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Abstract

In this thesis two different projects are described dealing with different aspects
of light scattering. In the first we are examining the origin of backward scat-
tering as manifest in Rayleigh superradiance. Here we have studied the onset
dependence on the sign of the probe detuning. In the second project, we have
studied coherent forward scattering in the form of a memory experiment. In
such an experiment we convert the input light pulse to an atomic excitation, and
at a later time convert back the atomic excitation into the retrieved light pulse.

In the first project, we investigate the source for the detuning sign difference
in the onset of Rayleigh superradiance. We find a difference of up to a factor
of three between red and blue detuning when using the D1 line in Rubidium
87. We model this by adding a detuning dependent loss term to a rate equation
description of the superradiance. With a microscopic description of the loss
term due to light assisted collisions followed by radiation trapping, we find a
reasonable quantiative agreement between model and experiment.

In the second project we have realized off resonance Raman memory in an ultra-
cold thermal sample in a magnetic trap, with total efficiency of 15%. In addition
we have imaged the retrieved signal using a detection system that can distin-
guish between 30 independent modes, using balanced homodyne imaging.

The goal with the memory experiment, as presented in this thesis, is a first step
towards multimode memory utilizing the high optical depth of the ultra-cold
sample. Here we find that due to magnetic dephasing of the ground levels the
coherence time is 7µs, and that as we increase the optical depth or the drive light
power we get a reduction of the total efficiency contrary to our expectations of
saturating the total efficiency.

Sammendrag

I denne tese beskrives to forskellige projekter der begge beskæftiger sig med
forskellige aspekter af spredning af lys. I det første undersøges processen bag
baglæns spredning, som forefindes i såkaldt Rayleigh superradians. I dette pro-
jekt har vi undersøgt ved hvilkt fortegn af detuningen af probe feltet denne
superradians indtræffer. I det andet projekt er den kohærente fremadrettede
spredning undersøgt. Dette er gjort ved et hukommelseseksperiment. I sådan
et eksperiment konverteres en indsendt lys-puls til en eksitation af atomerne, og
ved et senere tidspunkt bliver denne eksitation konverteret til en lys-pul igen
der så opfanges.

I det første projekt undersøges mekanismen bag fortegns forskellen ved in-
dtræfning af Rayleigh superradians. Der etableres en forskel på helt op til tre
mellem den røde og blå detuning når D1 linien for Rubidium 87 benyttes. Vi
modellerer dette ved at tilføje en detuning afhængig tabsprocess i en ratelign-
ing der beskriver den observerede superradians, og estimerer tabsleddet som
kollisioner assisteret ved lys efterfulgt af strålingsindfangning hvilket reducerer
stofbølge kohærensen.

I det andet projekt har vi realiseret en ikke-resonant Raman hukommelse i en
ultra-kold termisk prøve fanget i en magnetisk fælde, med en total effektivitet
på 15%. Ud over dette har vi undersøgt det modtagne signal ved et detektion-
ssystem der kan adskille imellem 30 forskellige kanaler, ved hjælp af såkaldt
Balanced Homodyne Imaging.

Målet med hukommelseseksperimentet, som beskrevet i denne tese, er første
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skridt mod realisering af hukommelse ved mange tilstande ved hjælp af den
høje optiske dybde koefficient af den ultra-kolde prøve. Det er etableret at den
magnetiske affasning af grundtilstandende fører til en kohærenstid på 7µs, og
at ved at forstærke den optiske dybde koefficient eller intensiteten af drivnings-
feltet, reduceres den totale effektivitet i modsætning til forventningerne om en
mætning af den totale effektivitet.
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Chapter1

Introduction

The field of quantum information utilizes the following basic principles of quan-
tum mechanics theory: the superposition principle and the collapse of the wave
function after a measurement. An abstract description of the encoded informa-
tion in a two level system a quantum bit (qubit), is achieved by a wave function
ψ = a |0〉+ b |1〉 with a and b are complex numbers that satisfy |a|2 + |b|2 = 1.
This is different from classical information theory in which a bit is described by
either |0〉 or |1〉, i.e. a = 1 & b = 0 or a = 0 & b = 1. One of the major concep-
tual differences between classical and quantum description is evident in the no
cloning theorem [Wootters82] which states that one cannot clone (copy) a general
state. Later there were two major achievements that have strongly influenced the
development of the field, in quantum communication the BB84 protocol that al-
lows a secure communication between two distinct parties [Bennett84, Gisin02],
and Shor’s algorithm to find the integer factorization of a large number [Shor94].

For different applications of quantum information different realization of the
quantum bit have advantages. For example, using the photon polarization is
very useful for implementing a communication between two distant locations
while the internal degrees of freedoms of a trapped ion (or an atomic cloud)
are better suited for quantum computation (or simulation). Combining the two
enables utilizing the advantages from each realization, for example extending
the distance over which entanglement is shared via entanglement swapping (the
DLCZ protocol) [Duan01, Gisin02]. When combining entanglement swapping
with a quantum memory one realizes a quantum repeater [Sangouard11].

In our group we are interested in studying the light-atom coupling with respect
for quantum information, basically there are three different type of processes:
beam-splitter (basis for memory scheme), parametric-gain1 (basis for entangle-
ment generation scheme), and quantum nondemolition (or Faraday) interaction
(basis for entanglement, memory, and teleportation schemes) [Hammerer10]. In
these three light-atom interactions the optical depth, i.e. the coupling strength
for a given transition, is the relevant parameter and needs to be as large as
possible [Hammerer10]. Therefore in our lab we have realized a system of ultra-
cold atoms capable of reaching Bose-Einstein condensate with resonance optical
depth as high as 3000 for a closed optical transition.

1Also called the two-mode squeezing.
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2 Introduction

1.1 Overview of lab projects

The work presented in this thesis has been performed in the BEC lab of the
experimental quantum optics group at NBI. In our lab we have experimentally
investigated the main three type of interactions in quantum information. We
have projected the three Hamiltonians to the following experimental implemen-
tations:

1. Parametric-gain interaction (or the two mode squeezer) realized in a superra-
diance experiment. Here we started by studying the dynamics of the
process [Hilliard08a], then we moved to measure the one-to-one correla-
tion between the backward scattered photons and forward scattered atoms
[Hilliard08b, Kaminski12b].

2. Quantum nondemolition as manifested in a Faraday rotation. Here we have
developed a dual-port polarization-contrast imaging technique to measure
the spatially dependence, and measure the angle as function of detuning at
an optical depth of 680. Here we found an increase of the Faraday angle by
a factor of 1.46 due to light assisted collisions [Kaminski12a, Kaminski12b].

3. Beam-splitter-type interaction is realized in an off-resonant Raman memory
experiment. Here we utilize the high optical depth in our system2 of about
200, to realize a memory that could be used as a quantum memory. The
results of this experiment are presented in part II of this thesis.

In addition to the above projects we had two additional projects besides the
quantum information applications. The first was motivated by a theoretical pa-
per claiming that Rayleigh superradiance has a red/blue asymmetry [Deng10b],
which has revived our interest in the onset of Rayleigh superradiance especially
after the detuning asymmetry was shown experimentally [Deng10a]. Here we
had a different mechanism in mind than the one suggested by Deng et al. that
states, the detuning asymmetry originates from light assisted collisions followed
by radiation trapping [Kampel12]. The results of this project are given in part I
of this thesis.

The second side project was to investigate the effects of resonant light on a bi-
modal cloud. Wether it is possible to find a parameter regime in which we
can increase the number of atoms in the condensate due to the resonant light.
We found that this method is very good to remove the thermal part without
influencing the condensed part. Since the light does not penetrate the BEC due
to the high optical depth. This project was done as a bachelor project, that I was
co-supervising. The results are summarized in [Berlok12].

I have joined the BEC lab during the superradiant one-to-one correlation mea-
surements, and have contributed to all of the above projects except to the su-
perradiance dynamics study. In this thesis we have decided to focus only on the
superradiance detuning asymmetry and the memory experiments since the other
experiments are well covered in the theses of Andrew Hilliard [Hilliard08b] and
Franziska Kaminski [Kaminski12b].

2Note the optical depth is smaller from before due to unfavorable Clebsch-Gordan coefficients
by a factor of six.



Chapter2

General production of the
ultra-cold cloud

The bread and butter of all our different experiments is the production of the
ultra-cold Rubidium 87 atoms. The preparation and characterization of the ultra-
cold atomic clouds follows standard techniques. The specific implementation in
our lab is described in details in the thesis of Andrew Hilliard [Hilliard08b] and
in the thesis of Franziska Kaminski [Kaminski12b].

For completeness, the scientific features of the production and the key param-
eters of the atomic sample are summarized in the next few paragraphs. We
produce a prolate cloud of 87Rb in the atomic trappable state

∣∣F0 = 1, m f = −1
〉

where F0 is the ground state hyperfine quantum number and m f is the Zeeman
sublevel. The cloud is cooled down by evaporative cooling inside a magnetic
trap, to either a Bose-Einstein condensate (BEC) or a thermal cloud depending
on the end position of the rf-knife. At the end we produce a cold cloud with
trap frequencies of ω⊥ = 2π × 115.4Hz, ωlong = 2π × 11.75Hz.

In Fig. 2.1 we show a schematic of the actual atomic setup with the vacuum
system, where atoms are cooled and trapped in two different vacuum chambers.
In the "loading chamber", we do the initial trapping in a 2D-MOT (or loading
MOT) after releasing the Rubidium atoms from a dispenser. Then we push the
atoms into the "science chamber" where the atoms are trapped in a 3D-MOT (or
science MOT). The two chambers are separated by a differential pumping stage,
which allows to maintain two orders of magnitude of pressure ratio between the
chambers. The loading chamber has the higher background pressure, for the
initial capture of the hot atoms. The science chamber needs (and has) a lower
background pressure to reduce collisions with background particles [Stam07,
Lin09]. This is important as we have 40 to 50 seconds of evaporation, and for
some experiments we want to have a long life time. In our case this was done
extremely well as we find that the BEC life time is of several minutes with about
50% of the atoms left after three minutes when the rf-knife removes the warm
atoms.

The experimental sequence: First we load the atoms for 20 to 30 seconds, then
compress and cool the atoms using optical molasses to about 10µK. Subse-
quently we turn off all the lasers and capture the atoms in a quadrupole trap.
In the quadrupole trap we first do an evaporation step from 50MHz till 20MHz.
Typically here we have a transfer efficiency of about 18% from the initial atom
number (measured by fluorescence after recapturing in the 3D-MOT).

At this stage we adiabatically turn on the Ioffe coil, such that we produce a

3



4 General production of the ultra-cold cloud

Figure 2.1: The atomic experimental setup including the vacuum system.

Ioffe-Pritchard trap configuration (or QUIC trap). After the atoms have been
transferred (and moved 8mm in our case), we continue with the evaporation in
a stiff trap until the evaporation efficiency is limited by 3-body losses. To reduce
this we "relax" the trap1, and do the last steps of the evaporation.

When cooling below the critical temperature we achieve a BEC containing about
106 atoms with Thomas-Fermi radii of r⊥ = 6µm and rlong = 60µm.

For the superradiance and memory experiments the cloud is probed/pumped
along its long axis, i.e. right to left in Fig. 2.1. The physical optical access
along this axis is through a 4mm hole in the Ioffe coil holder. The length of the
cylindrical core (∼ 100mm) restricts the focuss of the beam to w0 ≥ 20µs at the
location of the cloud.

After the cloud interacted with the probe/pump light we investigate the cloud
using absorbtion imaging after time of flight2 (TOF). Before we image, the atoms
are pumped into the state

∣∣F = 2, m f = −2
〉
, then we probe the cloud for 50µs

using the cycling transitions to the excited state
∣∣F′ = 3, m f = −3

〉
. For infer-

ring the optical depth we also take a background and a bias images. From the
optical depth image we deduce the cloud’s parameters by fitting it to either a
gaussian or a Thomas-Fermi profile. For more details see [Hilliard08b] and (or)
[Kaminski12b].

1We do this by reducing the fields gradients, which lowers the trap frequencies. Thus we get
lower densities and less 3-body losses [Stam07].

2The time of flight is limited to 15− 45ms. The lower limit is due to the camera focus range
and the upper limit is due to the cell wall.
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Superradiance - Detuning
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Chapter3

Introduction to superradiance

Superradiance is the collective enhancement of spontaneous emission of inde-
pendent atoms (or molecules) as first described by Dicke in 1954 [Dicke54].
Considering a collection of two level systems in which all atoms are initially
in the excited state, a single spontaneous emission event triggers a collectively
enhanced emission pulse heading along the direction of the high optical depth.
The characteristic time scale for the collective emission is faster by the number of
participating atoms compared to the spontaneous lifetime of an isolated atom.

After the development of the dye laser during the 1960s till the early 1980s su-
perradiance (SR) was extensively studied as it was relatively easy to excite the
atoms and achieve the population inversion criterion [Gross82]. Interest has
restarted in the late 1990s with the achievement of ultra-cold atomic samples
(BEC) [Inouye99, Schneble03], which allowed realizing SR without population
inversion between electronically excited levels. In this configuration there are
two types of SR: Rayleigh and Raman scattering.

In Raman SR we consider a Λ system with a pump pulse coupling the populated
ground state to an empty ground state via an excited state. The SR radiation
pulse is emitted on the undriven leg of the Λ system, thus we get a change of
the internal atomic state between two ground states [Yoshikawa04, Schneble04].
Note that here the intensity of the drive pulse determines the time scale, unlike
in early SR experiments in which the time scale was set by the excited state life
time.

In Rayleigh SR instead of transferring between two different internal atomic states
the coupling is between atomic momentum states mediated by Rayleigh scatter-
ing. Here an off resonance probe produces spontaneous scattering events lead-
ing to atoms being translated in momentum space, in which a photon is emitted
along the high optical depth axis of the sample and the atom recoil according to
the momentum difference of the incident and scattered light. For example, if we
probe along the long axis of the sample then the SR photon will be emitted in the
backward direction and the atom will receive twice the photon momentum (h̄k)
[Inouye99, Schneble03]. This microscopic picture implies that one expects to find
a one-to-one correlation in the number of backscattered photons and recoiling
atoms.

3.1 Classical picture of Rayleigh superradiance

In this thesis we are interested in the Rayleigh SR, and describe it using the
"Bragg" grating or "matter wave grating" picture [Ketterle01]. Identifying the col-
lective sample wave function as Ψ then the Rayleigh scattering event perturbs it

6



3.1 Classical picture of Rayleigh superradiance 7
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Figure 3.1: The matter-wave and light modulations for the phase difference φl − φa =
±π/2 for blue/red detuning. Black line is the density around the initial value (dashed
magenta). Blue is the light-atom dipole potential around the density profile. Red circles
is the light dipole force shifted around the mean density value.

to Ψ = Ψ0 + Ψ2e−i(ωat−ka·r+φa), where Ψ0 is the wave function of the unperturbed
atoms (or atoms at rest), Ψ2 is the wave function of the perturbed atom with
2h̄k momentum1, ωat− ka · r is the dynamic part of the phase given to the per-
turbed atoms and is fixed by energy and momentum conservation, and φa is the
phase difference. For probing along the high optical axis we have ka = 2kp and
ωa = 4ωr. With kp the probe wavenumber, and ωr = h̄k2

p/(2M) = 2π × 3.6kHz
the recoil frequency. The sample density is found from,

n(r) = |〈Ψ|Ψ〉| = |Ψ0|2 + 2 |Ψ0Ψ∗2 | cos (ωat− ka · r + φa) + |Ψ2|2 (3.1)

The resulting density has a slowly moving density modulation forming a sinu-
soidal grating2 due to the interference term between the two momentum modes.
The grating maxima and minima initial position is determined by the initial
phase φa. This grating increases the backward scattered light thus increases the
grating contrast, which in turn amplifies the reflected light. Thus, this is a self
amplifying process that grows exponentially with time.

We can now examine the complementary picture of a light grating that diffracts
matter waves. We write the light-atom dipole potential from the incident probe
light (Ep) and the scattered light (Es) after adiabatically eliminating the excited
states as,

Udip ∝ I/∆ ∝
∣∣Ep
∣∣2 /∆+ 2

(∣∣EpEs
∣∣ /∆

)
cos (ωat− ka · r + φl) + |Es|2 /∆ (3.2)

with I the total intensity, ∆ the probe detuning, and φl the phase difference
between the probe light and the scattered field. The main contribution to the
force changing the atomic momentum distribution comes from the interference
term, as it is both amplified by the probe field and has a modulation with the
short length scale (optical wavelength).

1Note here we explicitly assume that the emitted photons are in the backward direction there-
fore the atoms get two momentum kicks (h̄k)

2Sometime this is also called a "walking" standing wave
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For the case φl − φa = ±π/2 with blue/red detunings3 (positive sign for blue
detuning) we get that both the light grating and matter-wave grating are en-
hanced. To see this we examine the contribution to the dipole force due to the
interference part4, Finter = ka

(
2
∣∣EpEs

∣∣ / |∆|
)

cos (ωat− ka · r) and in Fig. 3.1 we
show the density modulation, dipole potential and Finter around the mean den-
sity value for this case. The total force acting on a single wavelength of the
sample is pointing in the direction of ka, since there are more atoms in the inter-
ference maxima than in the interference minima (

∫
Finterndr > 0). This means

that more atoms are transferred to the 2h̄ka momentum state which increases
Ψ2 and increases the density modulation. In turn each atom that gains the ex-
tra momentum corresponds to an additional scattering event, i.e. increasing Es.
The mutual increase of both Ψ2 and Es enhances the matter-wave and light grat-
ings. A more detailed description including the interaction between the light
and atoms is given in section 5.3, where we derive the equations of motion for
the light and atoms from the Maxwell-Schrödinger equations.

The required phase difference for maximum gain φl − φa = ±π/2 is, actually,
automatically realized. When looking at the atomic phase difference for the
first scattering event its value can be set to φa = 0, by setting the coordinate
system on that unknown atom that emits the first spontaneous photon. We are
allowed to do this since we can neglect any evolution of the atom during the
Rayleigh scattering event, as the time scale for any such evolution is set by the
natural life time which is about 30ns. This means that the atomic grating peak
is at the location of the first scattering event which is random and changes from
realization to realization. For the scattered light field at far off resonance we have
φl = ±π/2. This can be seen as we drive a dipole with an off resonant oscillating
force (the probe). The phase of the dipole response as a function of detuning
follows an arctangent function with the needed asymptotic values. Note that
the direction of the emission of the photon is random. Thus we require enough
Rayleigh scattering events to get the first photon along the right direction. In
addition, as in any real system, there are also losses. Thus, the SR threshold is
not due to a single scattering event but requires more events in order to overcome
the losses in the system.

From the above picture two points are evident:

1. SR is sensitive to the quantum fluctuations of spontaneous scattering events.

2. SR has a built in red/blue detuning symmetry.

The first point has been investigated in [Hilliard08b]. There has also been a con-
siderable effort to detect directly the one-to-one correlation between the number
of backward scattered photons and atoms in the excited momentum state (2h̄k)
[Hilliard08b, Kaminski12b]. Successful detection of the correlation would also
enable to generate useful entanglement between the backward scattered light
and the recoiling atoms [Moore00].

The second point, red/blue detuning symmetry, is at the heart of this part of the
thesis. Apparently, even though Rayleigh SR has been studied for many years,
all of the experiments in BECs until 2010 were done using red detuned probes
only, and no one had tested the detuning symmetry.

3Here we define red detuning as ∆ = ωp − ωa < 0, i.e. the probe energy is lower than the
transition energy.

4Here, for convenience, we take the φa = 0 and φl = ±π/2.
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3.2 The detuning asymmetry

In late 2009 Deng et al. have put on the arXiv the draft of a theory paper which
was published February 2010 [Deng10b], claiming to ". . . explain why matter-
wave superradiance can occur only when the pump laser is red detuned". This
strong claim, was quickly supported with experimental evidence put at the end
of 2010 in [Deng10a].

These two papers have started a debate on the source of the asymmetry. The
theory given in [Deng10b] has encountered lots of criticism summarized in the
comment [Ketterle11] and a reply [Deng11]. Our interest has started since we
did not agree with the explanations put forth in [Deng10b, Deng11, Deng10a],
and we had a different explanation in mind. But before we continue with the
discussion on how to approch the problem, we first take a closer look on how
the dipole force depends on the detuning as given in Eq. 3.2. Specifically we
are interested in the onset process when the scattered field (Es) is on the level of
a single scattering event. As we require that the scattering rate (R) is constant
regardless of the used detuning and define R = E2

p/(∆2a2), with a a constant for
dimensions, and rewrite the dipole potential as:

Udip ∝ 2aR1/2 |Es| cos (ωat− ka · r + φl) + a2R∆+ |Es|2 /∆ (3.3)

Here we have ordered the terms of the above equation by the dipole force mag-
nitude. The biggest contribution is from the interference (or SR) term with both
big amplification proportional to R1/2 and a big derivative as it changes with
an optical wavelength scale (ka). The other two terms are significantly smaller,
though which of them is bigger then the other depends on the actual realization
of the probe light. For any reasonable realization the next term in size is the ra-
dial dipole force due to the probe beam5. It is proportional to the gradient of the
intensity distribution and increases linearly with detuning, ∝ ∇R∆. The smallest
contribution to the dipole force, comes from the scattered light ∇ |Es|2 /∆ since
it is both multiplied by a single scattering event (during the SR onset) and the
spatial derivative is proportional to the sample length6. The derivative is propor-
tional to the sample length, since it is more likely that the scattering event will
occur at the beginning of the sample. A more detailed analysis including prop-
agation along the sample gives a mode shape described by a modified Bessel
function7 leading to the same length scale for the variation of the scattered field.

From the above dipole force estimation the two extra terms for the dipole force
have inherent detuning asymmetry, but are significantly smaller. The effect of the
first one, ∝ ∇R∆, is to change the trapping potential and increases with increas-
ing detuning. In past measurements of the Rayleigh SR performance spanned
over a wide rage of red detunings (from ∆ = −2GHz till ∆ = −8GHz). No signif-
icant deviation from a simple constant scattering rate was observed [Hilliard08a].
Therefore this term can not explain the detuning asymmetry observed by Deng
et al..

The model given by Deng et al., suggests that the SR asymmetry is due to the
dipole force for the single scattering event (∇ |Es|2 /∆). The scattered field is
amplified upon propagation through the medium and is assumed to change the
structure factor for light scattering by modifying the sample mean field energy
[Deng10b, Deng10a]. Since the structure factor depends sensitively on interac-

5We explicitly assume here that the probe beam waist is much bigger than the probe wave-
length.

6Here we assume that the sample length is much longer than an optical wavelength.
7A similar problem it was analytically solved (and shown) in [Raymer81, Mishina07]
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tion and correlation properties of the constituent particles, this suggestion ap-
pears entirely unfounded without a detailed look at the microscopic properties.
Note that in this model only the effect of the amplified scattered field is con-
sidered while the much bigger effect of the interference term (the grating) is
neglected. Moreover the mean field energy is a nonlinear contribution, which
means that it affects the time evolution of the SR only at later stages and not at
the onset, we show this using a more detailed calculation in section 5.3.

Instead of approaching the problem from a macroscopic point of view, we exam-
ine the problem from a microscopic point of view, by adding to the typical far-
field dipole-dipole interaction between atoms, the contribution of light scattering
for atom pairs in their respective near-field. This mechanism is well studied in
the context of photoassociation spectroscopy [Weiner99, Jones06], in which two
close atoms are excited to a molecular state via an external photon. This process
is inherently detuning asymmetric, as for red detuning there are bound excited
states (photoassociation resonances) while for blue detuning there is a contin-
uum of states. The influence of the excitation to the blue continuum on radiative
trap loss has been observed by Vuletić et al. [Vuletić99], where the pair excitation
rate has been modified by tuning the scattering length, and hence the node of
the ground state pair correlation function, to the Condon point.

Our goal is to find the signature of the molecular potential as the cause for
the additional loss of matter-wave coherence existing when probing with blue
detuning. Typically, a photoassociation event leads to a direct loss of the two
atoms forming the excited state molecule, since the pair gains kinetic energy
during the dissociation [Burnett96]. Besides the loss of the two atoms, there is
also the photon which is shifted towards the atomic resonance during the life
time of the excited molecule. Here we find that with high probability (∼ 90%)
this photon will be emitted at the atomic resonance, and as the molecule is
produced inside the sample so will the resonant photon. Since the sample is
optically thick the resonant photon will be reabsorbed by neighboring atoms
and will "slowly" diffuse out. During this time the light-matter coherent grating
will be destroyed [Kampel12], thus inhibiting the SR process by increasing the
dephasing rate.

3.3 Outline of experimental and theoretical work

In chapter 4 we present our experimental results. Here we concentrate on find-
ing the onset of the SR at different probe light blue detuning ∆ ≤ 35GHz and
compare them to the threshold at red detuning ∆ = −2.57GHz. The results
are presented in section 4.1, in which we also derive the expected threshold de-
pendence for a general detuning dependent loss mechanism, from a simple rate
equation model.

Then we turn to examine the influence of the probe light dipole force, i.e. second
term on the left hand side of Eq. 3.3. Here the probe acts as a repulsive dipole
"anti"-trap, with increasing strength as we increase the detuning. In section 4.2
we find that the cloud is expanding as expected due to the probe.

After examining the experimental results we develop a quantitative model for
the measured increase in the threshold. The model is based on three ingredi-
ents, 1) production rate of the excited molecules; 2) the light emitted during the
dissociation of the molecule on the atomic resonance; and 3) the number of re-
absorption events (diffusion time) of the resonant photon. These are combined
to a loss rate in section 5.1.
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In section 5.2 we calculate the effect of the probe dipole force on the density
of the atomic cloud and the change of the probe intensity due to the density
dependent refractive index of the atomic sample. When combining these two
effects we get a second order correction of the SR threshold. We finish in sec-
tion 5.3 with a derivation of the well known Maxwell-Schrödinger equations for
Rayleigh superradiance [Zobay05, Zobay06, Bar-Gill07, Hilliard08a, Hilliard08b].
The motivation for reproducing the calculation here is to show that a condensate
mean-field term does not influence the threshold for SR to first order, contrary
to the claims of Deng et al..



Chapter4

Experimental results

In our experiments, Rayleigh SR scattering is induced in a trapped BEC by illu-
minating it with an off-resonant light pulse along the axial direction of the con-
densate. We use a 100µs rectangle pulse and vary the pulse intensity to explore
the SR onset. In the experiments we prepared prolate condensates containing
2.2× 105 atoms with in-trap Thomas-Fermi radii of r⊥ ≈ 6µm and r‖ ≈ 60µm in
the radial and axial directions, with no discernible thermal fraction. The probe
light is detuned from the |F0 = 1, mF = −1〉 → |F = 2, mF′ = −2〉 transition on
the D1 line of 87Rb at 795nm and is circularly polarized. We measure the probe
detuning (∆ = −2.57 → 35GHz) using a wave meter (with ∼ 300MHz resolu-
tion) and a Fabry-Perot resonator (1.5GHz FSR) referenced to a laser stabilized to
saturated absorption features of the 85Rb D1 line. The probe beam is focused to
a waist radius of 20µm (at e−2) on the atoms. The probe pulse duration is chosen
long enough to suppress backward (Kapitza-Dirac) scattering of atoms and short
enough to neglect decoherence due to decaying overlap of matter wave packets.
The range of explored probe detunings is chosen such as to have negligible light
depletion at low detunings and is limited by our available laser power at high
detunings.

4.1 Threshold dependence

The populations of atomic momentum modes (0h̄k and 2h̄k) are extracted from
absorption images taken after time-of-flight of 45ms. At each detuning we mea-
sure the population transfer for different single atom Rayleigh scattering rates
R, which determines the dynamics time scale. We fit a straight line to the re-
sults with low scattering rate to extract a phenomenological threshold probe rate
Rth(∆) where superradiant gain exceeds linear losses enough to start significant
population transfer during the interaction time. Figure 4.1 shows an example
of transfer efficiency measurements at a blue detuning ∆ = 5.24GHz. Here the
scattering rate is normalized to the measured threshold rate R0 = 2π × 80Hz at
a red detuning of ∆ = −2.57GHz 1. A detuning asymmetry in the threshold and
a saturation of the transfer efficiency at high scattering rates is visible.

In Fig. 4.2 we present measured threshold rates as a function of probe laser
detuning. A threshold increase up to a factor of three is evident for low values
of the blue detuning. Also shown in the figure is the expected threshold increase
due to light assisted collisions calculated from the model presented in chapter 5

12
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Figure 4.1: The transfer efficiency as a function of normalized single atom Rayleigh
scattering rate at ∆ = 5.24GHz. Open triangles: population of the 0h̄k momentum
mode; filled circles: population of the 2h̄k momentum mode; dashed line: linear fit;
inset: TOF image of the atomic momentum distribution.

(section 5.1).

The starting point for the description of the coherent part of the SR process
are the coupled Maxwell-Schrödinger equations [Zobay05, Zobay06]. Both from
these equations2 and as was shown in [Ketterle01], a simple rate equation for
the number of atoms N2 appearing in the recoil mode Ṅ2 = G · (N2 + 1), is
sufficient to describe the early stages of the dynamics where depletion of con-
densate atoms N0 and probe light are not important. The rate constant for
growth G = Rd0 depends for a fixed sample geometry linearly on the single
atom Rayleigh scattering rate R and on the resonant optical depth d0 of the sam-
ple along the propagation direction of the superradiant light mode [Ketterle01].
Since the Rayleigh scattering rate varies symmetrically with laser detuning no
asymmetry is predicted by this model3.

At this level of description, Rayleigh SR, does not have a threshold probe rate.
To have a more realistic model of the onset, damping mechanisms for the coher-
ence grating need to be accounted for. We include loss rates LR = R to describe
removal of N2 atoms by spontaneous Rayleigh scattering, Lgg(n0) to describe
damping by incoherent ground state collisions between (N0, N2) pairs4, and a
loss rate Lge to account for light assisted collisions followed by radiation trap-

1For red detuning above 2GHz SR dynamics has been shown previously to be independent of
detuning [Hilliard08a].

2We show this in section 5.3
3We arrive in section 5.3 to the same conclusion also for a 1-D model containing propagation

effects.
4A loss term describing coherence loss due to wavepacket separation can be freely added to

this term, but is smaller than the collision term for our axial excitation geometry.
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Figure 4.2: Normalized threshold scattering rate vs. detuning. Filled symbols show the
measured threshold increase; Error bars designate 95% confidence level; Gray shaded
region depicts the expected threshold due to close range dipole-dipole interaction; The
borders of the gray area are calculated with

∣∣δLge/Lge
∣∣ ≤ 0.33.

ping, that will be discussed in detail in section 5.1. We also add a nonlinear loss
rate Lnl(N0, ∆), to account for processes that depend nonlinearly on the popula-
tion of the superradiant modes as those suggested in [Deng10a]. This nonlinear
term could come, for example, from the mean field contribution as we show in
section 5.3. The resulting rate equation

Ṅ2 = G(N2 + 1)− (LR + Lgg + Lge)N2 − Lnl N2
2 (4.1)

shows initial exponential growth when gain exceeds linear losses, i.e. G >
LR + Lgg + Lge. Equality of gain and linear losses defines the threshold for SR
scattering in this model and the threshold does not depend on Lnl . Similar to a
depletion term, Lnl clamps the growth rate later during the evolution when the
population in the recoil mode becomes significant.

Here we are interested in finding the threshold dependence as a function of the
loss term Lge. We start by denoting the threshold gain (Rayleigh rate) in the
absence of the Lge term as G0 (R0) and isolating the ground state collisions loss
term Lgg

Lgg = G0 − LR = R0 (d0 − 1) (4.2)

Before we find the threshold dependence on the light assisted collision term
we parameterize it as Lge = RL̃ge(n0, ∆) where n0 is the density and ∆ is the
detuning. While the correct functional dependence will be worked out later
in section 5.1, a linear dependence on both the scattering rate and density is
expected as these parameters describe the relevant basic components for the
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Figure 4.3: Left: Absorbtion images integrated along the longitudinal axis, after a TOF
of 45ms at a detuning ∆ = 24GHz; dashed black line represents the cross section without
probing the atoms, and the blue, green and red full lines represents single experimental
realization with a probe pulse. Right: The fitted Thomas-Fermi radii from the exper-
iments with probing the atoms normalized the Thomas-Fermi radius from the experi-
ments without probing, as a function of the detuning times the single atom scattering
rate; blue circles represents experiments and the green dashed lines represents the ex-
pected ratio using the Castin-Dum model given in section 5.2.

process. The threshold can now be expressed as

Gth = Rthd0 = Rth + R0 (d0 − 1) + Rth L̃ge,

Rth
(
d0 − 1− L̃ge

)
= R0 (d0 − 1) ,

Rth(∆)

R0
=

(
1−

L̃ge(n0, ∆)

d0 − 1

)−1

(4.3)

which is the quantity determined in our experiment. Thus from the measure-
ments shown in Fig. 4.2 we can test the predictions of L̃ge as described in section
5.1, and shown as the gray area of the figure.

4.2 Effect of the probe beam dipole force

In chapter 3 we have shown from first principles that, in SR experiments, the
probe beam dipole force affects only to second order due to a trap/"anti"-trap
action. The forces due to the probe will increase as one increases the detun-
ing5. Since in our experiments the probe light is focused we expect a significant
variation of the dipole potential over the cloud.

The motivation to test changes in the cloud shape and position due to the probe
light comes from the additional loss term for blue detuned probe, in which
resonance light is produced inside the sample and then diffuses out. In an in-
dependent atom picture, this resonant light should give a recoil kick to each
atom as it is absorbed and re-emitted. This additional recoil kick should be vis-
ible as an increase in the cloud size. Hence by testing the cloud size we can
distinguish between an independent atom picture from a collective many atom
picture in which the photon energy is distributed over many atoms when leaving
the cloud.

5see second term on the left of Eq. 3.3
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Figure 4.4: The change in the center of the cloud as function of the detuning times the
single atom scattering rate. The points represents mean value over the experiments at
that detuning and scattering rate, and the error is one standard deviation.

We measure the Thomas-Fermi radii of the atomic samples for the experiments
with low percentage of atom transfer into the first order (2h̄k). Using absorb-
tion images after integration over the longitudinal axis, we fit a bimodal cloud
function to the experiments with detunings ∆ ≤ 10GHz and for the experiments
with higher detunings we fit a pure BEC function. Examples for cross sections at
∆ = 24GHz are given in Fig. 4.3-left. The dashed black line shows a cross section
of an unprobed cloud. From the plot we see that the cloud has been stretched
and that the center has been moved.

