




Non�destructive quantum state measurements
and

Quantum noise squeezing

What are you going to do?
Learn to love the cold.
(The memory of water)

Patrick J. Windpassinger

Ph.D. Thesis
Danish National Research Foundation

Center for Quantum Optics (QUANTOP)
Niels Bohr Institute
Faculty of Science

University of Copenhagen
October 2008



Academic supervisors: Prof. Eugene S. Polzik
Assoc. Research Prof. Niels Kjærgaard

Evaluation committee:
NBI local head: Prof. Andrew Jackson
External referees: Prof. Elisabeth Giacobino

Prof. Dieter Meschede

Thesis submitted: October 20, 2008
Disputation: December 17, 2008

Version 1.2, December 15, 2008
Copyright c©2008. All rights reserved.







Summary

A method for non-destructive probing of the clock state population of laser-cooled,
dipole trapped Cs atoms at the standard quantum limit is presented. To that end,
we couple light o��resonantly to the atomic ensemble and determine the phase
shift imposed onto a probe laser beam with a Mach Zehnder interferometer.
The non-destructive probing allows us to follow the evolution of the population
di�erence of the Cs-atom clock states when subjected to microwave �elds in real
time. This way, Rabi oscillations on the clock transition can be observed non-
destructively over an extended period of time. We apply microwave spectroscopy
techniques to characterize the evolution of the quantum state in the trap and
especially focus on the e�ect of probe induced inhomogeneous dephasing and of
probe induced spontaneous photon scattering on the atomic ensemble.
Finally, we push the population readout precision to the quantum mechanical lim-
its. We demonstrate that the precision of the population di�erence measurement
of the two clock states has reached a level where it is only limited by the quantum
noise of the probe light (shot noise) and of the atoms in the ensemble (projection
noise). At this standard quantum limit we are able to observe correlations between
consecutive non�destructive measurements on the same ensemble. We demonstrate
that these correlations are non�classical and that therefore an entangled state of
atoms has been created in the ensemble. The correlations allow us to infer a
quantum noise reduction of 72%, i.e., −5.4 dB of remaining noise and −3.5 dB of
spectroscopically relevant pseudo spin squeezing. Applying these results to a state
of the art atomic clock should signi�cantly increase its precision.



Sammendrag

Nærværende afhandling beskriver ikke-destruktive målinger af populationen af
kvantetilstande for laserkølede Cs atomer i en dipolfælde nær den såkaldte stan-
dardkvantegrænse. Sådanne målinger udføres ved at lade et atomart ensemble
vekselvirke med ikke-resonant laserlys og bestemme det resulterende faseskift af
lyset med et Mach Zehnder interferometer.
Den ikke-destruktive målemetode gør det muligt at følge udviklingen i populations-
forskel mellem de såkaldte ur-tilstande i Cs, alt imens ur-overgangen drives med
et resonant mikrobølgefelt. Således kan Rabi-oscillationer på ur-overgangen ob-
serveres over en længere tidsperiode, uden at observationen leder til destruktion af
det atomare systems koheræns. Vi anvender metoder fra mikrobølgespektroskopi
til at karakterisere udviklingen i atomernes kollektive kvantetilstand med særligt
henblik på at kortlægge e�ekter som inhomogen fasespredning fra dispersiv vek-
selvirkning og dekoheræns fra spontan spredning af fotoner i forbindelse med den
ikke-destruktive målemetode.
Sluttelig presser vi udlæsningen af populationsforskellen mellem de atomare ur-
tilstande til den kvantemekaniske grænse. Vi påviser at have opnået en præcision,
hvor målingen af denne forskel kun begrænses af den kvantemekaniske støj fra hen-
holdsvis lyset (shot støj) og atomerne (projektionsstøj). Ved denne standardkvan-
tegrænse har vi været i stand til at observere korrelationer mellem to på hinanden
følgende målinger på et atomart ensemble. Vi påviser at disse korrelationer er ikke-
klassiske (kvantemekaniske), og at der således er blevet skabt en kvantemekanisk
sammen�ltring af ensemblets atomer. Korrelationerne muliggør en reduktion af
den kvantemekaniske støj på 72% og på -3.5 dB for det spektroskopisk betydende
atomare pseudo-spin. Disse resultater kan potentielt anvendes til at forbedre præ-
cisionen for nutidens bedste atomure.
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Chapter 1
Introduction

Atomic clocks are the most accurate instruments developed in human history. In
these devices, one derives time from the frequency of an extremely narrow atomic
transition. To this end, one de�nes the transition frequency between two atomic
levels as �xed and it is up to the experimentalist to spectroscopically measure the
frequency with the best accuracy and precision possible. The frequency oscillator
generating the necessary electromagnetic radiation then serves as the time basis
for the signals broadcasted throughout the world. Such highly precise clocks are
for example also implemented on the satellites transmitting the signals for the
global positioning system (GPS). The precision of the clock determines the accuracy
with which the position of the receiver can determined. A magnetic hyper�ne
transition in caesium has been singled out to serve as the standard of time; o�cially,
the second is de�ned as �the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyper�ne levels of the ground
state of the caesium 133 atom�.
Since the atomic two level system being used to de�ne a standard of time is in-
trinsically quantum mechanical, quantum mechanics imposes restrictions on the
precision with which the transition frequency can be determined: When we con-
sider a two level system with energy eigenstates |↑〉 and |↓〉, the state of the system
is described by the state vector |ψ〉 = a|↑〉 + b|↓〉, where a and b are the complex
probability amplitudes characterizing the state. In a spectroscopy setup one typi-
cally initializes the system into one of the two states, e.g., the |↓〉 state, and applies
a radiation �eld. Depending on the duration and the frequency of the �eld, the
state of the atomic system is changed by the atom��eld interaction and the �nal
state of the system can be used to extract information on the frequency di�erence
between the external oscillator and the atomic transition frequency. Figure 1.1(a)
illustrates the clock measurement principle, the so�called Ramsey spectroscopy
sequence. We illustrate the evolution of the atomic state under the in�uence of
electromagnetic radiation in the so�called Bloch sphere picture where the atomic
state is mapped onto the position of a point on a sphere. The theoretical back-
ground will be discussed in detail in chapter 5. In a nutshell, the single steps of the
clock protocol are: The sequence starts by creating an atomic superposition state
|Ψ〉 = 1√

2
(|↓〉 + i|↑〉) from the initial |↓〉 state. After the clock atoms have been

1



2 Introduction

Figure 1.1: Illustration of the Ramsey clock measurement sequence and the in�u-
ence of the quantum mechanical measurement uncertainty on the measurement precision.
The atomic state |ψ〉 = a|↑〉 + b|↓〉 is mapped onto a sphere where the position on the
sphere depends on the probability amplitudes |a|2, |b|2 and the complex phase di�erence
φ = arctan Im b

Re b − arctan Im a
Re a . (a) In Ramsey spectroscopy, a superposition state (step

1) is produced and allowed to evolve freely (step 2). The evolution of the state, i.e., the
angle φ, depends on the frequency di�erence between the transition frequency of the two
level system and the reference oscillator. By mapping the phase shift φ onto the population
number di�erence ∆N|↑〉−|↓〉 = |b|2−|a|2 (step 3), the frequency di�erence can be extracted
and used to stabilize the reference oscillator. The quantum mechanical measurement un-
certainties are indicated as noise discs and it is obvious that the measurement uncertainties
compromise the precision of the atomic clock. (b) Using a phase uncertainty squeezed state
in the clock protocol reduces the measurement uncertainty and thereby increases the preci-
sion of the clock. (c)�(e) Applying a QND measurement to the superposition state reduces
the population number uncertainty. The population squeezed state has to be rotated into a
phase squeezed state which is then used to complete the Ramsey cycle.

transferred into the superposition state, the state precesses along the equator by
an angle φ (step 2) which is determined by the frequency o�set between the atomic
transition frequency and the microwave oscillator. In step 3, this angle is mapped
onto a di�erence between ∆N|↑〉−|↓〉 = |b|2 − |a|2 the populations in the two clock
states |↑〉 and |↓〉 and becomes measurable (step 4). The measurement signal can be
used to stabilize the frequency of the oscillator to the atomic transition frequency.
The �nal state of the atomic system is described by the �nal state probability am-
plitudes a and b. Since quantum mechanics only predicts the probability |a|2, |b|2
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of obtaining the associated measurement results |↑〉 or |↓〉, the measurement out-
come is intrinsically probabilistic. The Possonian nature of the measurement pro-
cess leads to a fundamental, statistical uncertainty of the measurement result. It
should be obvious from �gure 1.1(a) that the quantum mechanical measurement
uncertainty, indicated by the density discs associated with the states, limits the
precision with which the precession angle φ and thereby the di�erence between
the reference oscillator and the atomic transition can be determined. Due to the
probabilistic nature of the measurement process, the measurement precision, the
certainty with which one can assume that a measurement outcome actually corre-
sponds to the real value, depends on the the number of systems being measured on.
In the speci�c case of caesium atomic clocks, this is the number of atoms used in
the spectroscopy setup. The precision of state�of�the�art caesium fountain clocks
has reached the �quantum projection noise limit� [10], which is the fundamental
limit, given a �xed number of atoms. Interestingly enough, quantum mechanics
itself proposes a way out of the misery it creates [11].
When an ensemble of atoms is considered, the projection postulate of a quantum
mechanical measurement only demands that the ensemble state is projected into
an ensemble eigenstate. It is therefore possible to devise a so�called quantum
non�demolition (QND) measurement scheme on a multi particle system, where the
single atom wave function can still represent a quantum mechanical superposition
state after the measurement. This allows one to extract information on the state
multiple times without considerably altering it. When a �rst measurement on the
system is already quantum projection noise limited, it is obvious that combining it
with the outcome of a second measurement allows one to reduce the measurement
uncertainty below the standard quantum limit [12]. This entirely quantum me-
chanical e�ect is called quantum noise squeezing. Creating such a squeezed state
in the clock sequence as indicated in �gure 1.1(b) obviously increases the precision
of the population readout and in consequence the precision of the atomic clock. As
we shall learn in chapter 2, the QND measurement scheme we apply produces a
population uncertainty squeezed state. Sub�gures 1.1(c)�(e) illustrate how a popu-
lation uncertainty squeezed state can be used in the clock sequence by transferring
the population squeezing into phase uncertainty squeezing.
The achievement of quantum uncertainty squeezing in an atomic clock con�gura-
tion has been a long standing goal. To the best of our knowledge, this work, the
corresponding publication [8] and the complementary work of the Vuletic group
[13] are the �rst reports in this direction.
Quantum non�demolition probing of a collective atomic (pseudo)-spin is a powerful
instrument in quantum information processing and control in itself. It is obvious
that the ability to extract information on a quantum state without altering at
least the variable one is interested in, opens various ways of optimal quantum
state estimation and control. So reaching the quantum limit in a non�destructive
probing scheme is an important milestone in itself. It is furthermore a prerequisite
to being able to use the setup for quantum memory applications. Clearly, only
when a control of the system on the quantum level has been achieved and quantum
mechanical e�ects dominate the evolution and the measurements on the system,
the transfer of quantum information can be demonstrated.



4 Introduction

The �rst proposal of our experimental con�guration can be found in [14] where
�rst e�orts on applying quantum non�demolition measurements to demonstrate
quantum noise squeezing are reported. Further results have been summarized in
[1, 2, 15]. In the present thesis work we shall take the non�destructive probing
of an atomic ensemble as demonstrated in [2] to the next level. While the former
work considered atomic ensembles with each atom prepared in one of the energy
eigenstates | ↑〉 or | ↓〉, we shall now focus on intrinsically quantum mechanical
states |ψ〉 = a|↑〉 + b|↓〉, their coherent evolution under external microwave �elds
and the in�uence of dispersive probing. Finally, we consider the noise properties
of the system and push the system to the standard quantum limit of measurement
precision and beyond.
After this introductory chapter, the basic principles behind the measurements are
given in chapter 2. We introduce the two main players in our setup, the atomic
ensemble and the probe light �eld. After brie�y discussing the essence of quantum
noise, quantum non�demolition measurements and quantum noise squeezing, we
look at the light�atom interaction. We are particularly interested in the light phase
shift imposed onto a probe beam by the atomic ensemble, since this dispersive part
of the interaction can be used to obtain a non�demolition character of the inter-
action. Finally, we introduce the actual measurement setup for the light phase
shift, a Mach Zehnder interferometer, and discuss some corresponding theory. The
chapter concludes with the experimental proposal � quantum noise limited mea-
surements in a cold atomic ensemble. Chapter 3 discusses the experimental setup
and the basic experimental techniques applied. Here we brie�y recall the principles
of cooling and trapping of cold atoms and discuss the technical realization of the
Mach Zehnder interferometer setup. After a short excursion to the control of the
equipment used in the experiment, we consider experimental data characterizing
the cold sample in the dipole trap. We measure the lifetime of the atoms in the
trap in a non�destructive way and observe density oscillations. Chapter 4 reports
on the development of a new set of low noise di�erential photo detectors which are
used in the experiment. The characterization of the detector deserves its own chap-
ter because the understanding of the detector itself and the quality of the detector
is one of the main reasons for the huge experimental progress starting mid 2007.
The main focus of the thesis lies on chapter 5, the non�destructive measurement
of quantum states during their evolution. First, the theory and basic principles of
microwave spectroscopy are introduced. We then turn to the observation of Rabi
oscillations on the two level system of the caesium clock states and investigate the
e�ect of dispersive light�atom interaction on the coherent evolution of the states.
Ramsey and spin echo techniques are thereafter applied to gain further informa-
tion on the atomic ensemble, the e�ect of probing and the motion of the atoms in
the trap. The tedious way towards a quantum noise limited performance of the
measurement apparatus is outlined in chapter 6. We discuss the noise properties of
two di�erent interferometer setups and the obtained projection noise results. The
highlight of the chapter is the observation of quantum noise limited performance
of the setup in general and the demonstration of projection noise squeezing on the
caesium clock transition in particular.
The presented work is the result of mainly experimental e�orts. One of the main
foci of the daily work in the lab has been to develop a machine which performs in
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a deterministic way and according to self�introduced standards on a daily basis. A
lot of time has been spent to �clean up� the technical, engineering and especially
electronics side of the setup. Another focus of the work was to create a well con-
trollable experiment where all the key control parameters can be accessed remotely
via software interfaces. The realization and implementation of these controls have
made many of the systematic studies presented in the main experimental chapters
possible in the �rst place. Although perfection has not (yet) been reached, in the
end, we can con�dently claim that the achievement of some of these ambitious
goals have been very fruitful and produced very satisfactory results. Some of them
can be found in [4, 5, 6, 7, 8, 9, 16]. Of course, the work has also been presented
at conferences by di�erent members of the work group in form of talks and posters
on almost every continent.





Chapter 2
General remarks

To set the stage and to get a theoretically founded approach to the experimental
work presented in the later chapters, we start with some mathematical descriptions
of the physical systems, their interaction focussed towards the main goal: atomic
projection noise limited, quantum non�demolition measurements. In general, the
work reported on in this thesis is an experimental one and this section is therefore
�tted to the needs of an experimentalist to understand the experiment and the data,
and we shall try not to wander o� onto the meandering trails of theory too much.
This theory section is meant as an introduction to the subject and motivation for
the work.
We will �rst introduce the two main players involved in our e�orts � an atomic en-
semble for which we desire to measure the population of internal state and coherent
light states which we use to extract information on the atomic system. For both
we look at the intrinsic quantum mechanical uncertainties. We then introduce the
main goal of our undertakings: reaching and beating the standard quantum limit.
The light�atom interaction is formalized and we derive the interaction Hamiltonian
used to obtain a non�destructive atomic state readout and population uncertainty
squeezing. The chapter concludes with the experimental proposal we then imple-
ment in the later chapters.

2.1 The players

The experimental work is focussed on the implementation of a non � destructive
measurement scheme for the quantum state of an atomic ensemble with a coherent
light beam at the standard quantum limit. That is, we want to achieve a stability
of the measurement setup, where the accuracy of the measurement outcome is
limited only by the quantum mechanical uncertainties of the states involved. We
will introduce the so-called projection noise of an atomic two level system and the
fundamental photon number �uctuations in a coherent light state.
First we de�ne the quantum mechanical atomic and light states, atomic pseudo�
spin operators and then describe the quantum mechanical noise properties.
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8 General remarks

2.1.1 Quantum state of an atomic ensemble

Energy eigenstate description

In a quantized picture the state of an atom is characterized by a linear combination
of possible (orthogonal) energy states. If we denote these states by |i〉, where ~ωi

is their energy and i collects all relevant quantum numbers to describe the state,
it is useful to de�ne the atom transition operators [17]:

σ̂ij = |i〉〈j| (2.1)
For a general atomic input state, |ψ〉 =

∑
l cl|l〉, the symmetric atomic operator σ̂ii

maps out the probability distribution across the energy states: 〈σ̂ii〉 ≡ 〈ψ|σ̂ii|ψ〉 =
|ci|2. The non�diagonal matrix elements σ̂ij , i 6= j, are especially useful when
writing down the dipole�transition operator:

er =
∑
i,j

|i〉〈i|er|j〉〈j| =
∑
i,j

d̂ij σ̂ij , d̂ij ≡ 〈i|er|j〉 (2.2)

For an ensemble of N identical, independent particles, the collective atomic oper-
ator Σ̂ij can be naturally introduced through:

Σ̂ij =
N∑

k=1

σ̂k
ij =

∑
k

(|i〉〈j|)k (2.3)

For a collective state, where all N � 1 particles have been prepared in the same
state, |Ψ〉 = |ψ〉⊗N = (

∑
l cl|l〉)

⊗N the mean of the collective operators 〈Σ̂ij〉
basically gives the not normalized ensemble average of N〈σ̂ij〉.
The total energy of the system is then given by:

ĤA =
∑

i

~ωiΣ̂ii =
∑

k

∑
i

~ωi(|i〉〈i|)k (2.4)

By construction, the states |i〉 are eigenstates of the Hamiltonian.
The energy eigenstates we shall consider are the ground and excited states of the
133Cs D2 line transition. Figure 2.1 shows the state manifold. The single energy
state is characterized by n LJ=L+S(F,mF ), where n = 6 is the principal quantum
number of the ground and �rst excited states, L ∈ {0, 1} ≡ {S,P} is the angular
momentum quantum number of the (only) valence electron, and S = 1/2 its spin.
J = L + S gives the combined spin�angular momentum with quantum numbers
J = 1/2, 3/2. F are the quantum numbers of the combined electron�nucleus spin
F = J+ I, where I = 7/2 for the caesium isotope we are considering. When we are
only concerned with the states indicated in �gure 2.1, the state can be su�ciently
described by (J, F,mF ); usually we omit J and refer to the excited state quantum
number as (F ′,m′

F ). We will be mentioning the corresponding transitions of the
D1 line, 6S1/2 → 6P1/2 at some stage. A full level diagram can be found in [18].
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Figure 2.1: Ground and D2 line excited levels of caesium. The relevant quantum num-
bers are the combined spin angular momentum of the electron J = L + S, J = {1/2, 3/2},
the combined angular momentum of the electron and the nucleus F and the magnetic
substate quantum number mF .

Angular momentum representation
Let us for the moment restrict the discussion to the two magnetic hyper�ne sub-
levels of the caesium atom 6S1/2(F = 3,mF = 0) ≡ |3〉 and 6S1/2(F = 4,mF =
0) ≡ |4〉 � the so-called clock levels.
The two level system {|3〉, |4〉} is equivalent to a spin�1/2 system. This connection
is made obvious by spelling out the single atom k angular momentum operators
ĵk = (ĵk

x , ĵ
k
y , ĵ

k
z ) in the spin�1/2 operator algebra basis [19, 20]:

ĵk
x =

1
2
(σ̂k

43 + σ̂k
34) =

1
2
(|4〉〈3|k + |3〉〈4|k) (2.5)

ĵk
y = − i

2
(σ̂k

43 − σ̂k
34) = − i

2
(|4〉〈3|k − |3〉〈4|k) (2.6)

ĵk
z =

1
2
(σ̂k

44 − σ̂k
33) =

1
2
(|4〉〈4|k − |3〉〈3|k) (2.7)

ĵk is an angular momentum operator in the sense that its components span an
angular momentum algebra through the commutator relation [ĵk

x , ĵ
k
y ] = iĵk

z , cyclic.A collective spin operator for an ensemble of N atoms can naturally be de�ned by
Ĵ =

∑N
k=1 ĵk.

The physical meaning of Ĵz is quite obvious: Its mean value for a general collec-
tive input state |Ψ〉 =

∏
l

(
cl3|3〉+ cl4|4〉

) gives half the mean population number
di�erence: 〈Ĵz〉 = 1

2

∑
l

(
|cl4|2 − |cl3|2

). The orthogonal x and y projections are the
coherences of the state. Their meaning becomes clear when comparing their mean
values for

• a coherent superposition state |Ψ〉coh =
(
|3〉+eiφ|4〉√

2

)⊗N where all single atom
states are added up coherently with the same phase φ

• to a fully decohered ensemble state |Ψ〉decoh =
∏N

l=1

(
|3〉l+eiφl |4〉l√

2

)
with a �at,

random distribution of the phases φl
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Figure 2.2: (a) Illustration of collective angular momentum vector for di�erent en-
semble states. (b) Uncertainties of the projections for two di�erent states. A minimum
uncertainty state � coherent or coherent superposition state � has been assumed.

• and an incoherent mixture |Ψ〉mix = where N/2 atoms are prepared in the
|3〉 state and N/2 atoms reside in the |4〉 state

All three states have 〈Ĵz〉 = 0. While
√
〈Ĵx〉2 + 〈Ĵy〉2 = N

2 for |Ψ〉coh, both 〈Ĵx〉 =

〈Ĵy〉 = 0 for the fully decohered state |Ψ〉decoh and the statistical mixture |Ψ〉mix
1.

The length of the collective spin vector |〈Ĵ〉| =
√
〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2 is zero

for fully decohered states and can therefore be used to distinguish between fully
coherent superpositions and systems with less or no coherence.
The vector Ĵ can be conveniently illustrated in a Bloch sphere like picture. The
Bloch vector U will be introduced more formally in section 5.1.1, but it deviates
from Ĵ only by a factor of 2 in the normalization. For a given state and without
decoherence, the components of 〈Ĵ〉 = (Ĵx, Ĵy, Ĵz) form a vector with �xed length.
The length of 〈Ĵ〉 is �xed since 〈Ĵ〉2 has to be a constant eigenvalue as for a spin
variable. For a coherent atomic state of N atoms, can therefore be mapped onto
a sphere with radius |〈Ĵ〉| = N

2 . The state corresponds to a point on the sphere
� the tip of the vector. The evolution of the ensemble under the in�uence of an
interaction Hamiltonian can then be described as a trajectory on the surface of the
sphere. Decohering terms in the Hamiltonian can change the length of the vector.
Figure 2.2(a) illustrates some of the states discussed above.

Angular momentum uncertainties

Let us consider an ensemble superposition state |Ψ〉 =
(

1√
2
(|3〉+ |4〉)

)⊗N and
calculate the �rst two moments of the collective spin operator Ĵ, the mean values

1Note that in general the fully decohered state with a random, �at phase distribution φn ∈
[0, 2π] cannot be distinguished from a statistical mixture.
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〈Ĵi〉 and the variances δ2Ĵi = 〈Ĵ2
i 〉 − 〈Ĵi〉2:

〈Ĵx〉 =
N

2
, δ2Ĵx = 0 (2.8)

〈Ĵy〉 = 0 , δ2Ĵy =
N

4
(2.9)

〈Ĵz〉 = 0 , δ2Ĵz =
N

4
(2.10)

The uncertainties for non�commuting quantum mechanical variables can also be
directly derived from the Heisenberg uncertainty principle, which for a general set
of two operators reads [21]:

δ2ô1δ
2ô2 ≥

1
4
|〈[ô1, ô2]〉|2 (2.11)

For the above combination, δ2Ĵyδ
2Ĵz ≥ 1

4
N2

4 , we see that for an ideally prepared
superposition state the uncertainty relation is met with an equal sign. The atomic
ensemble state is thus a minimum uncertainty state. For reasons which will become
clear later, such states are often termed coherent spin states (CSS). In the particular
case of coherently added single atom superposition states |Ψ〉 =

(
1√
2
(|3〉+ |4〉)

)⊗N ,
the term coherent superposition state is also common.
As mentioned, Ĵz is proportional to the population number di�erence operator. A
set of measurements of this operator returns 〈Ĵz〉. Due to the uncertainty relations
(2.8) � (2.10) the variance of the measurement results for a given number of atoms
has a lower bound. Since the uncertainties are basically due to the probabilistic
nature of quantum mechanics and the projection postulate, these uncertainties are
also known as projection noise.
In �gure 2.2(b) the uncertainty discs are illustrated for a coherent spin state
|Ψ〉 = |4〉⊗N and a coherent superposition state |Ψ〉 =

(
|4〉+|3〉√

2

)⊗N . When
|3〉 and |4〉 correspond to the two caesium hyper�ne levels as discussed above, one
only has direct (experimental) access to the population number di�erence ∼ 〈Ĵz〉,
so the quantum mechanical uncertainties only manifest themselves when a super-
position state is considered. When considering a real spin variable as in [22], the
projections can be directly observed by choosing the right measurement basis.
To derive the uncertainty relations in a slightly di�erent approach, which is often
used in textbooks as a illustration for the probabilistic nature of quantum mechan-
ics, one combines the measurement probabilities for an ensemble of N atoms (or a
collection of measurement results from N independent systems) according to the
binomial distribution. The probability P3 of measuring N3 atoms in state |3〉 for
an initial state |Ψ〉 =

∏
l

(
cl3|3〉l + cl4|4〉l

) is (cl3 ≡ c3, c
l
4 ≡ c4) [20]:

P3 =
N !

N3!(N −N3)!
|c3|2N3

(
1− |c3|2

)(N−N3) (2.12)
with the well known variance of σ2 = N/4 for |c3|2 = 1/2.
Note that we in general associate the term �noise� with the variance δ2s of a
statistical variable s; usually measurement precision or uncertainty is associated
with the standard deviation σ =

√
δ2s ≡ δs.
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Operationally, when we want to determine if a measurement is indeed limited by
the projection noise of the atomic ensemble we are measuring on, a linear scaling
of the signal variance of the population number di�erence with atom number in
the coherent superposition state, is the signature of quantum mechanics.

2.1.2 Coherent light states

To determine the population number di�erence between the quantum states of
the atomic ensemble, we couple coherent laser light pulses to it. The coupling
itself will be discussed in section 2.3. For now we shall only consider the quantum
mechanical uncertainties in the photon number of a coherent light pulse. From the
quantization of the electromagnetic �eld [23] it is known that the closest quantum
mechanical description of a classical, monochromatic laser light �eld is a coherent
state |α〉 [24]:

|α〉 = exp
(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!
|n〉 (2.13)

which is an eigenstate of the �eld annihilation operator â:
â|α〉 = α|α〉 (2.14)

For the coherent state, the mean photon number is 〈α|â†â|α〉 = |α|2 = n̄ and
the second moment δ2(â†â) = n̄. Using a coherent light state in a measurement,
where the measurement signal is proportional to the number of photons in the pulse
(or the intensity of the beam), the measurement accuracy will be fundamentally
limited by the intrinsic uncertainty of the photon number in the coherent state.
Operationally, this limit is achieved, when the variance of the measured signal scales
linearly with the applied mean photon number. In this case, the measurement
is light shot noise limited. The determination of light shot noise is discussed in
detail in section 4 where we consider the operation principle and characterization of
photo detectors. The linear scaling of the variance with �particle� number justi�es
the term coherent state for the atomic superposition state discussed above. In
amplitude XL = 1

2(â+ â†) and phase PL = 1
2i(â− â

†) quadratures, [XL, PL] = i/2,
the coherent state is a minimum uncertainty state δ2XLδ

2PL = 1/16. This is the
motivation for calling a minimum atomic uncertainty state a coherent state.

2.2 Reduction of population number uncertainty

One of the main goals in our experiment is to reach a precision of the measure-
ment of the population number di�erence ∼ Ĵz of two energy eigenstates of atoms
in an atomic ensemble only bounded by the above introduced quantum limits:
A measurement uncertainty which is limited only by the projection noise of the
atomic ensemble and the shot noise of the probe light. We want to reach this limit
in a quantum non�demolition (QND) measurement. In this type of measurement
scheme, the eigenvalue of the operator Ĵz we are interested in is determined without
destroying the quantum nature of the system. The disturbance on the quantum
system due to the measurement is channeled into a variable we are (at �rst glance)
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not interested in. Assume, we have reached the standard quantum limit in such
a measurement. In this case it is possible to measure a second time on the same
ensemble and look for correlations between the two measurements. If such correla-
tions are observed, the �rst measurement allows to predict the second measurement
to an accuracy better than the standard quantum limit. The �rst measurement has
projected the atomic state onto a new state with reduced uncertainty � a squeezed
state � and this squeezing is veri�ed with the second measurement.
To understand the process better, we shall �rst take a closer look at QND mea-
surements and then see what squeezing is all about.

2.2.1 Quantum non�demolition measurements

The general notion of quantum non�demolition (QND) measurements was �rst
introduced by Braginsky [25]. In general, a quantum mechanical measurement
process is described by the interaction Hamiltonian Ĥint of the measurement appa-
ratus S and the system to be measured on J . The objective of the measurement on
system J is to extract the eigenvalues γn of the observable Ĵz. The time evolution
of an operator Ô (in the Heisenberg picture, where the time dependence is in the
operators and not in the states as for the Schrödinger picture), is as usual governed
by the Heisenberg equation of motion:

∂

∂t
Ô(t) =

i

~
[Ĥ, Ô(t)] (2.15)

It is obvious that if the observable Ĵz commutes with the total Hamiltonian of the
system Ĥ = ĤJ + ĤS + Ĥint, i.e., [Ĥ, Ĵz] = 0, it is left unchanged throughout the
evolution. Ĵz is a QND observable. The condition can be relaxed to the su�cient
condition [26, 27]:

[Ĥint, Ĵz] = 0 (2.16)
where the observable has to commute with the interaction Hamiltonian, only.
From a theorists point of view, the goal is now to construct an interaction Hamil-
tonian which commutes with the Ĵz operator of our spin system as introduced in
section 2.1.1. Let us consider a Hamiltonian which couples the z�components of
two spins Ĵ, Ŝ, [Ŝx, Ŝy] = iŜz, [Ĵx, Ĵy] = iĴz, cyclic:

Ĥint = κ~δ(t)ŜzĴz (2.17)
where κ parameterizes the measurement strength during the instantaneous interac-
tion � δ(t) is the Dirac delta function. Clearly, Ĵz and Ŝz are constants of motion;
integrating the Heisenberg equation we get:

Ŝout
x = Ŝin

x − κŜin
y Ĵ

in
z Ĵout

x = Ĵ in
x − κĴ in

y Ŝ
in
z (2.18)

Ŝout
y = Ŝin

y + κŜin
x Ĵ

in
z Ĵout

y = Ĵ in
y + κĴ in

x Ŝ
in
z (2.19)

Ŝout
z = Ŝin

z Ĵout
z = Ĵ in

z (2.20)
Due to the symmetry of the Hamiltonian, the input � output relations are also fully
symmetric in Ĵ and Ŝ. Looking at the equations, it is obvious that by choosing the
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Ŝx or the Ŝy component of system Ŝ as a meter variable, we can extract information
on the desired Ĵz component. The correlation strength between the two systems
is given by κ.
In such an indirect measurement [26, 28], the eigenvalues γn of the observable Ĵz

of the atomic system J are inferred by coupling J to a second quantum system
S. The total system J + S prior to the measurement is described by |ψJ 〉 ⊗ |ψS〉
where |ψJ 〉 and |ψS〉 are the states of the systems prior to the measurement. At
the measurement time t0, the systems interact and form an entangled state:

|ψJ 〉 ⊗ |ψS〉 → |ψJ ,S〉 (2.21)
In a second step, information on the state of the system J , i.e., a meter for the
eigenvalue γn of Ĵz is obtained in the eigenvalue σn of Ŝy in a direct measurement
on the system S. The correlation strength between γn and σn is given by the
interaction strength κ. If there are correlations between the two eigenvalues, the
systems must have been correlated, i.e., the combined wave function |ψJ ,S〉 6=
|ψJ 〉 ⊗ |ψS〉 cannot have been separable, and thus the system must have been in
an entangled state.
Since the destructive measurement is done on the secondary system, the wave
function of J does still exist. In the case of κ→∞, the correlations between the
two systems are perfect. Unless it was prepared in an eigenstate, the system J has
been projected into an eigenstate of Ĵz with eigenvalue γn in by the measurement.
Repeated measurements on J of Ĵz in the same indirect fashion will thus yield the
same measurement outcome σn → γn. When the correlations are �nite, κ ≈ 1, the
system J is projected into a subset of eigenstates and a second measurement has
to return an outcome compatible with this reduced set.
After a perfect and completely projective QND measurement, the observed variable
Ĵz, γn is known, δ2Ĵz → 0. At �rst glance one would expect that due to the lower
bound in the uncertainty product of equation (2.11), the conjugate observable Ĵy

becomes undetermined, δ2Ĵy → ∞. This is unphysical since the possible values
for Ĵy are bounded by the size of the Bloch sphere, �gure 2.2 and the variance of
a �at random distribution 〈Ĵy〉 ∈

[
−N

2 ,
N
2

] is δ2Ĵy = N2

3 . To resolve the mystery,
one has to take into account that the Ĵx and Ĵy components are not decoupled.
An increase in the width of the distribution in Ĵy direction changes the mean value
of Ĵx as well. For a state with randomly distributed phases in the Ĵx − Ĵy plane
(the fully decohered state as discussed above), 〈Ĵx〉 = 0, so the uncertainty relation
is trivial. In that sense, the lower bound in the uncertainty relation changes and
it stays ful�lled. Since the mean length of the vector 〈J〉 is proportional to the
maximum signal amplitude in a spectroscopic measurement, a perfectly squeezed
state is useless for spectroscopical applications.
In general, a QND measurement will not be perfect, i.e., there are terms in the
interaction Hamiltonian which do not commute with the observable. These terms
change or destroy the quantum state during the measurement and correlations be-
tween consecutive measurements will be reduced. In this context, we call anything
that reduces the mean length of the Ĵx component beyond the back action from
the ideal QND measurement �state destruction�. In the case of a non�ideal QND
measurement, the coupling strength has to be chosen such that the destruction
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in�icted by the measurement is less than the information gain. The measurement
will then only be weakly projective, i.e., the system will be projected into a subset
of the allowed eigenvalues [29, 30, 31, 32]. The outcome of a second measurement
on the same system can only be predicted with limited certainty. The projection
into the subset of eigenvalues acts as a truncation of the initial probability distribu-
tion of the eigenvalues, it decimates the possible states and therefore the variance
of the remaining state (or rather the width of the eigenvalue distribution) will be
reduced.

2.2.2 Squeezing criteria

Kitagawa and Ueda squeezing criterion
The above discussion makes clear that the �change of the uncertainty relation�
by the measurement has to be taken into account when claiming a useful noise
reduction for the output state. To be able to talk about a squeezed state, the
variance δ2Ĵout

z has to be reduced below the bound in the uncertainty product of
the states after the measurement. When the measurement reduces the mean value
of 〈Ĵx〉in → 〈Ĵx〉out = (1 − η)〈Ĵx〉in, the variance δ2Ĵ reduced

z has to be compared
to the new standard quantum limit. To obtain squeezing we therefore need to
demand [33]:

δ2Ĵout
z <

1
2
〈Ĵx〉out = (1− η)

〈Ĵx〉in

2
⇔ δ2Ĵout

z < (1− η)δ2Ĵ in
z (2.22)

Here we have merged all the destruction e�ects into the decoherence parameter η.
This squeezing limit is known as the Kitagawa and Ueda criterion. Is is often cited
as the criterion relevant for claiming entanglement between the atoms but even in
the original paper they state that it is in general not su�cient [33, 34, 35].

Wineland et al. squeezing criterion
A more stringent criterion has been put up by Wineland et al. [34, 36]. In spec-
troscopy it is the angular uncertainty of the state vector:

δα = arcsin

√
δ2Ĵz

|〈Ĵx〉|
(2.23)

which has to be reduced for the state to decrease the uncertainty in the spectroscopy
signal. We therefore get the relation:

δ2Ĵout
z

|〈Ĵx〉out|2
<

δ2Ĵ in
z

|〈Ĵx〉in|2

⇔ δ2Ĵout
z < (1− η)2δ2Ĵ in

z (2.24)
as squeezing criterion. It can be shown that the atoms in the sample have to be
non�classically correlated to ful�l this relation [34].
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2.2.3 Spin squeezing via QND interaction

The essence of squeezing did already become clear in the previous section: In
a QND measurement, the state of the system is projected into an eigenstate of
the observable. If the measurement is only weak, the system is projected into a
eigenstate subset of the observable. Two consecutive measurements m1,m2 will
therefore be correlated, δ2(m1 +m2) 6= δ2m1 + δ2m2 and the conditional variance
δ2(m2 − km1) < δ2m2 will be reduced below the variance of a single measurement
result, where k is the correlation strength. At the quantum limit, one is therefore
able to predict the outcome of a second measurement to better than the projection
noise limit. This, in return, means that the atoms in the ensemble can no longer be
independent and thus have to be correlated or entangled [33, 34, 35]. The squeezing
criterion in equation (2.22) and equation (2.24) further tells us that the back action
onto the system has to be taken into account, especially when large squeezing or
imperfect QND measurements are considered.
Let us formalize the reduction of the variance δ2Jz by QND measurements a bit
more: After the measurement, described by an interaction Hamiltonian like in
equation (2.17), the output state is described by equations (2.18) � (2.20). Let us
assume (we will substantiate this claim later) that the second spin variable used
as measurement system Ŝ is also in a superposition state with mean values and
variances as for the atomic state Ĵ in equations (2.8) � (2.10), (N → n̄ will be
associated with the mean photon number in the measurement apparatus later on):

〈Ŝx〉 =
n̄

2
, δ2Ŝx = 0 (2.25)

〈Ŝy〉 = 0 , δ2Ŝy =
n̄

4
(2.26)

〈Ŝz〉 = 0 , δ2Ŝz =
n̄

4
(2.27)

With these values the variance of the atomic output state Ĵout
y is found from equa-

tion (2.19):
δ2Ĵout

y = δ2Ĵ in
y + κ2δ2(Ĵ in

x Ŝ
in
z )

=
N

4
(1 + κ2N

4
n̄

4
) ≡ N

4
(1 + κ̃2) (2.28)

where we have used that δ2(Ĵ in
x Ŝ

in
z ) = 〈Ĵ in

x 〉2δ2Ŝin
z + 〈Ŝin

z 〉2δ2Ĵ in
x . Since the state

we started out in was a minimum uncertainty state and the product of the vari-
ances stays constant under the action of a unitary interaction Hamiltonian [37],
i.e., δ2Ĵ in

y δ
2Ĵ in

z = δ2Ĵout
y δ2Ĵout

z = N
16 , the uncertainty in the population number

di�erence after the measurement δ2Ĵout
z is [12, 38]:

δ2Ĵout
z = δ2Ĵ in

z

(
1

1 + κ̃2

)
(2.29)

Note that no decoherence or destruction of the initial state has been taken into
account in this derivation. The amount of squeezing is determined by the strength
of the interaction κ̃2 which itself depends on the number of atoms in the state and
the photon number used to probe the sample. Without the decoherence e�ects,
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which scale with the probe photon number, the measurement strength starts from
weakly projective with little information gain and thus little squeezing to a fully
projective measurement where the state is fully known thus perfectly squeezed [29].
Formally, the decohering e�ects just reduce the e�ective number of atoms, which
reduces the input state variance δ2Ĵ in

z by the decoherence parameter η, compare
equations (2.24). To claim squeezing, we therefore have to demand:

δ2Ĵout
z =

(
1

1 + κ̃2

)
δ2Ĵ in

z < (1− η)2δ2Ĵ in
z (2.30)

To stay in the language of information and destruction, κ̃2 parameterizes the gain
in information on the state in the measurement while η summarizes the destruction
in the state. As we shall see in the next section, decoherence is an unavoidable side
product of the interaction, κ̃2 ∝ η. One therefore has to trade information gain
against non�destructiveness to achieve optimal squeezing.

After these introductory remarks on atomic states, non�destructive quantum mea-
surements and (pseudo) spin squeezing, let us turn to the atom�light interaction in
a more practical way and gather some equations on how to implement a quantum
non�demolition measurement in practice.

2.3 Light � atom interaction

The purpose of this section is to give a short account on the light � atom interaction
focussed on the properties of the light after the interaction. In chapter 5 some of the
calculations will be performed in a more thorough way, focussing on the evolution
of the atomic states.
When an electromagnetic �eld interacts with a two level system, the light can be
spontaneously scattered, i.e., absorbed and re�emitted into a di�erent �eld mode.
At the same time the phase of the interacting light beam is changed with respect
to a reference beam. While the absorption in general leads to decoherence or
destruction of the quantum state of the atoms, the light phase shift can be used to
extract information without necessarily causing decoherence.
In the language of Hamiltonians, the combined interacting system consists of the
bare atomic energy Ĥat (equation (2.4)), the energy of the electromagnetic �eld
Ĥem = ~ωâ†â and the interaction Hamiltonian Ĥint. In the rotating wave approx-
imation one derives [17]:

Ĥint = ~g
(
|e〉〈g|â+ |g〉〈e|â†

)
(2.31)

g = −
√

ω

2ε0V ~
e · d̂eg, d̂eg = 〈e|er̂|g〉 (2.32)

ω is the driving �eld frequency e is its polarization vector, and d̂ge the dipole
matrix element. e is the electron charge and r̂ is the position operator. The
interpretation of the Hamiltonian is straight forward: the destruction of a photon
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by â transfers the atom from its ground state |g〉 into the corresponding excited
state |e〉; the adjoint term accounts for the inverse process. For the two level case
one can exploit the spin 1/2 system formalism:

|e〉 ≡

(
1
0

)
, |g〉 ≡

(
0
1

)
(2.33)

We use the Pauli spin matrices σ̂i, i = {1, 2, 3}, [σ̂1, σ̂2] = 2iσ̂3, cyclic and their
linear combinations σ̂± = 1

2(σ̂1 ± iσ̂2) which act as rising and lowering operators,
i.e., transfer atoms from the ground into the excited state or from the excited
state into the ground state. With the spin matrices, the total Hamiltonian reads
(choosing the energy zero of the atomic system between the two levels with energy
splitting ~ω0 and neglecting energy o�sets):

Ĥ =
1
2

~ω0σ̂3 + ~ωâ†â+ ~g
(
σ̂+â+ σ̂−â

†
)

(2.34)
With the Heisenberg equation of motion (2.15) the time evolution of the operators
can be calculated. The e�ect of spontaneous decay from the excited state into the
ground state with decay rate γ is included in a rate equation kind of fashion as
known from the Wigner�Weisskopf theory [17, 39]. We will later look at o� resonant
interactions only, so the excited state's population can be adiabatically eliminated.
The �nal di�erential equation obtained for the �eld annihilation operator â can be
integrated directly over the interaction time τ and we get [1]:

â′(τ) = â′(0) exp

(
−g2 −i∆ + γ

2

∆2 +
(γ

2

)2 σ̂zτ

)
(2.35)

In a homogeneous but spatially extended atomic ensemble of N independent and
equally prepared atoms, σ̂z → Σz ≡ Nσ̂z and τ = l

c where l is the length of the
ensemble. From equation (2.35) we extract that the outgoing electromagnetic �eld
will be exponentially absorbed with coe�cient S:

S = g2
γ
2

∆2 +
(γ

2

)2 σ̂zτ (2.36)

and the �eld has gained an additional phase of:
∆φ = g2 ∆

∆2 +
(γ

2

)2 σ̂zτ (2.37)

An alternative approach to derive the above relations for the phase shift and the
absorption is sketched in appendix A.1. The explicit calculation of the coupling
strength g, involving the dipole matrix elements d̂eg = 〈e|er̂|g〉 is sketched in
appendix A.2 but can be found in many standard texts [18, 40, 41, 42]. For the
dipole matrix element one obtains:

|〈FmF |erq|F ′m′
F 〉|2 = (2F ′ + 1)(2F + 1)

(
F ′ 1 F

m′
F q −mF

)2

×

{
J J ′ 1
F ′ F I

}2
γ3πε0~c3

ω3
(2J ′ + 1) (2.38)
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The {. . . } brackets refer to the Wigner 6-j symbol and the (. . . ) brackets denote
the Wigner 3-j symbol. Primed values correspond to the quantum numbers of the
excited states |e〉 = |J ′, F ′,m′

F 〉 and |g〉 = |J, F,mF 〉. I = 7/2 is the spin of the
nucleus. q ∈ {−1, 0, 1} characterizes the polarization of the light relative to the
quantization axis of the atoms. For π transitions, mF = m′

F , q = 0.

