best-fit theoretical ACDM
spectrum, which is used to infer cosmological parameters.

process is called photon diffusion damping and makes the Universe more isotropic (Silk, 1968;
Weinberg, 1972).

Because the first peak of the power spectrum corresponds to the first compression of the
sound waves, it is a direct probe of the angular size of the sound horizon, 64. The physical size of
the sound horizon is known from eq. (1.33) and hence, the angular diameter distance to the CMB
can be determined using the identity dcyg = r4/604. Since the distance to the CMB depends on
how light rays converge or diverge, it provides primarily a measure of the cosmic curvature. The
resulting value of 64 measured from the CMB is consistent with a flat Universe (Pierpaoli et al.,
2000; D. D. Reid et al., 2002) and for that reason, a flat ACDM model is generally adopted for
the CMB analysis. Within that choice of cosmology, the angular diameter distance is related to
the Hubble constant according to eqs. (1.14) and (1.17) and, therefore, can be used to constrain
its value. Recent analyses from Planck 2018 data find rq4 = 147.2+0.3 Mpc and Hy = 67.4+ 0.5
km s~! Mpc™! (Planck Collaboration, Aghanim, et al., 2018) for the physical size of the sound
horizon and the Hubble constant, respectively. As described in more detail in Section 1.5, these
values are in tension with some of the low-redshift measurements.

1.3 THE FORMATION OF STRUCTURES AND GALAXY CLUSTERS

s THE evolution of the Universe proceeded, the primordial density perturbations grew under
the influence of gravity and formed structures and galaxy clusters. The abundance of
these structures as a function of mass provides invaluable information about the amplitude
of density fluctuations and the matter content of the Universe. This section covers the linear
growth of perturbations into structures and galaxy clusters, and their potential for cosmological
inference. It is inspired by material drawn from Bocquet (2015), Borgani (2008), Dayal and
Ferrara (2018), Kodi Ramanah (2019), Maltoni and Maccio (2010), Sridhar (2016), Takey (2014),
van de Weygaert (2009), and Wu (2011).
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1.3.1 Linear perturbation growth

A primordial density perturbation,

p—P 1.36

5 (1.36)
where ¢ denotes the average density of the Universe, is amplified by gravity according to linear
perturbation theory when [6(x)| << 1. In this regime, which is a good approximation for the
earlier stages of structure formation, the growth of density perturbations follows the three
linearised fluid equations in Newtonian physics. The continuity equation, which ensures mass
conservation, is given by:

0

a5 1

—+-V.-v=0, .
TR (1.37)
where v denotes the peculiar velocity of a fluid element in comoving coordinates. As high
density regions contract, a pressure gradient builds up that competes with the inward force of
gravity. The Euler equation describes how the acceleration of the medium depends on the forces
of gravity and pressure, as follows:

i (opg
E*‘av——T—;Vb, (138)
with ¢ = dP/dp equal to the fluid sound speed. The gravitational potential ¢ is defined by the
Poisson equation:

V2 = 4nGpa’s. (1.39)

Together, these three linearised fluid equations describe the evolution of density fluctuations
with time, as a result of self-gravity. Combining them yields the time-evolution of a density
contrast o:

0% _ddd o,

w+2;m =4nGp5+;V 0. (140)
This equation describes how the gravitationally-driven perturbation growth (first term on the
RHS) is opposed by the internal pressure gradient of the fluid (second term on the RHS), as well
as the expansion of the Universe (second term on the LHS). The regime in which the pressure
exactly balances gravity is called the Jeans scale Aj, which defines a critical length that a cloud
must exceed to undergo gravitational collapse (Jeans, 1902):

Ar=cg [ == (1.41)

Density fluctuations with length smaller than the Jeans scale have enough pressure support to
keep them from collapsing, while structures whose size is larger than the Jeans scale are unstable
and will collapse to form stars, galaxies and galaxy clusters. The Jeans scale is proportional
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to the Hubble horizon (eq. (1.18)) and increases over time, since the average density of the
Universe decreases. As a result, the growth of the small perturbations that enter the Jeans scale
during the radiation-dominated epoch is suppressed, which plays an important role in shaping
the matter power spectrum, as discussed in more detail in Section 1.3.2

Eq. (1.40) is a second-order differential equation for the density perturbation 6, which can
be similarly written in terms of a growing and a decaying mode acting on 6:

5(t) = D_(t)A; + D, (t)A,, (1.42)

where Ay and A, represent primordial density contrasts, and D_ and D, correspond to the
decaying and growing modes, respectively. In a matter-dominated Universe, density fluctuations
grow proportionally to the scale factor; D, « a. When dark energy dominates the Universe, the
growth of matter fluctuations is suppressed. Often, the derivative of the linear growing mode is
taken with respect to the scale factor to yield the dimensionless logarithmic growth rate f:

dInD
f: dlna+’ (143)

which is an important cosmological parameter that characterises the growth of structures and
can function as a probe of dark energy. Additionally, it can aid in distinguishing between models
of modified gravity, where f is scale-dependent, and general relativity, where f only depends
on the matter density as f = Q%3 (Linder, 2005). Redshift space distortions, as discussed in
Section 1.4.2, can be employed to constrain the logarithmic growth rate.

1.3.2 The matter power spectrum

As we move from a single density perturbation to a density field 6(x), which provides the density
for each point in space, we can establish a formalism for the statistical properties of large-scale
cosmic structures. According to our current understanding of the beginning of the Universe,
the primordial density fluctuations comprise a Gaussian random field, whose characteristics are
completely captured by the two-point correlation function:

&(lxr = x2l) = (8(x1)0(x2)), (1.44)

which provides the excess probability of finding two structures separated by a distance |x; — x|
The Fourier transform of the density field describes the density contrast as a function of scale:

& 1 ik-x
5(k) = Wjé(x)ek dx, (1.45)

where k corresponds to the 3D wavevector with amplitude k. Consequently, the density pertur-
bations in Fourier space are fully described by the Fourier transform of the two-point correlation
function, the so-called linear matter power spectrum P(k):

P(k) = (|ok[*). (1.46)
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FiGure 1.5 — The linear matter power spectrum (at z = 0) computed from different cosmological
probes, with the black line corresponding to the best-fit ACDM model. Figure reprinted from
Planck Collaboration, Akrami, et al. (2018).

Figure 1.5 displays the linear matter power spectrum inferred from different cosmological
probes. The features in the power spectrum reflect the evolution of density perturbations in
the early Universe (Norman, 2010). Due to the rapid expansion caused by inflation, primordial
density fluctuations were driven beyond the Hubble horizon (eq. (1.18)), where they only
experienced the effects of gravity and not of radiation pressure. In this state, the perturbations
grew continuously and were characterised by a scale-invariant power spectrum, i.e. there was
no preferred mass scale for the fluctuations. However, as the expansion rate of the Universe
slowed down after inflation, the Hubble horizon expanded to encompass increasingly larger
perturbation modes. Modes that crossed the Hubble horizon during the radiation-dominated
epoch (z < 3600) predominantly experienced acoustic oscillations driven by the radiation
pressure that halted their growth. Only when matter started to dominate the cosmic energy
budget did these modes continue to increase in amplitude. As a result, the power of small-scale
perturbations (corresponding to larger k) is suppressed in the matter power spectrum, leading
to a slope of P(k) oc k. In contrast, the larger scale modes (corresponding to smaller k) crossed
the Hubble horizon in the matter-dominated epoch and, therefore, did not experience any
interruption in their development. Consequently, these modes follow an almost scale-invariant
power spectrum with a slope of P(k) « ks, where ng = 0.965 + 0.004 corresponds to the scalar
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spectral index (Planck Collaboration, Aghanim, et al., 2018). The peak that transitions between
the two regimes corresponds to the modes that entered the Hubble horizon during matter-

radiation equality and hence, its position is sensitive to the ratio of photon to matter densities,
Q,/Q.

1.3.3 Halo mass function

The next step is to consider what happens when an overdensity of mass M and radius R
enters the stage of non-linear collapse. In practice, it is convenient to make the approximation
of spherical symmetry and focus on the mass within a finite volume defined by a “window
function”. The smoothed density field og(x) is then obtained by the convolution of the density
field o(x) with a top-hat window function Wg(x):

Sr(x) = fa@)wkux—yndy. (1.47)

Essentially, this smooths out perturbations of sizes < R. We can then compute the variance of
the fluctuations at scale R as:

We(b)|” K>dk, (1.48)

o (R) = 0}) = 5. | PIb

with Wy (k) the Fourier transform of the top-hat window function; Wy (k) = [3/(kR)3][sin(kR) —
(kR)cos(kR)]. The variance of the density field evaluated at comoving radius R = 8 Mpc/h is
defined as og, an important cosmological parameter that relates to the clustering of matter and
provides the normalisation for the matter power spectrum. As it turns out, a sphere of size
8 Mpc/h contains the typical mass to form a moderately rich galaxy cluster, thereby making the
galaxy cluster mass function a convenient way to measure og.

An analytical description of the halo mass function (HMF) that evolves Gaussian initial
conditions in a spherical collapse model was obtained by Press and Schechter (1974). Their
formalism states that the fraction of mass contained in halos with mass greater than M is equal
to the fraction of the density field (smoothed on a scale o) that exceeds a given critical density
threshold o.. The corresponding Press-Schechter mass function describes the halo abundance
per unit mass per unit comoving volume:

d_”_\/zi & ex % (1.49)
dM N M? oy(2) P 200m(2)2 ) 49

where p = Oy, pcrit is the mean density of the Universe. Initially, the Press-Schechter formalism
underestimated the total amount of halos by a factor of 2, since it ignored underdense regions
within larger collapsed objects. After accounting for this missing factor of 2, results from
the Press-Schechter mass function are in reasonable agreement with numerical simulations,
a remarkable fact given the underlying simplified assumptions. However, the mass function
requires to be calibrated against cosmological simulations and is not able to describe the process
of halo formation fully accurately.

dlogowm(z)
dlogM
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FiGure 1.6 — Halo mass function (HMF) at z = 0 for different values of (), and og, demonstrating
the sensitivity of the HMF to these cosmological parameters. Figure constructed using the
matter power spectrum from CAMB'(Code for Anisotropies in the Microwave Background), with
cosmological parameters from Planck Collaboration, Akrami, et al. (2018).

An improvement over the Press-Schechter mass function was obtained by Tinker et al. (2008),
who introduced additional fitting parameters to make the HMF more in line with predictions
from cosmological simulations, resulting in the following form:

dinM M

flo). (1.50)

dn  p ’dlna
dIinM

The function f (o) is presumed to be universal to changes in cosmology and is given by:

—-a
f(a):A[% +1]e—f/02, (1.51)
where the constants A, 4, b and c are determined from simulations. The parameter A corresponds
to the overall amplitude of the mass function, a and b set the slope and amplitude of the low-
mass power spectrum, respectively, while ¢ denotes the cut-off scale at which the abundance of
halos decreases exponentially.

The resulting shape of the HMF using eq. 1.50 is displayed in Figure 1.6, illustrating its
sensitivity to the parameters (), and og. A higher matter content or a larger amplitude of density
perturbations both result in more high-mass structures, although changes in og leave the HMF
at the lower mass end unaltered. Consequently, the HMF can be compared to an observational
measurement of the cluster mass function, as discussed in the following subsection, to yield
constraints on Q,, and og.

Thttps://camb.readthedocs.io/en/latest/
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1.3.4 Galaxy clusters

The highest peaks in the initial density field evolved to become galaxy clusters; the most massive
gravitationally bound structures in the Universe. Clusters dominate the high-mass tail of the
HMF and are, therefore, an important probe of cosmological structure formation (Borgani,
2008). The cluster mass function can be computed by counting the number of galaxy clusters in
a logarithmic mass interval A per unit comoving volume:

dn 1y 1 1 (1.52)
dInM ~ A LV S(M;,d;)’ &

for all i that satisfy |InM; —InM| < 4.V is the comoving volume of the survey and S is the
selection function, which takes into account the survey’s level of incompleteness.

Measuring the mass of galaxy clusters is a challenging endeavour, for which several different
observational techniques can be employed. Cluster mass is not a direct observable; instead, it is
usually derived from observational properties that correlate with mass. Several assumptions
are regularly made to simplify the process of mass estimation, such as spherical symmetry and
hydrostatic or dynamical equilibrium. However, clusters are highly complex and dynamical
objects, often surrounded by infalling structures (Gunn & Gott, 1972) and showing signs of
recent mergers. Additionally, mass estimates are often plagued by projection effects, which arise
from uncertainties in distance measurements and can incorrectly assign non-member galaxies
to a cluster. The most commonly used methods to obtain galaxy cluster mass estimates are
described below.

m  X-ray observations can map the hot, ionised gas in the intracluster medium, which
behaves as a plasma and emits thermal bremsstrahlung. Since the radiation emitted is
proportional to the square of the gas density, it traces the inner parts of the cluster and is
consequently not as susceptible to projection effects. The X-ray luminosity shows a tight
correlation with cluster mass and the X-ray cluster mass function can provide competitive
cosmological constraints (Mantz et al., 2014; Vikhlinin et al., 2009). Currently, eROSITA
is in the process of detecting ~ 100,000 galaxy clusters up to redshift z ~ 1.3 (Merloni
et al., 2012).

m  Gravitational lensing is able to constrain cluster masses due to their gravitational
influence on light rays. The deep gravitational potential well of a galaxy cluster can
cause distortions in light (weak lensing), as well as produce multiple images of the same
object (strong lensing). The effects are proportional to the cluster’s mass and are free of
assumptions about the dynamical state of the matter (see, for e.g., Dahle, 2006; Hoekstra
et al., 2013; Umetsu, 2020).

m The Sunyaev-Zel’dovich (SZ) effect maps hot electrons in the intracluster medium by
means of inverse compton scattering with CMB photons (Sunyaev & Zeldovich, 1972).
This process boosts the energies of low-energy CMB photons, thereby distorting the
blackbody spectrum. Since the SZ effect is independent of the cluster distance, this
method is very promising for high-redshift clusters. Both the South Pole Telescope
(N. Huang et al., 2020) and the Atacama Cosmology Telescope (Hilton et al., 2021) are
currently producing large catalogues of galaxy clusters via the SZ effect.
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F1Gure 1.7 — Posterior contours in the og — (), plane for large-scale structure measurements (LSS)
from DES and KiDS, and CMB measurements from Planck. The figure illustrates the weak tension
between LSS and CMB measurements in terms of these parameters. Figure adapted from Heymans
et al. (2021).

m  Optical and near IR emission of galaxy clusters is mainly radiated as starlight, which
traces the galaxy distribution of clusters. The first optical galaxy cluster catalogue was
compiled by Abell (1958) as far back as 1958. Mass estimates are usually obtained from
the number of member galaxies in the clusters (the richness), or from the cluster velocity
dispersion. The latter is related to the dynamical mass by the Jeans equation (e.g. Lokas
& Mamon, 2003) or the virial theorem (e.g. Abdullah, Wilson, Klypin, et al., 2020).

In Chapter 7, a new method for dynamical mass estimation is presented that does not rely on
any scaling relations or assumptions regarding spherical symmetry or dynamical equilibrium.
Instead, it employs a machine learning approach to optimally exploit the 3D phase-space
information of the clusters and more adequately account for projection effects. The resulting
cluster mass function from clusters in the Sloan Digital Sky Survey is computed and is shown to
be consistent with the HMF from the Planck cosmological model.

1.3.5 The growth tension

The matter content of the Universe and the amplitude of density fluctuations are tightly con-
strained by the CMB as Q,, = 0.315+0.007 and og = 0.811 + 0.006 (Planck Collaboration,
Aghanim, et al., 2018). Alternatively, they can be inferred from weak lensing constraints from
large-scale structure (LSS) measurements, as performed by the Kilo-Degree Survey (KiDS; de
Jong et al., 2013) and the Dark Energy Survey (DES; The Dark Energy Survey Collaboration,
2005). Figure 1.7 illustrates the weak tension that currently exists between LSS and CMB
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F1GURE 1.8 — G299.2-2.9: a type la super-
nova remnant. Credits: NASA & 2MASS.

observations, known as the growth tension. With the latest measurements, the tension is at the
level of ~ 20 (Amon et al., 2021; Heymans et al., 2021). Independent determinations of og and
(), are important to assess whether this tension is due to a statistical fluctuation or has an
underlying physical cause.

Galaxy clusters can provide such an alternative measurement. Thus far, cosmological
constraints obtained via the SZ effect (Salvati et al., 2018), X-ray mass estimates (Mantz et al.,
2014), abundance and weak-lensing mass measurements (Rozo et al., 2010), and dynamical
mass estimates (Abdullah, Klypin, et al., 2020) are in agreement with the CMB measurements.

1.4 LOW-REDSHIFT DISTANCE MEASUREMENTS

N THE low-redshift Universe, there are a myriad of astrophysical objects that are utilised for
Idistance determinations to ultimately constrain our cosmological model. This section gives an
overview of distance indicators that have been used throughout the work in the thesis. It draws
inspiration from Alam et al. (2017), Andersen (2018), Philcox et al. (2020), Sanchez et al. (2017),
Satpathy et al. (2017), and Yuan (2017).

1.4.1 Type Ia supernovae

Type Ia supernovae are bright thermonuclear explosions that occur in binary systems where at
least one of the stars is a white dwarf. They are classified as ‘type I’ on the basis that their spectra
do not contain any hydrogen emission lines. By virtue of their consistent peak luminosity, they
are excellent standard candles, such that they can be employed to measure distances to their
host galaxies and to constrain cosmological parameters (Riess et al., 1998). The remnant of a
type Ia supernova can be seen in Figure 1.8.

Currently, two main progenitor scenarios are proposed to explain type Ia supernovae; the
single degenerate and the double degenerate systems. In the single degenerate scenario, a white
dwarf accretes matter from a companion star until it reaches the Chandrasekhar mass limit
of ~ 1.4 M (Chandrasekhar, 1931) and explodes (Nomoto, 1982; Whelan & Iben, 1973). The
double degenerate scenario is caused by the merger of two white dwarfs that also results in a final
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FIGURE 1.9 — Left panel: Light curves of type Ia supernovae observed in the B-band by Hicken et al.
(2009) and Stritzinger et al. (2011), clearly demonstrating the correlation between light curve
width (‘stretch-factor’) and peak B-band magnitude. Right panel: Correcting the light curves for
the stretch-factor greatly reduces the scatter. Figure adapted from Maguire (2017).

mass close to the Chandrasekhar mass (Iben & Tutukov, 1984; Webbink, 1984). Surprisingly,
these two evolutionary channels seem to result in thermonuclear explosions with a high degree
of homogeneity, although the uncertainty in progenitor scenario may introduce some unknown
systematic errors in the standardisation of type la supernovae.

Observed supernova brightness is generally provided in terms of the apparent magnitude m
in a given filter x, which is related to the flux in that filter F, by:

mxz—z.Sloglo(If—x), (1.53)
X,0

where F is defined in eq. (1.21) and Fy , is the reference flux (or zero-point) for the filter x.
The apparent magnitude is a measure of how bright we observe an object to be from Earth,
i.e. it depends on the distance to the object and any extinction along the line of sight. The
absolute magnitude M corresponds to the intrinsic luminosity emitted by the source, defined as
the apparent magnitude the object would have if it were exactly 10 parsecs away. If both the
apparent and absolute magnitudes are known, the luminosity distance d; in parsecs to an object
can be determined via the following relationship:

M =m+5-5log,,(dp). (1.54)

Often, distances are expressed on a logarithmic scale by means of the distance modulus y, which
is defined as:

u=m-M. (1.55)
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In 1993, Phillips (1993) greatly enhanced the standard candle potential of type Ia supernovae
by discovering that their peak brightness correlates tightly with the decline rate of their light
curve. Broader light curves are generally brighter, as illustrated in Figure 1.9. A few years later,
an additional correlation was found between the peak luminosity and optical colour (Riess et al.,
1996; Tripp, 1998); bluer supernovae are brighter. These findings are summarised in the Tripp
formula, which yields the absolute B-band peak magnitude My that a type Ia supernova, based
on its light curve width and colour, is expected to have:

Mg = —ax; + fc+ M, (1.56)

with c being the colour parameter and x; denoting the stretch parameter, that characterises the
width of the light curve. M is the expected absolute magnitude of a supernova with x; =c =0,
which takes on a value of My ~ —19.3, depending on the specific calibration. Although the
colour and stretch corrections greatly reduce the scatter in observed peak magnitudes, some
intrinsic scatter of ~ 0.12 magnitude remains. It is likely that these small variations can be
accredited to the properties of the host galaxy, dust along the line of sight, position in the host
galaxy, and, potentially, the progenitor scenario leading to the formation of the supernova.

Type Ia supernovae have played a crucial role in our current understanding of the Universe.
The Nobel prize for physics of 2011 was awarded to Saul Perlmutter, Brian P. Schmidt and
Adam G. Riess for “the discovery of the accelerating expansion of the Universe through observations
of distant supernovae” (Perlmutter et al., 1998; Riess et al., 1998; Schmidt et al., 1998). Their
findings can be seen in Figure 1.10. As both teams demonstrated, type Ia supernovae are an
invaluable tool for mapping out the cosmic expansion history and confirming the existence of
dark energy. The supernovae do, however, only allow for relative distance measurements, and
need to be calibrated first in order to provide constraints on the Hubble constant.

1.4.2 Baryon Acoustic Oscillations

The Baryon Acoustic Oscillations (BAO), as discussed in Section 1.2, are imprints of the oscil-
lations in the photon-baryon plasma that form the seeds of structure formation. The galaxy
distribution follows these patterns, such that there is a correlation between galaxies in the centre
of the primordial overdensities and those in the shells around them. This preferred scale of
clustering acts as a standard ruler; an object whose physical size is known and, therefore, can be
employed to determine distances by measuring its angular size in the sky (Bassett & Hlozek,
2010). Since the Universe consists of many multi-scale structures that are overlaid on each
other, the BAO feature cannot be seen by eye but can only be extracted using statistical methods.
The signal shows up as a peak in the two-point correlation function, indicating an excess of
clustering at that scale (left panel of Figure 1.11). Because the power spectrum is the Fourier
transform of the correlation function, the characteristic signal emerges as a series of oscillations
in Fourier space (right panel of Figure 1.11). The BAO feature was first detected in 2005 in the
two-point correlation function of the Sloan Digital Sky Survey (D. ]. Eisenstein et al., 2005) and
in the power spectrum of the 2dF Galaxy Redshift Survey (Cole et al., 2005).

In addition to the clustering of galaxies, the BAO signal has also been observed in the
correlation function of the Lyman-a forest absorption (de Sainte Agathe et al., 2019) and in its
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FiGure 1.10 — Figure from the Nobel prize winning paper by Riess et al. (1998) that employs type
Ia supernovae to demonstrate the accelerating expansion of the Universe and the existence of dark
energy. The supernova data points are consistent with (O, = 0.24 and Q5 = 0.76.

cross-correlation with quasars (Blomgqvist et al., 2019). A future spectroscopic galaxy survey by
the Dark Energy Spectroscopic Instrument (DESI) will cover 14000 square degrees and measure
the BAO signal out to a redshift of 3.5 through a combination of Lyman-a forest absorption and
galaxy and quasar clustering (DESI Collaboration et al., 2016).
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FiGure 1.11 — BAO signal in the two-point correlation function (left panel) and the power spectrum
(right panel) of BOSS data (Alam et al., 2017).

1.4.2.1 Radial and tangential features

There are two distinct ways in which BAO measurements can provide cosmological constraints,
which are illustrated in Figure 1.12. Firstly, the tangential BAO length s, constrains the angular
diameter distance through the geometric relation:

s
da(z) = —L .
A= 36072) (1.57)
where A6 is the angle under which we observe the BAO signal. Secondly, the BAO scale along
the line of sight s is sensitive to the expansion of the Universe, thereby allowing a measurement
of the Hubble parameter:

H(z)= —, (1.58)

where Az is the redshift difference between the front and the back of the BAO feature. Isotropic
BAO measurements do not have sufficient statistical power to separate the radial and tangential
BAO features and instead combine them in a volume-averaged distance:

1/3
. (1.59)

dy =[czd3(z) H\(2)]

Additional information can be obtained through the Alcock-Paczynski test (Alcock & Paczyn-
ski, 1979; Montanari & Durrer, 2012), which uses the fact that the BAO shells are statistically
spherical structures, implying that s is equal to s, . This provides constraints on the product
H(z) x da that are complementary to the separate H(z) and d5 measurements. Although the
BAO shells are spherical in real space, distances obtained in redshift space contain contributions
from peculiar velocities of the galaxies that deviate from the pure Hubble flow. Therefore, the
reconstructed distances suffer from distortions along the radial direction, called redshift space
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Tangential length:
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Radial length:
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FIGURE 1.12 — BAO measurements constrain the cosmic expansion rate in the radial direction and
the angular diameter distance tangentially. By assuming that the BAO features are spherical, the
Alcock-Paczynski test provides additional constraints on H(z) x da. Figure inspired by Bassett and
Hlozek (2010).

distortions (RSD; Kaiser, 1987). On small scales, the spatial distribution of galaxies appears to
be elongated due to their velocity dispersion along the line of sight, a phenomenon known as
the ‘Fingers of God’ effect (Jackson, 1972). On larger scales, RSD are caused by infall velocities of
galaxies that are gravitationally attracted to larger clusters, resulting in an apparent flattening
of structures in the radial direction. These two opposing effects combine to form complex
distortion patterns in redshift maps. Since the infall velocities are sensitive to the logarithmic
growth rate f of structures (eq. (1.43)), which is usually reported in terms of f oy, it follows that
BAO measurements are capable of constraining f og in addition to H(z) and d,.

1.4.2.2 BAO-only and full-shape analyses

The analysis of BAO data can be carried out in two different ways. The first approach is the BAO-
only method, which focuses solely on identifying the BAO features in the correlation function
and power spectrum. This analysis employs a reconstruction technique to reduce the effects of
RSD and to displace galaxies closer to their initial positions, where they were located before
large-scale bulk flows weakened the BAO signal. This procedure sharpens the peak considerably.
However, in order to do so, it assumes a cosmological model and a value of the growth rate of
structures. Both an analytical calculation of the bias introduced by the reconstruction technique
(Sherwin & White, 2019) and an investigation of the bias using simulations for an underlying
wCDM cosmology (Carter et al., 2020) find that the introduced shift of the BAO peak location is
negligible for current data sets, although this might become relevant for future high-precision
observations.

In practice, the BAO-only analysis is carried out by constraining the Alcock-Paczynski
parameters a = {a), a,}, which represent deviations of the radial and tangential BAO features
from an assumed fiducial cosmology. The fiducial cosmology is adopted to convert redshifts
into distances, as well as to supply a template for the correlation function and power spectrum.
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The shift between the observed BAO feature and the one in the fiducial template depends on
the cosmic expansion rate, angular diameter distance and sound horizon at the redshift of
decoupling in the following way:

Hﬁd(z) rgd B da(z) rgd

a= ————, o, = —,
I H(z) rq + d[fid(z) 74

(1.60)

where z corresponds to the effective redshift of the sample and the superscript ‘fid’ refers to
the assumed fiducial cosmology. In this way, BAO measurements constrain the combination
H(z)rq or da/rq. Only by assuming a value for the sound horizon, e.g. from CMB physics or
Big Bang Nucleosysnthesis (BBN), do they provide absolute measurements of distances or the
cosmic expansion rate.

The second method is the full-shape analysis, which models the full correlation function
and power spectrum and does not include any reconstruction techniques. This approach also
models the RSD effects with fog as a free parameter. Therefore, the full-shape analysis is the
preferred one when it comes to inference with minimal cosmological assumptions. However,
the perturbation theory model which is used to construct the correlation function and power
spectrum still adopts a ACDM model. Additionally, for both the full-shape and the BAO-only
methods, a cosmological model is used to construct the covariance matrices from mock galaxy
catalogues. Two distinct sets of mock simulations with a different underlying cosmology were
investigated for this purpose, yielding consistent results (Alam et al., 2017).

Recently, a new analysis that combines the BAO-only and full-shape methods, while adopting
a prior on the baryon density from BBN, has obtained a 1.6% measurement of the Hubble
constant. The resulting value of Hy = 68.6+ 1.1 km s~! Mpc™! is mostly independent of, and
completely consistent with, CMB constraints (Philcox et al., 2020).

1.4.3 Going to high-redshift with quasars

Quasars can be employed as relative distance indicators, with the advantage of being visible
up to redshifts above 7. Their usefulness lies in the non-linear relation between ultraviolet
emission from their accretion disk and X-ray emission from the corona in the surrounding
region (Avni & Tananbaum, 1986; Tananbaum et al., 1979; Zamorani et al., 1981), which is
generally parametrised as:

log; (Lx) = y1og;o (Luv) + B, (1.61)

where Ly denotes the X-ray luminosity, Lyy the ultraviolet luminosity, while  ~ 0.6 and g ~ 9
are fitting parameters. Risaliti and Lusso (2018) have constructed a Hubble diagram from
high-redshift quasars, where they employ a cosmographic parametrisation to describe the
cosmic expansion history. They find that the high-redshift quasars are in agreement with type
Ia supernovae and the concordance model up to z ~ 1.4, but deviate from ACDM at higher
redshifts. However, as high-redshift quasars exhibit a large amount of intrinsic scatter, their
reliability as standard candles is still a matter of debate (Velten & Gomes, 2020). Additionally,
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FiGUre 1.13 — The period-luminosity relation in the K-band for 111 Cepheids from the Milky
Way, Large Magellanic Clouds (LMC) and Small Magellanic Clouds (SMC). Figure reprinted from
Storm et al. (2011).

it has been pointed out that the use of cosmographic expansions at high redshift can introduce
artificial tensions (Yang et al., 2019).

In Chapter 3, high-redshift quasars are used as an optional standard candle in addition to
type la supernovae and BAO.

1.4.4 Cepheids

Cepheids are massive stars that are transitioning from the main sequence in the colour-
magnitude diagram to the giant branch and, hence, display regular pulsations in their radius
and temperature that are tightly correlated with their pulsation period (Leavitt, 1908). The
pulsation mechanism is thought to stem from the opposing forces of gravity and radiation
pressure in an ionised helium layer in the star’s envelope. The period-luminosity relation, as
displayed in Figure 1.13, takes on the following form:

M =alog(P)+ f(T), (1.62)

where M denotes the absolute magnitude, P is the pulsation period, f(T) represents the temper-
ature dependence and the coefficient a is equal to —10/3. The correlation between the period and
luminosity makes Cepheids great standard candles that are highly suitable for absolute distance
measurements. To this end, the period-luminosity relation is first calibrated with geometric
measurements of nearby distances, such as trigonometric parallaxes (Breuval et al., 2020; Riess,
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Casertano, Yuan, Macri, Anderson, et al., 2018), eclipsing binary systems (Pietrzynski et al.,
2019) and water masers (M. J. Reid et al., 2019). Subsequently, the distances inferred for the
Cepheids are used to calibrate type Ia supernovae in galaxies that contain both objects. This
step-wise approach of building up larger and larger distances is known as the cosmic distance
ladder, and when used in combination with Cepheids, it provides the tightest low-redshift
constraints on the Hubble constant. The analysis of the Supernovae and Hy for the Equation of
State of dark energy project (SHoOES; Riess et al., 2021) yields a measurement of Hy =73.2+1.3
km s~} MpcL.

1.4.5 Tip of the Red Giant Branch

As low-mass stars reach the end of the red giant branch evolutionary track in the colour-
magnitude diagram, the helium at their core will undergo nuclear fusion in a process called a
helium flash. The helium flash leads to a sharp discontinuity in the colour-magnitude diagram
which occurs at a predictable luminosity, making the Tip of the Red Giant Branch (TRGB) an
excellent standard candle. Similarly to Cepheids, the TRGB can be calibrated with nearby
geometric measurements and used as a rung in the distance ladder to determine absolute
distances to supernovae.

The TRGB method holds several advantages over Cepheid distance measurements. While
Cepheid variables are mostly found in the galactic disk, TRGB stars are located in the halo of the
galaxy. Therefore, they are less affected by dust extinction and the overlapping of point-spread
functions of surrounding stars (‘crowding’). Additionally, they can be found in galaxies of
all morphological types, while Cepheid variables only occur in spiral galaxies, which might
introduce biases. The effects of different metallicities of TRGB stars are well-understood and
can be corrected for. Finally, while Cepheids require multi-epoch observations to accurately
map out their pulsation period, the TRGB method only requires a single-epoch observation in
two filters.

The Carnegie Supernova Project has employed the TRGB method in combination with type
Ia supernovae (Freedman, 2021) to yield a Hubble constant of Hy = 69.8 £ 0.6 (stat) £1.6 (sys)
km s~! Mpc~L.

1.4.6 Gravitational lensing

Gravitational lensing is the bending of light due to a gravitational field, as predicted by Einstein’s
theory of general relativity. In the Universe, objects such as galaxies and clusters can act as
gravitational lenses that magnify and distort light from distant background sources. These
effects allow us to see further into the Universe, map out the distribution of matter in the lens,
determine distances to the lens system and ultimately infer the cosmic expansion rate (Narayan
& Bartelmann, 1996).
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FIGURE 1.14 — Schematic of a gravitational lens system. Light travelling from a source S is deflected
by a lens L under an angle &, such that it looks for an observer O as though it originates from
an image I. The optical axis makes an angle § with the source and 6 with the image. Angular
diameter distances are given between the observer and the lens (D)), the observer and the source
(Ds) and the lens and the source (Djs). Figure adapted from Narayan and Bartelmann (1996).

1.4.6.1 Lensing formalism

When light passes by an object of mass M at a distance &, it is bent by a deflection angle d:

a = % (1.63)
Figure 1.14 shows the geometry of a typical lens system. A light ray emitted by a source S
is deflected under an angle & by the lens L and arrives at the observer O. The original angle
between the observer and the source is §, while the observed angle of the image I is 6. The
angular diameter distances between the observer and the lens, observer and the source, and lens
and the source are D), D, and Dy, respectively. Note that in general, the relation Diy = Dy — Dy
does not hold. Angular diameter distances are defined such that: observed angle x distance =
separation, and applying this relation to Figure 1.14 yields the following identity:

BDs = 6D; — aDy;, (1.64)

where, in the case of a general non-symmetric mass distribution, the angles are vectors because
they have a magnitude as well as a direction. It is convenient to define the reduced deflection
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Ficure 1.15 — The horseshoe Einstein ring (LRG 3-
757). Image Credit: ESA/Hubble & NASA.

angle a:
D
a= FIS“ (1.65)
Combining egs. (1.64) and (1.65) results in the lens equation:
B=6-a. (1.66)

The lens equation also holds in curved spacetimes, because angular diameter distances are
always defined as angle x distance = separation. Solutions to the lens equation can produce
multiple image positions for one source, which means that we observe the same object multiple
times; a phenomenon called strong gravitational lensing. When a source is located right behind a
nearly spherical lens galaxy, it will be warped into an Einstein ring around the lens galaxy, as
depicted in Figure 1.15. The radius of the ring, the Einstein radius Og, is given by:

[4GM Dy,
O = —_— .6
E C2 D]Ds (1 7)

The Einstein radius plays a central role in lens studies, as it relates to the mass of the lens galaxy
and, therefore, to the strength of the gravitational lensing effect.

Typically, the thickness of the lens galaxy is negligible compared to the distance the light has
to travel between the source and the observer. Therefore, the 3D mass distribution of the lens
can be projected along the line of sight and approximated by a 2D mass sheet. This is known as
the thin lens approximation. The projected surface mass density X(&) in the z-direction can be
calculated as:

(&) = Jpos,z)dz, (1.68)

where p is the 3D mass density and £ is a 2D vector in the lens plane which is related to the
image angle and lens distance as £ = D;0. The surface mass density is often represented as a
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dimensionless quantity, known as the convergence x(6):

where the critical surface mass density X, is given by:

s > D,
747G DDy

(1.70)

Similarly, the 3D lens potential ®(6,z) can be projected along the line of sight to yield the
effective lens potential (0):

_ Dy 2
1,[)(9) - Dle C2

D(Dy0,z) dz. (1.71)
The derivatives of 1(0) with respect to 8 can in turn be related to the reduced deflection angle
and the convergence:

2(6)=Vy(6),  x(6)=3V*p(0) (1.72)

where the Poisson equation was used to obtain the latter identity.

Gravitational lensing can magnify objects, which gives us the opportunity to observe astro-
physical objects that would normally be too faint to detect. Since the lensing process conserves
surface brightness, the magnification is simply defined as: image area / source area. The shape
and size of the image are dictated by a combination of isotropic magnification and distortions.
The convergence x acts to cause an isotropic magnification, which maps the source into an
image with a different size but the same shape. The shear y distorts and tangentially stretches
the image. In terms of the convergence and shear, the magnification y can be written as:

1
AR (1.73)
The regions in the image plane where  is infinite are called critical curves, and the corresponding
lines in the source plane are caustics. The location of the source within the caustics determines
the image multiplicity; a source in the inner, middle and outer caustic region produces five,
three and one image, respectively. Typically, in the case of strong lensing we only observe
four or two images, because the central image is highly demagnified. When the source crosses
from an inner to an outer caustic, two images merge and disappear. For an elliptical lens, the
inner caustic takes on a diamond shape that consists of fold caustics (the smooth regions) and
cusp caustics (the tips). Figure 1.16 illustrates the image configurations resulting from a source
moving across a fold and a cusp caustic.
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FIGURE 1.16 — A source behind an elliptical lens moving from the centre toward the outer regions.
As it progresses, it crosses a fold caustic (left panel) or a cusp caustic (right panel) in the source
plane, which leads to different image configurations in the lens plane. Figure adapted from
Narayan and Bartelmann (1996).