The relevant quantity to describe the above behavior is the dipole potential,
which is proportional to scattering rate times the detuning (see Eq. 3.3). There-
for, in Fig. 4.3-right, we present the measured normalized Thomas-Fermi radii
from the experiments with probing the atoms in the blue circles, and compare
this increase to the expected one due to the trapping potential of the probe using
the Castin-Dum model [Castin96] reviewed in subsection 5.2.1. We find that the
expected values from the model, fit the measured expansion of the cloud. Note
that we also see a reduction of the peak amplitude, in Fig. 4.3-left, which fits the
predicted reduction by the model.

An additional observation is that the cloud position has been shifted. This could
come from a small misalignment of the probe beam. For a position shift after
TOF due to a dipole force a linear dependence on the strength of the dipole force,
proportional to the product of the detuning and the scattering rate, is expected.
We test this and indeed find a linear displacement, as is visible in Fig. 4.4.

In this section we have seen a good match between the measured cloud expan-
sion and the expected expansion due to the Castin-Dum model [Castin96]. We
do not see an additional heating (expansion) due to the resonant photon inside
the cloud, i.e. a single atom picture is not compatible with the observed data.
Since there is an overlap of the de Broglie wavelength of the atoms inside the
condensate, we expect that the photon will actually give a recoil kick to a bunch
of atoms and not a single atom. In this case the recoil is significantly less, as the
effective mass increases, and we do not expect to observe its effect.



Chapter5

Models

In this chapter we model the two different effects presented in the previous chap-
ter. We start, in section 5.1, by deriving a quantitative model for the asymmetric
loss term, L̃ge. In section 5.2 we examine how the probe beam is affected by the
cloud, specifically the change in probe beam intensity (scattering rate), and how
the cloud density is affected by the probe due to the dipole potential. The com-
bination of both changes the estimated threshold and the expected light assisted
collision rate, as presented in subsection 5.1.3.

Last, in section 5.3 we derive the full propagation and time evolution equations,
i.e. the coupled Maxwell-Schrödinger equations. Even though this was done
several times before [Zobay05, Zobay06, Bar-Gill07, Hilliard08a], we rederive
this result putting emphasis on the threshold. The motivation is to dismiss the
claim by Deng et al. in [Deng10b] that if one takes both the time and propa-
gation effects including the mean field term, then the detuning asymmetry can
be shown. Here we, of course, show that the detuning symmetry is conserved
when keeping the mean field term.

5.1 Effects of light assisted collisions

Modeling off-resonant light scattering as purely elastic ceases to be a good ap-
proximation at high atom densities when the probability to excite close pairs of
atoms becomes significant. To include this a molecular point of view descrip-
tion is necessary. Here we consider long range molecules that are produced in
a collision of two atoms mediated by an external photon [Weiner99, Jones06].
These molecular potentials have the form of 1/R3 and can be either attractive or
repulsive, as depicted in Fig. 5.1. While the attractive potentials support bound
states (photoassociation resonances) that are addressed by red detuned light, the
repulsive potentials allow for a continuous spectrum that is addressed by blue
detuned light (radiative heating).

These molecules have a clear detuning asymmetry and therefore a loss mecha-
nism that entails production of molecules will be inherently asymmetric. There-
for this was our initial motivation to test the hypothesis, whether light assisted
collisions could be the cause of the SR detuning asymmetry?

For explaining the threshold asymmetry the additional loss term L̃ge should be
comparable to the optical depth (d0), as seen from Eq. 4.3. As shown below the
rate for light assisted collisions and Rayleigh scattering are comparable at typi-
cal condensate densities of 1013− 1014cm−3. This implies that transient molecule
formation alone cannot account quantitatively for the observed detuning asym-

17
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metry given the high optical depth of the BEC clouds1.

Typically, when examining the loss rate of atoms from optical traps due to light
assisted collisions [Burnett96, Julienne96] it is the loss of two atoms after the
molecule has dissociated since the atoms gained enough kinetic energy to es-
cape the trap. In our case this loss of atom pairs from the cloud has negligible
influence, since the vast majority of light assisted collisions in the cloud happens
without participation of N2 atoms. The actual damage to the SR comes from the
photon emitted during the dissociation process.

The emitted photons can be scattered with a significant frequency shift such
that the outgoing photon is close to the atomic resonance. This resonant photon
will repeatedly scatter off spectator atoms before leaving the cloud spoiling the
mutual coherence of the matter wave and light gratings.

This reduction in coherence is modeled by the loss term L̃ge in the rate equation
Eq. 4.3, and parameterized as Lge = RL̃ge = Rχn0 (1 + Fn̄), where Rχn0 is the
light assisted collision rate, with n0 the condensate density and χ the molecular
production rate parameter, F is the fraction of resonant photons produced in
a collision, and n̄ is the average number of subsequent scattering events for a
resonant photon inside the cloud. Note that the 1 in the brackets of L̃ge indicates
the loss of a single N2 atom assuming that the collision process is between a N0
atom and an N2 atom.

To allow for a comparison between model predictions and our experimental
data, we now turn to a more detailed discussion of the three-step process leading

1This can be seen immediately from Eq. 4.3, by
(

1− χn0
d0−1

)−1
−→ 1 + χn0

d0−1 ' 1 for χn0 � d0
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to the coherence loss rate L̃ge. In subsection 5.1.1 we derive the light assisted
collision rate (Rχn0), and in subsection 5.1.2 we estimate the probability of the
emitted photon to be within the atomic resonance (F) and the average number
of scattering events the photon undergoes before leaving the sample (n̄). In
subsection 5.1.3 we discuss the resulting SR threshold increase as depicted in the
gray area of Fig. 4.2.

5.1.1 Light assisted collisions (molecular production) rate

The initial light assisted collision step in the three-step process has been used
in the past to assess light induced atom loss rates from condensates [Burnett96].
To estimate quantitatively the event rate coefficient for binary light assisted col-
lisions Rχn0 appearing in Lge we switch to a microscopic description of the col-
lision employing the methods outlined in [Julienne96].

The probability rate to excite a molecule per density is given by:

Rχ(∆, Rn) =
πh̄

µk∞
×
∣∣Seg

∣∣2 (5.1)

Seg = −2πi
〈

Ψ−e (E + h̄∆)
∣∣Veg(Rn)

∣∣Ψ+
g (E)

〉
(5.2)

Here, µ is the reduced mass for a 87Rb atom pair, h̄k∞ is the relative momentum
in the entrance channel with corresponding kinetic energy E, Rn is the distance
between the two atoms, ∆ is the photon detuning from the atomic resonance,
Seg is the quantum matrix element to excite a molecule, Ψg (Ψe) is the ground
(excited) scattering wave function, and Veg is the radiative coupling potential.

We write the radiative coupling potential as Veg(Rn) = bC(Rn)h̄ΩA, where ΩA
is the atomic Rabi frequency and bC(Rn) is a molecular parameter reflecting the
change of the electronic wavefunction with internuclear distance Rn, and assume
that it varies only little in the range of atomic distances relevant here. Thus we
can extract Veg out of the matrix element (integral) and write it as Vc = Veg.
For internuclear distances that we are interested in (Rn > 70a0 where a0 is Bohr
radius), we can use the reflection approximation2 to get:

Rχ =
πh̄

µk∞
× 4π2V2

c ×
1

DC

∣∣Ψg(Rc, E)
∣∣2 (5.3)

Here, Rc is the Condon radius3 where the molecule tunes into resonance. The
Franck-Condon factor4

∣∣Ψg(Rc, E)
∣∣2 /DC, with Dc the difference in potential slopes,

regulates the detuning dependence. The ground state scattering wave function
is numerically evaluated by solving the Milne equation5. In the inset of Fig. 5.2
we show the results of the ground wave function.

Now we are missing the C3 coefficient and the value of bC in order to be able
to calculate χn0. These molecular parameters are found from the simple model
explicitly given in [Movre77, Movre80] that does not take into consideration
hyperfine splitting. Under this approximation, we identify two repulsive poten-
tials and fit a C3/R3

n to find the potential coefficient and get C3(0+g ) = 11.9a.u.

2The reflection approximation is valid as long as the ground state wave function does not
rapidly oscillate, see inset of Fig 5.2. For 87Rb it is valid for internuclear distances bigger than
50a0.

3In which h̄∆ = C3/R3
c , with C3 the molecular potential energy.

4The free-free Franck-Condon factor has units of J−2.
5For more details see Appendix A in [Julienne96] equations 60-62.
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Figure 5.2: Ratio of pair collision rate to Rayleigh scattering rate (χn0) for an atomic
density of 1014cm−3 as a function of detuning. Dashed and dash-dotted lines: Separate
contributions from the 0+g and 1u molecular potentials; Solid line: total ratio. Inset: the
ground state wave function versus the internuclear distance

and C3(1u) = 5.89a.u.. This allows us to calculate DC, knowing the C6 coeffi-
cient for the ground state potential from [Marte02]. The bC coefficient is found
from [Movre80] as the square root of the ratio of molecular and atomic oscillator
strength.

In the main panel of Fig. 5.2, we give the result of the ratio between light assisted
collision rate and isolated atom Rayleigh scattering rate (χn0) at a typical BEC
density of n0 = 1014cm−3.

5.1.2 Estimating the emitted photon frequency

To get the frequency spectrum of the photons produced in binary collisions, we
use the Ehrenfest theorem to calculate by classical mechanics the trajectory of
the excited state wave packet in the repulsive molecular potential. Knowing the
kinetic energy as a function of time along the trajectory, allows to transform
the probability distribution for decay as a function of time to the spectral dis-
tribution. The wave packet approach is justified by the same stationary phase
argument that is used to calculate the Franck-Condon factor for the upward
transition. The calculation is completely analogous to the survival probability
estimate used in the Gallagher-Pritchard model for binary collisions in red de-
tuned light fields [Gallagher89].

We start by considering the total energy E available in a generic two-body (half-)
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collision in a repulsive R−3
n potential,

E = T + V (5.4)

h̄∆ =
µ

2
Ṙ2

n +
C3

R3
n

, (5.5)

where T and µ are the kinetic energy and reduced mass, respectively. We do not
consider a centrifugal potential term. The ground state scattering wave func-
tion has s-wave symmetry, while the electronic angular momentum coupling in
the non-centrosymmetric dipole potential is accounted for by the designation of
the molecular state, parametrized by C3. The energy of accessible (l=0, l=1) rota-
tional state continua differs for the smallest Condon radii by less than the atomic
natural line width h̄Γ which is dwarfed by the total collision energy ∆� Γ. The
detuning is defined as ∆ = ωL−ω0, where ωL is the probe (laser) frequency and
ω0 is the atomic line resonance frequency.

Simple algebraic manipulation allow us to derive the differential equation de-
scribing the temporal change of kinetic energy along the trajectory as

Ṙn =

(
2T
µ

)1/2

,

V̇ = −3VṘn/Rn = −3C−1/3
3 ṘnV4/3,

Ṫ =

(
18

µC2/3
3

)1/2

T1/2(E− T)4/3, (5.6)

which can be integrated by separation of variables. Introducing scaled variables
u = T/E and τ = Γmt, where 1/Γm is the radiative lifetime of the excited molec-
ular state, we write the solution as:

τ(u) =
Γm

αΓ

∫ u

0

dx
x1/2(1− x)4/3 . (5.7)

The coefficient α = 6(∆/Γ)5/6(2ωr/Γ)1/2(h̄Γ/(C3k3))1/3 contains all physical
parameters of the specific system, while the integral can be expressed in terms
of hypergeometric functions. Here ωr is the recoil frequency and k is the wave
number. When evaluated numerically, care must be taken to treat the singulari-
ties of the integrand correctly.

The probability density for decay to the electronic ground state of the colliding
atom pair is given by

dP
dt

= Γm exp(−Γmt). (5.8)

Moving to the scaled kinetic energy as the independent variable and transform-
ing the differential accordingly we arrive at

dP
du

=
Γm

αΓ

1
u1/2(1− u)4/3 exp

[
− Γm

αΓ

∫ u

0

dx
x1/2(1− x)4/3

]
. (5.9)

Recognizing that the variable u ∈ [0..1] maps the energy of the outgoing photon
on the interval [ω0 + ∆..ω0] the fraction F of photons emitted in a frequency
interval of width Γ above the atomic resonance can be written as

F =
1
2

(
1−

∫ 1−Γ/∆

0

dP
du

du
)

,

F =
1
2

exp
[
− Γm

αΓ

∫ 1−Γ/∆

0

dx
x1/2(1− x)4/3

]
. (5.10)
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Figure 5.3: Left figure: Fraction of photons emitted in a frequency interval of width
Γ above the atomic resonance as a function of detuning; red dot-dashed is the maxi-
mum fraction of resonance photons possible. Right figure: emission spectrum ( dP

du ) as a
function of u = (ωl −ω) /∆, evaluated at ∆ = 3GHz.

solving the integral by identifying that the integrant ( dP
du ) is the derivative of

the exponent (trivially seen from Eq. 5.8). Here we added a factor 1/2 due to
hyperfine branching, since there is 50− 50 change for the photon to decay to the
atomic state |F0 = 2〉 and |F0 = 1〉.

The spectrum of fluorescence for excitation at ∆ = 500Γ as well as the fraction
F as a function of detuning are shown in Fig. 5.3. Note that around 43% of the
emitted light is fully resonant with the hosting cloud for all ∆ > 0 used in the
experiment. The additional (small) broadening due to the finite emission time
Γ−1

m is not taken into account in this simple calculation.

We finish this calculation with the remark, that the recoil shift for the emitted
radiation which is, of course, negligibly small compared to the red shift com-
pensating the change of relative kinetic energy, must be evaluated using the
total mass of the composite radiating system, i.e. twice the atomic mass. Pro-
viding the answer to the equivalent questions about deposited energy and recoil
for the case of resonant radiation incident on a whole group of close atoms, is
an interesting but highly nontrivial task, in our view.

As the third ingredient to assess the damping of the matter wave coherence
we need to find the average number of scattering events n̄ for resonant pho-
tons before leaving the cloud. Neglecting further frequency redistribution we
use a simplified Holstein model, essentially a diffusive transport equation for
light intensity in a medium of high optical depth, to describe radiation trapping
[Fioretti98]. We use the decay time of the slowest Holstein mode τel

0 = γd2τnat '
n̄τnat to calculate n̄ [Labeyrie03]. Here, γ is a geometry parameter, τnat is the
radiative lifetime of the excited atomic state, and d is the optical depth. For a
simple estimate we assume a Gaussian spherical geometry (γ ' 0.06) with an
optical depth equivalent to the geometric mean along the different condensate
axes. For our parameters we find n̄ > 1000.

Due to the strong dependence of n̄ on optical thickness the threshold increases
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remarkably for dense and optically thick clouds, while it is unaltered in the limit
of low density and optically dilute clouds, in accordance with the experimental
observations in [Deng10a].

5.1.3 The change in SR threshold

In Eq. 4.3 we derived how an additional loss term changes the threshold, and
write it as Lge = RL̃ge = Rχn0 (1 + Fn̄). This parametrization of Lge puts empha-
sis on the role of N2 atoms for the contrast and spatial coherence of the matter
wave grating responsible for the amplified directed SR scattering. The matter
wave grating amplitude can decrease or dephase either by direct participation
and subsequent loss of an N2 atom in a binary light assisted collision or by in-
teraction of an N2 atom with a resonant photon produced in any light assisted
collision within the cloud. This second mechanism is far more important than
direct loss of N2 atoms6. Since in a fully quantum mechanical picture of SR scat-
tering recoiling atoms and backscattered photons are created as correlated pairs
contributing on equal footing to the gain, it is interesting to ask how important
the loss of photon coherence due to inelastic collisions is for the net reduction of
SR gain. The vast majority of binary collisions, which are the source for nearly
isotropic incoherent resonant radiation, happens between N0 atom pairs assisted
by probe light photons. As long as depletion of the probe light is negligible, the
direct influence of the frequency shifted radiation on the coherence of the light
grating is marginal. It is the strong response of atoms to even minute amounts
of resonant light which spoils the coherence of the matter wave and this way
also the mutual coherence between light and matter waves.

The gray area in Fig. 4.2 depicts the calculated threshold increase via Eq. 4.3 for
the experiment. Given the several rather crude assumptions in the calculation
of the microscopic model parameters, together with smaller systematic uncer-
tainties in the experimental parameters atom number and density, we allow an
uncertainty δLge in the loss rate Lge. The borders of the gray area in Fig. 4.2
are calculated with

∣∣δLge/Lge
∣∣ ≤ 0.33. We note that the exact spectral signature

is sensitive to molecular hyperfine structure, which is not taken into account in
our model potentials. While the qualitative and near quantitative agreement be-
tween data and prediction is satisfying to see, the rate equation and radiation
trapping model applied does not do full justice to the underlying complicated
many-body physics. Simple inspection of the threshold condition reveals that
at our highest observed threshold increase more than 60% of the atoms should
have interacted with a trapped resonant photon. The little observed recoil heat-
ing in the experiment is clearly incompatible with a picture of individual atoms
receiving random recoil kicks from an isotropic radiation field. In fact, at reso-
nance and high density photonic and atomic degrees of freedom mix strongly,
forming polariton type excitations with an effective mass very different from the
bare atomic mass [Svistunov90]. In using the radiation diffusion model we im-
plicitly assume that the dephasing rate is still governed by the bare atomic decay
rate Γ.

Whatever the precise nature of the trapped excitations is, their incoherent pro-
duction by collisions and slow diffusion implies the presence of electronic exci-
tation inside the cloud many natural lifetimes after the probe light has left the
cloud. Photoionization out of the excited state can provide a critical test of the
model but also a tool to study the temporal dynamics of the polaritons in detail.

6In the experiment we do not observe pronounced loss of atoms at any of the tested probe
detuning values.
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Figure 5.4: The light intensity radial profile at three different cases, entering into the
sample, mean over the first 2/3 of the sample and exiting the sample. This intensity
profile is given for a detuning of 5GHz In the inset we show the mean intensity change
over the first 2/3 of the sample at the center of the sample as function of detuning.

5.2 Effects of the probe light

In the previous section we have explicitly assumed that both the probe light
intensity profile and the atom density distribution are not changed due to the
interaction, while in this section we examine how these effects change the thresh-
old. There are two main effects that change the experimental conditions: 1) the
dipole force changes the sample density, thus changes L̃ge and 2) the sample
changes the light intensity distribution, thus changes R. The change in the sam-
ple density comes due to the variation of the dipole potential (Udip ∝ R∆). The
change in the light intensity comes from the atomic ensemble index of refraction,
which is inversely proportional to the detuning.

Since these effects are small and influence at opposite detuning limits, here we
are correcting one while ignoring the other and vice versa. For correcting the
light we have used a 3D simulations7 done by Anna Grodecka-Grad [Zeuthen11]
which show that the light intensity change is less than 10%. Note that since the
SR process starts at the beginning of the sample [Hilliard08b] we consider the
average center intensity change over the first 2/3 of the sample length. In Fig. 5.4
we show an example of the resulting intensity profile at detuning of +5GHz. As
expected for blue (positive) detuning, the light is refracted radially outward and
the total intensity decreases. For estimating the change in intensity we take the
worst case, i.e. evaluating the intensity at the center. The inset of Fig. 5.4 shows
the relative intensity change as function of detuning.

7This was done for our experimental conditions.
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The change in beam intensity changes the actual scattering rate for the atoms.
This means that our initial estimate for the threshold scattering rate, as given in
figures 4.1 and 4.2, should be modified accordingly.

In the next step we need to examine the change in the atomic sample density.
Then we can reevaluate the threshold increase, shown in Fig. 4.2, with a slightly
different scattering rate axis, and with modified density values used in estimat-
ing L̃ge(n0, ∆)

5.2.1 Estimating the clouds density after probing

We estimate the change in the sample density using a semi-classical model first
presented by Castin and Dum in [Castin96], in which the BEC cloud evolution
in a harmonic potential is calculated. Here the cloud size is scaled by a factor
ri(t) = λi(t)ri(0), with i(= 1, 2, 3) an axis index. The time dependent density
distribution is therefore given as

n0(r, t) =
1

λ1(t)λ2(t)λ3(t)
× n0({ri/λi(t)}i=1,2,3, t = 0). (5.11)

The time evolution of the scaling factors is governed by Newton’s second law,

d2

dt2 λi =
ω2

i (0)
λiλ1λ2λ3

−ω2
i (t)λi (5.12)

where the first term on the right hand side stems from the clouds mean field
potential energy8, and the second term comes from the time varying of the trap-
ping potential. In our case there are two relevant axis radial (λ⊥) and axial (λz)
giving

d2

dt2

(
λz

λ⊥

)
=

 −ω2
z(t)

ω2
z (0)

λ3
⊥λ2

z
ω2
⊥(0)

λ3
⊥λ2

z
−ω2

⊥(t)

( λz

λ⊥

)
(5.13)

These equations can be solved analytically in the case of time independent trap
frequency, e.g. when turning off the trap and doing a time of flight measurement.
For a time evolving trap, we reduce the set of second order differential equations
to first order by increasing the number of equations, to get:

d
dt


λz

λ⊥
λ̇z

λ̇⊥

 =


0 0 1 0
0 0 0 1

−ω2
z(t)

ω2
z (0)

λ3
⊥λ2

z
0 0

ω2
⊥(0)

λ3
⊥λ2

z
−ω2

⊥(t) 0 0




λz

λ⊥
λ̇z

λ̇⊥

 (5.14)

This allows us to use a modified Simpson algorithm (Runge-Kutta method). This
mathematical exercise gave us the ability to use a stable and fast algorithm to
solve the above set of equations.

In our case during the probing the trap frequency is changed to ω2(0 < t ≤ tp) =
ω2

B + ω2
p, with probing time of tp = 100µs, ωB the magnetic trap frequency, ωp

the probe trap frequency, as estimated by Eq. A.10 and Eq. A.11.

The results of this model have been used to evaluate the dashed green line of
Fig. 4.3-right, in which we plot the evaluated scaled factor with different probe
parameters normalized to the scaled factor without probing (ωp = 0).

8Using here the fact that initially the cloud density is set by the potential of the magnetic trap.



26 Models

−5 0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

∆ [GHz]

R
th

(∆
)/

R
0

 

 

theory
theory+density correction
no change
mean over 2/3 L
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5.2.2 The new threshold dependence

Above we have estimated both the change in the scattering rate due to the atomic
cloud, and the change in the cloud density due to the probe intensity. Note that
as the cloud density is changed the most for far detuning, the scattering rate
modification is biggest at small detuning. In Fig 5.5 we include both correc-
tions into the estimation of the threshold dependence measurements. Here we
have corrected the measured threshold scattering rate, see green stars (corrected)
verses the blue circles (not corrected). The correction to the cloud density influ-
ences directly the loss rate L̃ge, and the effect is shown as the difference between
the two shaded areas. Note that since the density reduces as we increase the
detuning, we can get a threshold ratio smaller than 1.

5.3 Detuning symmetry from Maxwell-Schrödinger
equations

Above we use a simplified rate equation for the number of recoiling atoms to
describe the onset of superradiance (SR) in the absence of incoherent losses.
Here, we sketch the steps to arrive at the rate equation, which averages over
propagation effects, starting from Maxwell-Schrödinger equations, which in-
clude all propagation effects. The basic coupled evolution equations for light
and matter fields have been presented in the literature already several times
[Zobay05, Zobay06, Hilliard08a, Bar-Gill07]. On the way to the rate equation we
discuss, in particular, the various approximations that enter the derivation, also
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in view of recent attempts to explain the detuning asymmetry in superradiance
based on approximate analytic solutions of the Maxwell-Schrödinger equations
and modifications thereof [Deng10b, Deng10a].

The starting point are the mean-field Gross-Pitaevski equation for the matter
field ψ in the electronic ground level including an effective coupling term to the
light field and a classical wave equation for the propagating electric field E with
a polarization term to describe the coherent radiation by the driven atoms:

ih̄
∂

∂t
ψ = − h̄2

2M
∇2ψ +

(
d+ · E−

) (
d− · E+

)
h̄∆

ψ + g0 |ψ|2 ψ (5.15)(
∇2 − 1

c2
∂2

∂t2

)
E± =

1
c2ε0

∂2

∂t2 P±. (5.16)

Here, superscripts ± denote positive and negative frequency components, M is
the atomic mass for 87Rb, h̄ is the reduced Planck constant, d is the atomic dipole
matrix element on the driven electronic transition, c is the speed of light, and ε0
is the free space permittivity. The nonlinear term proportional to g0 describes the
mean field energy from ground state van der Waals interaction. The macroscopic
polarization is given by P± = − |ψ|2 d

(
d · E±

)
/ (h̄∆). Several approximations

have already been applied to arrive at this form of the equations. The trapping
potential for the atoms has been dropped, since it has negligible influence on the
dynamics on the time scale of the interaction with the probe pulse. Implicitly
the effect of the trapping potential is, of course, contained in the initial density
distribution of the cloud. Only the Rayleigh scattering channel back into the
initial Zeeman sublevel is considered for the superradiant dynamics, since the
inhomogeneous magnetic field destroys rapidly the coherence between different
sublevels. More importantly, the dipole response of the atoms is calculated in
second order perturbation theory for an isolated atom in a rotating wave and
low saturation approximation to eliminate excited states adiabatically. The ra-
diative damping term iΓ/2, which formally needs to be added to the detuning
∆, has negligible influence for the range of detunings considered later on, and is
thus left out. Doing the adiabatic elimination at the single atom level, the light
mediated interaction between atoms in their near-field and its impact on the scat-
tering properties are neglected. We choose to take these effects into account later
by switching to a molecular picture for close pairs of atoms. Effective macro-
scopic descriptions including the near-field interaction, derived several times in
the literature, have many subtleties [Sokolov09, You96]. In particular, frequency
redistribution processes and radiation trapping, invoked as a source of decoher-
ence, are buried deep under the formalism and are only hard to recognize in the
macroscopic treatment, which concentrates on the stationary linear response of
the scattering medium.

At this stage, as long as the Maxwell-Schrödinger equations are solved simulta-
neously, all coherent light mediated interaction between driven dipoles in their
far-field and all dipole forces are still fully accounted for. Keeping the full 3-D
description throughout is cumbersome, so the next step is a reduction to 1-D.
Two potentially important effects, depending on the specific geometry of an ex-
periment, that are lost in a 1-D description are the transverse components of
the dipole force exerted by the light field distribution on the atoms and the cor-
responding back action on the light (diffraction and lensing). In sections 4.2
and 5.2 we have showen that these effects have small effect on the SR dynamics,
even for our experimental parameters in which the probe dipole potential was
made relatively big.

We simplify the above equations by going to an effective 1-D geometry assum-
ing a constant transverse cross section A of the interaction region. This keeps
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longitudinal components of interaction and dipole forces only. To simplify the
equations further we split the electric field into forward and backward propa-
gating modes and introduce slowly varying envelope functions for the modes
denoted by subscripts ± in the following. Likewise, the matter wave function is
split into recoil modes with slowly varying envelopes as

ψ(z, t) = ∑
m=2n

ψm(z, t)e−i(ωmt−mkz) (5.17)

where m = 2n and n is an integer number (SR order number), ωm = m2ωr,
ωr =

h̄k2

2M is the recoil frequency, and k is the wave number. Since the condensates
used in the experiments are much longer than an optical wavelength (L ' 100λ)
the mode functions are orthogonal to a very good approximation. As the next
step we transform the equations to dimensionless form, by defining electric field,

time and length units via E± = ε±
√

h̄ω
2ε0
· 2ωr

cA , τ = 2ωrt and ξ = kz. Using the
slowly varying envelope approximation the transformed equations read:

∂ε+
∂ξ

= −iΛ ∑
m

{
ε+ |ψm|2 + ε−ψ∗m−2ψme−2i(m−1)τ

}
(5.18)

∂ε−
∂ξ

= iΛ ∑
m

{
ε+ψ∗m+2ψme2i(m+1)τ + ε− |ψm|2

}
(5.19)

∂ψm

∂τ
=

i
2

∂2ψm

∂ξ2 −m
∂ψm

∂ξ
− iΛ

(
|ε+|2 + |ε−|2

)
ψm

−i
ωMF

2ωr
∑
n

∑
l

ψ∗nψn−lψm+le−il(m−n+l)τ

−iΛε∗+ε−e−2i(m+1)τψm+2 − iΛε∗−ε+e2i(m−1)τψm−2. (5.20)

The coupling constant is expressed as Λ = 1/4 · σ0/A · Γ/∆ and ωMF denotes
the mean-field ground state interaction. The ratio of atomic absorption cross-
section σ0 to sample cross section A and the detuning ∆ in units of the linewidth
Γ determine the strength of the effective atom-light interaction. The first two
terms on the r.h.s. of Eq. 5.20 describe wave packet spreading and recoil induced
drift of the matter wave envelopes, which ultimately leads to coherence loss by
spatial separation. In our experiments the influence of these terms is small due
to the short interaction time and long sample length, hence we drop them in the
following.

To connect the equations more directly to observable quantities we switch to
density matrix elements instead of mode amplitudes. Since we are interested
mainly in the onset of superradiance we restrict the number of recoil modes for
the matter wave to the first two. This makes the system formally equivalent to a
coherent two-level amplifier/absorber, with a weak nonlinear contribution due
to the mean field interaction.

∂ |ψ0|2

∂τ
= iΛ

(
ε∗−ε+e2iτψ0ψ∗2 − ε∗+ε−e−2iτψ∗0 ψ2

)
(5.21)

∂ |ψ2|2

∂τ
= −iΛ

(
ε∗−ε+e2iτψ∗2 ψ0 − ε∗+ε−e−2iτψ2ψ∗0

)
(5.22)

∂

∂τ
ψ∗0 ψ2 = iΛε∗−ε+e2iτ

(
|ψ2|2 − |ψ0|2

)
+ i

ωMF

2ωr

(
|ψ2|2 − |ψ0|2

)
ψ∗0 ψ2 (5.23)

The last term in Eq. 5.23 stems from the extra energy cost to create a density
modulation in the interacting cloud and describes e.g. the mean field shift of a
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Bragg resonance. The light flux propagation equations read:

∂ |ε+|2

∂ξ
= iΛ

(
ψ∗2 ψ0e2iτε∗−ε+ − ψ∗0 ψ2e−2iτε∗+ε−

)
(5.24)

∂ |ε−|2

∂ξ
= iΛ

(
ψ∗2 ψ0e2iτε∗−ε+ − ψ∗0 ψ2e−2iτε∗+ε−

)
(5.25)

∂

∂ξ
ε∗−ε+ = −iΛψ∗0 ψ2e−2iτ

(
|ε+|2 + |ε−|2

)
− 2iΛ

(
|ψ0|2 + |ψ2|2

)
ε∗−ε+. (5.26)

The last term in Eq. 5.26 reflects the modification of light wavelength due to the
refractive index of the cloud. Writing the complex coherences in polar form as
ε∗−ε+ = ρleiφl and ψ∗0 ψ2 = ρaeiφa brings the equations into a form suitable for
further discussion.

∂

∂τ
|ψ2|2 = − ∂

∂τ
|ψ0|2 = 2Λρlρa sin (2τ + φl − φa) (5.27)

∂

∂ξ
|ε−|2 =

∂

∂ξ
|ε+|2 = −2Λρlρa sin (2τ + φl − φa) (5.28)

∂

∂ξ
ρl = −Λ

(
|ε+|2 + |ε−|2

)
ρa sin(2τ + φl − φa) (5.29)

∂

∂τ
ρa = Λ

(
|ψ0|2 − |ψ2|2

)
ρl sin (2τ + φl − φa) (5.30)

One can recognize the first equality in Eq. 5.27 as the local conservation of atom
number, which is a consequence of neglecting wavepacket drift and spread. Sim-
ilarly, the first equality in Eq. 5.28 expresses a continuity equation for the photon
density, a necessary consequence of the adiabatic elimination of excited atomic
states.

We note that the terms describing the mean-field interaction and the refractive in-
dex drop from the magnitude and coherence equations. These terms will weakly
influence the evolution of the phase of matter and light gratings (φa & φl). With
our choice of the probe laser frequency as the carrier frequency for both forward
and backward propagating light modes, the time dependence of φl acquires the
recoil shift of the backscattered light and compensates the explicit time depen-
dence in Eqs. (5.27-5.30).

To model the onset of superradiant scattering we make use of the specific initial
and boundary conditions in the experiments, i.e. |ψ0|2 � |ψ2|2 and |ε+|2 �
|ε−|2. At first sight the equations seem to imply an odd symmetry in the depen-
dence on the sign of probe laser detuning (Λ ∝ ∆−1), and hence to explain the
observed asymmetry in the SR threshold. A closer inspection reveals, that this
is not the case. Due to the sinusoidal dependence on the relative phase of light
and matter wave gratings, Eqs. (5.27-5.30) support runaway solutions, growing
nearly exponentially in time and in space, for both signs of the parameter Λ

(∆). The SR is triggered by spontaneous Rayleigh scattering that creates random
gratings and provides a seed for the growth 9. Note that this derivation supports
the intuitive picture given in the introduction (chapter 3), where both the cloud
and the light support a grating with exponential growth of the coherence.

If boundary conditions are such that both |ε−|2 and |ε+|2 are strong light fields
incident on the sample, the coupled equations describe just Bragg diffraction of
matter waves in a (walking) standing wave including the backaction of atoms
onto the light field. Similarly, for initial conditions such that both atomic recoil

9For analytic solutions of completely analogous quantum dynamics see e.g.[Raymer81,
Mishina07].
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modes are macroscopically populated, reflection of light from a density grating
is described.

Returning to SR scattering, in a minimalistic approach the equations can be re-
duced to a zero dimensional system leading to the rate equation for the number
of atoms appearing in the recoil mode. To do this we assume initial homo-
geneous matter wave coherence ρa(τ = 0) over the sample corresponding to
one delocalized atom in the recoil mode and perfect phase matching conditions
sin(2τ + φl − φa) ' 1 which is valid in the early stages of the dynamics. Now,
Eq. 5.29 is solved subject to the boundary condition that ρl(ξmax) = 0. The result
is inserted into Eq. 5.27, leading to10:

∂

∂τ
|ψ2|2 = 2Λ2 |ε+|2 ρ2

aξmax

(
1− ξ

ξmax

)
. (5.31)

Integrating this over the appropriate dimensionless length, such that we get back
the sample atom number (

∫ ξmax
0 dξ |Ψ0|2 = N0), renders a rate equation for the

number of atoms in the recoil mode as:

∂

∂τ
N2 = Λ2N0 |ε+|2 (N2 + 1) . (5.32)

Here we have added one in the brackets for getting the appropriate initial con-
ditions11, that come from the spontaneous emission event which is not included
in this simple model.

