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A B S T R A C T

Neutrinos are among the most abundant particles in the universe. They interact only weakly

and can travel great distances unimpeded, offering a window into the interiors of the dense

astrophysical sources that otherwise would be invisible to us. However, neutrinos have the peculiar

property of converting their flavor content as they propagate. In neutrino-dense environments

such as core-collapse supernovae, compact binary merger remnants, and the early universe, the

flavor evolution is significantly affected by the interactions of neutrinos with matter and other

neutrinos in the medium. Apart from neutrino oscillations and the well-known Mikheyev-Smirnov-

Wolfenstein resonance effect, neutrino-neutrino coherent forward scattering can lead, on much

shorter time scales, to a plethora of non-linear effects which can collectively convert flavor. This

phenomenon is known as collective neutrino conversion, and there are two important regimes

depending on the neutrino gas density: slow flavor conversion, whose characteristic frequency is

determined by the vacuum oscillation frequency, and fast flavor conversion, whose characteristic

frequency is instead determined by the neutrino self-interaction strength and is even possible

for vanishing vacuum oscillation frequency. Slow and fast flavor conversion can occur in the

proximity of the decoupling regions; however, the time scales over which they operate are orders

of magnitude apart. Due to the proximity to the decoupling regions and the short time scales of

fast flavor conversion, flavor mixing is expected to have significant consequences on the inner

workings of astrophysical sources. State-of-the-art hydrodynamical simulations cannot incorporate

neutrino flavor evolution yet, and many conceptual and technical challenges must be addressed

first to grasp the physics of neutrino flavor evolution in dense media. There are strong hints that

core-collapse supernovae and compact binary merger remnants provide favorable conditions for

the development of flavor instabilities. However, whether such fast-growing instabilities lead to a

minimal mixing of neutrinos or to complete flavor conversion remains an open question in the

field. The work presented in this thesis aims to bridge this knowledge gap. This thesis provides
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new tools to predict the behavior of fast flavor conversion in dense environments and explores the

rich phenomenology that fast flavor conversion offers.

The first part of this thesis presents a broad overview of neutrinos, their Standard Model

interactions with matter, other neutrinos, and their impact on the evolution of flavor conversions.

Next, the main physics behind neutrino-neutrino interactions is presented to pave the road towards

discussing collective neutrino conversions. Finally, relevant sites that can host collective neutrino

conversions are presented and discussed with a focus on core-collapse supernovae and compact

binary merger remnants.

From the second part of the thesis and onward, we present original results from the publications

concluded during the doctoral studies of the PhD candidate. The second part of the thesis focuses

on describing the dynamics of fast flavor conversion using the classical analogy with a gyroscopic

pendulum. This work shows that for homogeneous and azimuthally symmetric systems, the

equations of motion of neutrinos are formally equivalent to those of a gyroscopic pendulum. Such

an analogy was known for the case of slow conversions, but its validity in the fast regime had never

been mathematically proven. Through the lens of the gyroscopic pendulum analogy, our work can

predict the maximum amount of conversion without solving the equations of motion. The latter is

achieved by identifying the pendulum parameters from the linearized equations of motion. As a

next-to-minimal configuration, we also address how the gyroscopic pendulum analogy is modified

in the presence of random quantum fluctuations induced by the medium, which can destroy the

coherence among flavors. Nevertheless, our findings suggest that the gyroscopic pendulum still

has predictive power and can foresee the final flavor outcome after decoherence.

The third part of the thesis focuses on developing numerical modeling and phenomenology

of fast flavor conversions. It improves on previous calculations in the literature by relaxing

some assumptions such as homogeneity and isotropy in the equations of motion. As a first step

towards understanding the flavor evolution of non-homogeneous media, we implemented for the

first time neutrino advection in the equations of motion assuming two spatial coordinates, one

angular variable and time. This work showed for the first time that the development of fast flavor

conversion is substantially affected by neutrino propagation. In particular, if favorable conditions

exist for fast flavor conversions, neutrino advection hinders or prevents flavor development unless
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the unstable region is spatially extended, i.e., the conditions are self-sustained and global. Along

the same vein and using a similar multi-dimensional framework, we computed the flavor evolution

of neutrinos above the disk of compact binary merger remnants and looked for a steady state after

the development of flavor instabilities. Although this work assumed a simplified model for the

neutrino decoupling regions, it showed for the first time that flavor conversion occurs in very well

localized regions above the disk of the merger and that minimal mixing of neutrinos (less than

1%) is possible, albeit the large growth rates of flavor instabilities. Last but not least, in the final

work of this thesis, we relax the assumption of isotropy in the matter term and study in detail the

consequences on the non-linear evolution of flavor. This work improves on previous studies where

the matter background is assumed to be static and therefore isotropic. Furthermore, we studied

the unexplored effect of the bulk velocity of matter and demonstrated that the flavor evolution is

sensitive to the magnitude and direction of the bulk velocity, which could reach values of a fraction

of the speed of light in astrophysical environments.

The work in this thesis shows that the physics of fast flavor conversion is extremely rich.

Although many challenges still lie ahead, neutrino flavor conversion physics continuously offers

new insights and surprises that contribute to a better understanding of astrophysical sources and

our universe.



A B S T R A K T

Neutrinoer er blandt de mest talrige partikler i universet. De vekselvirker kun svagt, og de kan

rejse store afstande uhindret, hvorved de kan give et indblik i det indre af kompakte astrofysiske

kilder, som ellers ville være usynligt for os. Neutrinoer har imidlertid den særegne egenskab,

at de kan konvertere fra én type neutrino til en anden, når de bevæger sig. I miljøer med høj

tæthed af neutrinoer, såsom kernekollaps-supernovaer, efterdønninger af kompakte binære sam-

menstød og det tidlige univers, er konvertering af neutrino-type væsentligt påvirket af neutrinoers

vekselvirkninger med stof og andre neutrinoer i mediet. Foruden neutrinooscillationer og den

velkendte Mikheyev-Smirnov-Wolfenstein-resonanseffekt, kan kohærent fremadrettet neutrino-

neutrino-spredning på meget kortere tidsskalaer føre til et væld af ikke-lineære effekter, som kan

konvertere neutrino-type kollektivt. Dette fænomen er kendt som kollektiv neutrino-konvertering,

og der er to vigtige regimer afhængigt af neutrino-gassens tæthed: langsom typekonvertering, hvis

karakteristiske frekvens bestemmes af vakuumoscillationsfrekvensen og hurtig typekonvertering,

hvis karakteristiske frekvens i stedet bestemmes af styrken af neutrino-selvvekselvirkningen og

endda er mulig for forsvindende vakuumoscillationsfrekvens. Langsom og hurtig typekonvert-

ering kan forekomme i nærheden af afkoblingsregionerne, men tidsskalaerne, som de opererer

over, er størrelsesordener fra hinanden. På grund af nærheden til afkoblingsregionerne og de korte

tidsskalaer for hurtig typekonvertering forventes det at have vigtige konsekvenser for astrofysiske

kilders indre virkemåde. Moderne hydrodynamiske simuleringer kan endnu ikke tage højde for

neutrino-typekonvertering, og mange konceptuelle og tekniske udfordringer skal løses først for at

forstå fysikken bag neutrino-typekonvertering i medier med høj neutrinotæthed. Der er stærke

indikationer på, at kernekollaps-supernovaer og efterdønninger af kompakte binære sammenstød,

giver gunstige betingelser for udvikling af typeustabilitet. Hvorvidt sådanne hurtigt voksende

ustabiliteter fører til en minimal blanding af neutrinotyper eller til fuldstændig typekonvertering,

er fortsat et åbent spørgsmål. Arbejdet præsenteret i denne afhandling har til formål at slå bro over

denne videnskløft. Denne afhandling leverer nye værktøjer til at forudsige adfærden af hurtig
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typekonvertering i tætte miljøer og udforsker den rige fænomenologi, som hurtig typekonvertering

har at tilbyde.

Den første del af denne afhandling præsenterer et bredt overblik over neutrinoer, deres vek-

selvirkninger med stof og andre neutrinoer ud fra Standardmodellen og vekselvirkningernes

indflydelse på udviklingen af typekonverteringer. Den grundlæggende fysik for neutrino-neutrino-

vekselvirkninger præsenteres som grundlag for at diskutere kollektive neutrino-konverteringer.

Relevante miljøer, der kan være vært for kollektive neutrino-konverteringer, præsenteres og

diskuteres med fokus på kernekollaps-supernovaer og efterdønninger af kompakte binære sam-

menstød.

Fra anden del af afhandlingen og frem, præsenteres originale resultater fra de publikationer, der

er afsluttet under ph.d.-studiet. Anden del af afhandlingen fokuserer på at beskrive dynamikken

i hurtig typekonvertering ved hjælp af den klassiske analogi med et gyroskopisk pendul. Dette

arbejde viser, at for homogene og azimutalt symmetriske systemer, er bevægelsesligningerne

for neutrinoer formelt ækvivalente med dem for et gyroskopisk pendul. En sådan analogi var

kendt for tilfældet med langsomme konverteringer, men dens gyldighed for det hurtige regime

var aldrig blevet matematisk bevist. Ved at bruge det gyroskopiske pendul, kan vores metode

forudsige den maksimale grad af konvertering uden at løse bevægelsesligningerne. Dette opnås

ved at identificere pendulparametrene fra de lineariserede bevægelsesligninger. Som den næstsim-

pleste konfiguration behandledes også, hvordan den gyroskopiske pendulanalogi modificeres i

nærværelse af tilfældige kvanteudsving induceret af mediet, som kan ødelægge typekohærensen.

Resultaterne tyder på, at det gyroskopiske pendul stadig i nogen grad kan forudse det endelige

typeudfald efter dekohærens.

Den tredje del af afhandlingen fokuserer på udviklingen af numerisk modellering og fænomenologi

af hurtige typekonverteringer og forbedrer tidligere beregninger i litteraturen ved at slække på

nogle af antagelserne, såsom homogenitet og isotropi i bevægelsesligningerne. Som et første skridt

til at forstå udviklingen af typekonvertering i ikke-homogene medier implementeredes for første

gang neutrino-advektion i bevægelsesligningerne under forudsætning af to rumlige koordinater,

en vinkelvariabel og tid. Dette arbejde viste for første gang, at udviklingen af hurtig typekonvert-

ering påvirkes væsentligt af neutrinoernes udbredelse. Særligt hvis der findes gunstige betingelser
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for hurtige typekonverteringer, hindrer eller forhindrer neutrinoernes udbredelse udviklingen

af neutrino-type, medmindre der er en udbredt ustabil region , dvs. betingelserne opretholder

sig selv og er globale. På samme måde, og ved brug af en lignende multidimensionel opsætning,

beregnedes udviklingen af neutrino-typekonvertering over skiven med rester fra et kompaktt

binært sammenstød. Efter typeustbiliteterne havde udviklet sig, blev resultaterne undersøgt for

stabile tilstande. Selvom dette arbejde antog en forenklet model for neutrino-afkoblingsregionerne,

viste det for første gang, at typekonvertering finder sted i meget vel-lokaliserede områder over

skiven med rester fra sammenstødet, og at minimal blanding af neutrinoer (mindre end 1%) er

mulig trods de store vækstrater for typeustabiliteter. Sidst men ikke mindst, i det sidste afsnit

i denne afhandling blev antagelsen om isotropi i materie-leddet slækket og konsekvenserne for

den ikke-lineære udvikling af neutrino-type blev undersøgt i detaljer. Dette forbedrer modellen i

forhold til tidligere studier, hvor materie-baggrunden antages at være statisk og derfor isotrop.

Den uudforskede effekt af stoffets strømningshastighed blev undersøgt og det demonstreres, at

typekonvertering er følsom over for størrelsen af og retningen på strømningshastigheden, som

kunne opnå værdier på en brøkdel af lysets hastighed i astrofysiske miljøer.

Denne afhandling viser at fysikken for hurtige typekonverteringer er utroligt rig. Selv om

der fortsat ligger mange udfordinger foran os, forsætter neutrino typekonvertering med at give

anledning til nye indsigter, der giver os en bedre forståelse af astrofysiske kilder og vores univers.



T H E S I S O U T L I N E

The thesis is divided into five parts:

Part i: Introduction.

Part ii: New conceptual developments on the physics of neutrino fast flavor conversion.

Part iii: Numerical modeling and phenomenology of neutrino fast flavor conversion.

Part iv: Summary and conclusions.

Part v: Appendices.

Part i offers a broad introduction to the main physical concepts and phenomena discussed in

the thesis. Parts ii and iii of this thesis consist of the reprints of the following published journal

articles:

1. Shashank Shalgar, Ian Padilla-Gay, Irene Tamborra, Neutrino propagation hinders fast pairwise

flavor conversions, JCAP06(2020)048, arXiv:1911.09110.

2. Ian Padilla-Gay, Shashank Shalgar, Irene Tamborra, Multi-Dimensional Solution of Fast Neu-

trino Conversions in Binary Neutron Star Merger Remnants, JCAP01(2021)017, arXiv:2009.01843.

3. Ian Padilla-Gay, Shashank Shalgar, Fast flavor conversion of neutrinos in presence of matter bulk

velocity, Phys. Rev. D under review, arXiv:2108.00012.

4. Ian Padilla-Gay, Irene Tamborra, Georg G. Raffelt, Neutrino flavor pendulum reloaded: The case

of fast pairwise conversion, Phys. Rev. Lett. 128 (2022) 12, 12, arXiv:2109.14627.

5. Ian Padilla-Gay, Irene Tamborra, Georg G. Raffelt, Upshot of Collisional Damping on Neutrino

Fast Flavor Conversion, to appear soon.

In every part of the thesis, there is a Chapter called Critical outlook which provides a short de-

scription of the project, gives the relevant context, and critically discusses the findings of the
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corresponding publication.

Part ii consists of publications 4 and 5, while Part iii comprehends the remaining publications

1, 2, and 3. The work presented in 5 is a work in progress. However, a preliminary draft of the

publication is presented here.

Part iv concludes the main findings and results presented in this body of work, discusses some of

the limitations of the field, and offers an outlook for future research. Lastly, part v contains the

appendices of the publications not included in the main body of this thesis.
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Part I

I N T R O D U C T I O N



1

M O T I VA T I O N

Neutrinos were hypothesized in 1930 by Wolfgang Pauli as a remedy to save energy and momen-

tum conservation in beta decays. The idea was to include a new electrically neutral particle into the

picture similar to the neutron but with a much smaller mass, a "little neutral one." With a neutrino

in the beta decays, the continuous beta spectrum could be explained, as the neutrino could carry

part of the energy in such a process.

Since neutrinos interact very weakly with matter, it took some time to observe them. In 1956, a

direct observation was materialized for the first time when reactor ν̄e were detected [1] through the

inverse beta decay. The existence of a µ lepton [2] suggested the possibility of a neutrino-partner

entering the picture. It was only in 1962 that the Brookhaven National Laboratory reported the

direct detection of νµ [3]. Later on, the existence of τ leptons was confirmed at the Stanford Linear

Accelerator Centre [4], and the detection of the corresponding ντ in 2001 at Fermilab [5] completed

the three families of leptons and neutrinos that we know today.

In 1968, the Homestake experiment led by Raymond Davis detected neutrinos coming from the

nitrogen-carbon cycle in the Sun [6] and reported a deficit of νe counts; they measured about a 1/3

of the flux predicted by Bahcall. This discrepancy is known as the solar neutrino problem [7]. Dif-

ferent explanations for this deficit were proposed to explain this discrepancy, including corrections

to the solar model and beyond the Standard Model scenarios. Later, a similar discrepancy was

confirmed by the Kamiokande detector [8] and by the Irvine-Michigan-Brookhaven experiment [9,

10] which detected fewer atmospheric muon neutrinos than predicted. These anomalies were later

explained by a phenomenon known as neutrino flavor conversion [8, 11, 12] which is responsible

for a variation of the flavor content of neutrinos between their production and detection location.

Neutrino flavor conversion has been observed for atmospheric neutrinos [13, 14], solar neutri-

nos [15, 16], reactor neutrinos [17, 18], and accelerator neutrinos [19, 20]. See the Gran Unified

Neutrino Spectrum at Earth [21] for a global picture of neutrino processes. The solid confirmation

3
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of neutrino oscillations implies that neutrinos have non-zero masses and urges for new physics

beyond the Standard Model.

Apart from the first detection of neutrinos from the Sun [6], various astrophysical sources

have been identified as possible efficient neutrino factories [22–24]. Among these are the famous

Supernova 1987A [25–27], cosmic ray neutrinos interacting with Earth’s atmosphere [28], and

more recently, detections consistent with blazars [29–33], tidal disruption events [34–36] and

superluminous supernovae [37].

Also, the recent detection of gravitational waves and photons from a binary neutron star merger

event [38], could have been accompanied by neutrinos. The detection of the event GW170817 was

followed up by IceCube [39], ANTARES [40], and the Pierre Auger Observatory [41] to search for

coincident high-energy neutrinos from the relativistic outflow from the binary neutron star merger.

However, IceCube did not identify neutrinos that were directionally coincident with the location of

GW170817 [42]. Moreover, Superkamiokande searched for coincident neutrino events in the range

MeV–PeV and found no significant neutrino signal. However, upper limits were set on the neutrino

fluence for GW170817 [43]. Ongoing efforts are still trying to find coincident neutrino events with

gravitational wave events from the latest run (O3) of the LIGO/Virgo collaborations [44].

Neutrinos from astrophysical sources allow us to learn from the behavior of particle interac-

tions in extreme conditions [45], which would otherwise be impossible to create in terrestrial

experiments.

For instance, Supernova 1987A [25–27] was the first direct detection of neutrinos from the

collapse of a star. Since neutrinos carry away 100 times more energy than the kinetic energy of a

typical core-collapse supernova, neutrinos are expected to play a dominant role. Moreover, since

neutrinos interactions and neutrino energy deposition is flavor-dependent, the modeling of the

evolution of neutrino flavor in a core-collapse supernova is conceptually complex and represents

an open issue in astrophysics. Not surprisingly, the situation is also complex for compact binary

merger remnants. Even though the detection of neutrinos from merger remnants is unlikely due to

a low local merger rate [43], neutrinos can still indirectly affect future observations. For instance,

the evolution of the merger disk and the formation of the neutrino-driven wind depend on the
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balance between neutrino absorption and emission, and thus neutrinos are expected to play an

essential role in the cooling of the disk and in the production of elements heavier than iron [46–50].

To better understand the role of neutrino flavor conversions in core-collapse supernovae [51] and

the compact binary merger remnants [50], the works contained in this thesis focus on investigating

the neutrino flavor evolution in regions where the neutrino densities are incredibly high, with

the hope to shed light on the possible impact that neutrino flavor conversion could have on the

inner-workings of such fascinating astrophysical sources.
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We adopt the following conventions throughout this thesis, unless specified otherwise:

• Natural units: h̄ = c = 1.

• Greek indices µ, ν = 0, 1, 2, 3.

• Neutrino flavor indices in the three-flavor framework α, β = e, µ, τ.

• Neutrino flavor indices in the two-flavor framework α, β = e, x, where x = µ, τ is the

admixture of heavy-lepton neutrinos.

• Neutrino mass basis indices i, j = 1, 2, 3.

• The Minkowski metric uses the following signature ηνµ = ηµν = diag(−1, 1, 1, 1).

• The gamma matrices γµ satisfy the Clifford algebra {γµ, γν} = 2ηµν. The gamma matrix

γ5 ≡ iγ0γ1γ2γ3.

These are the most common abbreviations used throughout this thesis:

• SM = Standard Model.

• NC, CC = Neutral-Current and Charged-Current, respectively.

• MSW = Mikheyev-Smirnov-Wolfenstein effect.

• NO (NH) = Normal Ordering (Normal Hierarchy).

• IO (IH) = Inverted Ordering (Inverted Hierarchy).

• FFC = Fast Flavor Conversion.

• EOM = Equation of Motion.

• LSA = Linear Stability Analysis.

• ELN = Electron-Lepton-Number.

• MNR = Matter-Neutrino Resonance.

• CCSNe = Core-Collapse Supernovae.

• NS, BH, PNS = Neutron Star, Black Hole and Proto-Neutron Star, respectively.



2

F U N D A M E N T A L S O F N E U T R I N O P H Y S I C S

Neutrinos are fermions (spin 1/2) and are among the fundamental particles of nature. They

participate only in weak and gravitational interactions, and however, due to their very tiny

masses and weak coupling to matter, their interactions are difficult to detect. Like quarks and

charged-leptons, neutrinos also come in three different flavors: electron (e), muon (µ) and tau (τ).

Neutrinos are classified according to their charged-lepton partner that is produced (or destroyed)

along with the neutrino via charged-current weak interactions: we call νe the neutrino that should

follow after the detection of an e, and similar for the µ and τ flavors. In the next Sections, we study

neutrino weak interactions as described by the Standard Model and derive, in a standard fashion,

phenomenological implications such as neutrino flavor conversion.

2.1 N E U T R I N O S I N T H E S TA N D A R D M O D E L

Three families of neutrinos, νe, νµ, ντ and their antiparticles participate in weak interactions such

as charged- and neutral-current interactions via the exchange of weak W± and Z0 bosons. The

contribution from terms containing neutrino fields in the fermion Lagrangian LF is given by [52,

53]

LF ⊃ ∑
α=e,µ,τ

[
ν̄αiγµ∂µνα +

g√
2

(
ν̄α,Lγµeα,LW+

µ + h.c.
)
+

g
2 cos θw

ν̄α,Lγµνα,LZµ

]

− ∑
α,β=e,µ,τ

(
mαβν̄α,Lνβ,R + h.c.

)
. (2.1)

The index runs over the three flavors α = e, µ, τ. Here, θw is the weak mixing angle (Weinberg

angle), g is the weak coupling constant, γµ are the gamma matrices, and Z0, W± are the neutral

and charged weak bosons. The subscripts L and R refer to left-handed and right-handed neutrino

fields, respectively. The charged-current term (second term) couples neutrinos and charged leptons

to the W± bosons, while the neutral-current term (third term) couples neutrinos to the neutral

7
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Figure 1: Neutrino interaction vertices. Three families of charged leptons e, µ, τ and neutrinos νe,µ,τ (and their

antiparticles) undergo weak interactions mediated by the gauge bosons W± and Z0.

Z0 boson. See Fig. 1 for the weak interaction vertices. One peculiar characteristic of the weak

interaction is the maximal violation of parity, i.e., only left-handed neutrinos couple to the weak

gauge bosons W± and Z0.

The mass term in Eq. 2.1 is generally not diagonal. In other words, there can be non-vanishing

mαβ for α ̸= β. As a result, the flavor eigenstates νe,µ,τ do not have a well-defined mass. To go

to a basis where the mass term is diagonal (the mass basis), the unitary matrices U and V are

introduced:

m = UmDV† , (2.2)

where mD = diag(m1, m2, m3) has only diagonal entries. The mass eigenstates are then defined

accordingly

νj,L ≡ ∑
α=e,µ,τ

U∗α,jνα,L (2.3)

νj,R ≡ ∑
α=e,µ,τ

V∗α,jνα,R (2.4)
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where the index j runs over the mass eigenstates j = 1, 2, 3. Since only left-handed neutrinos

couple to the weak gauge bosons, the matrix V∗α,j cannot be measured, only U∗α,j. For left-handed

neutrinos however, this rotation has important implications for the charged current interactions

LF ⊃ ∑
j=1,2,3

[
ν̄jiγµ∂µνj +

g√
2

(
ν̄j,LU∗α,jγ

µeα,LW+
µ + h.c.

)
+

g
2 cos θw

ν̄j,Lγµνj,LZµ

]

− ∑
j=1,2,3

(
mjν̄j,Lνj,R + h.c.

)
. (2.5)

Therefore, charge current neutrino interactions give rise to a superposition of mass eigenstates.

The fact that the mass eigenstates do not coincide with the interaction eigenstates leads to neutrino

flavor transitions. In the next Section, we discuss neutrino oscillations in more detail.

2.2 N E U T R I N O O S C I L L AT I O N S

Neutrino oscillation is a quantum mechanical phenomenon that allows neutrinos created in a specific

flavor to be detected later in a different flavor. Historically, Pontecorvo was the first to realize that

the presence of two or more neutrino flavors allows for very small neutrino masses to emerge in

observations [54]. Pontecorvo’s original work referred to ν ↔ ν̄ oscillations similar to those of

kaons [55, 56]. At present, we understand that neutrino oscillation in vacuum arises because the

neutrino propagation eigenstates, the states with definite momentum, are not the same as their

interaction eigenstates. The latter means that neutrinos produced in a particular flavor (coherent

superposition of mass eigenstates) through weak interaction processes will propagate in vacuum

and, in doing so, their wavefunction evolves as a result of phase differences. In practice, there is a

well-defined probability of detecting a neutrino flavor other than originally produced, referred to

as neutrino oscillations [8, 57].
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2.2.1 Neutrino oscillations in vacuum

As described by the weak-interaction Lagrangian in Eq. 2.5, a weak-interaction eigenstate produced,

for instance, in the decay of a neutron n→ p + e− + ν̄e comes as a superposition of neutrino mass

eigenstates

|να⟩ = ∑
j

U∗αj |vj⟩ . (2.6)

Even though the fields transform as να,L = ∑j Uαjνα,L from the mass- to the flavor basis, the ket

states transform with U† and not U. More in detail, the ket states are produced via the creation

operator ∑j U∗αjν̄j,L and not the annihilation operator ∑j Uαjνj,L. By representing the neutrino state

as an expansion in plane waves, the wave function as a function of the production source L and

the time after production reads as

|να(T, L)⟩ = ∑
j

U∗αje
−iEjT+ipj L |νj⟩ , (2.7)

where Ej and pj are the energy and the momentum for each of the i-th mass eigenstates. In general,

due to their different kinematics, Ej and pj are different for each of the mass eigenstates.

Once the wave function is known, the amplitude can be computed. For a neutrino produced as

|να⟩ and detected as a ⟨νβ|, the amplitude is given by

⟨νβ|να(T, L)⟩ = ∑
j,k

U∗αjUβke−iEjT+ipj L ⟨νk|νj⟩︸ ︷︷ ︸
=1

. (2.8)

By squaring the amplitude, one obtains the oscillation probability as a function of T and L

Pαβ(T, L) = | ⟨νβ|να(T, L)⟩ |2 = ∑
j,k

U∗αjUβjUαkU∗βke−i(Ej−Ek)T+i(pj−pk)L. (2.9)

In neutrino oscillation experiments and astrophysical sources, one does not know when each

neutrino is produced, i.e., the uncertainty in the production time is far larger than the uncertainty

of the neutrino energy. Thus, what we see is a time-averaged effect on the oscillation probability

Pαβ(L) =
1
N

∫
dTPαβ(T, L)

=
1
N ∑

j,k
U∗αjUβjUαkU∗βk exp

[
i
(√

E2
j −m2

j −
√

E2
k −m2

k
)

L
]
δ(Ej − Ek) (2.10)

where the constant N ensures that ∑β Pαβ(L) = 1. Also, the Dirac delta resulted from
∫

dTe−i(Ej−Ek)T =

δ(Ej − Ek) which forces the energies to be equal to each other E = Ej = Ek. Moreover, since the
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masses are much smaller than the energy, the oscillation probability Pαβ(L) can be Taylor expanded

in m2
j /E2 (and m2

k/E2) to obtain the general three flavor oscillation probabilities

Pαβ(L) ≃∑
j,k

U∗αjUβjUαkU∗βk exp
[
− i

∆m2
jk

2E
L
]
. (2.11)

A subtle point is in place regarding the time averaging leading to Eq. 2.11. Alternatively, one

could have imposed that all neutrino mass eigenstates are created with the same momentum p

but different energies. Qualitatively, this would have given the same result after assuming that

neutrinos travel nearly at the speed of light, implying L = T. In reality, neutrino sources are, more

or less, constant in time, and the elapsed time between production and detection is not measured.

The interference between two components of a neutrino beam with Ej and Ek will involve a phase

factor exp [−i(Ej − Ek)T] which vanishes after time-averaging unless Ej = Ek, as show in Eq. 2.10.

Therefore, the different components of the mass eigenstates of a beam that contribute coherently to

flavor oscillations have the same energy E.

2.2.1.1 Three-flavor framework

The unitary mixing matrix U has 9 angles and 9 complex phases for three active neutrino flavors.

Due to unitarity conditions and re-definitions of the neutrino fields, a total of three angles and one

complex phase remain the independent physical observables: three mixing angles θ12, θ13, θ23 and

one complex Dirac phase δCP that results in CP violation. The mixing matrix U is parametrized as

follows

U =




1

c23 s23

−s23 c23







c13 s13e−iδCP

1

−s13eiδCP c13







c12 s12

−s12 c12

1




=




c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s13s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13,




(2.12)

where cij ≡ cos θij and sij ≡ sin θij. This matrix is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix [56, 58]. The mixing of three neutrino flavors νe,µ,τ are described by the three mixing

angles θ12, θ13, θ23 conventionally taken to lie in the first quadrant θ ∈ [0, π/2], two mass squared

differences that parametrize the variation in mass among the mass eigenstates ∆m2
12 = m2

2 −m2
1 ≡
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δm2 and ∆m2
31 = m2

3 −m2
1 ≃ ∆m2

32 ≡ ∆m2, and the Dirac CP-violating phase δCP conventionally

taken to lie in δCP ∈ [0, 2π]. Neutrinos may be Majorana particles, in which case two extra phases

η1,2 enter the PMNS matrix. Nevertheless, η1,2 are unobservable because they can be absorbed in

the neutrino states.

In Table 1 we show the best fit values of the mixing parameters with their uncertainties. Since

neutrino oscillations are only sensitive to the difference of the neutrino masses, there is no informa-

tion about their absolute value coming from neutrino oscillation experiments. The latter means

that at least two neutrinos are massive. The small squared difference δm2 becomes manifest at

very large distances, as shown in Figs. 2 and because of that, its sign can be determined through

the Mikheyev-Smirnov-Wolfenstein effect in the interior of the Sun [59] (Section 2.2.2), thereby

complementing Earth-based measurements of the sign of δm2. On the other hand, the larger

mass squared difference ∆m2 operates on smaller scales, as shown in Fig. 3 and its sign has not

been determined yet by using the MSW effect. The sign of ∆m2 remains undetermined, and two

possibilities arise: Normal Ordering (NO) and Inverted Ordering (IO). The NO corresponds to

the scenario where m3 > m2 > m1 and the IO to the scenario where m2 > m1 > m3. At present,

experiments favor the NO scenario [60], and there are available constraints for both scenarios from

cosmology with a slight preference for the NO [61]. However, there is no conclusive evidence of

this preference [62] and only future neutrino experiments can solve this issue in the upcoming

years [63].

2.2.1.2 Two-flavor framework

There is only one mixing angle, and one mass squared difference for two active neutrino flavors.

Under this assumption Eq. 2.11 allows to write down the transition probability (α ̸= β) in the

following way

Pαβ(L) = sin2 (2θ) sin2
(

1.27
∆m2L

E
[eV2][km]

[GeV]

)
, (2.13)

where a factor of c3/h̄ has to be restored in the oscillation argument of Eq. 2.11 to account for SI

units. The mixing angle θ controls the amplitude of oscillations, while the mass squared difference

∆m2 sets the oscillation period. This oscillatory behavior is shown in Fig. 2 where Peµ(L), Pee(L)

are plotted using a 1 MeV neutrino traveling a distance of 100 km. Additionally, in Fig. 3 we show



2.2 N E U T R I N O O S C I L L AT I O N S 13

Table 1: Table of the neutrino mixing parameters as measured experimentally. The best fit values are reported

with their corresponding uncertainties. Values taken from from Table III of Ref. [60] and the PDG [64].

Parameter Best fit value 3σ range Best fit value 3σ range

(NO) (NO) (IO) (IO)

θ12[
◦] 34.3 31.4− 37.4 34.3 31.4− 37.4

θ13[
◦] 8.53 8.13− 8.92 8.58 8.17− 8.96

θ23[
◦] 49.26 41.20− 51.33 49.46 41.16− 51.25

δm2[eV2] 7.5× 10−5 (6.94− 8.14)× 10−5 7.5× 10−5 (6.94− 8.14)× 10−5

∆m2[eV2] 2.55× 10−3 (2.47− 2.63)× 10−3 |2.55× 10−3| (|2.37| − |2.53|)× 10−3

δCP[rad] 1.08π 0.71π − 1.99π 1.58π 1.11π − 1.96π

neutrino oscillations in vacuum of three neutrino flavors using the same neutrino energy. One

direct consequence of neutrino oscillations in vacuum is that the probability of observing νe, (ν̄e)

varies as a function of the distance between neutrino production and detection.

2.2.2 Neutrino conversions in matter

In astrophysical environments, a significant matter background modifies the way neutrino oscil-

lates inside the source. The first to realize that was Wolfenstein [65], who showed that neutrinos

traveling in matter experience a potential due to coherent forward scattering with particles in

the medium. Later on, Mikheyev and Smirnov [59] showed that resonant flavor transitions are

possible for neutrinos traveling through a medium if certain resonance conditions are met. Ful-

filling the resonance condition leads to enhanced conversions in matter, often referred to as the

MSW resonance effect. In this Section, the MSW resonance effect is revisited, pointing out critical

phenomenological implications for neutrinos.
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Figure 2: Neutrino vacuum oscillations in the two-flavor framework. The neutrino beam has an energy of

E = 1 MeV and we assume the solar oscillation parameters δm2 and θ12 as reported in Table 1. The

amplitude of oscillations is controlled by sin2 2θ12 while the period of oscillation is fixed by δm2/E.

Equal oscillation probabilities result for antineutrinos.

0 20 40 60 80 100
L[km]

0.0

0.2

0.4

0.6

0.8

1.0

P
α
β
(L

)

P 3ν
ee

P 3ν
ee (θ13 = 0)

P 2ν
ee

0.0 0.5 1.0 1.5 2.0
L[km]

0.0

0.2

0.4

0.6

0.8

1.0

P
α
β
(L

)

P 3ν
ee

P 3ν
ee (θ13 = 0)

P 2ν
ee

Figure 3: Neutrino vacuum oscillations in the three-flavor framework. The neutrino beam has an energy of

E = 1 MeV. The survival probability P3ν
ee is a function of the parameters θ12, θ13, δm2, ∆m2. As in the

two flavor case, the amplitude of oscillations is controlled by sin2 2θ12 while its period is fixed by

δm2/E. However, small-scale oscillations are happening as well. The amplitude of the small wiggles

is controlled by θ13 (see that for θ13 = 0 we recover P3ν
ee = P2ν

ee ), while the period is set by ∆m2.
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Figure 4: As neutrinos travel through matter, they can interact with background particles through neutral-

current scattering and charged-current scattering processes. Neutral-current scatterings involve

neutrinos of all flavors, while the charged-current interaction requires a charged-lepton to be present.

In core-collapse supernovae and compact binary merger remnants, there is an overwhelming number

of e in comparison to the abundance of heavy-leptons µ and τ .

As neutrinos propagate in a dense medium, they interact with background particles. The

probability of incoherent scatterings occurring is quite small. For instance, the characteristic

cross-section for a neutrino-proton scattering is roughly [64]

σ ∼ G2
Fs

π
∼ 10−43 cm2

( E
MeV

)2
, (2.14)

where the Fermi constant GF ≡
√

2g2/8M2
W ≃ 1.166× 10−5 Gev−2 and s is the square of the cen-

ter of mass energy of the collision. In dense matter, however, neutrinos can also interact coherently

with the background particles. During coherent interactions, the medium remains unchanged,

and it is possible to have interference between the forward scattered and the unscattered neutrino

waves, which results in the MSW effect. The effect of the medium is on the development of a phase

difference of the neutrino waves and not on the intensity of the neutrino beam, which remains

unchanged. For this reason, coherent forward scattering is proportional to GF and not G2
F as for

incoherent scatterings. For illustration, let us consider the evolution of νe in a medium constituted

by electrons, protons, and neutrons with their corresponding number densities ne, np and nn.

In light of the fermionic Lagrangian for weak interactions in Eq. 2.1, the corresponding Hamilto-

nian is given by its Legendre transformation

HF ⊃ − ∑
α=e,µ,τ

[
g√
2

(
ν̄α,Lγµeα,LW+

µ + h.c.
)
+

g
2 cos θw

ν̄α,Lγµνα,LZµ

]
. (2.15)
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Figure 5: Schematic representation of coherent forward scattering of neutrinos. An unscattered νe plane-wave

(blue) approaches a thermal bath of e− and scatters. A wave-front emanates from each of the e−

in the bath, which adds coherently to form a plane-wave (magenta) constructively. This scattered

plane wave, however, has developed a phase shift with respect to the unscattered one. The scattered

plane wave interferes with the unscattered one because of the phase shift leading to the MSW effect.

In the low-energy limit, i.e., for neutrino energies much smaller than MW = 80.2 GeV and MZ =

91.2 GeV, the energy and momentum transferred by the weak bosons is much less than their

masses. See Fig. 4 for the neutrino interaction diagrams mediated by the weak bosons. The low

energies involved justify expanding the propagators and keeping only the first leading term. Thus,

the propagator of the weak bosons can be approximated as

G(W,Z)
µν (p) = i

−gµν +
pµ pν

M2
W,Z

p2 −M2
W,Z + iϵ

−→ i
gµν

M2
W,Z

. (2.16)

This low-energy expansion allows to write down an effective Hamiltonian for the exchange of

weak bosons known as Fermi’s four fermion interaction [66, 67]. Let us first have a look at the

effective Hamiltonian responsible for charged-current interactions of νe with background electrons

Hmat ⊃
g2

2M2
W

[
ν̄e,LγµeL

][
ēLγµνe,L

]
(2.17)

=
GF√

2

[
ν̄eγµ(1− γ5)e

][
ēγµ(1− γ5)νe

]
. (2.18)

In order to isolate the electron components, one uses the Fierz identities [68, 69] which give

Hmat ⊃
GF√

2

[
ēγµ(1− γ5)e

][
ν̄eγµ(1− γ5)νe

]
. (2.19)

The background electrons can be regarded as a static background. Their four-momenta (and

helicities) are the same before and after the scattering. Only by leaving the background medium
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unchanged after the interaction can it coherently contribute to a shift in the neutrino energy. See

Fig. 5 for a schematic representation of coherent forward scattering undergone by neutrinos via

charge-current interactions. Therefore, it is reasonable to take the thermal average ⟨·⟩ of the

interaction Hamiltonian over the electron fields

Hmat ⊃
GF√

2

〈
ēγµ(1− γ5)e

〉[
ν̄eγµ(1− γ5)νe

]
. (2.20)

Moreover, by assuming that the momentum distribution of electrons is isotropic, the contribution

from µ = 1, 2, 3 to the thermal average vanishes1 and only µ = 0 contributes

〈
ēγ0(1− γ5)e

〉
= ne ,

〈
ēγi(1− γ5)e

〉
= 0 , (2.21)

where ne is the electron number density. Therefore, the matter potential takes the following form

Hmat ⊃
GF√

2
ne
[
ν̄eγ0(1− γ5)νe

]
= VCC

[
ν̄e,Lγ0νe,L

]
, (2.22)

where the charged-current potential due to electrons is

VCC =
√

2GFne . (2.23)

This term can be interpreted as a contribution to the νe,L energy. In the case of antineutrinos, one

ends up with the same expression up to a sign VCC = −
√

2GFne [70, 71]. It is worth noting that

Hmat has the same structure as that of an electron in the presence of an electrostatic potential, i.e.,

ēγ0eϕ, where ϕ is the usual electric potential field.

Following an equivalent derivation, one finds that the contribution of νµ,τ to the potential due to

CC interactions is almost zero because of the very small abundance of µ and τ leptons, in contrast

to the overwhelming abundance of e in the medium of core-collapse supernovae (Chapter 3)

and the compact binary merger remnants (Chapter 4). For neutral-current interactions (NC), the

effective potential is given by [64]

VNC =

√
2

2
GF

[
− ne(1− 4 sin2 θw) + np(1− 4 sin2 θw)− nn

]
. (2.24)

1 This is not the case in the presence of a neutrino background where the momentum distribution cannot be assumed to be

isotropic.
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In neutral matter, one has the same amount of electrons and protons ne = np, and their contribu-

tions to the potential cancel each other. This neutrality results in a simpler expression in terms of

the neutron density only

VNC = − GF√
2

nn . (2.25)

As a result of coherent forward scatterings with the medium, there is a shift in the νe energy. The

modification to the conversion probability enters via the energy shift coming from the potential.

Let us recall the expression for Pαβ in Eq. 2.10 for neutrino conversions in vacuum

Pαβ(L) =
1
N ∑

j,k
U∗αjUβjUαkU∗βk exp

[
i
(√

E2
j −m2

j −
√

E2
k −m2

k
)

L
]
δ(Ej − Ek) . (2.26)

Notice that the oscillation phase ϕj ≡ pjL =
(√

E2 −m2
j −

√
E2 −m2

k
)

L will receive a contribution

from CC and NC scatterings, which will result in new momentum (propagation) eigenstates, states

with definite momentum. In the case of vacuum oscillations, the propagation eigenstates are just

the mass eigenstates. This changes in the presence of a matter background.

In the flavor basis, the mass matrix and the matter potential matrix are given by

m̂ =




cos θ sin θ

− sin θ cos θ







m1

m2







cos θ − sin θ

sin θ cos θ


 , (2.27)

Hmat =




VCC 0

0 0


+




VNC 0

0 VNC




︸ ︷︷ ︸
drop

, (2.28)

where we have assumed two flavors of neutrinos for simplicity. The contribution proportional to

12×2 due to NC scatterings does not contribute to the conversion probability because only phase

differences can be observed. The conversion probability Pαβ(L) is unchanged if a term proportional

to the identity matrix is introduced, so we can drop the NC term and keep only the CC contribution.

To find the propagation eigenstates in matter, we must diagonalize the matrix given by

p̂ =
√
(E− Hmat)2 − m̂2 ≃ E− Hmat −

m̂2

2E
, (2.29)

where we have assumed that the neutrino masses m̂ and neutrino potentials Hmat are much smaller

than the neutrino energy E. Therefore, H2
mat/E2 and other subleading terms can be neglected. The

term introducing a phase difference in the conversion probability is Heff ≡ m̂2/2E + Hmat, which
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is the effective Hamiltonian for the evolution of the wave functions. After inserting m̂ and Hmat

(Eqs. 2.27 and 2.28), the effective Hamiltonian in the flavor basis is

Heff =



−ω

2 cos 2θ + VCC
2

ω
2 sin 2θ

ω
2 sin 2θ ω

2 cos 2θ − VCC
2


 , (2.30)

where we have defined the vacuum oscillation frequency ω ≡ ∆m2/2E. The evolution equation is

a Schrödinger equation with the effective Hamiltonian matrix in the flavor basis

i
d

dx




ψee(x)

ψeµ(x)


 = Heff




ψee(x)

ψeµ(x)


 , (2.31)

where the initial states are, for an initial νe, given by

Ψe(0) =




ψee(0)

ψeµ(0)


 =




1

0


 . (2.32)

In general cases, the flavor evolution of neutrinos must be solved numerically due to the absence

of exact analytical solutions. However, in the cases of constant matter density (this Section) and

slowly-varying matter density (Section 2.2.3), as is the case for the Sun’s interior, the solutions

can be found analytically, allowing us to learn a lot from the impact of the medium on neutrino

conversions. After finding the solutions to the transition amplitudes, the transition and survival

probabilities can be computed as

Peµ(x) = |ψeµ(x)|2 , (2.33)

Pee(x) = |ψee(x)|2 = 1− Peµ(x) . (2.34)

We must now diagonalize Heff to find solutions to the Schrödinger equation (Eq. 2.31). The effective

Hamiltonian can be diagonalized by a rotation introduced by Um

UT
mHeffUm =




λ1 0

0 λ2


 , (2.35)

where the orthogonal matrix Um is given by

Um =




cos θeff sin θeff

− sin θeff cos θeff


 . (2.36)

The quantities λ1,2 are the eigenvalues of Heff, which can be found straightforwardly

λ1,2 = ±1
2

√
(VCC −ω cos 2θ)2 + ω2 sin2 2θ. (2.37)
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Figure 6: Left: The instantaneous mass eigenstates (meff
i )2 = (m2

1 + m2
2 + 2EVCC ± ∆m2

eff)/2 as a function of

VCC. The resonance location is shown in black dashed line for a 1 MeV neutrino. At this location,

the ∆m2
eff is minimal, and the masses of the effective mass eigenstates are the closest. Right: The

resonance condition is fulfilled for neutrinos when VCC = ω cos 2θ (red line), as described by Eq. 2.39.

Resonant conversion is only possible for neutrinos in the NO scenario. Notice that the change of

sign ω → −ω in the antineutrino sector prevents neutrinos from meeting the resonance condition

(blue line). The roles of neutrinos and antineutrinos are reversed in the IO scenario.

Furthermore, one defines an effective mass squared difference in the presence of a matter background

so that the conversion probabilities in matter have the same structure as those in vacuum (Eq. 2.13).

Thus, it is natural to define

∆m2
eff = 2E

√
(VCC −ω cos 2θ)2 + ω2 sin2 2θ . (2.38)

Interestingly, for increasing VCC (increasing matter density) the eigenvalues λ1,2 approach each

other at which point ∆m2
eff is minimal. This happens when VCC takes the special value of

VR
CC = ω cos 2θ, (2.39)

where a resonance occurs, making the separation between the eigenvalues the smallest and

∆m2
eff = 2Eω sin θ. The behavior of ∆m2

eff and the resonance condition are shown in Fig. 6 for a

1 MeV neutrino, where the resonance location VCC = VR
CC is marked with black dashed line. At this

location, neutrinos are converted resonantly while antineutrinos are not. There can be no resonance

for antineutrinos since ω → −ω and there is no cancellation of terms inside the square root in

Eq. 2.38. In reality, for neutrinos we have VCC > 0 while for antineutrinos VCC < 0, however, we

absorb the sign in the definition of the vacuum frequency i.e., ω > 0 for neutrinos and ω < 0 for
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Figure 7: Left: Effective mixing angle as a function of VCC for a 1 MeV neutrino. At the resonance location, the

effective mixing angle is maximal, leading to an enhancement of conversions compared to the same

neutrino traveling in vacuum. In red dotted line, we show the limiting case corresponding to the

vacuum scenario (VCC = 0). Right: Effective mixing angle at the resonance location VCC = VR
CC ≃

1.35× 10−11 eV as a function of neutrino energy.

antineutrinos. The roles of neutrinos and antineutrinos are reversed in the IO compared to the NO

scenario.

Analogous to the definition of the effective mass squared difference (Eq. 2.38), one also defines

an effective mixing angle θeff. The requirement of the rotation Um was that it diagonalized Heff. The

off-diagonal components of UT
m HeffUm must therefore vanish according to Eq. 2.35. This allows

solving for θeff

sin 2θeff =
ω sin 2θ√

(VCC −ω cos 2θ)2 + ω2 sin2 2θ
. (2.40)

In Fig. 7 we show the behavior of the effective mixing angle as a function of the matter potential

(left panel) and as a function of the neutrino energy at the resonance location (right panel). When

the resonance conditions is met sin 2θeff = 1 (or θeff = π/4) leading to an enhancement of

conversions as compared to neutrinos traveling in vacuum.

By construction, the neutrino conversion probability can be expressed analogously to the one in

vacuum (Eq. 2.11 in the two-flavor framework) with the help of the effective parameters in matter

Peµ(L) = sin2 2θeff sin2
(∆m2

eff
4E

L
)

. (2.41)
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Figure 8: Neutrino survival probabilities Pee in vacuum (dashed line) and matter (solid line) as a function

of the separation between neutrino production and detection. In both cases, the neutrino beam

has an energy of E = 1 MeV, and we assume the solar oscillation parameters δm2 and θ12 as

reported in Table 1. The survival probability in vacuum is the same as in Fig. 2. The survival

probability in matter is for the case where the resonance condition is met for a 1 MeV, namely

VCC = VR
CC ≃ 1.35× 10−11 eV (black dashed lines in Figs. 7 and 6). The resonance condition leads

to complete flavor conversion.

The effective mixing angle sin 2θeff (Eq.2.40) has a quite remarkable consequence for the conversion

probability. When the Mikheyev-Smirnov-Wolfenstein (MSW) resonance condition is fulfilled (Eq. 2.39)

the mixing angle in matter reaches its maximum sin 2θeff = 1, as seen in Fig. 7, leading to an

enhancement of conversions. In other words, for given mixing parameters and neutrino energy,

a particular electron density exists, which leads to a maximal conversion probability. The latter

effect is commonly referred to as the MSW effect. There are two interesting limits to consider. For

VCC → 0 we recover oscillations in vacuum (sin2 2θeff → sin2 2θ), while for the matter-dominated

regime VCC → ∞ neutrino conversions are strongly suppressed (due to sin2 2θeff → 0) as can be

seen in the left panel of Fig. 7.

The conversion probability in matter (Eq. 2.41) has important consequences for determining the

absolute sign of the small mass squared difference δm2. Using the MSW effect, it was possible to

determine that δm2 > 0 because the effective mixing angle sin2 2θ and the effective mass squared

difference ∆m2
eff are sensitive to the sign δm2 through the definition of ω. If δm2 > 0 then the MSW

effect occurs for neutrinos, while if δm2 < 0 it instead occurs for antineutrinos.
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2.2.3 Adiabatic flavor conversions in slowly-varying matter density

Let us consider a matter background that changes smoothly as a function of distance. Such smooth

matter profiles could be found in the interiors of stars like our Sun.

The flavor evolution equation (Eq. 2.31) written in terms of the effective parameters ∆m2
eff and

θeff is [72]

i
d

dx




ψee(x)

ψeµ(x)


 =

1
4E



−∆m2

eff cos 2θeff ∆m2
eff sin 2θeff

∆m2
eff sin 2θeff ∆m2

eff cos 2θeff







ψee(x)

ψeµ(x)


 . (2.42)

By performing a rotation Um (Eq. 2.36), which diagonalizes the Hamiltonian UT
mHeffUm = diag(λ1, λ2),

we have that

Ψe = UmΦe where Ψe =




ψee

ψeµ


 , Φe =




ϕe1

ϕe2


 , (2.43)

Thus, the evolution equation becomes

i
d

dx




ϕe1(x)

ϕe2(x)


 =

1
4E



−∆m2

eff −4Ei d
dx θeff

4Ei d
dx θeff ∆m2

eff







ϕe1(x)

ϕe2(x)


 . (2.44)

The matrix would have been perfectly diagonal if it were not for the additional terms from

computing the derivative of Ψe:

dΨe

dx
=

d(UmΦe)

dx
=

dUm

dx
Φe + Um

dΦe

dx
. (2.45)

In the case of constant Um, implying d
dx θeff = 0, the amplitudes of the effective massive neutrinos

decouple from each other, in which case one recovers the usual conversion probability as in Eq. 2.41.

However, if Um is not constant, the derivative does not vanish, and off-diagonal terms appear as in

Eq. 2.44, making them couple to each other. With initial conditions as in Eq. 2.32 (i.e. ψee(0) = 1

and ψeµ(0) = 0), the initial conditions for the rotated evolution equation (Eq. 2.44) are given by



ϕe1(0)

ϕe2(0)


 =




cos θ
(i)
eff − sin θ

(i)
eff

sin θ
(i)
eff cos θ

(i)
eff







1

0


 =




cos θ
(i)
eff

sin θ
(i)
eff


 , (2.46)

where θ
(i)
eff corresponds to the effective mixing angle at the location where neutrinos were produced.

The rate of change of θeff is

dθeff
dx

=
1
2

sin 2θeff

∆m2
eff

dACC
dx

, (2.47)
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where ACC ≡ 2EVCC = 2
√

2GFne. The off-diagonal terms in the flavor evolution equation

(Eq. 2.44) allow for transitions between the two effective neutrino mass eigenstates ν1,eff and ν2,eff.

