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A B S T R A C T

Spatial arrangements are very important for many biological sys-
tems. This thesis presents several different studies of biological sys-
tems, which are related to spatial arrangements at two different lev-
els: one is the growth of biological macromolecules, here related to
protein aggregation, and the other is the spatial regulation of biolog-
ical systems, here related to different aspects of the inflammatory
response. All systems are studied using computational modelling
and mathematical analysis.

The first part of the thesis explores different protein aggregation
scenarios. In Chapter 1, we consider a previously studied and very
general aggregation model describing frangible linear filaments. This
model is especially relevant for the growth of amyloid fibres, that
have been related to a number of serious human diseases, and which
are known to grow in an accelerated self-enhanced manner.We de-
rive an approximate analytical mathematical expression for the time
evolution of the length distribution of the aggregate population, and
we discuss the accuracy of the analytical expression. We also com-
pare the model of frangible linear aggregation to experimentally ob-
tained length distributions of growing insulin filaments.

In Chapter 2, we consider the aggregation of the protein p25α, in-
fluenced by the presence of the secondary chemical species heparin.
Different concentrations of heparin present different environmen-
tal conditions, which cause the protein aggregates to form different
structural shapes. We construct a mathematical model, which is fit-
ted to experimental data for p25α aggregation at different heparin
levels. The model incorporates a logistic-like growth assumption,
which is motivated in the beginning of the chapter, and which repre-
sents an alternative model for accelerated growth of amyloid fibres.

In Chapter 3, we consider the complex aggregation patterns of the
whey proteins β-lactoglobulin (bLG) and α-lactalbumin (aLA), in-
fluenced by several different environmental conditions, which cause
the aggregates to form the different structural shapes - here the vary-
ing environmental conditions are different pH and calcium concen-
trations. We construct a mathematical model for the aggregation pro-
cess, and fit the model to an array of experimental data. The model
reproduces the dynamics of the aggregation process and predicts
final size distributions of the aggregates, which agree well with the
expectation based on experimental measurements.

The second part of the thesis explores different spatial aspects
of inflammatory response. In Chapter 4 we address the problem of
cytokine signal transmission and the subsequent white blood cell
recruitment during inflammatory response. We construct a simple
model of the inflammatory response in a tissue cell, based on the
regulatory network of the transcription factor NF-κB. We show that
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the simple model is able to produce either transient or continuous
amplification of the cytokine signal depending on the external and
internal conditions of the cell. We then construct a multicellular
model of the tissue and show how coupled cells are able to function
as an excitable medium and propagate waves of high cytokine con-
centration through the tissue. If the internal regulation in the cells
is over-productive, the model predicts a continuous amplification of
cytokines, which spans the entire system and resembles a situation
of chronic inflammation in the tissue.

In Chapter 5 we consider inflammatory response in the islets of
Langerhans, which are responsible for regulating the levels of blood
sugar (by releasing insulin and glucagon) and which are located in
the pancreas. Low-grade chronic inflammation and over-production
of the cytokine IL-1β are characteristic features of islets in patients
with type II diabetes. We expand the model of Chapter 4 in order
to study the inflammatory response in islets of Langerhans, with
a special focus on the influence imposed by the spatial conditions -
namely the sizes and different possible shapes of the islets of Langer-
hans. In agreement with experimental observations, we find that
large islets are especially prone to transition into a state of chronic
low-grade inflammation. Additionally, we find that different islet
shapes may influence the risk of developing chronic inflammation -
an observation, which implicates a connection between the distribu-
tion of different islet shapes and a protective function.
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S U M M A RY I N D A N I S H - D A N S K R E S U M É

Rumlige aspekter er meget vigtige i mange biologiske systemer. Denne
afhandling præsenterer en række forskellige studier af biologiske
systemer, hvor rumlige aspekter spiller ind på to forskellige niveauer:
Det ene er væksten og dermed opnåelsen af forskellige strukturer af
biologiske aggregater og det andet er rumlig regulering i biologiske
systemer, her relateret til forskellige rumlige aspekter af inflamma-
torisk respons.

Første del af denne afhandling udforsker forskellige protein-aggre-
gerings scenarier. I kapitel 1 betragter vi en allerede eksisterende, og
meget generel aggregerings model, der beskriver fragmenterende
(dvs. knækkende) lineære filamenter. Denne model er især relevant
for væksten af "amyloid" fibriller, der er forbundet med en række
alvorlige sygdomme, og som vokser på en accelereret og selv-induce-
rende facon, hvilket har vist sig at være velbeskrevet af aggregerings
modellen, der inkluderer fragmentering. Vi udleder et approxima-
tivt anaytisk matematisk udtryk for tidsudviklingen af længdefor-
delingen af aggregat-populationen, og vi diskuterer nøjagtigheden
af denne analytiske løsning. Vi sammenligner også modellen for
lineær aggregering og fragmentering med eksperimentelle længde-
fordelinger af voksende insulinfilamenter. I kapitel 2, betragter vi
aggregering af proteinet p25α, influeret af tilstedeværelsen af det
sekundære kemiske stof heparin. Forskellige koncentrationer af hep-
arin udgør en miljømæssig omstændighed, der bevirker at aggrege-
ringsprocessen fører til dannelse af forskellige strukturelle former,
og vi konstruerer en model, som er baseret på eksperimentelle data
for forskellige heparin niveauer. Modellen indeholder en antagelse
af logistisk-lignende vækst, som er motiveret i begyndelsen af kap-
titlet, og som udgør en alternativ model for accelereret vækst af
"amyloid" fibriller. I kapitel 3, betragter vi komplekse aggregerings-
mønstre af valleproteinerne β-lactoglobulin (bLG) og α-lactalbumin
(aLA), påvirket af flere miljømæssige forhold, som fører til aggre-
gater af forskellige strukturelle former - de varierende miljømæssige
forhold er her forskellig pH og calcium koncentration. Vi opsætter
en matematisk model for aggregeringsprocessen, og fitter modellen
til eksperimentelle data. Modellen reproducerer dynamikken i ag-
gregeringsprocessen og fører til størrelsesfordelinger, som tilsvarer
det forventede udfra eksperimentelle målinger.

Den anden del af afhandlingen udforsker forskellige rumlige as-
pekter af inflammatorisk respons. I kapitel 4 betragter vi udfordin-
gen i cytokin signal transmission og den efterfølgende rekruttering
af hvide blodlegemer under inflammatorisk respons. Vi opsætter en
simpel model for inflammatorisk respons i en celle, der baseres på
det regulatoriske netværk af transkriptionsfaktoren NF-κB. Vi viser,
at den simple model, afhængigt af de eksterne og interne forhold
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i cellen, er i stand til at frembringe enten forbigående eller kon-
tinuerlig forstærkning af cytokin-signalet. Vi opsætter desuden en
model for vævet (dvs. mange celler ved siden af hianden) og viser,
hvordan rumligt koblede celler er i stand til at fungere som et ek-
siterbart medium og dermed udbrede bølger af høj cytokin koncen-
tration gennem vævet. Hvis den interne regulering i cellerne er over-
produktiv, forudsiger vævsmodellen en kontinuerlig forstærkning af
cytokiner, der breder sig over hele systemet, og dermed gengiver en
situation med kronisk inflammation i vævet. I kapitel 5 betragter
vi inflammatorisk respons i de Langerhanske øer, der befinder sig i
bugspytkirtlen og er ansvarlige for at regulere blodsukkerniveauet
(ved at frigive insulin og glucagon). Svag kronisk inflammation og
overproduktion af cytokinet IL-1β er karakteristisk for Langerhanske
øer i patienter med type II diabetes. Vi udvider modellen i kapitel
4 for at studere inflammatorisk respons i Langerhanske øer, med
særligt fokus på indflydelsen fra diverse rumlige forhold - nemlig
størrelsen og forskellige rumlige udformninger af de Langerhanske
øer. I overensstemmelse med eksperimentelle observationer, finder
vi, at store øer er særligt tilbøjelige til at indgå i en tilstand af kro-
nisk inflammation. Derudover finder vi, at forskellige udformninger
af øerne, kan påvirke risikoen for at udvikle kronisk inflammation
- en observation, der indikerer en forbindelse mellem rumlig ud-
formning og funktion.
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Part I

G R O W T H O F B I O L O G I C A L A G G R E G AT E S





I N T R O D U C T I O N

In this part of the thesis I shall consider different aspects of the
growth, and hence the achievement of different spatial structures
of large protein aggregates. This part of the thesis was originally in-
tended to investigate the highly ordered amyloid fibres, but we shall
also consider less ordered aggregates and different environmental
influences of increasing complexity.

Structure and Function

Spatial and structural arrangements are very important in biology.
The molecular building blocks of biological systems include many
large and complex molecules, which have unique spatial structures,
that have evolved to perform specific functions. In many cases struc-
ture and function are inextricably linked. For example, the reactive
sites of enzymes must be exposed correctly in order to function
correctly, and in many cases the enzymes are able to change their
function by changing their structure. Also, the functions of macro-
molecules such as microtubules, biological membranes and DNA
are directly linked to their spatial structure. The assembly of large
biomolecules is therefore a process of vital importance as even small
deviations from the desired structure can have huge consequences
for functionality.

Amyloid Fibres

Amyloid fibres are highly ordered protein aggregates of inappro-
priately folded proteins, which polymerize to form cross-beta struc-
tures resulting in long linear filaments. Amyloid fibres have been
related to a number of serious human diseases - examples include
type II diabetes and and a number of neurodegenerative disorders,
such as Parkinson’s and Alzheimer’s disease. Numerous experimen-
tal and theoretical studies have focussed on the growth kinetics of
amyloid fibres, and it is a well established fact that the fibres tend
to grow in an accelerated fashion, where the initial growth is very
slow (this part of the aggregation process is referred to as the lag-
time), before the growth accelerates to become increasingly fast. In
experiments where the monomer-pool is limited, the growth even-
tually decelerates and comes to an end, as the number of monomers
available for aggregation decreases.
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Accelerated Growth

The accelerated fashion in which the amyloid fibres grow could,
in theory, be explained by different mechanisms. In Chapter 1 we
shall consider the growth of frangible linear aggregates, where the
overall growth is accelerated by fragmentation, which functions as
a so-called secondary nucleation event (i.e. the number of growth-sites
increases as the number of filament ends increases). The theoreti-
cal results of Chapter 1 are fitted to experimental data of growing
insulin filaments.

Accelerated growth could also occur as a result of logistic-like
growth, where the already aggregated mass induces further growth
in a self-enhancing fashion. This kind of growth could be relevant
for different spatial aggregate structures, and in Chapter 2 we briefly
discuss the growth of spherical versus linear aggregates. In the same
chapter we develop a model, that assumes a logistic-like growth, and
apply this model to an aggregation process, which is also influenced
by external environmental conditions.

Environmental Influence

The aggregation of biomolecules may be influenced by many envi-
ronmental conditions, such as pH, temperature and the presence
of catalysts or other interacting molecules. In Chapter 2 we con-
sider the aggregation of tubulin polymerization-promoting protein
(p25α), influenced by a secondary chemical species (Heparin). The
presence of different concentrations of Heparin, causes the aggrega-
tion process to result in two structurally different aggregate forms,
and we develop in Chapter 2 a model, which is fitted to experimen-
tal data.

In Chapter 3 we consider an aggregation process of even higher
complexity. Here we develop a model for the aggregation of mixed
whey proteins, influenced by two varying environmental conditions
(pH and calcium concentration) and the model is fitted to an array
of experimental data. Again we observe that the differing environ-
mental conditions lead to aggregates of different spatial structures.
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1
F R A N G I B L E L I N E A R F I L A M E N T S

In this chapter I shall present a mathematical model for the growth
kinetics of frangible linear filaments. The linear self-assembly of fil-
amentous structures is a process of fundamental importance to the
normal functioning of nature, as well as the formation of amyloid fi-
bres observed in relation to diseases such as type II diabetes, Parkin-
son’s and Alzheimer’s diseases [13, 18, 27, 58, 66, 71].

The model presented in this chapter has been studied before [14,
15, 16, 38], and we shall here apply a continuum approximation in
order to develop approximate analytical expressions, that are com-
pared with numerical solutions (all numerical solutions are obtained
using a fourth order Runge Kutta integration, implemented in c++).
Finally, we compare the model with experimental data for growing
insulin filaments.

relevant publication:
Pernille Yde, Thomas C. T. Michaels, Julian Willis, Alexander K.
Buell, Daniel Otzen, Mogens H. Jensen and Tuomas P. J. Knowles.
The length distribution of frangible filaments: an analytical study in
the continuum approximation. Manuscript in progress, aimed at The
Journal of Chemical Physics (2013)

1.1 secondary nucleation events

Early investigations of filamentous growth [53, 54] focused on sim-
ple nucleation events followed by linear polymerization. In 1962
Oosawa presented solutions to the kinetic equations for irreversible
growth, however, Oosawa’s theory was not able to fully explain the
experimental observations of amyloid growth.

Experimental observations often report a characteristic time-lag fol-
lowed by a rapid acceleration, in the growth of the total mass of
aggregates M(t). In experiments where the monomer-pool is lim-
ited, the growth eventually decelerates and comes to an end, and as
a result the growth curve for M(t) typically has a sigmoid shape,
implying a somewhat self-enhanced growth process. In order to ex-
plain this behaviour secondary nucleation events were proposed to
take place in cohesion with the simple nucleation (sometimes re-
ferred to as homogeneous nucleation) originally proposed by Oo-
sawa [8, 24, 25, 62]. Fragmentation, lateral growth or nucleation on
the surface of existing polymers were all proposed as possible sec-
ondary nucleation events, and in this chapter, we shall focus on frag-
mentation.
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6 frangible linear filaments

The Length Distribution

The length distribution of an ensemble of growing linear aggregates,
represents a simple structural feature, which is often of great inter-
est - for example, the lengths of growing amyloid fibres is a key
parameter for determining the progression of disease. Understand-
ing the mechanisms that lead to different aggregate sizes (different
filament lengths) is therefore an important aspect of understanding
the aggregation process.

Oosawa also studied the development of the length distribution
of filaments [53, 54] and showed that the length distribution ini-
tially develops into a Poisson distribution, before relaxing over a
longer time scale, into an exponential distribution. Oosawa’s equilib-
rium length distribution does not have a "peak" - or in other words
the equilibrium length distribution does not lead to a characteris-
tic length, and Oosawa comments in his textbook[53]: "in polymers
growing one-dimensionally, length distributions having a sharp maximum
cannot be realized as a true equilibrium". This is, however, not the case
for true biological filaments, whose length distributions have been
observed to have a peak around a characteristic length[6, 73]

Fragmentation

It has previously been demonstrated[16, 38], that the growth kinetics
of amyloid fibres, can successfully be explained by a model includ-
ing fragmentation as a secondary nucleation event. Fragmentation
is characterised as a nucleation event because it increases the total
number of growth-sites, by increasing the total number of filament
ends.

As we shall see below, the presence of fragmentation also gives
rise to a possible "peak" in the length distribution. This maximum
appears due to the emergence of a characteristic length, in the dy-
namic steady state, where growth is balanced by fragmentation.

1.2 master equation

The length distribution of the filaments is given by the concentration
f(j, t) of filaments of aggregation number j at time t, where we de-
fine the aggregation number j as the size of the filament measured
in number of monomers. We consider a system of completely well-
mixed monomers and frangible growing filaments, which under-
go the growth processes sketched in Figure 1. Filaments can in-
crease in size through elongation processes, i.e. the addition of sin-
gle monomers onto the ends of the filament, or shrink through disso-
ciation from either ends and through filament fragmentation. Here,
we consider only the formation of linear filaments i.e. no branch-
ing or clumping processes are allowed. We also include a minimal
aggregation number nc, which defines the smallest stable filament
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size. Filaments of aggregation number smaller than nc will disinte-
grate into monomers and thereby re-enter the monomer pool. We
assume that the formation of these aggregates takes place through
a primary nucleation process in which nc monomers spontaneously
bind together to form a nucleus.

�������	
�

�
�	��	
�

�	
�	��	
�

����������	
�

Figure 1: Sketch of linear aggregates that undergo the processes of nucleation, association,
dissociation and fragmentation. Here we sketch a nucleation process as the spontaneous
binding of two monomers - i.e. here nc = 2.

The behaviour of the ensemble of monomers and aggregates can
be formulated within the formalism of kinetic differential equations.
On accounting for the elementary mechanisms of Figure 1, the tem-
poral evolution of the concentration f(j, t) is described by the follow-
ing master equation [16, 38]:

∂f(j, t)
∂t

= 2k+m(t) [f(j− 1, t) − f(j, t)]

+ 2koff [f(j+ 1, t) − f(j, t)]

− k−(j− 1)f(j, t)

+ 2k−

∞∑
i=j+1

f(i, t)

+ knm(t)ncδj,nc
(1)

where m(t) denotes the concentration of monomers at time t. The
terms in equation (1), that are proportional to k+, describe growth
through association of monomers and the factor two accounts for
the fact that association can happen at either end of the filament.
Similarly, terms proportional to koff accounts for dissociation of
monomers at the ends of the filaments. Terms proportional to k− ac-
count for fragmentation processes: a filament of lenght j can break at
(j− 1) sites and the rate-constant k− equals the breakage-probability
per time and per binding site. The term −k−(j − 1)f(j, t) thus ac-
counts for the loss due to fragmentation of filaments of length j.
The term +2k−

∑∞
i=j+1 f(i, t) accounts for the creation of filaments

of length j due to fragmentation of longer filaments. The proba-
bility that a filament of length i breaks is given by P(break|i) =

k−(i− 1)f(i, t). The probability that one of the fragments has length
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j given that the filament breaks is given by P(j|break i) = 2
i−1

. Hence
the total probability that a filament of length j is created is given by
P(j|break i)P(break|i) = 2k−f(i, t). In the special case where i = 2j

we have P(j|break i) = 1
i−1

, but then two filaments of length j are
created and the factor 2 re-enters. Finally, the term proportional to
kn describes nucleation of new filaments of length j = nc.

The master equation defined by equation (1) resembles a very sim-
ple model of frangible linear aggregates. The model can easily be
evaluated numerically and our main focus, through the rest of this
chapter, will be to derive approximate analytical solutions to the
length distribution given by f(j, t). By the end of the chapter we re-
turn to discussing the validity of this simple model, and we compare
the results to experimental data.

Master Equation in Continuous Scheme

In the limit of large j, the discrete system (1) can be approximated
by its continuum limit. The discrete field f(j, t) is replaced by at
continuous field f(x, t) such that:

f(x, t) = f(j, t)

where x denotes the length of the filaments. If the monomers are
associated with a length a, the master equation can be rewritten as
a function of the continuous variable x = ja. Finite differences are
replaced by partial derivatives (Taylor expansion up to first order):

f(x± a, t) − f(x, t) ≈ ±∂f(x, t)
∂x

a (2)

The sum is replaced by an integral and because we assume x >> a

we approximate the integration limit, (x+ a) ≈ x:

2k−

∞∑
z=x+a

f(z, t) ≈ 2k−

a

∫∞
x

f(z, t)dz (3)

Similarly we approximate (x− a) ≈ x, in the second term:

k−

a
(x− a)f(x, t) ≈ k−

a
xf(x, t) (4)

In the continuum limit, it makes good sense, that a filament of length
x is able to break anywhere along the continuous length. Therefore
rewriting (x+ a) = x and (x− a) = x is not only justified because
x >> a, but also because it corresponds to a scenario, in which
the filaments can break anywhere along the length x (also infinitely
close to the ends).

Finally, we define v(t) = 2a(k+m(t) − koff), and the continuous
master equation describing the time evolution of the length distribu-
tion of frangible growing filaments reads:
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∂f(x, t)
∂t

= −v(t)
∂f(x, t)
∂x

−
k−

a
xf(x, t)

+ 2
k−

a

∫∞
x

f(z, t)dz

+ knm(t)ncδ(x−nca)

(5)

Boundary Conditions

We shall impose the boundary condition f(x, t) = 0 for x < nca,
as filaments of lengths shorter than the nucleus size will become
unstable and dissolve into monomers. In order to obtain a continu-
ous distribution at the boundary, we shall also impose the boundary
condition f(x, t) = 0 for x = nca [26].

We may also write f(x, t) = 0 for x → ∞, as the filaments will not
be able to grow indefinitely.

Initial Conditions

We consider scenarios in which the growth process is initialized by
seed material - i.e. some relatively small "seed-filaments" are initially
present in the system. The initial solution also contains an initial
number of monomers. We now define a unitless mass which is mea-
sured in terms of monomers, hence the mass of a monomer is 1 and
the mass of a filament of length x is equal to x (or in the discrete
case equal to j). Initially, the total mass in the solution is given by
mtot = M(0) +m(0) where M(0) describes the mass of the seeds
and m(0) desccribes the initial mass of the monomers.

Two Different Growth Conditions

We shall consider two different scenarios: open and closed systems.
The open system is a fictitious situation in which the monomer

pool is infinitely large, and the monomer concentration is kept con-
stant: m(t) = m(0).

In the closed system we consider a finite volume in which the total
mass is conserved. We may therefore write mtot = M(t) +m(t),
where M(t) is the total mass of all filaments in the solution at time
t. The closed system is the most realistic system which would apply
to experiments, whereas the open system is unrealistic but useful to
consider in order to gain information about the initial behavior of
the system.