1.4.6.2 Time-delay cosmography

If the object behind the lens galaxy is a variable source, such as a quasar or a supernova, the
images will vary in brightness. These variations will arrive at the image positions at different
moments in time, due to a geometric time delay and a gravitational (or Shapiro) time delay
(Shapiro, 1964). For a single lens plane, the excess time delay of an image relative to an
unperturbed path is:

(0,6)= 24 4(0,), (1.74)

B)’

50.6)= " yio), (1.75)

where ¢(0, B) is called the Fermat potential, which consists of a geometrical term (6 — §)?/2 and
a gravitational term ¢ (0). Dy, is the time-delay distance (Refsdal, 1964; Schneider et al., 1992;
Suyu et al., 2010), which is defined as:

Dle

Dpr=(1+27) Dy
S

(1.76)

where z; is the lens redshift. For a given source, the images are formed at the stationary points of
the time-delay surface #(8). This follows from Fermat’s principle, which states that the path taken
by a light ray between two points is the one that can be travelled in a time that is stationary with
respect to neighbouring trajectories. Figure 1.17 illustrates that the geometric and gravitational
effects are opposed: in terms of geometry, light would arrive first at the centre of the lens,
whereas time there is strongly slowed down due to gravitational time dilation. The result of
these opposing effects is that brightness fluctuations generally arrive first at the image position
furthest away from the lens.
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time delay

angular position

FIGURE 1.17 — Geometric (tgeom), gravitational (fg,y) and total (1) time-delay surfaces for a
spherical lens and a source slightly offset behind it. The dotted vertical line marks the location of
the lens and B signifies the source position. The black dots correspond to the images, which are
formed at the stationary points of the total time-delay surface. Figure reprinted from Narayan
and Bartelmann (1996).

A major challenge in time-delay cosmography is the mass-sheet degeneracy (E. E. Falco et al.,
1985; Gorenstein et al., 1988; Saha, 2000; Schneider & Sluse, 2013), which is a transformation of
the mass distribution by an arbitrary constant A of the following form:

K—>Kk=Ax"+(1-21), (1.77)

together with a scaling of the source plane coordinates § — Ap. This transformation, which
is equivalent to adding a sheet of constant surface mass density 1 — A, leaves all imaging
observables the same, while changing the time delays. This additional mass sheet can be
physically interpreted in two different ways. Firstly, as an external convergence k., due to
lensing contributions from substructures along the line of sight. The external convergence can be
estimated using galaxy number counts (Rusu et al., 2017) or weak lensing estimates (Tihhonova
et al., 2018) in combination with cosmological simulations for each line of sight. The second
interpretation is a transformation of the internal density profile of the main deflector, which can
be constrained by information regarding the lensing potential, such as stellar kinematics of the
lens galaxy (Birrer et al., 2020; Birrer et al., 2016; Koopmans, 2004; Shajib et al., 2021). Besides
contributing to breaking the mass-sheet degeneracy, stellar kinematics can also be employed to
determine the angular diameter distance to the lens galaxy (Jee et al., 2019; Paraficz & Hjorth,
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2009; Shajib et al., 2018). For a singular isothermal sphere lens profile (see eq. 1.79) with
velocity dispersion o, the distance to the lens galaxy can be obtained via the following identity
(Paraficz & Hjorth, 2009):

B At
B 47‘(0’2(1 +Zl)(62 —91))

Dl (178)
where 6; and 0, denote the image positions and At is the corresponding time delay between
the images.

In order to determine the time-delay distance, a measurement of the time delay and a
realistic model for the lens potential are required (see eq. (1.74)). Distances are primarily
sensitive to the Hubble constant, since a higher (lower) value of Hy corresponds to shorter
(longer) distances, respectively. The time-delay distance also depends weakly on several other
cosmological parameters, such as the matter density, cosmic curvature and equation of state
of dark energy, which renders time-delay cosmography a promising method for cosmological
inference (Treu & Marshall, 2016). However, computing an accurate lens model from limited
observations is a challenging endeavour, and for this reason, several approximate lens models are
often used in lens analyses. In the next subsection, three parametric lens profiles of increasing
complexity are presented.

1.4.6.3 Lens mass profiles

The simplest parametrisation of a lens galaxy is the singular isothermal sphere (SIS), whose
convergence is given by:

Oe

x(0) = 20

(1.79)
An extension to this model that includes ellipticity is the singular isothermal ellipsoid (SIE;
Kormann et al., 1994):

O

[n2 2 2,
2 91+qlen592

where gjes is the projected axis ratio of the lens. A higher level of flexibility is obtained by
allowing the power-law mass slope )¢ to vary, instead of being fixed to 2 as in the SIE model.
This is the case for the power-law elliptical mass distribution (PEMD) (Barkana, 1998; Kormann

etal., 1994):

K(91,82) = (1'80)

Viens— 1
3- Vlens QE

2 [o2,. 2 p2
2 61+qlen562

In Chapters 5 and 6, we use the PEMD model, in combination with external shear, to simulate
gravitationally lensed supernovae. Although the PEMD model has been shown to provide a

x(01,0,) = (1.81)
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decent fit to stellar kinematics (Koopmans et al., 2009) and X-ray data (Humphrey & Buote,
2010) in the local Universe, it is partly responsible for breaking the mass-sheet degeneracy,
which can lead to a biased cosmological inference if the true underlying mass profile deviates
from a power-law model (Birrer et al., 2020; Kochanek, 2020; Sonnenfeld, 2018).

1.4.6.4 Lensed quasars

Quasars are ideal candidates for time-delay cosmography, because they vary in brightness
and can be seen up to high redshifts. The first strongly lensed quasar was discovered in 1979
(Walsh et al., 1979) and at present, we know of ~ 500 multiply-imaged quasars (Ducourant
et al., 2018). Since quasars typically vary in brightness on long timescales and in a stochastic
manner, extensive monitoring campaigns of the order of several years are required to obtain
accurate time-delay measurements. Furthermore, high-resolution imaging is needed to resolve
the extended emission of the quasar host galaxy, which provides additional constraints on the
lens mass profile that can break the mass-sheet degeneracy.

The Hy Lenses in COSMOGRAIL’s Wellspring collaboration (HoLiCOW, Suyu et al., 2017) has
provided few per cent-level precision constraints on the Hubble constant from six gravitationally
lensed quasars. The velocity dispersion measurements of the lens galaxies in the sample are not
powerful enough to break the mass-sheet degeneracy completely. Assumptions about the shape
of the lens mass profile (a PEMD model and a composite model consisting of a baryonic and a
dark matter halo component) break the remaining part of the degeneracy. The Hy, measurement
resulting from the HoLiCOW anaylis is Hy of 73.3:“% km s~! Mpc~! (Wong et al., 2020), which
is completely consistent with the local distance ladder value from SHoES and in 3.1¢ tension
with CMB observations from Planck.

A recent analysis of seven lensed quasars (of which six overlap with the HoLiCOW sample)
by TDCOSMO (Millon et al., 2019) relaxes the assumptions on the lens mass models, and
instead includes an external data set of 33 strong gravitational lenses from the Sloan Lens ACS
(SLACS) survey (Bolton et al., 2006). Since these are lensed galaxies, they do not allow for
time-delay measurements, but they do provide imaging and kinematics constraints. Combining
the aforementioned data sets relies on the assumption that the lensed quasars and lensed
galaxies are drawn from the same parent population. This analysis yields a Hubble constant of
67.4%31 km s~! Mpc™! (Birrer et al., 2020), which is completely consistent with the CMB results,
although the uncertainties are much larger.

In Chapter 4, the six lensed quasars as analysed by the HoLiCOW collaboration are used to
provide constraints on the sound horizon, as well as the Hubble constant, using cosmographic
methods (as discussed in Section 1.1.6) that are agnostic to the underlying cosmology.

1.4.6.5 Lensed supernovae

When Sjur Refsdal predicted in 1964 how the phenomena of strong gravitational lensing could
be used to calculate the cosmic expansion rate, he initially suggested lensed supernovae for this
purpose (Refsdal, 1964). Only recently has his vision become a reality. The discovery of the
first multiply-imaged supernova (“SN Refsdal") lensed by a galaxy cluster (Kelly et al., 2015)
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SN Refsdal iPTF16geu SN Requiem

FiGure 1.18 — The three lensed supernovae that have been detected so far: SN Refsdal (Kelly et al.,
2015), iPTF16geu (Goobar et al., 2017) and SN Requiem (S. Rodney et al., 2021).

enabled a 6 per cent precision measurement of the Hubble constant based on gravitational
time delays determined from observations of light curves in lens images of the same supernova
(Grillo et al., 2018; Vega-Ferrero et al., 2018). Strongly magnified supernova iPTF16geu lensed
by a single galaxy was observed as a transient source in the intermediate Palomar Transient
Factory (Goobar et al., 2017), although the corresponding arrival time delays were too short
to obtain a meaningful estimate of Hy. The third multiply-imaged supernova AT2016jka (“SN
Requiem”) was discovered in Hubble Space Telescope data, and is predicted to host a fourth
image in two decades time, which should allow for a sub-per cent precision measurement of
the time delay (S. Rodney et al., 2021). The three detected lensed supernovae are depicted in
Figure 1.18.

Compared to lensed quasars, the advantages of lensed supernovae lie in their well-defined
light curves and the possibility for follow-up observations to constrain the lens galaxy properties
after the supernova has faded away. In the case of lensed type Ia supernovae, absolute magnifi-
cations provide another promising way to break the mass-sheet degeneracy (Birrer et al., 2021;
Foxley-Marrable et al., 2018; Kolatt & Bartelmann, 1998; Oguri & Kawano, 2003). Challenges
associated with lensed supernovae are that they typically have much shorter time delays and
smaller image separations than quasars, which make it difficult to precisely constrain their time
delays and renders them more susceptible to microlensing effects from substructures in the lens
galaxy (Dobler & Keeton, 2006; Goldstein et al., 2018; Huber et al., 2019).

In Chapter 5, we present an Al-driven pipeline to distinguish between lensed and unlensed
supernovae in survey images. In order to employ the confirmed lensed supernovae for cosmo-
logical inference, Chapter 6 presents a spatio-temporal neural network that infers the cosmic
expansion rate from an ensemble of time-series images of simulated lensed supernovae.

1.5 COSMOLOGICAL TENSIONS

THE PREVIOUS sections described how CMB-based measurements by Planck infer a low value
of the Hubble constant (Hy = 67.4+ 0.5 km s~} Mpc™!; Planck Collaboration, Aghanim,
et al., 2018), while low-redshift observations of type Ia supernovae calibrated by Cepheids
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obtain a high Hubble constant (Hy = 73.2+ 1.3 km s~! Mpc™!; Riess et al., 2021). The low-
redshift calibration by lensed quasars as carried out by the HoLiCOW collaboration supports
this conclusion (Hy = 73.3:“% km s~! Mpc~!; Wong et al., 2020). The difference in Hy, values
inferred from CMB-based methods and low-redshift observations is one of the most outstanding
problems in present-day cosmology, and is often referred to as the Hubble tension. It might be
explained by residual systematics in either of the approaches, or it could hint at new physics
beyond the standard ACDM model. The CMB-based measurements rely on ACDM to propagate
the parameters at recombination forward to redshift zero, or in other words, to convert distance
measurements into the Hubble constant. Hence, modifying the underlying cosmological model
used in the CMB inference might return a higher H value that is consistent with SHoES and
HoLiCOW.

Nevertheless, the tension is lowered considerably by several recent low-redshift measure-
ments, such as distance calibrations from the Tip of the Red Giant Branch (TRGB), as measured
by the Carnegie-Chicago Hubble Project (Hy = 69.8 + 0.6 (stat) +1.6 (sys) km s™! Mpc~!; Freed-
man, 2021) and the new analysis of seven gravitationally lensed quasars by the TDCOSMO
collaboration (67.4J_r‘31:% km s~! Mpc!; Birrer et al., 2020). An overview of several recent H,
measurements is provided in Figure 1.19.

1.5.1 Alternative interpretations of the Hubble tension

Although the tension is generally discussed in terms of the Hubble constant, it can be more
broadly regarded as a disagreement in distance calibrations, which can be recast as a tension in
a number of cosmological parameters. Firstly, the discrepancy in distance measurements also
influences the predictions of the sound horizon. Since BAO measurements constrain the product
of Hy x rq (see Section 1.4.2), a higher value of the Hubble constant corresponds automatically
to a lower sound horizon, and vice versa. In our work in Chapters 3 and 4, we focus on the
combined tension in the Hy —r4 plane, and show that this yields valuable information about the
validity of some proposed solutions to the tension.

Since the age of the Universe f is inversely proportional to the Hubble constant;

e dz
0=, s (82

the problem can also be regarded as a f; tension (Bernal et al., 2021). Hy measurements by
SHOES predict a shorter age of the Universe than observations by Planck. Recent constraints
from the age of the oldest globular clusters (Valcin et al., 2020) in combination with low-redshift
Q),, measurements within a ACDM cosmology yield an estimate of Hy = 71 + 2.8 km s~! Mpc~!
(Jimenez et al., 2019).

Additionally, there is a partial degeneracy between the Hubble constant and the CMB
monopole temperature T,. When combining data from Planck and SHoES while allowing T
to vary within a ACDM framework, the Hubble tension can be resolved with a corresponding
Tp = 2.56 £0.05 (Ivanov et al., 2020). However, this measurement is in tension with temperature
measurements by FIRAS (Fixsen, 2009) and temperature estimates from the Sunyaev-Zel’dovich
effect (Luzzi et al., 2015).



1.5. COSMOLOGICAL TENSIONS 45

Recent published Hy measurements

—— CMB (Planck)

LSS + BAO + BBN
Cepheids (SHOES)
TRGB (CCHP)
Masers

Lenses (HOLICOW)
Lenses (TDCOSMO)
GW Sirens

Relative probability density

= T T it

FIGURE 1.19 — An overview of several recent published H, probability distributions, demonstrating
the discrepancy between different measurement methods. High-precision constraints on the
Hubble constant are provided by observations of the CMB (Planck Collaboration, Aghanim, et al.,
2018), LSS + BAO + BBN (DES Collaboration et al., 2021), Cepheids (Riess et al., 2021), TRGB
(Freedman, 2021), water masers (M. J. Reid et al., 2019), and lensed quasars (Wong et al., 2020).
Additionally, several lower-precision measurements have been carried out using lensed quasars
(Birrer et al., 2020), gravitational wave (GW) sirens (Hotokezaka et al., 2019), miras (C. D. Huang
et al., 2020), and surface brightness fluctuations (SBF; Khetan et al., 2021).

Furthermore, in the case of the SHoES analysis, the Hj, tension should actually be regarded
as a discrepancy in the type Ia supernovae absolute peak magnitude Mg (Benevento et al., 2020;
Camarena & Marra, 2021; Efstathiou, 2021). Since SHoES uses a cosmographic expansion
to extrapolate the expansion rate from supernovae in the redshift range 0.023 <z < 0.15 to
redshift zero, their analysis does not directly measure Hy. The true measured quantity is
Mg = -19.244 + 0.037 magnitudes (Camarena & Marra, 2021), which is in tension with the
inferred absolute magnitude from CMB observations, Mg = —-19.401+£0.027 (Camarena & Marra,
2020a).

Finally, the tension is sometimes described as a disagreement between the early (CMB) and
late (low-redshift) Universe. This view hints at a possible solution to the tension by means of
an alternative cosmological model to connect the early-time measurements to the late-time
observations. An extensive series of different models have been proposed for this purpose
(see e.g. Di Valentino et al., 2021; Knox & Millea, 2020; Shah et al., 2021). In our work, we
investigate the effects of modifications to the standard ACDM model. Solutions in the form
of extensions to ACDM can follow two distinct approaches: they can either change the early
physics (pre-recombination) or they can modify the late physics (post-recombination). Both
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classes of models are discussed below.

1.5.2 Early-time modifications of ACDM

Early-time extensions change the physics before recombination by introducing an additional
component that contributes to the energy density. Some commonly used examples are additional
relativistic particles or early dark energy, as will be discussed in more detail in Chapter 4.
Effectively, this increases the expansion rate in the early Universe, thereby shortening the time
between the Big Bang and recombination. As a consequence, the maximum distance which
the sound waves can travel before decoupling is shorter and, therefore, the physical size of the
sound horizon is reduced.

The angular size of the sound horizon is imprinted in the position of the first acoustic peak
of the CMB power spectrum, as discussed in Section 1.2.3. In order to keep this observed
angular scale unchanged, the decrease in the physical size of r4 automatically implies a shorter
angular diameter distance to the CMB. Shorter distances in turn correspond to a higher value
of the Hubble constant. The core idea behind changing the early-time physics is illustrated in
Figure 1.20.

Early-time modifications simultaneously entail an increase in Hy and a decrease in ry, thereby
preserving a good fit to BAO observations. However, the increased expansion rate in the early
Universe suppresses the growth of perturbations, which needs to be compensated with a higher
physical dark matter content. This leads to an increased amplitude of density fluctuations;
a higher value of og. These changes exacerbate the weak growth tension (cf. Section 1.3.5)
between CMB and LSS measurements (Hill et al., 2020). In fact, it has been pointed out by
Jedamzik et al. (2021) that any solution which only reduces the sound horizon can never fully
resolve the Hubble tension while still maintaining agreement with other cosmological data sets,
such as BAO or LSS.

1.5.3 Late-time modifications of ACDM

The second class of models leaves the physics before recombination unaltered. Instead, the
cosmic expansion history is modified at later times, with a decreased value at intermediate
redshifts and a higher value at low redshifts, as illustrated in Figure 1.20. Generally, this is
achieved by allowing the dark energy density to increase over time. In the standard ACDM
scenario, dark energy is a property of the vacuum with equation of state parameter w = -1,
i.e. its density remains constant as the Universe expands. Modifying the equation of state
parameter to be less than -1 will cause the dark energy density to increase, eventually leading to
the “Big Rip” scenario in which cosmic expansion will tear everything in the Universe apart”.
The advantage of this scenario is that it solves the H, tension by increasing the present-day
expansion rate. However, as we show in Chapter 4, since late-time extensions do not change the
physics in the early Universe, they are unable to alter the value of the sound horizon, thereby
inducing a tension with BAO and type Ia supernova observations (Arendse et al., 2020; Knox &

2We do not have to worry about this scenario just yet. In light of the current Planck 2018 data, the Big Rip is not
likely to happen for another 200 billion years (Mack, 2020).
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FIGURE 1.20 — Expansion history of the Universe as predicted by the standard ACDM model
(black), early-time modifications (red) and late-time modifications (blue). The horizontal axis
represents the time from the Big Bang to the present, from left to right. The length scale indicated
in the figure is proportional to the sound horizon and corresponds to r4/c;, the time during which
the sound waves have propagated. Early-time modifications result in a shorter 4 and higher Hy,
while late-time modifications only produce a higher H.

Millea, 2020). Additionally, it has recently been demonstrated by Alestas and Perivolaropoulos
(2021) that late-time modifications also worsen the growth tension.

If we take into account constraints from all cosmological data sets (e.g. type Ia supernovae,
BAO, CMB, LSS, globular clusters), we seem to be in an over-constrained system, where fixing
one problem inevitably creates another one. Anchordoqui et al. (2021) show that even when
combining the most promising early and late-time modifications, a simultaneous solution to the
Hubble and the growth tensions appears out of reach. The quest to devise a cosmological model
that outperforms ACDM and manages to resolve the tensions in all cosmological parameters of
interest remains open.






CHAPTER

STATISTICAL INFERENCE AND
MACHINE LEARNING

“All models are wrong, but some are useful”
- George E. P. Box

N THIS chapter, we provide details about the statistical inference and machine learning meth-
Iods that are used throughout the thesis. Section 2.1 presents the Bayesian interpretation of
probability and Bayesian inference as a tool for cosmological data analysis. Sections 2.2 and
2.3 describe how machine learning models, more specifically neural networks, can provide
estimates of cosmological parameters along with reliable uncertainties.

2.1 BAYESIAN STATISTICS

The Bayesian interpretation of statistics expresses probability as a measure of the degree of belief
in an event, which can be influenced by prior knowledge about the event (Bayes & Price, 1763).
This differs from the frequentist interpretation, where probability is measured as the relative
frequency of occurrence in the limit of infinite trials, independent of any prior knowledge
(Heavens, 2009). Therefore, Bayesian methods constitute a more principled approach to work
with incomplete information (Jaynes, 1957).

49
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2.1.1 Bayes’ theorem and its applications

Bayes’ identity can be derived from the definition of conditional probability. If A and B
represent two events, the conditional probability P(A | B) that A occurs given the occurrence of
B, is expressed as:

P(ANB)

PAIB) = =55

(2.1)
where P(A N B) refers to the intersection of A and B, i.e. the probability that both A and B occur.
Analogously, the conditional probability P(B | A) that B occurs given A can be written in a
similar way. Combining and rearranging the equations for P(A | B) and P(B| A) result in Bayes’
theorem (Bayes & Price, 1763):

P(B|A)P(A)

PAIB) ==

(2.2)

In statistical inference, A generally corresponds to a theory and B to the data, in which case each
term of eq. 2.2 carries a distinct meaning;:
m  P(A| B)is the posterior probability distribution. The posterior characterises how probable
the theory is in light of the data, which is usually the quantity of interest.

m  P(B|A) constitutes the likelihood; the probability of the data under the assumption of
the theory.

m  P(A)is the prior probability distribution, the probability of the theory in absence of the
data, which represents our prior knowledge of the theory.

m  P(B) is the evidence; the probability of the data integrated over the full parameter space.
Since the evidence is independent of the theory, it acts as a normalisation constant for
the posterior distribution.

Bayes’ theorem provides a means to solve inverse problems, such that if we know how the data
arises from a theory, we can use the data to constrain the theory. Additionally, it tells us how to
update our knowledge in light of new data.

In practice, if we want to constrain a physical model M with parameter vector © using a data
set d, each parameter should have a corresponding prior P(® | M) and likelihood P(d | ©, M).
Since observations are often accompanied with Gaussian noise, the likelihood is generally
taken to be a normal distribution. The choice of a suitable prior can be challenging, which is
an occasional point of critique in Bayesian analysis. However, specifying a prior beforehand
ensures that all assumptions are on the table, whereas assumptions in a frequentist analysis may
not be as apparent. The resulting posterior distribution can be obtained from the likelihood and
prior via Bayes’ theorem (eq. (2.2)) as follows:

PO|d, M) <« P(d|O,M) PO | M). (2.3)

In the above formula, the evidence P(d| M) is omitted since it only functions as a normalisation
constant for parameter inference problems. Nevertheless, the evidence is important for model
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comparison. The posterior odds ratio of model M; compared to model M, can be calculated
from a ratio of the models’ priors and evidences:

PMy | d) _ P(My) P(d | M) (2.4)
P(Mz|d)  P(M,) P(d | M) '

The computation of the evidence can be highly computationally expensive. For that reason,
alternative model selection methods are often used that rely on approximations of the data
distribution. One such method is the Bayesian Information Criterion (BIC), which is defined as:

BIC = kIn(N)-2In(Ly.4,.) (2.5)

where N corresponds to the number of data points, k represents the number of free parameters
and £, 4, denotes the maximum a posteriori likelihood (i.e. evaluated where the posterior is
maximised). The BIC score expresses how well a model describes the data, with a lower score
corresponding to a better agreement. It also introduces a penalty term for added complexity in
a model, thereby favouring models with fewer parameters that can describe the data sufficiently
well. This philosophy is known as Occam’s razor, and it states that when presented with
competing theories that produce the same predictions, one should select the one with the fewest
assumptions.

The ensemble of parameters © generally consist of several physically interesting parameters
C and a number of nuisance parameters . The posterior calculated in eq. (2.3) is the joint
posterior of © = {C,&}. If we are instead interested in the marginal posterior for the parameters
of interest, we can integrate out the nuisance parameters as follows:

P(CId, M) o< fde PUIC, & MYP(C, EIM). (2.6)

In summary, the posterior distribution P(0 | d, M) provides a measure of how likely a model
M with parameter set O is in light of the data d. A powerful way to sample the posterior density
is by means of Markov Chain Monte Carlo techniques, which are discussed in the following
section.

2.1.2 Markov Chain Monte Carlo techniques

One of the challenges associated with statistical analysis is to sufficiently explore the full
posterior distribution, especially in a high-dimensional parameter space. Often, the posterior
is not analytically tractable and, instead, has to be approximated by numerical techniques
(Leclercq et al., 2014). Monte Carlo (MC) methods provide such an approximation of the true
posterior distribution by drawing a set of random samples from it. In this way, the true posterior
P(© |d, M) is estimated as a sum of N Dirac delta distributions Py (© | d):

N
P@1d)~Py(@1d)=: ) 5p(©-6)) (27)
i=1
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FiGURE 2.1 — Visualisation of a Monte Carlo method in two dimensions, which draws random
samples (represented by the black dots) to approximate the true posterior distribution. The local
density of the samples is proportional to the posterior distribution. Figure reprinted from Leclercq
et al. (2014).

with op corresponding to the Dirac delta function. The local density of the resulting samples is
proportional to the true posterior distribution, as visualised in Figure 2.1.

A highly efficient method of sampling the posterior distribution is the Markov Chain Monte
Carlo (MCMC) technique, in which a sequence of points {X;, X5,.., X,,,..}, known as a Markov
Chain, is constructed in parameter space. The chain consists of random values, whereby the
probability of element X,,,; depends only on element X,,. This correlation between subsequent
samples allows the chain to navigate the probability landscape and find its way to the high-
density region of the target distribution (see Figure 2.2). The initial phase corresponding to
the low-density regions is known as the burn-in, which can be discarded after the chain has
converged to the region of interest.

Several well-known MCMC algorithms include the Metropolis—Hastings algorithm (Hastings,
1970; Metropolis et al., 1953), Gibbs sampling (Smith & Roberts, 1993), and Hamiltonian Monte
Carlo (Hanson, 2001). In the Metropolis-Hastings algorithm, the Markov Chain starts at an
initial position X and a candidate for the next step X’ is suggested by a proposal distribution
Q(X’| X). The probability that X’ is accepted as the next step depends on the ratio of the final
and initial target densities:

_ P(X) QX |X')
P(X) QX'1X)’

(2.8)

where a is the acceptance ratio. When a > 1, the suggested position X’ is in a higher-density
region of the target distribution than the initial position X and will be accepted. If a <1, the
suggested step is accepted with probability a, even though it leads in a direction away from the
highest density. This stochasticity of occasionally accepting a ‘wrong’ move helps the MCMC
algorithm to escape regions of local extrema. If the proposed position X’ is accepted, this will
become the new state of the chain. Alternatively, the chain will remain at X and the above
routine is repeated.
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i

F1GURE 2.2 — Markov Chain Monte Carlo methods use a chain of steps to efficiently navigate the
probability landscape and find their way to the density peak of the target distribution. Image
credit: Murray Foubister.

In Chapters 3 and 4, an affine-invariant MCMC method is used to approximate the posteriors
of cosmological parameters, such as the sound horizon and Hubble constant. This class of
MCMC algorithms is unaffected by affine transformations of space, which makes it well-suited
to explore skewed density distributions (Goodman & Weare, 2010Db).

Drawbacks of MCMC algorithms are that the chains can be inefficient in exploring high-
dimensional parameter spaces, such that the burn-in phase can take a long time. Additionally,
for multi-modal posteriors it can be difficult for the chains to converge to the true maximum
of the posterior. Therefore, it is important to ensure that the Markov Chains have sufficiently
explored the relevant parameter space. Several methods to assess whether the MCMC chains
have converged include:

m A visual representation of multiple chains starting at widely varied positions can be
inspected to see if they converge to the same region of the parameter space.

m  The proposed steps should have a sufficiently high acceptance rate.
m  The chain should have a short mixing time, i.e. they should progress rapidly to the region

of interest. Since the initial samples corresponding to the burn-in phase of the chain are
correlated, this duration should be small in comparison to the total sampling time.

m  The Gelman-Rubin diagnostic (Brooks & Gelman, 1998; Gelman & Rubin, 1992) provides
a measure of convergence by comparing the between-chains and within-chains variances,
which should be comparable in size for a chain that has reached convergence.
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2.2 NEURAL NETWORKS

This section draws material from Arendse, Kodi Ramanah, and Wojtak (2021), Kodi Ramanah,
Arendse, and Wojtak (2021), and Kodi Ramanah, Wojtak, and Arendse (2021).

sTRONOMICAL data sets have grown remarkably in size and complexity over the last decade,

making it increasingly difficult to extract meaningful features from the data. For this reason,
machine learning (ML) algorithms have emerged as promising tools to handle large data sets
and perform a wide variety of tasks (Baron, 2019), such as classification, regression, clustering,
outlier detection, and time series analysis. ML methods have been been employed for an impres-
sive array of cosmological applications, ranging from the estimation of cosmological parameters
directly from the cosmic large-scale matter distribution (Ravanbakhsh et al., 2017), generation
of mock halo catalogues (Berger & Stein, 2019; Bernardini et al., 2020), classification of the
structures of the cosmic web (Aragon-Calvo, 2019), photometric classification of supernovae (e.g.
Charnock & Moss, 2017; Lochner et al., 2016), identification of strong lensing arc features from
gravitationally lensed systems (e.g. Lanusse et al., 2018), estimation of lensing properties from
photometric images (e.g. Hezaveh et al., 2017; Park et al., 2021), estimation of the combined
mass of the Milky Way and Andromeda (Lemos et al., 2021), to the dynamical mass inference
of galaxy clusters (e.g. Ho et al., 2019; Kodi Ramanah, Wojtak, Ansari, et al., 2020; Ntampaka
et al., 2016). Emulators based on deep generative modelling techniques have been developed to
predict the formation of cosmic structures in the Universe (He et al., 2019), to map 3D dark
matter fields to their halo count distributions (Kodi Ramanah et al., 2019), and to obtain the
high-resolution version of low-resolution dark matter simulations (Kodi Ramanah, Charnock,
Villaescusa-Navarro, et al., 2020; Y. Li et al., 2021).

In this thesis, various types of neural networks are used to address selected problems in
cosmology. An artificial neural network aims to uncover relationships and patterns in data
via a process that is inspired by the inner-workings of a brain. It consists of several nodes,
called artificial neurons, that build a weighted sum of their inputs, add a constant term (bias),
apply an activation function, and pass the output along. Several layers of nodes can be stacked
to form a deep neural network, in which each layer’s output constitutes the subsequent layer’s
input. A loss function operating on the last layer quantifies how well the network’s output
matches the target output associated with the input data. During the training process, the loss
function is minimised by adjusting the weights via stochastic gradient descent, a process known
as back-propagation. Once the training is completed, unseen data can be passed into the network
to obtain output predictions.

Neural networks were already theorised in 1943 (Mcculloch & Pitts, 1943), but their success
only took flight around 5o years later, with the increase in computational power and parallel
computing via graphics processing units (GPUs). Between 2009 and 2012, various types of
neural networks won eight international competitions in ML and pattern recognition, after
which neural networks became the standard method amongst all top contestants (Molnar, 2019;
Russakovsky et al., 2014). The advantages of neural networks are that they are able learn
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non-linear and complex relationships, build high levels of abstraction, work well on large data
sets, and are robust under incomplete information. However, caution should be exercised with
the use of neural networks for several reasons. Firstly, they only return point estimates of the
desired quantity, without meaningful uncertainties. Secondly, for supervised methods where
a training set is used, it is essential to ensure similarity between the training set and actual
observations, in order to avoid biases in the predictions for real input data. This problem can be
addressed with transfer learning, in which knowledge from one data set can be generalised to a
second data set with different properties. Another challenge relates to the interpretability of
the results obtained with neural networks. It can often be difficult to understand exactly what
the model has learned, and what information it used to reach those conclusions. Since most
algorithms simply optimise an internal loss function, which can in principle be misaligned with
the scientific goal, the results do not always correspond to the desired outcome. Several recent
advances aim to make neural networks more interpretable, such as the visualisation of saliency
maps and learned features, modification of the training set, and adversarial examples (Molnar,
2019).

Formally, a neural network is an arbitrarily complex and flexible model, NN(w,#): D —
d, which maps some input data D to a prediction of the desired target d associated with
the data. w and 5 correspond to the trainable model parameters, known as weights, and
hyperparameters (e.g. network architecture, weights initialisation, type of activation and loss
functions), respectively. The weights are optimised during training to minimise the loss function,
which is a differentiable function of the data and the weight, often taken to be the negative
log-likelihood:

~In£(d|D, w, n). (2.9)

As such, the training process is equivalent to determining the maximum likelihood estimate of
the weights, resulting purely in a single point estimate by the neural network. The remainder of
this section presents two types of neural networks that have been used for the work presented in
this thesis; convolutional neural networks and recurrent neural networks. Section 2.3 discusses
two methods, variational inference and simulation-based inference, which provide a reliable
way to quantify the uncertainties associated with the network predictions.

2.2.1 Convolutional neural networks

Convolutional neural networks (hereafter CNNs) (LeCun, Bengio, et al., 1995; LeCun et al., 1998)
are a particular type of artificial neural network, especially suited for problems where spatially
correlated information is crucial. In essence, a CNN is designed as follows: A convolutional
kernel of a given size, commonly referred to as a filter, is applied to each pixel (or voxel for
3D inputs) of the input image and its vicinity as it scans through the whole image. A given
pixel in the output is only a function of the pixels in the input which are enclosed within the
window defined by the kernel, known as the receptive field of the pixel. The output of a such a
convolution on an image, called a feature map, contains high values in the pixels which match
the pattern (or feature) encoded in the weights and biases of the corresponding kernel. These
weights and biases are the trainable parameters that are optimised during training.
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Ficure 2.3 — A schematic representation of a simple convolutional neural network (CNN). The
input image is fed to a convolutional layer, where a kernel scans over the whole image to produce
a feature map. Subsequently, a pooling step is applied in order to downsample the data, after
which it is flattened and passed along to a fully connected layer, eventually yielding an output.

To extract the series of distinct features of the input image, a convolutional layer generally
employs several filters, resulting in a set of feature maps which are then fed as inputs to the
subsequent layer. This convolutional operation is typically followed by a pooling layer as a
subsampling or dimensionality reduction step (Goodfellow et al., 2016). The application of
these two types of layers will reduce the initial input image to a compact representation of
features, which can be reshaped as a vector. This feature vector is subsequently passed to the
final layer, a fully connected layer in which every neuron receives input from every neuron of
the preceding layer, to ultimately generate an output (LeCun et al., 2015). The architecture of a
standard CNN is displayed in Figure 2.3.

In terms of the mathematical formalism, the convolutional operation may be described as a
specialised linear operation, with the discrete convolution implemented via matrix multiplica-
tion. As such, a particular convolutional layer, denoted by ¢, can be computed using

4 -1 4 14
L= . XK. . .
Xj F E X; k1] + b] , (2.10)
iEM]'

where F denotes the activation function, k represents the convolutional kernel, M; corresponds
to the receptive field and b is the bias parameter (Goodfellow et al., 2016). The role of the
activation function is to encode some non-linearity in the convolutional layers, so that a stack
of such layers can be used as a generic function approximator. A commonly used activation
function is the rectified linear unit (ReLU) activation function (Nair & Hinton, 2010), defined as
follows:

0, z; <0

2.11
Zi, z; > 0. ( )

]:(Zi)Z{

The ReLU activation and its variants are less computationally expensive than other common
activation functions, such as the sigmoid and hyperbolic tangent (tanh) functions, and mitigate
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the vanishing gradient issue in training deep neural networks (Glorot et al., 2011). The latter
predicament arises when the gradient tends to zero due to a saturating activation function
towards f(z;) # 0 or f(z;) = 1, as in the case of the sigmoid and tanh functions. This is
inevitably detrimental to the effectiveness of gradient descent during training, resulting in poor
performance.

The above described components allow a CNN to extract meaningful spatial features from
the input image. By stacking several convolutional layers, the network is capable of building an
internal hierarchical representation of features encoding the most relevant information from
the input image, such that the network is able to identify increasingly complex patterns with
the addition of more layers. Hence, convolutional layers provide a natural approach to take
spatial context into consideration. A key aspect of such networks is that a stack of convolutional
layers increases the sensitivity of subsequent layers to features on increasingly larger scales.
In other words, the size of the receptive field becomes larger as we go deeper in the network.
Moreover, convolutional layers retain the local information while performing the convolution
on adjacent pixels, thereby allowing both local and global information to propagate through the
network (LeCun et al., 2015).

CNNs are well-suited to tackle a multitude of problems in astronomy that involve visual
data. In this thesis, they are employed to extract information from images of lensed super-
novae (Chapters 5 and 6) and from the dynamical phase-space distribution of galaxy clusters
(Chapter 7).

2.2.2 Recurrent neural networks

Recurrent neural networks (Lipton et al., 2015) (or RNNs) consist of collections of neurons,
where the output of each neuron collection in a given layer is not only connected to the next
layer but is also fed as input to itself. The temporal behaviour of such an architecture renders
RNNs suitable for learning sequential models or for modelling time series. Long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) networks are a specific type of RNNs, which
build upon these models by encoding a new element in the neurons, known as the memory
cell (c;). The role of the latter is to accumulate the information from the previous inputs x;_1,
thereby allowing the neuron to recall the information that it has already processed. By relying
on a gating mechanism, the memory cell decides how much of the new input x; to accumulate
in the short-term memory c;, and what it should forget from the prior state ¢;_; and propagate
¢; to the hidden state h;, thereby resembling a long-term memory. LSTM is implemented via the
following equations:

Input gate i; = o(W;x; +b;; + Ujh;_q + by;) (2.12)
Forget gate f; = o(Wyx; +bjs + Urh;_1 + byy) (2.13)
Cell gate g =tanh(Wgx; + bjg + Ughy 1 + byg) (2.14)
Output gate o; = o(W,ox; + bjp + Upyhy_1 + by,) (2.15)
Cell state c¢; = fyxc; 1 +1 X g (2.16)
Hidden state h; = 0; x tanh(c;), (2.17)
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FIGURE 2.4 — Schematic representation of the ConvLSTM cell, illustrating the mechanism for
updating the cell’s memory (c;) and hidden (h;) states for a single time step. Figure from Kodi
Ramanah, Arendse, et al. (2021).

where x; is the input at time ¢, o is the recurrent (sigmoid) activation function, W and U are
the trainable weights, while b indicates the bias terms and x denotes element-wise product.
h;_; is the hidden state at the prior time step or its initialised state at ¢t = 0, and similarly for
c;—1- In essence, h; and c; encapsulate the short (fast) and long (slow) correlations in the data,
respectively. This dichotomy alleviates the issue of vanishing or exploding gradients that plague
standard RNNs.