Next we restore physical units to get:

∂

∂t
N2 =

(σ0

A
N0

)(Γ

2
I

Isat

(
Γ

2∆

)2
)
(N2 + 1)

∂

∂t
N2 = G (N2 + 1) (5.33)

Here we have used the relations for the intensity I = ε0c |E+|2 /2 and saturation
intensity Isat = (Γ/2)h̄ω/σ0. Note that here we retain the result used in sec-
tion 4.1, for the SR gain coefficient G = Rd0, with R the single atom Rayleigh
rate and d0 the on-resonance optical depth.

10Note that in the supplementary material of [Kampel12] there is a miss print, the ξmax is
missing.

11This allows starting the process, else a stable solution of N2 = 0 will be the case
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Chapter6

Memory introduction

In this part we move to forward scattering (memory) experiments instead of
backward scattering (superradiance) experiments as presented in the previous
part. In a typical memory experiment a weak probe light is swaped into the
sample atomic state when a strong coupling (drive) beam is turned on, then the
coupling bean is turned off and at a later time when the coupling (drive) beam
is turned on again the weak probe is swaped out of the sample. At first sight
the physics is very similar. The difference is in the Raman (memory) the trans-
fer is between two internal states instead of transferring between two different
momentum states. The actual difference is more inherent as the basic Hamilto-
nian describing the two systems is different, but both share the same coupling
strength; the sample optical depth (OD) times the scattering rate. The superradi-
ance is described by the parametric amplifier Hamiltonian [Hilliard08a], and the
memory process is described by the beam splitter Hamiltonian [Hammerer10].

Another difference between the superradiance and the memory experiments is
in the control over the process, i.e. in the memory experiment we are inter-
ested in starting the process and then to reverse it "on demand". This con-
trol is a key ingrideient in a memory protocol (or experiment) [Simon10]. The
idea is to map an incoming signal pulse into a long-lived atomic coherence,
so that it can be later retrieved "on demand" with the highest possible effi-
ciency. This key feature is what makes the memory such a useful tool in (or
a requirement for) many quantum information and communications protocols
[Duan01, Lukin03, Hammerer10], such as quantum repeaters and entanglement
swapping [Sangouard11]. Another conceptually simple example with a useful
practical application, is to send a single heralded photon to a memory and thus
producing a true single photon source on demand.

To get a high coupling between the photons and the atoms there are mainly
two approaches: 1) ensemble based i.e. using a large number of atoms, and 2)
multi-pass i.e. use a high finesse cavity. In the ensemble based approach the
weak interaction between the photon and the atom is increased using high OD
[Gorshkov07b, Mishina07, Simon10], as was also shown in the previous chapters.
The second option is using a single system (atom, or ion, or a quantum dot)
in a high finesse cavity and in this way increasing the coupling [Gorshkov07a,
Specht11, Ritter12].

Memories are also identified by what they can store: 1) single photon, 2) Qubit,
and 3) continuous variable (CV) [Simon10]. With the single photon means that
only one excitation can be made, but both quadratures are stored. A Qubit
memory is an inherent a two-mode memory in which there are two possible
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ground
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Stokes
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Drive
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Figure 6.1: A three level Λ system.

target state1. In continuous variable type one can store many excitations, thus
the source of the name continuous variables. Here as we used a sample with
many atoms we are implementing a continues variable type of memory.

6.1 A memory protocol in a Λ system

The simplest system to realize a memory is a two level system, but it suffers
from the big disadvantage of lack of control over the process. Adding a third
level allows control over the process. In such a system, two long lived states
are coupled via a third level2. An oversimplifying, but useful, way to think
about the memory is to consider a STIRAP process [Bergmann98] only instead
of transferring all the atoms from one ground level to the other we are interested
in transferring a small fraction.

A three level system in a Λ-configuration, couples the ground state to a sec-
ond ground level typically referred to as the Stokes level via an excited level.
The coupling is mediated with two light sources the "signal" and the "drive", as
sketched in Fig. 6.1.

A memory protocol has three stages: writing, storage, and reading. The writing
stage, in a naive picture, a small fraction of atoms in the ground level are Raman
transferred to the Stokes level. In a more complete picture, the two quadratures
of the electric field of the signal beam are coherently mapped into the atomic
coherence with the signal beam excitations being annihilated and the drive light
excitations are created. Here, first the strong (classical) drive beam is turned on,
then the weak signal beam (or quantum signal) is coherently absorbed in the
sample; while the drive light is turned off again. The coupling of the two beams
gives rise to a coherence between the two ground levels: ground and Stokes in
Fig. 6.1. Additionally, it is important to notice that the atomic medium is initially
transparent for the drive light as there are no atoms in the Stokes level.

The storage stage starts when the signal beam (SB) and the drive light (DL) are
turned off. A low dephasing between the two ground levels is important at
this stage, as the coherence between the ground and Stokes levels should not be
modified. Typically there are three major causes for loss of coherence in atomic

1We note that one can also produce a qubit memory with one target state with two time bins.
2Here the concept of the third level is used very loosely. One can even use a two level system

where after storing the excitation the two levels are moved off-resonance and thus the coupling is
effectively turned off.



34 Memory introduction

ensembles, magnetic field inhomogeneity, atoms moving out of the interaction
region, and collisional spin relaxation [Zhao09].

In the read stage, the DL is turned on and the spin coherence that was initially
stored is converted back to SB photons. One can look at the outgoing SB as
an amplified emission of a phased array of optical dipoles. In Fig. 6.1 we have
named the beam coupling the Stokes level to the excited state as the drive light,
even though it is sometimes called the control beam; as turning it on/off controls
the different stages.

While we described the memory process using a semi-classical picture, we can
also describe the process using a quantum mechanical model. During the write
process a SB photon is annihilated (âSB), a DL photon is created (â†

DL) and an
atomic excitation is created (b̂†

a). This results in a term to the Hamiltonian as H ∼
âSB â†

DLb̂†
a . Similarly the read process Hamiltonian is described by the Hermitian

conjugate H ∼ â†
SB âDLb̂a, i.e. we create a SB photon, annihilate a DL photon and

annihilate the atomic excitation. Here the DL is in a high amplitude coherent
state, so that âDL (â†

DL) can be replaced by a complex number χ (χ∗), and the
whole process can be described by the beam splitter Hamiltonian, i.e. ĤBS =

χBS

(
âSBb̂†

a + â†
SBb̂a

)
[Hammerer10].

To compare to the experiments discussed in the first part of the thesis, the super-
radiance process is described by the parametric amplifier (or two-mode squeez-
ing) Hamiltonian. In this case we annihilate a single probe photon, create a back-
ward propagating photon (â†

bs) and create an atomic excitation with 2h̄k momen-

tum (b̂†
a). In the limit of a classical probe this results in ĤPA = χPA

(
âbsb̂a + â†

bsb̂
†
a

)
[Hammerer10].

6.2 Characterizing the memory performance

There are several criteria for evaluating the memory performance [Simon10]:

1. Efficiency is defined as the ratio between the number of signal photons
retrieved to the number of photons sent. To date the highest efficiency that
was measured is 87% in a 87Rb hot vapor cell [Hosseini11b]. To the best of
our knowledge, the highest efficiency using ultra-cold atoms is about 50%
[Riedl12].

While not all applications require high efficiency, some require as high effi-
ciency as possible like quantum repeater. This is since the time to distribute
an entangled pair drastically reduces as function of the memory efficiency.
For example for a quantum repeater with fidelity of 90% and distribution
distance of 600km a reduction in the memory efficiency from 90% to 89%
leads to an increase in the entanglement distribution time by 10%− 14%,
depending on the protocol [Sangouard11].

2. Fidelity is defined as the wave function overlap between the input state and
the output state, F = |〈ψin|ψout〉|. For a single photon source sometimes
conditional fidelity is used, i.e. the fidelity is evaluated only for the case
a photon is detected. Fidelity as high as 1.000 ± 0.004 has been shown
[Riedl12] using ultra-cold atoms.

3. Storage time is the time we can store the input signal before we lose the
information, due to decoherence processes. To date the largest storage time
is 180s in a donor spins of 28Si [Steger12].



6.3 Different types of memory implementations 35

For the cases of atomic ensembles the limitation is different to warm cells
which are limited by collisional spin relaxation and is less than 10ms
[Julsgaard04]. For ultra-cold atoms the limitation comes from the relative
movement of the atoms in the ground state from the atoms in the Stokes
state by about a de Broglie wavelength [Zhang09, Riedl12], and could be
longer than 1s. It should be noted, though, that in most experiments the
magnetic field inhomogeneity determines the actual storage time [Zhao09].

4. Bandwidth determines the achievable repetition rate. An important pa-
rameter here is the time-bandwidth product of a memory, that quantifies
the number of distinct time bins available for computational operations in
a hypothetical quantum processor using the memory. The highest mem-
ory bandwidth achieved exceeds 1GHz, with a time-bandwidth product of
about 2× 103 [Reim11], with a pulse width of about 1ns.

5. Capacity to store multiple orthogonal modes. This is naturally relevant
only for ensemble type of implementations and not for a single atom based
implementation. The general criterion is the maximum number of orthog-
onal spatial modes that can be stored [Zeuthen11], for generating quantum
holograms. Storing images has been shown either using atomic samples
[Shuker08, Firstenberg09], or in doped solids [Heinze10].

6. Wavelength of the outgoing signal beam is important for different realiza-
tions. For example for long distance communication one would prefer to
work with telecom wavelength, such has been shown by Lauritzen et al.
at 1.5µm wavelength using an erbium-doped Y2SiO5 crystal with storage
time of 0.6µs and total efficiency of 0.2% [Lauritzen10]. At the wavelength
of 1.3µm it has also been realized by Radnaev et al. with a life time of
165ms and total efficiency of less than 5% [Radnaev10].

6.3 Different types of memory implementations

In this section we are going to describe the main different memory schemes with-
out discussing the actual experimental requirements. There are five main types
of ensemble based memories that are commonly used [Simon10, Hammerer10,
Lvovsky09] which are called: electromagnetically induced transparency (EIT),
off-resonance Raman, controlled reversible inhomogeneous broadening (CRIB),
atomic frequency combs (AFC), and Faraday rotation. The first three memory
types are conceptually very similar, with the EIT and Raman are different by the
single photon detuning (∆) and the CRIB is similar to the EIT only operates in
momentum space. The AFC is based on the reversible absorption by a periodic
structure of narrow absorption peaks. The Faraday interaction based memory
has an inherent difference as it couples only one of the two light quadratures to
the sample, hence for a two quadrature memory one is required to measure the
other quadrature and to feedback it into the atoms [Julsgaard04, Hammerer10].

The way each of these memory schemes work is:

1. EIT type coupling is achieved when the weak signal beam and the classi-
cal drive (control) beam interact such that the transition probability to the
excited level vanishes. A more mathematical way to express this is that
the two beams form a stationary eigenstate of the three level system that
contains only the ground and Stokes levels. Populating a dark polariton
causes a typically opaque medium to become transparent, and is therefore
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called electromagnetically induced transparency [Lukin03]. This happens
when the two beam are on resonance with the excited level.

Another way to look at EIT is that the DL beam changes the atomic index
of refraction (or the susceptibility), such that the group velocity for the
signal light is significantly reduced. A group velocity as low as 10m/s was
measured [Zhang09]. This can be used for storing the SB light pulse. By
turning off the DL we adiabatically transfer the SB photons into a dark
state polariton. Then at a later time, by turning back on the DL we transfer
back this dark state polariton into the SB photons.

2. Off-resonance Raman is achieved when the SB and DL beams are on the
two photon resonance with a large detuning from the excited state. When
only the DL alone is on, it is transparent to the sample but when the SB
arrives it fulfills the two-photon resonance condition and the SB mode is
coherently transferred into the sample. Formally this requires that the
single photon detuning (∆) is much larger than the natural line width (Γ)
times the optical depth of the sample (OD), i.e. ∆� OD · Γ [Gorshkov07b].

3. CRIB is known as controlled reversible inhomogeneous broadening. It
results from the observation that a pulse of light, absorbed in an inho-
mogeneously broadened medium with small homogeneous linewidth, can
be forced to reemerge from the medium at some later time as an echo
[Tittel10]. This involves controlled broadening an initially narrow absorp-
tion line using either linear Stark effect or a linear magnetic field (based on
Zeeman splitting of the excited states) [Simon10, Hosseini11a]. In this case
the memory acts in similar to the EIT memory just in momentum space.

4. AFC the atoms are described by a periodic comb-like structure that has
absorption lines spaced by multiples of ∆. Repetitive rephasing occurs at
times 2π/∆, when the phases accumulated by atomic dipoles in different
"teeth" differ by multiples of 2π. This condition is well satisfied in crystals
doped with rare-earth-ions [Lvovsky09]. To inhibit re-emission after one
fixed cycle and to allow for long storage time with on-demand retrieval,
the excited optical coherence can be transferred temporarily to a coher-
ence between other atomic levels where the comb structure is not present
[Timoney12].

5. Faraday rotation or sometimes also called the quantum non-demolition
coupling is different from the other coupling schemes presented above
[Hammerer10, Kurucz08]. Here one of the SB quadratures is rotated into
the atomic sample. It can be used for a memory protocol when combined
with measurement and feedback, since only one of the SB quadratures is
coupled [Julsgaard04, Jensen10].

6.4 Optimal pulse shape

Above we did a naive analogy between the memory process and the STIRAP
process. While this analogy is over simplifying, it captures several important
points, such as the counter-intuitive pulse sequence. For optimal storage effi-
ciency the SB pulse shape should be tailored to the experimental conditions, i.e.
to the sample OD and DL power. In the off resonance Raman memory it is con-
ceptually easy to understand that in a dense medium the SB will be transformed
into an atomic excitation at the beginning of the sample, and then propagating
through the sample as long as the DL is on.
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Figure 6.2: Optimal atomic excitation mode function for a cylindrical sample with a
length L.

With this in mind for an optimum writing efficiency the excitation mode shape
in the sample is a right angle triangle along the sample with its peak at the be-
ginning of the sample, see Fig. 6.2-left. Similarly, for optimum forward retrieval
efficiency the excitation mode shape is a triangle shape along the sample with a
peak now at the end of the sample, see Fig. 6.2-middle. In the limit of high OD
and for forward writing and retrieval the optimal spatial shape of the storage
mode of the excitation is an inverted parabola in the sample [Gorshkov07b], see
Fig. 6.2-right.

6.5 Scope of the experimental and theoretical work

After describing different types of memory schemes and their realization, we
move to describe our realization of the off-resonance Raman memory. We start,
in chapter 7, with the experimental apparatus. In chapter 8, as a first test for our
detection scheme, we explored Rabi oscillations between the ground and Stokes
levels. We use the results to find the two photon resonance.

We have decided to implement the memory inside the magnetic trap. We have
realized a magnetic servo-loop to effectively eliminate the gravitational sag. This
provides a symmetric environment for the atoms and reduces undesired initial
mixture of the ground and Stokes levels. In chapter 9 we give a brief description
of the servo-loop performance, with the full details are given in appendix G.

Next, in chapter 10, we characterize the setup performance and optimization
steps. We then take a side track to derive a 1D model to allow us both to design
the input parameters and to compare to the experimental results. The model is
described in chapter 11 and the implementation of the numerical simulation is
given in chapter 12.

Then after having both the experimental setup optimized and a 1D model to
compare experimental results to, in chapter 13 we characterize the memory per-
formance using bucket detection. In chapter 14 we characterize the temporal-
spatial retrieved signal beam. We finish this part of the thesis with chapter 15, in
which we describe what experimental changes should be done when considering
the results we have got.



Chapter7

Overview of setup

In this chapter we describe our memory experimental system, using ultra-cold
87Rb Bose gas utilizing the relatively high on axis optical depth (OD ∼ 200). We
identify a Λ-system, see Fig. 6.1 in which the ground level is the trapped level∣∣F0 = 1, m f = −1

〉
, the Stokes level is the anti-trapped level

∣∣F0 = 1, m f = +1
〉
,

and the excited level is
∣∣F = 1, m f = 0

〉
. Here F0 (F) is the hyperfine ground

(excited) quantum number and m f is the Zeeman quantum number. Choos-
ing to work with this Λ-system we have defined the polarization for the signal
beam (SB) to be circularly polarized (σ+) and for the drive light (DL) to have the
opposite circularly polarization (σ−).

The DL induces a differential light shift on the two ground state levels used
for the memory,

∣∣F0 = 1, m f = ±1
〉
. This light shift is dependent on the single

photon detuning (∆), and means that we have different two-photon resonance
condition depending on the DL power. While we can overcome this by a smart
design of the SB phase, it gives an inherent dependence on the DL power and its
noise. This dependence can be canceled by working with the so-called "magic"
detuning in which there is no differential light shift, at ∆ ∼= −200MHz for the
case of 87Rb utilizing the D1-line with F0 = 1 hyperfine ground state. A different
way to describe this effect is that the atomic ensemble has a different index of
refraction for the different circular light polarization components that causes a
differential phase shift to the light beams. This effect known as Faraday rotation
and is canceled at the "magic" detuning.

For efficient detection we have chosen to work with balanced heterodyne or ho-
modyne detection [Garrison08], that allows detection of a single excitation in the
right mode with a signal-to-noise ratio of one. In addition, since in our setup
both the SB and DL are co-propagating this type of detection allows for further
suppressing of the DL leak light by choosing a different spatial mode to the SB
and DL. In this detection scheme the weak signal is amplified by an external
beam called local oscillator (LO). We have designed and built our balanced de-
tector with a bandwidth of 20MHz. The detection is shot noise limited for LO
powers higher than 40µW.

In section 7.1 we describe the light setup, focusing on the production of the dif-
ferent beams and the detection. Then in section 7.2, we analyze the heterodyne
detection system, i.e. how we extract from the measure signal the two electric
field quadratures. We have used two types of detections: time dependent and
integrating over the spatial coordinates (with a brick-wall corner frequency of
460kHz), and position resolved (∼ 3µm2 resolution) and time integrated over
1µs. In section 7.3 we describe the design and realization of the 20MHz DC
balanced detectors for the heterodyne detection.
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Figure 7.1: The memory experimental setup. The inset shows the atomic level schematic.

7.1 The setup

In this section we describe the probing setup and assume a prolate sample that
its production is described in chapter 2. At this point we remind the reader that
the optical axis along the long axis of the cloud is limited by a 4mm hole at a
100mm from the atoms, due to the magnetic trap we use (see chapter 2). This is
important as it limits the focusing of the input beam.

The light is produced from a diode laser phased locked to a second laser locked
on a 85Rb D1 line via saturation absorbtion. This allows to detune the laser
over a range of about 9GHz around the 87Rb transition |F0 = 1〉 ←→ |F = 2〉
[Kaminski12b, Appel09]. Then we clean the spatial mode and decouple the lock-
ing setup from the rest via a 2m polarizing maintaining fiber.

We split the light exiting from the fiber to three different beams using half-
wave plates and polarizing beam splitters (PBS), for the SB, DL and LO beams.
Each beam is then passed through a double pass Acousto-Optic Modulator
(AOM) setup and coupled into a 2m polarizing maintaining fiber. We control
the AOM frequency shift and phase using a Direct Digital Synthesizer (DDS),
with a 250MHz bandwidth, a 14− bit amplitude resolution and a 16− bit phase
resolution.

The single photon detuning is set by the phase lock with a 5MHz resolution,
referenced to the transition |F0 = 1〉 ←→ |F = 1〉 (see inset of Fig. 7.1). The fine
tune is achieved with the AOM as the DDS allows for a 2Hz resolution. Note
that the DDS frequency is determined by an external clock, in our case a 1GHz
Voltage Controlled Oscillator (VCO). Since our data acquisition is done with
an oscilloscope, we tune the VCO such that both will have the same time base
combined to give ∆ f / f ∼= 10−4.

A schematic of the memory apparatus and the detection is given in Fig. 7.1, in
which the SB and DL have different beam diameter before we combine them
on a PBS and set their circular polarization using a quarter wave plate. This
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Figure 7.2: Design of beam and waist curvature for the DL (top) and SB (bottom). Here
we start at an output of a fiber coupler (entrance) then the beams pass through two
lenses (telescope). The two beams are combined at a polarizing beam splitter. Then
we focus the beams on the atoms ( f = 100mm). The outgoing beams pass through an
achromat lens and separated on a beam splitter cube. The SB can be imaged onto a CCD
camera.

is done such that the SB will be mode matched to the atoms1, and the DL will
be a plain wave. As the light source originates from a fiber we implement a
telescope configuration to set the initial beam diameters. The full setup (waist
and curvature) for the SB and DL is given in Fig. 7.2. We end up with the SB
focused to 20µm (1/e2) at the atoms and the DL has 140µm (1/e2) waist radius
with a large radius of curvature at the atoms.

We have chosen to work with a balanced heterodyne detection and measure
both quadratures of the electric field [Garrison08], as it is a well established
method in quantum information experiments [Lvovsky09, Hammerer10]. The
big advantage of working with heterodyne is that the weak signal is interfered
with an external local oscillator (LO), and the noise is dominated by the LO
noise. This means that for a strong enough LO we get a shot noise limited

1Actually we have focused the beam to have the smallest focused that we can achieved. Then
we have set the cloud external diameter to fit the SB.
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detection2. In addition we measure the SB projection to the LO mode, since
this is an interference measurement and the LO is much stronger than the SB.
By combining a post-processing lockin analysis, as described in section 7.2, we
simultaneously measure both quadratures of the SB electric field [Garrison08].
For an optimum the LO needs to be mode matched to the measured signal. In
our case we do not have the physical space to mode match the LO beam to both
the SB and the DL, therefore we only mode match it to the SB (see Fig. 7.1).
We measure a visibility of 90% between the LO and the SB. Note that the low
visibility between the LO and the DL also helps in suppressing the contribution
of the DL leak light into the SB channel.

The detection setup, given in Fig. 7.1, is designed to measure both field quadra-
tures of the SB and DL. From the two heterodyne detectors after the atoms we
measure the field amplitude of the SB and DL and their relative phases to the LO.
The phase difference between the SB and DL before the atoms is directly mea-
sured from the input (DS) heterodyne detector, see Fig. 7.1. Thus using these
three detectors and assuming interferometrically stability of the optical setup3

over the experiment time scale (less than 100µs) we can get the information
about all the different quadratures.

Next we turn to the alignment of the experiment, i.e. setting the input polar-
ization, aligning the SB on the atoms and separating the SB and the DL. The SB
and DL input polarization need to be circular with opposite rotation direction,
which is achieved by setting the quarter wave plate before the atoms. We aligned
it by putting a pre aligned quarter wave plate after the atoms4 (see Fig. 7.1) and
with a PBS we can find the two axis of the quarter wave plate. This way we
get circularly polarized light but do not know which is the σ− and which is
the σ+ light. To find this we use Rayleigh superradiance experiments as the
transition

∣∣F0 = 1, m f = −1
〉
→
∣∣F = 2, m f = −2

〉
is stronger than the transition∣∣F0 = 1, m f = −1

〉
→
∣∣F = 1, m f = 0

〉
. This allowed us to set the right circular

polarization, i.e. DL has σ− polarization and SB has σ+ polarization. Later, a
more sensitive fine tuning of the quarter wave plate alignment was done (see
section 10.2).

Before each experimental sequence we have aligned the spatial overlap between
the SB and the atomic sample. As both SB and the atomic sample have simi-
lar small size, we are sensitive to slow alignment drifts over several days. By
resonant absorption imaging along the long (probe) axis we find the atoms po-
sition and by direct imaging find the SB and DL positions. The imaging setup is
described in detail in [Kaminski12b].

In order to measure the different contribution of the SB and of the DL we sepa-
rate them after the atoms, by initially transforming their polarization from circu-
lar to linear polarization using a quarter wave plate. Then the two beams are split
by a PBS and the SB is transmitted by the PBS and the DL is reflected by the PBS,
see Fig. 7.1. A crucial point here is to suppress the leak DL on the SB channel
(on the LS-detector in Fig. 7.1), since typically the DL photon flux is about five
order of magnitude larger than the SB photon flux. Here we achieve six order
of magnitude suppression ratio of the DL in the SB channel, due to the PBS and
to the low visibility between the DL and the LO. This suppression is measured
on the LS-detector (see Fig. 7.1), for example in a typical situation5 we measure

2Here we explicitly assume that the LO light source has no classical noise sources bigger than
the shot noise, this was verified in section 7.3.

3We measured the setup stability to be on the order of a second.
4Naturally, this was done without the atoms.
5This is typical and not best!



42 Overview of setup

40mV signal when sending 420µW DL power and 300mV signal when sending
5nW SB power. Thus the suppression is given by (40mV · 5nW/300mV)/420µW
that gives a 1.6× 10−6 suppression ratio.

Imaging the SB

Here the goal is to measure the spatial mode of the outgoing SB, during the
retrieval stage. For this we have replaced the LS-detector in Fig. 7.1 by a CCD
camera, with both ports of the balancing beam splitter detected on distinct re-
gions of the CCD chip. The focusing of two different beams on the camera
such that we image the end of the atomic sample with a resolution of 3.5µm is
described in detail in [Kaminski12b].

As the camera cannot be gated with fast enough time resolution6 and integrates
the signal over time we use homodyne detection instead of the heterodyne. Since
in homodyne there is no frequency difference between the LO and the SB, the
signal will not be averaged out. The disadvantage is that we measure a single
quadrature of the electric field that changes for each experimental realization,
as we don’t have control over the phase difference. Therefore we square the
detected signal on the camera signal and average over many realizations assum-
ing fair random sampling of the LO phases on the unit circle. This allows as to
measure the sum of the two squares of the mean electric field quadratures, see
section 7.2.4.

7.2 The heterodyne signal and post analysis (lock-in)

In section 7.1 we described the measurement setup and motivated the use of
heterodyne detection. Here we are going to derive the expected signal for our
experimental situation and define the post measurement analysis, i.e. extracting
the two electric field quadratures using a lock-in procedure. In the last subsec-
tion we go over the expected signal when we image the SB using homodyne.
While the approach used in this section is fully classical, it is straight forward to
generalize it to a quantum description [Garrison08].

7.2.1 Deriving the heterodyne signal

Here we are going to analyze the signal coming to the different heterodyne
detectors, shown in Fig. 7.1. For simplicity we are going to assume a regular
beam splitter in the analysis and not a PBS. We start by writing the electric field
components for the SB-LO:

Et(τ, x, y) = tESBe−iωSBt + tEDLe−iωDLt + rELOe−iωLOt (7.1)

Er(τ, x, y) = rESBe−iωSBt + rEDLe−iωDLt + tELOe−iωLOt (7.2)

where r and t are the complex transmission and reflection coefficients of the
beam splitter, E is the electric field component before the beam splitter, ω is the
carrier frequency with the subscript identifying the field component. For brevity
reasons we wrote the position (x, y) and time (τ) only on the left hand side.

Here, EDL is the leak DL electric field and has the same polarization as the SB,
while the LO has the opposite polarization. Next, we express the electric field
in polar coordinates, thus intruducing amplitude and phase e.g. E = ρeiφ. We

6Gating time is several to tens of milliseconds that is longer than the experiment duration
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write the measured intensity7 at each photodiode port to be

Ir(τ, x, y) ≡ E∗r Er = |r|2 ρ2
SB + |r|2 ρ2

DL + |t|
2 ρ2

LO+

2 |r|2 ρSBρDL cos (∆ωDL−SBt−∆φDL−SB)−
2ρSBρLO |t| |r| sin (∆ωLO−SBt−∆φLO−SB)−

2ρDLρLO |t| |r| sin (∆ωLO−DLt−∆φLO−DL) (7.3)

It(τ, x, y) ≡ E∗l El = |t|2 ρ2
SB + |t|2 ρ2

DL + |r|
2 ρ2

LO+

2 |t|2 ρSBρDL cos (∆ωDL−SBt−∆φDL−SB) +

−2 |r| |t| ρSBρLO sin (∆ωLO−SBt−∆φLO−SB) +

−2 |r| |t| ρDLρLO sin (∆ωLO−DLt−∆φLO−DL) (7.4)

We invock energy conservation to state that tr∗ = |t| |r| e−iπ/2, and for a 50/50
beam splitter we have |t| = |r| = 1/

√
2. The frequency and phase differences

are given in the subscripts.

For a balanced heterodyne detection we get:

Shete(τ, x, y; SB− LO) = It − Ir =
(
|t|2 − |r|2

) (
ρ2

SB + ρ2
DL + ρ2

LO
)
+(

|t|2 − |r|2
)

2ρSBρDL cos (∆ωDL−SBt−∆φDL−SB) +

−2 |r| |t| 2ρSBρLO sin (∆ωLO−SBt−∆φLO−SB) +

−2 |r| |t| 2ρDLρLO sin (∆ωLO−DLt−∆φLO−DL) (7.5)

As is evident, when using a 50/50 beam splitter
(
|t|2 − |r|2

)
→ 0 and 2 |r| |t| →

1, which gives the main two advantages of balanced heterodyne detection:

1. The common mode noise (classical) is canceled; this can also be achieved
when measuring only one port by mixing the signal with an appropriate
modulated signal and low pass the result, as is the typical situation with
heterodyne measurements.

2. There is an extra factor of two that is unique to the balanced detection.

From a similar calculation we find the signal for the DL-LO balanced detector to
be:

Shete(τ, x, y; DL− LO) =
(
|t|2 − |r|2

) (
ρ2

SB + ρ2
DL + ρ2

LO
)
+(

|t|2 − |r|2
)

2ρSBρLO cos (∆ωLO−SBt−∆φLO−SB) +

−2 |r| |t| 2ρDLρLO sin (∆ωLO−DLt−∆φLO−DL) +

−2 |r| |t| 2ρSBρDL sin (∆ωSB−DLt−∆φSB−DL) (7.6)

and for the DL-SB detector the result is:

Shete(τ, x, y; DL− SB) =
(
|t|2 − |r|2

) (
ρ2

SB + ρ2
DL
)
+

−2 |r| |t| 2ρSBρDL sin (∆ωSB−DLt−∆φSB−DL) (7.7)

At this point we remind the reader that these signals need to either be integrated
over the spatial coordinates in the case of a bucket detector or integrated over
time as in the case of detection with a CCS camera.

7Up to a dimension constants.
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PPPPPPPPPpar.
det.

LD DS LS

ω1 ∆ωLO−DL ∆ωSB−DL ∆ωLO−SB

ω2 ∆ωSB−DL — ∆ωLO−DL

ω3 ∆ωLO−SB — ∆ωDL−SB

A 2 |r| |t| ρDLρLO 2 |r| |t| ρSBρDL 2 |r| |t| ρSBρLO

B 2 |r| |t| ρSBρDL — 2 |r| |t| ρDLρLO

C
(
|t|2 − |r|2

)
ρSBρLO —

(
|t|2 − |r|2

)
ρSBρDL

Table 7.1: This table summarizes the different parameters used in Eq. 7.8 (par.) and
correlates it to the appropriate detector (det.). The detectors names are: LD for measur-
ing the DL, DS for measuring the differences between the DL and the SB, and LS for
measuring the SB. Here we ignored the contribution of the D coefficient.

7.2.2 The post processing: lock-in analysis and filtering

Here we describe how to extract the two electric field quadratures from the
balanced heterodyne signals. We parameterize the signals as:

S = 2A sin(ω1t + φ1) + 2B sin(ω2t + φ2) + 2C cos(ω3t + φ3) + D (7.8)

with A,B, and C the electric field amplitudes, D the missbalance of the detection,
and φ1, φ2, and φ3 the phase differences. Our goal is to extract out of the signal
A and φ1, and remove B, C, D, φ2, and φ3. Note that C is the coefficient includes(
|t|2 − |r|2

)
and is inherently smaller than A. On the other hand for the LS-

detector, the B coefficient indicates the DL leak light and could be as big as A,
as both are amplified by the external LO. Later we will discuss the influence of a
comparable B coefficient. The correlation between the different coefficients and
the frequencies to the detectors is given in table 7.1.

To extract the wanted parameters we multiply the signal by sin ω1t and cos ω1t
that gives

Sc = S× cos (ω1t) = A {− sin φ1 + sin (2ω1t− φ1)}+
B {sin [(ω2 −ω1)t− φ2] + sin [(ω2 + ω1)t− φ2]}+

C {cos [(ω3 −ω1)t− φ3] + cos [(ω3 + ω1)t− φ3]}+ D cos (ω1t) (7.9)

Ss = S× sin (ω1t) = A {cos φ1 − cos (2ω1t− φ1)}+
B {cos [(ω2 −ω1)t− φ2]− cos [(ω2 + ω1)t− φ2]}+

C {− sin [(ω3 −ω1)t− φ3] + sin [(ω3 + ω1)t− φ3]}+ D sin (ω1t) (7.10)

if we low pass filter these signals we get:

Sc = −A sin φ1 (7.11)

Ss = A cos φ1 (7.12)

from which we can evaluate the amplitude (A) and phase (φ1). For all filters the
lowest frequency that is needed to efficiently suppress is ωDL−ωSB (see table. 7.1
and table 7.2), which is the Zeeman splitting of the hyperfine ground level. For
our experimental parameters the Zeeman splitting is about one megahertz.

As a low pass filter we are interested in a filter that suppresses each one of
the oscillation frequencies in Eq. 7.9 and Eq. 7.10. In order to suppresses these
frequencies we consecutively run several rectangular window running average
filter each corresponding to one full cycle (T = 2π/ω) of the frequency needed
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`````````````̀frequency
detector

LD DS LS

2ω1 2(LO− DL) 2DL 2LO
ω2 −ω1 LO− 2DL DL DL
ω2 + ω1 LO — 2LO− DL
ω3 −ω1 DL — LO− DL
ω3 + ω1 2LO− DL — LO + DL

ω1 LO− DL — LO

Table 7.2: This table summarizes the different frequencies used in the filter. The detectors
names are: LD for measuring the DL, DS for measuring the differences between the DL
and the SB, and LS for measuring the SB. The different frequencies are given referenced
to the SB frequency, i.e. LO = 5MHz and DL = 1.1MHz.

to be suppressed. In the frequency domain each rectangular window running
average filter spectrum is a sinc-function with a node at the frequency needed
to be suppressed. The total filters response in the frequency domain is a mul-
tiplication of sinc-functions with nodes at each of the oscillating frequencies of
Eq. 7.9 and Eq. 7.10. In table 7.2 we give the relevant frequencies defining each
of the rectangular window in the filter for each of the detectors.

Here we have used twice the DL frequency difference i.e. ωDL − ωSB. The
frequency response of the low-pass filter crosses the 3dB point at 430kHz and the
6dB point at 600kHz. For the noise estimation we are interested in the equivalent
brick-wall filter [Horowitz01] which is at 460kHz, and needs to be compared to
the 1.1MHz Zeeman splitting.