If the change of the matter potential is slow enough, the off-diagonal terms are extremely small

(dθeff/dx ≃ 0) resulting in transitions between ν1,eff and ν2,eff.

For instance, for neutrinos produced at the center of the Sun, ne is so large that VCC dominates

resulting in sin 2θeff → 0 (or θeff → π/2); see Fig. 7 at very large values of the matter potential. As

a result, at the center of the Sun the electron neutrino is mostly νe ≃ ν2 (see Eq. 2.46). Later, the

neutrino traverses the medium inside the Sun, which changes slowly with distance, and it escapes

the Sun as a νe ≃ ν2. At that point, in vacuum, the νe has been adiabatically transformed into a

mixture of νe and νµ because in vacuum ν2 = νe sin θ + νµ cos θ. Adiabatic transitions mean that a

neutrino starts on the blue curve in the left panel of Fig. 6 and remains there until it reaches the

surface of the Sun. In the non-adiabatic case, there is a non-zero probability that a "jump" occurs

between the red and blue curves in Fig. 6. The transition between ν1,eff and ν2,eff is negligible if

the off-diagonal terms are much smaller than the terms on the diagonal. To quantify their level of

adiabaticity, it is useful to introduce the adiabaticity parameter [72]

γ =
∆m2

eff
4E|dθeff/dx| =

(∆m2
eff)

2

2E sin θeff|dACC/dx| . (2.48)

If along the trajectory of the neutrino crossing the medium is true that γ≫ 1, then the evolution

is adiabatic and ν1,eff, ν2,eff decouple from each other: there are no jumps or transitions between

them. The solutions for the amplitudes evolve independently and can be found easily

ϕe1(x) = e+iΩϕe1(0) = e+iΩ cos θ
(i)
eff , (2.49)

ϕe2(x) = e−iΩϕe2(0) = e−iΩ sin θ
(i)
eff , (2.50)

where we have plugged in the initial conditions at the neutrino production site (Eq. 2.46) and have

defined the phase in the exponential as

Ω ≡
∫ x

0

∆m2
eff(x′)
4E

dx′ . (2.51)

The survival probability Pee = |ψee|2 can be computed once we transform back to the flavor basis

to find an expression for ψee. From Eq. 2.43 is clear that



ψee(x)

ψeµ(x)


 =




cos θ
(f)
eff sin θ

(f)
eff

− sin θ
(f)
eff cos θ

(f)
eff







e+iΩ cos θ
(i)
eff

e−iΩ sin θ
(i)
eff


 , (2.52)
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Figure 9: Averaged adiabatic survival probability as a function of the matter potential VCC (Eq. 2.55). The

resonance location VR
CC is shown in black dashed line. At the resonance location, Pad

ee (x)⟩ = 0.5 is

minimal, leading to enhanced conversions with respect to the vacuum (VCC = 0) and the matter-

dominated scenario (VCC → ∞). The resonance condition is only met by neutrinos (orange) and not

by antineutrinos (purple) in the NO scenario. Their roles are reversed in the IO scenario.

where θ
(f)
eff is the mixing angle at the point of detection, i.e., it equals the vacuum mixing angle if

the neutrino is detected outside the Sun. Thus, the survival probability is given by the square of

the amplitude

Pad
ee (x) = |ψee(x)|2 =

∣∣ cos θ
(f)
eff cos θ

(i)
effe+iΩ + sin θ

(f)
eff sin θ

(i)
effe−iΩ∣∣2 (2.53)

=
1
2
(
1 + cos 2θ

(f)
eff cos 2θ

(i)
eff + sin 2θ

(f)
eff sin 2θ

(i)
eff cos Ω

)
. (2.54)

Adiabaticity is a good approximation for neutrinos streaming out of stars like the Sun, which have

a smooth density profile. Also, the detection point is typically very far away from the production

site such that the effective mixing angle at detection is simply the mixing angle at vacuum θ
(f)
eff = θ.

Moreover, since the traveled distance between the production and the detection site is quite large,

there is a very rapid variation of the cos Ω term, which then averages to zero at the detection point.

Thus, what is seen in the detector is an average (adiabatic) survival probability given by

⟨Pad
ee (x)⟩ = 1

2
(
1 + cos 2θ cos 2θ

(i)
eff

)
, (2.55)

which does not depend on the distance L between the neutrino production site and the detector

but only on effective mixing angles at production and detection. In Fig. 9, we show the averaged

adiabatic survival probability ⟨Pad
ee (x)⟩ as a function of the matter potential at which neutrinos
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were initially produced. A minimum in the survival probability is found at the resonance condition,

where the effective mixing angle is maximal. At the resonance condition we have Pad
ee (x)⟩ = 0.5,

which is smaller than the values in vacuum VCC = 0 and in the matter-dominated scenario VCC →

∞, with averaged survival probabilities of ⟨Pad
ee (x)⟩ = 0.55 and ⟨Pad

ee (x)⟩ = 0.65, respectively.

2.2.4 Density matrix formalism

The flavor evolution of neutrinos can be described with n× n density matrices in flavor space for a

given momentum mode [73]. The diagonal elements of the density matrices are the occupation

numbers of the n-th flavor, while the off-diagonal terms encode the coherence between different

flavors. The density matrix formalism is a handy tool to describe flavor evolution in vacuum,

matter, and in the case where neutrinos constitute a significant background to themselves. This

formalism becomes quite convenient when dealing with an ensemble of neutrinos interacting

with neutrinos in the medium. Neutrino refraction describes the energy shift due to this neutrino

background. The refractive index could be considered an n× n matrix [74–76] implying that there

are also refractive indices off-diagonal in flavor space. A natural way to describe this refractive

index matrix is via implementing density matrices in flavor space [73].

Let us begin with the momentum expansion of the left-handed neutrino field, which in this

section we call ψ̂(x) to match the notation in Ref [73]

ψ̂(x) =
∫ d3 p⃗

(2π)3

(
a p⃗(t)u p⃗ + b†

− p⃗(t)v− p⃗
)
ei p⃗·⃗x , (2.56)

where a p⃗ is the annihilation operator for negative-helicity neutrinos with given momentum p⃗

and b†
− p⃗ is the creation operator for positive-helicity antineutrinos. The quantities u p⃗ and v− p⃗

are the Dirac spinors of the massless negative- and positive-helicity particles, respectively. In the

two-flavor framework for instance, each a p⃗ and b†
− p⃗ are column vectors of two entries, each of

them corresponding to the particle annihilators aα( p⃗) and antiparticle creators b†
α( p⃗) of the flavors

α = e, x (with the admixture x = µ, τ). They obey the anti-commutation relations

{aα( p⃗), a†
β( p⃗′)} = {bα( p⃗), b†

β( p⃗′)} = δαβ(2π)3δ(3)( p⃗− p⃗′). (2.57)
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A neutrino ensemble is described by the m-particle Green functions [73] because the neutrino

ensemble is a many-body system. The mean-field approximation averages over the many degrees

of freedom in the underlying many-body system and treats the effect of all the other background

particles as one single averaged effect. This allows reducing a many-body system to a one-particle

system. In the case of one-body systems, only the expectation values of the products of two

operators a, a†, b, b† need to be considered. The bilinears aa, a†a†, b†a, a†b violate lepton number

and thus their expectation values are exactly zero. Moreover, the expectation values of the bilinears

a†b† and ab also vanish because they oscillate "fast" around zero [73] i.e. ⟨a p⃗(t)a p⃗′(t)⟩ ∝ e−i(| p⃗|+| p⃗′ |)t.

Thus, the only remaining bilinears left that contribute are the "slow" density operators a†
p⃗a p⃗′ and

b†
p⃗bp⃗′ . The neutrino ensemble is completely described by the n× n density matrices ρ( p⃗, t) and

ρ̄( p⃗, t) given by

⟨a†
β( p⃗)aα( p⃗′)⟩ = (2π)3δ(3)( p⃗− p⃗′)(ρ( p⃗))αβ , (2.58)

⟨b†
β( p⃗)bα( p⃗′)⟩ = (2π)3δ(3)( p⃗− p⃗′)(ρ̄( p⃗))αβ . (2.59)

Consequently, the density matrices above contain the usual neutrino and antineutrino occupation

numbers in their diagonal entries, while the coherence between flavors is contained in the off-

diagonal terms. In the interaction basis, at a given location x⃗ and time t, the flavor density matrices

for (anti)neutrinos with momentum p⃗′ can be written as

(ρ(x⃗, p⃗′, t))αβ = ∑
ν′

n
ν′ ,p⃗′(x⃗, t) ⟨να|ψν′(x⃗, p⃗′, t)⟩ ⟨ψν′(x⃗, p⃗′, t)|νβ⟩ , (2.60)

(ρ̄(x⃗, p⃗′, t))βα = ∑̄
ν′

n
ν̄′ ,p⃗′(x⃗, t) ⟨ν̄α|ψν̄′(x⃗, p⃗′, t)⟩ ⟨ψν̄′(x⃗, p⃗′, t)|ν̄β⟩ , (2.61)

where |ψν′(ν̄′)( p⃗′)⟩ is the state of a neutrino (antineutrino) ν′(ν̄′) with momentum p⃗′, and n
ν′ ,p⃗′(nν̄′ ,p⃗′)

is its corresponding number density.
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2.2.5 Neutrino-neutrino interaction

Neutrinos also constitute a significant background to other neutrinos and should be considered.

The general expression for the neutrino self-interaction potential in the formalism of density

matrices is given by [71]

Hνν( p⃗) =
√

2GF

∫
d⃗q{GS(ρ(⃗q)− ρ̄(⃗q))GS + GSTr[(ρ(⃗q)− ρ̄(⃗q))GS]}

(
1− p⃗ · q⃗
| p⃗||⃗q|

)

−
√

2GF
8| p⃗|

4M2
W

∫
d⃗q|⃗q|GS(ρ(⃗q) + ρ̄(⃗q))GS

(
1− p⃗ · q⃗
| p⃗||⃗q|

)2
. (2.62)

The quantity GS is a matrix of coupling constants, and since we only deal with SM physics, GS

is simply the identity matrix. The term p⃗·⃗q
| p⃗||⃗q| is simply equal to the dot product of the velocities

of specific momentum v⃗p · v⃗q. Notice that the factor (1− p⃗·⃗q
| p⃗||⃗q| ) is relevant for scenarios where

the neutrino ensemble is not isotropic, and the dot product is essentially the angle between the

test neutrino and a background neutrino. If the neutrino ensemble is isotropic, the term v⃗p · v⃗q

integrates out to zero, giving no contribution to the background potential. However, in the context

of core-collapse supernovae (Chapter 3) and the mergers of compact binary objects (Chapter 4),

the degree of isotropy is high, and this contribution is important.

The last term in Eq. 2.62 is relevant for the early universe where the lepton-number asymmetry

is possibly large [73]. This term is proportional to the sum of the number densities of neutrinos

and antineutrinos, rather than the difference, as for the first-order refractive terms in Eq. 2.62.

For the work relevant to this thesis (where physics beyond the SM are not included) the neutrino

self-interaction Hamiltonian induces pairwise conversions of the following kind νe(p) + νx(q)↔

νe(q) + νx(p) and νe(p) + ν̄e(q)↔ νx(q) + ν̄x(p); see Fig 10 for the relevant interaction diagrams.

The corresponding neutrino self-interaction Hamiltonian is given by

Hνν( p⃗) = µ
∫

d⃗q
[
ρ(⃗q)− ρ̄(⃗q)

](
1− p⃗ · q⃗
| p⃗||⃗q|

)
, (2.63)

where the neutrino self-interaction strength µ =
√

2GF(nν + nν̄) is determined by the neutrino and

antineutrino number densities for all neutrino flavors. The velocity vectors v⃗p · v⃗q = p⃗ · q⃗/| p⃗||⃗q|

in Hνν( p⃗) can be expressed in spherical coordinates as functions of the polar θ and azimuthal ϕ

angles where v⃗p = (sin θ cos ϕ, sin θ sin ϕ, cos θ) and v⃗q = (sin θ′ cos ϕ′, sin θ′ sin ϕ′, cos θ′) because
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Figure 10: Interaction diagrams corresponding to neutrino-neutrino coherent forward scattering (similar to

the sketch in Fig. 5 but with a ν-background). Flavor off-diagonal entries of the self-interaction

Hamiltonian (Eq. 2.63) correspond to the Feynman diagrams shown above. In the diagram on

the left, a pair of neutrinos exchange their momenta. In the diagram on the right, a neutrino-

antineutrino pair changes its flavor and momenta.

neutrinos travel nearly at the speed of light and |⃗vp| = |⃗vq| = 1. Assuming that the integrand of

Eq. 2.63 F(⃗q) = [ρ(⃗q)− ρ̄(⃗q)] is azimuthally symmetric i.e. it does not depend on ϕ′, we have that

F = F(θ′). Therefore the integration of the dot product over azimuthal angle ϕ′ simplifies to

∫ 2π

0
dϕ′(1− v⃗p · v⃗q) = 2π(1− cos θ cos θ′), (2.64)

since two terms are proportional to the integrals of even functions i.e.
∫ 2π

0 dϕ′ sin ϕ′ = 0 and

∫ 2π
0 dϕ′ cos ϕ′ = 0. Therefore, under the assumption of azimuthal symmetry, the neutrino-neutrino

Hamiltonian in Eq. 2.63 reduces to

Hνν(cos θ) = 2πµ
∫ 1

−1
d cos θ′

[
ρ(cos θ′)− ρ̄(cos θ′)

]
(1− cos θ cos θ′). (2.65)

Since we have assumed SM physics, i.e., GS = 1n×n, the term with the trace is proportional to

the identity matrix and does not contribute to the flavor evolution. However, when beyond the

SM physics are included, GS is not diagonal, and the trace term cannot be dropped; see Refs. [77,

78] for non-standard scenarios beyond the scope of this thesis. Moreover, we also neglect the term

∝ GF/M2
W(ρ + ρ̄) in the Hamiltonian where number-lepton asymmetry is important as in the case

of the early universe [79–81] but nevertheless subleading for astrophysical sources.
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2.2.6 Flavor polarization vectors

It is more challenging to describe neutrino conversion using the wave-function formalism when

Hνν is important. The reason is that Hνν is a sum of the density matrices which contain bilinears

of the wave-functions. The density matrices contain all the information to describe neutrino

conversion.

To illustrate the polarization vector formalism, let us take a working example. Consider a

homogeneous and isotropic neutrino gas whose flavor evolves with time. Isotropy implies that

the factor (1− p⃗·⃗q
| p⃗||⃗q| ) in Hνν( p⃗) (Eq. 2.63) averages to 1. Thus, neutrino propagation direction

does not matter and homogeneity further allows to make the replacements ρ(x⃗, p⃗, t)→ ρE(t) and

ρ̄(x⃗, p⃗, t)→ ρ̄E(t). Therefore, the neutrino equations of motion are

iρ̇E =
[
+ ωB + λL +

√
2GF

∫ ∞

0
dE′(ρE′ − ρ̄E′), ρE

]
,

i ˙̄ρE =
[
−ωB + λL +

√
2GF

∫ ∞

0
dE′(ρE′ − ρ̄E′), ρ̄E

]
, (2.66)

where ω = ∆m2/2E is the vacuum oscillation frequency, B is the vacuum mixing matrix, λ =

√
2GFne is the interaction strength of electrons and neutrinos, and L = diag(1, 0). In the two-flavor

framework, ρE, ρ̄E are 2× 2 Hermitian matrices, and they can be mapped into vectors that live in a

three-dimensional space, which we will call flavor space. The components of the polarization vector

P⃗ω are given by

Pω,a =
( 1

nν

)( |∆m2|
2ω2

)
×





Tr(ρEσa) neutrinos

−Tr(ρEσa) antineutrinos

(2.67)

where the vacuum oscillation frequency is ω > 0 for neutrinos and ω < 0 for antineutrinos.

We note that P⃗ω can be normalized arbitrarily. For instance, if P⃗ω is normalized to unity, then

ρE ∝ (1 + 1
2 P⃗ω · σ⃗) for neutrinos and ρ̄E ∝ (1− 1

2 P⃗ω · σ⃗) for antineutrinos. Because σa are traceless,

the trace of the density matrices is not contained in the polarization vector. However, according

to the equations of motion (Eqs. 2.66) the traces are constant in time, which means that neutrinos
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Figure 11: Geometric representations of vacuum oscillations and MSW resonant effect. Left: Polarization

vector P⃗ω initially as |νe⟩ starts to precess around B⃗. The projection of the precessing P⃗ω onto the

ê(I)
3 represents flavor conversion. Right: Polarization vector P⃗ω precession in the presence of matter.

If the matter density decreases slowly, the angle between P⃗ω and H⃗ = ωB⃗ + λ⃗L is constant. The

latter is the adiabatic MSW resonance effect (Sec. 2.2.3). Image taken from Ref. [82].

are not created or annihilated. By using the definition of the Pauli matrices σa with a = 1, 2, 3, the

traces can be computed explicitly

Tr(ρσ1) = (ρex + ρ∗ex) = 2Re[ρex] , (2.68)

Tr(ρσ2) = i(ρex − ρ∗ex) = −2Im[ρex] , (2.69)

Tr(ρσ3) = ρee − ρxx . (2.70)

The polarization vectors for (anti)neutrinos have then the following structure

Pω,a ∝ (2Re[ρex], −2Im[ρex], ρee − ρxx) , (2.71)

P−ω,a ∝ (2Re[ρ̄ex], −2Im[ρ̄ex], ρ̄ee − ρ̄xx) . (2.72)

In flavor space, the xy-components of the polarization vector contain the coherence information

(see later Chapter 6), while the z-component is the amount of flavor converted. If the polarization

vector points in the +ẑ direction, there is pure νe flavor, and if it points in the −ẑ, there is pure νx

flavor instead.

Using Eqs. 2.66 and 2.67 the equations of motion can be brought to vector form

˙⃗Pω = (ωB⃗ + λ⃗L + µD⃗)× P⃗ω , (2.73)
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where the components of the vectors B⃗ and L⃗ are given by Ba = Tr(Bσa) and La = Tr(Lσa).

Moreover, the parameter µ is the strength of neutrino self-interaction, which is proportional to

GF and the number densities of (anti)neutrinos. The vector D⃗ is the total polarization vector

D⃗ =
∫ ∞

0 dω(P⃗ω − P⃗−ω) =
∫ ∞
−∞ dωP⃗ω .

The vectors B⃗ and L⃗ are parallel to the vacuum basis vector ê(V)
3 and interaction basis vector ê(I)

3 ,

respectively, as shown in Fig. 11. The Hilbert space spanned by the states |να⟩ (α = e, x) or |νi⟩

(α = 1, 2) can be mapped onto the 3D Euclidean flavor space spanned by basis vectors ê(I)
a or ê(V)

a

(a = 1, 2, 3). The interaction basis vectors ê(I)
1,3 are obtained by rotating the vacuum basis vectors

ê(V)
1,3 by 2θV around the common axis ê(I)

2 = ê(V)
2 .

In the absence of neutrino self-interactions the dynamics of P⃗ω is equivalent to a "magnetic

spin" coupled to the total "magnetic field" H⃗ = ωB⃗ + λ⃗L with "gyromagnetic ratio" equal −1. For

comparison, see that the equation of motion of a real magnetic spin s⃗ with gyromagnetic ratio γ

in the presence of a magnetic field H⃗ is given by ˙⃗s = −γH⃗ × s⃗, and therefore the dynamics are

equivalent [82].

With this geometric picture in mind, the adiabatic MSW flavor transformation presented in

Sec. 2.2.2 becomes easier to visualize, as schematically shown in Fig. 11. For vacuum oscillations, P⃗ω

precesses around the vacuum direction ê(V)
3 . In the case where the matter density slowly decreases,

the "total magnetic field" starts as H⃗ = ωB⃗ + λ⃗L and ends up as H⃗ = ωB⃗. The adiabaticity is

important here because it allows the polarization vector P⃗ω to respond to the changes of H⃗. If the

change of H⃗ happens too fast, non-adiabatically, the P⃗ω does not follow the evolution of H⃗.

The polarization vector notation introduced in this section is fully equivalent to the neutrino

flavor isospin (NFIS) notation [83] where polarization vector is given by s⃗ω = 1
2

P⃗ω

|P⃗ω |
. For more

details on the geometric interpretation of the polarization vectors, we refer the reader to Ref. [84].

2.2.7 Collective neutrino conversion

The coherent forward scattering of neutrinos among themselves (Sec. 2.2.5) vastly differs from

the coherent forward scattering of neutrinos with matter (Sec. 2.2.2). The crucial difference is that

neutrino-neutrino interactions lead to a non-linear behavior of the neutrino flavor evolution [74,
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85]. As a result, neutrinos with different momenta evolve in a collective fashion because the

self-interaction Hamiltonian (Eq. 2.63) couples different neutrino modes to one another.

In general, the equations of motion that describe neutrino flavor conversion can be written as

follows [73, 86, 87]

( ∂

∂t
+ v⃗ · ∇⃗x

)
ρ(x⃗, p⃗, t) = −i

[
H(x⃗, p⃗, t), ρ(x⃗, p⃗, t)

]
+ C

(
ρ(x⃗, p⃗, t), ρ̄(x⃗, p⃗, t)

)
,

( ∂

∂t
+ v⃗ · ∇⃗x︸ ︷︷ ︸

advection

)
ρ̄(x⃗, p⃗, t) = −i

[
H̄(x⃗, p⃗, t), ρ̄(x⃗, p⃗, t)

]

︸ ︷︷ ︸
refraction

+ C̄
(
ρ(x⃗, p⃗, t), ρ̄(x⃗, p⃗, t)

)
︸ ︷︷ ︸

collisions

. (2.74)

The advective term v⃗ · ∇⃗x is determined by the velocity of the (anti)neutrino field v⃗ and it only

contributes if the neutrino ensemble is non-homogeneous, i.e., the gradient of the density matrix

does not vanish. The commutator on the right-hand side considers neutrino refraction effects

(Sec. 2.2.5). The last term is the collision term which includes non-forward scatterings of neutrinos

with background particles, including neutrinos.

In the field of neutrino collective conversion, there are two important regimes according to the

relevant time scales involved in the EOMs (Eqs. 2.74) describing neutrino flavor transition: slow

flavor conversion and fast flavor conversion. In the next Sections 2.2.7.1 and 2.2.7.2, we describe in

detail the most important features of both slow and fast regimes and provide a glimpse into their

main phenomenological signatures.

2.2.7.1 Slow flavor conversion

Neutrino self-interactions can lead to the so-called "slow" neutrino conversions [82, 88] which

occur on a timescale determined by the vacuum oscillation frequency ω = ∆m2

2E ≃ O(6) km−1 for

typical neutrino energies and for the largest squared mass difference. As the distance from the

neutrinospheres increases, the magnitude of the neutrino self-interaction strength µ (Sec. 2.2.5)

decreases accordingly. Very close to the neutrinospheres, however, the neutrino-neutrino inter-

action strength can be very large µ ≃ O(105) km−1. As such, slow collective conversions occur

on a timescale determined by the inverse of
√
|ωµ|, which requires both the oscillation frequency

and the neutrino interaction strength to be different from zero. Slow neutrino conversions are

expected to be important far away from the neutrinospheres in regions where all neutrino species

are decoupled from matter and in the free-streaming regime, as schematically shown in Fig. 12.
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Figure 12: Schematic representation of the different regions of the astrophysical source where neutrino

conversions could take place. Different regions are visible as a function of density. Different

neutrinos (νe, ν̄e, νx, ν̄x) with x = µ, τ) have different interaction rates and they kinematically

decouple at Sνx ν̄x < Sν̄e < Sνe , these spatially extended regions are the neutrinospheres (orange-

shaded transition region). At the highest neutrino densities and near the neutrinospheres, fast

flavor conversion is expected (blue-shaded region). As the neutrino density decreases, slow

conversions (green-shaded region) and MSW resonances (pink-shaded region) are prone. Lastly,

neutrinos undergo vacuum oscillations in the limit of vanishing density (light pink-shaded region).

Slow neutrino conversions have the distinct characteristic of producing so-called spectral swaps

(or spectral splits), by which different energy modes (or bins) swap their flavor content as a function

of the mass ordering [89, 90]. Such spectral swaps, which were long thought to be smoking guns for

differentiating the mass ordering of neutrinos, assumed a very restrictive model, the so-called bulb

model [89]. In this model, neutrinos are emitted uniformly and half-isotropically from a spherical

neutrinosphere. Also, the neutrino emission is assumed to be azimuthally symmetric, and the

only variable determining the properties of the star is the radial distance. This model offered

for the first time an opportunity to numerically solve the equations of motion of neutrinos [83,

89–93] in what otherwise would have been an arduous task had the many symmetries not been

assumed. Even more, analytical descriptions were developed showing that the flavor dynamics of

slow conversions was formally that of a gyroscopic pendulum2 in flavor space [90, 92, 93]. The

main crucial observation was that flavor conversions occurred only in the inverted mass ordering

scenario leading to maximal flavor conversions νeν̄e → νx ν̄x. Moreover, all energy modes of ν̄e were

fully converted to ν̄x while for νe this only happened for E > Ecrit. The spectral splits happened in

this manner due to total lepton number conservation. It is now understood that the flavor outcome

2 One of the main works within thesis shows that the gyroscopic pendulum analogy can be formally implemented for the

case of fast pairwise neutrino conversions.
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strongly depends on the symmetry simplifications assumed by the early calculations on spectral

splits. The following works explored the deviations from the bulb model and included multi-angle

effects [94–97], a three-flavor framework [98–103], the spontaneous breaking of azimuthal [104–

108], spatial inhomogeneity [109–115] and stationarity [116, 117], and showed that spectral splits

can develop in both mass orderings and are sometimes suppressed by the matter potential during

the supernova accretion phase [118–123].

In the following sections, we revisit some of the main results pertaining slow collective conver-

sion. For more details on the phenomenology of slow conversions, we refer the reader to Refs. [82,

124].

S Y N C H R O N I Z E D N E U T R I N O C O N V E R S I O N S The neutrino self-interaction is represented

as the coupling between polarization vectors in Eq. 2.73. To illustrate the contribution of this

coupling to the flavor dynamics, let us consider a homogeneous and isotropic neutrino ensemble

with λ = 0 and µ = const. It can be shown that one of the conserved quantities is the "total energy

of the magnetic spins" [83]

E =
∫ ∞

−∞
dωω(P⃗ω · B⃗) +

µ

2
|D⃗|2 , (2.75)

where the first term corresponds to the "total energy" of the coupling between the "magnetic field"

and the "spins," while the second term is the "total spin-spin coupling energy." This conservation

law implies that a dense neutrino ensemble can support self-maintained coherent conversions [125].

For instance, if initially, the ensemble consists of neutrinos of the same flavor so that all P⃗ω point

in the same direction, then the flavor evolution of these vectors is coherent, and they remain

aligned even when they do not have the same energy. These are the so-called synchronized neutrino

conversions because all (anti)neutrinos oscillate collectively with the same frequency Ωsynch. This

synchronized conversion frequency is given by

Ωsynch =
1
|D⃗|2

∫ ∞

−∞
dωω(D⃗ · P⃗ω) . (2.76)

This frequency is the frequency at which the self-interactions couple a system of "magnetic dipoles"

in Eq. 2.66 to form one larger magnetic dipole, which then oscillates coherently in an external

magnetic field.
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Figure 13: Schematic representation of the neutrino bulb model. According to this model, all neutrinos are

emitted half-isotropically from the surface of the PNS, which has a radius of R. All neutrinos

with the same initial flavor, energy, and emission angle ϑR follow the same flavor evolution

because of spherical symmetry and isotropic emission from the PNS. The polarization vector P⃗ω,ϑ

is determined by ω, ϑ (or ϑR) and r. In the sketch, ϑ is the angle at radius r between the radial and

neutrino trajectory directions. Image taken from Ref. [82].

N E U T R I N O B U L B M O D E L The neutrino bulb model was one of the first models proposed to

study collective neutrino conversions. Here, we briefly discuss two of the schemes prevalent in

the literature in the context of the supernova environment. Both bulb model schemes assume a

spherically symmetric around the proto-neutron star; see Fig. 13 for a schematic representation of

the system in question.

The following equation of motion determines the dynamics of the polarization vectors in the

bulb model

cos ϑ
d
dr

P⃗ω,ϑ(r) =
[
ωB⃗ + λ(r)⃗L + H⃗νν,ϑ(r)

]
× P⃗ω,ϑ(r) , (2.77)

with the neutrino-neutrino interaction Hamiltonian as follows

H⃗νν,ϑ(r) =
√

2GFnν̄e(R)
∫ ∞

−∞
dω′

∫ 1

cos ϑmax
d cos ϑ′ P⃗ω′ ,ϑ′(r)(1− cos ϑ cos ϑ′) . (2.78)

Note that due to spherical symmetry, the (1− v⃗ · v⃗′) is simply (1− cos ϑ cos ϑ′) after integrating

over the azimuthal angle. Since neutrinos are emitted from a sphere of finite size, there is a

maximum angle ϑmax = arcsin (R/r) after which one sees no neutrinos coming from the source, see

Fig. 13. The equation of motion in Eq. 2.77 can be solved numerically without further simplification.

This corresponds to the multi-angle scheme. On the other hand, one also has the single-angle scheme,

where it is assumed that P⃗ω,ϑ(r) = P⃗ω(r) identical for different neutrino trajectories. One version of
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the single-angle approximation is such that P⃗ω(r) is computed pointing along the radial direction

(ϑR = 0) and this vector alone represents the evolution of all other directions through the single-

angle equation of motion

d
dr

P⃗ω(r) =
[
ωB⃗ + λ(r)⃗L + µ(r)D⃗

]
× P⃗ω(r) . (2.79)

Moreover, a similar equation for antineutrinos follows with ω → −ω. Here, µ(r) =
√

2GFnν̄eD(r/R)

with the geometric factor D(r/R) that, to some extent, takes into account the angle effect and the

dilution of the neutrino fluxes. The geometric factor is given by D(r/R) = [1−
√

1− (R/r)2]2/2.

In the single-angle approximation, flavor evolution is equivalent to the dynamics of a homoge-

neous and isotropic neutrino ensemble that expands with "time" r. In the limit r ≫ R when the

bulb is a point-like source the geometric factor D(r/R) ∝ (R/r)4. Although the single-angle was

widely implemented in the literature because of its simplicity, it led to incorrect results because

of the anisotropic component of the equations of motion that cannot be neglected in collective

conversions.

B I P O L A R N E U T R I N O C O N V E R S I O N S Another important example of collective neutrino

conversions is the so-called bipolar conversions. For illustration, let us consider a homogeneous

and isotropic ensemble of mono-energetic (anti)neutrinos. Therefore, the system is fully described

by the evolution of two polarization vectors, P⃗ω (neutrino) and P⃗−ω (antineutrino). For clarity,

one can assume that there is no matter λ = 0 and that µ = const. The excess of neutrinos over

antineutrinos is parameterized through the lengths of the polarization vectors |P⃗ω | = (1 + ε)|P⃗−ω |

with ε ∈ [0, 1]. Initially, at t = 0, the vector P⃗ω points in the direction of ê(I) and P⃗−ω points in the

opposite −P⃗ω direction, therefore the name "bipolar" because such systems are represented by two

vectors which point in opposite directions.

An interesting case to look at is the case where ε = 0, and θV = 0 which means that P⃗ω initially

points in the ê(I) = ê(V) = −B⃗ direction. Energy conservation (Eq. 2.75) implies [83] that if ω > 0,

the system is stable meaning that both P⃗ω and P⃗−ω are stuck and cannot move. On the contrary, if

ω < 0 and µ≫ |ω| the system is unstable, allowing P⃗ω and P⃗−ω to almost swap their orientations.

Therefore, the system is expected to lead to almost no flavor conversion when ∆m2 > 0, θV ≪ 1
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and to a significant amount of conversion for the case when ∆m2 < 0, θV ≪ 1. The former is the

most representative example of bipolar conversions.

The equations of motion of the simplified bipolar system are given by

˙⃗Pω = (+ωB⃗ + µD⃗)× P⃗ω ,

˙⃗P−ω = (−ωB⃗ + µD⃗)× P⃗−ω , (2.80)

which have been solved analytically using the gyroscopic pendulum or "flavor pendulum" anal-

ogy [92, 125, 126]. The bipolar equations of motion (Eq. 2.80) can be re-written in the following

form

˙⃗D =
q⃗× g⃗

µ
,

D⃗ =
q⃗× ˙⃗q

µ
+ σs q⃗, (2.81)

where the definitions below have been introduced

q⃗ =
Q⃗
|Q⃗|

=
P⃗ω − P⃗−ω − ω

µ B⃗

|Q⃗|
,

g⃗ = −µω|Q⃗|B⃗,

σs = q⃗ · D⃗ = const. (2.82)

The pair of Eqs. 2.81 describe the dynamics of a gyroscopic pendulum in flavor space with a total

angular momentum given by D⃗ in the presence of a gravitational field, where the gravitational

acceleration is g⃗. In this analogy, the pendulum consists of a massless rod with a point-like particle

of mass µ−1 attached to one of the extremes at position q⃗ and with the other extreme fixed. The

flavor pendulum of a symmetric bipolar system (ε = 0) has a vanishing internal spin σs = 0,

and the motion takes place on a plane. For an asymmetric system, ε ̸= 0, the pendulum has an

internal spin, and the motion takes place outside the plane in three dimensions instead of two.

The stable ω > 0 and unstable ω < 0 configurations discussed above correspond to the two

possible orientations of the gravitational field g⃗ with respect to q⃗. If ω > 0, then g⃗ ∝ −B⃗ and the

gravitational field pulls in the same direction at the orientation of q⃗. In the other case ω < 0, we

have g⃗ ∝ B⃗ and the gravitational field pulls in the opposite direction of the orientation of q⃗ making

the pendulum swing under the influence of gravity.

The flavor pendulum can perform two kinds of motion: a precession around B⃗ and a nutation

around the average precession trajectory. Bipolar conversions correspond to the nutation motion.
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Figure 14: Single-angle simulation in the IH scenario. The norm and the z-component of the global (energy-

integrated) polarization vector for neutrinos J⃗ and antineutrinos ⃗̄J are shown as a function of

distance r. The total lepton number Jz − J̄z is a conserved quantity. Image taken from Ref. [90]

For certain configurations, the flavor pendulum is locked in the highest position because it spins so

fast that energy and angular momentum conservation prevent it from moving: a so-called "sleeping

top" configuration that does not fall in the presence of gravity [92, 93, 127]. This sleeping-top

scenario is realized when µ is sufficiently large such that

µ > µcrit ≡
2|ω|

(
√

1 + ε− 1)2
. (2.83)

The precession behavior in the large µ limit corresponds to synchronized conversions of the bipolar

system with synchronized conversion frequency (Eq. 2.76) given by Ωsync = (1 + 2ε−1)ω.

T H E S P E C T R A L S P L I T / S WA P The polarization vector equations in the single-angle approxi-

mation (Eqs. 2.79) can be solved assuming a SN bulb model. The phenomenon of the spectral split,

or swap, is present in the single-angle and multi-angle framework. We will briefly comment on the

multi-angle extension of the spectral splits. As described before, for bipolar neutrino conversions,

the non-trivial, unstable case is the IH scenario ω < 0 (see Eq. 2.81), and thus we focus on this

case to illustrate the spectral splits phenomenon. It is convenient to define energy-integrated

polarization vectors J⃗ ∝
∫ ∞

0 dωP⃗ω and ⃗̄J ∝
∫ ∞

0 dωP⃗−ω to capture global effects of the evolution

of flavor. The radial evolution of the norms of J⃗ and ⃗̄J and their corresponding z-components

Jz and J̄z, respectively, are shown in Fig. 14. The flavor evolution presented in Fig. 14 can be
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understood as follows. From small distances up to ∼ 68 km, all polarization vectors are "glued"

together (synchronized) along the vertical axis, i.e., J = Jz and J̄ = J̄z in this spatial range, and the

gyroscopic pendulum finds itself in the "sleeping top" configuration because µ > µcrit (Eq. 2.83),

therefore pointing upwards and not falling. Around r ∼ 68 km, the pendulum starts to fall,

and nutations start to occur, signalizing the transition from synchronized conversions to bipolar

conversions. The amplitude of the nutations decreases with distance until bipolar conversions

finally vanish around r ≳ 10 km.

In parallel, the spectral split phenomenon is at play. Antineutrinos reverse their polarization

vector ⃗̄J → −⃗̄J so that, asymptotically, their z−component component equals the norm of the

energy-integrated polarization vector ¯̄Jz ≃ − J̄, as seen in the red dashed curve in Fig. 14 when

J̄z goes from ∼ 0.1 to ∼ −0.1. Neutrinos also try to display a similar behavior by inverting their

energy-integrated polarization vector J⃗ as much as lepton-number conservation allows. At some

point, Jz ≃ J is reached as seen in black dashed line in Fig. 14 a bit further out than 200 km, at

which point the spectral split is "frozen" corresponding to a final steady state where J⃗ points in the

+ẑ direction and ⃗̄J in the −ẑ direction. At all times of the evolution, the total lepton number Jz − J̄z

is conserved at any r.

The behavior of the z-components of the individual polarization vectors Pz for different energies

is shown in Fig. 15 as a function of distance r. Five representative energies are shown: E1 = 5.2 MeV,

E2 = 12.4 MeV, E3 = 19.1 MeV, E4 = 23.8 MeV and E5 = 31.3 MeV. In Fig. 15, one can see that the

onset of bipolar conversions and the nutation periods are the same for neutrinos and antineutrinos,

making explicit the collective behavior of oscillations. Interestingly, the flavor evolution of each

Pz and P̄z indeed depends on energy. For neutrinos (see upper panel of Fig. 15), the spectral split

occurs at Ec ≃ 7 MeV. The split means that there are two regions of energy doing different things:

the mode with E1 < Ec does not change and ends up in the same initial value, while the other

modes with E2, E4, E5 > Ec display the aforementioned inversion Pz → −Pz. The mode E3 does not

change much because it is close to the equilibrium energy value at which the fluxes of νe and νx are

almost identical, and conversions cannot do much. For antineutrinos (see lower panel of Fig. 15),

all energy modes reverse their polarization vector orientation Pz → −Pz. These results support the

end of bipolar conversions, and the emergence of the energy split effect around r ∼ 100 km [90].
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Figure 15: Single-angle simulation in the IH scenario. The z-component of the polarization vector of neutrinos

Pz (upper panel) and antineutrinos P̄z (lower panel) are shown as a function of distance r for five

benchmark energy modes. Image taken from Ref. [90].

It is worth noting that the specific location of the transition from synchronized to nutation and

the split energy depend on the initial conditions of the system assumed in Ref. [90]. However,

qualitatively similar results were also reported in Ref. [82].

The spectra of neutrinos and antineutrinos are shown in the upper panels of Fig. 16. Neutrinos

shown in the upper left panel of Fig. 16, clearly display the spectral split phenomenon and the

associated swap of νe and νx fluxes for energies E > Ec ≃ 7 MeV. In the upper right panel of

Fig. 16, the spectra of antineutrinos are shown, where there is an almost complete swap w.r.t. to

the initial fluxes, except for a small region at low energies.

When including angle-dependence (multi-angle approach) in the equations of motion (Eqs. 2.79),

kinematic decoherence between different modes is introduced, thereby smearing out some of

the features of the single-angle approach. In the multi-angle approach, the nutation observed in

Fig. 14 (single-angle) is largely suppressed, and the system is kept in the synchronized regime for

a bit longer. In the lower panels of Fig. 16, we show the multi-angle version of the spectral split.

The neutrino spectral split at E > Ec ≃ 7 MeV is clearly visible in the lower left panel of Fig. 16,
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Figure 16: Single-angle (upper panels) and multi-angle simulations (lower panels) in the IH scenario. Final

fluxes for neutrinos (left panels) and antineutrinos (right panels) as a function of energy. The initial

fluxes are shown in dotted lines to make evident the spectral swap around E = Ec ≃ 7 MeV. Both

the single-angle and the multi-angle simulations display spectral splits, although the multi-angle

one is less sharp. Image taken from Ref. [90].
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however less pronounced than in the single-angle case (upper panels of Fig. 16). In the lower right

panel of Fig 16, the small region displaying an antineutrino spectral swap is strongly smeared.

Therefore, spectral splits are present in both the single-angle and multi-angle frameworks.

2.2.7.2 Fast flavor conversion

Neutrino fast flavor conversions (also called fast pairwise conversions) are expected to take place

in the vicinity of the neutrinospheres [128–130], in contrast to slow flavor conversions (Sec. 2.2.7.1)

which are relevant far away from the neutrino decoupling regions; see Fig. 12 for a schematic

representation of the relevant regions for conversions. One of the most attractive features of fast

flavor conversion is that it is possible to convert neutrino flavor even in the case of vanishing

mixing angle ω = 0, which corresponds to the astrophysical scenario where the neutrino interaction

strength dominates, i.e., µ≫ ω. This remarkable feature strongly differs from slow conversions

where ω must not vanish for neutrinos to convert flavor (Eq. 2.81). Here, we refer to fast flavor

conversions in the strict sense where ω = 0 and vacuum oscillations play no role in the flavor

evolution. Thus, in the absence of vacuum oscillations, fast pairwise conversions conserve the total

lepton number and conversions are strictly pairwise νeν̄e ↔ νx ν̄x.

The Hamiltonian that governs the evolution of the density matrices is usually broken down

into three pieces, the vacuum-, matter-, and neutrino-neutrino terms. If the matter background is

assumed to be static, the matter term is Hmat =
√

2GFnediag(1, 0) (see Section 2.2.2). If included,

such matter term can be effectively ignored by assuming a tiny vacuum mixing angle θV ≪ 1,

which accounts for the suppression of mixing in the presence of a very dominant matter term [131].

Since we are in the regime where µ≫ ω, the contribution from Hνν strongly dominates over those

of Hmat and Hvac. In this limit, we have that the Hamiltonian for neutrinos and antineutrinos are

identical H = H̄ = Hνν, with only a contribution from neutrino refraction as in Eq. 2.63.

One necessary but not sufficient condition for the development of fast flavor conversions is

the existence of an angular crossing between the angular distributions of electron-neutrinos and

electron-antineutrinos. Such an angular crossing, the Electron-Lepton-Number (ELN) crossings, are

illustrated schematically in Fig. 17. The neutrino-neutrino interaction Hamiltonian Hνν can develop

off-diagonal entries which grow exponentially, leading to unstable solutions which collectively
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Figure 17: Schematic representation of the formation of ELN angular crossings. All neutrinos are trapped

inside the neutrino decoupling regions, and their distribution as a function of the polar angle θ is

nearly isotropic. In the free-streaming regime, the angular distributions are flavor dependent and

νx, ν̄x are the most forward-peaked distributions, followed by the ν̄e and the νe. Here, the forward

direction is at cos θ = 1 and the backward direction at cos θ = −1. Due to the decoupling regions

being spatially well separated, ELN angular crossings in the distributions of neutrinos form.
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convert flavor. The slope of the exponential growth of the off-diagonal entries is what we call the

growth rate of flavor instability, which is described in detail in Section 2.2.7.3.

Crossings in the angular distributions of neutrinos are the starting point for studying fast

conversions. ELN crossings give rise to temporal flavor instabilities. Moreover, if the astrophysical

conditions are such that there is a significant backward flux of neutrinos (i.e., due to collisions), a

spatial flavor instability develops instead [132, 133]. Both temporal and spatial instabilities arise

because of an effective ELN angular crossing [134]. Most of the works concerning fast flavor

conversion attempt to find favorable conditions for the development of fast flavor conversions,

and for that purpose, a standard procedure is the linear stability analysis (Sec. 2.2.7.3). The linear

stability analysis mainly provides the growth rate of flavor conversions i.e., when fast instabilities

occur, if any, and lacks information about the non-linear regime and, therefore the final flavor

outcome. However, in one of the main works of this thesis (Chapter 5), we present the first

example where the linear stability analysis offers a way of predicting the maximum amount of

flavor conversion, which was previously only accessible through the numerical simulation of the

non-linear regime.

In the next Section, we present the standard procedure behind the linear stability analysis,

focusing on the equation of motion responsible for fast flavor conversion.

2.2.7.3 Linear stability analysis

The linear stability analysis (LSA) was first introduced in Ref. [135] to understand under what

circumstances a system has unstable solutions to the neutrino equations of motion. The non-linear

behavior of the neutrino flavor evolution displays counter-intuitive results on many occasions; in

that sense, the linear regime is much simpler to understand and is accessible from the computational

point of view. Typically, the primary outcome from the LSA is the growth rate of flavor instabilities.

For clarity, let us consider a non-homogeneous and azimuthally symmetric neutrino gas, whose

dynamics is determined completely by the non-homogeneous version of H = H̄ = Hνν in Eq. 2.65

i
∂

∂t
ρ(x⃗, θ, t) = [H(x⃗, θ, t), ρ(x⃗, θ, t)],

i
∂

∂t
ρ̄(x⃗, θ, t) = [H(x⃗, θ, t), ρ̄(x⃗, θ, t)]. (2.84)
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Extending to more complicated systems can be lengthy, although straightforward and analogous

to the derivation provided here. It is easy to check that the commutator in the equations of motion

(Eqs. 2.84) contains products of the entries ρα,β and ρ̄α,β with α, β = e, x. By definition, the linear

regime is characterized by the smallness of the off-diagonal components of the density matrices

(α ̸= β) in comparison with the diagonal ones (α = β). Therefore, one can collect the terms that

are proportional to the products of the off-diagonal terms (which are even smaller).

After grouping the terms, the density matrices can be written as

ρ(x⃗, θ, t) =




ρee(x⃗, θ, 0)−O(ε2) ε(x⃗, θ, t)

ε∗(x⃗, θ, t) ρxx(x⃗, θ, 0) +O(ε2)


 ,

ρ̄(x⃗, θ, t) =




ρ̄ee(x⃗, θ, 0)−O(ε̄2) ε̄(x⃗, θ, t)

ε̄∗(x⃗, θ, t) ρ̄xx(x⃗, θ, 0) +O(ε̄2)


 . (2.85)

Since the off-diagonal terms ε(ε̄) = ρex( ¯ρex) are much smaller than the diagonal terms during the

linear regime, we have that |ε(x⃗, θ, t)| ≪ |ρee(x⃗, θ, t)− ρxx(x⃗, θ, t)| and similarly for antineutrinos

|ε̄(θ, t)| ≪ |ρ̄ee(x⃗, θ, t)− ρ̄xx(x⃗, θ, t)|.

The LSA consists of keeping leading terms in the equations of motion and neglecting subleading

terms of O(ε2). After dropping terms of O(ε2) in Eqs. 2.85, it is easy to see that the only dynamical

variables left are ε(x⃗, θ, t) and ε̄(x⃗, θ, t), while ρee(x⃗, θ, 0) and ρ̄ee(x⃗, θ, 0) are simply constant inputs

at a given angular mode and location in space.

After neglecting higher order terms, the equation of motion for ε(θ, t) is given by

(
∂

∂t
+ v⃗ · ∇⃗

)
ε(x⃗, θ, t) = −i

∫ 1

−1
d cos θ′F(x⃗, θ, θ′, t)ε(x⃗, θ′, t) , (2.86)

and a similar equation follows for ε̄(x⃗, θ, t). The main goal of the LSA is to find the eigenvalues

of the matrix F. If any of the eigenvalues of F is a complex number, then ε grows (shrinks)

exponentially. On the other hand, if the eigenvalues are only real, then the solution is stable instead.

The interesting cases correspond to eigenvalues which lead to exponentially growing solutions.

If a solution is unstable (complex eigenvalue), the solution eventually reaches the regime where

ε ∼ ρee, ρxx; this is the non-linear regime which is much more difficult to model.
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Substitution of the density matrices (Eq. 2.85) in the equations of motion (Eq. 2.84) leads to the

linearized equations of motion

i

(
∂

∂t
+ v⃗ · ∇⃗

)
ε(x⃗, θ, t) = (Hee − Hxx)ε(x⃗, θ, t)

+ (ρxx − ρee)µ
∫ 1

−1
d cos θ′

(
ε(x⃗, θ′, t)− ε̄(x⃗, θ′, t)

)
(1− cos θ cos θ′),

i

(
∂

∂t
+ v⃗ · ∇⃗

)
ε̄(x⃗, θ, t) = (Hee − Hxx)ε̄(x⃗, θ, t)

+ (ρ̄xx − ρ̄ee)µ
∫ 1

−1
d cos θ′

(
ε(x⃗, θ′, t)− ε̄(x⃗, θ′, t)

)
(1− cos θ cos θ′).

(2.87)

The evolution of neutrinos and antineutrinos is collective when driven by Hνν (Sec. 2.2.7). Therefore,

ε and ε̄ share a common growth rate [135]. An adequate ansatz for ε and ε̄ is given by

ε(x⃗, θ, t) = Qθe−i(Ωt−⃗k·⃗x),

ε̄(x⃗, θ, t) = Q̄θe−i(Ωt−⃗k·⃗x). (2.88)

In the situation where either the eigenfrequency Ω or the wave-vector k⃗ have non-vanishing imag-

inary solutions to the eigenvalue equation (Eq. 2.86), a flavor instability is identified. If spatial

homogeneity is assumed (⃗k = 0), temporal instabilities arise for values of Im(Ω) ̸= 0. Similarly, for

stationary systems (Ω = 0), spatial instabilities arise for Im(⃗k) ̸= 0.

For simplicity, it is instructive to look at the homogeneous case first (⃗k = 0). Direct substitution

of the ansatz (Eq. 2.88) in the linearized equations of motion (Eq. 2.87) give

(
Ω− (Hee − Hxx)

)
Qθ = (ρxx − ρee)µ

∫ 1

−1
d cos θ′(Qθ′ − Q̄θ′)(1− cos θ cos θ′),

(
Ω− (Hee − Hxx)

)
Q̄θ = (ρ̄xx − ρ̄ee)µ

∫ 1

−1
d cos θ′(Qθ′ − Q̄θ′)(1− cos θ cos θ′), (2.89)

where the exponential e−iΩt has dropped out of the equation. The equations above allow to isolate

Qθ and Q̄θ on the left-hand-sides of Eq. 2.89, respectively. After inspection, it is clear that Qθ , Q̄θ

must have the following structure

Qθ =
(ρxx − ρee)

Ω− (Hee − Hxx)
(a− b cos θ),

Q̄θ =
(ρ̄xx − ρ̄ee)

Ω− (Hee − Hxx)
(a− b cos θ), (2.90)
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Figure 18: Illustrative example of the exponential growth of the off-diagonal term |ρex(t)| =

∫ 1
−1 d cos θ|ρex(θ, t)| shown in blue. Time is expressed in terms of the only dimensionful quantity

of the problem µ = 105 km−1 = 3× 1010 s−1, which sets the timescale for flavor conversion. The

eigenfrequencies Ω± are shown in dashed black and dashed orange; the agreement between the

LSA and the numerical solution is excellent since the orange curve perfectly overlaps with the

slope of the numerical solution.

where the a and b are real constant numbers unknown at this point since we do not know the

explicit form of Qθ , Q̄θ

a =
∫ 1

−1
d cos θ′(Qθ′ − Q̄θ′),

b =
∫ 1

−1
d cos θ′(Qθ′ − Q̄θ′) cos θ′. (2.91)

However, one can recursively substitute the parametric form of Qθ and Q̄θ (Eqs. 2.90) back in

Eq. 2.89. Thus, we obtain a system of equations for a and b such that


I [1] −I [cos θ]

I [cos θ] −I [cos2 θ]







a

b


 =




a

b


 . (2.92)

The system has a non-trivial solution (a ̸= 0 ̸= b) if and only if the following determinant condition

is fulfilled

det



I [1]− 1 −I [cos θ]

I [cos θ] −I [cos2 θ]− 1


 = 0 , (2.93)

where the definition of the functional I [·] is given by

I [ f (θ)] =
∫ 1

−1
d cos θ f (θ)

(
(ρee − ρxx)− (ρ̄ee − ρ̄xx)

Ω− (Hee − Hxx)

)
. (2.94)
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The determinant equation (Eq. 2.93) is a polynomial in the eigenfrequency Ω, the characteristic

equation. Analytical solutions can be found to the characteristic equation for some simple cases;

however, more general solutions are typically found numerically. In the case presented here, the

characteristic equation is of order Ω3. One of the roots Ω1 is always found to be real (stable), while

the other two are imaginary and come from solving a quadratic equation; they come therefore in

complex conjugates Ω±. See, for instance, Fig. 18 for an illustrative example of the LSA in practice.