10 frangible linear filaments

1.3 time evolution of the moments

From previous studies [14, 15, 16, 38] we know that it is possible to
obtain analytical expressions for the first two principal moments of
the length distribution. Here we shall derive the corresponding con-
tinuous equations for the moments. We define the number-concentration
of filaments (zero’th moment):

P(t) =

∫∞
nca

f(x, t)dx

and the mass-concentration of filaments (first moment):

M(t) =

∫∞
nca

xf(x, t)dx

Differential equations for P(t) and M(t) are obtained by carrying
out the calculations:

dP(t)

dt
=

d

dt

∫∞
nca

f(t, x)dx

dM(t)

dt
=

d

dt

∫∞
nca

xf(t, x)dx (6)

The equation for P(t) is obtained as follows:

dP(t)

dt
= −v(t)

∫∞
nca

∂f(t, x)
∂x

dx

︸ ︷︷ ︸
=f(t,∞)−f(t,nca))=0

−
k−

a

∫∞
nca

xf(t, x)dx

+
2k−

a

∫∞
nca

dx

∫∞
x

f(t, z)dz

+ knm(t)nc

∫∞
nca

δ(x−nca)dx

= 0−
k−

a
M(t)

+
2k−

a

∫∞
nca

dx

∫∞
x

f(t, z)dz+ knm(t)nc

The order of integration is swapped in the following way:
∫∞
nca

dx

∫∞
x

dz =

∫∞
nca

dz

∫z
nca

dx
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and finally we obtain:

dP(t)

dt
= −

k−

a
M(t) +

2k−

a

∫∞
nca

dz

∫z
nca

f(t, z)dx

+ knm(t)nc

= −
k−

a
M(t) +

2k−

a

∫∞
nca

(z−nca)f(t, z)dz

+ knm(t)nc

= k−

(
1

a
M(t) − 2ncP(t)

)
+ knm(t)nc

(7)

Similarly we obtain the following equation for M(t):

dM(t)

dt
= −v(t)

∫∞
nca

x
∂f(t, x)

∂x
dx−

k−

a

∫∞
nca

x2f(t, x)dx

+
2k−

a

∫∞
nca

dx

∫∞
x

xf(t, z)dz

+ knm(t)nc

∫∞
nca

xδ(x−nca)dx

= −v(t) [xf(t, x)]∞nca︸ ︷︷ ︸
=0

+ v(t)

∫∞
nca

f(t, x)dx

−
k−

a

∫∞
nca

x2f(t, x)dx

+
2k−

a

∫∞
nca

dz

∫z
nca

xf(t, z)dx

+ncaknm(t)nc

= v(t)P(t) −
k−

a

∫∞
nca

x2f(t, x)dx

+
2k−

a

∫∞
nca

1

2

(
z2 −n2

ca
2
)

f(t, z)dz

+ncaknm(t)nc

= v(t)P(t) − k−n
2
caP(t)

+ncaknm(t)nc

=
(
v(t) − k−n

2
ca
)
P(t) +ncaknm(t)nc

(8)

In many cases the terms regarding the spontaneous nucleation events
(terms proportional to kn) are relatively small compared to the other
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terms in the equations, as long as P(t) and M(t) are not very small.
As we shall consider seeded systems P(t) and M(t) are never very
small, and we therefore disregard the terms regarding spontaneous
nucleation. We now have the following system of equations describ-
ing the time evolution of the two first principal moments:

dP(t)

dt
= k−

(
1

a
M(t) − 2ncP(t)

)

dM(t)

dt
=
(
v(t) − k−n

2
ca
)
P(t)

(9)

where v(t) = 2a(k+m(t) − koff) = 2a(k+(mtot −M(t)) − koff). Es-
pecially the entry of M(t) through v(t), makes the equations compli-
cated to solve analytically.

1.4 open system

At the early stages of the aggregation process the monomer con-
centration is close to the initial concentration m(t) ≈ m(0). In the
"Open System Approximation" the monomer concentration is con-
stant: m(t) = m(0) = m0 and the system is therefore expected to
describe the early stages of the aggregation process very well. In
this scenario we denote the length distribution f0(x, t) and the prin-
cipal moments P0(t) and M0(t). The variable v(t) also becomes a
constant v(t) = 2a(k+m0 − koff) = v0.

Disregarding spontaneous nucleation events (terms proportional
to kn) the master equation now has the form:

∂f0(x, t)
∂t

= −v0
∂f0(x, t)

∂x
−

k−

a
xf0(x, t) + 2

k−

a

∫∞
x

f0(z, t)dz

(10)

Moments - Open System

The simplification v(t) = v0 makes it easy to solve the principal
moments (given by equations (9)) analytically, and we obtain the
following solutions for P0(t) and M0(t):

P0(t) = A1e
κ+t +A2e

κ−t

M0(t) = A3e
κ+t +A4e

κ−t

(11)

where

κ± = −k−nc ±
√

k−v0

a
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and

A1,2 =
1

2

(
P(0)±

√
k−

av0
(M(0) −ncaP(0))

)

A3,4 =
1

2

(
M(0)±

√
ak−

v0
nc (M(0) +ncaP(0))±

√
v0a

k−
P(0)

)

An analytical solution for f0(x, t) demands a little more work, and
we shall start by considering the limiting behavior before we derive
a full solution.

Limiting Behavior of the Open System

In the limit t → ∞ the term with the positive exponent κ+ will
dominate P0(t):

P0(t) =

∫∞
nca

f0(x, t)dx → A1e
κ+t for t → ∞

and therefore we deduce that f0(x, t) must have the limiting form:

f0(x, t) → flimit
0 (x, t) = X(x)eκ+t (12)

where∫∞
nca

X(x)dx = A1 (13)

Differentiating the master equation (10) with respect to x we obtain
the following equation:

∂2flimit
0 (x, t)
∂x∂t

= −v0
∂2flimit

0 (x, t)
∂x2

−
k−

a

(
flimit
0 (x, t) + x

∂flimit
0 (x, t)

∂x

)

−2
k−

a
flimit
0 (x, t)

⇔
κ+X

′(x)eκ+t = −v0X
′′(x)eκ+t −

k−

a
xX ′(x)eκ+t − 3

k−

a
X(x)eκ+t

⇔
0 = −v0X

′′(x) −
(
κ+ +

k−

a
x

)
X ′(x) − 3

k−

a
X(x)

(14)
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This equation can be solved to obtain the following solution for X(x):

X(x) = C1 exp
(
−

x

2v0

(
k−x

a
+ 2κ+

))((
k−x

a
+ κ+

)2

−
k−v0

a

)

+C2

⎡
⎢⎣−
⎛
⎜⎝ k−x

a
+ κ+

2
(
k−

a

)2
v0

⎞
⎟⎠

+ Da

⎛
⎝ k−x

a
+ κ+√

2
k−v0

a

⎞
⎠
((

k−x
a

+ κ+

)2
− k−v0

a

)
√
2
(
k−

a

)5
v30

⎤
⎥⎥⎦

where Da(u) denotes the Dawson integral. The first part of the solu-
tion (proportional to C1) equals zero for x = nca, is positive for all
other x and approaches zero as x → ∞. The second part of the so-
lution (proportional to C2) is negative for x = nca becomes positive
for (much) larger values of x and then approaches zero as x → ∞.
As we must have f(nca, t) = 0 and f(x, t) � 0 for all x > nca, we
must put C2 = 0. We now define the limiting distribution for the
open system

flimit
0 (x, t) = Xlimit

0 (x)eκ+t

= C1e
κ+te

(
− x

2v0

(
k−x

a +2κ+

)) ((
k−x

a
+ κ+

)2

−
k−v0

a

)

(15)

where

Xlimit
0 (x) ≡ C1e

(
− x

2v0

(
k−x

a +2κ
)) ((

k−x

a
+ κ

)2

−
k−v0

a

)

(16)

and (from equation (13)) the constant C1 is given by :

C1 =
A1e

nca(k−nc+2κ+)
2v0

a2v0(k−nc + κ+)

Full Solution for the Open System

The underlying idea for obtaining a full solution for f0(x, t) comes
from the use of Picard’s iteration method, that allows self-consistent
solutions with increasing precision to be derived from an initial
guess for f0(x, t). Here, we only perform a single iteration, and use
flimit
0 (x, t) as an approximation for f0(x, t) in the integral term of

equation (10):
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∂f0(x, t)
∂t

≈ −v0
∂f0(x, t)

∂x
− k−xf0(x, t) + 2k−

∫∞
x

flimit
0 (z, t)dz

(17)

By substituting:

∫∞
x

flimit
0 (z, t)dz = C1 exp

(
κ+t−

k−x
2 + 2axκ+

2av0

)
v

(
k−x

a
+ κ+

)

into equation (17) we obtain the approximate result for f0(x, t):

f0(x, t) = flimit
0 (x, t) + exp

(
−
k−x

2

2av0

)
Ψ (x− v0t)

where Ψ(u) is an arbitrary function, which must be determined from
the initial condition. Assuming that the initial condition corresponds
to seeds of a relatively well defined length, we can approximate
the initial distribution as a narrow gaussian centered around the
mean seed length x0. Our initial condition is therefore given by the
expression:

f0(x, 0) =
P0(0)√
2πσ2

exp
(
−
(x− x0)

2

2σ2

)

and we now solve the equation:

f0(x, 0) = flimit
0 (x, 0) + exp

(
−
k−x

2

2av0

)
Ψ (x)

and obtain the following solution for Ψ(x− v0t):

Ψ(u) = exp
(
k−(u)

2

2av0

)
×[

P0(0)√
2πσ2

exp
(
−
(u− x0)

2

2σ2

)
−Xlimit

0 (u)

]

The function Ψ (u) consists of a "peak" (the gaussian term) and
a "background" (the term including Xlimit

0 (u)) times a pre-factor
which sets the amplitude:

Ψ(u) = "prefactor" ×
["peak" − "background"]

When time increases the overall shape of Ψ (x− v0t) is preserved,
and everything simply shifts to higher x-values with speed v0. We
note that, since the "background"-term (and hence also Ψ (x− v0t))
diverges towards −∞ for negative (x− vt), we multiply this term
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by a heavisidefunction θ(x− v0t), in order to avoid errors for times
t > 0:

Ψ (x− v0t) = exp
(
k−(x− v0t)

2

2av

)
×[

P0(0)√
2πσ2

exp
(
−
(x− x0 − v0t)

2

2σ2

)
− θ(x− v0t)X

limit
0 (x− v0t)

]
(18)

and finally we obtain the final full analytical solution for the length
distribution f0(x, t) in the open system:

f0(x, t) = flimit
0 (x, t) + exp

(
−
k−x

2

2av0

)
Ψ (x− v0t)

(19)

where flimit
0 (x, t) is given by equation (15) and Ψ (x− v0t) is given

by equation (18).
The approximate solution (19), gives a very good fit to the numer-

ical solution of the master equation - see Figure 2. The two terms
of f0(x, t) can be understood individually: the term proportional to
the limiting distribution flimit

0 (x, t) is a relatively broad distribu-
tion, that increases exponentially with time (Figure 2b). Secondly,
the term proportional to Ψ(x− v0t) consists mainly of the relatively
narrow peak, which moves towards larger lengths with speed v0

(Figure 2c). The prefactor, exp
(
−k−x2

2av0

)
, ensures that the amplitude

of the "Ψ"-term decreases as it shifts to higher x-values. As t → ∞,
f0(x, t) approaches flimit

0 (x, t).

Note About Diffusion in Length Space

The expression for Ψ (x− v0t) is derived from the master equation
(10), which we initially obtained by approximating finite differences
with partial derivatives which is equivalent of taylor expanding up
to first order (recall equation (2)). If we had instead used the taylor
expanded up to second order we would instead have the following
approximation for finite differences:

f(x± a, t) − f(x, t) ≈ ±∂f(x, t)
∂x

a+
1

2

∂2f(x, t)
∂x2

a2 (20)

And by defining v(t) = 2a(k+m(t) − koff) (as before) and D(t) =

a2(k+m(t)+koff) the continuous mean-field master equation would
have read:

∂f(x, t)
∂t

= −v(t)
∂f(x, t)
∂x

+D(t)
∂2f(x, t)

∂x2

−
k−

a
xf(x, t) + 2

k−

a

∫∞
x

f(z, t)dz

+ knm(t)ncδ(x−nca)

(21)
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Figure 2: Time evolution of the fibril length distribution in an open system f0(x, t). a: The
black solid line is the numerically calculated solution of the master equation (10). The red
dashed line is the predicted length distribution for the constant monomer case given in
equation (19). b: The first term of equation (19), flimit

0 (x, t) (dashed blue line) is compared
with equation (19) (solid red line). b: The contribution from the second term in equation
(19) describing the advection of the initial distribution (dashed green line) is compared with
equation (19) (solid red line). The parameters used are: k+ = 3.5× 10−2 M−1minutes−1,
k− = 5× 10−6 minutes−1, koff = 0, nc = 2, x0 = 300, σ0 = 10, M(0) = 1 M, P(0) = M(0)/x0,
m0 = 999. Curves are shown for the following times (from bottom to top): t = 40, 80, 120, 160
minutes.

from which it can be seen that the term proportional to D(t) de-
scribes diffusion in length space. In order to account for the error
that this assumption might introduce we re-introduce diffusion by
substituting σ2 → σ2

0 + 2D0t, which equals the behavior we expect
from solving the system consisting only of drift and diffusion.

Discussion of the Analytical Solution in the Open System

The expression given by equation (19) describes in closed form the
time evolution of the length distribution of an open system charac-
terised by nucleated polymerisation and fragmentation. A compar-
ison between the analytical expression provided by equation (19)
and the numerical solution of the master equation (10) is shown in
Figure 2. The analytical expression gives the correct shape of the
filament distribution and matches the numerical solution for large
times exactly. As it can be seen from the plot, for early times equa-
tion (19) overestimates the number of fibres with length greater than
x0 + v0t. Qualitatively, this effect arises because the filament distri-
bution entering the fragmentation source term (in equation (17)) is
from the late time regime and introduces long fibres that would not
have time to grow in the period of time considered, and therefore
the aggregates population is overestimated for large x. Figure 2b
and 2c show the contributions from the two terms in equation (19)
to the shape of the filament distribution. The first term of equation
(19) is an exponentially growing biased Gaussian distribution that
accounts for the increase in the population of short fibres caused by
the fragmentation of longer ones. The second term of equation (19)
describes the advection in size space of the initial filament distribu-
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tion. As a result of fibril elongation, the Gaussian peak moves in size
space with velocity v0 and spreads out with diffusion coefficient D0.
As t → ∞ the advective Gaussian peak vanishes and equation (19)
recovers flimit

0 (x, t) completely. As the fibres increase in length, their
fragmentation probability increases and the filament distribution is
shifted from large to small lengths. This behaviour is captured by
the exponential pre-factor which ensures that the amplitude of the
advective Gaussian peak decreases with increasing length x.

1.5 closed system

For the closed system we can not make the approximation v(t) =

v0, but must use the full expression v(t) = 2a(k+m(t) − koff =

2a(k+(mtot −M(t)) − koff). This makes the differential equations
describing the principal moments (9) and the partial differential
equation describing the length distribution (5) much more compli-
cated.

Moments - Closed System

From equations (9) we obtain the following the formal solutions for
P(t) and M(t):

P(t) = P(0)e−2k−nct +
k−

a

∫t
0

e−2k−nc(t−τ)M(τ)dτ

M(t) = M(0)e−2k+

∫t
0 P(τ)dτ +M∞

(
1− e−2k+

∫t
0 P(τ)dτ

)
(22)

where M∞ is defined as described below. As previously descri-
bed[16, 38] solutions for P(t) and M(t) can also be obtained using
Picard’s iteration method: by re-writing equations (22) in a matrix
form:(

P(t)

M(t)

)
= A

(
M(t)

P(t)

)

we can obtain approximate solution by iterating the equations in the
following way: the solutions P0(t) and M0(t) (11) are substituted
into the right hand side to obtain the first iteration P1(t) and M1(t):(

P1(t)

M1(t)

)
= A

(
M0(t)

P0(t)

)

Again P1(t) and M1(t) are substituted into the right hand side to
obtain the second iteration P2(t) and M2(t):(

P2(t)

M2(t)

)
= A

(
M1(t)

P1(t)

)
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The solutions will approach the true solutions of (22) as the itera-
tions are repeated:

Pn(t) → P(t) ∩ Mn(t) → M(t) for n → ∞
It turns out that M1(t) and P2(t) are already very good approxima-
tions to the true solutions for M(t) and P(t) [16, 38]. The solution
for M1(t) is obtained as follows:

M1(t) = M(0)e−2k+

∫t
0 P0(τ)dτ +M∞

(
1− e−2k+

∫t
0 P0(τ)dτ

)

= (M(0) −M∞)e−2k+

∫t
0 P0(τ)dτ +M∞

= (M(0) −M∞)e
−2k+

(
A1
κ+

(eκ+t−1)+A2
κ−

(eκ−t−1)
)
+M∞

(23)

The solution for P2(t) is obtained by substituting equation (23) into
(22):

P2(t) = P(0)e−2k−nct +
k−

a

∫t
0

e−2k−nc(t−τ)M1(τ)dτ

= e−2k−nct

(
P(0) +

k−

a

∫t
0

e2k−ncτM1(τ)dτ

)

= e−2k−nct

(
P(0) +

k−

a

∫t
0

e2k−ncτM∞dτ

+
k−

a

∫t
0

e
2k−ncτ−2k+

(
A1
κ+

(eκ+τ−1)+
A2
κ−

(eκ−τ−1)
)
(M(0) −M∞)dτ

)

The linear and exponentially decaying terms are neglected in front
of the growing exponential and the final solution for P2(t) is ob-
tained as follows:

P2(t) = e−2k−nct

(
P(0) +

k−

a

∫t
0

e2k−ncτM∞dτ

+
k−

a

∫t
0

e
−2k+A1

κ+
eκ+τ

(M(0) −M∞)dτ

)

= e−2k−nct

(
P(0) +

M∞ (e2k−nct − 1
)

2anc

+
k− (M∞ −M(0))

aκ+

[
Ei

(
−2A1k+

κ+

)
− Ei

(
−2A1k+e

κ+t

κ+

)])
(24)

where Ei(z) = −
∫∞
−z

e−t

t
dt is the exponential integral function.

The expressions for M1(t) and P2(t) given by equations (23) and
(24) are plotted in Figure 3, together with the analytical expressions
for M0(t) and P0(t) (11), as well as the numerical solutions obtained
from the master equation (5).
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Figure 3: Time evolution of P(t) and M(t). a: Numerical solution for P(t) obtained from the
master equation (5) (solid black line), analytical solution to P2(t) (24) (dashed red line) and
to the open system P0(t) (11), which is also a good approximation for early times (dotted
red line). b: Numerical solution for M(t) obtained from the master equation (5) (solid black
line), analytical solution to M1(t) (23) (dashed red line) and to the open system M0(t) (11),
which is a good approximation for early times (dotted red line). The parameters used are:
k+ = 3.5× 10−2 M−1minutes−1, k− = 5× 10−6 minutes−1, koff = 0, nc = 2, M(0) = 1 M,
P(0) = M(0)/300, mtot = 1000.

Limiting Behaviour of the Closed System

In the limit t → ∞ the system will approach the steady state dis-
tribution f∞(x). We define the steady state solutions for P(t) and
M(t):

P∞ =
2k+mtot − 2koff − k−n

2
c

4k+nca

M∞ =
2k+mtot − 2koff − k−n

2
c

2k+
(25)

and also m∞ = 2koff+k−n2
c

2k+
and v∞ = k−n

2
ca. We note that the

steady state is not a true equilibrium but a dynamic steady state in
which the growth is balanced by fragmentation such that the length
distribution is constant.

We solve the length distribution from the following equation:

0 = −v∞f ′′∞(x) − k−xf ′∞(x) − 3k−f∞(x)

with the result:

f∞(x) = D1e

(
−x2

2(nca)2

) (
x2 − (nca)

2
)

(26)

The constant D1 is found by normalizing the total number of fila-
ments to P∞ ∫∞

nca
f∞(x)dx = P∞:

D1 =

√
e(2k+mtot − 2koff − k−n

2
c)

4k+(nca)4

Full Solution to the Closed System

We expect that in the early stages of the polymerisation process, the
length distribution will evolve according to f0(x, t), obtained in the
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presence of a constant monomer pool, shifting at later times into the
steady-state distribution given by f∞(x).

An interesting observation to be drawn from flimit
0 (x, t) and f∞(x),

is that the distribution of fibril lengths share the same functional
form at the beginning and at the end of the reaction (except for the
advective peak, which is only present at early stages). In both cases
the form of f(t, x) is given in terms of the function Xlimit(x), where
the values v(0) and κ+(0) are used in the early time limit and the
values v(∞) and κ+(∞)(= 0) in the steady state.

Thus, an appropriate ansatz for f(t, x) is given by

f(x, t) = A(t)Xapprox
0 (x) + exp

(
−
k−x

2

2av0

)
Φ (x− τ(t))

(27)

where X
approx
0 (x) is obtained by replacing v(0) in equation (16) by

some value vapprox to be determined below:

X
approx
0 (x) = Xlimit

0 (x, v(0) → vapprox) (28)

The function Φ is given by

Φ(ξ) = exp
(
k−ξ

2

2v(0)

)
×
[

P(0)√
2πσ2

exp
(
−
(ξ− x0)

2

2σ2

)]
(29)

where σ = σ0 + 2D0t. The amplitude A(t) is calculated from the
normalisation condition

A(t) =
P(t)∫∞

nca
X

approx
0 (x)dx

(30)

and τ(t) describes the position of the peak of the initial distribution
at time t, as a result of advection in length space:

τ(t) =

∫t
0

v(t ′)dt ′ = 2(k+mtot − k+M(∞) − koff)t

− 2k+
M(0) −M(∞)

κ+

[
Ei
(
−C+e

κ+t
)
− Ei (−C+)

]
(31)

Equation (28) corrects the late time behaviour of the length distribu-
tion by choosing vapprox such that the solution reproduces the correct
mean value μ(t) = M(t)/P(t) of the length distribution at all times.
Using:

μ(t) =

∫∞
nca

xX
approx
0 (x)dx∫∞

nca
X

approx
0 (x)dx

= nca+

√
k−v

approx

a
(32)

we have the following expression for vapprox:

vapprox =
k−

a

(
M(t)

P(t)
−nca

)2

(33)

where M(t) and P(t) are given by equations (24) and (23).
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Figure 4: Time evolution of the fibril length distribution in a closed system. The black solid
line is the numerically calculated solution of the master equation (1). The red dashed line
is the predicted length distribution f0(x, t) for the constant monomer case given by equa-
tion (19). The green dotted line is the predicted length distribution f(x, t) for the constant
mass given in by equation (27). The parameters used are: k+ = 3.5× 10−2 M−1minutes−1,
k− = 5× 10−6 minutes−1, koff = 0, nc = 2, x0 = 300, σ0 = 10, M(0) = 1 M, P(0) = M(0)/x0,
mtot = 1000. The times of the snapshots are: t = 40, 80, 120, 160, 200, 240, 280, 320, 400 min-
utes.