Convolutional LSTM (hereafter ConvLSTM) (Shi et al., 2015) is an extension of the LSTM
network tailored to exploit spatially correlated features, in addition to temporal correlations, in
data. The main change is that the 1D vectors representing the inputs, cell states and gates in
eqs. (2.12)—(2.17) are now 2D tensors embedded in an LSTM network, and the products with
the weight matrices W and U now represent convolutions over spatial dimensions, with the
updates of the cell’s states proceeding as before. A schematic representation of the ConvLSTM
cell is displayed in Figure 2.4.

Some common applications of RNNs involve speech recognition, language translation and
video tagging. In the field of astrophysics, the ConvLSTM model was recently used to infer
galaxy properties from 21 cm lightcone images (Prelogovi¢ et al., 2021), thereby showing
that the ConvLSTM network outperforms a standard 3D CNN, where the third dimension
incorporates the temporal evolution, for this particular problem. In Chapter 5, we employ a
ConvLSTM model for the identification of gravitationally lensed supernovae from time-series
images obtained from multi-epoch observations.
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2.3 UNCERTAINTY ESTIMATION FOR NEURAL NETWORKS

This section draws material from Arendse, Kodi Ramanah, and Wojtak (2021), Kodi Ramanah,
Arendse, and Wojtak (2021), and Kodi Ramanah, Wojtak, and Arendse (2021).

DEALLY, the neural network’s point estimate of the weights should correspond to the global
Iminimum on the likelihood surface. However, in practice this is generally not the case, as the
likelihood surface is typically extremely complex, degenerate and non-convex. Therefore, it
is much more likely that the weights will only converge to a local minimum on the likelihood
surface, which is dictated to some extent by the initialisation of the weights. This is one of the
major drawbacks of using neural networks, because it means that the network point estimates
never truly correspond to the desired target d. The techniques discussed in this section provide a
way to mitigate this crucial limitation and to obtain scientifically accurate predictions, including
reliable uncertainties, of the true targets d given the input data D.

Uncertainties of neural networks can be characterised as either aleatoric or epistemic, en-
compassing the uncertainties in the data and model, respectively (Kendall & Gal, 2017). The
former describes the inherent uncertainty by virtue of the random nature of the observations of
interest, while the latter refers to the limitations of the model to accurately describe the set of
observations. In the case that a neural network constitutes the model, epistemic uncertainties
typically arise from insufficient network depth, flexibility, training epochs, data samples or
suboptimal network architecture.

2.3.1 Variational inference

To overcome the limitation of point estimates for the weights and quantify the uncertainty
associated with the model weights, neural networks combined with variational inference,
commonly designated as Bayesian neural networks (Charnock et al., 2020; MacKay, 1992; Neal,
2012), cast the model parameters as probability distributions. Subsequently, they marginalise
the network’s output over these distributions within a Bayesian statistical framework to yield
a posterior distribution. Hence, a trained Bayesian neural network represents an ensemble of
networks, which allows the uncertainty on a specific prediction to be quantified.

The network output distribution captures, to some extent, a measure of the aleatoric un-
certainties due to the noise intrinsic to the input data set. To more adequately account for this
source of uncertainties, it must be ensured that the training data set is representative of the
distribution of possible observations.

To account for the epistemic uncertainties associated with the choice of neural network’s
weights, the most common approach is to replace each network weight by a parametrised
distribution to eventually infer the posterior distribution of the weights conditional on the
input data during training via Bayes identity (eq. (2.2)). However, in practice, the posterior
P(w|D) is intractable. Variational inference is an approach in which the true weight distribution
is approximated by a variational distribution gg(w), where 6 parameterises an ensemble of
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distributions. The training objective is then to ensure that the variational distribution ggy(w)
matches the posterior distribution P(w|D) as closely as possible, which can be achieved by
minimising the metric distance (i.e. Kullback-Leibler (KL) divergence; Kullback & Leibler, 1951)
as a quantitative measure of similarity:

KL{go(e)P(@]D)] = j qa(a))log[%]dw- (2.18)

Using Bayes identity, the above loss function can be expressed in terms of the likelihood £(D|w)
and the prior distribution P(w) for the network weights (Blundell et al., 2015):

KL[go()IP(w]D)] = KL[gg(@)|P(w)] - Egj(w)[log L(D|w)] + K, (2.19)

where [, (., denotes the expectation under the variational distribution, with the constant K
resulting from the Bayesian evidence and the second term being the standard negative log-
likelihood. In simpler terms, variational inference implies the assumption of the form of the
posterior distribution of the weights and the use of an optimisation routine to find the assumed
probability distribution that is closest to the true posterior. This assumption simplifies the
computation, resulting in some level of tractability.

Gal and Ghahramani (2015a) showed that when a Bernoulli distribution is assumed as the
variational distribution, this can be approximated by performing dropout regularisation (Srivas-
tava et al., 2014). Dropout is a technique whereby a fraction of model weights are randomly
set to zero during each training step, effectively lowering the number of model parameters to
ultimately mitigate risks of overfitting. Traditionally, dropout is deactivated at inference time,
such that network predictions are deterministic. However, it was subsequently shown that when
dropout is active during the evaluation phase, it is equivalent to implementing approximate
Bayesian inference (Gal & Ghahramani, 2015b), whereby multiple model evaluations can be
used to perform Monte Carlo integration of the posterior distribution. Under this formulation,
it can be shown that including an ¢, regularisation term, i.e. having Gaussian priors over the
network weights, approximately entails computing the KL divergence with respect to an implicit
prior (Gal & Ghahramani, 2015a). Consequently, training a neural network with dropout masks
and ¢, weight regularisation minimises the loss from eq. (2.19), such that it is feasible to perform
proper variational inference without intensifying the computational workload (Charnock et al.,
2020).

2.3.2 Simulation-based inference

Simulation-based inference (hereafter SBI), sometimes referred to as “likelihood-free inference”,
comprises a class of inference techniques relying on a simulator whose task is to generate high-
fidelity simulations that can eventually be compared with observations (see, for e.g., Cranmer
et al,, 2019, for an in-depth review of recent developments). SBI techniques typically involve
an estimation of the likelihood or posterior via informative summary statistics using classical
density estimators (Diggle & Gratton, 1984) or neural density estimators (e.g. Germain et al.,
2015; C.-W. Huang et al., 2018; Jimenez Rezende & Mohamed, 2015; Kingma et al., 2016;
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Papamakarios & Murray, 2016; Papamakarios et al., 2017; Papamakarios et al., 2018; Uria
et al., 2016) from recent advances in ML. These density estimators are used to approximate the
distribution of summary statistics of the samples generated from the simulator. The obtained
posterior encompasses the combined aleatoric and epistemic uncertainties to a reasonable
extent.

The SBI framework adopted in this thesis is inspired by the approach presented in Charnock
et al. (2018), where they demonstrate that parameter inference is feasible via SBI using summary
statistics provided by a neural network. They developed an information maximising neural
network to produce optimal summary statistics, but the approach presented therein may be
employed with any neural network predicted summaries. This is because a neural network,
by design, performs some form of data compression (or dimensionality reduction) to extract
meaningful features from a given input data set D to yield informative summaries d of the data.
Thereafter, a standard density estimator, such as a Gaussian kernel density estimator (KDE),
or a neural density estimator (Germain et al., 2015; Papamakarios et al., 2017) can be used to
approximate the desired likelihood or posterior from the distribution of network predicted
summaries.

For a neural network that outputs a summary d, corresponding to a ground truth d, such an
implementation of the SBI pipeline may be summarised via the following steps:
m A physical model, F(¢): ® — D, is used to generate a training data set D from a set of
model parameters ® and some initial conditions ¢.

m A neural network is trained on the training set to obtain the desired summary d from the
input data.

m A separate test set, also generated with F(¢), is fed to the trained neural network to
obtain the corresponding summary estimates d.

m A standard or neural density estimator is used to compute the joint probability distribu-
tion of the ground truth d and summary prediction d pairs.

m A slice through the above distribution at the network summary prediction d,ys, for a
given input observation Dy, yields the approximate posterior predictive distribution:

7)(dljobs) ~ 7)(dlpobsrw”"l)- (2.20)

The above approach, which is visualised in Figure 2.5, has several key advantages. Although
the posterior is conditional on the (trained) network weights and choice of hyperparameters,
the SBI framework provides us with a posterior of the parameter of interest with statistically
consistent uncertainties (Fluri et al., 2021; Makinen et al., 2021). If the performance and efficacy
of the neural network are sub-optimal, as a result of not converging to the global optimal
solution, the uncertainties on the network predictions will be inflated but not underestimated.
Moreover, the density estimator can be precomputed, such that any slice through the likelihood
can be computed nearly instantaneously to yield the desired approximate posterior for any
given observation.

The main caveats of this framework are that there is a choice of density estimator with some
hyperparameters, such as the bandwidth for the Gaussian KDE, and as for all SBI approaches,
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Ficure 2.5 — Illustration of the simulation-based inference framework adopted throughout the

thesis. Network predictions for a test set (dpeq) are compared to the ground truth (diy.) and
fed to a density estimator to obtain a joint 2D PDE. The posterior distribution of a new network

prediction (dgy) can be obtained by slicing the joint PDF at dp.

there is some dependence on the total number of simulations used to compute an approximation
of the likelihood. Nevertheless, the Gaussian KDE is a fairly robust option as it is not very
sensitive to the choice of hyperparameters. In contrast, sophisticated neural density estimators
would require further (unsupervised) training and hyperparameter tuning, and would be prone
to the shortcoming related to the training of conventional neural networks, i.e. convergence to
local minima on the likelihood surface.
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This chapter is based on the following article:
“Low-redshift measurement of the sound horizon through gravitational time-delays”

Published in Astronomy & Astrophysics (A&A), 632, Ag1 (2019).

Authors: Nikki Arendse, Adriano Agnello & Radostaw ]. Wojtak.

ABSTRACT

T HE MATTER sound horizon can be inferred from the cosmic microwave background within
the standard cosmological model. Independent direct measurements of the sound horizon
are then a probe of possible deviations from the standard model. We aim at measuring the sound
horizon rgq from low-redshift indicators, which are completely independent of CMB inference.
We used the measured product H(z)rq from baryon acoustic oscillations (BAO) together with su-
pernovae la to constrain H(z)/H, and time-delay lenses analysed by the HoLiCOW collaboration
to anchor cosmological distances (o Hy'). Additionally, we investigated the influence of adding
a sample of quasars with higher redshift with standardisable UV-Xray luminosity distances.
We adopted polynomial expansions in H(z) or in comoving distances so that our inference was
completely independent of any cosmological model on which the expansion history might be
based. Our measurements are independent of Cepheids and systematics from peculiar motions
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to within percent-level accuracy. The inferred sound horizon r4 varies between (133 + 8) Mpc
and (138 + 5) Mpc across different models. The discrepancy with CMB measurements is robust
against model choice. Statistical uncertainties are comparable to systematics. The combination
of time-delay lenses, supernovae, and BAO yields a distance ladder that is independent of
cosmology (and of Cepheid calibration) and a measurement of r4 that is independent of the
CMB. These cosmographic measurements are then a competitive test of the standard model,
regardless of the hypotheses on which the cosmology is based.

3.1 INTRODUCTION

THE SOUND HORIZON is a fundamental scale that is set by the physics of the early Universe
and is imprinted on the clustering of dark and luminous matter of the Universe. The most
precise measurements of the sound horizon are obtained from observations of the acoustic peaks
in the power spectrum of the cosmic microwave background (CMB) radiation, although the
inference partially depends on the underlying cosmological model. In particular, the recent
Planck satellite mission yielded a sound horizon scale (at the end of the baryonic drag epoch)
of rq4 = 147.09 +0.26 Mpc. This was based on the spatially flat six-parameter ACDM model,
which provides a satisfactory fit to all measured properties of the CMB (Planck Collaboration,
Aghanim, et al., 2018), and on the standard model of particle physics.

The sound horizon remains fixed in the comoving coordinates since the last scattering epoch
and its signature can be observed at low redshifts as an enhanced clustering of galaxies. This
feature is referred to as baryon acoustic oscillations (BAO). When we assume that the sound
horizon is calibrated by the CMB, BAO observations can be used to measure distances and
the Hubble parameter at the corresponding redshifts. The resulting BAO constraints can then
be extrapolated to z = 0, for instance, using type Ia supernovae (SNe), in order to determine
the present-day expansion rate Hy. However, this inverse distance ladder procedure depends
on the choice of cosmological model and on the strong assumption that the current standard
cosmological model provides an accurate and sufficient description of the Universe at the lowest
and highest redshifts. The robustness of the standard cosmological model has recently been
questioned on the grounds of a strong and unexplained discrepancy between the local H
measured from SNe with distances calibrated by Cepheids and its CMB-based counterpart
(currently a 4.40 difference; Riess et al., 2019). The inverse distance ladder calibrated on the
CMB should therefore be taken with caution. Recently, Macaulay et al. (2019) performed an
inverse-distance-ladder measurement of H, adopting the baseline rq from Planck, and therefore
their inferred H agrees with CMB predictions, as expected.

Observations of BAO alone only constrain a combination of the sound horizon and a distance
or the expansion rate at the corresponding redshift, i.e." r4/D(z) and rq4H(z). Using SNe, we
can propagate BAO observables to redshift z = 0 and obtain constraints on rq4H that are fully
independent of the CMB (L'Huillier & Shafieloo, 2017; Shafieloo et al., 2018). The extrapolation
to low redshifts can be performed using various cosmographic techniques, so that the final

!Distances are defined more precisely below.
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measurement is essentially independent of cosmological model. Furthermore, combining BAO
constraints with a low-redshift absolute calibration of distances or the expansion history, we
can break the intrinsic degeneracy of the BAO between ry and H(z) and thus can determine the
sound horizon scale. The resulting measurement is based solely on low-redshift observations,
and it is therefore an alternative based on the local Universe to the sound horizon inferred from
the CMB.

Several different calibrations of distances or the expansion history have been used to obtain
independent low-redshift measurements of the sound horizon. The main results include the
calibration of H(z) estimated from cosmic chronometers (Heavens et al., 2014; Verde et al., 2017),
the local measurement of Hy from SNe with distances calibrated with Cepheids (Bernal et al.,
2016), angular diameter distances to lens galaxies (Jee et al., 2016; Wojtak & Agnello, 2019), and
adopting the Hubble constant from time-delay measurements (Aylor et al., 2019), although the
last measurement is based on cosmology-dependent modelling (Birrer et al., 2019). Currently,
the sound horizon is most precisely constrained by a combination of BAO measurements from
the Baryon Oscillations Spectroscopic Survey (BOSS; Alam et al., 2017), with a calibration from
the Supernovae and H for the Equation of State of dark energy project SHoES; Riess et al., 2019.
A significantly higher local value of the Hubble constant than its CMB-inferred counterpart
implies a substantially smaller sound horizon scale than its analogue inferred from the CMB
under the assumption of the standard ACDM model (Aylor et al., 2019). The discrepancy in H
and ry may indicate a generic problem of distance scale at lowest and highest redshifts within
the flat ACDM cosmological model (Bernal et al., 2016).

Here, we present a self-consistent inference of Hy and rq from BAO, SNe Ia, and time-
delay likelihoods released by the HoLiCOW collaboration (Birrer et al., 2019; Suyu et al.,
2017; Suyu et al.,, 2010; Suyu et al., 2014; Wong et al., 2017). We examine flat-ACDM models
as a benchmark and different classes of cosmology-free models. Our approach allows us to
determine the local sound horizon scale in a model-independent manner. A similar method
was employed by Taubenberger et al. (2019), who used SNe to extrapolate constraints from
time-delays to redshift z = 0, and thus to obtain a direct measurement of the Hubble constant
that depends rather weakly on the adopted cosmology. Throughout this work, comoving
distances, luminosity distances, and angular diameter distances are denoted by Dy, Dy, and
Dy, respectively. We also adopt the distance duality relations Dy(z1 < z3) = Dp(2z1 < 22)/(1 + 25),
Da(z1 < 2) = Dpm(21 < 23)/(1 + 2z5), which should hold in all generality and whose validity with
current data sets has been tested (Wojtak & Agnello, 2019).

This chapter is organised as follows. The data sets, models, and inference are outlined in
Section 3.2. Results are given in Section 3.3, and their implications are discussed in Section 3.4.

3.2 DATA SETS, MODELS, AND INFERENCE

E USED A combination of different low-redshift probes to set different distance measure-
ments and different models for the expansion history. All models inferred the following set
of parameters: Hy, rq, M; (normalisation of the SN distance moduli), and coefficients parametris-
ing the expansion history or distance as a function of redshift. Curvature Q is left as a free
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parameter in some models. The sample of high-redshift quasars introduces two additional free
parameters: the normalisation M, and the intrinsic scatter o, of the quasar distance moduli.

3.2.1 Models
The first model, for homogeneity with previous literature, adopted a polynomial expansion of
H(z)in z:

H(z) = Hy (1 + By z+ Byz% + B32%) + O(z%), (3.1)
where the coefficients are related to the standard kinematical parameters, i.e. the deceleration
qdo, jerk jo , and snap sy, in the following way (Visser, 2004; Weinberg, 2008; Xu & Wang, 2011):

By =1+qq
1 .
73225(]0—01(2))

1 .
Bs = 3 [3q8 +3q5 — jo(3 +440) —50] .

Model distances were computed through direct integration of 1/H(z). In our second chosen
model family, H(z) was expanded as a polynomial in x =log(1 +z):

H(x) = Hy (1 + Cyx+Cox? +C3x3) + O(x*). (3.2)

Plugging the Taylor expansion of z = 10* — 1 into eq. (3.1) and grouping the new terms by order,
we find the following mapping between coefficients C; and the kinematical parameters:

€1 =1n(10) (1 +qp)

In%(10 .
(0

In3(10 .
03:%[3%"‘%(1—4]0)—504'1] .

Here, distances were also computed through direct numerical integration of 1/H(z). In our third
model choice, comoving distances were computed through expansion in y = z/(1 + z), and H(z)
was obtained through a general relation (E.-K. Li et al., 2020),

H(z,Qy) = L, + Hgng (z)2. (3.3)
’ dDy(z)/0z 2 M

When a polynomial expansion
c
Du(y) = 5[ v+ Poy?/2+067) | (3-4)

is adopted, then the second-order coefficient D, is related to the deceleration parameter g
through

go=1-D,. (3-5)
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Adopting multiple families of parametrisations, for H(z) and/or for model distances allowed
us to quantify the systematics due to different ways of extrapolating the given distance mea-
surements down to z = 0. This is equivalent to another common choice of adopting different
cosmologies to extend the CDM model, but with the important difference that our chosen

parametrisations are completely agnostic about what the underlying cosmological model should
be.

Lastly, for the sake of comparison with widely adopted models, we also adopted a ACDM
model class, with a uniform prior Q) =[-1.0,1.0] on curvature, and with the constraint that
QA +Qn+Qy =1. A discrepancy in flat-ACDM (Qy = 0) between CMB measurements and our
low-redshift measurements would then indicate that more general model families are required,
i.e. possible departures from concordance cosmology, or that the standard model needs to be
extended.

3.2.2 Data sets

Our measurement relies on the complementarity of different cosmological probes. BAO observa-
tions constrain rqH(z) at several different redshifts and independently of the CMB. Standard
candles play the role of the inverse distance ladder, by means of which the BAO constraints can
be extrapolated to redshift z = 0. Finally, gravitational lensing time-delays place constraints on
Hyj, thus breaking the degeneracy between Hj and r4 in the inverse distance ladder of BAO and
standardisable candles.

In our study, we used pre-reconstruction (independent of cosmological model) consensus
measurements of the BAO from the Baryon Oscillations Spectroscopic Survey (Alam et al., 2017).
For the relative luminosity distances, we employed binned distance moduli of SNe Ia from the
Pantheon sample (D. M. Scolnic et al., 2018). We excluded possible changes due to the choice
of SN sample by re-running our inference on distance moduli from JLA (Betoule et al., 2014),
and with the current quality of data, there is no appreciable change in the results. Finally, we
used constraints on time-delays of four strongly lensed quasars observed by the HoLiCOW
collaboration (see Birrer et al., 2019; Suyu et al., 2017, and references therein). Results from a
fifth lens have recently been communicated by HoLiCOW (Rusu et al., 2019). We currently use
only results that have been reviewed, validated, and released.

As an option that provides more precise distance indicators at high redshifts, we used
distance moduli estimated from a relation between UV and X-ray luminosity quasars, which
was proven to be an alternative standard candle at high redshift (Risaliti & Lusso, 2018). Risaliti
and Lusso (2018) reported that quasar distances at high redshift show a deviation from ACDM,;
however, the lack of any corroborative pieces of evidence does not allow us to conclude if this
deviation is a genuine cosmological anomaly or an unaccounted-for systematic effect. For this
reason, we dismissed the quasar data at redshifts z > 1.8, which is the highest redshift of lensed
quasars in our sample.
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Ficure 3.1 — Inferred Hubble constant Hy (in km/s/Mpc) vs. the chosen model family and
expansion truncation. The fiducial values from each expansion model (displayed as squares)
are chosen by considering the change in BIC score and in InL,, ,p vs. the change in degrees
of freedom. The upper dashed line corresponds to the local measurement value of Hy = 74.0
km s~! Mpc~! with a Cepheid calibration, and the lower dashed line corresponds to the Planck
value of Hy = 67.4 km s~! Mpc~!. The shaded grey regions show the error bars.

3.2.3 Inference

The best-fit parameters and credibility ranges of the different expansion models were obtained
by sampling the posterior using affine-invariant Monte Carlo Markov chains (Goodman & Weare,
2010a), and in particular with the python module emcee (Foreman-Mackey et al., 2013). For the
BAO and SN data set, the uncertainties are given by a covariance matrix C. The likelihood is

obtained by

L

XZ

p(datajmodel) o e X2
= r+C_1r,

(3-6)

where r corresponds to the difference between the value predicted by the expansion and the

observed data.

The high-redshift quasar sample contains significant intrinsic scatter, oj,;, which has to be
modelled as an additional free parameter. The total uncertainty on each quasar data point is the
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FIGURE 3.2 — Inference on cosmological parameters, including the Hubble constant Hj and sound
horizon rg4, for the baseline case of flat- ACDM models using time-delay lenses, SN Ia, and BAO as
late-time indicators. The outermost credibility contour contains 95% of the marginalised posterior
probability, and the innermost contour contains 68%.

sum of 0, the uncertainty of that data point, and oj,;. This leads to the following formula of the
likelihood:
N e—riz/2(0[2+oi€t)

'Cquasars = Z— . (3.7)

i=1 /(07 +02,)2m

The likelihoods of the lensed quasars HEo435, RXJ1131, and B1608 of the HoLiCOW
collaboration were given as skewed log-normal distributions of their time-delay distances
Dpy = (1 4+ 2z1)D\Dy/Dyg (see Section 1.4.6.2). For the lensed quasar J1206, both the angular
diameter distance and the time delay distance were available in the form of a sample drawn
from the model posterior distribution. A Gaussian kernel density estimator (KDE) was used to
interpolate a smooth distribution between the posterior points.

The final log-likelihood that was sampled by emcee is a sum of the separate likelihoods of
the SN, BAO, lensed quasars, and high-redshift quasars,

In ([:total) = ln(‘CSN) + 11ll(ﬁBAO) +1n(Lienses) + ln([:quasars)' (3'8)
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We note that the high-redshift quasar likelihood is optional in our study. For all cosmographic
models used in our work, parameter inference is carried out with or without quasar data, and
both results are consistently reported.

A uniform prior was used for all the free parameters, except when the high-redshift quasar
sample was used. In that case, the intrinsic scatter o;,; was also constrained to be larger than
zero. This choice of priors does not seem to bias the inference according to current data and
tests on flat-ACDM mocks.

To choose the right order of expansion for each model, the Bayesian information criterion
(BIC) indicator (eq. (2.5)) was used to assign a score to each order. Table 3.1 displays the number
of free parameters, maximum a posteriori likelihood, and the BIC score for four increasing
orders of expansion. The expansion order with five free parameters provides the lowest BIC
score. When more complexity is added to the model, the BIC value continuously increases,
which supports the conclusion that higher expansion orders will be ruled out as well. When the
high-redshift quasar sample was added to the data collection, it changed the preferred order of
expansion of model 3 from third to second order.

Model 1

first second third fourth
parameter order | order order order
Free parameters | 4 5 6 7
InLyap. -60.8 | -55.8 -55.3 "55.2
BIC score 137.2 131.1 134.1 137.8
Model 2

first second third fourth
parameter order | order order order
Free parameters | 4 5 6 7
InLyygp. -67.1 | -56.8 -55.7 -55.0
BIC score 149.8 133.2 134.9 137.4
Model 3

second | third fourth fifth
parameter order | order order order
Free parameters 4 5 6 7
InLyap. -61.0 -56.1 -56.0 -54.5
BIC score 137.6 131.7 135.5 136.3

TaBLE 3.1 — Overview of the number of free parameters, maximum a posteriori likelihood, and
BIC score for different expansion orders for cosmographic models 1, 2, and 3. These numbers were
calculated using the four lenses, SN, and BAO points and assuming a flat Universe. For expansion
in H (models 1 and 2) the second order is preferred, and for expansion in distance (model 3) the
third order is preferred. This corresponds to five free parameters in each of the models
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Ficure 3.3 — Inference on the Hubble constant Hy and sound horizon ry for different models
(at fiducial truncation order for models 1-3), with free (), using time-delay lenses, SN Ia, and
BAO. While the inferred parameters can change among models and among truncation choices, the
relative discrepancy with CMB measurements remains the same. The credibility contours contain
95% of the marginalised posterior probability. The grey point corresponds to the Planck value of
Hy and r4 and to a flat Universe.

3.3 RESULTS AND DISCUSSION

HE INFERRED values from our inference are given in Tables 3.2 and 3.3. For the sake of
Tcompactness, we report only the inferred values for each model that correspond to the
lowest BIC scores (and to a ABIC > 2). Figure 3.1 shows the change in Hj as inferred by different
expansion orders. Plots of marginalised posteriors on selected cosmological parameters are
given in Figures 3.2 and 3.3.

The inferred values of the Hubble constant from Table 3.2, both its maximum a posteriori
and uncertainty, vary between (73.0+2.7) km s~} Mpc~! and (76.0 +4.0) km s~! Mpc~!. They
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flat (O = 0)
parameter model 1 (2" order) model 2 (2" order) model 3 (3" order) model 4 (FACDM)
rq (Mpc) 135.26 £5.22 138.38 +4.97 137.76 +£4.970 138.74 +4.67
Hyrg (kms7!) 10091.06 +147.54  10095.11+146.23  10069.64+149.82 10046.10+137.33
Hy (km s Mpc™!)  74.71+£2.92 73.06 +2.65 73.09 + 2.67 72.48 +2.24
q0 -0.62+0.078 -0.72+0.11 -0.57+0.18 —
InLyap. —-55.76 -56.80 —-56.06 -56.31
BIC score 131.07 133.15 131.68 128.30
Int (Planck ACDM) 3.1 (2.00) 2.3 (1.60) 2.3 (1.70) 2.5 (1.80)

free Oy

parameter model 1 (2" order) model 2 (2" order) model 3 (3" order) model 4 (ACDM)
rq (Mpc) 133.04+7.57 137.57 +7.80 136.19+8.05 139.91 +£5.54
Hyrg (kms7!) 10069.16 £156.97 10079.25+£158.20 10052.22+162.32 10073.39+£155.18
Hy (kms™! Mpc™!)  75.91+4.07 73.48 +3.86 73.82+4.06 72.09 +2.41
Qy 0.099+0.23 0.038+0.21 0.079+0.22 —-0.066+0.16
q0 -0.62+0.087 -0.71+0.11 -0.55+0.23 —
InLyap. —-56.08 -57.10 -56.32 -56.19
BIC score 135.63 137.67 136.11 131.95
Int (Planck ACDM) 2.3 (1.60) 1.6 (1.30) 1.5 (1.20) 2.3 (1.6 0)

TaBLE 3.2 — Inference on the cosmological parameters from BAO+SNe+lenses in our four model
classes, with or without imposed flatness. We list the posterior mean and 68% uncertainties of the
main parameters, the maximum a posteriori likelihood, the BIC score, and the odds 7 that our
measurements of Hy and rq are consistent with those from the Planck observations, as derived for
the standard flat-ACDM cosmological model

are in full agreement with current results form the HoLiCOW and SHoES collaborations, even
despite the choice of general and agnostic models in our method. This indicates that the
discrepancy between Cepheid-calibrated Hy and that inferred from CMB measurements is not
due to (known and unknown) systematics in the very low redshift range. The inferred sound
horizon ry varies between (133 + 8) Mpc and (138 +5) Mpc. The largest discrepancy with the
value from CMB and standard model predictions (147.09 + 0.26 Mpc) is more significant for
models that are agnostic to the underlying cosmology.

The systematic uncertainties, due to different model choices, are still within the range al-
lowed by statistical uncertainties. However, they may become dominant in future measurements
aiming at percent-level precision. Adding UV-Xray standardisable quasars generally raises the
inferred value of Hj (and correspondingly lowers the inferred ry4), even though the normalisation
of their Hubble diagram is treated as a nuisance parameter. The addition of the quasar sample
also results in lower values of Qy. This suggests that the behaviour of distance modulus with
redshift has sufficient constraining power on auxiliary cosmological parameters that in turn
are degenerate with Hj) in the time-delay lensing standardisation. For all cosmographic models,
the intrinsic scatter in quasar distance moduli found in our analysis is 1.45 mag, which is fully
consistent with the estimate reported in Risaliti and Lusso (2018).

We quantified the tension with CMB measurements through the two-dimensional inference
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flat (QQ = 0)
parameter model 1 (2" order) model 2 (2" order) model 3 (2" order) model 4 (FACDM)
rq (Mpc) 132.36 +5.05 135.67 +4.84 131.63+4.45 138.24+4.62
Hyrg (km s_l) 10124.73 £143.40 10111.40+147.68 10186.40 +145.68 9999.72+134.38
Hy (km s Mpc’l) 76.59+2.90 74.62+2.67 77.38+2.52 72.40+2.21
90 -0.70+0.074 -0.82+0.105 -1.13+0.11 —
InLyap. —2335.33 —2338.02 —2339.59 —2338.14
BIC score 4720.84 4726.22 4722.19 4719.30
In7 (Planck ACDM) 4.9 (2.70) 3.5 (2.20) 7.8 (3.50) 2.5 (1.70)

free Qy

parameter model 1 (2" order) model 2 (2" order) model 3 (2”4 order) model 4 (ACDM)
rq (Mpc) 134.20+8.00 140.74+8.15 139.36 +8.40 143.70+5.58
Hyrg (km s_l) 10132.11 £160.61 10150.20+155.94 10223.94+152.08 10140.36 +157.6
Hy (kms™! Mpc™')  75.74+4.16 72.34+3.89 73.37+4.18 70.65 £ 2.29
Qg -0.056 £0.22 -0.16+0.20 -0.19+£0.17 -0.27+0.14
q0 -0.70+0.082 -0.82+0.11 -1.11+0.17 —
In Ly ap. ~2335.58 ~2337.84 -2339.30 ~2336.20
BIC score 4728.53 4733.03 4728.76 4722.56
Int (Planck ACDM) 2.4 (1.70) 1.7 (1.30) 2.6 (1.80) 1.9 (1.40)

TaBLE 3.3 — Same as for Table 3.2, but including UV-Xray quasars as standardisable distance
indicators

on Hj and r4. Following Verde et al. (2013), we estimated the odds that both measurements are
consistent by computing the following ratio:

| [ Pemp Procal dHo drg
T =
PCMB Plocal dI—IO de '
I

(3-9)

where p is the marginalised probability distribution for rqy and Hy from the CMB (Planck
Collaboration, Aghanim, et al., 2018) or our study (in both cases approximated by Gaussians),
while p is a distribution shifted to a fixed arbitrary point so that both measurements have the
same posterior probability means. A more intuitive scale representing the discrepancy between
two measurements is a number-of-sigma tension, which can be derived from the odds ratio. This
is done by calculating the probability enclosed by a contour such that 1/t = ¢™2"’. The number
of sigma tension can then be calculated from the probability by means of the error function. We
list the logarithm of the odds and the number of sigma tension in Tables 3.2 and 3.3.

The tension with Planck measurements from CMB is approximately at a 20 level. While the
uncertainties from some model families are larger, the corresponding H, (rq) optimal values
are also higher (lower), and the tension remains the same. The curvature Qy slightly alleviates
the tension through larger Hj uncertainties, but the current data do not yield any evidence of a
departure from flatness.
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3.4 CONCLUSIONS AND OUTLOOK

URRENT DATA enable a = 3% determination of key cosmological parameters, in particular,

the Hubble constant Hy and the sound horizon rg, resulting in a ~ 20 Gaussian tension
with predictions from CMB measurements and the standard model. While this tension is
robust against the choice of model family and is therefore independent of the underlying
cosmology, the systematics due to different model choices are currently comparable to the
statistical uncertainties and may dominate percent-level measurements of Hy. A simple estimate
based on recent SHoES measurements (Riess et al., 2019) and very recent five-lens measurements
by HoLiCOW (Rusu et al., 2019) indicates a = 50 tension with CMB measurements within a
flat-ACDM model.

Our study also demonstrated the potential of constraining the curvature of the Universe
solely based on low-redshift observations and in a cosmology-independent manner. The current
precision of 0.20 is insufficient to test possible minimum departures from flatness, mainly due
to the accuracy in Hj from a small sample of well-studied lenses. Samples of lenses with suitable
ancillary data are already being assembled (see e.g. Shajib et al., 2019). Future measurements
of gravitational time-delays from the Large Synoptic Survey Telescope can reach percent-level
precision (Liao et al., 2015), making this method a highly competitive probe (Denissenya et al.,
2018).
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CHAPTER

CAN MODIFICATIONS OF ACDM
SOLVE THE TENSION?

This chapter is based on the following article:
“Cosmic dissonance: are new physics or systematics behind a short sound horizon?"

Published in Astronomy & Astrophysics (A&A), 639, As57 (2020).

Authors: Nikki Arendse, Radostaw ]. Wojtak, Adriano Agnello, Geoff C.-F. Chen, Christopher D. Fass-
nacht, Dominique Sluse, Stefan Hilbert, Martin Millon, Vivien Bonvin, Kenneth C. Wong, Frédéric
Courbin, Sherry H. Suyu, Simon Birrer, Tommaso Treu & Leon V.E. Koopman.

ABSTRACT

ERSISTENT tension between low-redshift observations and the Cosmic Microwave Background
P(CMB) radiation, in terms of two fundamental distance scales set by the sound horizon rq4
and the Hubble constant H, suggests new physics beyond the standard model, departures from
concordance cosmology, or residual systematics. The role of different probe combinations must
be assessed, as well as of different physical models that can alter the expansion history of the
Universe and the inferred cosmological parameters. We examine recently updated distance
calibrations from Cepheids, gravitational lensing time-delay observations, and the Tip of the
Red Giant Branch. Calibrating the Baryon Acoustic Oscillations (BAO) and type Ia supernovae
with combinations of the distance indicators, we obtain a joint and self-consistent measurement
of Hjy and rq at low redshift, independent of cosmological models and CMB inference. In an
attempt to alleviate the tension between late-time and CMB-based measurements, we consider

77
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four extensions of the standard ACDM model. The sound horizon from our different measure-
ments is rq = (137 + 3% + 25¥5") Mpc based on absolute distance calibration from gravitational
lensing and the cosmic distance ladder. Depending on the adopted distance indicators, the
combined tension in Hj and ry ranges between 2.3 and 5.1 0, and is independent of changes
to the low-redshift expansion history. We find that modifications of ACDM that change the
physics after recombination fail to provide a solution to the problem, for the reason that they
only resolve the tension in Hy, while the tension in rqy remains unchanged. Pre-recombination
extensions (with early dark energy or the effective number of neutrinos Ng = 3.24 +0.16) are
allowed by the data, unless the calibration from Cepheids is included. Results from time-delay
lenses are consistent with those from distance-ladder calibrations and point to a discrepancy
between absolute distance scales measured from the CMB (assuming the standard cosmological
model) and late-time observations. New proposals to resolve this tension should be examined
with respect to reconciling not only the Hubble constant but also the sound horizon derived
from the CMB and other cosmological probes.

4.1 INTRODUCTION

T THE onset of matter-radiation decoupling after the Big Bang, photon-baryon fluid under-
Awent oscillations whose characteristic physical scale is described by the so-called sound
horizon rq. This leaves a characteristic imprint on large scale distribution of baryons, with its
characteristic size fixed in the comoving coordinates and equal to the sound horizon at the drag
epoch zg4 given by
* cgdz
H(z) ’

ra = r15(z4) = (4.1)

2d

where cg is the sound speed in the primordial plasma and H(z) is the Hubble parameter.

The sound horizon r4 is robustly determined from the Cosmic Microwave Background mea-
surements (CMB), if the standard model of particle physics as well as the standard cosmological
model in the pre-recombination Universe are adopted (Planck Collaboration, Aghanim, et al.,
2018). Alternatively, it can be measured at later times, from the Baryon Acoustic Oscillation
(BAO) peak in the two-point spatial correlation function of galaxies and quasars. The latter
is an angular measurement, which can be converted into a physical ry measurement through
independent distance calibrations (see e.g. Arendse et al., 2019; Aylor et al., 2019; Bernal et al.,
2016; Heavens et al., 2014; Verde et al., 2017). The parameter ry4 is intimately linked to the
current expansion rate of the Universe, the Hubble constant H,, since BAO measurements
constrain the product of Hy and ry.