2.3.1 Specialization to caesium atoms

The discussion can be generalized to the situation where the electromagnetic �eld
couples several di�erent possible transitions at the same time. We then end up
with a superposition of di�erent transition paths contributing to the absorption
and the phase shift:

S =
l

c

∑
F,mF ,F ′,m′

F

NF,mF
|g(F,mF )→(F ′,m′

F )|2
γ/2

∆2
F,F ′ + (γ/2)2

(2.39)

∆φ =
l

c

∑
F,mF ,F ′,m′

F

NF,mF
|g(F,mF )→(F ′,m′

F )|2
∆F,F ′

∆2
F,F ′ + (γ/2)2

(2.40)

Since σ̂z in equations (2.36) and (2.37) is the population operator, and we have
eliminated the excited state population, it can be expressed as the number of atoms
NF,mF

in the corresponding states. The detuning from the transition ∆ → ∆F,F ′

depends on the transition involved and the corresponding dipole matrix element
g goes over into g(F,mF )→(F ′,m′

F ). We �nally obtain the population dependent, o�
resonant phase shift and the electric �eld amplitude absorption coe�cient:

S = φ0

∑
F,mF ,F ′,m′

F

NF,mF
S(F,mF , F

′,m′
F )

(γ/2)2

∆2
F,F ′ + (γ/2)2

(2.41)

∆φ = φ0

∑
F,mF ,F ′,m′

F

NF,mF
S(F,mF , F

′,m′
F )

(γ/2)∆F,F ′

∆2
F,F ′ + (γ/2)2

(2.42)

φ0 =
3lλ2

4πV
(2J ′ + 1)

S(F,mF , F
′,m′

F ) = (2F ′ + 1)(2F + 1)

(
F ′ 1 F

m′
F q −mF

)2{
J J ′ 1
F ′ F I

}2

From the formulas one can see that while the absorption and thus the spontaneous
photon scattering reduces with 1/∆2, the phase shift only drops o� with 1/∆. By
detuning far enough from resonance, it is therefore possible to suppress spontaneous
photon scattering while still being able to get an appreciable light phase shift. In
principle, spontaneous photon scattering can be suppressed to an arbitrarily low
level. However, as we shall see later, a certain coupling strength between the
atomic system and the light, which can be formulated in terms of spontaneous
photon scattering probability, is necessary to obtain optimal squeezing. A moderate
detuning of ∆ ∼ 100− 200MHz is su�cient to the balance these e�ects.
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In the experiment we will mainly use atoms prepared in the F = 3,mF = 0 and
F = 4,mF = 0 states. In addition, the probe light used will be rather close,
∆3,2 ≈ −150MHz, ∆4,5 ≈ 150MHz, to either the F = 3 → F ′ = 2 or the
F = 4 → F ′ = 5 transition. For those two cases, the phase shift of F = 3 → F ′ = 2
light is dominated by atomic population in F = 3 and the phase shift for light close
to the F = 4 → F ′ = 5 is mainly due to population in F = 4. The phase shift
formula can therefore be reduced to:

∆φ3 =
3
28
φ0N3

(γ/2)∆3,2

∆2
3,2 + (γ/2)2

(2.43)

∆φ4 =
5
36
φ0N4

(γ/2)∆4,5

∆2
4,5 + (γ/2)2

(2.44)

φ0 = 3lλ2/πV . Figure 2.3 shows the light phase shift normalized to φ0 and N3, N4,
N3 = N4 as a function of the laser frequency detuning ∆4,5 from the F = 4 →
F ′ = 5 transition. The graph also �justi�es� the simpli�cation of the phase shift

Figure 2.3: Normalized light phase shift as function of the laser light detuning from the
F = 4 → F = 5 transition in caesium-133. We assume that only the mF = 0 substates
of F = 3 and F = 4 are (equally) populated, leading to forbidden ∆F = 0,∆mF = 0
transitions. The grey, dashed lines include all possible transitions while solid lines indicate
the reduced phase shift formulas only taking the F = 3 → F = 2 and F = 4 → F = 5 into
account. The forbidden F = 3 → F ′ = 3 and F = 4 → F ′ = 4 transitions for mF = 0 are
due to the selection rules and manifest themselves in a general symmetry property of the
Clebsch�Gordan coe�cients.

formulas to (2.43) and (2.44) for detunings close to the two strongest transitions.
For detunings ∆4,5 ∼ +150MHz and ∆3,2 ∼ −150MHz the phase shifts cannot be
distinguished within the resolution of the plot.

2.4 Mach Zehnder interferometer

In the above discussion we have seen that the main point about non�destructive
probing of an atomic ensemble boils down to measuring the phase shift of o��
resonant probe light. A very straight forward way of measuring a light phase shift
is using an interferometer as shown in �gure 2.4. The probe beam, which also
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Figure 2.4: Schematic drawing of a Mach Zehnder interferometer. Two input modes
â, b̂ enter on the input beam splitter BS1. The modes inside the interferometer gain a
di�erential phase φ and are overlapped on BS2. At the output the photon numbers 〈ê†ê〉−
〈f̂†f̂〉 of both modes are detected and subtracted.

interacts with the atomic ensemble, interferes with a reference beam on a beam
splitter (BS2). The output signal of the interferometer depends on the di�erential
phase shift of the beams in the two interferometer arms. When both arms have
exactly the same length, all the light entering on port â will exit again on port f̂ .
The atomic ensemble acts as a refractive medium in the probe arm and changes
the optical path length di�erence according to the population in its energy levels.
From the interference signal the induced light phase shift and thus the atomic state
population can be deduced.

2.4.1 Single color interferometer

To �nish the formal description of the QND measurement, we still lack the spin�like
description of the meter variable Ŝ, equation (2.17), page 13. In the present section,
we shall only consider an ideal, lossless symmetric interferometer as shown in �gure
2.4. Losses and imperfect mode matching of the two interferometer arms have been
discussed at length in [1, 2, 14]. The technical realization will be discussed in section
3.2.
Two electromagnetic �eld modes enter the interferometer on the input beam splitter
BS1 and they are characterized by the annihilation operators â and b̂. For these
operators de�ne angular momentum type variables [43]:

Ŝx =
1
2
(â†b̂+ âb̂†) (2.45)

Ŝy = − i
2
(â†b̂− âb̂†) (2.46)

Ŝz =
1
2
(â†â− b̂†b̂) (2.47)

At the output of the interferometer we measure the photon number di�erence
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between the two output ports ê, f̂ , which corresponds to measuring 〈Ŝz〉out =
〈ê†ê− f̂ †f̂〉.
The transformation for the �eld operators by a symmetric 50/50 beam splitter is
well known [17]: (

ĉ

d̂

)
=

(
1√
2

i√
2

i√
2

1√
2

)(
â

b̂

)
(2.48)

A di�erential phase shift φ, e.g., due to an optical path length di�erence ∆l = λ
2πφ,transforms the �eld operators according to:(

ĉ′

d̂′

)
=

(
eiφ/2 0

0 e−iφ/2

)(
ĉ

d̂

)
(2.49)

From these transformation matrices for the �eld operators one can derive the trans-
formation matrices for the angular momentum type operators Ŝi. For the operation
of a 50/50 beam splitter one �nds [43]: Ŝx

Ŝy

Ŝz


out

=

 1 0 0
0 0 1
0 −1 0


 Ŝx

Ŝy

Ŝz


in

(2.50)

and for a di�erential phase shift φ one gets: Ŝx

Ŝy

Ŝz


out

=

 cosφ +sinφ 0
− sinφ cosφ 0

0 0 1


 Ŝx

Ŝy

Ŝz


in

(2.51)

We arrange the length of the interferometer arms such that the di�erential phase
shift is φ = π/2.
Since we have achieved a vector like description of the interferometer, the action of
its components on the input �eld state can be visualized on a sphere as shown in
�gure 2.5. To start out, we operate the interferometer with a single coherent input
mode |α〉 in mode â and a vacuum state |0〉 in mode b̂:

|Ξ〉in = |α〉a|0〉b ⇒ 〈Ŝx〉 = 〈Ŝy〉 = 0, 〈Ŝz〉 =
|α|2

2
=
n̄

2
(2.52)

corresponding to a vector pointing along the positive z�axis with length n̄/2, half
the mean photon number in the coherent input state. The �rst beam splitter
rotates the vector around the x�axis and transfers the state into the equatorial
plane, �gure 2.5(a). The φ = π/2 phase shift between the arms rotates the state
vector around the z�axis until it is parallel to the x�axis, �gure 2.5(b). A second
rotation in the same direction around the x�axis by π

2 as induced by the second
beam splitter does not change the state and a measurement of Ŝz returns zero
mean value. Since we are dealing with non�commuting quantum variables again,
the uncertainties in equations (2.25) � (2.27) hold. As for the atomic system, losses
(decoherence) in the interferometer change the length of the spin like vector.
With atoms present in the probe arm, the accumulated phase shift in the inter-
ferometer is φ = π/2 + ∆φat. The last beam splitter changes the orientation of
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Figure 2.5: (a) The �rst beam splitter rotates the interferometer state vector Ŝ into the
equatorial plane. (b) Arranging the phase shift between the two arms of the interferometer
to π/2 rotates the vector around the z�axis until it is parallel to the x�axis. (c) With
no additional phase shift, the second beam splitter does not rotate the vector further (it
rotates is by π/2 around its own axis) and the mean output measured 〈Ŝz〉 is zero. An
additional phase shift ∆φ prior to the last rotation maps the additional phase onto a non�
zero di�erential signal in 〈Ŝz〉.

Figure 2.6: Output of the interferometer 〈Ŝz〉 as function of the phase shift between
the arms φ and the additional phase shift ∆φ around the φ = π/2 point.

the vector depending on the additional phase shift ∆φat, see �gure 2.5(c). Mea-
suring the z�projection of the spin like vector, Ŝz,out thus allows one to extract the
atom induced phase shift. The signal 〈Ŝz〉out can be extracted by multiplying the
transformation matrices together and one gets the much more familiar interference
fringes:

〈Ŝz〉out = −1
2
n̄ cos(∆φat + π/2) =

1
2
n̄ sin∆φat (2.53)

The z�projection as function of the phase shift between the arms φ and the addi-
tional phase shift ∆φ around the φ = π/2 point is illustrated in �gure 2.6.

2.4.2 Interaction Hamiltonian in QND form

We have now described the measurement apparatus for the o��resonant phase shift
of light in terms of a spin�1/2 system to get it on equal footings with the atomic
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system. With these descriptions at hand we can write the interaction Hamiltonian
Ĥint given in equation (2.31) in a QND form as equation (2.17) proposes.
In the spirit of the discussion at the end of section 2.3.1, we restrict the interaction
to the case where the probe mode only couples to atoms in the F = 4 state via
the F = 4 → F ′ = 5 transition. However, we add a second, spatially overlapped,
but di�erent frequency mode in the same input port of the interferometer which
couples to the atoms in F = 3 via the F = 3 → F ′ = 2 transition.
To illustrate this two color input mode setup, consider �gure 2.7. We basically run

Figure 2.7: (a) Vector representation of the two color interferometer for an equal
atomic superposition state ∆φ3 = −∆φ4 input. The green vector represents the empty
interferometer for both colors, the red vector represents the F = 4 → F ′ = 5 light interfer-
ometer and the blue vector represents the F = 3 → F ′ = 2 light. Due to the arrangement
of the light detunings, the equal populations in F = 3 and F = 4 lead to opposite phase
shifts and are rotated by the last beam splitter to give opposite output signals. Since the
photo detector does not distinguish between the di�erent probe colors, the combined output
signal is zero. (b) 〈Ŝz,3 + Ŝz,4〉 projection of the interferometer vector as measured by the
photo detector at the output of the interferometer.

two interferometers in parallel, the two modes can in principle be distinguished
also at the output. We arrange the couplings to the F = 3 → F ′ = 2 and
F = 4 → F ′ = 5 transition such that the atomic phase shifts for population
in F = 3 and F = 4 have opposite sign by choosing sign(∆3,2) = −sign(∆4,5).
The two independent interferometers return opposite output signals for atomic
population in F = 3 and F = 4 � and each color couples only to atoms in either
F = 3 or F = 4. The signals (di�erential photo charges) are merely summed up
at the photo detector. An atomic input state |Ψ〉 = |3〉⊗N yields a negative signal
〈Ŝz〉out ∝ 〈Ĵz〉 ∝ ∆φ3 = −∆φmax and |Ψ〉 = |4〉⊗N a positive signal 〈Ŝz〉out ∝
〈Ĵz〉 ∝ ∆φ4 = ∆φmax. An equal superposition state Ψ〉 =

(
|3〉+eiφ|4〉√

2

)⊗N will
consequently return a zero mean output signal 〈Ŝz〉out = 0 with an uncertainty
δ2Ŝout

z caused by the shot noise of light and the projection noise of atoms.
In the adiabatic and o� resonant limit (no population in the excited states), the
interaction Hamiltonians Ĥint,{3,4} of the two ground levels with each their inter-
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ferometer probing the population, can be written as [12]:

Ĥint,3 = −2~|g32|2
∆32

∆2
32 +

(γ
2

)2 Σ̂33 ĉ
†
3ĉ3 ≡ g3Σ̂33 ĉ

†
3ĉ3 (2.54)

Ĥint,4 = −2~|g45|2
∆45

∆2
45 +

(γ
2

)2 Σ̂44 ĉ
†
4ĉ4 ≡ g4Σ̂44 ĉ

†
4ĉ4 (2.55)

We arrange the couplings as discussed above, i.e., the detunings ∆32 and ∆45

such that g = g4 = −g3. Using equations (2.7, p.9) and (2.47, p.21) noting that
Σ̂33 + Σ̂44 = N̂ , ĉ†i ĉi + d̂†i d̂i = n̂i, i = 3, 4, we can rewrite the total e�ective
interaction Hamiltonian as:

Ĥint = g

[(
Ĵz +

N̂

2

)(
Ŝz,4 +

n̂4

2

)
+

(
Ĵz −

N̂

2

)(
Ŝz,3 +

n̂3

2

)]

= g

[
Ĵz

(
Ŝz,4 + Ŝz,3

)
+ Ĵz

n̂4 + n̂3

2
+
N̂

2

(
Ŝz,4 − Ŝz,3

)
+
N̂

2
n̂4 − n̂3

2

]
(2.56)

This is a Hamiltonian whose �rst term is of QND form. It couples the the z�
components of two spins J and S = S4 + S3. Ĵz represents the atomic system
and accounts for the atomic projection noise. Ŝz,4 + Ŝz,3 are the two independent
interferometers; the mean value 〈Ŝz,4 + Ŝz,3〉 = 0 is zero due to the equal coupling
con�guration and its variance corresponds to the light shot noise of the two probe
modes. The second term in the e�ective Hamiltonian can be associated with the ac
Stark shift of the atomic levels caused by the probe light and its implications will be
discussed thoroughly chapter 5. The induced e�ects can be revoked by using spin
echo techniques but it can also be canceled by arranging the two probe colors in two
spatially di�erent input ports. This setting will be discussed in section 3.2.3 and
chapter 6. The third term arises from the fact that we have two independent probe
modes each interacting with �half� the population. Its mean value is zero, but its
variance scales with the number of atoms squared. It is negligible with respect to
the QND term as long as the photon number in each probe mode is large compared
to the atom number. The mean value of the last term is canceled by demanding
n̄3 = n̄4. Its variance is only sensitive to anticorrelated noise sources. By reducing
uncorrelated noise sources, e.g., independent laser amplitude �uctuations this term
can also be suppressed with respect to the atomic projection noise term. With the
right choice of parameters, the QND part of the Hamiltonian is dominant and the
interaction assumes QND form.
Note that the Ŝz coupling in the Hamiltonian does not correspond to the 〈Ŝz〉out

measured at the output of the interferometer. Comparing with the Hamiltonian in
equation (2.17) and the input � output relation (2.20) it is clear that Ŝz is a constant
of motion and does consequently not change. It corresponds to Ŝz = 1

2

(
ĉ†ĉ− d̂†d̂

)
inside the interferometer. With �gure 2.5 it becomes clear that the phase shift
∆φ of the atoms to �rst order only changes Ŝy inside the interferometer and this
change is mapped onto 〈Ŝz〉out by the second beam splitter.
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2.5 Experimental proposal

In the previous sections we have gathered the basic equations and principles of
the experiment which will be described in the next sections: The population num-
ber di�erence of an atomic ensemble of caesium atoms, initialized into a coherent
superposition state |Ψ〉 =

(
|3〉+|4〉√

2

)⊗N shall be measured non�destructively. We
have seen that a non�destructive measurement character can be obtained by mea-
suring the o��resonant phase shift an atomic ensemble imposes onto a probe light
�eld. Detuning the probe light far enough from the atomic transitions assures that
photon absorption is is kept (arbitrarily) low. A Mach�Zehnder interferometer will
serve as measurement apparatus for the light phase shift. In the setup, we desire to
resolve atomic quantum projection noise. Ideally, the stability of the interferometer
has to be such that it can resolve the shot noise of the applied probe light. The
phase stability of the interferometer has to be better than the quantum mechanical
uncertainty in the phase measurement caused by the �nite probe photon number.
Correlations between two consecutive measurements on the same ensemble will
then allow us to study the predicted reduction of the measurement uncertainty to
below the standard quantum limit by using the information obtained in the �rst
of the two measurements.
To reduce the in�uence of atomic motion and at the same time obtain a high cou-
pling strength κ̃2 (which boils down to having a large optical depth, κ̃2 ∝ OD,
[44]), we use a cold, dipole trapped atomic ensemble. The following chapter is
dedicated to the experimental techniques of producing a cold atomic sample, the
measurement apparatus and a short characterization of the system. It is clear that
in order to study the noise properties of the system and to approach the stan-
dard quantum limit, we need to have a very good understanding of the sample
properties, the measurement process and the decoherence e�ects caused by the
probe light. The main part of chapter 5 is therefore devoted to these issues. Espe-
cially microwave spectroscopy sequences will be used to study the decohering and
destructive components of the interaction. Finally, we will look at the noise prop-
erties of the system in chapter 6, discuss the implementation of di�erent balanced
measurement sequences and show the obtained projection noise and quantum noise
squeezing results.



Chapter 3
Experimental techniques

In the introductory chapter we have discussed the basic plan behind the experi-
ments conducted: To apply a non�demolition measurement to the quantum state
of a cold atomic ensemble. The atoms are con�ned to a well de�ned spatial region
by using an optical dipole trap. Readout of the atomic population distribution
between the two ground state levels is performed with a Mach�Zehnder interfer-
ometer.
The chapter starts out with a short review of the experimental techniques we apply
to generate a cold trapped ensemble of caesium-133 atoms. We then continue by
discussing the probing scheme and focus on two slightly di�erent interferometer
arrangements: In the two color � single port version, two probe beams of di�erent
frequency enter through the same port of the input beam splitter while in the
two color � two port setup, the two probe beams enter on di�erent beam splitter
ports. After discussing some speci�cs of the experimental sequence and experiment
control, the chapter concludes with a demonstration of how the non�destructive
character of the measurement setup can be used to extract parameters of the dipole
trapped sample.

3.1 Generation of cold Cs atoms

Our setup for cooling and trapping a cloud of caesium has not changed dramatically
with respect to the presentation in [2]. We shall therefore gather the most relevant
numbers for completeness, only. It is implicitly assumed that the basic principles
of laser cooling [45, 46] are familiar to the reader.

3.1.1 Layout of setup

To mechanically decouple the interferometer from the rest of the setup the experi-
ment is distributed onto three optical tables. One is reserved for the diode lasers,
the preparation of the cooling and trapping light and the interferometer probe and
lock lasers. All the light beams are coupled into optical �bers and transported
onto the interferometer table where the vacuum setup is mounted and the actual
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experiment takes place. A third table accommodates the dipole trap laser. The
experiment itself happens inside a glass vacuum cell and a schematic drawing of
the vacuum setup is depicted in �gure 3.1.

Figure 3.1: Experimental setup. The vacuum in the chamber maintained by a single
ion pump. Four getter sources are used to produce the necessary Cs background vapor. Six
�ber coupled telescopes deliver the cooling and trapping light to the vacuum cell; a pair of
anti�Helmholtz coils produces the magnetic �eld gradient for the MOT. Three orthogonal
pairs of Helmholtz coils are used to compensate static magnetic background �elds.

The vacuum chamber is pumped by a single 20 l/s Varian Star Cell ion pump.
When the setup was originally devised no vacuum gauge or secondary pump (e.g.
a titanium sublimation pump) has been included. Over time, contamination of the
ion pump has caused an increase of the pump current to 2mA which makes pressure
determination from the pump current impossible. With a temporary externally
attached turbo pump and vacuum gage (not shown in the �gure), the pressure
in the chamber was determined to be slightly below 10−9 mbar, which is on the
edge of what we are willing to tolerate. The necessary Cs vapor is created with 4
SAES getter sources in series, running at . 4A. After creating a su�cient pressure
in ∼ 15min continuous mode operation, the Cs background is maintained by
operating the getters at ∼ 3A. The actual experiment takes place in a glass cell
from Starna, external dimensions 120× 48× 48mm3. The walls of the cell are anti
re�ection coated from the outside.

3.1.2 Magneto�Optical Trap

The atoms are trapped and cooled in a standard 6�beam magneto optical trap
(MOT) [45, 46]. The light is delivered to the setup with six optical �bers directly
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entering custom made beam expanders. We use about 5mW of cooling light per
∼ �30mm beam and have ∼ 1mW of repump light coupled through the same
optical �bers.
The magnetic �eld gradient for the MOT operation is created by two anti�Helmholtz
coils with 50mm radius, 38 windings per coils, separated by 50mm and running at
a current of about 5A. To compensate external static magnetic �elds at the posi-
tion of the MOT, three pairs of rectangular Helmholtz coils with outer dimensions
of 55 × 55 cm2 are mounted around the setup. Coarse �eld compensation is done
by optimizing the trapping and cooling in the MOT. Fine tuning of the feld by
using the magnetic splitting of the hyper�ne states is discussed in section 5.3.2.

MOT laser light generation
To generate the laser light for the magneto optical trap, we use two external grating
stabilized diode lasers as masters. The basic design is an adapted version of the
Littrow external cavity setup [47, 48]. It is a constantly revised and improved
version of the design used throughout the QUANTOP labs [2, 49]. We use ridge
waveguide laser diodes from Eagleyard Photonics with anti�re�ection coated output
facets of type numbers EYP-RWE-0870 and EYP-RWE-0850 for generating the λ =
852 nm light. The gain pro�le of the EYP-RWE-0850 versions drops considerably
around λ = 850 nm (�gure 3.2(a)). As a result, it can be rather cumbersome to
pull the diode to lase single mode in this wavelength range. In addition, due to the
operation at the edge of the gain pro�le, the externally stabilized laser diode still
emits signi�cant incoherent background radiation in the gain pro�le. Figure 3.2(b)
shows the output spectrum of a RWE-850 diode when pulled to λ = 852 nm and
when lasing at a more favorable wavelength inside the gain pro�le. The incoherent
background when the diode is operated at the edge of its gain pro�le is clearly
visible. For the operation of the magneto optical trap, the incoherent background
is not problematic, especially because the light is ampli�ed with slave diodes which
do not amplify the background. Since we put much higher requirements to the
probe lasers, section 3.2.1, either laser line �lters or di�erent diodes with more
favorable gain pro�le (RWE-0870) are used to suppress the incoherent background.
We illustrate the path of the master lasers' output beams in �gure 3.3. Only the
basic principle is shown, for more details refer to [2]. The frequencies of the master
lasers are stabilized to atomic transitions using saturated absorption spectroscopy
and a Pound�Drever�Hall like error signal generation. The necessary sidebands
are created by direct laser diode current modulation via the current supply. We
use modulation frequencies of 20MHz (�cooler�, stabilized to F = 4 → F ′ = 3× 4
crossover) and 4MHz (�repumper�, stabilized the F = 3 → F ′ = 2 × 3 crossover).
Demodulation with a local oscillator is done directly at the photodiode monitoring
the saturated absorption signal, and its response is peaked to the corresponding
frequency values. The linewidth of the stabilized lasers on a few seconds timescale
is determined to be ∼ 500 kHz by observing the beat note between the two masters.
The frequency stabilized output beam of both lasers is frequency shifted with
acousto optical modulators (AOMs) and injected into high power (∼ 100mW)
slave diodes. The output of these diodes is further frequency shifted to the desired
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Figure 3.2: (a) Gain pro�le of a free running RWE-850 diode, adapted from Eagleyard
datasheet for serial number 030912. (b) When pulling a RWE-850 diode to the edge of its
gain pro�le, a strong incoherent background is visible in the spectrum. The spectrum is
measured with a 1200 lines/mm di�raction grating. In the center of the gain pro�le, the
incoherent background is strongly suppressed.

frequencies for the MOT operation and power modulated with single pass AOMs.
The di�racted orders of these AOMs are mode matched, split into six beams and
coupled into optical �bers which transport the light to the vacuum setup, �gure 3.1.
To assure perfect extinction, mechanical shutters are placed into each beam. The
output of the slave lasers is monitored on additional saturated absorption setups
to verify their single mode performance and frequency following when the injection
frequency is changed with the two double pass AOMs. We also tap of light from
the zeroth order of the second cooler AOM and from the main repump beam for
the atomic state preparation discussed in 5.3.2. Part of the light from the repump
master laser is also used for beat note locking of the probe lasers, compare section
3.2.1.

Control of the MOT parameters
A LabView programme, accessing the outputs of three National Instruments data
bus cards, allows us to control the slow timing (1ms time slot resolution) of the
experimental setup. We have implemented an access to

• the frequency detuning of both lasers (∼ ±6 linewidths from the F = 3 →
F = 4 and F = 4 → F = 5 MOT transitions), power and mechanical shutters

• magnetic quadrupole �eld on/o�
• dispenser on/o�
• external magnetic guiding �eld on/o� (see section 5.3.2)
• mechanical shutters for optical pumping and repumping beams (see section
5.3.2)

Figure 3.4 shows a view of part of the front panel and the controls implemented.
We will come back to the single experimental stages displayed again later. Right
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Figure 3.3: Schematic drawing of the laser setup for the magneto optical trap and
the optical pumping. The output from external grating stabilized diode lasers are frequency
stabilized to atomic transition lines using the signal from saturated absorption spectroscopy
setups. The stabilized frequency is shifted in a double pass AOM and ampli�ed with slave
diodes. A second AOM is mainly used for power modulation. For optical pumping, light is
tapped o� from the slaves; the optical pump light has to be frequency shifted �rst, while the
repump light can be directly used for the clock state preparation. Shutters help to physically
block the light beams. The combined light from the two lasers is coupled into six optical
�bers delivering about 5mW per beam of cooling light and about 1mW repump light to the
vacuum setup. The saturated absorption setups for the slave diodes monitor their single
mode performance and frequency following.

now, we are only interested in the �rst three stages. These stages illustrate typical
values for loading and cooling atoms in the MOT. To load atoms, we switch on the
magnetic gradient �eld, and start with typically 2 s of both cooling and repumping
light at full power, ∆32 = −2γ,∆45 = −3γ, γ = 5.2MHz is the natural linewidth
of the D2 transitions. We then apply two step rudimentary sub�Doppler cooling
by reducing the power of the repump laser to 20% and increasing both detunings
∆32 → −3γ,∆45 → −4γ in 200ms and in a second step, further reducing the
repump laser power to 1% of its initial value and increasing the detunings further
to ∆32 → −5γ,∆45 → −5γ in another 60ms. The values reported here are long
time averages, they are slightly adjusted on a day to day basis, taking, e.g., power
changes due to �ber coupling e�ciencies or the Cs vapor pressure into account.
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Figure 3.4: Front panel view of the LabView programme controlling the slow timing of
the experiment. The red controls (∆L1[Γ],LAS1, Shutter 1) correspond to the cooler laser
(detuning from F = 4 → F = 5 transition, power, binary shutter value), the blue controls
(∆L2[Γ],LAS2, Shutter 2) to the repump laser. DIO Trig is used for synchronization with
another computer card used for fast timing (50 ns time slot resolution). The other controls
should be self explaining.

3.1.3 Optical dipole trap

After the cooling stages, a sample of cold Cs atoms has been prepared in a rather
well de�ned spatial region. Since the hyper�ne state population of the atoms is
constantly reshu�ed while the MOT light is on, the atoms have to be transferred
into a di�erent trap which does not change the atomic state population. Without
the application of a further trapping potential, the atoms would move towards
the walls of the vacuum system and be lost for experiments within few tens of
milliseconds. Furthermore, although the positions of the atoms are rather well
de�ned, we would like to con�ne them to a much smaller region and thereby increase
their density. To this end we apply the techniques of optical dipole trapping [50].
In section 2.3 we have been discussing the light�atom interaction, focussed on the
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e�ect the presence of atoms has on the electromagnetic �eld. Now we shall look at
the implications of the interaction on the energy of the atomic states.

Light shift and trapping potential
The Hamiltonian for the atom � light system of equation (2.34) can be written in
the interaction picture as (for convenience, we shift the energy zero to the ground
level this time)[17]:

Ĥ = ~ω0|e〉〈e|+ ~ω0â
†â+

~Ω
2

(
|e〉〈g|âei∆t + |g〉〈e|â†e−i∆t

)
(3.1)

where we have introduced the Rabi frequency by ~Ω = −eE0(r)|〈e|e · r|g〉| and the
detuning ∆ of the light with respect to the transition.
In matrix form we obtain:

Ĥ = ~
(
|e〉 |g〉

)( ω0 + ω(n− 1) Ω
2

√
nei∆t

Ω
2

√
ne−i∆t ωn

)(
〈e|
〈g|

)
(3.2)

where n = 〈â†â〉 is the excitation number of the electromagnetic �eld. When
diagonalizing the Hamiltonian, we get the new energy eigenvalues of the combined
system as:

E±(n) = ~
(
−∆

2
+ ωn± 1

2

√
∆2 + Ω2n

)
(3.3)

In the limit of ∆ � Ω the square root can be expanded and we get an energy
di�erence between states di�ering by one excitation number of:

∆E = E±(n+ 1)− E±(n) = ±~Ω2

4∆
+ ~ω (3.4)

The ground state of the atom is therefore shifted in energy by:

∆Eg =
~Ω2

4∆
(3.5)

For ∆ < 0 an atom can reduce its energy by moving into a region inside the electro�
magnetic �eld where the Rabi frequency, i.e., the electric �eld strength is increased
with respect to its current position.
Introducing the intensity I(r) = 1

2cε0E(r)2 of the electromagnetic �eld [46] and
inserting the dipole matrix element (appendix A.2) one obtains the dipole potential
as:

U(r) =
3πc2

2ω3
0

γ

∆
I(r) (3.6)

For detunings of the order or larger than the �nestructure splitting, i.e., the dif-
ference between the D1 and D2 transition line, all relevant transitions have to be
taken into account. For linearly polarized trap light the �nal expression reads [50]:

U(r) =
πc2

2

(
2γD2

ω3
0,D2∆D2

+
γD1

ω3
0,D1∆D1

)
I(r) (3.7)
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where γD1 = 2π × 4.56MHz and γD2 = 2π × 5.22MHz are the linewidths of
the D1 and D2 transitions, [18], and ∆D1 and ∆D2 are the detunings from the
transitions which themselves have transition frequencies of ωD1 = 2π c

895 nm and
ωD2 = 2π c

852 nm .
The spatial form of the dipole trap potential is given by the intensity distribution
I(r) of the �eld. We use a Gaussian laser beam which has an intensity distribution
I(r) according to:

I(r) =
2
π
P

1
w(z)2

exp
(
− 2r2

w(z)2

)
(3.8)

where P = 1
2πI0w

2
0 is the beam power and w(z) is the position dependent spot

size:
w(z) = w0

√
1 +

(
z

zR

)2

, zR =
πw2

0

λ
(3.9)

with z as the propagation direction, λ the wavelength of the beam and w0 the
beam waist. With these parameterizations we obtain the optical dipole potential
as:

U(r) = U0
w2

0

w(z)2
exp

(
− 2r2

w(z)2

)
(3.10)

U0 =
c2P

w2
0

(
γD1

ω3
0,D1∆D1

+
2γD2

ω3
0,D2∆D2

)
(3.11)

For a waist of w0 = 50µm and a power of P = 4W in a laser beam with wavelength
λ = 1032 nm, we get a trap depth in the center of U0/k = 280µK.
To characterize an atom trap one usually quotes the quasi harmonic eigenfrequen-
cies of the trap. These can be obtained by comparing the potential for the trap
in an expansion to second order with a classical harmonic potential. The eigenfre-
quencies are then given as:

ω⊥ =

√
4U0

matw2
0

, ω‖ =

√
2U0

matz2
R

(3.12)

For the above values we would expect a radial trap frequency around ω⊥ ∼ 2π ×
840Hz and an axial frequency of ω‖ ∼ 2π × 4Hz.

Technical realization
The experimental realization of a dipole trap is almost as straight forward as the last
section suggests. We take up to 4W of the light from an ELS VersaDisk, 1032 nm
diode pumped Yb:YAG disc laser. An AOM in the beam path is used to control
and stabilize the power of the trap light. The laser is mounted on its own optical
table to avoid acoustic noise coupling from the water cooling of the laser head to the
interferometer. A free�space link transports the light onto the interferometer table
where it is focussed down to a waist of w0 ∼ 50µm with f=100mm achromatic
doublets at the position of the cold cloud. We keep the dipole trap light on during
the whole experimental cycle. After the sub�Doppler cooling stage in the MOT,
atoms with low enough kinetic energies remain trapped in the dipole beam. The
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operation parameters for the MOT as discussed in section 3.1.2 are determined by
maximizing the number of atoms transferred into the optical trap and their lifetime
in the trap. To this end also the position of the MOT is optimized by changing the
relative light power in opposing cooling beams and the location of the trap inside
the cold sample.
The single frequency mode performance of the trap laser is constantly monitored
on an external Fabry Perot cavity. The laser has very short servicing intervals
and needs frequent cleaning of the intra cavity components to assure an acceptable
performance. Excessive dual and multi mode behavior has been observed and
clear correlations between the number of atoms in the trap and the single mode
performance of the laser have been observed. In addition, the laser power entering
the actual experimental setup has to be actively stabilized to compensate for long
term power �uctuations of up to 30% during 24 h operation. We place a photo
detector into the leakage through a mirror which steers the light to a beam dump
and feed its signal back onto the rf power of the AOM.
The orientation of the dipole trap beam with respect to the rest of the setup is
shown in �gure 3.5. Two dichroic mirrors, high re�ectors under 45◦ at 1032 nm and
anti re�ection coated for 852 nm, overlap the beam with the cloud. A symmetric
telescope with two f=100mm achromatic doublets focusses and re-collimates the
beam which is then dumped on a beam block. The third dichroic mirror which is
not in the direct beam path of the trap beam directs back scattered light from the
cell surface which leaks through the �rst dichroic mirror out of the direction of the
interferometer beams.

3.2 Interferometer setup

The heart of the non�destructive quantum state measurement setup for the cold Cs
cloud is a free space Mach Zehnder interferometer. The basic operation principle
has been introduced in section 2.4. We start out by discussing a single input
port interferometer as it has been used for most of the experiments presented in
section 5. The components are shown in �gure 3.5. Due to reasons which will
become more obvious in section 5.5 and after, the interferometer has been changed
to a two�input port setup which will be discussed together with the setup of the
probe and interferometer locking lasers.

Optical setup of the interferometer
Let us �rst consider the setup sketched in �gure 3.5. The light for the interfer-
ometer is guided onto the interferometer table with a polarization maintaining
single mode �ber (Thorlabs PM 780-HP); the output coupler is a standard Thor-
labs F220FC-B lens system with about 2mm output beam waist. A polarizing
beam splitter (PBS1) on a rotation mount is matched to the �ber axis to clean
the polarization and assure maximum power stability. A vertically polarized beam
then enters the interferometer itself which is composed of two non�polarizing beam
splitters (BS1,BS2), two folding mirrors whereof one is mounted on a piezo electric
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Figure 3.5: Experimental setup. The dipole trap beam is steered into the vacuum cell
with a dichroic mirror (DM1), focussed and re-collimated with two achromatic doublets
(AD) and re�ected o� a second dichroic mirror (DM2). Leak light is collected on a power
detector at a mirror before the beam dump to stabilize the trap power. The main compo-
nents of the Mach�Zehnder interferometer are the two non�polarizing beam splitters BS1
and BS2, two folding mirrors whereof one is mounted on a piezo electric transducer (PZ)
and a cat's eye to adjust the di�erential path length of the two interferometer arms. The
light polarization is controlled by various polarizing beam splitters (PBS1-4) and zero (�z�)
or multi (�m�) order waveplates. The interference signal at the interferometer output can
be monitored on a CCD camera for alignment purposes, but in general all light is directed
onto a di�erential photo detector.

actuator (PZ) and a cat's eye to adjust the path length di�erence between the
two interferometer arms. To obtain maximum overlap of the interaction region of
the atomic sample and the interferometer light, the beams are focussed and re-
collimated with the same pair of achromatic doublets (AD) also used for the dipole
trap. To optimize the overlap, the trap beam pointing is changed until a maximum
in the atomic signal is reached. The interference signal between the two beams at
both output ports of the second non�polarizing beam splitter (BS2) are polariza-
tion cleaned (PBS3, PBS4) and detected on a directly subtracting photo�ampli�er.
To optimize the mode overlap of the two beams in the interferometer arms we also
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have implemented the possibility to direct part of the beam onto a CCD camera.
We obtain an interference fringe visibility of up to 98%.

3.2.1 Probe laser setup

The probe light is generated with two external cavity diode lasers as discussed in
section 3.1.2. The optical setup is sketched in �gure 3.6. Let us �rst consider the

Figure 3.6: Probe and interferometer lock laser setup. (a) Setup as used for most of the
data presented in chapter 5. The lasers are frequency stabilized by frequency modulating the
rf driving frequency of a dedicated AOM in the lock light path; the signal from the saturated
absorption setup is then demodulated and used for feedback. Both probe lasers are mode
matched into a �ber and bi�chromatic pulses are generated on the �pulsing AOM�. An
additional laser is separately power modulated and injected into the �ber transporting the
three laser beams to the interferometer setup. This laser is used for actively stabilizing the
interferometer path length di�erence. (b) In a more recent development, the probe lasers
are frequency stabilized by referencing them to the MOT repump laser with beat note locks.
The probe pulses are then generated separately for each laser and coupled into separate
�bers. The setup allows us to mimic the previous setup since the F = 4 → F ′ = 5 light is
coupled into the �ber together with the F = 3 → F ′ = 2 light inserting a suitable mirror.

setup in �gure 3.6(a) which as used in the experiments presented in section 5. The
setup in �gure 3.6(b) was used for the projection noise data presented in section
6.3 and is designed for the two input port interferometer which will be discussed
in 3.2.3.
We put higher requirements to the frequency purity of the probe lasers than for
the ones generating the MOT light. When probing an atomic quantum state,
we cannot tolerate the strong incoherent background as mentioned in section 3.1.2.
Any kind of near resonant light in the probe region will inevitably change or destroy
the quantum state prepared in the atomic ensemble. Apart from the detrimental
e�ect on the atoms, the interference fringe visibility in the interferometer is also
corrupted by a broad incoherent background because the optical components we
use only perform optimally in a very narrow wavelength band. We therefore either
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insert laser line �lters of below 10 nm bandwidth into the beams or we use the
RWE-0870 laser diodes.1 Furthermore, the sidebands on the laser light used in the
Pound�Drever�Hall setup to generate the error signal for frequency stabilization are
disturbing when doing noise measurements, compare section 6.2.2. Additionally,
we would like to not stabilize the actual laser output frequency onto an atomic
transition or crossover line, since leaking zero order light from the pulsing AOM
can else reduce the coherence of the atomic ensemble quantum state considerably.
Both requirements can be met by inserting an AOM into part of the beam used for
locking, modulating its rf driving frequency and demodulating the output signal of
the saturated absorption signal.
We build two almost identical laser setups for the two colors and stabilize them to
an appropriate transition in the F = 3 → F ′ = 2, 3, 4 and F = 4 → F ′ = 3, 4, 5
manifold. The stabilized light from both probe lasers is matched into a single
mode �ber for convenience and mode cleaning and send them through an AOM for
frequency shifting and light pulse generation. The pulsed light beams are �nally
overlapped with the pulses used for locking and all three laser beams are matched
into the �ber transporting the light to the interferometer.

Probe laser setup for two input port interferometer
The probe laser setup has been changed to the one depicted in �gure 3.6(b) in early
2008. The main reason was the desire to be able to detune the light from resonance
by almost arbitrary values without changing the optical setup (e.g., replacing or
realigning AOMs). In addition, the need to inject the second probe beam from the
second input port of the input beam splitter became apparent, consider �gure 3.9
for the corresponding interferometer setup. In the new version of the probe laser
setup, the lasers are stabilized to the MOT repump master laser (using the tapped
o� beam in �gure 3.3) with a beat note lock. We achieve a relative frequency
stability of the two probe lasers of ∼ 10 kHz.
The stabilized laser light is shaped into pulses individually for the two lasers and
coupled into two �bers. For alignment purposes, the F = 4 → F ′ = 5 laser is
coupled into both �bers where one coupling mirror is piezo�actuated such that the
phase shift between the two input modes on the interferometer beam splitter can
be modulated. This way, the mode matching of the two �ber outputs on the input
beam splitter of the interferometer can be determined. This is necessary to assure
that the two probe colors in fact interact with the same spatial region of the atomic
cloud.

3.2.2 White light alignment and interferometer locking

To assure the best possible laser phase noise suppression in the interferometer, it
is bene�cial to align it close to the so�called �white light� position [1]. In this
con�guration both interferometer arms have the same length and the output signal
is independent of the laser frequency. Note that the interferometer will be aligned to

1Unfortunately, we acquired these diodes only rather late compared to the time frame pre-
sented here; better customer service from Eagleyard who had suggested the RWE-0850 for our
applications could have saved us a lot of pain.
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Figure 3.7: Interference fringes for the lock laser (black) and for the 4 → 5 probe
laser (red). One can clearly see a shift of the two fringes with respect to each other. At the
white light position, the two maxima (or minima) overlap exactly. The zero crossing of the
lock laser fringe to either side of the exact white light position can be used as stabilization
point. Probe and lock laser pulses with 2µs duration and 200µs repetition period have
been applied alternately. The asymmetry of the lock laser fringes is due to the not optimal
splitting ratio of the interferometer output beam splitter for 840 nm light.

a di�erential path length of ∆l = λ∆φ/2π = λ/4 as discussed in section 2.4.2 The
interferometer will therefore always be at least λ/4 away from white light position.
The white light position is initially found by coupling a broad band light source
(�ber coupled light emitting diode with∼ 20 nm bandwidth) into the interferometer
and looking for interference fringes on a CCD camera. When interference fringes
are observed, we start scanning the path length di�erence with the piezo actuated
folding mirror of the interferometer and send both probe and lock laser pulses
(2µs duration, 100µs repetition period) alternately through the interferometer.
We obtain the interference fringes as depicted in �gure 3.7. Because the two lasers
have considerably di�erent wavelengths, the fringes gain a visible phase di�erence
very quickly. In principle, the zero crossing of the lock laser fringe to either side
of the center fringe can be used as stabilization points. However, due to technical
imperfections they are not exactly equal, so we usually pick the side where the
probe signal is closest to being balanced in the locked con�guration. The clear
asymmetry in the fringes from the lock laser are due to the not optimal splitting
ratio of the output beam splitter for 840 nm light since the splitting ratio depends
on the applied light wavelength.
Due to its mere size, it is obvious that the interferometer has to be actively stabi-
lized against thermal drifts and acoustic noise. To stabilize the interferometer to
half fringe position, ∆φ = π/2, we use another one of our external cavity diode
lasers, with output wavelength around 840 nm. The setup is illustrated in �gure
3.6. This laser is not frequency stabilized, its single mode operation is monitored

2It is obvious that the phase sensitivity of the interferometer is largest at ∆φ = π/2 phase
di�erence between the two arms. At the maximum of a fringe, the output signal is to �rst order
independent of the di�erential phaseshift.
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on a Fabry�Perot cavity. The actual wavelength of the lock laser is of minor im-
portance as long as the light does not interact considerably with the atoms in the
sample. One just has to be aware of the fact that many optical components (and
not only the wavelength speci�c polarization control elements) are wavelength sen-
sitive. This holds especially for the interferometer beam splitters. To compensate
for di�erent splitting ratios on the beam splitters, one of the output ports sports
a multi order λ/2 plate and polarizing beam splitter combination (PBS4 in �gure
3.5). The multi order nature of the waveplate allows us to introduce frequency
dependent losses on the following beam splitter.
The error signal for the stabilization loop is obtained in a lock�in type technique.
To that end, the lock beam is power modulated (actually the modulation depth is
100%, so it is basically pulsed on and o�) with a ∼ 100 kHz square wave. The in-
terferometer output detected on the di�erential detector is then demodulated with
a local oscillator and the obtained error signal is used for feedback onto the piezo
actuated folding mirror. The feedback bandwidth of the stabilization loop is below
1 kHz. Acoustic resonances in the setup hinder us from pushing the bandwidth
higher. On short timescales we therefore have to rely on the passive stability of
the interferometer; this will become important when we determine the noise per-
formance of the interferometer in chapter 6. To avoid contamination of the actual
measurement signal, i.e., when probe pulses are sent through the interferometer,
we gate the modulation of the lock laser light such that it is o� for a well de�ned
period around the probe pulses as indicated in �gure 3.5. Switching the feedback
loop o� for several hundred microseconds does not disturb the interferometer bal-
ancing since the feedback loop is too slow anyway. Since the detector is basically
used in a balanced con�guration during interferometer locking, only short transient
times need to be taken into account to assure that the di�erential detector performs
optimally (see chapter 4).