The procedure is completely analogous for the more general non-homogeneous case (Im(⃗k) ̸= 0)

where one looks for imaginary solutions (Ω, k⃗) to the determinant equation (Eq. 2.93). Despite its

limitations, the LSA presented in this Section can offer valuable insights into the nature of neutrino

fast flavor conversion. The works presented in parts ii and iii heavily rely on a version of the LSA

presented in this Section.

In the next Chapters 3 and 4, we cover the basics of CCSNe and the mergers of binary compact

objects, respectively, and offer a glimpse into the recent developments in neutrino flavor conversion

in dense astrophysical environments.
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Supernovae are among the densest astrophysical events in the Universe. In such astrophysical

environments, tremendous amounts of neutrinos and antineutrinos of all flavors are produced

(∼ 1058). The binding energy resealed during a supernova explosion is estimated to beO(1053 erg),

from which roughly 99% is radiated away in the form of neutrinos and antineutrinos, while

the remaining 1% is sufficient to power the stellar explosion. Since neutrinos carry away 100

times more energy than the kinetic energy of a typical core-collapse supernova, neutrinos are

expected to play an important role. For instance, since neutrinos interact with the matter and

also other neutrinos in the medium, the modeling of the evolution of neutrino flavor in CCSNe is

conceptually complex and represents an open issue in astrophysics. In this Section, we cover the

basic concepts concerning CCSNe theory, the role of neutrinos in the explosion mechanism, and

recent developments on the front of neutrino flavor conversion in core-collapse supernovae.

3.1 S U P E R N O VA T H E O R Y I N A N U T S H E L L

Close to the end of their evolution, massive stars develop a so-called onion-shell structure: heavier

elements sit at the center of the onion-shell structure while successively lighter elements surround

them. Each shell is the result of the sequence of nuclear burning stages. Before collapse, the

mass of the core is about 1.3− 2 M⊙ with densities between 109 − 1010 g cm−3 and temperatures

of approximately 1 MeV. The cycle commences with hydrogen burning into helium to produce

energy, while the produced helium sinks into the core of the star. The gravitational pull raises the

core’s density and temperature, igniting the burning of helium into carbon. Once again, the heavier

carbon element settles in the core, which will subsequently contract and increase the temperature

50
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Figure 19: Stellar death regions with schematic stellar evolution paths as a function of the central density ρc

and the central temperature Tc. The colored regions show the type of instability that leads to the

collapse of the stellar core, and the blue lines correspond to different birth-mass ranges. Different

nuclear burning stages are reached depending on the star’s mass, shown in red dashed lines. Image

taken from Ref. [136]

at the center to ignite the burning into neon. This cycle persists, allowing neon to burn into oxygen

and oxygen into silicon, producing more stable and heavier elements with each burning stage.

Depending on the star’s mass, the burning stages could reach the point where silicon burns

into iron. Different mass ranges lead to different burning stages, leading to different categories of

stellar deaths; see Fig 19 for a schematic representation of the different stellar evolution paths as a

function of the stellar mass, central temperature, and central density.

Stars with masses ≳ 8M⊙ can form an iron core. Iron is the element with the highest binding

energy per nucleon and, therefore, the most favorable configuration. Up to that point, other

burning stages require energy instead of providing it. Therefore, nuclear burning comes to a halt,

energy production ceases, and the gravitational pressure forces the core to contract further and

heat up.
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C O L L A P S E O F T H E C O R E The iron core becomes gravitationally unstable when thermal

photons with sufficient energy are produced to dissociate the iron in the core to α-particles1 and

nucleons

γ +56 Fe→ 13 4He + 4n and then γ +4 He→ 2p+ + 2n (3.1)

while also electron captures on heavy nuclei2 and free protons3

e− + p −→ νe + n , (3.2)

e− + (A, Z) −→ (A, Z− 1) + νe , (3.3)

accelerate the implosion of the core. Notice that the positron capture on free neutrons e+ + n −→

ν̄e + p is strongly suppressed because the e+ density is very low due to high electron chemical po-

tential. Also, the production of νµ,τ via charged-current interactions is strongly suppressed because

the temperature is too low to produce heavy leptons, although some µ’s could be present [137]. Pair

production e− + e+ −→ ν + ν̄ and nucleon-nucleon bremsstrahlung N + N −→ N + N + ν + ν̄

are the production paths of heavy-lepton neutrinos in the neutrinospheres [136, 138].

The electron captures (Eq. 3.2) reduce the number of electrons (deleptonization of the core), and

the electron degeneracy pressure reduces as well, further contracting the core. At first, electron-

neutrinos from the electron captures could escape freely until the density at the core is 1011g cm−3

and the mean free path for coherent neutrino scattering off heavy nuclei becomes short enough

that neutrinos diffuse instead. At last, when densities at the core are about 1012g cm−3, neutrinos

cannot longer escape and become trapped while the stellar material from outer layers falls inwards.

S H O C K F O R M AT I O N The gravitationally unstable core implodes until the point where it

reaches nuclear densities (∼ 1014g cm−3), and it is abruptly stopped. A new stable state is reached

where matter can support its own gravitational pull due to the internal pressure of nucleons: they

are so closely packed together that nucleon-nucleon interaction is highly repulsive, supporting the

new stable state of the core. The collapsing inner core bounces back, and a shock front is formed.

1 Helium-4 nucleus. Two protons and two neutrons.

2 Heavy nuclei abundance is very high but the energy cost of converting a proton to neutron in a nucleus is high.

3 Cross section high but the number of free protons is low.
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S H O C K S TA G N AT I O N A N D N E U T R I N O B U R S T The shock propagates outwards, sweeping

up the in-falling matter on its way, thereby dissipating kinetic energy. The temperature of the

shock increases, which allows the creation of high-energy photons which dissociate iron nuclei to

free nucleons. The conversion of kinetic energy to rest-mass energy drains energy from the shock

(∼ 9 MeV per nucleon or ∼ 1051 erg per 0.1M⊙) reducing the post-shock pressure. After a ∼ 1 ms,

the shock still stagnates inside the collapsing iron core. Due to the density drop in the post-shock

region, the abundant electron neutrinos from the electron captures start to free stream: a luminous

flash of νe appears, the so-called shock break-out neutrino burst.

N E U T R I N O H E AT I N G A N D R E V I VA L O F T H E S H O C K Three regions can be identified

as far as neutrinos are concerned. Starting at the center of the star and moving outwards, the

three regions of relevance are the following. The neutrinospheres O(50) km, then the cooling region

O(100) km, followed by the gain layer O(200) km:

• The neutrinospheres (for each neutrino flavor) are the extended transition regions after which

neutrinos are no longer trapped and start to free stream after the matter densities decrease

sufficiently for neutrinos to escape.

• The cooling region is the zone where the emission rate of neutrinos is larger than their

absorption rate, forcing the medium to lose energy via neutrino emission.

• The gain layer extends from the cooling region up to the stagnated shock position, and it is

defined as the region where the absorption rates instead overcome the emission rates so that

the reaction goes predominantly one way, favoring the re-absorption of neutrinos

νe + n −→ p + e− , (3.4)

ν̄e + p −→ n + e+ . (3.5)

Energy deposition is very effective in the gain layer, which can become convectively un-

stable [139, 140]. Also, the standing-accretion-shock instability (SASI) [141] can develop

between the shock and the proto-NS giving rise to sloshing and spiral motion of the shock

front, which can assist the neutrino heating. Another type of instability characterized by the
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dipole pattern of (anti)neutrino fluxes, the so-called Lepton-number Emission Self-sustained

Asymmetry (LESA) phenomenon [142], which is ubiquitous in CCSNe simulations.

If neutrino heating is sufficient, the shock is pushed outwards, and the SN explosion is successful,

escaping the iron core up to the outer layers of the star. This is the delayed neutrino heating

mechanism capable of triggering supernova explosions even after shock stagnation. It is worth

noting that besides the popular neutrino heating mechanism, other mechanisms could be invoked

for the supernova explosion [136]. For instance, the thermonuclear mechanism, the bounce-

shock mechanism, magnetohydrodynamic mechanism, acoustic mechanism, and phase-transition

mechanism.

N U C L E O S Y N T H E S I S When the phase of simultaneous mass accretion and outflow near

the NS ends, neutrinos-energy deposition launches a spherical outflow of matter from the NS

surface, the so-called neutrino-driven wind. This wind is composed of free neutrons and protons,

recombining into α particles and heavy nuclei. Depending on whether there is an excess of neutrons

or protons, different nucleosynthetic yields are produced in the SN environment [143].

S TAT U S O F S U P E R N O VA S I M U L AT I O N S State-of-the-art hydrodynamical simulations of

CCSNe have reached the milestone of successful explosions in three dimensions [144]. However,

due to the difficulties in modeling such complex environments, the treatment of neutrino transport

in CCSNe is approximate, and neutrino flavor conversion is usually performed in the post-

processing stage. As far as the MSW resonances and slow collective conversions are concerned,

such an approach is adequate because these phenomena occur beyond the shock. However, fast

flavor conversion could occur in the vicinity of the neutrinospheres [130], with possible essential

consequences for the explosion dynamics and the neutrino burst.

3.2 F A S T PA I R W I S E C O N V E R S I O N I N C O R E - C O L L A P S E S U P E R N O VA E

The presence of angular crossings in the ELN distribution of neutrinos is critical for the develop-

ment of fast flavor conversions [128–130], as described in Sec. 2.2.7.2. Such ELN crossings can
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Figure 20: Radial variation of the spectral intensity of ν̄e. This corresponds to a snapshot at 280 ms after

bounce of a 15M⊙model as a function of the polar angle θ. Here, θ = 0 corresponds to the local

radial direction. The distribution of ν̄e is nearly isotropic at a few kilometers from the SN core, and

it narrows in the forward direction as the radial distance increases. Image taken from Ref. [146].

lead to the development of flavor instabilities with fast growth rates proportional to the neutrino

self-interaction strength µ. Furthermore, fast pairwise conversion of neutrinos can affect the

physics of CCSNe given the fast timescale on which they operate. Due to the many possible

implications, recent works have focused on understanding whether favorable conditions for fast

flavor conversions exist in the SN environment [87, 124, 145].

3.2.1 Angular moments approach

One possible approach is to study the neutrino flavor evolution in terms of its momentum-space

angular moments. Such an approach is tempting for two reasons. First, the angular distributions

transition gradually from nearly isotropic to narrowly forward-peaked, see, for instance, Fig, 20

for the antineutrino emission as a function of radial distance. The second reason concerns compu-

tational implementations of state-of-the-art CCSNe simulations, which only track the lowest-order

angular moments, and it is desirable to make neutrino conversion computations compatible with

hydrodynamic simulations. As such, angular moments are an interesting tool for examining

neutrino flavor conversions.

A homogeneous and mono-energetic (anti)neutrino gas can be represented through the density

matrix formalism, i.e., ρθ,ϕ,t (ρ̄θ,ϕ,t) where the subscripts indicate that the density matrix is a
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function of the polar angle θ, azimuthal angle ϕ, time t. Moreover, we have omitted the energy

dependence since we intend to focus on fast pairwise conversion (µ ≫ ω). In the two-flavor

approximation, the (anti)neutrino density matrices are 2× 2 Hermitian matrices (Sec. 2.2.4).

Under the assumption that neutrino interactions with the (isotropic) matter background and

vacuum mixing have a negligible role in triggering fast pairwise conversion (see Refs. [147, 148] for

detailed discussions on the topic), the EOMs for neutrinos and antineutrinos are entirely described

by Hνν (Eq. 2.63). We also neglect neutrino advection and collisions for simplicity, but we refer the

reader to Refs. [149–153] for dedicated work on the implications of the physics of fast pairwise

conversion.

The self-interaction Hamiltonian, which couples the evolution of neutrinos emitted along differ-

ent directions (Eq. 2.63) can be written explicitly in spherical coordinates

Hνν = µ
∫

dΩ′gθ′ϕ′(1− cθcθ′ − sθsθ′cϕcϕ′ − sθsθ′ sϕsϕ′), (3.6)

where µ is the self-interaction strength. The symbols cθ and cϕ (sθ and sϕ) stand for cos θ and cos ϕ

(sin θ and sin ϕ). Moreover, we have defined gθϕ = (ρθϕ − ρ̄θϕ), which represents the neutrino

lepton number density at (θ, ϕ), and the solid angle dΩ = dϕdcθ .

The angular dependence of (anti)neutrinos can be expressed in a basis of our convenience. The

density matrix can be expanded, for instance, in spherical harmonics

ρθϕ = ∑
l,m

ρm
l Ym

l (θ, ϕ) , (3.7)

ρm
l being suitable coefficients with l = 0, 1, .., ∞ and m = −l, ..., l. Reciprocally, one finds the

coefficients ρm
l by computing

ρm
l =

∫
dΩY∗ml (θ, ϕ)ρθϕ , (3.8)

where Y∗ml (θ, ϕ) is the complex conjugate of the spherical harmonics which, in turn, is a function

of the associate Legendre polynomials Pm
l (cos θ).

It is useful to introduce the matrices of particle densities (sum S) and the ones of lepton number

densities (difference D) [154],

Sθϕ = ρθϕ + ρ̄θϕ and Dθϕ = ρθϕ − ρ̄θϕ . (3.9)
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Figure 21: Representative initial distributions gθ = (ρee,θ,t − ρ̄ee,θ,t) as functions of cos θ. For illustration,

the angular distributions are parametrized as follows: ρee,θ,t=0 = 0.5 and ρ̄ee,θ,t=0 = 0.45 −

δ + 0.1/σν̄ exp [−(cos θ − 1)2/2σ2
ν̄ ]. The parameters δ and σν̄ control the shape of the angular

distributions. This choice of parametrization is motivated to mimic the angular distributions

expected in SN environments as in Fig. 20. The dashed black line indicates gθ = 0 to guide the eye

and show where ELN angular crossings occur.

By employing the formalism of the polarization vectors (Sec. 2.2.6) and expanding the equations

of motion in multipoles as in Eq. 3.7, one obtains the equations that describe the evolution of the

multipole vectors Sm
l and Dm

l :

Ṡm
l = 2

√
πµD0

0 × Sm
l − 2

√
π

3
µD0

1 ×
(

am,m
l,l+1Sm

l+1 + bm,m
l,l−1Sm

l−1

)

− 2

√
2π

3
µD1

1 ×
(

cm,m+1
l,l+1 Sm+1

l+1 + dm,m+1
l,l−1 Sm+1

l−1

)

− 2

√
2π

3
µD−1

1 ×
(

cm,m−1
l,l+1 Sm−1

l+1 + dm,m−1
l,l−1 Sm−1

l−1

)
, (3.10)

Ḋm
l = 2

√
πµD0

0 × Dm
l − 2

√
π

3
µD0

1 ×
(

am,m
l,l+1Dm

l+1 + bm,m
l,l−1Dm

l−1

)

− 2

√
2π

3
µD1

1 ×
(

cm,m+1
l,l+1 Dm+1

l+1 + dm,m+1
l,l−1 Dm+1

l−1

)

− 2

√
2π

3
µD−1

1 ×
(

cm,m−1
l,l+1 Dm−1

l+1 + dm,m−1
l,l−1 Dm−1

l−1

)
. (3.11)

For clarity, we do not show the explicit dependence of the coefficients a, b, c and d on the indices l

and m. Interestingly, the evolution of Dm
l does not only depend on l ± 1 but also m± 1, but it is

completely independent of Sm
l (unless the vacuum term is included in the Hamiltonian).

From Eq. 3.11, we also derive that the monopole (l = 0, m = 0) is a conserved quantity:

Ḋ0
0 = 0 . (3.12)
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This reflects that fast pairwise conversion conserves the neutrino lepton number even in the case

of non-azimuthally symmetric equations of motion. However, the norm of the dipole vector

(l = 1, m = 0) is not an invariant of motion:

∂

∂t
|D0

1|2 = 4
√

π

15
µ(D1

1 × D2
2) · D0

1 − 4
√

π

15
µ(D−1

1 × D0
2) · D0

1 . (3.13)

From the above, it is straightforward to observe that an azimuthally symmetric system (m = 0)

is more constrained than a non-azimuthally symmetric one (m ̸= 0), allowing for additional

conservation laws [154, 155]; in the following, we focus on the simpler scenario with m = 0 for the

sake of simplicity.

Under the assumption of azimuthal symmetry, Eqs. 3.10 and 3.11 become functions of the

Legendre polynomials:

Ṡl = µD0 × Sl −
µ

2
D1 × (alSl−1 + blSl+1) , (3.14)

Ḋl = µD0 × Dl −
µ

2
D1 × (al Dl−1 + bl Dl+1) , (3.15)

where al = 2l/(2l + 1) and bl = 2(l + 1)/(2l + 1). As in the m ̸= 0 case, the monopole vector is an

invariant of motion (Ḋ0 = 0) in addition, the norm of the dipole |D1| is also a conserved quantity:

∂

∂t
|D1|2 = 0 . (3.16)

Although the final flavor outcome requires fine-grained information about the emission proper-

ties of neutrinos [156], coarse-grained information (i.e., a few multipoles) maybe can shed light on

the existence of flavor instabilities. In the following, we explore the latter option and comment on

the implications of such an approach.

To better grasp the neutrino flavor dynamics, working in a co-moving frame rotating around the

monopole at frequency µD0 is useful. Equations 3.14 and 3.15 in the co-rotating frame become

Ṡ′l = −µ

2
D′1 × (alS

′
l−1 + blS

′
l+1) , (3.17)

Ḋ′l = −µ

2
D′1 × (al D

′
l−1 + bl D

′
l+1) , (3.18)

where primed quantities are defined in the co-rotating frame. Since the z-component of D0,t=0 in

Cartesian coordinates is the only one different from zero and Ḋ0 = 0, the transformation to the

comoving frame leaves the z-components unchanged.
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For a given set of initial conditions for our (anti)neutrino ensemble, we can extract the multipoles

of D′:

D′l,t=0 =
(

0, 0,
∫ 1

−1
d cos θPl(cos θ)gθ

)
, (3.19)

where gθ = (ρee,θ,t=0 − ρ̄ee,θ,t=0) and Pl(cos θ) are the Legendre polynomials. For simplicity,

we assume that at t = 0 only the electron flavors populate the (anti)neutrino ensemble, i.e.

ρxx,θ,t=0 = ρ̄xx,θ,t=0 = 0. In this notation, the initial ELN and ELN flux are Dl,z,t=0 for l = 0 and

l = 1 respectively, where z indicates the third vector component in the Cartesian coordinate system

(x, y, z).

The multipole expansion prescription presented in this Section accounts for the flavor dynamics

when low-order multipoles are included but remains agnostic of the influence of higher-order

ℓ terms. Possibly, the stability criteria that include higher-l moments can be taken into account

with some clever manipulation of the multipole equations; however, it has not been shown in the

literature, and a stability criterion for high-order terms remains to be found. Such an approach

suggests that the multipole expansion of the equations of motion and the truncation involved in

the procedure are not very convenient when describing neutrino fast flavor conversion in dense

astrophysical environments like CCSNe.

3.2.2 Overview: recent developments

The linear stability analysis provides a first diagnosis of the role of fast flavor conversions

(Sec. 2.2.7.3). In particular, a dispersion-relation version of the linear stability analysis [133]

has presented a novel method to identify unstable solutions. Further works have implemented

this dispersion-relation approach and classified the different kinds of instabilities [157–159], show-

ing that two types of instabilities can arise: convective and absolute instabilities [160, 161]. The

former is an instability that moves away faster than it spreads, while the latter is an instability that

grows locally. Core-collapse supernovae are believed to host absolute instabilities. This has been

demonstrated for a simplified neutrino gas model [160], and more recent works have diagnosed

and classified ELN crossings in more than a dozen CCSNe models [162].
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New insights have also been put forward using analytical approaches under spatial homogeneity

and azimuthal symmetry [155, 163, 164]. Under these assumptions, one deals with the most

straightforward system that exhibits fast flavor conversion and is analytically tractable to some

extent.

For instance, using a four-beam (four angular modes) toy model, the conversion dynamics can be

understood as a particle rolling down a quartic potential in the presence of an "external magnetic

field" if initially there is a neutrino-antineutrino asymmetry [163]. Although simplified, this work

provides insights into the dependence of the fast flavor dynamics on the angular distribution of the

beams in the limit µ≫ ω. Another analytical interpretation of the EOMs (although misleading)

is the "pendulum" in flavor space constructed from the lowest-order moments of the neutrino

distributions [155], which has little predictive power due to their high-order multipole truncation

scheme (Sec. 3.2.1), leading to spurious artifacts when small angular scale errors propagate back

to larger scales [156]. More formally, it has been shown that the correct interpretation of the

flavor pendulum is the one presented in Ref. [164] which assumes no truncation and is thoroughly

discussed in Chapter 5.

In more complicated scenarios, the linear stability analysis has been implemented on data

from hydrodynamic CCSNe simulations to predict whether favorable conditions for fast flavor

instabilities exist, see, for instance, some of the first works that pursued that goal [146, 165].

One of the present challenges, however, is that hydrodynamic simulations do not provide the

angular distributions of neutrinos as such but only their lowest-order angular moments, which

means that our knowledge of the neutrino angular distribution is minimal. A wide variety of

methods [162, 166–169] have been suggested to assess the existence of flavor instabilities using

the lowest-order moments provided by simulations. Such works provide methods to reconstruct

the angular distributions of neutrinos and propose simple searches of ELN angular crossings.

However, leaving aside the uncertainties intrinsic to the particular methods, even if an angular

ELN crossing is identified, this does not mean flavor conversion occurs.

The search for ELN crossings has been prevalent in the literature, and works have reported their

existence in different regions of the supernova. For instance, flavor unstable conditions have been

found in the proto-neutron star due to the strong convective activity in three dimensions [170–172],
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however, the possible consequences for the SN dynamics and neutrino observations are unsettled.

In the neutrino decoupling regions, ELN crossings are expected due to the later decoupling of νe

to that of ν̄e [173, 174]. Thus, the angular distributions of ν̄e would be more forward-peak than

that of νe. After decoupling, in the free-streaming regime (scattering-induced) ELN crossings can

form by neutrino backward scatterings off heavy nuclei [175–177], hinting towards the existence of

ELN crossings in both the pre-shock and post-shock regions. The impact of ELN crossings in the

pre-shock and post-shock regions is still unclear, although there are claims on the minimal impact

of ELN crossings in the pre-shock region based on slow growth rates [178, 179].

Another popular approach is the direct numerical simulation of the flavor evolution of neutrinos

within simplified frameworks. A direct numerical solution models the flavor evolution described

by the neutrino EOMs (Eq. 2.74). In this case, the final flavor outcome can be directly obtained

by the evolution of the equations as a function of different initial ELN configurations. However,

whether fast flavor conversion leads to flavor equilibration (as allowed by total lepton number

conservation) remains unsettled.

Ultimately, the various terms in the equations of motion of neutrinos need to be implemented

under different conditions to quantify their impact on the flavor dynamics. For instance, the

evolution of the neutrino field evolves simultaneously in time and space, and even if a system has

an ELN crossing at the beginning and develops flavor instabilities, the spatial propagation can

smear out or cancel the crossing [149]; the interplay between advection and fast flavor conversion

will be covered in detail as part of this thesis in Chapter 7. Related work has investigated the role

of the advective term, mimicking a 1D system with periodic boundary conditions, and reported the

development of small scale structure leading to flavor decoherence [180]. In connection with these

works, also the development of fast flavor conversion has been investigated in 3D (however, using

a particle-in-cell framework [181]) to cross-check the validity of lower-dimensional computations

and the assumptions of symmetries in the EOMs [182].

As in the case of slow collective conversions, the non-linear flavor dynamics spontaneously

breaks the symmetries imposed by the initial conditions [183], with the possibility of flavor

mixing not occurring in the vicinity of the ELN angular crossing as it spreads through all angular

modes. This puts in question the assumption of axial symmetry, for instance. Another common
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simplification is to assume that the energy dependence of the flavor dynamics plays a negligible

role, motivated by the substantial neutrino densities. However, the non-linear regime can be

affected by the vacuum oscillation frequency and, therefore, the neutrino energy [147].

Another active research topic is the interplay between fast flavor conversions and inelastic

collisions with the matter background. Such numerical simulations are motivated by the fact

that favorable conditions for fast flavor conversions could take place in regions where neutrinos

are partially or entirely trapped in the decoupling regions. On the one hand, collisions could

enhance flavor conversions as the system is evolved in time [150, 184], while on the other hand,

if the system is evolved in both space and time, collisions might suppress (or at least delay) fast

flavor conversions [152, 185]. Another common assumption when exploring the phenomenology

of fast flavor conversions is to implement initial single-crossed ELN distributions, as motivated

by supernova simulations [146]. Although this is a good approximation, scenarios with multiple

crossings in the ELN distributions have been proposed [186]; however, it is not clear under which

conditions multiple crossings could emerge.

In the context of the number of neutrino families, it is typically assumed that there are only two

flavors of (anti)neutrinos (νe, νx) motivated by the fact that heavy-lepton neutrinos decouple at the

same time and have the roughly the same energies. However, fast flavor instabilities can arise in

one or more of the three channels eµ, eτ, µτ [187]. Even more, in the three-flavor framework, when

ELN angular distributions in the µ and τ sector are equal, the flavor outcome departs from what

was observed in the two-flavor framework [148], putting in question the validity of assuming the

two-flavor scheme.
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N E U T R I N O S I N C O M PA C T B I N A R Y M E R G E R R E M N A N T S

Neutron stars (NS) are among the densest form of matter in the Universe. The mergers of two

neutron stars are thus one of the most mesmerizing events in the cosmos, with significant scientific

potential spanning many domains across physics. For instance, by understanding the inner

workings of NS mergers, one could uncover the physics behind interactions at supra-nuclear

densities and the equation of state in dense environments, new insights into the strong-gravity

regime only feasible in the vicinity of compact objects, high-energy astrophysical sources like

gamma-ray bursts (GRB), the origin and synthesis of elements heavier than iron [188–190].

In the following years, multimessenger astrophysics will most likely result in multiple detections

from different classes of sources [191]. Binary Neutron Star (BNS) and Neutron Star Black Hole

(NSBH) mergers, or simply NS mergers to refer to both classes here, will play a crucial role in

understanding the fundamental properties of our Universe and its constituents [188].

The disk that forms around the hyper-massive NS (or BH) after the merger of two compact

objects is incredibly neutrino-dense. Many neutrinos are produced in this extreme environment

during the post-merging phase. Order of magnitude, the total neutrino energy luminosity ascends

to a maximum value of∼ 1053− 1054 erg/s for∼ 100 ms of which 90− 95% stem from the toroidal

gas cloud around the central compact object [46, 47, 50]. The neutrino emission features are

qualitatively very similar to those from CCSNe, except for the ν̄e luminosity from neutron star

mergers which is a factor 3− 6 higher than the luminosities of νe and νx due to the neutron-rich

environment; see for instance Figs. 3 and 4 of Ref. [46]. One can compare this with the neutrino

burst in CCSNe (Sec. 3.1), where the largest neutrino luminosity is the one for νe and orders of

magnitude larger than the other neutrino species; see, for instance, Figs. 5 and 37 in Ref. [88].

Compact binary mergers are ideal sites for neutrino self-interactions (Sec. 2.2.5) given the extreme

densities. A key aspect that makes mergers interesting for neutrino conversions is the excess of ν̄e

over νe due to the protonization of the neutron-rich matter. Due to this natural ν̄e excess, there are

63
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various phenomenological implications. One consequence of this ν̄e excess, are the matter-neutrino

resonances (Sec. 4.2), which are expected to occur above the disk of the merger [192–195] and can

lead to enhanced flavor transformations in a similar fashion as the MSW effect (Sec. 2.2.2).

Another interesting consequence is the ubiquity of ELN angular crossings in the accretion disk

and, therefore, the possibility of flavor instabilities in such region [196]. As in the case of CCSNe,

νe decouple later than ν̄e, which means that the decoupling region for νe is larger to that of ν̄e. On

the other hand, there is the overall excess of ν̄e. These two components allow for ELN crossings in

the region above the disk of the merger where the local neutrino emission favors either νe or ν̄e

depending on the specific location above the disk.

This section introduces the essential tools to comprehend neutron star mergers, their dynamics,

expected observable signatures, and how neutrinos affect these. We then present recent works on

neutrino flavor conversion in compact binary merger remnants.

4.1 C O M PA C T B I N A RY M E R G E R S I N A N U T S H E L L

Binary neutron stars can radiate gravitational waves fast enough to make the objects inspiral and

merge within the age of the universe (∼ 13.8× 109 yr). The merger of NS is followed by a strong

emission of GW, a broad range of electromagnetic (EM) signals over the whole spectrum (from

gamma-rays to radio signals), and neutrino signatures. In particular, high-energy neutrinos are

produced in the short GRB associated with the merger [42], while thermal neutrinos of O(10) MeV

are produced during the merger phase [46, 197–199]. For the work relevant to this thesis, we are

interested in the latter type of neutrino emission.

In what follows, we briefly describe the stages of the evolution of NS mergers, which are

illustrated in Fig. 22 in chronological order starting from the inspiral phase up to the kilonova

emission.

S Y S T E M F O R M AT I O N The interesting events are the BNS and NSBH systems that originate

and merge within the age of the universe [201]. The relevant time scale is the merging time scale
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Figure 22: Phases of a neutron star merger as a function of time, displaying the related observational signatures

and physical phenomena. Image taken from Ref. [200].

tmerger, which is given in terms of the orbital separation radius R for two objects inspiraling via

GW emission is [188]

tmerge(r) =
5

256
c5

G3
R4

M1M2(M1 + M2)

≈ 54 Myr

(
1

q(1 + q)

)(
R

R⊙

)4(
1.4M⊙

M1

)3

, (4.1)

where M1, M2 are the masses of the objects and the mass ratio q = M2/M1, and where Eq. 4.1

adopts circular orbits as compact binary systems circularize fast in comparison with their total

inspiral time [189]. It is clear that depending on the masses and the separation of the individual

objects, the merger may or may not merge within the age of the universe.

A star with a mass ∼ 8− 10M⊙ will end as a CCSNe (Chapter 3). Stars close to the lower end of

the range will form a NS, and the ones in the high end will form a BH [202]. These heavy stars

become supergiants near the end of their stellar evolution with radii R ≳ 30R⊙. If two of such

stars form and are already in a binary system, they can result in compact binaries once both go

supernova. Nevertheless, for BNS with separations larger than the progenitor supergiant, GW

alone cannot make the objects merge since tmerger is a thousand times larger than the age of the

universe. For BNS to merge within this time via GW emission exclusively, they must have an
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initial separation of ≲ 5M⊙ which requires a common envelope stage. The common envelope stage

accelerates the inspiral and provides a smaller separation between compact objects.

I N S P I R A L After the formation of the BNS or NSBH system, the two objects will lose energy

via the emission of GWs, resulting in the inspiral of both objects towards one another. Two

important regimes can be observed individually. The first regime is long before the merger when

GW emission is weak, and the orbital evolution is slow. The second regime is close to the merger

time when the GW emission is powerful and the orbital evolution accelerates. The inspiral long

before the merger is better studied using EM observations of galactic BNS systems [203]. The

inspiral times of BNS range from ∼ 85 Myr to values larger than a Hubble time.

The first time that the orbital decay of a compact binary system was studied and measured was

when the Hulse-Taylor binary system was discovered [204], allowing for the first confirmation

of the existence of GW radiation [205]. These systems spend a tiny fraction of their lives in the

late inspiral phase, which ranges from hours to minutes before the merger, as seen in Fig. 22. We

are unlikely to observe NS binaries because the estimated merger rate in current and forthcoming

neutrino detectors is low [201, 206]. BNS and NSBH systems far away are nearly undetectable

using photons during the early inspiral stage. In the last seconds before the merger, there is a

possibility of detecting EM emissions from nearby sources. The most robust evidence is the claim

of precursor activity prior to short GRB emission [207], but this remains unsettled.

GW observations of compact object inspiral offer a new window to study these systems in the

late inspiral stage. As the objects approach the merger time, where the orbital radius is comparable

to NSs radii, the GW signal enters the ground-based interferometers range.

M E R G E R The energy loss via GWs decreases the orbital separation, increasing the orbital

frequency and enhancing the GW emission. The frequency evolution is known as the compact

binary coalescence chirp signal. Close the merger time, the peak GW luminosity is 1056 erg/s [208,

209]. During the merger, the NS is disrupted, launching material to the surroundings, which can

power ultra-relativistic jets and mildly relativistic quasi-isotropic outflows that generate the known

EM and expected neutrino components.
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The remnant can launch matter through tidal tails that become spiral arms, which eject matter

along the equatorial direction. This dynamical ejecta is launched within milliseconds of the merger.

After the merger, more matter is ejected after the dynamical phase and continues for ∼ 10 s. This is

referred to as wind ejecta or post-merger ejecta. The physical mechanisms for the origin of disk winds

could be many, for instance, due to magnetic fields [210], viscous heating and nuclear combination

dominating over neutrino cooling [211], and NS remnants which can host neutrino winds [212].

The ejecta (unbound material) is characterized by its mass, average velocity, and electron fraction

Ye = np/(nn + np) where nn, np are the number densities of neutrons and protons, respectively.

The wind, however, can modify these quantities by heating the outflows, changing the total mass

of the ejecta, or altering Ye through neutrino charged-current interactions

p + e− ←→ νe + n , (4.2)

n + e+ ←→ ν̄e + p . (4.3)

Since the initial number density of neutrons is much larger than that of protons (small Ye), neutrino

charge-current interactions will drive Ye to higher values until equilibration is reached. The thermal

neutrinos come from the accretion disk or in pair interactions in the vicinity of the remnant NS (if

one is present)

e+ + e− ←→ ν + ν̄ . (4.4)

It is worth noting that due to the larger neutron number density, the neutrino emission from the

remnant is characterized by an excess of ν̄e over νe due to the charged-current interactions (Eq. 4.2)

taking place in the wind. In CCSNe one find the opposite scenario where instead excess of νe over

ν̄e is present.

J E T S The bound material accretes onto the remnant compact object. In some cases, this

accretion results in a highly collimated, ultra-relativistic jet that gives rise to a short GRB, as

observed with GW170817 and GRB170817A. However, the mechanism powering short GRBs is

still poorly understood, and only phenomenological arguments are available at this point [200].

The jets that form in BNS mergers have huge kinetic energies, and some of the most luminous

EM events with approximately 1050 erg [213]. They are powered by the accretion disks [214]
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which have a mass between 10−4 − 0.3M⊙ as guided by numerical simulations. The ideal effective

conversion of 0.1M⊙ of matter into energy gives 0.1M⊙c2 ≈ 1053 erg which is enough to power

short GRB. How exactly this energy budget is transformed into the jet is unsettled. However, it is

consensus that this enormous amount of energy from accreting matter is deposited in the polar

regions near the compact object, which launches an ultra-relativistic fireball along the polar axis

in the outward direction. The outflow is collimated into a jet by the accretion disk and magnetic

fields. The jet opening angle is 1/Γ due to Doppler beaming, where Γ is the bulk Lorentz factor

(Γ ∼ 100).

Q U A S I - I S O T R O P I C O U T F L O W S The ejecta evolves very differently than the bound material

which powers the jet [200]. The ejecta is neutron-rich with a mass of ∼ 10−3 − 0.1M⊙ with

velocities ∼ 0.1− 0.3c in the outward direction. As the ejecta expands and releases energy through

thermal neutrinos, it rapidly cools and starts a slow homologous expansion in ∼ 10− 100 ms.

At T ≲ 1010 K free nuclei combines into α particles. The ejecta keeps cooling and at T ≲ 5× 109 K

the α-process forms seed nuclei with A ∼ 90− 120 and Z ∼ 35 [215]. The neutron-to-seed ratio

allows rapid neutron captures at a much faster rate than the β decay of the seeds synthesizing

heavy elements: this is the so-called r-process that provides half of the elements heavier than iron.

Rapid neutron captures continue to build heavier nuclei until A ≳ 250 is achieved. At this point,

fission splits the atoms and then pushes them to higher atomic masses through fission recycling.

This process results in peaks near the closed shell numbers A = 82, 130, 196 as observed in the

solar abundances.

After a few seconds, the heavy nuclei radioactively decay, copiously producing neutrinos

(∼ 0.1− 10 MeV), nuclear gamma-rays (keV−MeV), and elements that eventually end up falling

in the line of stability [216]. At early times, the ejecta is opaque to photons, and as a result, most

of the energy is released in the form of neutrinos. In kilonova models, the first photons to escape

are the nuclear gamma-rays. At this point, neutrinos escape with ∼ 30− 40% of the energy, while

gamma-rays take 20− 50% of it, significantly decreasing the remaining energy of the system before

reaching peak luminosity [217]
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As time passes, the ejecta loses energy through neutrinos and gamma rays, cools, and expands

until photons in the UVOIR1 (Ultraviolet, Optical, and Infrared) range can escape, which results in

a transient called kilonova. Ejecta with somewhat high initial electron fraction Ye ≳ 0.3 produces

lanthanide-free material which gives rise to a blue kilonova (peak luminosity ∼ 1 day) [49]. On

the other hand, ejecta with low electron fraction Ye ≲ 0.3 makes lanthanide-rich material (and

maybe actinides) that produces a red kilonova (peak luminosity ∼ 1 week) [218]. The blue and red

components of the kilonova are schematically represented in Fig. 22.

A F T E R M AT H In a matter of years, the event transitions to the nebular phase. Over thousands

of years, a kilonova remnant (KNR) is formed. These have a shock wave and surrounding material,

similar to supernova remnants but with lower total kinetic energies. Even long after the merger

event, they remain radioactive with decaying isotopes that have half-lives of a similar order of

magnitude to the age of the remnant [219, 220]. Eventually, the kinetic energy will be spent, and

the shock will dissipate. The ejecta will become part of the diffuse galactic material, which is later

circulated throughout the galaxy [219].

4.2 M AT T E R - N E U T R I N O R E S O N A N C E I N N E U T R O N S TA R M E R G E R R E M N A N T S

Neutron star merger remnants can experience matter-neutrino resonance (MNR) transitions, first

found in Ref. [221], which occurs when the matter and neutrino-neutrino potentials cross each

other. The latter is only possible in merger remnants because of the overabundance of ν̄e. The

MNR transition effect is different from the bipolar (nutation) conversion (Sec. 2.2.7.1) and can

occur nearer to the neutrino decoupling regions for both mass neutrino hierarchies [222]. While

the MNR is at play, neutrinos stay "on-resonance," i.e., neutrino flavor evolves in such a way that

all entries of the Hamiltonian are almost vanishing [192]. The MNR transformation effect requires

a matter potential Hmat (Sec. 2.2.2) and a neutrino-neutrino potential Hνν (Sec. 2.2.5) of opposite

sign and more or less the same magnitude. Neutron star merger remnants are excellent sites for

MNR because they either 1) supply a natural excess of ν̄e over νe (neutron-rich medium) or 2)

1 The UVOIR is the main frequency range for the observation of kilonovae.
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Figure 23: Results for the neutrino trajectory 1: Numerical solution of the survival probability (solid) as

a function of position. Moreover, one can use unoscillated quantities to calculate the predicted

survival probability [192, 224] due to MNR transitions, as shown in the dashed line. The beginning

of the MNR transitions can be seen around 24 km at which point the survival probability declines

significantly until the MNR transition ends. Image adapted from Ref. [222].

their geometry changes the contributions from neutrinos and antineutrinos to the self-interaction

potential as they travel. It is worth noting that one would not anticipate MNR to emerge in CCSNe

(Sec. 3.1) because both Hνν and Hmat have the same sign; however for a counterexample see

Ref. [78].

One can identify two types of MNR transitions in merger remnants. One of them, the "standard"

MNR transition, can be recognized by a complete conversion of νe’s to other neutrino species,

while ν̄e partially convert but then go back to their original flavor content [192]. The standard MNR

transition takes place in locations where the neutrino-neutrino potential Hνν starts as the dominant

potential in the system but drops in magnitude, ultimately having a comparable magnitude as

the matter potential Hmat. The other type of MNR transition completely transforms both νe and

ν̄e "symmetrically" and is called the symmetric MNR transition [223]. The latter differs from the

standard MNR in that it occurs when the geometry causes the system to transition from a location

where ν̄’s dominate the Hνν to a location where ν’s dominate it instead [223, 224]. Both classes of

MNR transitions could potentially impact nucleosynthesis due to the closeness to the (anti)neutrino

decoupling regions [221, 223].
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Figure 24: Results for the neutrino trajectory 2: Matter potential Ve (purple), magnitude of oscillated neutrino-

neutrino interaction potential |Vν(x⃗)| (dashed red), positive (dashed green) and negative (solid

green) unoscillated neutrino-neutrino potential Vun
ν (x⃗), and the vacuum oscillation frequency

(dashed purple). The beginning of the MNR transitions can be seen around 24 km similar to Fig. 23.

Image adapted from Ref. [222].

The work in Ref. [222] concentrates on neutrinos emitted from the massive neutron star. As

an illustrative example, one can take the neutrinos emitted from the ∼ 10 MeV electron-neutrino

decoupling surface (cyan line in Fig. 2 of Ref. [222]) and consider two different neutrino trajectories

which are marked by the arrows in the same figure. As neutrinos move along their trajectory, the

magnitude of Hνν and Hmat will change with distance allowing for MNR transitions. Initially,

neutrinos encounter a large negative Hνν due to the surplus of ν̄e over νe along the funnel (see Fig.

3 of Ref. [222]); these potentials are shown in red dash lines in the lower panels of Figs. 23 and 24.

The condition for MNR transitions is at the locations where the diagonal components of Hνν cancel

with the diagonal entry of Hmat, i.e.

Ve(x⃗) + Vν(x⃗) ≈ 0, (4.5)

where Ve(x⃗) =
√

2GFne(x⃗), being ne(x⃗) the neutrino number density (Eq. 2.23). The quantity Vν(x⃗)

is the contribution from the diagonal components of the neutrino-neutrino Hamiltonian

Vν(x⃗) ≡ Hee
νν(x⃗)− Hxx

νν (x⃗) = Vνe −Vνx − (Vν̄e −Vν̄x ), (4.6)

where Hαα
νν are the diagonal components of the neutrino-neutrino Hamiltonian with α = e, x.

Note that Eq. 4.5 does not depend on time, as it uses the unoscillated quantities at the start of
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the evolution. The location where the MNR condition is fulfilled (Eq. 4.5) is shown in Figs. 23

and 24 and can be identified as the location where the red dashed line, and the purple line in the

bottom panels meet around ∼ 24 km. This prediction is verified numerically in Fig. 24 since the

predicted survival probabilities (orange dashed line in the upper panel of Fig. 24) closely follow the

numerical results (solid lines). It is worth noting that during MNR transitions, νe and ν̄e convert in

such a way that they stay "on-resonance," which means that the MNR condition (Eq. 4.5) is fulfilled

along a portion of the trajectory. The end of the MNR is marked when Eq. 4.5 is no longer fulfilled,

which is visible in the lower panel of Fig. 23 when the red dashed line and the purple line drift

apart from each other.

4.3 F A S T PA I R W I S E C O N V E R S I O N I N C O M PA C T B I N A R Y M E R G E R R E M N A N T S

Even though the detection of thermal neutrinos from compact binary merger remnants is unlikely

due to a low local merger rate [43], neutrinos can still indirectly influence future merger obser-

vations. The evolution of the disk and the formation of the neutrino-driven wind depend on the

competition between neutrino absorption and emission. Thus, neutrinos play an essential role

in the cooling of the disk and in the production of elements heavier than iron [46–50]. Given the

significant role of neutrinos, it is crucial to address neutrino flavor conversions in such dense

environments.

4.3.1 Flavor instabilities: ubiquitous in compact binary merger remnants

Fast flavor conversion of neutrinos could result in equilibration among neutrino flavors and are

driven by the ELN angular distributions. In Chapter 8 we argue that flavor equilibration might

be unrealistic in some cases, as the final flavor outcome crucially depends on the particular ELN

crossings of the system. Despite the relevance of the angular distributions of neutrinos, they have

been typically ignored in most previous studies on neutrino conversions in merger remnants.

As in the case of core-collapse supernovae, the decoupling region of ν̄e is located inside the νe

one in compact binary merger remnants. However, two critical differences concerning the SNe
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Figure 25: Layout of the two-neutrino disk model implemented in Ref. [196]. The neutrino (red) and antineu-

trino (blue) emitting surfaces with radii given by Rνe and Rν̄e , and heights hνe and hν̄e , respectively.

The radius R0 is the innermost stable circular orbit for a BH-disk system; therefore, it is R0 = 0 for

the NS-disk remnant. The inset shows what an observer at a given (x, z) would see as a function

of the polar θ and the azimuthal angle ϕ. The region in red signalizes that Φν̄e −Φνe > 0 while

the region in blue that Φν̄e −Φνe < 0. For any value of ϕ = const there is a particular θ for which

Φν̄e −Φνe = 0 and therefore a crossing exists. Image taken from Ref. [196].

scenario are important. First, the ν̄e flux is larger than the one of νe due to the protonization of

the merger. And second, the decoupling regions of νe and ν̄e are spatially well separated, and the

ratio of their sizes can be as much as 3/4 [47]. This results from the neutron-rich remnant and the

extension of the accretion disk, which allows for a smaller density gradient than the supernova

proto-neutron star.

The disparity in the (anti)neutrino fluxes and the spatial separation between the decoupling

regions lead to angular crossings between the distributions of neutrinos Φνe = dnνe /dΩ and

antineutrinos Φν̄e = dnν̄e /dΩ, where dΩ = d cos θdϕ is the differential solid angle. If an angular

crossing is present at a given location of the merger, the ELN distribution Φν̄e −Φνe reverses its sign

as a function of the polar θ and the azimuthal angle ϕ i.e. either Φν̄e −Φνe > 0 or Φν̄e −Φνe < 0

for some choice of parameters. Notably, an ELN angular crossing is present at any location

above the disk of the remnant, as shown in Fig. 25. This finding hints that ELN crossings are

ubiquitous in such environments [196] and deserve to be investigated in dedicated works. The
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Figure 26: Contour plot of the instability growth rate |Im(ω)|/µ0 as a function of the location (x, z) above the

νe decoupling region. Solutions that preserve and break the y-axis mirror-symmetry are presented

in the upper and lower panels, respectively. The locations where the MNR resonances are expected

are shown in solid blue and dashed green, where neutrinos were emitted at (x, z) = (0, hνe ) and

(x, z) = (−Rνe , hνe ), respectively, using the number density profiles ne from Ref. [50] to model the

matter potential. Image taken from Ref. [196].

model implemented in Ref. [196] relies on a simple two-neutrino-emitting disk model as shown

in Fig. 25, whose specific choice of parameters is motivated by more realistic hydrodynamical

simulations of the NS-disk evolution [50].

Finding an ELN crossing is a necessary but not sufficient condition for flavor instabilities,

and their existence still needs to be determined. The linear stability analysis (Sec. 2.2.7.3) offers

the analytical tools to determine the growth rate of the temporal instabilities above the NS-

disk system. As a benchmark value for the neutrino interaction strength, Ref. [196] implements

µ0 = O(105) km−1 which is a typical order of magnitude value near the decoupling regions.

The results in Fig. 26 show contour plots of the growth rate of instability |Im(ω0)| in units of

µ0 in the (x, z) plane. Since the azimuthal symmetry is broken by including the ϕ-dependence,

there are flavor instabilities that preserve the mirror-symmetry with respect to the y-axis (upper

panel) and those that do not preserve it (lower panel). However, the symmetry-preserving and

symmetry-breaking results are qualitatively very similar: flavor instabilities exist in most regions
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over the νe decoupling surface. Yellow-orange regions are regions that display a large value growth

rate, and therefore flavor conversions are expected to occur on a time scale of 0.1µ0 which roughly

corresponds to a few nanoseconds; equivalently, since neutrinos travel at the speed of light a

few nanoseconds time interval corresponds to conversions occurring on a length scale of a few

centimeters. These results motivated the works contained in Part iii where the flavor of neutrinos

is evolved in a multi-dimensional fashion in the region above the disk of the remnant.

Moreover, the findings of Ref. [196] suggest a change of paradigm to what concerns MNR

transitions (Sec. 4.2) in the remnant environment. Notably, neutrinos emitted from the neutrino

decoupling regions will traverse locations prone to develop flavor instabilities before reaching the

regions where MNR (see blue and green lines in Fig. 26) are expected. Therefore, the fast flavor

instabilities might change the location where the MNR transition occurs.

4.3.2 Overview: recent developments

The lessons learned from Ref. [196] (Sec. 4.3.1) motivated dedicated works on the role of neutrino

fast flavor conversion in merger remnants, which moved beyond the simplified two-neutrino

emitting surfaces model. A conclusive description of the implications of flavor instabilities in

merger remnants remains unsettled; however, dedicated works have begun to parametrically study

fast flavor instabilities and their impact on the electron-fraction of the disk outflow. Particularly, the

works in Refs. [225–232] took a step forward in the modeling of neutrinos in compact binary merger

remnants and in assessing the role of neutrino flavor transformations. One of the main findings of

some of these works is that the region that could host fast flavor instabilities can shrink within

∼ 10 ms as the BH-disk remnants evolves [225], but it is also possible that the flavor unstable

region remains constant within the same ∼ 10 ms of post-merger evolution [226]. These findings

highlight the dynamical nature involved in determining instability regions in merger remnants,

which is challenging.

One common simplification is to assume flavor equilibration. A dedicated work presented in

this thesis (Sec. 8) models the non-linear regime using a simplified setup of the merger system,

showing that flavor equilibration might be too extreme and, in some cases, unrealistic (see also
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Ref. [233]). Even more, there is no formal connection between large growth rates and a significant

amount of flavor conversion, which is formally demonstrated in another dedicated work of this

thesis (Sec. 5). Therefore, it is crucial to cross-check whether flavor equilibration is a reasonable

assumption even if large growth rates are present and move beyond the linear stability analysis

and the existence of crossings to gauge the final flavor outcome.

Despite the crude simplifications, assuming flavor equilibration can shed light on the maximum

possible effect that fast flavor conversion can have on the merger observables. For instance, flavor

equilibration can mainly affect the nucleosynthesis in the polar ejecta within ≲ 30◦, thereby affect-

ing the abundances in the iron-peak and the first-peak nuclei, but instead leaving the lanthanide

mass fraction unaffected [226]. Along the same vein and assuming flavor equilibration, a significant

enhancement of nuclei with mass numbers A > 130 is possible, together with a change of the

lanthanide mass fraction by a factor of 103 [225]. A similar approach is followed in Ref. [231],

which follows the evolution of a magneto-hydrodynamical simulation of an accretion disk.
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Based on: Ian Padilla-Gay, Irene Tamborra, Georg G. Raffelt, Neutrino flavor pendulum reloaded: The

case of fast pairwise conversion, Phys. Rev. Lett. 128 (2022) 12, 12, arXiv:2109.14627

A B S T R A C T In core-collapse supernovae or compact binary merger remnants, neutrino-

neutrino refraction can spawn fast pair conversion of the type νeν̄e ↔ νx ν̄x (with x = µ, τ),

governed by the angle-dependent density matrices of flavor lepton number. In a homogeneous

and axially symmetric two-flavor system, all angle modes evolve coherently, and we show that the

nonlinear equations of motion are formally equivalent to those of a gyroscopic pendulum. Within

this analogy, our main innovation is to identify the elusive characteristic of the lepton-number

angle distribution that determines the depth of conversion with the “pendulum spin.” The latter

is given by the real part of the eigenfrequency resulting from the linear normal-mode analysis of

the neutrino system. This simple analogy allows one to predict the depth of flavor conversion

without solving the nonlinear evolution equations. Our approach provides a novel diagnostic tool

to explore the physics of nonlinear systems.