Discussion of the Analytical Solution in the Closed System

The expression given by equation (27) describes in closed form the
time evolution of the length distribution of a closed system charac-
terised by nucleated polymerisation and fragmentation. A compari-
son between the analytical expression provided by equation (27) and
the numerical solution of the master equation (5) is shown in Figure
4, where we also plot the analytical solution to the open system (19).
While the analytical expression for the open system (19) provides a
better solution for early times, the analytical expression for closed
systems (27) provides a better solution for late times and captures
the overall behaviour of the length distribution.

At early times the aggregation process is dominated by elongation,
and the length distribution evolves towards large lengths x, where
the advective peak describes a large part of the population (Figure
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4a-c). At later times the aggregation process is dominated by frag-
mentation and the population described by the advective peak dis-
appears (Figure 4c-d). At even later times the length distribution
shifts to shorter lengths x, as the filaments continue to break (Figure
4e-i). At these late times, the analytical expression for the open sys-
tem (19), does no longer provides a good approximation, whereas
the analytical expression for closed systems (27) provides a good
approximation, although not perfect.

1.6 fit to experimental data

Insulin filament length distributions were measured experimentally
from seeded fibril growth experiments, monitored by changes in
fluorescence and subsequently measured using AFM imaging of
the filaments at different times. The experiments showed that, start-
ing from the initial filament distribution, filaments grew to to form
longer filaments after 90 minutes, and then, after 190 minutes, it ap-
peared that the length distribution shifted towards shorter filaments.
The experimental results for the length distribution of the insulin fi-
bres are plotted in Figure 5.

In order to compare the model predictions of equation (27) with
the AFM data, we first fitted the measured total mass concentration
M(t) of fibres to the theoretically predicted curve given by equa-
tion (23) to obtain values for the rate constants for elongation and
breakage - see inset of Figure 5a. The obtained parameter values
of k+ = 5.5× 10−2 M−1minutes−1 and k− = 7× 10−6 minutes−1,
were subsequently used to produce both an analytical fit given by
equation (27) and a numerical fit from the master equation (5) - see
Figure 5.

The overall agreement between the model and the experimental
data is very good, considering the parameters fit the time evolu-
tion of both the total mass of filaments and the length distribution.
The experimental and theoretical length distributions both reflect
a filament population, which initially grows to span a large range
of lengths, before at later times, shifts to a narrower distribution at
shorter lengths. Hence the filament do indeed seem to break, and the
fragmentation model is therefore to some extend confirmed (recall
that fragmentation was initially proposed, based solely on experi-
mental data for the growth of the total mass of filaments).

Our results do however, also show considerable discrepancies be-
tween the experimental and theoretical length distributions. Espe-
cially the advective peak predicted by the theory is not visible in
the experimental data - see Figure 5b. Instead the experimental data
displays a larger build-up of shorter lengths at early times. On the
other hand, the theoretical predictions for late times, seems to over-
estimate the extend to which the filaments break, and the theoret-
ical length distribution shifts to shorter lengths, than what is ob-
served experimentally. A possible explanation for these discrepan-
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Figure 5: Predicted length distributions at 0, 60, 90, 190, 280, 375 and 500 minutes. In each
plot, the columns represent the experimental data of insulin filaments with histogram bin
widths of 300, the solid black curves represent the theoretical predictions from the numerical
solution of the master equation (5), while the dashed red curves represents the prediction of
equation (27). The parameters used were those that correspond with the fit of the polymer
mass concentration in the inset of panel a: k+ = 5.5 × 10−2 M−1minutes−1, k− = 7 ×
10−6 minutes−1, koff = 0, nc = 2, x0 = 300, σ0 = 150, M(0) = 1 M, P(0) = M(0)/x0,
mtot = m(0) +M(0) = 1000.

cies, could be that the fragmentation rate is not constant during the
entire aggregation process. Both discrepancies could arise as a result
of a fragmentation rate, which is more frequent in the early stages
and less frequent in the late stages - as would be highly imaginable
for growing filaments, which are more fragile in the initial stages of
the growth, but matures and stabilises at later times.



2
L O G I S T I C - L I K E G R O W T H A N D M U LT I P L E
A G G R E G AT E S T R U C T U R E S O F p2 5α

In this chapter I shall present a mathematical model for the aggre-
gation of the protein p2 5α influenced by the presence of different
concentrations of heparin. The model applies a logistic-like growth,
which is motivated in the beginning of the chapter, but the main pur-
pose of the model is to capture the effects of different concentrations
of heparin. Low, intermediate and high heparin concentrations were
experimentally observed to induce formation of structurally differ-
ent aggregate forms, and we solve the mathematical model numeri-
cally in order to fit the experimental data for p2 5α aggregation.

relevant publication:
Søren Bang Nielsen, Pernille Yde, Lise Giehm, Sabrina Sundbye,
Gunna Christiansen, Joachim Mathiesen, Mogens Høgh Jensen, Poul
Henning Jensen and Daniel E. Otzen. Multiple Roles of Heparin in
the Aggregation of p25α . Journal of Molecular Biology, 421, 601-615
(2012)

2.1 growth of different aggregate structures

As mentioned in the previous chapter, the growth of amyloid fibres
has been proposed to be dominated by secondary nucleation events. It
was previously argued that lateral growth (branching) describes the
secondary pathway better than fragmentation [8], i.e. the accelerated
self-enhanced growth of amyloid fibres may arise due to the spatial
structure of the aggregates.

The growth-rate of linear filaments is proportional to the total
number of filaments, as the linear filaments grow through addition
of monomers onto the ends of the filaments. One could also con-
sider a growth scenario in which free monomers could add onto
any monomer already embedded in the aggregate. In this case the
growth-rate would be proportional to the total mass of the aggre-
gates. For simplicity we shall for a moment consider a single grow-
ing aggregate of mass M ( t ) . The growth of a linear filament would
be proportional to the number of available monomers: m ( t ) =

m tot − M ( t ) , where m tot is the total number of monomers in
the system:

dM l inear

d t
∝ (m tot − M l inear ) (34)

25
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An aggregate which could add free monomers onto any monomer
in the aggregate would grow in a logistic-like fashion:

dM logist ic

d t
∝ M logist ic (m tot − M logist ic ) (35)

but if we assume the free monomers add onto the aggregate through
physical contact, such a growth scenario is unrealistic, as part of the
monomers within the aggregate would be physically shielded from
contact with free monomers.

The growth-rate of a spherical aggregate would be proportional
to the surface area of the aggregate, which is again proportional to
M(t)2/3:

dMsphere

dt
∝ M

2/3

sphere(mtot −Msphere) (36)

Following this line of thought one could image, that the overall
growth-rate of an aggregate, is proportional to the mass to the power
of some exponent α, depending on the spatial structure of the aggre-
gate:

dM

dt
∝ Mα(mtot −M) (37)

where α = 0 equals the linear growth scenario, α = 2/3 equals
the spherical growth scenario and α = 1 equals the logistic growth
scenario.

In Figure 6 the mass M(t) is plotted as a function of time, for
different exponents α. We note that the growth scenarios with α > 0,
captures the accelerated growth and the initial lag-time, which is
typical for amyloid fibres [5, 8, 24, 25, 38, 62]. We also note that the
growth curve for exponent α = 1 is symmetrical, while the growth
curves for exponents 0 < α < 1 are asymmetrical, which is also a
typical characteristic for amyloid growth.
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Figure 6: The mass, M(t), of a single growing aggregate as a function of time, given by
equation (37), for different exponents α.
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Logistic-like Growth

Although we have argued above, that the logistic-like growth with
dM/dt ∝ M(mtot−M), is somewhat unrealistic, logistic-like growth
may still be regarded as a good first approximation of mass depen-
dent (and therefore self-enhanced) growth. Additionally, one can
imagine many other scenarios, that result in logistic-like growth,
which are not only dependent on the spatial structure of the ag-
gregates. Here, we shall assume that the p25α fibres aggregate in
a linear structure (see Figure 7, top right) and that the elongation
itself is dependent on the already aggregated mass. We justify this
assumption by imagining, that the free monomers are influenced to
unfold or are in other ways primed for aggregation upon physical
contact with the existing aggregate.

2.2 p25α and heparin

The 219-residue protein p25α (tubulin polymerization-promoting
protein, also known as TPPP) is known to stimulate the aggrega-
tion of amyloid filaments and co-localise to the protein α-synuclein
which under disease conditions forms the amyloid filaments known
as Lewy Bodies. Aggregates of p25α have been observed in rela-
tion to disease in vivo, but p25α does not fibrillate by itself under
native conditions in vitro. The aggregation of p25α can be induced
by certain environmental conditions as e.g. the presence of polyan-
ionic biomolecules such as heparin, polyglutamate, arachidonic acid
micelles and RNA. Here we focus on the effect of heparin on the ag-
gregation of p25α.

Heparin is a highly sulfated glycosaminoglycan which is known
to promote fibrillation of several proteins including p25α. Experi-
ments have shown that p25α does not fibrillate to any significant
extent in the absence of heparin, but intermediate heparin concen-
trations lead to fibrillar aggregates, whereas large heparin concentra-
tions lead to less structured amorphous aggregates. These findings
were further supported by experimental ThT flourescence measure-
ments for different heparin concentrations. ThT (thioflavin T) is a
fluorescent chemical dye which is widely used to visually quantify
the amount of protein aggregates and the ThT signal is assumed
to be linearly proportional to the total mass of fibrillar aggregates,
while amorphous aggregates are not expected to produce a signifi-
cant ThT signal.

Experimental Findings

Experiments showed that solutions of pure p25α did not lead to
ThT-positive aggregates of any significant extent whereas addition
of heparin to the protein solution had dramatical impact on the ThT
signal. As little as 0.4 μg/mL had an impact and led to an increase in
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ThT flourescence after approximately 16 hours of incubation. With
increasing heparin concentrations of up to 10 μg/mL, the lag-time is
further shortened to 8-10 hours and the end-point ThT fluorescence
also increases - clearly indicating that heparin induces aggregation
of p25α in a concentration dependent manner. At heparin concen-
trations above 10 μg/mL, the lag-time further decreases to 1-3 hours,
but although there is a spike in the ThT fluorescence around 10 hrs,
the endpoint ThT intensity rapidly decays to a level corresponding
to the absence of heparin and the observations therefore suggest an
optimal heparin concentration for the induction of amyloid fibres
around 10 μg/mL - see Figure 7. AFM images also revealed that the
aggregates formed at heparin concentration 10 μg/mL, yielded lin-
ear fibrous aggregates, whereas at heparin concentration 100 μg/mL
yielded aggregates of a more amorphous structure (Figure 7).
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Figure 7: Representative examples of experimental measurements of ThT intensity over time,
for different concentration of added heparin plus AFM pictures of the resulting aggregates.
The experiments indicate an optimal heparin concentration for fibril production around
10μg/mL, and an existence of amorphous aggregates formed at higher heparin concentra-
tions.

2.3 mathematical model

A mathematical model of the aggregation kinetics of p25α and hep-
arin was constructed - see sketch in Figure 8. The model was con-
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tructed to capture the biphasic feature of the aggregation process,
namely, that p25α can form amyloid fibres at intermediate hep-
arin concentrations, while high heparin concentrations lead to amor-
phous aggregates after a transient build-up of amyloid material.
Accordingly, the model consists of three basic reactions: (i) nucle-
ation of p25α onto heparin, (ii) logistic-like growth through addi-
tion of p25α-monomers onto the existing fibres, and (iii) heparin-
dependent formation of an amorphous aggregate through addition
of an extra heparin molecule to the existing p25α:heparin fibre. For
simplicity we assume that all reactions are effectively irreversible.
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Figure 8: Sketch of the model for aggregation of fibrillar and amorphous aggregates. The
model includes three basic reaction: (i) nucleation, (ii) monomer addition (resulting in fibril-
lar aggregates) and (iii) heparin addition (resulting in amorphous aggregates). See details in
text.

Equations

The rate at which p25α nucleates onto heparin is proportional to the
rate constant knu, and we assume, that this process involves two
p25α monomers and one heparin molecule.

The rate at which the p25α:heparin fibres grow is proportional to
the rate constant kadd, and as argued above we shall also assume
that this rate is proportional to the length l - i.e. the number of
p25α monomers, which have already aggregated onto the fibre. This
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assumption is equal to assuming that the single fibres grow in a
logistic-like manner.

The model also includes a maximal capacity of p25α-monomers
per heparin molecule Lmax, and hence we have the following equa-
tion for the concentration of p25α monomers:

d[Mono]

dt
= −2 · knu · [Mono]2 · [Hep]

− kadd · [Mono] ·
Lmax∑
l=2

l · [Fl] (38)

Once the fibres are formed, and as they continue to grow through
addition of p25α monomers, there is a change that the fibres will
add a second heparin molecule, which we assume disrupts the struc-
ture of the fibre, such that an amorphous aggregate is formed. The
rate at which this happens is proportional to the rate constant kam.
The concentration of fibre "nuclei" (F2) is given by the equation:

d[F2]

dt
= knu · [Mono]2 · [Hep]

− kadd · [Mono] · l · [F2] − kam · [Hep] · [F2] (39)

the concentration of longer fibres (Fl with 2 < l < Lmax):

d[Fl]

dt
= kadd · [Mono] · (l− 1) · [Fl−1]

− kadd · [Mono] · l · [Fl] − kam · [Hep] · [Fl] (40)

and the concentration of amorphous aggregates (of size l) is given
by the equation:

d[Al]

dt
= kam · [Hep] · [Fl] (for l � 2 ) (41)

In order to compare the model results with the ThT data, we define
the total amount of fibres and amorphous aggregates:

[Fibres] =

Lmax∑
l=2

[Fl] (42)

[Amorphous] =

Lmax∑
l=2

[Al] (43)

and assume that the ThT signal is directly proportional to the total
amount of fibres plus the total amount of amorphous aggregates,
but where the amorphous aggregates only produce a ThT signal,
which is 5% the intensity of the ThT signal produced by the fibres -
i.e. ThT ∝ [Fibres] + 0.05[Amorphous]. Finally, the concentration of
heparin is given by the equation:

d[Hep]

dt
= −knu · [Mono]2 · [Hep]

− kam · [Hep] ·
Lmax∑
l=2

[Fl] (44)
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2.4 results

The model was implemented in Matlab and solved with the func-
tion "ode45", which uses fourth order Runge Kutta integration. The
model was fitted to the experimental data shown in Figure 7, the
result of which can be seen in Figure 9. The sigmoidal shape of the
ThT curve is reproduced due to the logistic-like growth of the fibres
(i.e. the growth is proportional to the length l) and - depending on
the heparin concentration - fibrillar and/or amorphous aggregates
are formed.
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Figure 9: Result of a global fit of the model described by the equations (38-44) to experi-
mental data for three different heparin concentrations. Additional to the resulting ThT inten-
sity (solid blue lines) we plot here the relative concentrations of free heparin (not to scale),
p25α monomers, total amount of fibres and total amount of amorphous aggregate. Param-
eters used for this fit: knu = 0.6μM−2s−1, kadd = 36μM−1s−1, kam = 120μM−1s−1,
Lmax = 13.

As shown in Figure 10a, the model clearly reproduces an opti-
mal heparin concentration and the ThT intensity at the end of the
aggregation process is reproduced in very good agreement with the
experimental data (Figure 10b). Also the model predictions of the
concentration of p25α monomer at the end of the aggregation pro-
cess is compared to experimental measurements (Figure 10c), and
we observe that the model reproduces the correct overall effect, al-
though the experimental data indicates a higher plateau level than
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the model. We note that this discrepancy, may to some extend be
explained by the fact that the experimental measurements plotted
in Figure 10c, corresponds to the concentration of all soluble p25α,
which way include both monomers and small oligomers, whereas
the corresponding values from the model corresponds to monomers
only.
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Figure 10: Model predictions for the ThT intensity at different concentrations of heparin. a:
The ThT profiles as a function of time indicates clearly an optimal concentration of heparin
around 10μg/mL. b: The end-point ThT level readout is compared to experimental mea-
surements. c: The end-point concentrations of p25α monomers is compared to experimental
measurements of soluble p25α complexes.

Finally, we test the agreement of the model predictions for a fixed
heparin concentration, and varying initial concentrations of p25α -
see Figure 11. The heparin concentration was fixed at the optimal
concentration 10μg/mL, and the model produces "optimal" growth
curves for each p25α concentration - again we observe an excellent
agreement between the end-point ThT levels of the model and the
experimental data.
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Figure 11: Model predictions of ThT profiles for optimal heparin conditions (10μg/mL) at
different initial concentrations of p25α. a: Model predictions of ThT profiles as a function of
time. b: Endpoitn Tht level is compared to experimental measurements.

2.5 discussion

As mentioned above, the logistic-like growth implemented in the
model, may be justified by imagining several different scenarios, and
is therefore to some extend characterised as a phenomenological
model. We therefore note that the sketch shown in Figure 8, should
not be recognised as the only possible scenario of the current model.
However, the model (which is uniquely defined by its equations),
very successfully reproduces the experimental measurements. The
model parameters were fitted to the kinetic data shown in figure 9,
and the agreement between model and experimental data shown in
Figure 10 and 11 is therefore not trivial.

Other models, which were also explored, were not able to re-
produce the experimental data equally well. Especially, we found
that including individual simulation of the different aggregate sizes
(i.e. distinguishing between different Fl), contributed significantly
to the performance of the model. This finding emphasises the im-
portance of structural aspects for the aggregation process - i.e. a
mean-field model, which does not differentiate between different
aggregate sizes, does not perform equally well.





3
C O M P L E X A G G R E G AT I O N PAT T E R N S O F W H E Y
P R O T E I N

In the previous chapters we have considered the highly ordered
amyloid fibres, but other biological aggregates may be very com-
plex and could consist of several different proteins, which adhere to-
gether in a non-ordered fashion. Such aggregation processes can be
difficult to model in great detail, as there are many unknown factors
- including the specific structures and compositions, or the rates of
the different binding and unbinding reactions. In such cases a math-
ematical model including too many details becomes less meaningful,
and it can be favourable to develop models which describe only the
overall processes and exclude specific details.

In this chapter I shall present a mathematical model for the aggre-
gation of the whey proteins β-lactoglobulin (bLG) and α-lactalbumin
(aLA) influenced by different pH and calcium concentrations. Ag-
gregates of whey proteins comprises a good example of a complex
aggregation process, which includes several proteins and yields dif-
ferent aggregate structures depending on the external conditions.
These aggregates are much less ordered than the amyloid aggre-
gates described in Chapter 1 and 2. Here we investigate a system
consisting of two different whey proteins, subject to variations in
two external conditions (pH and calcium concentration). The aggre-
gates form two seemingly different types of aggregates and in order
to understand and distinguish the different steps of the aggregation
process, we construct a simple mathematical model which includes
the overall reaction kinetics, but excludes as many unknown details
as possible.

3.1 whey protein

Whey constitutes a valuable and versatile source of proteins for
nutritional purposes and as functional ingredients. β-lactoglobulin
(bLG) and α-lactalbumin (aLA) constitute the principal components
of whey protein and represents approximately 54% and 21% of the
protein mass [10, 37]. While the native form of aLA is monomeric,
the native form of bLG is predominantly dimeric. Heating causes
the dimeric forms to dissociate and monomers to unfold into non-
native states [11, 60]. bLG may expose a thiol and hydrophobic
groups and disulphide-linked oligomers of mixed bLG and aLA
may form. Under proper conditions (pH, salt, heat-load etc.) solu-
ble aggregates and larger protein networks, gels or precipitates may
form [1, 43, 56, 57, 64]. The thermal denaturation and following ag-
gregation of whey proteins is a highly relevant event in the process-
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ing of whey proteins in the dairy industry, serving either to increase
shelf-life through microbial destruction or to achieve new function-
alities such as gelation, foaming ability, increased thermal stability
etc. [4, 10, 30, 47, 50, 59, 63, 67, 68, 72, 77].

Much work has been done in defining and explaining the mecha-
nism of how solutions and heating conditions lead to the formation
of soluble aggregates, and most model studies have focused on the
most abundant whey protein, bLG, as a model for whey protein ag-
gregation and a good first approximation to the denaturation and
aggregation patterns observed for more complex protein mixtures.

The present model includes both bLG and aLA, and was con-
structed in order to model experimental data of pH and calcium
dependent aggregation of whey protein. The experimental data was
obtained for 2:1 weight-ratio aLA:bLG protein mixtures, subjected
to controlled heating conditions at 90◦C for 600 seconds. The sam-
ples were exposed to different pH (6.5 − 8.1) and calcium concen-
trations (0− 4mM) and it was observed that the proteins form two
seemingly distinguishable aggregate forms: one aggregate species
consists of relatively small aggregates (SAs) of approximately 10-
15 monomers, and the other aggregate species consists of relatively
large aggregates (LAs) of many hundreds of monomers. Different
pH and calcium conditions influenced the resulting mass-ratio of
small and large aggregates, and the data suggests, that low pH and
high calcium concentrations favour formation of large aggregates,
whereas high pH and low calcium concentration favour formation
of small aggregates. The data also suggests that bLG monomers are
consumed faster when pH is high (see Figure 14).