3.2.3 Noise properties of the interferometer

In the introductory chapter and several times on the way, we have stated the
�nal goal of our e�orts: quantum noise limited measurement precision. In the
context of atoms in the interferometer this boils down to a light shot noise limited
measurement of the light phase shift. In the preceding sections, an attempt has
been made to omit the discussion of noise properties of the system, since this is the
main contents of chapter 6. To motivate the change to a di�erent interferometer
setup, we do, however, have to indulge into a short discussion on the classical noise
cancelation features of a balanced measurement in the context of interferometers.
When classical (large) signals are measured, the classical amplitude �uctuations
are often so large that they mask the tiny intrinsic quantum mechanical �uctua-
tions. It is therefore bene�cial to devise a measurement scheme which intrinsically
cancels the classical amplitude �uctuations. Measuring the di�erence of the output
ports in a balanced interferometer con�guration is such a classical amplitude noise
suppressing setup � if the power in one of the interferometer arms were increased
signi�cantly with respect to the other, the connection to a homodyne measurement
setup is obvious. Arranging the interferometer in white light position in addition
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makes the phase shift insensitive to the light frequency and therefore helps to cancel
classical laser phase noise.

Classical noise suppression
To formalize the classical noise suppression property, let us look at the signals of
our Mach Zehnder interferometer output ports individually. Both show a signal
SD1,D2 with amplitude S ∝ P , where P is the power of the input beam. We can
separate the amplitude �uctuations δS1,2 =

√
δ2S1,2 from the mean signal S0:

SD1 =
1
2
(S0 + δS1) (1 + cosφ) (3.13)

SD2 =
1
2
(S0 + δS2) (1− cosφ) (3.14)

The amplitude �uctuations can be further divided into correlated and uncorrelated
parts: δS1 = δScorr + δS1,uncorr and δS2 = δScorr + δS2,uncorr. Subtracting the two
outputs at the detector yields a signal:

S− = SD1 − SD2 = (Smax + δScorr) cosφ

+
1
2
(
δS1,uncorr − δS2,uncorr +

(
δS1,uncorr + δS2,uncorr

)
cosφ

)
At φ = π/2 + ∆φ the equation can be linearized around ∆φ ≈ 0. The mean value
of the signal is zero: 〈S−〉 = 0, and the variance δ2S− evaluates to:

δ2S−,φ=π/2 = δ2Suncorr (3.15)
We have assumed that δ2(∆φ) = 0, i.e., the interferometer is stable in itself and
no atoms are present whose projection noise would lead to δ2(∆φ) ∝ N . Fur-
thermore, both interferometer arms are assumed to have the same uncorrelated
noise contribution √δ2S1,uncorr =

√
δ2S2,uncorr ≡

√
δ2Suncorr. In the ideal case, the

uncorrelated �uctuations are only of quantum mechanical nature � the light shot
noise of the output modes.
At balanced position, φ = π/2, the classical, correlated noise contributions are
maximally suppressed and we are only left with the quantum mechanical uncer-
tainties. If, on the other hand, a signal produced by considerable phase o�set
φ = π/2+∆φ,∆φ ≈ π/2 is considered, the amplitude �uctuations δ2Sclass. are not
suppressed:

δ2S−,φ=0 = δ2Squant. + δ2Sclass. (3.16)
and the signal is usually dominated by the classical amplitude noise.

Two port interferometer setup
Ideally, we would like to achieve a situation where amplitude �uctuations are can-
celed during the measurement. When no atoms are present in the system, this
is assured by stabilizing the interferometer to φ = π/2. The two color � single
port interferometer produces an output signal with zero mean value when atoms
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Figure 3.8: Comparison between the di�erent two color setups. (a) Two color � single
port interferometer. For equal power, both probe colors show the same interference fringe.
When locked to half fringe position, φ = π/2, a zero output signal (which is ideal for
noise measurements) for atoms in the equal superposition state is obtained when the colors
are shifted in opposite direction, ∆φ3 = −∆φ4. The two, each on their own imbalanced,
signals are added at the detector and a zero signal is observed. Amplitude �uctuations
from the two lasers add up. (b) Two color � two port setup. The two interferometers are
180◦ out of phase and the output signal for an empty interferometer is independent of the
path length di�erence � equal amplitudes provided. When both probe lasers obtain a phase
shift ∆φ3,∆φ4 in the same direction by atoms in F = 3 and F = 4, the signal for an equal
superposition state is again zero. The lock point can then be shifted to compensate for the
phase o�set and amplitude noise suppression for both colors individually can be achieved.

in the equal superposition state are present as depicted in �gure 3.8(a). However,
by introducing the atoms, each single probe laser color is in itself not balanced.
Classical amplitude �uctuations are therefore not suppressed in the presence of
atoms and may easily compromise the signal.
This issue can be amended by introducing the second probe color through the
second port of the input beam splitter as shown in �gure 3.9. We refer to this
type of setup as two color � two port arrangement3. Obviously, the interference
fringes of the two input modes are exactly out of phase, as depicted in �gure
3.8(b). By arranging the probe frequencies and powers in the right way, we again
achieve a situation where the mean value of the interferometer output signal is
zero. In principle, again each color is unbalanced on its own and the setup is prone
to classical amplitude �uctuations. However, since the atomic signals now arise
from interferometer phase shifts on the same side of the stabilization point, the
lock point of the interferometer can be moved to the position indicated in �gure
3.8(b), where both probe colors are individually balanced. At this position, the
classical amplitude �uctuations of each individual laser cancel and we obtain an
ideal con�guration for noise measurements!4
The setup has two more clear advantages:

3It is clear that every interferometer has two input modes, but often one of them is assumed
to be an electromagnetic vacuum �eld state. When we refer to the �two port setup�, we want to
stress that the second mode is populated in a non�trivial way.

4This would also be possible for the single color � single port interferometer setup. However,
in the two color � two port case the signal is independent of the number of atoms so changing the
lock point only suppresses the amplitude noise. In the single color � single port setup, the signal
also depends on the atom number and is thus prone to shot�to�shot atom number �uctuations.
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Figure 3.9: Two port interferometer setup. The optical setup for the second input (2)
resembles the original input's setup (1). The telescope is needed to compensate for slightly
di�erent beam waists due to the di�erent �ber core sizes; we generally achieve a mode
matching of the two input ports on the input beam splitter (BS) above 97%. Polarization
components in the interferometer (polymer polarizers (pol) and polarizing beam splitters
(PBS1)) allow us to change the power ratio between the probe and reference arm. The
interferometer beams are matched on PBS2, their polarization rotated by 45◦ and interfered
on PBS3. The two output ports are again detected on a di�erential photo ampli�er. The
other components are described in the caption of �gure 3.5

• Acoustic noise suppression: when the two probe beams have equal fringe
amplitude, the combined output signal is independent of the geometric path
length di�erence. Vibrations will thus not change the signal; the interferom-
eter is only sensitive to an atomic population di�erence

• Light shift cancelation. The problem of di�erential light shift between the
clock levels during the application of probe pulses will be discussed in section
5.5. To obtain a signal which is in fact proportional to the population di�er-
ence in the atomic sample in the two port � two color setup, the probe lasers
both have to be detuned to the same side of the closest transition � both
probe lasers need to gain a light phase shift in the same direction (compare
�gures 2.3 and 3.8). In this con�guration also the light shifts of the ground
states (equation (3.5)) have the same sign and can be adjusted to be equal.

Optical setup of two color � two port interferometer setup
The optical setup of the interferometer with two active input ports in shown in
�gure 3.9. Apart from adding light in the second input port of the interferometer
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Figure 3.10: Interference fringes of the lock laser (black), the F = 4 → F ′ = 5 probe
laser (red) entering through the same port as the lock laser and of the F = 3 → F ′ = 2
probe laser (blue) entering through the second input port. The asymmetry in the fringes
from the lock laser is due to the polarization dependence of the interfering beam splitter.

through a second �ber, we also introduce losses in the probe arm of the interferom-
eter by using polarization optics. This way, the relative power between the probe
and the reference arm can be adjusted and the reference arm can be changed to take
the role of a strong local oscillator. The interferometer then acts as a homodyning
setup for one of the probe light quadratures. In addition, the single component,
non�polarizing output beam splitter has been changed to a combination of two
polarizing beam splitters (PBS2 and PBS3), where the actual interference hap-
pens on PBS3 (caused by the polarization mixing induced by the preceding λ/2
plate). This became necessary because the splitting ratio of the previously used
non�polarizing output coupler was not exactly 50/50, leading to a signal imbalance
too large for the detector to cope with.
In �gure 3.10 we show the actual interference fringes of the two probe and the
interferometer lock lasers in pulsed mode. The white light position can be identi�ed
in the same way as for the single input port interferometer. As predicted, the fringes
form the two input ports are shifted by π with respect to each other.
We have now introduced and discussed the two main interferometer setups used
for the data shown in the later chapters. The light shot noise limited performance
of both setups will be discussed in chapter 6 together with the projection noise
measurements. Until then, we do not concern ourselves with the noise properties
of the system.

3.3 Experiment control

Part of the experiment control has already been discussed in section 3.1.2. As
mentioned, the input/output cards used for the timing of the MOT sequence have
a time resolution of 1ms. To probe the atomic ensemble we want to use light
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Figure 3.11: Programme and system component hierarchies. One programme controls
the three National Instruments cards, used for timing with 1ms resolution, mainly MOT
parameter control (section 3.1.2, �gure 3.4). A second programme controls the fast tim-
ing through the Viewpoint Systems DIO-64 FPGA board (section 3.3.1, �gure 3.12). A
further programme (running on another computer) takes care of the data acquisition with
the DSO and the storage (section 3.3.2). Further equipment is controlled by several stand
alone Labview applications, controlling one or more devices via USB or GPIB interfaces
(section 3.3.2). When necessary, the small stepping routine manages a continuous param-
eter change and the timing between the programmes. The extremely modular programme
architecture is due to historical reasons. Most of the Labview programmes have a mean-
ingful life without all the rest. This makes the structure very versatile and �exible but
sometimes hard to follow for new members of the work group.

pulses of few microseconds duration; in addition, arbitrary pulse sequences with sub
microsecond resolution are required to create ensemble superposition states and for
the microwave spectroscopy to study the coherent evolution of the two level system.
We have therefore added a Viewpoint Systems DIO�64 digital input/output card
to the setup. Further, we have implemented remote computer control to various
components in the setup, mainly for convenience and to speed up the data taking
process.
The di�erent programmes used to control the various parts will be discussed in the
next sections and are summarized in �gure 3.11 together with the equipment they
control and their mutual dependencies.

3.3.1 Fast pulse sequence generation

From a historical and least�invasive point of view, the implementation of an arbi-
trary pulse form generator as stand alone Labview application seemed the quickest
and most straight forward approach to the needs of the experiment in terms of �ex-
ible probe and microwave pulse train generation. The choice fell on a Viewpoint
Systems PCI�DIO64 FPGA input/output card. The card has four 16�bit input
or output busses. We con�gure all ports as outputs. One of the big advantages
in the programming of the card is that the bu�er only requires time stamps when
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the output state is supposed to change. The time sequence generating Labview
programme therefore only has to supply a time stamp with the corresponding bit
values of the output ports when actually something is supposed to happen � two
time stamps for one pulse. This reduces the bu�er which needs to be transferred to
the card signi�cantly with respect to the conventional way of programming, where
a bu�er value at each clock cycle has to be supplied. Running output operations
for 3 seconds with 50 ns time slot resolution would else require 480MB of bu�er size!

The on board bu�er of the card can only hold 512 time stamps and corresponding
output port bit values. For extended pulse trains we therefore use one output bit
of the card to stop the cards own output operation and thereby re�arm the card
for a new output sequence. In this mode the bu�er can be almost arbitrarily large.
The disadvantage of this mode is that the card can run a single bu�er only once
(it can only loop over its internal bu�er), one therefore has to constantly feed the
allocated memory space with bu�er blocks to not cause the card to starve from
lack of time stamps. The card is synchronized to the MOT cycle with a hardware
trigger (see �gure 3.4) and it uses the same clock as the other timing cards to
assure synchronous operation. Figure 3.12 shows one of the Labview programme
front panels corresponding to one arbitrary pulse train generation unit with typical
values. The entries are described in the �gure caption. The values will serve as
example for data shown in chapter 5. A number of such pulse generation units

Figure 3.12: Part of the front panel of one pulse generation units. The boolean control
determines whether the corresponding row is supposed to be executed. The stage numbers
refer to the stages in the MOT programme. Delays are de�ned relative to the start of the
relevant stage unless two rows with the same stage number are supposed to be executed. In
the latter case, the delay refers to the end point of the last pulse of the previous train in
the same stage. Times are given in microseconds. For example, the second entry line will
produce 10 pulses with 2µs duration and 10µs repetition period, the �rst pulse starting
after 5850µs when stage 8 of the MOT programme has started.

comprise the DIO control programme. Some of the controls implemented are:
Gating the probe light (of each laser), triggering the acquisition of the oscilloscope,
gating the lock laser modulation, sending additional lock pulses as reference pulses,
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creating microwave pulses, triggering sweeps on the microwave synthesizer, gating
the dipole trap laser, gating the optical pump pulses, switching probe power levels.
Additionally, we use twelve bits of one port to drive a parallel 12-bit high speed,
fast settling digital to analog converter which we can, e.g, use to change the dipole
trap power between pulses.

3.3.2 Data readout and postprocessing

Extensive noise measurements have shown that the readout of the detector signal
by direct analog integration and digitization with a National Instruments computer
card as presented in [1, 2] is (also in terms of �exibility) inferior to the direct dig-
itization on an oscilloscope. We therefore use an Agilent In�niium 54832D digital
storage oscilloscope (DSO) to acquire the data from the detectors. We employ the
DSO in segmented mode, where a prede�ned number of time segments is recorded.
Each of these segments is individually triggered by a DIO output pulse; the seg-
ments can in principle be arbitrarily far spaced in time. When the acquisition of all
data segments is �nished, the data is transferred to another computer and stored
for post processing. The obvious advantage of this triggering mode is the reduc-
tion of used disk space and the possibility to operate the DSO at the maximum
time resolution. As we shall see, a single experimental run usually contains several
probe segments, where each segment is only few tens of microseconds long, but the
segments are distributed over several hundred milliseconds.
To illustrate the procedure on a realistic time and pulse sequence consider �gure
3.4 and �gure 3.12 again. We do not know what exactly, yet, but let us assume
that we want to measure in stages 8, 10 and 30 of the main timing sequence,
�gure 3.4. The DIO cards generates pulses in stage 8, 10 and 30 according to the
sequence shown in 3.12. The three DSO segments would therefore be triggered at
t = 5850, 5000, 5045µs in these stages. To acquire the ten pulses, only a 100µs
time window per segment is required; between the triggers which are separated by
several tens of milliseconds, the DSO just idles and waits. When the acquisition is
�nished, the data is transferred to the auxiliary computer.
The control of the DSO, e.g., change scales, number of channels displayed and
stored, setting up the DSO mode and number of segments is taken care of by
a further stand alone Labview programme. The programme manages the DSO,
the storage and the displaying of the data on the control computer. The data
recorded with the DSO is stored in internal binary format and is post processed
using Matlab. Usually, we are only interested in the area of the pulse, so after
reading the binary data, the Matlab script prepares a processed data �le containing
the duration normalized integrals of the individual pulses. Since the whole trace
is available, more involved integrating function as used for baseline subtraction
(compare section 4.3) are easily implemented.

Further control parameters
Apart from the analog and digital signal generation discussed up to now, some
system parameters are controlled by additional Labview programmes. Some of
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the rf frequency generators, e.g., the function generators providing the reference
frequency for the beat note locks (section 3.2.1) have GPIB interfaces which are
used to remotely set the frequencies. Also the microwave synthesizer parameters
(section 5.2) are controlled with its GPIB interface and the settings of a general
purpose power supply. Two USB interfaced, motorized rotation mounts equipped
with λ/2 plates, which are used to control and stabilize the power of the probe
lasers, are also Labview controlled.

Stepping routines
In many of the experiments performed and discussed in chapter 5, parameter values,
like pulse durations or separations, light powers or frequencies have to be changed
from one data point to the next. To make this walk in parameter space time e�cient
and less prone to mistakes from the experimentalists side, we have implemented
stepping routines. In a small programme routine, we de�ne the parameter interval.
This programme then changes the entry in the speci�c Labview applications, gates
the DSO acquisition programme and manages the data �le names (compare �gure
3.11). In this way, the experiment can run basically on its own taking, e.g., ten
datasets at the same parameter set and then move on to the next set. This step-
ping programme has saved many hours of tedious by�hand parameter changing,
�le renaming etc. and almost made the experiment into a data production facility
[51].

We have now gathered the main principles and experimental techniques used in
our setup. To conclude this chapter, we apply the described techniques in the next
section to extract some properties of a dipole trapped sample. The example is
mainly given to illustrate the basic measurement procedure and to set the stage
for the main experimental body, chapters 5 and 6.

3.4 Non�destructive probing of dipole trapped sample

In section 3.1.2 and 3.1.3 we have discussed the generation of a cold ensemble
of caesium atoms, trapped in a single beam far o� resonance dipole trap. The
atoms captured in the MOT and then loaded into the dipole trap can be observed
by using �uorescence imaging techniques [2]. One triggers the acquisition of a
CCD camera while �ashing the sample with resonant F = 4 → F ′ = 5 pump
and F = 3 → F ′ = 4 repump light. This way of observing the ensemble is fully
destructive; the spontaneous photon scattering, which is used to detect the atoms,
heats the sample up and within few tens of microseconds, the atoms are lost from
the trapping region. To determine the relevant parameters of the dipole trapped
sample like atom number, temperature, lifetime of the atoms in the trap and trap
frequency, we use the interferometer. As a reference for the later chapters, we
shall now introduce the general measurement procedure when probing the sample
non�destructively on a practical example: the determination of the trap lifetime
and the longitudinal trap frequency.
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3.4.1 General measurement procedure

For most of the experiments presented here and in chapter 5 we use a single color �
single port interferometer setup. The probe light is (unless otherwise speci�ed) blue
detuned by ∆45 = +160MHz from the F = 4 → F ′ = 5 transition. We generally
use probe pulses of 2µs duration; for speci�c applications, the duration may be
adapted. The duration of 2µs is chosen to �t to the best operation point of the
di�erential photo detector we use to measure the interferometer phase shift (chapter
4). In addition, a 2µs pulse duration is advantageous when one is interested in
the sample dynamics: E�ects of atomic motion can be neglected during that time,
so a single pulse corresponds to an instantaneous parameter readout. The photon
numbers in a single pulse are adapted such that the spontaneous photon scattering
induced by a series of pulses is negligible. As typical value we use ∼ 106 photons
per probe pulse, corresponding to a dc beam power of ∼ 125 nW during 2µs.

Interferometer baseline
The phase shift caused by the atomic ensemble can usually not be directly inferred
from the measurement signal. Due to technical imperfections, the zero crossing
of the lock laser interference fringe and the probe laser interference fringe do not
exactly coincide (compare �gure 3.7), even close to white light position. The dif-
ferential detector signal S ≡ S− = SD1 − SD2 = Smax sin∆φbaseline is therefore
not zero when no atoms are present. We casually refer to this case as �the empty
interferometer signal�. When we refer to the interferometer (output) signal S, we
always mean the di�erential output signal of the two output ports; the single photo
diode currents are not accessible in the detector we use. Since the actual size of the
signal in terms of phase shift units is usually not of interest, we do in general not
normalize the signal to the actual fringe amplitude. The interferometer lock o�set
(interferometer baseline) has to be subtracted from atom measurement signals to
get the real atomic phase shift. We try to keep this o�set as low as possible. The
combined o�set plus atomic signal is usually below 40% of the total interference
fringe amplitude, such that the output signal is still almost linear in the phase
shift: S− = Smax sin(∆φatomic + ∆φbaseline) ≈ Smax(∆φatomic + ∆φbaseline). The
error in this approximation is 2.6% at 40% fringe amplitude, which is acceptable.

Measuring atoms in the trap
The experimental cycle to measure on a dipole trapped atomic ensemble is sum-
marized in �gure 3.13. As described in section 3.1, we trap and cool atoms with
a magneto optical trap and transfer them into an optical dipole trap during a
sub�Doppler cooling stage. After the cooling stage, the atoms are about equally
distributed between the two ground state manifolds F = 3 and F = 4. To read out
the total atomic population, we therefore �rst repump the atoms into F = 4 using
the MOT repump laser. After this initialization, we are ready to apply whichever
manipulation and probing scheme we desire. At the end of the sequence, we heat
the atoms out of the trapping region by applying the MOT light (both pump and
repump light) detuned to the blue side of the transitions. By detuning the lasers
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Figure 3.13: Simple measurement sequence. We load atoms into the dipole trap by
running the magneto optical trap and performing rudimentary sub�Doppler cooling. The
atoms con�ned in the trap are then initialized into the F = 4 hyper�ne ground state and
ready for whichever measurement we desire to do. After the measurement, we remove the
atoms from the probing region by heating them out of the trap with blue detuned MOT light
and determine the interferometer lock o�set for signal calibration. The whole cycle takes
a few seconds and is repeated until enough statistics for a single parameter con�guration
is obtained.

to the blue side of the transitions we avoid optical molasses e�ects which would
freeze the atoms. When all atoms have been removed, we measure the empty
interferometer phase shift signal and use it for baseline subtraction.
The graphs presented in �gure 3.14 illustrate the path from raw data recorded on
the oscilloscope to the single pulse integrals used in the data processing for an
atomic sample prepared in the just described way. The data in 3.14(a) shows a
recording of the trap dynamics just after the loading is �nished. To record the
data, we send 2000 probe pulses with 2µs duration and 250µs repetition period
in the beginning of stage 5 of the experimental cycle (compare �gure 3.4). After
about 450ms of probing, the sample is heated out of the trap by applying both
blue detuned F = 4 → F ′ = 5 and F = 3 → F ′ = 4 light and the interferometer
baseline is determined. Figure 3.14(b) shows a zoom into that part of the data
and 3.14(c) zooms into a single probe pulse. The full raw data is stored and the
pulses are then integrated numerically in the limits shown. We are then left with
the single pulse values (actually we normalize the integrals to the pulse duration to
get only the pulse amplitude), ready for post processing. In general, all the data
shown in the following is interferometer baseline subtracted, in the sense that the
mean value of several empty interferometer measurements is subtracted from the
data.

3.4.2 Lifetime of atoms in the trap

From the data shown in �gure 3.14 we extract the baseline subtracted pulse values
as discussed above. We then end up with data as shown in �gure 3.15 from which
we calculate the trap decay time. An exponential �t returns a 1/e lifetime of
τ = 250ms which corresponds to the average trap decay time we observe. It is
considerably shorter than the values reported in [2] for a comparable setup in our
lab. This is most likely due to increased background pressure in the vacuum system
as discussed in section 3.1.1. The single exponential decay is only an approximation
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Figure 3.14: Raw data from non�destructive trap decay observation. (a) 2000 probe
pulses with 2µs duration and 250µs repetition period are applied to an atomic sample
loaded into the dipole trap. After about 450ms quasi continuous probing, the atoms are
heated out of the trap and an �empty interferometer baseline� is established. (b) Zoom
into the transition region where the atoms are expelled from the trap, resolving the single
pulses. (c) Single probe pulse. The directly digitized and stored raw data is numerically
integrated and normalized to the pulse duration. This compressed information is then used
for postprocessing.

and discards e�ects caused by density dependent losses. The exact loading and
decay dynamics has been studied in detail in [2, 15].
A single data trace as shown in the �gure can be used to optimize the trap loading
very e�ciently. A single shot measurement is used to extract the trap decay and the
number of atoms in the interaction region. Changing parameters during the MOT
and sub�Doppler cooling stages, moving the position of the MOT cloud or the
position of the dipole trap beam between two experimental runs have immediate
consequences and can be followed basically online.

3.4.3 The problem with the atom number

At �rst sight it seems straight forward to extract the total number of atoms in
the interaction region from the interferometer phase shift as given in equations
(2.43) and (2.44) on page 20. The maximum number of atoms we can load into
the trap produces an interferometer phase shift of ∆φ4 ∼ 0.4 rad at a detuning
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Figure 3.15: Baseline corrected data for trap lifetime determination and trap loading
optimization. An exponential �t through the data returns a decay time constant of 250ms.
The exact shape of the trap decay is not single exponential. Details on the trap loading
and the decay can be found in [2].

∆4,5 = +150MHz. Assuming a homogeneous probe area A = V/l = πw2
0 with a

probe waist of w0 = 20µm, one �nds the number of atoms in the interaction region
to be N4 ∼ 3×105 and a corresponding on resonance optical depth α0 = 2S0 ∼ 30.
This simple approach assumes a homogeneous atom number distribution across a
homogeneous interaction region. Due to the intensity distribution of the dipole trap
beam I(r) = I0e

−2r2/w2
0 and assuming that the atoms in the trap are in thermal

equilibrium, the spatial pro�le of the atomic ensemble can be approximated by a
Gaussian column density distribution:

n(r) = n0 exp
(
−2r2

r20

)
(3.17)

Here we introduce a sample waist r0 similar to the Gaussian light beam waist w0

which does not correspond to the usual de�nition of the sample width5. The total
number of atoms in the trap becomes: N = π

2 r
2
0n0. The main complication now

arises from the fact that we couple a Gaussian probe beam with smaller waist
w0 < r0 to the ensemble. So in addition to the Gaussian density distribution we
get a spatially inhomogeneous coupling to the atoms. When we denote the light
phase shift per atom with k and write ∆φ4 = kn(r), the interferometer signal S−
reads:

S− =
∫
kn(r)I(r)2πrdr (3.18)

which can be evaluated to:
S− = 2πkI0n0

w2%2

4 + 4%2
(3.19)

which depends on the ratio % = r0/w0 of the sample waist to the probe beam waist.
The de�nition of an e�ective atom number is now considerably more complicated.

5Usually the sample size is de�ned via the thermal RMS radius of the Gaussian density

distribution n(r) = n0 exp
(
− r2

2σ2

)
, σ = t

2π

√
kT/m where t is the trap period.
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However, if % is known, the maximum values of the column density can be extracted
from the e�ectively measured phase shift:

∆φeff =
∫
kn(r)I(r)2πrdr∫
I(r)2πrdr

= kn0
%2

1 + %2
(3.20)

which can be used to determine the total number of atoms N = π
2 r

2
0n0 in the trap.

An e�ective atom number Neff can be introduced by demanding that the noise
scaling for a coherent atomic state δ2Neff = Neff is ful�lled. For the signal scaling
we get:

S2
−

δ2S−
= πw2

0n0
%2(1 + 2%2)
2(1 + %2)2

(3.21)
where we have used that δ2n = n and therefore the signal noise can be expressed as
δ2S− =

∫
k2I2(r)n(r)2πrdr. To ful�ll δ2Neff = Neff we need to de�ne the e�ective

atom number as:
Neff = πw2

0n0
%2(1 + 2%2)
2(1 + %2)2

=
(1 + 2%2)
2(1 + %2)

πw2
0

k
∆φeff (3.22)

The ratio % = r0/w0 has been determined in several independent experiments to
be between % ∈ [1.3 . . . 3.0] depending on the number of atoms loaded into the trap
and the MOT cooling performance during the loading. The spatial inhomogeneity
of the probe beam together with the inhomogeneous atom number distribution will
play an important role in the discussion of the non�destructive characterization of
coherent state evolution in sections 5.5 and 5.7.4.

3.4.4 Longitudinal oscillations

When the overlap of the trap with the probe region is suboptimal, longitudinal
trap oscillations can be observed. We on purpose misalign of the dipole trap beam
with the MOT position and the probe region. The movement of the atoms in the
trap is then visible as signal oscillations due to varying atom numbers in the probe
volume. The corresponding data is shown in �gure 3.16. The sample has been
probed in a similar fashion as described in section 3.4.1 but using 500 pulses of 2µs
duration and 1ms repetition period. Clear oscillations of the signal are visible and
by subtracting the exponential trap decay from the data, the oscillation frequency
can be determined as shown in the inset of �gure 3.16. The oscillations have a
period of 147ms corresponding to 6.8 Hz. These density oscillations correspond to
a longitudinal trap frequency of ω‖ = 2π × 3.4Hz. This is in good agreement with
the values estimated in section 3.1.3. More thorough studies of the trap dynamics
using non�destructive probing can be found in [2]. In 5.10.1 we use microwave
spectroscopy to extract the radial trap frequency.

3.4.5 Direct observation of trap induced light shift on probe

transition

To conclude this chapter on the experimental techniques, we use non�destructive
sample measurements to determine the di�erential light shift on the F = 4 →
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Figure 3.16: Observation of longitudinal trap oscillations. When the trap center and
trap axis are misaligned with respect to the probe beam, the motion of the atoms becomes
visible. When the exponential trap decay is subtracted from the data, the oscillation fre-
quency can be easily extracted as shown in the inset. We obtain a sloshing frequency of
6.8Hz, corresponding to a longitudinal trap frequency of ω‖ = 2π × 3.4Hz. The faster
damping of the oscillations compared to the trap decay time is most likely due to trap
anharmonicity.

F ′ = 5 transition due to the dipole trap beam. To that end, we load atoms
into the trap, probe the sample continuously and scan the probe laser frequency
across the Doppler pro�le while probing. We record the error signal used for laser
locking (corresponding to the dispersion signal from the atoms in the vapor cell of
the saturated absorption setup) together with the phase shift signal observed in
the interferometer. The frequency shift between the two dispersion pro�les is due
to the di�erential light shift between the two atomic states F = 4 and F ′ = 5.
Corresponding data is shown in �gure 3.17(a).
In a largely simpli�ed discussion, we only consider the two levels coupled by the
probe light. The energy shift ∆Eg < 0 of the ground level F = 4 due to the
dipole trap is given by equation (3.5); at the same time, the excited level F ′ = 5
is shifted upwards in energy by the same amount ∆Ee = −∆Eg. The transition
frequency ∆ωF=4→F ′=5 is therefore increased by ~∆ωlightshift = ∆E = 2∆Eg. Since
the energy splitting depends on the dipole trap depth, we expect the dispersion
pro�les to shift proportionally to the dipole trap laser power. Figure 3.17(b) shows
the change in the transition frequency as function of dipole trap power, which
con�rms this linear power scaling. With a maximum power of ∼ 4W, we get a
frequency shift of ∆ωlightshift = 2π × 2MHz/W.
Since the caesium atom is (unfortunately) not a two level system, the situation is
much more complicated as just described. Since the dipole trap laser couples to
several excited states at the same time, the ground state energy is shifted by the
other transitions as well. The energy shifts are therefore not equally distributed
between the ground an the excited state. From the trap depth, U0/k = 280µK
=̂2π × 5.8MHz we know that the lower state is shifted by ∆Eg = −5.8MHz;
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Figure 3.17: Observation of di�erential light shift on the probe transition caused by the
dipole trap potential.(a) The dispersion pro�les are shifted with respect to each other due
to the light shift creating the trapping potential. In the data shown, the pro�les are shifted
by additional 160MHz because of the 80MHz pulsing AOM used in double pass. (b) By
subtracting the shift from the pulsing AOM, we extract the di�erential light shift on the
F = 4 → F ′ = 5 transition. As expected, the shift increases linearly with the trap power.

consequently we would claim a shift of the excited level by ∆Ee = 2.2MHz. The
shift extracted from the data, however, is an average light shift value, which also
takes the spatial inhomogeneity of both the probe and the sample into account,
while the trap depth only gives the maximum shift. To complicate the situation
even more, we note that the probe laser itself causes a di�erential light shift � this
will be discussed and investigated thoroughly in section 5.5 and 5.7.4. In any case,
the discussion shows that there are many interesting e�ects to investigate in our
system!
With these �rst sets of experimental data we conclude the chapter on basic exper-
imental principles and take a closer look at the di�erential detector used in the
setup. The following section is only partly necessary to follow the later experimen-
tal chapters. We return to the actual interferometer setup in chapter 5.





Chapter 4
Di�erential, integrating photo

detector

In the previous chapter we have discussed the basic principle of our measurement
setup and applied it to extract properties for the dipole trapped sample. It is
obvious that for the light�atom interaction to be as non�destructive as possible
for a given probe detuning, the photon number per pulse has to be reduced as
far as possible. When reducing the number of photons, a natural lower limit is
set by the intrinsic electronic noise of the detector. The electronics noise level of
the detector used in [15], made the usage of pulses with photon numbers below
n = 106 infeasible. Since also the progress in the neighboring BEC lab [49] made
low electronics noise detectors necessary, this was taken as a welcome motivation
to develop a new generation of ultra low noise, di�erential, integrating ac photo
detectors. This chapter is a summary of the work, which was mainly done together
with Jörg Helge Müller. The circuit layout follows in part the basic principle as
the previous version [1, 2] which was adapted from the design of [52]. We have
constructed several detectors, based on two di�erent sets of electronic components,
referred to as the Amptek and the Cremat versions. With these detectors we
obtain an equivalent noise charge (ENC) of ENC ∼ 300, which reduces the shot
noise limited photon number level to n3dB ∼ 105. The main purpose of the chapter
is to summarize the development process and make the results and considerations
accessible for future reference. Parts of the chapter are also summarized in [6]. Due
to the nature of the subject, some sections are rather technical but the importance
of the results justify a discussion.
The chapter starts out by describing the working principle of integrating detectors
and the technical realization of the two di�erent approaches. The noise analysis for
continuous light beams and pulses of light is discussed and the results compared for
consistency. To compensate for technical imperfections, optimization procedures
in the analysis are presented and �nally the di�erent technical realizations are
compared.

57
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Figure 4.1: Schematic block diagram of the detector circuit. The di�erence signal of
two reversely biased photodiodes is ac coupled into a charge sensitive ampli�er (integrator)
with time constant τ = RiCi. From the integrated signal, Gaussian pulses are formed at
the output by passing the integrated signal through a high pass �lter followed by a low pass.
A pole�zero cancelation resistor RP/Z helps to return zero output signal during the decay
time of the integrator.

Figure 4.2: Detector response to an imbalanced input signal. (a) The integrated signal
rises linearly during the pulse. The shaping stage transfers the linear slope into a gaussian
pulse whose integral in proportional to the signal imbalance. (b) Several pulses are applied
to the detector on a timescale short to the decay time of the integrator. Each integration
step is transferred into a Gaussian pulse and the baseline after each pulse returns to zero
due to the properly adjusted pole zero cancelation. (c) After a single, strong imbalanced
pulse, the integrator output decays to its initial value with a time constant of τ = 1.46ms.
The output of the detector is zero during that time.

4.1 Principle of operation

Before the circuits of the two detector types are discussed more speci�cally, let us
consider the reduced block diagram shown in �gure 4.1 to grasp the operation prin-
ciple. The di�erence signal from two photodiodes is obtained by connecting them
in series and sensing the di�erential photo charge between the diodes. To reduce
the capacitance of the diodes and thereby decrease their response time, they are
reversely biased. The di�erential charge is ac coupled into an integrator stage with
time constant τ = RiCi, where Ri is the feedback discharge resistor and Ci is the
feedback capacitor of the operational ampli�er used as integrator. Since the inte-
grator basically converts an input charge into a voltage, this type of setup is often
also referred to as charge sensitive ampli�er. For an input signal change faster than
τ , the capacitance of Ci determines the charge to voltage conversion factor, thus
the gain of the �rst stage. The response of the integrator to an imbalanced signal
is shown as insets in �gure 4.1; for better reference, the signals at di�erent stages
in the detector are shown in �gure 4.2 on various timescales and for di�erent input
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pulse con�gurations. After a response time of ∼ 5 ns, the signal at the integrator
output rises linearly with a slope of dQ

Cidt as long as the pulse duration is much
smaller than τ , �gure 4.2(a). After such a pulse, the signal decays exponentially
with time constant τ to its initial value (compare �gure 4.2(c)). The integrated
signal is fed into an high pass �lter (C�R combination) with rise time τ2 = RdCd,
followed by a low pass �lter (R�C combination) with same time constant. The
combination can also be viewed as an active di�erentiator with a low pass �lter at
the output. For a duration of the initial pulse much smaller than τ2 and τ2 � τ , the
integrator output can be approximated by a step function V (t) = V0Θ(t). Here Θ

is the Heaviside theta function Θ(x) =

{
1 for x > 0
0 for x ≤ 0

and V0 the voltage level
after the pulse. Let us look at the transfer function of the composite system to
see what the di�erent stages do. The transfer function is de�ned as the Laplace
transform of the output voltage V (t):

H(s) =
∫ ∞

0
V (t)est, s complex (4.1)

If we for a moment neglect the in�uence of the discharge resistor Ri in the integrator
stage, the transfer function of the integrator is Hstep = V0/s. For the high pass
one �nds:

H(s)highpass =
τ2s

1 + sτ2
(4.2)

and for the low pass:
H(s)lowpass =

1
1 + sτ2

(4.3)
After the inverse Laplace transform of the product of the three systems:

Hcombined(s) =
V0

s

τ2s

1 + sτ2

1
1 + sτ2

(4.4)

we arrive at:
Vout = V0

te−t/τ2

τ2
(4.5)

The theoretical response of the single systems and the combined �lter is shown in
�gure 4.3(a). For a step function like input (a delta pulse at the integrator's input)
the �lter combination thus produces a pulse which can crudely be approximated by
a Gaussian with a �standard deviation� of τ2. The FWHM of such a pulse is then
2
√

2 ln 2τ2 = 2.4 τ2, where τ2 is then also referred to as the shaping time. Filter
combinations of that kind are often called Gaussian shaping ampli�ers. The type
presented here is one of the most simple circuits.
As mentioned, after a pulse the output of the integrator decays to its initial value
with time constant τ . Taking this into account, the transfer function of the inte-
grator stage reads:

Hint(s) = V0
sτ

1 + sτ
(4.6)

Now, the output of the shaper does not return to zero but undershoots on a
timescale of τ (compare �gure 4.3(b). This is due to the pole of the transfer
function created by the RiCi combination at τs = −1 ⇔ |s| = 1/RiCi. By adding
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Figure 4.3: (a) Temporal shape of output response of an high pass �lter (C�R com-
bination), a low pass (R�C combination) and the composite system to a step like input.
Both �lters have the same time constant τ2. The output resembles a pulse with Gaussian
shape and a duration of 2.4τ2. (b) Taking the exponential decay of the integrator output
into account, the shaped pulse undershoots compared to the pulse created from a step like
input. With appropriate choice of an pole�zero cancelation resistor, the undershooting can
be compensated. For the plot τ = 10τ2 has been chosen.

a zero in the transfer function of the high pass, this pole of the integrator can be
compensated. With a resistor RP/Z added in parallel to the di�erentiator's input
capacitor Cd, the transfer function of the high pass reads:

Hcombined(s) = V0

τ2(RP/ZCds+ 1)
τ2 +RP/ZCd +RP/ZCdτ2s

. (4.7)

Adjusting RP/Z such that RP/ZCd = τ = RiCi the transfer function of the whole
circuit reduces to:

HP/Z(s) = V0
τ ′

1 + sτ ′
1

1 + sτ2
, τ ′ =

ττ2
τ + τ2

(4.8)

thus the pole is canceled and we arrive at a transfer function similar to the one
given in equation 4.4 with slightly di�erent durations. Since τ2 is also the time
constant for the low pass, by changing the time constant of the low pass to τ ′ a
symmetric con�guration can be obtained. With correctly adjusted pole�zero can-
celation resistor, the di�erentiator (ideally) returns zero signal during the discharge
time of the integrator, i.e., the detector output for a imbalanced signal is a pulse
with Gaussian shape and with the same baseline regardless of the previous history
of the input signal (compare �gure 4.3(b)). Imperfect pole�zero cancelation will
result in pulling (or pushing) of the output signal baseline as indicated in the �gure.
The basic principle of �rst integrating and then deriving the di�erence signal is
chosen to obtain a very low electronics noise output level. A direct ampli�cation
of the di�erence signal with constant gain over the total bandwidth of the detector
would require an operational ampli�er with unrealistically high gain�bandwidth
product to achieve the necessary gain in a single stage. Cascading ampli�ers of
lower gain introduces the so�called Johnson noise of the 1st stage feedback resistor
which soon becomes larger than the signal of interest.
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Based on the basic principle discussed, we now consider the circuit layouts of the
two detector types which have been built, one based on Amptek [53] ampli�ers and
one based on Cremat [54] modules. The two approached are compared in table 4.1.

AMPTEK Cremat
integrator A250, external FET and feed-

back, time constants user de-
�ned

CR 110, hybrid, time constant
�xed

decay constant τ=1.5 ms τ=140µs
bu�ering gains of shaper adjusted for

optimal dynamical range
bu�er between ampli�er and
shaper to optimize dynamical
range

shaper 2× A275, 3 pole, τ2=330 ns
user de�ned shaping times
and external feedback net-
works

CR-200, hybrid, τ2 = 250 ns,
commercial package, modules
with di�erent prede�ned time
constants available

nphoton,3dB 0.8 · 105 1.2 · 105

ENC 280 e− in 1µs 340 e− in 1µs
Table 4.1: Comparison of the two detector versions.

4.1.1 Detector layout based on Amptek ampli�ers

The circuit layout of the detector based on an Amptek A250 charge sensitive am-
pli�er and Amptek A275 shaping modules, following closely the general designs
used in [1, 2, 52] can be found in appendix C.2. Some di�erences compared to the
basic principle discussed above are worth mentioning:
The Amptek A250 ampli�er, which is basically an operational ampli�er optimized
for being used as a charge sensitive ampli�er, requires an external �eld�e�ect�
transistor (FET) to complete its input stage. This has the advantage that it can
be chosen to meet the capacitance of the photodiodes. On the other hand, the main
external noise source is actually the (very high) impedance input stage, therefore
close attention has to be paid to the circuit board layout at that stage. To achieve
a high transimpedance gain, the feedback network of the integrator requires rather
inconvenient values. We chose a capacitance of Ci = 0.3 pF which is very close
to the stray capacitance of two standard SMD soldering pads and the resistance
of Ri = 5GΩ to achieve decay constants in the milliseconds range can easily be
corrupted, e.g., by the �ux used while soldering. With the values given here, the
theoretical decay constant of the integrator is 1.5ms. The signals at di�erent de-
tector stages shown in �gure 4.2 were actually recorded for this detector version.
The data presented in �gure 4.2(c) returns a decay time constant of τ = 1.46ms
con�rming the theoretically expected value. An in�uence of stray capacitances or
creep currents reducing the resistor size is thus not observable. A second detector
with lower transimpedance gain using an equivalent layout but with Ri = 300MΩ
and Ci = 1 pF has been built as well. With lower gain at the input stage, the
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detector can cope with stronger single pulse imbalances since the integrator does
only saturate for a larger integrated charge.
Another di�erence compared to the layout suggested by the general principle is
a third stage of the detector which makes the simple two pole Gaussian shaper
stage with pole�zero cancelation into a three pole shaping ampli�er with pole�zero
cancelation. The third pole arises from the complex resistance of an inductor placed
in series with the input resistor of the low pass. The third stage is mainly used to
add additional gain at the output which helps to use a larger span of the dynamical
range of the ampli�ers for the input signals expected. The additional pole of the
shaper is placed such as to make the step response of the �lter more symmetric, i.e.
Gaussian, it therefore also changes the peaking time of the detector. For the three
pole �lter, the shaping time is set to 330 ns, leading to a FWHM of the output
pulse of 790 ns.

4.1.2 Detector based on CREMAT modules

Cremat o�ers a self contained charge sensitive preampli�er unit CR-110 which
contains both the input FET and the feedback network. Further, shaping modules
CR-200 with prede�ned shaping times are available which only require an external
resistor network for pole�zero cancelation. We have only used the 250 ns shaping
time modules, but the designed circuit also works with the other modules available.
In general, the Cremat modules are easier to handle than the Amptek ampli�ers
although at the expense of �exibility, e.g., the user has no access to the gain of
the charge sensitive preampli�er. The circuit layout for this version, also shown
in appendix C.2, is thus much simpler than for the Amptek design. To open the
possibility to add additional gain in the detector, an ac coupled bu�er stage has
been added between the preampli�er and the shaper. Adding gain at this stage of
the detector helps to use the full dynamic range of the shaper when knowing the
range of input signals expected. This is not equivalent to being able to change the
gain of the integrator. The size of Ci determines the total charge the integrator can
take before it saturates. In the Cremat CR-110, this is �xed to 2.6× 107 electrons;
a single pulse photocharge imbalance of more than this amount can thus not be
detected properly. Since it takes the integrator output of the CR-110 τ = 140µs
to decay, this also limits the total amount of photon imbalance on this time scale.
Another drawback of the Cremat modules is that the output stage of the shaping
ampli�er only delivers up to 10mA and is therefore not able to drive its full output
swing on a 50 Ω terminated cable. This has to be taken into account when using
these modules.

4.1.3 Detector test setup

To test the performance of the detectors we use the setup shown in �gure 4.4.
A light beam derived from an external grating stabilized, frequency locked diode
laser, pulsed with a standard acousto�optical modulator, is coupled into an optical
�ber. At the output of the �ber the polarization is stabilized with a polarizing
beam splitter. To monitor the power of the pulses, a large fraction of the beam is
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directed onto a fast photo detector. The rest of the beam is split into two parts
on a polarizing beam splitter and each beam is focussed onto one photo diode
of the di�erential detector. To calibrate the powers and to automate the data
taking procedure, the power of the input beam is controlled with the computer
interface which also controls the storage oscilloscope. The oscilloscope is usually

Figure 4.4: Test setup. The light beam derived from a grating stabilized diode laser
arrives at the output of an optical �ber. A large fraction of the power is diverted into
a fast, calibrated reference detector and the rest of the beam is further attenuated, split
into two parts and focussed onto the two photodiodes. The output is directly digitized on a
storage oscilloscope and saved to a hard drive for postprocessing.

run in segmented mode, where several trigger events with time separations much
larger than the on screen display duration are combined into one �le. This helps to
reduce the disk space required when separating single pulses by much more than
their duration.