Sensitivity to the DL leak light

Here we test the analysis procedure and focus on the effects of the DL leak light
on the LS-detector which is parameterized by the B and φ2 coefficients. We
test this on three different synthetic envelope signals: constant, Gaussian, and
the experimental input. In the case of constant envelop we find six order of
magnitude suppression, of the unwanted parameters (B, C, and D). For the time
dependent pulses that have frequency components at frequencies above 460kHz
we expect that the pulse will be deformed and the signal could depend on the
φ2 initial phase. In the right panel of Fig. 7.3 we test a Gaussian signal envelop
with a time constant of

√
2µs (1/e), and find a negligible time dependence on

the φ2 phase.

Next we have tested the effect of the different φ2 phases on a synthetic experi-
mental SB input pulse, as shown in Fig. 7.3 on the left panel. Here we find that
the signal has a non-trivial phase dependence which is due to the non-trivial
phase of the filter transformation. In addition we find that the filter reduces the
total area of the signal to about 70% of the input signal area.

7.2.3 Estimating the signal to noise ratio

In heterodyne detection the detection is shot noise limited when the LO power
is sufficiently high. For our employed photodetectors the LO power required
to equalize the electronic noise and light shot noise is 40µW, and in our ex-
periments a 300− 400µW LO power is used. Therefore the detection noise is
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Figure 7.3: The result of the lock-in analysis on synthetic signals, of a functional form
given by Eq. 7.8. The input envelope is given in the dashed blue line, and the full lines
are the filtered outputs. The legend indicates the differing A, B, and φ2 coefficient of
Eq. 7.8. The left hand panel shows pulses envelopes as used in the experiment, and the
right hand panel shows results for a Gaussian envelope input pulse.

dominated by the noise of the LO8. From evaluating the noise levels we get the
SB excitation, and the noise-normalized-signal (NNS) gives the square root of
the photon flux in a given bandwidth [Hobbs09].

To estimate the NNS in the experiments with the bucket detector, we have added
an additional long 250µs pulse with no SB to determine the noise level. Then
on the amplitude quadrature of the detected signal we have used a decimating
algorithm with different time separation to remove correlation between adjacent
bins due to oversampling9 and limited filter bandwidth. The relevant correlation
time difference is given by the filter equivalent brick-wall bandwidth, which is
460kHz.

For a given decimating time separation we get a number of correlated arrays
each containing uncorrelated points used to evaluate the variance. The resulted
variance of the correlated arrays is given in Fig. 7.4, using different decimating
time constant (0.5, 1, 2, 4µs). In the case of 4µs the points are independent, as
the separation time is larger than the filter bandwidth (corresponding to ' 2µs),
while in the case of 0.5µs there is correlation between two adjacent points. Even
though there is some correlation in the data when examining the average vari-
ance for all time separation cases we get the same result to within 2%. Therefore
we work with 1µs and average the results in order to find the variance for each
experimental realization, i.e. we find the noise level (N2).

Next we extract out of the signals amplitude ρSB by normalizing to the square
root of the LO power. Now the signal (S) has unit is V/

√
µW and the noise-

normalized-signal (NNS) is given by

NNS =
S− 〈bi〉

N
(7.13)

with bi is the background value of the signal, which is subtracted since the am-
plitude quadrature is positive definite. Thus we get that the NNS is around zero,

8Which is shot noise.
9The data acquisition is done using a resolution of 1− 4ns between neighboring points.
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Figure 7.4: The evaluated variance from each decimated array calculated for the am-
plitude quadrature of a 250µs pulse signal without the SB. For each decimating time
constant we get a different number of arrays, and show their evaluated variance as a
function of a normalized index. The left number in the legend gives the time constant
used for decimating, which results in an array with a length given by the right number
in the legend.

and has units of square root of the number of photons in the filter bandwidth
(460kHz).

7.2.4 Analyzing the balanced homodyne images

In this subsection we describe the analysis procedure in the experiments where
the goal is to measure the spatial mode of the outgoing SB, using balanced ho-
modyne imaging. The analysis is composed of three steeps: centering the two
ports such that we can faithfully subtract/add them, analyze the images to ex-
tract the field quadrature, and to average the square of the signal over many
realizations. The last step is important as the homodyne signal is sensitive to the
phase difference between the LO and the SB which has a random value in each
realization.

The camera has no fast gating option, therefore to get time resolution we have
gated the LO pulse. In order to minimize the influence of the DL leak light, we
choose the LO pulse duration to be one cycle of the LO-DL frequency difference.
In addition throughout this section we explicitly assume a 50/50 beam splitter,
i.e. |r| = |t| = 1/

√
2.

We have imaged the outgoing SB at two different DL leak intensities. In the
chronological first batch the DL leak was measurable and we needed to subtract
the contribution of it. In the second experimental batch the input polarization
was carefully optimized and the leak light from the DL fell below the detection
sensitivity. Therefore for this experimental batch the DL removal step was left
out of the analysis to avoid unnecessary additional noise.

Centering the images

The imaging setup is done such that we image both output ports of the beam-
splitter with the CCD camera. Then we cut from the single image the transmitted
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and reflected ports of the PBS. For the homodyne we need to faithfully subtract
the two images pixel by pixel; for this we require to know the center of the
atomic cloud on each of the two images. Utilizing the fact that when sending
only the DL (with fast rise time) we measure SB photons that come from the
atomic sample and have its integrated density profile. This can be understood
such that during the turn on and off of the DL it also has frequency components
that satisfy the two photon resonance condition and thus we can measure the
Raman transfer. More details about this effect are given in sections 10.1 and 10.2.
From the measured sample density profile we find the center of the cloud and
can now center the two port such that they have the same position of the cloud
to sub pixel resolution. Note that due to modulating the cloud position along
the gravitational axis (see chapter 9) along that axis, we get a common mode
deviation of two pixels (that corresponds to 2µm) in the cloud position.

Evaluating the mean SB field from the homodyne images

We start by re-writing Eq. 7.5 for the imaging case:

Sim(x, y) =
∫ T

0
dt (It(x, y)− Ir(x, y)) =

(
|t|2 − |r|2

) ∫ T

0
dt
(
ρ2

SB + ρ2
DL + ρ2

LO
)
+

2ρLO

∫ T

0
dtρSB sin (∆φLO−SB)− 2ρLO

∫ T

0
dtρDL sin (∆ωLO−DLt−∆φLO−DL)

(7.14)

assuming that the LO pulse is constant over the integration time and sets the
integration limits, which is valid due to the fast rise time and fall time of the
pulse10. We set the integration time, T = 2π/∆ωLO−DL

∼= 1µs, to be one cycle
such that we minimize the contribution of the DL leak light.

Here in each realization we have taken four different images:

1. at - performing the full memory sequence with the atoms (Sat).

2. bg - performing the full memory sequence without the atoms, i.e. a back-
ground pulse (Sbg).

3. LO - measuring the LO light pulse (LLO).

4. bi - measuring the bias count level without any light pulses.

From the raw images we subtract the bias images11 then subtract the two ports of
the PBS to get the homodyne image as given by Eq. 7.14. Next we are interested
in removing the measured leak light, i.e. the first term on the right hand side
of Eq. 7.14 that comes from a small misbalancing of the beam splitter. This
term has two components to it, first we subtract the LO light that is directly
measured. In order to subtract the DL and SB leak light we have taken many
(∼ 20) realizations without the LO, in which we only measure this contribution
〈LDL,SB〉 and subtract that as well. We note that in one of the experimental
configurations this leak light was not detectable, i.e. 〈LDL,SB〉 = 0.

We divide the signal by twice the square root of the LO to get,

S̄im(x, y) =
Sim − LLO − 〈LDL,SB〉

2ρLO
√

T
=

∫ T

0
dtρSB sin ∆φLO−SB −

∫ T

0
dtρDL sin (∆ωLO−DLt−∆φLO−DL) (7.15)

10The rise time is 40ns out of a pulse of 1µs.
11We note that these picture are homogeneous and are at the read background level.
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the contribution of the last term on the right hand side is negligible as we set the
LO pulse time to integrate over a full cycle. Even though there is the additional
term that comes from the wrong polarization of the DL, that was motivated
above and discussed in details in section 10.2. This term has the same polariza-
tion as the SB, thus the analyzed signal for each realization is:

S̄im(x, y) =
∫ T

0
dtρSB sin ∆φLO−SB +

∫ T

0
dtρwp sin ∆φLO−wp (7.16)

Averaging the signal over many realizations

Since in each experimental realization the phase φLO−SB is different and un-
known we cannot extract the electric field amplitude from a single realization.
In order to overcome this, we have repeated each experiment more than 20 times
using the same conditions, and square the results then averaged all the different
realizations.

For brevity we start by evaluating,〈(∫ T

0
dtρ sin ∆φ

)2
〉

r

=

〈∫ T

0
dt
∫ T

0
dt′ρ(t)ρ(t′) sin ∆φ(t) sin ∆φ(t′)

〉
r
=〈

1
2

∫ T

0
dt
∫ T

0
dt′ρ(t)ρ(t′)

{
cos

[
∆φ(t)−∆φ(t′)

]
− cos

[
∆φ(t) + ∆φ(t′)

]}〉
r
=

1
2

〈∫ T

0
dt
∫ T

0
dt′ρ(t)ρ(t′) cos

[
φ(t)− φ(t′)

]〉
r

(7.17)

here in the last step we dropped the contribution of the cosine with the addition
of the phase difference, as this term goes to zero in the limit of infinite number
of realizations. Here we assume that 20 realizations is sufficient. In addition we
have dropped the phase difference notation (∆), this comes from the fact that the
LO phase is constant through the 1µs pulse. Thus we find〈(∫ T

0
dtρ sin ∆φ

)2
〉

r

=

1
2

〈(∫ T

0
dtρ(t) cos φ(t)

)2
〉

r

+
1
2

〈(∫ T

0
dtρ(t) sin φ(t)

)2
〉

r

(7.18)

Now we can write the full (not so nice) expression for the signal〈
S̄im(x, y)2〉

r =

1
2

〈(∫ T

0
dtρSB cos φSB

)2
〉

r

+
1
2

〈(∫ T

0
dtρSB sin φSB

)2
〉

r

+

1
2

〈(∫ T

0
dtρwp cos φwp

)2
〉

r

+
1
2

〈(∫ T

0
dtρwp sin φwp

)2
〉

r

+

1
2

〈∫ T

0
dt
∫ T

0
dt′ρSB(t)ρwp(t′) cos

[
φSB(t)− φwp(t′)

]〉
r

(7.19)

Later in the text we measure this signal in two different experimental conditions,
first when ρwp = 0 and second when ρwp ∼= ρSB. When interpreting the first
case care should be taken, as we measure the square average of two orthogonal
electric field quadratures. Which is not the mean photon number, but only a
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Figure 7.5: The balanced detector schematic.

lower boundary of it. This is since the SB phase can (and do) significantly change
during the LO pulse. When measuring the signal in the second condition we also
measure the mean contribution without any SB sent, i.e. setting ρSB = 0, and
subtract that result. Here we are sensitive to the interference term (last line in
Eq. 7.19), and in section 14.2 we further discus this interference term. We note
that if the two phases are independent the interference term should drop out
when averaging over many different realizations.

7.3 The DC balanced detectors

Here we present the design and characterization of the of the balanced detector
that we used. The design for measuring the current difference from the diodes
is based on [Hobbs09], and the voltage filtering is based on the work done by
[Windpassinger09]. The actual circuit schematic is given in Fig. 7.5. Here in the
first stage we convert the current difference to voltage, then in the second stage
we amplify voltage by about 20. Note that we have also tried a configuration
with an additional amplification stage but that introduces oscillations.

We have measured the detector bandwidth using a fast pulse and compare the
10− 90 rise time measured by our detector to a 150MHz Thorlabs detector. Here
we have measured with both detectors a rise time of 20ns that corresponds to
a bandwidth above BW = 0.35/∆t10−90 = 17MHz. This explicitly assumes that
the gain profile is the same as an RC-low pass filter12. Note that since both
detector measure the same rise time we can only conclude here that our detector
bandwidth is higher or equal to 17MHz.

Next we turn to characterize the detector noise behavior for this we send a 1µs
pulse to a balanced detector. We evaluate the signal using a two sided mean,

12A good review is given in the wikipedia page under "rise time".
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Figure 7.6: The balanced detector noise profile, as a function of a 1µs pulse at different
powers. The blue stars are the measured variance; The green circles are the variance
after removing the electronic level. The red line shows the electronic noise level.

to remove noise contribution at zero frequency [Windpassinger09]. For each
pulse power we have repeated the measurement about 400 times, and show
the resulted variance in Fig. 7.6. The red line shows the electronic noise level,
the blue shows the measured variance, and the green circles show the variance
subtracted the electronic noise. At the crossing point between the electronic
noise level (red line) and the signal subtracted the electronic noise (green circles),
the electronic noise contribution is equal to the light (LO) shot noise. For our
detector this is at P = 40µW.

From Fig. 7.6 we can see that the classical noise start to overcome that shot noise
at higher powers13 (above 400µW). This means that for this detector a good
working point is 300− 400µW, as the noise is dominated by light shot noise and
it is with the biggest amplification before saturating the detector.

13This is an indication for saturating the detectors.



Chapter8

Rabi oscillations

As a first test to the detection setup we have started with a Rabi oscillation
experiment. The idea is to start testing the heterodyne detection scheme using a
system with relativly big signals and less sensitive to misalignment.

Rabi oscillations occur when a two level system is coherently driven between the
two states via an external field [Garrison08]. In our system the effective two level
system is between two Zeeman sublevels (m f ) in a single hyperfine ground state
(F0 = 1),

∣∣m f = −1
〉 〈

m f = −1
∣∣ and

∣∣m f = +1
〉 〈

m f = +1
∣∣. Unlike in a classical

Rabi oscillation we couple the two levels with a two photon transition which
has, using the memory notation: the signal beam (SB) that couple the initially
occupied level to a virtual level and the drive light (DL) that couple the second
ground level to the same virtual level. Here the virtual level is red detuned by
∆ = −200MHz from the electronically excited level. The detuning ∆ is called
the single photon detuning. The electronically excited level can be adiabatically
eliminated [Bergmann98]. Note that here we are using the same two level sys-
tem as we will use in the memory experiment (see inset of Fig. 7.1). The main
difference to the memory experiment is that here we are interested in coherently
transferring all the atoms between the two ground levels, while in the memory
experiments we are interested in transferring a small fraction (one percent or
less). The Rabi oscillations in these experiments can be detected either by di-
rectly measuring the photons or by measuring the atoms in the trapped state1

(|−1〉 〈−1|). As we are interested in testing the heterodyne detection scheme we
only focused on the light detection. For each atom transferred from the ground
level (|−1〉 〈−1|) to the Stokes level (|+1〉 〈+1|) we expect an absorption of a SB
photon and emission of a DL photon. Thus the slowly varying envelope of the
electric field of the SB and of the DL will oscillate with a π/2 phase shift between
them. Note that the spatial mode shape of the emitted/absorbed photons will
be determined by the atomic density spatial profile and in general will be differ-
ent from the incoming spatial light mode. This is important for our heterodyne
detection specifically on the DL channel.

The actual oscillation frequency is a function of both the resonant Rabi frequency
(ΩR0) and of the two photon detuning (δ− δ0). We define the two photon detun-
ing as the DL detuning difference from the virtual level given by the SB. Here h̄δ0
is the energy difference between the two ground state levels. Using this notation

1We can do this by stopping the process and just hold the atoms for enough time such that all
the atoms in the |+1〉 〈+1| will be accelerated out of the trap.
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Figure 8.1: The SB amplitude analyzed as explained in the main text. Left: The time evo-
lution at a two photon detuning of 125kHz, with fitted frequency of 184kHz. Middle:
The Fourier transform as function of frequency at two photon detuning of 125kHz.
Right: The Fourier transform as function of frequency at two photon detuning of
−15kHz. The dashed light blue line is the fitted curve to exp #1 by Eq. 8.4.

we can now write the effective Rabi oscillation frequency as,

ΩR =

√
|ΩR0|2 + (δ− δ0)

2 (8.1)

ΩR0 =
ΩSBΩ∗DL

∆
(8.2)

Ωxx =
〈d · Exx〉

h̄
=
〈d〉
h̄

√
I

2ε0c
(8.3)

where 〈d〉 is the dipole element for the given transition, Exx is the electric field
of a given beam (xx), I is the beam intensity, h̄ is the Planck’s constant divided
by 2π, c is the speed of light, and ε0 is the vacuum permittivity.

Here we have measured the Rabi oscillations for different two photon detuning
(δ− δ0) over a time span much longer than the coherence time. We fit to the end
part of the signals a linear fit, corresponding to times t ≥ 40µs. The results of the
SB amplitude at δ− δ0 = −125kHz are given in Fig. 8.1-left. In this plot we show
three different realizations and in the dashed light blue a fit to one realization.
For the fit we use the following functiona,

f (t) = Ase−t/τs + Are−t/τr sin (ΩRt + φ) + B (8.4)

where τs (As) is the optical pumping decay time (amplitude) constant, and τr
(Ar) is the Rabi coherence decay time (amplitude) constant, B is the offset, ΩR
is the effective Rabi frequency and φ is the initial phase. To the experimental
data and to the fit we have performed Fourier transforms for all different two
photon detunings; two examples are given in Fig. 8.1-middle and right. From
the middle plot at a "big" two photon detuning we can see that the fit and the
experiments are in good agreement for finding the Rabi frequency. On the other
hand in the right plot of Fig. 8.1 we can see that, at a "low" two photon detuning,
there are two distinct frequency component: one which is dominant at "low"
frequency and a second at a higher frequency with a smaller amplitude . The
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curves are the best fit for the data.

two frequencies in the spectrum appear only close to the two photon resonance,
where the smaller amplitude (at higher frequency) corresponds to the expected
effective Rabi frequency. Possible reasons for this could come from the radial
change in the sample OD and the change in the beam intensity due to depletion.
That said we do not have, at present, a good model explaining the emergence of
the extra frequency components when driving the atoms close to the two-photon
resonance.

For each two photon detuning we have extracted the Rabi frequency, as de-
scribed above, and fitted to the data the functional given in Eq. 8.1. The results
are given in Fig. 8.2, and from the fit we find a resonant Rabi frequency of
ΩR0 = 2π × 126± 5kHz.

The above experiments were done with total atom numbers of 1.3× 106, at tem-
perature of 430nK which is 1.6 times above the critical temperature, with radial
cloud width of σ⊥ = 19.6µm (1/e2). To estimate the expected resonant Rabi
frequency we use Eq. 8.2. No correction is needed to the estimated DL peak
Rabi frequency due to the large beam waist at the atoms compared to the atomic
radial width. But for the SB we need to average over the radial direction as the
SB waist is comparable to the atomic cloud. Using the cloud density (n),

p = 2π
∫ ∞

0
n(ρ)e−ρ2/w2

ρdρ =
(
1 + σ2

⊥/(2w2)
)−1

(8.5)

n(ρ) = 2/
(
πσ2
⊥
)

e−2ρ2/σ2
⊥ (8.6)

with ρ the radial coordinate, p the radial average normalized to the peak pref-
actor for the SB calculated effective Rabi frequency. For the beam and sample
parameters of the experiment p = 0.72. Using this and the experimental data
we estimate the resonance Rabi frequency to be 130kHz which fits the measured
value.



Chapter9

Magnetic feedback - canceling
the gravitational sag

In this chapter we discuss the effects of the gravitational potential on the mag-
netic trap. While the magnetic trap potential is fully symmetric once the grav-
itational potential is added the symmetry is broken. The actual effect of the
gravitational potential is to pull the atoms vertically downwards away from the
magnetic field minimum. Here we dynamically change the vertical magnetic
field thus shifting the magnetic field minimum without allowing the atoms time
to move to the new trap minimum. This operation restores the symmetry of the
trap.

When changing the position of the magnetic trap minimum the atoms will start
sloshing around the new trap minimum. The sloshing time is given by the radial
trap frequency ω⊥ which is not changed as we apply a homogeneous magnetic
field. Therefore we want to change the magnetic field faster than 2π/ω⊥ =
10ms, such that the atoms will not start sloshing. On the other hand we want to
change the magnetic field slow with respect to the Larmor precession frequency
(ωB/2π). This ensures that the atoms total angular momentum will not start
precessing around the new magnetic field direction. These two requirements
means that we would like to change the trap minimum in a time scale, 10ms ∼=
2π/ω⊥ � T � 2π/ωB ∼= 2µs.

9.1 Canceling the effect of the gravitational potential

We start by writing the total potential energy of an atom in the presence of the
magnetic trap and gravity

V(r) = µB0 +
1
2

Mω2
⊥
(
x2 + y2)+ 1

2
Mω2

z z2 + Mgx =

µB0 −M
g2

2ω2
⊥
+

1
2

Mω2
⊥
(
x̃2 + y2)+ 1

2
Mω2

z z2 (9.1)

where µ is the magnetic moment1, M is the rubidium 87 mass, ω⊥ and ωz are the
trap frequencies, B0 is a constant magnetic field, g is the gravitational accelera-
tion constant, and r = (x, y, z) is the position with the gravity pointing along the
vertical x̂ direction and the light propagates along the ẑ axis. In the second line
of Eq. 9.1 we have used x̃ = x + g/ω2

⊥, which directly shows the gravitational
sag. Note that the gravitation potential also effectively modifies the value of the

1The magnetic moment is µ = m f g f µB, with m f is the Zeeman sublevel quantum number, g f
is the Landé g-factor, and µB is Bohr magnetron constant.
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Figure 9.1: Here we show the atoms measured position (red stars and blue circles) as a
function of time, after changing the trap center as indicated in the black line. The blue
line is the expected cloud position (left axis) and in the greed line the expected cloud
velocity (right axis). Left: changing the trap center to −20µm, and right: changing the
trap center to +20µm.

constant magnetic field. For our experimental parameters the gravitational sag
is g/ω2

⊥ = 19µm and the effective constant modification to the total magnetic
field is Mg2/(2hω2

⊥) = 20kHz with h is the Planck’s constant.

Here we move the trap center by changing the magnetic field along the gravi-
tation direction. During this time the atomic internal state follows adiabatically
the change in the magnetic field without precessing, while the atoms start slosh-
ing around the new trap center. We model the sloshing movement of the atoms
by solving the time evolution of a single atom in a harmonic potential around
the trap center (xc) set at time t0. Thus the atoms position and velocity for t ≥ t0
is

x(t) = A cos ω⊥t + B sin ω⊥t (9.2)

v(t) = −ωA sin ω⊥t + ωB cos ω⊥t (9.3)

x(t) ≡ pos(t)− xc(t0) (9.4)

where A and B are constants to match the initial condition from the previous
step, ω⊥ is the trap radial frequency, and pos is the actual atomic position. We
calibrate xc to the change in the vertical offset field by slowly varying the mag-
netic field and measuring the change of the equilibrium position.

We measure the cloud position by absorbtion imaging of the atoms using the DL
as the probe light along the long axis of the cloud, such that we can see the move-
ment along the vertical axis. Utilizing the strong transition (

∣∣F0 = 1, m f = −1
〉

↔
∣∣F = 2, m f = −2

〉
) and the big waist of 140µm of the DL, allows to measure

large changes in the cloud position. In our imaging system we have a magni-
fication such that each pixel is equivalent to one micrometer. Even though our
imaging resolution is limited to 3.5µm for each experimental realization we find
the atomic center to better than a pixel, by fitting the cloud density profile. The
actual position resolution is limited by the shot-to-shot fluctuations that are 2µm
along the vertical axis and 0.2µm along the other direction. We observe that the
additional fluctuations along the vertical axis are due to the magnetic feedback.
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We verify this by measuring the cloud position without the magnetic feedback
and find the same statistical error of 0.2µm in the cloud position along both axes.

Since our servo-loop is not fast enough to change the trap center by the needed
amount (19µm) in less than 1ms, we have designed a more elaborate temporal
trajectory of the magnetic field minimum such that the atoms will stay at the
same place as the trap center is moved to its new hight. The position/velocity
profile is given in Fig. 9.1 for both directions. The black dotted line shows the
programmed trap center that the servo-loop follows, the red stars and blue cir-
cles indicates the measured atoms position, and the blue (green) line indicates
the calculated position (velocity) of the atoms using the above harmonic model.
From Fig. 9.1 we can see good agreement between the model and the measured
atom position. We note that in the reminder of the thesis all of the experiments
are done using this pulse and are at time t = 0 in the plot, i.e. when the trap
center is at −19µm and the atoms are still at position 0µm.

9.2 Properties of the magnetic servo-loop

In this section we summarize the details of the servo-loop used to change the trap
minimum center position. It is designed to stabilize the magnetic field to below
1mGauss while holding the atoms in a dipole trap but due to time constraints the
dipole trap was not realized. The basic ingredients [Bechhoefer05] for the servo-
loop are: Controlling the magnetic field, Measuring the magnetic field, and the
Feedback circuitry. In the following subsection we summarize the performance
of each of these ingredients and in appendix G we give the full details.

Controlling the magnetic field

The magnetic field at the cloud position is controlled by three sets of Helmholtz
coils, that were build to provide a constant homogeneous magnetic field. There-
fore they are big with a high number of windings, which is good for having good
optical access. The coils have a relatively high inductance of 16− 25mH and a
DC resistance of 12− 16Ω. With this combination of parameters the inductance
starts to dominate the coil impedance already at low frequencies ( f > 250Hz).
This requires a careful design of the current supply for the coils to avoid oscilla-
tion of the servo loop. To drive the coils we have built a current controller that
would allow changing the current through the coils without inducing oscilla-
tions. Here we chose a modified push-pull configuration for the current driver
controller scheme, which is described in detailed in appendix G.1.

The gain phase performance of the coils with the current controller were mea-
sured. We find that the coils peak gain is at about 250Hz and decays to zero
at frequencies above 700Hz, and the phase delay is changing by 90 degrees at
250Hz.

Measuring the magnetic field

We have chosen to measure the magnetic field using a commercial sensor2, based
on a metallic strap that changes its resistivity due to an external magnetic field.
This magnetoresistive sensor is made from a nickel-iron (Permalloy) thin film
deposited on a silicon wafer. The variation in the resistance is measured using a
Wheatstone bridge, i.e. ∆R/R.

The range of the sensor is ±2Gauss and it has a resolution of 50µGauss (and
a second detector with 150µGauss) which corresponds to 50µV (and 150µV).

2HMC1001 and HMC1002.



58 Magnetic feedback - canceling the gravitational sag

The bandwidth of the sensor is 150kHz with no appreciable phase delay up till
10kHz and 90 degrees phase delay at 100kHz.

The magnetic servo-loop

We have realized a proportional integrate differential (PID) type feedback circuit.
The circuit can either be controlled externally or internally3, with an additional
internally controlled feed forward. We use the combination of internal and ex-
ternal control of the circuit to slowly move the magnetic field from the initial
value to the external control value. This prevents an initial jump in the magnetic
field, and allows a small error in the initial set value. To characterize the feed-
back performance we have measured the Bode plot for the amplitude and phase
of the feedback. We find a bandwidth (gain bigger than 0.5) higher than 3kHz,
with no appreciable phase delay for frequencies below 2kHz for all axes.

Details of the implementation and characterization are given in appendix G.

3By using a micro-processor ATMEGA-168PA.



Chapter10

Characterizing the setup
performance

In the previous chapters 7-9 we have: introduced the memory experimental
setup, how we have tested the heterodyne detection, and how we cancel the
gravitational sag. In this chapter we go over the performance and sensitivity of
the memory apparatus.

We start by introducing the raw signals after the lockin analysis, in section 10.1.
In section 10.2, we go over the optimization of the drive light (DL) input po-
larization. In section 10.3 we optimize the timing of the signal beam (SB), to
minimize retrieval of SB photons during the write stage.

We finish with section 10.4 examining the effect of optical pumping, due to the
DL power, from the populated ground state

∣∣F0 = 1, m f = −1
〉

into the hyperfine
ground state

∣∣F0 = 2, m f = −2
〉

and
∣∣F0 = 2, m f = −1

〉
with F0 is the hyperfine

ground state quantum number, and m f is the Zeeman sublevel quantum number.

10.1 The detected signals

Here we examine the signal for a single realization of the memory experiment.
In Fig. 10.1 we present the time evolution of the SB signal after evaluating the
NNS (left axis) using Eq. 7.13. The green dashed line shows the time evolution of
the DL (normalized to the LO power) on the right axis. The first pulse indicates
the writing stage with a duration of about 5µs, then for a duration of 6µs we turn
the DL off, which is the storage time. During the retrieval (read) stage we turn
on the DL for a relatively long time duration of about 25µs. Here, the DL signal
is not constant and is evolving with time, we attribute this to optical pumping
and the change in the DL beam shape (DL-LO visibility) due to different atomic
conditions (index of refraction). The SB signal is given in the blue lines, were
the dashed line indicates the input signal1 and the full line indicates the output
signal2.

When examining the left plot of Fig. 10.1 we can see that about 10% of the SB
photons leak through the atomic sample already during the writing stage. In the
retrieval step (t ≥ 10µs) about 10% of the photons sent are retrieved from the
sample.

The two plots of Fig. 10.1 present experiments done at two different conditions.
On the left (right) the sample OD is 170 (120), the cloud statistical 1/e2 waist

1This is measured without atoms, and sometimes is referred to as the background signal.
2This is measured with atoms, and sometimes is referred to as the atom signal.
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Figure 10.1: The measured amplitude (after the lockin procedure) of a single experimen-
tal realization of the SB and DL signals time evolution; the left (right) plot is without
(with) wrong polarization contribution. Left axis: the SB input signal (dashed blue line);
the SB out going signal (full blue line); the wrong polarization contribution (full black
line). Right axis: DL signal (green dot-dashed line). The SB is converted to NNS as
explained in section 7.2.3, with bandwidth of BW = 460kHz.

is 10.5µm (8µm), and the cloud reduced temperature is T/Tc = 1.2 (1.5). The
total efficiency in the experiment presented in Fig. 10.1-left is ∼ 10% and in
the experiment in Fig. 10.1-right it is ∼ 3%. The different efficiencies can be
attributed to the different sample OD.

Before we have mentioned that when running the memory experiment sequence
without any incoming SB we measure SB photons leaving the atomic sample,
this effect is shown as the full black line in Fig. 10.1. We attribute these photons
to storage of DL photons, and discuss their origin in the next section. These
retrieved photons are measured by the LS-heterodyne detector (see Fig. 7.1) and
cannot be distinguished from the SB. We measure the contribution of the wrong
polarization electric field by blocking the input SB and later subtract the average
result from each measurement that contains both the SB and the wrong polar-
ization contributions.

The experiments presented in this thesis are done in two different regimes: with
a comparable contribution of the wrong polarization and of the SB as seen in
Fig. 10.1-right, and with a negligible contribution of the wrong polarization as
seen in Fig. 10.1-left. All the results using bucket detection presented in this
thesis are with negligible contribution of the wrong polarization unless explicitly
stated otherwise.

10.2 Purification of the input polarization

In this section we discuss in details how we optimized the input polarization
of the DL and SB. Ideally the input polarization is purely circular in the frame
defined by the orientation of the atoms (which coincides with the direction of
the magnetic field). In the experimental situation there is a small mixture of
the wrong circular polarization component to each of the beams and is modeled
by a small mixture angle. One can think of this mixture angle as a rotation
from the ideal case (containing only one circular component) to a mixture of
the right circular polarization component and a small contribution of the wrong
circular polarization. We control this angle with the λ/4 just before the atoms,
see Fig. 7.1. Note that the output is nicely orthogonal to the input polarization
regardless of the alignment of the input λ/4 as we optimize the alignment of the
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Figure 10.2: The number of measured wrong polarization photons as function of the
input λ/4 wave plate angle. Left: the number of photons with a turn on DL pulse with
a rise time of 40ns. Right: the number of photons with normal condition turning on and
off the DL pulse.

λ/4 wave plate after the atoms to suppress the DL leak on the SB detection to
better than six orders of magnitude.

The effect of the misalignment is that the DL has also a contribution of the wrong
polarization (similar to the SB polarization), which is off from the two-photon
resonance. Therefore it does not influence the experiment while the DL power is
constant, but during turning on and off the DL it has also spectral components
which are resonant on the two photon transition. This means, that even when
there is no SB present we can store part of the DL wrong polarization photons.
These wrong polarization photons are sensitive to the DL rise time and fall time,
to the purity of the input polarization, and to the sample OD. The OD influences
indirectly since for a higher OD the storage and retrieval are more efficient and
therefore more evident.

In chapter 7 we have described how we initially coarsely aligned the input polar-
ization. From this alignment procedure we have got a comparable contribution
from the wrong polarization photons and from the SB photons, as shown in
Fig. 10.1-right. To enhance the effect we have increased the DL rise time to 40ns,
then by fine adjusting the input λ/4 wave plate we have minimized the contribu-
tion of the wrong polarization photons. The result of this procedure as function
of the wave plate angle is given in Fig. 10.2.

The optimization has reduced the number of wrong polarization photons by a
factor of about 25, reducing the number to below 50 photons for the maximum
DL powers used in the memory experiments. This reduction has made the con-
tribution of the wrong polarization photons negligible, as can be seen from the
black line in Fig. 10.1-left.
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√
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during the writing step. The legend gives the SB pulse start time delay with respect to
the DL.

10.3 The signal beam’s timing

In this section we examine the sensitivity of the SB timing with respect to the
DL. Here we find the right timing such that non of the stored SB photons will
not be retrieved during the writing stage. This was done with a cloud OD of 25,
and before we have optimized the DL input polarization. The results of the SB
NNS at different time delays are given in Fig. 10.3, with the time delay defined
between the peak SB pulse and the 50% DL fall time.

When examining the leak SB electric field amplitude in Fig. 10.3, we look for two
things: the peak leak light (which we want to minimize), and whether light start
to be retrieved. From the peak signals we see that the timing corresponding to
the blue line (0µs) is sent too late as there is more leak light than in the other
signals, which means that the DL is turned off too early. On the other hand,
when examining the red curve we can see that the SB starts to be retrieved3.
Here the green curve (−0.4µs) gives the best result.

These experiments were done at relatively low OD, but even when we have
improved the OD to 120 the optimal timing has not changed. Only later, when
we improved the OD even more to 180 we get a small contribution of retrieved
light during the writing stage. Because this contribution is small we have not
changed the timing. It should be noted that the given OD here are for similar
reduced temperature (T/Tc).

3The retrieved pulse starts at 5.75µs and ends at 7µs
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Figure 10.4: The relative atom number as a function of the DL power for probing du-
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plots.

10.4 Optical pumping into the F0 = 2 hyperfine ground
state

Up to now we have only considered our system as a Λ-system for which the
DL beam sees an optically thin sample, i.e. the DL does not couple the pop-
ulated ground level to any excited level. For 87Rb atoms the DL does couple
the populated ground level to an excited level

∣∣F = 2, m f = −2
〉

with F the ex-
cited hyperfine quantum number and m f the Zeeman sublevel quantum number,
with a detuning of ∆ p ∼= −1000MHz, for our case. Note that this detuning is
five times bigger than the relevant one for the memory (∆ ∼= −200MHz).