3.2 mathematical model

In order to understand and distinguish different steps of the aggre-
gation process, a mathematical model of the reaction kinetics was
constructed. The model is based on knowledge from previous stud-
ies of whey protein, and on the experimental findings described
above. The mathematical model can be used as a means of testing
hypotheses and assumptions about the different processes, that oc-
cur in the system. The model is sketched in Figure 12 and is based
on the following basic assumptions:

• Initially the system consists of bLG and aLA monomers in a
solution with a given pH and calcium concentration.

• The monomers can combine to form non-native dimers. Only
bLG:bLG and aLA:bLG dimers are allowed in the model as
aLA:aLA dimers are very unlikely, due to the lack of a free
thiol in aLA.
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• Small aggregates (SAs) are formed when the dimers grow to
become trimers, quatremers etc. Growth happens by adding
additional monomers onto the existing oligomer.

• Larger aggregates (LAs) may form when oligomers lump to-
gether, in a way which is fundamentally different from regular
oligomer growth. Whereas the regular oligomer growth can
happen only by addition of monomers, formation of "Large
Aggregates" may involve direct aggregation of oligomers of all
sizes.

• Small aggregates and large aggregates are treated as two dis-
tinct types of aggregates in the model. The model assumes
no specific spatial arrangement of the different aggregates al-
though the small aggregates are thought to have a somewhat
linear structure.

• Any calcium is present in the solution may adhere to any
monomer or oligomer in the solution.

• The different processes in the system are can be dependent
on calcium or pH, and we model these processes consistently
with the findings of the experimental results.

The model is constructed keeping in mind the principle of Occam’s
razor: We want the model to be as simple as possible, while still
reproducing the experimental results. By minimizing the number
of assumptions, we also minimize the number of unknown rate-
constants, which will have to be fitted to the data. It is very pos-
sible that several models will be able to produce acceptable fits to
the data, and hence we cannot rule out other possible processes, but
we can hope to capture the dominating processes of the system, and
rule out models that cannot produce acceptable fits.

Reactivity of Monomers

The reactivity of bLG is dependent on the current tertiary structure.
When heated above 65 degrees bLG denaturates partially and a con-
formational change results in exposure of the free thiol group as
well as parts of the hydrophobic core of the protein. The reactive
species of bLG is the thiolate form, and since the conformational
transition is reversible, only a fraction of bLG is truly available for
aggregation. The reactivity of bLG increases with increasing pH (as
also indicated by the experimental data), and therefore we include
in our model a "reactivity" RbLG, which is proportional to the frac-
tion of bLG in the basic form. We calculate this fraction using the
pKa value of bLG, which is ∼ 8.7.
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Figure 12: Sketch of the different aggregation paths of the model.

In practice this means, that all reactions which are proportional to
the amount of bLG monomer is also proportional the basic fraction
fbase given by:

RbLG = fbase =
B

B+A
=

B/A

B/A+ 1
(45)

where

(B/A) = 10(pH−pKa) (46)

aLA, on the other hand, van be considered to be largely denaturated
under all the relevant conditions and therefore has a reactivity of
100%:

RaLA = 1 (47)

Binding of Calcium

The amount of added calcium has a large impact on the aggregation
processes although the specific reaction processes are unknown. By
measuring the amount of free calcium with a calcium electrode (data
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not shown) it has been observed, that free calcium concentration de-
cays relatively fast, and that the calcium therefore must adhere to the
protein in the solution. In order to simplify our model we assume
that all the calcium adheres to the protein effectively immediately af-
ter denaturation, and we also assume that each monomer can bind
up to two calcium ions (see Figure 13).

In the model all calcium is distributed at random amongst the
monomers in the initial solution: if there are C calcium ions and
M monomers in the solution there must be 2M binding sites for
calcium of which C sites are occupied. The probability of each bind-
ing site to be occupied is given by p = C/(2M). The amount of
monomers with two bound calcium ions is therefore Mp2 amount
of monomers with no bound calcium is M(1− p)2 and the amount
of monomers with one bound calcium ion is 2Mp(1− p) (where the
factor 2 is a combinatorial factor). Once the calcium is distributed
amongst the monomers in the initial solution, we do not allow for
unbinding of calcium. The calcium ions therefore follow the monomers
as they aggregate, but we do not keep track of the specific positions
of a calcium ion within an aggregate - we only keep track of the
total amount of calcium within a certain aggregate.

Reaction Rates

The model includes several chemical reactions for which the rate
constants are unknown. These rates must all be fitted to the experi-
mental data and we denote the rate constants as follows: the rates at
which dimers are formed are proportional the rate constants kbb for
bLG:bLG dimers and kab for aLA:bLG dimers. The rate at which
small aggregates add additional monomers is assumed to be inde-
pendent of the size and composition of the existing small aggregate,
but depend only on the kind of monomer, which is added. Hence
rate at which the small aggregates grow are proportional to the rate
constants kb for addition of a bLG monomer and ka for addition of
an aLA monomer. The rate at which large aggregates are formed is
proportional to the rate constant kLA. This process is also pH and
calcium dependent and the details are described in a separate sec-
tion below. We also include an unbinding rate by which a small ag-
gregate can unbind from a large aggregate - this rate is proportional
to the rate constant ku.

Large Aggregates

The large aggregates cannot simply be very large oligomers as this
would suggest a continuous range of sizes - and this is not observed
experimentally. There are a number of different ways one can imag-
ine that the large aggregates form: maybe the monomers can form
two different kinds of aggregate - one being the small aggregates
(oligomers) that grow from dimers to trimmers etc. and the other
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Figure 13: Our model assumes that all monomers can bind up to two calcium ions. This
is implemented by distributing all calcium on the initial monomer mixture, and as a result
there are 6 different monomers present in the initial solution - three of each monomer-type:
bLG and aLA (in this Figure: b and a). The monomers form dimers of the type aLA:bLG and
bLG:bLG and there are 5 different dimers of each type.

being large aggregates which could possibly grow faster or in a
less ordered fashion. In this scenario there would therefore be two
competing pathways, that deplete the monomer concentration - one
pathway leading to formation of small aggregates and another path-
way leading to formation of large aggregates. Another possibility
would be that only oligomers of a certain size can form large aggre-
gates by "lumping together" i.e. adhering to each other once they
have grown to a certain size. This scenario would therefore describe
a linear pathway where the monomer concentration would be de-
pleted due to formation of small aggregates, and the concentration
of small aggregates would be depleted due to formation of large
aggregates. In order to minimize the number of assumptions, we
allow both possibilities: oligomers of all sizes (small aggregates and
monomers) can then form large aggregates by "lumping together",
in a less ordered fashion. We call this model the "Mixed Pathways
Model".
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While we keep track of the particular sizes of small aggregates,
we do not specify the sizes of large aggregates, but simply model a
pool of large aggregates, which can bind and release (unbind) small
aggregates (with the rates kLA and ku). In order to incorporate the
observed influence of calcium and pH on aggregate formation we
introduce an aggregation process which depends on calcium and
pH in the following way:

kLA = k1(Ca/Length) + k2(pHthreshold − pH) (48)

In this way the large aggregates are favoured by high calcium con-
centrations and low pH in a linear and mutually independent fash-
ion. The calcium dependence is chosen to be such that it is the
calcium density in the oligomer and not the total amount of cal-
cium which is important. Here ’Length’ is the length of the given
oligomer measured in number of monomers and Ca/Length thus
represents the calcium density. The pH dependence is proportional
to (pHthreshold − pH), where pHthreshold is an unknown parame-
ter.

Model Implementation

If each protein can bind up to two calcium ions this means there are
three version of each monomer:

(bLG) (aLA)

(bLG)-(Ca) (aLA)-(Ca)

(bLG)-(Ca)2 (aLA)-(Ca)2

With 6 different monomers it is in principle possible to form 18 dif-
ferent dimers. But we do not allow for pure aLA dimers and we do
not keep track of the explicit composition but only to total number
of calcium ions in the dimer. This leaves 10 different possibilities:

(bLG)-(bLG) (bLG)-(aLA)

(bLG)-(bLG)-(Ca) (bLG)-(aLA)-(Ca)

(bLG)-(bLG)-(Ca)2 (bLG)-(aLA)-(Ca)2
(bLG)-(bLG)-(Ca)3 (bLG)-(aLA)-(Ca)3
(bLG)-(bLG)-(Ca)4 (bLG)-(aLA)-(Ca)4

In order to implement the model we denote the small aggregates
SA(i,j,c) where i equals the number of aLA monomers, j equals the
number of bLG monomers and c equals the number of calcium ions
bound to the oligomer:

SA(i,j,c) = (aLA)i(bLG)j(Ca)c

Although the monomers are not thought of as small aggregates we
use for implementation purposes the notation:
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SA(0,1,c) = bLG monomers
SA(1,0,c) = aLA monomers

and for dimers:

SA(0,2,c) = bLG-bLG dimers
SA(1,1,c) = bLG-aLA dimers

We also define the total number of bLG monomers:

bLGsum =

2∑
c=0

SA(0,1,c)

the total number of aLA monomers:

aLAsum =

2∑
c=0

SA(1,0,c)

and the total number of small aggregates which are larger than
monomers:

SAsum =

⎡
⎣ ∞∑
i=1

∞∑
j=1

2∑
c=0

SA(i,j,c)

⎤
⎦− bLGsum − aLAsum

When small aggregates bind to a large aggregate we store the
information about the small aggregate (i.e. the amount of aLA, bLG
and calcium in the small aggregate) but denote it LA(i,j,c) instead of
SA(i,j,c).

SA(i,j,c) → LA(i,j,c) SA is converted to (binds to) LA

We do not model explicitly the size distribution of the large aggre-
gates but simply keep track of the total amount of protein (and cal-
cium) which is in the large aggregate "state". The total amount of
large aggregate is given by:

LAsum =

∞∑
i=0

∞∑
j=0

2∑
c=0

LA(i,j,c)
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Equations

The equations governing the dynamics of monomers are given by:

dSA(0,1,c)

dt
= −kbbSA(0,1,c)

(
bLGsum + SA(0,1,c)

)
− kabSA(0,1,c)aLAsum

− kbSA(0,1,c)SAsum

− kLASA(0,1,c) + kuLA(0,1,c)

dSA(1,0,c)

dt
= −kaaSA(1,0,c)

(
aLAsum + SA(1,0,c)

)
− kabSA(1,0,c)bLGsum

− kaSA(1,0,c)SAsum

− kLASA(1,0,c) + kuLA(1,0,c)

(49)

where the second term in the parenthesis comes from the fact that
two monomers are used when a homogenic dimer is formed. The
equations governing the dynamics of dimers are given by:

dSA(0,2,c)

dt
=

∑
p+q=c

kbbSA(0,1,p)SA(0,1,q)

− kbbLGsumSA(0,2,c)

− kaaLAsumSA(0,2,c)

− kLASA(0,2,c) + kuLA0,2,c

dSA(1,1,c)

dt
=

∑
p+q=c

kabSA(1,0,p)SA(0,1,q)

− kbbLGsumSA(1,1,c)

− kaaLAsumSA(1,1,c)

− kLASA(1,1,c) + kuLA(1,1,c)

(50)

The equations governing the dynamics of small aggregates that are
larger than dimers are given by:

dSA(i,j,c)

dt
=

2∑
k=0

kaSA(1,0,k)SA(i−1,j,c−k)

+

2∑
k=0

kbSA(0,1,k)SA(i,j−1,c−k)

− kaaLAsumSA(i,j,c)

− kbbLGsumSA(i,j,c)

− kLASA(i,j,c) + kuLA(i,j,c)

(51)
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And finally the equations governing the dynamics of the large ag-
gregates are given by:

dLA(i,j,c)

dt
= kLASA(i,j,c) − kuLAi,j,c

(52)

3.3 results

The mathematical model was implemented in Matlab and solved
with the function "ode45", which uses fourth order Runge Kutta in-
tegration. The results of fitting the model to kinetic data for differ-
ent combinations of pH and calcium can be seen in Figure 14. The
rate parameters of the model have been globally fitted to match the
experimental data, and as can be seen from Figure 14, the model
successfully captures both the dynamics of a particular aggregation
experiment (for a given pH and calcium concentration) and the over-
all effects of changing pH and calcium. High pH and low calcium
concentration results in aggregates dominated by small aggregates
(SAs). Also high pH leads to fast consumption of monomers, due to
the high reactivity of bLG. Both low pH and high calcium concen-
tration results in aggregates dominated by large aggregates (LAs),
where high calcium concentration and high pH is dominated by fast
kinetics and a clear overshoot effect in the concentration of small
aggregates, the situation with low pH and low calcium concentra-
tion is dominated by a slower kinetics, although with a similar end
result after 600 seconds of heating. As we keep track of the sizes
of small aggregates in the model, we can use the model to predict
differences in the size distribution of small aggregates for different
values of pH and calcium concentration. The results agree with the
overall expected sizes (average 10-12 monomers). Further verifica-
tion of the model might be obtained if a higher resolution could be
obtained for size measurements. This was, however, unfortunately
not possible experimentally due to overlap of peaks from small- and
large aggregates, respectively. Other versions of the model have also
been tested (data not shown), but we have not been able to pro-
duce equally successful fit using models of "Competing Pathways"
or "Linear Pathways" (as described above).
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Figure 14: Model fit (lines) to experimental data (dots), for the "Mixed Pathways Model". The
experimental data at pH = 6.5 and Ca = 2, has been disregarded as it deviates significantly
from the expected output, and has possibly been mis-recorded. Parameters used for this fit:
ka = 0.05 s−1, kb = 0.0008 s−1, kab = kbb = 0.03 (Ms)−1, k1 = k2 = ku = 0.02 s−1,
pKa = 8.7, pHthres = 8.3.
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Figure 15: Size distribution of the small aggregates (oligomers), as theoretically predicted by
the "Mixed Pathways Model", at the end of the aggregation process (at time t = 600 seconds).
Parameters are the same as in Figure 14.
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I N T R O D U C T I O N

Many mathematical models of biological systems have focused on
the dynamics of a single cell or another small and confined system
for which space can readily be neglected. In these cases a completely
well mixed model can be applied with great success. It is however,
important to consider the possible functions and restrictions that
may be introduced by different spatial arrangements - especially
when modelling large systems such as multicellular organisms or
other systems for which the relevant time and length scales are large
compared to the effective diffusion constant.

In this part of the thesis I shall consider a biological system for
which different spatial arrangements are very important. Specifi-
cally, we shall consider different aspects of inflammatory response,
both in general and in relation to type II diabetes.

Spatial Restrictions and Advantages

There are many interesting biological systems, which have evolved
to overcome certain spatial restrictions. In multicellular organisms
a typical challenge is to send information over long distances, in a
fast and reliable manner. Well known examples which overcome this
challenge are the nervous system, the blood stream and the venous
system. But there are also many biological systems, which exploit
spatial arrangements to their advantage. Well known examples are
the flagella of bacteria or our own body parts (legs, fingers, teeth,
etc.) - different species have evolved to perform different tasks. On
the single cell scale, spatial arrangements are also very important.
Inside an eukaryotic cell, biological membranes serve to organise
different chemical reactions into specialised compartments and in
many cases spatial restrictions are actively constructed in order to
perform different functions and maintain homoeostasis.

Inflammation

As an example of a system, for which spatial organisation plays
a key role, we shall in Chapter 4 consider different aspects of in-
flammatory response. During inflammatory response many differ-
ent components need to interact in order to localise and eliminate
intruding pathogens, and we shall focus on the signal transmission
on tissue level, which is needed in order to attract and lead white
blood cells to the site of infection. In order to study the cell commu-
nication on tissue level we construct a simple mathematical model
of the tissue cells. The model is based on the regulatory network of
the transcription factor NF-κB, which is known to play a key role in
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inflammatory response, and which regulates the local concentration
of cytokines, that function as chemoattractants for migrating white
blood cells.

Type II Diabetes

Inflammatory response is also highly involved in the pathology of
type II diabetes, where the insulin producing β-cells, often display
chronic low-grade inflammation. The β-cells strongly regulate the lo-
cal concentration of the cytokine IL-1β, and previous studies of the
regulatory system inside β-cells have pointed out the possibility of
a so-called vicious cycle, in which β-cells maintain an inflamed state
in a self-sustaining manner. The mathematical model developed in
Chapter 4, is therefore easily transferable to the β-cells and in Chap-
ter 5 we extend the model in order to study inflammation in relation
to type II diabetes.

The β-cells are localised in the pancreas, where they are organised
into small clusters called pancreatic islets (or islets of Langerhans).
In Chapter 5 we study how such spatial arrangements may add to
the overall regulation of IL-1β, and consequently lead to different
islet fates.

50



4
C Y T O K I N E WAV E S I N T H E I N F L A M M AT O RY
R E S P O N S E

The inflammatory response is a good example of a complex process,
in which many different components need to interact in order to
achieve a common goal: eliminate an intruding pathogen. The in-
teractions involve several aspects that need spatial coordination: lo-
calization of the intruding pathogens, signalling to the bloodstream
and recruitment of white blood cells. In this chapter I shall present
a mathematical reaction-diffusion model, which has been especially
developed to study signal transmission in the tissue. The model is
based on the regulatory network of the transcription factor NF-κB,
where the internal details of the single cell have been simplified
in order to construct a multicellular model, which investigates the
system on tissue level. Before I describe the model in detail, some
general aspects of inflammation and NF-κB are introduced.

relevant publications:
Pernille Yde, Benedicte Mengel, Mogens H Jensen, Sandeep Krishna
and Ala Trusina. Modeling the NF-κB mediated inflammatory re-
sponse predicts cytokine waves in tissue. BMC Systems Biology 5:115
(2011)
Pernille Yde, Mogens Høgh Jensen, and Ala Trusina Analyzing in-
flammatory response as excitable media Physical Review E 84:051913
(2011)

4.1 inflammation

Inflammation is the body’s first reaction to local damage caused ei-
ther by infectious agents or by other injury such as burns, frostbites
or chemical irritants. Inflammation is non-specific and is part of the
innate immune system. Its goal is to eliminate the injurious agents
and remove damaged tissue components before healing and repair
can begin.

The inflammatory response is initiated by damaged cells in the
connective tissue which release a range of signaling molecules. These
signalling molecules mediate (i) a vascular response which increases
the blood flow around the site of injury and (ii) a cellular response
which recruits white blood cells to the cite of injury - mainly neu-
trophils are recruited. Neutrophils are phagocytotic cells that can
engulf and digest damaged cell parts and foreign components (e.g.
bacteria and viruses) in a process called phagocytosis. As a result all
injurious agents are removed and the injured tissue is prepared for
healing[55].
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The Chemoattractant Signal

When the neutrophils exit the blood stream they must actively move
in a directed manner in order to reach the site of injury. This directed
movement is called chemotaxis and the neutrophils follow a chem-
ical signal of chemoattractants such as chemokines and cytokines.
The chemoattractant molecules are released from the tissue cells at
the site of injury, however it is unknown how the chemoattractant
signal is transmitted through the tissue. In order to signal a direc-
tion for neutrophils to follow, a local gradient of chemoattractant is
needed - and this gradient must be sharp enough for neutrophils to
detect.

In principle there are multiple ways a chemoattractant signal can
be transmitted through the tissue, however one can argue, that not
all of them are equally efficient and reliable. In the simplest scenario
the chemoattractant molecules diffuse passively from the site of in-
fection. In this case the resulting concentration gradient decays ex-
ponentially with the distance from the source [74], and the range of
the signal will be limited by the typical short half-life of the chemoat-
tractant molecules. The gradient signal is therefore relatively short-
ranged, and can only recruite neutrophils that are already relatively
close to the site of infection - this scenario is visualised in Figure
16a.

Interestingly, some neutrophil chemoattractants, e.g. the cytokines
TNF and IL-1, have the unique ability to self-amplify by means of
tissue cells or tissue resident macrophages [49]. Such an active partic-
ipation of tissue cells, could potentially amplify the cytokine concen-
tration across the tissue, and create a sustained high concentration of
cytokines. The blood vessels would serve as sinks where cytokines
are carried away by the bloodstream, and as a result a sharp gra-
dient would develop near the blood vessels. However, away from
the blood stream, the concentration of cytokines will reach a local
steady state, in which production is balanced by degradation, and
as a result there is no chemoattractant gradient for the neutrophils
to follow - this scenario is visualised in Figure 16b.

It is important to note that both scenarios ("No Amplification", Fig-
ure 18a and "Continuous Amplification", Figure 18b) create static
gradients, i.e. once in steady state, the gradients are not changing in
time. Such static gradients are intrinsically toxic for the tissue as, for
example, continuous exposure of tissue cells to high TNF levels trig-
gers apoptosis [7]. Interestingly, some experimental evidence sug-
gest that static gradients are also suboptimal for neutrophil chemo-
taxis; neutrophils seem to orient themselves better when exposed to
temporally varying gradients [2, 21, 28, 69, 70].

If the cytokine concentration is not amplified continuously, but
transiently (i.e. with a peak-like profile), the tissue cells will avoid
sustained exposure to toxic cytokines, while the signal - the chemoat-
tractant gradient - can still penetrate far in the tissue. Such transient
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Figure 16: Three scenarios for signal propagation from the site of infection and neutrophil
recruitment. The site of infection is marked by the black circle. Cells are aligned vertically,
and changes of chemoattractant concentrations in time, are developing from left to right.
White lines represent trajectories of neutrophils chemotaxing from blood vessels (dashed
lines at the boundaries). The trajectories were calculated using a model described in [76].
In panel a the chemoattractant is simply diffusing from the site of infection. The signal is
short-ranged, and neutrophils can only be recruited if they are not too far away - here no
neutrophils are recruited from the distant blood vessels. In panel b the diffusing chemoat-
tractant is continuously amplified by the tissue cells. The gradient is sharp close to the blood
vessels, but disappears deeper in the tissue - thus leaving neutrophils devoid of direction.
In panel c diffusing chemoattractant is amplified transiently, resulting in propagating waves,
that recruit neutrophils from the blood stream and also serve as a directing signal for the
neutrophils that are deeper in the tissue.

amplification can result in single or re-emerging propagating waves,
that transiently recruit neutrophils - such a scenario is visualised in
Figure 18c.