4.2 DC operation and noise measurements

Although the detector is speci�cally designed for pulsed input light operation, in-
formation about the expected noise performance can be obtained with continuous
light beams and observing the detector output on a spectrum analyzer. A spectrum
analyzer can be used to display the spectral noise power density Ω(ω), which is de-
�ned as the Fourier transform of the autocorrelation function Ω(r) = 〈o(t)o(t+r)〉t
of a time dependent signal o(t) [55].
Let us consider the detector as a black box with gain function g(t) with an addi-
tional noise process e(t) at the output, and an independent noise process at the
input � the signal noise s(t).

The whole noise of the blank detector circuit with no input is merged into e(t).
Di�erent from the usual practice in electronics, the ampli�er noise is here the
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Figure 4.5: (a) Spectral noise power density of the Amptek detector for di�erent input
light levels. (b) Gain function and signal�to�noise ratio, where the signal is the input light
noise. To obtain the gain, the electronics noise level is subtracted from the noise power
densities and normalized to the (theoretical) shot noise of light. The latter is calculated
by assuming that the input light is in a coherent state and therefore its night noise power
density is independent of the frequency. For a known input light level, the white shot noise
can be divided out. For the data the DC spectrum of 115 nW has been used.

output reference noise, which is directly accessible to measurement and the relevant
quantity in a practical assessment of the detector performance. The gain function
only acts on the signal input and the result is a convolution of the gain function
with the signal. Therefore, the output signal o(t) can then be written as:

o(t) = 〈g(r − t)s(r)〉r + e(t). (4.9)

If s(t) and e(t) are described as wide�sense stationary noise processes (instead of
known functions in time) the Wiener�Khinchin�theorem (see appendix C.1), relates
the spectral noise power density Ω(ω) to the square of the Fourier components o(ω)
of the original signal o(t):

Ω(ω) =
1
2π

∫ ∞

−∞
〈o(t)o(t+ s)〉e−iωsds (4.10)

=

〈∣∣∣∣ 1
2π

∫ ∞

−∞
o(t)e−iωtdt

∣∣∣∣2
〉

(4.11)
= 〈|o(ω)|2〉 (4.12)

Since the two noise processes s(t) and e(t) are independent, the spectral noise
power density of the output signal becomes

Ω(ω) = |g(ω)|2|s(ω)|2 + |e(ω)|2 (4.13)
where g(ω) is the spectral response of the detector. Here we have invoked Parceval's
theorem to write the Fourier transform of the convolution of the gain function with
the input random variable as a product of the Fourier components.
The noise power density for the Amptek detector is shown in �gure 4.5(a) for
di�erent dc input light levels. When we assume that the input light is a coherent
state and the detector is fully balanced (thus classical input light level �uctuations
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cancel out), the input noise is only shot noise of light. The spectrum of shot noise is
white, the noise power density of the input signal |s(ω)|2 is thus a constant s20 andproportional to the photon number in the inverse bandwidth of the detection. The
intrinsic noise level of the detector � the electronics noise level � can be determined
by recording the noise power density at the output with no input signal. By
subtracting this level from the spectrum and normalizing the spectrum to the
constant input noise level, we can extract the gain function:

|g(ω)|2 =
Ω(ω)− |e(ω)|2

s20
(4.14)

From the corresponding graph in �gure 4.5(b), we extract that the gain drops by
3 dB within ∼ 600 kHz. This corresponds well to the total inverse pulse duration
we shall encounter further down. By normalizing the spectral noise power density
for a given input power to the electronics noise level, the signal�to�noise (S/N)
ratio can be extracted as a function of frequency, where the signal is actually the
light noise.
The transformation from the frequency domain into the pulsed regime would in
principle require to compute the convolution of an input pulse p(t) with the total
signal o(t). This becomes straight forward in the frequency domain of the signals
where total noise becomes an integral over the power spectra of the product of the
pulse |p(ω)|2 and the signal Ω(ω):

noise = light noise + electronics noise
=

∫ ∞

0
Ω(ω)|p(ω)|2dω

=
∫ ∞

0
|g(ω)|2|s(ω)|2|p(ω)|2dω +

∫ ∞

0
|e(ω)|2|p(ω)|2dω. (4.15)

This basically corresponds to frequency band �ltering of the signal with the power
spectrum of the pulse. For a single square (boxcar) pulse pbc,σ(t) with duration σ:

pbc,σ(t) =
Θ(t+ σ/2)−Θ(t− σ/2)

σ
, (4.16)

where Θ(t) is again the Heaviside theta function, the power spectrum is:

|pbc,σ(ω)|2 =
(

sin(ωσ/2)
ωσ/2

)2

(4.17)

Both the temporal shape and the spectrum of the pulse are illustrated in �gure
4.6. From measurements with the spectrum analyzer we can thus predict the
noise scaling expected when using real pulses. In �gure 4.7 the noise scaling with
input light power is shown for di�erent durations σ of the virtual pulse pbc,σ(t),
i.e., equation (4.15) has been evaluated for the power spectra in equation (4.17)
for various σ parameters. At zero input power the electronics noise level can be
extracted. The linear scaling with light power con�rms the light shot noise nature
of the observed extra signal noise. As we shall discuss in more detail further down,
the performance of the detector is characterized by the light power level, where the
light noise is equal to the bare electronics noise level � the 3 dB level.
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Figure 4.6: Integration pulse shapes pbc,σ(t) and pdcs,σ(t) and their power spectra
|pbc,σ(ω/2π)|2 and |pdcs,σ(ω/2π)|2. The integrated power spectra have been normalized to
unity on the interval [0,∞].

Figure 4.7: Integrated noise powers for di�erent integration window durations (power
spectra). The noise power densities similar to the ones shown in �gure 4.5(a) have mul-
tiplied with the pulse spectrum p(ω) shown in �gure 4.6(b) for di�erent durations τ and
integrated over. For zero input light powers we get the electronics noise levels. The linear
scaling of the curves con�rms the shot noise character of the signal noise.

From the spectrum of the square pulse (4.17) it is clear that especially low frequency
components in the signal, as created e.g., by imperfect pole�zero cancelation which
causes correlations in the signal over long timescales ∼ τ , contribute signi�cantly
to the noise. To circumvent this problem, we can change form the single square
pulse pbc,σ(t) to a window function:

pdcs,σ(t) =
Θ(t+ σ/2)−Θ(t− σ/2)

σ/2
− Θ(t+ σ)−Θ(t− σ)

σ
(4.18)

The resulting power spectrum:
|pdcs,σ(ω)|2 = 4

(
sin(ωσ/2)
ωσ/2

− sin(ωσ)
ωσ

)2

(4.19)
has no contribution at ω = 0. The pulse shape pdcs,σ(t) and its power spectra is also
illustrated in �gure 4.6. Using the integration function pdcs,σ(t) thus reduces the
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Figure 4.8: (a) Electronic response of the detector to input pulses of di�erent durations.
For input light pulse durations comparable or longer than the shaping time, the output
pulse duration the input pulse duration, extended by the shaping time. (b) Normalizing the
output signals for a �xed input pulse duration of 500 ns to the corresponding input signal
strength, the linearity of the detector response is veri�ed.

in�uence of low frequency noise contributions and allows one to cancel the e�ect
of baseline pulling. Generally, the integration with a certain gating function p(t)
can be understood as frequency (band) pass �ltering of the signal with the power
spectrum of the gating function |p(ω)|2. Using the integration function pdcs,σ is
very similar to the double-correlated sampling technique sometimes applied in CCD
readout units to reduce correlated noise sources.

With these techniques at hand, we shall now go over to pulsed operation of the
detector and discuss the analysis in that case. We will come back to the dc spectra
discussed above and compare the results of the two analysis methods.

4.3 Pulsed detector operation and noise analysis

We now apply pulsed light signals to the the setup discussed in section 4.1.3. The
typical durations are between 100 ns and 4µs. We slightly imbalance the signal
by splitting the input beam asymmetrically. Figure 4.8(a) shows the detector
output signal for di�erent con�gurations. For input pulses shorter than the de�ned
shaping time of the Gaussian �lters, we get the pulse forms as expected from the
theoretical treatment of the circuit in section 4.1. When the input pulse duration
approaches the shaping time, the pulse tops start to �atten out and a constant level
is reached. The resulting electronic output pulse is longer than the light input pulse
by approximately the delta shaping time. In any case, the full area of the pulse is
proportional to the total di�erential photon number of the input pulse. Linearity
of the ampli�ers can be con�rmed by normalizing the output pulses to the input
power1 as shown in �gure 4.8(b). Fitting a Gaussian to the output pulse we extract
a FWHM of the pulse of 760 ns, which corresponds very well with the theoretical

1In general, in pulsed operation where the mean photon number per pulse is the only mean-
ingful characterizing unit, the power is to be understood as the corresponding dc power level.
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Figure 4.9: Electronic output signal of the detector for balanced input light pulses of
2µs duration. Also during the pulse, the mean value of the signal is zero but the noise is
clearly increased.

value of 790 ns. Here and in the following the data presented has been obtained
with the Amptek detector version discussed in section 4.1.1 � unless otherwise
noted.

4.3.1 Shot noise limited performance and optimization

To determine the light noise of pulses similar to a real experiment with the Mach
Zehnder interferometer (see chapter 6), we use k light pulses pi of duration τ and
repetition period r, where r is typically of the order of some 10µs. As mentioned in
section 2.1.1 we associate the variance of the photon numbers with the term noise.
A typical detector output signal for several balanced pulses with 2µs duration,
plotted on top of each other, is shown in �gure 4.9. One can clearly see an increase
in the variance of the signal for the duration of the pulse. The electronic signal
S(t) shown in the �gure is read from the oscilloscope and thereafter integrated with
the gating function pbc,σ(t) or pdcs,σ(t) to give the area of the pulse normalized to
its duration. To take timing issues, e.g., from the response time from the pulsing
device into account, we allow for a time translation t → t − t0. In general, both
the duration of the integration window σ and its position in time t0 have to be
optimized for each detector/experimental setup. After the integration, we are left
with the pulses pi:

pi =
∫ +∞

−∞
pbc,σ(t)S(t)dt =

1
σ

∫ t0+(i−1)r+σ

t0+(i−1)r
S(t)dt (4.20)

of which we calculate the variance:

δ2p ≡ 1
k

k∑
i=1

p2
i −

(
1
k

k∑
i=1

pi

)2
 (4.21)

to evaluate the noise of the signal. For pulses of 1µs duration and 20 kHz repetition
rate, the (optimized) result is shown in �gure 4.10. An integration gating window
pbc,σ(t) with σ = 1.5µs was used to obtain this result. The electronics noise level
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Figure 4.10: Scaling of the output pulse variance for 1µs light pulses as function of
the total mean photon number per input pulse. The slope of the data in the log�log plot is
1, con�rming the quantum nature of the noise. The 3 dB photon number of n3dB = 8×104

photons per pulse is equivalent to a light power level of 20 nW for 1µs duration of the light
pulse.

has been subtracted from the data. As mentioned above, the performance of the
detectors is quanti�ed through the electronics noise equivalent light power level
(3 dB level) or noise equivalent photon number (3 dB photon number n3dB). From
the data we read a photon number of n3dB = 8×104. Instead of using the variance,
one often also uses the standard deviation or root�mean�square (RMS) values for
characterization. The electronics noise level, which is equivalent to the 3 dB photon
number then corresponds to an equivalent noise charge (ENC) of ne ∼ 280. Since
the 3 dB levels set the scale from where on the detector output noise is dominated
by the input light noise and no longer by the intrinsic electronics noise, we call the
detector shot noise limited above this photon number or equivalent power level.
Above this level, the photon number is a single pulse can be measured with an
accuracy of better than ne ∼ 280 photons, such that the intrinsic photon number
�uctuations in a light pulse, the shot noise, becomes accessible or dominant in the
signal.
The analysis of the pulses can be optimized in several ways by changing the integra-
tion gating function. It is obvious that for a given input light pulse duration, a too
short integration window will lead to an increased 3 dB level since the noise power
integrated over will be smaller than the one expected from the assigned photon
number. For a too long integration window, the 3 dB level will also be arti�cially
increased since the integration only picks up electronics noise power after the pulse
has passed. The performance of the detector can therefore be optimized in the
analysis by �nding an appropriate duration σ of the integration window. Figure
4.11(a) shows the 3 dB levels for di�erent integration windows, applied to a series of
initial light pulse durations. For the data shown, the integration function pbc,σ(t)
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was used. For durations smaller than the shaping time, the expected scaling of the
3 dB level with pulse duration, i.e., the independence of the 3 dB photon number
from the pulse duration can be observed. From these measurements we extract

Figure 4.11: (a) Optimization of the integration window for di�erent input light pulse
durations. (b) Comparison of the 3 dB power levels for pulsed and continuous detector
operation.

that for light pulses below 500 ns, an integration window of 1.2µs is appropriate;
for longer pulses, the integration window has to be 500 ns longer than the input
pulse. These 500 ns basically correspond to the shaping time of the ampli�ers.
The performance when using pulse light can be compared to the analysis of the dc
power spectra as demonstrated in �gure 4.7. The extracted 3 dB levels for the dc
and the pulsed operation mode are compared in �gure 4.11(b) and a good agreement
can be observed. This con�rms that the spectrum analyzer measurements are
reliable in determining the noise performance of our integrating detectors. This
is especially important for troubleshooting during the development process, since
these measurements require much less time and e�ort.

4.3.2 Baseline pulling and o�set subtraction

Close examination of the pulses for durations larger than 700 ns in �gure 4.8 shows
that the detector baseline does not fully recover to zero just after the pulse. This is
mainly due to imperfections in the pole�zero cancelation discussed in section 4.1.
Especially when high photon numbers need to be detected, adjusting the cancela-
tion resistor can be quite challenging. This is especially true for the case of the
Amptek design, because the compensation resistor necessary is of similar magni-
tude as the input impedance of the A275 ampli�er. It is generally not desirable or
possible to extend the repetition period of the pulses so far that the baseline has
completely reset. In this case, a later pulse will �ride� on the baseline which is pulled
or pushed by the earlier pulses and its integral will obviously be correlated with the
previous pulse(s). Such classical correlations result in classical noise scaling and
ruin the light shot noise limited performance of the detectors. To circumvent this
problem, we have already in section 4.2 introduced the double�correlated sampling
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Figure 4.12: (a) Due to technical imperfections in the pole/zero cancelation of the
Gaussian �lter, the detector baseline piles up when the incident light pulses are not fully
balanced. (b) When analyzing the signal form an imbalanced input, the variance of pulses
integrated with with the simple integration gating function pbc shows a clear contribution
of classical � correlated noise. Using the baseline subtracting window function pdcs, the
linear scaling characteristic for shot noise is regained. In both data sets, the electronics
noise level has been subtracted. The black curve corresponds to a f(x) = a · x+ b · x2 �t;
the linear part of the �t (grey), giving the shot noise contribution to the noise, cannot be
distinguished from a �t to the data obtained with the pdcs,σ(t) integration gating function.

integration window pdcs,σ. As discussed, such an integration window removes the
low frequency contributions of the noise spectrum and therefore reduces the e�ect
of baseline pulling. The timescale for baseline recovery is τ = RiCi = 1.5ms in the
Amptek design; the e�ect from a previous pulse can therefore be regarded as a dc
baseline level shift over the duration of a typical light pulse of τ ∼ µs.

Baseline subtraction is mainly necessary when not entirely balanced signals are
considered or when their balancing changes over time. In �gure 4.12 we compare
the noise scaling with about 10% input signal imbalance for the two integration
gating functions p(t) and p(t)dc discussed above. When using the simple integration
window pbc,σ(t), a clear classical noise contribution is visible. Since the classical and
the quantum noise are independent, the shot noise contribution can be extracted as
the linear part of a quadratic �t: f(x) = e+a·x+b·x2. e is the electronics noise level
which has been subtracted from the data in the �gure. The shot noise part of the
�t is indistinguishable from a �t through the data, when analyzed with the baseline
subtracting gating function pdcs,σ(t) � also electronics noise subtracted. Using the
double correlated sampling window function thus allows one to circumvent the
technical imperfection of the detectors.
Note that in general the baseline subtraction adds electronics noise through the
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analysis. The integration function can be split up into:

p′i =
∫ +∞

−∞
pdcs,σ(t)S(t)dt (4.22)

=
1
σ

(∫ t0+(i−1)r+σ

t0+(i−1)r
S(t)dt

)

− 1
σ

(∫ t0+(i−1)r

t0+(i−1)r−σ/2
S(t)dt+

∫ t0+(i−1)r+3/2σ

t0+(i−1)r+σ
S(t)dt

)
≡ pi − bi

Splitting the (combined) baseline pulse bi and the light pi up into the � below the
bandwidth of the detector � uncorrelated and correlated parts:

pi = pi,uncorr. + pi,corr. (4.23)
bi = bi,uncorr. + bi,corr. (4.24)

⇒ p′i = pi,uncorr. − bi,uncorr. + pi,corr. − bi,corr. (4.25)
we ideally have pi,corr. = bi,corr. and are left with p′i = pi,uncorr. − bi,uncorr.. The
variance of the baseline subtracted pulses p′i thus contains an additional electronics
noise contribution from bi,uncorr.. Since baseline pulling is in general only impor-
tant when high photon numbers are involved, this contribution is generally small.
It should be noted that the symmetry of the integration window pdcs,σ is not a
requirement, the only condition for low frequency noise suppression is a vanishing
integral. The duration of the negative contribution to the integral can be changed
� even to an asymmetric contribution from before and after the pulse. Under these
optimized analysis conditions, the performance of the detector stays constant for
all degrees of imbalance (of course only as long as the detector does not saturate).
This is con�rmed by the data shown in �gure 4.13 where the slope of noise curves
is plotted versus the degree of detector photodiode imbalance. When changing the
balancing of the diodes, the slope of the noise data in a linear plot stays constant
and the slope in a log�log plot is consistent with 1, indicating no classical noise
contributions. Note that this shot noise limited performance for imbalanced in-
put signals puts a limit onto the amplitude instability of the lasers used in these
measurements, since in an imbalanced operation classical amplitude �uctuations
do not cancel.

4.4 Comparison of performances

In total four di�erent detectors have been built. Two based on the Amptek design,
with the main di�erence being Ri and Ci. For the high gain version, Ri = 5GΩ and
Ci = 0.3 pF was used and for the lower gain version Ri = 300MΩ and Ci = 1pF.
The two Cremat versions are, disregarding some small layout changes, basically
equal.
The performance data of the Amptek detector has been used as an example in the
previous sections already. To summarize, the 3 dB level is found at n3 dB = 8× 104

photons per 1µs, which corresponds to an equivalent noise charge of ENC∼ 280
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Figure 4.13: Slopes of noise curves for di�erent detector imbalancing. ±100% imbal-
ance corresponds to all light into one diode. The slopes stay constant in the lin�lin plot
and are compatible with 1 in the log�log plot, con�rming that for all degrees of input pulse
imbalance, the observed noise is due to shot noise of light.

electrons in a single detection event. This �gure holds as long as the input pulse
duration is shorter than the shaping time time of 0.8µs. For longer pulses the 3 dB
level rises linearly. Using the double correlated sampling integration window, the
3 dB level rises by a factor of two. This performance is signi�cantly better than then
one reported in [1, 2], where a 3 dB level of 4×106 photons per 1µs was measured,
corresponding to ENC=2000 electrons RMS and still better by more than a factor
of two with respect to the numbers of ENC=780 RMS electrons reported in [52].
For the two Cremat detector versions, we consistently measure a 3 dB photon
number of n3 dB = 1.2× 105 photons, corresponding to an RMS electronic noise of
ENC=340 electrons [56]. This can be compared with the numbers obtained from
the theoretical formula given in the data sheet of the CR-110 [54]. According to
the formula the RMS electron number or equivalent noise charge is:

ENC =

√
43(Cdetector + 15)2

σ2
+ 8σ2(Idetector) + 50000 = 360 (4.26)

where Cdetector is the capacitance of the photodiodes in pF, τ2 the shaping time in µs
and Idetector the leak current of the detector in pA. For the Hamamatsu S3883 [57]
photodiodes used, Cdetector = 12pF (two diodes, each 6 pF), and Idetector ≈ 100 pA;
τ2 = 250 ns for the shaper used in the setup. The actual detector thus performs
at the factory limit of the modules. Note that from the formula one observes
that the dark current of the diodes actually plays little role in the choice of the
photodiodes, very much to the contrary of what has been claimed in [1, 2]. The
choice in favor of the Hamamatsu S3883 is rather motivated by the high quantum
e�ciency η850 nm ≈ 0.9 and the conveniently low capacitance for the size of the
active area.
As mentioned, the above work was (actually mainly) motivated by the detector
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requirements for the BEC lab. The best detector, the �rst Amptek version was
therefore implemented in the BEC experiment [49]. In the experiments presented in
the following, one of the Cremat detectors was used. The second Cremat detector
was given to a friendly group at the Institut de Ciències Fotòniques in Barcelona.
With this detector we can reduce the photon number to n3 dB = 1.2 × 105 with-
out being limited by intrinsic detector noise. This is an enormous improvement
compared to the previous detector used and made many of the observations and
experiments presented in the next chapter possible.



Chapter 5
Microwave spectroscopy

At the end of chapter 3 we have discussed measurements on the dipole trapped
ensemble of cold atoms with our interferometric setup. In that case, the atomic
population was distributed incoherently across all F = 4,mF ∈ [−4 . . . 4] magnetic
substates. The initialization into those levels was achieved by pumping all atoms
out of the F = 3,mF ∈ [−3 . . . 3] states. We shall now reduce the number of
occupied atomic states to two levels, the so�called clock states.
The magnetic dipole transition between the 6S1/2(F = 3,mF = 0) ↔ 6S1/2(F =
4,mF = 0) magnetic hyper�ne states of the caesium-133 isotope is the so called
clock transition. Its frequency has been de�ned to be ω0 = 2π · 9, 192, 631, 770Hz
and microwave spectroscopy of the transition is used as the prime standard of time.
The line width of the transition is so small that the lifetime of the states in an ex-
perimental setup is rather limited by technical imperfections than by the natural
lifetime. To address the transition and change the probability distribution for the
atoms to be in the two clock states, electro�magnetic radiation with angular fre-
quency ω ≈ ω0 can be used. Towards the ultimate goal of demonstrating squeezing
of the clock state population number uncertainty, we have to be able to:

• create a pure ensemble of atoms, initialized in one of the clock levels
• coherently control the populations in the clock states
• perform non�destructive measurements on the quantum state of the ensemble
• characterize and understand the e�ects of the probe pulses on the quantum
state

Before discussing the experimental techniques to prepare a dipole trapped ensemble
of Cs atoms in the clock states and coherently manipulate the ensemble state with
microwave radiation, the basic theoretical framework of microwave spectroscopy is
presented. With these techniques at hand, we will use the Mach�Zehnder inter-
ferometer to non�destructively read out the populations of the clock states when
they are subjected to external microwave �elds. Using Rabi, Ramsey and spin�echo
spectroscopy tools, the non�destructive light�matter interface will be characterized

75
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with special focus on the e�ect of probe induced clock level perturbations (light
shifts) and spontaneous scattering of probe light. Finally, the induced level pertur-
bations are used to obtain information about the atomic motion inside the trapping
potential. Parts of this chapter have been published as [4, 5, 7].

5.1 Light�atom coupling applied to the clock

transition

In sections 2.3 and 3.1.3 we have discussed the interaction between atoms and an
electromagnetic radiation �eld. While in the �rst case, the e�ect on the electro-
magnetic �eld was in the focus of the discussion, and in the second case the change
of the energy level structure of the atoms, we shall now consider the e�ect on the
probability distribution among the states involved. Here we will explicitly not adi-
abatically eliminate the excited state population. Since the two states are basically
stable, a decay rate does not have to be included in the description. Among the
�rst to study the two�level problem in this setting were Rabi [58] and Bloch [59].
We will encounter both names frequently in the next sections.

5.1.1 Theoretical background

Since many standard text books describe the problem in a more coherent and
complete way than possible here, only the most important corner stones of the
derivation are presented. The treatment is inspired by Allen and Eberly [60]. A
very comprehensive treatment can also be found in [61].
From the start we reduce the treatment of the Cs atom to a two level system, the
two energy eigenstates 6S1/2(F = 3,mF = 0) ≡ |3〉 and 6S1/2(F = 4,mF = 0) ≡
|4〉 of the Cs atom with an energy di�erence of ~ω0. When choosing the energy
zero to be in the center between the two levels, the Hamiltonian ĤA of the free
atomic system reads:

ĤA =

(
~ω0
2 0
0 −~ω0

2

)
=

~ω0

2
σ̂3 (5.1)

where σ̂3 is the third of the Pauli spin matrices. The interaction Hamiltonian Ĥint

of the atoms with magnetic moment µ̂ with a magnetic �eld B̂ is
Ĥint = −µ̂ · B̂ (5.2)

The coupling parameter is the (complex) magnetic moment:

µ̂ =

(
0 µr + iµi

µr − iµi 0

)
= µrσ̂1 − µiσ̂2 (5.3)

For ∆mF = 0 transitions, the complex contribution µ̂i vanishes. The Hamiltonian
of the full system then reads, omitting the energy of the electro magnetic �eld
Ĥem = ~ω(â†â+ 1

2):
Ĥ = ĤA + Ĥint =

~ω0

2
σ̂3 − µrσ̂1B̂ (5.4)



5.1 Light�atom coupling applied to the clock transition 77

The Pauli spin matrix operators become time dependent in the Heisenberg pic-
ture and govern the evolution of the two level pseudo spin state. Their temporal
evolution is given by the Heisenberg equation of motion:

˙̂σk =
−i
~

[
σ̂k, Ĥ

]
, k = 1, 2, 3 (5.5)

Inserting equation (5.4) into equation (5.5) we end up with a set of di�erential
equations:

˙̂σ1(t) = −ω0σ̂2(t) (5.6)
˙̂σ2(t) = ω0σ̂1(t) +

2
~

(
µr · B̂(t)

)
σ3(t) (5.7)

˙̂σ3(t) = −2
~

(
µr · B̂(t)

)
σ̂2(t) (5.8)

Semiclassical approximation
With the solution of equations (5.6) � (5.8), the time evolution of an input atomic
state |ψ〉in and input light �eld state |α〉in can be calculated as:

|ψ〉out|α〉out = σ̂(t)|ψ〉in|α〉in (5.9)

For high enough microwave power, the magnetic �eld can be regarded as a classical
�eld and the �eld operator B̂ is replaced by its classical mean value B̂(t) → 〈B̂〉 =
B0 cos(ωt), where ω is the angular frequency of the driving �eld and B0 is the
�eld amplitude. We have already restricted the treatment to ∆mF = 0 transitions
which requires the magnetic �eld orientation to be parallel to the quantization axis
of the atomic state. We will de�ne the quantization axis by applying a homoge-
neous external magnetic �eld. The vector character of the �eld can therefore be
omitted, B0 = B0. The mean value of the operator product 〈B̂(t)σ̂x(t)〉 factorizes,
i.e., quantum mechanical atom��eld correlations are neglected; for convenience we
introduce:

〈σ̂k(t)〉 ≡ sk(t), k = 1, 2, 3 (5.10)

Rotating wave approximation
A short glimpse at equations (5.6) and (5.7) suggests that besides the radiation
�eld, also the state vector will have some oscillatory term. To separate o� one
of the oscillations one transforms into a reference frame which rotates with the
microwave frequency ω by using: u

v

w

 =

 cosωt sinωt 0
− sinωt cosωt 0

0 0 1


 s1

s2

s3

 (5.11)
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Transforming equations (5.6) � (5.8) into the rotating frame we obtain:
u̇ = ∆ v + ΩR sin 2ωt w (5.12)
v̇ = −∆ u+ ΩR(1 + cos 2ωt) w (5.13)
ẇ = −ΩR sin 2ωt u− ΩR(1 + cos 2ωt) v (5.14)

introducing the abbreviations ∆ = ω − ω0, the detuning of the microwave �eld
relative to the transition, and the Rabi frequency ΩR = 2µrB0/~. In the rotating
wave approximation the terms varying with frequency 2ω are assumed to average
out and we are left with the Bloch equations:

u̇ = ∆ v (5.15)
v̇ = −∆ u+ ΩRw (5.16)
ẇ = −ΩRv (5.17)

which can be written as:
u̇ = −Ω× u (5.18)

with Ω ≡ (ΩR, 0,∆) and the Bloch vector u ≡ (u, v, w). These equations are well
known from the mathematical description of a vector u rotating around a torque
vector Ω with angular frequency Ω = |Ω| =

√
Ω2

R + ∆2 [62].
For a period of time t during which the system parameters do not change, the
general solution of this set of di�erential equations is found to be a rotation matrix
R(t,∆,ΩR):

u(t) = R(t,∆,ΩR) · u(t = 0) (5.19)

R(t,∆,ΩR) =


Ω2

R+∆2 cos Ωt

Ω2
−∆
Ω sinΩt ∆ΩR

Ω2 (1− cos Ωt)
∆
Ω sinΩt cos Ωt −ΩR

Ω sinΩt
∆ΩR
Ω2 (1− cos Ωt) ΩR

Ω sinΩt ∆2+Ω2
R cosΩt

Ω2

 (5.20)

The direction of rotation depends on the initial choice of the microwave �eld phase
with respect to the atomic system. In the rotating frame, this boils down to
the rotation direction of the rotating frame. In general, the direction is of minor
importance but we try to be consistent.

Application to atomic state vector
The connection between the Bloch vector components and the probability ampli-
tudes of an atomic state |ψ〉 = a|4〉 + b|3〉 can be easily obtained, with σ̂i in the
rotating frame:

u = 〈ψ|σ̂1|ψ〉 = a∗b+ ab∗ (5.21)
v = 〈ψ|σ̂2|ψ〉 = −i(a∗b+ ab∗) (5.22)
w = 〈ψ|σ̂3|ψ〉 = |a|2 − |b|2 (5.23)

The w�component of the Bloch vector is thus the di�erence of the probabilities
for the atom being in |4〉 and |3〉1. The u� and v�components on the other hand

1We have often and will often use the term �atomic population� in di�erent states. This is a
colloquial way of expressing that we will be dealing with an ensemble and get the mean values of
the probability distribution in a single measurement.
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represent the phase relation between the atomic state and the frame rotating with
the microwave frequency. Note that the Bloch vector components correspond to
the mean values of the angular momentum operator components ĵ = (ĵx, ĵy, ĵz)
introduced in section 2.1.1 up to a factor of 2 in the normalization.
Since the state vector is normalized 〈ψ|ψ〉 = 1 it is obvious that it can also be
mapped onto a unit sphere at polar angle θ and azimuthal angle φ. This becomes
more obvious when writing the state vector as:

|ψ〉 = cos
θ

2
|4〉+ sin

θ

2
eiφ|3〉 (5.24)

for which the Bloch vector components assume the form:
u = sin θ cosφ (5.25)
v = sin θ sinφ (5.26)
w = cos θ (5.27)

We have above derived the action of an external �eld onto the Bloch vector and
shown the connection between the atomic state vector and the Bloch picture. It
is also possible to directly derive the rotation matrix for the state vector |ψ〉 when
an external �eld is applied.

5.1.2 Loss of coherence in ensembles of atoms

So far the Bloch vector u has been introduced for a single atom. If an ensemble
of N uncorrelated atoms is considered, we can describe the ensemble state |Ψ〉 =
ΠN

i=1(ai|4〉i + eiφibi|3〉i) by a normalized total Bloch vector U = 1
N

∑
i ui. When

all the atoms are in the same state a ≡ ai, b ≡ bi, φ ≡ φi, the length of the
total Bloch vector is one. If a phase distribution φi 6= const. is present in the
ensemble (while the probability amplitudes are still the same for all atoms, a ≡
ai, b ≡ bi), i.e., the atomic ensemble is not in a coherent state, the length of the
mean Bloch vector is reduced. The length of U thus gives information about the
coherence of the ensemble state. The mean Bloch vector is similar to the collective
angular momentum operator Ĵ introduced in section 2.1.1 with the main di�erence
being the normalization. Note that the Bloch vector is an explicit rotating frame
description while the the angular momentum operator has been introduced in a
more general setting. The interpretation of the length of the vector as measure for
the coherence of the ensemble remains, compare section 2.1.1.
Later we shall encounter three forms of decoherence. The length of the Bloch
vector changes when a distribution of phases φi in the ensemble exists. If the
phase distribution is induced in a deterministic way, such that it is known which
atom j obtained which phase shift φj , the dephasing is reversible by the spin echo
techniques we will discuss in section 5.8. If the dephasing, on the other hand is
induced in a random way, it is irreversible. A third way of reducing the length of
the mean Bloch vector length is induced by the projective character of spontaneous
light scattering of the probe light �eld. Right after a probe pulse, atoms that
have undergone a real transition will have been projected into one of the energy
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eigenstates. If the atom(s) were not in such a state prior to the measurement, the
probability amplitudes for the projected atoms will be di�erent to the rest of the
atoms and thus aj 6= a, bj 6= b for those atoms. Spontaneous light scattering will
therefore introduce a distribution of the probability amplitudes in the ensemble
state |Ψ〉 and change both the orientation and length of U.
The introduction of the mean Bloch vector U is equivalent to performing an ensem-
ble average. Since quantum mechanics is a probabilistic theory, the same results
would be obtained by taking N single atoms, measuring them independently and
averaging over the measurement outcomes afterwards.
Although a measurement on an ensemble returns the components of U, it can
be more instructive to look at the ensemble as a collection of independent Bloch
spheres and plot them on top of each other. This way, the actual distribution of
the phases φi can be visualized. We shall use both pictures later on.

5.1.3 Rabi oscillations and state rotations

In our system, the U� and V � components of the mean Bloch vector cannot be
measured directly. TheW�component on the other hand is obtained by measuring
the population of the two energy eigenstates and subtracting these values. After
applying a certain sequence of microwave pulse operations, we are therefore mainly
interested in the W component of the Bloch vector. For an ensemble prepared in
the |3〉 state2, the Bloch vector is U0 = (0, 0,−1). The evolution of the state for a
constant driving �eld is then given by equation (5.19) and for the W� component
we get:

W (t,∆,ΩR) = −
∆2 + Ω2

R cos
√

Ω2
R + ∆2t

Ω2
R + ∆2

(5.28)

which we can use to obtain the population (probability amplitude) |a|2 of the |4〉
state as:

P4 = |a|2 =
W + 1

2
=

Ω2
R

Ω2
R + ∆2

sin2

(
1
2

√
Ω2

R + ∆2t

)
(5.29)

Since the Bloch vector U is normalized to tne number of atoms, P4 is independent
of the number of atoms, |a| = 1

N |a|N . The population oscillates between the two
states with an angular frequency of Ω =

√
Ω2

R + ∆2. These are the famous Rabi
oscillations. For ∆ = 0 the rotation of the Bloch vector is illustrated in �gure
5.1(a).

Resonant driving
On resonance, ∆ = 0, the oscillations correspond to a rotation of the Bloch vector
around the U�axis with the Rabi frequency ΩR. In this case, the rotation matrix

2This again is colloquial language which will be encountered frequently. Of course, each single
atom i is prepared in its ground state |ψ〉i = |3〉i and the collective state is |Ψ〉 = |3〉⊗N .
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Figure 5.1: Rotation of Bloch vector. (a) Resonant driving of the transition such that
the Bloch vector rotates around the U� axis. (b) When the driving takes the vector into
the U -V �plane through a π/2�pulse, the ensemble is prepared in a superposition state with
equal probability amplitudes. (c) The Bloch vector precesses freely around the W� axis with
angular frequency ∆ when the driving �eld is o� but detuned by ∆ < 0 from the resonance.
The direction of rotation depends on the initial choice of the phase of the microwave �eld
with respect to the atomic system.

in equation (5.20) reduces to:

R(t, 0,ΩR) =

 1 0 0
0 cos ΩRt − sinΩRt

0 sinΩRt cos ΩRt

 (5.30)

The rotation angle is given by θ = ΩRt. When a single pulse is applied such that
θ = π, the pulse is called a π�pulse. For an initial ensemble state |Ψ〉 = |3〉⊗N , the
population is fully transferred into the |4〉 level, resulting in |Ψ〉R(π) = |4〉⊗N .
The other most prominent pulse we shall encounter rotates the Bloch vector by
θ = π/2 around the U� axis and is for obvious reasons called a π/2�pulse. In
the language of the atomic state |Ψ〉, starting with a coherent state |Ψ〉 = |3〉⊗N ,
this produces a coherent superposition state with equal probability amplitudes:
|Ψ〉R(π/2) =

(
|3〉+i|4〉√

2

)⊗N . The action of a π/2�pulse on the Bloch sphere is illus-
trated in �gure 5.1(b).

Change of phase relation between atomic state and rotating frame
Since we have transformed into a rotating frame, the Bloch vector can also change
its position when the driving �eld is o�, ΩR = 0. In this case the rotation matrix
reduces to:

Rfree(t,∆, 0) =

 cos t∆ − sin t∆ 0
sin t∆ cos t∆ 0

0 0 1

 (5.31)

which describes a rotation around the W�axis by an angle φ(t) = t∆. If the
detuning ∆ is time dependent, φ(t) =

∫ t
0 ∆(t′)dt′. The graphical interpretation of
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Figure 5.2: Microwave equipment. A 10m long coaxial cable transports the output
of the synthesizer to the setup. At the output of the cable, the signal is ampli�ed up to
1W and actively stabilized. After creating the pulses with a microwave switch, a low loss
cable connects the switch and the coaxial�to�waveguide adapter. A cut�to�length square
waveguide acts as antenna. The ampli�er is protected by a circulator which dumps re�ected
power due to improper impedance matching of the coaxial cable and the waveguide. To
obtain higher power a 10W power ampli�er is added after the pulse generator.

the rotation applied to an equal superposition state is given in �gure 5.1(c). This
free precession of the vector can be understood as a change in the phase relation
between the rotating frame of the driving �eld and the atomic ensemble. For the
atomic state |Ψ〉, the phase change results in the transformation:

|3〉 → e−iφ/2|3〉 (5.32)
|4〉 → eiφ/2|4〉 (5.33)

5.2 Generation of microwave pulses

To apply the Bloch vector rotation techniques discussed above to the ensemble of
dipole trapped Cs atoms in the experimental setup, we need to couple the magnetic
�eld component of electromagnetic radiation with ω ≈ ω0 to the atoms. To pro-
duce the 9.192GHz microwave radiation we use a HP8341B precision synthesizer.
Most of the controls of the synthesizer have been implemented into a Labview pro-
gramme which communicates with the other Labview programmes controlling the
rest of the experiment as discussed in section 3.3.2; this way we can use stepping
routines to dynamically change the power or frequency of the synthesizer during
one set of measurements. Since the interferometer (and the users in the lab) are
rather sensitive to acoustic noise, especially from the cooling fans of the synthe-
sizer, it is located in a separate compartment next to the lab. Therefore, the
output power of the synthesizer has to be stabilized actively after the 10m long
coaxial cable which transports the microwaves to the setup. A schematic diagram
of the microwave setup is shown in �gure 5.2. We stabilize the synthesizer output
power after the long coaxial cable and a 1W ampli�cation stage. The ampli�er
comes from Narda West model DBS-0411N630. For the stabilization we use an
Agilent 33330B Schottky diode power detector and feed its signal back onto the
dedicated synthesizer input port. The bandwidth of this external feedback loop
is 80 kHz. The remaining microwave signal enters a pulse modulator (HP 4720A)
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Figure 5.3: Schematics of the interferometer including the microwave antenna, the
orientation of the magnetic guiding �eld and the positioning of the two counter propagating
optical pumping beams. The interferometer itself and the surrounding setup has been
discussed in section 3.2.

which is gated with the signals for the Viewpoint Systems DIO�64 output card.
A high quality microwave cable transports the pulses to a rectangular waveguide
whose length has been adjusted for minimum standing wave re�ection power. The
coaxial�to�waveguide adapter is oriented such that the magnetic �eld vector of the
microwave �eld is parallel to the magnetic guiding �eld of the atoms (discussed in
section 5.3.2). A circulator protects the ampli�er from re�ected signals.
Most of the data presented in the next sections has been taken with this setup.
We later acquired a 10W power ampli�er from Kuhne electronic. The additional
ampli�er is placed as second ampli�cation stage after the microwave switch. The
only (apparent) reason for using this higher microwave power setup is that the
Rabi frequency increases with the driving �eld power P as: ΩR ∝ B0 ∝

√
P .

This way, the duration of the π�pulses can be reduced by a factor of 3 which will
become especially important when we apply spin�echo spectroscopy techniques to
gain information in the oscillation dynamics of the ensemble in the trap, section
5.10.
A schematic drawing of the whole interferometer setup including the microwave
antenna, and the guiding �eld and optical pumping beams introduced below is
shown in �gure 5.3. The other components are discussed in section 3.2.
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Figure 5.4: Time sequence of single experimental run. After atoms have been loaded
into the trap, we initialize them into one of the clock states by optical pumping techniques
and optionally purify the ensemble further. In the next step, the desired microwave and
probe operations are applied. The number of the remaining atoms can be determined by
repumping the sample after the microwace/probe sequence for normalization purposes. At
the end of each run, we remove the atoms from the trap and determine the interferometer
baseline.

5.3 Quantum state preparation

5.3.1 General measurement procedure

In chapter 3 the generation of a cold dipole trapped ensemble of atoms inside
one arm of the Mach�Zehnder interferometer as depicted in �gure 5.3 has been
discussed. We use the interferometer as a means of state selectively detecting the
number of atoms in the probe region. To this end we send a number of probe light
pulses through the interferometer and detect the phase shift signal at the output as
presented in section 3.4.1. Unless otherwise stated we only use the F = 4 → F ′ = 5
probe light with a detuning of ∆45 = +160MHz, i.e., we read out the population
in the F = 4 state.
The time sequence of a typical single run of the experiment is shown in �gure 5.4.
After loading the atoms into the trap, they are initialized to the clock states by
using optical pumping techniques as discussed in the next section. Subsequently
the desired microwave and probe light pulses are applied. Since the probing does
not remove the atoms from the dipole trap, it is possible to re�initialize the atoms
into the F = 4 state again after the application of the microwaves by applying
repump light on the F = 3 → F ′ = 4 transition. The trap lifetime is known, it
is therefore possible to determine the number of atoms in the probe region during
the microwave pulse and probe sequence by using a later measurement result for
normalization. After we have expelled all the atoms from the dipole trap, the lock
point of the interferometer can be determined and used as baseline for the two
atom measurements, compare section 3.4.1. This is necessary because the lock and
probe laser interference fringes do not cross the zero phase shift line at the same
point.
To make the link with the actual experimental setup, the control programme shown
in �gure 3.4, page 32, and the pulse generation unit shown in �gure 3.12, page 46,
show realistic values for this measurement con�guration. Probing of the initialized
ensemble happens in stage 8. In stage 9 the repump laser is switched on and after
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Figure 5.5: Level splitting of the caesium hyper�ne ground states due to an external
magnetic �eld.

the shutter is closed again, the atom number is determined in stage 10. Stage 29
expels the atoms from the trap and in stage 30 we determine the empty interfer-
ometer baseline. Each measurement stage, saved into one scope segment (compare
section 3.3.2), contains ten pulses, whose areas (amplitudes) are usually averaged
over during postprocessing.
In the following, the subtraction of the interferometer baseline is implicitly as-
sumed unless noted otherwise! Several measurement results of these single runs of
the experiment with the same experimental conditions can be combined to reduce
technical �uctuations. Usually averaging over three runs is su�cient. So, in gen-
eral, we average over three runs each containing three segments where we average
over the ten pulses in each segment.

5.3.2 Sample initialization to the clock states

In �gure 5.5 the hyper�ne ground states of Cs are shown. After the sub�Doppler
cooling stage which loads the atoms into the dipole trap, the atoms are distributed
over all mF sublevels. To accumulate the atoms in one of the clock states we have
to

• de�ne a quantization axis to make the levels with di�erent mF quantum
numbers non�degenerate and mF a good quantum number

• optically pump the atoms into the mF = 0 state.

De�ning a quantization axis
To lift the degeneracy of the magnetic sublevels of the ground states and to de-
�ne a quantization axis for the atomic system, we use an external magnetic �eld.
Around the experimental setup, three pairs of coils in Helmholtz con�guration with
50× 50 cm2 outer dimensions are installed to compensate static magnetic �elds at
the position of the atomic sample as shown in �gure 3.1. By increasing the current
in one set of coils � we use the horizontal pair and call it the z�direction � a homo-
geneous guiding �eld is produced and de�nes the quantization axis for the atoms.
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To make the quantization axis as well de�ned as possible by the externally applied
�eld, we minimize the magnetic background �eld without the bias �eld applied �rst.
Well compensated external �elds are also bene�cial for the MOT and su�Doppler
cooling stage performance. The optimal �eld compensation can be obtained by
using microwave spectroscopy. As shown in �gure 5.5 on page 85, an external
magnetic �eld lifts the degeneracy of the magnetic sublevels according to the Zee-
man shift. The �rst order Zeeman energy shift of a magnetic sublevel mF when a
magnetic �eld B = |B| is applied, is given by:

∆E = µBgFmFB = ±350 kHz ·mF ·B[Gauss] (5.34)
where µB is the Bohr magnetic moment and gF is the Landé factor, which has
opposite signs for F = 3 and F = 4. The clock levels mF = 0 are not a�ected to
�rst order. Second order perturbation theory gives a clock level shift ∆ωclock of
[18]:

∆ωclock =
(gJ − gI)2µ2

B

2~∆Ehfs
B2 = 2π · 427.45Hz B2[Gauss]2 (5.35)

∆Ehfs/~ = 2π · 9.192GHz is the unperturbed hyper�ne splitting gJ and gI are
the �nestructure and nuclear Landé factors. When we apply a microwave driving
�eld whose frequency is swept across the di�erent transitions, the population of
an ensemble initially prepared in one of the hyper�ne manifolds will be stepwise
transferred into the other state. The mechanism behind the transfer is a rapid-
adiabatic-passage [46]. Since the ensemble is not polarized, the lowest frequency
transition accessible is the F = 4,mF = −4 → F = 3,mF = −3 transition. To-
wards higher frequencies, all the possible σ and π transitions come into play until
the highest frequency transition, the F = 4,mF = 4 → F = 3,mF = 3 transition
is reached. The width of the transfer region is proportional to the magnetic back-
ground �eld according the Zeeman formula (5.34). A change in the compensation
(or bias) coils will therefore also change the frequency width of the transfer region.
Figure 5.6(a) shows the transfer of a population initially prepared in F = 4 over
to the F = 3 levels when the applied microwave �eld is scanned in frequency from
9,192.1MHz to 9,193.1MHz for di�erent z�axis bias coil currents.3 The sweep is
performed in 10ms and the population in F = 4 is determined by using 100 pulses
of 2µs duration and 100µs repetition period. We trigger the sweep together with
the �rst pulse and the application of the microwave �eld. The width of the trans-
fer region can be easily extracted by, e.g., �tting an error function to the data. In
�gure 5.6(b) the frequency width of the transfer region is shown as a function of
the y�axis coil currents. The frequency width can be converted into magnetic �eld
by noting that the total Zeeman-splitting is ∆falllevels = 14 · 350 kHz·B [Gauss].
After optimizing the settings of all three directions the remaining uncompensated
�eld is calculated to be Buncomp. ≈ 34mGauss.