The extra coupling of the DL causes an optical pumping of atoms from the
ground level

∣∣F0 = 1, m f = −1
〉

into the hyperfine levels
∣∣F0 = 2, m f = −2

〉
and∣∣F0 = 2, m f = −1

〉
where F0 is the ground level hyperfine quantum number. In

this section we examine the effect of optical pumping in the memory experi-
ments for different DL powers, for 30µs duration. We use the atomic absorption
imaging to measure the total number of atoms in F0 = 1 and F0 = 2 and by
blocking the imaging repump pulse we also measure only the atom number in
F0 = 2. Using these two measurements with a third reference measurement of
the total number of atoms, we can find the fraction of atoms left in F0 = 1 and
fraction of atoms transferred into F0 = 2. The result of these measured fractions
are given in Fig. 10.4.

The optical pumping has an exponential behavior e−Rt with R the scattering rate,
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and t = 30µs the probing time. The scattering rate is calculated using,

R =
Γ

2
I

Isat

1

1 + I/Isat +
(
2∆ p/Γ

)2 CG2, (10.1)

where Γ is the natural line decay rate, ∆ p is the detuning, Isat is the saturation in-
tensity, I is the probe intensity, and CG is the Clebsch-Gordan coefficient. We use
the known experimental parameters to evaluate R, plot the results in Fig. 10.4
and find good agreement between the scattering rate model and the experimen-
tal data for powers lower or equal to 200µW. For higher powers we find that
we loose atoms and that the results do not fit the simple scattering model. This
could be due to atoms scattering more than one time and get out of the image
range and with low density such that it is below the detection resolution, or due
to "high" density effects such as photoassociation.

The influence of optical pumping on the performance of the memory comes
from depleting the ground state during the writing stage, and thus reducing the
sample OD. Note that this means that actually this is a small effect even for the
highest used DL power in which 40− 50% of the atoms are transferred into F = 2
since this is after both the writing and retrieval stage. Our writing stage is only
6µs therefore during the writing stage we expect only about 2% of the atoms to
be optically pumped4. Besides this relatively small effect the transferred atoms
do not influence the evolution of the experiments, since the light probe is 6.8GHz
off resonance.

4This comes from 506/30 ' 2%.



Chapter11

Theoretical description of the
ensemble a multi-Level model

After describing the experimental setup and how the signals look like, we are
also interested in a model to compare the experimental results to. Therefore in
the next two chapters we take a sidetrack from the experimental results, and
derive a model that describe our system and write a numerical simulation to
evaluate the time evolution of the system. In this chapter we derive the effec-
tive Hamiltonian for the light-atom interaction, the interaction Hamiltonian for
the atoms with an external magnetic field, and derive the coupled propagation
equations for atoms and light. In chapter 12 we present our numerical simula-
tion.

In the introduction to this part of the thesis, chapter 6, we have used a three level
system in order to explain the memory. While a lot of the theoretical descriptions
assumes a three level system [Gorshkov07a, Zeuthen11], the real system has
more levels that could influence the evolution. When considering 87Rb coupled
to the D1-line light field a more appropriate system is a W-system with an extra
ground state that atoms can only be pumped into but do not evolve in time than
a Λ-system. In such a system the two extreme excited levels of the W-system are
from |F = 2〉 and the center one is |F = 1〉, with F the excited hyperfine quantum
level. From the two extra levels at |F = 2〉 the pumping into the extra ground
state is achieved. The additional levels means that when solving such a system
one needs a very fine numerical grid since the evolution equations contain terms
oscillating at the hyperfine splitting frequency ∆h f = 2π × 815MHz. This term
is removed by adiabatically eliminate the excited state, since we are working off
resonant ∆/Γ � 1, where ∆ is the detuning with respect to the excited level
F = 1 and Γ is the natural level life width. For a system where all the excited
levels are adiabatically eliminated we can write the effective Hamiltonian for
all ground Zeeman sublevels, and thus get a more general system than the W-
system. Therefore in this chapter we describe the more general case, and do not
present the derivation of a W-system.

In section 11.1 we give the effective light-atom Hamiltonian using the irreducible
tensor notation, and leave the derivation details to appendix D. The deriva-
tion of the Hamiltonian follows the work described in [Kupriyanov05]. Then
in section 11.2 we write the atom-magnetic field interaction Hamiltonian. In
section 11.3, we derive from the Heisenberg equation the coupled light atoms
equations in time and space. Here we start with spherical coordinates, and
then transfer the equations to cartesian coordinates. We end, in section 11.4, by
reducing the three level system (8 × 8) set of equations to a two level system
(3× 3) set of equations, resulting in the off-resonant Raman memory case that

65
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was also derived and analytically solved in [Mishina07]. We note here that while
the Hamiltonian and propagation equations follows the work in [Kupriyanov05,
Mishina07], here we have extended the propagation equations from a two level
system to a three level system.

11.1 The light-atom Hamiltonian

In this section we sketch the derivation steps for an effective off resonant light-
atom interaction. Assuming that only the dipole interaction is relevant, we uti-
lize the rotating wave approximation (RWA), adiabatic elimination of all excited
states, and that the evolution can be fully described by one hyperfine ground
state1.

Our goal is to write both the light-atom interaction Hamiltonian and the mag-
netic field Hamiltonian, for each there is a different natural quantization axis.
For the light-atom it is natural to define the quantization axis along the light
propagation, thus removing any π-polarization light component, while for the
magnetic field interaction it is natural to define the quantization axis along the
magnetic field direction2. Here we choose to define the quantization axis along
the light propagation axis, thus simplifying the effective light-atom Hamiltonian
and writing the atom-magnetic field interaction Hamiltonian with a general qun-
tization direction. In general this complicates both the notation for the atomic
initial condition and the propagation equations (by the addition of two more
magnetic field components). Note, that we have designed our system such that
both the light and the magnetic field direction will be aligned to each other. Due
to the gravitational sag there is a small angle that we minimize, as described in
chapter 10.

We start with the light-atom interaction Hamiltonian in the dipole approxima-
tion, Hint = −d · Ê, where d is the dipole moment operator operating as raising
and lowering the atomic state, and Ê is the electric field. We decompose the elec-
tric field for positive (Ê+) and negative (Ê−)frequency components [Garrison08]:

Ê = Ê− + Ê+ (11.1)

He f f = −Ê−i αi,jÊ+
j (11.2)

After using the RWA and adiabatically eliminating all the excited states one
get the description for the above effective light-atom interaction Hamiltonian
(Eq. 11.2). With α is the atomic polarizibility (defined in appendix D.1) and is
a function of the detuning. The subscripts i and j indicate cartesian coordinates
and we invoke the Einstein sum rule. In the polarizibility definition we only
describe light scattered in the forward direction. The steps to arrive to arrive
at the effective Hamiltonian have been described several times in the literature.
A good presentation can be found in [Kupriyanov05, Geremia06, Hammerer10]
and was also shown in F. Kaminski Ph.D. thesis [Kaminski12b].

The mathematical steps transforming the effective Hamiltonian from Eq. 11.2
to a notation using the Stokes and collective spin operators are not well docu-
mented in [Kupriyanov05]. Therefore we describe the actual mathematical steps

1Here we also explicitly neglect any coherences between two hyperfine states. This is valid
since our light couples two Zeeman sublevels and the two hyperfine levels are separated by
6.8GHz.

2It is natural to choose the magnetic field quantization axis since it simplifies the initial condi-
tions. Specifically in our case, since the sample is prepared by evaporation cooling it will be in a

pure
∣∣∣F0 = 1, m f = −1

〉 〈
F0 = 1, m f = −1

∣∣∣ state, with F0 the ground hyperfine quantum number
and m f is the Zeeman sublevel quantum number.
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in appendix D and give here a few intermediate points that give insight into the
system.

The polarizibility tensor operator (defined by Eq. D.3) includes the different
atomic coherences, i.e. |F0, m〉 〈F0, m′| with F0 the ground state hyperfine quan-
tum number and m and m′ the Zeeman sublevel quantum numbers. We can
describe the coherence using the angular momentum algebra and decompose it
into irreducible groups, where each irreducible group is closed with respect to
spatial rotations. Specifically, we write the coherence using the irreducible ten-
sor notation T̂K,Q [Varshalovich88, Kupriyanov05]. Note that using this notation
is useful since it allows us to distinguish between scalar (K = 0), vector (K = 1),
and rank-2 tensor (K = 2) operators. From a closer investigation of Eq. 11.2 we
can see that the left hand side is scalar (the Hamiltonian), and the right hand
side contains two vectors each with total angular momentum one (the electric
fields) therefore the polarizibility operator must be such that the combination
of it and the two vectors will give a scalar. Which means that, already at this
stage, we can expect that the end results will contain irreducible tensors with
rank K ≤ 2.

The irreducible tensor is defined as:

T̂K,Q =

√
2K + 1
2F0 + 1 ∑

m′,m
CF0,m′

F0,m,K,Q

∣∣F0, m′
〉
〈F0, m| (11.3)

∣∣F0, m′
〉
〈F0, m| = ∑

K,Q

√
2K + 1
2F0 + 1

CF0,m′
F0,m,K,QT̂K,Q (11.4)

where C...
... is the Clebsch-Gordan coefficient, and K and Q are two quantum

numbers of the irreducible tensors. One can work with them using angular
momentum theory as K corresponds to the total angular momentum and Q is
the projection of the angular momentum.

We insert the above decomposition of the atomic density operator elements into
the polarizibility and sum over all the different axis combinations. The result is
polarizibilities that correlate either to no change in the angular momentum (α0+
given by Eq. D.26 and α0− given by Eq. D.27) or to a change of two in the angular
momentum (α2+ given by Eq. D.28 and α2− given by Eq. D.29). Thus we get an
effective Hamiltonian:

He f f = −
h̄
2 ∑

F

2

∑
K=0

(
α̃0+Ξ̂0 + α̃0−Ξ̂σ

)
T̂K,0+

h̄
2 ∑

F

(√
2α̃+2Ξ̂−T̂2,2 +

√
2α̃−2Ξ̂+T̂2,−2

)
(11.5)

where Ξ̂ are the Stokes parameters describing the photon flux (1/s) defined in
appendix C, and F is the excited state hyperfine quantum number. Here we
absorb additional common factors into the polarizibilities such that they are di-
mensionless and rewrite them as α̃. Note that when examining the units here
the irreducible tensor is dimensionless and the Hamiltonian is written for a sin-
gle atom. To move to an ensemble of atoms we need to redefine the irreducible
tensors, we do this in section 11.3 and discuss different possible ways to redefine
the atomic coherence in appendix F.

From examining the above Hamiltonian one gets an insight about the different
polarizibility terms. From the atoms "point of view" α0± describe the light shift of
the atomic levels: K = 0 is the scalar, K = 1 is the vector, and K = 2 is the tensor
light shift. The α±2 describe a Raman transfer between atomic levels with ∆m =
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±2. From the light "point of view" α0,+ is correlated to the refractive index, α0,−
is the Faraday rotation term3 also known as the circular birefringence, and α±2
describe annihilation/creation of a circular photons (i.e. linear birefringence).

At this stage each of the polarizibilities explicitly sums over all possible Zeeman
sublevels (ground and excited). When summing over the different sublevels we
can use the symmetry of the Clebsch-Gordan coefficients to further simplify the
polarizibility, which explicitly assumes degeneracy of all Zeeman sublevels. This
assumption is valid only for small magnetic field amplitude. In our case we have
a magnetic field of about one gauss that changes the ground Zeeman sublevel by
about ±0.7MHz which is negligible compared to the 200MHz detuning. Note
that if a more correct description with respect to an external magnetic field is
needed, this simplification should not be done.

Summing over all levels reduces to three polarizibilities α0, α1, and α2, where the
subscript indicates the total angular momentum change (see appendix D.4.1).
Using this we get the following effective Hamiltonian:

He f f = −
h̄
2

(
α̃0Ξ̂0T̂0,0 +

1√
6

α̃2Ξ̂0T̂2,0 + α̃1Ξ̂σT̂1,0

)
+

h̄
2

α̃2√
2

(
Ξ̂−T̂2,2 + Ξ̂+T̂2,−2

)
(11.6)

He f f = −
h̄
2

(
α̃0Ξ̂0T̂0,0 +

1√
6

α̃2Ξ̂0T̂2,z + α̃1Ξ̂σT̂1,z

)
+

h̄
2

α̃2√
2

(
Ξ̂HV T̂HV + Ξ̂45T̂45

)
(11.7)

Here we wrote it in both the spherical basis (Eq. 11.6) and in the cartesian basis
(Eq. 11.7).

11.1.1 cgs ver. SI units

In this subsection we work out the constants entering the modified polarizibility
α̃, and see how they change between cgs and SI units. We start by examining
Eq. 11.2, and notice the Hamiltonian has been transformed from H ∝ αÊ2T̂ to
H ∝ h̄α̃Ξ̂T̂. The electric field has been rewritten in terms of the Stokes vector
components, the atomic density operator elements have been factored out of the
polarizability tensor and the remainding constans have been absorbed into the
dimensionless polarizability coefficients α̃. Here the positive frequency part of
the electric field is defined as

Ê(+) = iegâe−iωsbt (11.8)

where e is a unit polarization vector, â is the annihilation operator, and g is a
constant. The Stokes parameters are defined as Ξ̂ ∼ (c/L)â† â and when written
using the electric field it is Ξ̂0 ∼ c/(Lg2)Ê(−)Ê(+), where L is the length of the
quantization volume. Therefore, as is shown in appendix D, the prefactor that
multiplies the polarizibility is g2L/c and we can rewrite the modified polariz-
ibility as,

α̃ =
2
h̄

g2L
c

α (11.9)

This combination gives us a dimensionless modified polarizibility with leaving
the h̄ outside the Hamiltonian and an extra factor of 2 for convenience when

3Leading to a rotation of linear polarization.
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deriving the propagation equations. Now we write the factors for both cgs to SI
units as,

gcgs =

√
2πh̄ω

AL
; gSI =

√
h̄ω

2ε0AL
(11.10)

α̃cgs =
4πω

Ac
α ; α̃SI =

ω

ε0Ac
α (11.11)

where A is the sample cross section and L is the sample length (AL is the quan-
tization volume), h̄ is Planck’s constant divided by 2π, ω is the light radial fre-
quency, and ε0 is the vacuum permeability. The reduced dipole operator in the
modified polarizibility can also be expressed using the natural line width of the
level Γ [Steck08] and thus we can write the modified polarizibility as

α̃ ∝
σ0

A
Γ

2∆
(11.12)

with σ0 (= 3λ2/(2π)) the atomic absorption cross-section, λ the laser wave-
length, and ∆ the detuning.

11.2 The atom-magnetic field interaction Hamiltonian

Here we are interested in presenting the atom-magnetic field interaction Hamil-
tonian using the irreducible tensor notation, defined in Eq. 11.3. Before writing
the Hamiltonian we introduce the relation between the angular momentum vec-
tor and the irreducible tensor [Varshalovich88]:

T̂1,q =

√
3

F0(F0 + 1)(2F0 + 1)
ĵq ≡ β0 ĵq (11.13)

with q = −1, 0, 1 represents the spherical basis component, β0 a constant (β0 =
1/
√

2 for F0 = 1), and ĵ the angular momentum operator for a single atom.

The atom-magnetic field interaction Hamiltonian is:

ĤB = gFµBj · B = h̄
(
−ω+ ĵ+ + ω− ĵ− + ωz ĵz

)
=

h̄/β0
(
−ω+T̂1,1 + ω−T̂1,−1 + ωzT̂1,0

)
(11.14)

with gF the Landé g-factor for the hyperfine ground level, µB the Bohr magne-
ton, B the magnetic field, and h̄ω = gFµBB. Here we used the following base
transformation

B± =
Bx ∓ iBy√

2
; ω± =

ωx ∓ iωy√
2

(11.15)

11.3 Propagation equations

In this section we derive the propagation equations for the collective atomic spin
operators (T̂K,Q) and for the Stokes operators (Ξ̂). First we transform the atomic
operator (the irreducible tensor) from an operator of a single atom to describe a
collective excitation of many atoms at a specific location. This allows to derive
the equations describing the system both in time and space using the Heisenberg
equation. We start, in subsection 11.3.1, with the derivation of the Stokes param-
eters propagation along the sample. Then we derive the atomic time evolution
equations. We derive the equations in spherical basis (subsection 11.3.2), next we
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move to cartesian coordinate system (subsection 11.3.3), and then we generalize
the equations to include two light sources with different frequencies (subsec-
tion 11.3.4). We finish this section with a short discussion about the resulting
equations.

Up till now the atomic operator, the irreducible tensor, described the internal
state of a single atom. To move to a collective description for both spatial and
internal degrees of freedom we need to sum over all atoms inside a thin slice.
For this we assume that the number of atoms in each slice is large enough such
that it contains much more than a single atom yet the thickness of each slice
is small enough so that we can consider our system with continuous variables
[Kupriyanov05, Mishina07, Gorshkov07b]. There are several different ways that
we can normalize the atomic operator which will affect the commutation rela-
tions. This point is discussed in more detail in appendix F. Here we have decided
to keep the convention chosen in [Kupriyanov05] which defines the atomic op-
erators as densities, i.e. the irreducible tensor will have unit of number of atoms
per length (in cgs this gives 1/cm), and is redefined as

T̂K,Q(z, t) =
1

∆z ∑
z<za≤z+∆z

T̂K,Q(za, t) (11.16)

With this change we move from a Hamiltonian describing a single atom to a den-
sity Hamiltonian with units of energy per unit length. The irreducible tensors
commutation relation [Varshalovich88, Kupriyanov05] is given by,[

TK,Q(z, t), TK′,Q′(z′, t)
]
=
√
(2K + 1)(2K′ + 1) ∑

K′′,Q′′

[
1− (−1)K+K′+K′′

]
×{

K K′ K′′

F0 F0 F0

}
(−1)2F0+K′′CK′′,Q′′

K,Q;K′,Q′TK′′,Q′′(z, t)δ(z− z′)

(11.17)

where {} is the 6-j symbol, C...
... is the Clebsch-Gordan coefficient, and δ(z− z′) is

the Dirac delta function. Note that the Dirac delta function enters from the way
we have decided to redefine the irreducible tensors and it has units of one over
length.

The coupled propagation equations for light and atoms [Kupriyanov05, Mishina07,
Gorshkov07b] are given by the Heisenberg equation,(

c
∂

∂z
+

∂

∂t

)
Ξ̂ =

i
h̄
[
HB + He f f , Ξ̂

]
(11.18)

∂

∂t
T̂K,Q =

i
h̄
[
HB + He f f , T̂K,Q

]
(11.19)

and are derived in the next subsections.

11.3.1 Stokes parameter propagation equations

In Eq. 11.18 we have written the Heisenberg equation for the Stokes operators.
We start by showing that the radiation Hamiltonian, ĤR = h̄ω(â† â + 1/2), gives
rise to a spatial derivative of the Stokes operator, which appears in the first
term on the left hand side of Eq. 11.18. To see this we write the Heisenberg
equation for the annihilation operator and Fourier transform the results and
Fourier transform back, i.e.

∂

∂t
â =

1√
2π

∫
dk

i
h̄
[
Ĥ, â

]
eikz =

1√
2π

∫
dk(−i)ckâeikz = −c

∂

∂z
â (11.20)
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thus (using ω = ck) we get Eq. 11.18.

The ∂/(c∂t) term in the propagation equation can be neglected, since in our case
the sample length is very short in comparison to the time it takes the light to
pass through the sample ∂z << c∂t. This time scale is L/c ≈ 10−4/108s = 10−12s
which is much shorter than any other time scale in our system which would be
about 10−6s.

The atom-magnetic field interaction Hamiltonian does not influence the light di-
rectly since the Stokes operators commute with the atomic operator, i.e.

[
HB, Ξ̂

]
=

0. We still need to evaluate the commutation relation for
[
He f f , Ξ̂

]
. For this we

write the commutation relation for the Stokes parameters [Mishina07]

[
Ξ̂i(z, t), Ξ̂j(z′, t)

]
= 2iε i,j,kcδ(z− z′)Ξ̂k (11.21)

where ε i,j,k is the Levi-Civita totally anti-symmetric tensor, i, j, k are the running
indices {i, j, k} = {45, σ, HV}, c is the speed of light, and δ(z − z′) is Dirac
delta function that ensures the position of the light. Now we write the light
propagation equation as:

∂

∂z
Ξ̂i =

i
h̄c
[
He f f , Ξ̂i

]
= −α̃1T̂1,0

[
Ξ̂σ, Ξ̂i

] i
2c

+

+
1√
2

α̃2

(
T̂HV

[
Ξ̂HV , Ξ̂i

] i
2c

+ T̂45
[
Ξ̂45, Ξ̂i

] i
2c

)
(11.22)

Which gives the end result,

∂

∂z

 Ξ̂45

Ξ̂σ

Ξ̂HV

 =


0 − α̃2√

2
T̂HV α̃1T̂1,0

α̃2√
2

T̂HV 0 − α̃2√
2

T̂45

−α̃1T̂1,0
α̃2√

2
T̂45 0


 Ξ̂45

Ξ̂σ

Ξ̂HV

 (11.23)

This equation can also be written as (∂/∂z)Ξ̂ = T̃R × Ξ̂, with an effective atomic
vector T̃R. This means that the light Stokes operator vector is rotating along the
sample around the atomic coherence operator (T̃R).

11.3.2 Atomic time evolution - in the spherical basis

Here we solve the propagation Eq. 11.19 for the case of F0 = 1, as this is the
hyperfine ground state that we are using. The Heisenberg equation includes
the commutation relations between the different irreducible tensors, we evaluate
them using Eq. 11.17, and give the results in appendix E. Next we solve and
write the evolution equations due to the magnetic field and due to the light-
atom interaction.

Atomic time evolution due to the magnetic field

The time evolution equation due to the magnetic field is:

∂

∂t
T̂K,Q =

i
h̄
[
HB, T̂K,Q

]
= − iω+

β0

[
T̂1,1, T̂K,Q

]
+

iω−
β0

[
T̂1,−1, T̂K,Q

]
+

+
iωz

β0

[
T̂1,0, T̂K,Q

]
(11.24)
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We represent the result in a matrix form as:

MB,sph =

T̂1,0 T̂1,1 T̂1,−1 T̂2,0 T̂2,1 T̂2,−1 T̂2,2 T̂2,−2

T̂1,0 0 iω+ iω− 0 0 0 0 0
T̂1,1 iω− iωz 0 0 0 0 0 0

T̂1,−1 iω+ 0 −iωz 0 0 0 0 0
T̂2,0 0 0 0 0 i

√
3ω+ i

√
3ω− 0 0

T̂2,1 0 0 0 i
√

3ω− iωz 0 i
√

2ω+ 0
T̂2,−1 0 0 0 i

√
3ω+ 0 −iωz 0 i

√
2ω−

T̂2,2 0 0 0 0 i
√

2ω− 0 i2ωz 0
T̂2,−2 0 0 0 0 0 i

√
2ω+ 0 −i2ωz


(11.25)

Atomic time evolution due to the light atom interaction

The time evolution equation due to the light matter interaction using the effective
Hamiltonian given in Eq. 11.6 gives,

∂

∂t
T̂K,Q = − i

2
α̃0Ξ̂0

[
T̂0,0, T̂K,Q

]
− i

2
√

6
α̃2Ξ̂0

[
T̂2,0, T̂K,Q

]
+

+
i
2

α̃1Ξ̂σ

[
T̂1,0, T̂K,Q

]
+

i
2
√

2
α̃2
(
Ξ̂−
[
T̂2,2, T̂K,Q

]
+ Ξ̂+

[
T̂2,−2, T̂K,Q

])
(11.26)

We define the following parameters:

Ω̂σ =
1
2

β0α̃1Ξ̂σ (11.27)

ε =
1

2
√

2
β0α̃2 (11.28)

For our case with the ground state hyperfine quantum number F0 = 1, we get
ε = α̃2/4. Next we write the evolution matrix as,

MT,sph =

i



T̂1,0 T̂1,1 T̂1,−1 T̂2,0 T̂2,1 T̂2,−1 T̂2,2 T̂2,−2

0 0 0 0 0 0 −2εΞ̂− 2εΞ̂+

0 Ω̂σ 0 0 −εΞ̂0
√

2εΞ̂+ 0 0
0 0 −Ω̂σ 0 −

√
2εΞ̂− εΞ̂0 0 0

0 0 0 0 0 0 0 0
0 −εΞ̂0 −

√
2εΞ̂+ 0 Ω̂σ 0 0 0

0
√

2εΞ̂− εΞ̂0 0 0 −Ω̂σ 0 0
−2εΞ̂+ 0 0 0 0 0 2Ω̂σ 0
2εΞ̂− 0 0 0 0 0 0 −2Ω̂σ


(11.29)

With the total propagation equation given by:

∂

∂t
T̂ =

(
MB,sph + MT,sph

)
T̂ (11.30)

where T̂T =
(
T̂1,0, T̂1,1, T̂1,−1, T̂2,0, T̂2,1, T̂2,1, T̂2,−1, T̂2,2, T̂2,−2

)
, MB,sph is given by

Eq. 11.25 and MT,sph is given by Eq. 11.29.
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11.3.3 Transforming to Cartesian coordinate system

Here we transform the above equations from a spherical basis to a cartesian
basis. The transformation is:

T̂HV =
T̂2,2 + T̂2,−2√

2
; T̂45 =

T̂2,2 − T̂2,−2

i
√

2
(11.31)

T̂2,2 =
T̂HV + iT̂45√

2
; T̂2,−2 =

T̂HV − iT̂45√
2

(11.32)

Ξ̂+ =
Ξ̂HV + iΞ̂45√

2
; Ξ̂− =

Ξ̂HV − iΞ̂45√
2

(11.33)

Ξ̂HV =
Ξ̂+ + Ξ̂−√

2
; Ξ̂45 =

Ξ̂+ − Ξ̂−

i
√

2
(11.34)

T̂1,1 = −
T̂1,x + iT̂1,y√

2
; T̂1,−1 =

T̂1,x − iT̂1,y√
2

(11.35)

T̂1,x = − T̂1,1 − T̂1,−1√
2

; T̂1,y = − T̂1,1 + T̂1,−1

i
√

2
(11.36)

T̂2,1 = −
T̂2,x + iT̂2,y√

2
; T̂2,−1 =

T̂2,x − iT̂2,y√
2

(11.37)

T̂2,x = − T̂2,1 − T̂2,−1√
2

; T̂2,y = − T̂2,1 + T̂2,−1

i
√

2
(11.38)

Note that here the definition for T̂HV and T̂45 is different from the one given in
[Kupriyanov05, Mishina07] by a factor of

√
2. This factor is important to keep

the equation in an anti-symmetric form, and for consistency when defining the
total atom number by T̂†T̂.

We rewrite the propagation matrix, for both the magnetic and atom-light parts,
which gives:

Mcar = MB,car + MT,car =

T̂1,x T̂1,y T̂1,z T̂2,x T̂2,y T̂2,z T̂HV T̂45

T̂1,x 0 −Ω̂σ,z ωy εΞ̂45 ε(Ξ̂0 − Ξ̂HV) 0 0 0
T̂1,y Ω̂σ,z 0 −ωx −ε(Ξ̂0 + Ξ̂HV) −εΞ̂45 0 0 0
T̂1,z −ωy ωx 0 0 0 0 −2εΞ̂45 2εΞ̂HV

T̂2,x −εΞ̂45 ε(Ξ̂0 + Ξ̂HV) 0 0 −Ω̂σ,z
√

3ωy −ωy ωx

T̂2,y −ε(Ξ̂0 − Ξ̂HV) εΞ̂45 0 Ω̂σ,z 0 −
√

3ωx −ωx −ωy

T̂2,z 0 0 0 −
√

3ωy
√

3ωx 0 0 0
T̂HV 0 0 2εΞ̂45 ωy ωx 0 0 −2Ω̂σ,z

T̂45 0 0 −2εΞ̂HV −ωx ωy 0 2Ω̂σ,z 0

(11.39)

with

Ω̂σ,z = ωz + Ω̂σ (11.40)

11.3.4 Two different light sources

In the previous sections we have used only one light mode with different po-
larization components, here we are going to assume that each polarization com-
ponent has a different wavelength. This case is interesting since it enables to
effectively cancel out the magnetic field along the propagation direction by tun-
ing to the two-photon resonance, i.e. effectively setting Ω̂σ,z → 0 in Eq. 11.39.

Changing to a two different frequencies for the light means the following trans-
formation: â+ = âs

+ (corresponding to the SB with σ+ polarization) and â− =
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âs
−e2iδt (corresponding to the DL with σ− polarization). Here the superscript

s stands for slowly varying and δ is half the frequency difference between the
two light sources. Entering this transformation into the Stokes parameters in
Eq. C.2- C.4 gives:

Ξ̂σ = Ξ̂s
σ (11.41)(

Ξ̂HV

Ξ̂45

)
=

(
cos 2δt sin 2δt
− sin 2δt cos 2δt

)(
Ξ̂s

HV

Ξ̂s
45

)
(11.42)

In order to absorb the time varying dependence we need to move to a rotating
frame at a frequency δ, by defining:(

T̂HV

T̂45

)
=

(
cos 2δt sin 2δt
− sin 2δt cos 2δt

)(
T̂s

HV

T̂s
45

)
(11.43)(

T̂1,x

T̂1,y

)
=

(
cos δt sin δt
− sin δt cos δt

)(
T̂s

1,x

T̂s
1,y

)
(11.44)(

T̂2,x

T̂2,y

)
=

(
cos δt sin δt
− sin δt cos δt

)(
T̂s

2,x

T̂s
2,y

)
(11.45)

and the magnetic field is transformed as:(
ωx

ωy

)
=

(
cos δt sin δt
− sin δt cos δt

)(
ωs

x

ωs
y

)
(11.46)

with T̂1,z = T̂s
1,z and T̂2,z = T̂s

2,z. Now we rewrite the full time evolution equations
as:

Ms,car = MBs,car + MTs,car =

T̂s
1,x T̂s

1,y T̂s
1,z T̂s

2,x T̂s
2,y T̂s

2,z T̂s
HV T̂s

45

T̂s
1,x 0 −Ω̂σ,z − δ ωs

y εΞ̂s
45 ε(Ξ̂0 − Ξ̂s

HV) 0 0 0
T̂s

1,y Ω̂σ,z + δ 0 −ωs
x −ε(Ξ̂0 + Ξ̂s

HV) −εΞ̂s
45 0 0 0

T̂s
1,z −ωs

y ωs
x 0 0 0 0 −2εΞ̂s

45 2εΞ̂s
HV

T̂s
2,x −εΞ̂s

45 ε(Ξ̂0 + Ξ̂s
HV) 0 0 −Ω̂σ,z − δ

√
3ωs

y −ωs
y ωs

x

T̂s
2,y −ε(Ξ̂0 − Ξ̂s

HV) εΞ̂s
45 0 Ω̂σ,z + δ 0 −

√
3ωs

x −ωs
x −ωs

y

T̂s
2,z 0 0 0 −

√
3ωs

y
√

3ωs
x 0 0 0

T̂s
HV 0 0 2εΞ̂s

45 ωs
y ωs

x 0 0 −2Ω̂σ,z − 2δ

T̂s
45 0 0 −2εΞ̂s

HV −ωs
x ωs

y 0 2Ω̂σ,z + 2δ 0

(11.47)

By moving to the rotating frame, and introducing a frequency difference be-
tween the two polarizations components, we have changed the time evolution
(Eq. 11.39) from Ω̂σ,z to Ω̂σ,z + δ. Thus by setting the right frequency differ-
ence between the two beams (SB and DL) we can set Ω̂σ,z + δ → 0. Now the
propagation equations are,

∂

∂t
T̂s = Ms,carT̂s (11.48)

T̂T =
(

T̂s
1,x, T̂s

1,y, T̂s
1,z, T̂s

2,x, T̂s
2,y, T̂s

2,z, T̂s
HV , T̂s

45

)
(11.49)

11.3.5 Discussion about the propagation equations

When examining the evolution equations Eq. 11.23 and Eq. 11.47 we can iden-
tify two things: the evolution is set by rotation matrices and they are anti-
symmetric. The rotation matrix means that the atomic coherence operators will
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rotate around the light operators and the magnetic field. In the limit that only a
subspace can be examined we can write the equation as a cross product, similar
to what we showed for the light at the end of section 11.3.1. For the atoms we can
look at two interesting cases, restricting to the angular momentum vector and
to the Raman transfer coherence terms. Up to a numerical constant the angular
momentum vector is T̂T

v =
(
T̂1,x, T̂1,y, T̂1,z

)
and in the case that (∂/∂t)T̂2,Q = 0,

we get the well known result (∂/∂t)T̂v = B̃× T̂v with the definition of the ef-
fective magnetic field as B̃T =

(
ωs

x, ωs
y, Ω̂σ,z + δ

)
. For the Raman transfer we

are interested in T̂T
R =

(
T̂1,z, T̂HV , T̂45

)
and assume that the rest of the irreducible

tensors are constant of motion. Thus we again can write the time evolution as
(∂/∂t)T̂R = Bl × T̂R with B̃T

l = 2
(
Ω̂σ,z + δ, εΞ̂s

HV , εΞ̂s
45

)
.

This means that under certain requirements from the system we can get two
coupled equations of the form:

∂

∂t
T̂R = Bl × T̂R (11.50)

∂

∂z
Ξ̂ = T̃R × Ξ̂ (11.51)

These equations, at certain conditions, give rise to the memory or entanglement
protocols [Mishina07]. For the case of the Raman memory we show this in the
next section, but a similar procedure can be done with T̂v to get a memory
protocol [Kupriyanov05].

The second point that we want to emphasize is that the evolution matrices are
antisymmetric, which states that they conserve energy (atom and photon num-
ber). The conservation law is tested by examining the derivative of the number
of atoms or photons, i.e.

∂

∂t
T†T = (

∂

∂t
T†)T + T† ∂

∂t
T = T†

(
M† + M

)
T (11.52)

Here M is some general matrix describing the evolution, which we can split
(without loss of generality) to M = Mas + Ms where Mas is an anti-symmetric
matrix and Ms is a symmetric matrix. Using that M†

as = −Mas and M†
s = Ms we

get,

∂

∂t
T†T = 2T† MsT (11.53)

This means that if these equations contains a symmetric part they would not
conserve energy! We point out that due to the way T̂HV and T̂45 are defined in
[Kupriyanov05, Mishina07] their equations do not explicitly show this conserva-
tion law.