Cytokines induce activation of the transcription factor NF-κB, which
is a key regulator of the inflammatory response. In turn active NF-
κB upregulates cytokine production [3, 41, 61], thus constituting a
positive feedback (amplification). The NF-κB response to stimuli is
indeed transient, and the synthesis and secretion of inflammatory
cytokines from tissue cells were shown to be parallel to the transient
NF-κB activation [31].

4.2 nf-κb

The transcription factor NF-κB (”Nuclear factor kappa B”) induces
transcription of many genes, and besides playing a key role in im-
mune response, NF-κB is also involved in other processes such as
cellular growth, survival and apoptosis.

NF-κB is a family of transcription factors and consists of 5 differ-
ent proteins, named p65 (or RelA), RelB, c-Rel, p50 and p52. The
5 different proteins bind to each other and form dimers. The most
common dimer is p65:p50, but both hetero- and homodimers exist.
The different dimers all bind to the same binding domain on the
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DNA, and in the following we shall refer to all versions of the dimer
simply as NF-κB.

The regulatory system of NF-κB is sketced in Figure 17A. NF-
κB is inhibited by several inhibitors (e.g. IκBα, IκBδ and IκBε - all
referred to as IκB), which bind to NF-κB and form an NF-κB-IκB
complex. In a resting cell almost all NF-κB is present in this inhibitor-
bound form, which is located outside of the nucleus. Here NF-κB is
in-active, meaning that it does not bind to DNA and hence does
not induce transcription. The amount of NF-κB which is localized
outside the nucleus is some times referred to as cytoplasmic NF-κB.

Upon extracellular stimulation the IκB kinase, IKK, is converted
into its active form, which can phosphorylate the inhibitor and thereby
label it for active degradation. When the inhibitor is degraded, NF-
κB is released from the NF-κB-IκB complex and NF-κB is therefore
free to enter the nucleus. Inside the nucleus NF-κB is active, mean-
ing that it can bind to DNA and induce transcription. The amount
of NF-κB inside the nucleus (active NF-κB) is some times referred to
as nuclear NF-κB.

� � ����������� �	
�����������

Figure 17: a: The regulatory system of NF-κB, including the inhibitors (IκB) and upstream
regulators (here the upstream regulator A20 is shown). b: A sketch of the simple model of the
NF-κB system, described by the equations (53)-(55). c: A 2D model of the tissue consisting
of several cells in a hexagonal lattice. As indicated the cytokine source described by the
parameter S (see equation (56)), is only added to a single cell in the lattice - this position
resembles the site of infection.

Self-Inhibition

Amongst other genes, NF-κB induces transcription of the genes cod-
ing for its own inhibitor proteins. When this happens, mRNA is
produced and transported out into the cytoplasm, where it is trans-
lated and new IκB is synthesized. The IκB proteins enter the nu-
cleus where they bind NF-κB, and the NF-κB-IκB complex is again
transported out of the nucleus. All in all the NF-κB and IκB system
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constitutes a negative feedback loop, which can shuttle NF-κB in
and out of the nucleus, changing from inactive to active and back
again. Previous studies have shown that the amount of nuclear NF-
κB tends to exhibit damped oscillations upon extracellular stimuli
and these oscillations can be modeled by nested negative feedback
loops[32, 33, 39, 45, 48].

Amplification of the Cytokine Signal

Extracellular cytokines and chemokines trigger activation of the NF-
κB system by binding to receptors on the cell surface which facili-
tate IKK activation. Active NF-κB induces transcription of hundreds
of genes and very interestingly NF-κB also induces transcription of
many cytokines (e.g. TNF, IL-1 and IL-6). Newly synthesized cy-
tokines are liberated into the extracellular space where they are free
to bind to receptors once again. Hence there is a positive feedback
between cytokines and NF-κB with the result that cytokine concen-
tration is amplified by NF-κB activation. This positive feedback has
to our knowledge not received much attention in the previous mod-
els of NF-κB and we have therefore constructed a model which in-
cludes this feedback.

4.3 model

The NF-κB system is very complex and an attempt to model every
biological component and every chemical reaction explicitly would
be almost impossible - also it would include many unknown param-
eters and a fit to experimental data would probably not be unique. A
previous model developed by Hoffmann et. al. includes 24 variables
and this model has since been the main inspiration to the develop-
ment of even more simplified models including 7 or even as little as
3 variables[33, 39, 45].

For the present project the main goal is to develop a model, which
can be used to model cytokine regulation on tissue level and there-
fore we construct a very simplified model of the NF-κB system but
add the positive feedback on cytokine production as this could be
important for intercellular cytokine regulation. The NF-κB system is
simplified as sketched in Figure 17B.

Equations

The model consists of the three variables N, R and C. All three vari-
ables are in principle functions of both time and space, but for sim-
plicity we abbreviate N(r, t), R(r, t) and C(r, t) by the shorthand no-
tation N, R and C.
N represents active (i.e. nuclear) NF-κB, R represents regulating

proteins such as inhibitors (e.g. IκBα, IκBδ and IκBε) and upstream
regulators (e.g. A20 and cesanne) and C represents cytokines (e.g.
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TNF, IL-1, IL-6, etc.). The model consists of a negative feedback be-
tween N and R and a positive feedback between N and C - see Figure
17B. The feedbacks are modelled by the equations:

dN

dt
= kCN · C2

C2 +K2
A

· (NT −N) − kRN · R (53)

dR

dt
= kNR ·N− R/τR (54)

dC

dt
= p ·N−C/τ+D∇2C+ S∗ (55)

The first term in the equation for N represents cytokine mediated ac-
tivation of NF-κB. The term is nonlinear in C and the Hill-function
(with Hill coefficient 2) comprises a threshold effect in the NF-κB
activation. The parameter KA represents roughly the threshold cy-
tokine concentration C∗ that must be exceeded in order to effectively
activate NF-κB. NT is the total amount of NF-κB (nuclear and cyto-
plasmic: NT = N+Nc) which is (to a good approximation) constant
within the cell [39]. The term representing activation of NF-κB is
proportional to (NT −N), because this denotes the amount of cyto-
plasmic NF-κB, which is available for activation. The second term in
the equation for N is a simple linear term which is proportional to
R, due to the negative feedback. Note that this negative term is (for
simplicity) independent of N. As a consequence of this, there is a
chance that N may become negative - which would be un-physical.
In order to avoid this we impose the special condition ∂N/∂t � 0

when N = 0. Numerically, this is implemented by resetting N = 0

every time N becomes negative.
The first term in the equation for R represents production of in-

hibitors and regulators through transcription and translation and is
to a first approximation linearly proportional to N. The second term
in the equation for R represents simple decay with the half-life τR

The first term in the equation for C represents production of cy-
tokines through transcription and translation and is linear propor-
tional to N. The second term in the equation for C represent simple
decay with the cytokine half-life τ and the third term represents
diffusion of cytokines between cells. Note that only cytokines are
allowed to diffuse between cells whereas NF-κB and inhibitors are
of course contained within the cell membrane. Finally, the fourth
term S∗ represents an external production of cytokines. This exter-
nal cytokine source serves as the initial stimuli in our simulations
and is meant to represent cytokines produced by macrophages or
other first responders at the site of infection - or in a laboratory
setup the external cytokine source could represent cytokines which
are added to the system via pipetting. In general S∗ is a transient
cytokine source in our simulations and for simplicity we choose a
step-like function:

S∗ =

⎧⎨
⎩
S > 0 for 0 < t < tS

0 otherwise
(56)
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In order to model the tissue we set up a 2D reaction-diffusion
model of an islet consisting of a number of cells arranged on a hexag-
onal grid - see Figure 17C. In the tissue model the external cytokine
source S∗ only becomes non-zero at a specific position in the tis-
sue. This position in meant to simulate the site of infection where
cytokines are initially released from macrophages, and the aim of
our model is then to study how the cytokine signal is transmitted
through the rest of the tissue.

Parameters

The rate-constants kCN, kRN, kNR and τR have been fitted to match
the typical timescale of the NF-κB initial peak and are therefore fixed
parameters for all our simulations (kCN = kRN = kNR = 5.0 hr−1

and τR = 2 hr) [74]. The halflife and diffusion constant of cytokines
are fixed based on experimental measurements: we use the diffusion
constant D = 2 · 10−7 cm2

sec and halflife, τ = 10 minutes [12, 29, 40].
The cytokine concentration has been rescaled such that KA = 1 and
the cytokine concentration is measured in units of KA (i.e. KA → 1

and C → C/KA). Also the diameter of a tissue cell is set to dcell =

15μm. Similarly the NF-κB concentration has been rescaled in units
of NT (i.e. NT → 1 and N → N/NT ) [39, 75, 76], thus the only
free parameters of the model are p and S (and tS). The parameter p
sets the strength of the positive feedback, and therefore reflects how
strongly the cytokine concentration is amplified by NF-κB regula-
tion. The parameter S reflects the strength of the external cytokine
source which is present at times 0 < t < tS.

Parameters

dcell 15 μm

kCN 5 hr−1

kRN 5 hr−1

kNR 5 hr−1

τR 2 hr

KA 1 M/KA

NT 1 M/NT

D 2 · 10−7 cm2

sec

τ 10 min

p variable hr−1

S variable M/KA hr−1

tS variable hr

Alternative Versions of the Model

The equations (53)-(55) resemble the "minimal version" of a model
which has been developed over time. Earlier versions of the model
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have slightly different equations but give the same overall results
[74, 75, 76]. In earlier versions terms representing NF-κB-induced
production were modeled not linearly proportional to N, but pro-
portional to a term of the form N2/(N2 +KH). This alternative form
takes into account cooperative effects caused by the dimeric nature
of NF-κB, but the linear form is preferred because it is simpler yet
gives similar results. The term regarding inhibition of NF-κB in
equation (53) is only proportional to R, but should of course also
depend on N. In earlier versions the term was therefore multiplied
by a factor of the form N/(N− KN), however, we found that a very
small KN gave the best results and therefore we choose to ignore the
term N/(N− KN) ≈ 1 in order to keep our equations as simple as
possible. Effectively, this approximation assumes that the inhibition
process is always saturated in N. Lastly, the hill coefficient in equa-
tion (53) has in earlier versions of the model had the value 3 instead
of 2. A higher hill coefficient narrows the threshold effect slightly,
but a hill coefficient H = 2 yields similar results.

4.4 results

This section will review the main results obtained from numerically
integrating equations (53)-(55). This section will to some extend fol-
low the results published in [75] and [76] and we shall firstly con-
sider a single cell before moving on to a tissue model consisting of
several cells.

single cell model

A single cell is simulated by numerically integrating equations (53)-
(55), disregarding the diffusion term in equation (55). The equations
have been implemented using a fourth-order Runge Kutta method
with fixed stepsize. The system is initialized in the steady state N =

R = C = 0, which is also interpreted as the resting state. Initially
there is no stimuli, meaning no external source of cytokines: S∗ = 0.

Response to Different Stimuli

At time t = 0 the system is stimulated by ”turning on” the external
cytokine source (S∗ = S > 0) and the response to different stimuli is
investigated - see Figure 18. The external cytokine source S causes
C to increase to a new steady state level where the positive term S

is balanced by the degradation with halflife τ. If the stimuli, S, is
strong enough and the cytokine concentration exceeds the thresh-
old level required to activate NF-κB (roughly speaking if C exceeds
the level C∗ ≈ KA = 1) the system will respond with an increase
in N which in turn amplifies C further. Depending on the value of
S, three qualitatively different scenarios can be achieved: (i) if S is
small the increase in C will not activate N (Figure 18a) and C only
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increases slightly. (ii) If on the other hand S is large (Figure 18c) the
increase in C will cause an increase in N which in turn causes R to
increase. As a result a new steady state will be obtained in which R

is high and both N and C are balanced at levels significantly higher
than pre-stimulation values. (iii) Intermediate values of S (Figure
18b) will very interestingly lead to oscillations. As we shall see be-
low this behavior arises due to the bistable nature of the system and
the system oscillates between low and high steady states. In all three
cases the system settles back to the resting state after the initial stim-
uli vanishes - i.e. if the external source of cytokines is "turned off"
after some time (S∗ = 0).
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Figure 18: Numerical simulations of a single cell described by equations (53)- (55). Different
values of the parameter S, result in three qualitatively different responses. a: A small S

does not lead to any significant response. b: Intermediate S leads to an oscillating NF-κB
(N) response and therefore also an oscillating amplification of the cytokine concentration
(C). c: A large S leads to a high steady state, in which both N and C are balanced at levels
significantly higher than pre-stimulation values. Once the initial source is removed (S = 0 at
time t = tS = 20 hrs), the system return to the resting state.

Locked States and Chronic Inflammation

The output of the model also depends strongly on the parameter p.
Also three qualitatively different scenarios can be obtained keeping
S constant and varying p - see Figure 19. The three scenarios have a
lot in common with the scenarios seen in Figure 18, although there
are some appreciable differences. For the scenarios shown in Figure
19 the external source S is kept at the same value as the one used
in Figure 18B - i.e. the external cytokine source is strong enough to
activate NF-κB. But as seen in Figure 19a if p is very small the posi-
tive feedback does not reach its full capacity and as a result almost
nothing happens. Intermediate p leads to oscillations (Figure 19b)
and high p leads to a new steady state in which both N, R and C

are balanced at levels significantly higher than pre-stimulation val-
ues (Figure 19c). There is a very interesting difference between the
situation in Figure 18c and Figure 19c: when the external cytokine
source is removed (S∗ = 0 at t = tS), the system with high p does not
return to the resting state. If p is high enough (as in Figure 19c) the
system will maintain the high-level fixed point even after removal of
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stimuli and we shall refer to such situations as "locked states". Phys-
iologically, these situations are very interesting as they correspond
to situations of constant NF-κB activation which does not resolve by
it self. A locked state may therefore resemble situation of chronic
inflammation.
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Figure 19: Numerical simulations of a single cell described by equations (53)- (55). Different
values of the parameter p, result in three qualitatively different responses. a: A small p

does not lead to any significant response. b: Intermediate p leads to an oscillating NF-κB
(N) response. This panel is exactly equal to panel b in figure 18 c: A large p leads to a
high steady state, in which both N and C are balanced at levels significantly higher than
pre-stimulation values. In contrast to the situation shown in figure 18c, the system of high
p, does not return to the resting state once the initial source is removed (S = 0 at time
t = tS = 20 hrs). This situation is referred to as a "locked state".

Phase Space Analysis

The system described by the equations (53)-(55) has many things in
common with other excitable media as e.g. the Belousov Zhabotin-
sky reaction, and in order to analyse the system we shall follow an
approach similar to the one described by Meron [46]. We shall see
that plotting the nullclines and the phase space of the system leads
to an easy apprehensible understanding of the system, and confirms
for us, the notion that the different versions of the model (described
in the end of Section 4.3) will in fact lead to similar qualitative re-
sults.

We notice that N and C are fast variables whereas R is a relatively
slow variable due to the long halflife τR. Thus the model contains
two effective timescales and as a first approximation we assume that
N and C will effectively reach steady state and adiabatically follow
changes in R. In order to understand the system we therefore inves-
tigate the phase space and nullclines of N and C for fixed values of
R in the N-C-plane. The nullclines are defined by the equations:

N-nullcline: 0 = kCN · C2

C2 +K2
A

· (NT −N) − kRN · R (57)

C-nullcline: 0 = p ·N−C/τ+ S∗ (58)
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Figure 20: The situation shown in Figure 18b is here shown in the phase plane of N and C.
Nullclines are plotted in blue (dN/dt = 0) and green (dT/dt = 0) lines. Stable fixed points
are indicated with solid red dots. Unstable fixed points are indicated with red circles. See
text for a description of the different panels. The times corresponding to the panels are: A)
t = 0.0 to t = 1.0, B) t = 1.1, C) t = 1.2, D) t = 1.4, E) t = 1.6, F) t = 2.0, G) t = 2.7, H)
t = 3.7, I) t = 9.1 hours.

or expressing N as a function of C:

N-nullcline: N = 1−
kRNR(C2 +K2

A)

kCNC2
(59)

C-nullcline: N =
C

τp
−

S∗

p
(60)

In Figure 20 we plot different time instances of the system cor-
responding to the scenario seen in Figure 18b. Before stimulation
(t < 0 and S∗ = 0) the nullclines intersect in 3 distinct points in the
N-C-plane. We notice that these intersections do not necessarily rep-
resent global fixed points of the system, but nevertheless, we shall
refer to the intersections of the nullclines in the N-C-plane as fixed
points.

Before stimulation (t < 0 and S∗ = 0) there are two stable fixed
points separated by an unstable fixed point in-between, and the sys-
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tem is therefore bistable. We shall refer to the two stable fixed points
as ”Fixed Point A” and ”Fixed Point B” - see Figure 20a. For t < 0

(and S∗ = 0) Fixed Point A and the unstable fixed point lie very
close to each other in the N-C-plane and both have relatively low
levels of N and C - see the zoom of panel a in Figure 20. Fixed Point
A corresponds to the resting state and is in fact a global fixed point
of the system.

At time t = 0 the external cytokine source is "turned on" (S∗ = S)
causing the C-nullcline to shift to the right by an amount δ = S · τ,
as shown in the zoom of panel b in Figure 20. Hence, if S is large
enough, Fixed Point A and the unstable fixed point will disappear in
a saddle-node bifurcation, and now the system will begin to evolve
towards Fixed Point B, causing both N and C to increase (Figure
20b). An increase in N causes R to increase correspondingly. As this
happens the N-nullcline is gradually altered - dynamically changing
the phase-space as shown in Figure 20b-d. The system will contin-
uously evolve towards Fixed Point B which is gradually moving
in the N-C-plane (Figure 20b-d) - eventually making N and C de-
crease (Figure 20e). While the N-nullcline moves, Fixed Point A and
the unstable fixed point have re-established in a new saddle-node bi-
furcation (since Figure 20c). Eventually R will increase to such high
values that Fixed Point B coalesces with the unstable fixed point and
disappears in a third saddle-node bifurcation (Figure 20e-f). Now,
the system will evolve towards Fixed Point A, causing N and C to
decrease back to almost pre-stimulation values (Figure 20f-h). As N
is no longer high, R will begin to decrease because of spontaneous
degradation - a relatively slow process set by the timescale of τR.
This will cause the N-nullcline to move ”back” (as shown in Figure
20g-i). As the N-nullcline moves, Fixed Point B and the unstable
fixed point are re-established (Figure 20h) - but now the system is
caught in the basin of attraction of Fixed Point A (Figure 20h). As
R slowly decreases, the system rests in Fixed Point A (Figure 20i).
Eventually, the N-nullcline has moved such that Fixed Point A and
the unstable fixed point once again disappear in a saddle-node bifur-
cation - and the system will once again make a round in the phase
space (Figure 20j).

Influence on the Phase Space by Different Values of S

The qualitatively different scenarios of Figure 18a and 18c can be
well understood from an investigation of the phase space. In order
to exhibit oscillations the system must be able to undergo all the
saddle-node bifurcations described above: firstly, Fixed Point A and
the unstable fixed point coalesce and, secondly, Fixed Point B and
the unstable fixed point coalesce. The value of S sets the size of the
C-nullcline shift, δ = S · τ (recall Figure 20, zoom of panel b). In
Figure 18a, S is so small that the first bifurcation between Fixed
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Point A and the unstable fixed point does not happen. Hence Fixed
Point A is only moved very slightly towards higher values of N and
C, but the system rests in this fixed point (which is still a global
fixed point of the system). In Figure 18c, S is very large and the
shift of the C-nullcline is correspondingly larger. In this scenario the
system comes to rest in Fixed Point B before it disappears in a saddle
note bifurcation - hence we conclude, that in this case, Fixed Point
B must be a global fixed point of the system. If the external cytokine
source is later removed (S∗ = 0 at t = tS) the C-nullcline shifts back
to its original position and this may cause Fixed Point B and the
unstable fixed point to coalesce such that the system can settle back
to the resting state once again - as is the case in Figure 18c.

It is important to note that Fixed Point B must be a global fixed
point in order to obtain a situation as the one seen in Figure 18c.
Global fixed points of the system can be calculated by setting all
three equations (53)-(55) equal to zero. However, just because there
exists a global fixed point, it is not certain that the system will ever
reach this fixed point. Therefore, a calculation of the global fixed
points of the system only gives insight to whether the possibility is
there. But the fate of the system also depends strongly on the initial
conditions and the actions that perturb the system (e.g. the addition
of an external cytokine source).

Influence on the Phase Space by Different Values of p

The slope of the C-nullcline is given by (pτ)−1, and in Figure 21
we plot the C-nullcline for different values of p together with the
N-nullcline for two different values of R (low and high).

If p is very large the slope will be very flat - shifting Fixed Point B
to larger C-values. A large p increases the possibility that the system
will come to rest in Fixed Point B, and if p is very large, removal of
the external cytokine source (S∗ = 0 at t = t∗), which causes the C-
nullcline to shift "back", may not be enough to cause Fixed Point B
and the unstable fixed point to coalesce. Hence the system is locked
in Fixed Point B.

If, on the other hand, p is very small the slope of the C-nullcline
is very steep and even a small increase in R will cause Fixed Point B
to lie very close to the resting state. Hence the system will come to
rest in Fixed Point B, but seemingly the system will not react very
much, because the fixed points are now so close.