3Here and throughout the chapter, the frequency values given refer to the value set on the
synthesizer. Since the synthesizer time base has aged for several years, the true output frequency
is di�erent! From comparison with a newly calibrated spectrum analyzer we know that the
output frequency is wrong by 30.841 kHz. On a daily basis we use a synthesizer set frequency of
ω ∼ 9.192.600.750Hz which is only 179Hz o� from the de�ned transition frequency when taking
the o�set into account. The remaining o�set is due to di�erential light shifts and the second order
Zeeman shift.
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Figure 5.6: (a) Population transfer when the microwave driving frequency is swept
across the hyper�ne manifold transitions. The width of the transfer region is proportional
to the splitting of the magnetic sublevels, thus to the magnetic background �eld. (b) Widths
of the transfer region extracted from data similar to (a) as a function of the y�axis bias
coil current. From the minimum width, the remaining bias �eld can be extracted. After an
optimization in all three directions, we end up with an uncompensated �eld of Buncomp. ≈
34mGauss.

After the magnetic �eld is nulled in all three dimensions, we de�ne the quantization
axis for the ensemble by switching the z�axis bias coil to a current of Iz ∼ 250mA
(the coil current used for �eld nulling is Iz = 43mA in this coil). A similar
frequency sweep with increased bias coil current allows us to extract the magnitude
of the bias �eld. The corresponding data is shown in �gure 5.7. A clear stepwise
increase in the population of the F = 4 states can be observed. The frequency
of the clock transition is known from other measurements (further down), so the
nature of the observed transitions can be inferred. From the frequency spacing
between the transitions the magnitude of the quantization �eld is evaluated to
Bbias = 1.6Gauss.

Optical pumping and sample cleaning
To initialize the atomic sample in the (F = 4,mF = 0) ≡ |4〉 clock state, we can
use the fact that the optical D2 (or D1) line transition (F = 4,mF = 0) → (F ′ =
4,mF = 0) is electric dipole forbidden. When π�polarized light, i.e., light whose
linear polarization is parallel to the quantization axis of the atoms, is applied to
the atomic ensemble on the 6S1/2(F = 4) → 6P3/2(F ′ = 4) transition, due to the
selection rules only atoms in F = 4,mF 6= 0 are addressed by the laser and excited
to their F ′ = 4 counterparts. From these excited levels, the atoms can decay via
all channels (σ±, π transitions) into the corresponding mF sublevels of the F = 3
and F = 4 states. With an additional laser coupling the F = 3 → F ′ = 4 states,
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Figure 5.7: Frequency sweep across the innermF manifold for considerably increased z�
compensation coil current. The steps in the F = 4 level population correspond to di�erent
transitions. Since two σ transitions exist with the same transition frequency, these are
more pronounced than the π transitions. From the splitting of the transitions the bias or
guiding �eld is evaluated to Bbias = 1.6Gauss.

atoms will thus be pumped among their ground states until they are either heated
out of the trap or have decayed into the F = 4,mF = 0 state [63, 64]. In the
experimental sequence of �gure 5.4, the pumping step corresponds to stage 5 in
the programme panel shown in �gure 3.4. The parameters of the optical pumping
process to optimize are:

• light polarization relative to quantization axis
• duration (or power) of the optical pumping light pulse
• frequency of the pump light

Both the F = 4 → F ′ = 4 and F = 3 → F ′ = 4 optical pumping light is coupled
into one optical �ber and the �ber output is polarization cleaned with a Glan-
Thompson prism. The light itself is derived from the high power slave laser diodes,
compare �gure 3.3. We use two counter propagating beams as shown in �gure
5.3 to balance the momentum transfer from the pump light onto the atoms which
would otherwise induce trap oscillations. The repump light is kept on for several
milliseconds while the F = 4 → F ′ = 4 light involving the dark state is pulsed
on for 50 − 300µs only. In both beams we have a dc light power of about 1mW
available.
After the Rabi frequency has been determined,4 the di�erent pumping parameters
are optimized by considering the e�ciency of a microwave π�pulse, resonant only
to the clock transition. Since the clock transition is very narrow and the other

4The optimization of the pumping, �nding the Rabi frequency and determining the clock
transition frequency are iterative processes. The pumping can also be optimized with a slightly
o� resonant microwave pulse of wrong duration, however, the transfer e�ciency will not re�ect
the polarization of the sample.



5.3 Quantum state preparation 89

Figure 5.8: (a) Extraction of optical pumping e�ciency. The contrast from a mi-
crowave π pulse is determined by normalizing the transfer from the F = 4 → F = 3 state
to the total number of atoms. The inset shows the e�ect of state puri�cation. Removing
atoms which have not been pumped into the clock state yields a microwave transfer e�-
ciency close to 100%. (b) Optical pumping e�ciency into the clock state for the highest
dipole trap power as function of the pump light detuning from the (bare) F = 4 → F ′ = 4
transition. The optimal value for the detuning depends on the power of the dipole trap
laser due to the di�erential light shift from the trap laser onto the pump transition. The
inset shows the optimal frequency detuning as function of the trap laser power. (c) Opti-
mization of the pump beam polarization. When the axis of the Glan-Thompson polarizer
is not optimal, the F = 4,mF = 0 state is no longer a dark state and pumping is less
e�cient.

possible π�transitions are shifted out of resonance by several hundreds of kilohertz
by the Zeeman shift due to the magnetic guiding �eld, a microwave �eld resonant
to the clock transition only a�ects atoms in mF = 0. We send single probe light
pulses of 2µs duration before and after the microwave pulse; after heating the
atoms out of the trap we then determine the lock point of the interferometer with
further pulses. After the optical pumping process, the atoms populate only mF

substates of the F = 4 manifold. The reduction of the phaseshift signal when using
F = 4 → F ′ = 5 probe light tells us how many atoms can be transferred into the
(F = 3,mF = 0) ≡ |3〉 state. From the corresponding data in �gure 5.8(a), we
extract a transfer e�ciency of 70%.
Optimizing the optical pump parameters carefully, we obtain a state polarization of
up to 75%. The optimization for two parameters, the pumping frequency and the
polarization of the pump light is illustrated in �gures 5.8(b) and (c). Figure 5.8(b)
con�rms that the optimal pumping frequency depends on the trap power due to
the di�erential light shift the trap causes on the pump transition (compare with
section 3.4.5). Generally, this e�ect can be reduced by increasing the pump power
or the pump pulse duration. The optimization of the matching of the pump light
polarization to the quantization axis of the atoms is shown in �gure 5.8(c). When
the polarization is not matched properly, the σ± components in the pump light
compromise the accumulation of population in F = 4,mF = 0, and the pumping
e�ciency is reduced.
The overall pumping e�ciency is most likely limited by ∆F = 1,∆mF = 0 coher-
ences induced by the narrow linewidth of the two pumping lasers [65]. Basically, two
photon Raman processes take place and undermine the necessary real excitations
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of the atoms and subsequent decay into the clock level. These coherences can be
reduced moving one of the lasers to the D1 line. A laser π�polarized relative to the
quantization axis of the atoms and applied to the 6S1/2(F = 4) → 6P1/2(F ′ = 4)
transition again cannot address the F = 4,mF = 0 atoms and the population will
accumulate in |4〉. The two photon resonance of the pump laser and the repump
light (which is kept on the 6S1/2(F = 3) → 6P3/2(F ′ = 4)) transition does not
exist. In addition, the o� resonant excitation channels F = 4 → F ′

D2 = 3, 5 which
are only ∆F ′

D2=3,F ′
D2=4 = 201MHz and ∆F ′

D2=4,F ′
D2=5 = 251MHz detuned from

the pump transition are reduced to a single channel F = 4 → F ′
D1 = 3 which

is signi�cantly further detuned (∆F ′
D1=3,F ′

D1=4 = 1.2GHz) from the desired pump
transition involving the dark state. The laser setup for this �D1 line pumping
con�guration� is discussed in appendix B. This way, we can improve the optical
pumping e�ciency by about 10%. All of the data presented has, however, been
acquired with optical pumping on the D2 line, since the gain in the e�ciency was
judged too small compared to the e�ort of keeping an additional laser stabilized.
The purity of the ensemble partly initialized to the |4〉 clock state can be further
enhanced. Here we exploit the fact that the microwave transition is very narrow
compared to the splitting of the magnetic substates due to the magnetic bias �eld.
The �eld shifts the magnetic �eld sensitive transitions so far out of resonance that
their population will not respond to a driving �eld at the clock frequency, compare
�gure 5.7. A microwave π�pulse resonant with the clock transition therefore only
transfers the |4〉 atoms into |3〉, while atoms in F = 4,mF 6= 0 are not a�ected.
With the clock level atoms stored in the |3〉 state, blue detuned laser light on the
cycling F = 4 → F ′ = 5 transition from the MOT beams only a�ects the unwanted
atoms and after few hundred microseconds of pumping pushes these atoms out of
the dipole trap. The e�ect of this state puri�cation is illustrated in the inset of
�gure 5.8(a). It can also very nicely be observed by comparing �gure 5.9 where no
cleaning has been applied and the transfer e�ciency of the microwave is limited
to �gure 5.10 where the microwave can transfer basically all atoms in the sample.
This puri�cation stage is also indicated in �gure 5.4. Comparing again with the
programme stages in �gure 3.4, the π pulse is applied at the end of stage 6 (stage
6 as such is only a waiting stage to make sure that the shutters are closed) and the
actual cleaning takes place in stage 7 by opening the shutter of the cooling laser
(blue detuned, so it is, in fact, a heating laser) and switching its AOM on. With
this state cleaning mechanism, we produce samples of & 99% purity.

5.4 Non�destructive observation of Rabi oscillations

Both in section 3.4 and in the previous sections, the non�destructive character
of the interferometric probing has been demonstrated for atoms prepared in their
energy eigenstate. It is, however, a far larger challenge to actually measure a
�real� quantum mechanical state non�destructively, i.e., a superposition state |ψ〉 =
a|4〉+b|3〉 with arbitrary probability amplitudes. Furthermore, we want to observe
the evolution of the clock state population under resonant driving � follow Rabi
oscillations in real time. Before we discuss the corresponding experimental data,
let us shortly discuss which additional complications to expect due to probe photon
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absorption by the single atoms.

5.4.1 Spontaneous photon scattering

For probe light blue detuned (∆45 = +160MHz) from the transition, the treatment
of the light�atom coupling can to lowest order be restricted to the F = 4 → F ′ = 5
transition. When a probe photon is spontaneously scattered by an atom, i.e., the
atom is excited to a F ′ = 5 level and subsequently emits a photon, two cases have
to be distinguished. In the case of elastic Rayleigh photon scattering, the excited
atom (since we assume a polarized sample, the π�polarized probe light can only
excite it into the F ′ = 5,mF = 0 level) decays back into the F = 4,mF = 0
level. If the atom originally was in the |4〉 state, the scattering event also takes
the atoms back into its original internal state. The coherence of the ensemble re-
mains unchanged. If, on the other hand, the ensemble was in a superposition state
|Ψ〉 = (a|4〉+ b|3〉)⊗N the single atom i undergoing a transition will be projected
into |4〉. The probability for this to happen is proportional to the scattering proba-
bility and the probability |a|2 for the atom to actually be in state |4〉. This changes
the length of the mean Bloch vector (unless |a|2 = 1 or |a|2 = 0) and therefore the
coherence of the sample. The situation would be di�erent if the probe light were
detuned exactly between the F = 4 → F ′ = 5 and F = 3 → F ′ = 2 transitions,
such that the scattered photon does not carry any information on the state of the
atoms and therefore superposition states are still allowed after the interaction [66].
When the atom, on the other hand, decays through a σ± transition into one of the
neighboring F = 4,mF = ±1 magnetic substates, the atom is inevitably removed
from the clock states and coherence is lost regardless of the previous state of the
atom. The branching ratio for these inelastic Raman scattering events relative to
the elastic Rayleigh events is

√
8
5 . Since the dipole trap has a depth of ∼ 3000

photon recoil units, single scattering events do only change the coherence of the
atomic ensemble but do not expel the atoms from the trap. To measure the quan-
tum state of the atomic ensemble in a non�destructive way, the light level of the
probe beam therefore has to be reduced to a level where these scattering events
become negligible. In this sense, non�destructive probing of a superposition state
is much more challenging than probing trap properties as demonstrated in section
3.4 and [2]. The necessary reduction of probe photon number was one of the main
motivations to develop and implement the ultra low noise photo detector discussed
in chapter 4.

5.4.2 Experimental observation of Rabi oscillations

To observe Rabi oscillations on the clock transition, we �rst make sure that the
synthesizer output frequency is close to the clock transition frequency. The most
accurate way is Ramsey spectroscopy which will be discussed in section 5.7. The
transition frequency can also be determined by minimizing the e�ective Rabi fre-
quency of the oscillations Ω =

√
Ω2

R + ∆2 one observes [51]. Of course, Rabi os-
cillations can also be observed with o��resonant driving, only the Rabi frequency
cannot be directly extracted.
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Figure 5.9: Non�destructive observation of Rabi oscillations. The sample has hot been
puri�ed prior to inducing the oscillations. The optical pumping e�ciency is not optimized
fully, therefore we only have about 70% of the atoms oscillating between the states. The
sample is probed every 120µs with 2µs probe probe duration. We observe a Rabi frequency
of ΩR = 1.25 kHz induced by about P = 20mW microwave power.

A �rst example of non�destructive probing of coherent state evolution is shown
in �gure 5.9. Here, the sample has not been puri�ed after optical pumping, so
the oscillations rest on a baseline which is not the empty interferometer level.
After optical pumping, we induce oscillations by applying a dc microwave �eld
of ∼ 20mW power. We probe the sample every 120µs with 2µs long pulses
and extract a Rabi frequency of Ω = 1.25 kHz. The synthesizer frequency was
set to 9.192.600.700Hz which corresponds to an actual output frequency of ω0 =
9.192.631.541Hz when determined on a newly calibrated spectrum analyzer. From
the data, an optical pumping e�ciency of 70% is estimated.
When we increase the microwave power to 1W and use a puri�ed sample, we obtain
signals as shown in �gure 5.10. In the data presented, the ensemble quantum
state has been probed with 0.2µs long light pulses at a repetition period of 2.3µs
and the microwave �eld has been kept on during the whole observation. Each
probe pulse contains . 105 probe photons and with the repetition rate given,
the oscillations are probed almost 50 times per Rabi cycle! In the not�averaged
raw data shown in �gure 5.10(a), the oscillations are clearly visible albeit with
some noise. The signal to noise ratio can easily be improved by averaging over
several experimental realizations as shown in �gure 5.10(b) and (c). Applying a
running average �lter after 8ms of continuous driving, the oscillations are still
clearly visible � after having been probed ∼ 3500 times up to then. Altogether,
this demonstrates the capability of the setup to measure the quantum state, i.e.,
also arbitrary superposition states |Ψ〉 = (a|4〉+ b|3〉)⊗N and its coherent evolution
non�destructively and in real time.
The decay of the oscillation envelope is due to the movement of the atoms in
the trap � di�erential light shift of the ground states in the dipole trap and the
inhomogeneity of the microwave �eld across the sample. The spontaneous probe
photon scattering probability per light pulse is negligible. We have con�rmed this
interpretation by starting the probe pulses after the microwave �eld had already
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Figure 5.10: Non�destructive observation of Rabi oscillations on the clock transition.
(a) Single experimental realization of quantum state probing. The population in F = 4
is determined by light pulses with 0.2µs duration at 2.3µs repetition period. (b) The
oscillations are clearly visible through a 8�point running average �lter, even after 8ms,
where the sample had been probed for ∼ 3500 times. (c) A zoom into the �rst millisecond
of the data reveals the quality of the data. The signal to noise ratio is impressive.

been applied for t = 500µs � 3ms. The oscillation amplitude observed at that later
time t is equal to the remaining amplitude observed in �gure 5.10 at that delay time
t. The e�ects of probing on the Rabi oscillations will be studied in detail in section
5.5. The shorter coherence time of the data in �gure 5.10 compared to the data
in �gure 5.9 is due to the inhomogeneity of the microwave �eld across the sample
and the di�erential light shift. By augmenting the microwave power between the
two data sets from P ∼ 20mW to P ∼ 1W, we increase the Rabi frequency to
Ω = 10.1 kHz. Rearranging the microwave setup depicted in �gure 5.2 to minimize
power loss in various compnents allows us to increase the Rabi frequency to up to
Ω = 16 kHz.

Multiple observation of oscillations
From section 3.4.1 we know that the lifetime of the trapped ensemble is much longer
than the coherence time observed above. We can therefore repeat the preparation
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Figure 5.11: Multiple preparations of the ensemble, observation of Rabi oscillations
(1a, 2a, 3a, 4a) and determination of the respective atom numbers (1b, 2b, 3b, 4b) after
repumping the ensemble. Where the time axis is discontinuous, the preparation, repuming
or removing stages take place; these last several 10ms. The graph clearly demonstrates the
advantages of segmented data storage as discussed in section 3.3.2.

and probe stages several times after loading the trap once. The data presented in
�gure 5.11 shows four observations of oscillations and corresponding atom number
measurements in one trap cycle. The sequence also serves as an illustration of the
atom number estimation and normalization procedures, and interferometer baseline
determination mentioned in section 5.3.1. After a sample has been initialized to
the |Ψ〉 = |3〉⊗N state, i.e., optically pumped and cleaned, Rabi oscillations are
induced and observed (time section 1a). The sample is then repumped to the
F = 4 level and the remaining number of atoms is measured (1b). This procedure
(initialization to |3〉, observation of Rabi oscillations, repumping and determination
of remaining atom number) is repeated four times. Thereafter the atoms are heated
out of the trap and the lock point of the interferometer during the cycle is measured.
Subtracting the baseline from the other data removes the in�uence of interferometer
drifts, and knowing the trap decay time allows one to normalize the oscillations to
the number of atoms present in the respective stages.

�Top�bottom� probing

During optimization of the microwave parameters, for example when �nding the
π�pulse duration, it is bene�cial not to be limited by the technical noise present in
a single measurement cycle as shown in �gure 5.10(a). The most obvious way to get
a better signal to noise ratio is increasing the probe photon number. This, however,
will have direct e�ects on the spontaneous photon scattering probability and the
dephasing caused by the di�erential light shift to be discussed in section 5.5. The
in�uence of both e�ects can be reduced by probing the sample when all atoms are
in an energy eigenstate, i.e., on the poles of the Bloch sphere. The only directly
destructive e�ects are then caused by inelastic scattering events. To obtain this
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situation, we split the extended microwave pulse into π pulses and probe in between
these pulses. We then get signals as shown in �gures 5.8(a) and �gure 5.11. The
oscillations are then only sampled two times per oscillation period which reduces
the number of photons interacting with the atoms compared to the oscillation over
sampling shown, e.g., in �gure 5.10. This allows one to increase the photon number
per pulse while keeping the spontaneous photon scattering probability constant,
which increases the single�shot signal to noise ratio. Additionally, the di�erential
light shift e�ects discussed in section 5.5 are suppressed.

5.4.3 Two color probing of Rabi oscillations

In the data presented until now only probe pulses sensitive to the F = 4 state
have been used. As discussed in section 2.4.2 and 3.2 using a second probe laser
beam close to resonance to the F = 3 → F ′ = 2 transition allows to determine the
population in the F = 3 states. We chose the additional probe color to be ∆32 =
−135MHz red detuned from the 6S1/2(F = 3) → 6S3/2(F ′ = 2) transition. The
detuning has been chosen such that the phase shift of the second probe color ∆φ3

is the same as −∆φ4 for equal populations in each level as discussed in connection
with �gure 3.8(a). Using the same probe power in both colors, the interferometer
fringes have the same amplitude and consequently the signals Smax,3 for |Ψ〉 =
|3〉⊗N and Smax,4 for |Ψ〉 = |4〉⊗N are related as Smax,4 = −Smax,3. In �gure 5.12(a)
the individual signals of the two probe colors. The sample has not been puri�ed,
so the F = 4 signal rests on a baseline while the oscillations of the F = 3 state
populations start out at zero. When we send bi-chromatic probe pulses through the
interferometer, the phase shift signal gives directly the di�erence between the clock
level populations. Figure 5.12(b) shows the observation of Rabi oscillations with
both probe pulse colors at the same time for a puri�ed sample and with the probe
coupling strengths optimized to satisfy Smax,4 = −Smax,3. Normalizing the data
to the atom number would directly give the W�component of the ensemble Bloch
vector U. The association of the length of the Block vector with the coherence
in the sample is very nicely illustrated. When coherence is lost, i.e., the sample
dephases or is partly projected into a mixed state, the amplitude of the Rabi
oscillations decreases. On the timescales in question here, the lifetime of the atoms
in the trap can be regarded as a minor issue.

5.5 Inhomogeneous light shift e�ects on Rabi

oscillations

In section 5.4.1 we have discussed the in�uence of spontaneous photon scattering
on the quantum state of the ensemble. In the data shown in the previous section,
the probing is non�destructive in the sense that the spontaneous photon scatter-
ing per probe pulse is kept very low. However, even for negligible spontaneous
scattering, the atomic quantum state will be a�ected: The dispersive light�atom
interaction will introduce a phase shift between the atomic states |3〉 and |4〉 due to
the di�erential light shift on the clock transition caused by the probe itself [67]. In
this section, which follows very closely the discussions in [5], we consider the e�ect
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Figure 5.12: Two color observation of Rabi oscillations. (a) The individual probe
colors gain opposite phase shifts from the atoms they couple to. The sample has not been
cleaned so the F = 4 signal rests on a baseline from atoms not being addressed by the
microwaves. (b) Oscillations from a cleaned sample. The phase shift signals have opposite
sign for atoms in |3〉 and |4〉, the oscillations are therefore centered around the empty

interferometer baseline. For an equal superposition state |Ψ〉R(π/2) =
(
|3〉+|4〉√

2

)⊗N

the
interferometer signal is zero. Using bi-chromatic probing, the connection of the signal to
the Bloch vector component W is very obvious.

Figure 5.13: Rabi oscillations for di�erent probe powers. Changing the probe strength
from 1.5 × 105 photons per pulse (data indicated with �) by a moderate factor of 4, a
drastic change in the Rabi oscillation's envelope occurs (data indicated by •). The solid
lines are to guide the eye, only.

of probing on the quantum state more closely with focus on the implications for
the non�destructive probing of Rabi oscillations. We will continue the discussion
in section 5.7 to gain further insight.
When probing Rabi oscillations non-destructively as demonstrated in �gure 5.10,
we observe a very distinct change in the envelope when changing the probe power
rather moderately. Figure 5.13 shows two traces of Rabi oscillations recorded
with the same probe pulse duration of 1.0µs and 7µs repetition period but with
di�erent probe photon numbers. With 1.5 × 105 photons per pulse we obtain a
decay constant of τ = 1.5ms, which reduces to τ = 80µs when the photon number
per pulse is increased to 6.3×105. This much faster decay cannot be explained just
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Figure 5.14: (a) The probe light shifts the energy levels of the atoms according to
their position in the probe beam. While being blue detuned from one transition, thereby
augmenting its energy, the probe beam is at the same time red detuned from the other
transition and reduces its energy. (b) The position dependence of the di�erential light shift
induces a position dependent phase shift in the atomic ensemble. This dephasing of the
single atoms, indicated by the phase distribution of the single atom Bloch vectors leads to
a reduction of the mean Bloch vector length.

by the four times higher spontaneous excitation probability. Additionally, the trace
corresponding to the higher probe power shows a clear revival of the oscillations at
around t = 800µs, and an increase in the Rabi oscillation frequency is observable.
In the following sections, we systematically analyze these e�ects and demonstrate
that they can be well understood when taking the spatial inhomogeneity of the
probe beam into account which causes a spatial distribution of the di�erential
light shift between the clock states.

5.5.1 Theoretical model

Light shift revisited

In section 3.1.3 we have discussed the working principle of an optical dipole trap:
the o� resonant coupling of an electro magnetic radiation �eld shifts the energy
levels of the atoms. The energy shift ∆Eg of the ground state is given in equation
(3.5). Applying o�-resonant probe light shifts the energy levels as well. While
the blue detuned F = 4 → F ′ = 5 light increases the energy of the F = 4 state,
it also interacts as ∆ ∼ −9.2GHz red detuned light with the F = 3 → F ′ = 2
transition, shifting the energy of the F = 3 ground state downwards. The result
is a di�erential light shift between of the clock levels which changes the transition
frequency as illustrated in �gure 5.14(a). The trapping potential (equation (3.7)
on page 33), and thus the energy shift can also be written as [46]:

δEg(r) = ~∆ω =
~γ2

8
I(r)
Is

1
∆

(5.36)
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where we have introduced the saturation intensity Is = 1.1mW/cm2. We therefore
expect a transition frequency shift of:

χ(r) ≡ ∆ω(r) =
γ2

8
I(r)
Is

(
1

∆45
− 1

∆45 − 9.192 GHz

)
(5.37)

for the time a probe laser is applied with detuning ∆45 from the F = 4 → F ′ = 5
resonance. Assuming a homogeneous power distribution of a 100 nW beam across
an area corresponding to a beam waist of w0 = 20µm we get a di�erential light
shift of χ = 2π · 0.25MHz. Since the di�erential light shift is position dependent,
following the intensity distribution of the Gaussian probe beam, the atomic levels
will be shifted according to the atoms position in the probe beam. This leads to
an inhomogeneous light shift distribution:

χ(r) = χ0 exp
(
− 2r2

w(z)2

)
(5.38)

where χ0 = χ(r = 0, z = 0) corresponds to the maximum light shift at the center of
the Gaussian beam. This dephasing is indicated in �gure 5.14(b) for an ensemble
in a equal superposition state.

Inhomogeneous light shift distribution across the atomic ensemble
To model the inhomogeneous coupling of a probe beam with Gaussian intensity
distribution to an atomic ensemble con�ned by a dipole trap beam with Gaussian
intensity, we introduce the column density of the atomic sample in polar coordinates
(r, φ) by n(r) = n0 exp(−2r2/r20). The slightly unconventional de�nition of the
column density is motivated by the comparison with the light intensity distribution;
this way, the �nal result only depends on the ratio between the probe beam waist
w0 and the sample �waist� r0 without additional factors of 2. n0 is the peak column
density and r0 characterizes the sample radius. The atomic sample interacts with
a Gaussian laser beam propagating along the z-axis and focussed at the sample's
location. In the case when the axial size of the atomic sample is short compared
to the Rayleigh range of the laser beam we can approximate the light intensity
distribution within the interaction volume by I(r) = I0 exp(−2r2/w2

0), where I0is the peak intensity and w0 is the Gaussian beam waist, the z dependence of
χ(r) = χ(r, z) is thus integrated over.
As discussed in section 5.1.1 the evolution of an initial Bloch vector U0 can be
propagated by multiplying the corresponding matrices, e.g., (5.30) and (5.31) in
succession to get an overall transfer matrix T (χ, t). Due to symmetry, it is obvious
that a di�erential light shift ~χ = ∆E of the clock levels for a certain duration t
has the same e�ect as detuning the microwave �eld from resonance by the same
amount ∆ = ∆E for the same time t.
From the Gaussian intensity pro�le of the laser beam, we get a position dependent
light shift and χ will vary radially as ∝ I(r) as given in equation (5.38). Moreover,
in the detection of theW -projection of U, the Gaussian intensity dependence of the
probe laser beam in conjunction with the Gaussian column density of the atomic
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sample gives rise to a signal:

Sφ(t) ∝
∫ ∞

0
[T (χ(r), t)U]Wn(r)I(r)rdr

∝
∫ ∞

0
[T (χ(r), t)U]Wn0I0e

−2
(

r
r0

)2

e
−2

(
r

w0

)2

rdr

∝
∫ χ0

0
[T (χ, t)U]Wχ

(
w0
r0

)2

dχ (5.39)

Hence, for a given ratio between r0 and w0 the net measured Bloch vector results
from in�nitesimal contributions from atoms with light shifts χ = [0 . . . χ0] carrying
a weight χ

(
w0
r0

)2

. In �gure 5.15(c) we plot the weighting factor for a few values
of the ratio k = w0/r0. As would be expected, the atoms contributing to the net
Bloch vector have undergone practically the same light shift close to the maximum
χ0 if the laser beam waist is much larger than the atomic sample radius w0 � r0.
At the other extreme w0 � r0, our detected signal will have a uniform contribution
from light shifts in the interval [0 . . . χ0].

5.5.2 Application to Rabi oscillations

To separate the rotations on the Bloch sphere caused by the driving �eld and
the light shift, let us consider the theoretical model for the case of alternating
microwave and probe pulses. If we neglect the inhomogeneity of the induced light
shift, each single probe pulse will cause the tip of the Bloch vector to rotate around
the W�axis according to the transformation matrix (5.31) by an angle φ = χt,
proportional to the number of photons of the probe pulse. Alternating microwave
pulses, rotating around the U�axis according to matrix (5.30), and probe pulses,
we expect a step�like evolution as shown in �gure 5.15(a). In �gure 5.15(b), we
show the expected measurement result for each probe pulse when changing the
photon number or the rotation angle χt induced per probe pulse. As can be seen,
the discretely induced transition frequency change ∆E = ~χ, resulting from the
di�erential light shift between the clock states, leads to a higher e�ective Rabi
frequency Ω′ =

√
Ω2 + ∆E2.

We can simplify the dynamics according to the above model of equation (5.39) to
a quasi continuous case when the light pulses probe the sample quasi continuously.
The signal can then be written as:

S(t) =
∫ χ0

0

Ω2
R

Ω2
R + χ2

sin2

(
1
2

√
Ω2

R + χ2 t

)
χ(w0/r0)2dχ (5.40)

The signal is basically an integral over single atom Rabi oscillations with di�erent
Rabi frequencies due to the di�erential light shift. In this case, the time averaged
frequency change ∆E = 1

2π

∫
∆E(t)dt can be introduced. The e�ect now is very

similar to the Rabi frequency change one observes when the transition frequency
is permanently shifted relative to the driving �eld by ∆E, e.g., due to o��resonant
driving or a homogeneous light shift across the sample [68]. Introducing a light�
shift at discrete intervals changes the observed Rabi frequency stepwise during
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Figure 5.15: (a) State evolution on the Bloch sphere with alternating microwave pulses,
each pulse shifting by π/4 around the U�axis, and probe pulses, each causing a homoge-
neous shift of π/9 around the W�axis. (b) W� projection of the Bloch vector for di�erent
homogeneous light shifts, applied discretely in between separated π/6 microwave pulses. (c)
Weighting factor of the oscillations with di�erent frequency due to the inhomogeneity of
the probe beam and the sample. The factor is plotted for di�erent ratios k of the probe
beam waist ω0 to the sample size r0, and normalized to its maximum value. For large ratios
k � 1, an almost homogeneous shift is induced, for small ratios k � 1 the distribution is
�at. (d) Rabi�oscillations resulting from inhomogeneous light shift distribution across the
probe area.

the single period, however, after each period T = 2π
Ω the e�ect is the same as if

the transition frequency had been changed by a mean value ∆E during the whole
period. In the experiment, a continuous distribution of light shifts χ = [0 . . . χ0] is
present and thus oscillations of di�erent frequencies, weighted in amplitude with the
density distribution of the sample across the probe beam, interfere. The resulting
oscillations are shown in �gure 5.15(d) for a probe size to sample ratio k = 0.35
and a maximum shift of χ0 = 0.3 rad per pulse. In the quasi continuous probing
regime, the change in the Rabi frequency which happens discretely at the times of
the probe pulses, is replaced with an average change.
When the light pulses are distributed more sparsely during the Rabi period, a time
discrete analysis has to be applied. The e�ect of probing (as phase shift on the
Bloch sphere as rotation around theW axis) and the driving though the microwave
�eld (as rotation around the U axis) then have to be considered separately as indi-
cated in �gure 5.15(a) with di�erent phase shifts according to the atomic and the
probe light intensity distribution, leading to inhomogeneous dephasing as indicated
in �gure 5.18(a). The limiting case where the probe pulses are only applied when
the Bloch vector points in the direction of the poles, has already been discussed as
�top�bottom� probing of Rabi oscillations in section 5.4.2. A second case, where
the probe pulses are only applied when the vector is pointing into the equatorial
plane, is studied thoroughly in section 5.7 since the situation then corresponds to
Ramsey and spin�echo measurements.
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Experimental results
To study the perturbing e�ects of the inhomogeneous atom-probe interaction sys-
tematically for the quasi continuous case, we alternate microwave and probe pulses
and record data sets for di�erent probe powers. In �gure 5.16(a) we show a col-
lection of data together with �ts of the theoretical model from equation (5.40).
In the �tting model, we have allowed for a small number of spontaneous scat-
tering events, pumping atoms into the F = 4,mF 6= 0 states and homogeneous
dephasing mechanisms like magnetic background �uctuations, microwave driving
�eld inhomogeneities or cloud temperature e�ects [69]. The data is remarkably

Figure 5.16: (a) Non�destructively probed Rabi oscillations. The photon number per
probe pulse is given in the lower right corner of each graph. The solid line represents a �t
to the data with the model discussed in the text. (b) Comparison of the photon number per
pulse as measured in the experiment to the pulse strength returned from the �tting routine.
The scaling is well described by a linear function through the origin.

well described by the simple model. In particular, the envelope together with the
revival of the oscillations is very well reproduced. To �t the data we have used
the programme Mathematica. The non�linear regression �t function can directly
take arguments which are de�ned as integrals. The theoretical model in equation
(5.40) can therefore be directly used as �tting function. The �tting routine returns
a parameter ∝ χ0, the maximum phase shift caused by the light shift, which is
expected to be directly proportional to the photon number in the light�shifting
pulses. The value is shown in �gure 5.16(b) as function of the applied photon
number, con�rming the validity of our model within the given parameter range.

5.6 Rabi spectroscopy - transition line shape

To conclude this section on Rabi spectroscopy we use the Rabi formula (5.29)
directly to determine the transition frequency. To this end, we �x a microwave
pulse duration t = π/ΩR such that the pulse it resembles a π pulse. In this case,
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Figure 5.17: Rabi spectroscopy with two di�erent microwave powers and corresponding
Rabi frequencies. The microwave pulse duration has been arranged such that it is close to
a π pulse on resonance. A �t to the data returns Rabi frequencies of Ω = 14.5 kHz and
Ω = 4.5 kHz for the two powers, respectively, which �ts to the microwave pulse durations
actually used. The frequency resolution in (a) is rather poor. The value of the transition
frequency extracted from (b) �ts very well with the de�ned value, taking the o�set of the
synthesizer of 30.841Hz into account.

the population in F = 4 can be written as:

P4 =
Ω2

R

Ω2
R + ∆2

sin2

(
π

2ΩR

√
Ω2

R + ∆2

)
(5.41)

which has its maximum at ∆ = 0. If the microwave pulse duration is slightly
wrong, the maximum will remain at ∆ = 0. The maximum stays at ∆ = 0 as
long as the pulse is longer than a π/2 pulse, which can be shown by deriving
equation (5.29). This way, the transition frequency can be determined. In �gure
5.17 two corresponding measurements are shown. The frequency resolution depends
strongly on the pulse duration but the principle can be well recognized. Using
equation (5.41) to �t the data allows us to extract the values of the Rabi frequency,
the pulse duration and the frequency o�set. From the data in �gure 5.17(b) a
transition frequency of 9.192.631.751Hz is extracted, which is only 19Hz o� from
the de�ned value. The main contributions to this o�set are due to the second order
Zeeman shift, equation (5.35), which is estimated to ∆ωclock = 2π · 427 · (1.6)2 Hz
= 2π · 1093Hz and the di�erential light shift from the dipole trap whose maximum
value is ∆ωl = 2π · (−1.1) kHz as we shall discuss later. Minor contributions come
from density shifts.
In the data shown, we also observe a maximum π pulse transfer e�ciency of 75%,
which con�rms the claimed maximum optical pumping e�ciency we obtain.

5.7 Ramsey spectroscopy

Coherence and decoherence has already been mentioned in the previous sections.
Especially in the context of quantum information science, where information is
stored in the coherence of atomic levels, the coherence time is equivalent to the
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Figure 5.18: (a) Illustration of sample dephasing when initialized to an equal superpo-
sition state with a microwave π/2 pulse. The Bloch vectors ui = (u, v, w)i of individual
atoms i obtain di�erent phases φi =

∫ t

0
∆i(t′)dt′ during free precession for time t. The

mean Bloch vector U =
∑

ui is therefore shortened and parameterizes the phase coherence
of the sample. (b) The trap potential is slightly di�erent for the two ground states F = 3
and F = 4 due to the hyper�ne spitting ∆hfs which leads to a di�erential level shift of
∆lightshift < 0. When atoms move back and forth in the trap as indicated by the arrows,
their states gain a relative phase shift with respect to each other. (c) The coupling of a
single color probe beam close to the F = 4 → F ′ = 5 transition increases the level splitting
by di�erent amounts, depending on the position of the atoms in the beam. The probe beam
blue detuned to F = 4 → F ′ = 5 increases the energy of the F = 4 ground state while it at
the same time is red detuned from the F = 3 → F ′ = 2 transition and thereby decreases
the energy of the F = 3 ground state. When atoms move while the light pulses are applied,
the di�erential phase shift obtained can vary in time.

maximum storage time of the medium. The most common way to determine the co-
herence time of a system is Ramsey and spin echo spectroscopy and these techniques
are in the focus of this section. As we shall see, Ramsey spectroscopy basically de-
termines the phase accumulation between the two states during a free precession
time relative to the rotating frame of the microwave �eld. Ramsey spectroscopy
itself can be cast into the language of an interferometer again, the sequence can
then be regarded as an interferometric determination of the phase di�erence, very
much like the Mach Zehnder interferometer. It therefore presents an ideal toolbox
to study external perturbation of these levels, as caused, e.g., by the di�erential
light shift of applied probe light pulses or the dipole trap potential. When studying
the reversibility of the induced perturbations with echo spectroscopy, information
on the nature of the perturbations and on the trap dynamics can be extracted.
In a dipole trapped sample, dephasing is the main decoherence mechanism. When
a coherent superposition state |Ψ〉 =

(
|3〉+|4〉√

2

)⊗N is prepared, perturbations of
the transition, leading to a time dependent detuning ∆i(t) of the microwave �eld
from the transition, change the phase φi =

∫
∆i(t′)dt′ between the two clock states

according to equation (5.31): |Ψ〉 → 1√
2

N

∏
i

(
|3〉+ eiφi |4〉

). Since the detuning
can be di�erent for each atom i in the sample, the phase accumulated di�ers from
atom to atom and leads to the e�ective reduction of the Bloch vector as discussed
in section 5.1.2. The process is illustrated in �gure 5.18(a). We will discuss two dif-
ferent dephasing mechanisms. The �rst one is induced by the di�erential light shift
between the clock levels caused by the dipole trapping potential. Further, we con-
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Figure 5.19: Principle of Ramsey spectroscopy. Two microwave π/2�pulses are applied
to the sample with temporal separation t and microwave �eld detuning ∆ < 0. During
the free precession time t in the superposition state created by the �rst π/2 pulse, the
atomic states accumulate a relative phase φ = t∆ with respect to the rotating frame of the
microwaves. This shifts the orientation of the Bloch vector by the angle φ. The second
π/2 pulse projects this phase onto the W�axis of the Bloch sphere and thereby becomes
measurable as population di�erence. The rotations and measurement results are illustrated
for φ0 = 0◦, φ1 = 50◦ and φ3 = 150◦.

tinue the discussion of the in�uence of the spatial inhomogeneity and consequently
the inhomogeneous di�erential light shift induced by probe light, as discussed in
section 5.5.1.

5.7.1 Principle of Ramsey spectroscopy

Illustration in the Bloch vector picture
The basic microwave pulse sequence for Ramsey spectroscopy is illustrated in �g-
ure 5.19 together with the induced rotations of the Bloch vector. Brie�y, the
principle is as follows: Beginning from an initial state, where all atoms reside in
|3〉, U0 = (0, 0,−1), a π/2�pulse brings the ensemble into a superposition state
|Ψ〉 =

(
|3〉+i|4〉√

2

)⊗N .5 The quantum state then evolves freely for a �xed time t. The
population measured in |4〉 after a second π/2�pulse depends on the relative phase
φ between the two atomic states |3〉 and |4〉, |Ψ〉in � |Ψ〉evol = 1√

2
N (|3〉+eiφ|4〉)⊗N

acquired during the free evolution. For φ mod 2π = 0 we end up at |Ψ〉out = |4〉⊗N ,
5We have not been entirely consistent in the transformations between the Bloch vector U and

the atomic state vector |Ψ〉. According to the de�nitions in section 2.3, the state corresponding

to Uπ/2 = (0, 1, 0) is |Ψ〉 =
(
|3〉+i|4〉√

2

)⊗N

. We have, however, often referred to the superposition

state after a single π/2 pulse as |Ψ〉 =
(
|3〉+|4〉√

2

)⊗N

. In the end, the e�ect is a trivial rotation of

the coordinate system and can be formally accounted for by putting the phase of the microwave
�eld to π/2 before transforming into the rotating frame.
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φ mod 2π = π yields |Ψ〉out = |3〉⊗N and φ mod 2π = (π/2, 3π/2) yields
|Ψ〉out =

(
|3〉±|4〉√

2

)⊗N . It is clear that the output signal of such a measurement
depends on the phase φ(t) =

∫ t
0 ∆(t′)dt′ accumulated during the free evolution

time, where ∆(t) is the detuning of the microwave �eld relative to the transition.
This detuning can be time and position dependent and di�erent for each single
atom in the ensemble as discussed above. The W�projection of the Bloch vector
after the microwave sequence can easily be calculated from the rotation matrixes
(5.30) and (5.31):

Uout =

 1 0 0
0 0 −1
0 1 0


︸ ︷︷ ︸
second π/2 pulse

×

 cos t∆ sin t∆ 0
− sin t∆ cos t∆ 0

0 0 1


︸ ︷︷ ︸

free precession for time t

×

 1 0 0
0 0 −1
0 1 0


︸ ︷︷ ︸

first π/2 pulse

×

 0
0
−1


︸ ︷︷ ︸
initial state

(5.42)

=

 sin∆t
0

cos ∆t

�

 − sinφ(t)
0

cosφ(t)

 (5.43)

Without decoherence, the output signal of a Ramsey measurement, only sensitive
to the atoms in F = 4, has an oscillatory behavior and is called Ramsey fringes:

P4 =
1 + cosφ(t)

2
(5.44)

5.7.2 Inhomogeneous dephasing due to di�erential light shift of

the dipole trap

First, we shall consider the e�ect of spatial inhomogeneity caused by the dipole
trapping beam. We expect the trap depth to be slightly di�erent for the two
ground states F = 3 and F = 4 because one of them is detuned by 9.2GHz more
from the trap laser than the other. The di�erence in the light shift of the two
levels is equivalent to the di�erence discussed in section 5.5.1 for the probe beam
coupling o� resonantly to the two ground levels.
In section 3.1.3 we have discussed the dipole trap potential, equation (3.11):

U0 =
c2P

w2
0

(
γD1

ω3
D1∆D1

+
2γD2

ω3
D2∆D2

)
(5.45)

where P is the power of the trapping beam and w0 is its waist. ∆D1 and ∆D2 are the
detunings of the trap laser from the D1 and D2 line with transition frequencies ωD1

and ωD2, whose natural linewidths are γD1 and γD2, respectively. This equation
can be simpli�ed by neglecting the di�erence in the transition frequencies ω0 ≡
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ωD1 ≈ ωD2 and in the linewidths γ ≡ γD1 ≈ γD2, and by introducing the e�ective
detuning [50]:

1
∆eff

=
1
3

(
1

∆D1
+

2
∆D2

)
(5.46)

For caesium and the dipole trap laser at 1032 nm, ∆eff ≈ 1.1 · 107γ. Using the
e�ective detuning, the trap depth can be written as:

U0 =
3c2P
w2

0

γ

∆eff
(5.47)

Since the detuning of the dipole trap laser is di�erent for the two hyper�ne ground
states F = 3 and F = 4 by the hyper�ne splitting ∆hfs = 9.192GHz, the trap
depth or light shift is di�erent for the two levels. This results in a di�erential
energy shift of:

~∆ωtrap =
3c2P
w2

0

γ

(
1

∆eff
− 1

∆eff + ∆hfs

)
= U0

∆hfs

∆eff + ∆hfs
(5.48)

For red detuning, the frequency shift is negative. For a trap depth of U0/k =
300µK, we get a maximum di�erential light shift of ∆ωtrap = 2π · (−1.1 )kHz.
The atoms in the dipole trap are not stationary. The di�erential light shift has the
same spatial dependence as the trap beam intensity. An atom sampling di�erent
spatial regions in the trap will therefore also sample di�erent di�erential light shift
regions, as illustrated in �gure 5.18(b). Depending on the motional state of the
atoms, it accumulates di�erent amounts of phase shift. The envelope of the Ramsey
signal in equation 5.44 will therefore be altered and depend on the temperature of
the sample.
Assuming that the atoms in the trap are in thermal equilibrium, i.e., the kinetic
energy is Maxwell�Boltzmann distributed, the theoretical shape of the expected
Ramsey signal in the time domain, that is at �xed synthesizer detuning from the
resonance ∆ but varying free precession time t can be shown to be [69]:

W (t) = α(t) cos[(∆− δ)t+ κ(t)] (5.49)
with the amplitude α(t) and phase κ(t) function

α(t) =
(

1 +
t2

K2

)−3/4

and κ(t) = −3
2

arctan
(
t

K

)
,K(T ) =

2~
kT

∆eff

∆hfs
(5.50)

The �e−1�time� is now obtained to be:

T2 = 1.67
2~
kT

∆eff

∆hfs
(5.51)

From the dephasing time of the Ramsey signal we can thus extract the temperature
of the sample.
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Experimental data
In �gure 5.20 a dataset for Ramsey spectroscopy in the time domain is shown
together with a �t of the model discussed. The driving �eld has been detuned
by ∆ = 280Hz from the transition frequency. From the extracted decay time
T2 = 5.4ms we extract a temperature of the sample T = 28µK. The time delay
between the two π/2 pulses as shown in �gure 5.19 is varied between 0 and 10ms
and the population of the ensemble in F = 4 is determined after the microwave
pulse sequence and normalized to the total number of atoms as discussed in section
5.3.1. The temperature determined in this way �ts well together with the estimates
given in [2] for our setup. There the temperature has been determined by release
and recapture techniques. It should be mentioned that the above measurement
corresponds to a typical value for medium size samples; especially when considering
large samples, the cooling in the MOT and subsequent sub�Doppler stage is less
optimal and the decay time of the Ramsey fringes suggests temperatures around
T ≈ 100µK.