Accurate distance measurements from CMB-independent observations can be used to de-
termine rq and Hj in a way that is truly independent of early-Universe physics. Therefore,
these measurements can test our understanding of the concordance cosmology and the stan-
dard model of particle physics, through low-redshift measurements only. Type Ia supernovae,
calibrated by Cepheids with three independent distance anchors (parallaxes in the Milky Way,
detached eclipsing binaries in the LMC and maser galaxy NGC 4258), provide the most precise
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distance calibration to date, as performed by the Supernovae and H for the Equation of State of
dark energy project (SHOES; Riess et al., 2019). Another powerful way of obtaining absolute
distances is by using strongly lensed quasar systems, which extend to higher redshifts than the
Cepheids. The Hy Lenses in COSMOGRAIL’s Wellspring collaboration HoLiCOW, Suyu et al.,
2017 has provided few-percent-level precision constraints on Hy from time-delay cosmology.
Over the whole sample, the effect of known systematics is at < 1% level, currently negligi-
ble with respect to the statistical uncertainties (Millon et al., 2019). The latest results from
SHoES and HoLiCOW indicate a strong tension in the Hubble constant H, between late-time
observations (CMB-independent probes including primarily type Ia SNe, lensing and BAO) and
CMB-based measurements, within a flat-ACDM model. Previous results based on four lenses
alone (Arendse et al., 2019; Taubenberger et al., 2019) resulted in a 20 discrepancy, while a
six-lens analysis (Wong et al., 2020) gave a 30 tension. When combined with the distance-ladder
results by SHoES, the tension increases to a 50 level, still adopting a flat ACDM cosmological
model. It is worth noting that the tension between the late-time and CMB-based measurements
of Hj is mildly lowered by the recent measurement making use of precise distance calibration
from the Tip of the Red Giant Branch (TRGB), as measured by the Carnegie-Chicago Hubble
Project (herafter CCHP, Freedman et al., 2019). These measurements fall between those from
SHoES and the CMB, at 1.70 and 1.20 differences respectively. For the sake of completeness,
it is also worth mentioning that the Planck value of the Hubble constant is recovered in a
CMB-independent but model-dependent analysis of BAO observations with the prior on the
baryon density from the standard Big Bang Nucleosynthesis (Addison et al., 2018; Cuceu et al.,
2019).

In this work, we revisit the claimed tension between late-time observations and the CMB in
terms of the sound horizon and the Hubble constant, by making use of recent updated distance
calibrations from gravitational time-delay lenses (HoLiCOW), Cepheids (SHoES), and TRGB
(CCHP). Through our methods (summarised in Section 4.2.2), we obtain measurements of r4 for
different combinations of late-time distance calibrations in a manner that is almost completely
independent of any cosmological model. Moreover, we investigate selected extensions to the
standard ACDM model that have recently been proposed as possible solutions to the Hubble
tension. Such new models attempt to reconcile the tension by modifying the expansion history
of the standard model either before or after recombination, hereafter early-time and late-time
modifications, and thus increasing the Hubble constant derived from the CMB. We demonstrate
that the late-time extensions fail to provide a solution to the problem, for the reason that they
only succeed in alleviating the tension in H, while the tension in r4 remains unchanged. Our
analysis emphasises the importance of comparing at least Hy and rq derived from late-time
observations and the CMB when testing new models devised to mitigate the Hubble constant
tension.

This chapter is structured as follows. Section 4.2 describes the late-time measurements
of rq and Hj, including the different data sets, models and inference methods that are used.
In Section 4.3 we outline how the late-time measurements are compared with CMB inference
and extensions of the concordance scenario. Our results are described in Section 4.4 and our
conclusions in Section 4.5.
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4.2 LATE-TIME MEASUREMENTS. DATA AND METHODS

HE VALUES of g and Hj can be constrained by employing several CMB-independent probes
Tat 0 < z < 2, referred to as late-time measurements in this chapter. In Section 4.2.1, we
provide an overview of the data sets that we use in our analysis. Section 4.2.2 introduces the
models we choose to fit the Hubble diagram and interpolate up to redshift zero. By choosing
models that are independent of cosmology we minimise the systematic uncertainty associated
with cosmological model choices. Details about the inference are discussed in Section 4.2.3, and
functional tests are shown in Appendix A.2.

4.2.1 Data sets

The shape of the late-time expansion of the Universe has been mapped precisely with type Ia
supernovae (SNe). In this work, we use relative distance moduli from the Pantheon sample
(D. M. Scolnic et al., 2018)

Information about r4 is introduced by adding BAO measurements, which constrain the
product of Hy and r4. Our main results are obtained for the Hubble parameters H(z) and the
transverse comoving distances Dy((z) determined from the Baryon Oscillations Spectroscopic
Survey (BOSS; Alam et al., 2017). Additionally, we look into the effect of adding BAO constraints
from the correlation of Lya forest absorption and quasars in the extended Baryon Oscillation
Spectroscopic Survey (eBOSS; Blomqvist et al., 2019; de Sainte Agathe et al., 2019) and several
isotropic BAO measurements. The isotropic measurements do not contain sufficient statistics
to measure H(z) and Dys(z) separately, but combine them in the volume-averaged distance

1/3
Dy = [CZD%/I(Z)H -1 (z)] . We include two measurements from the reconstructed 6-degree Field
Galaxy Survey (Carter et al., 2018), two from eBOSS by (Ata et al., 2018; Bautista et al., 2018),
and three from the WiggleZ Dark Energy Survey (Kazin et al., 2014).

Both SNe and BAO measurements provide only relative distances, thus their distance scale
needs to be calibrated with absolute distance measurements. Time-delay and angular-diameter
distances to strongly lensed quasars, obtained by the HoLiCOW collaboration, provide such an
absolute calibration of cosmological distances (see e.g. Suyu et al., 2017, and references therein).
Results from a fifth and a sixth lensed quasar system have been recently obtained (Bonvin
et al., 2019; Chen et al., 2019; Rusu et al., 2019; Sluse et al., 2019), including new distance
measurements on previous lensed quasar systems using new data and analysis (Jee2019lenses;
Chen et al., 2019). In this work, we use complete constraints on distances from observations of
the 6 lensed quasars systems, as summarised in Wong et al. (2020). The information from the
lensed quasars is modelled self-consistently, together with the relative distance indicators (SNe,
BAO).

Keeping the lensing data as our primary calibration of the absolute distance scale in all
fits, we also include two optional priors given by recent local determinations of the Hubble
constant. The first is the latest SHoES measurement yielding Hy = 74.03 + 1.42 km s~} Mpc~!
(Riess et al., 2019). The second is based on calibrating distances with the Tip of the Red Giant
Branch (TRGB), a standard candle alternative to Cepheids. Here, analyses carried out by two
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separate groups have resulted in different values for Hy: Yuan et al. (2019) found 72.4 + 2.0
km s~! Mpc~!, while CCHP obtained 69.6 + 2.0 km s~! Mpc~! (Freedman et al., 2019; Freedman
et al., 2020). In order to include both the highest and lowest late-time measurements of Hy,
we have chosen to use the CCHP results for the TRGB and SHoES results for Cepheids in our
analysis. Since there is a partial overlap in the galaxy samples considered for the TRGB and
Cepheid measurements, the two calibrations will only be applied separately.

Finally, quasars are optionally used as secondary standard candles at high redshifts, by
means of a relation between their UV and X-ray luminosities (Risaliti & Lusso, 2018). We do so
in one of our inference runs in Table 4.4, as an independent check.

Our constraints on the late-time expansion is largely based on data sets and models that we
explored in previous work (Arendse et al., 2019). The difference with previous data sets is the
inclusion of two additional quasar-lens measurements (Chen et al., 2019; Rusu et al., 2019),
Lya BAO measurements at z = 2.34 and 2.35, several volume-averaged BAO measurements (Dy
BAO), and the combination with the Cepheid distance-ladder or the TRGB calibration.

4.2.2 Models

Measuring rq and H from the observations described above requires adopting a model of the
expansion history. This is usually done by means of employing the standard ACDM model,
but any tension among different ry and Hy measurements in the ACDM framework may mean
that the ACDM expansion history is not necessarily an adequate model choice. Instead of
employing different extensions to ACDM to overcome this issue, we use three different models
of polynomial parametrisations, that are completely agnostic about the underlying expansion
history. This allows us to make an inference of rq4 and H, that is based solely on observational
data, and does not rely on cosmology.

The specifications of the three polynomial parametrisations (hereafter referred to as Models
1, 2 and 3) are listed in Table 4.1. Model 1 adopts a polynomial expansion of H(z) (Visser,
2004; Weinberg, 1972), Model 2 expands the luminosity distance Dy ' as a polynomial in
log(1 + z) (Risaliti & Lusso, 2018), and Model 3 describes transverse comoving distances Dy by
polynomials in z/(1 + z) (Cattoén & Visser, 2007; E.-K. Li et al., 2020). For Model 1, comoving
distances are obtained from H(z) through direct numerical integration of

2 ¢
d.(z) = J- dz, 4.2
and for Models 2 and 3, H(z) is obtained through
H(zQ) = ——— 1o o, (2) (4.3)
) = Dy (2)/ 0z 2 M 4-3

(Weinberg, 1972).

Where the distance measures are related to each other according to Dy, = (1 +z)Dy = (1 + z)zDA.
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FiGure 4.1 — Constraints on the sound horizon r4, the Hubble constant Hy and Qy from late-
time observations including BAO (BOSS), type la supernovae (Pantheon), gravitational lensing
(HoLiCOW) and the cosmic distance ladder calibrated with Cepheids (SHoES). The panels show
results for three cosmology-independent models listed in Table 4.1 and a ACDM cosmological
model. The red lines indicate the best fit values obtained from Planck for a flat ACDM cosmological
model. The contours indicate 1-, 2- and 50 confidence regions of the posterior probability (the
latter obtained by Gaussian extrapolation). All panels demonstrate a 50 tension between r4 and
Hjy measured from the CMB and the late-time observations.

We truncate all polynomials at the lowest expansion order required by the condition that
Models 1, 2 and 3 recover distances in a ACDM model, if their free coefficients are fixed at
values found by Taylor expanding the corresponding functions in the fiducial ACDM model (see
more in Appendix A.2). This guarantees that expansion histories derived from the employed
models converge to ACDM once observations become consistent exclusively with the standard
model. Distances in ACDM are recovered with a minimum accuracy of 2 percent at z < 1.8,
where the accuracy limit is set by the current precision of the Hubble constant measurements
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Model | Formula

1 H(z):H0(1+blz+b222)

2 Di(z) = Ché;o) {log(l +2)+cy[log(1 + 2)]* + c3[log(1 + z)]? + cy[log(1 + z)]4}
3 Dui(2) = i (52 + o[ %] + s [ ] +da[2:])

4 H(z) = Hy\JQp (1 +2)3 + Qp + Qi (1 +2)2

TaBLE 4.1 — The three polynomial parametrisations (Models 1, 2 and 3) adopted in this study to
place cosmology-independent constraints on rg and Hy. The fourth case is a ACDM cosmological
model.

and the upper limit of redshift is given by the most distant lensed quasar. Including higher
order terms is disfavoured by Bayesian Information Criterion (BIC). In Appendix A.2, we also
show that this convergence criterion ensures that biases in H are at sub-percent level, and
biases in g at a few-percent level.

Finally, in order to compare Models 1-3 with the most commonly adopted cosmological
model, the fourth family (Model 4) adopts a ACDM parametrisation. In all cases, both flatness
and departures from it are considered.

4.2.3 Inference

We fit four models listed in Table 4.1 to observational data of type la supernovae, BAO and
lensed quasars. Constrained model parameters include r4, Hy and all remaining free polynomial
coefficients (or density parameters in the case of ACDM model). The posterior distributions
of the parameters are obtained using Affine-Invariant Monte Carlo Markov Chains (MCMC)
(Goodman & Weare, 2010a), and in particular the python module emcee (Foreman-Mackey et al.,
2013). For the sake of completeness, we also derive constraints on the deceleration parameter g
using the MCMC samples. Appendix A.2 outlines the relations between polynomial coefficients,
which are primary parameters in our fits, and g.

The likelihoods of the distances measured from lensed quasars are either given as a skewed
log-normal distribution® (for B1608) or as samples of points from the HoLiCOW model posteri-
ors (for RXJ1131, HEo435, PG1115, J1206 and WFI2033). The probability density is obtained
by constructing a Gaussian kernel density estimator (KDE). For the lens systems HEo435 and
WFI2033 only a robust measurement of their time-delay distance (eq. (1.76)) is provided, which
is the only robust distance currently derived from time-delay lensing in the presence of signif-
icant perturbers at lower redshift. For the remaining four lenses (B1608, RXJ1131, PG1115,

2Full names and coordinates of each lens are given in the HoLiCOW XIII paper (Wong et al., 2020).
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J1206), information on both their time-delay distances and their angular diameter distances is
available. For the remaining observables (BAO, SNe, quasars, and SHoES or CCHP), the general
form of the likelihood for each data set is given by

L p(datajmodel) o X2
XZ = r+C_11', (44)

where C is the covariance matrix of the data and r corresponds to the difference between the
predicted and the observed values. The final likelihood is a product of the separate likelihoods
corresponding to each data set.

A uniform prior is used for the parameters, for ease of comparison with previous work. In
particular, the value of r4 is kept between o and 200 Mpc and, if applicable, (J between -1 and
1 and Q,, between o0.05 and o.5, to ensure consistency with the priors on ,, by HoLiCOW.
These priors do not skew the inference, at least with the current uncertainties. The upper and
lower boundaries of rq4 do not influence any of the results. For the coefficients of the expansion
(b;, c; and d; in Table 4.1), we used a uniform prior without limits. In all cases, best fit values
are given by the posterior mean and errors provide 68.3 percent confidence intervals. The code
to generate the results in this paper is publicly available on Github3.

4.3 COMPARISON WITH THE CMB: DATA AND MODELS

THE souND HORIZON and the Hubble constant are independently measured from the CMB. For
the standard flat ACDM cosmological model, the Planck observations yield g = 147.2+0.3
Mpc and Hy = 67.4+ 0.5 km s~! Mpc™! (Planck Collaboration, Aghanim, et al., 2018). As we
shall demonstrate, both parameters are strongly discrepant with their counterparts determined
from late-time observations. In the following subsections, we describe how we quantify this
tension and outline a few popular extensions of the standard cosmological model devised to
reduce the discrepancy.

4.3.1 Quantifying the tension

In order to check whether or not our results for r4 and Hj are in agreement with those obtained
by Planck, the Gaussian odds indicator 7 is used (Bernal et al., 2016; Verde et al., 2013):

IPAPB dx ( )
T="—". 4.

[ PyPg dx >
Here, P4 and Py denote the posterior distributions of experiments A and B, while P4 and P
correspond to the same distributions after a shift has been performed, such that the maxima of
P, and Pg coincide. A high value for T means that it is unlikely that both experiments measure

the same quantity. In an idealised situation, when experiment A yields a measurement with
infinite precision (P, is given a 6 function), the odds indicator equals the ratio of probability P

3https://github.com/Nikki1510/cosmic_dissonance
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evaluated at best fit values returned by both experiments. Eq. (4.5) generalises this interpretation
to cases where both measurements have non-zero uncertainties.

A more intuitive scale representing the discrepancy between two measurements is a number-
of-sigma tension, and it can be directly derived from the odds ratios (see e.g. Bernal et al.,
2016). First, the odds indicator is used to calculate the probability enclosed by a contour r
such that 1/t = e2"". The probability is then converted to a number of sigma tension, using a
one-dimensional cumulant (the error function).

4.3.2 Extensions of the ACDM model

Any tension between late-time measurements and CMB-based model-dependent inference may
be caused by unknown systematics, or it can mean that our knowledge of the physics underlying
the expansion history is incomplete. The standard flat ACDM model can be extended by
either changing physics in the early Universe (pre-recombination; this will be referred to as
early-time modifications) or at later epochs (post-recombination; this will be referred to as
late-time modifications). In the first case, one can decrease the sound horizon inferred from
the CMB observations by adding an energy-momentum tensor beyond the standard model,
which effectively increases H(z) in the early Universe. In order to keep the observed angular
scales imprinted in the CMB unchanged, this alteration automatically implies an increase in the
value of Hy. Therefore, the overall effect of early-time modifications is a shift of both r4 and
Hj towards the measurements from late-time observations. In the second approach, one may
obtain higher values of H, by decreasing the expansion rate at intermediate redshifts. This can
be done by modifying the dark energy density such that it increases over time. Although many
late-time extensions of the standard model can quite easily increase H, inferred from the CMB,
r4 cannot be modified as appreciably as H — as it is primarily driven by physics in the early
Universe.

In order to explore different resolutions of the tension in Hy and ry4 on the grounds of
new physics, we consider several extensions of the standard ACDM model. Although the
selected models do not exhaust all possible proposals from the literature, they are sufficiently
representative in terms of covering most possible model-dependent alterations of Hy and ry4
inferred from the CMB. In what follows, the inference for early dark energy and PEDE (described
below) have been obtained using a Planck compressed likelihood, as detailed in Appendix A. For
the remaining models, we use publicly available MCMC chains (based on Planck’s temperature
and polarisation data) from the Planck Legacy Archive* (Planck Collaboration, Aghanim, et al.,
2018).

4.3.2.1  Early-time (pre-recombination) extensions

e Effective Number of Relativistic Species (Neﬁc).
In this extension of ACDM, there are additional relativistic particles that contribute to the radia-
tion density of the early Universe, resulting in N¢g > 3. An increased radiation density leads to a

4https://pla.esac.esa.int
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later matter-radiation equality and to an increased expansion rate in the early Universe, leaving
an observational imprint on the CMB (D. Eisenstein & White, 2004; Hannestad, 2003; Mortsell
& Dhawan, 2018). This in turn reduces the value of the sound horizon r4 at recombination and
increases Hj derived from the CMB, thereby relieving some of the tension between late-time
and CMB measurements (Carneiro et al., 2019; Gelmini et al., 2019).

e Early Dark Energy.

The expansion rate in the early Universe could also be increased by the presence of a more
general form of dark energy. This additional dark energy should have a noticeable contribution
to the energy budget at high redshifts, but should dilute away faster than radiation to leave the
evolution of the Universe after recombination unchanged (Doran et al., 2007; Linder & Robbers,
2008). As a promising example of this class of models, we consider early dark energy which
behaves nominally as a scalar field ¢ with a potential V(¢) & [1 —cos(¢/f)]* (Poulin et al., 2019).
In the effective fluid description, the energy density prpg evolves as

2 ac
PEDE (El) _ pEDE( )

" T /a7 o

with the scale factor a (Poulin et al., 2018). The early dark energy equation of state approaches
asymptotically —1 for a < a. and 1/2 for a > a.. When fitting the model to the CMB data, we
adopt the following flat priors in log,((a.) and fepe = Qg (ac)/Qyor(ac): —4.0 <logyy(ac) < -3.2
and 0.1 > fEDE > 0.

4.3.2.2 Late-time (post-recombination) extensions

o Time-dependent dark energy (wCDM).
The wCDM cosmology introduces the equation of state parameter w as a free parameter (as
opposed to the fixed ACDM value of w = —1), so that the dark energy density ppg can change as
a function of redshift as

(I+w)

ppE(2) = ppp,o(1 +2)>0 %), (4.7)

e Phenomenologically Emergent Dark Energy (PEDE).
In the PEDE model, dark energy has no effective role in the early Universe but emerges at later
times (X. Li & Shafieloo, 2019). The redshift evolution of the dark energy density is described by

PpE(2) = ppE,0 X [1 —tanh(log (1 +2))], (4.8)

giving it the same number of degrees of freedom as ACDM. We emphasise that this parametri-
sation is mostly ad hoc.
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Ficure 4.2 — Comparison between the sound horizon r4 and the Hubble constant Hy, measured
from Planck observations of the CMB (assuming a flat ACDM) and late-time observations (using
flat Model 3) obtained by calibrating SN and BAO measurements with three different absolute
distance calibrations from: gravitational lensing (HoLiCOW), the cosmic distance ladder with
Cepheids (SHoES) or the TRGB (CCHP). For the late-time data, the contours show 1-, 2- and 50
confidence regions of the posterior probability (the latter obtained by Gaussian extrapolation).
The Planck constraints (1- and 20 confidence regions) are obtained for the standard effective
number of neutrinos (black solid line) and a model with a free effective number of neutrinos
(black dashed lines, colour points).
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4.4 RESULTS AND DISCUSSION

HE VALUES of the sound horizon and other parameters inferred from the six lenses, Pantheon

SN sample and BAO measurements (BOSS) using three models that employ polynomial
parametrisation or a ACDM model are listed in Table 4.2. The tension with Planck flat ACDM
and late-time extension models is displayed in the last rows and ranges from 20 to 30. When
combining the distance calibration from the lensed quasars with that from SHoES (the distance
ladder with Cepheids), the constraints on r4 are tighter and the tension with Planck increases to
50, as can be seen in Table 4.3. The corresponding Bayesian Information Criterion (BIC) values
are the lowest for Model 4 (ACDM). However, the differences in BIC do not exceed 6 (substantial
level on the Jeffreys scale), with a minimum of 1 for Model 1 (barely worth mentioning level on
the Jeffreys scale). Figure 4.1 compares constraints on Hy, rq and () from late-time observations
including the prior from SHoES to the best fit parameters derived from Planck assuming a flat
ACDM model. For all models, the Planck parameters lie on the 5o contour in the Hj —r4 plane,
demonstrating that the tension is independent of the chosen expansion family.

In Table 4.4, some other combinations of data sets have been explored. This includes a
calibration of lenses + CCHP instead of SHoES, inclusion of several volume-averaged and Ly-a
BAO and the addition of high redshift quasars as secondary standard candles. Considering all
results based on the main data sets (HoLiCOW, SN, BAO/BOSS) with the cosmic distance ladder
(SHOES or CCHP), we find rq = (137 + 3% + 2595") Mpc, where the systematic error accounts for
differences between SHoES and CCHP distance calibration. In addition, we run an inference
free of any SN data, thus only using lensed quasars and BAO measurements from BOSS, Dy
and Ly-a with a flat ACDM model.> This results in the following values for the cosmological
parameters: rq = 138.6 + 3.8 Mpc, Hyrg = 10166 + 142 kms™, Q,, = 0.29 +0.02.

4.4.1 Early-time extensions

A possible solution for the tension is an extension to the early Universe physics, such as an
additional component of relativistic species. Planck 2018 chains with free N.g (based on full
temperature and polarisation data) have been used to investigate this scenario. In Figure 4.2,
Planck + free Neg is compared to results from Model 3 using SN + BAO with only the HoLiCOW
lenses as calibrator (upper panel) and using a combination of HoLiCOW lenses and either
SHOES or CCHP as calibrators (lower panel). A higher value of N is shown to move the Planck
value to a lower r4 and a higher H, therefore alleviating the tension to some extent. In this case,
the combined analysis of Planck and low-redshift data yields Neg = 3.24 + 0.16. This effect is
only convincing when the late-time measurements are calibrated with HoLiCOW and CCHP,
since the alternative Cepheid calibration is still in tension with the Planck+N,g extension (see
Table 4.3).

5For the flat ACDM model, we adopted a prior of Q, =#/[0.05,0.5].
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TaBLE 4.2 — Posterior mean and standard deviation for the sound horizon rq, Hyrgq and g, inferred
from late-time observations including HoLiCOW lensing observations, Pantheon SN sample
and BAO measurements (BOSS). The fit quality is summarised in terms of log-likelihood at the
maximum posterior probability, InL,, ,,, and the Bayesian Information Criterion BIC = In(N)k-
2In(Ly.q.p.), where N is the number of data points and k is the number of free parameters. The
odds indicator T quantifies the tension between ry and Hy measured from late-time observations
and the Planck data (for the standard flat ACDM model and its two extensions with a free effective

number of neutrinos or early dark energy).

flat (. = 0)
parameter Model 1 Model 2 Model 3 Model 4 (FACDM)
r4 (Mpc) 132.7 £ 4.2  132.9+ 4.4 134.2%4.4 136.9+3.7
Hyrq (kms™1) 10107 + 147 10065+ 150 10052 + 152 10038 + 136
90 -0.7 £0.07  -0.5%0.2 -0.4 + 0.3 -0.55 + 0.03
InLyap. -86.3 -86.1 -86.7 -87.7
BIC score 193 196 198 192
Int (Planck ACDM) 6.6 (3.20) 5.7 (2.90) 5.0 (2.70) 5.7 (2.90)
Int (Planck ACDM+Ngg) 6.3 (3.10) 5.6 (2.90) 4.9 (2.70) 5.0 (2.70)
In7 (Planck early DE) 5.1 (2.80) 4.4 (2.50) 3.7 (2.30) 3.7 (2.20)

free Q)

parameter Model 1 Model 2 Model 3 Model 4 (ACDM)
rq (Mpc) 129.2+5.7 130.6+5.9 131.2+6.1 137.2 +4.8
Hyrq (kms71) 10045 + 155 10033 +157 10017 =160 10041 + 156
(O)% 0.18 £ 0.2 0.13 £ 0.2 0.15 £ 0.2 -0.01 £ 0.2
90 -0.6 £ 0.1 -0.4 £ 0.2 -0.4 £ 0.3 -0.56 + 0.07
InLyap. -86.1 -85.9 -86.4 -87.7
BIC score 196 200 201 196
Int (Planck ACDM) 5.6 (2.90) 4.6 (2.60) 4.0 (2.40) 4.2 (2.40)
Int (Planck ACDM+N,g) 5.7 (2.90) 4.7 (2.60) 4.2 (2.40) 3.9 (2.30)
Int (Planck early DE) 4.5 (2.60) 3.6 (2.20) 3.1 (2.00) 2.6 (1.80)
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TaBLE 4.3 — The same as Table 4.2, but for fits based on the HoLiCOW lensing, Pantheon SN
sample, BAO measurements (BOSS) and H, from SHoES.

flat (. = 0)
parameter Model 1 Model 2 Model 3 Model 4 (fACDM)
rq (Mpc) 135.1 £+2.8 135.0+2.9 1351+2.9 136.1+2.7
Hyrq (kms71) 10079 + 143 10055 + 148 10038 +153 10037 + 136
90 -0.6 £ 0.0y -0.4+0.2 -0.4 0.3 -0.55 £ 0.03
InLyup. -86.6 -86.4 -86.8 -87.7
BIC score 193 197 198 192
Int (Planck ACDM) 15.1 (5.10) 15.0(5.10) 13.9 (4.90) 15.1(5.10)

Int (Planck ACDM+Ngg) 9.9 (4.10) 9.7 (4.00) 9.2 (3.90) 9.1 (3.90)
In7 (Planck early DE) 9.4 (3.90) 9.2 (3.90) 8.6 (3.70) 8.7 (3.80)

free Q)
parameter Model 1 Model 2 Model 3 Model 4 (ACDM)
r4 (Mpc) 134.8 £3.2 134.7+3.3 134.6+3.3 136.1+3.2
Hyrq (kms71) 10067 + 156 10042 + 161 10021 + 161 10035 + 152
(O)% 0.04 + 0.2 0.03 £ 0.2 0.06 £ 0.2 0.003 + 0.2
90 -0.6 £ 0.09 -0.4+0.2 -0.4 £ 0.3 -0.55 + 0.07
InLyap. -86.7 -86.5 -86.8 -87.7
BIC score 198 201 202 196
Int (Planck ACDM) 13.3 (4.80) 13.2(4.80) 12.7(4.70) 12.8 (4.7 0)

Int (Planck ACDM+Ngg) 9.2 (3.90) 9.0 (3.90) 8.9 (3.80) 8.2 (3.60)
Int (Planck early DE) 8.3 (3.70) 8.2 (3.70) 8.0 (3.60) 7.3 (3.40)

4.4.2 Tension between the CMB and late-time observations

Figure 4.3 demonstrates the potential of the selected extensions of the standard ACDM model
outlined in Section 4.3.2 to resolve the tension between rq and Hy measured from the CMB and
late-time observations. The shaded grey contours show constraints from late-time observations
using Model 3 with Q) = 0. Thanks to using a polynomial parametrisation, these measurements
are marginalised over a wide class of the expansion history and in this sense they are independent
of cosmological model. We show results for distance calibrations based on the HoLiCOW lenses
combined with SHoES or CCHP. The contours in colour show constraints from Planck for the
flat ACDM model (black contours) and its four extension.

As clearly seen from Figure 4.3, none of the ACDM extensions manage to convincingly unify
the Planck measurements with the late-time ones if the SHoES calibration is used to anchor
the distance ladder. In particular, late-time extensions involving different generalisations of
the cosmological constant can increase the Hy value inferred from the CMB, but they leave
rq unchanged. Although early-time extensions can potentially match both Hy and ry from
low-redshift probes and the CMB, that this may happen by expanding the posterior proba-
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FiGurE 4.3 — The effect of four different extensions of the flat ACDM model on the sound horizon
and the Hubble constant measured from the Planck data. The models considered here are ACDM
+ free Ny, early dark energy, wCDM and PEDE. The CMB-based constraints are compared to the
measurements from late-time observations (SN + BAO + HoLiCOW + SHoES/CCHP) shown with
the grey shaded contours. The late-time measurements are obtained with Model 3 (see Table 4.1)
and show the 20 credibility regions.

bility contours rather than shifting the best fit values (see also Bernal et al., 2016; Karwal &
Kamionkowski, 2016), as demonstrated in Figure 4.3. In this respect, both early dark energy
models and extensions with extra relativistic species are quite similar. The apparent difference
between their probability contours reflect differences in the priors. While a free effective number
of relativistic species can either decrease or increase the sound horizon, early dark energy (with
positive energy density) can only increase the energy budget, and thus decrease the sound
horizon.

Figure 4.4 summarises the tension in the Hy — r4 plane between late-time measurements
and Planck with different extensions of ACDM. To ensure a fair comparison, the same ACDM
extensions are used in the late-time and CMB-based inference. Therefore, the Planck PEDE-
CDM results have been compared to late-time results obtained with PEDE-CDM, and the Planck
wCDM results to late-time results using wCDM. For the early-time extensions this is not of great
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FIGURE 4.4 — Tension between the sound horizon and the Hubble constant measured from late-
time observations and the CMB for the following cosmological models: ACDM, ACDM + N,
early DE, wCDM, PEDE-CDM (flatness assumed in all cases). Late-time observations include BAO,
type la supernovae and three different absolute distance calibrations from gravitational lensing
(HoLiCOW), the cosmic distance ladder with Cepheids (SHoES) or the TRGB (CCHP).

importance, since their effects do not influence the low-redshift measurements.

By adopting different models of polynomial parametrisations (Models 1, 2 and 3), we
minimise the dependence on a cosmological model. Although our inference with these models
does not depend on ACDM,, it does have a weak dependency on General Relativity (GR). The
lensed quasars that are used to calibrate the distance ladder need GR in order to calculate the
angular diameter distance, through the Ansatz that the lensing potential (used in the time-
delay inference) is exactly twice the gravitational potential (used to obtain Dy oc c3At/0? from
stellar kinematics). However, the role of this GR dependence is subdominant with current Dy
uncertainties (10% — 20%). On the other hand, GR also enters the early-Universe expansion
through the ‘abundances’ of different components (Q,, Qge, Neg).

4.4.3 One lens at a time

Since Hj and rq are constants, they must be independent of the chosen indicators. If they are
inferred from each indicator separately, any trend will signal residual systematics, either in the
indicators themselves or in the parametrisation that is chosen to extrapolate H(z) down to Hj.

The HoLiCOW collaboration have shown that, if Hy is obtained from lenses in a flat- ACDM
model, there is a weak trend in its inferred value versus lens redshift, with lower-redshift (resp.
higher-redshift) lenses being more (resp. less) discrepant with the Planck measurements (Wong
et al., 2020). Even though this trend is currently not significant (given current uncertainties), it
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may be indicative of intrinsic systematics in the lensing inference, or in the way that time-delay
distances are converted into H, values through a flat-ACDM parametrisation.

Here we repeat this test using more general models of the expansion history, specifically flat
Model 3 and flat PEDE-CDM model. Figure 4.5 shows the sound horizon rq measured from
combining BAO and SNe data with lensing constraints from each lens separately. The results
demonstrate that the distance calibration from HoLiCOW lenses shows a similar trend with
lens redshift as the one shown by Wong et al. (2020) for a flat ACDM cosmology. Based on the
sample-wide analysis by Millon et al. (2019), this weak trend cannot be explained simply on the
basis of known systematics in the lens models or kinematics of each lens. We should emphasise,
however, that this trend is not statistically significant (1.60) yet.

Although the current weak trend of r4 with redshift of gravitatonal lens is consistent with
being a statistical fluke, it is instructive to investigate if there any expansion models that can
re-absorb this (weak) trend. For example, a recent (z ~ 0.4) change in dark energy may produce
this behaviour, if the data are interpreted with expansion histories that are ‘too” smooth. For
this reason, we examine the same lens-by-lens determination within the PEDE model family.
The results are shown as dotted error-bars in Figure 4.5. Even the PEDE model with accelerated
late-time expansion cannot eliminate the (weak) trend in r4. The constraints set by the relative
distance moduli of SN enforce PEDE to closely resemble the ACDM case, but with a higher
matter content ({2, = 0.345) and smaller sound horizon (r4 ~ 138 Mpc). Therefore, PEDE does
not resolve the current tension.

4.5 CONCLUSIONS AND OUTLOOK

W E HAVE combined the newest available low-redshift probes to obtain an estimate of the
sound horizon at the drag epoch, rqy. In order to minimise the dependence on a cos-
mological model, we have used a set of polynomial parametrisations that are almost entirely
independent of the underlying cosmology, as well as the standard ACDM model. In the Hy —r4
plane, we have found a tension of 50 between Planck results using flat ACDM and late-time
observations calibrated with HoLiCOW lenses and SHoES. This tension reduces to 2.40 if CCHP
results are used as a distance-ladder anchor instead of SHoES. We have investigated whether
early- or late-time extensions to the standard ACDM model can resolve the tension and exam-
ined models with free N, early dark energy, wCDM and PEDE-CDM. None of these model
extensions provide a satisfying solution to the Hubble tension problem (see also Aylor et al.,
2019; Knox & Millea, 2020), except for free N or early dark energy in combination with low
redshift data calibrated by CCHP + HoLiCOW.

These findings can indicate that: (1) extensions of early-time physics are necessary; and/or
(2) that systematics from different late-time probes are becoming comparable to the statistical
uncertainties. Arguments based on local under-densities or peculiar velocities cannot resolve the
tension: the = 3¢ tension persists if the inverse-distance ladder is restricted to z > 0.03, where
the role of peculiar velocities is < 0.1% (see also Wojtak & Agnello, 2019). Multiple secondary
sources of errors in redshift measurements were studied by Davis et al. (2019), but none of
them seem to have any noticeable effect. Another explanation may be that the standardisation
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FIGURE 4.5 — The sound horizon ry measured from combining BAO and SNe data with HoLiCOW
lensing observations of each lens separately. Here the distance calibration is set solely by the
lensing observations of each individual lens. The measured sound horizon is shown as a function
of lens redshift for fits with a flat Model 3 (solid error bars) and a flat PEDE-CDM model (dashed
error bars). For both models, the measurements show a slight trend of r4 increasing with lens
redshift. The inference from Models 1 and 2 is fully consistent with the Model 3 results. The
grey dashed line with shaded region shows Planck’s value of rq and its (sub-percent) uncertainty
obtained for the standard flat ACDM model.

of SNe Ia is not properly understood yet (as a caveat see e.g. Rigault et al., 2015, also Khetan et
al. 2020), or that there is some (hitherto undiscovered) source of systematics in one of the other
used data sets. If all astrophysical systematics are exhausted, one can also consider proposals
involving non-standard physics in the local Universe such as screened fifth forces, which may
bias Hy measurements high via modulation of gravity-dependent pulsation periods of Cepheids
(for more details see Desmond et al., 2019). For these reasons, we also provide a measurement
that relies only on lenses and BAO, without any additional constraint from SNe, in Section 4.4.

The weak trend in Figure 4.5 may indicate residual systematics in the lens models, or the
need for different low-z expansion models, or it may vanish entirely with larger lens samples.
In order to check the robustness of the trend, cosmography-grade models of more lenses
are needed, over the whole 0.3 < z < 0.7 current redshift interval and beyond. Finally, the
role of systematics in the lens mass models can be assessed once high-S/N spatially-resolved
kinematics are available (Shajib et al., 2018; Yildirim et al., 2020), which would enable more
flexible dynamical models than the ones used so far on aperture-averaged velocity dispersions.

As a final remark, we emphasise that resolving the H, tension alone is not sufficient, since
different models that can shift this value are still at tension with the inferred rq from BAO
and low-redshift indicators. Also, a direct combination of the inference from late-time and
CMB-based measurements that may be at > 30 tension, hence hardly compatible with one
another, should be justified. Therefore, any new proposal to resolve the discrepancy between
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TAaBLE 4.4 — The same as Table 4.2, but for various combinations of late-time observations including
two local determinations of Hy (SHoES or CCHP), measurements of isotropic BAO (Dy) and
anisotropic BAO from the Lyman-a forest of quasars (Ly-a), and estimates of distance moduli
from high-redshift quasars. The parameters are determined using Model 3 with (y = 0.

95

flat () = 0)
CCHP + HoLiCOW SHOES + HoLiCOW
parameter + SN + BAO (BOSS) + SN + BAO (BOSS
+ Dy + Ly-a)
r4 (Mpc) 139.5 £ 3.6 138.1 £ 2.7
Hyrgq (km s7!) 10019 + 152 10197.1 = 135
90 -0.4 + 0.4 -0.9 £ 0.3
Int (Planck ACDM) 3.8 (2.30) 12.8 (4.70)
Int (Planck ACDM+N.g) 3.4 (2.10) 8.0 (3.60)
Int (Planck early DE) 2.1 (1.50) 7.2 (3.40)
flat (Qy = 0)
HoLiCOW + SN SHOES + HoLiCOW
parameter + BAO (BOSS + + SN + BAO (BOSS)
Dy + Ly-a) + high-z quasars
r4 (Mpc) 138.6 + 3.8 134.0 + 2.8
Hyrg (kms™!) 10191 + 138 10011 + 149
q0 -0.8 £ 0.3 -0.2 + 0.3
Int (Planck ACDM) 4.4 (2.50) 17.1 (5.50)
Int (Planck ACDM+N.g) 4.2 (2.40) 11.0 (4.30)
Int (Planck early DE) 2.8 (1.90) 10.8 (4.30)

CMB-based and late-time measurements should consider both Hj and r4, and examine the

separate inference upon late-time and CMB-based data.