Influence on the Phase Space by Different Values of τ

In our simulations we keep τ fixed, because its size is (roughly)
known from the literature. However, changes in the parameter τ has
effects similar to both S and p: the size of the shift in the C-nullcline
is given by δ = S · τ, and the slope of the C-nullcline is given by
(pτ)−1. The effect of τ makes intuitive sense, as all parameters (S, p



64 cytokine waves in the inflammatory response

� � �� ����
�

���
���
���
��	
���

�����

������

	
	�
��

�

��
��

������

������

Figure 21: Visualisation of how changes in the parameter p influences the nullclines. Null-
clines are plotted in blue (dN/dt = 0) and green (dT/dt = 0) lines. The N-nullcline is plotted
for two different values of R (high and low - compare with Figure 20). The C-nullcline is plot-
ted for a range of different p-values.

and τ) influence the total amount of cytokines in the system. Large
S and p both contribute to a large production of cytokines, whereas
a large τ slows down the decay of cytokines.

Alternative Versions of the Model

By plotting the nullclines in phase space, it is possible to directly
understand, how small changes in the equations (53)-(55) would
qualitatively affect the results. We shall now investigate how the
nullclines would look, if we had used an alternative version of the
model - as the ones described by the end of Section 4.3. Originally,
this analysis was performed in the opposite order: starting with a
more sophisticated version of the model, investigating the nullclines
inspired us to simplify the model to the final version given by equa-
tions (53)-(55).

The N-nullcline is given by equation (59), expressing N as a func-
tion of C. For C >> KA(= 1) the N-nullcline approaches a constant:
N = 1− kRNR/kCN. For smaller values of C the N-nullcline curves
sharply and approaches N = −∞. However - as mentioned in Sec-
tion 4.3 - we also impose the special condition ∂N/∂t � 0 for N = 0

(in order to avoid negative values of N). This part of the nullcline
may seem a bit awkward, as it results in a non-differentiable kink
- this is best visible in the N-nullcline in Figure 20e. However, the
kink would have appeared as a smooth curve, if the last term of
equation (53) had been given by kRNR ·N/(N+ K1) instead of the
simpler version kRNR. The corresponding N-nullcline is plotted in
Figure 22 (compare with Figure 20e), where we see the kink is now
replaced by a smooth curve. The curve increases its sharpness as the
parameter K1 decreases, and the simple version given by equations
(53)-(55), corresponds to K1 = 0. Physically, this resembles a situa-
tion in which inhibition of N is always saturated in N - therefore
only depending on the concentration of R (the inhibitors).

The C-nullcline in Figure 22 also represents an alternative model.
Here, the first term in equation (55) is given by pN2/(N2 + K2

2) in-
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stead of pN. We see that the alternative version, which is designed to
take into account the dimeric nature of NF-κB (as described by the
end of Section 4.3), results in a slightly curved C-nullcline, instead
of a straight line. However, we know from the phase space analysis,
that such a sophisticated form of the C-nullcline is not crucial for the
qualitative results and therefore we choose the simple linear form in
order to minimize the number of unknown parameters.
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Figure 22: Visualisation of how the nullclines would look for the alternative model described
in the text (end of Section 4.3). Nullclines are plotted in blue (dN/dt = 0) and green
(dT/dt = 0) lines. The N-nullclines plotted here can be directly compared to Figure 20e.
The alternative version of the model produces nullclines with softer curves, but as can be
inferred from the plot, the alternative model leads to similar qualitative results.

two dimensional tissue model

In order to develop a spatial model of the tissue, we construct a two-
dimensional lattice of cells - see Figure 17c. Every cell in the lattice is
able to regulate cytokine production as described by equations (53)-
(55). Cytokines are allowed to diffuse between cells and - as we shall
see below - this gives rise to interesting spatio-temporal patterns of
high cytokine concentration.

Numerically the spatial model is implemented by updating the
temporal and spatial parts of the differential equations in turn. In
practice this means the equations (53)-(55) are solved in two steps: all
terms except the diffusion term in equation (55) are updated using a
fourth-order Runge Kutta method with fixed stepsize. The diffusion
term is updated using a simple Euler integration scheme, where
cytokines are allowed to diffuse to the six nearest neighbors in the
hexagonal grid. We use open boundary conditions.

Cytokine Waves

During inflammatory response only cells at the site of infection
would be subject to an external stimulus, and - as sketched in Fig-
ure 17c - we simulate this by adding the external stimulus S only to
one cell in the two-dimensional lattice. The specific values of S need
to be somewhat larger than the ones used in the single cell simu-
lations, because diffusion makes the effective removal of cytokines
much larger.
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Figure 23: Numerical simulations of the 2D tissue model sketched in Figure 17c. a: Inter-
mediate values of the parameter p leads to cytokine waves propagating from the site of
infection, where the initial source S is added. When the initial source is removed at time
t = tS = 10 hr, the system settles back to the resting state (not shown). b: High values of
the parameter p leads to locked states, where the cytokine concentration (C) is sustained at
an elevated level. Initially the system propagates a wave of very high cytokine concentration
and the situation shown in the second panel (t = 3.5 hr) corresponds to the second wave.
Hereafter the system sustains an elevated level of cytokines, which only decays close to the
absorbing boundary. The initial source is removed at time t = tS = 10 hr, and as can be seen
from the third panel, the locked state is sustained after the initial source is removed.

In Figure 23a we show a scenario, in which the stimulated cell
oscillates. At time t = 0 an external cytokine source is added to the
stimulated cell (i.e. S∗ = S > 0 only at the stimulated cell), which
starts to amplify the cytokine concentration. The cytokines diffuse
to neighboring cells which consequently also get stimulated - and
thus a wave of high cytokine concentration is created. The oscilla-
tory behavior of the central cell will initialize new waves until the
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external stimulus is removed (by resetting S∗ = 0 at the stimulated
cell). The cells which have S∗ = 0 will only get stimulated when they
feel a spill-over of cytokines from their neighbors and hence the sit-
uation is indeed cooperative in the sense that the cytokine wave is
truly propagated from one cell to the next.

As mentioned in section 4.1 and sketched in Figure 16c the prop-
agating cytokine waves are very interesting, because they may rep-
resent an optimal spatio-temporal chemoattractant signal.

Locked States on the Tissue Level

Locked states similar to the ones described above for the single cell
(Figure 19c) can also exist in the spatial model. If the parameter p is
high enough all the cells in the system will "lock" - see Figure 23B.
As a result the cytokine concentration is constantly elevated and a
gradient is only present close to the absorbing boundaries. again
the locked state is very interesting because it may resemble chronic
inflammation in the tissue.

4.5 discussion of the model validity and physiologi-
cal relevance

The simple model presented in this chapter neglects many details
of the regulatory system of a true cell, and can therefore not be ex-
pected to reproduce the entire truth. However, the simplified model
does capture many interesting features that are also observed exper-
imentally.

Experimental studies of inflammatory response following myocar-
dial infarction (heart attacks), have shown that while all infarctions
lead to robust amplification of cytokine concentrations within the
early response, the cytokine concentrations may return to baseline
levels if the infarction is small. If, on the other hand the infarction is
large (in our model: large S), or if the inflammatory response of the
host is exuberant (in our model: large p), there can be either "sus-
tained cytokine upregulation or a second wave of cytokine upregulations"
[49]. These observation agree very well with the locked states and
the oscillating waves produced by our simple model. Additionally,
the studies of myocardial infarction have demonstrated that, a re-
gion with high cytokine concentration is able to activate cytokine
upregulation in remote regions, which were not affected by the ini-
tial infarction [35, 49, 52]. Again this observation agrees very well
with our simple model, which demonstrates that NF-κB mediated
cytokine amplification is able to spread through tissue as an ex-
citable media.





5
I S L E T S O F L A N G E R H A N S

Islets of Langerhans are tiny clusters of pancreatic cells, that sense
and regulate blood sugar levels by secreting glucagon and insulin
(as well as some other hormones). Glucagon is produced and se-
creted by α-cells and insulin is produced and secreted by β-cells.
The shape and size of the islets of Langerhans varies from between
species, but they are often somewhat spherical in shape and many
species (including humans and rodents) have the β-cells arranged
in the core of the islet, and α-cells arranged around the periphery of
the islet. Rodents have very spherical islets, while human islets have
a more complex and folded structure.

In this section we shall investigate inflammation and cytokine reg-
ulation in the islets of Langerhans. The finite size of the islets im-
poses certain restrictions on the spreading of the inflammatory sig-
nal and as we shall see, the geometry of the islets, may also play a
functional role. To model the β-cells, we use the simple mathemati-
cal model described in Chapter 4, and the main focus of this chapter
will be to investigate different spatial arrangements of the islets.

5.1 type ii diabetes

Dysfunctional, chronic or systemic inflammation is related to a vast
variety of human diseases, many of which are characterised as life-
style diseases, that develop over a long time period, due to a set of
very complex conditions. These diseases have become increasingly
dominant during the 20th century, as the average lifetime has in-
creased, and advances in technology has allowed us to treat many
infectious diseases, which were previously the most dominant lethal
diseases.

Dysfunctional regulation of the inflammatory response also plays
a key role in the pathology of type II diabetes[17, 19]. Type II dia-
betes is characterized by high blood glucose (hyperglycemia) as a
consequence of insulin resistance or insulin deficiency. Insulin pro-
duction is governed by β-cells, which respond to insulin deficiency
by enhancing insulin production. However, if the β-cells fail to com-
pensate sufficiently the islets of Langerhans may enter a state of
chronic inflammation. Over time chronic inflammation in the islets
of Langerhans may lead to β-cell death, which worsens the situation
further.

69
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5.2 β-cells and il-1β

The key mediator of inflammatory activity in β-cells is the cytokine
IL-1β which is known to play a dual role: while transient exposure
to elevated IL-1β concentrations improves insulin secretion and pro-
motes β-cell survival, prolonged exposure to high levels of IL-1β
leads to chronic inflammation, impaired insulin secretion and β-cell
death[19, 20, 65].

IL-1β activates NF-κB and the main signaling pathways of IL-1β
in a β-cell are shown in Figure 24a. Active NF-κB induces produc-
tion of pro-IL-1β, which needs further processing before mature IL-
1β is finally liberated into the extracellular space. The NLRP3 inflam-
masome (which is activated by high glucose levels as well as other
danger signals) cleaves pro-caspase-1, increasing amounts of active
caspase-1, which in turn cleaves pro-IL-1β and forms mature IL-1β.

Hence the system constitutes an amplifying feedback loop in which
IL-1β induces its own expression in a self-sustaining manner. This
feedback has previously been referred to as a vicious cycle[17, 20, 42].

5.3 model

The signaling network of IL-1β in a β-cell (Figure 24a) is very simi-
lar to the one described in chapter 4 (Figure 17a). As a first approxi-
mation we therefore model the β-cells using a similar model (Figure
24b) - but this time the cytokines (C) represent the specific cytokine
IL-1β (I). A pancreatic islet is modeled as a small cluster of β-cells
in a two-dimensional model - see Figure 17c.

Equations

The β-cells regulate the concentration of IL-1β according to the equa-
tions:

dN

dt
= kIN · I2

I2 +K2
A

· (NT −N) − kRN · R (61)

dR

dt
= kNR ·N− R/τR (62)

dI

dt
= p ·N− I/τ+D∇2I+ S∗ (63)

which are explained in more detail in Chapter 4. The β-cell cluster
is surrounded by tissue cells, which do not respond noticeably to
IL-1β. Therefore, this part of the model consists of cells which do
not regulate IL-1β, but simply allows IL-1β to diffuse and decay.
These cells (indicated by the grey cells in Figure 17c) are therefore
described by the equation:

dI

dt
= −I/τ+D∇2I (64)
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Figure 24: a: The regulatory system of NF-κB and IL-1β in β-cells. The main NF-κB system is
describes in Chapter 4, and can also be seen in Figure 17. Here we also show the extra steps
of regulating IL-1β, through activation of the NLRP3 inflammasome and caspase-1. The
NLRP3 inflammasome is activated, by high glucose levels, reactive oxygen species (ROS)
as well as other stress and danger signals. b: A sketch of the simple model of the NF-κB
system and IL-1β regulation, described by the equations (61)-(63) (the model is similar to
the model described in Chapter 4, but sketched again here for convenience). c: 2D model of
an islet. The β-cells are arranged in a round cluster and surrounded by cells, which do not
amplify IL-1β (indicated by the grey color). The surrounding cells allow for diffusion and
degradation of IL-1β (as described by equation (64)). Also indicated (by red cells) are the
IL-1β sources, described by the parameter S (see equation (65)). Here 2 sources are sketched,
but the number and configuration of sources may vary.

Initial IL-1β Sources

In order to model the early stages of the disease we add a number of
IL-1β sources in the islet. It was previously assumed that the initial
increase in islet IL-1β was produced by islet-invading immune cells
(e.g. macrophages), but it has recently been hypothesized that the
initial increase in islet IL-1β is mainly produced by stressed β-cells,
and that immune cells invade the islet later (increasing IL-1β levels
further)[20]. In our model we do not specify the originators of the
initial increase of IL-1β but simply add to the model a number of
spatially distributed IL-1β-sources - i.e. a discrete number of cells
within the islet have positive S∗ = S > 0 for a finite time (0 < t < t∗):

S∗ =

⎧⎨
⎩
S > 0 for 0 < t < tS

0 otherwise
(65)
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NLRP3 Inflammasome Activity

The severity of hyperglycemia is reflected through the NLRP3 in-
flammasome and (in turn) caspase-1 activity - see Figure 24a. The
caspase-1 activity is implicitly reflected through the model parame-
ter p, which also reflects the strength of the positive feedback (recall
Chapter 4).

Parameters

The number of initial IL-1β sources is described by the new parame-
ter NS (Number of Sources). In order to easily investigate the effect
of changing the number of sources, we fix the parameters S and tS.
We also introduce the islet radius R (in terms of an integer number
β-cell diameters) and the total number of β-cells within the islet N.
All remaining parameters are unchanged and equal to the ones used
in Chapter 4.

Parameters

dβcell 15 μm

kCN 5 hr−1

kRN 5 hr−1

kNR 5 hr−1

τR 2 hr

KA 1 M/KA

NT 1 M/NT

D 2 · 10−7 cm2

sec

τ 10 min

p variable hr−1

NS variable integer

S 500∗ M/KA hr−1

tS 12∗ hr

R variable β-cell diameters

N variable integer
∗ = fixed value.

5.4 results

As expected from the results described in Chapter 4, we shall see
below, that the islets can enter states of oscillating or of chronically
elevated IL-1β concentrations. As the islets are not very large, prop-
agating waves of IL-1β will not be visible - instead the entire islet
will oscillate almost synchronously. We relate the oscillating state of
the model to a healthy inflammatory response and the locked state
to a pathological state of chronic inflammation - the so-called vicious
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cycle. Over time chronic inflammation leads to β-cell death, and the
locked state is therefore lethal for the islets. The two qualitatively
different states can therefore be related to two entirely different islet
fates.

The aim of this section is to investigate which situations - and
especially which spatial conditions - that lead to different cell fates.
We have already seen in Chapter 4 that high p lead to locked states,
and we shall confirm this behaviour for the islets. In order to study
various spatial effects, we shall simulate islets of varying "internal"
and "external" spatial arrangements. Internal spatial arrangements
refer to the number of initial sources and the exact configuration of
these within the islet. External spatial arrangement refer to varying
sizes and shapes of the islet as a whole.

Pulsing and Locked Islets

Simulations of islets with increasing values of the parameters p, can
be related to islets subject to increasing severity of hyperglycemia,
as the positive feedback is to some extend controlled by the NLRP3

inflammasome (recall Figure 24a and 24b).
The results of simulating identical islets, but with two different

values of p, can be seen in Figure 25. Here we have chosen an islet,
with 5 IL-1β sources, and each source has a fixed strength S∗ = S for
the finite time 0 < t < tS. If p is small there is effectively no response
(not shown). For intermediate p the islet responds with a pulsating
NF-κB activity and a similar pulsating amplification of IL-1β. Once
the sources are removed (S∗ = 0 at t = tS) the islet stops pulsing
and returns to the resting state, and this scenario is interpreted as
healthy and well-functioning. On the other hand a relatively large
p results in a locked state, from which the islet does not recover,
when the initial sources are removed. This scenario is interpreted
as dangerous chronic inflammation, which is possibly lethal for the
islet. We do not see examples of half- or partially locked islets. The
islets either survive or get locked completely - a result which is also
consistent with experimental observations [22].

Analytical Solution of the IL-1β Concentration Profile

We can derive an analytical expression for the concentration of IL-
1β as a function of space, by considering the steady state values of
equations (61)- (62):

0 = kIN · I2ss

I2ss +K2
A

· (NT −Nss) − kRN · Rss

0 = kNR ·Nss − Rss/τR
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Figure 25: Simulations of similar islets with different values of the parameter p (see equation
(63)). a: The average concentration of I (IL-1β) as a function of time. Both islets are subject
to 5 IL-1β sources and sources are removed after 10 hours (tS = 10 hr). b: Configuration of
the 5 IL-1β sources. c-d: Snapshots of the concentration of I for the two islets, with different
p-values (c: p = 700 and d: p = 900). The times of the different snapshot are indicated by
the vertical bars in a. The islet periphery and positions of the IL-1β sources are indicated
with white. The radius of all islets is R = 10 cell diameters.

we obtain the steady state solution for NF-κB:

Nss =
I2

I2(1+ γ) + γ
(66)

where we have used NT = 1, KA = 1 and γ = kNRkRNτR

kIN
. Substituting

equation (66) into the steady state equation for IL-1β (recall equation
(63)), we obtain the following expression:

0 = p · I2ss
I2ss(1+ γ) + γ

− Iss/τ+D∇2Iss (67)

where we have set S∗ = 0, in order to investigate cases of self-
sustained locked states.

In locked islets, we expect the concentration of IL-1β to be rela-
tively large. If Iss >> 1, we can approximate I2ss

I2ss(1+γ)+γ
≈ 1

(1+γ) ,
leading to the following equation:

0 = p · 1

(1+ γ)
− Iss/τ+D∇2Iss (68)
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In the 2D case Iss is a function of the spatial coordinates x and y,
or in cylindrical coordinates a function of r. Equation (68) has the
following solution:

Iss(r) =

(
Iss(0) −

pτI

1+ γ

)
BesselI0

(
r√
τID

)
+

pτI

1+ γ
(69)

Equation (69) describes the concentration of IL-1β, in a locked islet,
and is true for all r < R, where R equals the islet radius.

Outside the islet (for r > R), the following equation describes the
IL-1β concentration:

0 = −Iss/τ+D∇2Iss (70)

This equation has the following solution:

Iss(r) = A · BesselK0

(
r√
τID

)
(71)

which describes the concentration of IL-1β, outside the islet.
We can now determine the two unknown constants Iss(0) and

A, by demanding that the profile of Iss(r) is both continuous and
differentiable at the islet boundary r = R. From these two conditions
we obtain the following expressions:

A =
pτIR√

τID(1+ γ)
BesselI1

(
R√
τID

)
(72)

Iss(0) =
pτI

1+ γ

(
1−

R√
τID

besselK1

(
R√
τID

))
(73)

The IL-1β concentration given by equation (69) and (71)-(73) is plot-
ted in Figure 26.
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Figure 26: Cross section of the IL-1β concentration profile in a locked islet, as given by
equations (69) and (71)-(73) (full red lines) and obtained from numerical simulations (blue
circles). Dashed vertical lines indicate the islet boundary. Note: this plot is calculated using
a hill-coefficient H = 3 (instead of H = 2 in equation (61)). Figure courtesy of T. H. Hansen
[34].
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internal spatial arrangements

In this section we shall investigate the effects of changing the num-
ber of sources, and the configuration of these, within the islet.

Response to Different Number of Sources (parameter NS)

The results of simulating islets with varying number of initial IL-1β
sources can be seen in Figure 27. If the islet is stimulated by a relative
small number of sources the islet responds with a pulsating NF-κB
activity and a similar pulsating amplification of IL-1β (Figure 27c)
- a scenario which is interpreted as healthy and well-functioning. If
a similar islet is stimulated by a relatively high number of sources,
the islet may transition into a locked state, from which it does not
recover once the sources are removed (Figure 27d) - a scenario which
is interpreted as dangerous chronic inflammation.

It is also possible to obtain scenarios in which the islet transition
into a state that looks like a locked state, however, once the sources
are removed (S∗ = 0 at t = t∗) the islet "un-locks" and returns to
the resting state (Figure 27e). This happens if the number of sources
is high, but the parameter p is not quite high enough, to maintain
the locked state. This scenario does, however, exhibit a transient a
IL-1β increase and is therefore not interpreted as dangerous chronic
inflammation.

Response to Different Source Configurations

Interestingly, there are some situations, which can lead to either
pulsing or locked islets, depending only on the exact configuration
of the sources within the islet. Examples of islets with equal pa-
rameters (p = 700 hr−1 and NS = 7), but different source config-
urations can be seen in Figure 28a and 28b, and we see that while
some of the islets display transient IL-1β amplification the others get
locked. This result is very interesting, as it implies, that a pancreas
with many islets, subject to equal conditions (or from a modelling
perspective equal parameters), may exhibit coexistence of islets that
display (healthy) pulsating amplification of IL-1β and locked islets
that display chronic inflammation. In Figure 28c we show how the
probability of "getting locked" increases as the number of sources
increases (averaged over 10 random source configurations). Only
some parameters give rise to coexistence of pulsing and locked islets
and we note that the transition (in parameter-space) from pulsing to
locked is quite sharp (i.e. for a large part of the parameter space
there is no coexistence - all configurations will lead to the same islet
fate).