Figure 5.20: Ramsey spectroscopy in the time domain. The synthesizer is detuned
from the clock transition by about 300Hz and the free precession time between the two
π/2�pulses is stepped between 0 and 10ms in steps of 100µs. Each data point represents
an average of 5 measurements. The �tted curve returns a decay time T2 = 5.4ms.

5.7.3 Running a Cs atomic clock

We have discussed Rabi spectroscopy as a procedure to determine the clock state
transition frequency in section 5.6. For a given Rabi frequency, a much more
precise value can be obtained with Ramsey spectroscopy in the frequency domain.
The general principle is the same as in the time domain discussed above, but
instead of changing the free precession time t between the π/2 pulses, we detune
the microwave driving �eld by variable amounts ∆. Since we �x the free precession
time to one value, the decoherence reduces the overall fringe amplitude of equation
(5.44). The frequency of the Ramsey fringes [equation (5.44) P4 = 1

2(1+cosφ(t)) =
1
2(1+cos t∆)] is determined by the waiting time t; the clock transition can therefore
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be found by determining the central fringe maximum which does not move in
frequency space when the waiting time is changed. The longer the waiting time t
is, the more precise the transition frequency can be determined. In �gure 5.21 the
experimental data for di�erent waiting times is compared. The central fringe can
be clearly identi�ed and a frequency zoom into the data allows to extract the clock
transition frequency down to a few Hertz accuracy. Figure 5.22(a) shows a Ramsey

Figure 5.21: Atomic clock operation. Ramsey fringes for di�erent free precession times
t. The frequency of the fringes are determined by the waiting times. The central fringe can
be clearly identi�ed and the clock transition frequency extracted. The overall envelope of
the signal is due to the fact that the two microwave pulses are also performed o�-resonantly
and the rotation on the Bloch sphere is no longer a simple as suggested by (5.44). It can
be calculated straightforwardly from the general rotation matrix, equation (5.20).

fringe obtained with 2.2ms free precession time between the two π/2 pulses. The �t
to the data has an uncertainty of 2Hz, which corresponds to the precision of our Cs
clock. The (long term) stability on the other hand is much worse! This is mainly
due to changing external conditions � drifts in the bias magnetic �eld, di�erent
dipole trap power or di�erent temperature of the sample. On a daily basis, the
frequency is determined to the 250Hz accuracy level. Relative to a Rabi frequency
of ΩR ≈ 10 kHz, an uncertainty of δω = 250Hz is negligible. The e�ective Rabi
frequency Ω = ΩR

√
1 + ∆2

Ω2
R
≈ ΩR(1 + 3 · 10−4) only changes on the 10−4 level.

Using the described techniques, the in�uences of external �elds on the transition
frequency can in principle be studied. At the time when the data presented here
was taken, no absolute frequency reference was available. An accurate determina-
tion of transition frequency and comparing it with a commercial frequency standard
would help to determine the di�erent sources for the transition frequency shifts;
only then the precision and accuracy of the actual setup can be determined.
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Figure 5.22: (a) Precise determination of the transition frequency. With a free preces-
sion time of t = 2.2ms, the transition frequency can be determined with an uncertainty of
a few Hertz. (b) Two color recording of Ramsey fringes. The signal axis corresponds to the
W�component of the Bloch sphere. The reduction in the fringe from 300µs to 500µs free
precession time is due to the decoherence discussed in connection with �gure 5.20. The
solid lines are cosine �ts to the data.

Two color Ramsey spectroscopy
For completeness, �gure 5.22(b) shows a recording of the Ramsey fringes with
two color probing as discussed in section 5.12. When using two probe colors,
the interferometer phase shift is proportional to the di�erential number of atoms
N4 − N3. The normalized signal is equivalent to the W�component of the Bloch
vector and positive and negative values can be observed.

5.7.4 Inhomogeneous light shift of probe pulses

As discussed in section 5.1.3 and at the beginning of section 5.7, the accumulated
phase shift φ(t) = t∆ measured in the Ramsey sequence can also be induced by
shifting the transition out of resonance, e.g., by applying a probe pulse instead of
detuning the driving �eld from resonance. The situation is schematically illustrated
in �gure 5.18(c). When we apply light shifting pulses while the atomic state evolves
freely, the di�erential light shift adds a phase shift distribution proportional to the
number of photons interacting with the atoms at their position. The process has
been discussed in section 5.5 and is illustrated in �gure 5.15 and 5.18. The readout
of the population averages over the atomic sample according to the spatial overlap
of the probe beam and the sample density distribution, compare equation (5.39).
The additional phase shift induced by the probe pulses will shift the position of
the Ramsey fringes in frequency space, accordingly.
The graphs (a1)�(a4) of �gure 5.23(a) show four examples of Ramsey fringes where
a probe pulse of di�erent power (photon number) has been applied between the
two π/2 pulses of the microwave sequence together with a reference trace, where
no light�shifting pulse has been applied. By normalizing the frequency shift δν
to the period of the Ramsey fringes de�ned by the free precession time t, we can
directly extract the mean phase shift angle of the Bloch vector caused by the probe
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pulse. In a homogeneous system, as studied by Featonby et al. [67], where a con-
stant di�erential light shift is applied across the whole sample, the Ramsey fringe
position shifts proportionally to the photon number of the probe pulse. In the
inhomogeneous situation we are considering, the spatial pro�le of the light pulse
will create a phase shift distribution along the equator as discussed in section 5.5.
We can therefore no longer expect the shift to be exactly proportional to the probe
pulse strength, since states gaining the same phase angle φ = (χt mod 2π) are
equivalent in a Ramsey experiment. The phase distribution of the ensemble also
acts to wash out the Ramsey fringe visibility, since the externally introduced dis-
tribution is basically a standard dephasing mechanism as discussed in connection
with �gure 5.18.
In �gure 5.23(b) the normalized phase shift and amplitude of the fringes extracted
from the Ramsey spectroscopy measurements are shown. One can see a clear de-
viation from a linear scaling when the accumulated phase shift exceeds 2π. The
Ramsey fringe amplitude also shows the expected revival when the phase distribu-
tion starts to overlap above 2π and Bloch vector components with the same phase
modulo 2π add up. The graph also contains the theoretical predictions from the
model given above and a good correspondence is observed.
The free parameters in the theoretical model are the ratio of sample size r0 to
probe beam waist w0 and the maximum di�erential light shift χ0 induced by the
probe. We start out with an ensemble state |Ψ〉 =

∏
i

1√
2

(
|3〉i + eiφ|4〉i

). The
interaction introduces a distribution of the phases φ → {χi} which is projected
onto a distribution of probability amplitudes {ai} by the second π/2 pulse of the
Ramsey sequence. The probability distribution is then sampled with a weighting
according to the Gaussian intensity distribution of the probe beam. The probe
beam �rst induces an inhomogeneous phase distribution and then also couples
with the same inhomogeneity to this distribution. As shown in equation (5.39) this
process corresponds to multiplying the phase distribution eiχ with χ ∈ [0 . . . χ0]
with the weighting factor χ(w0/r0)2 . In a two dimensional projection of the Bloch
vector (this is either the equatorial U�V � plane in the Bloch sphere before the
second π/2 pulse or the U�W�plane after the second rotation) we can use complex
polar coordinates to simplify the calculations. Figure 5.24 represents an attempt
to illustrate the projection of the Bloch vector into the equatorial plane together
with the phase distribution and the inhomogeneous sampling. When we write the
two relevant components of the ensemble state in complex coordinates, we get:

Uplane =
∫ χ0

0
eiχ

1
c
χ(w0/r0)2dχ, c =

∫ χ0

0
χ(w0/r0)2dχ (5.52)

The length of the vector:

|Uplane| =
∣∣∣∣∫ χ0

0
eiχ

1
c
χ(w0/r0)2dχ

∣∣∣∣ (5.53)

is proportional to the amplitude of the Ramsey signal. The mean phase shift φ̄,
which corresponds to the orientation of the Bloch vector in the complex plane, is
given by:

φ̄ = arctan
Im(Uplane)
Re(Uplane)

(5.54)
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Figure 5.23: (a) Ramsey fringes, discrete points represent experimental data, the solid
lines are cosine �ts to the data. The data indicated with • represents the reference trace
where no light shifting pulse has been applied to the superposition state during the Ramsey
sequence. From (a1)�(a4), the probe pulse photon number has been increased by 5.12×106

in each step, starting with 5.12× 106. (b) Normalized phase shift and fringe amplitude of
Ramsey fringes, extracted from data similar to (a1)�(a4). The solid lines represent the the-
ory curves and follow the experimental data remarkably well. The dashed line in the phase
shift data corresponds to the linear dependence expected for a system with homogeneous
light shift distribution.

By adapting the values for χ0 and w0/r0 to the data, the theory curves in �gure
5.23(b) have been obtained. Considering the simplicity of this approach, the ob-
served agreement with the experimental data is marvelous! The observation and
interpretation of the observed e�ects have increased the level of understanding our
experimental system dramatically and provoked most of the detailed studies of the
inhomogeneous interaction presented in the next sections. Last but not least, the
above �ndings have triggered the reconsideration of the single port interferometer
setup and a change towards the two port setup in which intrinsically o�ers the
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possibility of di�erential light shift cancelation.

5.8 Sample rephasing � Spin echo techniques

Naturally the question arises whether the dephasing of the ensemble can be reversed
and how the destruction of the sample and the loss of coherence, e.g., due to
spontaneous photon scattering can be studied. We shall make use of the spin
echo techniques �rst invented by Hahn [70], and later applied to dipole trapped
atoms in [71] and [69]. The main idea behind the techniques is an inversion of
the sign of the accumulated phase φ1 =

∫ τ
0 φ(t)dt at a given instance τ and the

application of the same level perturbation, i.e., the accumulation of the same phase
φ2 =

∫ 2τ
τ φ(t)dt != φ1 once more. Due to the opposite sign, the phases cancel and

the ensemble is rephased at time τ after the inversion. An illustration of the pulse
sequence and the e�ect on single atom Bloch vectors is shown in �gure 5.25.
The sign�inversion can be achieved by applying a resonant microwave π�pulse to
the atoms in the superposition state. By multiplying the corresponding matrices
one immediately obtains
U(2τ)π/2−π−π/2 = Uπ/2 ×Ufree prec(τ)×Uπ ×Ufree prec(τ)×Uπ/2 ×U0 = U0 for all
Ufree prec.

5.8.1 Rephasing the dipole trap shift e�ects

In section 5.7.2 we have studied the dephasing induced by the di�erential light
shift of the dipole trapping potential. More speci�cally, we have used the decay of
the Ramsey signal with free precession time t to determine the temperature of the

Figure 5.24: (a) In a projection into the equatorial plane, we represent the Bloch vector
of a single particle as a complex number uplane,i = eiχi . We then sum the independent
particles up according to their weighting due to the inhomogeneous probe beam coupling.
The resulting signal is represented with the mean Bloch vector Uplane whose orientation φ̄
and length |Uplane| can easily be calculated. A phase distribution obviously causes a reduced
mean Bloch vector length. (b) In the simulation we start out with a �at phase distribution
χ = [0 . . . χ0] and we weight the di�erent phases according to the factor χ(w0/r0)

2
. When

the phase exceeds χ0 > 2π we project it onto its χ→ (χ mod 2π) value.
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Figure 5.25: Illustration of spin echo sequence. After the sample is initialized into a
coherent superposition state with a π/2 pulse, perturbations of the clock levels transition
frequency cause dephasing of the ensemble. After a time t the application of a microwave
π�pulse inverts the sign of the phase and after the same free evolution time t (actually
the same level perturbation) the state is rephased and the combined microwave sequence
transfers the atoms back into the initial state.

ensemble. The spin echo sequence can be used to reverse the evolution in time and
undo part of the dephasing induced by the dipole trap [69, 71].
In a classical, one dimensional picture, the atoms oscillate back and forth in the
(almost) harmonic potential of the trap. Due to the slightly di�erent potential for
the two clock states, this causes the transition frequency to be changed periodically.
A relative phase between the free evolution of the atoms and the microwave frame
accumulates. At time t, the sign of the accumulated phase is inverted and after
t2 = t, the same phase is accumulated once more and the net phase change is zero.
However, this picture only holds as long as the time t is a multiple of the oscillation
period. If this is not the case, in the worst case, the phase accumulated in half
an oscillation period cannot be rephased. Since the trap frequency is about ω⊥ =
1 kHz, this e�ect plays a minor role on the timescales of several tens of milliseconds.
Entirely random perturbations like intensity noise of the trap laser or magnetic
background �eld �uctuations cannot be rephased and cause the echo signal to
decay with waiting time t + t2. A more complete account on di�erent dephasing
mechanisms is given in [69]. As one can see in �gure 5.26, the decoherence time
is much longer than the timescale on which we intend to demonstrate squeezing,
so the details of the dephasing mechanisms are of no immediate concern (yet).
To obtain the data, we apply the microwave pulse sequence as discussed in �gure
5.25 for di�erent initial dephasing times t and the corresponding re�phasing times
t1 ≈ t. Here, and for all further spin echo measurements, the microwave driving
�eld is detuned by ∆ = 3 kHz from the transition frequency. In the data set, we
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use the two color probing scheme to obtain information on the di�erential clock
state population. The exponentially decaying envelope of the echo signals gives a
coherence time of 57ms.

Figure 5.26: Spin echos. Applying a microwave π pulse in the center between the two
π/2 pulses of the Ramsey sequence allows one to rephase the ensemble. From the time
constant of the exponentially decaying envelope we extract a coherence time of τ = 57ms.
The initial echo amplitude larger than one is caused by the fact that the atom loss from
the trap is not taken into account when normalizing the signal to the atom number after
the spin echo sequence.

5.9 Re-phasing the inhomogeneous light shift from

probe pulses

The inhomogeneous phase spread of the ensemble induced by a non�destructive
measurement as discussed in section 5.7.4 poses a serious problem for spectroscopy,
squeezing, and quantum information applications and challenges the non�destructive
nature of the measurement. Obviously, for probe pulses with large photon numbers,
the atomic state evolution is dominated by the e�ect of the probing, as shown for
the non�destructive observation of Rabi oscillations in section 5.5. Using a strongly
perturbing probe beam, e.g., to predict the quantum state of the ensemble, cre-
ates an ensemble state whose phase is distributed around the equator of the Bloch
sphere. The spin�echo techniques discussed in the last section can again be applied
to reduce or even reverse the e�ects of inhomogeneous light shifts from the probe
light. To study the e�ect of the di�erential light shift distribution when probing the
sample, light pulses are symmetrically distributed around this refocusing π�pulse.
The pulse sequences for these echo measurements are illustrated in �gure 5.27(a).
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Figure 5.27: (a) Pulse sequences for spin echo measurements. The black lines corre-
spond to the microwave pulses and the placement of the probe pulses is indicated in red. (b)
Spin echo signal observed according to the corresponding pulse sequences to the left. The
�t to the plain spin echo trace (b1) is kept for reference in graphs (b2)�(b4). Additional
probe pulses, duration 4µs, containing ∼ 106 photons, during the echo sequence shift the
echo signal in time space (b2)�(b3), corresponding to the mean phase shift imprinted onto
the ensemble. Distributing the probe pulse around the re�phasing microwave pulse, ampli-
tude and phase of the echo signal are regained. The solid lines represent �ts to the data.
(c) A zoom into the central part of the echo signal shows that the ensemble can be fully
re�phased when the probe pulses are distributed symmetrically around the microwave echo
pulse. The slight reduction of the fringe contrast when doubling the photon number is due
to photon scattering, discussed in section 5.10.2.

The plain spin echo sequence with no perturbing light pulse applied, taking care of
dephasing, e.g., caused by the trapping laser, shows a close to perfect refocussing
of the sample at the expected time as shown in �gure 5.27(b1). When applying a
single probe pulse before or after the echo pulse, the echo fringe is shifted in time
according to the induced mean phase shift by the probe pulses, �gure 5.27(b2)�
(b3). As with the Ramsey fringes in �gure 5.23(a), the inhomogeneity of the light
shift reduces the echo fringe visibility drastically. If we, however, apply light pulses
around the spin echo pulse, �gure 5.27(b4) shows that we regain the unshifted echo
fringe almost perfectly. In graph 5.27(c) we zoom in on the central Ramsey fringe
to substantiate this claim. The graph also con�rms that the measurements are
indeed not limited by spontaneous photon scattering. When the ensemble is in
a superposition state, both inelastic Raman and elastic Rayleigh scattering would
lead to complete decoherence of the atoms which were excited and reduce the fringe
contrast. As can be seen in the graph 5.27(c), the fringe contrast is not reduced
appreciably. The in�uence of photon scattering is slightly visible when comparing
the fringe amplitudes of echo signals with di�erent probe pulse photon numbers.
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5.10 Spontaneous photon scattering probability and

trap oscillations

Both for the characterization of the non�destructiveness of the light�matter inter-
face and for the demonstration of spin squeezing, the degree of �real� destruction or
irreversible dephasing caused by both the application of probe light and by other
e�ects has to be determined. At �rst sight it might appear that the reduction
of the spin echo fringe as demonstrated in �gure 5.27(c) can be ascribed to the
spontaneous photon scattering, only.
More thorough considerations, however, reveal that the motion of the atoms inside
the trap has to be taken into account. The reversibility of the dephasing relies
on the fact that the phase perturbation (e.g., caused by the di�erential light shift
induced by the probe pulses) before and after the sign inversion with the π�pulse
in the echo sequence are the same. If the single atom i, however, moves after the
�rst inhomogeneous light pulse is applied, as indicated in �gure 5.18, the atom
will generally experience a di�erent light shift of the second pulse and thus the
accumulated phases φi,before 6= φi,after before and after the sign inversion are not
identical. Only when choosing the time between the two perturbing light pulses
τ1 + τ2 in�nitely short, i.e., that the atoms had no time to move inbetween or
such that it is equal to a multiple of half a trap oscillation period, the single atom
will experience twice the same light shift and optimal reversibility is possible. In
general, the situation is complicated by the fact that the axial and the radial trap
frequencies are di�erent. We have determined the longitudinal trap frequency to
be of the order of few Hertz in section 3.4.4. The corresponding radial frequencies
are of the order of 1 kHz, so the mixing of the two frequencies can be neglected in
our case.

5.10.1 E�ect of trap motion on reversibility of inhomogeneous

phase imprints

To study the in�uence of trap motion on the reversibility of the probe light shift
induced phase distribution, we use the pulse sequence as shown in �gure 5.28(a)
with variable separation τ1 + τ2 between the light pulses. We then record echo
signals with time delay t = 1.5ms for di�erent separations τ1+τ2 between the probe
light pulses as indicated in �gure 5.28(b). For the data shown, the light pulses have
been distributed symmetrically around the π pulse, τ1 = τ2. To record the fringes,
we detune the microwave by ∆ = 3 kHz from the established transition frequency.
A �t to the echo signals returns the fringe amplitude and a typical trace for the
echo fringe amplitude as function of τ1 + τ2 is shown in the inset of �gure 5.28(c).6
One can clearly observe the oscillatory behavior of the signal which we attribute to
the movement of the atoms in the dipole trap as discussed above. The oscillation

6The data sets shown in 5.28(b) and inset of (c) do not correspond to each other. The echo
fringes in (b) have been recorded with two color probe pulses � yielding positive and negative
amplitude values while the data for (c) has been recorded with the standard F = 4 → F ′ = 5
probe. Also the probe power has been reduced with respect to the data in (b), therefore the fringe
visibility in (c) does not reduce to zero as in (b).



5.10 Spontaneous photon scattering probability and trap
oscillations 117
period of the signal corresponds to half the trap period, since the probe beam is
assumed to be symmetric. An atom can thus obtain the di�erential probe light
shift on either side from the trap center. The main part of �gure 5.28(c) shows the
echo signal revival frequency as a function of the dipole trap power. This frequency
is expected to be twice the actual trap frequency since the �rst optimal rephasing
time corresponds to half a trap oscillation period. We expect the trap frequency
ω⊥ to scale with the square root of the trap power P : ω⊥ ∝ √U0 ∝

√
P [equation

(3.12), page 34] which is con�rmed by the data. For the range of dipole trap powers
used, we get trap frequencies between ω⊥ = 375 . . . 1250Hz, which corresponds well
to values reported in [15] for our setup. Although this is probably one of the most
complicated ways of extracting the oscillation frequency of a dipole trapped sample,
it still returns a consistent answer. . . Nonetheless, it is worth mentioning that in
the approach demonstrated, the trap frequency can be determined without actually
exciting a collective motion!

Figure 5.28: (a) Timing of pulse sequence to study the in�uence of atomic motion on
the phase imprints from light shifting pulses. The time t is �xed to 1.5ms and t2 is varied
to obtain the echo signals. Echo fringes are then recorded for di�erent separations τ1 + τ2.
(b) Spin echo signals for di�erent time separations τ1 +τ2, τ1 = τ2 between the light pulses.
When the atoms have moved between the two light pulses, the atomic level perturbation is
di�erent for both pulses, perfect rephasing is not possible and the fringe amplitude drops.
The e�ect is strongest when τ1 + τ2 corresponds to a quarter of the trap period. The data
has been taken using two color probe pulses. (c) The inset shows the echo amplitude as a
function of the time separation τ1+τ2, using a single probe color and less probe power than
in (b). The main plot shows the echo signal revival frequency as function of the dipole trap
power; the scaling of ω ∝

√
P con�rms that the echo amplitude oscillations with τ1 + τ2

are due to the trap motion. From the �t in the data of the inset, we extract a revival time
at τ1 + τ2 = 850µs corresponding to a trap frequency of 590Hz. For higher trap powers
we observe trap frequencies of up to ω⊥ = 1.25 kHz.

The e�ect of probe induced decoherence and the ability to reverse the inhomoge-
neous light shift by using spin echo techniques as discussed above can be studied
further by changing the probe pulse strength and comparing traces of the kind as
shown in the inset of �gure 5.28(c) for di�erent probe powers. Corresponding raw
data is shown in �gure 5.29. To reduce the amount of data to be taken, we only
record the peak value of the echo fringe, i.e., we �x t2 = t and only change the
separation τ1 + τ2 between the light shifting pulses. The stronger the perturba-
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tion is, the faster the echo amplitude drops. When applying moderately strong
probe pulses, the clear revival of the echo fringe at half the trap oscillation period
becomes visible.

Figure 5.29: Maximum of echo fringe as function of time separation τ1+τ2 for di�erent
probe pulse powers. The higher the probe power, the faster the echo fringe amplitude drops
and and the worse the possibility to rephase the sample. The revival of the echo fringe
around half the trap oscillation period is clearly visible. The solid lines interpolate the
data and are meant to guide the eye, only.

The dynamics of the atoms in the trap under the in�uence of probe pulses can be
simulated numerically. Details of the simulation can be found in [3, 7]. The result
for di�erent probe photon numbers are shown in �gure 5.30 together with the ex-
perimental data. The data has been obtained in the same fashion as discussed in
�gure 5.28. The numerical simulation reproduces the experimental values remark-
ably well.

Figure 5.30: Experimental data for spin echo measurements with additional probe
pulses. Along the x�axis the time between the perturbing light pulses is given and the
behavior from �gure 5.28 can be observed. When the power of the light pulses is increased
as shown along the y�axis, the oscillations become more and more pronounced due to
the stronger phase imprint caused by the probe light and the �stronger need� for active
rephasing.
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5.10.2 Estimation of photon scattering probability

Our main motivation for using spin echo spectroscopy with additional probe pulses
applied to the superposition state, is to estimate the irreversible e�ects of dispersive
probing. By determining the reduction of the spin echo fringe when probe light is
applied relative to the fringe from an unperturbed system, η = amplitude perturbed

amplitude referenceobtain the amout of irreversible dephasing.
It is obvious that applying probe pulses to the superposition state corresponds
exactly to the squeezing and veri�cation measurement which form the main reason
for our undertakings, section 2.5. As has been discussed shortly in section 2.2.3, the
amount of squeezing we expect depends on the coupling strength κ̃2 between the
atoms and the probe light. It can be shown in general, that κ̃2 is proportional to the
on resonance optical depth α0 = 2S [formula (2.41)] and the spontaneous scattering
probability per atom in one measurement η′. In the ideal case, spontaneous photon
scattering is the only decoherence mechanism and η′ = η. The coupling strength
depends on η′ while the relevant state destruction is given by η. It is the total
decoherence induced by the probe pulse which is of relevance in the squeezing
criteria given in section 2.2.2.
In the last section we have realized that the estimation of the spontaneous photon
scattering probability is complicated by the trap motion. The best estimate is
obtained when the two probe pulses have the least possible separation and the
microwave π pulse is as short as possible. The duration of the π pulse is set by
the Rabi frequency which in return can only be changed by increasing the driving
�eld strength. This was the initial motivation for increasing the microwave power
to P = 10W which allows us to obtain Rabi frequencies up to 60 kHz, i.e,. π�pulse
durations of around 8µs compared to ∼ 50µs before.7 With the increased Rabi
frequencies, the π pulse durations are short with respect to the trap oscillation
period and the in�uence of trap motion on the reversibility of the inhomogeneous
light shift is suppressed. In case the e�ect of atomic motion is still non�negligible,
decreasing the trap depth which decreases the trap frequency can work to our
advantage. The bargain is, of course, weaker con�nement and generally lower
atom numbers in the trap.
In �gure 5.31, an example of a calibration measurement for the decoherence is
shown. Because it is the reference data for the squeezing measurements discussed
in section 6.3, this data has been obtained by using the two color two � port setup,
compare section 3.2.3, with di�erent parameters than the data above. Two bi�
chromatic probe pulses containing in total n̄ = 7.1 · 106 photons are sent around a
τπ = 9.02µs microwave π pulse. Contrary to the above data, the probes were both
red detuned by ∆45 = −100MHz and ∆32 = −79.19MHz. The detuning of the
microwave �eld from the transition was ∆ = 3.0 kHz and the transition frequency
on that day was measured to be ω = 9.192.631.585Hz (synthesizer o�set included).
The reduction of the echo fringe with respect to a reference measurement without
probe light pulses gives a decoherence of η = 11± 2%.

7By putting the second high power ampli�er as the last element before the microwave antenna,
compare �gure 5.2, we could actually achieve an increase in ΩR by more than the expected factor
of
√

10. This is due to the fact that the microwave pulse generator has a transmission loss of
∼ 3dB.
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Figure 5.31: Calibration of probe induced decoherence. The spin echo sequence as
discussed in �gure 5.27 is used to calibrate the probe induced decoherence. We compare the
fringe amplitude with a reference signal (black) and obtain a decoherence of η = 11± 2%
for the two applied bi�chromatic probe pulses of 10µs duration at ∆45 = −100 MHz and
∆32 = −79.19MHz from the F = 4 → F ′ = 5 and F = 3 → F ′ = 2 transitions. Using a
short π pulse of 9.02µs duration reduces the e�ects of atomic motion.

5.11 Two color light shift cancelation

From a general point of view, the ability to rephase an ensemble after a non�
destructive measurement is of great importance. For practical applications, how-
ever, it would be advantageous if the di�erential light shift could be canceled by
the probing scheme itself. The most straight forward scheme which comes to mind
is the usage of a second probe beam with the same spatial intensity distribution.
By arranging the detuning of the second laser such that the di�erential light shift
from the second beam is exactly opposite to the �rst, light shift cancelation can be
achieved. Since the sign of the phase shift signal is directly connected to the sign
of the detuning from the closest atomic transition, the second probe color has to
be introduced in the second mode of the interferometer input beam splitter. We
have discussed this two color � two port setup in section 3.2.3. In this con�guration
both probe lasers have to gain a phase shift with the same sign in order to produce
an output interferometer signal which is proportional to the di�erential number of
atoms, ∆N = N4 −N3. When equal populations in F = 3 and F = 4 produce the
same probe light phase shift, also the light shift of the atomic transitions is the
same. To this end, the couplings of both lasers to the atoms have to be adapted
by optimizing their frequency ratio of relative powers. When we �x the power of
the probe beams to be the same, i.e., the empty interferometer fringes have the
same amplitude, the phase shift only depends on the detunings ∆3,2 and ∆4,5 of
the probe lasers.
A very sensitive way to adapt the probe frequencies for light shift cancelation is by
using spin echo spectroscopy. The shift in the echo fringe when applying only one
probe pulse to either side of the π�pulse as demonstrated in �gure 5.27(b) is caused
by the di�erential light shift. Consequently, when no shift of the fringe position
is observed, no mean8 di�erential light shift is present. In the data presented in

8Our readout always averages over the sample, so we only get information on the mean shifts.
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�gure 5.32 we demonstrate the optimization of the probe detuning of the F =
3 → F ′ = 2 probe frequency for �xed F = 4 → F ′ = 5 detuning using this
technique. The power ratio of the two probes is �xed to n3/n4 ≈ 1. We record a
reference trace, where no light shifting pulses have been applied and traces where
one bi�chromatic probe pulse is applied to the sample either before or after the
microwave π pulse. When the probe frequencies are not matched the two fringes
are shifted with respect to the reference trace as shown in �gure 5.32(a). By tuning
the F = 3 → F ′ = 2 probe frequency we observe that the position of the fringes
moves as expected and we can �nd a probe frequency where no shift in frequency
space relative to the reference data can be observed, as shown in �gure 5.32(b).
Since the probe frequencies determined depend on the relative power of the two
beams the frequency values have to be adapted when the power ratio is changed.
For practical reasons we try to keep the empty interferometer fringe amplitudes
the same. To that end we use an active power stabilization which will be discussed
in section 6.3.1

Figure 5.32: Cancelation of mean light shift in two color probing scheme. One bi�
chromatic probe pulse is applied to the ensemble either before or after the microwave π
pulse of the echo sequence. (a) When the ratio of the probe frequency detunings is not
adjusted properly, the spin echo fringes are shifted in frequency space due to the di�erential
light shift as discussed in section 5.9. (b) With the probe frequencies matched, the echo
fringes are not shifted relative to the reference data and the mean light shift from the two
probe colors is canceled. The reduction of the fringe is only due to spontaneous photon
scattering.

The reduction of the echo fringe with respect to the reference data, as shown in
�gure 5.32(b) is no longer due to improper rephasing of the sample but can mainly
be attributed to spontaneous photon scattering. When physically aligning the two
probe beams in the interferometer, care has to be taken that their spatial overlap is
optimized. Else, the observed e�ects in the data will be the same as demonstrated,
but a minimum phase distribution due to the di�erential light shift can no longer
be claimed. The part of the sample interacting mainly with one beam will get a
phase distribution opposite to the rest of the ensemble; the mean value can still be
adjusted to be zero, but the spread can amount to several rad.
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Conclusion

To conclude this chapter, let us shortly look back on what we have achieved.
We have demonstrated that we can create an extremely pure ensemble of two
level systems, by initializing an ensemble of atoms into one of the clock states
of the caesium atom and removing atoms populating other states. Furthermore
we have shown the ability to control the two level system coherently by applying
a microwave �eld. Although not mentioned previously and not used in the data
presented, we also have a microwave phase shifter available in the lab. Using the
additional degree of freedom obtained with this piece of equipment, we can in
principle generate any desired ensemble state described by a vector in the Bloch
sphere picture.
The non�destructive character of the interferometric probing scheme was used to
follow Rabi oscillations in real time and to extract the corresponding system pa-
rameters. The e�ect of the non�destructive probing has been studied in detail, with
especial focus on the inhomogeneous light shift distribution caused by the probe
pulses. Here we have made extensive use of Ramsey and spin echo spectroscopy
techniques. Overall, a very good and thorough understanding of the dispersive
light�atom interaction has been gained. The drawbacks of the single port interfer-
ometer in terms of probe induced dephasing due to the spatial inhomogeneity of
the di�erential light shift have been illustrated in various settings and the necessity
of active rephasing or light shift cancelation has been highlighted. The observed
e�ects serve as main motivation for changing the probe con�guration to a input
two port interferometer setup where light shift cancelation can be achieved.
With all the techniques readily available, we can now move to the main goal �
demonstration of projection noise limited population readout and projection noise
squeezing.



Chapter 6
Atomic projection noise

measurements and

quantum noise squeezing

In the previous chapter we have discussed the techniques to prepare a coherent
atomic ensemble superposition state of the two caesium energy eigenstates, the
clock levels |3〉 and |4〉. Furthermore, we have shown the capability of the experi-
mental setup to perform quantum non�demolition measurements on the quantum
state of the atomic ensemble. The probe induced decoherence has been analyzed in
detail and the irreversible dephasing and state destruction mechanisms have been
studied. With this thorough understanding of the probing scheme we shall now
move on to the noise properties of the system. The main driving force behind our
experimental e�orts is the demonstration of light shot noise and atomic projec-
tion noise limited readout of the atomic ensemble population number di�erence
∆N|4〉−|3〉. At this quantum mechanical limit of the measurement precision, we
desire to reduce the measurement uncertainty by squeezing the population number
di�erence below the standard quantum limit. Experimentally, the standard quan-
tum limit is achieved, when the signal variance of the empty interferometer scales
linearly with applied photon number and the atomic superposition signal variance
scales linearly with atom number.
This chapter starts out with an estimate for the probe parameters to obtain max-
imal squeezing in the parameter space which is experimentally accessible. These
parameters will de�ne the stability requirements on the measurement system and
show why measurements at the standard quantum limit with ensembles of atoms
are not a trivial task. The discussion backs up a statement ascribed to Je� Kim-
ble: �Everyone can measure a signal, but it takes a real man to measure noise�1.
We then turn to the two interferometer setups, the single port and the two port
arrangement and discuss both their capability to perform projection noise limited
measurements and the obtained projection noise squeezing.

1We are aware of the political incorrectness of the statement.
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6.1 Condition for optimal squeezing

In section 2.2.3 we have discussed the reduction of the population number uncer-
tainty of an atomic ensemble initialized in a coherent superposition state by using
QND measurements. The �nal conclusion can be summarized by formula (2.30):(

1
1 + κ̃2

)
< (1− η)2 (6.1)

The information gain, which is parameterized by κ̃2 has to be bargained against
the loss of coherence due to the measurement, which we name η. It is clear that κ̃2

corresponds to the coupling strength between the atomic ensemble and the probe
system. It has been shown that κ̃2 can be written as κ̃2 = α0η

′ (modulo some
prefactor of the order of one) where α0 is the on resonance optical depth of the
atomic ensemble [1, 44]. η′ is the spontaneous photon scattering probability per
applied probe pulse. It is obvious form this correspondence that a hight coupling
strength is directly connected with decoherence. We can therefore choose to pa-
rameterize the coupling strength with the decoherence parameter. In the following,
we restrict the treatment to η′ = η, where all decohering e�ects are caused by pho-
ton scattering, only. If other sources of decoherence are present, η takes them into
account.
When we optimize the degree of squeezing:

ξ =
δ2Ĵout

z

(1− η)2δ2Ĵ in
z

=
1

(1 + α0η)(1− η)2
(6.2)

with respect to the decoherence parameter η, we obtain:
ηopt =

α0 − 2
3α0

(6.3)
Correspondingly, the noise reduction one can achieve is:

ξmax =
27α2

0

4(1 + α0)3
(6.4)

To achieve a noise reduction of 50%, i.e., ξ = −3 dB squeezing, we require an
e�ective optical depth of α0 ≈ 10. This maximum is assumed at a decoherence
parameter of ηopt = 0.27. Since the optimal decoherence parameter depends very
little on the optical depth, we expect to achieve more than ξ = −3 dB of squeezing
in our setup when adjusting η ≈ 0.3. The simple theory presented here and in
section 2.2.3 can be extended to include some peculiarities of our two color probe
arrangement. Especially o� resonant excitations and inelastic Raman scattering
alter the derivations slightly; details can be found in [72]. The main conclusion is,
however, that a probe induced spontaneous photon scattering probability of 30%
per atom and probe pulse is a good starting point.
The decoherence calibration data discussed in section 5.10.2 suggests that a photon
number of n ≈ 2 × 107 per bi�chromatic probe pulse2 at frequency detunings

2When we talk of the photon number n, it should be obvious that this is associated with the
mean photon number n̄ of the coherent light pulses we are using. At no instance we are dealing
with Fock states of light.



6.2 Noise measurements with two color � single port
interferometer 125
∆3,2 ∼ ∆4,5 ∼ 100MHz is necessary to in�ict the desired amount of damage,
η = 0.27.

Interferometer stability requirements
This estimation of the probe pulse photon number indicates that light shot noise
limited performance of the interferometer up to n̄ ∼ 108 photons has to be de-
manded. In return, this requires a relative phase stability of the interferometer
of better than

√
δ2∆φ
∆φ ≈ 1√

n̄
< 10−4. At this level of precision, the capability of

projection noise readout for Nat ∼ 105 atoms is assured: The expected phase un-
certainty induced by the projection noise of the atoms

√
δ2∆φat

∆φat
≈ 1√

Nat
≈ 3× 10−3

is larger than the measurement uncertainty due to the �nite number of photons.
By demanding n̄� Nat we therefore are able to resolve atomic projection noise.
The experimental principle for establishing the shot noise limited performance of
an interferometer has been discussed in chapter 4. There we have used an intrin-
sically stable setup to characterize the performance of the di�erential detector. As
signature of light shot nose, we have used the linear scaling of the signal variance
with photon number. Following these principles, we will now �rst consider the
performance of the two color � single port Mach Zehnder interferometer setup.
After discussing some technical issues, we consider the projection noise measure-
ments performed with this method. We then turn to the two color � two port
interferometer version and discuss the achievements.

6.2 Noise measurements with two color � single port

interferometer

6.2.1 The two�sample variance and the issue of timescales

Our main goal is to measure the distribution of the atomic population between the
two clock states with quantum noise limited precision. One prerequisite for the
empty interferometer is therefore, that it performs at the shot noise limit when no
atoms are present in the interaction region. Subsequently we want to look at the
signal of an atomic ensemble prepared in a superposition state an show that the
signal variance of a probe pule p scales linearly with atom number: δ2p ∝ N since
this is the signature of quantum projection noise, see section 2.1.1.
Shot noise limited performance of the interferometer is obtained, when the output
signal variance of the empty interferometer scales linearly with the mean photon
number in the light pulses, compare section 2.1.2. To characterize the noise per-
formance on di�erent timescales, we use the two point variance δ2p(τ):

δ2p(τ) = 〈(pi(0)− pi(τ))2〉i − 〈pi(0)− pi(τ)〉2i (6.5)
where pi(t) is a single pulse at time t. pi(0) and pi(τ) correspond to individual
pulses separated by τ . This type of variance has been introduced by D. W. Allan
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for the very speci�c case where the measurement points correspond to relative
frequency deviations in an atomic clock [73].
The di�erential path length of the interferometer naturally �uctuates on the time-
scales which correspond to acoustic frequencies and thermal drifts. The active
stabilization loop, discussed in section 3.2.2 has a bandwidth of below 1 kHz, so
only noise sources below that frequency are suppressed. The actual spectrum of the
acoustic noise depends on many external factors which vary in time. In any case,
however, it can be assumed that the noise power spectral density drops o� towards
high frequencies. On timescales larger than a few microseconds the uncompensated,
externally induced interferometer �uctuations mask the quantum mechanical phase
measurement uncertainty due to the light shot noise and the measurement precision
is limited by the classical �uctuations. On short enough timescales the intrinsic
interferometer �uctuations are small compared to the quantum mechanical mea-
surement uncertainty and the measurement can be shot noise limited. In principle,
we can tolerate a certain deviation from the ideal shot noise limited performance
since the required phase measurement accuracy for the projection is noise lower
than for light shot noise with the desired photon numbers. On the other hand, of
course, we want the measurement to be as ideal as possible and we would like to
be at the standard quantum limit for both the atomic and the light system.
By comparing the noise levels 1

2δ
2p(τ) for di�erent times τ with the light shot noise

of a single pulse 1
2δ

2p(τ → 0), one can determine from which time separation on
the measured signal �uctuations are dominated by interferometer �uctuations and
are no longer only due to the intrinsic photon number �uctuations of a coherent
light state. From this point on, the interferometer is no longer light shot noise
limited. As qualifying signature for light shot noise, we use the expected linear
scaling of the signal variance with mean probe pulse photon number.
The two point or two sample variance corresponds to a two point measurement,
where one measurement establishes a baseline for the other. One can view the
subtraction of two pulses as arti�cially creating a balanced measurement. The
di�erence between the pulses obviously only considers �uctuations between the
two measurement points. This is very similar to the double correlated sampling
discussed in section 4.3.2 which was used to cancel baseline pulling e�ects of the
detector due to technical imperfections. By using a two point variance one can
remove classical signal correlations on timescales larger than τ .
The shot noise limited performance of our setup has been demonstrated for probe
pulses containing up to n ∼ 109 photons on timescales τ of few microseconds [1].
While this sounds promising at �rst, the short timescale on which a baseline needs
to be established for the measurement is rather discouraging. The atoms cannot be
reliably removed from the trap within few microseconds; an interferometer baseline
has to be established in the presence of atoms.3 Obviously, the probe laser cannot
be employed for this purpose.