SUPPORTING MATERIAL

Appendix A.1: Planck compressed likelihood
Appendix A.2: Convergence tests of polynomial parametrisations

DATA AVAILABILITY

The source code repository, containing python scripts to generate the results and figures of this
paper, is available at https://github.com/Nikki1510/cosmic_dissonance.
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FINDING GRAVITATIONALLY LENSED
SUPERNOVAE

This chapter is based on the following article:
“Al-driven spatio-temporal engine for finding gravitationally lensed supernovae”

Under review at Nature Astronomy.
ArXiv e-prints: 2107.12399.

Authors: Doogesh Kodi Ramanah, Nikki Arendse & Radostaw ]. Wojtak.

ABSTRACT

E PRESENT a spatio-temporal Al framework that concurrently exploits both the spatial and

time-variable features of gravitationally lensed supernovae in optical images to ultimately
aid in the discovery of such exotic transients in wide-field surveys. Our spatio-temporal engine
is designed using recurrent convolutional layers, while drawing from recent advances in varia-
tional inference to quantify approximate Bayesian uncertainties via a confidence score. Using
simulated Young Supernova Experiment (YSE) images as a showcase, we find that the use of
time-series images yields a substantial gain of nearly 20 per cent in classification accuracy over
single-epoch observations, with a preliminary application to mock observations from the Legacy
Survey of Space and Time (LSST) yielding around 99 per cent accuracy. Our innovative deep
learning machinery adds an extra dimension in the search for gravitationally lensed supernovae
from current and future astrophysical transient surveys.
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5.1 INTRODUCTION

TRONG gravitational lensing of astrophysical transient sources, such as supernovae and
Sactive galactic nuclei (AGN), involves bending of light from the background source as the
light travels towards the observer through a lens galaxy, producing multiple images of the
strongly lensed object. Time delays between these images are particularly sensitive to the cosmic
expansion rate and observations of several gravitationally lensed quasars were successfully
used to place competitive constraints on the Hubble constant (Birrer et al., 2020; Wong et al.,
2020). Time delay distances combined with observations of type Ia supernovae were also used
to measure curvature of the Universe (Arendse et al., 2019; T. Collett et al., 2019).

Type Ia supernovae, as considered in this work, possess several advantages over AGN,
such as quasars, as time delay indicators. Since they are standardisable candles, they can be
used to directly compute the lensing magnification, thereby mitigating issues posed by the
degeneracy between the lens potential and H, (Oguri & Kawano, 2003). With exceptionally
well-characterised light curve morphology, extracting the time delays is less complicated relative
to quasars which display significant variation in their spectral sequences (Nugent et al., 2002;
Pereira et al., 2013; S. A. Rodney et al., 2016). Finally, after the supernova has faded away,
follow-up observations may be conducted to better constrain the lens galaxy properties, such as
the mass profile, without contamination from the supernova (Ding et al., 2021). On the other
hand, the expected time delays from type la supernovae are typically much shorter and image
separations are smaller than in known lensed quasars, making the precise measurement of time
delays more challenging.

Lensed supernovae remain, nevertheless, exotic astrophysical objects, with the challenges
inherent to their discovery rendering them extremely difficult to observe. The two main
indicators are the multiply-imaged lensing signature (image multiplicity) (Oguri & Marshall,
2010) and exceptionally amplified (magnification) flux (Goldstein & Nugent, 2017). As of date,
only three multiply-imaged resolved systems have been discovered (Goobar et al., 2017; Kelly
et al., 2015; S. Rodney et al., 2021), with two of them lensed by galaxy clusters and one by
a galaxy lens, along with a handful of highly magnified unresolved detections (Amanullah
et al., 2011; Patel et al., 2014; Quimby et al., 2014; S. A. Rodney et al., 2015), all discovered
serendipitously rather than by means of dedicated searches. A major impediment is that these
supernovae are visible for at most hundred days after explosion, in contrast to the much longer
timescales of quasars. Consequently, it is of paramount importance to flag lensed candidates
while the supernova is still active so that high-resolution imaging or spectroscopy may be used
to confirm the lensed nature and to measure a time delay, thereby further limiting the window
of opportunity. The situation is yet exacerbated due to most strong gravitational lenses yielding
image separations that are below the resolution of ground-based optical surveys (Oguri, 2006).

Given the scarcity of gravitationally lensed astrophysical transients and the typical volume
of imaging data sets, machine learning (ML) techniques, adept at detecting subtle patterns
and correlations in data, provide a natural solution to this problem. As such, various ML
algorithms (Avestruz et al., 2019; Cahameras et al., 2020; Cheng et al., 2020; Davies et al.,
2019; Gentile et al., 2021; X. Huang et al., 2021; X. Huang et al., 2020; Lanusse et al., 2018;
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FiGure 5.1 — Contrast between a simulated gravitationally lensed supernova as imaged by a perfect
instrument (left panel) and the Young Supernova Experiment (YSE, right panel), highlighting the
challenging nature of discovering lensed supernovae from YSE observations. The differences
between the idealised and YSE settings lie mainly in the resolution, background noise level and
quality of seeing, as characterised by the instrument’s PSF.

Schaefer et al., 2018) for finding strongly lensed systems, particularly well-suited for hosting
lensed supernovae or quasars, in photometric surveys have been recently developed. These
ML studies typically employ deep convolutional neural networks that are tuned to identify the
characteristic signature of the arc features constituting the Einstein rings.

In this work, we aim to harness the power of artificial intelligence (AI), in particular,
ML algorithms, to design a new tool specifically tailored for finding gravitationally lensed
supernovae from the Young Supernova Experiment (D. O. Jones et al., 2021). Our approach
introduces some innovative features with respect to the existing ML-based lens finders to cope
with the distinct challenges posed by the Young Supernova Experiment, as outlined below.
Our proposed methodology is, nevertheless, also of practical relevance for other current or
next-generation surveys, as long as the images constituting the training set accurately emulates
the characteristics of the actual observations.

The Young Supernova Experiment (D. O. Jones et al., 2021) (hereafter YSE) constitutes
a recent endeavour of a novel optical time-domain survey on the Pan-STARRS telescopes.
YSE is geared towards the discovery of fast-rising supernovae within a few hours to days of
explosion, thereby complementing other currently ongoing surveys. Moreover, YSE is presently
the only time-domain survey with observations in four bands, with the capacity to discover faint
transients (~ 21.5 mag in gri and ~ 20.5 mag in z) that allow the study of the earliest phases of
stellar explosions. According to survey forecasts from simulations, the full-capacity operation
of YSE will result in the discovery of around 5000 new supernovae per year, with at least a
couple of them within three days of explosion per month. The latter YSE attribute is especially
pertinent as it is essential to identify new lensed supernova candidates sufficiently early so as to
initiate the follow-up sequence in a timely fashion. The substantial volume of new observations
from YSE is, therefore, an exciting hunting ground for lensed supernovae.
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FIGURE 5.2 — A random set of lensed (fop row) and unlensed (bottom row) supernovae simulated
according to YSE i-band specifications. The colour scale is anchored for all images, with each
image stamp extending over 12 arcsecs. Our image simulation pipeline is designed such that the
properties of the mock unlensed images closely match those of the actual YSE observations. These
two rows illustrate that most lensed sources in YSE will be unresolved, thereby appearing similar
to unlensed ones. Since the YSE data pipeline provides difference images of transients directly, i.e.
the subtraction of a historic reference image from a newly observed image, we do not incorporate
the lensing galaxy in our image simulation pipeline.

Lensed

Unlensed

Such an undertaking is, however, riddled with challenges in the YSE context. It is extremely
unlikely that YSE will fully resolve the particularly conspicuous signature of the Einstein rings
in lensed systems. This is mainly due to the instrumental capabilities of the Pan-STARRS
telescopes, such as the point spread function (PSF) and the typical background noise level.
As an illustration of the innate difficulty of this task, Figure 5.1 depicts the stark contrast
between a gravitationally lensed supernova in an ideal setting with almost perfect observing
conditions, i.e. remarkably high resolution, very sharp PSF and non-existent background noise,
and the same source as observed in typical YSE settings. Furthermore, unresolved or partially
resolved lensed images are a common feature for YSE-like observations. An additional limitation
emanates from the fact that for typical lensing configurations predicted for the survey, the
second brightest image has flux near or below the detection limit (Wojtak et al., 2019). As a
consequence, the aforementioned ML-based lens finders are not immediately adequate for our
particularly strenuous problem due to the absence of the distinctive features of such lensed
systems. Figure 5.2, displaying a random sample of simulated lensed and unlensed (i.e. normal)
supernovae further corroborates the challenging nature of finding lensed supernovae from the
YSE survey.

To make tangible progress in the search for lensed supernovae in the YSE context, there
is a pressing need for highly effective detection algorithms. To this end, we design a neural
network that is sensitive to both spatial and temporal correlations and takes into account
the temporal evolution of an astrophysical transient over multiple epochs, in addition to its
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spatial information from a single-epoch image. An example of an extra distinctive trait, even
for unresolved images, is a spatial shift in the light centroid of the lensed point sources over
sequential epochs, contrary to unlensed sources. Searches for sources with spatially extended
and time-variable sources were also proposed as a method to select lensed quasar candidates
(Chao et al., 2020; Kochanek et al., 2006; Lacki et al., 2009). This constitutes the rationale
behind our novel approach where we employ time-series images in training a spatio-temporal
engine, based on recurrent convolutional layers, to perform a binary classification of lensed
and unlensed supernovae. We build on recent advances pertaining to variational inference to
yield approximate Bayesian uncertainties on the neural network predictions. A measure of the
network confidence associated with a given prediction yields an additional metric to aid in
swiftly pinpointing promising lensed candidates that can be prioritised during the subsequent
human vetting step. The above innovative aspects distinguish our approach from previous
MI-based lens finders proposed in the literature.

The remainder of this chapter is organised as follows. Section 5.2 provides an overview of
the methods employed in this work, including all relevant details pertaining to the background,
numerical implementation and optimisation of our Bayesian neural classifiers, the generation of
simulated lensed and unlensed YSE-like time-series images constituting our training, validation
and test sets, and the time-series image compression algorithm. In Section 5.3, we validate and
demonstrate the performance of the classifier on YSE and LSST data. Finally, we provide an
overview of the main findings of our work in Section 5.4.

5.2 METHODS

To illustrate the improvement in classification accuracy, by virtue of the informative features
encoded in the respective neural network inputs, we design and implement three separate
neural classifiers:

(A) Single-epoch model trained using single-epoch images randomly selected from the time-
series images;

(B) Compressed temporal model trained using compressed 2D temporal representations of
the time-series images;

(C) Spatio-temporal model trained using all time-series images.

All above ML models output a network probability score, but are fed distinct types of input
images. The time-series images may be unevenly distributed in time. To obtain the compressed
temporal representation, we implement a variant of the smooth manifold extraction algorithm
(Shihavuddin et al., 2017), recently proposed in the field of medical image processing, to
combine the arbitrary number of time-series images per source into a single informative image.
This section begins by outlining the image simulation procedure, followed by a description
of the smooth manifold extraction algorithm, and finally, provides details about the neural
classifiers presented above.
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Image property YSE LSST
PSF (FWHM) NS(5,0.95,0.375) N°(4,0.55,0.299)
Pixel size (") 0.25 0.2
Pixel background noise (opig) 6.5 6.1
Exposure time (s) 27 30
Image stamp size (") 12.0 9.6
Image stamp area (arcsec?) 144 92
Number of pixels 48 x 48 48 x 48
Cadence (days; i-band) 6 9
Zero-point magnitude (i-band) 24.74 27.79
Limiting magnitude (i-band) 21.40 23.90

TaBLE 5.1 — Simulated image characteristics. The images constituting the training, validation
and test sets are generated in accordance with the YSE survey specifications, thereby closely
emulating real YSE observations. The image properties for our preliminary LSST set-up are also
provided. N'S(a, u, o) denotes a skew-normal distribution with skewness parameter a.

5.2.1 Image simulation procedure

We employ the multi-purpose lens modelling package LENsTRONOMY ' (Birrer & Amara, 2018)
to generate images that accurately reflect the actual YSE observations. The YSE survey is
designed to acquire well-sampled light curves in four bands (griz) for several thousands of
transient astrophysical sources up to a redshift of around o.2. The current field of view of YSE
is approximately 750 square degrees of the sky with a cadence of three days, with the area
covered by the survey to be doubled in the near future, with a median seeing (FWHM of PSF) of
1.28 arcsec. The image properties and YSE-like survey characteristics, as adopted in this work,
are detailed in Table 5.1. YSE utilises the difference imaging technique for the identification of
new sources in optical images, whereby a historic reference image is subtracted from a given
input image to excise the static and non-varying sources, such that transient sources manifest as
residual flux that can be detected and measured photometrically with conventional methods.

We consider a supernova as a point source in its host galaxy. Since YSE provides difference
images that contain only the astrophysical transients, we simulate images that consist of solely
the lensed or unlensed supernova, i.e. the host and lens galaxies are not represented. As such,
their respective light profiles are not of relevance to our image simulation pipeline. We assume
a standard ACDM cosmological model, as characterised by the latest best-fit values from the
Planck Collaboration (Planck Collaboration, Aghanim, et al., 2018). While the actual YSE
image stamp extends over 75 arcsecs in length, we consider only the central portion covering an
area of 144 arcsec?, thereby obviating image artefacts, such as strips of dead pixels, in the real
observations. This cutout size is sufficiently large to encode all relevant lensing features.

Lhttps://lenstronomy.readthedocs.io/en/latest/
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Distribution

Zlens ~ N(0.4,0.1)

Zee ~ N$(2.5,0.67,0.1)
Zge ~ N5(5,0.08,0.1)
a,0 ~U(-0Og,O)
Unlensed source position (”) «a,6 ~ N (0,0.65)

Lens galaxy

Parameter

Lens redshift
Lensed source redshift

Unlensed source redshift

Lensed source position (”)

Elliptical power-law mass

Lens centre (") Xlenss Viens = (0,0)

Einstein radius (”) Op ~ N'5(8,0.35,0.75)

Power-law slope
Axis ratio
Orientation angle (rad)

Vlens ~ N(Z.O, 0-1)
Glens ~ N (0.7,0.15)
qblens ~ U(—T(/z, 77/2)

Environment

External shear modulus

Orientation angle (rad)

Yext ~U(0,0.05)
Pext ~U(—1/2,1/2)

Light curve

Stretch
Colour

Absolute magnitude

x; ~N5(-3.6,0.96,1.2)
c ~N?¢(5.5-0.11,0.13)
Maps ~ N(-19.43,0.12)

Milky Way extinction E(B-V) ~U(0,0.1)

TABLE 5.2 — Parameter distributions for lensed and unlensed systems. The distribution of input
parameters employed in the image simulation pipeline to generate the training, validation, and
test data sets. NV (y, o) corresponds a normal distribution with mean p and standard deviation o,
NS(a, p,0) implies a skew-normal distribution with skewness parameter a, while ¢/(x,y) denotes
a uniform distribution with bounds x and y.

A key component in our image generation pipeline is the choice of a model profile with
the prerequisite flexibility to sufficiently characterise lensing systems in practice. Previous
ML-based studies involving lens modelling made use of the singular isothermal ellipsoid (SIE)
lens mass profile (Hezaveh et al., 2017; Madireddy et al., 2019; Maresca et al., 2021; Pearson
et al., 2019; Perreault Levasseur et al., 2017; Schuldt et al., 2021). An extension to this model
is the power-law elliptical lens mass distribution (PEMD) (Barkana, 1998; Kormann et al.,
1994), where the 3D power-law mass slope Vjeps is allowed to vary. The PEMD model has been
adopted in recent studies (Park et al., 2021; Pearson et al., 2021; Wagner-Carena et al., 2021),
and we employ the same model in our work. The PEMD profile can be expressed in terms of
six parameters, as given by eq. (1.81). We also account for the external shear component that is
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characterised by the shear modulus .y and the shear angle ¢.,. To circumvent issues arising
from cyclic boundary conditions due to the 27-periodic property of the angles, the target lens
mass ellipticity and external shear are expressed as follows:

_ 1- qlens

€1 = 1+ Glons Cos(z(Plens) (5.1)
1- lens .

- > 2 .
€ 1+ Glons sin( (Plens) (5.2)
Y1 = Vext COS(2¢ext) (5-3)
Y2 = Vext Sin(zq')ext)- (5.4)

To generate an ensemble of simulated YSE-like images, we sample the relevant parameters
from their respective distributions, as detailed in Table 5.2, motivated by observational and
theoretical considerations via Monte Carlo simulations (Oguri & Marshall, 2010; Wojtak et al.,
2019). Specifically, we employ a joint probability distribution of Einstein radii, lens galaxy
redshifts and supernova redshifts for strongly lensed type Ia supernovae detectable in YSE.
Using this probability distribution as a prior, we generate lensing configurations by drawing
random positions of the source within the area of strong lensing, while keeping the position
of the lens fixed to the centre of the image. For every lensing configuration, we then verify
whether the total magnification enables detection of the lensed supernova in i-band. The
peak magnitude (without magnification) is calculated assuming type Ia supernovae with light
curves simulated as outlined in the next section. Given a particular lensing configuration,
the in-built lens equation solver in LENSTRONOMY can be used to compute the positions of the
multiple lensed images of the supernova and their associated magnifications. We also account
for a microlensing (Dobler & Keeton, 2006) effect, whereby the strongly lensed supernova is
microlensed by the stars in the lens galaxy, by incorporating a stochastic perturbation in the
computed magnification. The perturbation does not vary in time and thus, it neglects the
evolution of supernova photosphere, which may additionally modify the shape of light curves
and change the actual time delays measured from the arrival time of the light curve peaks (Pierel
& Rodney, 2019). However, keeping in mind that the secondary images of lensed supernovae
expected in YSE are just around or below the detection limit, the adopted microlensing model is
sufficient for the purpose of generating reliable images in the conditions limited by the survey’s
design. The stochastic perturbation in the macrolens magnification field is computed assuming
a Gaussian distribution with a standard deviation of o.05, similar to what was assumed in Park
et al. (2021) for generating simulated images of gravitationally lensed AGN.

In this work, we consider only i-band images, and we therefore adopt the zero-point mag-
nitude for i-band (Tonry et al., 2012) in line with the Pan-STARRS1 specifications. Unlensed
supernovae have a magnification of unity and are rendered at the position of the host galaxy.
Figure 5.2 depicts a random set of simulated realisations of lensed and unlensed supernovae,
generated in accordance with YSE i-band specifications so as to closely resemble the actual YSE
observations. An analogous procedure is used to simulate LSST-like observations with the image
properties specified in Table 5.1.
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5.2.2 Simulating time-series images

In order to closely emulate the YSE data output, which consists of multiple images taken at
different observational epochs, we generate time series of images. Compared to single-epoch
observations, this provides the advantage of fully capturing the multiplicity of the lensed
sources, even when the multiple lensed images do not all appear simultaneously.

We model the supernova variability using synthetic light curves. In this work, we only
consider type Ia supernovae, since their characteristic light curves are easy to model and they
constitute a large fraction (~ 40%) of the predicted Pan-STARRS lensed supernova population
(Wojtak et al., 2019). The light curves are simulated using SNCosmo?(Barbary et al., 2016)
and its built-in parametric light curve model SALT2(Guy et al., 2007), which takes as input an
amplitude parameter x, stretch parameter x;, and a colour parameter c. We sample the x; and ¢
parameters from asymmetric Gaussian distributions (D. Scolnic & Kessler, 2016) that have been
derived for the Pan-STARRS1 data release(Rest et al., 2014). Then, the Tripp formula(Tripp,
1998) provides a relation for the absolute B-band peak magnitude My that a type Ia supernova,
based on its stretch and colour parameters, is expected to have:

Mg = —axq + fc+ My, (5-5)

where M,ps ~ N (—-19.43,0.12) is the expected absolute magnitude of a supernova with x; = ¢ =0,
following the standard Planck 2018 ACDM calibration(Planck Collaboration, Aghanim, et al.,
2018). The coefficients @ = 0.14 and p = 3.1 (D. Scolnic & Kessler, 2016) specify the correlation
of absolute magnitude with the stretch and colour parameters, respectively. We assume a Milky
Way dust extinction model (Fitzpatrick, 1999), with optical total-to-selective extinction ratio
Ry = 3.1 and low E(B — V) values, since YSE chooses fields with high Galactic latitude and low
Milky Way extinction. The adopted distribution for Milky Way dust extinction and other input
parameters to the light curve generation routine are provided in Table 5.2.

After the light curves have been generated, they are used to model the apparent magnitude
(including K-corrections) for both the lensed and unlensed sources. For the lensed systems,
the brightness of each image follows the variability of the light curve, with a correction for the
computed magnification, stochastic microlensing perturbations and time delays. Finally, we
transform the apparent magnitude to data counts per second using the zero-point magnitude of
the instrument, which, when multiplied with the exposure time, yields the amplitude in the
desired units for LENsTRONOMY. The observational epochs for each configuration are sampled
with a 6-day cadence in the time interval that the observed supernova is brighter than the
limiting Pan-STARRS magnitude, resulting in a varying number of images per system. The
temporal evolution of a given lensed source, as observed under YSE-like settings, is indicated in
Figure 5.3. The Mock Lenses in Time software package (Vernardos, 2021), published towards the
end of our study, presents another alternative for generating time-series images and incorporates
a more rigorous treatment of microlensing.

To optimise the three neural networks, we generate a balanced training data set, i.e. with
around 50 per cent lensed and unlensed sources, containing a total of 40000 realisations, where

2https://sncosmo.readthedocs.io/en/stable/
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to 131 12 i3 21 lsmE
F1GUrE 5.3 — Temporal evolution of the image stamp, as observed by YSE, of a simulated realisation

of a lensed supernovae. The image on the far right corresponds to the compressed time-series
representation via smooth manifold extraction (SME).

20 per cent is kept for validation. For model performance evaluation, we generate a separate test
set consisting of two subsets containing purely lensed and unlensed sources, respectively, with
each subset holding 10000 realisations. The images are simulated as detailed in the previous
section, along with an extra layer of complexity to incorporate the temporal evolution aspect
in the pipeline. The number of time-series observations for each source will depend on its
light curve variation and YSE cadence. A new value of PSF is drawn for each multiple-epoch
observation as we do not expect correlations in PSF due to the low YSE cadence. Our simulated
data set consists solely of sources whose apparent magnitudes are within the YSE (i-band)
limiting magnitude. To train the single-epoch model, single-epoch observations are randomly
drawn from the time-series observations of each source. For the compressed temporal model,
we employ the smooth manifold extraction technique, as described in the following section, to
combine the series of an arbitrary number of images per source into a single informative image.
The spatio-temporal model, in contrast, is trained using all the time-series images of a given
source, with arbitrary time intervals between the single-epoch observations.

For real data applications, the preprocessing of the images as obtained from the YSE data
pipeline is straightforward, as the YSE pipeline already provides difference images that are
centred on the transient. The only requirement is to extract the central portion extending over
12 arcsecs, in accordance with the image stamp size of the images in our training set.

5.2.3 Smooth manifold extraction

In order to compress our time-series of images into a single 2D representation, we employ the
technique of smooth manifold extraction (Shihavuddin et al., 2017) (SME). The SME algorithm
is a technique that allows the extraction of the signal embedded in a stack of 2D images, while
preserving the local spatial relationships in the original volume of data. It was originally
proposed in the field of medical image processing to compress the series of images obtained
via fluorescence microscopy into a single 2D representation. The underlying motivation was
to improve upon the standard maximum intensity projection (MIP) method that extracts a
discontinuous layer of pixels from a 3D stack of images, thereby resulting in artefacts in the
final compressed or projected image that may lead to misleading interpretations.
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Ficure 5.4 — Comparison between smooth manifold extraction (SME) and maximum intensity
projection (MIP) in terms of their respective temporal index maps and corresponding projection
maps. The SME index map, unlike the highly discontinuous MIP version, smoothly extracts
the signal embedded in the stack of time-series images, thereby enforcing spatial consistency.
Consequently, the compressed SME image representation shows a significantly improved contrast
with respect to its MIP counterpart. Moreover, the background properties of the SME image are
not influenced by the number of time-series images for a given transient, such that this does not
artificially bias the neural classifier during training.

In this work, we implement a variant of the original SME algorithm, tailored for our specific
problem, in order to scan the time-series images of a given source and extract the signal without
modifying the image properties, such as the background noise, of single-epoch observations.
In contrast, the implementation of MIP is straightforward as it consists in retrieving the level
of maximum intensity along the temporal axis for each (x,y) spatial position, with the map of
levels referred to as the index map Z. MIP is not suited to our classification problem as it biases
the network learning process. This is due to the fact that the simulated lensed sources have,
on average, a higher number of time-series snapshots than the unlensed ones, such that MIP
results in distinct background characteristics for the two cases.

The rationale of the SME optimisation routine is to fit a smooth 2D manifold onto the
foreground signal, while disregarding the background, thereby propagating the index map
from the foreground to the local background. To this end, we constrain each pixel in the index
map by minimising the distance between the highest intensity region and the local variance of
the index map. The former ensures foreground proximity of the index map, while the latter
enforces its smoothness. The optimal index map is, therefore, obtained by minimising the cost
function:

Zove = argmin) W(x,9)|Zmax(%,9) - Z(x,9)| + 0z(x,), (56)

(%)
where Z,,, corresponds to the MIP index map and oy is the local spatial standard deviation
computed for a 3 x 3 window centred on (x,v). The WV operator assigns a weight to each pixel to
quantify whether it encodes a signal. As weighting scheme, we opt for the following softplus

function:
Wificxp)] = log{1 + Vaexp [k(f - b)]}/k, (5-7)

where the constants are set to @ = 1072, b = 30 and k = 0.125, on the basis of numerical
experiments. Finally, we adopt a tolerance threshold € that is sufficiently stringent to allow the
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Algorithm 1 Smooth manifold extraction
1: procedure SME(Z)

2:

> Input is an image stack Z with dimensions W x H x D

3 Zax(x,v) =argmax I (x,y,z) > MIP index map
z

4 Inie = Z[%, 9, Zinax (%, 9)] > MIP 2D image
5: Zy=Znx(x,7) > Initialise Z with MIP index map
6: > Initial step size (Tj), step factor (AT), tolerance (€)
72 i=1,Ty=D/100, AT =0.99, e =5x 1073
8: while ||Z; - Z;_1||/||Z;]| > € do
9: for V(x,y) € W xH do

10: > All quantities below are a function of (x,y)

11: AZiE{—E,O,Ti}

12: Z<— Z;, 1+ AZZ

13: Z; — argmin W (Iyip)|Z max— Z|+ 0y

14: end for ‘

15: T, — T; x AT

16: ie—i+1

17: end while

18: return Z[x,v,Z;(x,v)] = IsvE > SME 2D image

19: end procedure

cost function to converge. The numerical implementation of our variant of the SME algorithm,
as outlined in Algorithm 1, employs a distinct weighting strategy and convergence scheme
with respect to the original implementation (Shihavuddin et al., 2017), and results in smooth
convergence of the cost function. A comparison of the temporal index maps for SME and MIP,
and their respective compressed image representations, is illustrated in Figure 5.4.

5.2.4 Neural classifiers

Here, we describe our neural classifiers that are specialised in handling single-epoch, compressed
temporal, or spatio-temporal input. The single-epoch and compressed temporal models are
cast as a convolutional neural network (CNN) (LeCun et al., 2015; LeCun, Bengio, et al., 1995),
as described in Section 2.2.1. The CNN is composed of convolutional and max-pooling layers,
and eventually a fully-connected layer leading to the final output layer. Each convolutional
layer has a set of kernels that learn to detect a certain type of feature present in the network
input. We made use of 2D kernels whose weights are first randomly initialised and subsequently
updated during the network training routine. The input data set for the single-epoch and
compressed temporal models comprises a collection of lensed and unlensed supernova images
(single-epoch or compressed time-series representation, respectively), while the ground truth
labels are binary in nature. As depicted in Figure 5.5, the CNN architecture consists of three
blocks of two convolutional layers employing 6, 12 and 24 kernels of sizes 5x5,3x3and 1 x 1,
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respectively, with unit stride and zero-padding, followed by a max-pooling operation. The first
layer learns features on scales of 1.25 arcsecs. With the successive stacking of convolutional
layers, low-level local features gleaned in the initial layers are merged into high-level global
features by the following layers, rendering the network sensitive to features on larger scales.
This allows both local and global information to propagate through the deep learning machinery.
We applied the non-linear rectified linear unit (ReLU) (Nair & Hinton, 2010) activation function,
f(x) = max(0,x), to every feature map, except for the output layer. The feature maps are then
fed to a max-pooling layer that extracts the maximum value over 2 x 2 non-overlapping regions
of the feature maps for dimensionality reduction. The output from the final convolutional layer
and its corresponding pooling layer is flattened into a 1D vector and fed to two fully-connected
layers with 12 and 4 neurons, respectively. The final output layer has a sigmoid activation
to yield outputs in the range [0,1], as per the convention for networks designed for binary
classification.

For the spatio-temporal network, we employ a Convolutional LSTM (hereafter ConvLSTM)
(Shi et al., 2015) as described in Section 2.2.2, since these models are especially well-suited to
exploit spatial and temporal correlations in data. The ConvLSTM architecture of the spatio-
temporal network is illustrated in Figure 5.5. The input data set contains a collection of
time-series images of lensed and unlensed supernovae, with the ground truth labels and final
network output being identical to those of the CNN models. The input time-series images
are first processed through three ConvLSTM layers, encoding 6, 12 and 24 cells, respectively,
combining 2D convolutions in the spatial domain with recurrent LSTMs across the temporal
dimension. For dimensionality reduction, max-pooling operations are applied after each
ConvLSTM layer, followed by a stack of two LSTM layers after a flattening step. The final
section of the ConvLSTM architecture, i.e. fully-connected layers and network output, follows
that of its CNN counterpart.

For a classification problem, the network’s prediction accuracy and overall efficacy is gener-
ally evaluated via a performance metric, with the conventional choice for a classification task
being the accuracy, i.e. the fraction of correctly assigned labels. Nevertheless, this is not suffi-
cient to assess the reliability of any individual network prediction and it is, hence, imperative to
quantify the confidence associated with a given prediction. For a standard neural classifier, the
final output layer is an N-dimensional vector, corresponding to a classification problem with N
classes, whose components sum to unity, such that they can be interpreted as probabilities. The
trained network, for a given test realisation, then assigns the label to the one with largest output
probability score. A caveat is that the network probability score should not be interpreted as the
confidence in the prediction as it is explicitly dependent on the maximum likelihood estimates
of the weights, the training data and the set of hyperparameters adopted during the network
training procedure.

In this work, we adopt the variational inference technique known as Monte Carlo (MC)
Dropout (Gal & Ghahramani, 2015a), which is outlined in more detail in Section 2.3.1. We use
the posterior predictions obtained via the MC Dropout method to derive a confidence score,
as a single summary statistic, that encapsulates the epistemic uncertainty for each network
classification. To this end, we make use of the information entropy H in the binary classification
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F1GURE 5.5 — Schematic representation of our Bayesian neural classifiers. The three models have
distinct inputs, but with a similar scalar output, corresponding to a probability score, that is
used for classification. The spatio-temporal model, unlike the single-epoch and compressed
temporal models, optimally exploits the information characterised by the temporal evolution
of the astrophysical transient. We combine our neural classifiers with variational inference to
provide a confidence score, thereby quantifying approximate Bayesian uncertainties associated
with each network prediction. The dimensions of the image slices, resulting from the various
convolutional, maxpooling or LSTM operations are indicated above the architecture schematics,
with the number of feature maps per layer displayed in parentheses and fp denoting the temporal
dimension (number of time-series images per source) for the spatio-temporal network. Dropout
masks are applied after each convolutional or dense layer, except for the final output layer. The
Al engines have a relatively low model complexity with O(10%) trainable parameters.

context (Houlsby et al., 2011):

H(p) = —plog,p— (1 -p)log,(1-p), (5.8)

where p is the network output probability. The neural classifier confidence C can then be
computed from the average entropy of Nyc posterior samples, as follows (Killestein et al.,
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2021):

C=1—N—_1Hi, (5.9)
1=

where H; denotes the binary entropy of the i sample, yielding a confidence score in the
range [0, 1]. While this approach provides uncertainties that are correlated with the network
probability scores, the dispersion resulting from multiple samples is still informative, with ten
MC samples found to improve classification performance relative to a deterministic network (cf.
Figure 6 in Killestein et al. (2021)). In our work, we set Ny;c = 50.

Our choice of variational method is driven primarily by the intended practical utility of
our Al tool for sifting through huge volumes of plausible lensed transients. Having a separate
confidence score for a specific source, in addition to the network probability score, is informative
for both human vetting and automated filtering pipelines. The numerical implementation is
also straightforward, with the extra requirements being the inclusion of dropout masks after the
convolutional and dense layers, except for the final output layer, with £, weight regularisation.
The network training routine is also unchanged with respect to a conventional neural network,
with the additional computational workload being the multiple model evaluations at inference
time for a given input image. The MC Dropout method is robust as long as we restrict our
neural network to low model complexity and employ a large training data set, such that it
is justified to assume minimal dropout rates and ¢, regularisations. A more rigorous way of
quantifying epistemic uncertainties is by training an ensemble of networks with randomly
drawn architectures, variational distributions and hyperparameters, but this is beyond the scope
of the practical tool developed in this work.

5.2.5 Network implementation and training

We implement our Bayesian neural classifiers using the Keras framework (Chollet et al., 2015)
via a TensorFrLow backend (Abadi et al., 2016). To train the neural networks, we use the
apaM (Kingma & Ba, 2014) optimiser for robust and reliable convergence, and the binary cross-
entropy loss function designed for binary classification problems. We set the learning rate to
1 = 1074, along with the default values, f; = 0.9 and 8, = 0.999, for the first and second moment
exponential decay rates, respectively. We use a fixed batch size of 100 samples and train our
neural classifiers for around 50 epochs, with the training routine for the CNN and ConvLSTM
running to completion in around ten and forty minutes, respectively, on an NVIDIA V1oo
Tensor Core GPU.

To limit network overfitting, we adopt the early stopping regularisation technique (Goodfel-
low et al., 2016), and implement an early stopping criterion of five epochs. To this end, 20% of
the training data set is randomly selected to comprise a validation set. Training is terminated
when the validation loss ceases to improve for five consecutive epochs, with the weights of
the previously saved best fit model restored. We use a marginal dropout probability of 1072
between the convolutional and fully-connected layers, along with ¢, weight regularisation
penalty of 107%, which provide further regularisation. The inclusion of the dropout masks and
¢, regularisation, however, is primarily for the purpose of variational inference to quantify
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the confidence score associated with a given network classification. Our CNN architecture,
consisting of 12075 trainable parameters, has a relatively low model complexity and requires
negligible regularisation given the large volume of training data. Our ConvLSTM architecture
has roughly five times more parameters with 65961 trainable weights, but is still generally of
low complexity (in machine learning terms). We leave any (automated) hyperparameter tuning
to a future work.

5.3 RESULTS

5.3.1 Evaluating neural classifier performance

N ORDER to evaluate the performance of our trained Bayesian neural classifiers on the test set,
Iwe employ several standard classification metrics. To quantify the accuracy of our model, we
first compute the true positive rate (TPR) and false positive rate (FPR). The former, also known
as completeness, is defined as the fraction of detected lensed sources, whilst the latter, also
referred to as the contamination rate, is defined as the fraction of normal supernovae incorrectly
classified as lensed sources:

Nrp
Ntp + NN

Ngp

TPR = _—
Ngp + N1N

, FPR= (5.10)
where Nyp, Ngn, Npp and Ny denote the number of true positives, false negatives, false
positives and true negatives, respectively. These summary statistics are a function of the
detection threshold applied to the neural classifier’s probability score. The overall performance
of the trained classifier is, hence, conventionally assessed by the receiver operating characteristic
(ROC) curve. This diagnostic curve depicts the TPR as a function of the FPR and is generated
by gradually increasing the detection threshold in the range [0, 1], as illustrated in Figure 5.6
for our three models. Random predictions by the classifier will produce a diagonal line, with
the area under the curve, denoted by the AUC score, equal to o.5, whilst a perfect classifier
will have an AUC score of unity. All three models achieve decent AUC scores, with that of
the spatio-temporal one approaching unity, showcasing the gradual improvement of the use
of the full time-series images over single-epoch images, as a result of the additional temporal
information.

In this work, we adopt the default value of o.5 for the detection threshold for both of our
models. Given this threshold, we can visualise the overall classification accuracy using the
confusion matrix, as shown in Figure 5.7. The confusion matrix describes the percentage of
samples from each class that are accurately classified and simultaneously expresses that of
erroneous classifications. As a robust measure of the quality of binary classifications, the
Matthews correlation coefficient (MCC) is a commonly used metric to summarise the confusion
matrix:

NppNyN — NppNpN
/(Ntp + Nep)(Nrp + Nen)(NTN + Nep) (N1 + Npny)

with the limiting values of MCC = {-1, 1} corresponding to predictions in total disagreement
and perfect agreement, respectively, with observations, while MCC = 0 implies random classifier

MCC =

(5.11)
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FIGURE 5.6 — Receiver operating characteristic curves for the three Bayesian neural classifiers,
showing the true positive rate as a function of the false positive rate, both computed for varying
detection thresholds in the range [0,1]. The chosen detection threshold of o.5 used to compute the
confusion matrix in Figure 5.7 is indicated using black stars. All classifiers achieve decent AUC
scores, with the AUC score of the spatio-temporal model highlighting the progressive improvement
in classification efficacy with the addition of temporal information. Its performance on the LSST
mock observations is also extremely promising.

predictions. The MCC scores for our models are given in Figure 5.7, further demonstrating the
improved classification efficacy with the inclusion of temporal information.

An essential aspect to consider when using a neural classifier is whether its output, i.e.
the network probability score, accurately reflects the probability of a source being lensed or
unlensed. In order to verify how closely the network’s output correlates with probability, we
perform a classifier calibration test in Figure 5.8. All three models display nearly perfect calibra-
tion, implying that the network probability scores may be interpreted as the probability that a
certain source is lensed. Moreover, our Bayesian neural classifiers quantify the reliability of the
network classifications via a confidence score, computed from the average information entropy
of an ensemble of Monte Carlo posterior samples from the trained networks (cf. eq. (5.9)). The
distribution of such scores associated with wrongly classified transients depicted in Figure 5.9.
We find that there is a clear trend of erroneously classified sources having very low confidence
scores, thereby justifying the utility of this additional metric when evaluating potential lensed
supernovae.
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Figure 5.7 — Confusion matrix showing the classification efficacy of the three models employing
single-epoch images, the compressed temporal representation and all the time-series images,
respectively, for the YSE set-up. The spatio-temporal model yields an improvement of nearly 20%
in overall classification accuracy relative to the single-epoch model, with 99% accuracy for LSST
images.