5.1 I N T R O D U C T I O N

In neutrino-dense astrophysical environments, such as core-collapse supernovae and the remnants

of neutron star mergers, neutrinos experience a significant potential due to the presence of other

neutrinos. This refractive effect strongly impacts the flavor evolution of the neutrino radiation

field and can lead to collective flavor conversion. While the underlying equations are simple, their

nonlinear nature provides for a rich and sometimes confusing plethora of solutions [82, 87, 88,

132].
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One case in point is fast pairwise flavor conversion of the type νeν̄e → νx ν̄x (where x indicates

a generic heavy-lepton flavor, µ or τ), conserving the net flavor content and often called “fast

flavor conversion (FFC).” Neutrino-neutrino refraction is dimensionally quantified by a typical

interaction energy O(
√

2GFnν). Specifically, we will use µ =
√

2GFnνe as an overall scale.

Another manifestation of neutrino-neutrino refraction concerns “slow flavor conversion,” driven

by the energy spectrum and involving flavor exchange between different energy modes. A

typical flavor conversion speed is
√

ωµ, where ω = ∆m2/2E is the vacuum oscillation frequency

depending on the mass-squared difference ∆m2 and energy E. This is defined as “slow” because

µ ≫ ω. The interpretation of the nonlinear evolution [89] as a gyroscopic flavor pendulum has

been long since established [90, 92, 93, 234, 235] and is the archetype for our study.

Fast flavor conversion is a multi-angle effect of the flavor lepton-number densities. While the

nonlinear evolution is a three-flavor problem [98, 100, 102, 103, 148, 187], the initial instability

is between one pair of flavors [133, 135, 157, 158], in practice νe and νx. For identical νx and ν̄x

distributions, FFC is driven by neutrino electron lepton number (ELN) [133, 155, 160, 161, 236], but

it is straightforward to include nontrivial νx and ν̄x distributions [148, 159, 187]. An instability of

the flavor field requires the ELN angular distribution to change sign at least once—it needs one or

more “crossings.” In the slow case, spectral crossings are required instead [237].

Various methods have been proposed to identify ELN crossings in hydrodynamical simula-

tions [166, 167, 169, 238] and significant efforts have been devoted to understand when and where

favorable conditions exist for FFC instabilities in astrophysical environments and related implica-

tions [146, 156, 162, 168, 170, 171, 173–177, 196, 225, 226, 239–241]. However, despite ELN crossings,

only minimal flavor conversion may occur depending on the initial configuration [242], because it

is the exact νe and ν̄e angular distribution that determines the ELN crossings and the final flavor

outcome [149, 155, 161, 183, 186, 239, 242].

This Letter aims to elucidate under which conditions one should expect large flavor conversion

due to FFC in a homogeneous and azimuthally symmetric neutrino gas. For the first time, we pro-

vide a simple diagnostic criterion to predict whether FFC should occur and how much conversion

should be expected, without solving the neutrino equations of motion (EOMs). In doing so, we

rely on a formal analogy of the EOMs with the ones of a gyroscopic pendulum [155].
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The linear normal-mode analysis [133, 135, 157, 158, 243, 244] has been widely employed to obtain

the growth rate of the flavor instability. Our main new insight consists of taking full advantage

of this approach and to recognize, for the first time, the fundamental information provided by

the initial rate of precession as well as by the universal form of the linear eigenfunction for the

angle-dependent flavor conversion. Such findings provide crucial new insights into the physics of

nonlinear systems.

5.2 M E A N F I E L D E Q U AT I O N S

We describe [anti]neutrinos through the usual density matrices ϱ( p⃗, r⃗, t) [ϱ̄( p⃗, r⃗, t)]. The diagonal

elements are occupation numbers, whereas the off-diagonal ones encode flavor coherence. Ignoring

collisions, the commutator EOM for neutrinos is [154]

i (∂t + v⃗ · ∇⃗)ϱ p⃗ =
[
ΩE, ϱ p⃗

]
+
√

2 GF

[
Hv⃗, ϱ p⃗

]
, (5.1)

where vacuum oscillations are spawned by ΩE = M2/2E with M being the neutrino mass matrix.

Antineutrinos require ΩE → −ΩE, but as we study FFC we set ΩE = 0 henceforth, also implying

that v⃗ = p⃗/E is a unit vector. The Hamiltonian matrix

Hv⃗ =
∫ d3q⃗

(2π)3 (ϱq⃗ − ϱ̄q⃗) (1− v⃗q⃗ · v⃗) (5.2)

represents neutrino-neutrino refraction. The EOMs are understood in a co-moving frame in flavor

space such that refraction on ordinary matter disappears.

One central feature of FFC is that all ϱ( p⃗, r⃗, t) and ϱ̄( p⃗, r⃗, t), and any linear combination, follow

the same EOM that depends on v⃗ but not on E. We thus consider the density matrices for lepton

number Dp⃗ = ϱ p⃗ − ϱ̄ p⃗, which we also integrate over energy and normalize to the νe density. The

matrices Dv⃗ ≡ n−1
νe

∫ ∞
0 E2dE/(2π2)DE,⃗v thus defined obey the closed system of equations

i (∂t + v⃗ · ∇⃗)Dv⃗ = µ [Hv⃗, Dv⃗] . (5.3)

Here, µ ≡
√

2GFnνe is a typical neutrino-neutrino interaction energy, whereas Hv⃗ =
∫
(d2u⃗/4π) Du⃗(1−

u⃗ · v⃗).

It is perhaps somewhat under-appreciated that it is the energy-integrated lepton-number matri-

ces that drive the entire FFC dynamics. Solving the EOMs amounts to the task of finding Hv⃗(t).
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Once it has been found, the solutions for ϱ p⃗ and ϱ̄ p⃗ or the particle-number densities Sp⃗ = ϱ p⃗ + ϱ̄ p⃗

can be determined.

In our case study, we impose several symmetries, the most restrictive one being that of homo-

geneity of the initial setup and the solutions. Dropping the gradient and integrating both sides over

∫
d2v⃗/4π reveals that the total lepton-number matrix D0 =

∫
(d2v⃗/4π)Dv⃗ is conserved, meaning

that nνℓ − nν̄ℓ is separately conserved for every flavor ℓ = e, µ, and τ. Indeed, FFC does not convert

any net flavor. The corresponding number-density matrix S0 is not conserved. While the total

particle number (trace of S0) is conserved, the individual nνℓ + nν̄ℓ are not, commensurate with a

pair-conversion effect.

As D0 is conserved, it causes a global precession on the r.h.s. of Eq. (5.3) that can be “rotated

away” by the unitary transformation U(t) = exp[−iD0t] as for the ordinary matter effect. The

Hamiltonian matrix becomes Hv⃗ = −v⃗ ·
∫
(d2u⃗/4π) u⃗ Du⃗. Note that we have not assumed D0 = 0,

we have only absorbed its effect by going to a co-moving frame. So we recognize that, in the

homogeneous case, the evolution is entirely driven by D⃗(t) =
∫
(d2u⃗/4π) u⃗ Du⃗(t). While the latter

is not conserved, Tr D⃗
2

is conserved, meaning that the lepton-number flux, summed over all flavors,

is conserved.

As a further simplification, we impose axial symmetry on the initial setup and the solutions.

Measuring v⃗ against the symmetry axis (zenith angle θ), we integrate out the azimuth angle ϕ

and define Dv =
∫ 2π

0 (dϕ/4π)Dv⃗ where v = cos θ is the velocity along the symmetry axis (v is

not |⃗v| = 1) with −1 ≤ v ≤ +1. The flux matrix now has only one nonvanishing component:

D1 =
∫ +1
−1 dv vDv. A possible factor 1/2 in front of

∫ +1
−1 d cos θ has been absorbed in the definition

of Dv.

Last, we consider only two flavors, although three-flavor solutions can be much richer in the

nonlinear regime [148, 157, 159, 187]. The corotating EOM thus becomes

iḊv = µv[Dv, D1] or Ḋv = µ vDv × D1 . (5.4)

We here express the 2× 2 Hermitian Dv matrices through the usual Bloch vectors (polarization

vectors) such that Dv = (Tr Dv + Dv · σ)/2 with σ a vector of Pauli matrices.
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The cross product on the r.h.s. reveals that the length of each Dv is conserved. Moreover, D0 and

|D1| are conserved. It is D1(t) that drives the motion of the system and moves like a gyroscopic

pendulum [155].

5.3 S I N G L E - C R O S S E D E L N S P E C T R A

Except for small seeds, our system begins diagonal in the flavor basis where every Dv has only

a z-component. (We use x, y and z for directions in flavor space.) So the initial condition is

represented by what we call the ELN spectrum,

gv = Dz
v
∣∣
t=0 ∝ (nνe − nν̄e − nνx + nν̄x )v . (5.5)

One or more “crossings” (gv changes sign) are necessary for run-away solutions to exist. This

condition is also sufficient for solutions that may break homogeneity and axial symmetry [236].

Motivated by the qualitative shape of the ELN angular distributions near the neutrino decoupling

regions, we use a family of single-crossed distributions defined by

ϱee(cos θ) = 0.50 , (5.6a)

ϱ̄ee(cos θ) = 0.45− a +
0.1
b

exp

[
−(1− cos θ)2

2b2

]
. (5.6b)

Here
∫ +1
−1 ϱeed cos θ = 1, whereas the two free parameters a ∈ [−0.04, 0.12] and b ∈ [0.1, 1]

determine the shape and normalization of gv = ϱee − ϱ̄ee with v = cos θ. Figure 27 shows four

representative examples and illustrates the effect of the a and b parameters.

We have solved the EOMs for the cases A–D specified in Fig. 27 and show the evolution Dz
1(t)/D1

in Fig. 28. Recall that D1 = |D1| is conserved, so we really show cos ϑ with ϑ(t) the zenith angle of

D1(t) in flavor space. Case A has no instability, in agreement with the results of the linear stability

analysis, whereas B–D show the characteristic behavior of an inverted pendulum. The waiting

time between dips depends logarithmically on the smallness of the chosen seeds. The component
√
(Dx

1 )
2 + (Dy

1)
2 grows exponentially during that period. (For an example, see the Supplemental

Material.)

In Fig. 29 we show snapshots of the evolution of the entire spectrum for Case B at four times

indicated in Fig. 28. So we can see how the lepton-number flux evolves in time as a function of
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Figure 30: Contour plot of the growth rate in the plane spanned by the parameters a and b (see Eqs. 5.6a and

5.6b). The white contours represent Dz
1(t)/D1|min. The locus of vanishing lepton number (Dz

0 = 0)

is marked with a dashed line. We also mark our configurations A–D. We see that large growth

rates do not always correspond to large flavor conversion.

v = cos θ. All modes evolve coherently and return to their initial position—the overall evolution

remains periodic within the limits of numerical precision. The same applies to the analogous

evolution of the lepton-number modes Sv(t).

Finally, in Fig. 30 we show contours of Dz
1(t)/D1|min = cos ϑmin in the plane spanned by a and

b overlaid with contours of the growth rate obtained by the linear normal-mode analysis [133, 135].

Evidently large flavor conversion does not always correlate with a large growth rate. Moreover,

seemingly similar ELN configurations can cause very different flavor outcomes.

The coherence of all modes suggests a small number of underlying degrees of freedom. In fact,

by applying the Gram matrix method [234], we find that our system with single-crossed ELN

spectra is equivalent to three discrete angle modes, which form a gyroscopic flavor pendulum in

the unstable case (see Supplemental Material for more details).

5.4 P E N D U L U M I N F L AV O R S PA C E

The first of the linearly independent functions suggested by the Gram matrix is the conserved

vector G = D0 =
∫

dv Dv(t) of lepton number. The second is the lepton-number flux R(t) =

D1(t) =
∫

dv vDv(t) with conserved length. The third is what we call J(t) =
∫

dv wvDv(t) with
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unknown weight function wv. They represent a gyroscopic pendulum, if they obey the EOMs [234]

Ġ = 0 , Ṙ = µJ × R and J̇ = γG× R . (5.7)

In a mechanical analogy, G represents gravity, R the center-of-mass position relative to the point of

support, J the total angular momentum, and µ−1 the moment of inertia. Besides the conserved

G, the EOMs imply four conserved quantities: length R of the radius vector, angular momentum

Jz = J · G/G along “gravity,” spin S = J · R/R, and energy E = V + T = γG · R + (µ/2)J2.

Moreover, the natural pendulum frequency λµ is given by λ2 = γGR/µ. We here assume that

γ > 0, a possible negative sign is absorbed by redefining G = −D0.

We use coordinates where G defines the z-direction so that G = (0, 0, G), whereas the pendulum

is described in polar coordinates (ϑ, φ) by R = R(sϑcφ, sϑsφ, cϑ) with sϑ = sin ϑ and so forth.

Solving the EOMs for ϑ(t) and φ(t) in terms of the conserved quantities is shown in any

mechanics textbook or Appendix B of Ref. [234]. One important simplification is that we always

begin with R parallel or antiparallel to G without an initial velocity, implying that J|t=0 = S|t=0,

and because Jz and S are conserved, we may use Jz = S. Moreover, we assume that S is parallel to

R and not antiparallel. One thus finds

φ̇ = µ
2λσ

1 + cos ϑ
, (5.8a)

ϑ̇2 = µ2λ2
[
2 (1− cos ϑ)− σ2 4 (1− cos ϑ)2

sin2 ϑ

]
, (5.8b)

where we have expressed the spin, S = 2λσ, in terms of a parameter σ and the dimensionless

natural pendulum frequency λ =
√

γGR/µ. Besides the overall scale µ, the pendulum is fully

described by the parameters λ and σ.

The zenith-angle EOM of Eq. (5.8b) becomes yet more informative with cϑ = cos ϑ as inde-

pendent variable, so that ċ2
ϑ = µ2λ2 2

(
1− cϑ

)2(1 + cϑ − 2σ2). For the r.h.s. to be positive in the

neighborhood of cϑ = 1, we obtain σ < 1 as a condition for instability. For larger σ, the pendulum

is stuck in the “sleeping top position.” In the unstable case, it nutates between the upright position

and a minimal latitude ϑmin given by cos ϑmin = −1 + 2σ2. For σ = 0, it reaches the vertical

downward position.
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In the linear regime (ϑ≪ 1), the solutions (5.8a) and (5.8b) are

φ̇ = µλσ and ϑ̇ = ±µλ
√

1− σ2 ϑ . (5.9)

The pendulum performs a uniform precession, whereas ϑ grows or shrinks exponentially, according

to whether the pendulum moves away from the stable position or, after a full swing, comes back to

it.

5.5 N O R M A L M O D E A N A LY S I S

To match these parameters with our full system, we consider the latter in the linear regime. Initially

Dxy
v = Dx

v + iDy
v is small, whereas Dz

v is at its initial value gv. Thus the linearized version of

Eq. (5.4) is (i∂t + vD1)Dxy
v = vgz

∫
du uDxy

u . A collective normal mode would be of the form

gvQve−iωt with ω = ωP ± iΓ being the complex eigenfrequency, where the subscript P stands for

“precession.” The solution is

Dxy
v (t) = f

v gv

ω + vD1
e−iωt , (5.10)

where f depends on the initial conditions. Inserting this back into the linear EOM reveals that ω is

fixed by
∫ +1

−1
dv

v2gv

ω + vD1
=
∫ +1

−1
dv gvv2 ωP + vD1 − iΓ

(ωP + vD1)2 + Γ2 = 1 . (5.11)

For convenience, we also provide a step-by-step derivation in the Supplemental Material.

The crucial final step is to match the real and imaginary parts of ω with the corresponding

pendulum parameters of Eq. (5.9): φ̇ = µλσ = ωP and ϑ̇ = ±µλ
√

1− σ2 ϑ = ±Γϑ. Inverting these

relations and selecting the positive solution for the second equation only reveals

σ =

√
ω2

P
ω2

P + Γ2
and λ =

1
µ

√
ω2

P + Γ2 . (5.12)

Hence, the lowest pendulum position is

cos ϑmin = −1 + 2
ω2

P
ω2

P + Γ2
. (5.13)

The equation above crucially links the maximal latitude reached by the gyroscopic pendulum to

the real and imaginary parts of the complex eigenfrequency ω, providing a way to predict the

depth of flavor mixing without solving the equations of motion. This prediction is in excellent
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agreement for all our ELN configurations, see our examples shown in Fig. 28 for a comparison. We

also see that ωP = 0 implies σ = 0, leading to complete conversion, whereas Γ = 0 implies σ = 1

and the pendulum is stable.

5.6 C O N C L U S I O N S

For a homogeneous and azimuthally symmetric two-flavor neutrino gas, we have explicitly shown

that flavor conversion physics strongly depends on details of the ELN distribution. Similar looking

angular distributions can lead to completely different outcomes. Notably, the amount of flavor

conversion does not directly correlate with the growth rate obtained from the linear normal-mode

analysis.

Obvious characteristics are the conserved Bloch vector of the lepton number that we call D0 and

the one of lepton-number flux D1 with conserved length, and it is also evident that D1(t) is what

drives the evolution of all Bloch vectors (or density matrices) for individual modes of lepton or

particle number.

The evolution of D1(t) appears to be equivalent to a gyroscopic pendulum, with D0 playing the

role of gravity, suggesting that the third characteristic is what plays the role of spin or equivalently

the total angular momentum J. However, identifying J as a simple combination of Dn =
∫

dv vnDv

is not generally successful [155].

Our main innovation was to match the pendulum parameters (natural frequency and spin) with

the precession frequency ωP and growth rate Γ obtained from the usual normal-mode analysis of

the neutrino system. It is important to stress that, while attention was usually focused on Γ, the

previously ignored ωP provides the spin and thus allows one to gain insight on the amount of

flavor mixing.

Our work provides new insights and a simple tool to unveil the rich phenomenology of FFC,

shedding light on the complicated physics of neutrino-dense media and, in general, nonlinear sys-

tems of this type. While our findings are based on a single-crossed, homogeneous and azimuthally

symmetric neutrino gas, they could provide a first step to analytically forecast the amount of

flavor conversion in neutrino-dense astrophysical environments. As such, this work could have



5.7 C R I T I C A L O U T L O O K 88

fundamental implications on our understanding of neutrino flavor evolution in core-collapse

supernovae and the synthesis of heavy elements in compact binary merger remnants, where

progress is currently halted by its intrinsic numerical challenges.

5.7 C R I T I C A L O U T L O O K

5.7.1 Overview and main findings

The formal equivalence between the equations that describe the fast flavor dynamics and those of

a classical gyroscopic pendulum has remained unknown until now. However, it is not the first

time that the equations of a gyroscopic pendulum have been formally implemented to describe a

possible manifestation of collective neutrino conversion. For slow flavor conversion (Sec. 2.2.7.1),

the interpretation of the non-linear evolution as a gyroscopic pendulum is well-known and has

been subject of study for quite some time [90, 92, 93, 234]. More in detail, Eqs. 2.81 describe the

dynamics of the "slow" gyroscopic pendulum q⃗ ∝ P⃗ω − P⃗−ω − ω
µ B⃗ with a total angular momentum

given by D⃗ =
∫ ∞
−∞ dωP⃗ω in the presence of a (constant) gravitational field where the gravitational

acceleration is g⃗ = −µωB⃗. The slow gyroscopic pendulum conserves its spin σs = const and it is

non-zero for asymmetric systems |P⃗ω | = (1 + ε)|P⃗−ω | with ε ̸= 0. The slow pendulum does not

swing if ω = 0 since there is no gravitational pull exerting a torque on the pendulum q⃗.

The classical dynamics are identical in the case of the "fast" gyroscopic pendulum. However,

the identification of the physical quantities such as gravity, angular momentum, and even the

pendulum itself is completely different. In the fast case, the gravitational acceleration is given

by the conserved quantity G⃗ = D⃗0 =
∫ 1
−1 dvD⃗v(t), the pendulum is R⃗ = D⃗1 =

∫ 1
−1 dvvD⃗v(t),

where D⃗v = P⃗v − ⃗̄Pv; notice that now the polarization vectors are a function of the angular variable

v = cos θ rather than energy as for the slow case. Interestingly, the angular momentum J⃗ is a

non-trivial combination of the polarization vectors P⃗v, ⃗̄Pv, which remains unknown. In Section 3.2.1

we examined the angular moments approach where a prediction on the final flavor outcome is

unsuccessful even in the simplest of cases.
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Figure 31: Left: Solutions for the z-component of the lepton-number flux Dz
1(t) for the some representative

initial ELN distributions (cases A–D). We show the maximum excursion of the pendulum given by

cos ϑ = Dz
1/D1 both from the numerical solution and our prediction. Right: Parametric plots of ϑ̇2

as functions of ϑ for the unstable configurations. This plot includes the numerical results for our

three unstable examples B–D (solid lines) and the analytical ones (dashed lines). The agreement

between the two is excellent, even in the non-linear regime.

However, we stress that, due to conservation of energy and angular momentum, only knowledge

of the initial ELN angular distribution is needed to make accurate estimates of the maximum

excursion of the pendulum, as thoroughly described in this Chapter.

One of the most important results of this work is the formal identification of the pendulum

parameters based entirely on the initial ELN distribution. We found that the linear stability analysis

(Sec. 2.2.7.3) can serve as a bridge between the properties of the initial ELN distribution and the

flavor dynamics that the gyroscopic pendulum can display. This "matching" through the linear

stability analysis is possible because of the small number of degrees of freedom of the system and

might not be valid in less symmetric scenarios [183], although this has not been explicitly proven.

The few degrees of freedom in the equations of motion allow to find a simple formula that predicts

the lowest point of the gyroscopic pendulum:

cos ϑmin = −1 + 2
ω2

P
ω2

P + Γ2
︸ ︷︷ ︸

σ2

, (5.14)

where σ is the spin of the gyroscopic pendulum. Here, the angle ϑ describes the angle between the

pendulum and the ẑ direction in flavor space, i.e., cos ϑ = 1 means no conversion, and cos ϑ = −1

means maximal conversion, as allowed by total lepton number conservation. The quantities ωP

and Γ are real and imaginary parts of the eigenfrequency, respectively, obtained through the linear

stability analysis Ω = ωP + iΓ. The formula for cos ϑmin can be easily implemented for given
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initial ELN distributions. For instance, for some representative initial ELN angular distributions,

the values of the quantity cos ϑmin can be computed and compared directly with full numerical

solutions. The agreement between the analytical prediction and the numerical solution is excellent,

as shown in Fig. 31. This estimation offers a new diagnostic to evaluate whether flavor conversion is

significant and bypasses cumbersome numerical calculations often involved in collective neutrino

conversion.

5.7.2 Limitations and future perspectives

The field of fast flavor conversion heavily relies on numerical simulations to tackle the non-linear

behavior of evolution. Less demanding tools like the linear stability analysis (Sec. 2.2.7.3) have

been beneficial in assessing the presence of instabilities; however, we need to go beyond the linear

regime. In the same way, the gyroscopic pendulum presented in this Chapter constitutes a step

forward in connecting the linear and the non-linear regimes and answering elusive questions

about the final flavor outcome of evolution. Despite all the progress, much work is ahead before

the astrophysical implications are conclusively sorted out.

5.7.2.1 Mean-field Approximation

The validity of the mean field approximation should be studied in detail because of the new

conceptual developments on neutrino fast flavor conversion. For instance, our prediction for

the maximum amount of conversions in Eq. 5.13 (mean-field) could be directly compared with

calculations in the many-body framework [245–248] without explicitly solving the mean-field

equations. The latter suggestion could be a quick way of assessing the validity of mean-field

approximation within our symmetric framework.

5.7.2.2 Relaxing symmetry assumptions

The gyroscopic pendulum might be extended by relaxing some symmetry assumptions imple-

mented in its "standard" version (this Chapter). Due to the spontaneous breaking of axial symme-

try [104], the ϕ-dependence in the neutrino EOMs (Eq. 2.74) needs to be included and translated
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into the language of the standard gyroscopic pendulum. One immediate issue is that by including

ϕ-modes, the non-conservation of the length of standard pendulum D1 follows as a result of the

coupling of different angular modes (Eqs. 3.10 and 3.11). This implies that new conservation laws

need to be found which have not been explored analytically but only numerically [183]. Similarly,

there is also the breaking of the spatial symmetry [110], which forces us to deal with inhomo-

geneities and include the advective term (Chapter 7). One major complication is that the advective

term would lead to the non-conservation of not only D1 but also of D0 since (anti)neutrinos stream

in and out at a given x⃗; this scenario is better understood from the numerical point of view [149,

180, 182, 249], rather than from the analytical perspective.

5.7.2.3 Multiple ELN crossings

Single-crossed ELN spectra are motivated by the conditions expected in the proximity of the

decoupling regions [239]. However, from the theoretical point of view, multiple ELN crossings are

also possible, and their effect has been acknowledged to be progressively less relevant for flavor

conversion as the number of ELN crossings increases [186]. Whether angular distributions with

multiple crossings are possible in astrophysical environments remains unsettled.

5.7.2.4 More realistic scenarios

Another growing line of research is assessing fast flavor instabilities in more realistic CCSNe and

compact binary mergers simulations. Recent works [146, 162, 165–169] have focused on using

the little ELN angular distribution information that is provided from simulations to determine

whether flavor instabilities arise. One possibility is that within some regions of the astrophysical

source, homogeneity and axial symmetry are approximately valid such that the predictions from

the gyroscopic pendulum are not too far from reality. For instance, the works in Refs. [196, 226, 231]

have determined likely regions in the merger remnants where instabilities arise. In principle, one

could also determine the regions where maximum flavor mixing occurs based on our prescription

(Eq. 5.13) and cross-check the assumption of flavor equilibration in fast flavor computations.
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T H E G Y R O S C O P I C P E N D U L U M W I T H C O L L I S I O N A L D A M P I N G

Based on: Ian Padilla-Gay, Irene Tamborra, Georg G. Raffelt, Upshot of Collisional Damping on

Neutrino Fast Flavor Conversion, to appear soon.

A B S T R A C T In compact astrophysical sources, the neutrino density is so high that neutrino

refraction leads to fast flavor conversion of the kind νeν̄e ↔ νx ν̄x with x = µ, τ. Under the

assumption of homogeneity and axial symmetry, we explore the impact on flavor conversion

physics of random collisions of neutrinos with the background medium. Albeit the formal analogy

of the neutrino equations of motion with the ones of a gyroscopic pendulum does not hold in the

presence of damping, it is possible to predict the final flavor outcome analytically by relying on the

fact that our neutrino ensemble behaves as a gyroscopic pendulum at each given time. We provide a

simple analytical expression as a function of the lowest point reached by the gyroscopic pendulum

to compute the final flavor configuration. Interestingly, the final steady state is independent of the

specific value of the damping rate as long as the latter is different from zero; however, the time

needed to reach the steady state configuration depends on the amount of damping. The eventual

presence of a small asymmetry between the neutrino and antineutrino damping rates allows for

the development of flavor instabilities in systems otherwise stable. Furthermore, we establish a

formal connection with a stationary and non-homogeneous neutrino ensemble, showing that our

findings also apply to this system.

6.1 I N T R O D U C T I O N

The flavor evolution of neutrinos and antineutrinos in dense sources is nonlinear because of the

coherent forward scattering of neutrinos among each other [250]. This phenomenon is commonly

92
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referred to as collective neutrino oscillation and can span over different time and length scales [82,

87, 88, 124, 145].

The physics of neutrino self-interaction is driven by the shape of the flavor-dependent mo-

mentum distributions [239]. In particular, if a crossing occurs between the angular distributions

of electron neutrinos and antineutrinos (ELN crossing), “fast” flavor conversion develops on

timescales regulated by the neutrino number density [128–130, 132, 133, 236]. On the other hand,

if collective neutrino transformation is characterized by a scale defined by the combination of

the neutrino-neutrino self-interaction strength and the vacuum oscillation frequency, then it is

considered to be “slow” [82, 88].

The physics of fast pairwise conversion remains full of unknowns. However, recent work has

shown that non-forward collisions of neutrinos with the matter background could affect fast flavor

conversion [150–153, 184, 185, 233, 251–253]. In addition, the ELN angular distribution can be

modified by neutrino advection dynamically [149, 182, 233, 251, 254].

In Ref. [164], we focused on an axially symmetric and homogeneous system and showed that the

neutrino equations of motion (EOMs) are formally equivalent to those of a gyroscopic pendulum.

Relying on this simple formal analogy, we provided a simple tool to predict the depth of flavor

conversion without solving the EOM but exploiting the real part of the eigenfrequency resultant

from the linear normal-mode analysis. In this paper, we intend to build on the findings of Ref. [164]

and include a damping term in the EOMs mimicking neutrinos being scattered randomly [75]. We

aim to provide an analytical method that allows computing the final flavor state without solving

the EOMs numerically. At the same time, we intend to gain insight into the yet elusive physics of

fast flavor conversion.

This work is organized as follows. In Sec. 6.2, we present the EOMs of (anti)neutrinos and

their multipole decomposition and introduce the ELN angular distributions considered in this

work. Section 6.3 focuses on the role of damping under the assumption of equal damping rates

for neutrinos and antineutrinos. We consider the linear and non-linear regime of flavor evolution

and offer analytical estimates on how to compute the final flavor outcome based on initial ELN

distributions without solving the EOMs numerically. In Sec. 6.4, we assume different damping

rates for neutrinos and antineutrinos and quantify the departure from the case of equal damping
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rates for particles and antiparticles. In Sec. 6.5 we generalize our findings for a wide range of

ELN distributions. We connect to a stationary and non-homogeneous system in Sec. 6.6 and show

that our results are also valid for such a setup. Finally, closing remarks are reported in Sec. 6.7.

Appendix B.1 outlines the normal mode analysis in the presence of collisional damping.

6.2 S E T T I N G T H E S TA G E

In this section, we introduce the EOMs and their decomposition in multipoles. We then illustrate

the initial angular configurations adopted for neutrinos and antineutrinos.

6.2.1 Neutrino mean field equations

For simplicity, we consider two flavors of neutrinos and refer the reader to Refs. [148, 159, 187,

249] for investigations dedicated to three flavor effects. The evolution of the neutrino flavor field

can be modeled in terms of Wigner transformed 2× 2 density matrices, ϱ( p⃗, t) for neutrinos and

ϱ̄( p⃗, t) for antineutrinos. Since we are interested in exploring fast flavor conversion, for simplicity,

we ignore the energy dependence of the density matrices, and hence v⃗ = p⃗/E is a unit vector.

Moreover, we impose axial symmetry on the initial configurations and the solutions—see Ref. [183]

for details on symmetry breaking effects in non-axially symmetric systems.

The vector v⃗ is defined with respect to the symmetry axis (zenith angle θ), while the azimuthal

angle ϕ has been integrated out. The velocity component along the symmetry axis is v = |⃗v| cos θ =

cos θ, since |⃗v| = 1 for (anti)neutrinos traveling at the speed of light. The velocity component takes

values between v = 1 (forward direction) and v = −1 (backward direction).

After these simplifications, the neutrino density matrix is

ϱ(v, t) =




ϱee(v, t) ϱex(v, t)

ϱ∗ex(v, t) ϱxx(v, t)


 , (6.1)

whose diagonal elements represent the occupation numbers of neutrinos of different species, while

the off-diagonal terms contain information about the coherence between flavors. An analogous

expression holds for the density matrix associated to antineutrinos, ϱ̄(v, t).
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The EOMs for neutrinos and antineutrinos are respectively

i(∂t + v⃗ · ∇⃗)ϱ(v, t) = [Hνν(v, t), ϱ(v, t)] + iC(ϱ(v, t)) , (6.2)

i(∂t + v⃗ · ∇⃗)ϱ̄(v, t) = [Hνν(v, t), ϱ̄(v, t)] + iC̄(ϱ̄(v, t)) . (6.3)

The term on the left-hand side of the EOMs is the advective operator, v⃗ · ∇⃗, which affects flavor

evolution if the medium is non-homogeneous [149, 180]. In this work, we neglect the advective

term and focus on homogeneous cases while still connecting with stationary non-homogeneous

systems in Sec. 6.6. On the right-hand-side of the EOMs, the neutrino self-interaction Hamiltonian

is responsible for the development of flavor transformation:

Hνν(v, t) = µ
∫

dv′[ϱ(v′, t)− ϱ̄(v′, t)][1− vv′] ; (6.4)

it couples neutrinos of different momenta and renders the flavor evolution non-linear. Since we

focus on fast flavor conversion, we neglect the vacuum and matter terms in the Hamiltonian.

However, we refer the reader to Refs. [147, 255] for work dedicated to exploring the impact of

these terms on the fast flavor conversion phenomenology.

The second term on the right-hand side of the EOMs is the collision term C, which takes

neutrino scattering with the background medium into account. We assume neutrinos being

scattered randomly by the background medium [75] and that our collisional term conserves flavor

(more complex implementations of the collision term and its impact on the flavor conversion

phenomenology is explored in Refs. [150–153, 184, 185, 233, 251–253]):

iC(ϱ(v, t)) = −Γ




0 ϱex(v, t)

ϱ∗ex(v, t) 0


 . (6.5)

An analogous expression holds for C̄ = αC where the parameter α accounts for the possibility

that quantum damping effects act differently on neutrinos and antineutrinos. The damping term

contributes to a loss of coherence of the evolution [75].

Because of the definition of our collision term (Eq. 6.5), all v-modes are equally damped, thus

we expect solutions of the kind ϱex(v, t) ∝ exp(−Γt) in the absence of flavor conversion. In the

following, we assume equal damping rates between neutrinos and antineutrinos (α = 1). In the

second part of this paper (Sec. 6.4), we also explore the scenario of different damping rates for

neutrinos and antineutrinos (i.e. α ̸= 1).
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6.2.2 Multipole decomposition

Since fast flavor conversion is driven by the ELN distribution [133, 236] and is a collective phe-

nomenon, we introduce gv(t) = ϱee(v, t)− ϱ̄ee(v, t) as well as the density matrices for the particle

number Sv and lepton number Dv:

Sv(t) = ϱ(v, t) + ϱ̄(v, t) , (6.6)

Dv(t) = ϱ(v, t)− ϱ̄(v, t) . (6.7)

The latter can be represented as Bloch vectors in flavor space, Dv(t) and Sv(t), respectively, and

gv(t) corresponds to the z-component of Dv(t). It is also useful to introduce the moments of Sv(t)

and Dv(t):

Sn(t) =
∫ +1

−1
dvvnSv(t) , (6.8)

Dn(t) =
∫ +1

−1
dvvnDv(t) . (6.9)

Initially, D0 is parallel to the flavor axis and its z-component equals its norm:

D0(t0) = Dz
0(t0) . (6.10)

Moreover, the z-component of the ELN flux vector,

Dz
1(t) =

∫
dvv[ϱee(v, t)− ϱxx(v, t)− ϱ̄ee(v, t) + ϱ̄xx(v, t)] , (6.11)

is such that D1(t0) = Dz
1(t0). Note that in the following, we omit the explicit time dependence for

simplicity unless otherwise specified.

By relying on the moment decomposition (Eqs. 6.8 and 6.9), the EOMs can be written as

Ḋ(v) = −µ D(v)× D0 + µ vD(v)× D1 −ΓDxy(v) , (6.12)

Ṡ(v) = −µ S(v)× D0 + µ vS(v)× D1 −ΓSxy(v) . (6.13)

where Dxy(v) = (Dx(v), Dy(v), 0) and Sxy(v) = (Sx(v), Sy(v), 0) are the transverse vectors of the

lepton number and particle number vectors, respectively.

By assuming the absence of collisions (i.e., Γ = Γ̄ = 0), Refs. [92, 164] pointed out a formal

analogy of the EOMs with the ones of a gyroscopic pendulum. In this scenario, D0 corresponds
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to the (constant) gravitational field, which exerts a torque on the pendulum D1, making it swing

away from the flavor axis and convert flavor. In the presence of damping, D0 is still a constant

of motion (Ḋ0 = 0, resulting in the net ELN conservation, regardless of the initial configuration),

similar to the case with Γ = Γ̄ = 0. On the contrary, D1 changes with time and resembles the

dynamics of a pendulum in flavor space. However, because of Γ ̸= 0, the norm of D1 is no longer

conserved as opposed to the more straightforward pendulum-like solutions obtained for Γ = 0

(see for instance Fig. 2 of Ref. [164]).

6.2.3 System setup

For fast flavor instabilities to occur, a necessary and sufficient condition is the presence of a

crossing in the ELN angular distribution [236]. However, the presence of flavor instability does

not necessarily imply large flavor conversion [164, 242]. Therefore, for the sake of simplicity, we

restrict ourselves to the case of single-crossed families of ELN distributions of the form:

ϱee(v, t0) = 0.50 , (6.14)

ϱ̄ee(v, t0) = 0.45− a +
0.1
b

exp

[
−(1− v)2

2b2

]
, (6.15)

such that the shape of the distributions is set by the free parameters: a ∈ [−0.04, 0.12] and

b ∈ [0.1, 1], and the normalization is
∫ +1
−1 dvϱee(v, t0) = 1. In order to show how the ELN angular

distribution changes for different values of a and b, we show gv(t0) as a function of v in Fig. 32 for

four selected examples Cases A–D; note that Cases A–D are identical to the benchmark configura-

tions adopted in Ref. [164]. Moreover, we assume that our system is initially composed of electron

flavors only [ϱxx(v, t0) = ϱ̄xx(v, t0) = 0].

We consider a constant neutrino self-interaction strength: µ = 105 km−1 = 3× 1010 s−1. Unless

otherwise specified, we use Γ = 2.5× 106 s−1, which is ≃ 8.3× 10−5µ = 8.3 km−1, and therefore

much smaller than µ. Note that if the damping rate is sufficiently large, it can freeze the evolution

of our neutrino ensemble similarly to the Zeno effect [76].
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Figure 32: Representative ELN angular distributions gv(t0) (see Eqs. 6.14 and 6.15).

6.3 I M PA C T O F C O L L I S I O N A L D A M P I N G O N F L AV O R C O N V E R S I O N

In this section, we investigate the consequences of damping on the flavor conversion physics. For

simplicity, we rely on a discrete (three mode) decomposition of the ELN angular distribution. We

then explore the steady state reached by the system as a function of the damping rate and compare

the flavor phenomenology to the one obtained for cases without damping.

6.3.1 Decomposition in three angular modes

The coherent evolution of all angular modes implies that our continuous system (Eqs. 6.14 and

6.15) can be reduced to a three-mode equivalent one [164, 234]. Since D0 = ∑3
i=1 ∆viD(vi) is a

constant of motion, it amounts to a global precession and can be “rotated away” from Eqs. 6.12

and 6.13 by going to a co-moving frame that rotates at a frequency µD0. The linearized EOMs in

the co-moving frame are:

Ḋ(vi) = µ viD(vi)× D1 −ΓDxy(vi) , (6.16)

Ṡ(vi) = µ viS(vi)× D1 −ΓSxy(vi) , (6.17)
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for i = 1, 2 and 3. The related equations for the transverse components are

Ḋx(vi) = +µvi

[
Dy(vi)Dz

1 − Dy
1 Dz(vi)

]
−ΓDx(vi) , (6.18)

Ḋy(vi) = −µvi

[
Dx(vi)Dz

1 − Dx
1 Dz(vi)

]
−ΓDy(vi) . (6.19)

where Dx,y,z
1 are the x, y and z components of D1 = ∑3

i=1 vi∆viD(vi), respectively, and ∆vi is the

spacing between modes. Equations 6.18 and 6.19 hold when C = C̄, otherwise S(vi) and D(vi)

couple to each other, as discussed in Sec. 6.4.

Let us define the following linear combinations

ϵS,i = Sx(vi)− iSy(vi) , (6.20)

ϵD,i = Dx(vi)− iDy(vi) , (6.21)

and take advantage of the linearized version of the EOMs. The linearization consists of assuming

that the transverse components ϵ(S,D),i are much smaller than Sz(vi) and Dz(vi) so that quadratic

terms ϵ2
(S,D),i (and higher) can be safely neglected; we refer the reader to Appendix B.1 for step-

by-step calculations of the normal mode analysis in the presence of damping. Since the evolution

of ϵS,i is determined by that of ϵD,i, we can focus on the equations for ϵD,i [164]. Thus, using the

definitions of ϵ(S,D),i (Eqs. 6.20 and 6.21), the EOMs (Eqs. 6.18 and 6.19) turn into a set of equations

which only involve terms linear in ϵD,i:

ϵ̇D,i = (−i)µvi

[
− ϵD,iDz

1 + Dz(vi)
3

∑
j=1

vj∆vjϵD,j

]
− ΓϵD,i . (6.22)

This set of equations can be further expressed in matrix form as follows



ϵ̇D,1

ϵ̇D,2

ϵ̇D,3



= (−i)M′D




ϵD,1

ϵD,2

ϵD,3




. (6.23)

As a result, the matrix M′D is completely determined by velocity modes vi, Dz(vi), µ, and Γ:

M′D =




−µv1Dz
1−iΓ + µDz(v1)v2

1∆v1 µv1Dz(v1)v2∆v2 µv1Dz(v1)v3∆v3

µv2Dz(v2)v1∆v1 −µv2Dz
1−iΓ + µDz(v2)v2

2∆v2 µv2Dz(v2)v3∆v3

µv3Dz(v3)v1∆v1 µv3Dz(v3)v2∆v2 −µv3Dz
1−iΓ + µDz(v3)v2

3∆v3




.(6.24)

The determinant equation det(M′D −Ω13×3) = 0 ensures that there are non-trivial solutions to the

linear equations (Eq. 6.23). Although the final expression for the determinant is significantly more
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complicated than in the collisionless case, it is still tractable. Solving the determinant equation

reveals a common eigenfrequency of ϵD,i(t) [and ϵS,i(t)] since we have assumed that all velocity

modes evolve collectively i.e. ϵD,i(t) = ϵD,i(t0)e−iΩt.

The determinant equation is a polynomial in the eigenfrequency Ω. Once the determinant

equation is solved for Ω, we can test the possible existence of flavor instabilities. For the sake of

simplicity, we neglect terms proportional to Γ2/µ2 and Γ3/µ3, which is justified because µ≫ Γ:

Ω3 + Ω2µ
[
3i

Γ
µ
+
(

Dz
1(v1 + v2 + v3)− Dz

2
)]

+ Ωµ2
[
2i

Γ
µ

Dz
123 + v1v2v3Dz

0Dz
1

]
+ iµ3 Γ

µ
v1v2v3Dz

0Dz
1 = 0 ,

(6.25)

where Dz
123 ≡ v1(v2 + v3)∆v1Dz(v1) + v2(v1 + v3)∆v2Dz(v2) + v3(v1 + v2)∆v3Dz(v3). The solu-

tion to this equation cannot be found analytically; we instead rely on numerical solutions. Contrary

to the Γ = 0 case [164], the roots Ω1,2,3 of Eq. 6.25 do not come in complex conjugates (Ω∗2 ̸= Ω1),

and one of the solutions corresponds to Im[Ω3/µ] = Γ.

The top panel of Fig. 33 displays the transverse components |Dxy
1 | (solid lines) and the growth

rates (dashed lines) for the ELN configuration corresponding to Case B, see Fig. 32, for Γ = 0 (green

lines) and Γ ̸= 0 (purple lines). The linear regime occurs within the first 2× 10−7 s, as visible from

the exponential growth of |Dxy
1 |. Once the linear regime is over, the solutions with and without

damping depart from each other, and damping significantly impacts the final flavor outcome after

1× 10−6 s, as shown in the middle panel of Fig. 33.

Our benchmark damping rate is small enough that the linear regime is almost unaffected; see

the top panel of Fig. 33. The latter can also be appreciated by noticing that the first dip in Dz
1/D1 is

almost identical in both cases. After a few iterations (middle panel of Fig. 33), the solution with

damping saturates and reaches a steady state solution while the case without damping continues

to oscillate regularly and indefinitely [164].

In flavor space, one can introduce the angle ϑ defined as the angle between the flavor axis (also

that of D0) and the vector D1 (see Eq. 8 of Ref. [164] for more details); thus, cos ϑ = 1 corresponds

to pure electron-flavor content (and therefore no conversion) while cos ϑ = −1 corresponds to

maximal flavor conversion, as allowed by the total lepton number conservation. An alternative

approach to visualize the flavor evolution for the cases with and without damping is reported in

the bottom panel of Fig. 33, where a parametric plot of the angular velocity ϑ̇ is shown as a function
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Figure 33: Flavor evolution for Case B without (green lines) and with (purple lines) damping, under the

assumption of equal damping rates for ν and ν̄. Top panel: Evolution of the transverse components

|Dxy
1 | (solid lines) and their corresponding growth rates Im[Ω/µ] (dashed lines). With no damping,

we find a growth rate of Im[Ωnd/µ] = 2.58× 10−3, while with damping it is modestly modified

to Im[Ω/µ] = 2.49× 10−3; this correspond to a 4% variation. Middle panel: Evolution of the z

component of the lepton-number flux, Dz
1, where the effect of damping is visible in the non-linear

regime. While the solution without damping periodically oscillates, the damped solution tends

to reach an average steady state. Bottom panel: Parametric plot of ϑ̇ as a function of ϑ. The case

without damping encloses the damped solution.
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of the angular position ϑ. The solution with Γ = Γ̄ = 0 (bottom green line in Fig. 33) encloses

the damped solution (purple line) as it reaches the steady state ϑ̇ → 0, ϑ → 0. The maximum

excursion of the pendulum D1 from its initial orientation along the flavor axis is given by [164]:

cos ϑmin = −1 + 2σ2. (6.26)

Here, σ is the spin parameter that is connected to the spin of the pendulum (no damping) through

S = 2σλ, where λ is the natural frequency of the pendulum. For a solution to be unstable, the spin

parameter σ must be such that σ < 1 [164]. In the example presented in Fig. 33 (see lower panel),

the ELN angular distribution is such that σ = 0.817 therefore cos ϑmin = 0.335 (or ϑmin ≈ π/3).

When the damped solution reaches the steady state, the pendulum D1 is oriented along the flavor

axis and conversions cease.

While in the Γ = 0 case, we have discussed the existence of a formal similarity of our system

with a gyroscopic pendulum [164], for Γ ̸= 0, there is no simple mechanical analogy, although

some similarities are preserved. In fact, the damping term affects the pendulum-like behavior in

the following way: it takes one pendulum configuration with a particular spin S to a configuration

with a different spin S′ until the transverse components of the polarization vectors are effectively

damped. Thus, damping forces the polarization vectors to point along the z-direction as the steady

state is reached and the spin S is restored to its initial value. However, to predict the final flavor

configuration in the presence of damping, we need to move beyond the linear stability analysis.

6.3.2 Average steady state

The top left panel of Fig. 34 shows the final configuration reached by the system for a particular

ELN crossing (Case B) and four different values of the damping rate, while the top right panel of

Fig. 34 shows the evolution of the off-diagonal terms. One can see that the time taken from the

system to achieve the steady state configuration is fixed by Γ. However, this does not affect the

final flavor outcome.

The steady-state configuration depends on the initial ELN, as displayed in the bottom panels

of Fig. 34. Since the off-diagonal terms can only exponentially shrink, as described by Eq. 6.16,

our collision term cannot lead to a dynamical enhancement of the transverse components |Dxy
1 |.
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Figure 34: Top panels: Evolution of Dz
1/D1 (left panel) and Dxy

1 (right panel) for Case B, same damping rates

for neutrinos and antineutrinos, for different values of Γ. The final flavor outcome at t = 5× 10−6 s

is the same for all configurations independent of the value of Γ. However, the time taken to achieve

such a configuration depends on Γ. Bottom panels: Evolution of Dz
1/D1 (left panel) and Dxy

1 (right

panel) for Cases A–D. The dashed line scaling as exp(−Γt) mimics the descent of the transverse

component |Dxy
1 |; they all have the same slope, even the stable configuration such as Case A.

In practice, this means that if a configuration is stable in the absence of damping, such as Case A

(pink curve in lower panels of Fig. 34), damping (C = C̄) will not affect the stability of the solution,

as seen by the exponential decrease of the transverse component (pink curve) in the bottom right

panel of Fig. 34. However, this is not necessarily the case for scenarios with different collision

terms for neutrinos and antineutrinos i.e. C = αC̄, where the stability of the solution is sensitive to

the value of α (see Sec. 6.4).

In order to gain insight into the final flavor outcome with damping, one can compute an

expression for the final length of the shrinking pendulum. We can multiply both sides of Eq. 6.16

by vi, sum over the velocity variable to obtain an equation for Ḋ1

Ḋ1 = µD2 × D1 − ΓDxy
1 . (6.27)
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Computing the dot product Ḋ1 · D1 reveals that

1
2

d
dt
|D1|2 = −Γ|Dxy

1 |2 , (6.28)

where the cross-product has vanished. By integrating both sides over t, we obtain

|D1|t1

|D1|t0

=

√
1− 2Γ
|D1|2t0

∫ t1

t0

dt|Dxy
1 |2 . (6.29)

The equation above implies that, in order to extract |D1|t1 , one needs to know the solution with

damping for Dxy
1 . Alternatively, instead of solving the EOM for Dxy

1 , an empirical expression for

the final steady state that matches the numerical solutions regardless of the chosen configuration is

the following:

cos ϑave = A + (1− A) cos ϑmin , (6.30)

where cos ϑmin is defined as in Eq. 6.26 and A is a constant. In the presence of collisional damping,

A = 0.37. The horizontal solid line in Fig. 34 corresponds to the average (steady state) value

we predict empirically. In order to highlight the predictive power of Eq. 6.30, Table 2 shows the

values of cos ϑmin and cos ϑave for Cases A–D, which are in perfect agreement with the numerical

solutions.

Table 2: Values for the spin parameter σ, the lowest point of the pendulum cos θmin and the final (average)

steady state value cos θave. Cases B–D are unstable, while Case A is stable.

Case σ cos ϑmin cos ϑave

A — — —

B 0.817 +0.335 0.581

C 0.962 +0.849 0.904

D 0.694 −0.034 0.348
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Figure 35: Flavor evolution for Case A under the assumption of different damping rates for neutrinos and

antineutrinos. Top panel: Growth rate as a function of α. Case A is stable in the absence of

damping and with damping for α = 1. For α = 1, one finds Im[Ω] = −Γ and the solutions grow

exponentially (unstable solutions) for α < αcrit which we found to be αcrit ≃ 0.975. The stable

region is marked by the green shaded area where α ≥ αcrit. Bottom panel: Temporal evolution of

Dz
1/D1 for three selected values of α. Allowing α ̸= 1, the flavor solutions become unstable in

agreement with Fig. 35.
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Figure 36: Parametric plot of ϑ̇ as a function of ϑ for Case B for different damping rates for neutrinos and

antineutrinos. For α ̸= 1, the trajectory escapes the “envelope” defined by the pendulum solution

(green line), flipping the orientation of the polarization vector while shrinking.

6.4 D I F F E R E N T D A M P I N G R AT E S F O R N E U T R I N O S A N D A N T I N E U T R I N O S

Equations 6.16 and 6.17 can be combined to obtain a set of equations for the vectors S(vi) and

D(vi) for the case of unequal damping rates C = αC:

Ḋ(vi) = µviD(vi)× D1 −
Γ
2
[(Sxy(vi) + Dxy(vi))− α(Sxy(vi)− Dxy(vi))] , (6.31)

Ṡ(vi) = µviS(vi)× D1 −
Γ
2
[(Sxy(vi) + Dxy(vi)) + α(Sxy(vi)− Dxy(vi))] , (6.32)

For α = 1, the equations for D(vi) are a closed set of equations [155, 164] as opposed to the

case with α ̸= 1. The fact that D(vi) and S(vi) couple to each other for α ̸= 1 gives rise to flavor

instabilities where there were none for α = 1.