3 For the measurements discussed in the previous chapters it was su�cient to determine the
interferometer baseline within a few hundred milliseconds (compare, e.g., section 3.4.1) because
the measurement accuracy required to determine the classical component of the Bloch vector is
much smaller.
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Reference pulses
Knowing that the interferometer performs at the shot noise limit within few tens
of microseconds, we replace the second pulse in the two point variance with a
baseline reference pulse bi. To create the baseline measurement pulses, we use high
power pulses derived from the interferometer stabilization laser, compare section
3.2.2. Due to the choice of the wavelength of the lock laser λ ≈ 840 nm, we can
assume that it does not interact with the atoms in a destructive way. To create
pulses of su�cient photon number, we increase the rf power on the pulsing AOM
which is otherwise used to create the interferometer locking pulses. We then send
these reference pulses in between the actual atomic sample probe pulses. Since the
reference pulses can be almost arbitrarily close in time to the actual probe pulse, we
can expect that shot noise limited performance of the interferometer with respect
to the probe pulses pi is achieved for the combined pulses p′i = pi − bi.
Part of a typical pulse sequence for measuring the noise performance of the inter-
ferometer is shown in �gure 6.1. Figure 6.1(a) shows the sequence of light pulses
as recorded on a reference detector (compare �gure 3.5), where probe pi and ref-
erence bi pulses are alternated. The duration of both pulses is 4µs and pi and bi
are separated by 4µs. The separation between pi and pi+1 is chosen between sev-
eral milliseconds and few seconds. The corresponding interferometer output signal
is shown in �gure 6.1(b). One can clearly observe that the interferometer is not
exactly balanced for the probe and the reference pulses at the same time. This is
due to the fact that we stabilize the interferometer at π/2 away from the white
light position and due to the dependence of the beam splitter splitting ratio on the
wavelength, compare section 3.2.2
In general, we use di�erent powers for the probe and for the reference pulses.
Obviously, a high power in the reference pulses allows us to determine the baseline
more accurately. We therefore increase the power to the maximum level allowed by
the dynamical range of the detector. For equal mean photon numbers in pi and bi,
the reference pulses would add one unit of light shot noise and thereby e�ectively
decrease the measurement accuracy. For high photon numbers, the in�uence of
the photon shot noise of the baseline measurement is reduced since the relative
measurement precision scales as

√
δ2∆φ
∆φ ∝ 1√

n̄
. In other words: we want to use the

baseline pulses to determine the classical interferometer position and therefore do
not want the baseline measurement to be light shot noise limited.
To use the reference pulses bi as interferometer baseline for the probe pulses pi, one
has to rescale the pulse areas to the relative power of the two beams. Since it is
di�cult to measure the relative power of the pulsed probe and reference beam to
an accuracy that the normalization to power does not introduce additional noise,
we chose a di�erent approach: We optimize the two point variance with respect to
the correlation strength of probe and the reference pulses. From a pulse sequence
as discussed above, we calculate the conditional variance:

δ2pcond(λ) ≡ δ2(p− λb) = 〈(pi − λbi)2〉 − 〈pi − λbi〉2 (6.6)
as a function of the correlation parameter and �nd the optimal λ. The optimal
value can either be found by directly calculating the variance for di�erent values
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Figure 6.1: Pulse sequence to establish the noise performance of the interferometer.(a)
Probe pulses pi from one of the probe lasers and reference pulses bi derived from the lock
laser are alternated. To establish the interferometer baseline with the reference pulses to
high accuracy, their power is increased to the maximum value allowed by the di�erential
detector. (b) Corresponding interferometer signal. The individual pulses are integrated
with optimized integration windows and used to calculate a conditional two point variance
δ2(p− λb).

of λ or by invoking the covariance:
d

dλ
δ2(p− λb) =

d

dλ

(
δ2p+ λ2δ2b− 2λ cov(p, b)

) != 0 (6.7)
⇔ λ =

cov(p,b)
δ2p

(6.8)
where cov(p, b) = 〈p · b〉 − 〈p〉〈b〉. Calculating the covariance can be more straight
forward than �nding the optimal value in an optimization procedure.
First, we establish a reference shot noise level in the setup by con�rming the linear
scaling of the two point variance with photon number on short timescales using
only probe laser pulses. In �gure 6.2(a) the two point variance 1

2δ
2p(16µs) of

two consecutive probe pulses p with a time separation of 16µs is shown. A small
quadratic, i.e., classical noise contribution is visible but the variance is clearly
dominated by the linear noise scaling characteristic for light shot noise. When we
switch to using the reference pulse as second pulse in the two point variance, we
obtain the optimized data as shown in �gure 6.2(b). Corresponding raw data is
shown in �gure 6.1(b); we use 200 combined pi − bi pulse sets to calculate the
variance. Since the photon number of the baseline pulses is not changed in the
measurement they contribute with a constant amount of shot noise which has been
subtracted in the plot. We compare the single probe pulse shot noise obtained
from the two point measurement with two probe pulses 1

2δ
2p(16µs) with the single

probe pulse shot noise δ2(p − λoptb)−(baseline shot noise). We observe that the
scaling of the variance is clearly dominated by the linear shot noise part. At
n = 3 × 108 photons we observe an additional classical noise component of 23%.
Below n = 1 × 108 photons the classical noise contribution is negligible; since we
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Figure 6.2: (a) Shot noise limited performance of the interferometer on a timescale
of 16µs when using two probe pulses in the two point variance. The scaling of the vari-
ance with photon number is clearly dominated by a linear component, characteristic for
shot noise. (b) Optimized two point variance δ2(p− λb) where additional reference pulses
bi assure the knowledge of the interferometer baseline for the probe pulses pi on a 8µs
timescale. The linear component of the baseline corrected pulses corresponds very well to
the shot noise contribution when using only probe pulses. This con�rms that using a di�er-
ent laser to establish the baseline is a feasible method. (c) Procedure to extract the optimal
correlation factor λ. The two point variance δ2(p− λb) has a clear minimum for a given
probe power ratio. The data is shown for 2.4 × 108 photons in the probe pulse. (d) The
minimum is stable for di�erent probe powers, indicating that the (shot) noise contribution
of the reference pulses to the data is negligible. We pick the mean value of λ for high probe
powers as λopt for the data in (b).

will use photon numbers below 108 in the projection noise measurements, compare
section 6.1, we can claim shot noise limited performance in the desired photon
number range.
The optimization procedure of the correlation factor λ is illustrated in �gure 6.2(c).
It shows the two point variance δ2(p − λb) for a probe pulse photon number of
np = 2.4 × 108 as a function of λ. For λ → 0 the baseline subtraction is switched
o� and we obtain the variance on a timescale of the repetition period between
two consecutive probe pulses. Since the repetition period is much larger than the
timescale for shot noise limited performance, the variance grows. At the optimum
value for λ ≈ 0.62, (which we pick for the entire range of optimized data shown
in �gure 6.2(b)) classical correlations between the probe and reference pulses, i.e.,
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the �uctuations of the interferometer, are optimally suppressed and we are left
with correlations faster than the time separation between the two pulses and the
shot noise contribution of both lasers. These fast �uctuations are smaller than the
intrinsic measurement uncertainties and we therefore observe shot noise limited
performance. Observing λopt 6= 1 mirrors the fact that the intensities of both beams
are di�erent (compare �gure 6.1). When the power in the baseline reference pulses
is comparable with the probe pulses, optimizing λ means bargaining the knowledge
on the baseline obtained with the pulses bi against the addition of baseline pulse
shot noise. Optimizing the variance in that way removes the necessity to know
the power ratio of the two beams � as long as it can be assumed to be constant
over the time of the measurement. Figure 6.2(d) con�rms that the optimal value
of λ is a system parameter since it stays stable for all photon numbers. Towards
low photon number it becomes less well determined and the noise in λ increases.
The mean values of λ for high photon numbers is a good choice for the correlation
strength.
The presented data and the above discussion demonstrates that we, indeed, can
claim shot noise limited performance of the interferometer on basically arbitrarily
long timescales. If the power of the probe or reference beam changes dramatically,
it might be necessary to adapt the correlation factor λ to accommodate for these
changes. The important part in the procedure is that an additional beam which
does not couple to the atomic ensemble is used to establish the baseline. Shot
noise limited performance with reference pulses has been established for both probe
colors individually and for bi�chromatic pulses. With this, the setup meets the �rst
requirement for the probing of an atomic ensemble at the standard quantum limit.
To conclude this section on the empty interferometer noise performance, and to
close the circle to the double correlated sampling technique discussed in section
4.3.2, we note that it is also possible to use baseline reference pulses before and after
the actual probe pulse. This way the e�ective photon number in the reference pulses
can be increased, which reduces the in�uence of reference pulse light shot noise
further. This is especially important when the �uctuations of the interferometer
balancing produce signal o�sets which reach the saturation limit of the detector,
compare 6.1(b).

6.2.2 Stability requirements

The above discussion relies on the assumption that all the pulses pi, bi are coherent
light states with constant mean photon number n̄p, n̄b. The problem of classical
amplitude noise of the probe lasers has been shortly mentioned in section 3.2.3 as
motivation to change from the two color � single port to the two color � two port
interferometer setup. The main issue of amplitude �uctuations of the probe lasers
has been illustrated in �gure 3.8, page 42. To take the discussion to a more formal
level, let us look at the output signal of the interferometer S−. We assume that the
F = 3 → F ′ = 4 laser probe pulse contains n3 photons and couples with a coupling
parameter κ3 = n3

β3

∆3,2
only to the population in F = 3. Similarly, we de�ne the

values for the F = 4 → F ′ = 5 pulses as n4 and κ4 = n4
β4

∆4,5
. The couplings

are arranged such that κ3 = κ4 for n3 = n4. For an equal atomic superposition
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state of N atoms we measure a mean value of N̄3 = N/2 and N̄4 = N/2 of atomic
population in the F = 3 and F = 4 level, respectively. The total interferometer
output signal S− is then built up by the two individual signals S3 and S4:

S3 = γn3
−β3

|∆3,2|
N3 and S4 = γn4

β4

|∆4,5|
N4 (6.9)

S− = S3 + S4 = γ

(
n4

β4

|∆4,5|
N4 − n3

β3

|∆3,2|
N3

)
(6.10)

where γ parameterizes the gain of the detector. For the mean value of the signal
we get 〈S−〉 = 0. The variance δ2S− contains several terms:

δ2S−
γ2

= δ2(κ3N3 + κ4N4) (6.11)
= [δ2κ3 + δ2κ4]N/4 + [δ2κ3 + δ2κ4]N2/4 + [κ̄3 + κ̄4]2N/4

where we have used that the atom numbers N3 and N4 are correlated N3+N4 = N ,
and we have inserted the variance of a coherent atomic state δ2(N3) = δ2(N4) =
N/4. We have omitted the electronic noise contribution from the detector since it
is negligible for the photon numbers involved in the measurement, see chapter 4.
The variance of the coupling strength:

δ2κ3,4 =
β2

3,4

∆2
(3,2),(4,5)

δ2n3,4 + n̄2
3,4β

2
3,4

1
∆2

(3,2),(4,5)

δ2∆(3,2),(4,5) (6.12)

depends on the (independent) amplitude δ2n3, δ
2n4 and phase δ2∆3,2, δ

2∆4,5 noises
of the two lasers4. To �rst order (this has been checked experimentally) both
probe lasers behave in a very similar way, so with the equal signal requirement,
n̄4 = n̄3 ≡ n̄, we can assume δ2n3 = δ2n4 and δ2∆3,2 = δ2∆4,5 which leads to
δ2κ3 = δ2κ4 ≡ δ2κ. With this the variance of the signal reduces to:

δ2S−
γ2

=
N

2
δ2κ+

N2

2
δ2κ+Nκ̄2 (6.13)

The �rst term results from the correlation of the atom numbers N3 +N4 = N . The
second term is the noise part caused by the �uctuations of the coupling strength.
These are mainly due to the probe laser amplitude and phase noise, but contain
contributions from �uctuating magnetic �elds, inducing Zeeman shifts, and trap
laser power instabilities causing light shifts. The third term is the atomic projection
noise contribution. Since the �rst part is dominated by the second for high atom
numbers, the stability requirements for observing atomic projection noise can be
reduced to:

√
δ2κ

κ̄
�

√
2√
N

(6.14)
4δ2∆3,2 and δ2∆4,5 also accommodate for �uctuations of the atomic transition frequency due

to the Zeeman e�ect and �uctuations in the di�erential light shifts of the probe transitions caused
by intensity noise in the trap laser. Assuming that the bias �eld is stable to the level the �eld
nulling produced

√
δ2B ≈ 35mGauss and that the second order Zeeman shift is of the same order

of magnitude for the ground F = 3, 4 and the excited levels F ′ = 2, 5, ∆ω ≈ 2π · 500Hz/Gauss2,
the in�uence of magnetic �eld �uctuation becomes negligible.
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Assuming a total number of atoms of the order of N ∼ 105, the relative power and
frequency stability of the lasers become:

√
δ2n3,4

n̄3,4
� 3× 10−3 and

√
δ2∆(3,2),(4,5)

∆(3,2),(4,5)
� 3× 10−3 (6.15)

The linewidth of the probe laser is around 250 kHz. With a probe frequency de-
tuning ∆4,5 ∼ ∆3,2 ∼ 100MHz, the second requirement is barely met. The power
stability of the lasers is a more serious problem, especially on long time scales.
Although the output power of the laser diode itself is basically shot noise limited,
especially the coupling into optical �bers and the use of polarization optics corrupt
the power stability.

Power stability in �bers
In the experimental setup, special care was taken to optimize the coupling e�ciency
into the optical �bers. This reduces the e�ect of coupling variations due to pointing
instabilities of the lasers. In addition, the light polarization is carefully matched to
the axis of the polarization maintaining �bers. At the �ber output, the �ber axis
is again matched to the polarization axis of the �rst beam splitter. We thereby
reduce power variations caused by the temperature dependent birefringence in the
optical �bers. Nonetheless, the results of long term power measurements seem
discouraging at �rst. In �gure 6.3(a) we plot the relative power deviation from
the start value at three positions in the setup of �gure 3.6(a), page 37 � before
the �rst �ber, after the �rst mode cleaning �ber and after the second �ber which
transports the beams to the interferometer setup. Over a time of ten hours, the
power �uctuates by several percent. On a timescale of one minute, �gure 6.3(b)
con�rms a relative stability of √δ2n̄ ∼ 2× 10−3. When we calculate the two point
variance δ2p(τ) = 〈(p(t)−p(t+τ))2〉t−〈p(t)−p(t+τ)〉2t and plot the correspondingstandard deviation as a function of τ , graph 6.3(c) shows that a stability of better
than√δ2p(τ) = 4×10−4 can be achieved at all three measurement points for times
τ . 10 s. It is thus possible to ful�l the stability requirement (6.15) on this short
timescale. In principle, the power stability of the lasers especially after the optical
�bers, is not good enough to perform long measurement runs. To collect su�cient
statistics for projection noise measurements, we will see in the next section, several
thousand repetitions of the loading cycle are necessary, each taking about 3 seconds.
To circumvent this problem, we combine consecutive measurement runs i which
are separated in time by only few seconds and thereby assure that the stability
requirements are met. When pk,i labels a set of pulses k in a single run i, we
replace pk,i − pk,i+1 � pk,i and use these new �meta� pulses for the noise analysis.

Classical noise due to laser current modulation
We are now almost ready to go for the projection noise measurements in the two
color � single port interferometer setup. Before we discuss the measurements, we
show an instructive example on how tiny things can cause huge e�ects when it
comes to noise. In section 3.2.1 we have shortly discussed the locking setup for
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Figure 6.3: Temporal stability of probe laser power at di�erent measurement points
in the setup. (a) Over a time of several hours, the power �uctuates by few percent. (b)
On a shorter timescale on can clearly observe that the �uctuations after the �bers are
considerably larger than before. However, the �uctuations after the second �ber are clearly
correlated with the powers after the �rst �ber. Pointing instability of the laser is therefore
the most prominent cause of the �uctuations. (c) The two point variance δ2p(τ) = 〈(p(t)−
p(t+ τ))2〉t − 〈p(t)− p(t+ τ)〉2t of the signal in (a) shows that on a timescale below 10 s,
the stability of the power is guaranteed to better then

√
δ2n
n = 4× 10−4.

the probe lasers and shortly motivated the choice of beat note stabilization or
external frequency sideband generation instead of direct laser current modulation.
We now compare the amplitude �uctuations in a quasi pulsed measurement for a
laser with frequency modulation used for locking and without the modulation. It
is clear that a modulation of the injection current of the laser diode causes both
frequency (which is the desired one for the locking) and amplitude modulation
(which produces classical power correlations). In �gure 6.4 the in�uence of a 4MHz
modulation on the inferred noise is shown. To obtain the data, we integrate the
output of a standard dc power detector in time windows of τ = 1µs and τ = 10µs
with 100µs repetition period and calculate the variance of these virtual pulses.
For virtual pulse durations of τ = 1µs, the classical amplitude modulation of the
fm lock is not averaged out and the noise is clearly dominated by a quadratic
component. When we use a pulse duration of τ = 10µs, the data in the inset
if �gure 6.4 shows that the e�ect of the modulation is clearly reduced, but the
classical noise contribution is still clearly visible. These observations make clear
that on the timescales we are interested in, the standard frequency modulation
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Figure 6.4: Noise introduced by diode injection current modulation for frequency modu-
lation spectroscopy and frequency stabilization. The modulation is clearly visible as classical
(quadratic) noise component compared with the linear noise scaline when no modulation
is applied. τ = 1µs integration windows are too short to average out the e�ect of 4MHz
modulation. (inset) Using τ = 10µs long integration windows, the e�ect of modulation is
reduced but still clearly visible. The noise level is independent on whether the stabilization
loop is engaged or not. The noise observed does thus stem from the modulation and not
from the frequency stabilization loop.

locking scheme as used for the MOT master lasers (compare section 3.1.2) is not
usable. We therefore switch to adding sidebands with AOMs only in the part of
the beam used for locking or a beat note lock setup, see section 3.2.1. Further it
becomes obvious that high performance of the probe lasers in respect to amplitude
and frequency noise is crucial to succeed with shot noise limited measurements.

6.2.3 Projection noise measurements

After this short excursion into typical challenges one runs into when attempting
to measure quantities at the standard quantum limit, we shall now indulge into
the �ne arts of noise data analysis. The measurements as such are rather straight
forward, the result of the analysis, however, crucially depends on the analysis
procedures. Here we make use of the thorough understanding of the measurement
apparatus we have gained throughout the preceding chapters.

Measurement procedure
The experimental programme for projection noise and squeezing measurements was
outlined in section 2.5. Figure 6.5 presents the main principle in a nutshell. We load
atoms into the dipole trap as discussed in section 3.1.2 and 3.1.3. Subsequently we
initialize the atoms to one of the clock state and apply the puri�cation procedures of
section 5.3.2. A microwave π/2�pulse creates a coherent atomic superposition state
of which we measure the population number di�erence in a non�destructive way us-
ing our interferometer in the two color � single input port con�guration. Consider
section 3.2 for the setup and the relevant sections of chapter 5 for the characteriza-
tion of the non�destructive light�atom interface. For the QND measurement on the
superposition state we adjust the photon numbers in the bi�chromatic probe pulses
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Figure 6.5: Pulse sequence for projection noise measurements. After loading atoms
into the dipole trap, the sample is initialized into one of the clock states, cleaned and a
coherent superposition state is produced with a microwave π/2� pulse. The superposition
state is measured at least twice with bi�chromatic probe pulses. After the measurement the
atom number is determined by repumping the sample into F = 4 states and measuring the
corresponding interferometer phase shift. For this measurement we reduce the probe power
considerably not to saturate the detector. The initialization and measurement cycle is
repeated four times within the same trap loading. After the four measurements on di�erent
atom numbers (the atom number is di�erent for the four measurements due to the natural
trap lifetime and the not perfect optical pumping e�ciency, compare �gure 5.11) the atoms
are removed from the trap and we measure the interferometer baseline (light shot noise)
and the power ratio between the two probe colors. These single experimental runs are
repeated several thousand times to accumulate good statistics.

such that we obtain a decoherence parameter of the order of η = 30%, as necessary
for optimal squeezing, section 6.1. The decoherence parameter is measured using
the spin echo techniques demonstrated in section 5.10.2. The power and frequency
ratio of the two probe colors is adjusted such that the signal of an equal population
superposition state shows zero interferometer phase shift as shown in �gure 5.12.
After two non�destructive measurements, we optically pump the atoms into the
F = 4 ground state and measure the total atom number equivalent interferometer
phase shift. For practical reasons we also use a bi�chromatic probe pulse to deter-
mine the atom number; in principle, a light pulse coupling only to F = 4 → F ′ = 5
would be su�cient. Together with the known trap decay, the number of atoms
in the superposition state can be extracted as discussed in connection with �gure
5.11. Since a sample with all its population in the F = 4 state produces a huge
interferometer output signal for the photon numbers necessary in the superposi-
tion state probing, we reduce the probe power at this stage. The reference detector
shown in �gure 3.5 is used to monitor the power ratios. After calibrating the signal
of the reference detector to the interferometer fringe amplitude measured on the
di�erential detector, compare �gure 3.7, the reference signal is also used to convert
the measured signal to an actual light phase shift. To increase the data rate and
to obtain measurement points at di�erent atom numbers, we exploit the extended
lifetime of the atoms in the trap5. We repeat the preparation and measurement
cycle four times (compare again with �gure 5.11 for con�rmation that this is feasi-

5We are aware that the lifetime of few hundreds of milliseconds is not great, but taking the
e�ciency of ∼ 70% of the optical pumping into account, repeating the cycle for more than four
times makes not too much sense. Furthermore, since we in the end record 10 data segments with
the oscilloscope, we reach the limit of the data transfer speed within the loading cycle, so taking
more data segments would in fact reduce the data rate.
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ble) and then remove the atoms from the interaction region. At the end of a single
experimental run, we measure the empty interferometer baseline and use the pulses
to verify the shot noise limited performance during the measurement. The stage is
also used to determine the power ratio between the two probe colors. These sin-
gle experimental runs are then repeated several thousand times to gather enough
statistics. During these measurements, we actively vary the atom number either
by increasing or reducing the background vapor pressure by varying the dispenser
current or the loading time during the MOT stage. Together with the sampling
of di�erent atom numbers in the four stages, we can obtain continuous noise data
between zero and the maximum number of atoms.
For further clari�cation on the speci�cs of the measurement procedure, �gures 6.6
and 6.7 should be of help. Single raw data traces from the power reference de-
tector and from the interferometer detector are shown. The traces illustrate the
power switching of the probe colors for the projection noise and the atom number
measurement as discussed above. Furthermore, the interferometer reference pulses
which we have discussed in section 6.2.1 are shown. Remember, these pulses were
necessary to assure a light shot noise limited performance of the interferometer on
the timescales in question. The power of theses auxiliary light pulses has been
increased as far as the dynamical range of the detector and the oscilloscope al-
lows; the signals from the measurements on the superposition state are therefore
only barely visible. Raw data for the �rst measurement block, i.e., superposition
state measurement and corresponding atom number determination, of consecutive
measurement runs i are shown in �gure 6.7.

Noise data analysis
In a �rst step, the acquired raw measurement data traces, i.e., the electronic signals
form the detectors, are integrated with suitable window functions. The procedure
to determine the optimal integration window and the necessity for the optimization
has been discussed in section 4.3.2. Since the probe pulse photon numbers are of
the order of nph ∼ 4×107 photons, the electronic noise of the detector is negligible
and a double correlated sampling window is used. From this integration we get
the pulse amplitudes pk,i, bk,i, ak,i, sk,i and rk,i for both the interferometer and
the power reference detector. The subscript i is used for the measurement run
and k indicates the number of the pulse in a measurement block b. We do not
distinguish between the four di�erent measurement blocks b = [1 . . . 4] since they
are associated with di�erent atom number through the corresponding atom number
measurement anyway, compare �gure 6.6. We perform the analysis according to
atom number later, so the pulse areas ak,i are used to discriminate the segments
against each other. This is equivalent to the replacements: pk,i,b � pk,i+(b−1)·imax

,
bk,i,b � bk,i+(b−1)·imax

, ak,i,b � ak,i+(b−1)·imax
. The data acquired with the pulses

sk,i corresponds to zero atom number, so we treat it in the exact same way as the
pulses pk,i; we label the baseline reference pulses in that segment with bsk,i. Afterthe pulses have been integrated, we apply a number of consistency checks to the
data:

1. Data out of oscilloscope range. To reduce the in�uence of digitization noise,
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Figure 6.6: Experimental raw data from the projection noise measurement sequence.
The single experimental run shown is repeated several thousand times. (a) The signals
from a reference detector represent the light pulse sequence. The insets show zooms into the
traces, (z1) illustrating the power ratios between the projection noise (blue) and the atom
number (green) measurement and (z2) between the two probe colors. The four measurement
blocks correspond to the four consecutive measurements on the �same� trap after a single
trap loading. In the segment labeled with �s�, the empty interferometer is measured. This
measurement is used to make sure that the system performance is at the shot noise limit and
together with segment �r� it also serves to determine the power ratio between the two colors.
(b) Corresponding interferometer output signal. In the atom number signal (green) one can
nicely follow the decay of the atom number due to trap loss and imperfect optical pumping.
(c) Zoom into the �rst data block (the underlying gray trace is the reference detector signal).
In the data shown, we use high power baseline reference pulses b1, b2, b3 before and after
the actual atom projection probe pulses p1, p2 to establish the empty interferometer baseline
with the lock laser within the shot noise limited timescale of the interferometer. The atom
number is determined by averaging over several probe pulses whereof only the �rst two
a1 and a2 are shown. In the reference detector trace, the switching of the interferometer
locking pulses can be seen at the left side of the traces. The lock is switched o� shortly
before the actual measurement starts.

the DSO channel range is reduced as far as allowed during stable operation of
the interferometer. We try to run on 100mV/div. 200mV/div still gives good
results, when moving to the next higher scale, the DSO internally switches to
a di�erent input ampli�er, which apparently has much higher noise. Acoustic
noise can therefore cause the interferometer signals to lie outside the DSO
range. Corresponding data is �ltered out by checking the raw data for �out
of range� data points.

2. Detector saturation. When several imbalanced probe pulses saturate the in-
tegration stage of the interferometer detector, the zero level of the signal does
not return to anything close to zero after the applied light pulse. Applying
a bound to the allowed detector o�set after the pulses therefore removes
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Figure 6.7: Raw data for several consecutive projection noise measurement runs i. The
data shown corresponds to the interferometer output signal from the �rst measurement
block in �gure 6.6, consecutive measurement runs are stacked relative to each other.

saturation events.
3. Atom number stability and trigger failures. When the speed of data transfer

between the scope and the data analysis computer is reduced (Windows can
do strange things), the synchronization between the experimental sequence
and the scope can fail; these trigger failures mix up the measurement seg-
ments. Sudden deviations of the atom number from its general tendency
therefore serve to discriminate these events. Suboptimal performance of the
dipole trap laser also induces strong shot�to�shot atom number �uctuations.
In case the �lters do not remove the corresponding data, we remove it man-
ually. In �gure 6.8 we show the discrimination process on the atom number
signal for about 23000 consecutive measurement runs and each of the four
blocks separately.

4. Probe power �uctuations. A discrimination �lter is also applied to the allowed
power �uctuations of the probe lasers. If the probe laser power deviates
by more than a few standard deviations of the overall measurements, the
corresponding data is discarded. This discrimination is applied to both the
probe lasers and the reference laser powers.

5. Manual removal of data. When suboptimal performance of any of the system
components is observed, we generously discard data which has been taken
during these periods.

Next, we remove fast interferometer and slow general system drifts. Fast interfer-
ometer noise has been discussed in section 6.2.1 and that's what we have introduced
the auxiliary reference pulses bk,i for. Since the atomic population probe pulses
pk,i and the reference pulses bk,i have di�erent powers, we use the optimized con-
ditional variance δ2pcond(λ) to determine the correlation factor for the subtraction
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Figure 6.8: Atom number signal and �ltering bad oscilloscope triggers. Data corre-
sponding to about 23000 consecutive data runs. When the atom number deviates strongly
from one run i to the next, a trigger failure can be assumed and we discard the cor-
responding data point. The four areas correspond to the atom numbers in the di�erent
measurement blocks. The arrows also indicate where the current of the dispensers was
increased during the measurement to augment the number of atoms again and gather more
data at high atom numbers.

and de�ne the new probe pulses pk,i as:
pk,i − λ

1
2

(bk,i + bk+1,i) � pk,i (6.16)
sk,i − λ

1
2
(
bsk,i + bsk+1,i

)
� sk,i (6.17)

The optimal λ is determined such that it minimizes the two point variance for
the empty interferometer segment s, i.e., the light shot noise measurement. It is
determined globally for a long sequence of data and we follow its variation in time
and adapt λopt in case necessary. As discussed in section 6.2.1 the optimal λ is
supposed to be a system parameter which only depends on the powers involved
and the time between the pulses.
The in�uence of long term drifts and especially the power instabilities induced
by the optical �bers as discussed in section 6.2.2 can be removed from the data
by building a two point variance of consecutive measurements. To this end, we
rede�ne the pulses another time as:

pk,i − pk,i+1 � pk,i, sk,i − sk,i+1 � sk,i (6.18)
Since the repetition cycle of the experiment is few seconds, we herewith remove
systematic changes on timescales much larger than these few seconds. These new
�meta� pulses are associated with the mean atom number for the corresponding
runs. The atom number in a single run is inferred from the mean over the mea-
surements k in the corresponding segment:

1
2
〈ak,i + ak,i+1〉k � ai (6.19)
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As last preparatory step, we convert the pulse data into interferometer fringe am-
plitude or interferometer phase shift. To this end we normalize the pulses pk,i and
ai with a fringe calibration factor extracted from data as shown in �gure 3.7, page
39. The resulting data is shown in �gure 6.9. We have sorted the data according

Figure 6.9: Scattering (noise) of the measurement data when sorted according to atom
number. The �rst part of the horizontal axis corresponds to the empty interferometer ref-
erence signal. Ideally, this consists of probe light shot noise only. (a) Sorted atom number
measurement signal 1

2 〈ak,i + ak,i+1〉k, scaled to the power of the superposition state mea-
surement. (b) Scattering of two point superposition state data p1,i − p1,i+1 corresponding
to the rescaled mean atom number signal. (c) Density plot of the superposition state data
in (b). Both graphs clearly show an increase in the signal variance with atom number.

to atom number so the horizontal axis represents a non�linear atom number scale.
Sorting of the data is only necessary because we actively vary the atom number
during the measurement, compare �gure 6.8. Subtracting consecutive data points
(equation (6.18) and (6.19)) before sorting the data according to atom number
assures that the in�uence of slow drift issues are reduced. A clear increase of the
data point scattering can be observed as the atom number increases. This is a �rst
sign of atomic noise contributions to the signal. To con�rm that it is quantum
noise, a linear scaling of the signal variance with atom number has to be observed.

6.2.4 Experimental observation of projection noise

To extract the projection noise contribution to the scattering of the data shown
in �gure 6.9, we have to identify the linear component of the signal variance as
function of atom number, compare section 2.1.1. We combine data corresponding
to similar atom numbers and calculate the variance δ2(p1,i)i∈bin inside an atom
number bin. The corresponding data is shown in �gure 6.10. The total noise
observed is clearly dominated by the linear component of a f(x) = a + bx + cx2

�t. Since the linear part is characteristic for quantum noise, the data con�rms the
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Figure 6.10: Noise scaling as function of atom number phase shift. The variance of the
projection noise measurements δ2p1 shows a clear quadratic contribution, which is typical
for classical noise contributions. Nonetheless, the scaling is dominated by a linear part,
which is due to the projection noise. The variance of the conditional variance, δ2(p2−κp1)
with optimized κ, however, does not lie convincingly far below the decoherence corrected
projection noise level, according to the Wineland squeezing criterion. The noise �oor,
which includes probe light shot noise, detector electronic noise and classical interferometer
noise. The empty interferometer noise data points δ2s are displayed at the atom number
bins where the corresponding atom number runs i went. Of course, they all correspond to
zero atom number. Displaying the shot noise data in this way allows us to observe drifts
in the setup over time.

operation of the setup at the standard quantum limit [4]. Ideally, the noise o�set
a corresponds only to the light shot noise of the probe pulses.
The observed projection noise slope corresponds well to the theoretical estimate. At
the maximum atomic phase shift measured, ∆φat = 0.35 rad we extract projection
noise level of δ2(∆φat,eff) = 0.7 × 10−6 rad2. Since the phase shift ∆φat,eff =
γNat,eff is proportional to some kind of e�ective atom number Nat,eff (consider the
discussion in section 3.4.3) and the variance of the phase shift is also proportional
to the same atom number δ2(∆φat,eff) = γ2Nat,eff , the e�ective atom number can
be determined to be:

Nat,eff =
(∆φat,eff)2

δ2(∆φat,eff)
(6.20)

which evaluates to Nat,eff = 1.8 × 105 atoms. This is in good agreement with the
value estimated directly from the phase shift ∆φat = 0.35, which gives Nat,theo =
2.2× 105. The di�erence can be explained by a geometrical factor which needs to
be included due to the spatial inhomogeneity of the sample and the probe.
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Conditional reduction of projection noise

We have discussed the principle of squeezing with QND measurements in section
2.2.3: The �rst measurement p1 projects the atomic ensemble state into a subset
of eigenstates. The second probe pulse p2 is used to map out the width of the
probability distribution of the reduced subset. Since the initial width of the eigen-
value distribution is given by the projection noise of the atoms, a reduced width
of the distribution should manifest itself in correlations between the consecutive
measurements to better than the standard quantum limit would allow. The cor-
relation between two pulses are measured with the conditional two point variance
δ2(p2 − χp1), where χ is the measure for the correlation strength. To extract the
degree of spin squeezing, i.e., the strength of the correlations, we optimize the con-
ditional two point variance with respect to χ. χ itself is a function of the atom
number (one can show that it corresponds to the ratio between the projection noise
and the light shot noise level), so we �nd an optimal value in each atom number
bin using equation (6.8).
The resulting optimized noise data is also shown in �gure 6.10. The conditional
variance lies considerably below the initial projection noise level. We observe a
reduction of δ2(p2−χp1)

δ2p1
= −2.8 dB with respect to the projection noise level at

the highest atom number data point. However, to claim squeezing, the loss of
coherence in the sample due to the �rst measurement p1 has to be taken into
account according the the squeezing criterion in section 2.2.2.
By using the spin echo techniques discussed in section 5.10.2, we can determine
the decoherence parameter η. Correcting the projection noise level we obtain the
dash�dotted line in �gure 6.10. We have applied the Wineland squeezing criterion:
ξ = δ2(p2−χp1)

δ2p1·(1−η)2
. When trusting the highest atom number data point, we observe a

noise reduction by 22%, which corresponds to ξ = −1 dB of squeezing. However,
especially when taking the overall scattering of the data and the possible errors in
the determination of the projection noise level into account, i.e., the uncertainty
in the linear component of the �t, squeezing cannot be convincingly claimed. As
main issue we identify the decoherence level η. At the time when these measure-
ments were done, the high power microwave ampli�er was not yet available, so the
decoherence is likely to be limited by the e�ects of atomic motion, section 5.10.1.
We therefore only get an upper bound on the actual atomic state destruction by
spontaneous photon scattering. By reducing the additional decoherence e�ects
(di�erential light shift, trap motion), the level of decoherence would be reduced
and squeezing could most likely be claimed.
The correlations between the two consecutive QND measurements p1, p2 are shown
in �gure 6.11. A clear correlation between the measurement outcomes can be
observed when atoms are present in the interferometer 6.11(a), while no correlations
are observed in the empty interferometer case 6.11(b). This con�rms that the two
measurement results on the same atomic ensemble are in fact correlated. The
correlations are not strong enough to overcame the decoherence caused by the �rst
pulse.
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Figure 6.11: Correlation plots. (a) The two measurement results p1 and p2 are clearly
correlated when atoms are present in the interferometer. (b) Removing the atoms from
the interaction region reveals the empty interferometer noise. Since in the ideal case,
this consists only of light shot noise, no correlations are expected. (c) The scattering of
the empty interferometer measurements is clearly much smaller than with atoms present.
The variance along the short axis of the correlation ellipse corresponds to the maximum
achievable noise reduction. Finding the optimal correlation parameter κ for a certain atom
number corresponds to �nding the orientation of the ellipse. For perfect correlation κ→ 1
the axis of the ellipse are oriented along the diagonals of the coordinate system.

Discussion

In the preceding section we have demonstrated that our measurement setup is capa-
ble of resolving atomic projection noise. The noise data is undoubtedly dominated
by quantum mechanical noise. Comparing the observed noise �oor δ2s in �gure
6.10 with the light shot noise level, we can also claim that the measurement is light
shot noise limited. This is a very important and encouraging result.
We believe that the main reason for not being able to claim projection noise squeez-
ing in the data presented above, is that the level of decoherence we measure with
the spin echo sequence, section 5.10.2, is only an upper bound to the actual state
destruction. When the data was taken, only the low power microwave ampli�er
was available. With about one Watt of microwave power, the Rabi frequency for
microwave driving of the clock transition was limited to about 10 kHz. We there-
fore have to separate the light probe pulses in the spin echo sequence to determine
the decoherence by at least the π�pulse duration of τ = 50µs. As discussed in sec-
tion 5.10.1, the trap motion starts to play a crucial role on this timescale. On the
timescale we look for squeezing, the separation between the to QND measurements
τ = 16µs, a lower level of decoherence can be assumed. By the time the higher
power ampli�er had arrived, strong non�democratic forces had decided to change
the interferometer to the two input port con�guration. Although the advantages of
the new con�gurations are apparent, a direct comparison between the achievable
levels of squeezing in both setups under very similar experimental conditions would
have been extremely helpful.
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6.3 Noise measurements with two color � two port

interferometer setup

In the previous section we have demonstrated that our experimental setup is, in-
deed, capable of resolving atomic projection noise. The next major goal, the quan-
tum noise reduction below the standard quantum limit by conditioning the outcome
of a second measurement on the �rst, however, remained elusive. For various rea-
sons, the interferometer setup used in the previous section has been rearranged to
the two input port setup, compare section 3.2.3. In the present section we will
discuss the noise properties of this interferometer version. Since only the readout
principle of the atomic population is slightly altered, it is clear that all the mi-
crowave spectroscopy tools demonstrated in chapter 5 can be applied. The main
issue which needs to be demonstrated for the new interferometer setup is its light
shot noise limited performance. We will therefore start out by discussing the cor-
responding procedures and then move directly to the atomic noise and squeezing
measurements.

6.3.1 Remarks on the technical realization

The interferometer setup itself has been discussed in section 3.2.3 and it is schemat-
ically depicted in �gure 6.12. The main technical di�culty when adding a beam
on the second input port of the beam splitter is the spacial mode matching of the
two colors in free space. In the single port scheme, this mode matching is straight
forwardly obtained by coupling the two colors into one single mode �ber. The
mode matching of the two colors is important for two reasons: First, both probe
colors are supposed to read out the population of the same atoms with the same
coupling strength. Second, perfect light shift cancelation can only be assured when
the mode pro�les overlap (see section 5.11). We generally achieve an interference
fringe visibility between the two ports of > 97%.
The Mach Zehnder interferometer is a di�erential light phase measuring device be-
tween the probe and the reference beam. At the shot noise limit, the measurement
precision is limited by the light shot noise of the probe and the reference arm. By
increasing the photon number in the reference arm relative to the probe arm, the
in�uence of the reference arm light shot noise can be reduced and in the limit of
n̄photons,reference → ∞ we obtain a perfect phase measurement for the probe beam
where the uncertainty is only limited by the photon number interacting with the
atoms in the probe arm. The setup then resembles a homodyning setup for one
quadrature of the probe light. To get closer to this ideal situation, we use polar-
ization optics to introduce controlled losses in the probe arm; the power split o�
at the polarizing beam splitter PBS1 is used for monitoring the light pulses.

Probe laser frequency stability
In section 6.2.2 we have discussed the stability requirements for the probe lasers.
In principle, these requirements are not altered when changing to the two port
interferometer con�guration. However, there are some technical advantages to the
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Figure 6.12: Drawing of the experimental setup in the two color � two port con�gu-
ration. The arrangement has been discussed in detail in section 3.2.3. The polarization
control elements inside the interferometer are used to adjust the relative power between the
probe and the reference arm. The auxiliary detector in the beam split�o� on PBS1 in the
probe arm is used to monitor the powers.

new con�guration: As discussed in section 3.2.3 and illustrated in �gure 3.8, the
two probe colors need to gain a phase shift with the same sign when interacting
with the atoms to assure that the output signal is proportional to the population
number di�erence. The detuning of the two lasers from the relevant transitions
therefore has to have the same sign (we chose both negative ∆4,5 = −100MHz
< 0,∆3,2 ≈ −80MHz< 0)6. In this con�guration, common mode �uctuations,
i.e., changes of the detuning of both lasers by the same amount and in the same
direction, do not change the balancing of the output signal and are therefore of
minor consideration. These �uctuations boil down to the same e�ect as a reduction
of the e�ective atom number, so they enter linearly in the variance while other
noise sources enter quadratically (compare equation (6.12)). By phase locking the
two lasers with a beat note lock (compare section 3.2.1), anti correlated phase
noise can be suppressed to few kilohertz which assures that the frequency stability

6As discussed in section 5.11 this is also the feature which makes light shift cancelation in
this setup possible.
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requirement is met.

Active power stabilization
To obtain a zero mean interferometer signal for an equal atomic superposition state,
both the frequencies and the powers of the two probe colors have to be matched. We
decide to �x the ratio of the probe powers and �nd the corresponding detuning ratio
by optimizing the light shift cancelation (section 5.11). The power of one of the
probe lasers is actively stabilized to the other laser to maintain the �xed ratio. The
error signal for the stabilization is obtained in the following way: During a stage
where no atoms are present in the interferometer, we modulate the interferometer
path length di�erence by applying short disturbing electric pulses to the piezo
electric transducer which is otherwise used for the interferometer stabilization. For
ideally balanced probe colors, i.e., for equal interferometer fringe amplitudes of
both colors (compare �gure 3.10), the output signal of the empty interferometer
is independent of the path length di�erence. When the two probe powers are not
exactly equal, the output signal of the interferometer is (in the linear part of the
interference fringe) proportional to the power di�erence and can therefore be used
to correct the power ratio. A microprocessor reads the interferometer signal during
this �wiggling� process and generates an error signal for the power adjustment. The
power is adjusted by turning the position of motorized waveplates which are placed
in front of polarization cleaning optics at the input of the �ber which transports
the beams to the interferometer table. Applying feedback to the rf power of the
pulsing AOM to change the probe power instead has proven not to be a particularly
good idea. High power stability of the pulsed output beam can only be assumed
when the AOM is driven with optimally adjusted rf power level. This is, however,
not possible if some margin for regulation is to be left open.

Active lock point adjustment
As one of the major stability issues we have identi�ed the power stability of the
probe beams. In section 3.2.3 we have discussed the advantages of performing a
balanced measurement of the interferometer output signal. Subtracting the signal
from the two interferometer output ports suppresses classical amplitude �uctua-
tions. This makes the observation of quantum e�ects, i.e., the observation of light
shot noise in the empty interferometer case, possible in the �rst place. From a very
basic point of view, the e�ective subtraction of two large and classical signals at
the detector is again a two point measurement in the sense indicated in connection
with the two sample variance, section 6.2.1. As discussed in section 3.2.3, the two
port interferometer allows us to make use of the advantages of a balanced di�eren-
tial measurement also during the atomic population measurement, compare �gure
3.8, page 42. The arrangement of the phase shifts allows us to shift the lock point
in the presence of atoms atoms to a position where both colors are individually
balanced. In this setting, the classical amplitude �uctuations of each probe laser
are suppressed.
To �nd the optimal lock point for di�erent atom numbers, we apply single color
probe pulses to the ensemble after the superposition state measurement, see �gure
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6.15. When the lock point is not optimal, we observe a signal o�set. The pulse
amplitudes of these single color measurements are used as feedback signal to the
interferometer locking circuit. We adaptively change the interferometer o�set with
the atom number and thereby keep the interferometer in a balanced position all
the time.

6.3.2 Shot noise limited performance

With all the experience we have gained on performing noise measurements and
demonstrating light shot noise limited performance on interferometers in chapter
4 and in section 6.2.1, not too many words need to be said on the procedures any
more. Since the baseline reference pulses necessary to assure shot noise limited per-
formance in the single port setup have become oblivious, all that needs to be done
is sending trains of bi�chromatic light pulses through the setup and analyzing the
signal two point variance δ2p(τ) as function of light power and pulse separation τ .
We need to achieve shot noise limited performance on a few seconds timescale such
that we can apply the consecutive measurement subtraction technique (equation
(6.18)) again. Longer term stability is desirable but not a requirement. Typical
raw data and the con�rmation of shot noise limited performance is displayed in
�gure 6.13. To obtain the data we send 3000 blocks of three pulses as shown in
�gure 6.13(a). The duration of the pulses is 4µs and the repetition rate inside the
block is 16µs; the blocks are separated by 2ms in time. We can therefore compare
the performance of the interferometer on a 16µs timescale with the performance
up to few seconds. Figure 6.13(b) shows the obtained noise levels as function of
pulse separation. The almost perfect linear scaling for the three pulse separations
shown con�rms the shot noise limited performance of the interferometer. Hardly
any additional quadratic noise contribution can be seen for pulse separations of
τ = 1 s for mean photon numbers of n = 2× 108 per bi�chromatic probe pulse. In
addition, the single point variance δ2p1 = 〈p2

k=1,i〉i−〈pk=1,i〉2i , were k = 1 refers to
the pulse number in one block and i to the number of the block, shows the same
scaling and noise level as the two point variance 1

2δ
2p(1 sec).

6.3.3 Projection noise and squeezing measurements

Having established the shot noise limited performance of the empty two input
port interferometer, we turn to the atomic projection noise measurements. The
measurement sequence is illustrated in �gure 6.14. In addition to the general
procedure discussed in section 6.2.3 the interferometer lock point switching and
necessary o�set determination as discussed in section 6.3.1 is implemented as well.
We initialize the ensemble in a coherent superposition state and apply the probe
pulses. In contrast to the former measurements, we now use 10µs long probe
pulses with 20µs repetition period. For reasons which will become clear later we
actually apply 20 probe pulses. After the bi�chromatic probing of the ensemble
we apply the two probe colors individually to determine the phase o�set of the
interferometer due to the atoms. This signal is used as error signal for the switching
of the lock o�set. We then �jump� the lock o�set to the empty interferometer value
and determine the atom number equivalent phase shift. After repeating this cycle
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Figure 6.13: (a) Pulse sequence to determine the long term shot noise performance
of the two color � two port interferometer setup. The left part of the graph shows the
interferometer signal while the right data shows the corresponding reference detector signal.
We send 3000 blocks i with 2ms time spacing with 3 pulses in each block. The duration of
the pulses is 4µs and the repetition period inside the block is 16µs. We label the pulses with
pk,i where k in addition represents the number of the pulse in the block. (b) To analyze the
noise data as function of (bi�chromatic) probe pulse photon number, we calculate the two
point variance δ2p(τ) on di�erent time scales. The shortest period available is τ = 16µs
and the longest one (when we assume that 6 pulses are enough to get a meaningful variance)
is τ = 1 s. In the plot we compare these two variances with the single �rst pulse variance
δ2p1. The two point variance contains two pulses, so it shows twice the noise level of the
single pulse. We therefore chose to plot 1

2δ
2p(τ). The two long term variances δ2p1 and

1
2δ

2p(1 s) deviate only marginally from 1
2δ

2p(16µs) in the explored photon number range
up to n = 2× 108 photons. The linear parts of the second order �ts to the three data sets
coincide within the resolution of the plot.

four times we measure the empty interferometer to determine the light shot noise
level and extract the ideal empty interferometer locking point. The measurement
pulse sequence is further illustrated in �gure 6.15. Although the �gure is pretty
crowded one can clearly see the 20 measurement pulses in the di�erent measurement
segments. From the trace of the reference detector the power ratio of the two probe
colors and the ratio of projection noise measurement power to the level used for the
atom number determination can be extracted as well. At the end of measurement
segment 1 and 10 one can also see the signals caused by the individual probe colors.
Their deviation from the zero level is used as feedback signal for the lock position
adjustment. The fact that o�sets are barely visible con�rms that the lock point
switching works as claimed.