5.3.2 Application to mock LSST observations

Next-generation transient surveys are poised to drastically increase the number of known
lensed supernovae. For instance, the Legacy Survey of Space and Time (LSST) from the Vera
C. Rubin Observatory (Ivezic et al., 2008) should lead to the imminent discovery of several
hundreds of lensed supernovae (Goldstein & Nugent, 2017; Wojtak et al., 2019), while the
Nancy Grace Roman Space Telescope (Spergel et al., 2015) is expected to find a few dozens
(Oguri & Marshall, 2010). For such surveys with enhanced resolution and seeing, we expect an
improved classification performance of the spatio-temporal model. To showcase the relevance
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Ficure 5.8 - Classifier calibration indicating how well the network probability score corresponds
to probability. The diagonal dashed line implies perfect calibration, i.e. a perfect match between
the probability score and accuracy. The calibration curves for the three Bayesian neural classifiers
show a remarkable degree of calibration, such that it is justified to use the network probability
score as a proxy for the probability that a source is lensed.

of our spatio-temporal engine for such upcoming surveys, we verify the classification efficacy
for mock observations generated within a preliminary LSST-like set-up (cf. Table 5.1). The
gold line in Figure 5.6 depicts the resulting ROC curve with an AUC score of almost unity
(AUC = 0.998), with the corresponding confusion matrix provided in Figure 5.7 (MCC = 0.978)
indicating an overall classification accuracy of around g9 per cent. Over the lifetime of LSST,
O(10?) lensed supernovae are expected out of the O(10°) new supernova discoveries per year.
With the spatio-temporal network, the odds of finding a lensed supernova rise from 1 in 1000
to 1 in 10, representing an improvement by two orders of magnitude.

5.4 DISCUSSION AND CONCLUSION

E presented a novel Al-assisted spatio-temporal engine, based on recurrent convolutional
Wlayers, to identify gravitationally lensed supernovae from the presently ongoing YSE sur-
vey. Our approach draws from recent advances in variational inference to quantify approximate
Bayesian uncertainties, thereby assigning a confidence score to each model prediction that accu-
rately reflects the uncertainty inherent to the network classification. Incorporating the temporal
information encoded in the evolution of a given source led to a significant gain of almost 20
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FiGure 5.9 — Distribution of confidence scores for misclassified (false positives and false negatives)
images. On average, for all three models, only around 5% of wrongly classified sources have a
confidence score larger than o.5, thereby demonstrating the reliability of this metric to reflect the
neural network uncertainty associated with a given classification.

per cent in classification accuracy relative to single-epoch observations for the test data set
generated within the YSE set-up. Such neural classifiers are complementary to the standard
selection based on typical lens galaxy redshifts and lens-supernova angular separations, with
the combination of these two distinct approaches crucial for rapidly identifying promising
lensed supernova candidates, such that follow-up spectroscopic observations can be initiated in
a timely manner.

Our spatio-temporal model is tailored to detect time-variable lensing features in the time
series of difference images. To illustrate that the temporal correlations in the time-series images
of a given source are conducive to the classification accuracy, we trained a CNN using the
compressed time-series representation. To this end, we implemented a variant of the smooth
manifold extraction technique, originally proposed for processing a stack of images produced
via 3D fluorescence microscopy, to compress the observed time-series images of an astrophysical
transient into a single informative image. We find that the spatio-temporal model results yet
in an improvement of around 10 per cent in accuracy relative to its compressed temporal
counterpart. This gain in accuracy matches our intuitive expectations since the variation in
observed brightness of lensed supernovae has a particular trend.

Having an estimate of the confidence associated with a given neural classifier prediction
undeniably brings some additional insights when sifting through an avalanche of plausible
transients as recorded by an instrument. Human vetting, as the typical final step after the
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ML-based pre-filtering, should benefit from the extra information about the neural network
uncertainties when assessing and prioritising potential lensed supernovae. Moreover, the
confidence metric can also be incorporated alongside the network probability score on the
data acquisition platform for prompt detection alerts concerning extremely promising lensed
candidates. This opens the possibility of automating decision-making pertaining to follow-up
observations and reporting.

The AI machinery presented here may be naturally adapted in the context of upcoming
transient surveys that would deliver unprecedented volumes of lensed candidates. Indeed, we
performed a preliminary application to LSST-like difference images and showed that the classifi-
cation accuracy of the spatio-temporal model rises to around g9 per cent, thereby demonstrating
its efficacy for next-generation surveys. The classification accuracy can be even further enhanced
when images in the remaining filters are included, thereby improving an effective temporal
resolution of the image series. As such, a straightforward extension is to include additional
channels in our network so as to work at the level of multi-band images.

An interesting application of our spatio-temporal engine is to determine gravitational
time-delays from multiple-epoch images of lensed supernovae and subsequently infer the
Hubble constant (Arendse et al., 2021), which constitutes our ongoing study. This yields a
complementary framework to standard cosmographic analyses in the quest for independent
measurements of the cosmic acceleration.
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CHAPTER

INFERRING THE HUBBLE CONSTANT
FROM LENSED SUPERNOVAE

This chapter presents the following work in progress:
“Inferring the Hubble constant from lensed supernovae in LSST with spatio-temporal
neural networks"”

Authors: Nikki Arendse, Doogesh Kodi Ramanah & Radostaw ]. Wojtak.

ABSTRACT

RAVITATIONALLY lensed supernovae are a promising new probe to obtain independent mea-
Gsurements of the Hubble constant (H). Here, we present a machine learning pipeline that
constrains the Hubble constant from simulated time-series images for the Legacy Survey of
Space and Time (LSST), ultimately aimed at cosmological inference on real LSST data. We use a
convolutional neural network that is sensitive to both the spatial and temporal features of the
input data, along with a simulation-based inference approach to quantify the uncertainties on
the network predictions. In this proof-of-concept demonstration, we forecast to find a sample of
400 lensed type Ia supernova systems during the 10 year survey duration of LSST. From this
sample, we obtain an unbiased 1.2% measurement of H, using only LSST i-band data without
any follow-up observations. We find that the majority of the constraining power emanates from
doubly imaged supernovae, whereby the largest residual scatter is due to the source position
and time delays between the lensed images. This work underlines the usefulness of pure LSST
data for time-delay cosmography in a joint population analysis. A continuation of this study
will take into account the effects of microlensing on the inferred precision of Hj.
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6.1 INTRODUCTION

RECENT measurements of the Hubble constant (H) from the Cosmic Microwave Background
(CMB; Planck Collaboration, Aghanim, et al., 2018) radiation are in tension with observa-
tions from low-redshift probes, such as type la supernovae calibrated by Cepheids (Riess et al.,
2021) or gravitationally lensed quasars (Wong et al., 2020). In addition to characterising the
cosmic expansion rate at any epoch, the Hubble constant is an essential quantity for calculating
the age of the Universe and calibrating the cosmic distance scale. Furthermore, the discrepancy
between low-redshift and CMB-based methods could point to new physics beyond the standard
ACDM model.

Nevertheless, the tension is lowered considerably by several recent low-redshift measure-
ments, such as distance calibrations from the Tip of the Red Giant Branch (TRGB), as measured
by the Carnegie-Chicago Hubble Project (Freedman, 2021) and the new analysis of seven gravita-
tionally lensed quasars by the TDCOSMO collaboration (Birrer et al., 2020) with less restrictive
mass model priors than in Wong et al. (2020). To determine whether new physics or residual
systematics are behind the Hubble tension, there is a pressing need for new, independent
measurements of Hy. One promising avenue is the use of gravitationally lensed supernovae
for cosmology, as described in more detail in Section 1.4.6.5. Although the current estimates
of detection rates of similar lensed supernovae (Goldstein & Nugent, 2017; Oguri & Marshall,
2010; Wojtak et al., 2019) in ongoing transient surveys, such as the Zwicky Transient Factory
(ZTF; Bellm et al., 2019) and the Young Supernova Experiment (YSE; D. O. Jones et al., 2021),
are only a few objects per year, the predicted rates are more than two orders of magnitude
higher for next-generation surveys, such as the the Legacy Survey of Space and Time (LSST)
from the Vera C. Rubin Observatory (Ivezic et al., 2008).

As the aforementioned upcoming time-domain surveys will receive several terabytes worth
of observations per night, processing the data becomes increasingly challenging. Machine
learning (ML) methods have emerged as a way to make sense of the unprecedented volumes of
data and to automate the detection and analysis of lensed sources. Specifically, convolutional
neural networks (CNNs) have been successfully employed to find strongly lensed systems in
images from transient surveys (Avestruz et al., 2019; Canameras et al., 2020; Cheng et al., 2020;
Davies et al., 2019; Gentile et al., 2021; X. Huang et al., 2021; X. Huang et al., 2020; Kodi
Ramanah, Arendse, et al., 2021; Lanusse et al., 2018; Schaefer et al., 2018) and to infer lens
galaxy properties without costly Markov Chain Monte Carlo (MCMC) analyses (Hezaveh et al.,
2017; Park et al., 2021; Wagner-Carena et al., 2021).

Another application of lensed transient images is to infer time delays between different
images, which are primarily sensitive to the Hubble constant. A higher value of H, corresponds
to shorter time delays, as illustrated for two simulated lensed supernova systems in Figure 6.1.
Recently, Huber, Suyu, Ghoshdastidar, et al. (2021) developed an ML approach, based on fully
connected neural networks and random forests, to obtain point estimates of the time delays
of simulated lensed supernovae from their observed light curves. However, so far there has
not been a complete, automated pipeline to take time-series images of lensed supernovae as
input and combine the inference of the time delays and lens model properties into an estimate
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F1Gure 6.1 — Temporal evolution of difference images of two identical lensed supernova systems,
as observed by LSST, simulated using a different value of the Hubble constant. Since a higher value
of Hy corresponds to shorter time delays, observations of time-series images can be employed
to determine the cosmic expansion rate. The lens system depicted in the images corresponds to
Zlens = 0.3, Zg,c = 0.6 and O = 1.2, which is at the higher end of the Einstein radius distribution
expected for typical LSST systems.

of the Hubble constant. We present such a framework in this chapter, in the context of LSST
observations. First, we train a spatio-temporal CNN on simulated LSST time-series images
and employ a simulation-based inference approach to quantify the uncertainties on the neural
network predictions. Then, by using realistic expectations for the lensed type Ia supernovae
discovery rate, we obtain predictions for the accuracy and precision of future H, estimates,
using only LSST i-band data and no follow-up observations. Although the precision from a
single lensed supernova system in LSST data will not be competitive, we demonstrate that the
combined posterior of 400 lensed type Ia supernovae yields a 1.2% unbiased measurement
of the Hubble constant. This prediction of the lensed supernova rate corresponds to LSST
observations over a time period of 10 years.

Throughout this work, we assume a standard flat ACDM model with Q. = 0.3. The
remainder of this chapter is organised as follows. Section 6.2 provides a description of our
image simulation procedure, assumptions regarding the lens mass profile and supernova light
curves, as well as details pertaining to the spatio-temporal CNN architecture and simulation-
based inference approach. In Section 6.3, we present our results for a joint Hy inference and
verify the validity of the uncertainty estimates provided by the neural network. Finally, we
provide a discussion of the main findings of our study and possible avenues for future work in
Section 6.4.
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LSST image properties

PSF (FWHM) NS(4.05,0.55,0.30)
Pixel size (") 0.2

Pixel background noise (opig) 6.1

Exposure time (s) 30

Postage stamp size (") 9.6

Postage stamp area (arcsec?) 92

Number of pixels 48 x 48

Median cadence (days; i-band) 11.0
Zero-point magnitude (i-band) 27.79
Limiting magnitude (i-band) 23.9

TaBLE 6.1 — Simulated image characteristics. The images constituting the training, validation,
test and evaluation sets are generated in accordance with the LSST survey specifications, thereby
closely emulating real LSST observations. A'S(a, 4, o) denotes a skewed normal distribution with
skewness parameter a.

6.2 METHODS

6.2.1 Lens galaxy mass profile assumptions

WE EMPLOY the multi-purpose lens modelling package LeNsTRONOMY' (Birrer & Amara,
2018) to generate images of lensed supernovae, while assuming a flat ACDM model with
Q= 0.3. The mass profile that we adopt for the lens galaxies is a power-law elliptical mass
distribution (PEMD; Barkana, 1998; Kormann et al., 1994), as given in eq. (1.81), which is an
extension of the singular isothermal ellipsoid mass profile whereby the 3D power law mass
slope Yiens is allowed to vary. To circumvent issues arising from cyclic boundary conditions due
to the 2mt-periodic property of the angles when we train our network, we express the target lens
mass ellipticity as follows:

I — Giens
= — 2 6
€] 1+ Glons cos( Plens) (6.1)
1- lens .
e = ———sin(2 ) 6.2
2 1+ lens ( (PIens) ( )

where gje,s is the projected axis ratio of the lens and ¢y is the lens orientation angle. We
model the external shear from the line-of-sight structures with a shear modulus ., and a
shear angle ¢¢y;. The adopted parameter distributions are given in Table 6.2. In our current
implementation, we do not account for microlensing effects from substructures in the lens
galaxy. At the moment, we are developing a framework to include an approximate, yet realistic,

Lhttps://lenstronomy.readthedocs.io/en/latest/
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6.2.

METHODS

Parameter

Distribution

Hubble constant
Lens redshift
Lensed source redshift

Source position

Hy ~ U(20,100)

Ziens ~ N¢(3.88,0.13,0.36) *
Zere ~ N'$(3.22,0.53,0.55) *
Xsrer Ysre ~ U(—OF, Og)

Lens galaxy

Elliptical power-law mass
Lens centre (”)

Einstein radius (")
Power-law slope

Axis ratio

Orientation angle (rad)

Xlenss Ylens = (0,0)

Op ~ N°(5.45,0.14,0.63) *
Vlens ~ N (2.0,0.1)

Glens ~ N (0.7,0.15)

(Plens ~ Z/{(—T(/2, 7/2)

Environment

External shear modulus

Orientation angle (rad)

Vext ~ U(0,0.05)
Qext ~U(-1/2,7/2)

Light curve

Stretch
Colour
Absolute magnitude

x; ~NS(-8.24,1.23,1.67)
¢ ~NS(2.48,-0.089,0.12)
M,ps ~ N (My,0.12)

125

M, = 5log, o(Hy/74.03) - 19.24

Milky Way extinction E(B-V) ~U(0,0.2)

TaBLE 6.2 — Parameter distributions for lensed systems. The distribution of input parameters
employed in the image simulation pipeline to generate the training, validation, and test data sets.
N (p, o) corresponds to a normal distribution with mean p and standard deviation o, N‘S(a, H,0)
denotes a skewed normal distribution with skewness parameter a, while U/(x,y) implies a uniform
distribution with bounds x and .

* The skewed normal distributions for zjeps, zi;c and g are only approximations. The parameters
are drawn from a joint distribution that is depicted in Figure 6.2.

description of microlensing into our simulation, since microlensing is expected to have a
significant contribution to the time delay estimates for lensed supernovae.

To ensure that our final results are not dominated by correlations between model parameters,
we assume that most of our parameters are independent. The only exception to this are the
Einstein radius Og, lens redshift zj.,s and source redshift z,,., which we sample from the joint
probability distribution obtained from a Monte Carlo simulation of gravitationally lensed
type Ia supernova generated in Wojtak et al. (2019). The simulation assumes a population of
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Ficure 6.2 — The joint distribution of the lens redshift (zje,s), source redshift (zg.) and Einstein
radius (Og) used to simulate the lensed supernova systems. The zj.ys, zs,c and g combinations
correspond to galaxy-source configurations where strong lensing occurs.

lens galaxies with the velocity dispersion function derived from the Sloan Digital Sky Survey
observations (Choi et al., 2007) and a model of the volumetric rate of type Ia supernovae fitted to
recent measurements of the type Ia supernova rate as a function of redshift (S. A. Rodney et al.,
2014). The mass distribution is given by a singular isothermal ellipsoid model (cf. eq. (1.80) and
Kormann et al., 1994) with the same distributions of ellipticity and the external convergence as
given in Table 6.2. The lensing properties are computed using the glafic code® (Oguri, 2010).
The supernova sample contains all strongly lensed observable cases for which at least one image
is detectable by LSST in the i-band. Although the simulation does not exactly match the lens
model used to generate images, drawing zjens, Zsrc and g from the precomputed simulation
is sufficient to narrow down all available galaxy-source configurations to those where strong
lensing occurs. We impose an additional upper limit on the source redshift of z;,. < 1.4 to ensure
that the supernovae are not redshifted out of the i-filter. The resulting combinations of zjes,
Zgrc and O values are depicted in Figure 6.2. For each configuration from the simulation, we
obtain the final lensed supernova parameters by drawing random positions of the source and
by sampling the light curve and remaining lens parameters from the distributions given in

2https://www.slac.stanford.edu/~oguri/glafic/
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Ficure 6.3 — Simulated observer-frame i-band light curves that have been used to generate the
time-series images for the quad system in Figure 6.1, thereby demonstrating that a higher Hubble
constant produces shorter time delays for identical lens systems. The lens parameters for this
system are zjgns = 0.3, zg,c = 0.6 and O = 1.2.

Table 6.2 until we find a system that is detectable by LSST.

6.2.2 Supernova light curves

We model the supernovae as point sources, using synthetic light curves in the observer frame
for their variability. In this work, we only consider type Ia supernovae, since their characteristic
light curves are easy to model, their standard candle nature offers an advantage for breaking the
mass-sheet degeneracy, and they constitute a significant fraction (~ 26%) of the predicted LSST
lensed supernova population (Wojtak et al., 2019).

The light curves are simulated using SNCosmo?3(Barbary et al., 2016) and its in-built para-
metric light curve model SALT2 (Guy et al., 2007), which takes as input an amplitude parameter
Xo, stretch parameter x;, and a colour parameter c. We sample the x; and ¢ parameters from
asymmetric Gaussian distributions that have been derived by D. Scolnic and Kessler (2016)
for the Supernova Legacy Survey (Guy et al., 2010), the Sloan Digital Sky Survey (Sako et al.,
2018), Pan-STARRS1 (Rest et al., 2014), and several low-redshift surveys. We employ the
Tripp formula(Tripp, 1998) to calculate the absolute B-band peak magnitude Mg that a type Ia
supernova, based on its stretch and colour parameters, is expected to have:

MB =—ax) +ﬁC+N(M0, 012) (63)

H
M, = 510g1o(H00d)+Mﬁd: (6.4)

»

3https://sncosmo.readthedocs.io/en/stable/
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where M| is the expected absolute magnitude of a supernova with x; = ¢ = 0 in a Universe with
Hubble constant Hy. The coefficients a = 0.14 and g = 3.1 (D. Scolnic & Kessler, 2016) specify
the correlation of absolute magnitude with the stretch and colour parameters, respectively. As
reference fiducial values, we use the calibration from the Supernovae and H, for the Equation
of State of dark energy project (SHoES) (Riess et al., 2021); Hygq = 74.03 km s™! Mpc™! and
Mgq = —19.24. For clarity, let us emphasise here that by applying the cosmology correction
in eq. (6.4), our resulting Mg values are independent of the SHoES calibration. Subsequently,
the resulting absolute magnitude values for each supernova are used as input for SNCosmo to
generate the corresponding light curves.

For our proof of concept, we assume that the footprint covered by LSST has a low dust
extinction of E(B— V) < 0.2, corresponding to a region away from the galactic plane. However,
the precise location of the LSST footprint has not yet been finalised and will likely include
several regions with E(B— V) > 0.2 (R. L. Jones et al., 2020), which might make observations
of lensed supernovae more challenging because the dust can obscure part of the supernova
signal. In order to model the dust in the supernova light curves, we adopt a Milky Way dust
extinction model (Fitzpatrick, 1999) with optical total-to-selective extinction ratio Ry = 3.1.
The adopted distribution for Milky Way dust extinction and other input parameters to the light
curve generation routine are provided in Table 6.2. Figure 6.3 displays the observer-frame light
curves corresponding to the quad system depicted in Figure 6.1, which is simulated using two
different values of the Hubble constant.

After the light curves have been generated, they are used to acquire the apparent magnitude
(including K-corrections) of the lensed point sources. The brightness of each image follows the
variability of the light curve, with a correction for the magnification and time delays computed
by LENsTRONOMY. Finally, we transform the apparent magnitude to data counts per second using
the magnitude zero-point of the instrument, which, when multiplied with the exposure time,
yields the amplitude in the desired units for LENsTRONOMY. The approach described here does
not constitute the first framework for generating time-series images; the software packages
DEEPLENSTRONOMY (Morgan et al., 2021) and Mock Lenses in Time (MoLET Vernardos, 2021) were
published during our study and offer an alternative for simulating time-varying sources.

6.2.3 LSST time-series images

LSST is a wide-field astronomical survey to be conducted at the Vera Rubin Observatory and
is scheduled to start full operations in 2023. The survey will take multi-colour ugrizy images
and cover 18,000 square degrees of the sky in a ten-year period. Due to its depth and sky
coverage, LSST is currently the most promising transient survey to observe gravitationally
lensed supernovae, with predicted rates of several hundreds a year (Goldstein & Nugent, 2017;
Goldstein et al., 2019; Oguri & Marshall, 2010; Wojtak et al., 2019). Discoveries of new transients
are realised with the difference imaging technique, in which a historic reference image of the
sky is subtracted from nightly observations to detect any residual flux. In order to emulate
the LSST output, we generate our data as difference images, without contributions from static
sources, such as the lens and host galaxy of the supernova. Therefore, only the light properties
of the supernova are of importance for our simulation pipeline. Our method assumes a perfect
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FiGure 6.4 — Predicted distribution of inter-night gaps for the baseline2018a observing strategy
for the LSST Wide, Fast, Deep survey in the i-band. Between each observation and the next, we
draw the duration of the inter-night gap from this distribution, leading to an irregular cadence.

subtraction of the lens and the host galaxy, while in reality, image subtraction artefacts often
arise due to varying seeing conditions.

For this project, we limit ourselves to images taken in the i-band, which is sufficiently red to
clearly detect high-redshift supernovae, while also being assigned more frequent visits than
the z or y-band. The precise cadence of LSST will have a significant impact on the number of
detected lensed supernovae, with high sampling frequencies and high cumulative season length
leading to a more favourable scenario (Huber et al., 2019). However, as of date, the final cadence
strategy has not yet been decided upon. For our simulated time series, we use predictions from
the OpSim scheduler* for the Wide, Fast, Deep (WFD) survey following the baseline2018a
observing strategy. Figure 6.4 shows the predicted distribution of inter-night gaps for the LSST
i-band, which has a median of 11.0 days between observations. As a consequence of the irregular
cadence and varying duration of the lensed transients, the simulated time series have different
time intervals between observations, as well as a different total number of observations.

The Vera Rubin Observatory will have a median seeing, or full width at half maximum of
the point spread function (PSF), of 0.75 arsec in the i-band. Since the exact seeing for each night
depends on the weather conditions on the site in Cerro Pachén in Chile, we draw a different PSF
value for each observation from the predicted seeing distribution from the LSST observation
simulator (T. E. Collett, 2015; Connolly et al., 2010). Table 6.2 features the PSF distribution
adopted for the image simulation procedure, which is obtained by fitting a skewed normal
distribution to the predicted seeing values.

The noise levels in LSST images originate from Poissonian count statistics and background
noise, where the latter consists of read noise (10 e~ per exposure) and sky background (20.48

4https://cadence-hackathon.readthedocs.io/en/latest/current_runs.html
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mag/arcsecond?). An example of a simulated time series of images under LSST-like settings,
yet with a different, fixed cadence, is displayed in Figure 6.1.

6.2.4 Predicted lensed supernova rates

The predicted lensed type Ia supernova rate for LSST, when both the magnification method
(Goldstein & Nugent, 2017), which looks for objects that appear significantly brighter than
expected, and the image multiplicity method (Oguri & Marshall, 2010) are considered, is 89
events per year (Wojtak et al.,, 2019). However, lensed supernovae discovered via the image
multiplicity method are the only ones able to provide a measurement of the time delay between
images, which is crucial for cosmological inference. The latter discovery channel is forecasted
to detect around 44 events per year in the i-band. In our work, we take the aforementioned
prediction from Wojtak et al. (2019) obtained with the image multiplicity method as a starting
point, following the detection criteria proposed in Oguri and Marshall (2010):

m The maximum separation between images 6,,,x should be between 0.5” and 4.0”. A
lower O,,,x implies that the images cannot be resolved with typical seeing conditions,
while a higher 6,,,,, would correspond to an object lensed by a galaxy cluster rather than
a single massive galaxy, as is the focus of this work.

m  For doubly imaged supernovae (doubles), the flux ratio between the images must exceed
0.1 to avoid problems with the dynamic range of the telescope.

m  Both images of doubles should be brighter than the detection limit of LSST (23.9 mag-
nitudes). For quadruply imaged supernovae (quads), at least three images should be
detected.

The predicted 44 events per year (of which ~34 are doubles and ~9 are quads) by Wojtak et al.
(2019) include systems with very short time delays of the order of several days. However, due to
the median cadence of LSST of 11 days, it will be highly challenging to obtain accurate time
delay measurements for such systems. Therefore, we impose an additional criterion in our
study:

m The maximum time delay of the lensed supernova should exceed 2 days, but have a
duration below 150 days. We set the lower limit rather low so as to avoid cutting down
our sample size too severely. The upper limit stems from the fact that higher time delays
will fall outside the range of our simulated observations.

6.2.5 H,inference pipeline

We employ a 3D CNN, as described in more detail in Section 2.2.1, to process the time-series
images, in combination with a simulation-based inference (SBI) framework, as outlined in
Section 2.3.2, to infer robust uncertainties on the network predictions. For our specific problem
of inferring the Hubble constant, the first step involves the generation of the time-series images
of an ensemble of lensed supernovae via our image simulation pipeline. The latter can be
considered as our physical model, 7 (¢) : @ — D, which generates the data D from a set of model
parameters 6 and some initial conditions ¢. In our set-up, 6 = {H} corresponds to the present-
day value of the Hubble constant, while ¢ encompasses all the relevant input parameters to
the simulator, such as the lens and source redshift, source positions and the mass profile of the
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lens. We generate a training set that follows a uniform distribution in the Hubble constant:
Hy ~ U(20,100). The broad range of H, values is adopted to ensure that we do not leak any
additional cosmological information to the network. Subsequently, we train our spatio-temporal
network, NIN(w,#) : D — d, to yield a set of network predicted summaries d from the input
data D.

The majority of lens systems produce either doubly imaged supernovae or quadruply imaged
ones, depending on the position of the source behind the lens galaxy. The resulting time-series
images for doubles and quads vary significantly in their properties; most notably, they have a
different number of images and, therefore, a different number of time delays between the images.
For this reason, we employ two separate neural networks to process input data from doubles
and from quads, such that the networks can specialise in their respective lensing configurations.
For doubles, the time-delay distance Dy; can be determined analytically from estimates of the
lens model (O, ey, €3, Viens), the image positions (xiy,, Vi), the source position (xgc, Vsrc) and
the time delay (At) between the images, via eq. (1.74). Since quads have three independent
time delays (Aty, At, and At;) between their four images, the computation of the time-delay
distance is less trivial. In our study, we opt for an approach where the neural network predicts
the relevant lensing parameters, after which we use only the information from the maximum
time delay At,,x between the first and the last image to calculate the time-delay distance
analytically. We find that this method yields superior results to direct predictions by the neural
network of the time-delay distance, even though this approach discards additional constraints
from the time delays between the other image combinations. As such, the choice of network
summaries for doubles and quads corresponds to d = {Atp,y, O, ¥,€1,€2, Xsre» Ysrer Xim» Yim }» Which
are subsequently converted analytically into an estimate of the time-delay distance.

The final step of the pipeline is to convert Dy; analytically into Hj via eq. (1.76) and a
cosmological model to relate angular diameter distances to the Hubble constant. We adopt
a standard ACDM model with Q,, = 0.3 and Qy = 0.0, which has also been employed in the
image simulation procedure. Additionally, this step requires information about the source and
the lens redshifts, for which we supply the ground truth values of zj,s and zg,.. We thereby
assume that spectroscopic redshift measurements of the lens and the host galaxy will be carried
out after the supernova has faded away. The redshifts are only provided in this final step
and not fed as input to the CNNs, ensuring no leakage of cosmological information into the
final results. We subsequently characterise the joint probability density function (PDF) of

the predicted and ground truth H values, P(nged,H(t)rue), using a Gaussian kernel density
estimator (KDE). The 2D PDF for a test set of five thousand doubly lensed supernova systems
is depicted in Figure 6.5. Finally, for any observed time series of images D, we obtain the
approximate posterior by slicing the joint PDF at the predicted Hj value corresponding to the
network predicted summaries, NIN(w, 77) : Dgps — d s, as follows:

7)(I_Ioldobs) ~ P(Ho|Dops, w, 77) (6.5)

Figure 6.6 illustrates a schematic overview of our pipeline to infer a single H, estimate from
the time series of lensed supernovae images from doubles and quads.
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Ficure 6.5 — Joint 2D PDF of predicted and true Hy values, computed using a test set of five

thousand doubly imaged supernovae. We obtain the approximate posterior 77(H(1)3 red,H(t)rue) fora
particular lens system by making a vertical slice at the predicted value of Hj.

6.2.6 Network architecture and training

We implement our CNNs using the Keras framework (Chollet et al., 2015) via a TENsorRFLow
backend (Abadi et al., 2016). To train the neural networks, we use the apam (Kingma & Ba, 2014)
optimiser with a learning rate of 17 = 107%, and the mean squared error loss function designed
for regression problems. The batch size is set to 100 and we adopt the early stopping technique
to avoid overfitting. We designate a random 25% of our original training data set as a validation
set and terminate the training process when the validation loss shows no improvement for 10
consecutive epochs.

Our training set consists of 45 thousand lensed supernova systems, each generated with a
different value of the Hubble constant. The test set used to construct the posterior distributions
via SBI contains five thousand lens systems. A second test set of five thousand systems is used
to create the posterior calibration plot as detailed in Section 6.3.3 and illustrated in Figure 6.12.
Finally, we simulate a realistic evaluation set of 40 lens systems per year, all with a fixed Hubble
constant of Hy = 70.0 km s™'!Mpc~!, to assess whether our CNN pipeline is able to recover this
ground truth value from the ensemble of lens systems and to verify the constraining power of
our inference machinery.
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FiGure 6.6 — Schematic representation of the pipeline designed to infer the cosmic expansion rate
from simulated images of gravitationally lensed supernovae. The input data consists of time-series
images, supplemented with empty filler layers to obtain a dimension of 48x48x15 for each system,
and a vector containing the timestamps of the observations. The timestamp vector is concatenated
with the feature maps after they have been flattened and fed to the fully connected network. A
spatio-temporal neural network acts as a 3D convolutional feature extractor to convert the input
data into estimates of the time delay and lens parameters, which are analytically converted into an
estimate of the time-delay distance. In the final step of the pipeline, the time-delay distances are
combined with the ground truth values of the lens and source redshift, under the assumption of a
ACDM model, to calculate Hy. We employ an identical neural network architecture for doubles
and quads. The number of feature maps is indicated in the first row, the resulting dimensions
of the images and feature maps in the second one, and the kernel size of the convolutional and
maxpooling layers in the final row.

Before the input images are fed to the neural network, each pixel is transformed according to
log(a; + D;) , where D; denotes the collection of pixels corresponding to a specific lens system
i, and a; is the minimum point for the log-transformation, calculated for each lens system as
1 —min(D;). This ensures that the log-transformation is only applied to positive values and not
to the negative pixels that originate from the observational noise. The log-transformation is
included such that the pixels from the brightest image at the peak of the light curve do not
outshine the rest of the supernova time evolution.
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As depicted in Figure 6.6, the architecture of the CNNs for both the doubles and the
quads consists of three blocks of convolutional layers, whereby the first block consists of one
convolutional layer that employs a kernel size of 5 x 5 x 3, and the second and third block both
have two convolutional layers with kernel sizes of 3x3x2. Every layer consists of several kernels,
amounting to 6, 12, and 24 kernels for the first, second and third block, respectively. Following
each block of convolutions, a 2 x 2 x 1 maxpooling kernel is used to reduce the size of the feature
maps. After the convolutional and maxpooling layers, the feature maps are flattened to a 2D
vector and passed through two fully-connected layers with 24 and 12 neurons to eventually
yield the output summary d. We use the non-linear rectified linear unit (ReLU; cf. eq. (2.11)) as
activation function throughout the whole network, except for the output layers, where we use a
softplus activation function for output parameters that should be strictly positive (i.e. At, O,
7), and linear activations for the remaining parameters. The resulting network has a relatively
low complexity, with ~ 40,000 trainable parameters.

Although a CNN requires a pre-defined input size for all input images, in our case the
number of observations differs per system. In order to circumvent this problem, we add filler
layers consisting only of zeros to fill up the missing observations. We impose a maximum
number of 15 observations, discarding images beyond this limit. Alongside the time-series
image input, the neural network also needs information regarding the exact timestamps of the
observations, in order to account for the irregular cadence. We provide this in the form of a
vector containing the timestamps for each observation, which we concatenate with the feature
maps after they have been flattened.

6.3 RESULTS

IGURE 6.7 displays the neural network predictions for doubles and quads in terms of the
Ftime delay, source and image positions, and the lens parameters. The estimates of the
aforementioned parameters are subsequently employed to calculate the time-delay distance
and, ultimately, the Hubble constant. From the scatter plots, it can be seen that doubly imaged
lens systems provide better estimations of the time delay and the image positions, while quads
display tighter predictions for the lens model parameters ¢ and e;. These results match our
expectations, since the four images of quads provide useful additional information to constrain
the lens model, while concurrently rendering it more challenging to infer time delays and image
positions as the four images are more prone to overlap. The network is not able to provide any
predictive power on Y.y, neither for quads nor for doubles, and instead,it simply returns the
underlying prior distribution. This is not a surprising finding, since the power-law slope is
generally constrained with information from the pixels in the Einstein ring corresponding to
the host galaxy (Park et al., 2021), which are not included in our difference images.

6.3.1 Individual parameter contributions to residual scatter in H,

After converting the estimates of the parameters shown in Figure 6.7 into a final prediction
of the Hubble constant, we quantify the individual contribution from each parameter to the
residual scatter in order to get insight into the dominant sources of uncertainty on Hy.
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FiGure 6.7 — Scatter plots of the network predictions for the parameters of interest for doubles and
quads compared to their ground truth values. The white dashed lines indicate perfect predictions.
The results for vy, €5, and the remaining image coordinates are similar to those for x., e;, and
Xim,» The network predictions for doubles are more accurate in terms of the time delay and the
image positions, while those for quads show tighter constraints on the lens model parameters Og
and e;.
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Ficure 6.8 — Contributions from individual parameters to the total residual scatter in H; for
doubly and quadruply imaged lens systems. The source position (xg.¢, Vsc) and the time delay At
are responsible for the largest uncertainty for doubles, while the image positions (x;, Vi) and
maximum time delay At,,,, induce the largest scatter for quads. The Einstein radius O, ellipticity
(e1,€5), and the power-law slope yjens contribute the least to the residual scatter.

We perform this analysis by computing H, from the estimated value of a certain parameter
X, in combination with the ground truth values of the remaining parameters. In this way, the
resulting scatter can only be attributed to parameter X. Figure 6.8 summarises the residual
scatter contributions for each of the parameters of interest. For doubles, the source position
and time delay are responsible for the largest contributions, while they yield tight predictions
in the scatter plots of Figure 6.7. This demonstrates that the uncertainties in (xg.¢, Vs,c) and At
have a much stronger influence on the final Hj estimate than the uncertainty on any of the
other parameters. The residual scatter in Hy predictions from quads is mainly due to the image
positions and the time delay. Let us highlight as well that the large spread in the power-law
slope predictions does not interfere too critically with the final Hubble constant estimate, since
Vlens has the lowest contribution to the residual scatter.

Next, we investigate the residual scatter in H, predictions as a function of maximum time
delay between the supernova images, depicted in Figure 6.9. As seen from the resulting trends,
both doubles and quads display a high residual scatter for low time delay values, even after we
discarded all systems with At ,, < 2 days (cf. Section 6.2.4). This is in line with our expectations,
since the median LSST i-band cadence of 11 days does not allow for a precise At measurement
for short time delays. For quads, the scatter in At can be seen to increase again for very high
time delay values, this effect can most likely be attributed to our cut off in the input image size.
We imposed a maximum of 15 observations, which means that time-series images of systems
with very long time delays will be based on incomplete light curves, reducing the amount of
information available to the neural network. Doubly imaged lens systems appear to be less
susceptible to this effect, possibly because for At predictions for two images, it is sufficient to
only see the beginning of the light curve.
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FIGURE 6.9 — The residual scatter in H, defined as AHy/H, = |[Hj™® —ngedl / H§™¢, as a function
of maximum time delay between supernova images. The coloured lines depict the individual
contributions to the scatter from the time delay, source and image positions, which are the
dominant sources of uncertainty on Hy, with the shaded regions corresponding to the standard
deviation of the residual scatter. Low time delays correspond to a higher uncertainty on At and
hence in Hy, since the LSST median cadence of 11 days is too low to attain sufficient precision on

the time delay estimates. Extreme outliers with nged <0or nged > 140 have been removed from
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A transition can be seen to occur between low time delays, where At is the dominant source
of uncertainty, and larger time delay values, where contributions from the source position
(for doubles) or the image position (for quads) dominate the scatter. Let us emphasise that
the majority of the lensed supernova systems have rather low time delays; around 50% of
the systems have At,,, <25 days. Therefore, it is important to find methods to decrease the
uncertainty on At in order to improve the final H predictions.