11.4 2-level system - off-resonant Raman memory

In this section we examine the special case where we neglect any population of
the sublevel

∣∣F = 1, m f = 0
〉
, which is a good approximation in our case. This

reduces the problem such that we can describe the system as an evolution of a
vector undergoing rotation, and describe the propagation equations as a cross
product (Eq. 11.50 and Eq. 11.51). Now the atomic time evolution equations are
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reduced from a 8× 8 matrix to a 3× 3 matrix, i.e. they are

∂

∂t

 T̂1,z

T̂HV

T̂45

 = 2

 0 −εΞ̂45 εΞ̂HV

εΞ̂45 0 −Ω̂σ,z − δ

−εΞ̂HV Ω̂σ,z + δ 0


 T̂1,z

T̂HV

T̂45

 (11.54)

∂

∂z

 Ξ̂45

Ξ̂σ

Ξ̂HV

 =


0 − α̃2√

2
T̂HV α̃1T̂1,0

α̃2√
2

T̂HV 0 − α̃2√
2

T̂45

−α̃1T̂1,0
α̃2√

2
T̂45 0


 Ξ̂45

Ξ̂σ

Ξ̂HV

 (11.55)

Here, we also wrote the full propagation equations for the light for completeness.
Writing both evolution and propagation equations makes it a bit easier to see
how the memory and entanglement protocols arise [Mishina07]. For both proto-
cols one prepares the atomic state such that T̂1,z is classical and does not evolve
in time and similarly for the circular light Stokes parameter, i.e. T̂1,z → T1,z and
Ξ̂σ → Ξσ are now c-numbers and their derivatives are zero. Considering these
two assumptions we can write the propagation equations as:

∂

∂t

(
T̂45

T̂HV

)
= 2

(
Ω̂σ,z + δ

) ( 0 1
−1 0

)(
T̂45

T̂HV

)
− 2εT1,z

(
0 1
−1 0

)(
Ξ̂45

Ξ̂HV

)
(11.56)

∂

∂z

(
Ξ̂45

Ξ̂HV

)
= α̃1T1,z

(
0 1
−1 0

)(
Ξ̂45

Ξ̂HV

)
− α̃2√

2
Ξσ

(
0 1
−1 0

)(
T̂45

T̂HV

)
(11.57)

Here we use these equations with α̃1 → 0 and Ω̂σ,z + δ → 0. In this case (for
memory) when the light enters into the sample its quantum state is "swapped"
onto the atomic variables from which it can later be "swapped" back onto the
outgoing light. These equations are examined in two regions: T1,zΞσ < 0 gives
rise to memory, and T1,zΞσ > 0 that gives rise to entanglement. These sets of
equations have been analytically solved in [Mishina07] and are governed by an
integral over a Bessel function of the first kind, with α̃2

2T1,z ·Ξσ the amplification
prefactor.

These coupled equations are closely related to the coupled equations derived
for the superradiance case, in section 5.3. Also here these coupling constant
is proportional to the total scattering rate times the OD. To show this we use
the modified polarizibility as expressed by Eq. 11.12, and the scattering rate as
expressed by Eq. 10.1 in the limit of big detuning,

R =
Γ

2
I

Isat

(
Γ

2∆

)2

=
σ0

A

(
Γ

2∆

)2

Ξ0 (11.58)

α̃2
2T1,z · Ξσ =

(
2J + 1
2J0 + 1

C̃2

)2 σ0

A
T1,zR (11.59)

Here we use that Ξ0 ∼ Ξσ. The constants are defined in section 11.1.1 (Eq. 11.12),
with Isat = (Γ/2)(h̄ω/σ0), and I = h̄ω/AΞ0 ∼ h̄ω/AΞσ the total intensity.
Next, for our hyperfine ground level T1,z = Na/(2

√
2L) with Na the total atom

number and L the sample length. We assume a homogeneous sample as T1,z is
up to a constant the atom density at a certain location. We thus get,

α̃2
2T1,z · Ξσ ∼ R ·OD/L. (11.60)



Chapter12

Simulations

In this chapter we explain how we solve the coupled propagation equations
for light and atoms, described in Eq. 11.23 and Eq. 11.47, using two different
numerical implementations. We then discuss the convergence of the numerical
solution and how to set the initial conditions from the experimental ones. We
finish this chapter by showing the optimal pulse shape, by simulating a retrieval
when we write an ideal mode [Gorshkov07b].

In section 12.1 we explain the different numerical implementations. Here we
solve the equations either by explicitly calculating the exponential matrix or by
backward/forward propagating method. For each type of a solution we use a
two step approximation in order to improve the convergence. In section 12.2 we
test the numerical convergence of the different numerical implementations.

In section 12.3 we express the experimental conditions in terms appropriate for
the simulation. Here two points are relevant: rotating the atomic state from
the initial known state along the magnetic axis to the chosen quantization axis
along the light propagation, and determining the drive light (DL) photon flux
through the sample. The first point allows us to simulate configurations with
the magnetic field not aligned to the light propagation axis. The second point
is important since the DL waist is much larger than the atomic sample, thus the
photon flux used in the simulation is less than the one we actually used.

In section 12.4 we use the simulation in order to design the SB input pulse
shape. The idea is based on the time inversion principle given in [Gorshkov07a,
Gorshkov07b]. We run the simulation with initially distributing atoms in the
|+1〉 〈+1| state with a spatial parabolic distribution, and from the results of the
outgoing SB photons flux, we get the optimal input pulse shape by time inverting
the retrieved output pulse.

12.1 The numerics

The employed numerical method needs to solve two coupled equations of the
type,

d
dt

T(z, t) = Mt(z, t, Ξ)T(z, t) (12.1)

d
dz

Ξ(z, t) = Mz(z, t, T)Ξ(z, t) (12.2)

where T is the atomic collective spin vector and Ξ is the Stokes parameter vec-
tor, Mt and Mz are the evolution matrices. Note that here we have removed

77
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the hat symbol and treat all the operators as a c-number1. We solve the above
coupled equations with two types of algorithms: 1) exponential matrix, and 2)
backward/forward propagation. Since the logic is the same for the time propa-
gation (solving the atomic evolution) and for the propagation along the sample
(solving the light evolution) we show here only the solution for the time prop-
agation (atomic states). The exact solution of the equations during a small time
step of ∆t is

T(z, t) = e
∫ t

t−∆t dt′Mt(z,t′)T(z, t−∆t) (12.3)

T(z, t) =
(

1−Mt(z, t)
∆t
2

)−1 (
1 + Mt(z, t−∆t)

∆t
2

)
T(z, t−∆t) (12.4)

Here we have dropped the additional notation of the Stokes parameter in the
evolution matrix for the atomic state, for brevity. Equation 12.3 describes the ex-
ponential matrix type of solution, and Eq. 12.4 the backward/forward propagat-
ing. In the backward/forward method we use the definition of the differential
to evaluate the half step from both directions, with the advantage of utilizing
higher order corrections. While the above equations are exact, we can not evalu-
ate them since we do not know Mt(z, t). The better the approximation of Mt(z, t)
the larger time step we can take (∆t) and reduce the run time. Here we either
use a one step approximation, in which we assume that the matrix is constant
over the time step, or a two step solution where we use the result of the first step
as a guess for the matrix value at time t. For the exponential matrix approach,
the full sequence is,

T0(z, t) = e∆tMt(z,t−∆t)T(z, t−∆t) (12.5)

Ξ0(z, t) = e∆zMz(z−∆z,t)Ξ(z−∆z, t) (12.6)

then, using this as a guess we get

T(z, t) = e(∆t/2)(Mt(z,t−∆t)+M0
t (z,t))T(z, t−∆t) (12.7)

Ξ(z, t) = e(∆z/2)(Mz(z−∆z,t)+M0
z (z,t))Ξ(z−∆z, t) (12.8)

Here the matrices with the superscript zero need to be interpreted as M0
t (z, t, Ξ0)

and M0
z(z, t, T0). Note that this second step almost doubles the run time, but it

can reduce the grid size by more than a factor of four (for our case), for a similar
convergence of the simulation. The solution for the backward/forward type is
similar therefore we do not explicitly write it here.

12.2 Convergence of the numerics

In this section we tests of the convergence of the numerical solution, by testing
the conservation of atom number and of photon number2 and testing the Raman
transfer of atoms from the |+1〉 〈+1| state into the |−1〉 〈−1| using only the DL
pulse. For our numerical implementation the conservation of atom number or
photon number is "easily" achieved due to the construction of the solution, while
for the Raman transfer we require a much finer grid resolution.

Here we have tested four different run configurations at two different grid res-
olutions. These configurations correspond to the backward/forward and expo-
nential matrix. For each method we used the single-step and two-step solution.

1From the way we have constructed the equations the results will be real numbers and not
complex.

2As discussed in section 11.3.5
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Figure 12.1: Simulation results output for a retrieval operation of 100 |+1〉 〈+1| excita-
tions written in a parabolic distribution along the sample. Top subplots show the results
of backward/forward numeric method; and the bottom subplots show the results of the
exponential matrix approach. Left subplots show the SB outgoing photons; right sub-
plots show the number of |+1〉 〈+1| excitations. In the legend we report the run time
and state the simulation method and resolution: B/F is the backward/forward method;
exp is the exponential matrix method; the number 1 or 2 stands for the number of steps
used in evaluating each cell; L or H represents the simulation resolution with L means
∆t = 100ns and ∆z = 0.8µm, and H means ∆t = 50ns and ∆z = 0.4µm.

The resolution of the run is ∆t = 100ns and ∆z = 800nm. We test the conver-
gence by comparing to a run with half the step size ∆t = 50ns and ∆z = 400nm
using the exponential matrix and two-step configuration.

For all configurations the conservation of atom number and photon number is
better than 10−14. We have also tested this conservation using a lower resolution
by a factor of 10 for both time and space coordinates, and got the same result.
This is due to the construction of the numerical algorithm.

The Raman transfer convergence is tested by using a sample with 100 excitations
of |+1〉 〈+1| states in a parabolic spatial distribution. The results of the different
run configurations are given in Fig. 12.1. Here we assume that the two-step expo-
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nential result with the high resolution has converged and use it as the reference.
The results show that using the second evaluation step significantly improves
the convergence without having to increase the grid size. Moreover, as is shown
for the backward/forward method the two-step solution increases the run time
by 80% and approaches the reference solution to better than 0.2%. While the
single-step does not converge even after increasing the grid size resolution by a
factor of two in both axis (increasing the run time by a factor of four), and the
simulation result over estimate the total output SB photons by about 6%. The
two-step exponential method (with the low resolution) is slightly closer to the
reference run than the two-step backward/forward method. On the other hand
the run time of 45s is significantly longer for the exponential method compared
to a run time of 18s for the backward/forward method.

12.3 Setting the initial input states for the simulation

In this section we discuss two points, first how to translate the experimental
drive light (DL) photon flux to the one usd in the simulation, and secondly how
to rotate the collective atomic spin from the direction of the magnetic field to the
light propagation direction.

Overlapping the atomic sample and the drive light beam

In the experiments we used a DL beam that is much larger than the atomic
sample, as this gives a good approximation to a plane wave. The Stokes param-
eters, that are used in the simulation, are defined as the photon flux that passes
through the cloud. To match the DL photon flux as measured with a power-
meter to the Stokes parameter we need to determine the geometrical overlap of
DL beam and atomic sample.

Since both the atomic cloud and the DL beam are characterized by a Gaussian
distribution the overlap factor is:

OVL = 1− e
n2σ2

a
2σ2

DL (12.9)

where σa is the rms radius of the Gaussian atomic cloud, σDL is rms radius of the
DL beam, and n is the number of standard deviations of the atomic cloud that
we use. Since in our 1D model we explicitly assume a cylindrical sample shape,
we take the sample area as the equivalent flat top distribution which sets n2 = 2
(2πσ2

a /(πσ2
a )).

Rotating the collective atomic spin

We produce our atomic sample using evaporative cooling and therefore the ini-
tial atomic state along the magnetic field is a pure |−1〉 〈−1|B (with the subscript
B indicating the magnetic axis). In our model we have used the quantization axis
along the light propagation, which means that we need to rotate the collective
atomic spin by an angle (θ) between the magnetic field direction and the light
propagation direction. Here we do not derive the general concept of rotating
an angular momentum, and send the interested reader to [Sakurai94]. To ro-
tate an angular momentum we use the Wigner D function in their irreducible
form. This means that the rotation only mixes irreducible tensor with the same
K quantum number, i.e. T̂1,q and T̂2,q′ will not mix. Here we use the notation of
[Varshalovich88] (page 59), and find the rotated components of the Irreducible
tensors:

T̂F,m′ = ΣmdF
m′,m(θ)T̂

(B)
F,m (12.10)
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where dF
m′,m(θ) is the small Wigner D-function, θ is the Euler angle around the y

axis, and T̂F,m is the irreducible tensor. The explicit form of dF
m′,m(θ) for the case

F = 1 [Varshalovich88] is:

d(1)m′,m(θ) =


1
2 (1 + cos θ) − 1√

2
sin θ 1

2 (1− cos θ)
1√
2

sin θ cos θ − 1√
2

sin θ

1
2 (1− cos θ) 1√

2
sin θ 1

2 (1 + cos θ)

 (12.11)

and for F = 2 we have,

d2
m′,m(θ) =

m, m′ 2 1 0 -1 -2

2 1
4 (1 + cosθ)2 − 1

2 sinθ(1 + cosθ) 1
2

√
3
2 sin2θ − 1

2 sinθ(1− cosθ) 1
4 (1− cosθ)2

1 1
2 sinθ(1 + cosθ) 1

2 (2cos2θ + cosθ − 1) −
√

3
2 sinθcosθ − 1

2 (2cos2θ − cosθ − 1) − 1
2 sinθ(1− cosθ)

0 1
2

√
3
2 sin2θ

√
3
2 sinθcosθ 1

2 (3cos2θ − 1) −
√

3
2 sinθcosθ 1

2

√
3
2 sin2θ

-1 1
2 sinθ(1− cosθ) − 1

2 (2cos2θ − cosθ − 1)
√

3
2 sinθcosθ 1

2 (2cos2θ + cosθ − 1) − 1
2 sinθ(1 + cosθ)

-2 1
4 (1− cosθ)2 1

2 sinθ(1− cosθ) 1
2

√
3
2 sin2θ 1

2 sinθ(1 + cosθ) 1
4 (1 + cosθ)2

(12.12)

For our initial conditions, the only non zero collective spin are T̂1,0 6= 0 and
T̂2,0 6= 0 which include the state |−1〉 〈−1|B.

For T̂K=1,m this gives:

T̂1,m′=±1 = ± 1√
2

sin θT̂1,0 (12.13)

T̂1,m′=0 = cos θT̂1,0 (12.14)

and in the cartesian coordinates it is:

T̂1,x′ = −
T̂1,m′=1 − T̂1,m′=−1√

2
= − sin θT̂1,z (12.15)

T̂1,y′ = −
T̂1,1 + T̂1,−1

i
√

2
= 0 (12.16)

T̂1,z′ = cos θT̂1,z (12.17)

For T̂K=2,m this gives:

T̂2,m′=0 =
3 cos2 θ − 1

2
T̂2,0 (12.18)

T̂2,m′=±1 = ±
√

3
2
√

2
sin 2θT̂2,0 (12.19)

T̂2,m′=±2 =

√
3

2
√

2
sin2 θT̂2,0 (12.20)

and in the cartesian coordinates it is:

T̂2,z′ =
3 cos2 θ − 1

2
T̂2,z (12.21)

T̂2,x′ = −
√

3
2

sin 2θT̂2,z (12.22)

T̂2,y′ = 0 (12.23)

T̂HV =

√
3

2
sin2 θT̂2,z (12.24)

T̂45 = 0 (12.25)

Note, that for a non zero angle we find initially "stored" atomic excitations in the
sample, i.e. non zero T̂HV .
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Figure 12.2: Simulating the retrieval stage after writing 100 atoms in a parabolic distri-
bution into the sample. Left: the number of SB photons that leave the sample in full
blue line (atoms aligned along the light propagation direction) and dot-dashed green
line (atom with −15 degrees from the light propagation direction) and the number of
atomic excitations |+1〉 〈+1| in the sample in dashed red line (no angle) and in light
blue dashed-asterisk line (−15 degree angle); Right plot: the SB photon flux on the left
axis in the full blue line (0 degree angle) and in the dot-dashed red line (−15 degree
angle), the DL photon flux on the right axis in dashed green line.

12.4 Pulse design

In this section we find the SB ideal pulse shape from a simulation where we ini-
tially enter a number of |+1〉 〈+1| excitations in the atomic sample. For getting
the ideal pulse shape for both writing and retrieval the excitations should be in
a parabolic shaped spatial distribution [Gorshkov07b]. In Fig. 12.2 we present
a simulation of a retrieval of such a distribution. On the left plot we present
the SB outgoing photons (full blue line) and the atomic excitations (red dashed
line). We find that after about 4µs most of the excitations are converted into SB
photons.

Here we have also examined the influence of the magnetic field angle (θ = 0
and θ = −15◦). From Fig. 12.2-left we can see that there are more than the 100
excitation that were entered, because of the extra excitations that come when we
rotate the atoms, see Eq. 12.24. In Fig. 12.2-right we present the SB photon flux.
Here the difference in the outgoing pulse shape when θ = −15◦ (dot-dashed red
line) and when θ = 0◦ (full blue line) is evident. This is due to the different
mode written in the cloud.

In most further experiments the time-reversed red-dashed pulse shape has been
used. Several different pulse shapes have been tested, but no significant differ-
ence in storage efficiency was observed.



Chapter13

Time evolution of the signal
beam

So far we have examined in chapter 10 the general performance of the experi-
ment, and derived a 1D model to characterize the results in chapters 11 and 12.
Our main goal was to achieve total (in-out) efficiencies as high as possible, aim-
ing at 50% but this was not achieved experimentally. In this chapter we present
the experimental characterization of the memory performance.

We start by examining the decoherence time, or storage time, of the system in
section 13.1 and identify the main source of the decoherence. Next in section 13.2
we have varied both the sample OD and the DL power as these are the Raman
coupling parameters1. Here we expect to find that as we increase the DL power
(or the OD) we compress the time axis and the light should come out faster and
thus above a certain DL power we would expect reaching the maximum feasible
efficiency. Experimentally we find a more complicated behavior, and use our 1D
model to explain our results in section 13.3.

As part of the memory performance tests we have also verified the linearity of
the memory (section 13.4), and have tested the sensitivity to the two-photon
detuning (section 13.5).

13.1 Storage time

In this section we present the measurements of the memory storage time, by
varying the DL retrieval pulse starting time. The measured signals at different
retrieval timing are shown in Fig. 13.1-left. The total (in-out) efficiency was
measured for different storage time2, and given in Fig. 13.1-right. Here we see
that the dephasing happens on a timescale comparable to the input SB pulse
duration.

There are three prominent sources for the decoherence: 1) dephasing due to
magnetic inhomogeneity [Reim11, Zhao09], 2) reduction of the atomic wavepacket
overlap3 between atoms in the storage state and the initial state [Riedl12, Zhang09],
and 3) collisional spin relaxation between atoms [HAPPER72] (typically relevant
for room temperature experiments). In our case since we have done the exper-
iments with cold 87Rb cloud inside a magnetic trap and between two Zeeman

1We have shown in section 11.4 that the signal evolution is governed by α̃2
2T1,z · Ξsigma which

can be expressed as R ·OD.
2We define here the storage time from the end of the input SB till the rise time of the DL

(taken at 10%)
3The appropriate length scale is the de Broglie wavelength.
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Figure 13.1: Left: the SB retrieval pulses for different storage time. Right: the total mem-
ory efficiency as a function of the storage duration. The line represents a fit appropriate
to a magnetic field inhomogeneity.

ground sublevels that are first order sensitive to the magnetic field potential. We
examine how the magnetic field inhomogeneity and the loss of the wave func-
tion overlap influence the dephasing time. We find that the dephasing due to
the magnetic field inhomogeneity is dominant for our experimental parameters.

Magnetic dephasing

Here we consider the magnetic dephasing of the Raman coherence due to ex-
ternal magnetic field, i.e. the Larmor precession of the coherence [Reim11].
For this we define a storing (or Raman) operator as Ŝ = a1 + bÔ, where 1 is
the unit operator, Ô is the coherence operator, and a, b are the coefficients that
are set by the experimental condition and have no relevance for the dephasing
time. For our case 1 = |+1〉 〈+1| + |−1〉 〈−1| and Ô = C1,0

1,+1;1,−1 |+1〉 〈−1| +
C1,0

1,−1;1,+1 |−1〉 〈+1|. Here C1,0
1,∓1;1,±1 are the Clebsch-Gordan coefficients but for

our case they are equal and therefore we absorb them into the b coefficient. |±1〉
are the atomic hyperfine ground sublevels of the F0 = 1 state with ±1 denotes
the Zeeman sublevel.

The coherence undergos Larmor precession due to the inhomogeneous magnetic
field in the sample. In a suitably rotating frame the time evolution operator is
written as:

Û = ei∆ωt |+1〉 〈+1|+ e−i∆ωt |−1〉 〈−1| (13.1)

with ∆ω = gFµB(B(x, y, z) − B0) the local Larmor frequency offset inside the
sample, with gF the Landé g-factor, µB Bohr magneton, B the position depen-
dent magnetic field, and B0 the bias magnetic field. In our case we can write
the frequency components as the harmonic potential due to the magnetic trap
[Hilliard08b], to get

h̄∆ω =
1
2

mω2
⊥(x2 + y2) +

1
2

mω2
z z2 =

1
2

kBT
(
x̃2 + ỹ2 + z̃2) (13.2)

where ω⊥ (ωz) is the radial (axial) trap frequency, σ⊥ (σz) is the thermal cloud rms
radius, kB is the Boltzmann constant, T is the sample temperature, and h̄ is the
Planck’s constant divided by 2π. In addition we have redefined the coordinate
system such that we can rewrite the harmonic oscillator as symmetric in all axes
(x̃ = x/σ⊥,ỹ = y/σ⊥, z̃ = z/σz).
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The time evolution of the coherence is given by Û†ÔÛ, and Ŝ† |−1〉 is the storage
(Raman transfer) operation, therefore if we assume full retrieval after the writing
and storage time we get that the total efficiency is proportional to:

η(t) ∝

∣∣∣∣∣
∫

d3rn(r)
〈
−1
∣∣ŜÛ†ÔÛŜ†

∣∣− 1
〉∫

d3rn(r)

∣∣∣∣∣
2

=

=
1∣∣∫ d3rn(r)

∣∣2
∣∣∣∣2<(ab∗)

∫
d3rn(r)e2i∆ω(r)t

∣∣∣∣2 (13.3)

with n(r) the atomic sample density distribution. Here we solve this for a ther-
mal cloud to get:

η(t) ∝
∣∣∣(1− 2i(kBT/h̄)t)−3/2

∣∣∣2 (13.4)

Introducing the proportionality constant A we get the total efficiency as a func-
tion of time

η(t) = A
(

1 + 4 (kBT/h̄)2 t2
)−3/2

= A
(
1 + 4t2/τ2)−3/2

(13.5)

with τ = h̄/(kBT). To this functional we fit the measured results, as shown
in Fig. 13.1-right. This gives a typical time scale of τ/2 = 7µs. Here we find
that the coherence time is inversely proportional to the cloud temperature, as
we decrease the temperature we increase the coherence time. For two data sets
we compare the fitted temperature from the storage time measurements to the
independent temperature measurements from the absorbtion imaging, and find
an agreement to within the error bars. From the absorption imaging we find
temperatures of 445± 10nK and 550± 10nK, and from the storage time we find
temperatures of 470± 50nK and 545± 50nK respectively.

Overlap between the stored state and the initial state

Here we estimate the difference in motion between the atoms in the ground
state |−1〉 and the storage level |+1〉. Since when the wavepackets in the two
states separate in time it causes loss of coherence [Riedl12, Zhang09]. Here
the important parameter is the de Broglie wavelength, i.e. we want that both
wavepackets will overlap to within their de Broglie wave length.

In our case the state |+1〉 〈+1| is anti-trapped and the stored atoms will be
pushed away from the trapped atoms |−1〉 〈−1|. To find how long it takes the
two wavepackets to separate, we solve the harmonic and repulsive time evolu-
tion (ẍ− = −ω2x− and ẍ+ = +ω2x+). We start with the time evolution of the
atoms in the state |−1〉 〈−1|

x−(t) = x0 sin ωt (13.6)

with x0 the edge of the cloud, and ω the trap radial frequency. Here we assumed
initial conditions of the atoms at the center of the cloud without any lose of
generality, since we will consider the evolution from any given time t + τ with
τ the storage time and t sets the initial condition. Then at a certain time t we
transfer an atom into the state |+1〉 〈+1| which starts evolving in a potential
with initial conditions given by x−(t), which gives:

x+(t, τ) =x0 (sin ωt cosh ωτ + cos ωt sinh ωτ) (13.7)

x−(t, τ) =x0 (sin ωt cos ωτ + cos ωt sin ωτ) (13.8)
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Figure 13.2: Top/bottom row: the write/retrival efficiency as function of the OD for
constant DL power (left plots) or as function of DL power for constant OD = 170 (right
plots).

with

∆x/x0 = x+(t, τ)/x0 − x−(t, τ)/x0 =

sin ωt (cosh ωτ − cos ωτ) + cos ωt (sinh ωτ − sin ωτ) (13.9)

To estimate the appropriate coherence time we need to compare ∆x/λdB ≈
σ/λdB as a function of time, with σ the cloud rms radius and λdB =

√
2πh̄2/mkBT

is the de Brolie wavelength depending on the cloud temperature. For our experi-
mental parameters this gives σ/λdB ≈ 40 and for sin ωt = 1 we find ∆x/λdB = 1
at τ = 220µs.

From the above estimation it is clear that the loss of the overlap between the
wave functions of the |−1〉 〈−1| atoms and the stored atoms, |+1〉 〈+1|, does
not cause for our observed decoherence mechanism.

13.2 Varying the Optical depth DL power

In this section we go over the experimental results in which we vary the sample
OD or the DL power while keeping the other parameters constant. We present
the at first sight surprising result that both increasing the OD and increasing the
DL power reduces the total efficiency. Here we give an overview of the experi-
mental results and explain the physical source of the effect while, in section 13.3
we show that a 1D simulation qualitatively reproduces the effect.
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Figure 13.3: In-out efficiency when varying the OD (left plot) for two different DL pow-
ers, and for varying the DL power (right plot) for constant OD. The dashed line on the
right plot represents numerical simulation using these experimental parameters.

In Fig. 13.2 we show the writing and retrieval efficiency of the memory for two
different conditions: left plots shows the efficiency for constant DL power and
varying the sample OD, and in the right plots we show the efficiency for constant
sample OD (= 170) and changing the DL power. From the writing efficiency, as
shown in Fig. 13.2-top we find as expected, that as we increase either the DL
power or the sample OD the efficiency increases until it reaches saturation at
90%. On the other hand, when examining Fig. 13.2-bottom we find a different
behavior. In Fig. 13.2-bottom-right we find a maximum retrieval efficiency at
about 60µW DL power, where at lower powers the retrieval efficiency increases
(as expected) but when increasing the DL power above 60µW instead of satu-
rating the retrieval efficiency we see that it value reduces. A similar result is
found in Fig. 13.2-bottom-left when changing the OD for a DL power of 400µW.
Note that the retrieval efficiency results at constant power of 100µW monotonic
increase as one would have expected.

In Fig. 13.3 we show the total (in-out) efficiency of the memory and find a similar
result as in Fig. 13.2-bottom since the writing efficiency is saturated. To under-
stand possible mechanism that could explain this result we examine the actual
retrieved signals.

Even though we have a comparable decoherence time and input SB pulse du-
ration, we still expect that as we increase the DL power the time axis will be
compressed [Mishina07]. Which means that for higher DL power we should get
the light to come out faster and thus get better efficiency in the retrieval stage.
We do not observe this increase in the retrieval efficiency, and therefore exam-
ine the retrieved SB pulse shape with the different conditions. In Fig. 13.4-left
we use the optimal DL power for the highest OD and varied the OD and find
that the pulses become shorter with a higher peak photon flux and observe an
improvement in both the write and retrieval efficiency. From the pulses shape
we observe a combination of shrinking of the time axis with the ability to drive
out more photons, as we expect. This is compatible with the assumption that a
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Figure 13.4: SB photon flux at the retrieval stage as function of time. Left: different OD
and constant DL power of PDL = 100µW; middel: different OD and constant DL power
of PDL = 430µW; right: different DL power and constant OD = 170.

similar mode has been written into the sample with different efficiency.

Next we examine Fig. 13.4-middle in which we have used a high DL power
(430µW) and varied the OD. Except for the lowest OD (= 30) for all cases the
writing efficiency is about 90%, but the retrieval efficiency drops as we increase
the OD (see also Fig. 13.3-left). From the photon flux we see that for the higher
OD the peak photon flux decreases between OD = 110 and OD = 170 and
has more wiggles, i.e. has higher frequency components. This hints that as we
increase the OD we actually get a lower photon flux that would come out over
a longer time duration, and in the case of no losses both cases would give the
same output photons but at a different time. This situation can only occur if for
such a high DL power we actually write a different spatial mode into the sample,
such that the outgoing photon flux is different. In Fig. 13.4-right we have used
the highest OD (= 170) and varied the DL power. We see a similar effect as for
Fig. 13.4-middle, this is compatible with the theory given in [Mishina07].

In this section we have suggested that the reduction of efficiency is due to the
combination of high loss rate and writing different modes into the atomic sam-
ple. In the next section we show simulation results to support this explanation.

13.3 Simulating the OD and DL power results

When discussing the total (in-out) efficiency we need to separate the writing
efficiency and the retrieval efficiency. For the writing efficiency we would expect
that for a given OD there is a DL power above it the writing efficiency saturates.
Then, at the retrieval stage, given a sufficiently high DL power we expect a
change in the outgoing pulse shape but not in the retrieval efficiency. We remind
here that the coupling parameter for the interaction is R ·OD with R the Rayleigh
scattering rate (see section 11.4), i.e. during the retrieval changing the DL power
is equivalent to changing the OD. Contradictory to this picture we find that
even when the writing efficiency is high (about 90%) and does not change when
varying the DL power or the OD, the retrieval and total efficiency is reduced
when increasing the DL power or the OD. In first sight this result is surprising,
but as we show in this section it can be explained by combining a 1D model with
an appropriate loss rate.
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Figure 13.5: Simulation of the total (in-out) efficiency of the memory as function of time
without any losses; in the black dot-dashed line the DL flux normalized to fit the axis
scale. Left: constant DL power in the write stage and varying the DL power during
the retrieval stage as indicated by the legend; Right: equal DL power in the write and
retrieval stage as indicated by the legend. Note that the lines on the left plot are to show
the compression of the time axis.

In the above picture the hidden assumption is that we write the same spatial
mode into the sample, but when we change the DL power or the sample OD we
also write a different mode in the sample. Therefore we retrieve a different pulse
shape. To show this we have run two sets of simulations showing the retrieved
SB photons from the sample as function of time. In the first case we present the
situation of what we have expected to get by keeping the write stage DL power
(425µW) constant and varying the retrieval DL power only, see Fig. 13.5-left. In
the second set of simulations we use the same DL power for both the write and
retrieval stages, similar to the experimental situation, and vary the DL power see
Fig. 13.5-right. Note that at the end in both cases the total efficiency is similar
though the temporal shape of the retrieved light pulses is different.

From Fig. 13.5-left we can see several things, first as one expects when changing
the DL power we find compression or stretching of the time axis (see dashed
lines). In addition as the photons come out faster we find higher total efficiency
for any given time for the higher DL power, with maximum total efficiency of
about 70% but after about 60µs. From Fig. 13.5-right in which we have kept
the same DL power for both writing stage and the retrieval stage, we see that
changing the DL power does not just compress or stretch the time axis yet the
total efficiency is again about 70% after 60µs of retrieval time. When examining
the SB pulse shapes (given from the total efficiency) the main difference is found
at the initial stages, with more photons retrieved for the case of 100µW DL power
than for the case of 425µW DL power at the initial 15µs. After those 15µs the
situation is reversed and the total efficiency of the higher DL power is bigger.

To understand the source of the difference between Fig. 13.5-left and Fig. 13.5-
right, we look at the mode shape that was actually written into the atoms. This
is given in Fig. 13.6-left and shows the shape of the stored coherence (|+1〉 〈−1|)
along the sample (at time 9µs). For the weak DL powers (30µW and 100µW)
we actually get a trapezoidal shape with more excitations at the beginning of
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Figure 13.6: Left: The number of stored coherence |+1〉 〈−1| per µm as function of
position along the sample at different DL power at time 9µs corresponding to the storage
stage. Right: position-time color map of the stored excitations |+1〉 〈−1| at DL power of
100µW. For both plots we used OD = 170 and γ± = 0.

the sample, and for the DL power of 425µW we have a minimum point in the
middle of the sample. These shapes are closer to the ideal shape for the write
stage and for backward retrieval, but are "bad" for a forward retrieval scheme
[Gorshkov07b]. This difference between the stored shape explains the difference
in shape of the outgoing SB mode.

Figure 13.6-right shows a color map of the stored coherence amplitude as a
function of position-time, for the case of 100µW DL power. Here, the dynamics
of extracting excitations from the sample during retrieval can be followed over a
long time.

Another point that comes out from Fig. 13.5 and Fig. 13.6, is that the time scale
for the SB light to come out is about 60µs which is much larger than the 7µs
dephasing time we measured in section 13.1. Already from Fig. 13.5-right we can
see that for a short retrieval pulse of about 5µs we get a higher total efficiency for
the case with 100µW than for the case with 425µW. Therefore the next natural
step is to take into account the losses by adding an external decay channel to the
propagation equations on the two coherences T̂HV and T̂45 similar to the work
in [Gorshkov07a]. For brevity we write the change only on the time evolution
equations representing the two level system (Eq. 11.56) to:

∂

∂t

(
T̂45

T̂HV

)
= −

(
γ± −ω2p

ω2p γ±

)(
T̂45

T̂HV

)
+ 2εT1,z

(
−Ξ̂HV

Ξ̂45

)
(13.10)

where ω2p = 2
(
Ω̂σ,z + δ

)
is the difference from the two photon resonance, γ± is

the additional loss term. Additionally, in the simulations done in this chapter we
explicitly set the transverse magnetic field to zero. For simplicity the coherence
decay, which is non-exponential (see Eq. 13.5) is modeled here by a single decay
rate γ±.

We set γ± = 2π × 18kHz, such that it reproduces the total efficiency at OD =
170, DL power of 100µW, and a storage time of 6µs. We have used this deco-
herence decay rate and the initial experimental conditions to compare the mea-
sured total efficiency and the simulated total efficiency at different DL powers.
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Figure 13.7: Simulating full memory stage sending 1.2× 104 photons into a sample with
different DL power or different OD, with the experimental pulse shapes and a loss rate
of γ± = 2π × 18kHz. Here we zoom only on the SB output photon flux. Left: changing
the optical depth and keeping the DL power constant at 100µW; Right: changing the DL
power and keeping the OD constant at 170.