Analysis of the noise data

The analysis of the noise data acquired with the sequence shown in �gures 6.14
and 6.15 follows the same steps as discussed in section 6.2.3: We apply �lters to
the raw data, discriminating measurement runs whose system parameters deviate
considerably from the average of the neighboring values. Figure 6.16 shows the
evolution of the atom number and the probe laser powers over a typical data set,
in this particular case consisting of about 6900 individual runs. Areas where data
has been removed manually, in the particular case due to problems with the MOT
laser frequency stabilization, are indicated. The correlations in the powers of the
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Figure 6.14: Pulse sequence for noise measurements with two color � two port interfer-
ometer setup. The main di�erence with respect to the sequence shown in �gure 6.5 is the
determination and switching of the interferometer lock points. After the projection noise
measurement and when the atom have been removed from the trap, the probe lasers are
applied individually. The measured phase shifts give information on the balancing of the
individual colors (compare �gure 3.8) and by adjusting the o�set of the interferometer lock
position, the imbalance can be compensated. Once the correct o�set values are determined,
the feedback circuit only has to follow slow drifts in the atom number. The pulse integrals
are determined from the same oscilloscope signals which we use for the noise analysis.

two probe lasers shown in graph 6.16(b) con�rm that the active power stabilization
discussed in section 6.3.1 keeps the power ratio constant.
After the measurement pulses have been integrated with appropriate integration
windows (see section 4.3.2 for details), the actual analysis is slightly simpler than
in the case of the single port interferometer setup. Since we do not need auxiliary
reference pulses any more7, we use the pulses directly. Again, we label the pulses
according to their position k ∈ [1 . . . 20] in the measurement block and according
to the measurement run i. The pulses pk,i,b relate to the superposition state mea-
surements, ak,i,b to the corresponding atom number measurement. b ∈ [1 . . . 4] is
the block number. sk,i represent the empty interferometer shot noise measurement
in block 9 and rk,i corresponds to the interferometer baseline measurement in block
10. By stacking the data pk,i,b � pk,i+(b−1)·imax

, ak,i,b � ak,i+(b−1)·imax
we can omit

the number of the block b. The same interferometer baseline rk,i is used for the
four atom number measurements in one run: rk,i � rk,i+(b−1)·imax

. Again, we treat
the empty interferometer measurements sk,i in the same way as the superposition
state probe pulses, assuming zero atom number.
The phase shift corresponding to the atom number of the new run number i is
calculated according to:

∆φi = (〈ak,i〉k − 〈rk,i〉k) ·(fringe calibration factor) ·(trap decay calibration factor)
(6.21)

Both calibration factors are determined prior to and independent of the noise mea-
surements.

7In fact, correlation measurements have shown that auxiliary reference pulses do not contain
any additional information, so optimizing δ2(p− λb) returns λ = 0.
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Figure 6.15: Raw data of projection noise and squeezing measurement pulse sequence.
The reference detector trace illustrates the timing of the pulse sequence and the power
levels involved. Measurement segment 1 corresponds to the projection noise measurement,
in segment 2 we determine the corresponding atom number. Here we only use the F = 4 →
F ′ = 5 probe laser. These two segments, building a block b are repeated four times. Segment
9 establishes the empty interferometer noise level and segment 10 measures the baseline of
the empty interferometer which is used as zero level for the atom number measurement. At
the end of segment 1 and 10 the two probe colors are applied individually. These pulses give
information in the lock o�set from balanced position and their values are used as feedback
signals for the lock point �jumping� circuit. The fact that the respective interferometer
signals are very well balanced con�rms that the lock point switching procedure works well.
The �bending� of the signal o�set in segment 2 of the interferometer signal is due to
detector base line pulling caused by the strong imbalance of the signal.

To evaluate the projection noise we �rst construct �two point pulses�:

pk,i − pk,i+1 � pk,i (6.22)
sk,i − sk,i+1 � sk,i (6.23)

1
2

(∆φi + ∆φi+1) � ∆φi (6.24)

This subtraction of consecutive atomic projection measurements is necessary to
eliminate the probe power drifts on long time scales which we observe in �gure
6.16(b). Furthermore, since we have several probe pulses k available, we de�ne
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Figure 6.16: Atom number and probe laser powers of a data set consisting of ∼ 6900
runs of the experimental cycle. (a) The performance of the MOT lasers (and the dipole
trap laser. . . ) can be inferred from the atom number stability. Areas where the lasers
perform suboptimally are either manually removed of �ltered out by discriminating single
runs whose atom number deviates signi�cantly from the average of surrounding runs. (b)
We observe long term drifts of the probe powers. The power drifts of the two probe colors
are, however, correlated due to the active power stabilization.

�meta� pulses P r
1,i, P

r
2,i:

P r
1,i =

r∑
k=1

pk,i, P r
2,i =

2r∑
k=r+1

pk,i (6.25)

Sr
1,i =

r∑
k=1

sk,i, Sr
2,i =

2r∑
k=r+1

sk,i

As we have discussed in section 6.1 the degree of squeezing to expect, depends on
the decoherence η induced by the �rst pulse � the squeezing pulse. The decoherence
induced by single probe pulses can be extracted from spin echo measurements
as shown in section 5.10.2. The η estimation discussed in that section actually
corresponded to the probe powers and the interferometer setup and parameters
used in this section. It is obvious that by combining di�erent numbers of single
probe pulses to a meta pulse, we can vary the amount of decoherence induced by
the ��rst� measurement pulse and therefore study the e�ect of di�erent coupling
strengths on the observed noise reduction.

6.3.4 Experimental observation of projection noise

To extract the noise level for di�erent atom numbers, we group measurements
P 4

1,i with similar atom number together and calculate the variance of the signal
1
2

(
δ2P 4

1,i

)
i∈bin

inside the bin.
Figure 6.17 shows the scaling of the variance of the atomic superposition state mea-
surement 1

2δ
2P 4

1 with atom number. The number of atoms has been inferred from
the phase shift 〈∆φi〉i∈bin. The scaling of the variance with atom number is clearly
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Figure 6.17: Projection noise and pseudo spin squeezing results. The scaling of the
superposition state variance δ2P 4

1 is clearly dominated by the a linear component which can
only be ascribed to atomic projection noise. The optimized conditional variance 1

2δ
2(P 4

2 −
χP 4

1 ) lies considerably below the the projection noise level for all atom numbers and below
the decoherence corrected projection noise level δ2P 4

1 ·(1−η)2. At the highest atom number
data point, we extract a relative noise level of δ2(P 4

2−χP 4
1 )

δ2P 4
1

= −5.4 dB and a spectroscopically

relevant squeezing level of ξ = δ2(P 4
2−χP 4

1 )

δ2P 4
1 ·(1−η)2

= −3.5 dB. The empty interferometer noise �oor
has been divided into electronic noise, light shot noise and classical interferometer noise
by analyzing the correlations in the pulses si.

dominated by a linear component, which is the signature of quantum projection
noise. We can therefore also for the two port interferometer setup con�dently claim
projection noise limited performance.
The noise �oor 1

2δ
2(S4

1) on which the data rests has been analyzed and its con-
tributions have been extracted. The analysis con�rms that the projection noise
measurement is also light shot noise limited. Together, the data clearly demon-
strates the atomic projection noise and light shot noise limited performance of the
measurement setup, i.e., the best possible measurement with the given number of
photons and atoms. With respect to the data obtained in the single input port in-
terferometer setup, �gure 6.10, the quadratic noise contribution is slightly reduced.
In �gure 6.18 we compare the atomic noise scaling for three di�erent data sets ob-
tained with the two port interferometer to the data obtained for the single port
setup. The projection noise slopes of the three data sets obtained in the two port
interferometer agree exceptionally well with each other. Within the statistical un-
certainty of the data the three slopes are basically indistinguishable. Remarkably
enough, also the extracted projection noise slope of the data taken with the single
port interferometer agrees well with the newer data. This adds con�dence in the
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Figure 6.18: Comparison of di�erent, independent experimental data sets. The three
sets from mid 2008 were taken with the two port interferometer discussed in this section.
The data and the extracted projection noise slopes (solid lines, colors association should
be obvious) of the three state sets agree exceptionally well with each other. The data from
2007, which was obtained with the single input port setup discussed in section 6.2.3, �ts
remarkably well into the picture. For this data, both the �t f(x) = ax+ bx2 is given and
the linear component ax corresponding to the projection noise.

validity of our approaches and analysis procedures and backs up the claim that the
single port interferometer setup is capable of projection noise limited performance
and therefore of demonstrating projection noise squeezing.

6.3.5 Quantum noise squeezing

As for the single port interferometer setup, we evaluate the degree of conditional
projection noise reduction by calculating the conditional variance of the meta pulses
δ2(P r

2 − χP r
1 ) with χ = cov(P r

1 ,P r
2 )

δ2P r
1

. For r = 4 the result is included in �gure 6.17.
As indicated in the �gure, we achieve a noise reduction of 72% with respect to
the initial projection noise level at the highest atom number data point. In the
squeezing language it is common to express the remaining noise level in decibel,
i.e., we achieve projection noise squeezing to δ2(P 4

2−χP 4
1 )

δ2P 4
1

= −5.4 dB.
To evaluate the degree of spectroscopically relevant squeezing, we have to correct
the observed projection noise with the decoherence induced by the squeezing pulse
P r

1 . We determine the decoherence parameter η by using the methods discussed in
section 5.10.2. From �gure 5.31 we extract a decoherence parameter η2 = 11± 2%
for the two applied bi�chromatic probe pulses of 10µs duration at ∆45 = −100
MHz and ∆32 = −79.19MHz from the F = 4 → F ′ = 5 and F = 3 → F ′ = 2
transitions, respectively. The two probe pulses contain together n = 7.1 × 106

photons. Since we are in the low excitation regime, the decoherence for di�erent
numbers r of combined probe pulses can be calculated: ηr = 1 −

(√
1− η2

)r.
Comparing the reduced noise level with the decoherence corrected projection noise
level, we obtain a value of ξ = δ2(P 4

2−χP 4
1 )

δ2P 4
1 ·(1−η)2

= −3.5 dB of spectroscopically relevant
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Figure 6.19: Conditional variance value at highest experimentally achieved atom num-
ber, normalized to initial projection noise level and normalized to the decoherence corrected
projection noise level as function of the decoherence induced by the �rst probe pulse P r

1 .
While the noise reduction levels o� with high coupling to the atoms, the squeezing exhibits
a strong optimum at η4 ≈ 0.2 corresponding to a combination of four single probe pulses.

squeezing for the highest atom number point.
At this point the large number of probe pulses in one measurement block (compare
�gure 6.15) comes in handy. By combining up to r = 10 probe pulses to the
meta pulse P r

i we can extract the level of projection noise reduction and degree of
squeezing for di�erent levels of probe induced decoherence. Figure 6.19 shows the
projection noise reduction and the level of squeezing for the highest atom number
data point in �gure 6.17 as function of the decoherence η. The observed behavior
corresponds well to the theoretically expected one. For the reduced noise level
relative to the projection noise level we expect a scaling δ2Ĵout

z

δ2Ĵ in
z

= 1
1+α0η . While the

noise reduction drops with the inverse of the decoherence parameter, the degree of
squeezing ξ = 1

(1+α0η)(1−η)2
assumes an optimum where the information gain and

the in�icted damage are ideally balanced. With small coupling to the ensemble
(low decoherence) we get little information on the atomic state with the �rst probe
pulse P r

1 and have only very limited abilities to predict P r
2 . For high coupling

we get full information on the state, but also project the single atoms into their
energy eigenstates which reduces the coherence remaining after the interaction.
Experimentally, the optimal value is reached for η4 ≈ 0.2. Using the achieved
squeezing level of ξ = −3.5dB, we calculate an e�ective optical depth of α0 =
11.8. For the maximum interferometer phase shift obtained in this measurement,
∆φat = 0.2, we obtain an optical depth of α0 ≈ 13 which corresponds well to the
one obtained from the level of squeezing. For the observed optical depth, in return,
we expect the optimal decoherence parameter ηopt = 0.27 which again corresponds
acceptably well to the experimentally observed value, especially when taking the
simplicity of the theory into account. A more thorough analysis of the peculiarities
of the two color � two port probing scheme, also taking the fact into account that
inelastic Raman scattering events add noise to the �nal state, has been performed
by a theoretically inclined subpart of the work group and can be found in [72]. It
is likely that further discussions on that matter will be included in [3]. Two of the
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key ingredients are:

• The detunings of the two probe colors are arranged such that they address to
lowest order only cycling transitions. Cross pumping of atoms, i.e., exciting
an atom o��resonantly to the F ′ = 3 state with the F = 4 → F ′ = 5 probe
laser and subsequent decay to a F = 3 state or exciting an atom to the F ′ = 4
state with the F = 3 → F ′ = 2 probe pulses and a decay into a f = 4 level,
is strongly suppressed by the selection rules and the far detuning. These
pumping events would otherwise add noise to the output state and degrade
the level of squeezing.

• The two color probing scheme does not distinguish (up to a small di�erence
in the coupling strength) between atoms in mF = 0 and mF = ±1. Raman
scattering events, which remove atoms from the two�level system do therefore
not add additional noise.

Conclusion

The experiments presented in the preceding sections demonstrate the atomic pro-
jection and probe light shot noise limited population readout of an atomic ensem-
ble. Since a measurement at the standard quantum limit gives the highest possible
measurement precision for uncorrelated atoms in the ensemble and classical light
states, the measurement apparatus performs optimally. This is an important step
towards the applicability of our methods in state of the art atomic clocks. To-
gether with the non�destructive nature of the interaction, our measurement can
be used to increase the measurement cycle rate for example in optical clocks. This
should yield a signi�cant improvement of the signal�to�noise ratio compared to
the traditional �uorescence-based destructive probing since more statistics can be
collected in a given time. We have demonstrated that the standard quantum limit
has been achieved in both setups, the single port and the two port interferometer
con�guration.
Exploiting the quantum non�demolition character of our measurement technique
allows us to look for non�classical correlations between consecutive non�destructive
measurements on the same ensemble. We have observed and studied these correla-
tions and demonstrated that they obey the Wineland squeezing criterion. The ob-
served reduction of the quantum mechanical measurement uncertainty corresponds
to a population uncertainty squeezing of ξ = −3.5 dB. This in return demonstrates
the generation of an entangled state of few hundred thousand atoms in our sample.
Although we have not been able to demonstrate squeezing in a single input port
interferometer con�guration, the comparison between the projection noise measure-
ments in the two settings suggests that the single input port con�guration should
not perform signi�cantly worse than the other. However, one has to admit that the
advantages of the two port setup in terms of stability and light shift cancelation
outbalance the additional technical complications.
At the very same time when these results became available, the group of Vladan
Vuletic has made similar observations with a complementary method [13]. Other
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groups have reported the observation of backaction noise [74] and smaller amounts
of squeezing [75] in other atomic systems. With these observations a long standing
milestone in quantum noise limited measurements has �nally been achieved.



Chapter 7

Conclusion and Outlook

7.1 Where do we stand?

In the preceding chapters we have illustrated a good number of experimental
achievements. We use the measurement of the dispersive phase shift imprinted
on probe light when it interacts with an atomic ensemble to extract the popula-
tion number di�erence of a two level quantum system. As quantum system we
use the two magnetic �eld insensitive magnetic hyper�ne substates of caesium
6S1/2(F = 3,mF = 0) and 6S1/2(F = 4,mF = 0), the so�called clock states. The
atomic ensemble is cooled in a magneto optical trap and further con�ned in an
optical dipole trap. The dispersive probe light phase shift is determined with a
Mach Zehnder interferometer.
In the o��resonant limit, the light�atom interaction has quantum non�demolition
character. Spontaneous photon scattering events can be suppressed to a level
where they do no longer dominate the atomic state evolution. In the low excita-
tion regime, we have demonstrated that the coherent evolution of the clock state
population when the ensemble is subjected to an external microwave driving �eld,
can be followed in real time. While the results on non�destructive state readout
obtained in a complimentary setup in the group of Poul Jessen [68] had been clearly
dominated by the e�ect of probe induced decoherence, we can con�dently claim
that we can reduce this e�ect to a limit where it becomes negligible. Continuing
along these lines, we have studied the e�ect of probe induced decoherence and
realized that the most prominent e�ect is actually the dephasing caused by an in-
homogeneous, di�erential light shift distribution across the atomic ensemble. We
have developed a set of tools to study the e�ect thoroughly and a comparison of the
observations with theoretical models con�rms the validity of our interpretations.
The obtained understanding of the dispersive light�atom interface in the partic-
ular setting of our experiment has been vital for the progress of the experiment.
Together with the understanding of the decoherence e�ects induced by the atomic
motion we have been able to establish a �rm upper bound for the probe light in-
duced spontaneous photon scattering, which is the main parameter determining
the degree of observable quantum noise squeezing for a given sample density.
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In a second step, we have taken the non�destructive measurement scheme to its
quantum mechanical limits. We have demonstrated atomic quantum projection
noise and probe light shot noise limited population readout. Projection noise lim-
ited performance has been observed in both interferometer setups discussed � two
color measurement schemes where the two colors either enter through the same or
through di�erent input ports of the interferometer. Since the standard quantum
limit de�nes the best achievable measurement precision for uncorrelated atomic
and light states, the measurement setup performs optimally in that sense. While
a convincing observation of projection noise squeezing could only be observed in
the two port setup, we are convinced that in principle also the technically less
demanding single port setup should be capable of demonstrating squeezing. How-
ever, the feature of inhomogeneous di�erential probe light shift cancelation in the
two port setup is a major step forward towards the application of our techniques
to a �real� atomic clock. The clock community has picked up interest in our results
and is working towards the implementation of non�destructive population readout
[76, 77] and projection noise squeezing in optical lattice clocks [78].
The achievements can be summarized with the following keywords:

• Non�destructive measurements on a atomic ensemble state of cold, dipole
trapped caesium atoms; determination of system parameters such as lifetime
in the trap, oscillation frequencies and temperature

• Creation of a highly puri�ed ensemble in one of the clock levels
• Real time, non�destructive observation of coherent system dynamics under
the in�uence of microwave radiation

• Microwave spectroscopy of the ensemble
• Systematic studies of probe induced decoherence, di�erential light shifts and
in�uence of trap motion

• Di�erential light shift cancelation in bichromatic probing scheme
• Probe light shot noise and atomic projection noise limited clock state popu-
lation measurement

• Quantum noise squeezing by more than 50%

7.2 Further developments

The experimental progress has been exceptionally satisfactory from early 2007 on.
A long standing milestone, the quantum noise limited performance of our measure-
ment setup has �nally been convincingly demonstrated. This is the prerequisite
for many interesting further directions of the experiment.
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Figure 7.1: Quantum feedback to obtain unconditional noise squeezing. (a) The QND
measurement produces a reduced uncertainty ellipse centered around the �rst measurement
outcome. By feeding the outcome back onto the system with gain −χ, the center of the
ellipse is moved to the equator and squeezing without conditioning on the �rst measurement
result can be obtained. (b) The �rst measurement restricts the subset of possible second
measurement outcomes and thereby reduces the spread of the probability distribution around
the �rst measurement outcome. By feeding the measurement outcome back onto the system,
the center of the squeezed probability distribution overlaps with the initial one.

Unconditional squeezing

The demonstration of squeezing relies on the knowledge of the �rst measure-
ment value p1. Squeezing is observed by �nding the optimal conditional vari-
ance δ2(p2 − χp1). Only when the knowledge obtained in the �rst measurement
is actually used to predict the second measurement, a reduced uncertainty can be
observed. As discussed in section 2.2.1, the �rst QND measurement projects the
ensemble eigenstate into a decimated eigenstate subset and the second measure-
ment can only return measurement outcomes inside this reduced space. Unless we
use the measurement, we do, however, not know the boundaries of the reduced sub-
set. When we plot the reduced noise ellipse on the Bloch sphere as in �gure 7.1(a),
we plot the width of the probability distribution in the reduced subset. This el-
lipse is centered around the �rst measurement result, which is not necessarily zero.
Figure 7.1(b) illustrates the squeezing process in this picture. We decimate the
eigenvalue spectrum in the �rst measurement but only the measurement itself tells
us which subset we have projected into. By applying a feedback onto the atomic
ensemble with gain −χ, the subset is centered around the original mean value of the
probability distribution. A second measurement will then sample a probability dis-
tribution with sub�projection noise spread and reveal an unconditionally squeezed
state. From a quantum information point of view, it does not really matter in
which way the information gained in the �rst pulse is used � by correcting the
second measurement result or by correcting the system state. From a technical
and quantum control point of view, however, demonstrating unconditional squeez-
ing corresponds to sub�projection noise quantum state engineering and is therefore
highly interesting.
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Quantum state tomography

In the discussion of the population uncertainty squeezing we have up to now
only considered the noise reduction in the Ĵz component. By applying the non�
destructive measurement scheme, we have demonstrated that the variance of this
component δ2Ĵz can be reduced below the standard quantum limit. The Heisenberg
uncertainty relation predicts that the product of the variances has to be bounded
by the number of atoms, δ2Ĵyδ

2Ĵz ≥ 1
4

N2

4 . Consequently, squeezing of Ĵz below the
standard quantum limit has to result in an increase of the variance δ2Ĵy above the
standard quantum limit, as indicated by the noise ellipse in �gure 7.1(a). Ideally,
the squeezed state should remain a minimum uncertainty state. By mapping out
the distribution in Ĵy together with Ĵz, we can determine how ideal the quantum
non�demolition measurement really is.
To get access to the distribution in Ĵy, we have to rotate the squeezed state around
the Ĵx axis. Such a rotation can, e.g., be induced by shifting the phase of the
microwave �eld after the initial π/2 pulse which created the superposition state
and the QND interaction. The rotation axis of a resonant microwave pulse depends
on the phase relation between the free atomic system and the microwave frame.
Shifting the phase of the microwave �eld by π/2 switches between rotations around
the Jx and Jy axis. A phase shifted microwave π/2 pulse can therefore be used to
achieve the desired interchange between the Ĵz and Ĵy component. Rotating by
variable amounts allows one to extract the dimensions of the squeezed noise ellipse
in all directions for reconstruction.

Tomography of non�Gaussian atomic states
The tomography of the squeezed state can be extended towards extracting the prob-
ability distributions of even more exotic quantum state. In principle, it is possible
to create the equivalent of a single photon Fock state with atoms: We start with
a coherent atomic state |Ψ〉 = |3〉⊗N and excite a singe atom into |4〉. This pro-
duces a superposition state of |Ψ〉 = 1√

N

∑N
i=1 |3〉⊗(i−1)|4〉|3〉⊗(N−i). By rotating

this state with a microwave π/2 pulse, we obtain a superposition of superposition
states |Ψ〉π/2 = 1√

2NN

∑N
i=1 (|3〉+ |4〉)⊗(i−1) (|3〉 − |4〉) (|3〉+ |4〉)⊗(N−i). Formally,

the same output state is obtained in a homodyne setup with a strong coherent
input mode with a mean photon number of |α|2 = N − 1 and a single photon Fock
state |1〉 [79]. The tomography of such a state should reveal the same marginal
distribution known from the Wigner function of a single photon state.

Quantum memory

Since the work group has a long standing experience in quantum information and
quantum memory experiments [80] and a non�classical light source available [79],
a natural line of interesting experiments emerges: The cold, optically dense and
extremely well controlled two level system at our hands can serve as storage medium
for non�classical light states. The duration duration of, e.g., the Schrödinger kitten
state of light [81] or the single photons [82] produced by the light source in the lab
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next door is below one microsecond. The room temperature cells which have been
used as quantum memory medium for light in [80] require typical pulse durations
of several milliseconds to obtain the necessary coupling strength and temporal
averaging e�ects due to the motion of the atoms. The cold trapped cloud promises
to be a far more ideal storage medium for these states.

Enhancing the coupling strength

Obviously, the amount of squeezing we observe in our experiment is limited by
the number of atoms in the sample or the optical depth we achieve. The e�ective
optical depth can easily be increased by several orders of magnitude when putting
the ensemble into an optical cavity. This approach has been demonstrated to
be capable of producing squeezing [13]. Although an e�ective optical depth of
few thousand has been realized in that setup, technical di�culties and apparently
fundamental limitations [83] reduce the observed squeezing to around ξ ≈ −3 dB.
The main limitation seems to be the localization of the atoms inside the �eld modes
of the optical cavity which also provides the trapping potential. A running wave
cavity could help to circumvent this problem.

The Last Word

The preceding discussion is supposed to illustrate that the experiment presented
in the earlier chapters is looking ahead into a prospering future. The experiments
presented in this thesis work have established a solid foundation and paved the
way for various possible and highly interesting directions.





Appendix A
Light atom interaction

A.1 Atomic light phase shift and absorption

To derive the formulas (2.42,2.41) in a di�erent way than presented in 2.3, we
follow the derivation given in [84]. We start out with the de�nition of the atomic
polarizability ~P in terms of the susceptibility χ � linear response:

~P = ε0χ~E (A.1)
When this is inserted into the Maxwell equations, assuming a wave solution, we
end up with a dispersion relation:

(kc/ω)2 = 1 + χ (A.2)
χ = χ′ + iχ′′ (A.3)

n = η + iκ =
√

1 + χ ≈ 1 +
χ

2
. . . (A.4)

With the complex index of refraction n, the relative phaseshift of two light beams,
one traveling inside a medium of length l with refractive index n becomes:

E1 = |E1|einkx−iωt (A.5)
→ |E1|eiηkl−κkl−iωt (A.6)

E2 = |E2|eikx−iωt (A.7)
∆φ = kl(η − 1) = kl<(n− 1) ≈ kl

χ′

2
(A.8)

S = klκ = kl=(n) ≈ kl
χ′′

2
(A.9)

where S is the absorption coe�cient of the amplitude of the e.m. wave. From a
classical oscillator model for the valence electron:

m(ẍ+ γẋ+ ω2
0x) = −eE = −eE0e

−iωt (A.10)
⇒ x =

−eE
m(ω2

0 − ω2 − iωγ)
(A.11)

P = −f1iNe

V
x (A.12)
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we get a susceptibility of N atoms with coupling strength f1i from the ground state
1 to the excited level i:

χ =
f1iNe

2

ε0mV

1
ω2

0 − ω2 − iωγ
(A.13)

χ′ =
f1iNe

2

ε0mV

1
ω0

(ω0 − ω)/2
(ω0 − ω)2 + (γ/2)2

(A.14)

χ′′ =
f1iNe

2

ε0mV

1
ω0

γ/4
(ω0 − ω)2 + (γ/2)2

(A.15)
In the last two equations it has been used that the linewidth γ � ω0 and that the
absorption is only �close� to ω0 non�negligible (ω ≈ ω0), that is, (ω2

0−ω2)2 has been
expanded to 4ω2

0(ω0 − ω)2 and (ω2
0 − ω2) → 2ω0(ω0 − ω). ffi = (2mωi/3~)|〈f |i〉|2

is the classical oscillator strength of the transition in question. Inserting ffi into
equations (A.14) and (A.15) χ′ and χ′′ become:

χ′ =
Ne2|〈f |i〉|2

3ε0~V
ω0 − ω

(ω0 − ω)2 + (γ/2)2
(A.16)

χ′′ =
Ne2|〈f |i〉|2

3ε0~V
γ/2

(ω0 − ω)2 + (γ/2)2
(A.17)

This result from a classical oscillator approach �ts together with the quantum
mechanical calculations. The generalization to more ground state levels and ad-
dressable excited levels reads:

χ′ =
e2

3ε0~V
∑
i,f

Ni|〈f |i〉|2(ωi − ω)
(ωi − ω)2 + (γ/2)2

(A.18)

χ′′ =
e2

3ε0~V
∑
i,f

Ni|〈f |i〉|2γ/2
(ωi − ω)2 + (γ/2)2

(A.19)

In principle the more accurate formula for starting in one speci�c ground�level:

χ′′ =
ωf <ω∑

f

Ne4(ω − ωf )3

18πε20V ~2c3

∣∣∣∣∣∑
i

|Dfi||Di1|
ωi − ω − iγi(ω)

∣∣∣∣∣
2

(A.20)

γi(ω) =
ωj<ω∑

j

e2|Dij |2(ω − ωj)3

6πε0~c3

which takes cross�terms into account where the transition plus spontaneous decay
takes the atom from state 1 → f via the excited level i. In our case where we assume
only D1 or D2 transitions, the linewidth reduces to a single one, so the formula
can be simpli�ed. When we eliminate the excited states in the o��resonant limit,
we can further assume that the ground state populations do not change.
In the approximation of (A.4) and using (A.8,A.9) we arrive at:

∆φ = kl
1
2

e2

3ε0~V
∑
i,f

Ni|〈f |i〉|2(ωi − ω)
(ωi − ω)2 + (γ/2)2

(A.21)

S = kl
1
2

e2

3ε0~V
∑
i,f

Ni|〈f |i〉|2γ/2
(ωi − ω)2 + (γ/2)2

(A.22)
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for the phaseshift and the absorption. Notice that when writing the formula for
the oscillator strength:

ffi =
2mωi

3~
|〈f |i〉|2 (A.23)

spatial averaging over the possible atomic orientation has taken place which is not
appropriate in our situation. Therefore, we have to substitute:

|〈f |i〉|2 → 3|〈f |i〉|2 (A.24)
Using the dipole matrix element from equation (A.39) we end up with:

∆φ =
3lλ2

4πV
(2J ′ + 1)

∑
F,mF ,F ′,m′

F

NF,mF
S(F,mF , F

′,m′
F )

(γ/2)∆F,F ′

∆2
F,F ′ + (γ/2)2

(A.25)
S =

3lλ2

4πV
(2J ′ + 1)

∑
F,mF ,F ′,m′

F

NF,mF
S(F,mF , F

′,m′
F )

(γ/2)2

∆2
F,F ′ + (γ/2)2

(A.26)

S(F,mF , F
′,m′

F ) = (2F ′ + 1)(2F + 1)

(
F ′ 1 F

m′
F q −mF

)2

×

{
J J ′ 1
F ′ F I

}2

(A.27)

A.2 Matrix elements

In this section we want to give a short reproduction of the derivation of the dipole
matrix elements used in section 2.3.
Transition rates from an initial excited state |i〉 = |J ′IF ′m′

F 〉 to a �nal ground
state |f〉 = |JIFmF 〉 as function of the total decay rate γ are calculated from
Fermis Golden rule [21]:

γ =
2π
~
|〈f |Hint|i〉|2ρ(E) (A.28)

ρ(E) =
V ω2dΩ
(2πc3)~

(A.29)

γ = |〈f |Hint|i〉|2
V ω2dΩ

(2π)2c3~2
(A.30)

The prefactor of the interaction Hamiltonian (2.31) is:

Hint ∼ e

√
~ω

2ε0V
(A.31)
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which leads to a transition rate of:

γ = |〈f |e · r|i〉|2 V ω2dΩ
(2π)2c3~2

e2
~ω

2ε0V

= |〈f |e · r|i〉|2 e
2ω3dΩ

8π2~c3ε0
(A.32)

Separating o� the angle dependent parts of the dipole matrix elements and inte-
grating over the solid angle yields 8π/3, so the transition matrix dependent rate
becomes:

γ =
e2ω3

3π~c3ε0
|〈f |e · r|i〉|2 (A.33)

The transition matrix element can be expanded using the properties of the angular
momentum [40, 41, 42] (be careful with the di�erent normalization conventions!):

〈JIFmF |r−q|J ′IF ′m′
F 〉 = (−1)...〈FmF 1q|F ′m′

F 〉

×
√

2F + 1

{
F F ′ 1
J ′ J I

}
〈J ′‖r‖J〉 (A.34)

where 〈FmF 1q|F ′m′
F 〉 is the Clebsch � Gordan coe�cient:

〈FmF 1q|F ′m′
F 〉 = (−1)...

√
2F ′ + 1

(
F 1 F ′

mF q −m′
F

)
(A.35)

The {. . . } brackets refer to the Wigner 6-j symbol and the (. . . ) brackets indicate
the Wigner 3-j symbol.
To calculate the reduced dipole matrix element 〈J ′‖r‖J〉 for the caesium D2 line,
we assume a decay from F ′ = 5,m′

F = 5 → F = 4,mF = 4. Since there is only one
transition possibility from this upper level,the Clebsch�Gordan coe�cient is one.
For F = 4 and F ′ = 5 the 6-j symbol is 1/6, so the total prefactor of the reduced
dipole matrix element is 1/4 and we obtain:

1
τ

= γ = 2π 5.21MHz =
ω3

3πε0~c3
e2

4
|〈J ′‖r‖J〉|2 (A.36)

One can in general show that for the transitions from a given excited level to all
possible ground states the following sum rule holds:
∑

F,mF

(2J ′ + 1)(2F + 1)(2F ′ + 1)

(
F ′ 1 F

m′
F mF −m′

F mF

)2{
F F ′ 1
J ′ J I

}2

= 1

(A.37)
Including all possible decay channels, the transition matrix elements (A.34) add up
to 1/(2J ′ + 1) where J ′ is the excited state angular momentum quantum number.
Ultimately end up with:

γ =
ω3

3πε0~c3
e2

2J ′ + 1
|〈J ′‖r‖J〉|2 (A.38)
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For the full transition matrix element we now get:

|〈JIFmF |er−q|J ′IF ′m′
F 〉|2 = (2F + 1)(2F ′ + 1)

(
F 1 F ′

mF q −m′
F

)2

×

{
F F ′ 1
J ′ J I

}2
γ3πε0~c3

ω3
(2J ′ + 1)

(A.39)
When comparing di�erent approaches one has to be aware that di�erent normaliza-
tion conventions exist in the Wigner Eckart theorem. All approaches [18, 22, 40, 84]
yield the same result if one does not mix up the conventions.





Appendix B
D1 line laser

When discussing the initialization of the trapped ensemble into the clock state
by optical pumping in section 5.3.2, we have brie�y mentioned the bene�ts from
applying the pump and repump laser on di�erent �ne structure transitions. In
this section we shall shortly discuss the implementation of pumping on the D1
6S1/2(F = 4) → 6P1/2(F ′ = 4) transition � which involves the F = 4,mF = 0 dark
state � and keeping the repump laser on the D2 6S1/2(F = 3) → 6P3/2(F ′ = 4)
line transition.
The mechanical setup of the laser is the same as for the external cavity diode
lasers as mentioned in section 3.1.2. We also use front facette anti re�ection coated
diodes from Eagleyard the produce light at 894.6 nm of type number EYP-RWE-
0940. These diodes have the center of their gain pro�le very close to 900 nm, so
stable and single mode operation is rather easily obtained. To stabilize the laser
frequency to the 6S1/2(F = 4) → 6P1/2(F ′ = 4) transition, we use a standard
saturated absorption setup. The obtained signals are shown in �gure B.1. The
two doublets F = 3 → F ′ = 3, 4 and F = 4 → F ′ = 3, 4 are easily identi�ed
through the relative absorption strengths of the individual transitions. A sketch of

Figure B.1: Saturated absorption spectrum of the D1 transitions, error signal for fre-
quency locking and applied piezo voltage. The ratios of the absorption dips allow one to
identify the two doublets if the polarity of the piezo voltage is not known.
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Figure B.2: Schematic laser setup for optical pumping into the clock states with one
laser on the D1 line. To make the comparison between the two pumping schemes easy,
the setup is designed such that only the �ber transporting the pump light originating from
the di�erent lasers need to be switched. The laser is stabilized by lock a lock�in type setup
where the frequency of the double pass AOM is modulated with 100 kHz and the demodulated
saturated absorption signal is used for the feedback to the laser grating.

Figure B.3: Comparison between the D1 and D2 line pumping schemes. By pumping
on the 6S1/2(F = 4) → 6P3/2(F ′ = 4) and repumping on 6S1/2(F = 3) → 6P3/2(F ′ = 4)
we obtain a π pulse population transfer e�ciency of 77%, while pumping on 6S1/2(F =
4) → 6P1/2(F ′ = 4) and repumping on 6S1/2(F = 3) → 6P3/2(F ′ = 4) polarizes the
sample to 86%.

the laser setup is shown in �gure B.2. To stabilize the laser we use the lock�in type
technique as mentioned in section 3.2.1. The obtained error signals are shown in
�gure B.1. The stabilized light is �ber coupled and then enters the same setup as
used for pumping on the D2 line. The repump light is derived in the same way as
before. This way, a comparison between the two pumping schemes is very easily
obtained. To compare the two pumping schemes we use the microwave π pulse
transfer e�ciency as discussed in section 5.3.2. A comparison between the D1 and
the D2 line pumping with D2 repumping is shown in �gure B.3. We obtain about
10% higher sample purity by pumping on the D1 line transition 6S1/2(F = 4) →
6P1/2(F ′ = 4) instead of the D2 transition 6S1/2(F = 4) → 6P3/2(F ′ = 4). This
is due to reduced magnetic substate coherences ∆F = 1,∆mF = 0 between the
F = 3 and F = 4 ground levels. In addition, o� resonant excitations of the pump
laser on the D2 F = 4 → F ′

D2 = 3, 5 transitions present in the D2 line pumping
scheme are suppressed in the D1 line scheme, because the only possible o� resonant
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excitation channel 6S1/2(F = 4) → 6P1/2(F ′ = 3) is with ∆F′
D1=3,F′

D1=4 = 1.2GHz
signi�cantly further detuned from the desired pump transition, than in the D2 line
pumping scheme. Taking also certain bene�ts when moving the probe light to the
D1 line into consideration, it is very likely that the D1 optical pumping scheme will
in the future replace the current setup. In the data presented in the experimental
section only the D2 line pumping scheme has been applied.





Appendix C
Wiener�Khinchin theorem and

detector circuit layouts

C.1 Wiener�Khinchin theorem

As a reminder, this chapter derives the Wiener�Khinchin theorem1 which connects
the spectral noise power density of a random variable to its Fourier components.
The derivation follows the approach of [55].

The correlation function Ω(s) of the stationary random variable o(t) is de�ned by:
Ω(s) ≡ 〈o(t)o(t+ s)〉 (C.1)

where the 〈. . . 〉 denotes the ensemble average of the variable, which is equal to
the time average for stationary systems. On this basis, the spectral noise power
density function is de�ned as the correlation function's Fourier transform by:

Ω(ω) =
1
2π

∫ ∞

−∞
Ω(s)e−iωsds =

1
2π

∫ ∞

−∞
〈o(t)o(t− s)〉ds (C.2)

When we de�ne the Fourier components of the random variable o(t) as:

o(ω) =
1
2π

∫ ∞

−∞
o(t′)e−iωt′dt′ (C.3)

and the inverse Fourier transform as:
o(t) =

∫ ∞

−∞
o(ω′)eiω

′tdω′ (C.4)

the correlation function can be written as:
Ω(s) =

∫ ∫ ∞

−∞
〈o∗(ω′)o(ω)〉ei(ω−ω′)teisωdω′dω (C.5)

1The spelling of Khinschin is inconsistent in the literature. It can also be found as Chintschin
or Khintchine; also the name Khinchin�Kolmogorov theorem can be found.
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where we have used that o∗(ω) = o(−ω) because o(t) is real. Since the correlation
function (C.5) has to be time independent for a stationary random process, we
require:

〈o∗(ω′)o(ω)〉 = 〈|o(ω)|2〉δ(ω − ω′) (C.6)
We now obtain for the correlation function:

Ω(s) =
∫ ∞

−∞
〈|o(ω)|2〉eiωsdω (C.7)

whereof the Fourier transform returns the spectral noise power density as:
Ω(ω) = 〈|o(ω)|2〉 (C.8)

This comprises the Wiener�Khinchin theorem: The spectral noise power density is
the mean of the modulus square of the Fourier components of the random variable.
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Layout of the Amptek detector version and Cremat detector version
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We report on the nondestructive observation of Rabi oscillations on the Cs clock transition. The internal

atomic state evolution of a dipole-trapped ensemble of cold atoms is inferred from the phase shift of a

probe laser beam as measured using a Mach-Zehnder interferometer. We describe a single color as well as

a two-color probing scheme. Using the latter, measurements of the collective pseudospin projection of

atoms in a superposition of the clock states are performed and the observed spin fluctuations are shown to

be close to the standard quantum limit.

PRL 100, 103601 (2008)
P H Y S I C A L R E V I E W L E T T E R S week ending
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The text has been written by N. Kjærgaard. The main scienti�c contribution, lead-
ing to the highly non�destructive observation of Rabi oscillations on the caesium
clock transition are due to P. Windpassinger. D. Oblak contributed equally to the
projection noise limited data presented in �gure 4.
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Abstract. Various parameters of a trapped collection of cold and ultracold

atoms can be determined non-destructively by measuring the phase shift of an

off-resonant probe beam, caused by the state-dependent index of refraction of the

atoms. The dispersive light–atom interaction, however, gives rise to a differential

light shift (ac Stark shift) between the atomic states which, for a non-uniform

probe intensity distribution, causes an inhomogeneous dephasing between the

atoms. In this paper, we investigate the effects of this inhomogeneous light

shift in non-destructive measurement schemes in cold caesium. We interpret our

experimental data on dispersively probed Rabi oscillations and Ramsey fringes

in terms of a simple light shift model which is shown to describe the observed

behavior well. Furthermore, we show that by using spin echo techniques, the

inhomogeneous phase shift distribution between the two clock levels can be

reversed.

The text has been written by P. Windpassinger with contributions on the the-
ory by N. Kjærgaard. The analysis and interpretation of the data presented, has
been performed by P. Windpassinger and N. Kjærgaard. The major experimen-
tal contributions leading to the observations discussed in the paper are due to P.
Windpassinger.
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Echo spectroscopy of atomic dynamics in a Gaussian trap
via phase imprints
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Abstract. We report on the collapse and revival of Ramsey fringe visibility when a spatially dependent
phase is imprinted in the coherences of a trapped ensemble of two-level atoms. The phase is imprinted via
the light shift from a Gaussian laser beam which couples the dynamics of internal and external degrees of
freedom for the atoms in an echo spectroscopy sequence. The observed revivals are directly linked to the
oscillatory motion of atoms in the trap. An understanding of the effect is important for quantum state
engineering of trapped atoms.

The manuscript has been written by N. Kjærgaard. The numerical simulation
presented was performed by J. Appel and N. Kjærgaard. The presented work is a
direct continuation of the work summarized in New Journal of Physics 10 (2008)
053032, thus based on the preceding work by N. Kjærgaard and P. Windpassinger.
J. Appel, D. Oblak and P. Windpassinger contributed scienti�cally equally to the
work.



Quantum noise squeezing and entanglement on the atomic clock transition.

J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik
Danish National Research Foundation Center for Quantum Optics – QUANTOP,

The Niels Bohr Institute, University of Copenhagen,
Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark.

Squeezing of quantum fluctuations by means of entanglement is a well recognized goal in the
field of quantum information science and precision measurements. In particular, squeezing the
fluctuations via entanglement between two-level atoms can improve the precision of atom clocks and
of spectroscopy in general [1, 2]. Here, we demonstrate 3.4 dB of metrologically relevant squeezing
and entanglement for 105 cold caesium atoms via a quantum nondemolition (QND) measurement [3,
4, 5] on the atom clock levels. We demonstrate the effect of decoherence inherent to generation of
entanglement via a QND measurement and present a dichromatic QND scheme which allows to
minimize the effect of this decoherence in metrological applications. The spin squeezing method
demonstrated here on the microwave caesium clock transition is potentially applicable to optical
lattice atom clocks.

The manuscript is the product of a group e�ort, headed by N. Kjærgaard and
E. S. Polzik. The reported achievements represent the main driving force behind
the work of all subgroup members and a clear identi�cation of the major scienti�c
contributor is impossible. The major contributions to the experimental setup are
equally ascribed to J. Appel and P. Windpassinger.

Ultra low noise differential AC-coupled photodetector for
sensitive pulse detection applications

Patrick J. Windpassinger a1, Marcin Kubasik2, Marco Koschorreck2, Axel Boisen1, Niels Kjærgaard1,
Eugene S. Polzik1,2, and Jörg Helge Müller1

1 QUANTOP, Niels Bohr Institute, University of Copenhagen, Denmark
2 ICFO, Institut de Ciències Fotòniques, Barcelona, Spain

Dated: November 3, 2008

Abstract. We report on the performance of now noise differential photodetectors especially designed for
probing of atomic ensembles with weak light pulses. The working principle of the detectors is discussed
together with the analysis procedures employed to extract the photon shot noise of light pulses with
∼ 1 µs duration. As opposed to frequency response peaked detectors, our approach allows for broadband
quantum noise measurements. The equivalent noise charge (ENC) for two different hardware approaches
is evaluated to 280 and 340 electrons per pulse, respectively which corresponds to a dark noise equivalent
photon number of n3dB = 0.8 · 105 and n3dB = 1.2 · 105 in the two approaches. Finally, we discuss the
possibility of removing classical correlations in the output signal caused by detector imperfection by using
double correlated sampling methods.

The manuscript has been written by P. Windpassinger. The main scienti�c con-
tributions are due to P. Windpassinger, the technical realization is based on the
work of A. Boisen with input from J. H. Müller and P. Windpassinger.
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