Figure 35 demonstrates the effect of the coupling between D(vi) and S(vi) as in Eqs. 6.31 and

6.50. We focus on Case A, which is stable for C = 0 and C = C̄ (α = 1) and explore its flavor

evolution for C = αC̄ (α ̸= 1). In the top panel of Fig. 35, we show the dependence of the growth

rate Im[Ω/µ] on the magnitude of α. For α = 1, the growth rate equals−Γ (red dotted line) and the

solution is stable, in agreement with Fig. 34. Eventually, α reaches the critical value αcrit ≃ 0.975

for which the growth rate transitions from Im[Ω/µ] < 0 to Im[Ω/µ] > 0, making the solution

unstable. The growth rates of Case A are larger for smaller values of α; hence systems with

asymmetric damping rates between neutrinos and antineutrinos lead to solutions that grow faster.
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In the bottom panel of Fig. 35, we show the evolution of the normalized z-component of the

ELN flux vector Dz
1/D1 for three different values of α such that the new unstable region α < αcrit

is illustrated. Even for a modest asymmetry between the neutrino and antineutrino damping rate

(α = 0.95, green line), a significant amount of flavor is converted in the first 5× 10−6 s. A more

extreme asymmetry (α = 0.90, blue line) leads to almost flavor equipartition within the same time

interval.

In Fig. 36, we show the phase space dynamics for different values of α for Case B. For α ̸= 0,

the phase space trajectories escape the “envelope” subtended by the undamped solution (green

line). For instance, for α = 0.95, the phase space trajectory escapes the envelope during the first

iterations of the evolution, reaching its steady state (ϑ̇ = 0). At that point, the polarization vector

D1 points downwards (ϑ = π) in contrast to the α = 1 case where D1 points upwards (ϑ = 0).

6.5 D E P E N D E N C E O F T H E F I N A L F L AV O R C O N F I G U R AT I O N F R O M T H E E L N C R O S S I N G

In this section, we generalize our findings to a family of ELN distributions, modeled as described

in Eqs. 6.14 and 6.15. The ensemble of ELN angular configurations determined by the parameters

a and b can be represented with a two-dimensional grid as shown in Fig. 37. The parameter a

controls the relative normalization between neutrinos and antineutrinos, while b parametrizes how

forward-peaked the angular distributions are. Running over a range of values of a and b allows us

to explore a family of single-crossed ELN spectra systematically. Each point in the plane represents

an ELN configuration for which we compute cos ϑave through Eq. 6.30. We find that the analytical

results match very well the final flavor outcome obtained numerically.

Figure 37 shows contour plots of Dz
1/D1|ave, where D1|ave is computed in the plane spanned

by the parameters a and b. The average is calculated within a time interval ∆t = 2.5× 10−6 s to

ensure that most configurations have reached a steady state as confirmed by Fig. 34. We consider

the following three scenarios: no damping (Γ = 0, top panel), equal damping rates for neutrinos

and antineutrinos (middle panel), and unequal damping rates for neutrinos and antineutrinos

(α = 0.9, bottom panel). For Γ = 0 (top panel of Fig. 37), a large portion of the parameter space

has an average value of Dz
1/D1|ave ≃ 0.95, since conversions are periodic. For the case with
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Figure 37: Flavor evolution for a wide range of single-crossed ELN spectra characterized by the parameters

a and b (see Eqs. 6.14 and 6.15). From top to bottom respectively, we present the case of no

damping (Γ = 0), same damping rates for neutrinos and antineutrinos (Γ ̸= 0, α = 1), and unequal

damping rates for neutrinos and antineutrinos (Γ ̸= 0, α = 0.9). The locus of vanishing lepton

number Dz
0 = 0 (Eq. 6.10) is marked with a red dashed line. The contours represent the time

averaged Dz
1/D1 after 2.5× 10−6 s. The red regions show little to no conversions, while blue shows

significant flavor transitions. In agreement with Fig. 35, the (Γ ̸= 0, α ̸= 1) case displays the largest

regions of the parameter space where flavor conversion occurs, including cases otherwise stable

when Γ = 0 or α = 1.
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equal damping rates for neutrinos and antineutrinos (middle panel of Fig. 37), flavor decoherence

forces the pendulum to settle around the value fixed by cos ϑave (Eq. 6.30), without returning to

the cos ϑ = 1 (stable) configuration, in agreement with the results reported in Figs. 33 and 34.

Therefore, Dz
1/D1|ave is smaller, reaching Dz

1/D1|ave ≃ 0 for a large region of the parameter space,

especially for forward-peaked ELN configurations (small values of b). The most extreme scenario

is the one obtained for unequal damping rates for neutrinos and antineutrinos (bottom panel

of Fig. 37), where the average value of Dz
1/D1|ave can even reach negative values (blue region)

Dz
1/D1|ave ≃ −0.9 , in agreement with our findings in Fig. 35 where the vector D1 can change

its orientation for smaller values of α. For the case with unequal damping rates for neutrinos

and antineutrinos, the lepton number is not a constant of motion; see Eq. 6.31. For these systems,

we show the locus of initially-vanishing lepton number Dz
0(t0) = 0, which helps visualize the

deviation from the pendulum-like solution and well as where new instabilities arise as a result

of α ̸= 1. In the other cases with no damping and equal damping rates (upper and middle

panels), the lepton number Dz
0 is strictly conserved, and the locus of Dz

0 = 0 remains constant. No

conversions are allowed in this region, in agreement with the stability criteria for the gyroscopic

pendulum [164].

6.6 S TAT I O N A RY N O N - H O M O G E N E O U S S Y S T E M

In this section, we extend our findings to stationary and non-homogeneous systems, while we

focused on non-stationary and homogeneous configurations in the previous sections. Our results

also apply to stationary non-homogeneous systems, as pointed out in Ref. [155]. However, we do

not approximate the equations to their first multipoles as in Ref. [155]; instead rely on the formal

pendulum analogy developed in Ref. [164], which alleviates the challenges reported in Ref. [155].

In the case of a stationary non-homogeneous system, the roles of D0 and D1 are swapped; the

EOMs for a stationary system are analogous to those of a non-stationary homogeneous system

(Eq. 6.16), with some differences, however:

D′v = −µ

v
Dv × D0 − ΓDxy

v , (6.33)
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where the primed notation indicates the spatial derivative d/dz, in contrast to previous sections,

now the spatial derivative appears in the EOMs instead of the time derivative (dotted notation).

The co-rotation is about D1 with frequency µD1, contrary to the homogeneous case where the

precession is around D0. The global precession around D1 has been rotated away in Eq. 6.33. From

Eq. 6.33, we see that D′1 = 0 and D′0 = 0 because of the extra factor of v−1. Now the pendulum

is defined by D0 with conserved length D0, and gravity is represented by D1. The dynamics is

completely analogous to what is discussed in Sec. 6.2.2, but the roles of D0 and D1 are swapped.

Focusing on the case without damping (Γ = 0), one can solve the EOMs numerically and

contrast the numerical solution to the analytical prediction for cos ϑmin. For this purpose, we rely

on the linear stability analysis for a stationary and non-homogeneous system which we can adapt

from Appendix D of Ref. [164]. We use plane-wave solutions of the form Sv(t, z) = Qv e−i(Ωt−Kz),

where Qv depends on the wave vector (Ω, K) and K is the wavevector in the z direction. The EOM

in the Fourier space is then

[
(Ω−Λ0︸ ︷︷ ︸

ω

)− v(K−Λ1︸ ︷︷ ︸
k

)
]
Qv = −µ

∫
du gu

(
Qu − vuQu

)
. (6.34)

For a physically homogeneous system (K = 0) we have k = −Λ1. However, we are interested

in a stationary system (Ω = 0) which implies ω = −Λ0. The r.h.s. of Eq. A.26 has the structure

β1 − β2v, where β1 and β2 are numbers that depend on the initial ELN spectrum, but not on v.

Therefore, the eigenfunction must have the following form

Qv =
β1 − β2v
ω− vk

, (6.35)

implying

β1 − β2v = −
∫

du Gu
β1 − β2u− vu(β1 − β2u)

ω− uk
, (6.36)

where we have now absorbed µ in Gv = µ gv. This equation must be true regardless of the value of

v therefore, one has two equations in terms of the moments In



I0 + 1 −I1

−I1 I2 − 1




︸ ︷︷ ︸
Π




β1

β2


 = 0 , (6.37)

where the quantities In are defined as

In(ω, k) =
∫

du Gu
un

ω− uk
, (6.38)
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Figure 38: Evolution of Dz
0/D0 (solid orange line) as a function of the distance for a stationary non-

homogeneous system. We assume the same ELN angular distribution as for case C (see orange

curve in bottom panels of Fig. 34), µ = 105 km−1 and Γ = 8.3 km−1. After roughly 0.25 km, the

system reaches its steady state. The dotted line marks the value of cos ϑmin (Eq. 6.46), while the red

solid line indicates cos ϑave (Eq. 6.47). Note that the values of cos ϑmin and cos ϑave (see Table 2) are

the same for both homogeneous and non-homogeneous cases, reflecting the roles of D0 and D1 are

swapped while keeping the flavor evolution identical.

which we can evaluate for the stationary case i.e.

In(ω = −Λ0, k) =
∫

du Gu
un

−Λ0 − uk
. (6.39)

The dispersion relation results from requiring not trivial solutions i.e. that the matrix is not

invertible

det Π = (I0 + 1)(I2 − 1)− I2
1 = 0 . (6.40)

We solve the equation above to look for solutions such that k = kp + iκ has a non-vanishing

imaginary component κ.

Similarly, there are simplified conditions from the dispersion relation as for the homogeneous

case. Let us evaluate the moments for the stationary case, i.e. ω = −Λ0

I0(−Λ0, k) =
Λ0(−Λ0 + Λ0) + k(k + Λ1)

−Λ0(−Λ0 + Λ0)− k(k + Λ1)
= −1 . (6.41)

Using the dispersion relation, this implies that

I1(−Λ0, k) = 0 , (6.42)
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and additionally substituting I1 = 0 in Λ1 = ωI1 − kI2 we get

I2(−Λ0, k) =
Λ1

k
. (6.43)

Moreover, for I0 = −1, I1 = 0 and I2 = Λ1/k, one can show that β1 = 0 and β2 ̸= 0 in Eq. A.29.

The latter means that the eigenfunction must take the following form

Qv(ω = −Λ0, k) =
β2v

Λ0 + vk
, (6.44)

which implies that the solution for the transverse components is the following

Dxy
v (z) = f

v gv

D0 + vk
eikz . (6.45)

By solving the equations numerically and comparing them with the prediction of the lowest

point, we find that the definition of cos ϑmin still offers an excellent estimation of the lowest point

of the stationary non-homogeneous pendulum

cos ϑmin = −1 + 2σ2 = −1 + 2
k2

p

k2
p + κ2 , (6.46)

where kp and κ are the real and imaginary components of the eigenfrequency k, respectively.

We can extend our results for the average value of flavor conversions in the presence of damping

to the case of stationary systems. Thus, the equivalent of Eq. 6.30 for stationary systems is given by

cos ϑave = A + (1− A) cos ϑmin , (6.47)

with cos ϑmin as found in Eq. 6.46 and A = 0.37 as in Eq. 6.30.

In Fig. 38 we show the evolution of the normalized z-component Dz
0/D0 as a function of distance,

and show the prediction of the steady state value cos ϑave as in Eq. 6.47.

6.7 C O N C L U S I O N S

Our earlier work [164] shows that it is possible to exploit a formal analogy of the neutrino EOM

with the ones of a gyroscopic pendulum, allowing us to predict the final flavor configuration

analytically for a homogeneous and axially symmetric system. In this work, we follow up on our

previous findings and investigate the role of damping due to random collisions in the final flavor

configuration. We assume spatial homogeneity and axial symmetry and work in the two-flavor
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framework. In the presence of damping, the ELN lepton number vector, D0, is conserved and

plays the role of “gravity,” exerting a torque on the dynamical ELN flux vector, D1.

Although no simple gyroscopic pendulum analogy can be found in the presence of damping,

most of the features of the gyroscopic pendulum outlined in Ref. [164] are preserved. We provide a

simple analytical formula to estimate the final steady state achieved by the system and show that

it is a simple linear combination of the one found to predict the lowest point of the pendulum in

Ref. [164]. Our predictions are in excellent agreement with our numerical computations for a wide

range of single-crossings ELN spectra.

For equal damping rates for neutrinos and antineutrinos, the final flavor outcome differs from

the scenario without damping. In particular, we find that the same steady state flavor configuration

is reached in the presence of damping and independently of the particular values of the damping

rate Γ (as long as µ ≫ Γ). However, the time the system takes to reach such a configuration is

a function of the damping rate. When the damping rates for neutrinos and antineutrinos are

different, new regions of instability appear.

Our findings for homogeneous systems also apply to stationary but non-homogeneous systems.

In particular, the evolution of the ELN number component Dz
0/D0 as a function of the spatial

coordinate for the non-homogeneous system is analogous to that of the ELN flux component

Dz
1/D1 in time for the homogeneous one, reflecting on the fact that the roles of D0 and D1 are

swapped.

This work offers new insight into the flavor evolution of neutrinos in dense neutrino environ-

ments. Our analytical findings shed light on the rich phenomenology of fast flavor conversion in

the presence of random collisions, offering simple predictions on the final flavor outcome.

6.8 C R I T I C A L O U T L O O K

6.8.1 Overview and main findings

Neutrino flavor conversion is well understood when dealing with the propagation of a beam of

neutrinos in vacuum or matter (Sec. 2.2.1 and 2.2.2). However, there is another class of problems
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where we are interested in the evolution of a neutrino ensemble that simultaneously mixes and

scatters in a medium, as it is the case in core-collapse supernovae (Chapter 3) or compact binary

merger remnants (Chapter 4). In these scenarios, the problem is hard to formulate in terms

of a beam since we do not expect coherent conversions of the wave function under stochastic

interactions with the background. The central question here is the following: if one has the state

α |νe⟩+ β |νx⟩ and a collision occurs, is there after the collision a linear superposition again or

an incoherent mixture? This question was the central work of Ref. [75], where the treatment of

neutrino flavor conversions in the presence of random scatterings was investigated for the first

time [76]. When a matter background is included, two types of effects are at play:

• One effect would be an index of refraction which results in a medium-induced contribution

to the evolution of the Hamiltonian, changing the precession speed and the axis of rotation

(see Fig. 11). Under special conditions, the vacuum B and matter L vectors point in opposite

directions and are about the same size, leading to MSW resonance transformation (Sec. 2.2.2).

• The second effect is the shrinkage of the polarization vector P due to collisions that destroy

the coherence of evolution. The assumption of flavor conversion in the scattering on the

medium implies that the shrinking of the polarization vector P must be perpendicular to

the z-axis. Note that the field of neutrino flavor conversion in the presence of momentum-

changing collisions is very active [150, 152, 184, 233, 251–253, 256–258]. However, we focus

on the effect of collisions destroying the coherence in the evolution while conserving flavor

to describe the dynamics with the gyroscopic pendulum of Chapter 5.

We are concerned with the second of these effects, which is induced by stochastic collisions on

the medium. The evolution of P can then be formulated as follows [75]:

Ṗ = H × P− ΓPxy, (6.48)

where, in the simplest of cases, µ = 0 and we have H = ωB + λL. The quantity Γ is the damping

parameter that measures the rate of loss of coherence in the system. The "transverse" vector Pxy

is given by Pxy = (Px, Py, 0). In reality, the damping parameter Γ is a function of scattering

amplitudes (see Eq. 5 and 6 of Ref. [76]); however, for this thesis, we regard Γ as a free parameter

which we can vary. The damping parameter Γ can be understood as a rate parameter that gauges
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the effectiveness of collisions in interrupting the flavor conversion of the two states |νe⟩ and |νx⟩,

i.e., the frequency at which random collisions hinder the coherent evolution of the wave function.

If the damping parameter is smaller than the characteristic frequency of the system, then we are

in the weak damping regime, and oscillations are damped. However, in the strong damping regime,

Γ is much larger than the characteristic time scale of oscillations, and P becomes fixed to the

z-axis because Pxy is quickly diminished: the system is measured so often than it "freezes" and the

evolution of the polarization vector is blocked similarly as in the Zeno effect [76].

In the work presented in this Chapter, we focus on the interplay between neutrino fast flavor

conversion (Sec. 2.2.7.2) and random collisions with the background medium under the approxi-

mation of weak damping. To some extent, such a system can be described using the tools developed

for the fast gyroscopic pendulum in Chapter 5. We study the influence of weak damping on the

neutrino equations of motion and look for analytical predictions on the final decohered state of the

polarization vectors.

The equations of motion that describe neutrino fast flavor conversion in the presence of collisional

damping can be expressed in terms of the difference Dv = Pv − P̄v and the sum Sv = Pv + P̄v of

the polarization vectors,

Ḋ(v) = µvD(v)× D1 −
Γ
2
[(Sxy(v) + Dxy(v))− α(Sxy(v)− Dxy(v))] , (6.49)

Ṡ(v) = µvS(v)× D1 −
Γ
2
[(Sxy(v) + Dxy(v)) + α(Sxy(v)− Dxy(v))] , (6.50)

where Γ is the rate of collisions, µ is the strength of neutrino-neutrino interactions and α is a

parameter that allows to have different collision rates for ν and ν̄ i.e. α = 1 implies that the

collision terms in the equations of motion are the same for neutrinos and antineutrinos C = C̄,

while α ̸= 1 implies that they are different by a multiplicative constant factor C = αC̄. Notice

that for the special case where α = 1 (equal damping rates for ν and ν̄) the equations reduce to

Ḋv = µvDv × D1 − ΓDxy
v and the equation for Dv is self-contained, decoupling from that of Sv as

demonstrated in Chapter 5.

The impact of α on the dynamics phase space is visible in Fig. 39, where we show the angular

velocity ϑ̇ as a function of its angular position ϑ as time progresses. In flavor space, the angle ϑ

is the angle between the flavor axis and the vector D1. Therefore, cos ϑ = 1 corresponds to pure
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Figure 39: Phase-space dynamics for different damping terms using the same ELN spectra (case B). For values

of α ̸= 1, the trajectory escapes the "envelope" defined by the pendulum solution (green line),

flipping the orientation of the polarization vector while shrinking. For a comparison of the same

quantities in the case of the gyroscopic pendulum, see Fig. 78 in Appendix A.

electron-flavor content while the opposite orientation cos ϑ = −1 corresponds to maximal flavor

conversion.

In particular, for the case of equal damping rates α = 1, we find an empirical expression for

the final steady state that matches the numerical solutions regardless of the configuration chosen,

namely

cos ϑave = A + (1− A) cos ϑmin , (6.51)

where cos ϑmin is as defined in Eq. 5.13 in Chapter 5. In the presence of collisional damping, we

report that a value of A = 0.37 can accurately predict the final flavor outcome of all the ELN

angular distributions considered in this work. The horizontal solid line in Fig 40 corresponds to

the average (steady state) value we predict empirically.

We report a perfect agreement between our prediction and our numerical simulations for a

wide range of single-crossings ELN angular distributions. See for instance Fig. 40, where we

compute the flavor evolution of Dz
1/D1 for different ELN distributions labeled Cases A–D (same as

Chapter 5). The final steady state is visible after ∼ 10−6 s, at which point the polarization vectors

are parallel to the z-axis. Interestingly, Eq. 6.51 predicts the following values for the final steady

states in Fig. 40: cos ϑave = 0.581 (Case B), cos ϑave = 0.904 (Case C), cos ϑave = 0.348 (Case D),

while Case A is stable, in good agreement with the results obtained from direct simulations.
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Figure 40: Time evolution of Dz
1/D1 for a representative ELN angular distribution (Case B) with equal

damping rates for neutrinos and antineutrinos (α = 1). The benchmark parameter values are

Γ = 8.3 km−1, µ = 105 km−1 and t f = 5× 10−6 s.

The work presented in this chapter helps to build intuition on the rich phenomenology of fast

flavor conversion in the presence of random collisions with a medium and provides analytical

tools to predict the final steady state in terms of the undamped gyroscopic pendulum presented in

Chapter 5.

6.8.2 Limitations and future perspectives

One clear limitation of this work is the simplicity of the collision terms in the EOMs, which affect

only the coherence of the evolution while conserving neutrino flavor. Most of the current studies on

the interplay between fast flavor conversion and collisions revolve around momentum-changing

collision processes [150, 152, 184, 233, 251–253, 256–258], including the recent work in Ref. [259]. In

order to establish a connection with those works a more complete modeling of the collision term is

needed.
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6.8.2.1 Direction-changing collision term

One could implement a collision term similar to that of Refs. [150, 252] where either an enhancement

or damping of conversion was reported as a result of collisions:

C =
Γ
2

[ ∫ 1

−1
dv′P(v′)− 2P(v)

]

=
Γ
2

∫ 1

−1
dv′P(v′)− ΓPz(v)ẑ− ΓPxy(v)︸ ︷︷ ︸

this work

. (6.52)

The first and second terms in the last line of Eq. 6.52 are the contributions that will change

the neutrino flavor, while the third term is the transverse contribution to the evolution of the

polarization vectors implemented in this Chapter. Note that the collision term in Eq. 6.52 is an

approximation of the full collision term in Eq. 2.74, which is in practice computationally very

expensive. The approximated collision term in Eq. 6.52, however, captures the change of direction

in the velocity of (anti)neutrinos due to collisions [150], which is at the moment absent in the work

of this Chapter. We foresee, however, that a simple analogy in terms of the gyroscopic pendulum

might not be possible, or at least it is not obvious how to proceed at first glance. However, it

is interesting to investigate limiting scenarios where the complicated dynamics introduced by

Eq. 6.52 could be captured. More work along this line is still needed to find analytical estimations

of the final flavor outcome of more detailed collision terms than the one presented in this Chapter.
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Based on: Shashank Shalgar, Ian Padilla-Gay, Irene Tamborra, Neutrino propagation hinders fast

pairwise flavor conversions, JCAP06(2020)048, arXiv:1911.09110

A B S T R A C T Neutrino flavor conversions may dramatically affect the inner working of com-

pact astrophysical objects as well as the synthesis of the heavier elements. We present the first

sophisticated numerical solution of the neutrino flavor conversion within a (2+1+1) dimensional

setup: we include the advective term in the neutrino equations of motion and track the flavor

evolution in two spatial dimensions, one angular variable, and time. Notably, the advective

term hinders the development of neutrino pairwise conversions, if the conditions favoring such

conversions (i.e., crossings between the angular distributions of νe and ν̄e or a non-negligible flux

of neutrinos traveling backward with respect to the main propagation direction) exist for time

scales shorter than the typical time scale of the advective term. As a consequence, fast pairwise

conversions can only occur when the conditions favoring flavor conversions are self-sustained

and global, such as the ones induced by the lepton emission self-sustained asymmetry (LESA) in

core-collapse supernovae. Our work highlights the major impact of the dynamical evolution of the

neutrino field on the growth of flavor instabilities and the strong interplay between classical and

quantum effects. Critical limitations of the linear stability analysis, used to predict neutrino flavor

instabilities, are also pointed out.

120
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7.1 I N T R O D U C T I O N

In the interior of neutrino dense astrophysical environments, such as neutron star mergers and core-

collapse supernovae (SNe), neutrinos experience a non-negligible potential due to the presence

of other neutrinos. This potential is analogous to the one due to electrons in the well known

Mikheyev-Smirnov-Wolfenstein (MSW) effect [59, 65]. The neutrino-neutrino scattering gives rise

to an extremely fascinating phenomenology, inducing non-linear effects in the neutrino equations

of motion [82, 88]. Notably, as a result of the non-linear nature of the evolution equations, the

flavor evolution of neutrinos with different momenta is correlated.

The non-linearity of the neutrino equations of motion in compact astrophysical objects makes

the solution of the neutrino flavor evolution extremely challenging, even when unrealistic simpli-

fying assumptions are made. One of the first successful self-consistent calculations of neutrino

flavor evolution including neutrino-neutrino interactions has been performed assuming spherical

symmetry and instantaneous decoupling of all neutrino flavors at the same radius [83, 89–91,

260], the so-called “neutrino-bulb model.” Despite being extremely simplified, the calculation of

neutrino flavor evolution within the bulb model still proves to be challenging. In fact, it requires

the numerical solution of several millions of differential equations that may take up to several

hundred CPU-hours depending on the desired accuracy.

Any relaxation of the assumptions of the neutrino-bulb model makes the numerical solution of

the flavor problem unfeasible. However, semi-analytical techniques proved that the non-linear

nature of the problem implies that the bulb model provides different results than the ones obtained

when some of the assumptions of this model are relaxed [104, 110, 135, 261].

In addition, since the decoupling of different flavors occurs at different radii and neutrinos

undergo flavor-dependent interactions, the initial angular distributions are flavor dependent. In

some circumstances, this can lead to coherent pairwise conversion of neutrinos [129, 130, 133].

Pairwise conversions are fast in the sense that their characteristic time scale is proportional to the

neutrino number density, instead than the typical neutrino vacuum frequency [133]. Favorable

conditions for fast flavor conversions may occur in the proximity of the neutrino decoupling

region [130, 133, 153, 262]. Therefore, fast pairwise conversions may have important implications
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for the neutrino-driven explosion mechanism in SNe as well as the nucleosynthesis of heavy

elements.

One of the conditions that has been identified as being relevant to the development of fast

pairwise conversions is the existence of crossings in the electron neutrino lepton number (ELN) or

a non-negligible flux of neutrinos propagating in the backward direction [133, 160, 161]. In a spher-

ically symmetric SN, the occurrence of ELN crossings in the proximity of the decoupling region

requires a sharp radial evolution of the baryon density, with electron neutrino and antineutrino

number densities being comparable [175, 239]. Moreover, localized regions of ELN crossings may

also occur in the early SN stages. It is not clear whether in this case the neutrino flavor evolution

may affect the SN physics on a macroscopic scale, or whether there are fast neutrino conversions at

all [155, 239]. In neutron star mergers, the occurrence of ELN crossings seems to be favored by the

more complex geometry and the natural excess of ν̄e’s over νe’s [196, 225].

The major implications of the eventual occurrence of fast pairwise conversions in compact

astrophysical objects has triggered a remarkable effort from the community to better grasp this

phenomenon [134, 146, 170, 171, 173–175, 239, 240], but there is a long road ahead. In fact, one

of the major complications is related to the numerical solution of this problem with high enough

spatial and angular resolution, as dictated by the high frequency imposed by the neutrino fast

conversions.

Given the complications induced by the non-linear nature of the system, and due to the sponta-

neous breaking of spatial and axial symmetries [104, 110], a minimum of two spatial dimensions

is required to properly grasp the physics of the system. We here present the first sophisticated

(2+1+1) dimensional modeling of the fast pairwise conversions in compact astrophysical objects;

we solve the equations of motion in two spatial dimensions, one angular variable, and time and we

include the advective term in the equations of motion. Within a simplified framework mimicking

patches of the dense SN core, we explore the time evolution of the neutrino and antineutrino

distributions in the presence of localized ELN crossings and of extended regions of ELN crossings

similar to the ones induced by the lepton emission self-sustained asymmetry (LESA) [263].

The main goal of our work is to investigate under which conditions flavor instabilities may grow

within a dynamical system. To do that, we explore two different scenarios reproducing global and
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localized regions of ELN crossings similar to the ones found in hydrodynamical simulations of

SNe [170, 173–175, 263]. We also introduce the “instability parameter” and generalize the criteria

under which fast pairwise conversions may occur.

This paper is organized as follows. In Sec. 7.2 we discuss the conditions favoring the occurrence

of fast pairwise conversions proposed in the literature and adapt them to our (2+1+1) dimensional

model. We also provide a generalization of the criteria leading to favorable conditions for fast

conversions by introducing the “instability parameter.” In Sec. 7.3, we describe the setup of our

(2+1+1) model and its numerical implementation. In Sec. 7.4, for the first time, we explore the

impact of the advective term on the ELN evolution and on the growth of flavor instabilities. We

then explore the flavor evolution when one localized ELN excess occurs and in the presence of an

extended stripe of ELN crossings. Finally, an outlook of our work and conclusions are presented in

Sec. 7.5.

7.2 F A S T PA I R W I S E N E U T R I N O F L AV O R C O N V E R S I O N

The non-linearity induced by the neutrino-neutrino interactions makes the flavor evolution strongly

dependent on the geometry and the number of dimensions of the system. Since at least two spatial

dimensions are required for exploring any eventual effect of the advective term on the neutrino

angular distributions, we explore the evolution of the (anti)neutrino angular distributions in time,

within a two-dimensional (2D) box, and for one angular variable. In this Section, we introduce

the neutrino equations of motion in the 2D box and generalize the criteria leading to fast pairwise

conversions by introducing the “instability parameter.”
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7.2.1 Equations of motion

Our system consists of a 2D box with width and height given by Lx and Ly and periodic boundary

conditions. For each point (x, y) in the box, 2× 2 density matrices describe the neutrino and

antineutrino fields, respectively, at time t:

ρ(x⃗, θ, t) =




ρee ρex

ρ∗ex ρxx


 and ρ̄(x⃗, θ, t) =




ρ̄ee ρ̄ex

ρ̄∗ex ρ̄xx


 . (7.1)

The density matrix of neutrinos is normalized such that tr(ρ) = 1 and we fix the asymmetry

between neutrinos and antineutrinos such that tr(ρ̄) = a. For each point (x, y) in the box, the

(anti)neutrino field has a distribution in momentum. For the sake of simplicity and since we intend

to focus on fast pairwise conversions, we assume all (anti)neutrinos have the same energy, and the

momentum is only determined by the angle θ with respect to the y−axis.

The flavor evolution is determined by the following equations of motion for neutrinos and

antineutrinos:

i
(

∂

∂t
+ v⃗ · ∇⃗

)
ρ(x⃗, θ, t) = [H(θ), ρ(x⃗, θ, t)] , (7.2)

i
(

∂

∂t
+ v⃗ · ∇⃗

)
ρ̄(x⃗, θ, t) = [H̄(θ), ρ̄(x⃗, θ, t)] . (7.3)

The advective term, v⃗ · ∇⃗, depends on the velocity of the (anti-)neutrino field v⃗. The latter has

modulus equal to the speed of light c and is oriented along the direction of propagation. The

Hamiltonian, H, consists of a vacuum term that depends on the neutrino mixing angle θV and the

vacuum frequency ω (assumed to be identical for all neutrinos in our system for simplicity), a term

describing the interactions of neutrinos with the matter background with λ being the interaction

strength, and a self-interaction term, see e.g. [88]:

H(θ) =
ω

2



− cos 2θV sin 2θV

sin 2θV cos 2θV


+




λ 0

0 0


+ µ

∫
dθ′
[
ρ(x⃗, θ′, t)− ρ̄(x⃗, θ′, t)

] [
1− cos(θ − θ′)

]
.

(7.4)
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The Hamiltonian of antineutrinos, H̄(θ), is the same as H(θ) except for ω which is replaced by −ω.

In the latter term on the right hand side of Eq. 7.4, µ represents the strength of neutrino-neutrino

interactions

µ = 102 km−1 . (7.5)

In order to track the flavor evolution numerically in a reasonable number of CPU hours, our bench-

mark value for µ corresponds to the typical neutrino-neutrino interaction strength at O(100 km)

from the SN core during the accretion phase (see, e.g., Fig. 22 of Ref. [88]). Larger values of µ,

descriptive of the neutrino self-interaction strength in the proximity of the neutrino decoupling

region, would lead to the development of flavor conversions on scales smaller than what we dis-

cuss here without changing the overall conclusions, also for what concerns the impact of neutrino

advection on the flavor evolution.

Unless otherwise specified, in the following, we assume ω = 0.1 km−1 as typical of neutrinos in

compact astrophysical objects, and θV = 10−6 in order to effectively ignore the matter term [264].

The default value adopted for the advective velocity is c = 1 in natural units (corresponding to

3× 105 km/sec). In addition, as we will discuss in Sec. 7.4, we neglect the collision term.

Significant evolution in the number of (anti-)neutrinos can occur only if the off-diagonal term of

the Hamiltonian is not very small compared to the diagonal term. In the case of neutrino-neutrino

interactions, the magnitude of the off-diagonal component of the Hamiltonian is a dynamical

quantity, whose initial seed is set by the momentum distribution of the density matrices (i.e., our

vacuum frequency ω). For a given initial angular and spatial distribution, whether there will

be significant flavor evolution depends on the temporal evolution of the off-diagonal elements

of the density matrices which are connected to the probability of flavor transition. If the off-

diagonal components of the density matrices grow with time (i.e., a flavor instability occurs), they

will eventually lead to a change in the diagonal components of the density matrices which are

directly connected to the spatial and temporal evolution of the number density of the different

flavors. For the sake of simplicity and without loss of generality, in what follows, we assume

ρxx(t = 0 s) = ρ̄xx(t = 0 s) = 0, a = 0.5, and Lx = Ly = 20 km. If all off-diagonal terms of the

density matrices are zero at t = 0 s, then they will remain zero in the absence of the linear terms of

the Hamiltonian (vacuum or matter term).
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7.2.2 Instability parameter

The rate of growth of the off-diagonal terms of the density matrices (and therefore of the flavor

instability) can be estimated by using the linear stability analysis for given initial conditions [133,

135]. In particular, Ref. [133] found that fast pairwise conversions may be induced by ELN crossings

or in the presence of a non-negligible backward flux. In the case of ELN crossings, the growth of

flavor instabilities may be affected by the depth of ELN crossings [161, 265].

We here introduce the “instability parameter” that depends on the shape of the angular distri-

butions of νe and ν̄e and it is approximately proportional to the growth rate of the off-diagonal

components of the density matrices:

ζ =
I1 I2

(I1 + I2)2 (7.6)

with

I1 =
∫ 2π

0
Θ [ρee(θ)− ρ̄ee(θ)] dθ (7.7)

I2 =
∫ 2π

0
Θ [ρ̄ee(θ)− ρee(θ)] dθ (7.8)

where Θ is the Heaviside function, which vanishes when the argument is negative and is equal

to the identity operator otherwise. It should be noted that, since the definition of ζ contains

two powers of I1,2 in the numerator and in the denominator, ζ is independent of the overall

normalization of the density matrices. The ζ parameter is zero when there is no ELN crossing or

when there is no backward flux, therefore it generalizes the criteria outlined in Ref. [133].

7.3 N E U T R I N O F L AV O R E V O L U T I O N I N A T W O - D I M E N S I O N A L B O X

We explore two configurations of our 2D box. The first scenario corresponds to the case where

neutrinos and antineutrinos are initially localized in a small region in our 2D box which should

mimic the evolution of random fluctuations occurring within the inner SN core. The second

scenario consists of neutrinos and antineutrinos that are initially located along a stripe in the 2D

box. This would mimic the evolution of flavor conversions in the case of an extended region of
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ELN crossings such as in the presence of LESA. In the following, we will introduce the numerical

framework adopted to explore the flavor evolution in all these configurations.

7.3.1 Model setup

We define a 2D spatial grid with length Lx = Ly = 20 km which is identical in all simulations. The

“one dot configuration” is shown in the top panel on the left of Fig. 41. It has been obtained by

assuming

ρee, ρ̄ee ∝ exp
[
− (x− x0)

2

2σ2

]
exp

[
− (y− y0)

2

2σ2

]
, (7.9)

with each distribution centered on x0 = y0 = 1/2Lx and σ = 5%Lx. It corresponds to the initial box

configuration consisting of neutrinos distributed according to two Gaussians, along the x(y)-axis,

each as displayed in the 1D projection in the middle panel of Fig. 41.

At t = 0 s, for each (x, y) the angular distributions of neutrinos and antineutrinos are fixed to be

two top hat angular distributions centered on π/2,

ρee(θ) =





g |θ − π
2 | < b

0 |θ − π
2 | ≥ b ,

(7.10)

ρ̄ee(θ) =





ḡ |θ − π
2 | < b̄

0 |θ − π
2 | ≥ b̄ ,

(7.11)

with b being the opening angle of the νe angular distribution (assumed to be π/6 unless otherwise

specified) and b̄ = π being the one of ν̄e. This scenario aims to mimic the evolution of the ELN

crossings generated by stochastic fluctuations in the proximity of the decoupling region. A sketch

of the initial νe and ν̄e angular distributions for three selected points across x is shown in the bottom

panel of Fig. 41.

The “one stripe configuration” is shown in the top panel on the right of Fig. 41. It corresponds to

the initial box configuration consisting of neutrinos localized along a stripe, which is homogeneous

along the y-axis and distributed according to a Gaussian along the x-axis as displayed in the 1D
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projection in the middle panel of Fig. 41. The non-zero diagonal terms of the density matrix are

defined as follows

ρee, ρ̄ee ∝ exp
[
− (x− x0)

2

2σ2

]
, (7.12)

with σ = 5%Lx and the center of the distribution x0 = 1/2Lx. This configuration mimics what

should happen in the presence of LESA, when the ELN changes its sign.

Note that we assume that the angular distribution of νe is forward peaked and the ν̄e one is

isotropic. However, in a realistic framework, the angular distributions of neutrinos and antineutri-

nos are both forward peaked after decoupling. As we will see later, we focus on a more extreme

scenario since any growth of a flavor instability would be further suppressed, if both distributions

are assumed to be forward peaked at t = 0 s. Moreover, the occurrence of fast neutrino oscillations

requires that the values of the heights (g, ḡ) and the widths (b, b̄) of the angular distributions are

different for neutrinos and antineutrinos.

7.3.2 Numerical implementation

We perform numerical simulations with different initial conditions, while keeping the overall

architecture of the numerical simulations and the grid size unchanged. For each (x, y) point,

we define the angular distributions of neutrinos and antineutrinos as described in Sec. 7.3.1 and

evolve the (anti)neutrino equation of motions according to Eqs. 7.2, 7.3. In the numerical runs, we

adopt the following number of spatial and angular bins: Nx = Ny = 400 and Nθ = 100. We use

an adaptive method for the temporal evolution of the system. Note, however, that for the cases

without the advective term, the number of spatial bins is not relevant since the spatial gradient in

the advective term is zero. Although, we impose periodic boundary conditions on our box, we

let the stripe configuration evolve within a time interval such that (anti)neutrinos never cross the

boundaries.

The spatial gradient on the left-hand-side of Eqs. 7.2 and 7.3 can be solved analytically in the

absence of flavor evolution. This term is responsible for transporting the neutrino density matrices

from one bin to another. To this purpose, we implement a transport algorithm to move the density
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Figure 41: Top: Sketch of the 2D box at t = 0 s for the two configurations adopted in this paper: “one dot

configuration” (on the left) and “one stripe configuration” (on the right), see main text for more

details. Middle: 1D projection of the dot or stripe configuration to show ρee (continuous line) and

ρ̄ee (dot-dashed line) as a function of x. Bottom: νe and ν̄e angular distributions for the three points

A, B, and C highlighted in the middle panel, respectively from left to right.
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Figure 42: Temporal evolution of
∫

dθ|ρex(θ)| in the absence of advection for the (x0, y0) point in our 2D box

and several values of vacuum frequency ω. Flavor transformation occurs when ρex ∼ 1 and gives

rise to bipolar fast conversions. The oscillation period is inversely correlated to ω.

matrices to neighbouring spatial bins in regular time steps. For the temporal evolution we use the

Runge-Kutta-Fehlberg(7,8) method from the odeint library of Boost [266].

In order to speed up the computational time, we parallelize our numerical code through the

OpenMP interface [267]. We evolve the simulations for O(10−5 s) which is enough to gauge the

flavor conversion phenomenology in astrophysical environments. Within this simplified setup,

each simulation run takes about 200 CPU-hours.

7.3.3 Fast conversions in the absence of advection

We now explore the general features of the linear and non-linear flavor evolution within our 2D

box. Figure 42 shows an example of the outcome of our simulations for the “one dot configuration”

(top left of Fig. 41). It shows the off-diagonal term of the density matrix
∫

dθρex(θ) as a function of

time for the (x0, y0) point in our 2D box in the absence of advection for ω = 10−3, 10−2, 10−1 km−1

(see Eq. 7.4). As we will discuss in Sec. 7.3.4,
∫

dθρex(θ) grows exponentially until it transitions

to the non-linear regime. When the magnitude of the off-diagonal elements of the density matrix

reaches the same order as the diagonal elements (∼ ρee), flavor transformations start.
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Figure 43: Temporal evolution of
∫

dθρex(θ) for the (x0, y0) point in the box (“one dot configuration”) in the

absence of advection from our numerical simulation (dashed line) compared with the analytical

approximation of Eq. 7.13 (continuous line). The analytical expression of Eq. 7.13 perfectly matches

the numerical growth rate of the instability.

Interestingly, in the non-linear regime, the neutrino flavor evolution closely resembles the bipolar

oscillations commonly found for slow collective oscillations [83, 92]. Although the growth rate

at smaller times is completely independent of the vacuum frequency, ω, the non-linear evolution

of flavor is inversely correlated to ω; in addition, a second frequency seem to affect the evolution

of ρex independently of ω. However, the latter does not affect the overall flavor evolution. This

is a new finding for what concerns the phenomenology of fast pair-wise conversions. In fact,

the vacuum term has been neglected in the stability analysis under the assumption that fast-

pairwise conversions are completely driven by µ, see e.g. [130, 133], if crossings in the angular

distributions of νe and ν̄e exist. However, we find that the separation in time between two bipolar

transformations is inversely correlated to ω. Although not shown here, we tested configurations

with µ ∈ [102, 105] km−1 as well as cases with λ ̸= 0 and observed a bipolar regime in all cases. As

we will discuss in Sec. 7.4, this picture will be modified by advection.

7.3.4 Growth of the flavor instability
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As shown in Fig. 41, when the advective term is neglected in Eqs. 7.2 and 7.3, the absolute value

of the off-diagonal component of ρ grows exponentially in time, before reaching the non-linear

regime. We find that the exponent, κ, satisfies the following relation

κ = ϵµeffζ (7.13)

with

µeff = µ
∫ 2π

0
dθ [(ρee(θ)− ρxx(θ))− (ρ̄ee(θ)− ρ̄xx(θ))] , (7.14)

where this definition of µeff depends on the ELN, while the one of µ in Eq. 7.5 is meant to be related

to the total (anti)neutrino number density. The proportionality factor in Eq. 7.13 was found to be

ϵ = 34.8 for a wide range of initial configurations where b(b̄) and g(ḡ) were varied according to

Eqs. 7.10 and 7.11.

The growth of the flavor instability is shown in Fig. 43 as a dashed line as a function of time for

the “one dot configuration” and for the (x0, y0) point in the box. The continuous line has been

obtained by using Eq. 7.13. As one can see, Eq. 7.13 perfectly reproduces the growth rate of the

off-diagonal terms of the density matrix. It should be noted that the definition of κ is heuristic

in nature; although it is not clear whether a single parameter can encapsulate the growth rate of

the instability for all angular distributions, the parametrization in Eq. 7.13 works for all cases that

we have explored. When v⃗ · ∇ = 0, the exponential growth of the off-diagonal term of ρ does

not depend on the neighboring regions, and it continues to grow until the non-linear regime is

reached.

7.4 R O L E O F T H E A D V E C T I V E T E R M I N T H E N E U T R I N O E V O L U T I O N E Q U AT I O N

In this Section, after general considerations on the impact of the advective term, we discuss the

role that the latter plays on the growth of flavor instabilities in the “one dot configuration,” and in

the “one stripe configuration.” We also discuss how advection affects the evolution of the ELN

distribution as a function of time.
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Figure 44: Left: Schematic diagram of the box in the “one dot configuration.” The maximum width of the

angular distribution δθ is determined by the dot size in the dot configuration. Right: Schematic

diagram of the box in the “one stripe configuration.” Within the yellow stripe, ELN crossings are

distributed in the plane following a Gaussian distribution of width σ. After a time t, the neutrino

angular distribution in P will have maximum opening angle δθ because of geometric effects.

7.4.1 Impact of the advective term on the neutrino distributions

Before exploring the growth of flavor instabilities in the different configurations assumed for our

2D box, we adopt geometrical arguments to forecast how the angular distributions should evolve

in the presence of advection. The left panel of Fig. 44 shows a schematic diagram of the box in

the “one dot configuration.” Let us consider a point P = (x, y) outside the initial location of the

dot (|(x− x0)| > σ). At t ∼ (x− x0)/c, neutrinos from various points across the dot and emitted

along different θ’s will reach P.

It is easy to estimate the width of the angular distribution at any given time, which is dependent

on the width of the initial distribution b(b̄), see Eqs. 7.12-7.11. If the width of the initial distribution

is zero (i.e., we start with Dirac delta function), then at any given time t, only neutrinos traveling

along a certain direction can reach the point P. In other words, for any point P that was not on the

dot initially, the angular distribution will still be a Dirac delta distribution in θ. Understanding the

limiting case with b(b̄)→ 0 allows to draw insightful conclusions regarding the evolution of the

ELN crossings in time.
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Let us consider a point P = (x, y) outside the “dot” in the 2D box, i.e. d2 = (x− x0)
2 + (y−

y0)
2 > σ2. From simple geometric considerations, it can be seen that the advective term acts like a

narrow pass filter. In fact, at t the (anti)neutrino angular distribution will have width

δθ ≈ min
[
w, arctan

(σ

d

)]
, (7.15)

where w is the width of the initial angular distribution of neutrinos or antineutrinos.

Similar considerations hold for the “one stripe configuration,” see the right panel of Fig. 44,

the effect of advection is less prominent than that in the “one dot configuration,” but it exists

nonetheless. If the distance between P and x0 is d, then the width of the angular distribution at a

certain time t will be

δθ ≈ min
[

w, arctan
(√

σ

d

)]
, (7.16)

where w is the width of the initial angular distribution, which is b or b̄ (Eqs. 7.10 and 7.11).

Equation 7.16 is such that no matter how large σ is, the angular width cannot be greater than

w. The second argument of the min function in Eq. 7.16 can be easily gleaned by noticing that

the width of the angular distribution is given by the neutrino which is emitted at x− x0 = σ. If

arctan
(√

σ/d
)
< w, then the angular distributions of νe and ν̄e have the same width, and fast

conversions cannot occur.

To gain physical intuition as of the meaning of Eq. 7.16, we consider a limiting case where

neutrinos have traveled a very large distance compared to the initial width of the ELN crossings

i.e. when σ/d→ 0. In this limit, Eq. 7.16 gives δθ ≈ 0 which corresponds to Dirac-delta’s for the

final angular distributions of (anti)neutrinos. As one can see in Fig. 44, in this limit the neutrinos

reaching a fixed point P after time t are from the same direction, which results in final angular

distributions with an almost vanishing δθ. In other words, the finite size of the source cannot be

resolved by an observer at infinite distance.

We now explore the role of the advective term in the neutrino equations of motion. We expect

that the advective term will have several effects on the neutrino flavor evolution. On the one hand,

the advective term should diffuse any eventual ELN excess localized in a small spatial region,

diluting it over a broader region. On the other hand, the parameter ζ should be modified as a

result of advection. Moreover, as it will become clear in the following, by modifying the instability
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parameter, the advective term will also affect the occurrence of fast conversions. In the non-linear

regime, the effect of advection can be grasped by similar arguments. At a given time, neutrinos

in a different phase of bipolar oscillations arrive at the point P = (x, y). This leads to erasing the

bipolar nature of oscillations, since oscillations with different phases overlap with each other.

The time-scale required for the advective term to wipe out the instability parameter (ζ → 0) is

given by the time at which the two arguments of the min function in Eq. 7.16 are comparable:

tconv ≈
σ

w2 . (7.17)

In this case, the width of the angular distribution of νe and ν̄e becomes independent of the initial

angular distribution, and it is the same for νe and ν̄e.

The characteristic time scale of neutrino advection, tconv, should be compared with the other

characteristic time scale of the system tosc, which defines the time required for flavor transforma-

tions to occur. In fact, because of flavor instabilities, the off-diagonal term of the density matrix

evolves like ρex(t = 0) exp(κtosc) = O(ρee); tosc obviously depends on the initial magnitude of the

off-diagonal term, the effective neutrino number density, and ζ. In turn, the latter two evolve in

time because of the advective term in the equations of motion.

7.4.2 Flavor evolution in the one dot configuration

We now consider the case of neutrinos and antineutrinos initially localized within a dot in the 2D

box (“one dot configuration”), see Eq. 7.9 and the left top panel of Fig. 41. We assume the initial

angular distributions as described in Sec. 7.3.1 and fix b = π/6 and ḡ = 0.5 (see Sec. 7.3.1 for more

details). Animations of the temporal evolution of the νe and ν̄e angular distributions, as well as the

diagonal and off-diagonal terms of the neutrino and antineutrino density matrices are provided as

Supplemental Material.

The top panels of Fig. 45 show iso-contours of
∫

ρee(θ)dθ for four different time snapshots, from

left to right respectively, in the absence of advection. Bipolar oscillations develop over time and

give rise to concentric circles in the neutrino density iso-contours (see t = 2.9, 4.4× 10−6 s). This

behavior is identical to what is shown in Fig. 42 for a selected point in the (x, y) plane. The bottom

panels of Fig. 45 show the correspondent evolution of ν̄e for the same time snapshots, highlighting

https://sid.erda.dk/share_redirect/BAdkN7XRul/index.html
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the collective behavior of neutrinos and anti-neutrinos. It should be noted that the contours of ν̄e

are less extreme than the ones of νe, since νe and ν̄e can transform as long as the lepton number is

conserved.

The picture described above is drastically modified by advection, as shown in Fig. 46. By

comparing this figure to Fig. 45 (i.e., to the case without advection), one notices that advection

contributes to erase the small scale structures characterizing flavor conversions: the bipolar

behavior of flavor conversions disappears and the flavor change is confined to a more localized

region. The correspondent reduction in the value of the ELN parameter ζ can be clearly seen in

the bottom panels where the νe and ν̄e angular distributions are shown. The reduction of the ELN

parameter ζ, in turn, drives the system towards a more stable configuration disfavoring further

flavor change.

As time progresses, the ζ parameter is reduced so much that diffusion becomes the only dom-

inant phenomenon as shown in Fig. 47, where the iso-contours of
∫

ρee(θ)dθ and
∫

ρ̄ee(θ)dθ are
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Figure 45: Evolution of
∫

dθρeedθ (top) and
∫

dθρ̄eedθ (bottom) in the 2D box for the “one dot configuration”

(see Fig. 41) in the absence of advection. The four panels from left to right correspond to four

different time snapshots (t = 0.0, 1.4× 10−6, 2.9× 10−6, and 4.4× 10−6 s). The concentric circles

in the neutrino density iso-contours highlight the regime of bipolar oscillations. The contours of ν̄e

are less extreme than the ones of νe, since flavor conversions occur in such a way to guarantee the

lepton number conservation.
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Figure 46: Top and middle: Same as Fig. 45, but in the presence of advection. Because of advection flavor

transformations occur in a localized region and the bipolar structure is smoothed out. Since the

angular distribution of
∫

ρ̄eedθ is isotropic, advection favors a decrease of the local density of

ν̄e very rapidly (see bottom panel of Fig. 45 for comparison). Bottom: Evolution of the angular

distributions of νe and ν̄e as a function of θ for a comoving point in our 2D box. Due to advection,

the ζ parameter decreases with time, hindering fast conversions.
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Figure 47: Same as in the top and middle panels of Fig. 46, but for t = 10−5 and 2× 10−5 s. The initial

angular distributions of νe’s are forward peaked, hence neutrinos tend to diffuse forward because

of non-negligible advection. This effect becomes even more extreme for ν̄e’s that have an initially

homogeneous angular distribution. Advection also contributes to progressively reduce the local

density in time, spreading all particles throughout the box.

displayed in our 2D box for later times (t = 10−5 and 2× 10−5 s). Since the initial νe angular

distribution is forward peaked, νe’s tend to diffuse forward more prominently; while, the effect of

advection is stronger on ν̄e’s that have an initially homogeneous angular distribution.