The result is given in Fig. 13.3-right, and we find that the simulation reproduce
the measured total efficiency at DL powers below 150µW but overestimates the
total efficiency for higher DL powers. The discrepancy could come from two
sources, low detection efficiency of the higher frequency components that exists
at higher DL power and the reduced visibility between the outgoing SB and LO4

(each could contribute about 70% and thus explain the difference).

Next we examine the SB outgoing photon flux for the different conditions includ-
ing the extra loss term. In Fig. 13.7-left we show the outgoing SB for different DL
powers and in Fig. 13.7-right for different sample OD. We can see in both plots
a similar behavior to the experimental data, i.e. when we increase the DL power
from 30µW to 100µW we find that the peak photon flux increases and that the
time scale is compressed. When increasing the DL power even further to 425µW
we find that the peak photon flux reduces and more high frequency components
appear for longer time. When we combine this effect with the additional loss
term (γ±) we get that when increasing the DL power we reduce the total mem-
ory efficiency. A similar result is found for the case of sample OD variation, as
expected by the 1D theory [Mishina07]. We find here that as we increase the OD
or the DL power we reduce the total memory efficiency, even though the writing
efficiency is high in both cases.

4We measure the SB outgoing mode shape in chapter 14
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Figure 13.8: Total efficiency for the experiments testing the SB linearity (left plot) and
the sensitivity to the two photon detuning (right plot).

13.4 Linearity

We test the linearity of the memory by varying the number of input photon of
the SB. Here we expect the memory efficiency to be constant as the maximum
number of photons sent through the atomic cloud is less than a percent of the to-
tal atom number. We note that these tests were done with an equal contribution
of the wrong polarization and of the SB, i.e. before we have optimized the input
polarization in section 10.2. In Fig. 13.8-left we show that the total efficiency is
the same for SB photon numbers in the range 0.18− 1.4× 104 as expected. The
experiments were done using a sample with 2× 106 atoms, OD = 100, tempera-
ture of T = 450nK which is about 1.5 times above the condensation temperature,
the storage time in these experiments is 5.5µs, with a cloud radial 1/e2 waist
of σ⊥ ∼ 18.2µm. We additionally note that here we used the "high" DL power
region for our experiment, i.e. PDL = 400µW with a write efficiency of about
85%.

13.5 Two-photon detuning

Here we are testing the sensitivity to the two photon resonance by changing the
DL frequency. Being off the two photon resonance means that we don’t cancel
nicely the precession due to the main magnetic field, which sets Ω̂σ,z + δ 6= 0
in Eq. 11.47. This will start a coherent oscillation between the two quadratures
of the stored coherence (|−1〉 〈+1|). Also these tests were done with an equal
contribution of the wrong polarization and of the SB.

We find that for a few tens of kilohertz two photon detuning there is no change
the total efficiency. The results are given in Fig. 13.8-right with the experimental
conditions are: a sample with 4.2× 106 atoms, OD = 180, temperature of T =
530nK which is about 1.35 times above the condensation temperature, the storage
time in these experiments is 6µs, with a cloud radial 1/e2 waist of σ⊥ ∼ 19.6µm.
Here we used PDL = 430µW with a write efficiency of about ≥ 90%.



Chapter14

The outgoing spatial mode
evolution

In this chapter we describe the measurement of the spatial shape of the outgoing
SB using the balanced homodyne imaging method presented in section 7.2.4.
We measure the spatial mode of the SB in two regimes, without and with wrong
polarization photons, as shown in Fig. 10.1. In section 14.1 measurements with
pure input polarization are discussed. The effect of interfering DL wrong polar-
ization are presented in section 14.2.

In these experiments we have changed the LO beam such that it is a close approx-
imation to a plane wave with a gain region much bigger than the SB region. This
allows us to also measure whether the SB diverges, for example due to diffrac-
tion as observed in Faraday rotation measurements with a BEC [Kaminski12b].
We note that even though in the Faraday rotation we have measured significant
diffraction we do not observe it here, even when working with a pure BEC.

14.1 Pure input polarization

Here we are interested in measuring the amount of outgoing SB photons and
their spatio-temporal evolution. The input SB and DL are prepared with no
measurable contribution of the wrong polarization photons1. We repeat these
measurements for two different cloud conditions.

We start by measuring the time evolution of the signal (with the large LO at the
same day) using the bucket detection. In Fig. 14.1 we show the time evolution of
the SB for the two different cloud parameters. The dashed black line shows the
different LO pulse timing used for the spatially resolved measurements. Note
that the observed time evolution is different from the pulse shapes presented
in the preceding chapter. This difference is assigned to the different LO shape
which defines the detection spatial mode.

In these experiments we used two thermal clouds with parameters: OD of 160
and 180, rms radius of 10.5µm and 9µm (1/e0.5), 4.2× 106 and 3.9× 106 atoms,
and reduced temperature T/Tc = 1.5 and T/Tc = 1.2. We use 1.87× 104 total
input SB photons with storage duration of 3.5µs, and DL power of 100µW which
gave maximum efficiency for these parameters (see section 13.2).

Here we analyze the images as described in section 7.2.4. For the case with no

1This means that when evaluating S̄ (defined by Eq. 7.16) we set ρwp = 0.
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Figure 14.1: The SB output flux measured with the same LO used for the imaging. The
dashed black lines represents the timing of the LO pulses, for 0µs, 1µs, and 2µs that are
used in Fig. 14.2

sum t t=0µs t=1µs t=2µs

sum t t=0µs t=1µs t=2µs

 

 

photons/pixel

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 14.2: The SB outgoing photons at different times, with the left frame is the sum of
all three other frames. The full white circle indicates the SB 1/e2 waist and the dashed
white circle indicates the atoms 1/e2 waist.

wrong polarization photons we rewrite Eq. 7.19 to get:

2
〈
S̄2

im(x, y)
〉

r =

(∫ T

0
dtρS cos φS

)2

+

(∫ T

0
dtρS sin φS

)2

(14.1)

The results are shown in Fig. 14.2. The presented signal is the average over
many realization of the sum of the squares of the two electric field quadratures
integrated over the LO pulse duration. From these measurement we can learn
how the SB spatial mode evolves during the retrieval stage. As can be seen it
changes with time. The light from the high OD regions comes out earlier than
from the regions with lower OD, as evident in the ring shape at time 1µs in
Fig. 14.2.

One of the motivations of these measurements was to test whether in these ex-
periments the SB diffracts when leaving the sample similar to the effect mea-
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OD = 160 OD = 180
sum t 1850 1550

t = 0µs 540 580
t = 1µs 1045 690
t = 2µs 265 280

Table 14.1: The mean number of detected photons in the imaging for the different im-
ages. Counting in the SB 1/e2 waist region. In these experiments we used 1.87× 104

input SB photons with storage time of 3.5µs.

sured in [Kaminski12b]. Such diffraction of the SB results in a reduction of the
LO-SB visibility when measuring with the bucket detection. A reduction in the
visibility could partly explain the observed low retrieval efficiency. As it turns
out we do not see evidence of diffraction of the outgoing SB even, with a pure
BEC cloud, i.e. the total detected photon flux matches nicely the spatial shape of
the atomic cloud. On the other hand we do see that the visibility is reduced and
therefore the detection efficiency is less than we assume in chapter 13, and for a
good detection we require a LO shaped in space and time.

From the spatial resolved images, as presented in Fig. 14.2, we get a lower bound
on the photon number. We measure the lower boundary since we detect the
square of the mean of the electric field and not the mean of the electric field
square2. This means that if the electric field changes its phase during the mea-
suring time (as one would expect from the bucket detection measurements) we
will underestimate the photon number.

Table 14.1 gives the lower bound on the photon number (by pixel counting) for
each frame. We find total efficiency of about 10%. This is a bit surprising, since
we would have expected to get better efficiency using the images than with the
heterodyne bucket detection. As in the homodyne imaging detection we are not
sensitive to the lowered visibility between the SB and LO in the bucket detection
measurements. We attribute this to the changing of the phase of the electric field
during the 1µs LO gate pulse, as we expect the electric field value to change sign.

14.2 Interference with the drive light wrong polarization

In this section we investigate the interaction between the stored SB mode and
the wrong polarization stored mode, done using the misaligned DL input polar-
ization (see Fig. 10.2) such that we have a comparable contribution of the SB and
wrong polarization outgoing photons3. When examining the square of the ho-
modyne signal we are sensitive to the linear contribution of the light sources and
to the additional interference term that depends on the phase difference between
the two light sources, see Eq. 7.19. If the two phase sources are not correlated,
then the interference term will average to zero over many realizations.

In Fig. 14.3 we present the signals analyzed using Eq. 7.19 (plotting twice the
signal to compensate the factor of 0.5), at a time corresponding to 1µs in Fig. 14.2.
We find that the spatial mode shape for the images measuring both the SB and
the storage of the wrong polarization is different than the images measuring

2Mathematically this statement is: 〈E〉2 ≤
〈

E2〉, with E the electric field. Where
〈

E2〉 is
proportional to the number of photons, and we measure 〈E〉2.

3This corresponds to an angle of 3.5 degrees in Fig. 10.2.
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Figure 14.3: The analyzed raw images presenting 2
〈
S̄2

im(x, y)
〉

r as defined by Eq. 7.19.
On the left column the measurements with both the SB and wrong polarization photons
and on the right column the measurements with only the wrong polarization photons.
The top row shows the results down with a bimodal cloud and the bottom row for a
thermal cloud just before condensing.

only the storage of the wrong polarization mode. It is also evident that the
mode shape varies with the cloud temperature. From the two images with only
the wrong polarization photons we measure a stronger signal for the higher OD
cloud. To investigate if the interference term has a non zero contribution, we
subtract the two images (left minus right frames in Fig. 14.3). The result is the
combined contribution of the SB and the interference term, and are shown in
Fig. 14.4 together with the cross sections with the sample OD.

Here we find, unexpectedly, that the difference images have negative values at
the center, more pronounced as we increase the peak OD of the cloud. The
negativity is due to the interference term of Eq. 7.19, and implies some locking
mechanism between the two phases (φS − φwp ≈ const.), that becomes more
dominant as the OD is increased. The source for such a mechanism is not clear
to us.

Since this results implies a correlated phase difference, we take a closer look at
the fair sampling assumption. The source of the wrong polarization comes from
the DL, therefore we are interested in comparing the phase difference between
the SB and the DL before interacting with the atoms. We do this by using the
heterodyne detector measuring this phase difference using the bucket detection
setup discussed in section 7.1. From this independent testing we find that the
relative phase is stable only over several minutes. The actual measurements of
each set took over one hour and 40 minutes, with each realization taking about
80s. This means that over the time it took to take 20 different realizations we had
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Figure 14.4: The cross-section and images (inset) of the difference between the outgoing
SB and wrong polarization and only the wrong polarization. The cloud OD is over-
lapped with the cross-section as a right axis.

enough time to sample sufficiently different phases to assume fair sampling.

As the time it took to take the data is much larger than the phase stability of
our setup and the fact that we see consistent results for the different peak OD,
suggest a phase locking mechanism is present.

14.3 Potential for multimode memory

Our balanced homodyne imaging system is appropriate for measuring multi-
mode memory. The high OD achieved here is good for storing many different
spatial modes [Zeuthen11], and using our imaging system we can identify up to
30 different independent image patterns.

For utilizing our imaging system for a multimode memory, we need to add a
phase lock on the different beams before the atoms. This will allow us to chose
which quadrature of the SB electric field we measure in each realization, and
will remove the need to average over many realizations.



Chapter15

Hindsight is 20/20

The phrase hindsight is 20/20 comes for the American vision test, and states
that if you could see how an event would have turned out, you could have seen
perfectly how to avoid its problems1. Similarly, this chapter is devoted to answer
the question: Now after the experiments are done, what would one change to
improve it?

The first thing we can improve is the storage time. In our setup we have mea-
sured, in section 13.1, a storage time of 7µs when using the Zeeman sublevels∣∣F0 = 1, m f = ±1

〉
with F0 the ground level hyperfine quantum number and m f

the Zeeman sublevel quantum number. The source for this dephasing is the first
order sensitivity of the Zeeman sublevel splitting in the inhomogeneous field of
the magnetic trap. One can drastically reduce this by replacing the target level∣∣F0 = 1, m f = +1

〉
to
∣∣F0 = 2, m f = +1

〉
which results in first order insensitivity

to the magnetic field. The level configuration is shown in Fig. 15.1-(A). In the
group of A. Kuzmich at Atlanta a storage time of a few hundreds of millisec-
onds have been achieved using this configuration [Dudin10]. For our setup this
change is expected to improve the storage time from 7µs to tens of milliseconds2.
An additional improvement can be made by moving to a dipole trap and thus
remove all together the different magnetic field values along the sample.

The new configuration given in Fig. 15.1-(A) requires changing the drive light
(DL) frequency by ∆ f = 6.8GHz. This can be achieved with current technol-
ogy [Appel09]. In addition to the fact that these two levels being first order
magnetic insensitive, this new configuration also reduces the sensitivity to the
wrong polarization of the DL beam (see section 10.2). Furthermore the optical
pumping effect into F0 = 2 from the inital populated ground state is signifi-
cantly reduced as well (see section 10.4). This reduction is due to the larger DL
detuning3 and the reduction of DL power for the same coupling coefficient, i.e.

(∆new/∆old)
2
(

C1,0
2,1;1,−1/C1,0

1,1;1,−1

)2
= (6.4/1)2 (12/4) = 125 with C...

... the appro-
priate Clebsch-Gordan coefficient.

In Fig. 15.1-(B) we show an additional improvement to the configuration given
in Fig. 15.1-(A), in which we have changed the roles of the initially populated

1Another interpretation for this phrase is that it is easy for one to be knowledgable about an
event after it has happened.

2If one takes into account the next order correction in the magnetic field we expect an im-
provement of about µBB/∆Eh f

∼= 5× 103 that gives a time constant of about 35ms. Here µB is the
Bohr magneton, B is the total magnetic field, and ∆Eh f is the ground hyperfine splitting.

3Here the detuning refers to between the initially populated ground state
∣∣∣F0 = 1, m f = −1

〉
and to the excited level

∣∣∣F = 2, m f = −2
〉

.
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Figure 15.1: Full level scheme of Rubidium 87, used for a memory experiment. The
relevant lines for the memory are shown with their Clebsch-Gordan coefficients. In (A)

the initial populated ground level is
∣∣∣F0 = 1, m f = −1

〉
, and in (B) the initial populated

ground level is
∣∣∣F0 = 2, m f = +1

〉
.

ground level and the target level4. This change improve the OD by a factor of
three for the same number of atoms, due to the more favorable Clebsch-Gordan
coefficients. For our parameters this will change the OD from 180 to 540 which
is significantly higher than the benchmark of OD = 200 given in [Gorshkov07b].

In the experiments presented in this thesis we used a "magic" detuning in which
there is no differential light shift to the levels due to the DL5 (see chapter 7). To
find the "magic" detuning value, we match the light shift of the two levels for
the two new configurations and find:

1
4∆

+
1

4(∆− δh)
=

1
2(∆− δh −∆h)

⇒ ∆ = δh
1 + δh/∆h

2 + δh/∆h
(15.1)

1
12∆

+
1

12(∆− δh)
=

1
6(∆− δh + ∆h)

⇒ ∆ = δh
1− δh/∆h

2− δh/∆h
(15.2)

where ∆ is the detuning referenced to F = 1, F is the excited hyperfine quantum
number, δh = 814.5MHz is the excited hyperfine splitting, and ∆h

∼= 6.8GHz is
the ground hyperfine splitting. Equation 15.1 treats the case depicted in Fig. 15.1-
(A) and leads for a detuning ∆ = 2π× 430MHz. The case shown in Fig. 15.1-(B)
resulting in a detuning ∆ = 2π × 380MHz.

The second change would be to reduce the transverse dependence on the optical
depth (OD). In chapter 14 we have seen that when the signal beam (SB) is mode
matched to the transverse inhomogeneous sample it results in a spatial-temporal
changing output SB mode. The motivation for such a design was utilizing all the
atoms in the sample. This introduces a detection problem when using homodyne
(or heterodyne) detection, as the visibility changes with time. One can overcome
this problem by either time dependent shaping off the local oscillator such that
it fits the SB output mode using similar techniques as used in [Jack09], or a
sampling transverse homogenous sample.

There are several several ways to sample a transverse homogenous sample. The
most simple one is to focus the SB tighter, such that the beam waist is much

4Using this level will reduce less the effect of optical pumping from 125 to 40.
5This could also be thought of as canceling the Faraday term in the Hamiltonian.
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smaller than the sample similar to the approach used in [Riedl12]. The problem
with this approach is that the coherence time is proportional to the time it takes
the atoms to move out of the beam region. Another approach is to use a spatial
homogeneous trap, for example by combining the trap with an additional blue
detuned circular trap. This change is a significant change to the experimental
apparatus. If we allow a different experimental setup then a 3D Mott-insulator
setup is preferable in which the atoms are trapped in an optical lattice with
occupation of one atom per site. This freezes the atomic motion and still have
high optical depth with long coherence time. Which was demonstrated in the
group of I. Bloch with a coherence time of 240ms [Schnorrberger09]. Another
promising setup could be using a nano-fiber where the atoms are trapped near
the fiber by the evanescent field [Dawkins11].
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Summary
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Chapter16

Summary

In this thesis we have presented two projects:

1. Detuning asymmetry in Rayleigh superradiance, in part I of this thesis.

2. First steps (in our lab) towards producing multimode high efficiency mem-
ory using ultra-cold atomic ensemble, in part II of this thesis.

In part I we have started by presenting the commonly used physical model de-
scribing Rayleigh superradiance, i.e. how the initial spontaneous scattering event
produces a Bragg grating which in turn amplifies the probability of getting the
next spontaneous scattering event and thus leads to an exponential increase of
the scattering rate. Since this mechanism depends on the Rayleigh scattering
rate, R ∝ 1/∆2 with ∆ is the detuning, we were surprised and puzzled when
claims appeared in the literature that superradiance can only occur when us-
ing red detuning probe light (∆ < 0) [Deng10a], but proposed explanations
remained controversial [Ketterle11, Deng11].

We have developed a different model for the asymmetry based on the idea that
the source of the asymmetry lies in light-assisted collisions followed by radia-
tion trapping. To support this we have measured the threshold as function of
detuning, and correlate it to the additional losses. We have derived a quan-
titative model that evaluates the extra losses. In addition we have repeated
the well known derivation of the superradiance onset when including propaga-
tion effects, starting from the Maxwell-Schrödinger equations with an additional
mean-field term, showing the detuning symmetry of that model. The motivation
for this was to answer one of the claims put forth in [Deng10b], which states that
if one takes into account both the mean-field energy and the propagation effects
than the asymmetry will show up.

The second project, presented in part II, describes the first steps towards re-
alizing a high efficiency multimode off-resonance Raman memory. Here after
describing the experimental setup and detection system, we have identified the
technical problems and how these have been overcome. We have derived a sim-
ple 1D model and have realized a numerical simulation of the full propagation
equations in time and space. This model has been used to design the input signal
beam temporal mode shape.

We have examined the dependence of the system to different parameters. Here
we have found that the dephasing time scale for our configuration in the mag-
netic trap is 7µs. Next we have tested the system sensitivity to the sample optical
depth and drive light power, and have found that instead of saturating the total
efficiency we get a reduction of the total efficiency. This is due to a combination
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of the high dephasing rate and of writing to a non optimal mode for retrieval,
in the sample. To get higher efficiency and longer storage time one can either
change the memory ground levels to levels that are first order magnetic insensi-
tive (expected increase of the storage time by ∼ 103) or transfer the atoms into a
dipole trap.

As a first step towards multimode memory and to test the heterodyne detec-
tion efficiency we have used the dual port imaging system used to measure
the spatial Faraday rotation angle [Kaminski12a, Kaminski12b] to measure the
spatio-temporal shape of the retrieved signal beam mode. Here the imaging sys-
tem can detect up to 30 independent modes in the region of the atomic sample.
From these measurements we have found that the retrieved signal beam has a
spatial dependence corresponding to the spatial dependence of the sample op-
tical depth. The signal in the region at higher optical depth is retrieved earlier
than the signal at the region with lower optical depth. This effect reduces the
visibility of the signal beam and local oscillator interference and thus reduces the
efficiency of our heterodyne detection. We have suggested different approaches
to reduce the sensitivity to this effect.



Part IV

Appendices
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AppendixA

Evaluating the dipole trap
frequencies

Here we are interested in finding the dipole trap depth and the appropriate trap
frequencies. Starting with an atom in the ground stat angular momentum F0
and an excited angular momentum F. We consider the off resonance light with
a detuning ∆ interacting with an atom via the interaction Hamiltonian Hint. The
atomic and interaction Hamiltonians are given by:

Hat = −h̄∆∑
n
|F, n〉 〈F, n| − h̄(ωr + ∆)∑

m
|F0, m〉 〈F0, m| (A.1)

Hint = −dE (A.2)

Where ωr is the atomic resonance frequency, m (n) stands for an ground (excited)
Zeeman sublevel quantum number. Since we are considering far off resonance
interaction we can adiabatically eliminate the excited states, and by using the
Schrödinger equation we get,

ih̄
∂

∂t
|F, n〉 = (Hat + Hint) |F, n〉 = 0 (A.3)

−h̄∆∑
ns

|F, ns〉 〈F, ns|F, n〉 − 1dE1 |F, n〉 = 0

−h̄∆ |F, n〉 −∑
ns

∑
ms

|F0, ms〉 〈F0, ms |dE| F, ns〉 〈F, ns|F, n〉 = 0

h̄∆ |F, n〉 = −∑
ms

〈F0, ms |dE| F, n〉 |F0, ms〉 (A.4)

In the second line of Eq. A.3 we have added to the interaction Hamiltonian the
unit matrix 1, and then write it as a sum over all ground or excited levels. Note
that in general the sum also need to be over all ground hyperfine levels (F0).
Rewriting the interaction Hamiltonian and adding the above result gives,

Hint = −1dE1 = −∑
ns

∑
ms

〈F, ns |dE| F0, ms〉 |F, ns〉 〈F0, ms| ,

Hint =
1

h̄∆ ∑
ns

∑
ms,m
〈F, ns |Ed| F0, ms〉 〈F0, m |dE| F, ns〉 |F0, m〉 〈F0, ms| (A.5)

In this thesis we are using the electric field defined as, E = E+ + E−, where the
plus sign is for positive frequencies and the annihilation operator (â) and the
minus sign is for the negative frequencies and the creation operator (â†). Thus
after the RWA (rotating wave approximation) we are left with

Hint =
1

h̄∆ ∑
ns

∑
ms,m

E−
〈

F, ns
∣∣d−∣∣ F0, ms

〉 〈
F0, m

∣∣d+
∣∣ F, ns

〉
|F0, m〉 〈F0, ms|E+ (A.6)
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106 Evaluating the dipole trap frequencies

Next we move to the reduce dipole matrix elements [Steck08] to get:

Hint =
1

h̄∆
|〈J ‖d‖ J0〉|2×

∑
ns

∑
ms,m

∑
q1,q2

E−q1
c̃F,ns

F0,ms;1,q1
c̃F0,m

F,ns;1,q2
E+

q2
|F0, m〉 〈F0, ms| (A.7)

where c̃...
... is the reduction coefficient, and J0 (J) is the total angular momentum

of the ground (excited) state. The definition of the electric field is related to the
intensity by I = 2ε0cE− · E+, with ε0 is the vacuum permittivity and c is the
speed of light.

A.1 Solving for a specific transition

Here we are interested in evaluate the dipole trap for the case of circular po-
larized light for a specific transition. Since in the superradiance experiments
the atomic sample is fully polarized, i.e. all atoms are in the ground state∣∣F0 = 1, m f = −1

〉
, and are probed by a circularly polarized light correspond-

ing to the excited sate |F = 2, ns = −2〉. For this case we get,

Udip =
〈

F0 = 1, m f = −1
∣∣Hint

∣∣F0 = 1, m f = −1
〉

,

Udip =
(

c̃F=2,ns=−2
F0=1,m f =−1;1,−1

)2 |〈J ‖d‖ J0〉|2

2ε0ch̄∆
I (A.8)

with c̃F=2,ns=−2
F0=1,m f =−1;1,−1 = 1/

√
2.

A.2 Evaluating the trap frequencies

Expressing the dipole potential as an harmonic oscillator, by expanding the po-
tential around the beams focus. Therefor we explicitly write the intensity into
Eq. A.8, and get

Udip =
U0

∆

2P
πw2

0(1 + z2/z2
r )

e
− 2ρ2

w2
0(1+z2/z2

r ) =

≈ U0

∆

2P
πw2

0

(
1− z2/z2

r −
2

w2
0

ρ2
)

(A.9)

where zr = πw2
0/λ is the Rayleigh range, P is the beam power, w0 is the beam

waist at the focal point, λ is the beam wavelength, and U0 = Udip∆/I is a con-
stant of units given by Eq. A.8, and ρ and z are the transverse and axial coordi-
nates. We write it as an harmonic potential V = 1

2 mω2
⊥ρ2 + 1

2 mω2
z z2, thuse we

find

ω2
⊥ = −U0

∆

8P
πmw4

0
(A.10)

ω2
z = −U0

∆

4P
πmw2

0z2
r
= −U0

∆

4Pλ2

π3mw4
0

(A.11)



AppendixB

Electric �eld in free space

Here we are interested in examining the difference in describing the electric field
using a single cavity mode and a free space mode1 [Gorshkov07a, Gorshkov07b].
Note that the end result is the same for both descriptions.

We start with the usual description of positive and negative frequency electric
field [Garrison08],

E = E(+) + E(−) (B.1)

E(+) = igâe−iωmt (B.2)

Here g is the electric field coefficient given by Eq. 11.10, ω is the frequency, and
â is the annihilation operator of the cavity mode. The quantization of the field
is done inside a close box with a volume of AL, with A is the cross section and
L is the length. When moving to a free space one takes L → ∞ which means a
continuum of modes, thus we want to use only the cross section to get discrete
(quanta of) modes [Gorshkov07b]. In such a case the electric field is defined as
[Gorshkov07b],

E(+)(z) = ig

√
L

2πc

∫
dωâωeiωz/c = iε

√
h̄ωm

4πcε0A

∫
dωâωeiωz/c (B.3)

Here ε is the electric field unit vector, ε0 is the vacuum permeability, c is the
speed of light, A is an effective area of the beam, and h̄ωm is the energy of a
single photon. This result is a Fourier transform when the limits are taken to
infinity. In the above transformation the annihilation operator was redefined
and now its units has changed from square root of the number of photons to
[âω] =

√
s · #ph. The commutation relation is now given by,[

âω, â†
ω′

]
= δ(ω−ω′) (B.4)

with δ(ω − ω′) the Dirac delta function. Now we can define a slowly evolving
annihilation operator

ε̂(z) =

√
L

2πc
ei(ωm−z/c)t

∫
dωâω(t)eiωz/c, (B.5)

regaining the units of square root of the number of photons. With a commutation
relation reducing to [

ε̂sb, ε̂†
sb

]
= Lδ(z− z′) (B.6)

using this definition for the commutation relation and for the annihilation and
creation operators reproduces the result for the cavity model, thus in Eq. 11.21
we have used the above commutation relation.

1In [Kupriyanov05, Geremia06, Mishina07] the electric field was not taken as free space one.
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AppendixC

The Stokes parameters

In this appendix we define the Stokes parameters, which allows us a convenient
way of redefine the electric field by intensity difference for different polariza-
tions. There are several ways of defining them typically in quantum optics one
defines them via the annihilation and creation operators. In this thesis we are
following the notations given in [Kupriyanov05] with the units of photon flux,
and not as number of photons [Geremia06]. Another very convenient way to de-
fine the Stokes parameters is using the Pauli matrices (σ) and define then as the
number of photons, i.e. Ŝ = 1

2 â†σâ [Koschorreck09] with a ≡ [â+, â−]
T and â+,

â− are annihilation operators for left and right circular polarization respectively.

We define the Stokes parameters [Kupriyanov05, Mishina07] as:

Ξ̂0 =
c
L

(
â†
+ â+ + â†

− â−
)

(C.1)

Ξ̂45 = − c
iL

(
â†
+ â− − â†

− â+
)

(C.2)

Ξ̂σ =
c
L

(
â†
+ â+ − â†

− â−
)

(C.3)

Ξ̂HV = − c
L

(
â†
+ â− + â†

− â+
)

(C.4)

where c is the speed of light, L is the sample length, and the subscript represents
the analysis base i.e. HV - for the horizontal and vertical polarization basis, 45 -
for the ±45◦ degree with respect to the HV polarization basis, σ for the circular
polarization basis, and 0 for the total photon flux. Note that here the the Stokes
parameters have units of 1/s, and Ξ2

0 = Ξ2
45 + Ξ2

σ + Ξ2
HV .

Using the definition of the electric field given in Eq. 11.8, we can rewrite the
Stokes parameters as:

Ξ̂0 =
c

g2L
Ê−Ê+ (C.5)

Ξ̂45 =
c

g2L
(
Ê−+45◦ Ê

+
+45◦ − Ê−−45◦ Ê

+
−45◦

)
(C.6)

Ξ̂σ =
c

g2L

(
Ê−

σ+(R)Ê
+
σ+(R) − Ê−

σ−(L)Ê
+
σ−(L)

)
(C.7)

Ξ̂HV =
c

g2L

(
Ê−x Ê+

x − Ê−y Ê+
y

)
(C.8)

Ξ̂± =
1√
2

(
Ξ̂HV ± iΞ̂45

)
(C.9)

with g the electric field dimension constant, in cgs we get c/(g2L) = Ac/(2πh̄ω).
Where A is the cross-section area of the light beam propagating through the
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medium, ω is the laser radial frequency, and h̄ is the Planck constant divided by
2π.

With the transformation base given by

Ê45o =
1√
2

(
Êx + Êy

)
; Ê−45o =

1√
2

(
Êx − Êy

)
(C.10)

Êσ+ = − 1√
2

(
Êx + iÊy

)
; Êσ− =

1√
2

(
Êx − iÊy

)
(C.11)

It is useful to rewrite the Stokes parameters using the HV basis gives:

Ξ̂0 =
c

g2L

(
Ê−x Ê+

x + Ê−y Ê+
y

)
(C.12)

Ξ̂45 =
c

g2L

(
Ê−x Ê+

y + Ê−y Ê+
x

)
(C.13)

Ξ̂σ =
c

g2L
i
(

Ê−x Ê+
y − Ê−y Ê+

x

)
(C.14)

When evaluating the commutation relation of the Stokes parameters at free space
using Eq. B.6 gives[

Ξ̂i(z), Ξ̂j(z′)
]
= 2iε i,j,k

c
L

Ξ̂kLδ(z− z′) = 2iε i,j,kcΞ̂kδ(z− z′) (C.15)

Where ε i,j,k is the Levi-Civita unti-symmetric tensor, and i, j, k are running index
{i, j, k} = {45, σ, HV}, and z and z′ are the position in free space to evaluate the
Stokes parameters. Thus we get the result of Eq. 11.21.



AppendixD

Expressing the e�ective
Hamiltonian with the

irreducible Tensors

Here we are starting with the effective Hamiltonian as derived (expressed) in
[Kupriyanov05], and go through the derivation steps for describing the effective
Hamiltonian using the irreducible tensors notation [Varshalovich88]. In showing
the derivations steps we have two goals: 1) show how does the magnetic field
changes the effective Hamiltonian as presented in [Kupriyanov05], and 2) show
the actual derivation steps since they are not given in detail in [Kupriyanov05],
and are important to get the right coefficients. As will be shown below, the
convention of the reduced dipole matrix used could give a factor of 2F0 + 1
(where F0 is the total angular momentum of the ground state).

Here in the derivation we are using the Stokes parameters as defined by Eq. C.5-
C.8. Which leaves the transformation between SI units and cgs units simple.

D.1 The starting point - definitions

In this section we start with the effective Hamiltonian after using the RWA
and adiabatically eliminating all the excited states one get the well known de-
scription for the effective light-atom interaction Hamiltonian [Kupriyanov05,
Kaminski12b]:

He f f = −Ê−i αi,jÊ+
j (D.1)

Ê0 = Ê−0 + Ê+
0 (D.2)

αi,j = ∑
m,m′

∑
n

〈F0, m′ |di| F, n〉
〈

F, n
∣∣dj
∣∣ F0, m

〉
−h̄(ω−ωn,m)− ih̄Γ/2

∣∣F0, m′
〉
〈F0, m| (D.3)

where He f f is the effective Hamiltonian, Ê0 is the electric field, αi,j is the po-
larizibility tensor, Ê+ (Ê−) is the electric field operator describing the positive
(negative) frequency components, ω is the laser frequency, ωn,m is the resonance
line frequency, {i, j} indicates {x, y} cartesian coordinates, Γ is the line width
(used to account for spontaneous emission losses), F0 (F) is the ground (excited)
state hyperfine total angular momentum with the ground (excited) sublevels m
or m′ (n), and d = er is the dipole moment with the corresponding matrix ele-
ment 〈F0, m′ |di| F, n〉. Here we also invoke the sum rule ({i, j} = {1, 2} = {x, y},
and choose the quantization along the light propagation direction z thus we con-
sider only transverse electric field. Note we got the same result in appendix A
Eq. A.6.
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Next we use the definition of the irreducible tensors [Varshalovich88],

∣∣F0, m′
〉
〈F0, m| = ∑

K,Q

√
2K + 1
2F0 + 1

CF0,m′
F0,m,K,QT̂K,Q (D.4)

T̂K,Q =

√
2K + 1
2F0 + 1 ∑

m′,m
CF0,m′

F0,m,K,Q

∣∣F0, m′
〉
〈F0, m| (D.5)

with CF0,m′
F0,m,K,Q the Clebsch-Gordan coefficient. Entering this definition into the

polarizibility (Eq. D.3) we get,

αi,j = ∑
K,q

(√
2K + 1
2F0 + 1 ∑

m,m′
∑
n

ãi,j(m, m′, n)

)
T̂K,q (D.6)

ãi,j(m, m′, n) =
〈F0, m′ |di| F, n〉

〈
F, n

∣∣dj
∣∣ F0, m

〉
−h̄(ω−ωn,m)− ih̄Γ/2

CF0,m′
F0,m,K,q (D.7)

We define the detuning as ∆n,m = ω−ωn,m, and for brevity we neglect Γ for the
rest of this derivation.