138 CHAPTER 6. INFERRING THE HUBBLE CONSTANT FROM LENSED SUPERNOVAE

6.3.2 Joint H, inference

After incorporating the cuts in the time-delay distance as described in Section 6.2.4 into the
predicted LSST lensed supernova rate from Wojtak et al. (2019), we forecast that around 40
type la supernovae per year will be discovered with the image multiplicity method that are
suitable for our Hj inference pipeline. Of this sample, ~31 are expected to be doubles and ~9
quads. These rates are used to construct a realistic evaluation set, with a ground truth value of
Hy=70km s™'Mpc~.

Following these numbers, an evaluation set of 310 doubles and 9o quads is employed to
represent the ten-year duration that LSST will be operational. For each lensed supernova
in the sample, we determine an Hj posterior through our pipeline outlined in Figure 6.6 in
combination with the SBI framework. When the individual posteriors from the evaluation
sample are combined into a joint PDF, we report a final estimate of H, = 70.2:“8:8 km s~ 'Mpc!,
as presented in Figure 6.10. The combined posterior constitutes a 1.2% measurement of
H,, which is consistent with the ground truth and shows no detectable bias. However, the
precision and accuracy of the measurement is completely driven by the doubles in the sample.
The quads display a bias towards lower H, values, possibly due to our underlying prior of
Hy ~ U(20,200). Seemingly, our current approach for employing quads, i.e. only considering
the time delay constraints between the first and the last image, is not sufficient for them to
contribute meaningfully to cosmological inference. Alternative methods that optimally exploit
the information content of all four images might render them more useful, although the expected
sample size of quads remains small.

Figure 6.11 displays the predicted joint H, posterior after one year of LSST observations,
corresponding to a 4.3% unbiased measurement of the Hubble constant. Again, the majority of
the constraining power emanates from doubly imaged supernovae.

6.3.3 Posterior validation

If the assigned posteriors are a realistic representation of the underlying empirical distribution
of Hy values, x% of their probability volume should contain the true value x% of the time. In
order to verify this, we perform a calibration test as described in recent studies (Ho et al., 2020;
Wagner-Carena et al., 2021). Briefly, for a predictive percentile p and for each lens system,
we integrate our model posterior until the resulting area equals p and obtain the associated
value of Hy,. We then compute the fraction of lens systems in our test set with Hy smaller
than Hj,, which corresponds to the empirical percentile p. If our posteriors are perfectly
calibrated, all the predictive percentiles will be identical to the empirical percentiles. For a
posterior biased toward low H, predictions, we have p < p, while for a posterior biased toward
high H values, we have p > p for the whole percentile range. A posterior that underestimates
uncertainties has p > p for [0,50%] and p < p for [50,100%], and vice versa for overestimation.
Figure 6.12 displays the resulting calibration curves for our model posteriors from both double
and quadruple lens systems. The curves demonstrate a nearly perfect calibration, thus justifying
the use of posteriors inferred via our SBI approach throughout this work.
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FI1GURE 6.10 — H| posteriors inferred with SBI for simulations of 310 doubles and go quads, which
constitute a realistic lensed supernova sample corresponding to 10 years of LSST operations. The
sample was generated with a ground truth of Hy = 70 km s™'Mpc~!. By combining the posteriors
in a joint analysis, a 1.2% unbiased estimate of the Hubble constant is obtained, whereby the
constraining power is completely driven by doubly imaged systems.
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Hubble constant forecast for 1 year LSST data
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FiGUre 6.11 — H, posteriors inferred with SBI for a simulated sample of 31 doubles and 9 quads,
corresponding to the expected lensed type Ia supernova yield from LSST after 1 year of obser-
vations. The sample was simulated with a ground truth of Hy = 70 km s™!Mpc~!. The joint
posterior provides a 4.3% unbiased measurement of the Hubble constant.
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FiGure 6.12 — Posterior calibration plots (or quantile-quantile plots) indicating how well the SBI-
inferred posteriors correspond to the empirical distribution of true Hy values. The dashed lines
represent perfect calibration and the coloured lines depict the calibration of the inferred posterior
PDFs. This plot illustrates the overall statistical consistency of our SBI-inferred posteriors, thereby
justifying their use throughout our work.
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64 DISCUSSION AND CONCLUSIONS

E HAVE designed a spatio-temporal neural network, implemented within a simulation-

based inference framework, to infer Hy posteriors from time series of lensed supernova
images. Specifically, our spatio-temporal model is tailored for the LSST context, and hence,
we use realistic LSST-like simulated images and predicted lensed supernova rates in our study.
After discarding the objects with time delays At <2 days and At > 150 days from the predicted
rates of Wojtak et al. (2019), we forecast to find ~ 40 lensed type Ia supernovae per year that
are suitable for cosmological inference, of which ~ 31 are expected to be doubly imaged and
~ 9 quadruply imaged. Combining the posteriors from this sample, we obtain a 4.3% unbiased
estimate of the Hubble constant corresponding to a time period of one year. After 10 years of
LSST operations, the precision in Hj from lensed supernovae in LSST is predicted to be 1.2%,
whereby both the accuracy and precision are completely driven by doubles. In our results,
quads are biased towards a lower value of H; and entail marginal constraining power. We
find that quads are not as well-suited for cosmological inference as doubles, because of their
high residual scatter in time delay and image position measurements, and their much smaller
expected sample size. The approach we adopted in this study to use quads, namely calculating
Dy, from the time delay between the first and the last image, may not be the optimal one,
and alternative avenues that employ the full information content of the four images should be
explored in further investigations.

The main contributions to the residual scatter in Hj, for doubles are the source position and
the time delay measurement, indicating that a higher cadence has the potential to improve the
results significantly. As a proof of concept, we limited ourselves to i-band data, but our network
architecture can easily be modified to have multiple channels as input, each corresponding to
a different band. Including the r, z and y bands will considerably improve the cadence, and
consequently, the precision on the time delay estimates and the Hubble constant. Additionally,
we only considered type Ia supernovae, which will constitute ~ 26% of the lensed supernova
population, but including other types of supernovae such as IIns, which are predicted to make
up ~ 61%, would give us a much larger sample size.

In our current work, we neglect the effects of microlensing from substructures in the lens
galaxy. However, microlensing effects could alter the light curves in a substantial way, especially
for lensed supernovae as they typically have smaller angular separations from the lens galaxy
than lensed quasars (Dobler & Keeton, 2006; Huber et al., 2019). Since microlensing can perturb
light curves independently in each image, it can lead to additional systematic errors in time
delays of order 4% (Goldstein et al., 2018). To quantify the microlensing effect in a realistic way,
we are presently working together with Simon Huber to develop an approximate description
of microlensing contributions to the supernovae light curves. This description will be based
on the approach followed in Goldstein et al. (2018), Huber, Suyu, Ghoshdastidar, et al. (2021),
and Huber, Suyu, Noebauer, Chan, et al. (2021), wherein a microlensing magnification map is
combined with radiative transfer models of the expanding supernova photosphere.

The PEMD + external shear model adopted in our study to simulate the lensed supernovae
generally provides an adequate description of stellar kinematics (Koopmans et al., 2009) and
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X-ray observations (Humphrey & Buote, 2010) in the local Universe, while using a low number
of degrees of freedom. However, it has recently been shown (Birrer et al., 2020; Kochanek, 2020;
Sonnenfeld, 2018) that it can lead to over-constrained mass profiles and can possibly bias the
estimates of the radial density profile, and consequently, H,. As further investigation for this
work, more complex lens models or non-parametric approaches to describe the lens potential
can be considered.

An additional avenue to make our simulated difference images more realistic is by perform-
ing a manual subtraction of the reference image, instead of assuming a perfect subtraction of the
lens and host galaxy. This would include some image subtraction artefacts into our simulated
images, thereby making them more similar to real transient survey images. Training the network
on such a sample will render it more robust to image subtraction artefacts in the real data.

In order to simulate the lensed supernova images and to convert the final estimates of the
time-delay distance into the Hubble constant, a standard ACDM model with ), = 0.3 and
Qg = 0.0 is adopted throughout our study. This makes our results dependent on the choice of
cosmological model. An alternative would be to generate the data while assuming a distribution
of O, and Qy values, ideally covering a wide range of values to account for the variety of
possible underlying cosmologies. Subsequently, a cosmology-independent method could be
used instead of the Friedmann equation to convert angular diameter distances into Hy, such as
the polynomial parametrisations employed in Chapters 3 and 4.

We conclude by emphasising that although LSST will not be ideal for single lensed supernova
systems and will require follow-up observations for high precision time delay constraints, this
work underlines the usefulness of pure LSST data in a joint population analysis. Our pipeline
enables the use of lensed supernovae as cosmological probes in a way that is complementary
to existing Hy, measurements, without the requirement of challenging follow-up observations.
Additional complexity, such as the topics discussed above, can be easily incorporated into
our framework to quantify their effects on the final precision in Hy. An exciting application
of our pipeline is to combine it with the spatio-temporal engine for finding gravitationally
lensed supernovae, as presented in our recent work (Kodi Ramanah, Arendse, et al., 2021),
which reaches a classification accuracy of around 99% for LSST data. After identifying the
lensed supernovae, their time-series images can be fed to the second spatio-temporal network
presented here to obtain the corresponding H, posteriors.
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CHAPTER

SIMULATION-BASED INFERENCE OF
GALAXY CLUSTER MASSES

This chapter is based on the following article:
“Simulation-based inference of dynamical galaxy cluster masses with 3D convolu-
tional neural networks”

Published in Monthly Notices of the Royal Astronomical Society (MNRAS), Volume 501, Issue
3, pp- 4080-4091 (2021).

Authors: Doogesh Kodi Ramanah, Radostaw ]. Wojtak, Nikki Arendse

ABSTRACT

E PRESENT a simulation-based inference framework using a convolutional neural network

to infer dynamical masses of galaxy clusters from their observed 3D projected phase-space
distribution, which consists of the projected galaxy positions in the sky and their line-of-sight
velocities. By formulating the mass estimation problem within this simulation-based inference
framework, we are able to quantify the uncertainties on the inferred masses in a straightforward
and robust way. We generate a realistic mock catalogue emulating the Sloan Digital Sky Sur-
vey (SDSS) Legacy spectroscopic observations (the main galaxy sample) for redshifts z < 0.09
and explicitly illustrate the challenges posed by interloper (non-member) galaxies for cluster
mass estimation from actual observations. Our approach constitutes the first optimal machine
learning-based exploitation of the information content of the full 3D projected phase-space
distribution, including both the virialised and infall cluster regions, for the inference of dynam-
ical cluster masses. We also present, for the first time, the application of a simulation-based
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inference machinery to obtain dynamical masses of around 800 galaxy clusters found in the
SDSS Legacy Survey, and show that the resulting mass estimates are consistent with mass
measurements from the literature.

7.1 INTRODUCTION

ALAXY clusters are formed by the collapse of high density regions in the early Universe, and

they are important to study the formation and evolution of large-scale cosmic structures.
The cluster abundance as a function of mass and its evolution are sensitive to the amplitude of
density perturbations and to the properties of dark matter and dark energy. Galaxy clusters
can therefore provide competitive cosmological constraints that are complementary to other
cosmological probes. As future surveys, such as the Dark Energy Spectroscopic Instrument
(DESI, DESI Collaboration et al., 2016), the Vera C. Rubin Observatory (Ivezic et al., 2008), Euclid
(Racca et al., 2016) and eROSITA (Merloni et al., 2012), will provide unprecedented volumes
of data extending to high redshifts, the accuracy and precision of cluster mass estimation
techniques will become crucial. With the ever increasing scale of state-of-the-art cosmological
simulations (e.g. Ishiyama et al., 2020; Villaescusa-Navarro et al., 2020) providing considerable
volumes of training data, along with the limitations of traditional techniques, the use of machine
learning (ML) algorithms to infer cluster masses has become an increasingly attractive and
viable option (e.g. Armitage et al., 2019; Calderon & Berlind, 2019; Ho et al., 2020; Ho et al.,
2019; Kodi Ramanah, Wojtak, Ansari, et al., 2020; Ntampaka et al., 2015; Ntampaka et al.,
2016; Sutherland et al., 2012; Yan et al., 2020). These models are typically trained on a large
simulated data set, such that the algorithm learns the connection between the observables and
cluster masses. Once optimised, they can subsequently be used to predict masses for unseen
data, provided that the simulations used for training are sufficiently accurate to replicate the
characteristics of the galaxy survey of interest with high fidelity (Cohn & Battaglia, 2020).

For observations probing galaxy kinematics in galaxy clusters, ML methods offer a promising
alternative to traditional methods of cluster mass estimation which are usually based on scaling
relations, the virial theorem or the Jeans equation, and are limited by several assumptions,
primarily involving dynamical equilibrium and spherical symmetry, as briefly reviewed in Kodi
Ramanah, Wojtak, Ansari, et al. (2020). Recently, convolutional neural networks (CNNs), by
virtue of their sensitivity to visual features, have been applied by Ho et al. (2019) to obtain
accurate dynamical mass estimates of galaxy clusters in spectroscopic surveys. The network
inputs are images generated by a kernel density estimator from the 2D projected phase-space
distributions defined by the cluster-centric projected distance and line-of-sight velocities of
galaxies observed in the fields of clusters. The challenge with ML methods is often to not only
produce single point estimates, but also a reliable estimate of the associated uncertainties. The
most recent attempts to approach the problem of uncertainty estimation used normalising flows
(Kodi Ramanah, Wojtak, Ansari, et al., 2020) to infer the conditional probability distribution of
the dynamical cluster masses and approximate Bayesian inference to assign prior distributions
to the neural network weights (Ho et al., 2020). Despite the increasing popularity of ML-based
methods, the classical techniques of cluster mass estimation still currently prevail over the
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applications to observational data. Nevertheless, they are likely to be superseded by their ML
counterparts for future applications involving next-generation surveys.

The primary challenge intrinsic to galaxy cluster mass estimation is posed by interlopers.
These are galaxies that are not gravitationally bound to the cluster, but that are located along the
line of sight and have similar line-of-sight velocities to the cluster. Distinguishing interlopers
from member galaxies is a problematic task, because redshift surveys can only provide informa-
tion about the positions and velocities of objects along the line of sight, and not perpendicular
to it. Finding an effective way of reducing contamination from interlopers, with the limited
information available from surveys, is essential to improve the accuracy of galaxy cluster mass
estimates.

In this work, we propose to work at the level of 3D projected phase-space distribution,
characterised by the sky projected galaxy positions and their line-of-sight velocities, instead
of the standard 2D phase-space, to alleviate the interloper contamination and improve the
precision of cluster mass estimation, as motivated by the following arguments. Cluster members
are distributed more symmetrically around the cluster centre, while interlopers can clump
in any place. Moreover, 2D phase-space density is averaged over the position angle, such
that the information on any axially asymmetric localisation of interlopers is lost, rendering it
more difficult for the algorithm to differentiate between interlopers and cluster members. In
contrast, 3D phase-space density retrieves the information encoded in the position angle and
is, therefore, expected to provide a better separation between cluster members and interlopers.
Moreover, dynamical substructures have been shown to result in an artificial overestimation
of cluster masses (Old et al., 2018; Tucker et al., 2018). These substructures may also induce
an asymmetry within the boundary of dark matter halos, such that the 3D phase-space density
will more adequately account for the presence of substructures and help to mitigate this bias.
To optimise the information from the 3D dynamical phase-space distribution, we make use of
3D convolutional kernels, naturally designed to extract spatial features, in neural networks.
Compared to the previous studies, we also adopt larger apertures than the virial sphere. This
allows us to include the cluster infall zone as an extra constraining power in the estimation of
dynamical masses. The observed infall patterns around galaxy clusters have long been used
to measure cluster mass profiles at large distances (Diaferio, 1999; Diaferio & Geller, 1997;
M. Falco et al., 2014; Rines et al., 2003).

We opt for a simulation-based inference approach to quantify the uncertainties on the neural
network predictions. Simulation-based inference (e.g. Cranmer et al., 2019, and references
therein), often referred to as likelihood-free inference, encompasses a class of statistical inference
methods where simulations are used to estimate the posterior distributions of the parameters
of interest conditional on data, without any prior knowledge or assumption of the likelihood
distribution. Simulation-based inference has emerged as a viable alternative to perform Bayesian
inference under complex generative physical models using only simulations. This framework
allows all physical effects encoded in forward simulations to be properly accounted for in the
inference pipeline, without having recourse to inadequate or misguided likelihood assumptions.
As such, simulation-based inference, and variants thereof, have recently garnered significant
interest for cosmological data analysis (e.g. Akeret et al., 2015; Alsing et al., 2019; Alsing &
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Wandelt, 2019; Alsing et al., 2018; Charnock et al., 2018; Jennings & Madigan, 2017; Leclercq,
2018; Lintusaari et al., 2017; Wang et al., 2020).

In essence, we present a simulation-based inference framework for the estimation of the dy-
namical mass of galaxy clusters with 3D convolutional neural networks. The approach presented
here is complementary to our previous neural flow (NF) mass estimator (Kodi Ramanah, Wojtak,
Ansari, et al., 2020, hereafter NF2020) in various aspects. This is primarily a conceptually
different framework of uncertainty estimation using neural networks. The simulation-based
inference machinery, as presented here, allows the inference of the approximate posterior distri-
bution of cluster masses given their 3D projected phase-space distribution, using an ensemble
of simulated clusters and a neural network designed to extract summary statistics. In contrast,
the NF mass estimator is a neural density estimator, where the cluster mass inference problem
is formulated within a conditional density estimation framework. The two methods also differ
in network architecture and dimensionality of their respective inputs. The approach presented
here employs 3D convolutional kernels to fully exploit the information encoded in the 3D phase-
space distribution of galaxy clusters, while the NF mass estimator relies on fully connected
layers, i.e. multilayer perceptrons, and works at the level of the compressed 2D phase-space
dynamics.

The remainder of this chapter is organised as follows. Section 7.2 provides an overview of
the 3D dynamical phase-space distribution in terms of the key observables used for training the
neural network. We also outline the mock generation procedure for cluster catalogues emulating
the features of the actual SDSS data set and the preprocessing steps involved in the preparation of
the training and test sets. We then describe the simulation-based inference approach utilised in
this work, the network architecture and the training procedure in Section 7.3. We subsequently
validate and demonstrate the performance of the optimised model on the test cluster catalogue
in Section 7.4 and follow up by inferring cluster masses from the actual SDSS catalogue in
Section 7.5. Finally, we provide a summary of the main aspects and findings of our work in
Section 7.6, and highlight potential future investigations with cosmological applications.

7.2 DYNAMICAL PHASE-SPACE DISTRIBUTION

E OUTLINE the general problem of cluster mass estimation by first introducing the dy-
Wnamical phase-space distribution. We then describe the generation of the mock SDSS
catalogue which will be used to train and evaluate the performance of the neural network in
future sections.

7.2.1 Galaxy cluster observables

The definition of cluster’s halo mass adopted throughout this work is M5, corresponding to
the mass contained in a sphere with mean density equal to 200 times the critical density of
the Universe at the halo’s redshift. We obtain an estimate of the mass by employing the full
projected phase-space distribution of galaxy clusters. This consists of the positions of each
member galaxy projected onto the (x,y) plane of the sky, denoted as (Xproj, Yproj), as well as their
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Cluster mass distribution
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FiGure 7.1 — Cluster mass distribution, i.e. variation of number of clusters with logarithmic mass
for the training, test and evaluation sets extracted from the mock SDSS catalogue. To ensure we
do not induce any cosmological information or selection bias while training the neural network,
we upsample the relatively scarce high-mass clusters using independent lines of sight, thereby
resulting in an approximately flat mass distribution for the training set.

separate line-of-sight velocities, v}y, as provided by redshift surveys. In this work, instead of
computing the projected radial distance from the cluster centre as R0 = (xf)roj + ygmj)l/2 as is
typically done, we exploit the information from xp.; and y;,; separately. This should make our
model more sensitive to interlopers and substructures, which are often located asymmetrically
around the cluster centre. We adopt units of h™'Mpc for xp.oj and ppoj throughout this work.

7.2.2  Mock cluster catalogues

We generate mock observations of galaxy clusters using publicly available galaxy catalogues
derived from the MurtiDArk simulations (Klypin et al., 2016)." Among the three different semi-
analytic galaxy formation models applied to the simulation (Knebe et al., 2018), we opted for
Semi-Analytic Galaxies (saG), which includes the most complete implementation of modelling
orphan galaxies and, therefore, produces the most realistic distribution of galaxies in the cluster
cores (Cora, 2006; Cora et al., 2018). For more details regarding implementations of the star
formation and feedback processes in saG as well as a comparison to the remaining two semi-

Lhttp://skiesanduniverses.org
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analytic models, i.e. caLacticus (Benson, 2012) and the Semi-Analytic Galaxy Evolution (SAGE)
model (Croton et al., 2006), we refer the interested reader to Knebe et al. (2018). The galaxy
catalogues from saG contain the positions and absolute magnitudes in the SDSS filters at all
snapshots of the simulation. The background dark matter simulation (MDPL2) was run for the
Planck ACDM cosmological model (Planck Collaboration et al., 2014). The simulation box has
a size of 1 h~! Gpc and a mass resolution of 1.51 x 10° h™! M.

We select galaxy clusters as massive dark matter halos found in the halo catalogues produced
by the rocksTARr halo finder (Behroozi et al., 2013). For every halo, we construct its cluster’s
projected phase-space diagram by drawing a line of sight and computing the corresponding
projections of the galaxy positions and velocities onto the plane of the sky and the line of sight,
respectively. All phase-space coordinates are calculated relative to the central galaxy assigned
to the main cluster halo and the observed velocities include the Hubble flow with respect to
the cluster centre. The final projected phase-space diagrams are generated by applying the
following cuts: +2200 km s~! in line-of-sight velocities vj,s and +4h~'Mpc in proper distances

Xproj and Yproj-

Aiming at generating mock data which resemble the main spectroscopic galaxy sample of
the SDSS Legacy Survey (Strauss et al., 2002), we adopt a flux limit of 18.0 magnitude in r-band.
The flux limit is 0.2 magnitude lower than the actual SDSS limiting magnitude in order to
compensate the slightly lower counts of galaxies in simulated clusters than in the SDSS ones (see
Knebe et al., 2018). The apparent magnitudes of all galaxies in the field of each galaxy cluster
are computed by assigning each simulated cluster an observer located at comoving distance
randomly drawn from a uniform distribution within a 3D ball. The maximum comoving
distance is 250 h~! Mpc, for which galaxy cluster detection in the SDSS main galaxy sample is
complete down to a cluster mass of ~ 10'4%4~!M, (Abdullah, Klypin, et al., 2020).

Our mock SDSS galaxy catalogue is generated assuming completeness of spectroscopic
observations down to the assumed flux limit. This is an idealised assumption because the actual
completeness of the SDSS decreases in high-density regions due to the physical limit on the
minimum distance between SDSS fibres. However, since our CNN mass estimator operates
on smoothed kernel density estimator density maps, we expect that downsampling due to
incompleteness of SDSS spectroscopic observations should not have a noticeable impact on the
final mass estimates. The insensitivity of CNN mass estimators based on smoothed density maps
to stochastic downsampling was shown in Ho et al. (2019) and Kodi Ramanah, Wojtak, Ansari,
et al. (2020). This test can be repeated for a density-dependent incompleteness resembling
the SDSS selection for spectroscopic observations. Considering an extreme case when cluster
data are missing spectroscopic velocities inside cluster cores subtending 55 arc secs, which is
the minimum distance between SDSS fibres (Strauss et al., 2002), we find that, for a sample of
SDSS-like clusters, our CNN trained on complete mocks yields mass estimates only 0.017 dex
lower in average. Since the SDSS is more complete than this extreme example, primarily by
virtue of an optimised tiling, we conclude that a realistic bias is even smaller and currently
negligible compared to the precision of our mass estimator.

Keeping in mind possible future applications of our dynamical mass estimator for cosmolog-
ical inference with the cluster abundance, it is instructive to generate a galaxy cluster sample
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for which the distribution of cluster masses is independent of cosmological model through the
mass function. An optimal solution is to consider a set of clusters with a flat distribution in
log mass within a possibly wide range of dynamical cluster masses. Aiming at generating a
sample with ~ 10* galaxy clusters, we downsample the actual mass function below halo mass
M, 0c ~ 1014317 M, and generate up to 25 projections per cluster at higher masses. In order to
minimise correlations between projected phase-space diagrams derived from the same cluster,
we use a set of directions (up to 25 lines of sight) found by maximising angular separations
between every two closest sight lines. The adopted maximum number of sight lines per cluster
is not sufficient to keep a flat distribution at the high-mass end, i.e. log,, Moo, 2 14.9 (cf.
Figure 7.1). This, however, can hardly be improved because further increase of upsampling
would introduce strong correlations between phase-space diagrams generated from the same
galaxy cluster. The final sample contains 4.3 x 10* galaxy clusters with a minimum halo mass of
10137 h~1 Mg,

The overdensity threshold used in the halo mass definition depends on redshift. This leads
to a well-known non-physical evolution of halo masses which reflects merely the redshift
dependence of the critical density (Diemer et al., 2013). Since phase-space diagrams do not
provide any information on cluster redshifts required to adjust the overdensity threshold, mass
estimates from neural networks may be consequently affected by an additional noise. For a wide
redshift range, the noise may be sufficiently large so that it would be necessary to supplement
each phase-space diagram with the information on cluster redshift setting the corresponding
overdensity threshold. However, for our mock data spanning a relatively narrow redshift range
z <0.085, the expected uncertainty due to the lack of information on cluster redshifts amounts
to only 0.006 dex, which is significantly lower than the level of precision obtained in our work
and similar studies, i.e. ~ 0.1 dex.

We extract the training set, with a flat mass distribution, containing around seventeen
thousand clusters by randomly drawing from the mock catalogue. The corresponding validation
set, used for early stopping when optimising the neural network, is designated as 10% of
the training set, such that it contains ~ 1700 clusters and only ~ 15500 clusters are utilised
during training. The test set consisting of twenty thousand clusters is obtained by randomly
sampling from the remaining clusters in the mock catalogue. The remaining ~ 5000 clusters
in the catalogue then constitute an evaluation set. The test set is used in the simulation-based
inference framework (cf. Section 2.3.2), whilst the purpose of the evaluation set is to assess the
performance of the network (cf. Section 7.4.2). The mass distributions of the non-overlapping
training, test and evaluation sets are depicted in Figure 7.1.

7.2.3 Kernel density estimator

Before the observables (vigs, Xproj, ¥proj) are provided as input to the ML model, they are first
preprocessed with a kernel density estimator (KDE) to create a smooth PDF mapping in the 3D
phase-space distribution. This is done in order to obtain similar-sized arrays as inputs for all
clusters, which contain different numbers of member galaxies, as well as to create a visual input
(image) for the convolutional neural network. An in-depth review of kernel density estimation
is provided in Diggle and Gratton (1984), Sheather (2004), and Wand and Jones (1994).
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Ficure 7.2 — Simulated 3D phase-space distribution of galaxies observed in an example cluster of
galaxies, represented via its 3D galaxy distribution (top panel) and 3D Gaussian KDE (bottom panel),
consisting of projected galaxy positions in the sky, x,oj and ypr05, and line-of-sight velocities, vjos,
in dynamical phase space. The KDE representation serves as inputs to our 3D convolutional
neural network.
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Let our complete set of n observables {X;,X>,...,X,}, in which each variable X; is given by
(Vioss Xprojs Yproj), be drawn from an unknown distribution with density f. The density evaluated
at a point x = (Vios, Xprojs Yproj) €an be approximated as

n

f)=——5 ) K[H2(x-X))] (7.1)

n|H|1/2 —

where K is the kernel function and H is a 3 x 3 bandwidth matrix. The KDE sums up the density
contributions from the collection of data points {X;,X5>,...,X,} at the evaluation point x. Data
points close to x contribute significantly to the total density, while data points further away
from x have only a relatively small contribution. The shape of the density contributions is
determined by the kernel function, and their size and orientation are dictated by the bandwidth
matrix. In this work, we use a 3-dimensional Gaussian kernel given by

K(u) = (2r)~¥?|H|7\/? exp( suTH™ u) (7.2)

with u = x — X;. For the bandwidth matrix, a scaling factor « is multiplied with the covariance
matrix of the data, H = kX. The scaling factor should be sufficiently small to encapsulate even
the more subtle features of the data and small-scale signal expected for low-mass clusters, but
large enough that the ML model is robust to changes in galaxy number count, and can easily
interpolate between the data sets of discrete and quite scarcely distributed points. We performed
some numerical experiments with three distinct scaling factors, « = {0.15,0.175,0.20}, and found
only a marginal influence on the model predictions. We, therefore, opted for the intermediate
value of ¥ = 0.175 in our study.

An example of a 3D KDE representation that serves as input to the neural network for
one particular cluster is illustrated in Figure 7.2. For all clusters considered in this work,
unless otherwise stated, the extents of the observables are as follows: v}, € [-2200,2200]kms~1,
Xproj € [—4.0,4.0] h~'Mpc and Vproj € [—4.0,4.0] h~'Mpc, with 50 voxels along each axis, resulting
in 3D slices of dimension 50°. Concerning the choice of the maximum extent for Xproj and Yproj,
we performed an optimisation procedure for different sizes of {1.6,4.0,6.0}h~'Mpc and opted
for 4.0 h~'Mpc, which resulted in a noticeable improvement in precision of our mass estimator
relative to a size of 1.6 h~'Mpc and virtually no loss of constraining power relative to a size of
6.0 i~ Mpc.

7.3 SIMULATION-BASED INFERENCE WITH NEURAL NETWORKS

IN ORDER to optimally extract information from the 3D phase-space distribution, we employ
a 3D CNN (as described in more detail in Section 2.2.1), within a simulation-based infer-
ence (SBI) framework (cf. Section 2.3.2) to robustly quantify the uncertainties on the model
predictions.

For the particular mass inference problem studied here, the SBI approach entails the gen-
eration of an ensemble of galaxy clusters using a physical model or simulator. We employ
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FiGure 7.3 — Schematic representation of our CNNjp architecture to predict cluster masses from
their 3D dynamical phase-space distributions. The dimensions of the input 3D slice and those of
the subsequent slices, resulting from the convolutional and maxpooling operations, are indicated
in the top row, with the number of feature maps per layer given in parentheses. The respective
kernel sizes of the latter operations are given in the bottom row, with single strides employed
and without use of padding. The CNN extracts the informative spatial features from the 3D
phase-space distribution and gradually compresses the high-dimensional space to a single scalar
which corresponds to the dynamical cluster mass.

some physical priors, in terms of a flat distribution in dynamical mass (as motivated by decou-
pling from the cosmological model imprinted in the halo mass function) and uniform spatial
distribution, in the cluster generation procedure (cf. Section 7.2.2). Given that our ultimate
objective is the inference of cluster masses from the SDSS catalogue, we generate a realistic
set of SDSS-like clusters. By feeding the 3D phase-space distributions of this set of generated
clusters to our trained neural network, NIN(w,#) : D — d, we obtain a corresponding set of
predicted summaries d, which, by design, correspond to the cluster masses. This allows us
to characterise the joint probability distribution of data (via the compressed summaries) and
parameters, P(J,M), via a kernel (or neural) density estimator. In this work, we make use of
a Gaussian KDE (cf. Figure 7.4 in Section 7.4) as our density estimator. By slicing this joint
distribution at any observed data fed to the network, NIN(w, #) : Dyps — dyps, We obtain the
approximate posterior as follows:

7)(1\/I|d~0bs) z7)(]\/I|D0bs’ w, 71) (7'3)

7.3.1 Neural network architecture

The underlying objective of our SBI framework is to infer the posterior of the dynamical mass
of a galaxy cluster, given its 3D phase-space distribution characterised by the projected sky
positions and the line-of-sight velocities, i.e. P(M|{Xproj, Yproj, Vios})- The neural network takes

as input a 3D slice D, which is a 3D array of the Gaussian KDE applied to the phase-space
distribution, as described in Section 7.2, with an example illustrated in Figure 7.2. The training

data set, therefore, consists of pairs of (M, D).

A schematic of our 3D CNN (hereafter CNNj3p) architecture is depicted in Figure 7.3. The
network extracts spatial features from the input 3D phase-space distribution by performing
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convolutions with a kernel of size 5x 5 x 5. We employ several such kernels in one layer to probe
different aspects of the input 3D slice, yielding a set of feature maps which are subsequently fed
to a maxpooling layer for the purpose of dimensionality reduction. We use a 2 x 2 x 2 maxpooling
kernel to reduce the slice size by a factor of two. We adopt single strides and no padding for
both operations. By repeatedly alternating between these two types of layers, we can reduce the
initial 3D distribution to a compact representation of features. At this point, the resulting 3D
slice may be flattened to a vector, with this vectorised set of features fed to the final layers which
consist of fully connected layers of neurons, i.e. multilayer perceptrons. Finally, the output layer
yields the dynamical cluster mass, as desired. We encode RelLU (Nair & Hinton, 2010) activation
functions (as defined in eq. (2.11)) in the convolutional layers, and linear activations in the final
fully connected layers. We highlight the relatively low complexity of the network architecture
with ~ 10° trainable weights.

7.3.2 Training methodology

We train our CNNj3p model as a regression over the logarithmic cluster mass by minimising a
mean squared error loss function with respect to the network weights. The model and training
routine are implemented using the Keras library (Chollet et al., 2015) via a TENsorFLow backend
(Abadi et al., 2016). We make use of the Adam (Kingma & Ba, 2014) optimizer, with a learning
rate of 7 = 107* and first and second moment exponential decay rates of §; = 0.9 and f, = 0.999,
respectively. The batch size is set to 100. We train the neural network for around 50 epochs,
requiring around 10 minutes on an NVIDIA Vioo Tensor Core GPU. In order to prevent any
overfitting, we adopt the standard regularisation technique of early stopping in our training
routine. For this purpose, 25% of the original training data set is kept as a separate validation
set, with both the training and validation losses monitored during training. We opt for an early
stopping criterion of 5 epochs, such that training is halted when the validation loss no longer
shows any improvement for 5 consecutive epochs, and the optimised weights of the previously
saved best fit model are restored.

7.4 VALIDATION AND PERFORMANCE

7.4.1  Uncertainty estimation

E Now assess the performance of our optimised CNN3p model on the evaluation set. As
Wpart of the SBI procedure, we first compute the joint 2D probability density function
(PDF), P(d, M), of the summary statistics d extracted by the neural network and the parameters
M obtained using the test set containing around twenty thousand clusters (cf. Section 7.2.2).
Recall that the neural summary statistics in this case are, by design, taken to be point predictions
of masses by the CNNjp, while the parameters correspond to the ground truth masses. We
make use of a bivariate Gaussian KDE, with a bandwidth scaling of x = 0.20, to obtain the 2D
PDF depicted in Figure 7.4. This involves the application of egs. (7.1) and (7.2), where now
x = (d, M) corresponds to a given evaluation point in this 2D parameter space and X; describes
the collection of pairs of {d, M} data points, with H being a 2 x 2 bandwidth matrix. To infer
the posterior PDFs of the dynamical masses of the clusters in the evaluation set, we first obtain
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Joint 2D PDF, P(d, M)
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FIGURE 7.4 — Joint 2D PDF of network predicted summaries d and parameters M, i.e. P(d, M),
obtained using a bivariate Gaussian KDE with a bandwidth scaling factor of 0.20. Recall that d,
by design, corresponds to the point dynamical mass estimates from our CNN3p model. A test set
consisting of twenty thousand clusters is used to compute this 2D PDEF. This is representative of the
prediction scatter with respect to the ground truth masses and is employed in our simulation-based
inference framework to compute and assign uncertainties associated to point masses predicted
by our CNN3p. We obtain the approximate posterior, P(M|{Xproj Yprojs Vios}» 0, @), given a set of
network weights 6 and hyperparameters a, for a particular cluster by making a vertical slice at

the neural network predicted value of 4.
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FiGure 7.5 — Predictive performance of our CNN3p model. Top panel: CNN3p predictions against
ground truth, depicting the mean prediction (solid line) and the predicted confidence intervals
(shaded 10 and 20 regions) of the posterior probability density as a function of logarithmic
bins of M., for ~ 5000 galaxy clusters from the evaluation set. The simulation-based inference
approach, as expected, yields larger uncertainties for low-mass clusters. Bottom panel: Distribution
of residual scatter as a function of the logarithmic true cluster mass. The solid line corresponds to
the mean logarithmic residual scatter, € = log; o(Mrye/Mpred), if we consider only the maximum
likelihood predictions (i.e. point mass estimates) from our CNN3p, in logarithmic bins of M.
The shaded bands depict the log-normal scatter (1o and 20 regions) about the mean residuals. The
CNN;p tends to overestimate masses of poor clusters below log[ M ye(h~'Mg)] ~ 14.0 dex. The
correspondingly larger uncertainties for clusters in this mass regime demonstrate the reliability of
the simulation-based inference framework to provide uncertainties that are not underestimated.
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the network point predictions using the trained CNN3;p model. We subsequently vertically
slice the joint PDF from Figure 7.4 at the point estimates to infer the approximate posterior
PDFs for the mass of each cluster. From the posteriors, we quantify the 1o uncertainties by
integrating the 68% probability volume, such that the upper and lower 10 uncertainty limits
may be asymmetrical.

7.4.2 Performance evaluation

Using the inferred posterior mass PDFs for the clusters in the evaluation set, we evaluate the
performance of our CNN3p on the realistic mock catalogue by plotting our model predictions
against the ground truth masses of the ~ 5000 clusters from the evaluation set in the top
panel of Figure 7.5. We bin the model predictions in logarithmic mass intervals with the
mean prediction and confidence intervals (1o and 20 regions) of the posterior probability
density depicted via the solid line and shaded regions, respectively. The top panel shows
the efficacy of our CNN3p model to recover the ground truth masses of the clusters from the
evaluation set within the 1o uncertainty limit. The bottom panel displays the distribution of
residuals, € = 10g; ((Mirue/Mpred), in the CNN;p point predictions relative to the ground truth,
as a function of the logarithmic cluster mass, with the solid line indicating the mean residual
scatter and the shaded bands corresponding to the 10 and 20 regions. The CNNj3p predictions
have a mean residual and log-normal scatter of (¢) = 0.04 dex and o, = 0.16 dex.