In order to highlight how the bipolar regime is modified by advection, the top panel of Fig. 48

shows the evolution of
∫
|ρex(θ)|dθ for a range of values of c different from our default value

(c = 1) for a comoving point in the 2D box. Although this is an academic exercise, it shows that

advection becomes more and more relevant as c→ 1. In addition, as c increases, the ζ parameter is

also affected since the ELN crossings are smeared and the overall flavor conversion probability

tends to reach a smaller asymptotic value.

The “one dot configuration” mimics what would happen in SNe or compact binary mergers in

the presence of localized ELN excess, e.g. generated by stochastic hydrodynamical fluctuations.
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Figure 48: Temporal evolution of
∫
|ρex(θ)|dθ for different values of the advective velocity c for a comoving

point in the 2D box for the “one dot configuration” (top) and for the “one stripe configuration”

(bottom). For small values of c the deviation from the bipolar oscillations is minimal. As c increases

the ζ parameter becomes smaller, and the overall flavor conversion probability tends to reach a

smaller asymptotic value. Because of the different geometry, the impact of advection is slightly less

pronounced in the “one stripe configuration.”
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Figure 49: Same as Fig. 45, but for the “one stripe configuration.” Neutrino-neutrino interactions lead to a

bipolar structure in the flavor evolution in the non-linear regime.

We can conclude that advection smears the ELN crossings in this configuration most likely leading

to minimal changes in the flavor configuration.

7.4.3 Flavor evolution in the one stripe configuration

We now focus on the “one stripe configuration” of our 2D box, see the top panel on the right of

Fig. 41. Similarly to the “one dot configuration,” we investigate the flavor evolution, first in the

absence of advection and then by including the advective term in the neutrino equations of motion

for b = π/6 and ḡ = 0.5 (see Sec. 7.3.1 for more details). We provide animations of νe and ν̄e

angular distributions, the diagonal and off-diagonal terms of the neutrino and antineutrino density

matrices as Supplemental Material.

In the absence of advection, the bipolar nature of flavor conversions is evident also for the “one

stripe configuration” as shown in Fig. 49 where four snapshots of the iso-contours of
∫

ρeedθ and

∫
ρ̄eedθ are shown. For comparison, the effect of advection is visible in Fig. 50. As evident from the

bottom panels, the ζ parameter becomes smaller as a function of time. However, in comparison to

the “one dot configuration,” the ELN parameter ζ decreases more slowly because of the differences

in the initial geometry between the two configurations.

https://sid.erda.dk/share_redirect/BAdkN7XRul/index.html
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Figure 50: Same as Fig. 46, but for the “one stripe configuration.” The ELN parameter becomes smaller as a

function of time. However, its decrease is slower than in the “one dot configuration” because of

the differences in the initial geometry of the two configurations.
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Figure 51: Same as Fig. 47, but for the “one stripe configuration.” Advection spreads the original stripe across

our 2D box, disfavoring the occurrence of favorable conditions for fast conversions.

The effect of advection is less pronounced in the “one stripe configuration” because the neutrinos

reaching any spatial point (x, y) in our 2D box are emitted from a region more extended in space

than the “one dot configuration” and therefore have a larger spread in their angular distributions.

As a consequence, longer time is needed to obtain completely forward peaked angular distributions.

This can be also seen in Fig. 51 which focuses on the flavor evolution at later times (t = 1× 10−5

and 2× 10−5 s).

The effect of advection on
∫

ρexdθ in the “one stripe configuration” is shown for a comoving

point in the bottom panel of Fig. 48 for various values of c. For c → 1,
∫

ρexdθ is closer to unity

than in the “one dot configuration” (see top panel of Fig. 48 for comparison).

This configuration of the 2D box tends to mimic what would happen in a SN patch in the

presence of a front of ELN crossings. As one can see, unless the ELN crossings are self-sustained

(as it could be in the case of LESA), they would be wiped out by the neutrino advective term. As

a consequence, fast pairwise conversions would only lead to partial flavor conversion. Notably,

our setup overestimates the effect of flavor conversions since we assume µ = const. in the box

and maximize the initial ζ by assuming an isotropic distribution for ν̄e. In a realistic case, µ would
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tend to decrease as the distance from the decoupling region increases and ζ(t = 0 s) would be

likely smaller than in our case given that the angular distribution of ν̄e is not isotropic outside the

proto-neutron star radius.

7.5 O U T L O O K A N D C O N C L U S I O N S

Compact astrophysical objects are so dense in neutrinos that quantum effects are expected to

manifest at macroscopic scales. In this work, we explore an interesting and insightful interplay

between the neutrino pairwise conversions (quantum effect) and the propagation of the neutrino

field driven by the advective term in the equations of motion (classical effect). In order to do this,

for the first time, we track the neutrino flavor evolution within a (2+1+1) framework, i.e. we solve

the neutrino equations of motion in time, two spatial dimensions, and one angular variable.

We explore a simplified scenario with constant neutrino–neutrino potential for the sake of

simplicity, however we mimic configurations similar to the ones that could occur in compact astro-

physical objects where favorable conditions for fast pairwise conversions have been found through

the stability analysis. In particular, we explore two different configurations: 1. one localized excess

of particles with electron lepton number (ELN) crossings, mimicking ELN fluctuations that could

occur because of stochastic hydrodynamical fluctuations; 2. neutrinos and antineutrinos initially

localized along one stripe in our 2D box, mimicking a situation similar to LESA.

We generalize the conditions leading to the development of fast pairwise conversions intro-

ducing the instability parameter ζ that broadly captures the essence of the shape of the neutrino

angular distributions leading to flavor instabilities. The instability parameter ζ along with the

effective strength of neutrino-neutrino interactions determines the instantaneous growth rate of

the off-diagonal components of the density matrices. However, the numerical solution of the

neutrino equations of motion highlights a fascinating interplay between the growth of fast pairwise

conversions and neutrino advection. Our sophisticated numerical simulations show that the

advective term in the equations of motion hinders the growth of flavor instabilities, unless the

front of ELN crossings (or of neutrinos moving in the opposite direction of v⃗) is self-sustained in

time.
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As a consequence, our simple model predicts that significant flavor evolution due to fast

pairwise conversions can occur in the presence of the LESA instability (scenario 2), but would not

be significant for a localized ELN excess (scenario 1). However, a more in-depth analysis including

collisions is mandatory, since collisions may damp the growth of flavor instabilities even in the

presence of self-sustained crossings.

This work demonstrates a critical limitation of the linear stability analysis widely used in the

field of collective neutrino conversions, as the time scales that are relevant from the point of view

of classical evolution (i.e., advection) may be comparable to the time scale of flavor conversions. In

addition, the advective term in the equations of motion is such that the conditions leading to the

growth of flavor instabilities are dynamically affected from the surroundings. This aspect is not

captured by the stability analysis.

Ours is the first numerical solution of the neutrino flavor evolution within a sophisticated

and dynamical multi-dimensional framework. Although our work is in no way the final setup

resembling the evolution of the neutrino field in core-collapse supernovae or compact binary

mergers, it highlights the dynamical nature of flavor evolution.

7.6 C R I T I C A L O U T L O O K

7.6.1 Overview and main findings

Our knowledge of the flavor evolution of neutrinos in non-homogeneous environments is very

limited. The reason is that the neutrino equations of motion (Eqs. 2.74) involve not only neutrino

refraction with the background medium (Sec. 2.2.5) but also a term proportional to the gradient

of the density matrices: the advective term v⃗ · ∇ρ(x⃗, p⃗, t). Due to these complications, the flavor

evolution of non-homogeneous media is mostly investigated in the linear regime [133, 258]. See

for instance, Fig. 52 where inhomogeneities (⃗k ̸= 0) are included in the linear stability analysis

(Sec. 2.2.7.3). Computations in the linear regime are widely implemented in the literature to identify

favorable conditions for fast flavor conversion in non-homogeneous environments. Nevertheless,
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Figure 52: Flavor instabilities as predicted from the linear stability analysis. Left: Temporal (Im(Ω) ̸= 0) and

spatial (Im(⃗k) ̸= 0) growth rates as a function of the neutrino-neutrino interaction potential µ. The

ELN distributions gθ = ρee − ρ̄ee = are single-crossed ELN spectra such that initially gθ = −0.5

for θ ∈ (0, π/3) and gθ = 0.25 for θ ∈ (π/3, π), while ρxx = ρ̄xx = 0. The growth rate depends

linearly on µ. Image adapted from Ref. [87].

a direct computation of flavor evolution is still needed to understand the non-linear regime and

the final flavor outcome.

The non-linear behavior of collective conversions can lead to the spontaneous breaking of

spatial [110] and axial symmetries [104], and although these findings have been appreciated for

quite some time, the non-linear regime remains poorly understood, and only a few works on the

topic are available in the literature [149, 180, 181, 242, 249, 268]. The work presented in this Chapter

deals with the development of fast flavor conversion of non-homogeneous systems in two spatial

dimensions, one angular variable and time.

The advective term depends on the velocity of the (anti)neutrino field; for non-homogeneous

(spatially-varying) configurations, it is non-zero. One crucial feature of the advective term is that it

determines the angular distribution of neutrinos at any given location in space. For illustration, let

us imagine that the density matrices of neutrinos evolve only classically, i.e., there is no neutrino

mixing of any kind. Therefore, the EOMs are pretty simple and ν decouple from ν̄ in the classical

limit:

(
∂

∂t
+ v⃗ · ∇⃗

)
ρ(x⃗, θ, t) = 0 , and

(
∂

∂t
+ v⃗ · ∇⃗

)
ρ̄(x⃗, θ, t) = 0 . (7.18)

If we assume that there is a stationary source of (anti)neutrinos of a given size and located at

position x⃗, Eqs. 7.18 can be solved geometrically to determine the angular distributions of the
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Figure 53: Snapshots of SN potentials at different post-bounce times for a 27M⊙ SN progenitor from the

Garching group. The thin lines represent the matter potential λr, while the thicker lines the neutrino

potential µr as a function of distance from the progenitor. At early times ∼ 0.2 s, the potentials

are representative of the conditions expected before the shock revival (Sec. 3.1). A few seconds

later, in the accretion phase, the potentials have decreased such that µr ≃ 102 − 103 km−1 (thick

red dashed line). Image taken from Ref. [88].

density matrices. See, for instance, the formation of the ELN angular distributions in Fig. 17,

where we show a schematic representation of what an observer might see as a function of cos θ. A

similar procedure was followed for the neutrino bulb model (Sec. 2.2.7.1). However, in realistic

astrophysical sources, the problem is much more complex since we do not know what the spatial

distribution of (anti)neutrinos looks like at a given time and location. Moreover, the spatial

distributions of neutrinos (and matter) can also vary in length scales varying from fractions of

meters and up to the kilometer scale. On top of that, the angular distributions are not static but

time-evolving with time scales comparable to that of neutrino fast flavor conversion in some

regions of the astrophysical sources in question.

Let us take the core-collapse supernova environment (Chapter 3) as an illustrative example.

Let us assume a modest value of µ = 102 km−1, which is representative of the neutrino-neutrino

interaction strength at O(100 km) from the SN core during the accretion phase as seen in Fig. 53.

Larger values of µ correspond to conditions in the vicinity of the neutrino decoupling region,

leading to flavor conversion on much smaller scales. A neutrino potential of µ = 102 km−1 =

3× 107 s−1 implies that the time scale of fast flavor conversion is τFFC = µ−1 ≃ 10−7 s. This

means that flavor instabilities with growth rates (Sec. 2.2.7.3) comparable to ∼ τ−1
FFC are expected.
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Figure 54: Sketch of the 2D box at t = 0 s for the two configurations adopted in this work: “one dot

configuration” (on the left) and “one stripe configuration” (on the right).

Moreover, after a few characteristic time scales, say T = 10τFFC = 10−6 s, fast flavor conversion is

well in the non-linear regime and possibly converted neutrino flavor. On the other hand, after the

time T (anti)neutrinos have travelled a distance of Ltravel = c(10−6 s) = 0.3 km. Therefore, flavor

conversion can develop in space and time over much shorter time and length scales than those

that characterize the SN environment (few km).

The work presented in this Chapter investigates two kinds of spatial distributions of neutrinos

and their evolution under the influence of FFC: global and local spatial distributions. The global

spatial distributions are self-sustained spatial distributions (such as LESA [142]) while the local

ones could be a result of small stochastic fluctuations of the density profiles and, therefore, are not

self-sustained.

The global and local spatial configurations correspond to the "one stripe configuration" and

the "one dot configurations" schematically shown in Fig. 54. Each spatial location in the 2D grid

has an initial ELN angular distribution which evolves in space-time as described by the EOMs

(Eqs. 2.74). For instance, apart from the θ-dependence, the "one stripe configuration" (right panel

Fig. 54) has a xy-spatial dependence such that ρee, ρ̄ee ∝ exp
[
−(x− x0)

2/2σ2], while for the "one

dot configuration" (left panel Fig. 54) ρee, ρ̄ee ∝ exp
[
−(y− y0)

2/2σ2] exp
[
−(x− x0)

2/2σ2].

The main results of this work can be summarized in Fig. 55, where we show the evolution

of angle-integrated off-diagonal term
∫
|ρex(θ)|dθ for a point that propagates together with the

neutrino gas. The value of the speed of light c is kept as a free parameter to gauge the impact of the

advective term cv̂ · ∇⃗ρ(x⃗, θ, t) in the EOMs. For small values of c, the deviation from the bipolar

oscillations is minimal; the scenario c = 0 would correspond to no spatial gradient, and each point
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Figure 55: Temporal evolution of
∫
|ρex(θ)|dθ for different values of the advective velocity c for a comoving

point in the 2D box for the “one dot configuration” (top) and for the “one stripe configuration”

(bottom). The impact of advection is less pronounced in the "one stripe configuration" because the

gradient vanishes along the y−direction. This leads to a weaker "dilution" of the (anti)neutrino

excess as a function of the spatial coordinates.
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in the 2D grid would oscillate strictly in a bipolar fashion. As the value of c increases (and with

it the impact of the advective term), the flavor conversion probability reaches a steady state as a

result of gradual flavor decoherence; see the blue line corresponding to c = 1, which goes down

much faster than the one for c≪ 1, implying flavor decoherence due to the presence of neutrino

advection. Contrary to what one would expect from the linear stability analysis (Fig. 52), neutrino

flavor conversions are inhibited by the advective term, i.e., by the propagation of neutrinos across

the 2D spatial domain.

Interestingly, the impact of advection is more pronounced in the "one dot configuration" because

the neutrino gas has a non-vanishing gradient along the x− and y−directions while for the "one

stripe configuration," the gradient vanishes along the y−direction. This leads to a weaker "dilution"

of the (anti)neutrino excess as a function of x, y. These results (Fig. 55) highlight two critical aspects

of the flavor evolution of neutrinos. First, they stress the importance of implementing the neutrino

advective term in the EOMs since it significantly affects the coherence of the evolution. And

secondly, they highlight the non-trivial interplay between the spatial and temporal variations of

the density matrices, which cannot be captured through the widely-implemented linear stability

analysis (Fig. 52).

7.6.2 Limitations and future perspectives

More sophisticated numerical frameworks are required to tackle the flavor evolution of non-

homogeneous systems. Better and faster numerical routines are needed to model fast flavor

conversion in more than two spatial dimensions and to account for the breaking of symmetries

in the system and its solutions. Even though a great deal of progress has been made, many open

questions and technical difficulties need to be addressed before we fully understand the evolution

of non-homogeneous systems.

7.6.2.1 Higher-dimensional simulations

The hindering of flavor conversion in the presence of neutrino advection was explored in the "one

dot configuration" and "one stripe configuration" (Fig. 41) of this Chapter. These two systems
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helped assess the role of the advective term in two spatial dimensions. We observed that the "dilu-

tion" of the (anti)neutrino excess was more prominent in the one dot configuration (Fig. 46) than in

the one stripe configuration (Fig. 50) because of the spatial dimensionality of the (anti)neutrino

distribution; the dot is essentially a 2D distribution while the stripe can be seen as a 1D distribution.

Therefore, one can extrapolate our results to 3D and speculate that the dilution of the neutrino

gas would be even more prominent for a 3D dot than for a 2D dot (this Chapter). Nevertheless,

when moving to 3D setups, the notion of ELN angular crossing changes: there can be not only a

crossing as a function of the polar angle θ but also one along the ϕ direction. The latter forces us

to think about ELN angular crossings as two-dimensional structures, i.e., something reminiscent

of rings in the ELN angular distribution [182, 183] (see, for instance, Fig. 1 of Ref. [183]). On

the other hand, the flavor evolution of the ELN rings in axially-breaking systems has only been

explored in a few works (Refs. [181–183]), and only preliminary results are available on the flavor

evolution of neutrinos in conjunction with the advective term in full 3D [181, 182]. According to

these works, the flavor evolution in 1D and 2D are qualitatively very similar to those in 3D (see

Fig. 2 of Ref. [182]), although small spatial structure can develop within the nanosecond time

scale. Nevertheless, an extension of the work presented in this Chapter could verify these early

findings and corroborate whether our results in Figs. 48 are still valid when including 3D neutrino

advection and the ϕ-dependence in the EOMs.

7.6.2.2 Boundary conditions

One common issue when modeling flavor conversion together with neutrino advection is the

choice of boundary conditions of the system, which is closely related to the choice of refinement in

the spatial grid implemented in numerical simulations. For example, if the spatial domain is very

small and finely resolved (∼ cm scale), one models a tiny patch of the astrophysical environment,

and periodic boundary conditions are naively assumed. However, the periodicity of the boundary

conditions can lead to ELN angular intersections at the boundaries, which propagate across the

box, possibly leading to flavor equilibration [180, 269]. On the other hand, one can assume a

coarse-grained system (∼ km scale) that contains the global features of the astrophysical system at

the cost of not resolving small-scale structures. In this case, one has a well-defined neutrino source,

and the boundary conditions cannot be periodic anymore. Therefore, future work should study
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coarse- and fine-grained astrophysical systems with different boundary conditions to understand

what features of the flavor evolution correspond to each particular assumption.
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F A S T F L AV O R C O N V E R S I O N A B O V E T H E D I S K O F C O M PA C T B I N A R Y

M E R G E R R E M N A N T S

Based on: Ian Padilla-Gay, Shashank Shalgar, Irene Tamborra, Multi-Dimensional Solution of Fast

Neutrino Conversions in Binary Neutron Star Merger Remnants, JCAP01(2021)017, arXiv:2009.01843

A B S T R A C T Fast pairwise conversions of neutrinos are predicted to be ubiquitous in neutron

star merger remnants with potentially major implications on the nucleosynthesis of the elements

heavier than iron. We present the first sophisticated numerical solution of the neutrino flavor

evolution above the remnant disk within a (2+1+1) dimensional setup: two spatial coordinates,

one angular variable, and time. We look for a steady-state flavor configuration above the remnant

disk. Albeit the linear stability analysis predicts flavor instabilities at any location above the

remnant disk, our simulations in the non-linear regime show that fast pairwise conversions

lead to minimal neutrino mixing (< 1%); flavor equilibration is never achieved in our models.

Importantly, fast neutrino conversions are more prominent within localized regions near the edges

of the (anti)neutrino decoupling surfaces and almost negligible in the polar region of the remnant.

Our findings on the role of fast pairwise conversions should be interpreted with caution because

of the approximations intrinsic to our setup and advocate for further work within a more realistic

framework.

8.1 I N T R O D U C T I O N

The coalescence of a neutron star (NS) with another NS or a black hole (BH) leads to the birth of a

compact binary merger. Gravitational waves (GW) from a binary neutron star merger have been

detected by the LIGO and Virgo Collaborations, the GW170817 event, together with the multi-

152

https://iopscience.iop.org/article/10.1088/1475-7516/2021/01/017
https://arxiv.org/abs/2009.01843
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wavelength electromagnetic counterpart [270–272]. The multi-messenger detection of GW170817

has confirmed theoretical predictions according to which compact binary mergers are the precur-

sors of short gamma-ray bursts (sGRBs), one of the main factories where the elements heavier

than iron are synthesized—through the rapid neutron-capture process (r-process)—and power

kilonovae (electromagnetic transients bright in the optical and infrared wavebands) [48, 273–277].

The GW170817 observation has shed light on the poorly explored physics of NS mergers.

However, a robust theoretical understanding of the physics of these objects is still lacking and

three-dimensional general-relativistic magnetohydrodynamical simulations with detailed neutrino

transport are not yet available. In particular, the role of neutrinos is especially unclear despite the

fact that a copious amount of neutrinos is produced in the coalescence. Neutrinos should affect the

cooling of the merger remnant, as well as the overall ejecta composition, and contribute to power

sGRBs [50, 200, 274, 278–286].

A crucial ingredient possibly affecting the neutrino reaction rates and energy deposition is the

neutrino flavor conversion physics, currently neglected in most of the literature on the subject.

Besides the ordinary interactions of neutrinos with matter [59, 65], in compact binary mergers,

the neutrino density is so high that ν–ν interactions cannot be neglected, similarly to the case

of core-collapse supernovae [82, 88, 132]. A characteristic feature of compact binary mergers is

the excess of ν̄e over νe due to the overall protonization of the merger remnant [46, 47, 50]. As

a consequence, a matter-neutrino resonance can occur as the matter potential cancels the ν–ν

potential [192, 194, 195, 222, 287–289].

In addition to the matter-neutrino resonance, ν–ν interactions can be responsible for the devel-

opment of fast pairwise conversions [129, 130, 133]. The latter can be triggered by the occurrence

of electron lepton number (ELN) crossings in the neutrino angular distributions and could lead to

flavor conversions on a time scale GF|nνe − nν̄e |−1, where GF is the Fermi constant and nνe (nν̄e ) is

the local number density of νe (ν̄e). Reference [196] pointed out that fast pairwise conversions could

be ubiquitous above the remnant disk because of the accretion torus geometry and the natural

protonization of the remnant leading to an excess of ν̄e over νe.

Whether flavor equipartition is achieved as a consequence of fast pairwise conversions is a

subject of intense debate, also in the context of core-collapse supernovae [134, 147, 149, 153, 155, 187,
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239, 290, 291]. If fast pairwise conversions lead to flavor equilibration in compact binary mergers,

the nucleosynthesis of the heavy elements in the neutrino-driven wind can be drastically affected,

and the fraction of lanthanides boosted with major implications for the kilonova observations [225].

The possible consequences of fast pairwise conversions on the physics of compact mergers justify

a modeling of the flavor conversion physics that goes beyond the predictions of the linear stability

analysis [104, 133, 135].

Building on Ref. [149], we present the first sophisticated modeling of fast pairwise conversions

in the non-linear regime above the disk of merger remnants. We rely on a (2+1+1) dimensional

setup: we track the neutrino flavor evolution in two spatial coordinates, one angular variable, and

time. We solve the equations of motion of (anti)neutrinos in the absence of collisions and aim to

investigate the flavor evolution of the neutrino-dense gas above the disk of the remnant, searching

for a steady-state configuration of flavor. Our goal is to identify the location and extent of regions

with significant flavor conversion.

This work is organized as follows. In Section 8.2, we introduce the 2D box configuration that

we adopt to model the neutrino emission and propagation above the merger remnant disk. The

neutrino equations of motion and the semi-analytical tools to explore the eventual occurrence

of flavor instabilities in the context of fast pairwise conversions are introduced in Sec. 8.3. In

Sec. 8.4, we present our findings on fast pairwise conversions above the massive NS remnant disk

in the non-linear regime; we also explore how the steady-state flavor configuration is affected by

variations of the input model parameters. In Sec. 8.5, we investigate the flavor oscillation physics

above a BH remnant disk. Finally, our conclusions are presented in Sec. 8.6. The routine adopted to

take into account the effects of neutrino advection in the presence of flavor conversions is outlined

in Appendix C.1. Appendix C.2 instead provides details on the convergence of our results for the

adopted spatial resolution.

8.2 M E R G E R R E M N A N T D I S K S E T U P

Given the numerical challenges involved in the modeling of the flavor conversion physics within

a realistic astrophysical framework, we here focus on a simpler toy model inspired by the ones
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adopted in Refs. [149, 196]. We model the neutrino emission above the remnant disk in a 2D box

with width Lx and height Ly, with Lx = Ly ≡ L = 80 km, as sketched in Fig. 56. Although this

is a small patch of the overall region above the merger remnant, it is large enough to explore the

development and evolution of fast pairwise conversions. First, we model a NS-disk remnant; our

findings are extended to the case of a BH-disk remnant in Sec. 8.5. At the bottom edge of the

grid (y = 0) in Fig. 56, we locate a thin neutrino source, Sν, of length R = L/4 = 20 km, which

represents the νe neutrinosphere. Similarly, we consider a source of ν̄e, Sν̄, of length R̄ = 75%R.

The neutrino and antineutrino emission surfaces are centered on (x = L/2, y = 0). The neutrino

source Sν is such that x ∈ [L/2− R, L/2 + R] and similarly for Sν̄ with the replacement R→ R̄.

Our choice of the Sν size with respect to the one of Sν̄ is guided by hydrodynamical simulations

of a massive NS-disk [50]. Although it is well known that the decoupling surfaces of νe and ν̄e

are spatially well separated, see e.g. [47, 225], we assume that the neutrinospheres of νe and ν̄e

are coincident and the decoupling occurs suddenly for the sake of simplicity. As we will discuss

later, this has an impact on the formation of ELN crossings, but it does not affect the overall flavor

conversion picture above the remnant disk.

We also assume that non-electron flavors are generated through flavor conversions only. In the

case of NS-disk remnants, a small amount of non-electron (anti)neutrinos is naturally produced in

the NS-disk remnant (see, e.g., Refs. [50, 292]); in this case, our extreme assumption enhances the

likelihood of having flavor conversions and, as we will discuss in Sec. 8.4, it does not affect our

overall conclusions. Our ansatz closely mimics the BH-disk remnant case instead (see Sec. 8.5 and,

e.g., Ref. [293]).

As for the boundary conditions in our 2D box, we assume that, except for the edge containing

the (anti)neutrino sources, the other edges of the 2D box act as sinks for (anti)neutrinos. Since

the (anti)neutrinos continuously flow from the sources into the sinks, the total number density of

neutrinos and antineutrinos is conserved.
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Figure 56: Schematic representation of our merger remnant setup in a 2D box of size Lx = Ly = L. The

neutrino source (Sν, in red) and the antineutrino one (Sν̄, in blue) have widths 2R and 2R̄ and are

centered on (x, y) = (L/2, 0), respectively. The (anti)neutrino sources emit νe and ν̄e in the forward

direction only i.e. θ ∈ (−π/2, π/2).

We work in a two-flavor approximation, (νe, νx), and denote with νx a mixture of the non-

electron flavors. In order to describe the neutrino and antineutrino fields, we rely on 2× 2 density

matrices defined for each (x, y) point in the 2D box:

ρ(x⃗, θ, t) =




ρee ρex

ρ∗ex ρxx


 and ρ̄(x⃗, θ, t) =




ρ̄ee ρ̄ex

ρ̄∗ex ρ̄xx


 . (8.1)

The diagonal terms of the density matrix encode the flavor content information and are propor-

tional to the (anti)neutrino number densities in (x, y); the off-diagonal terms are connected to the

probability of flavor transitions, as we will discuss in the next section. As such, we normalize the

density matrices in the following way: tr(ρ) = 1 and tr(ρ̄) = a. The parameter a takes into account

the asymmetry between neutrinos and antineutrinos, and we take a = 2.4 [225] in the numerical

runs.

The flavor conversion physics is affected by the distributions in angle and in energy of neutrinos

and antineutrinos. However, since we focus on fast pairwise conversions, in the following we

assume a monoenergetic distribution of (anti)neutrinos, with average energy ⟨Eνe⟩ = ⟨Eν̄e⟩ ≃

20 MeV to mimic typical average energies in the proximity of the (anti)neutrino decoupling region;

as shown in Ref. [147], the assumption of a monoenergetic distribution reproduces the flavor
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outcome that one would obtain when an energy distribution centered on ⟨Eνe ,ν̄e⟩ is considered.

As a consequence, the neutrino distribution, for each point in the (x, y) box and at the time t, is

defined by the emission angle θ (see Fig. 56).

In order to model the physics of fast pairwise conversions, we need to take into account the

(anti)neutrino angular distributions. We assume that the emission surfaces of neutrinos and

antineutrinos are perfect black-bodies and (anti)neutrinos are uniformly emitted in the forward

direction across the source, i.e., θ ∈ (−π/2, π/2) with θ measured with respect to the y direction

(see Fig. 56). In order to guarantee that the emitting surfaces are Lambertian and the neutrino radi-

ance is the same along any viewing angle, we assume the angular distributions to be proportional

to cos θ:

ρee(θ) = cos θ ×





1 if x0,ν ∈ Sν

exp
(
(x−L/2∓R)2

2σ2

)
otherwise ,

(8.2)

ρ̄ee(θ) = a cos θ ×





1 if x0,ν̄ ∈ Sν̄

exp
(
(x−L/2∓R̄)2

2σ̄2

)
otherwise ,

(8.3)

where σ, σ̄ smooth the edges of Sν and Sν̄ and are set to 20%R and 20%R̄, respectively.

By projecting the neutrino and antineutrino angular distributions from the sources on any (x, y)

point in the 2D box, we obtain the contour plots in Fig. 57 for the resultant angle-integrated density

matrices of νe and ν̄e,
∫

dθρee(x⃗, θ) and
∫

dθρ̄ee(x⃗, θ), in the absence of flavor conversions (see also

Sec. 8.3) for the NS-disk remnant configuration. One can see that the neutrino density gradually

decreases as one moves from Sν and Sν̄ towards the edges of the box.

In order to explore the variation of the (anti)neutrino angular distributions across the 2D box,

Fig. 58 displays the angular distributions of νe and ν̄e in the points A, B, and C highlighted in Fig. 57.

The width of the ELN crossings varies as one moves away from Sν and Sν̄, with implications on

the flavor conversion physics, as we discuss in Sec. 8.3.
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Figure 57: Contour plots of the angle-integrated density matrices, ρ(x⃗, θ, t) (on the left) and ρ̄(x⃗, θ, t) (on

the right), in the absence of flavor conversions for the NS-disk remnant configuration. This

configuration can be obtained by solving Eqs. 8.4 and 8.5 for H(θ) = H̄(θ) = 0, i.e. the time

evolution of ρ(x⃗, θ, t) and ρ̄(x⃗, θ, t) is completely determined by the advective operator v⃗ · ∇⃗ (see

Sec. 8.3 for more details). The quantities
∫

ρeedθ and
∫

ρ̄eedθ are normalized to the maximum

total particle number in the box [
∫
(ρee + ρ̄ee + 2ρxx)dθ]. The coordinates of the points A, B, and

C marked on the plane are: (x, y) ≃ (56, 1) km, (67, 1) km, and (72, 1) km, respectively. The

(anti)neutrino density gradually decreases as one moves away from Sν and Sν̄.
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Figure 58: Angular distributions of ρee (red) and ρ̄ee (blue) in A, B and C (see Fig. 57). The presence of

two disjoint grey areas imply the existence of ELN angular crossings. The angle-dependent

density matrix elements are normalized to the maximum total particle number in (x, y)A,B,C:

(ρee + ρ̄ee + 2ρxx). As one moves away from Sν and Sν̄, the width of the ELN crossings varies with

implications on the flavor conversion physics.
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8.3 F A S T PA I R W I S E N E U T R I N O F L AV O R C O N V E R S I O N

In this section, we introduce the equations of motion adopted to track the flavor evolution above

the NS-disk remnant in our 2D setup. In order to gauge the role of neutrino flavor conversions

above the NS-disk remnant, we discuss the variation of the ν–ν interaction strength across the 2D

box and introduce the instability parameter to characterize the depth of the ELN crossings. We

also adopt the linear stability analysis to compute the growth rate of the flavor instabilities in the

regions with the largest instability parameter.

8.3.1 Equations of motion

The (anti)neutrino field is described through the density matrix approach introduced in Sec. 8.2.

Neglecting collisions, the flavor evolution of neutrinos and antineutrinos is described by the

following set of equations of motion (EoM):

i
(

∂

∂t
+ v⃗ · ∇⃗

)
ρ(x⃗, θ, t) = [H(θ), ρ(x⃗, θ, t)] , (8.4)

i
(

∂

∂t
+ v⃗ · ∇⃗

)
ρ̄(x⃗, θ, t) = [H̄(θ), ρ̄(x⃗, θ, t)] , (8.5)

where the advective term, v⃗ · ∇⃗, is proportional to the velocity of (anti)neutrinos, which we assume

to be equal to the speed of light, and is tangential to the neutrino trajectory. The contour plots of

the angle-integrated density matrices of νe and ν̄e in Fig. 57 can be obtained by solving Eqs. 8.4 and

8.5 when the right hand side of both EoMs is vanishing, i.e., (anti)neutrinos do not change their

flavor.

The neutrino Hamiltonian is

H(θ) =
ω

2



− cos 2θV sin 2θV

sin 2θV cos 2θV


+ Hνν(x⃗, θ) , (8.6)

with the first term depending on the vacuum frequency ω = 0.3 km−1, where ω = ∆m2/2⟨Eνe ,ν̄e⟩,

∆m2 is the atmospheric squared mass difference and ⟨Eνe ,ν̄e⟩ the average mean energy of νe’s and

ν̄e’s introduced in Sec. 8.2. The vacuum mixing angle is θV = 10−6; note that we assume a very
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small mixing to effectively ignore the matter potential [264]. The second term of the Hamiltonian

is the ν–ν interaction term:

Hνν(x⃗, θ) = µ(|⃗x|)
∫

dθ′
[
ρ(x⃗, θ′, t)− ρ̄(x⃗, θ′, t)

] [
1− cos(θ − θ′)

]
. (8.7)

The potential, µ(|⃗x|), parametrizes the strength of neutrino-neutrino interactions for each point

(x, y) in the box and its functional form is defined in Sec 8.3.2. The Hamiltonian of antineutrinos,

H̄(θ), is identical to H(θ) except for the following replacement: ω → −ω [89]. The integration

over dθ′ is a consequence of our 2D setup. In a 3D box, the integration over dθ′ would be replaced

by an integration over the solid angle. We have checked, however, that the integration over d cos θ

that would arise in an azimuthally symmetric 3D system virtually gives the same results as our 2D

setup (see also Sec. 8.3.2).

8.3.2 Neutrino self-interaction potential

The ν–ν interaction potential varies across our 2D box, by taking into account the dilution of the

(anti)neutrino gas as we move away from the sources Sν and Sν̄. We parametrize it as

µ(|⃗x|) = µ0η(|⃗x|) , (8.8)

where η(|⃗x|) is a scaling function, and µ0 = 105 km−1 is the ν–ν interaction strength at the

neutrinosphere [196].

Since the modeling of flavor evolution in 3D is computationally challenging at present, we mimic

the 3D setup by solving the EoM in 2D while taking into account the dilution of the neutrino gas

in 3D. For an observer located at (x, y), the distance d above the source, Sν,ν̄, can be computed

as d = dy/ cos θ, where dy is the vertical displacement from the source to (x, y), see Fig. 56. For

observers that are not located above the source, the dilution of the flux is determined by the

distance d. With this convention, the scaling function η is defined as

η =

(
1− 1√

(R/d)2 + 1

)2[
arccos

(
1√

(R/d)2 + 1

)
−
√

1− 1
(R/d)2 + 1

]−1

. (8.9)

To better understand the role of η, let us look at one limiting case for an observer along the axis of

symmetry. When dy≫ R, η ∝ (R/dy), hence Hνν ∝ (R/dy)4 for a 3D bulb model, as expected [89].
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Figure 59: Contour plot of the neutrino self-interaction strength, µ(|⃗x|), in the 2D box. The neutrino-neutrino

potential is maximum in the proximity of the (anti)neutrino source and it gradually decreases as

the distance from the (anti)neutrino sources increases.

Figure 59 shows µ(|⃗x|) in our 2D box (see Eq. 8.8). At the (anti)neutrino emission surfaces, µ

assumes the maximum value (µ0) and drops as a function of the distance from the source.

8.3.3 Instability parameter

A favorable condition for the development of fast pairwise conversions is the presence of ELN

crossings between the angular distributions of νe and ν̄e [133]. To this purpose, the “instability

parameter" has been introduced in Ref. [149] to gauge the growth rate of flavor instabilities; the

latter being dependent on the depth of the ELN crossings [161, 265]:

ζ = ρtot
I1 I2

(I1 + I2)2 , (8.10)

where ρtot is the total particle number defined as
∫
[ρee + ρ̄ee + 2ρxx]dθ and the factors I1,2 are

defined as

I1 =
∫ π/2

−π/2
Θ [ρee(θ)− ρ̄ee(θ)] dθ and I2 =

∫ π/2

−π/2
Θ [ρ̄ee(θ)− ρee(θ)] dθ ; (8.11)
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the Heaviside function, Θ, is vanishing for ρee(θ)− ρ̄ee(θ) < 0 and otherwise equal to the identity

operator. The instability parameter ζ vanishes when the ELN crossing is zero. The instability

parameter is a useful predictor of the growth rate of the off-diagonal components of the density

matrices and, therefore, of the flavor instabilities (see Sec. 3.4 of Ref. [149] for more details).

The left panel of Fig. 60 shows a contour plot of the instability parameter in the absence of flavor

conversions across our 2D box. One can see that ζ is large in the proximity of the edges of the

neutrino emitting surfaces (x ≃ 15, 65 km and y ∈ [0, 15] km) and it gradually decreases as we

move away from the sources, since the (anti)neutrino gas dilutes and the ELN crossings become

less prominent. As a consequence, and by taking into account that µ(|⃗x|) decreases as we move

away from Sν and Sν̄ (see Eq. 8.8), we should expect fast pairwise conversions to possibly occur

where the ζ parameter is larger. Also, it is worth noticing that ζ is approximately zero in the central

region of the emitting sources (x ∈ [20, 60] km and y ∈ [0, 15] km), this is mostly a consequence of

the fact that we assume the neutrinospheres of νe and ν̄e to be coincident with each other, despite

differing in width. Similarly to Ref. [196], we expect to find a suppression of the flavor instabilities

in the proximity of the emitting surfaces around the polar region (ζ is very small in our case) and a

growth of the instabilities at larger distances from the source (ζ becomes larger).

Note that flavor conversions affect the (anti)neutrino angular distributions. Hence, the instability

parameter shown in Fig. 60 can be dynamically modified by fast pairwise conversions. However,

the plot provides with insights on the regions where flavor conversions may have larger effects, as

we will see in Sec. 8.4.

8.3.4 Linear stability analysis

In order to explore the growth of the off-diagonal term in the density matrices, and therefore the

development of fast pairwise conversions, we first rely on the linear stability analysis to analytically

predict the growth rate of the flavor instabilities [104, 135]. Note that, given that we intend to focus

on fast pairwise conversions, we assume ω = 0 in this section; such assumption is justified since

ω ̸= 0 would mainly affect the non-linear regime of fast pairwise conversions [147].
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Figure 60: Left: Contour plot of the instability parameter ζ (see Eq. 8.10) in the 2D box in the absence of flavor

conversions for the νe and ν̄e distributions in Fig. 57. The ELN crossings are significant just above

the edges of the emitting sources. Right: Contour plot of |Im(ω)|/µ0 for the homogeneous mode

for the benchmark NS-disk model in one of the regions where the instability parameter is the

largest (see dashed lines in the left panel). A maximum growth rate |Im(ω)| = 0.07µ0 ≃ 2 ns can

be achieved.

We linearize the EoM and track the evolution of the off-diagonal term through the following

ansatz

ρex(θ) = Q(θ)e−iΩt and ρ̄ex(θ) = Q̄(θ)e−iΩt, (8.12)

where Ω = γ + iκ represents the collective oscillation frequency for neutrinos and antineutrinos.

If Im(Ω) ̸= 0, then the flavor instability grows exponentially with rate |Im(Ω)|, leading to fast

pairwise conversions [133]. Note that we look for temporal instabilities for the homogeneous

mode (⃗k = 0), as these are the ones possibly leading to fast pairwise conversions in extended

regions [196]; by adopting a similar disk setup, Ref. [196] found that spatial instabilities occur in

much smaller spatial regions than the temporal instabilities.

The off-diagonal component of Eq. 8.4 is

i
∂

∂t
ρex(θ) = Hee(θ)ρex(θ) + Hex(θ)ρxx(θ)− ρee(θ)Hex(θ)− ρex(θ)Hxx(θ)

= Hee(θ)ρex(θ)− ρee(θ)Hex(θ) , (8.13)
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where we have assumed ρxx(t = 0 s) = ρ̄xx(t = 0 s) = 0. By substituting Eq. 8.12 in the equation

above and solving for Q(θ), we obtain

Q(θ) =
ρee(θ)

∫
dθ′[Q(θ′)− Q̄(θ′)][1− cos (θ − θ′)]

−Ω
µ +

∫
dθ′[ρee(θ′)− ρ̄ee(θ′)][1− cos (θ − θ′)]

. (8.14)

A similar procedure follows for Q̄θ (see Eqs. 8.5 and 8.12). Then, combining the expressions for

Q(θ) and Q̄(θ), we have

Q(θ)− Q̄(θ) =
∫

dθ′
(ρee(θ)− ρ̄ee(θ)

−Ω
µ + A(θ)

)
[Q(θ′)− Q̄(θ′)][1− cos (θ − θ′)] , (8.15)

where A(θ) =
∫

dθ′[ρee(θ′)− ρ̄ee(θ′)][1− cos (θ − θ′)]. From the equation above, it must be true

that

Q(θ)− Q̄(θ) =

[
ρee(θ)− ρ̄ee(θ)

−Ω
µ + A(θ)

]
(a− b cos θ − c sin θ) , (8.16)

where a, b, c are unknown coefficients. By substiting Eq. 8.16 in Eq. 8.15, we obtain a system of

equations for the coefficients a, b, and c. Since the variable θ′ is a dummy variable, we replace it by

θ:



a

b

c



=




I [1] −I [cos θ] −I [sin θ]

I [cos θ] −I [cos θ2] −I [cos θ sin θ]

I [sin θ] −I [cos θ sin θ] −I [sin θ2]







a

b

c



= M




a

b

c




, (8.17)

where the functional I [ f ] is

I [ f ] =
∫

dθ

[
ρee(θ)− ρ̄ee(θ)

−Ω
µ + A(θ)

]
f (θ) . (8.18)

The system of equations has a not trivial solution if

det(M− 1) = 0 . (8.19)

The latter equation is polynomial in the frequency Ω. To search for instabilities, we need to look

for the solutions with Im(Ω) = κ ̸= 0. We then use the SciPy module [294] in Python to find the

roots numerically.

The right panel of Fig. 60 shows the growth rate, |Im(Ω)|/µ0, for a region of our 2D box where

the instability parameter is the largest (see the highlighted region in the left panel of Fig. 60). In

the region of the 2D box corresponding to the edges of Sν, |Im(Ω)|/µ0 ≃ 0.01–0.06; if we compare

our findings to the ones reported in the top panel of Fig. 3 of Ref. [196], we obtain a roughly
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comparable growth rate of the flavor instability. We should highlight that we assume the νe and

ν̄e neutrinospheres to be exactly coincident with each other (although having different widths)

while a two-disk model was considered in Ref. [196]; this quantitatively affects the depth of the

ELN crossings in the polar region above the remnant in the proximity of the source. We also note

that we model differently the edges of the (anti)neutrino sources and the (anti)neutrino angular

distributions with respect to Ref. [196] and this causes differences in the shape of the unstable

regions above the NS-disk remnant.

8.4 F L AV O R E V O L U T I O N A B O V E T H E N S - D I S K R E M N A N T

Most of the existing work in the context of neutrino flavor conversions above the remnant disk

focuses on exploring the phenomenology of slow collective oscillations and the matter-neutrino

resonance [192, 194, 195, 222, 287–289]. The only existing literature on fast pairwise conversions

in merger remnants relies on the linear stability analysis to explore whether favorable conditions

for fast conversions exist above the remnant disk [196, 225], as also discussed in Sec. 8.3.4. In this

section, we present the results of the numerical evolution in the non-linear regime of fast pairwise

conversions above the NS-disk remnant and discuss the implications for the merger physics. We

then generalize our findings by exploring the parameter space of the possible νe–ν̄e asymmetries

expected above the NS-disk remnant and the relative ratio between the size of the νe and ν̄e sources.

8.4.1 Numerical implementation

We solve the EoM introduced in Sec. 8.3 for the box setup described in Sec. 8.2 by following the

procedure outlined in Sec. 3.2 of Ref. [149]. In the numerical runs, we adopt Nx = Ny = 50 number

of bins for the x− y grid and Nθ = 300 angular bins to ensure numerical convergence.

In order to quantify the amount of flavor mixing, we introduce the angle integrated survival

probabilities

P(νe → νe) =

∫
dθ[ρee(x⃗, t)− ρxx(x⃗, t = 0 s)]∫

dθ[ρee(x⃗, t = 0 s)− ρxx(x⃗, t = 0 s)]
, (8.20)
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and similarly for P(ν̄e → ν̄e) with the replacement ρ→ ρ̄. Figure 61 shows the survival probabilities

of νe and ν̄e as functions of time for the three selected (x, y) locations (A, B, and C) in the 2D box,

see Fig. 57. One can easily see that fast pairwise conversions take some time to develop, but then

they reach a “steady-state” configuration and the survival probability stabilizes, despite smaller

scale oscillations, without changing dramatically.

In the presence of flavor conversions, for each (x, y) point in the 2D box, flavor conversions

develop on a time scale shorter than the advective time scale [149]. To take into account the

(anti)neutrino drifting through the 2D box, for each (x, y) location in the 2D box, we translate the

time-averaged neutrino and antineutrino density matrices from each spatial bin to the neighboring

bins after a time ∆t ≃ O(10−7) s, i.e. after the flavor conversion probability in (x, y) has reached a

steady-state configuration; we keep all the parameters within each spatial bin unchanged, except

for following the flavor conversions for smaller time intervals. This procedure is implemented in

an automated fashion as described in Appendix C.1 and it naturally allows to recover the flavor

configuration shown in Fig. 57 in the absence of flavor conversions. We stress that our procedure

automatically allows to take into account the dynamical evolution of the angular distributions as a

function of time, due to neutrinos streaming from the neighboring bins.

As seen in Fig. 61 the (anti)neutrino occupation numbers oscillate around an average value

after the system has reached the non-linear regime. In an astrophysical system, at a given point in

space, only the time-averaged occupation numbers are the relevant quantities as long as the size

of the region over which neutrinos and antineutrinos are emitted is larger than the length scale

over which neutrinos and antineutrinos oscillate. The aforementioned condition should always be

satisfied above the remnant disk because of the short time-scales over which fast flavor conversions

occur.

It is worth noticing that, while Fig. 57 represents the resultant angular distributions of νe and ν̄e

in the absence of flavor conversions across the 2D box, by streaming the oscillated (anti)neutrinos

to their neighboring bins, we also modify the angular distributions dynamically. In Ref. [149], it

was shown the neutrino advection smears the ELN crossings hindering the development of fast

pairwise conversions; such an effect would eventually become efficient on time scales longer than

∆t, i.e. after the steady-state configuration has been reached in our 2D box. Moreover, the ELN



8.4 F L AV O R E V O L U T I O N A B O V E T H E N S - D I S K R E M N A N T 168

0.85

0.90

0.95

1.00

P
(ν
e
→

ν e
)

Location C

Location B

Location A

0 1 2 3 4 5 6 7
Time [10−8 s]

0.85

0.90

0.95

1.00

P
(ν̄
e
→

ν̄ e
)

Figure 61: Temporal evolution of the survival probabilities of νe (top) and ν̄e (bottom) for the three selected

locations A, B and C shown in Fig. 57 (see Eq. 8.20). After a certain time, ∆t ≃ O(10−7) s, the

survival probabilities have reached a steady-state configuration. Minimal flavor mixing is achieved

for all three locations.

crossings in our system are assumed to be self-sustained in time because of the disk geometry and

its protonization.

For a selection of points close to Sν and Sν̄, we have also tested that the growth rate obtained

from the linear stability analysis in Sec. 8.3.4 perfectly matches the linear regime of the numerical

solution. In particular, for the point B in Fig. 57, we find |Im(Ω)|/µ = 0.0489 by numerically

solving the EoM and |Im(Ω)|/µ = 0.049 by relying on the stability analysis. As discussed in

Ref. [147], the dependence of the linear growth rate on ω is overall negligible.

8.4.2 Results

Figure 61 shows the temporal evolution of the νe and ν̄e survival probabilities as discussed in

Sec. 8.4.1. Even though flavor unstable solutions are predicted to exist almost at any location above

the disk of the remnant and the linear stability analysis suggests a large growth rate, as shown in

Fig. 60, our results show that fast pairwise conversions lead to a few percent variation in the flavor
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transition probability. At most, an average value of P(νe → νe) ≃ 0.95 is obtained in our runs;

while the survival probability for antineutrinos can reach slightly lower values, P(ν̄e → ν̄e) ≃ 0.90,

due to the lepton number conservation.

To better explore the development of fast pairwise conversions as a function of the emission

angle, the top panel of Fig. 62 shows ρee and ρ̄ee (respectively proportional to the νe and ν̄e number

densities) as functions of the emission angle θ for the observer located in B in Fig. 57. The angular

distributions are displayed at t = 0 s (i, dashed lines) and at t = 7.5× 10−8 s ( f , solid lines) when

the flavor conversions have reached a steady-state configuration (see Fig. 61 and Appendix C.1).

Initially, the ELN crossings are large for θ ∈ [π/4, π/2]; this triggers fast pairwise conversions of

νe and ν̄e. As t increases, the angular distributions of νe and ν̄e most prominently evolve around

the angular bins in the proximity of the ELN crossing, as highlighted in the middle panel of Fig. 62,

until the density matrices reach a stationary value. In the bottom panel of Fig. 62, one can see that

newly formed νx and ν̄x angular distributions peak in a very narrow θ interval where the ELN

crossings occur. As a result, νx (ν̄x) will predominantly propagate outwards and away from the

remnant symmetry axis, thus having a marginal impact on the polar region of the system.

Figure 63 summarizes our findings across the 2D box by displaying contours of the angle-

integrated density matrix elements for neutrinos (on the left) and antineutrinos (on the right) for

the NS-disk remnant configuration when the steady-state configuration for flavor conversions is

reached. The top panels are almost identical to the ones in Fig. 57 because of the overall small

amount of flavor conversions despite the large instability parameter and growth rate (see Fig. 60).

From the middle and the bottom panels, we can clearly see that flavor conversions occur in the

region at the edges of the emitting surfaces where ζ is larger, but they have a negligible role in the

polar region above the remnant disk where the neutrino-driven wind nucleosynthesis could be

affected [225].