D.2 Transforming into a circular basis

In this section we change the coordinate system from cartesian to a spherical
(circular) basis. More specifically we simplify the brackets on the right side of
Eq. D.6. The dipole operators transform into spherical coordinates as:

dx = −d+ − d−√
2

; dy = −d+ + d−
i
√

2
, (D.8)

The dipole matrix can be reduced such that

〈F0, m |d±| F, n〉 = 〈F0 ‖d‖ F〉CF0,m
F,n;1,±1 (D.9)

〈F, n |di| F0, m〉 =
(
(〈F, n |di| F0, m〉)†

)†
=

=
(〈

F0, m
∣∣∣d†

i

∣∣∣ F, n
〉)†

= (〈F0, m |di| F, n〉)† (D.10)

i can be either x or y, and using that in cartesian coordinates d†
i = di. Evaluating

the different dipole matrix elements:

〈
F0, m′ |dx| F, n

〉
= − 1√

2
〈F0 ‖d‖ F〉

(
CF0,m′

F,n;1,1 − CF0,m′
F,n;1,−1

)
(D.11)

〈
F0, m′

∣∣dy
∣∣ F, n

〉
= − 1

i
√

2
〈F0 ‖d‖ F〉

(
CF0,m′

F,n;1,1 + CF0,m′
F,n;1,−1

)
(D.12)

〈F, n |dx| F0, m〉 = − 1√
2
〈F0 ‖d‖ F〉

(
CF0,m

F,n;1,1 − CF0,m
F,n;1,−1

)
(D.13)

〈
F, n

∣∣dy
∣∣ F0, m

〉
=

1
i
√

2
〈F0 ‖d‖ F〉

(
CF0,m

F,n;1,1 + CF0,m
F,n;1,−1

)
(D.14)

We define the reduced dipole matrix element as

DF,F0 =
|〈F ‖d‖ F0〉|2

−h̄ (ω−ωF,F0)
=
|〈F ‖d‖ F0〉|2

−h̄∆F,F0

(D.15)
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D.3 Summing the transverse part in the effective
Hamiltonian

Now we explicitly write the different components of ã:

ãx,x =
1
2

Dn,m

(
CF0,m′

F,n;1,1 − CF0,m′
F,n;1,−1

) (
CF0,m

F,n;1,1 − CF0,m
F,n;1,−1

)
CF0,m′

F0,m,K,q (D.16)

ãy,y =
1
2

Dn,m

(
CF0,m′

F,n;1,1 + CF0,m′
F,n;1,−1

) (
CF0,m

F,n;1,1 + CF0,m
F,n;1,−1

)
CF0,m′

F0,m,K,q (D.17)

ãx,y = − 1
2i

Dn,m

(
CF0,m′

F,n;1,1 − CF0,m′
F,n;1,−1

) (
CF0,m

F,n;1,1 + CF0,m
F,n;1,−1

)
CF0,m′

F0,m,K,q (D.18)

ãy,x =
1
2i

Dn,m

(
CF0,m′

F,n;1,1 + CF0,m′
F,n;1,−1

) (
CF0,m

F,n;1,1 − CF0,m
F,n;1,−1

)
CF0,m′

F0,m,K,q (D.19)

From simple angular momentum conservation (addition) we can limit to two
relations between m′ and m, and writing these two cases as,

• Σ
q=0
± = CF0,m′

F,n;1,±1CF0,m
F,n;1,±1CF0,m′

F0,m;K,q 6= 0 when m′ = m and q = 0.

• Σq=±2 = CF0,m′
F,n;1,±1CF0,m

F,n;1,∓1CF0,m′
F0,m;K,q 6= 0 when m′ = m± 2 and q = ±2.

We note at this point that it is very tempting to use known relations and to sum
over all of the excited and ground states, but this will directly assume degeneracy
of the states. Since we are interested in showing the effect of the magnetic field
that removes this degeneracy, at this point we do not do this simplification.

It is convenient to write the ã coefficients using the above Σ, thus we get:

ãx,x =
1
2

Dn,m

(
Σ

q=0
+ + Σ

q=0
− − Σq=2 − Σq=−2

)
(D.20)

ãy,y =
1
2

Dn,m

(
Σ

q=0
+ + Σ

q=0
− + Σq=2 + Σq=−2

)
(D.21)

ãx,y = − 1
2i

Dn,m

(
Σ

q=0
+ − Σ

q=0
− + Σq=2 − Σq=−2

)
(D.22)

ãy,x =
1
2i

Dn,m

(
Σ

q=0
+ − Σ

q=0
− − Σq=2 + Σq=−2

)
(D.23)

Next we look at the sum over the different transverse coordinates and get

E−i ãi,jE+
j =

=
1
2

Dn,m

(
Σ

q=0
+ + Σ

q=0
−

) (
Ê−x Ê+

x + Ê−y Ê+
y

)
+

+
i
2

Dn,m

(
Σ

q=0
+ − Σ

q=0
−

) (
Ê−x Ê+

y − Ê−y Ê+
x

)
+

−1
2

Dn,m
(
Σq=2 + Σq=−2

) (
Ê−x Ê+

x − Ê−y Ê+
y

)
+

+
i
2

Dn,m
(
Σq=2 − Σq=−2

) (
Ê−x Ê+

y + Ê−y Ê+
x

)
(D.24)

Here we identify the electric field as the Stokes parameters, see Eq. C.12- C.14 in
appndix C, and get:

c
Lg2 E−i ãi,jE+

j =

=
1
2

Dn,m

(
Σ

q=0
+ + Σ

q=0
−

)
Ξ̂0 +

1
2

Dn,m

(
Σ

q=0
+ − Σ

q=0
−

)
Ξ̂σ+

−1
2

Dn,m
(
Σq=2 + Σq=−2

)
Ξ̂HV +

i
2

Dn,m
(
Σq=2 − Σq=−2

)
Ξ̂45 (D.25)
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with c is the speed of light, L is the sample length, and g is the electric field coef-
ficient (see Eq. 11.10). The pre-factor is needed to set get the Stokes parameters.

Next we define the polarizibility for the different cases, and include the sum over
all transitions,

α0+ =
1
2

√
2K + 1
2F0 + 1 ∑

m
∑
n

Dn,m

(
Σ

q=0
+ + Σ

q=0
−

)
(D.26)

α0− =
1
2

√
2K + 1
2F0 + 1 ∑

m
∑
n

Dn,m

(
Σ

q=0
+ − Σ

q=0
−

)
(D.27)

α+2 =
1
2

√
2K + 1
2F0 + 1 ∑

m
∑
n

Dn,mΣq=2 (D.28)

α−2 =
1
2

√
2K + 1
2F0 + 1 ∑

m
∑
n

Dn,mΣq=−2 (D.29)

and get: √
2K + 1
2F0 + 1

c
Lg2 E−i ãi,jE+

j =

α0+Ξ̂0 + α0−Ξ̂σ − α+2
(
Ξ̂HV − iΞ̂45

)
− α−2

(
Ξ̂HV + iΞ̂45

)
(D.30)

D.4 The effective Hamiltonian

In this section we explicitly write the results for the effective Hamiltonian as
written, using Eq. D.1 and Eq. D.6 and Eq. D.30. We start by writing the explicit
for for a given level

He f f (n, m) = −Ê−i αi,jÊ+
j = −Lg2

c ∑
K,F

(
α0+Ξ̂0 + α0−Ξ̂σ

)
T̂K,0+

Lg2

c ∑
K,F

{
α+2

(
Ξ̂HV − iΞ̂45

)
T̂K,2 + α−2

(
Ξ̂HV + iΞ̂45

)
T̂K,−2

}
(D.31)

Notice that K represent the change in angular momentum, therefore in the limit
of second order perturbation it is limited to K ≤ 2.

It is convenient to re-express the Dn,m constant reducing the dipole matrix to
the total ground (excited) angular momentum J0 (J) using the formulas given in
[Steck08] to find

Dn,m = − h̄
2

Γ

2∆F,F0

σ0

A
c

g2L
(2J + 1)(2F + 1)

{
F F0 I
J0 J 1

}2
1

∆n,m
∆F,F0

+ iΓ
2∆F,F0

(D.32)

where A is the sample cross section, σ0(= 3λ2/(2π)) is the atomic absorption
cross-section, λ is the laser wavelength, I is the nuclear spin, {} is the 6-j symbol.
We have explicitly included the atomic line with Γ. It is convenient to define the
extra constant

χ =
1
2

√
2K + 1
2F0 + 1

(2J + 1)(2F + 1)

{
F F0 I
J0 J 1

}2

(D.33)
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and now we can define a dimensionless modified polarizibility

α̃ =
2
h̄

g2L
c

α (D.34)

α̃0± = −
(

Γ

2∆F,F0

)(σ0

A

)
∑
m

∑
n

χ
Σ

q=0
+ ± Σ

q=0
−

∆n,m
∆F,F0

+ iΓ
2∆F,F0

(D.35)

α̃±2 = −
(

Γ

2∆F,F0

)(σ0

A

)
∑
m

∑
n

χ
Σq=±2

∆n,m
∆F,F0

+ iΓ
2∆F,F0

(D.36)

Thus we get the following effective Hamiltonian

He f f (n, m) = − h̄
2 ∑

K,F

(
α̃0+Ξ̂0 + α̃0−Ξ̂σ

)
T̂K,0+

h̄
2 ∑

K,F

{
α̃+2

(
Ξ̂HV − iΞ̂45

)
T̂K,2 + α̃−2

(
Ξ̂HV + iΞ̂45

)
T̂K,−2

}
(D.37)

D.4.1 Summing over ground and excited states

Here we are interested in summing over all the levels, i.e. ∑m,m′ ∑n Σ
q=0
± and

∑m,m′ ∑n Σq=±2. For these sums we use the known relation [Varshalovich88] for
these sums:

∑
m,m′

∑
n

Σ
q=0
± = ∑

m,n
CF0,m

F,n;1,±1CF0,m
F,n;1,±1CF0,m

F0,m,K,0 = c̃KC1,±1
1,±1;K,0 (D.38)

∑
m,m′

∑
n

Σq=±2 = ∑
m,m′

∑
n

CF0,m
F,n;1,∓1CF0,m±2

F,n;1,±1CF0,m+±2
F0,m,K,±2 = c̃KC1,±1

1,∓1;k,±2 (D.39)

with

c̃K = (−1)F+1+F0+K (2F0 + 1)3/2
√

3

{
1 1 K
F0 F0 F

}
(D.40)

Thus we get for the different polarizibility

∑
m,m′

∑
n

α0+ = DF,F0 c̃K
C1,1

1,1;K,0 + C1,−1
1,−1;K,0

2
= DF,F0 c̃KC1,1

1,1;K,0
1 + (−1)K

2
(D.41)

∑
m,m′

∑
n

α0− = DF,F0 c̃K
C1,1

1,1;K,0 − C1,−1
1,−1;K,0

2
= DF,F0 c̃KC1,1

1,1;K,0
1− (−1)K

2
(D.42)

∑
m,m′

∑
n

α+2 =
1
2

DF,F0 c̃KC1,1
1,−1;K,2 (D.43)

∑
m,m′

∑
n

α−2 =
1
2

DF,F0 c̃KC1,−1
1,1;K,−2 (D.44)

Note that here all levels have the same detuning (Dn,m → DF,F0), and that from
symmetry of the Clebsch-Gordan we also have α−2 = (−1)Kα+2.

This result already tells us a lot about the way the effective Hamiltonian behaves
(Eq. D.31), meaning that the circular polarized light will mainly interact with
T̂1,0 and the contribution of α̃0−Ξ̂σT̂0,0 is small1. Thus the propagation equations
as written in Eq. 11.39 do not take all the effects of the magnetic field correctly.

1The contribution is equal to zero when the levels are degenerate.
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We define a general polarizibility, with the subscript represents K:

α0 = ∑
F

√
2K + 1
2F0 + 1

DF,F0 c̃0C1,1
1,1;0,0 (D.45)

α1 = ∑
F

√
2K + 1
2F0 + 1

DF,F0 c̃1C1,1
1,1;1,0 (D.46)

α2 = ∑
F

√
2K + 1
2F0 + 1

DF,F0 c̃2C1,1
1,−1;2,2 (D.47)

For consistency with [Kupriyanov05] we enter into the polarizibility α2 the Clebsch-
Gordan coefficient C1,1

1,−1;2,2 and not C1,1
1,1;2,0. In addition we note that we get a

different result by 2F0 + 1 due to a different convention in the reduction of the
dipole matrix (Dn,m). Next we write the modified polarizibilities as given by
Eq. D.34,

α̃0 = ∑
F

(
Γ

2∆F,F0

)(σ0

A

)
C1,1

1,1;0,02χ(K = 0)c̃0
1

1 + iΓ
2∆F,F0

(D.48)

α̃1 = ∑
F

(
Γ

2∆F,F0

)(σ0

A

)
C1,1

1,1;1,02χ(K = 1)c̃1
1

1 + iΓ
2∆F,F0

(D.49)

α̃2 = ∑
F

(
Γ

2∆F,F0

)(σ0

A

)
C1,1

1,−1;2,22χ(K = 2)c̃2
1

1 + iΓ
2∆F,F0

(D.50)

Combining these we rewriting the effective Hamiltonian as:

He f f = −
h̄
2

1

∑
K=0

α̃K

(
1 + (−1)K

2
Ξ̂0 +

1− (−1)K

2
Ξ̂σ

)
T̂K,0+

− h̄
2

α̃2
C1,1

1,1;2,0

C1,1
1,−1;2,2

(
1 + (−1)2

2
Ξ̂0 +

1− (−1)2

2
Ξ̂σ

)
T̂2,0+

+
h̄
2

1√
2

α̃2

{
Ξ̂HV

T̂2,2 + T̂2,−2√
2

+ Ξ̂45
T̂2,2 − T̂2,−2

i
√

2

}
(D.51)

Here the Clebsch-Gordan ratio C1,1
1,1;2,0/C1,1

1,−1;2,2 = 1/
√

6, with the coherence√
2T̂HV = T̂2,2 + T̂2,−2 and i

√
2T̂45 = T̂2,2 − T̂2,−2.

D.5 Summary

In this appendix we have showed the last steps in the derivation of the effective
Hamiltonian. Here we distinguish between two cases, when the Zeeman sub-
leves are not degenerated and when they are degenerate. In this section we are
going to give end result off the effective Hamiltonian for both cases.

The levels are split

He f f = −
h̄
2

2

∑
K=0

∑
F

(
α̃0+Ξ̂0 + α̃0−Ξ̂σ

)
T̂K,0+

h̄
2 ∑

F

(
α̃+2

(
Ξ̂HV − iΞ̂45

)
T̂2,2 + α̃−2

(
Ξ̂HV + iΞ̂45

)
T̂2,−2

)
(D.52)

Where the polarizibility are defined by Eq. D.35- D.36, where one need to sum
also over all possible hyperfine excited levels F.
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The levels are degenerate

He f f = −
h̄
2

(
α̃0Ξ̂0T̂0,0 +

1√
6

α̃2Ξ̂0T̂2,0

)
− h̄

2
α̃1Ξ̂σT̂1,0+

h̄
2

1√
2

α̃2
(
Ξ̂HV T̂HV + Ξ̂45T̂45

)
(D.53)

Note that here the result is different than given in [Kupriyanov05, Mishina07] by
a factor of 1/

√
2 in front of α̃2, this is due to the different definition of the T̂HV

and T̂45.



AppendixE

The irreducible tensors
commutation relation

Here we give the irreducible tensor commutation relation between any two ten-
sors T̂K,Q with K ≤ 2. The results are summarized in table E.1 and in table E.2,
for the case F0 = 1 and β0 = 1/

√
2.

T̂0,0 T̂1,0 T̂1,1 T̂1,−1

T̂0,0 0 0 0 0
T̂1,0 0 0 1 (1,1) -1 (1,-1)
T̂1,1 0 -1 (1,1) 0 -1 (1,0)

T̂1,−1 0 1 (1,-1) 1 (1,0) 0
T̂2,0 0 0

√
3 (2,1) −

√
3 (2,-1)

T̂2,1 0 -1 (2,1)
√

2 (2,2) −
√

3 (2,0)
T̂2,−1 0 1 (2,-1)

√
3 (2,0) −

√
2 (2,-2)

T̂2,2 0 -2 (2,2) 0 −
√

2 (2,1)
T̂2,−2 0 2 (2,-2)

√
2 (2,-1) 0

Table E.1: The commutation relations
[
T̂K,Q, T̂K′ ,Q′

]
= const. · β0T̂(k,q) for the case F0 = 1

and β0 = 1/
√

2, e.g.
[
T̂2,0, T̂1,1

]
=
√

3β0T̂2,1 =
√

3
2 T̂2,1.

T̂2,0 T̂2,1 T̂2,−1 T̂2,2 T̂2,−2

T̂0,0 0 0 0 0 0
T̂1,0 0 1 (2,1) -1 (2,-1) 2 (2,2) -2 (2,-2)
T̂1,1 −

√
3 (2,1) −

√
2 (2,2) −

√
3 (2,0) 0 −

√
2 (2,-1)

T̂1,−1
√

3 (2,-1)
√

3 (2,0)
√

2 (2,-2)
√

2 (2,1) 0
T̂2,0 0

√
3 (1,1) −

√
3 (1,-1) 0 0

T̂2,1 −
√

3 (1,1) 0 -1 (1,0) 0
√

2 (1,-1)
T̂2,−1

√
3 (1,-1) 1 (1,0) 0 −

√
2 (1,1) 0

T̂2,2 0 0
√

2 (1,1) 0 2 (1,0)
T̂2,−2 0 −

√
2 (1,-1) 0 -2 (1,0) 0

Table E.2: The commutation relations
[
T̂K,Q, T̂K′ ,Q′

]
= const. · β0T̂(k,q) for the case F0 = 1

and β0 = 1/
√

2, e.g.
[
T̂2,0, T̂2,−1

]
= −
√

3β0T̂1,−1 = −
√

3
2 T̂1,−1.
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AppendixF

Collective atomic operators

In the Hamiltonian derived in chapter 11 and appendix D, we have assumed a
single atom picture. Here we describe how the operators are changed in order
to sum over all atoms, which essentially means that the atomic excitation of a
single atom is sheared by all atoms. A more mathematical formulation states,
that the collective state is a superposition of a single excitation of one unknown
atom. To keep the position information along the propagation direction (z), we
sum the collective operator over all atoms in a small slice at position z. The
requirement is that in each slice the number of atoms is much bigger to one, but
thin enough that we can assume continues variables in space and time.

There is a freedom in choosing the normalization of the collective spin excitation,
here we describe three different normalization. The first is to sum each excitation
over all atoms in a each slice ∆z as done in [Geremia06]. The second normaliza-
tion, is to divide each spin excitation by the total number of atoms in the slice,
as done in [Gorshkov07b], and the third normalization is to use the density of
the spin excitation, i.e. each spin excitation is divided by the slice length as done
in [Kupriyanov05, Mishina07]. The last two definitions are formally written as:

|µ〉 〈ν|(n=2) (z, t) =
1

n(z)∆z ∑
z<z′<z+∆z

|µ〉 〈ν|a (z′, t) (F.1)

|µ〉 〈ν|(n=3) (z, t) =
1

∆z ∑
z<z′<z+∆z

|µ〉 〈ν|a (z′, t) (F.2)

Here the superscript (n = 2/3) is to distinguish between the two different nor-
malization, the superscript a is to identify the operator of a single atom, and
n(z) is the atomic line density. These two definitions have different advantages:
the second normalization (Eq. F.1) describes the fraction of atoms in such a state
(dimensionless), therefore its easier to see the atom number (or optical depth)
dependence in the propagation equation. The third normalization (Eq. F.2) de-
scribes directly the density. The two normalization gives two different commu-
tation relations:[

|µ1〉 〈ν| (z), |ν〉 〈µ2| (z′)
](n=2)

=
1

n(z)
|µ1〉 〈µ2|(n=2) (z)δ(z− z′) (F.3)[

|µ1〉 〈ν| (z), |ν〉 〈µ2| (z′)
](n=3)

= |µ1〉 〈µ2|(n=3) (z)δ(z− z′) (F.4)

with δ(z− z′) the Dirac delta function1. Note that in this thesis we use the third
normalization, given by Eq. F.4.

1The units of Dirac delta function is one over length.
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AppendixG

Realization of 3-axis magnetic
servo-loop

Here we describe a magnetic servo-loop [Bechhoefer05] used to effectively cancel
the gravitational sag. In chapter 9 we have showed the usage of the servo-
loop, and in this appendix we describe the actual realization of it. In Fig. G.1
we describe the different elements of our implementation. Even though this
schematic is very detailed it contains three basic ingredients: 1) producing the
magnetic field (current controller, coils, and change the B-filed), 2) measuring
the magnetic field (B-field sensor, sensor controller, and matrix invertor), and 3)
PID controller (feedback and feed forward).

Step 1, produces the magnetic field by controlling the current passing through
three different set of Helmholtz coils and is described in section G.1. In the sec-
ond step, section G.2, we measure the magnetic field at a resolution of 50µGauss
and 150µGauss at a bandwidth of @100kHz using two similar detectors. The last
step, section G.3, we describe the feedback circuit.

Control 
Voltage 

Feedback 
(PID) 

+ 
- 

+ 
+ 

Feed 
Forward 

Current 
controller 

Coils 

Change 
the B-field 

B-field 
Sensor 

Sensor 
Controller 

Matrix 
Invertor 

Figure G.1: The feed back logic schematic

G.1 The current controller

A current control for driving the coils requires sufficient voltage to overcome
the coils inductance, since the coil resistivity and the maximum voltage sets
the maximum current. To regulate the current we use the linear region of a
power transistor. Here we are interested in having the freedom to drive both
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120 Realization of 3-axis magnetic servo-loop

Figure G.2: The current controller electric circuite.

positive and negative voltages therefore we use two transistors. For stabilizing
the current we use an operational amplifier as a feedback sensing the current.

We have chosen to implement a variation of a class AB push-pull current driver,
and in Fig. G.2 we show the electronic circuite schematic. The control voltage is
the input into the operational amplifier. The current is initially drown from the
operational amplifier, which is drown from the supply line that drops as the cur-
rent increases. This voltage drop on resistors R5 or R4 opens the corresponding
transistor such that it will supply the current. The operational amplifier regu-
lates the current through the sense resistor (R6 = 2Ω).
The purpose of resistor R17 is to connect the gates of the two transistors and en-

sures that only one of them will work at a given time. To prevent oscillations we
have added a capacitor (C9) parallel to the resistor that slows down the changes,
thus prevents oscillations. Note that for coils with lower resistivity and lower
DC inductive there is no need for this capacitor. Our DC resistivity and induc-
tive are: R ' 12− 16Ω & L ' 16− 25mH (which gives a DC cutoff frequency
fc =

R
2πL ≈ 125Hz). With a resonance frequency of about 325Hz, and the 3dB is

found at 500− 600Hz, as shown in Fig. G.6.

G.2 Measuring the magnetic field

There are several different types of sensors that can be used to measure the
magnetic field, that differ in the range and accuracy [Caruso98]. We have chosen
to work with a commercial sensor, based on a metallic strip that changes its
resistivity due to an external magnetic field. This magnetoresistive sensor is
made from a nickel-iron (Permalloy) thin film deposited on a silicon wafer. The
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variation in the resistance is measured using a Wheatstone bridge, i.e. ∆R/R.

The sensor output is taken to a differential operational amplifier with gain of
470 and a 135kHz bandwidth. To remove high frequencies noise source we have
added an additional low pass filter with a corner frequency of f ≈ 360kHz.
We used a load resistor with similar values to the Wheatstone bridge resistors,
which reduced the signal but increased the overall sensitivity. This configuration
gives noise levels for two similar sensors of 50µV and 150µV that corresponds to
50µGauss and 150µGauss.

The sensor [Hon] output is given by Eq. G.1, with g = 470 is the operational
amplifier gain, S is the sensor sensitivity, Vo f f set is an additional offset that is due
to the resistor mismatch during the manufacture process [Hon]. For this type of
sensor there is no preferred magnetization axis thus we need to magnetize the
sensor to a given direction. Setting the direction is refer to as set/reset operation
which defines the sign in Eq. G.1.

Vsen = g
(
±S · B + Vo f f set

)
(G.1)

The sensor board was designed to be small (4× 5cm2) and we send the signal
over a long cable to the sensor controller (see Fig. G.1), which enables putting
the sensor close to the actual system. We translate the signal to the magnetic
field, by measuring Vo f f set and subtracting it from the actual signal.

The measurement is done using two Digital to Analog Converter1 (DAC) and
two Analog to Digital Converter2 (ADC). The second measurement is needed to
cancel out the additional offset values from the DAC. Since the DAC and ADC
are limited to 0− 4V and the sensor signal is in the range ±10V, we need to
rescale the signal. The transformed signal is:

Vc(t) =
2
11

Vsen(t) + 2
Vre f

4.2
− DAC1 −

DAC2

128
(G.2)

Here DAC1 and DAC2 are the DAC’s output voltage, Vre f is a voltage reference
with value of 4.096V. For setting the DACs values first we measure the input
signal during the set operation and during the reset operation. Then we set them
to be:

DAC1 = 2 +
2
11

gVo f f set +
1
11

gS∆B + V1 (G.3)

DAC2 =
128
2

(∆Vc(t1) + ∆Vc(t2) + 2V1) (G.4)

Here V1 is the DAC1 offset voltages, ∆B is the magnetic field difference between
the two measurements at the set and reset operations3. ∆Vc(t1) is the differ-
ence between measuring Vc when both DAC1 = DAC2 = 0V and measuring Vc
after setting DAC1 to that first measured value (∆Vc(t1)), i.e. we measure the
remainder from the first measurement. ∆Vc(t1) is measured while the sensor is
magnetized with a set operation, and ∆Vc(t2) is similarly measured only while
the sensor is magnetized with a reset operation. Both ∆Vc(t1) and ∆Vc(t2) contri-
bution is to removing the internal DAC’s offset V1 usually a few millivolts, and
to improving by several bits the resolution limited by the DAC noise levels. The
total time for this operation is 380µs.

1type TLV5618
2type MCP3302
3The time difference is about ∼ 150µs
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After the set/reset operation we get:

Vc(t) =
2
11

gSB(t)− 1
11

gS∆B ∼= StB(t) (G.5)

With St ≈ 1 mGauss
mV the total conversion factor and the signal range is Vc = ±2V.

In addition we assume that the difference in magnetic field at the different times
is small. We estimate ∆B by measuring the signal and find about 20mGauss noise
at frequencies of 50− 100Hz that can cause fluctuations of 220− 440µGauss. A
way to overcome this noise fluctuation is to first start the feedback then after
removing this noise then doing the set/reset operation on a second sensor. Thus
∆B will be reduced to below the noise level. We note that we do not use this
method.
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Figure G.3: (a) and (b): The magnetic sensor transfer function amplitude and phase
respectively; (c): the noise power spectrum with respect to 1µV, this spectrum is also
valid for 1µGauss since the transformation is about 1V/Gauss; (d): the performance of
the voltage mixture which ensures that the sensor and coils axis are aligned.

In Fig. G.3 (a) & (b) we show the sensor measured transfer function. The 3dB
drop is at about 150kHz, and the phase starts to change from zero at 10kHz
and reaches 90 degrees at 100kHz. This is well inside our specification for the
servo-loop at bandwidth of 1kHz.

The noise equivalent power (NEP) is measured after amplifying the signal by
3− 4 order of magnitude, and fourier transform the signal. The NEP is given
in Fig. G.3 (c) as a function of frequency. The reference is given with respect to
1µV, we see that the noise is flat and drops by 3dB at around 150kHz. We also
measured the mean noise level using a 100kHz low pass filter to be 50µGauss
for one detector and 150µGauss for a second identical one.

For the servo-loop we would like to decouple the three axis, i.e. that each axis
on the sensor will measure the change in the magnetic field due to only one
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coil. This we achieve by multiplying the sensor output with an appropriate
matrix. This matrix rotates and stretches the magnetic signal such that its output
is aligned (digitalized) along the coils axis.

Vmix = MmixVc = Mmix MsysB (G.6)

Where Mmix is the mixture matrix, Vc is the signal output from the sensor Eq. G.2
and Eq. G.5, B is the magnetic field at the sensor, and Msys is the system matrix
that transforms the magnetic field to all three axis on the sensor board. To
decouple the axis we need Mmix Msys = D, where D is a diagonal matrix.

We have build a circuit that realizes the mixture matrix (Mmix), and is described
as the matrix inverter box in Fig. G.1. Each input signal is splitted to a pos-
itive and negative values then sent to three different digital potentiometers.
The signals are summed using an operational amplifiers thus realizing the ma-
trix multiplication. This combination allows us to do both rotations (with nine
different potentiometers) and stretch (by using the appropriate resistors at the
summing operational amplifier). For convenience we use digital potentiometers
("AD5292") with 10 bit resolution.

In our system we need to use two different sensors one that will work during
the operation of the QUICK trap and the second sensor will work after the trap
magnetic field was turned off. Since during the operation of the QUICK trap the
sensor and its environment are magnetized, we have minimized the number of
ferromagnetic components near the sensors. This is done to reduce sensitivity
to the magnetic history before operating the sensor. To emphasize the problem,
initially we had a small inductive high pass filter (π-filter) that was magnetized
by the external magnetic fields and was removed due to its influence on the
measured magnetic field. In the final version there is still an additional small
effect due to the capacitors and resistors, since they have a protective Nickel
layer, but its below our sensitivity.

For the reasons stated above, i.e. the influence of the magnetic field environment
history, the alignment procedure was done under working conditions. To mea-
sure the sensors response to each of the coils we gave a long (≥ 30ms) rectangle
pulse in each of the coils with a time delay between the three pulses, see con-
trol signals in Fig. G.3 (d). We started by aligning the sensor to the best of our
ability along the coils axis (without using the mixture matrix circuit). Then we
connected the mixture matrix and changed the different elements until we got a
diagonal matrix. The end result is given in Fig. G.3 (d).

Note that we cannot remove the eddy currents. Thats why we needed to give
long enough pulses that we could see the eddy currents. In Fig. G.3-(d), the
influence of the eddy currents are visible in the R/L #1 and T/B #1 signals.

G.3 The magnetic feedback

We have designed the feedback circuit such that we can operate it either with
external control or with internal control. The internal control gives us the ability
to first measure the magnetic field signal and then to set the internal control to
that value. Thus minimize the initial difference between the two control voltages
to a few millivolt4. We have implemented these options by inserting several
analog switches, thus enable us to change from different configurations without
adding a kick to the servo-loop.

4Note that this corresponds to a few milli-Gauss.
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Figure G.4: The schematic of the PID feedback circuite.

In our design we also allow working with two different magnetic signals that
come from two different sensors. This can be used either to switching between
the sensors to eliminate the extra noise source ∆B in Eq. G.1 or to allow the feed-
back to operate at two different times with each sensor is aligned to a different
magnetic environment e.g. during the time the QUICK trap is on and off (for
the absorbtion imaging) as shown in Fig. G.3 (d). Here we use the latter option.

In Fig. G.4 we show the schematic of the electronic circuit for the magnetic feed-
back. On the bottom left of the figure the different measurements scheme of both
the control and the magnetic field are shown, in addition how we create the inter-
nal control voltage and the feed forward using DACs is shown. Note that since
the ADC’s range is 0→ 4.1V we nominally set the switch to be connected to the
ground. This ensures that the ADC’s do not saturate and will not be overdriven.
The switches, ADCs, and DACs are controlled using a micro-controller.

In the top left part of Fig. G.4 we show the two different magnetic sensors input
and the internal and external control voltage. Which are sent to a differential
operational amplifier that implements the error signal. We have also added an
additional switch that shorts the error signal, which enables us to open/close
the servo-loop at will.

The usage of the internal control is shown in Fig. G.5-(a), and the servo-loop
is closed within 60µs. There is a small cross talk spike in the signal (at high
frequencies ∼ 1MHz), due to closing the switch. As the external trigger is given
we measure the magnetic field value (∼ 30µs), then we set the internal control
to that value, see green line, which also takes about ∼ 30µs. Thus it takes about
60µs to close the servo-loop.

There is an additional problem that needs overcoming. Ideally the initial mag-
netic field signal and the control voltage will be same. But since the 50Hz noise
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Figure G.5: Operation of the magnetic feedback; (a): initial steps of the feedback oper-
ation 1) measuring the magnetic signal and the external control (∼ 30µs), 2) setting the
internal control to the magnetic signal measured value, and 3) closing the servo-loop
using the internal control; (b): A close loop operation, measuring and setting the initial
value and slowly changing the magnetic field to the external control value. (c): An error
function step response with a 500µs and 750µs rise time for all three axis; (d): a 1ms
wide gaussian (σ = 170µs pulse;

is about 40mV we have designed the internal control signal to slowly shift the
magnetic field value from the initial value to the wanted control voltage. This
operation is shown in Fig. G.5-(b). For illustration purposes we set the external
control value to differ from the magnetic field. Here we chose a slope of 1mV
every 100µs (10mV/ms), and once the two have the same value we switch from
the internal control to the external control.

We have implemented an analog proportional integrate differential (PID) feed-
back circuit, and each of the PID implementation is shown in Fig. G.4. Since
there are long times where the servo-loop is open we have added the option of
resetting each of the PID components. Our operation logic is to reset the PID
components before closing the servo-loop. To have a control on the strength of
each of the PID we also used here digital potentiometers with a 10-bit resolution.

The output of the different PID are summed and passed through a follower
operational amplifier. This gives us the possibility of reducing the gain, and sum
with different weight the different PID components. The output of the follower
operational amplifier is summed with an internal feed forward, then send to the
current controller described in section G.1.

We have tested the operation of the servo-loop in several different ways. A
fast step pules with a rise/fall time which are determined by an error function
(−2σ→ 2σ) with different total duration, and a 1ms gaussian pulse (σ = 170µs).
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Figure G.6: The close/open transfer function of the magnetic field; Top: close loop
servo-loop, left - gain and right - phase; Bottom: open loop, left - gain and right - phase;

The results of these pulses are given in Fig. G.5-(c) and Fig. G.5-(d). When the
pulse rise time is faster than 750µs the magnetic field has oscillations that decay
within a few hundred of microsecond.

We measured the Bode plot to characterizing the open/close loop response func-
tion [Bechhoefer05], see Fig. G.6. From the open loop measurements we can see
that the coil resonance is found at about 250Hz and that the phase is gradually
falling. While in the close loop configuration we find a flat phase response up to
1kHz, with a gain that peaks at a certain frequency depending on the coil.

While the servo-loop described above works, it is still misses one last component.
We need to measure the magnetic field at the atoms and translate the measured
signal from the sensor to the actual magnetic field at the atoms. So far we have
not measured this, which means that we do not necessarily reduce the noise at
the atoms but reduce the noise at the sensor. This can of course add extra noise
if the magnetic field at the sensor is bigger than the one at the atoms.
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