From the bottom panel of Figure 7.5, we observe the tendency of the CNNjp, to overestimate
the masses for clusters with masses below log[M,u.(h"'Mg)] = 14.0 dex. This may primarily be
attributed to the realistic effects included in our mock catalogue as detailed in Section 7.4.3
below. Nevertheless, this relatively high residual scatter due to the overprediction of cluster
mass is properly accounted for in the network predicted uncertainties, with the lower 1o
and 20 limits being larger than the upper limits. This demonstrates the capacity of the SBI
framework to yield reliable uncertainties that are not underestimated. Conversely, the network
slightly underestimates the masses for the most massive clusters above log[ My (h™'My)] =
14.9 dex. There is a two-fold plausible explanation for this effect. First, the selection cuts (cf.
Section 7.2.2) to produce the 3D phase-space diagrams may not be sufficiently large to capture
all the galaxy members of the massive clusters, resulting in incomplete cluster samples. The
second explanation is related to possible mean-reversion edge effects, as also reported by Ho
et al. (2020) and Ho et al. (2019), Ntampaka et al. (2016), whereby the model predictions of
cluster masses at the edge of the mass range considered here are biased towards the average.
In general, this systematic bias is related to a neural network’s tendency to be more adept
at interpolation than extrapolation. To mitigate such biases, we would require more training
clusters beyond the edges of the mass regime of the training set, i.e. log[ M ye(h™Mg)] < 13.7 dex
and log[Miyue(F'Mg)] > 15.0 dex. Note that this mean-reversion effect may also be partially
responsible for the overprediction of cluster masses in the low-mass regime.

For the validation of posterior recovery within the SBI framework, we perform a similar
statistical test to recent ML studies (e.g. Ho et al., 2020; Perreault Levasseur et al., 2017; Wagner-
Carena et al., 2021). This test is based on model calibration, whereby a posterior containing x%
of the probability volume should contain the ground truth within this specific volume x% of
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FiGure 7.6 — Validation of posterior recovery within the SBI framework via a posterior calibration
(or quantile-quantile) plot. The dashed line indicates perfect or ideal calibration, with the solid
blue line depicting the calibration of the inferred posterior PDFs. The latter illustrates the overall

statistical consistency of the inferred posteriors, displaying near ideal calibration, thereby avoiding
both under and overconfidence.

the time. As such, for our given problem with one-dimensional mass posteriors, this test boils
down to the computation of coverage probabilities, defined as the fraction of test samples where
the ground truth lies within a particular confidence interval. Note that this posterior validation
test does not assume Gaussian nature of PDFs and holds for any arbitrary PDFs. A clear and
intuitive description of this test on a toy model is provided in the appendix of Wagner-Carena
et al. (2021). The posterior calibration plot for the ~ 5000 clusters in the evaluation set, averaged
over all clusters, is depicted in Figure 7.6. The diagonal dashed line implies ideal calibration, as
a result of a perfect match between the number of test samples and the percentage of probability
volume. The calibration plot of the inferred posterior PDFs is depicted via the solid blue line,
illustrating the near ideal calibration and overall statistical consistency of the inferred posteriors.
The absence of any significant deviations from the ideal calibration reference line implies that
the SBI framework does not exhibit any particular strong under or overconfidence in assigning
uncertainties to the CNN3p model predictions.

7.4.3 Visualisation of interloper contamination

Our mock catalogue contains a realistic level of contamination by interloper galaxies, as expected
from the actual SDSS observations. In this section, we explicitly highlight how the presence of
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these spurious galaxies renders the mass estimation extremely challenging.

The interloper contamination principally induces a bias (overestimation) in the neural
network predictions which is more significant for the low-mass clusters, substantiating the
relatively larger residual scatter for clusters with masses smaller than ~ 14.0 dex, as depicted
in the bottom panel of Figure 7.5. This outcome is caused by several low-mass clusters, for
which the CNNj3p systematically and significantly overpredicts the mass. To illustrate that
interlopers constitute the underlying cause of these inaccurate mass estimates, we compute
the contamination per cluster as the mass ratio of interloper clusters to the original cluster. A
cluster is considered to be an interloper cluster when it is more massive than the original cluster,
is located within a distance of Ry = (xzroj + yzroj)l/2 =4 h~! Mpc and has Av},, < 2200 km s~
An additional factor that exacerbates this problem and renders the task of the CNN3p more
convoluted is the distance between the interloper and original clusters in 3D phase space. The
closer the two clusters are together, the more difficult it is to tell them apart. The relative
phase-space distance between the two clusters, denoted by c; and c,, respectively, is computed

as

AXproj 2 AYproj 2 Ay, 2

d(cy,cp) = ( P ])+( pj)+( OS), (7.4)
R200¢,av R200¢,av V200c,av 7

1/3

3M GM

with R200€: ﬂ and V200c = ﬂ,
471200p, R300c

_1/pa ] _ 0 C2
where Rjggcav = 5(R5g0, + Rogoc) and Axpro; = Xproj ~ Xproj

gously defined.

, with Approi, Avies and vogoc,ay @analo-

Figure 7.7 provides a stark illustration of the overwhelming interloper contamination inher-
ent to the individual clusters from the test set, with the colour bar corresponding to the degree
of interloper contamination and the marker size corresponding to the inverse of the distance.
As can be seen, the clusters with the largest overestimation of their dynamical masses are also
the ones whose phase-space diagrams are highly contaminated by interlopers in the form of
independent clusters. For some of these clusters, the interloper cluster is around 20 times more
massive than the original cluster, which renders the mass estimation extremely challenging.
Observational data, such as the SDSS catalogue used in this work, would be similarly plagued
by interloper contamination. While the performance of our CNN3p model with a mean residual
and log-normal scatter of (¢) = 0.04 dex and o, = 0.16 dex is not as impressive as the recent ML
techniques at first glance, this is purely due to the more realistic mock catalogue employed here.

7.4.4 Information gain with higher dimensionality

In an attempt to illustrate the gain in information by exploiting the full 3D phase-space dis-
tribution, we also train our CNNj3p on the mock catalogue from Ho et al. (2019) and compare
the performance of our network to their 1D and 2D counterparts in terms of the logarithmic
residual scatter in Figure 7.8. CNNjp infers cluster masses solely from the univariate dis-
tribution of line-of-sight velocities, i.e. {v|ys}, while CNN,p additionally takes as input the



7.4. VALIDATION AND PERFORMANCE 163

Interloper contamination in clusters

15.25 1 14
15.00 1
— 2
© 14.75 1 I
= 3
i
: z
14.50 1
= g
2
<)
= g
5 E
14.25 1 =
= =
5 =
a0
2 14.00 04 X
—
13.75 0.2
13.50 0.0

T T T T T T T
13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25

10g10[Mprcd (hil M@)]

Ficure 7.7 — Effect of clustered interlopers on the CNN;p mass predictions. Each individual mass
measurement is coloured according to the relative mass of interloper clusters contaminating the
phase-space diagram of the main cluster. In addition, the size of the markers indicates the inverse
distance between the interloper and original clusters in the projected phase space, as defined
by eq. (7.4). Interlopers residing in relatively massive clusters which overlap closely with the
original cluster in the projected phase space can hardly be distinguished from the original cluster
members, giving rise to a substantial mass overestimation.

sky-projected radial positions given by R;o; = (x;roj + y;roj)l/ 2, such that it relies on the joint
distribution of {R;,j, V1os}- For the sake of comparison, we use similar phase-space cuts to Ho
et al. (2019) for our CNN3p model, i.e. v} € [-2200,2200]kms™!, Xproj € [~1.6,1.6] h~'Mpc and
Yproj € [~1.6,1.6] h~'Mpc. Note that only the point (maximum a posteriori) estimates from our
approach are used to produce the comparison plot displayed in Figure 7.8. As expected, we find
that the precision of the mass estimator, as indicated by the log-normal residual scatter (shaded
1o and 20 regions), improves progressively with further information, thereby justifying the
development and application of our CNN3p model in this work.

As in our previous work (NF2020), we quantify the precision of cluster mass estimation in
terms of the total scatter about the best-fit power-law relation between the ground truth and
predicted cluster masses. Adopting the approach employed in Wojtak et al. (2018), we express
the total scatter o into a richness-dependent component given by oy and a richness-independent
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FiGure 7.8 — Comparison of the performance of three CNN models with distinct input dimension-
ality. Performance is quantified in terms of the residual scatter, € = log, o(Mirye/Mpred), in the CNN
point predictions relative to the ground truth. The mean residual scatter is depicted via solid dark
lines, with the shaded bands corresponding to the log-normal scatter (1o and 20 regions). The
CNN s are trained with progressively larger dimensionality of the phase-space distribution of the
same mock cluster catalogue from Ho et al. (2019). In all cases, the adopted maximum projected
distance from the cluster centre is 1.6 h~'Mpc. The results illustrate the gain in constraining power
when the information content of the full 3D phase-space distribution of galaxies is exploited
instead of relying merely on the velocity dispersion as in the 1D case displayed in the left panel.
The CNN;p and CNNjp results are reproduced from Ho et al. (2019).

part denoted by oy, as follows:
0% = 62 (Nmem/100) ™! + 02, (7-5)

where Ny, indicates the number galaxies within R, of the cluster’s host dark matter halo.
We determine the values of o)y and oy by fitting the above equation to the logarithmic residuals
in the cluster mass predictions for the test set. The best fit model recovers the measured scatter
with a fully satisfactory precision of 5 per cent. We carry out this procedure for the three
CNN models and also include the results of the neural flow mass estimator (NF2020). Note
that the same mock cluster catalogue from Ho et al. (2019) was used for all the methods. The
recent ML techniques, illustrated in Figure 7.9, all outperform the traditional cluster mass
estimators (cf. Figure 6 in NF2020) extensively tested in the Galaxy Cluster Mass Comparison
Project (Old et al., 2015), which are not shown for the sake of clarity. For our CNN3p model,
we find oy = 0.04 dex and o( = 0.08 dex, with the richness-dependent error smaller by a factor
of two relative to 3/(V2Npem In10) = 0.09 dex expected for the mass estimation based solely
on the scaling relation with the velocity dispersion. As expected from Figure 7.8, Figure 7.9
shows a progressive improvement in precision going from CNN;p to CNN3p due to the gain in
constraining power when exploiting the full information from the 3D phase-space distribution
of galaxies rather than relying only on the velocity dispersion. In general, the CNN mass
estimators are less sensitive to cluster richness than the neural flow model. Figures 7.8 and 7.9,
therefore, present an adequate depiction of the network performance and a fair comparison
with recent ML methods, demonstrating the precision of our CNN3p model.
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FiGure 7.9 — Comparison of the precision of three recently proposed ML cluster mass estimators,
along with the CNN3p model from this work, all based on mock observations from Ho et al. (2019)
with the maximum projected distance from the cluster centre of 1.6h~!Mpc. We quantify the

precision in terms of richness-dependent error oy and

richness-independent systematic error

op (cf. eq. (7.5)). In accordance with Figure 7.8, this shows the progressive improvement in
the precision of CNN models with increasing input dimensionality. The horizontal dotted lines
indicate the two characteristic levels of Poisson-like scatter for velocity dispersion-based and
richness-based methods. Our CNN3zp model is also less sensitive to the cluster richness than the

neural flow mass estimator (NF2020).
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7.5 APPLICATION TO SDSS CATALOGUE

E Now apply the trained neural network to redshift data from the SDSS catalogue to infer

the dynamical masses of the galaxy clusters and use the bivariate KDE (cf. Figure 7.4) to
derive their corresponding uncertainties. We subsequently perform a detailed comparison of
the inferred dynamical masses to recent measurements from the literature.

We use the publicly available GalWeight catalogue containing galaxy clusters found in the
main galaxy sample of the SDSS with the carweigHT algorithm (Abdullah, Wilson, Klypin, et al.,
2020).”> We select galaxy clusters at comoving distances shorter than the upper limit assumed
in the mock data, i.e. 250 h~! Mpc, and we discard clusters whose observational cones given by
the maximum physical distance of x,;; and y;,;j are not included in the footprint of the SDSS
main galaxy sample. The resulting sample consists of 801 galaxy clusters. For each cluster, we
find velocities and positions of all galaxies from the main spectroscopic SDSS sample in its field.
Angular positions were converted into physical distances assuming the deceleration parameter
go = —0.55 consistent with the Planck cosmology (Planck Collaboration, Ade, Aghanim, Arnaud,
etal.,, 2016), although the impact of cosmological model in the adopted redshift range (z < 0.085)
is negligible. We use the same cuts in the projected phase space coordinates as for the mock
observations. We also adopt cluster centres and redshifts from the GalWeight catalogue which
set them at the peak of a smoothed galaxy density in the projected phase space. The cluster
catalogue also provides the measurements of dynamical cluster masses based on the virial
theorem with the surface term computed for NFW density profile extrapolated beyond the virial
sphere. The mass estimations account for cluster membership by a special scheme of assigning
weights to all galaxies observed in the phase-space diagram. The scheme was devised using
mock data generated from cosmological simulations (Abdullah et al., 2018).

The galaxy clusters from the catalogue are subjected to an initial preprocessing step similar
to the preparation of the training set. We compute the 3D Gaussian KDE of their respective
phase-space distributions, as outlined in Section 7.2.3, with the resulting 3D slices subsequently
provided as inputs to our CNN3p model. The point estimates are then fed to the SBI pipeline to
obtain their respective uncertainties, resulting in the inferred dynamical masses for the SDSS
clusters. To compare our predictions with the recent results from Abdullah, Wilson, Klypin,
et al. (2020), we compute the 1D PDF of the difference between the two sets of predictions,
normalised by the combined uncertainties, i.e. 10g;q(Mpred/MGaiweight)/Ocom, Where ocom =
(aéred + UCz;alWeight)l/z and Mgaiweight is the cluster mass estimate from the GalWeight galaxy
cluster catalogue (Abdullah, Wilson, Klypin, et al., 2020) with associated uncertainty oGaiweight-
We compute the 1D PDF by binning this mass contrast, with the resulting distribution illustrated
in Figure 7.10. The latter distribution has a mean and standard deviation of y = -0.02 and
o =1.05, respectively, which approximately corresponds to a normalised Gaussian distribution.
This highlights the overall consistency of our mass predictions with those from Abdullah,
Wilson, Klypin, et al. (2020), with the absence of kurtosis implying a negligible bias or error
underestimation/overestimation with respect to the former literature estimates, which would
otherwise render the 1D PDF leptokurtic or platykurtic.

2https://mohamed-elhashash-g94.webself.net/galwcat/
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Ficure 7.10 — Comparison of our SDSS cluster mass predictions with the recent estimates from
the GalWeight galaxy cluster catalogue (Abdullah, Wilson, Klypin, et al., 2020), illustrated via
a qualitative visual depiction (top panel) and a 1D PDF (bottom panel) of the difference between
the predictions, normalised by the corresponding uncertainties in our predictions. The resulting
distribution is approximately characterised by a normalised Gaussian distribution, quantitatively
indicating the overall consistency between our cluster mass predictions and those from Abdullah,
Wilson, Klypin, et al. (2020).
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FiGure 7.11 — Cluster mass function derived from the dynamical mass measurements obtained for
a sample of 760 SDSS galaxy clusters at redshifts z < 0.085 using the new cluster mass estimation
method devised in this work (CNN,p). The result is compared to the corresponding cluster mass
function computed for alternative mass estimates from Abdullah, Wilson, Klypin, et al. (2020)
based on the virial theorem and the theoretical halo mass function as predicted for Planck ACDM
cosmology. The lines show the measured mass function obtained with a kernel density estimator,
while the shaded bands indicate 10 confidence interval from Poisson errors. The shaded grey
region corresponds to the approximate mass range where the cluster sample is incomplete.

7.5.1 Cluster mass function

This section constitutes non-peer reviewed supplementary material that is not included in the
published version.

Figure 7.11 shows the cluster mass function derived from our measurements of dynamical
masses and those derived by Abdullah, Wilson, Klypin, et al. (2020). In both cases, we used
the same sample of 760 galaxy clusters found in the SDSS footprint reduced by the perimeter
area containing clusters affected by incompleteness due to proximity of the survey’s edge. The
total area of the reduced SDSS footprint is 6670 square degrees. Since the tests of the GalWeight
cluster finder based on both mock and real SDSS observations (Abdullah, Klypin, et al., 2020;
Abdullah, Wilson, Klypin, et al., 2020) ensure that the sample of rich clusters detected in the
SDSS data is complete up to the maximum comoving distance adopted in our study (z < 0.085),
we compute the mass function assuming a constant selection function (weights equal to 1 for all
clusters). The same tests also show that a minimum cluster mass for which the cluster finder
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is more than g5 per cent complete within the considered comoving volume is approximately
10041~ 1M,. We indicate the corresponding mass incompleteness range with a shaded area.

The cluster mass functions computed from the two mass estimators are fully consistent. It
is also readily apparent that both estimates of the cluster mass function recover the halo mass
function of the Planck cosmological model (Planck Collaboration et al., 2014) with a universal
fitting function from Tinker et al. (2008) down to the approximate mass limit of the cluster
sample completeness, i.e. ~ 10140h~ 1M,

7.6 CONCLUSIONS AND OUTLOOK

E HAVE presented a simulation-based inference framework, based on 3D convolutional

feature extractors, to infer the galaxy cluster masses from their 3D dynamical phase-
space distributions, which consist of the projected positions in the sky and the galaxy line-
of-sight velocities, i.e. {Xproj, Yprojs Vios}- The simulation-based inference framework allows us
to quantify the uncertainties on the inferred masses in a straightforward and robust way. By
optimally exploiting the information content of the full projected phase-space distribution, the
network yields dynamical cluster mass estimates with precision comparable to the best existing
traditional methods. As such, this fast and robust tool is a novel and complementary addition
to the state-of-the-art machine learning techniques in the cluster mass estimation toolbox.

We train our CNN3p model using a realistic mock cluster catalogue emulating the properties
of the actual SDSS catalogue. Once optimised on the training set, we use our CNNj3p model
within a simulation-based inference framework to infer the dynamical masses of a set of SDSS
clusters and their associated uncertainties for the first time using a machine learning-based
cluster mass estimator, and we obtain results consistent with mass estimates from the literature.
The primary advantage of simulation-based inference, as employed in this work, is that it
yields accurate and statistically consistent uncertainties. If the neural network used to perform
the feature extraction to derive summary statistics is sub-optimal, the uncertainties will only
be inflated, thereby obviating overconfident posteriors. Moreover, we clearly illustrate the
difficulties related to the presence of interlopers close to the cluster centre when dealing with
actual observations. In practice, there exists no effective solution to this predicament inherent
to the mass estimation problem. As a consequence, our simulation-based inference framework
yields correspondingly larger uncertainties for such problematic clusters. This conservative
approach ensures that the uncertainties of highly contaminated clusters are not underestimated.

The design of our network architecture, based on the use of 3D convolutional kernels, is
justified by the gain in constraining power with progressively larger dimensionality of the
input phase-space distribution, as substantiated by smaller log-normal residual scatter and
improved precision (cf. Figures 7.8 and 7.9, respectively). Compared to our recently proposed
neural flow mass estimator (Kodi Ramanah, Wojtak, Ansari, et al., 2020), our CNN3;p model
is more robust to the size of galaxy samples with spectroscopic redshifts, i.e. galaxy selection
effects. The former method employs normalising flows, implemented via a stack of multilayer
perceptrons, to predict the posterior cluster mass PDFs from 2D phase-space distributions

{Rprojs Vios}, thereby deriving uncertainties in a conceptually distinct approach.
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The performance of our CNNj3p mass estimator, along with that of our recent neural flow
mass estimator and the variational inference approach by Ho et al. (2020), provides exciting
avenues to infer cosmological constraints from the SDSS catalogue using cluster abundances
(Abdullah, Klypin, et al., 2020). These three novel machine learning algorithms yield robust and
reliable cluster masses with complementary ways of deriving uncertainties and, therefore, may
be utilised to constrain the cluster mass function to complement standard approaches based on
traditional mass estimators.
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CHAPTER

CONCLUSIONS & OUTLOOK

THE AM of this thesis was to address tensions and open questions in cosmology from both an
observational and theoretical perspective, aided by machine learning techniques. Altogether,
the main findings and contributions of the doctoral research to the field are:

m A strong (50) tension arises in terms of the Hubble constant and sound horizon when
distance calibrations from SHoES and HoLiCOW in combination with Baryon Acoustic
Oscillations are compared to observations from the CMB. This combined tension cannot
be solved in a satisfying way by modifications of the standard ACDM model, neither
by early-time nor by late-time extensions. This might tentatively point in the direction
of systematics as a solution to the prevailing tension, or perhaps to the need for a
combination of several models. These findings, which are described in Chapter 4,
underline the requirement for new, independent measurements of the cosmic expansion
rate.

m  Gravitationally lensed supernovae are a promising probe for such new measurements.
Our deep learning pipeline presented in Chapter 5 exploits the full spatial and temporal
information of time-series images and provides a way to distinguish lensed supernovae
from unlensed ones in transient surveys.

m  Simulated LSST time-series images corresponding to a realistic sample of type la super-
novae can yield a competitive joint measurement of the Hubble constant, even without
the addition of follow-up observations. Chapter 6 presents a spatio-temporal neural
network capable of performing such an inference. The dominant sources of uncertainty
for this measurement are the time delays between the lensed images, and the supernova
source position (for doubles) or the image positions (for quads).

m  Machine learning-based galaxy cluster mass estimators are able to construct a cluster

171
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mass function that is consistent with mass estimates from the literature and with the
predicted halo mass function from Planck ACDM cosmology. We have demonstrated this
in Chapter 7 by means of a convolutional neural network that, for the first time, exploits
the full 3D projected phase-space distribution of galaxy clusters.

Prospects for upcoming galaxy surveys

The frameworks developed in this thesis will become even more useful when applied to data
from the next-generation surveys.

The spectroscopic galaxy survey DESI will provide a dense sampling of BAO measurements
up to a redshift of z = 3. Consequently, this will allow for a much tighter measurement of the
sound horizon and Hubble constant, which can be used to test new cosmological models in
more stringent ways. Additionally, the data will yield considerably better constraints on the
cosmic curvature from low-redshift observations.

Future wide-field surveys to be conducted at the Vera C. Rubin Observatory, the Nancy Grace
Roman Space Telescope, and Euclid will supply an unparalleled sample of type Ia supernovae
to constrain the shape of the expansion history to much higher precision. Moreover, they are
predicted to discover orders of magnitudes more gravitationally lensed supernovae than the
number of presently known objects. With the unprecedented volumes of data that will be
produced each night, our automated deep learning pipelines for lensed supernovae detection
and H, inference will be essential tools to extract insights and optimise the scientific returns
from the data.

However, the high-precision data from upcoming missions will also pose new challenges. It
will be of paramount importance to ensure that the models used to interpolate the expansion
history do not introduce any biases, not even at a sub-percent level. The cosmographic models
adopted in Chapters 3 and 4 are adequate for the current lower-precision data, but will fall short
when it comes to modelling and interpreting the high-redshift and high-precision data from
next-generation instruments. Therefore, we need to develop improved cosmology-independent
methods, possibly aided by advances in the field of machine learning, such as Gaussian Processes,
genetic algorithms and symbolic regression.

Prospects for lensed supernovae

In order to optimise the lensed supernova detection pipeline further, several features can be
included in the simulated training set to make it even more similar to real observations. Firstly,
instead of generating images where only the supernova is visible, we could compute more
realistic difference images by subtracting a reference image of the lens and host galaxy from an
image containing the lens galaxy, host galaxy and supernovae. This procedure would lead to
some image subtraction artefacts that are also visible in the real data. Additionally, we could add
a third class of objects that consists of active galactic nuclei, since these sources can potentially
mimic lensed supernovae.

Currently, we are in the process of testing our lensed supernovae detection pipeline on
real data from the Young Supernova Experiment and the Zwicky Transient Factory. Although
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the predicted lensed supernovae rate in the aforementioned transient surveys is at most a few
objects per year, it will be useful to develop insights into the possible sources of contamination
and false positives. In this way, we will be fully prepared when the data sets from LSST become
available, which should constitute a much higher lensed supernovae rate.

When employing lensed supernovae for cosmological inference, it is of even greater im-
portance to ensure that the training set is as similar as possible to real observations. Any
physical features that are neglected in the simulation can lead to an underestimation of the
uncertainties on the parameter of interest. For lensed supernovae, microlensing constitutes
a particular challenge. Microlensing contributions are generally unpredictable, time-varying,
and different for each supernova image, which can introduce additional uncertainties in the
time-delay measurements. In an attempt to overcome this issue, we have established a new
collaboration with Simon Huber, whose work describes microlensing in a detailed manner
through magnification maps and radiative transfer simulations. Our aim is to convert this
elaborate microlensing description into an accurate statistical description that can be easily
implemented in simulations, so as to robustly quantify the influence of microlensing on the
Hubble constant inference.

Another point of consideration is the mass model adopted for the lens galaxy. In our study,
we employ a PEMD model where the Einstein radius, ellipticity and power-law slope are free
parameters, in combination with external shear. However, Birrer et al. (2020) show that the
assumed shape of this model partly breaks the mass-sheet degeneracy. In other words, the PEMD
+ shear model is not flexible enough to be be completely driven by the data, and an additional
parameter should be added to the PEMD model to account for the mass-sheet transformation.
As an avenue for future work, we could introduce more free parameters into the PEMD model,
adopt a different lens model altogether, or even consider a non-parametric approach to describe
the lens potential.

An interesting result of our study is that doubles will give rise to the vast majority of
constraining power on H,. Compared to quads, their time delays and image positions can be
determined more accurately by the neural network, and they are predicted to comprise the
largest fraction of detected lensed supernovae. However, the use of quads in cosmological
inference is not as straightforward as for doubles. The manner in which we employ them in our
study, i.e. by only considering the maximum time delay between the first and the last image,
may not be the optimal one. It will be interesting to consider alternative avenues for inference
on quads with neural networks, ideally by including the full information content from all four
images, to see if this can improve the accuracy and precision of their final Hy measurement.

While our work, as a proof on concept, only considers lensed type Ia supernova observations
in the i-band, a natural extension would be to include images from multiple bands. This will
considerably improve the cadence and, consequently, the precision on the time delay estimates
and the Hubble constant. Additionally, we would like to include other types of supernovae
in the simulation in order to increase our sample size. Type IIn supernovae, in particular,
are promising objects, since they are predicted to make up the largest fraction of the lensed
supernovae population.
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Prospects for dynamical cluster mass inference

With the machinery for accurate and robust cluster mass estimates in place, future work in this
direction can take the exciting avenue of using the cluster mass function to infer constraints on
the matter density and clustering amplitude, which are complementary to standard approaches
based on traditional mass estimators. However, this line of work would require further study
into the cluster selection function for our specific sample, which characterises the completeness
of the sample. Without a good understanding of the selection function, it is difficult to quantify
how representative the observed objects are of the underlying parent population, which can
lead to biased estimates of cosmological parameters.

Another interesting avenue for further study is to compare our mass uncertainties inferred
via the simulation-based inference framework to those derived with a neural flow mass estimator
by Kodi Ramanah, Wojtak, Ansari, et al. (2020) and a variational inference approach by Ho et al.
(2020). This could lead to new insights into simulations used to generate mock galaxy cluster
catalogues, and into the different methods of uncertainty estimation for deep learning models.
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APPENDIX

A.1 PLANCK COMPRESSED LIKELIHOOD

Supporting material for Chapter 4.

M ucH oF the constraining power of the CMB power spectrum can be compressed in three
parameters: the physical density of baryons Qph?, which determines relative heights of the
peaks in the power spectrum, and two so-called shift parameters that describe two fundamental
and directly measured angular scales related to the sound horizon and the Hubble horizon at
decoupling. The shift parameters are defined by the following equations:

Dy (z.)
R = Q. :10—71 (A.1)
o 1s(z)
0, = Da() (A.2)

where z, is redshift of decoupling and D, is the comoving angular diameter distance which for
flat models considered in this work is given by
“ dz
Dy = ¢| — A.
A o Hz) (A.3)

H?(z) H[Qm(1 +2)° + Qpp(z) + Q) (1 +2)%], (A.4)

where (), denotes the density parameter of radiation, i.e. Q, = 2.47 x 107°h72.
The comoving sound horizon is given by

TSZ J
\/1+3Qb (1+2)”
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Here, an additional contribution to the energy density driving the expansion comes from
relativistic neutrinos. The density parameter of relativistic neutrinos (), is given by

Qn = Neffg

7( 141 )4/3 (4.6)

)/}
where N,g is the effective number of neutrinos with Ngg = 3.046 for the baseline model.

We compute redshift z, of decoupling employing the following fitting formula (Hu &
Sugiyama, 1996)

z, = 1047[1+0.00124(Qph?*) %7381 + g (Qmh?)%] (A7)
g1 = 0.0783(Quh?) %2381 4 39.5(Q, h?)0763]71 (A.8)
g = 0.56[1+21.1(Quh%)81) (A.9)

The sound horizon imprinted in galaxy clustering and measured from BAO observations is
fixed at the drag epoch when the baryons are released from the Compton drag of the photons.
The corresponding drag redshift z4 can be calculated using the following fitting function (Hu &
Sugiyama, 1996)

(Qmh?)*2M[1 + by (Qph?)™)]

= 1345 A.
“ 1+0.659(Q), h2)0828 (A.10)
by = 0.313(Quh%) "*9[1 +0.607(Q,h?)%074] (A.11)
b, = 0.238(Q,h?*)"22. (A.12)

The compressed CMB likelihood is given by a three-dimensional Gaussian distribution in
the three parameters mentioned above, i.e. thz, R and 6,. We employ the mean values and the
covariance matrix determined from publicly available MCMC models obtained for a flat ACDM
model fitted to the Planck observations including the temperature, polarisation and lensing data
(Planck Collaboration, Aghanim, et al., 2018): (IOOQbhz, 1000,,R) = (2.237 £0.015,1.0411 +
0.00031,1.74998 + 0.004) with the following correlation matrix

1.00 034 -0.63
0.34 1.00 -0.46 (A.13)
~0.63 -0.46 1.00

The compressed likelihood recovers accurately the actual constraints obtained from the
complete likelihood for a flat ACDM model (see Fig. A.1). Only a fine adjustment of the redshift
scales in both fitting formulae (6z/z ~ 1073 smaller relative to the values adopted in Hu and
Sugiyama (1996)) was applied in order to correct for a sub-percent bias in the mean values
of relevant parameters. In general, both approximations used to compute z, and z4,g are
accurate to within 1 per cent in a wide range of the matter and baryon density parameters (Hu
& Sugiyama, 1996).

For early-time extensions of the standard ACDM cosmology (such as a model with free
Negr), the compressed likelihood turns out to be insufficient, leading to a family of models with
a wide range of amplitudes of the first peak in the power spectrum. In order to circumvent
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Ficgure A.1 — Comparison between constraints on rq4 and Hy from the full Planck likelihood (dashed
lines) and the compressed likelihood (for post-recombination modifications of ACDM) or the
extended compressed likelihood (for pre-recombination modifications of ACDM) used in this
study (solid lines). The robustness test comprises two cases: the standard flat ACDM model and
its extension with a free number of neutrinos.

this problem, we extend the compressed likelihood described above by accounting for the
height of the first peak in the power spectrum as an additional constraint. Bearing in mind that
the amplitude scales with Qg #?, i.e. the physical density of dark matter, a simple extension
relies on adding Q4 h? as the fourth variable in the compressed likelihood function. Using
Planck results for a ACDM model with a free effective number of neutrinos as a base early-time
extension (inferred from the full temperature and polarisation data), we determine the mean
values and the covariance matrix of the new four-parameter compressed likelihood, obtaining
(100Qph%,1000,, R, Qgmh?) = (2.225+0.0223,1.0414+0.00054,1.7529+0.0056,0.1184+0.0029)
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and the following correlation matrix

1.00 -0.50 -0.79 0.51
-0.50 1.00 0.30 -0.81
-0.79 030 1.00 -0.19
0.51 -0.81 -0.19 1.00

(A.14)

Fig. A.1 demonstrates that the extended compressed likelihood accurately recovers the actual
constraints on rq and H, from Planck for a model with a free effective number of neutrinos.
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A.2 POLYNOMIAL PARAMETRISATIONS

Supporting material for Chapter 4.

T THIS section gives more detailed information about the polynomial parametrisations used
throughout this work.

A.2.1 Expansion formulas

Our first model is the simplest one and adopts a polynomial expansion of H(z) in z.
H(z) = Ho[1+b1z+b,2° + O(2%)], (A.15)

where Hj is the Hubble constant and the coefficient by is related to the deceleration parameter

qo through
bl =1+ qo- (A16)

In our second model, the luminosity distance D; is expanded as a polynomial in log(1 +z). *

x =log(1 +2z),

In(10
Dy (z) = ¢ In( )[x+c2x2+c3x3 +c4x4+(9(x5)], (A.17)
0
where the coefficient c; is related to the deceleration parameter through the following relation:
In(10
e =20 2 gy) (A.18)

This different parametrisation is chosen in order to avoid convergence problems with the Taylor
expansion around zero, when employing data with redshifts z > 1. By introducing a new variable
x that satisfies x = 0 when z = 0 and x <1 when z — 2 (where the upper limit of 2 is based on
the highest lensed quasar redshift), the parametrisation is kept within the convergence radius
of the Taylor expansion.

Our third model describes transverse comoving distances D), by polynomials in z/(1 + z).

_ z
y= 1+2
Cc
Du(2) = g [v+ doy? +dsy? + day* + O°), (A.19)

where the coefficient d, is related to the deceleration parameter through
dy = 3(1-4o). (A.20)

This parametrisation is, similar to the one in Model 2, chosen to overcome convergence problems.

A.2.2 Truncation of the polynomials

An important thing to consider is at which order the Taylor expansions should be truncated.
Higher orders of expansions can give better approximations to the shape of the data, but also

1Here, log(1 + z) refers to the log base 10, and not to the natural logarithm.
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Ficure A.2 — Relative differences between distances in a fiducial flat ACDM model and distances
derived from Models 1-3 with free parameters matched to the kinematical coefficients of the
fiducial model, ADyi/Dy = (Dy, expansion — Pm,acpm)/Dm,acpm- The solid lines show the results
satisfying the convergence criterion which sets the truncation of polynomials used in the adopted

models in this study.
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introduce more free parameters and therefore larger uncertainties. In order to determine the
truncation of the polynomials as given in A.15, A.17 and A.19, we perform a convergence test
to check that the models can accurately recover expansion history of a fiducial flat ACDM
cosmological model in a redshift range of observational data used in our study, i.e. z < 1.8.
The test relies on comparing distances from Models 1-3 to the actual distances in the fiducial
model. Free parameters of the models are determined by matching coefficients of Taylor
expanded Hubble parameter in Models 1-3 and the fiducial model. The latter yields well-known
kinematical coefficients (Visser, 2004; Weinberg, 1972):

qo = %Qm -1,
jo=1,
so=1- %Qm. (A.21)

Since the errors that we obtain by combining calibrations of HoLiCOW and SHoES are around
2% (see Table 4.3), we require our models to be within a 2 % accuracy of ACDM distances in this
test. The results can be seen in figure A.> for Q,, = 0.3, where the shaded region corresponds
to this imposed limit. It suffices to employ three free parameters (corresponding to a second
order polynomial) for Model 1 and four free parameters (corresponding to a fourth order
polynomial) for models 2 and 3 to satisfy the convergence condition. Since a further increase
of the number of free parameters is disfavoured by the BIC obtained in fits with the actual
late-time observations, these polynomial truncations are adopted in our study (see Table 4.1).
The BIC score is calculated as

BIC = In(N)k —2In(Ly.0p.), (A.22)

where N is the number of data points and k is the number of all free parameters in the cosmo-
logical fits.

A.2.3 Test with mock distance modulus data

As a final test for our polynomial parametrisation models, we investigate if any biases are
introduced when we fit Models 1-3 to flat ACDM data. We transform the Pantheon SN data
set to a mock data set, by replacing their binned distance modulus entries by the fiducial flat
ACDM values (adopting Hy = 74 km s™! Mpc™! and Q,, = 0.3) at the same redshifts. For the
errors associated with the distance moduli we keep the original Pantheon ones. By construction,
best fit ACDM parameters are equal to their fiducial values, whereas relative shifts in best fit
parameters obtained for non-ACDM models measure the corresponding biases. This test is
similar to the one performed by Yang et al., 2019, in which they find that our Model 2 introduces
an artificial bias. However, their mock data set is based on Pantheon data as well as high-redshift
quasar and GRB data (with z,,,, = 6.7), while in our work we only use sources below z = 1.8.
Figure A.3 shows the best-fit values for the coefficients b;, ¢; and d; of Models 1-3, obtained with
MCMC, and their true values in a flat ACDM cosmology. As can be seen, they are in complete
agreement with each other. In fact, the relative difference in Hy between the fiducial value and
those of Models 1-3 is 0.03%, 0.02% and 0.02%, respectively. This bias is about a hundred times
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smaller than the current precision achieved by SHoES and HoLiCOW data (which is around
2%). The bias in g0 is larger: 2.0%, 1.2% and 1.3% for Models 1-3, but still negligible compared
to our obtained errors in gq (which are 10% at best).

This test demonstrates that if the underlying cosmology is flat ACDM, then our models will
not introduce any significant biases in the Pantheon redshift range. The convergence test in the
previous section also guarantees this. The bias that Yang et al., 2019 found in their model was a
consequence of it not passing the convergence test over the complete redshift range of z=0-7.

We repeat the test for the PEDE model and for a wCDM cosmology with w = —1.2. In both
cases we assume (), = 0.3. We find only a sub-percent bias in the best fit Hy and a few-percent
bias in gy where the actual values are given by

1-Q
=3Q - —"m_7q
q0,PEDE = 3%2m 21n(10)

GowcoM = 5+ 3w(1 - Q). (A.23)
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Ficure A.3 — Best-fit values of flat ACDM and polynomial parametrisation Models 1-3 to mock
data. The mock data is generated by replacing the Pantheon distance modulus points by their
fiducial flat ACDM values. The red lines indicate the canonical ACDM values of Q,, Hy and the
expansion coefficients b;, ¢; and d;.
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