For completeness, Appendix C.2 includes results of a high resolution run performed in the

red box in Fig. 63. The overall amount of flavor conversions is comparable in the low and high

resolution simulations; for this reason, we have chosen to rely on simulations with lower resolution

in order to explore a larger region above the remnant disk.
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Figure 62: Top: Density matrix elements ρee(θ) (in red) and ρ̄ee(θ) (in blue) as functions of the emission angle

θ at t = 0 s (dashed curves, i) and at t = 7.5× 10−8 s (solid curves, f ) at the selected location B of

Fig. 57. The density matrix elements are normalized to ρtot. Middle: Relative difference between the

final state ( f ) and initial state (i) of ρee(θ) (red) and ρ̄ee(θ) (blue), respectively. Bottom: Same as

the top panel, but for the density matrix elements ρxx(θ) (black) and ρ̄xx(θ) (green). Fast pairwise

conversions only affect the tail of the angular distributions of νe and ν̄e inducing minimal changes.
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Figure 63: Contour plots of the angle-integrated elements of the density matrices ρ(x⃗, θ, t) (one the left) and

ρ̄(x⃗, θ, t) (on the right) for the NS-disk remnant configuration normalized to the maximum total

particle number within the box i.e.
∫

dθ(ρee + ρ̄ee + 2ρxx), after ∆t = 10−7 s, after the flavor

distribution has reached a steady-state configuration. Three selected locations (A, B, and C) are

highlighted (see Fig. 57). The red box defines the region scanned with higher spatial resolution, see

Appendix C.2 for details. As also shown in Fig. 60, fast pairwise conversions are more prominent

near the edges of the neutrino sources. A small amount of νx’s and ν̄x’s is produced through fast

pairwise conversions within the narrow opening angles at the edges of the neutrino surfaces. The

ELN crossings are almost vanishing along the axis of symmetry leading to practically no flavor

conversions in the polar region above the NS-disk remnant.
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By comparing Figs. 60 and Fig. 63, we conclude that the high linear growth rate of fast pairwise

conversions does not imply an overall large flavor conversion in the non-linear regime. However,

we should stress that ours is the first numerical study of fast pairwise conversions above the merger

remnant in the non-linear regime; as such, for the sake of simplicity, we have neglected the collision

term in EoM. The collision term may potentially play a significant role, also because it generates

a backward flux of (anti)neutrinos [134, 262], which is neglected in our setup. A better refined

modeling of the neutrino conversion physics may affect the flavor outcome with implications for

the r-process nucleosynthesis [196, 225].

8.4.3 Results for other NS-disk configurations

In order to gauge how our findings are modified for different configurations of the NS-disk

remnant, in this section we vary the νe–ν̄e asymmetry parameter, a (see Eq. 8.3) within the range

allowed from hydrodynamical simulations [287], as well as the relative ratio between the sizes of

Sν̄ and Sν (R̄/R).

Figure 64 shows a contour plot of the maximum of the instability parameter ζ (Eq. 8.10, computed

in the absence of flavor conversions) computed across the 2D box for each (R̄/R, a). The markers

in Fig. 64 highlight three disk configurations that we have evolved numerically; the NS-disk

configuration introduced in Sec. 8.2 is correspondent to (R̄/R, a) = (0.75, 2.4) (blue circle in

Fig. 64). The conversion probability in the steady-state regime is P(νe → Pνx ) ≃ 0.02 for the

NS-disk configuration introduced in Sec. 8.2 and tends to become larger for a smaller relative

ratio of R̄/R [green diamond, P(νe → Pνx ) ≃ 0.04] and even more for the red triangle, where the

instability parameter is maximal [P(νe → Pνx ) ≃ 0.06], which however probably corresponds to an

extreme R̄/R ratio not realizable in astrophysical environments. Our findings suggest that flavor

equilibration due to fast pairwise conversions is never achieved in our setup, despite the large

growth rate predicted by the linear stability analysis. In addition, the regions in the 2D box that

are most unstable are located in the proximity of the edges of the neutrino source, and no flavor

conversions occur in the polar region above the NS-disk.
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Figure 64: Contour plot of the maximal value of the instability parameter (Eq. 8.10) in the parameter space

defined by the relative ratio between the ν̄e and νe source sizes (R̄/R) and the νe–ν̄e asymmetry

parameter (a). For each point in the parameter space, corresponding to a NS-disk configuration,

the maximum value of ζ is computed in the absence of oscillations. In order to gauge the overall

amount of flavor conversion, the three colored diamonds represent three NS-disk configurations

for which we have tracked the flavor evolution numerically. The transition probability is reported

in the legend for each of the three selected configurations. A slightly larger transition probability is

obtained for smaller R̄/R ratios.
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8.5 F L AV O R E V O L U T I O N A B O V E T H E B H - D I S K R E M N A N T

We now extend our exploration of the phenomenology of fast pairwise conversions to the BH-torus

configuration. In this case, the neutrino (antineutrino) source, SBH
ν (SBH

ν̄ ), is identical to the NS-

disk remnant case except for an inner edge located at RBH = 1/3R [47] in correspondence of the

innermost stable circular orbit, i.e. the sources do not emit particles for x ∈ [L/2−RBH, L/2+ RBH];

all other model parameters are identical to the ones introduced in Sec. 8.2. We observe that, in the

case of the BH remnant, the neutrino and antineutrinos average energies are slightly higher than

in the case of the massive NS remnant, see e.g. [225, 293]. However, since minimal variations in ω

do not affect the final flavor configuration [147], we keep ω unchanged for simplicity.

Figure 65 shows the resultant angle-integrated density matrices for neutrinos and antineutrinos.

By comparing Figs. 63 and 65, we can see that differences appear in the proximity of the inner

source edges and just above the polar region, but the flavor distributions are comparable at larger

distances from the source. Also, in this case, the most unstable regions appear in the proximity of

the source external edges and minimal flavor conversions take place in the polar region, although

more pronounced than for the NS-disk remnant configuration (see the bottom panels of Fig. 65

and Fig. 63).

Our findings suggest that the flavor equipartition assumption adopted in Ref. [225] to explore

the implications on the nucleosynthesis of the heavy elements is difficult to achieve for our BH-disk

configuration, despite the large growth rate predicted by the linear stability analysis (see Sec. 8.3.4).

Similarly to the NS-disk configuration, the most unstable regions are located in the proximity of

the edges of the neutrino sources. However, in this case, minimal conversions occur in the polar

region above the BH-disk where the neutrino wind may dominate the r-process outcome; these

findings are in rough agreement with the unstable regions reported in the top panel of Fig. 7 of

Ref. [225] where a growth rate of the same order of the one plotted in the right panel of Fig. 60 was

obtained.

It is worth noticing that Ref. [225], by studying the evolution of the BH-torus as a function of

time, reported an excess of νe with respect to ν̄e in the polar region at late times (e.g., after 20 ms) as

a result of the dynamical evolution of the merger remnant. This effect is not taken into account in
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Figure 65: Same as Fig. 63 but for the BH-disk remnant configuration. Despite the differences in the source

geometry, the final flavor configuration is comparable to the NS-disk remnant configuration.

This suggests that the specific details of the source geometry do not lead to final state flavor

configurations that are dramatically different.

our simplified BH-disk, since we focus on a smaller time interval [∆t ≃ O(10−7) s] and we do not

take into account modifications of the neutrino emission properties due to the dynamical evolution

of the remnant.
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8.6 O U T L O O K A N D C O N C L U S I O N S

Neutron star merger remnants are dense in neutrinos, and the occurrence of electron lepton

number (ELN) crossings between the angular distributions of νe and ν̄e seem to be ubiquitous

as a natural consequence of the disk protonization and the source geometry. If fast pairwise

conversions of neutrinos should occur, leading to flavor equipartition, this has been shown to lead

to major consequences for the synthesis of the elements heavier than iron and the related kilonova

observations [196, 225]. However, the existing literature on the subject focuses on predicting the

existence of eventual flavor unstable regions by relying on the linear stability analysis.

In the light of the possible major implications for the source physics, for the first time, we solve

the flavor evolution above the disk remnant in a (2+1+1) dimensional setup: two spatial coordinates,

one angular variable, and time. This is the first computation of fast pairwise conversions above the

merger disk in the non-linear regime.

For simplicity, we adopt a two-dimensional model with two coincident νe and ν̄e neutrinospheres,

and a different size for the two sources. We look for the final steady-state configuration in the

presence of fast pairwise conversions by neglecting the collisional term in the equations of motion

and by mimicking a configuration where a massive neutron star sits at the center of the remnant

disk (NS-disk configuration) and a configuration with a black hole remnant (BH-disk configuration).

In addition, we scan the parameter space of the possible disk model parameters predicted by

hydrodynamical simulations to test the robustness of our findings.

We find that the most unstable regions favoring the occurrence of fast pairwise conversions are

located in the proximity of the edges of the neutrino emitting surfaces. Only a minimal flavor

change occurs in the polar region above the merger remnant in the BH-disk configuration, but flavor

conversions are almost absent in the surroundings of the polar region in the NS-disk configuration.

Fast pairwise flavor conversions are triggered early on and a steady-state configuration for the

flavor ratio (modulo small high frequency modulations) is reached within O(10−7) s.

Even though flavor unstable solutions are predicted to exist almost at any location above the

disk of the remnant with a large growth rate, as already shown in the literature, our results point

towards minimal flavor changes (< 1%), which would suggest a negligible impact of fast pairwise
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conversions on the r-process nucleosynthesis. However, our findings should be taken with caution

given the approximations intrinsic to our modeling. An interplay between fast and slow ν–ν

interactions in the context of the matter-neutrino resonance [192, 194, 195, 222, 287–289] may occur,

and a full solution of the flavor evolution in 3D may change the flavor outcome yet again.

This work constitutes a major step forward in the exploration of fast pairwise conversions in the

context of compact merger remnants from a quantitative perspective. Our findings suggest that a

complete modeling of the neutrino flavor conversion physics should be taken into account in order

to make robust predictions for the electromagnetic emission expected by the merger remnant and

its aftermath.

8.7 C R I T I C A L O U T L O O K

8.7.1 Overview and main findings

The description of the flavor evolution of neutrinos in compact binary merger remnants is intrin-

sically complex (Chapter 4). Similar to core-collapse supernovae (Chapter 3), the time scale for

the development of flavor conversion can be much shorter than the dynamical time scale. During

the merger phase (Sec. 4.1), the NS is disrupted, ejecting material into the surroundings. This

dynamical ejecta is mainly launched along the equatorial direction within the first milliseconds

post-merger. Matter continues to be ejected after the dynamical phase for∼ 10 s, resulting in a wind

ejecta, in which neutrinos can dominate due to the relatively lower matter densities along the polar

regions. In Fig. 66 we show a schematic representation of the torus of the remnant and its ejecta.

Due to the extreme neutrino densities near the neutrino decoupling regions, neutrino-neutrino

interactions cannot be neglected: neutrino flavor conversion could potentially affect the neutron-to-

proton ratio Ye, the associated kilonova observations and the location of matter-neutrino resonant

transitions (Sec. 4.3.1). However, the computational resources to model 3D general-relativistic,

magneto-hydrodynamical simulations of compact binary mergers that include realistic neutrino

transport are not yet available [87]. Thus, the flavor evolution of neutrinos is decoupled from

state-of-the-art hydrodynamic simulations. Most works that attempt to "interface" neutrino flavor
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Figure 66: Schematic representation of the torus (disk) of the merger remnant and its ejecta. The compact

object (CO) in the center can be a NS or a BH; as far as neutrinos are concerned, both scenarios are

qualitatively very similar, with a less massive neutrino-driven wind in the case of a BH remnant.

The dynamical ejecta (violet) is the first to be launched, followed by the neutrino-driven (green)

and the viscously-driven (orange) ejecta. The neutrino-driven wind can dominate the ejecta in the

polar region. Image taken from [87].

conversion and hydrodynamics either assume equipartition among neutrino flavors based on

the existence of large growth rates of instabilities [196, 225, 226, 231] or employ an approximate

treatment of neutrino transport [229, 230, 232, 295]. In Chapter 5 we have described in detail why

this approach is not always correct and how it can lead to misleading conclusions.

Instead, in the work presented in this Chapter, we focus on a self-consistent multi-dimensional

simulation of the neutrino flavor evolution above the disk of the remnant and look for a steady

state of the system. Although this is a simplified model and does not include the many complexities

involved in state-of-the-art hydrodynamical simulations, ours is the first calculation of its kind that

tracks the evolution of flavor in two spatial dimensions, one angular variable and time. Moreover,

we account for the (approximate) geometry of the merger, the natural excess of ν̄e over νe due

to protonization, neutrino advection (Chapter 7) and neutrino refraction with the background

medium (Chapter 5).

The NS-disk and BH-disk merger remnant configurations assume that the decoupling regions

of neutrinos and antineutrinos are 1D regions with different sizes that perfectly overlap with

each other, see top panel of Fig. 67 for representative neutrino emission configurations for the
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considered merger models. Although, in reality, the (anti)neutrino decoupling regions are expected

to be spatially well-separated regions, we assume a "line model" system to focus on the neutrino

flavor evolution above the disk of the remnant. We look for the final steady-state of the system in

the presence of neutrino fast flavor conversion and neutrino advection (reached within 10−7 s of

evolution), ignoring possible contributions from the collision term [150, 152, 233, 251, 252] which

we leave for future work.

Our results are robust within our assumptions. We have scanned the parameter space of the

possible disk model parameters predicted by hydrodynamical simulations and found similar

results. As reported in Fig. 67, we find that the regions with largest growth rates (Im(Ω/µ0) ≃

10−2 − 10−1, with µ0 = µ(y = 0) = 105 km−1) are located in the vicinity of the edges of the

neutrino decoupling regions (y ≃ 5 km), see middle and bottom panels of Fig. 67.

Notably, despite the large growth rates, we find minimal flavor conversion occurring in the polar

region of the BH-disk remnant, while almost absent flavor conversion is found in the same region

of the NS-disk remnant. The results for the NS- and the BH-disk systems are qualitatively very

similar because the emission properties of (anti)neutrinos are almost the same in both cases, except

for the emission in the polar region where, in any event, the ELN angular distributions have either

tiny or no angular crossings at all.

Even though flavor unstable regions are ubiquitous above the disks of merger systems (Sec. 4.3.1),

in agreement with Refs. [196, 225, 231], our results point toward minimal flavor changes (<

1%), which suggests that the assumption of flavor equilibration might be unrealistic in some

cases, in agreement with Ref. [233]. In other words, the final flavor outcome should be modeled

appropriately in the non-linear regime, and flavor equilibration should be better motivated beyond

simple arguments based on either the linear stability analysis or the presence of ELN crossings.

8.7.2 Limitations and future perspectives

The results presented in this Chapter should be cross-checked within a less constrained framework,

including more degrees of freedom and realistic neutrino and matter profiles. Although ours

is the first simulation of its kind, more work in this direction is needed to reveal new insights
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Figure 67: Contour plots of the angle-integrated entries of the density matrix for neutrinos ρ(x⃗, θ, t) for two

compact binary merger remnant configurations. The evolution of ρ̄(x⃗, θ, t) is very similar and

described in detail later in this Chapter. We consider a NS-disk (left) and a BH-disk remnant

configuration. Fast flavor conversion is more prominent near the edges of the neutrino decoupling

regions (here assumed to be 1D). A small amount of νx’s and ν̄x’s is produced through fast flavor

conversion within the narrow opening angles at the edges of the neutrino surfaces. The ELN

angular crossings are almost vanishing along the polar axis leading to minimal flavor conversion.

Both NS- and BH-disk remnants show qualitatively similar results.
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into the flavor conversion in merger remnants and its impact on the associated merger remnant

observations (Sec. 4.1).

8.7.2.1 Spatially separated decoupling regions

One of the main limitations of the merger remnant system adopted in this Chapter is the modeling

of the νe and ν̄e decoupling regions. These are 1D dimensional regions of different lengths, both

co-linear to each other. However, in reality, the (anti)neutrino decoupling surfaces are spatially

well-separated regions; see, for instance, Fig. 25 or Fig. 9 of Ref. [50], where one can see the emitting

surfaces varying across the spatial domain only as a function of distance. With this more realistic

setup, one can no longer assume some representative ELN angular distributions as we did in the

free-streaming regime, but the neutrino equations of motion should dynamically determine them.

Recent works dealing with complex neutron star merger setups [225–232] can guide us in assessing

possible flavor unstable regions and approximately gauge the impact of flavor conversion on the

merger environment; however, they cannot conclusively answer how neutrino flavor evolves in

the interior of the decoupling regions.

8.7.2.2 Flavor transformation and decoupling

Allowing for spatially separated decoupling regions comes with new conceptual and numerical

challenges, mainly because neutrinos are still partially or entirely coupled to the plasma at these

locations. Inevitably, one faces the challenge of dynamically determining the angular distributions

of neutrinos as they gradually decouple from the plasma: they should come as a result of flavor

evolution, neutrino propagation, and neutrino interactions with the background medium. In the

context of CCSNe, the recent works in Refs. [233, 251] show that flavor conversion occurs while

they are still decoupled to matter, thereby dynamically modifying the angular distributions of all

other neutrinos species and affecting the location of the emitting surfaces. Such a simulation in

the context of compact binary merger remnants is not available yet, and due to the less symmetric

merger configurations compared to a CCSNe, it is unclear whether these results would also be valid

for the merger scenario. However, these works highlight the importance of the interplay between

neutrino gradual decoupling and flavor transformation and call for more work on modeling the

neutrino decoupling regions.
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8.7.2.3 Dependence on neutrino energy

Another limitation of the work in this Chapter is the assumption of mono-energetic (anti)neutrinos.

Therefore, one should be careful about two essential aspects when assuming single-energy config-

urations. First, the on-set and the frequency of flavor conversion can be modified as a function

of the neutrino energy [147]. Secondly, in connection to our previous points, the collision rates

are also functions of the neutrino energy and time [295–298]. Due to the fast neutrino conversion

rate in the proximity of the decoupling regions, the time dependence can be ignored; however,

different neutrino energies will inevitably result in different decoupling regions among neutrino

species and therefore different flavor dynamics.

8.7.2.4 Presence of matter-neutrino resonances

Although in our merger simulations we have included a spatially-varying neutrino interaction

strength µ(|⃗x|) (Fig. 59), we have assumed a homogeneous and isotropic matter background that

is constant across the simulation domain. In reality, the matter potential can change non-trivially

as a function of distance, see for instance Figs. 23 and 23, leading to a MNR transitions (Sec. 4.2)

in locations of the merger remnant where Hνν(x⃗) and Hmat(x⃗) are equal in magnitude and have

opposite signs. As shown in Fig. 23, the MNR condition (Eq. 4.5) can be fulfilled around 30 km from

the neutrino decoupling regions, thereby leading to almost maximum favor conversion within the

radial interval 30− 80 km. However, in the work presented in this Chapter, we have shown that

the regions very close to the neutrino decoupling regions are the most prone to convert flavor due

to FFC (see Fig. 63), which means that if MNR transitions were to occur in our simulation domain,

they will most likely not affect our results within the first 10− 20 km from the decoupling regions

but further out. The latter, however, has not been verified explicitly and remains to be investigated

in a dedicated study.
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M A T T E R B U L K V E L O C I T Y : N O N - I S O T R O P I C M A T T E R

D I S T R I B U T I O N S A N D T H E I R I M P L I C A T I O N S

Based on: Ian Padilla-Gay, Shashank Shalgar, Fast flavor conversion of neutrinos in presence of matter

bulk velocity, Phys. Rev. D under review, arXiv:2108.00012.

A B S T R A C T A dense gas of neutrinos and antineutrinos can undergo fast pairwise conversions

near the decoupling regions of core-collapse supernovae and in compact binary neutron star

mergers. The flavor dependent neutrino heating can play a role in sustaining convection inside the

hot and dense matter. In this paper, we study the unexplored effect of the bulk velocity of matter on

fast pairwise conversions and demonstrate that neutrino flavor conversions could be significantly

enhanced or suppressed depending on the direction and magnitude of the bulk velocity. The bulk

velocity of matter, which is usually neglected in the context of neutrino oscillations, can reach

values of one-tenth of the speed of light in astrophysical environments. We find that bulk velocities

much smaller than the maximum allowed velocities can substantially change the neutrino flavor

conversion rate. The demonstration of possible enhancement of neutrino flavor conversion rate

due to the bulk velocity of matter also raises several important issues relevant to the supernova

mechanism. Future studies with realistic velocity profiles could elucidate the possible implications

on the phenomenology of core-collapse supernovae and neutron star mergers.

9.1 I N T R O D U C T I O N

Core collapse supernovae are one of the densest astrophysical objects which copiously produce

neutrinos. Three flavors of neutrinos and antineutrinos are produced within about 10 seconds

which carry most of the energy produced in the supernova. The neutrinos produced within

183
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this short duration play a vital in the supernova explosion mechanism according to the delayed

neutrino-driven supernova explosion mechanism [299]. The neutrino-driven explosion mechanism

is often invoked to explain the revival of the shock after it loses its energy photo-dissociating

iron group nuclei in the outer parts of the core. The stalled shock is revived because of the

nonuniform deposition of energy by neutrinos in the outer envelope of the supernova, which leads

to convection, resulting in convection driven hydrodynamical instabilities [144].

The energy deposition by neutrinos is flavor dependent as the electron type neutrinos have a

larger cross section with matter than non-electron type neutrinos. The presence of flavor conversion

at the right time and radius can thus affect the energy deposition by neutrinos and their role in the

supernova mechanism. Neutrino flavor conversions can play a role in modifying the neutrino-

driven explosion mechanism only if the flavor conversions can occur relatively early and at small

radii where the densities are extremely large.

However, the computation of neutrino flavor evolution in dense astrophysical environments

such as supernovae is a highly challenging task. Due to the high number density of neutrinos, the

neutrino flavor evolution is nonlinear due to the coherent forward scattering of neutrinos from

other neutrinos [250], known as neutrino self-interactions. This phenomenon is similar to the

well-known MSW effect [59, 65]; however, in the case of neutrino self-interactions, the equation

of motion that governs the flavor evolution is nonlinear, and this leads to a rich and interesting

phenomenology.

One of the first numerical implementations of the neutrino self-interactions in supernovae made

several simplifying assumptions, like perfect spherical symmetry and instantaneous decoupling

of all neutrinos at the same radius [82, 83, 89, 91]. However, the simplifying assumptions made

in the earlier calculations were found to be unjustified for several reasons. First, the nonlinear

evolution of neutrino flavor evolution can lead to spontaneous breaking of symmetries initially

present in the system [104, 110, 261], due to which flavor transformations can occur in much

denser environments. However, the numerical simulations carried out in the simplified setup

demonstrated conclusively that neutrinos with different momenta evolve in a ‘collective’ manner

in the presence of neutrino self-interactions. The term ‘collective neutrino oscillations’ is often

used to refer to neutrino flavor evolution in the presence of neutrino self-interactions as a result.
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Also, the non-instantaneous decoupling of neutrinos can lead to different angular distributions

with different flavors, and in some cases, lead to angular distributions that have a crossing in the

electron lepton number (ELN) [239]. A crossing in the ELN is a necessary and sufficient condition

for the general case of an inhomogeneous neutrino ensemble [236]; however, in the homogeneous

case, which we assume throughout this work, only a particular class of ELN crossings lead to

flavor instabilities. In other words, the ELN crossing by itself is not a sufficient condition if spatial

homogeneity is assumed.

Unlike the slow collective neutrino flavor evolution studied earlier [82, 83, 89, 91], which can

occur only in environments for which the neutrino self-interaction potential is comparable to the

vacuum frequency, the fast flavor conversions can occur in much larger densities.

The large density of neutrinos in the vicinity of the proto-neutron star (PNS) may foster fast

conversions [87]. The local (anti)neutrino number density determines the timescale on which fast

pairwise conversions occur. For typical values of the neutrino densities near the decoupling region,

fast oscillations could take place on a scale as small as a few nanoseconds (i.e., a few meters) [155,

156, 158, 166, 265], with the possibility of pair conversions taking place in the deep interior of

supernovae [172]. Although there has been a serious discussion regarding the role neutrino flavor

conversions may play in instigating convection [300–302], in this paper, we focus on the converse;

the effect of convection on neutrino flavor evolution. It should be noted that in the past, there have

been studies of nontrivial matter profiles on collective neutrino flavor evolution, but they have

been mostly limited to the study of the possible effect of turbulence and the small scale spatial

variations that can induce parametric resonances [303–308].

We study the effect of the bulk velocity of matter on fast pairwise conversions. Depending on the

direction of the bulk velocity and the magnitude, neutrino flavor conversions may get enhanced

or suppressed. In the convective region of supernova, the bulk velocity of matter can, therefore,

can lead to enhancement in some regions and suppression in other regions. This can lead to a

differential in the neutrino heating rate, which could feed the convection.

However, it should be noted that the existence of large number densities of neutrinos is not

restricted to the interior of supernovae. Large number densities of neutrinos are produced in the

immediate aftermath of neutron star mergers, where favorable conditions for the development of
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fast flavor conversions may exist [196, 225]. Although the neutrino flavor evolution is not expected

to play a role in the dynamics of the neutron star mergers, the synthesis of heavy elements by

r-process can be affected by neutrino flavor evolution [226, 231]. A detailed study on the flavor

evolution of neutrinos in compact binary objects [242] demonstrated that even in the presence of

favorable conditions, the mixing of neutrinos might be minimal, suggesting that the assumption of

flavor equipartition may overestimate the flavor conversion rate. Also, the large bulk velocities of

matter are present in the region where neutrino flavor evolution occurs [287, 309, 310]. However,

the geometry of neutron star mergers is typically more complicated than that of a supernova.

Although the results obtained in this paper would have significant implications for neutrino

flavor evolution in the context of neutron star mergers, we do not comment on the relevant

phenomenological implications.

Several complications can arise even in the case of a supernova, which makes a realistic estimate

of the role of the bulk velocity extremely challenging. In this paper, we thus focus on a simplified

case of quantifying the effect of the bulk velocity of matter in some representative setups involving

a homogeneous neutrino gas.

The paper is organized as follows: In Sec. 9.2, we introduce the equations of motion for neutrino

flavor evolution in a medium that is not isotropic in nature. The source of the anisotropy of the

medium is discussed and derived from the bulk velocity in Sec. 9.3. In Sec. 9.4, we demonstrate

the enhancement of neutrino flavor transformation due to the presence of the bulk velocity. In

Section 9.5, we demonstrate the agreement between our numerical simulations and the semianalyt-

ical technique of linear stability analysis. Section 9.6 presents the main results of this paper in the

form of showing the effect of bulk velocity on the evolution of the neutrino flavor evolution by

considering the evolution of a family of angular distributions parameterized in a simple manner.

Finally, in Sec. 9.7 we conclude and offer an outlook.

9.2 N E U T R I N O E Q U AT I O N S O F M O T I O N I N D E N S E M E D I A

This section describes the equations of motion governing the flavor evolution of neutrinos in

the presence of a neutrino and electron background. Among other simplifications, we assume
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a two flavor system where νe is the electron flavor and νx represents a mixture of the νµ and ντ

flavors. The flavor content of the neutrinos and antineutrinos can, therefore, be encoded by a 2× 2

density matrix, which we denote by ρ and ρ̄, respectively. However, the two flavor approximation

has its limitations in the context of fast flavor conversions [148, 159, 187], the formalism used in

this paper can be extended to the three flavor case, and the central premise of the results remain

unchanged. It should be noted that the three flavor effect acts sequentially for the slow collective

phenomenon [98, 101–103], but that is not the case for fast flavor conversions.

Fast flavor conversions can be expected to occur in dense regions of supernovae where the effect

of collisions cannot be ignored. For simplicity, we also ignore the effect of momentum changing

collisions, which can dramatically enhance the flavor conversions rates depending on the initial

conditions used in the simulations [150].

We also assume that the angular distribution of neutrino has azimuthal symmetry with respect

to the radial direction, even though the azimuthal symmetry breaking effects in the case of fast

flavor conversion can have interesting consequences [183]. Because of this simplifying assumption,

the angular distribution of neutrinos can be expressed in terms of a single polar angle denoted by θ.

We also ignore the effect of spatial inhomogeneity that can arise in collective neutrino oscillations

so that the evolution neutrino flavor only depends on the polar angle, θ, and time, t. Furthermore,

for simplicity, we assume that (anti)neutrinos are of a single energy. The density matrices for

neutrinos and antineutrinos are given by

ρ(θ, t) =




ρee ρex

ρ∗ex ρxx


 and ρ̄(θ, t) =




ρ̄ee ρ̄ex

ρ̄∗ex ρ̄xx


 , (9.1)

where the diagonal terms are related to the occupation number of a given flavor of (anti)neutrinos

while the off-diagonal terms describe the coherence between flavors. The equations of motion for a

homogeneous neutrino gas can in general be written as the Heisenberg equations,

i
∂

∂t
ρ(θ, t) = [H(θ), ρ(θ, t)] , (9.2)

i
∂

∂t
ρ̄(θ, t) = [H̄(θ), ρ̄(θ, t)] . (9.3)

In the case of a homogeneous neutrino gas, the total and the partial derivative can be used

interchangeably on the left-hand side. However, if the assumption of homogeneity is relaxed,
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the left-hand side needs to be replaced by a material derivative consisting of a time derivative

and an advective term. The advective term can modify the neutrino flavor evolution for an

inhomogeneous initial condition, but we ignore this effect here [149].

The Hamiltonian receives the contributions from neutrino vacuum oscillations, electron-neutrino

coherent forward scattering and neutrino-neutrino coherent forward scattering,

H(θ) = Hvac + Heν(θ) + Hνν(θ) . (9.4)

The vacuum term is proportional to the characteristic vacuum frequency ω = ∆m2/2E,

Hvac =
ω

2



− cos 2ϑV sin 2ϑV

sin 2ϑV cos 2ϑV


 . (9.5)

Here, we assume that all (anti)neutrinos have the same energy E to mimic the evolution of neutrinos

with an energy distribution peaking at the value E [147]. For antineutrinos we can obtain H̄ by

replacing ω → −ω in Hvac.

The flavor transition probability is modified due to the presence of electrons in the medium. The

modification of neutrino flavor conversion probability depends on the electron number density and

the direction of motion. In the absence of a bulk velocity in the medium, the direction dependence

of the matter effect averages out to zero. It is thus common to ignore the angle dependence of the

matter term in the Hamiltonian. However, ignoring the angle dependence is an approximation

and the proper expression for the matter term in the most general case is,

Heν(θ) = λ
∫

d(cos θ′)
[

Je(θ
′)− J̄e(θ

′)
]
[1− v⃗ · v⃗e] , (9.6)

where λ ≡
√

2GFne parametrizes the strength of matter potential, which is proportional to the

Fermi constant, GF and the number density of electrons, ne. The quantities Je(θ′) and J̄e(θ′) describe

the angular distribution of the momentum of electrons and positrons, respectively, and normalized

such that the
∫ 1
−1 Je(θ′)d cos θ′ = 1. We ignore the positron density hereafter. Moreover, v⃗ and v⃗e

are the velocities of the test neutrino and the matter background, respectively. For an homogeneous

system, the momentum or angular distribution of electrons can be completely described by the

bulk velocity denoted by v⃗b. In other words, in the absence of spatial inhomogeneities, the only

source for anisotropy in the matter distribution stems from the bulk motion of matter pointing

along one preferred direction.
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The standard matter effect considered in the literature is obtained by having a vanishing con-

tribution from the term v⃗ · v⃗e in Eq. 9.6. However, in the interior of a supernova, the matter can

flow near the neutrino decoupling region either due to the matter infall onto the proto-neutron

star or due to plumes of heated matter rising radially outwards, rendering the term v⃗ · v⃗e angle

dependent. The velocity in question is much smaller in magnitude than the speed of light but not

small enough to be negligible.

The magnitude of the bulk velocity in the vicinity of the neutrino decoupling region can be as

large as |⃗vb| ≃ 0.1 [311]. We assume that neutrinos travel at the speed of light, |⃗v| = 1, where all

velocities are expressed in units of speed of light unless otherwise specified. Therefore, Heν can be

written as,

Heν(θ) = λ
∫

d(cos θ′)Je(θ
′)
[
1− cos θ cos θ′

]
. (9.7)

Notice that assuming an anisotropic momentum distribution of electrons, i.e., their bulk velocity is

not zero, introduces a new contribution to the equations of motion, which is captured by Eq. 9.7.

The angular dependence of Je(θ′)d(cos θ′) is determined by v⃗b alone as described in section 9.3.

The third term in the Hamiltonian is the neutrino self-interaction term which describes the

potential experienced by neutrinos due to other neutrinos in the medium,

Hνν(θ) = µ
∫

d(cos θ′)
[
ρ(θ′, t)− ρ̄(θ′, t)

] [
1− cos θ cos θ′

]
, (9.8)

where µ parametrizes the interaction strength of neutrinos among themselves and is proportional

to the number density of (anti)neutrinos. The velocity dependence for the neutrino self-interaction

potential is the same as the matter potential due to the vector-vector coupling of weak interactions

in both cases.

We focus on the evolution of the neutrino flavor due to the matter term and self-interaction term

and set ω = 0. We instead provide a seed to the off-diagonal components of the density matrices

to ensure that our results do not depend on the vacuum Hamiltonian. This ensures that in the

absence of the bulk velocity, the neutrino flavor evolution is bipolar in nature and thus makes a

comparison between different cases easier to illustrate. Since we are interested in the interplay

between Heν and Hνν near the PNS, we assume that the neutrino self-interaction potential and the

electron-neutrino interaction strength are equal to each other, i.e., µ = λ = 105 km−1, which is

representative of the conditions realizable in a supernova in the decoupling region.
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Figure 68: Two dimensional Lambert projections of the function dc̃os θ/d cos θ as shown in Eq. 9.12 for

vr
b = −0.1 (left), vr

b = −0.3 (middle) and vr
b = −0.9 (right). The solid lines are the isocontours of

constant matter distribution to show the symmetry along the azimuthal direction. A non-vanishing

vr
b leads to the effect of relativistic beaming, which is clearly visible for vr

b = −0.9.

It becomes more transparent that the flavor instability condition, mainly determined by crossing

between ρee and ρ̄ee, is modified by a new contribution which is proportional to the ratio λ/µ and

the particular shape of Je(θ)d(cos θ), which can be derived from the value of the bulk velocity.

In the linear regime, there exists a symmetry between the matter term and the K⃗ wave-number

vector. This is evident after accounting for a constant shift (Ω, K⃗)→ (ω, k⃗) [133]. This is expected

to be the case in the linear regime, where adding a non-vanishing bulk velocity for physical K⃗ = 0

maps onto a vanishing bulk velocity for some K⃗ ̸= 0, where the quantities K⃗, Ω, k⃗, and ω have the

same meaning as in [133]. However, our aim is not to bypass a full calculation including spatial

inhomogeneity but to emphasize that even conservative values of the bulk velocity could impact

the fast flavor conversion and the occurrence criteria. Therefore, one should specify whether a bulk

velocity is present for a particular choice of neutrino angular distributions, given that its impact on

the flavor dynamics in the nonlinear regime is not negligible.

9.3 M AT T E R A N I S O T R O P Y

This section describes how the angular distribution of electrons and the bulk velocity are related to

each other. In the absence of bulk velocity, which is generally considered in the literature, the matter

term is independent of direction. Upon introducing a non-vanishing bulk velocity, the matter

term can be thought of as the Lorentz boosted version of the usual matter term. We start with an
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Figure 69: Left: (Anti)neutrino and matter angular distributions according to Eq. 9.13 with δ = −0.02, σν = 0.6

and vr
b = −0.01. Right: Various angular distributions of matter as a function of vr

b; as the magnitude

of vr
b increases the greater is the difference between the forward (cos θ = 1) and the backward

(cos θ = −1) directions.

angular distribution for electrons that would be isotropic for an observer traveling along with the

fluid element. We denote this reference frame by S. On the other hand, we also consider another

reference frame denoted by S̃ which is fixed with respect to the center of the supernova, and in

which the matter travels with a velocity v⃗b. Throughout this paper, the bulk velocity is assumed to

be in either radially outwards or inwards direction. The radial velocity of matter, denoted by vr
b, is

always the same in magnitude as v⃗b, but vr
b can be negative for bulk velocities that are radially

outward. Obtaining the angular distribution of electrons in S̃ can be done straightforwardly, as we

show in this section, and provides us with a unique angular distribution for electrons once the

bulk velocity is specified as long as the electrons are highly relativistic.

The starting point is to consider an isotropic distribution of electrons in reference frame S.

The same isotropic distribution will be peaked along the direction of propagation for another

observer in reference frame S̃. Equivalently, we can calculate the angular distribution of electron

momenta for a given bulk velocity v⃗b by boosting a relativistic isotropic gas. We denote the angular

distribution in reference frame S by fe, which by definition is independent of θ.

The angular distribution for electrons achieved after boosting fe with a given bulk velocity

serves as a good approximation for the angular distribution that can be expected in a realistic

astrophysical system. In order to understand how the anisotropy arises from the inclusion of the

bulk velocity, we define the parallel and perpendicular components of the velocity of electrons v⃗e
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(with respect to the bulk velocity) as v||e and v⊥e , respectively. In the limit of vanishing bulk velocity,

the velocity of electrons v⃗e is isotropically distributed, and the temperature scale determines the

magnitude. In the interior of a supernova, the temperatures are typically much larger than the

mass of the electron, and hence |⃗ve| almost equal to the speed of light. The Lorentz transformed

quantities are denoted by a tilde i.e. ṽ||e and ṽ⊥e . Assuming that the bulk velocity oriented along

the parallel direction i.e. v⃗b ∝ v||e , then, relativistic addition of velocities leads to the following

relations,

ṽ||e =
v||e + vr

b

1 + v||e vr
b

, and ṽ⊥e =
v⊥e

Γ(1 + v⊥e vr
b)

, (9.9)

where Γ = 1/
√

1− [vr
b]

2 and vr
b is the radial component of the bulk velocity as defined earlier in

this section. Due to the velocity transformation the relative angle between electrons changes as a

function of the direction of the bulk velocity v⃗b according to

t̃an θ =
ṽ⊥e
ṽ||e

=
v⊥e

Γ(v||e + vr
b)

=
ve sin θ

Γ(ve cos θ + vr
b)

. (9.10)

Moreover, by substituting the definition of the boosted (unboosted) parallel components ṽ||e =

ṽec̃os θ (v||e = ve cos θ) in Eq. 9.9 and assuming that electrons are highly relativistic i.e. ṽe ≃ ve ≃ 1

we obtain a similar relation to Eq. 9.10 in terms of the cosine of the angle,

c̃os θ =
cos θ + vr

b
1 + vr

b cos θ
. (9.11)

Equation 9.11 can be used to derive the angular distribution of matter. The flux of electrons between

cos θ and cos θ + d cos θ is given by fe(θ)d cos θ in the unboosted frame. The same quantity in the

boosted frame given by f̃e(θ)dc̃os θ is related to the one in the unboosted frame by the following

formula,

f̃e(θ)dc̃os θ = f̃e(θ)
dc̃os θ

d cos θ
d cos θ = fe(θ)

(
1− [vr

b]
2

(1 + vr
b cos θ)2

)
d cos θ , (9.12)

where we have inserted the derivative of c̃os θ with respect to the unboosted variable cos θ.

Moreover, in the last step, we have assumed that f̃e = fe because the contribution from this term

to the anisotropy is a subleading contribution due to the highly relativistic velocities of individual

electrons. The anisotropy of the matter potential thus generated is illustrated in Fig. 68. As the
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Figure 70: Angle-integrated survival probability P(νe → νe) (top panels) and the angle-integrated modulus of

the off-diagonal term ρex (bottom panels) for the scenarios where matter moves radially inward

(left panels) and radially outward (right panels). The role of vr
b ̸= 0 is twofold: Firstly, there is a

enhancement of conversions for vr
b < 0 compared to the vr

b ≥ 0 cases, see top panels. Secondly,

oscillations set in faster i.e., vr
b < 0 leads to larger growth rates such as κ1/µ = 0.0027 (dotted line)

and κ2/µ = 0.0014 (dashed line), as shown in the bottom panels.

bulk velocity increases, the matter potential becomes more and more peaked. Also, we can see

that the matter potential is azimuthally symmetric around the direction of the bulk velocity as

expected.

9.4 F L AV O R E V O L U T I O N F O R A N I S O T R O P I C M AT T E R

The angle dependent matter Hamiltonian derived in the previous section can be used in the

numerical simulation of fast flavor evolution to uncover the effect of bulk velocity of matter. In this
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section, we specify a class of angular distributions for electron-neutrinos and electron-antineutrinos

which are characterized by the parameters σν and δ, which control the width of ρ̄ee and the relative

normalization between ρee and ρ̄ee, respectively. We assume that, initially, the neutrino-dense

environment is dominated by electron-flavor species i.e. ρxx(t = 0) = ρ̄xx(t = 0) = 0. Thus, the

non-vanishing density matrix entries are

ρee(θ) = 0.5 ,

ρ̄ee(θ) = 0.45− δ +
0.1
σν

exp

(
−θ2

2σ2
ν

)
,

Je(θ) = 0.5
1− [vr

b]
2

(1 + vr
b cos θ)2 . (9.13)

We implement the angular distribution for (anti)neutrinos and matter presented in Eq. 9.13 and

focus on the neutrino flavor evolution as Je transitions from the isotropic (vr
b = 0) to the anisotropic

case (vr
b ̸= 0). Fig. 69 shows the effect of radially inward velocity on the angular distribution of the

matter term.

In Fig. 70, we show the impact of the bulk velocity on a representative angular distribution of

(anti)neutrinos (shown in Fig. 69), for various values of the bulk velocity. The top panel shows

the modification due to the bulk velocity that is in the radially inward direction (vr
b < 0), while

the bottom panel shows the modification due to a bulk velocity in the radially outward direction

(vr
b > 0). Figure 70 shows that while it is possible to get an enhancement in flavor conversion

probability due to a bulk velocity that is radially inward, the radially outward bulk velocity tends

to suppress the flavor conversion. The lower panels of Fig. 70 show that the effect of the bulk

velocity on the flavor conversion probability is present in the linear regime of the evolution that is

characterized by ρex ≪ (ρee + ρxx). In the linear regime, the nonlinear equation of motion for the

flavor evolution can be reliably approximated by linear equations of motion that can be solved

semi-analytically. We perform linear stability analysis, characterized by an exponential growth

of the off-diagonal terms of the density matrix, which serves two purposes. Firstly, the matching

growth rates with our numerical simulations support the validity of our numerical simulations.

Secondly, the linear stability analysis demonstrates that introducing the bulk velocity for matter in

the system changes the flavor stability criteria and does not just change the magnitude of flavor
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conversion in the nonlinear regime. The formalism for linear stability analysis used to present the

results in the lower panels of Fig. 70 is presented in the Sec. 9.5.

Figure 70 shows that favorable conditions for fast flavor depend on the interplay between

Hνν and Heν which is visible in the angle-integrated survival probability P(νe → νe). Moreover,

significant neutrino conversions are not achieved for arbitrarily large values of the bulk velocity

vr
b but are only possible when the anisotropy in the matter term is comparable with that in the

neutrino-neutrino self-interaction term. In other words, significant flavor conversions are possible

even for modest values of vr
b that may be realizable in a realistic supernova environment.

9.5 L I N E A R S TA B I L I T Y A N A LY S I S

We validate our numerical runs with semi-analytical estimates using linear stability analysis [104,

110, 129, 135, 261]. Since we are interested in fast pairwise conversions, we study the development

of flavor instabilities in the linear regime and choose the scenario where ω = 0 in order to focus

strictly on the fast pairwise conversions i.e. µ≫ ω [133].

We start by linearizing the EoM and tracking the evolution of the off-diagonal term

ρex(θ) = Q(θ)e−iΩt and ρ̄ex(θ) = Q̄(θ)e−iΩt, (9.14)

where Ω = γ + iκ represents the collective oscillation frequency for neutrinos and antineutrinos. If

Im(Ω) ̸= 0, then the flavor instability grows exponentially with rate |Im(Ω)|. We look for temporal

instabilities for the homogeneous mode.

The off-diagonal component of Eq. 9.2 is

i
∂

∂t
ρex(θ) = Hee(θ)ρex(θ) + Hex(θ)ρxx(θ)

− ρee(θ)Hex(θ)− ρex(θ)Hxx(θ)

= Hee(θ)ρex(θ)− ρee(θ)Hex(θ) , (9.15)

where we have assumed ρxx(t = 0 s) = ρ̄xx(t = 0 s) = 0. By substituting Eq. 9.14 in the equation

above and solving for Q(θ), we obtain

Q(θ) =
ρee(θ)

∫
d(cos θ′)[Q(θ′)− Q̄(θ′)] [1− cos θ cos θ′]

−Ω
µ + A(θ)

,

(9.16)
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Figure 71: Top: Magnitude of the growth rate Im[Ω/µ] as a function of vr
b. The angular distributions of

(anti)neutrinos are fixed by choosing δ = −0.02 and σν = 0.6 as specified in Eq. 9.13, while the

magnitude of vr
b is varied within the interval vr

b ∈ [−0.5, 0.1]. For positive values of vr
b the growth

rates are of order ∼ 10−3, while for negative values vr
b ≲ −0.025 the growth rate increases with

the bulk velocity. This continues until vr
b ∼ −0.3 after which the trend is seen to reverse.

where we have defined the angle-dependent quantity A(θ) as

A(θ) =
∫

d(cos θ′)[ρee(θ
′)− ρ̄ee(θ

′) +
λ

µ
Je(θ

′)]

−
∫

d(cos θ′)[ρee(θ
′)− ρ̄ee(θ

′) +
λ

µ
Je(θ

′)] cos θ cos θ′ . (9.17)

A similar procedure follows for Q̄θ (see Eqs. 9.3 and 9.14). Then, from combining the expressions

for Q(θ) and Q̄(θ), it must be true that

Q(θ)− Q̄(θ) =

[
ρee(θ)− ρ̄ee(θ)

−Ω
µ + A(θ)

]
(a− b cos θ) , (9.18)

where a and b are unknown coefficients. By substituting Eq. 9.18 in Eq. 9.16, we obtain a system of

equations for the coefficients a and b.



a

b


 =



I [1] −I [cos θ]

I [cos θ] −I [cos θ2]







a

b


 = M




a

b


 , (9.19)

where the functional I [ f ] is

I [ f ] =
∫

d(cos θ)

[
ρee(θ)− ρ̄ee(θ)

−Ω
µ + A(θ)

]
f (θ) . (9.20)
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Figure 72: Isotropic case: Time averaged survival probabilities (left panel) and growth rates of the flavor

instability (right panel) for the 2D parametric box. A large portion of the parameter space remains

stable after 10−6 seconds, which is confirmed by the linear stability analysis (right panel). Moreover,

for the parameter points that undergo flavor conversions, the final amount of non-electron flavor is

minimal i.e. ⟨P(νe → νe)⟩ ≃ 0.9.

The system of equations has a not trivial solution if and only if the following condition is met

det(M− 12×2) = 0 . (9.21)

Equation 9.21 is a polynomial equation in the frequency Ω. To search for instabilities, we need to

look for the solutions with Im(Ω) = κ ̸= 0. We find the roots of this polynomial equation using

the SciPy module [294] in Python.

In Fig. 71, we show the dependence of the growth rate, Im(Ω), on the bulk velocity for a

representative case. For radially inward bulk velocity (vr
b < 0) that is not sufficiently large in

magnitude, the effect of the bulk velocity is not significant. However, for larger negative values

of vr
b one can see a dramatic change in the trend around vr

b ∼ −0.025, and the growth rate of the

flavor instability increases with the magnitude of the bulk velocity. This trend continues for values

of vr
b up to ∼ −0.3 after which the trend is reversed. In contrast, for an outward bulk velocity

(vr
b > 0) growth rates are of order∼ 10−3. It should be noted that the neutrino angular distribution

in Fig. 71 is chosen to ensure that the dependence on the bulk velocity can be demonstrated. There

are instances of angular distributions of neutrinos for which the effect of bulk velocity is not so

dramatic.
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Figure 73: Time averaged survival probabilities (left panels) and growth rates of the flavor instability (right

panels) for three selected values of the bulk velocity: vr
b = −0.025 (top panels), vr

b = −0.05 (middle

panels) and vr
b = −0.1 (bottom panels). As the value of the bulk velocity reaches vr

b ≃ −0.025

a new unstable region emerges in the bottom of the 2D parametric box where equipartition is

achieved i.e. ⟨P(νe → νe)⟩ ≃ 0.5. Moreover, not only the conversions to the non-electron flavors

are enhanced but also oscillations take place earlier due to larger growth rates, see left panels.

The presence of increased flavor instability as a result of the radially inward bulk velocity, as

determined by the value of Im(Ω), should not necessarily imply an increased flavor conversion
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Figure 74: Time averaged survival probabilities (left panels) and growth rates of the flavor instability (right

panels) for three selected values of the bulk velocity: vr
b = 0.025 (top panels), vr

b = 0.05 (middle

panels) and vr
b = 0.1 (bottom panels). Qualitatively, the radially outward case is not very sensitive

to the magnitude of vr
b since the time averaged survival probabilities and the growth rates are

very similar to each other. Interestingly, a radially outward matter suppresses oscillations and

resembles, at least qualitatively, the isotropic case.

rate. However, as we show in the next section, the configurations for which the bulk velocity

causes an increase in the flavor instability also result in an increased flavor conversion rate. This
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can be demonstrated by studying the effect of the bulk velocity on several different configurations

of angular distributions, as we do in the next section.

9.6 2 D PA R A M E T R I C G R I D

The results presented Fig. 70 are very general for the angular distributions of the form presented in

eq. 9.13. For all possible values of δ and σν, radially inward bulk velocity can enhance the neutrino

flavor conversion rate, while radially outward bulk velocity always suppresses the neutrino flavor

conversion rate. To demonstrate this, we calculate the growth rate of |ρex| in the linear regime

with and without the inclusion of the bulk velocity. In the linear regime, the growth rate of the

off-diagonal component |ρex| is exponential with time if the system is unstable, and we denote the

growth rate by Im[Ω/µ].

We also calculate the angle-integrated survival probability of electron neutrinos. In some

circumstances, the survival probability of neutrinos is periodic, and the time averaged survival

probability is a much better representation of the amount of neutrino flavor conversion. We

thus rely on the time averaged survival probability of neutrino, averaged over t = 10−6 seconds,

which we denote by ⟨P(νe → νe)⟩, as a measure of the neutrino flavor conversion rate. The time

averaged survival probability underestimates the flavor conversion rate in some instances due to

the significant amount of time required to reach the nonlinear regime, but it is nonetheless a fair

representation for the purpose of this paper.

9.6.1 Isotropic (vr
b = 0)

In Figs. 72 we show the flavor evolution of (anti)neutrinos for a wide range of values of σν and

δ. Each point has a different neutrino angular distribution, while the matter angular distribution

is determined by vr
b = 0 and kept unchanged. This provides a simple way of understanding the

main differences between the isotropic and anisotropic scenarios for a wide range of (anti)neutrino

angular distributions configurations and allows us to understand better which systems deviate
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more strongly from the isotropic scenario. In Fig. 72 we present the time averaged, angle-integrated

survival probability ⟨P(νe → νe)⟩ across the grid.

In the isotropic scenario, the only dimensionful quantity is µ; neutrinos and antineutrinos

oscillate in a bipolar fashion. This is explicitly shown in a particular case in the top panels of

Fig. 70, but this is true for all cases in Fig. 72 where single-crossed ELN angular distributions are

considered.

9.6.2 Radially inward (vr
b < 0)

For comparison with the isotropic case, we perform the same numerical simulations as in Fig. 72

but with vr
b ̸= 0. In particular, each point on the grid has a matter angular distribution determined

by vr
b = −0.025,−0.05 and −0.1, all of which peak in the forward direction i.e., more electrons are

emitted in the forward direction.

In Fig. 73 we present results for the case where the matter has a negative velocity i.e., matter

points along the forward direction. In a realistic supernova scenario, this would qualitatively

correspond to the case where the post-shock material is pushed inward and towards the PNS with

a negative radial velocity.

First of all, because the flavor evolution now depends on two dimensionful quantities µ and

λ, the oscillations are no longer (entirely) bipolar, and the interference caused by the matter term

depends on the ratio λ/µ. In particular, one can see that for some points on the grid, flavor

conversions are unchanged, while in some others, the interference between Heν and Hνν is very

prominent. The reason for the latter is the following. As supported by the linear stability analysis,

the criteria for neutrino oscillations to occur is modified through the introduction of bulk velocity;

thus, one expects that stable parameter points (lower region of panels in Fig. 72) now develop a

flavor instability depending on the magnitude and sign of vr
b. Secondly, a much larger region of

the parameter space spanned by σν and δ undergoes a significant amount of flavor conversions

within the considered time window compared to the isotropic case. We observe an enhancement

of oscillations in Fig. 73 where ⟨P(νe → νe)⟩ ≃ 0.5 for a wider range of configurations.
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The panels on the right side of Fig. 73 show the growth rate of the off-diagonal components of

the density matrix in the linear regime. In the regions that show an enhanced flavor conversion

probability, we also see a change in the growth rate as seen by the opening of the new regions of

the parameter space for which the growth rate increases with increasing magnitude of the bulk

velocity in the inward direction.