As can be seen from configuration example ’3’ and ’4’ (Figure
28b), changing only the position of a single source (out of 7 sources
in total), can be enough to change the cell fate completely (see Figure
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Figure 27: Simulations of similar islets with different Number of sources NS (and different
p-values). a: The average concentration of I (IL-1β) as a function of time. One islet is subject
to 5 IL-1β sources and two islets are subject to 10 IL-1β sources. The sources are removed
after 10 hours (tS = 10 hr). b: Configurations of the IL-1β sources. c-d: Snapshots of the
concentration of I for the two islets, with similar p-value, but different number of sources
(NS) (c: NS = 5 and d: NS = 10). e: Snapshots of the concentration of I for an islet, similar to
the one shown in panel d, but with slightly lowered p-value. c-eThe times of the different
snapshot are indicated by the vertical bars in a. The islet periphery and positions of the
IL-1β sources are indicated with white. The radius of all islets is R = 10 cell diameters.

28a). From the shown examples of source configurations, it seems
that a clustered configuration of sources leads to a locked state, more
often than a situation with more dispersed configurations. We tested
this assumption by measuring the root-mean-square displacement
of the sources for 100 random configurations of otherwise equal
islets (p = 700 hr−1 and NS = 7), however we conclude that the
the root-mean-square itself does not clearly distinguish, which islets
will get locked and which will not - see Figure 28d.
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Figure 28: Simulations of similar islets with different source configurations. a: The average
concentration of I (IL-1β) as a function of time. All islets are subject to 7 IL-1β sources
(NS = 7) and p = 700 hr−1. The sources are removed after 10 hours (tS = 10 hr), and
the number ’1’ to ’4’, shown in the legend corresponds to the source configurations shown
in panel b. b: Configurations of the IL-1β sources, for the four different examples shown
in panel a. c: The probability of getting "Locked" vs. "Not Locked", as a function of the
number of sources, averaged over 10 random source configurations. d: The probability of
getting "Locked" vs. "Not Locked", as a function of the root-mean-square displacement of
the sources, average over 100 random configurations of 7 sources. The p-value and radius of
all islets are p = 700 hr−1 and R = 10 cell diameters.

external spatial arrangements

As mentioned above different species display differences in the exact
spatial structure of the islets of Langerhans. Rodent islets are very
spherical with the β-cells arranged in the middle and the α-cells ar-
ranged as an outer core. Human islets have a more folded structure,
but share the tendency of having the β-cells in the middle and α-
cells arranged peripherally [9, 23]. Some species have the opposite
structure with α-cells in the middle and β-cells peripherally.

Despite the differences between species there are also many simi-
larities and the structural arrangement of the islets may play a func-
tional role. In this section we shall investigate the effects of changing
size and shape of the islet.
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Islet Size

In order to test whether the size of the islets may play a functional
role we have performed simulations in which we changed the radius
of the islets. We have scanned different combinations of the parame-
ters p and NS and have evaluated 10 random source configurations
for each parameter-set. In Figure 29, we plot both the probability of
getting locked and the average IL-1β level in the islet, some time
(here 4 hours) after the initial sources have been removed (both are
averaged over the 10 random source configurations). The model pre-
dicts that small islets are less prone to transition into the locked
state. This is an extremely interesting observation as it implicates,
that the the reason why β-cells are grouped into small islets - as
opposed to being arranged in a single large cluster - could be that
the separation into smaller islets gives a protective advantage. From
a modelling perspective, the reason that small islets are less prone
to get locked, is that they have a higher chance of extruding IL-1β
though diffusion, and therefore also a higher change of resetting
to the resting state ("un-locking"). The arrangement of β-cells into
smaller islets may therefore resemble a survival strategy which pro-
tects the islets from the very potent paracrine signalling of β-cells,
which can cause a whole islet to "lock" if just a few cells start to
over-produce IL-1β.

Critical p-value as a Function of Islet Size

From the analytical expression given by equation (69), we can obtain
approximate values for the diffusion term (D∇2Iss) in equation (67).
Using this approximation, equation (67), becomes a polynomial in
Iss and the number of solutions for Iss resembles the number of pos-
sible steady states for IL-1β. The number of solutions depends on
the value of the parameter p: high p leads to steady state solutions of
high Iss - i.e. high p leads to the existence of locked states. If p is too
small the locked states (high steady states) disappear and the corre-
sponding solution to the polynomial given by equation (67) becomes
imaginary. We define the critical p (pc) as the smallest value of the
parameters p, for which locked states exist. In Figure 30, we plot
pc as a function of islet size (R), as obtained from both numerical
simulations and from numerical solutions to the polynomial given
by equation (67), where the diffusion term (D∇2Iss), has been evalu-
ated both in the centre of the islet (r = 0) and at the boundary of the
islet (r = R). Consistent with our findings in Figure 29 the critical p
is highly dependent of islet size (radius R), and decreases sharply as
islet size increases.
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Figure 29: Parameters scans of p and NS for islets of different sizes. a-b: Islets of radius
R = 10 cell diameters (corresponding to a total of N = 367 β-cells), transistion into locked
states for a relatively large subset of parameters. c-d: Islets of radius R = 5 cell diameters
(corresponding to a total of N = 91 β-cells), transistion into locked states for a relatively
small subset of parameters. In panel a and c, we plot the fraction of islets which transition
into the locked state, as averaged over 10 random source configurations for each parameter
combination. In panel b and d, we plot the average concentration of I (IL-1β) inside the islet
some time after the sources are removed. Specifically the sources were removed at tS = 10

hrs and we plot the average concentration of I at time t = 14 hrs. Also, the values are
averaged over 10 random source configurations for each parameter combination.

Islet Shape

The shape of the islet plays a similar role as the size: if the islets
are not spherical but have folded shapes as observed in humans,
the β-cells effectively become more dispersed, and therefore have
better chances of extruding IL-1β and resetting to the resting state.
In Figure 31 we compare different shapes of roughly the same total
number of β-cells and conclude that a more complex shape may in-
troduce a higher probability of avoiding the locked state. We should
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Figure 30: The critical p (pc) as a function of islet radius R. The blue circles indicate solution
obtained from numerical simulations. The blue lines represent the numerical solutions to the
polynomial given by equation (67), where the diffusion term (D∇2Iss), has been evaluated
using the analytical expression (69) at r = 0 (full blue line) and r = R (dashed blue line).
Note: these plots are calculated using a hill-coefficient H = 3 (instead of H = 2 in equation
(61)). Figure courtesy of T. H. Hansen [34].

however note, that the folded shape may also play other roles. In
human islets almost all β-cells are in direct contact with at least one
α-cell - hence it is possible that the glucagon-insulin regulation is
more effective or sensitive.

5.5 discussion of the model validity and physiologi-
cal relevance

The simple model described by equations (61)-(63), does not capture
all the details of the regulatory system within a β-cell. Especially,
the notion that, the parameter p implicitly reflects the severity of
hyperglycemia is not completely correct (work is currently being
conducted in order to refine the model). However, the model poses a
simple system which is capable of producing characteristic features
of the IL-1β response in β-cells. As such, the 2D islet model poses
an excellent tool for investigating the spatial aspects, described in
this chapter.

Very interestingly the simple model captures some spatial fea-
tures, that are also observed experimentally. Records of islet sizes
and compositions, in cadaveric pancreatic sections from diabetic
(type II) and non-diabetic humans, have shown a preferential loss of
large islets in T2D patients [36]. This observation agrees well with
our result showing that large islets get locked easier than the small
islets, and therefore the β-cells in the large islets should also have a
higher risk of dying. Additionally, it was recorded that large islets
have a smaller fraction of β-cells, and that the composition of α and



82 islets of langerhans

0 0.2 0.4 0.6 0.8 1

��������	�
	�����	�����

0 5 10 15
0

500

1000

1500

��	������	�
	�������

��
�	

��
�		

�

0 5 10 15
0

500

1000

1500

��	������	�
	�������

��
�	

��
�		

�

0 5 10 15
0

500

1000

1500

��	������	�
	�������

��
�	

��
�		

�
�����	����  !���� 	����  "���� 	����

# $%

& '!
�	(	�)*	������ �	(	�)+	������ �	(	�)+	������

Figure 31: Parameters scans of p and NS for islets of different shapes. a-c: Peripheries of
the three different shapes. a: A round islet of radius R = 6.6 cell diameters, corresponding
to a total of N = 163 β-cells. b: A ’donut’ islet of outer radius R2 = 7.5 and inner radius
R1 = 3 cell diameters, corresponding to a total of N = 162 β-cells. c: A ’human’ islet [9],
with a total of N = 162 β-cells. In panel d-f, we plot the fraction of islets which transition
into the locked state, as averaged over 10 random source configurations for each parameter
combination.

β-cells in the large islets are more intermingled, than in the small
islets [36]. This observation also agrees well with our results, as we
predict the more dispersed arrangement of β-cells introduces a pro-
tective advantage with respect to getting locked. However - and as
mentioned above - the complex intermingled compositions may also
have other advantages, for example it has been hypothesised that
a high α-β-contact may be an advantage for a sensitive glucagon-
insulin regulation.
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C O N C L U D I N G R E M A R K S

Mathematical modelling presents a great tool for performing all
kinds of thought experiments. It can be used both as a tool for ex-
ploring ideas and for testing existing hypothesis. During my PhD I
have often encountered results and model behaviours, which I did
not expect when constructing the model. I therefore conclude that
even very simple models can often lead to unforeseen insight. In
my opinion, experimental observations should therefore always be
accompanied by a mathematical model, that contributes to the un-
derstanding of the system, or - also very importantly - can be used
to accentuate the features of the observations, which are not readily
understood.

In the future I hope mathematical modelling will be increasingly
integrated in the research of biological systems, as I believe it will
contribute significantly to the understanding of experimental find-
ings as well as concepts and complex systems, that we do not yet
have the tools to investigate experimentally.

In this thesis I have presented a number of mathematical models of
biological systems - all somehow related to spatial structures and
regulation. In my experience the inclusion of spatial conditions in
the mathematical models, can often lead to interesting results - even
in cases where I initially thought that dynamics and timing were the
only relevant factors to consider. I therefore also believe that spatial
aspects are often very important for biological system, and when
applicable they should therefore be included in the mathematical
models.
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Abstract

Nucleated polymerisation phenomena are general linear growth processes that are alternatively

part of the normal functioning of nature or are encountered as the mechanisms in the development

of certain neurodegenerative disorders. The growth of these linear structures has been shown to

be dominated by secondary rather than primary mechanisms, including filament fragmentation.

In some of our previous work we derived self-consistent solutions for the time evolution of the

polymer mass concentration of filaments that undergo internal breakage in addition to elongation

and primary nucleation. Due to the non-linear nature of the master equation of filamentous growth,

however, the time evolution of the full length distribution has been challenging to access and to

date analytical solutions for the filament distribution are known only in certain special cases.

We describe here an analytical approach based on Picard’s iteration method, which provides self-

consistent solutions for the length distribution of breakable filamentous structures. We use the

presented theoretical framework to analyse AFM data of the length distribution of insulin filaments.
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I. INTRODUCTION

The linear self-assembly of filamentous structures from soluble proteins is a process of

fundamental importance to the normal functioning of nature,9–13 as well it is observed in

relation to a number of neurodegenerative disorders, including Parkinson’s and Alzheimer’s

diseases.15–23 A key parameter that determines the severity and progression of such diseases

is represented by the length of the fibrils produced through the growth process. Thus, under-

standing the mechanisms that yield to a particular form of the filament length distribution

represents an important tool in the quest to design of new therapeutic strategies.

As a result, numerous experimental and theoretical studies9,10,24–27,31,33–42,65 focussed on

the kinetics of the self-assembly of filamentous protein structures. In our previous work,39,40

we have demonstrated that the growth kinetics of these important structures is often dom-

inated by secondary mechanisms, including filament fragmentation, whereby fibers break

into shorter ones which then act as new seed aggregates that accelerate the growth reaction.

By introducing the principal moments of the filament distribution and by using mathemat-

ical techniques based on fixed-point mappings, we obtained self-consistent solutions for the

polymer number and mass concentrations.39–42 The availability of these solutions provided

preliminary information about the shape of the length distribution, including the average

length of fibrils.40–42 However, due to the non-linear nature of the elementary mechanisms

involved in the growth process, closed-form solutions of the full master equation have been

challenging to obtain and analytical expressions for the length distribution of breakable

filaments have been derived only in certain special cases,30,42,52–54 including systems with

constant monomer supply, or by assuming the steady-state. Consequently, most theoretical

studies of length distributions of fragmenting filaments relied on numerical integration for

solving the master equation.27,28,43–46

Building on earlier work, we present here an analytical study of the time evolution of the

length distribution for the growth of fragmenting filamentous structures in the continuum

limit approximation and obtain self-consistent solutions for the distribution of filament sizes.

We test our results against numerical solutions of the master equation and use the resulting

analytical expressions to fit experimental length distributions obtained from measurements

of growing insulin filaments.
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FIG. 1. Schematic representation of the elementary mechanisms of the nucleated polymerisation

of breakable protein filaments.

II. MODEL

We consider an ensemble of monomeric polypeptide molecules and aggregates that un-

dergo the growth processes sketched in Fig. 1. Fibrils can increase in size through elonga-

tion processes, i.e. the addition of single monomers onto the ends of the filament, or shrink

through dissociation from either ends and through filament fragmentation. Here, we consider

only the formation of linear filaments i.e. no branching or clumping processes are allowed

and we define the aggregation number j as the size of the filaments meassured in number

of monomers. We also include a minimal aggregation number nc which defines the small-

est stable filament size. Filaments of aggregation number smaller than nc will disintegrate

into monomers and thereby re-enter the monomer pool. We assume that the formation of

these aggregates takes place through a primary nucleation processes in which nc monomers

spontaneously bind together to form a nucleus.

The behaviour of the ensemble of monomers and aggregates can be formulated within

the formalism of chemical kinetics. On accounting for the elementary mechanisms of Fig. 1,

the temporal evolution of the concentration f(t, j) of filaments of aggregation number j is

3
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described by the following master equation equation9,10,39,40,55

∂f(j, t)

∂t
= 2k+m(t) [f(j − 1, t)− f(j, t)]

+ 2koff [f(j + 1, t)− f(j, t)]

− k−(j − 1)f(j, t) + 2k−
∞∑

i=j+1

f(i, t)

+ knm(t)ncδj,nc , (1)

where the evolution of the concentration of monomers, m(t), is obtained by exploiting the

conservation of the total mass, mtot,

dm(t)

dt
= − d

dt

∞∑
j=nc

jf(t, j). (2)

The terms in Eq. (1) that are proportional to k+ describe the growth of fibrils through elon-

gation, where the factor two accounts for the fact that monomers can attach at either end of

the filament. Similarly terms proportional to koff account for the dissociation of monomers

from the ends of the aggregates. The third line of Eq. (1) pertains to filament fragmentation.

The first term is a loss term and describes the breakage of a filament of aggregation number

j at one of the (j − 1) internal bonds. The second term, 2k−
∑∞

i=j+1 f(i, t), includes the

contributions from the creation of filaments of aggregation number j due to the fragmenta-

tion of longer filaments. Finally, the last term of Eq. (1) describes the primary nucleation

of new filaments of aggregation number j = nc proceeding at a rate that is proportional to

the nc-th power of the monomer concentration.

III. MASTER EQUATION IN THE CONTINUUM LIMIT

In the limit of large aggregation numbers, the filament length distribution varies suffi-

ciently slowly and the discrete system of equations (1) can be approximated by its continuum

version. In the transition from a discrete to a continuum description of protein aggregation,

we treat the discrete index j as a continuum variable x and expand the finite differences in

Eq. (1) in terms of partial derivatives at leading order

f(j ± 1, t) ≈ f(x, t)± ∂f(x, t)

∂t
+O(f ′′), (3)

∞∑
i=j+1

f(j, t) ≈
∫ ∞

x

f(x, t)dx. (4)

4
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By introducing the polymerisation drift coefficient v(t) = 2(k+m(t)−koff), the master equa-

tion, Eq. (1), can be formulated in the continuum limit as follows

∂f(x, t)

∂t
= −v(t)

∂f(x, t)

∂x
− k−xf(x, t)

+ 2k−

∫ ∞

x

f(z, t)dz + knm(t)ncδ(x− nc), (5)

where the boundary conditions f(x, t) = 0 for x ≤ nc and f(x, t) → 0 for x → ∞ are

imposed.54 For the initial condition of Eq. (5) we consider here the situation where a certain

number of seed aggregates with well-defined lengths is present initially. Thus, at t = 0

the length distribution corresponds to a narrow Gaussian distribution centred around the

average seed length x0 and with standard-deviation σ0

f(x, t = 0) =
P (0)√
2πσ2

0

exp

(
−(x− x0)

2

2σ2
0

)
, (6)

where P (0) denotes the number concentration of seed aggregates initially present.

We note that in the transition from a discrete to a continuum formulation of Eq. (1), the

multiplicative pre-factor (x− 1) in the loss term related to fragmentation has been replaced

by x. This fact makes intuitive sense not only because rewriting (x − 1) = x is justified

for large aggregation numbers, but also because it corresponds to a scenario in which the

filaments can break anywhere along the continuous chain, even infinitely close to the ends.

The continuum approximation provided by Eq. (5) was derived replacing finite differences

with first-order derivatives. In general, one will get better approximations by considering

higher order terms in the Taylor expansion. For example, if derivatives up to second order

are considered in the expansion, an additional term in the continuum master equation is

obtained, which is of the form

D(t)
∂2f(x, t)

∂x2
, (7)

whereD(t) = k+m(t)+koff describes the diffusion of the filament distribution in length space.

As we will see below, the effect of this term can to a good approximation be accounted for

by including diffusion in the same way as it enters the solution to the drift-diffusion equation

with constant coefficients and no fragmentation.

Our goal is to solve Eq. (5) subject to the above initial and boundary conditions. As a

strategy for the solution, we shall consider two different scenarios: open and closed systems.

We consider the open system scenario first, in which the monomer pool is infinitely large

5
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and the monomer concentration is kept constant to the initial value, m(t) = m(0). This

situation is unrealistic for many experimental systems, but it provides useful information

about the initial behaviour of the system. We then build on the knowledge of the solution

for the open system for constructing expressions for the length distribution that are valid in

the more realistic closed system scenario, in which the monomer concentration varies with

time and the total mass is conserved.

IV. PRINCIPAL MOMENTS AND STEADY-STATE DISTRIBUTION

A. Principal moments

Preliminary insight into the form of the solution of Eq. (5) can be obtained by considering

the principal moments of the length distribution, defined as

In(t) =

∫ ∞

nc

xnf(x, t)dx. (8)

The zeroth moment, I0(t) ≡ P (t) gives information about the number concentration of

fibrils, whereas the first moment of the distribution, I1(t) ≡ M(t), is the polymer mass con-

centration. The equations describing the temporal evolution of P (t) and M(t) are obtained

by integrating the master equation, Eq. (5), on both sides, yielding

dP (t)

dt
= k− [M(t)− 2ncP (t)]

dM(t)

dt
=
[
v(t)− k−n2

c

]
P (t), (9)

where we have neglected O(kn) terms in front of the contributions from the elongation and

fragmentation of aggregates. We note that in the limit of large nucleus sizes, nc, Eq. (9)

recovers the moment equation in the discrete limit.39,40,42

B. Steady-state distribution

In the limit t → ∞ the system approaches a dynamic steady state in which the growth of

filaments is balanced by fragmentation and the length distribution stays constant in time.

We note, however, that this dynamic steady state does not correspond to an equilibrium

state, because in the absence of fibril association the detailed balance condition is satisfied

6
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only with respect to the polymerisation-depolymerisation of fibrils, but not with respect to

breakage.

The steady-state values for the principal moments are obtained by setting time derivatives

equal to zero in Eq. (9), yielding

P (∞) =
2k+mtot − 2koff − k−n2

c

4k+nc

, M(∞) = 2ncP (∞). (10)

Note that while both P (∞) and M(∞) depend on the details of the system, the average

length of fibrils, L(∞) = M(∞)/P (∞) = 2nc, solely depends on the nucleus size, nc.

The steady-state length distribution, f(x,∞), is given by the solution to the following

differential equation

v(∞)f ′′(x,∞) + k−xf ′(x,∞) + 3k−f(x,∞) = 0, (11)

which is obtained by differentiating the continuous master equation, Eq. (5), with respect

to x and subsequently setting time derivatives equal to zero. Here, v(∞) = k−n2
c is the

polymerisation drift coefficient at steady state calculated from Eq. (10). The solution of

Eq. (11) is given by a narrow, biased Gaussian distribution

f(x,∞) = C
(
x2 − n2

c

)
exp

(−(x2 − n2
c)

2n2
c

)
, (12)

where the constant C is fixed by the normalisation condition
∫∞
nca

f(x,∞)dx = P (∞) and

reads

C =
2k+mtot − 2koff − k−n2

c

4k+n4
c

. (13)

C. Self-consistent solutions for principal moments

We exploited analytical techniques based on Picard’s iteration methods to extend the va-

lidity of linearised early-time solutions of the moment equations, Eq. (9), by performing one

step of self-consistent fixed point iteration,39,40 yielding the following closed-form expressions

for the polymer number and mass concentrations in the continuum limit

P (t) = e−2k−nct

[
P (0) +

M(∞)

2nc

(e2k−nct − 1)

+
k−(M(∞)−M(0))

k+

(
Ei (−C+) + Ei

(−C+e
κt
))]

M(t) = (M(0)−M(∞)) exp
(−C+e

κt + C−e−κt
)
+M(∞), (14)

7
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where κ =
√

k−v(0) and

C± =
k+
κ

(√
k−
v(0)

[M(0)− ncP (0)]± P (0)

)
. (15)

V. SELF-CONSISTENT SOLUTION FOR THE LENGTH DISTRIBUTION IN

OPEN SYSTEMS

In this section we focus on open systems, where the concentration of monomers is con-

stant. This scenario emerges either at the early stages of the reaction or when particular

regulating mechanisms are present, such as in some in vivo systems where protein synthe-

sis and degradation are active.31,32 The underlying idea for solving Eq. (5) comes from the

use of Picard’s iteration method, that allows self-consistent solutions with increasing pre-

cision to be derived starting from an initial guess for the filament distribution. According

to the contraction mapping principle, Eq. (13) can be solved iteratively using the following

algorithm

∂f
(n+1)
0 (x, t)

∂t
= −v(0)

∂f
(n+1)
0 (x, t)

∂x
− k−xf

(n+1)
0 (x, t) + 2k−

∫ ∞

x

f
(n)
0 (z, t)dz (16)

for a starting value f
(0)
0 (x, t) chosen to be sufficiently close to the exact solution f0(x, t). As

the starting point of our self-consistent iteration scheme, we choose the long-time limit for

length distribution for open systems, which has been studied before42 and reads

f
(0)
0 (x, t) = X limit

0 (x)eκ(0)t, (17)

where κ(0) =
√
k−v(0)− k−nc and, for convenience, we have introduced the function

X limit
0 (x) = C1

[
(k−x+ κ(0))2 − k−v(0)

]
exp

(
−k−(x2 − n2

c) + 2κ(0)(x− nc)

2v(0)

)
(18)

with

C1 =
P (0) +

√
k−/v(0) [M(0)− ncP (0)]

2v(0)(k−nc + κ(0))
. (19)

The late time solution, Eq. (17), describes a short-fibril biased Gaussian distribution, whose

amplitude grows exponentially with time, while the shape is time independent, as a result

of the concurrent actions of growth and fragmentation.