9.6.3 Radially outward (vr
b > 0)

For completeness, we investigate the other possible scenario where the radial velocity of the post-

shock material is positive. In particular, each point on the grid has a matter angular distribution

determined by vr
b = 0.025, 0.05 and 0.1, all of which peak in the backward direction.

In Fig. 74 we show the same colormaps and angular distributions as in Fig. 73 but with matter

pointing in the backward direction while keeping the other parameters unchanged. Interestingly,

we see the opposite trend as in the former forward-peaked case. Instead of leading to flavor

equipartition, an anisotropic backward matter potential leads a suppression of oscillations; even

less neutrinos are converted in this case, see Fig. 74 where ⟨P(νe → νe)⟩ ≃ 0.9 at most. Similarly,

in the right panels of Fig. 74, we can see that the results of the linear stability analysis are also

qualitatively unchanged in the case of bulk velocity that is radially outward.

9.7 C O N C L U S I O N S

We show that since the fast flavor evolution of neutrino depends strongly on the angle dependence

of the coherent forward scattering potential, the angle dependence of the matter potential cannot

be ignored. The angle dependence in the matter potential can naturally arise due to the bulk

velocity of matter in astrophysical environments. In some instances, the bulk velocity of matter

present in astrophysical environments can be as large as 10% of the speed of light. We find that

bulk velocities much smaller than the maximum allowed velocities can substantially change the

neutrino flavor conversion rate.
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We obtain quantitative estimates in this paper to support our understanding. There are two

alternative ways of understanding the impact of the bulk velocity of matter on neutrino flavor

evolution. One, on which we heavily rely in this paper, is to consider the problem in terms of

the modification in the angular dependence of the potential experienced by the neutrinos due

to the bulk velocity of matter. The neutrinos traveling in the direction of the bulk velocity of

the matter will see a smaller flux compared to the neutrinos in the opposite direction giving rise

to the angle dependence of the matter potential. Another way to think about the problem is to

consider the problem in the rest frame of the matter. Due to the change in the reference frame, the

angular distribution of neutrinos is changed and could be modified in a way that either enhances

or suppresses the neutrino flavor conversion rates. It should be noted that the two approaches

mentioned here are two different ways of thinking about the same phenomenon; in two different

reference frames.

Notwithstanding, the effect of the bulk velocity on the neutrino flavor evolution is far from

negligible. The necessary condition for the existence of fast flavor instability, the presence of ELN

crossings, remains unchanged. We have explored several cases of neutrino angular distribution

without an ELN crossing to examine whether the anisotropic matter term can lead to fast flavor

instability. However, we could not find a case in which fast flavor conversions were present in the

absence of ELN crossings irrespective of the angle dependence of the matter term. This finding is

not surprising since it is possible to go to a reference frame in which the matter term is isotropic,

and the ELN crossings are features that are not dependent on the reference frame.

Although this paper only considers two extreme possibilities of the bulk of matter that is either

radially inward or outward, this may not be the case in a realistic astrophysical system. However,

we have restricted our analysis to these possibilities not to clutter the analysis with too many

variables. The possible enhancement of neutrino flavor conversion rates due to the bulk velocity of

matter can be demonstrated in the setup considered in this paper.

The demonstration of possible enhancement of neutrino flavor conversion rate due to the bulk

velocity of matter also raises several important issues relevant to the supernova mechanism. In the

widely popular delayed neutrino driven supernova mechanism, the emphasis is on investigating

the role of neutrinos in triggering convection; however, the role of the convective flow of matter in
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triggering neutrino flavor evolution can lead to a feedback mechanism that is either positive or

negative. Future analysis of the subject matter with realistic velocity profiles may be able to shed

more light on the matter.

9.8 C R I T I C A L O U T L O O K

9.8.1 Overview and main findings

In this Chapter, we focus on the impact of non-isotropic matter distributions on the development

of fast flavor conversion, paying particular attention to the final flavor outcome, the non-linear

regime, and the long-term evolution of such non-isotropic configurations1. In particular, we

investigate the effect of matter convection on neutrino flavor conversion. Most of the works

present in the literature have focused before on implementing realistic matter profiles in neutrino

flavor simulations and examined the effect of small-scale turbulence perturbations that induce

parametric resonances [303–308], and the MNR transitions in the context of NS binary mergers

(Sec. 4.3.1).

Our goal is to implement the non-isotropic contribution of the matter term into the neutrino

EOMs (Eqs. 2.74). The motivation for including the non-isotropic matter term is the following. In

astrophysical environments such as CCSNe, the matter field is not static but varies as a function of

location: in some regions, the bulk motion of matter can be radially outward, and in some other

regions, radially inward [311, 312]; see, for instance, Fig. 13 and 15 of Ref. [311]. These two regions

might display different neutrino flavor conversion phenomenology because, depending on the

direction of the bulk velocity, an observer at rest w.r.t. PNS might see an excess of matter either in

the backward direction or in the forward direction, resulting in non-trivial (non-isotropic) angular

distributions of matter.

Moreover, it is worth noting that the reason why the matter term is ignored in the EOMs is

that it can be "rotated away" (Sec. 2.2.7.1) by a convenient change of basis. However, this is only

possible when the matter term is isotropic, i.e., when the term in the matter Hamiltonian [1− v⃗ · v⃗e]

1 Non-isotropy arises from considering that the matter background is not static but moving in bulk at a given velocity. If that

is the case, the thermal average of the electron fields in Eq. 2.21 will receive contributions from µ = 1, 2, 3.
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Figure 75: Angle-integrated survival probability P(νe → νe) (top panels) and the angle-integrated modulus of

the off-diagonal term ρex (bottom panels) for the scenarios where matter moves radially inward

i.e. vr
b < 0 (left panels) and radially outward i.e. vr

b > 0 (right panels), where vr
b is the radial

component of the bulk velocity vector v⃗b. The dashed lines correspond to the growth rates obtained

from the linear stability analysis, which perfectly agrees with our numerical computations.

integrates out to 1, where v⃗e is the velocity of electrons in the medium and v⃗ the velocity of a

test neutrino. In this work, we explore the impact of the non-isotropic contribution of the matter

Hamiltonian on the non-linear behavior of fast flavor conversion.

Near the neutrino decoupling regions, the bulk velocity of matter can be as large as |⃗vb| ≃

0.1 [311]. This value will determine the angular distributions of matter. If the magnitude of the

bulk velocity is zero, the matter background is perfectly isotropic. Otherwise, there will be an

excess of matter in the opposite direction of the matter bulk velocity vector; for instance, if the bulk

velocity is radially inward, an observer at rest w.r.t to the PNS would see more matter (electrons)

coming from the forward direction and less from the backward direction.

Our main findings are the flavor evolution of neutrinos in the presence of a non-isotropic

matter Hamiltonian, here denoted by Heν(θ), where the direction dependence (θ-dependence) is

made explicit. Thus, the matter Hamiltonian resembles the structure of that of neutrino-neutrino
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refraction, with the exception that off-diagonal elements are completely absent in Heν(θ). The

matter term can be written as,

Heν(θ) = λ
∫

d(cos θ′)Je(θ
′)
[
1− cos θ cos θ′

]
. (9.22)

Notice that assuming an anisotropic momentum distribution of electrons, i.e., their bulk velocity is

not zero, introduces a new contribution to the equations of motion, which is captured by Eq. 9.22.

The angular dependence of Je(θ′)d(cos θ′) is determined by v⃗b alone.

In Fig. 75 we summarize our main findings for our benchmark scenario. This chapter explains

how these main results change by considering different initial configurations. The role of vr
b ̸= 0 is

twofold: Firstly, there is a enhancement of conversions for vr
b < 0 compared to the vr

b ≥ 0 cases,

see top panels. Secondly, oscillations set in faster i.e., vr
b < 0 leads to larger growth rates such as

κ1/µ = 0.0027 (dotted line) and κ2/µ = 0.0014 (dashed line), as shown in the bottom panels.

As supported by Fig. 75, we find that bulk velocities much smaller than the maximum allowed

velocities (≃ 0.1c) can substantially change the neutrino flavor conversion rate and the final flavor

outcome. This work demonstrates the possibility of enhancement (suppression) of neutrino flavor

conversion rates depending on whether there is a region in the SN environment with a radially

inward (radially outward) bulk velocity.

9.8.2 Limitations and future perspectives

The results presented in this Chapter assumed the most straightforward possible system to explore

the role of the matter anisotropies on the flavor evolution of neutrinos. Although such a system

allowed us to learn about qualitative features of the flavor evolution for the cases vr
b > 0 and

vr
b < 0, more sophisticated modeling of the matter background medium is needed to gauge the

impact of the bulk velocity quantitatively.

9.8.2.1 Beyond the two-flavor framework

One simplification of our work was the assumption of two-neutrino flavors. The question is

whether our results reported in this Chapter also hold in the three-flavor framework. Direct nu-

merical comparisons between two- and three flavors have recently shown that the flavor evolution
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can be qualitatively very different when including three flavors [148, 187]. The enhancement (sup-

pression) of flavor conversion as a function of vr
b could be affected by the inclusion of additional

neutrino species, see, for instance, Fig. 2 of Ref. [148] where significantly more flavor conversion

occurs in the three flavor case. Future work along this line should include extra neutrino species

and study the role of vr
b on the flavor evolution of νµ, ν̄µ, ντ and ν̄τ .

9.8.2.2 Heavy leptons µ, τ

In connection to the three-flavor treatment described above, one could also include heavy leptons

µ and τ in the content of the matter background. Recent works (Refs. [176, 249]) have explored

the role of a non-negligible abundance of muons and their impact on FFC near the SN core. These

works have shown that although the muons do not affect the development of fast modes below the

SN shock, they still can trigger instabilities in the µ− τ sector. In connection to the work presented

in this Chapter, this means that our matter Hamiltonian (Eq. 9.22) should not only include electron

angular distributions Je(θ, t) (see Fig. 69) but also angular distributions in the muon and tau sectors,

Jµ(θ, t) and Jτ(θ, t), respectively. Whether there is still a qualitatively distinct flavor evolution for

the vr
b < 0 and vr

b > 0 scenarios remains to be explored in future work.
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S U M M A R Y A N D C O N C L U S I O N S

We summarize the main findings and conclusions of the work presented in this thesis and provide

the connection to future research in the field of neutrino flavor conversion in dense astrophysical

environments.

The body of work presented in this thesis has two main goals. The first one (Part ii) is to

unveil new theoretical aspects of non-linear systems with a direct application to neutrino fast flavor

conversion. We hope that the findings presented in that Part help bridge the gap between numerical

simulations and semi-analytical treatments of the development of fast flavor instabilities. The

second one (Part iii) aims to develop new numerical routines to uncover the rich phenomenology

of more complicated (less symmetric) neutrino-dense environments. In the following paragraphs,

we summarize the main conclusions from each work contained in Parts ii and iii.

In Chapter 5, we have explicitly shown that for a homogeneous and azimuthally symmetric

two-neutrino gas, the flavor conversion physics crucially depends on the characteristic of the

initial ELN distribution: similar looking ELN angular distributions can lead to entirely different

flavor outcomes. Furthermore, we have shown that the amount of flavor conversion is not

correlated with the growth rate of flavor instabilities from the linear stability analysis. Interestingly,

the evolution of the ELN flux D1(t) is formally equivalent to a gyroscopic pendulum in the

presence of a gravitational field given by the ELN vector D0. The crucial finding of this work

was the determination of the pendulum parameters (natural frequency and spin) with the real

and imaginary parts of the eigenfrequency Ω from the linear stability analysis. Up to now, it was

unknown that the real part of Ω could offer any valuable information on the flavor dynamics, and,

to our surprise, it encodes the maximum amount of conversion that the system can display as

a function of time. The latter is a novel, powerful result that could be applied for more general

scenarios to gauge the impact of flavor conversion in neutrino gases.

209
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The study presented in Chapter 6 is a follow-up work to our previous findings in Chapter 5.

We investigate the role of damping due to random collisions on the final flavor outcome. When

damping is included in the EOMs, the ELN vector D0 is still conserved while exerting a torque

on the dynamical ELN flux vector D1(t). Although there is no apparent gyroscopic pendulum

analogy in the case of damping, some of the features of the standard gyroscopic pendulum are

still preserved. Our main finding is a simple analytical formula that estimates the final steady

state achieved by the system after decoherence and demonstrates that it is a linear combination of

the lowest point of the pendulum of Chapter 5. Moreover, we explore the validity of this novel

analytical formula and confirm that it successfully predicts the final flavor outcome for a wide

variety of single-crossed ELN spectra. This work is the first next-to-minimal extension of the

gyroscopic pendulum (Chapter 5) still able to predict the impact of decoherence on the evolution

of the neutrino flavor.

In the work presented in Chapter 7, we explored the exciting interplay between neutrino fast

flavor conversion and the propagation of the neutrino field driven by the advective term in the

EOMs. Understanding this interplay is crucial for understanding compact astrophysical objects

where flavor conversion (a quantum effect) is expected to manifest at macroscopic scales. In

Chapter 7, we presented for the first time the neutrino flavor evolution in a multi-dimensional

framework, i.e., in two spatial dimensions, one angular variable and time. To explore the non-

trivial flavor dynamics of non-homogeneous systems, we relied on two benchmark scenarios

that resemble two possible configurations in dense astrophysical environments: the "one dot

configuration" and the "one stripe configuration." Our simulations show that the advective term

inhibits the development of fast instabilities unless the spatial distribution of ELN crossings is

self-sustained in time (like LESA [263]) and not stochastic (or random) in nature. Our work is the

first work of its kind to conclusively show that the role of neutrino advection is decisive for the

evolution of flavor. However, more advanced and sophisticated calculations are still needed to

finally assess the evolution of inhomogeneities in astrophysical sources.

In Chapter 8, we model for the first time the flavor evolution of neutrinos above the disk of

the remnants in a multi-dimensional framework to account not only for the angular dependence

of the lepton number but also for its spatial variation. The ubiquity of flavor unstable regions
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was firmly established in Ref. [196]; however, their impact on synthesizing elements heavier than

iron and the related kilonova observations remain under debate. As such, the work in Chapter 8

is the first numerical simulation of the non-linear regime of fast flavor conversion in the context

of compact binary merger remnants. Before this study, previous work has focused only on the

linear regime and the possible existence of flavor instabilities. The findings of this study show

that most unstable regions favoring the occurrence of fast flavor conversion are located in the

vicinity (near the edges) of the neutrino emitting regions. The crucial conclusion of this work is that

minimal flavor conversion can occur in the polar regions above the merger remnant for both NS-

and BH-disk configurations, whose flavor outcomes are qualitatively very similar in both scenarios.

These findings hint that although flavor unstable solutions are predicted to exist almost at any

locations above the disk of the remnant, minimal flavor conversion is possible, putting in question

the widely implemented assumption of flavor equilibration. The work in Chapter 8 constitutes a

significant step forward in the modeling of flavor evolution in compact sources; however, more

sophisticated simulations should cross-check the results of this Chapter to ultimately make robust

predictions for the observables expected from the merger remnant.

Last but not least, in Chapter 9 we demonstrate that the non-isotropic contribution of the matter

potential cannot be neglected because fast flavor conversion sensitively depends on the angle

dependence of the coherent forward scattering with the medium. The angular dependence in the

matter potential arises if the electron background moves in bulk at a given velocity, which can be

as large as 10 of the speed of light. As a result of the bulk motion of electrons, an observer at rest

w.r.t the proto-neutron star would observe an excess of electrons in one preferred angular direction.

In Chapter 9 we consider two possible directions of the bulk velocity of matter, i.e., radially inward

vr
b < 0 and radially outward vr

b > 0 and explore the flavor evolution of neutrinos in the presence

of electron anisotropy. Our simplified model suggests that the neutrino conversion rate due to fast

modes can be enhanced in the vr
b < 0 scenario, while suppression of flavor conversion occurs for

vr
b > 0. Our results motivate future work on the role of non-isotropic matter distributions in the

development of fast flavor conversion and its connection to more realistic SN environments.

The work presented in this thesis (Parts ii and iii) show that the physics of fast flavor is extremely

rich and sometimes even counter-intuitive. Many studies have been dedicated to solving the
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neutrino EOMs, and it is starting to become clear that the final flavor outcome can dramatically

change when some of the symmetries imposed on the system and its solutions are relaxed. The

latter resembles the case of slow flavor conversion when the spectral splits/swaps were discovered;

we now understand that they can be smeared out in less symmetric systems with more degrees of

freedom. In the case of fast flavor conversion, recent numerical simulations from various groups

suggest a paradigm change concerning flavor equilibration.

Since the implementation of detailed neutrino transport in state-of-the-art simulations is not

available yet, many open questions and issues need to be understood first [87]. These issues

touch upon our conceptual understanding of collective effects and moving beyond linear stability

analyses. Equally important is exploring the flavor evolution phenomenology when symmetry

assumptions are relaxed; we need to quantify the impact of lifting these assumptions and develop

new and faster numerical routines to simulate their flavor evolution. Moreover, throughout this

thesis, we assumed Standard Model physics in the conversion of flavor, which we do not fully

understand even in its "standard" version: physics beyond the Standard Model might still offer

new insights. Finally, we need to gauge the impact of neutrino flavor conversion on the physics

and the inner workings of astrophysical sources.

Although many of these challenges look far from today, neutrino flavor conversion physics

continuously offers new insights and surprises. In the meantime, while we wait for the next

galactic supernova or compact binary merger observation, new exciting manifestations of collective

neutrino conversion might reveal to us, answering long-standing questions and posing new ones.
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G Y R O S C O P I C P E N D U L U M A P P E N D I X

In this appendix, we introduce the multipole decomposition of the EOM and show that the

pendulum equations derived by truncating the multipole equations to the first few multipoles are

not always predictive of the final flavor outcome. Next, we perform a discretization of the ELN

angular distribution to three modes and derive a formal similarity with a pendulum characterized

by its natural frequency and spin. We also outline the linear normal-mode analysis for our

homogeneous system and finally provide additional details on our numerical examples.

A.1 M U LT I P O L E D E C O M P O S I T I O N

One way to discretize the system of interacting Bloch vectors Dv with v = cos θ is an expansion in

Legendre polynomials Ll(v) that more generally would appear in a multipole expansion of Dv⃗

before assuming azimuthal symmetry [154]. Thus, we define the new functions

Dl(t) =
∫ +1

−1
dv Ll(v) Dv(t) (A.1)

that obey the co-rotating EOMs

Ḋl =
µ

2
(
al Dl−1 + bl Dl+1

)
× D1 , (A.2)

where al = 2l/(2l + 1) and bl = 2(l + 1)/(2l + 1). The EOMs for the first few multipoles are

explicitly:

Ḋ0 = 0 , (A.3a)

Ḋ1 = µ
D0 + 2D2

3
× D1 , (A.3b)

Ḋ2 =
3µ

5
D3 × D1 , (A.3c)

Ḋ3 = µ
3D2 + 4D4

7
× D1 . (A.3d)

214
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D0 is conserved and D1 is the only one that evolves instantaneously like a precession, i.e., its length

is conserved. The equation for D3 is the first one clearly showing the general structure that a given

Dl is driven by one higher and one lower multipole.

This infinite tower of equations can be closed by truncation, assuming that the spectrum has

no fine-grained information. In this case, high multipoles should be considered to be negligible.

Actually, this is a nontrivial point because it looks like lower multipoles impact higher ones in the

EOMs, so higher multipoles should get excited from lower ones, even if they were small at first, as

also discussed in Refs. [154, 156].

Johns et al. [155] have observed that, if we truncate Eqs. (A.2) by setting Ḋ3 = 0, the lowest

multipole equations in the comoving frame are equivalent to the ones of a pendulum in the flavor

space. Comparing Eqs. (A.3) with Eqs. (5.7) reveals that we should identify R = D1 as usual and

J = (D0 + 2D2)/3, implying J̇ = 2Ḋ2/3. In turn, this implies that we may identify G = 2D3/5

and γ = µ. We now denote with Dn = Dz
n|t=0 the initial values that are not conserved except for

D0 and D1. With this notation, one finds for the spin S = (D0 + 2D2)/3 and finally

λ2 =
2
5

D3D1 , (A.4a)

σ2 =
S2

4λ2 =
(1/9) (D0 + 2D2)

2

(8/5) D1D3
. (A.4b)

With these identifications, our interpretations agree with the ones in Ref. [155], noting that they

used the symbol σ for what we call S. Hence, the condition for an instability σ < 1 reads

(D0 + 2D2)
2

D1D3
<

72
5

. (A.5)

Or, equivalently, the pendulum is locked in its initial configuration if

ξ =
S2

(2/5) Dz
1Dz

3
> 4 . (A.6)

From the relations Γ = µλ
√

1− σ2 and cos ϑmin = −1 + 2σ2 provided in the main text, these

results imply

Γ = µ

√
2D1D3

5
− (D0 + 2D2)2

36
, (A.7a)

cos ϑmin = −1 +
5 (D0 + 2D2)

2

36 D1D3
(A.7b)

for the initial growth rate and depth of conversion. These predictions can be compared with those

of our numerical examples, or equivalently, with those from the normal-mode analysis.



A.1 M U LT I P O L E D E C O M P O S I T I O N 216

Actually, as a starting point for their pendulum discussion, the authors of Ref. [155] used the

second-order equation

r× r̈
µ

+ Sṙ = µD1G× r , (A.8)

where R = D1, r = R/R, the spin of the pendulum is S = r · ( 1
3 D0 +

2
3 D2), and G = 2

5 D3.

To show that this second-order equation follows from our two first-order ones, we write the

latter in the form ṙ = J × r and J̇ = G × r where µ was absorbed in the definition of time

and all other coefficients in the definition of G. Taking another derivative of the first equation

yields r̈ = J̇ × r + J × ṙ and inserting the second equation for J̇ gives r̈ = (G× r)× r + J × ṙ =

(G · r)r−G + J × ṙ, where we have used r2 = 1. Now we consider r× r̈ and see that the first term

disappears and the second is G× r; the third is r × (J × ṙ) = (r · ṙ)J − (r · J)ṙ. Noting that ṙ is

perpendicular to r and r · J = S is the conserved spin, we find r× r̈ + S ṙ = G× r. Reinstating the

original meaning of the variables leads to Eq. (A.8). The advantage is that J no longer appears, but

only the conserved spin.

As already discussed in the main text, for sufficiently large S, the pendulum is locked in its

initial stable configuration and cannot swing away from the flavor axis. Hence, the pendulum is

stable, and we expect that FFC cannot take place. The pendulum is also in a stable configuration

when it is oriented in the same direction as the gravity vector G.

Figure 76 shows the contour plot of the minimum value of the lepton-number flux Dz
1(t) in the

plane spanned by a and b. We can see from Fig. 76 (see also Fig. 30) that we expect a different

flavor outcome as a function of a and b, with regions of no flavor mixing despite the existence of

an ELN crossing.

In agreement with Ref. [155], our results support that the outcome of the neutrino flavor

qualitatively changes depending on the relative signs of the l = 0–3 multipoles. The relative

sign of D0|t=0 and D2|t=0 determines the magnitude of S. Secondly, the relative sign of D1|t=0

and D3|t=0 also determines whether the pendulum is initially in a stable (unstable) equilibrium

configuration, before it is perturbed. Our results are also in agreement with the ones of Ref. [155]

for the configurations when gravity plays a role in stabilizing the pendulum (results not shown

here). Qualitatively, these findings are in agreement with Fig. 3 of Ref. [155] where the relative

signs of the multipoles lead to different growth rates of the flavor instability.
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This suggests that it may be enough to rely on the l = 0–3 multipoles of Dv in order to predict the

stability of the flavor pendulum and gauge the amount of flavor mixing. However, it is important

to stress that the errors induced by truncating the angular-moment expansion at an arbitrary small

l propagate back to large scale with major consequences on the overall flavor evolution in the

nonlinear regime [156].

The ξ = 4 isocontour (dashed blue line) in Fig. 76 shows unstable regions predicted by the

pendulum analysis. We find that in the stable (bottom) part of the parameter space in Fig. 76, the

spin is large enough to lock the flavor pendulum, not letting it swing away from the flavor axis.

Conversely, in the unstable (top) region in Fig. 76, S is smaller, allowing r to oscillate. However,

we also find that fast flavor mixing does not occur for all configurations below the black dashed

line representing the locus where Dz
0 = 0 and the unstable regions do not coincide with the ξ = 4

contour.

This discrepancy is due to the fact that, for very forward-peaked distributions, the ξ criterion

worsens, see the lower region below the Dz
0 = 0 line. Moreover, we can see a sudden transition
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Figure 76: Contour plot of the minimum value of the lepton-number flux Dz
1(t)/Dz

1|t=0 in the plane spanned

by a and b (see Eqs. 5.6a, 5.6b and Fig. 30). The isocontour of the configurations with ξ = 4

(obtained by truncating the multipole expansion of the EOM at l = 3) is marked by dashed blue

lines, where the arrows point into the unstable region (ξ ≲ 4). Due to the limited number of

multipoles, this criterion worsens for very peaked angular distributions and does not allow one to

reliably predict the flavor outcome for a general ELN configuration.
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to large flavor mixing in the proximity of the Dz
0 = 0 line, not predictable by the ξ criterion.

These deviations of the numerical results from the ξ = 4 constraints are due to the fact the high-l

multipoles (with l > 3) are relevant and do affect the flavor stability. As a consequence, it is

difficult to asses, a priori, when the pendulum approximation proposed in Ref. [156] should hold.

A.2 F L AV O R P E N D U L U M O F T H R E E M O D E S

The coherence of all modes suggests a small number of underlying degrees of freedom that can be

diagnosed using the Gram matrix Gij =
∫ t2

t1
dt Dvi (t) · Dvj(t) [234]. It is calculated for our discrete

set of numerical Dvi (t) with i = 1, . . . , n for a convenient, but arbitrary, time interval. The rank of

G that we call N + 1 reveals the number of independent functions. The system always has one

time-independent solution in the form of D0 = ∑n
i=1 Dvi (t), thus N is the number of independent

dynamical functions. For our single-crossed examples we always find N = 2. Hence, we conjecture

that single-crossed ELN spectra provide solutions that are equivalent to two dynamical degrees of

freedom, equivalent to three discrete angle modes.

To study a system of three discrete modes we note that another way to combine the Dv is to use

angular moments of the v = cos θ distribution defined as

Mn =
∫ +1

−1
dv vnDv . (A.9)

Here M0 is the same as D0 and M1 = D1 is the flux. The EOM is

Ṁn = µ Mn+1 ×M1 . (A.10)

Once more we see immediately that M0 is conserved, whereas the dipole M1 performs an instanta-

neous precession around the second moment and thus its length M1 = |M1| is conserved. The

length of the other moments is not conserved. The Legendre polynomials (see Appendix A) are

one combination of the moments that is based on an orthogonal set of functions, whereas the vn

are linearly independent, but not orthogonal.

The EOMs should be discretized to be solved numerically. We will see that the evolution is

coherent among the Dv, meaning that neighboring modes have similar evolution and do not

develop large differences over time. In this sense, representing the spectrum with a small discrete
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set of modes vi with i = 1, . . . , N should provide a good proxy to the true solution. Moreover, in

our axially symmetric case, there are no spurious instabilities [243, 244].

Notice, however, that we need a minimum of three discrete bins (or “beams”) to obtain nontrivial

results. As in the continuous case, the overall lepton number D0 = ∑N
i=1 Dvi is conserved and

D1 = ∑N
i=1 viDvi has conserved length. So if N = 2 the only possible solution is a precession of D1

around D0. For N ≥ 3, there exist instabilities and pendulum-like solutions.

Next we consider the simplest homogeneous case that can provide an instability, i.e., the general

three-mode case consisting of three Bloch vectors Dvi with velocities vi with i = 1, 2 or 3. The

corresponding angular moments are Mn = ∑3
i=1 vn

i Dvi . In turn, we can express the three Dvi in

terms of the moments. We have only three Dvi modes, so there are only three linearly independent

moments.

We can express any moment in terms of three others. We use the lowest ones and close the tower

of EOMs with

M3 = v1v2v3M0 + (v1 + v2 + v3)M2

− (v1v2 + v1v3 + v2v3)M1 . (A.11)

To find this result, we first expressed the three Dvi in terms of the first three moments, and then

inserted these expressions in the definition of M3. Then the tower of EOMs for the moments is

Ṁ0 = 0 , (A.12a)

Ṁ1 = µM2 ×M1 , (A.12b)

Ṁ2 = µM3 ×M1

= µ
[
v1v2v3M0 + (v1 + v2 + v3)M2

]
×M1 . (A.12c)

We see that we can add any multiple of M1 to M2 without changing the second equation. Specifi-

cally we use

M ′2 = M2 − (v1 + v2 + v3)M1

= −(v2 + v3)v1Dv1 − (v1 + v3)v2Dv2

− (v1 + v2)v3Dv3 , (A.13)
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providing the EOMs

Ṁ0 = 0 , (A.14a)

Ṁ1 = µM ′2 ×M1 , (A.14b)

Ṁ ′2 = µ v1v2v3M0 ×M1 . (A.14c)

These are the pendulum equations in the form of Eq. (5.7) with the identification G = M0 (gravity),

R = M1 (pendulum radius), J = M ′2 (angular momentum), and the coupling constant γ = µv1v2v3.

If v1v2v3 of the chosen beams is negative, we instead identify G = −M0 to ensure a positive γ.

These results imply λ2 = v1v2v3M0M1 for the square of the natural pendulum frequency,

whereas the spin is S = Jz = M2 − (v1 + v2 + v3)M1, where we use M2 = Mz
2|t=0, recalling that

the length of M2 is not conserved. The condition for instability is S2 < 4λ2 or explicitly

[
M2 − (v1 + v2 + v3)M1

]2
< 4|v1v2v3M0M1| . (A.15)

So none of vi must vanish and, of course, the lepton number M0 and lepton-number flux M1 both

must be nonzero. To have three modes in the first place, all three Dz
vi

must be nonzero, so all six

parameters of our model must be nonzero. The quantity representing the angular momentum is

complicated and does not suggest any simple extension to a continuous spectrum.

For given pendulum parameters we can find an equivalent three-mode system. The reverse

transformation applied to the initial configuration provides

gv1 =
S + v1M1 + v2v3M0

(v1 − v2)(v1 − v3)
, (A.16a)

gv2 =
S + v2M1 + v1v3M0

(v2 − v1)(v2 − v3)
, (A.16b)

gv3 =
S + v3M1 + v1v2M0

(v3 − v1)(v3 − v2)
, (A.16c)

where we have used Jz = S and the spectrum of discrete modes is gvi = Dz
vi
|t=0.

As discussed in the main text, from a single-crossed spectrum gv we can obtain the pendulum

parameters σ and λ and thus the corresponding spin S = 2σλ as well as the coupling parameter γ,

defined to be positive, and we have M0 =
∫

dvgv and M1 =
∫

dvvgv. In this way, four of the six

parameters are given that determine a three-mode realization of the same pendular motion. The

natural pendulum frequency (in units of µ) is given by λ2 = ω2
P + Γ2 and in our three-mode case

λ2 = v1v2v3M0M1, implying v1v2v3 = (ω2
P + Γ2)/(M0M1). On the l.h.s., |v1v2v3| < 1, suggesting
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that ω2
P + Γ2 < |M0M1|. In our numerical examples this condition is certainly fulfilled, but it is

not mathematically obvious if this is generally true for any single-crossed spectrum that exhibits

an instability. If it were not the case, a three-mode realization of the motion would not be possible.

Assuming this to be the case for a given gv we can choose the three-mode representation such

that v1 = −1, v3 = +1, and v2 = u with −1 < u < +1. Then the equivalent three-mode system is

given by

S = 2ωP and u = −ω2
P + Γ2

M0M1
(A.17)

and

gv=−1 =
S−M1 + uM0

2(1 + u)
, (A.18a)

gv=u =
−S− uM1 + M0

1− u2 , (A.18b)

gv=+1 =
S + M1 − uM0

2(1− u)
. (A.18c)

In summary, we have found that three discrete modes behave like a stable or unstable flavor

pendulum, the latter being described by only two parameters, the natural frequency λ and spin S.

Conversely, for a given pendulum with these parameters we can identify a two-parameter family

of three-mode realizations.

A.3 E X P L I C I T S O L U T I O N F O R C O N T I N U O U S S P E C T R U M

If a single-crossed spectrum gv produces a coherent pendulum-like solution, we have seen that the

motion of D1(t) can be understood as a pendulum with parameters that can be extracted from gv

without solving the EOMs. We have also seen that in this case the Bloch vectors Dv(t) are functions

that one should be able to express as linear combinations of only three independent functions.

We have seen in Supplement B that we can identify three functions that we now call Pvi (t) that

reproduce the same pendulum with D1(t) = P1(t). (In the corresponding discussion for slow

modes these functions were called “carrier modes” [234].) These three functions solve the EOM

Ṗvi = µ viPvi × P1 . (A.19)
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We now transform the three functions to produce a continuous spectrum by virtue of

P̄v =
3

∏
i=1

(vi − v)
3

∑
i=1

Pvi

vi − v
. (A.20)

The first factor was included to avoid a singularity when v equals one of the discrete velocities.

These new functions fulfill the original EOM

∂tP̄v = µ vP̄v × P1 (A.21)

as one can easily verify by inserting the definition of P̄v and using Eq. (A.19). We may further

define the unit vectors

pv = ± P̄v

|P̄v|
(A.22)

with a possible sign change such that pz
v|t=0 = 1. Therefore, the solutions for the original modes

are simply Dv(t) = gv pv(t).

To summarize, if the spectrum gv reveals, in the linear regime, an instability we can construct

the nonlinear solution for D1(t) in the form of a pendulum, obtain three modes that produce

the same pendulum motion, and construct the explicit solution for Dv(t) and any other Bloch

vector that follows the same EOM as Dv(t). In other words, the pendulum solution suggested by

the information from the linear equations indeed fulfills the original EOMs also in the nonlinear

regime.

A.4 N O R M A L - M O D E A N A LY S I S

In the main text, we have briefly sketched the normal-mode analysis in the homogeneous case,

leading to an eigenvalue equation that is very simple. However, it is also instructive to arrive at

this result beginning with the inhomogeneous equations and taking the homogeneous limit in the

end. The final result is the same, but it is nevertheless reassuring that there is no hidden issue of

non-commuting limits. In principle, of course, this is just a step-by-step account of what can be

found in the literature in various forms.

Our starting point is the two-flavor EOM, assuming axial symmetry, before taking the homoge-

neous limit:

i (∂t + v∂z)Dv = µ[D0, Dv]− µ[D1, vDv] . (A.23)
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Here D0 =
∫

dv Dv and D1 =
∫

dv vDv and we use the notation
∫

dv =
∫ +1
−1 dv as in the main text.

We here keep explicitly the first term on the r.h.s. without going to a co-rotating frame because we

are interested in the real part of the dispersion relation that should be carefully distinguished from

the overall precession caused by this neutrino-neutrino matter term which we follow carefully.

We recall that, in terms of the Bloch vector components, the lepton-number density matrices are

Dv =
1
2




Dz
v Dxy

v

Dyx
v −Dz

v


 =

gv

2




sv Sv

S∗v −sv


 , (A.24)

where Dxy
v = Dx

v + iDy
v and the complex conjugate Dyx

v = Dx
v − iDy

v . The ELN spectrum is the

initial gv = Dz
v|t=0 and is assumed not to depend on space. In other words, we assume the initial

setup to be homogeneous, but the solutions are allowed to be inhomogeneous. The diagonal and

off-diagonal normalized components sv and Sv follow our older notation and are not related to the

particle-number matrices.

The linear regime consists of the off-diagonal elements being small compared with the diagonal

ones, in normalized form meaning that |Sv| ≪ 1 and the expansion is in powers of Sv. Taking the

z-components at their initial value, the off-diagonal EOM is

[
i (∂t + v∂z)− (Λ0 − vΛ1)

]
Sv = −µ

∫
du gu

(
Su − vuSu

)
, (A.25)

where Λ0 = µD0 and Λ1 = µD1 = µDz
1|t=0.

For a normal-mode analysis we seek plane-wave solutions of the form Sv(t, z) = Qv e−i(Ωt−Kz),

where Qv depends on the wave vector (Ω, K) and K is the wavevector in the z direction. The EOM

in Fourier space thus is

[
(Ω−Λ0︸ ︷︷ ︸

ω

)− v(K−Λ1︸ ︷︷ ︸
k

)
]
Qv = −µ

∫
du gu

(
Qu − vuQu

)
. (A.26)

In the absence of interactions (µ = 0) the only solutions are ω = vk, which are “under the light cone”

defined by ω = k, and have eigenfunctions Qv = δ(ω− vk). For nonzero µ, these non-collective

modes continue to exist with a more complicated singular Qv [158].

In addition, collective modes appear which either have a real ω > k or a complex ω without

restrictions on k. As a function of v, the r.h.s. of Eq. (A.26) has the form a − bv, where a and
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b are numbers that depend on the spectrum and on the solution, but not on v. Therefore, the

eigenfunction is of the form

Qv =
a− bv
ω− vk

, (A.27)

implying

a− bv = −
∫

du Gu
a− bu− vu(a− bu)

ω− uk
, (A.28)

where we have now absorbed µ in Gv = µ gv.

This equation must be true for all v, so we have two equations that can be written as



I0 + 1 −I1

−I1 I2 − 1




︸ ︷︷ ︸
Π




a

b


 = 0. (A.29)

Here the “moments” are

In(ω, k) =
∫

du Gu
un

ω− uk
. (A.30)

The dispersion relation follows from

det Π = (I0 + 1)(I2 − 1)− I2
1 = 0. (A.31)

Once we have found ω(k) we can determine the eigenfunction up to an overall factor, i.e., for a

chosen a we can find b or the other way around.

There is a nontrivial relation between the moments defined in Eq. (A.30) as can be seen by the

following manipulations:

Λ0 =
∫

du Gu =
∫

du Gu
ω− uk
ω− uk

= ωI0 − kI1 (A.32)

and likewise

Λ1 =
∫

du Gu u = ωI1 − kI2. (A.33)

Therefore, two of I0, I1 and I2 can be eliminated from the determinant condition Eq. (A.31) which

thus can be written in three alternative forms in terms of only one of them. One case is

I0(ω, k) =
Λ0(ω + Λ0) + k(k + Λ1)

ω(ω + Λ0)− k(k + Λ1)
. (A.34)

The physically homogeneous case K = 0 implies that k = −Λ1. Therefore, the determinant

condition simplifies to

ωI0(ω,−Λ1) = Λ0 (A.35a)
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Figure 77: Same as Fig. 28, but for the evolution of the transverse components (flavor direction) of the lepton-

number flux, |Dxy
1 | =

√
(Dx

1 )
2 + (Dy

1)
2 for the unstable cases B–D.

and with Eqs. (A.32) and (A.33) implies

I1(ω,−Λ1) = 0, (A.35b)

I2(ω,−Λ1) = 1. (A.35c)

If we insert these results in Eq. (A.29) we see that the second equation is fulfilled for any a

and b, whereas the first equation requires a = 0. Therefore, we conclude that in the physically

homogeneous case, the eigenfunction has a = 0 and thus is proportional to v with an arbitrary

coefficient b ̸= 0.

We thus recover the result derived in the main text where we started directly from the homo-

geneous EOM. In terms of physical variables, the eigenvalue is determined by (Ω−Λ0)I0(Ω−

Λ0,−Λ1) = Λ0. Here as always going to the co-moving frame in flavor space amounts to absorbing

Λ0 in Ω→ ω = Ω−Λ0 and not setting Λ0 = 0.

A.5 F U R T H E R A N A LY S I S O F O U R N U M E R I C A L E X A M P L E S

The solutions for the complex eigenfrequencies for our examples A–D (see main text) are summa-

rized in Table 3. The analytical results are in excellent agreement with the numerical ones, as was

already shown in Fig. 28 in the main text. In Fig. 77, we show the evolution of the xy component

that grows exponentially until the nonlinear regime is reached. The “wiggles” around the lowest
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Table 3: Solutions for the complex eigenfrequencies of our benchmark ELN configurations A–D (see main

text).

Case Λ0 Λ1 ω± = ωP ± iΓ σ cos ϑmin

[µ/100] [µ/100] [µ/100]

A −1.2666 −4.2666 stable — —

B +0.7334 −4.2666 0.1828± 0.1291 i 0.817 +0.335

C +0.7388 −3.2728 0.2047± 0.0584 i 0.962 +0.849

D +4.7334 −5.2665 1.0743± 1.1121 i 0.694 −0.034

points reflect the initial conditions (the small seeds) that excite all modes, but only the unstable

one subsequently grows exponentially.

In order to highlight the periodic nature of the motion, we show in the upper panel of Fig. 78 a

phase diagram (ϑ̇, ϑ) derived from our solutions ϑ(t) and ϑ̇(t). The motions continue to trace out

their respective tracks.

To illustrate the pendulum motion quantitatively, we show ϑ̇2 as a function of ϑ in the bottom

panel, once more derived from the numerical solutions ϑ(t) and ϑ̇(t). From Eq. (5.8b) we glean

that the motion is equivalent to a mass point with kinetic energy ϑ̇2 that moves in a potential which

is the negative of the r.h.s., so the numerically found ϑ̇2 as a function of ϑ maps out the potential

given on the r.h.s. of Eq. (5.8b). With the pendulum parameters shown in Table 3, the predicted

curves are plotted as dashed lines, once more confirming the perfect agreement.
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Figure 78: Parametric plots of ϑ̇ (top) and ϑ̇2 (bottom) as functions of ϑ for our unstable examples B–D. In

order to favor a comparison, the bottom panel includes the numerical results for our three unstable

examples B–D (solid lines) and the analytical ones (dashed lines). The agreement between the two

is excellent.
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B.1 N O R M A L M O D E A N A LY S I S I N T H E P R E S E N C E O F D A M P I N G

In this appendix, we carry out the normal mode analysis in the presence of collisional damping.

We start by linearizing the EOMs and tracking the evolution of the off-diagonal terms:

ϱex(v) = Q(v)e−iΩt and ϱ̄ex(v) = Q̄(v)e−iΩt, (B.1)

where Ω represents the collective oscillation frequency for neutrinos and antineutrinos. We look

for temporal instabilities for the homogeneous mode (⃗k = 0). The off-diagonal component of the

EOM for neutrinos and antineutrinos are

iϱ̇ex(v) = Hee(v)ϱex(v)− ϱee(v)Hex(v)− iΓϱex(v) , (B.2)

i ˙̄ϱex(v) = Hee(v)ϱ̄ex(v)− ϱ̄ee(v)Hex(v)− iαΓϱ̄ex(v) (B.3)

where we have assumed ϱxx(t0) = ϱ̄xx(t0) = 0. Again, here Γ is the damping rate, and α allows

for a difference in the damping rates of neutrinos and antineutrinos. By substituting Eq. B.1 in the

equation above and solving for Q(v), we obtain

Q(v) =
ϱee(v)

∫
dv′[Q(v′)− Q̄(v′)] [1− vv′]
−Ω− iΓ + A(v)

, (B.4)

where we express Ω and Γ in units of µ. Also, we have defined the angle-dependent quantity A(v)

as

A(v) ≡
∫

dv′[ϱee(v′)− ϱ̄ee(v′)][1− vv′] . (B.5)

A similar procedure follows for Q̄(v):

Q̄(v) =
ϱ̄ee(v)

∫
dv′[Q(v′)− Q̄(v′)] [1− vv′]
−Ω− iαΓ + A(v)

. (B.6)
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Combining the expressions for Q(v) and Q̄(v), we have

Q(v)− Q̄(v) =
∫

dv′
[

ϱee(v)
−Ω− iΓ + A(v)

− ϱ̄ee(v)
−Ω− iαΓ + A(v)

]
[Q(v′)− Q̄(v′)]

[
1− vv′

]
. (B.7)

From the equation above, it must be true that

Q(v)− Q̄(v) =

[
ϱee(v)

−Ω− iΓ + A(v)
− ϱ̄ee(v)
−Ω− iαΓ + A(v)

]

(β1 − β2v) , (B.8)

where β1 and β2 are unknown coefficients.

Substituting Eq. B.8 in Eq. B.7, we obtain a system of equations for the coefficients β1 and β2:



β1

β2


 =



I [1] −I [v]

I [v] −I [v2]







β1

β2


 = M




β1

β2


 , (B.9)

where the functional I [ f ] is

I [ f ] =
∫

dv
[

ϱee(v)
−Ω− iΓ + A(v)

− ϱ̄ee(v)
−Ω− iαΓ + A(v)

]
f (v) .

(B.10)

The system of equations has a not trivial solution if and only if the following condition is met

det(M− 12×2) = 0 . (B.11)

The latter equation is polynomial in the frequency Ω. To search for instabilities, we need to look

for the solutions with Im[Ω] ̸= 0.

If α = 1, the functional I [ f ] simplifies to

I [ f ] =
∫

dv
[

ϱee(v)− ϱ̄ee(v)
−Ω− iΓ + A(v)

]
f (v) . (B.12)
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C.1 T H E E V O L U T I O N A L G O R I T H M

In order to explore the flavor configuration achieved in our 2D box after a certain time ∆t, we

take into account neutrino advection in the EoM and aim to look for a “steady-state” flavor

configuration, i.e. for a configuration where the survival probability of (anti)neutrinos has reached

a constant value as a function of time except for small oscillations around that value. In this

Appendix, we describe the algorithm adopted to transport the (anti)neutrino gas through the

advective operator (⃗v · ∇⃗) in the EoM.

As sketched in Fig. 79, we evolve in time the flavor content in the different Si regions in the box,

individually and sequentially. We start from the one closest to the (anti)neutrino sources, Sν and

Sν̄, through SNy at the opposite edge of the box.

In our algorithm, the time-averaged density matrices are transported from Si to Si+1, if a

steady-state configuration of flavor conversions has been reached, e.g. when the average values of

|ρex|, |ρ̄ex| do not change more than a few percent (≃ 1%), as shown in Fig. 80. This procedure is

repeated in our algorithm to simulate the free streaming of neutrinos and antineutrinos through

the box until the last region SNy is reached.

The sequential and pixel-by-pixel time evolution of the box is well motivated by physical

arguments, namely, by the fact that ν–ν interactions occur locally. A neutrino located at (x, y) can

only affect its nearest-neighbouring background neutrinos at (x ± δx, y± δy), where δx, δy are

infinitesimal displacements (the length of δx, δy being set by the pixel length). In addition, the

fact that we only stream neutrinos from the sources towards the opposite edges of the simulation

box, and do not propagate them backwards, guarantees that a steady-state configuration is always

achieved throughout the box.
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C.2 S PAT I A L R E S O L U T I O N

In this appendix, we discuss the convergence of our results, especially regarding the spatial

resolution adopted in this work. In order to do this, we solve the EoMs in a smaller box of

8× 8 km2 (high resolution run), corresponding to the red box in Fig. 63, while maintaining the

same number of grid points and all other input quantities unchanged. We follow the flavor

evolution for 5× 10−7 s by including neutrino advection at each time step. The red box has been

located in one of the most unstable regions above the emitting surfaces, hence we expect that our

test on the convergence of our results will provide an estimation of the largest possible error in the

prediction of the flavor conversion probability.

Figure 81 shows a contour plot of the angle integrated density matrix elements, ρee(x⃗, θ, t) and

ρ̄ee(x⃗, θ, t), at 5× 10−7 s for the region highlighted by the red box in Fig. 63. The top panels have

been obtained by using higher spatial resolution in the 8× 8 km2 box, while the bottom panels

represent the red box in Fig. 63. The overall amount of flavor conversion is comparable in the low

and high resolution cases. However, due to the better spatial resolution, small scale structures

develop across a small patch in the high-resolution run (see green patches in the top left panel

of Fig. 81) in correspondence of the unstable regions found in the right panel of Fig. 60. It is

important to notice that the occurrence of a relatively larger conversion rate in a smaller spatial

region in Fig. 81 does not lead to a spread of the flavor instability to nearby spatial bins. The overall

flavor conversion rate averaged over a large area is thus unaffected by the presence of small scale

structures.

Figure 82 shows the time evolution of the angle-integrated ρex for point B in the high resolution

run (in red) and in the low resolution run (in green), and for point D in the high resolution run (in

orange, see Fig. 82). Location D has been chosen as representative of the most unstable region in

the top panels of Fig. 81. One can see that the error in predicting the amount of flavor conversions

in our low resolution runs is less than 1% across the region inspected in Fig. 81 and up to 10% for

the small stripe showing the largest flavor conversions. Our findings are not surprising as the

angular distributions for nearby bins are very similar to each other.
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Importantly, any spatial correlation between nearby spatial cells is averaged out by the advective

term in the non-linear regime, as discussed in Ref. [149]. Hence, the small localized region with

slightly larger flavor conversions surrounding point D, in the high resolution run in Fig. 81, does

not affect our overall conclusions. We stress that the red box in Fig. 63 corresponds to the region

with the largest amount of flavor conversions, hence our spatial resolution allows to obtain even

more accurate results for any remaining location above the remnant disk. Given the negligible

difference in the overall flavor outcome between the two runs with different spatial resolution, we

choose to adopt the coarser grid throughout the paper since it allow us to explore a larger region

above the remnant disk and better gauge the role of neutrinos in compact binary mergers.

Our results thus show the limitation of intuitive conclusions that can be drawn by relying on

the linear stability analysis which imply a strong correlation between various spatial points. The

collective nature of the flavor evolution is less manifest in the non-linear regime; this allows to

perform numerical simulations over a coarser simulation grid than one may anticipate.
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Figure 79: Schematic representation of the algorithm implemented to determine the final steady-state configu-

ration reached in our 2D system The neutrino and antineutrino decoupling regions, Sν and Sν̄, are

plotted in red and blue, respectively. The regions Si (i = 1, 2, ..., Ny) that reach a steady-state flavor

configuration as a function of time are shown in green.
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Figure 80: Top: Temporal evolution of |
∫

ρexdθ| (solid) and |
∫

ρ̄exdθ| (dashed) matrix elements at the locations

A, B and C, see Figs. 57 and 61. The exponential growth of the off-diagonal terms, and therefore,

of the flavor instabilities, develops within a few ns. At a later stage, the system becomes highly

non-linear and reaches an approximate steady-state. Bottom: Temporal evolution of |
∫

ρexdθ|

(location B), but tracking its temporal evolution for almost an order of magnitude longer. The

dashed lines highlight the small variation of the transition probability, which allows to compute a

steady-state flavor configuration.
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Figure 81: Analogous to Fig. 63, contour plots of the angle-integrated elements of the density matrices,

ρee(x⃗, θ, t) (on the left) and ρ̄ee(x⃗, θ, t) (on the right) for the NS-disk configuration. The simulation

domain is defined through a 8× 8 km2 spatial grid for the top panels (high resolution run) and

a 80× 80 km2 grid for the bottom panels (low resolution run, adopted throughout the paper); in

both cases, the plotted region corresponds to the red box in Fig. 63. Two selected locations (B and

D) are used to inspect the temporal evolution of the survival probability, see Fig. 82. The presence

of small spatial structure does not affect the overall flavor evolution in the neighboring regions.



C.2 S PAT I A L R E S O L U T I O N 236

0 1 2 3 4 5 6 7
Time [10−8 s]

−12

−10

−8

−6

−4

−2

0

lo
g 1

0
( |
∫
ρ
ex

(θ
)d
θ|)

Location B: low resolution

Location B: high resolution

Location D: high resolution

Figure 82: Same as in Fig. 80, but here we compare the temporal evolution of the angle-integrated ρex elements
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points B and D, see also Fig. 81. The different spatial resolution negligibly affects the steady-state

flavor configuration.
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