8
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The first order self-consistent length distribution is obtained by substituting Eq. (17) into

Eq. (16). On integration, Eq. (17) yields∫ ∞

x

f
(0)
0 (z, t)dz = C1 exp

(
κ(0)t− k−x2 + 2xκ(0)

2v(0)

)
v (k−x+ κ(0)) . (20)

Consequently, the following result is obtained after one iteration step in Eq. (16)

f
(1)
0 (x, t) = f

(0)
0 (x, t) + exp

(
− k−x2

2v(0)

)
g (x− v(0)t) . (21)

The function g is determined by implementing the initial condition, Eq. (6)

g (ξ) = exp

(
k−ξ2

2v(0)

)
×[

P (0)√
2πσ2

exp

(
−(ξ − x0)

2

2σ2

)
− θ(ξ)X limit

0 (ξ)

]
, (22)

where the Heaviside function θ(ξ) has been introduced in order to avoid non-physical diver-

gence for t → ∞ and the effects from the second order diffusion term, Eq.(7), have been

incorporated by replacing σ0 by σ = σ0 + 2D(0)t.

The expression Eq. (21) describes in closed form the time evolution of the length dis-

tribution of an open system characterised by nucleated polymerisation and fragmentation.

A comparison between the analytical expression provided by Eq. (21) and the numerical

solution of the master equation is shown in Fig. 2a. The analytical expression gives the

correct shape of the filament distribution and matches the numerical solution for large times

exactly. As it can be seen from the plot, for early times Eq. (21) overestimates the number

of fibrils with length greater than x0 + v(0)t. Qualitatively, this effect arises because the

filament distribution entering the fragmentation source term in Eq. (16) in the first iteration

is from the late time regime and introduces long fibrils that would not have time to grow in

the period of time considered, and therefore the aggregates population is overestimated for

large aggregation numbers. This error can be systematically reduced by performing succes-

sive iterations of Eq. (16) beyond the first order solution discussed here. In Figs. 2b and 2c

we show the contributions from the two terms in Eq. (21) to the shape of the filament distri-

bution. The first term of Eq. (21) is an exponentially growing biased Gaussian distribution

that accounts for the increase in the population of short fibrils caused by the fragmentation

of longer ones. The second term of Eq. (21) describes the advection in size space of the initial

filament distribution. As a result of fibril elongation, the Gaussian peak moves in size space

9
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FIG. 2. Time evolution of the fibril length distribution in an open system. (a) The black solid

line is the numerically calculated solution of the master equation, Eq. 5. The red dashed line

is the predicted length distribution for the constant monomer case given in Eq. (21). (b) The

first term of Eq. (21), f
(0)
0 (x, t), (dashed blue line) is compared with Eq. (23) (solid red line).

(c) The contribution from the second term in Eq. (23) describing the advection of the initial

distribution (dotted green line) is compared with Eq. (23) (solid red line). The parameters used

are: k+ = 3.5 × 10−2 M−1min−1, k− = 5 × 10−6 min−1, koff = 0, nc = 2, x0 = 300, σ0 = 10,

M(0) = 1 M, P (0) = M(0)/x0, m(t) = mtot − M(0) = 999. Curves are shown for the following

times (from bottom to top): t = 40, 80, 120, 160 minutes.

with velocity v(0) and spreads out with diffusion coefficient D(0). As t → ∞ the advective

Gaussian peak vanishes and Eq. (21) recovers f
(0)
0 (x, t) completely. As the fibrils increase in

length, the their fragmentation probability increases and the filament distribution is shifted

from large to small lengths. This behaviour is captured by the exponential pre-factor which

ensures that the amplitude of the advective Gaussian peak decreases with increasing length

x.

VI. LENGTH DISTRIBUTIONS IN CLOSED SYSTEMS

In this section we focus on the growth of filaments within a closed system scenario,

where the concentration of monomers varies with time but the total mass concentration is

constant. Under these circumstances, a qualitative picture of the evolution of the length

distribution can be drawn from the knowledge of the filament distribution of aggregates

growing in an open system, by noticing that at earlier times the concentration of available

monomers is approximately constant in time. Thus, we expect that in the early stages of

10
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the polymerisation process, the length distribution will first evolve according to the biased

Gaussian, Eq. (21), obtained in the presence of a constant monomer pool, shifting at later

times into the steady-state distribution given by Eq. (12). An interesting observation to

be drawn from Eqs. (21) and (12), is that the distribution of fibril lengths share the same

functional form at the beginning and at the end of the reaction. In both cases the form of

f(t, x) is given in terms of the function X limit(x), where the values v(0) and κ(0) are used

in the early time limit and the values v(∞) and κ(∞) = 0 in the steady state. Thus, an

appropriate ansatz for f(t, x) is given by

f(x, t) = A(t)Xapprox
0 (x) + exp

(
− k−x2

2v(0)

)
h (x− τ(t)) , (23)

where Xapprox
0 (x) is obtained by replacing v(0) in Eq. (18) by some value vapprox to be

determined in the sequel. The function h is given by

h(ξ) = exp

(
k−ξ2

2v(0)

)
×
[

P (0)√
2πσ2

exp

(
−(ξ − x0)

2

2σ2

)]
, (24)

where σ = σ0 + 2D(0)t. The amplitude A(t) is calculated from the normalisation condition

A(t) =
P (t)∫∞

nc
Xapprox

0 (x)dx
(25)

and

τ(t) =

∫ t

0

v(t′)dt′ = 2(k+mtot − k+M(∞)− koff)t

− 2k+
M(0)−M(∞)

κ

[
Ei
(−C+e

κt
)− Ei (−C+)

]
(26)

describes the position of the peak of the initial distribution at time t as a result of advection

in length space associated with monomer depletion through fibril elongation. Equation (23)

preserves the early time behaviour of Eq. (21), while the late time behaviour is corrected by

choosing vapprox such that the solution reproduces the correct mean value μ(t) = M(t)/P (t)

of the length distribution at all times, yielding

vapprox = k−

(
M(t)

P (t)
− nc

)2

, (27)

where M(t) and P (t) are given by Eqs. (14). A comparison between the numerical solution

of the master equation and the analytical expression of Eq. (23) is shown in Fig. 3 for

different times. The numerical solution of the master equation verifies the conclusion, that

11
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FIG. 3. Time evolution of the fibril length distribution in a closed system. The black solid line is the

numerically calculated solution of the master equation, Eq. 5. The red dashed line is the predicted

length distribution for the constant monomer case given in Eq. (21). The green dotted line is the

predicted length distribution for the constant mass given in Eq. (23). The parameters used are

the same as in Fig. 2. The times of the snapshots are: t = 40, 80, 120, 160, 200, 240, 280, 320, 400

minutes.

the evolution of the length distribution follows that of constant monomer systems at early

times, shifting to the prediction of Eq. (23) at late times.

We now show that the theoretical framework of filamentous growth provided by Eq. (23)

can be used to fit experimental measurements of the length distribution of growing insulin

filaments. Fibril length distributions were measured from seeded fibril growth kinetic runs

monitored by changes in fluorescence and subsequent AFM imaging at different times. The

experiment showed that, starting from the initial filament distribution, filaments steadily

grew longer through recruitment of free polypeptide molecules at the ends of aggregates until,

after 190 minutes, it appeared that the length distribution shifted towards shorter fibrils

12



Dra
ft

aim
ed

at

Jo
urn

al
of Chem

ica
l P

hys
ics

as a consequence of fragmentation overcoming the effect of elongation. The experimental

results for the length distribution of the insulin fibrils are plotted in Fig. 4. In order to

compare the model predictions of Eq. (23) with the AFM data, we first fitted the measured

total mass concentration M(t) of fibrils to the theoretically predicted curve Eq. (14) to

obtain values for the rate constants for elongation and breakage. For the obtained values

of k+ = 5.5 × 10−2 M−1min−1 and k− = 7 × 10−6 min−1 the comparison of Eq. (23) with

the insulin length measurements in Fig. 4 shows overall good agreement between theory

and experiment. The solid black lines in Fig. 4 represents the theoretical prediction for the

length distribution as obtained from the numerical solution of the master equation, Eq. (1),

while the dashed red curves represent the theoretical prediction from Eq. (23).

VII. MATERIALS AND METHODS

Fibril length distributions were measured from seeded fibril growth kinetic runs mon-

itored by changes in fluorescence. Bovine insulin monomer (Gemini Bio-Products, USA)

was dissolved at a concentration of 0.5 mg ml−1 in a solution of 10 mM HCl and 30 mM

NaCl in Milli-Q water with 60 μM Thioavin T (ThT) fluorescent dye and 0.5 μg ml−1 seed

fibrils at a total volume of 1.5 ml. Precise protein monomer concentration was determined

by absorbance spectroscopy using a Cary 400 Scan UV- Visible Spectrophotometer or Ther-

moScientific Nanodrop 2000 Spectrophotomer with molar extinction coefficient 1.0 cm−1

for 1.0 mg ml−1 at 276 nm 33 . Immediately before starting the kinetic run, seed fibres

were added to the cuvettes containing the monomer solution and mixed by inversion several

times. Thermostat-controlled temperature was maintained at 45oC and the progress of fibril

growth was followed by measuring ThT fluorescence at 1 minute intervals with excitation

wavelength 440 nm and emission wavelength 480 nm. After each 30 minute period the

reaction mixture was mixed by inverting the cuvette several times before a 10 μl reaction

aliquot was removed and diluted in 10 mM HCl to appropriate concentrations for AFM

imaging. Both the reaction aliquots and reaction aliquot dilutions were stored at 4oC until

preparation of AFM slides to slow fibril growth and breakage kinetics. A fluorescence mea-

surement and reaction aliquot were also taken after 24 hours to provide information about

the long-time limit at equilibrium. Taken as a value corresponding to 100% completion of

aggregation, this final fluorescence value was used to normalise the fluorescence measure-

13
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FIG. 4. Predicted length distributions at 0, 90, 190, 280, 375 and 500 minutes. In each plot,

the columns represent the experimental data of insulin filaments with histogram bin widths of

300, the solid black curves represent the theoretical predictions from the numerical solution of

the master equation, while the dashed red curves represents the prediction of Eq. (23). The

parameters used were those that correspond with the fit of the polymer mass concentration in the

inset: k+ = 5.5 × 10−2 M−1min−1, k− = 7 × 10−6 min−1, koff = 0, nc = 2, x0 = 300, σ0 = 150,

M(0) = 1 M, P (0) = M(0)/x0, mtot = m(0) +M(0) = 1000.

ments of each sample to give the fraction of protein incorporated into amyloid fibrils as a

function of time. This allows sample comparison and the extent of the aggregation process

at each time point when a reaction aliquot was removed to be determined. A kinetic run

with strong shear forces was conducted with stirring using a magnetic stirring bar to induce

high fibril breakage rates, while an unstirred kinetic run without a magnetic stirring bar was

conducted to investigate the lower intrinsic fibril breakage rates. As suggested by DePace et

al.,69 to avoid shear forces causing fibril fragmentation during pipetting, wide-bore pipette

tips were used by cutting all pipette tips 1 cm from the end to create a width 1− 2 mm in

diameter. Furthermore, mixing of solutions during dilution was achieved only by inversion

to avoid shearing during all manipulations.

VIII. CONCLUSIONS

In this paper, we have provided self-consistent solutions of the master equation of linear

self-assembly in the continuum limit to study the length distribution of fragmenting filamen-

tous structures. We have checked the performance of the analytical solutions by comparison
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with numerical solutions of the master equation. Furthermore, we have demonstrated that

the model yields good agreement with experimental data of the length distribution of grow-

ing insulin fibrils measured using AFM.
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The 219-residue protein p25α stimulates the fibrillation of α-synuclein (αSN) in
vitro and colocalizeswith it in severalα-synucleinopathies.Althoughp25αdoes
notfibrillate by itself under native conditions in vitro,αSN-free p25α aggregates
have also been observed in vivo in, for example, multiple system atrophy. To
investigate which environmental conditions might trigger this aggregation, we
investigated the effect of polyanionic biomolecules on p25α aggregation.
Heparin, polyglutamate, arachidonic acid micelles, and RNA all induce p25α
aggregation. More detailed studies using heparin as template for aggregation
reveal that a minimum of 10–14 heparin monosaccharide units per heparin
polymer are required. Bona fide fibrils are only formed at intermediate heparin
concentrations, possibly because an excess of heparin binding sites blocks the
inter-p25α contacts required for amyloid formation. Other polyanions also
show an optimum for amyloid formation. Aggregation involves only modest
structural changes according to both spectroscopic andproteolytic experiments.
The aggregates do not seed aggregation of heparin-free p25α, suggesting that
heparin is required in stoichiometric amounts to form organized structures.We
are able to reproduce these observations in a model involving two levels of
binding of p25α to heparin. We conclude that the modest structural changes
that p25α undergoes can promote weak intermolecular contacts and that
polyanions such as heparinplay a central role in stabilizing these aggregates but
in multiple ways, leading to different types of aggregates. This highlights the
role of non-protein components in promoting protein aggregation in vivo.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

α-Synuclein (αSN) is directly involved in the
development of familial forms of Parkinson's disease
(PD) and Lewy body dementia as well as other
so-called α-synucleinopathies. αSN aggregates accu-
mulate as cytoplasmic inclusions known as Lewy
bodies. Several proteins are known to stimulate αSN
aggregation, including the brain-specific protein
p25α, which is effective at substoichiometric con-
centrations in vitro.1 Although p25α can interact
with tubulin and induce aberrant tubulin assembly,2
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microscopy; FTIR, Fourier transform infrared; ITC,
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its function remains unknown. p25α is a heat-
stable 219-residue protein that we have shown to
be relatively flexible but natively folded.3 The
N-terminal region (residues 3–43) is missing in the
two human paralogues p25β and p25γ and is
probably unstructured, as its removal has no effect
on folding or tubulin binding.3 Furthermore, the
C-terminal part ismost likely also unstructured, as the
corresponding region of p25γ in the Caenorhabditis
elegans homologue [residues 102–176, Protein Data
Bank (PDB) ID: 1PUL] is unfolded.4 The core region
(residues 44–156) consists of a five-helix bundle,
which, in mice (PBD ID: 1WLM) and humans
(PDB ID: 2JRF), has a small β-sheet exposed to one
side. p25α is present in all parts of the brain but is
predominantly expressed in oligodendrocytes,5 un-
like αSN, which is expressed in neurons. p25α only
colocalizes with αSN under disease conditions such
as PD, Lewy body dementia, and multiple system
atrophy.1 In Alzheimer's disease, Pick's disease, and
multiple system atrophy, p25α inclusions without
αSN were observed in neuronal cytoplasm and
nuclei, suggesting an aggregated state of p25α.6,7

To uncover possible environmental cues to the
development of this state, we here explore physio-
logically relevant conditions that may stimulate p25α
aggregation. Polyanionic assemblies such as the
sulfated glycosaminoglycan (GAG) heparin, anionic
phospholipid vesicles, and RNA are likely candidates
as they trigger aggregation of tau protein, in
heparin's case via 1:1 tau monomer:heparin
complexes.8 These lead to neuronal aggregates in
Alzheimer's disease and a range of other diseases
collectively named tauopathies.9 Tau–GAG interac-
tions have even been suggested to be a central event
in the development of Alzheimer's disease.10 Tau
occurs in the cytosol, clearly demonstrating that
heparin can affect aggregation in this part of the cell
in vivo. The in vitro fibrillation of recombinant tau by
polyanionic compounds is hypothesized to be
mediated by anionic condensing agents that stabilize
a fibrillation-competent intermediate state.11 Heparin
stimulates amyloid formation of many different
proteins, including αSN,12 Aβ,13 apomyoglobin,14

and gelsolin.15 GAGs also stimulate fibrillation of
β2-microglobulin,16 possibly by scaffolding the
fibrillation process.17 Similarly, heparin accelerates
the association of transthyretin oligomers to fibrils18

but has no effect on upstream processes such as
transthyretin tetramer dissociation. Although hepa-
rin and other GAGs are found in the extracellular
matrix, they also occur intracellularly where they
may play a role in storage granules, the nucleus,
and other intracellular organelles.19 For example,
heparin and related polymers have recently been
shown to promote aggregation of many intracellu-
larly stored peptide hormones.20,21 This makes it
reasonable to investigate heparin's interactions with
p25α. The ability to induce structural changes is

often dependent on the length of the heparin
molecule,22,23 consistent with the fact that expression
of heparanase reduces amyloid deposition.24,25

Nucleic acids can also stimulate aggregation of, for
example, prion proteins.26 αSN, β2-microglobulin,
and Aβ can also fibrillate in the presence of SDS (see
references in Ref. 27), though it should be noted that
this requires the presence of monomeric surfactant to
stimulate protein aggregation through shared
micelles.27

Here, we provide evidence that p25α does not
fibrillate to any significant extent by itself but
readily forms aggregates in the presence of poly-
anionic biopolymers such as heparin, RNA, and
anionic lipids. However, the aggregates contain a
mixture of amyloid and non-amyloid structures,
and the distribution of the two structural classes is
dictated by the amount of polyanionic compound
present. This indicates that p25α can form a
spectrum of different aggregates in response to
specific environmental conditions. We are able to
capture these phenomena in a model where p25α
binds to heparin in two stages. Our observations
may have implications for an interpretation of the
biological distribution of p25α aggregates.

Results

p25α aggregation is stimulated by heparin of
minimum length 6 monosaccharide units

We have previously shown that p25α accelerates
the ability of αSN to form thioflavin T (ThT)-binding
amyloid fibrils when co-incubated for several days
under physiological buffer conditions.1 In those
experiments, p25α did not form any insoluble
aggregates on its own. When we repeat this
experiment in a plate reader under conditions
known to promote aggregation, namely, shaking
and the presence of glass beads,28 we also observe
that 15 μM (0.38 mg/ml) p25α by itself does not
form ThT-positive aggregates to any significant
extent (Fig. 1a).
However, the addition of high molecular weight

(HW) heparin (average molecular mass, 17 kDa,
corresponding to ∼60 monosaccharide units, as
described in Supplementary Information, p. 2) dra-
matically changes this. As little as 0.4 μg/ml heparin
has an impact, leading to an increase in ThT
fluorescence after approximately 16 h of incubation
(Fig. 1a). With increasing heparin concentrations of
up to 10 μg/ml, the lag phase is further shortened
to 8–10 h (Fig. 1a) and the endpoint ThT fluores-
cence increases (Fig. 1b). This clearly indicates that
heparin induces aggregation of p25α in a concen-
tration-dependent manner. At concentrations above
10 μg/ml heparin, the lag phase further decreases to
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1–3 h, but although there is a spike in the ThT
fluorescence around 10 h, the endpoint ThT
intensity rapidly decays to a level corresponding
to the absence of heparin (Fig. 1b). Atomic force

microscopy (AFM) images (Fig. 1c) show that full-
length p25α in both 0 (Fig. 1c1) and 100 μg/ml
heparin (Fig. 1c3) forms amorphous aggregates,
whereas short fibrils are formed at intermediate
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(10 μg/ml) heparin levels (Fig. 1c2) and thus
correspond nicely with the ThT levels reached in
Fig. 1a. Note that much smaller amounts of
aggregates are formed at 0 than at 100 μg/ml
heparin (Fig. 2, see below). These observations
clearly suggest an optimal heparin concentration
for the induction of amyloid fibrils around 10 μg/ml.
Aggregates formed at different concentrations

after incubation in round-bottomed flasks were
spun down to evaluate how heparin affected the
amount of aggregated material, and the amount of
supernatant and pellet was quantified by SDS-
PAGE and densitometric scanning (Fig. 2a). To
remove bias in the aggregation approach, the
concentration of soluble p25α was also determined
by UV absorbance at 280 nm after incubation in a
plate reader (Fig. 2b). As the heparin concentration
increases to 10 μg/ml, UV absorbance data showed
a steep decrease in the remaining soluble p25α
fraction to a plateau around 0.2 mg/ml, which
remains relatively constant as the heparin concen-
tration increases to 100 μg/ml. This is in excellent
agreement with densitometric scanning data (Fig.
2a). The insoluble aggregates were insoluble not
only in phosphate-buffered saline (PBS) buffer but
also in mild surfactant (Triton X-100) but were
completely solubilized by SDS (data not shown).
These data suggest the existence of a critical

aggregation concentration (CAC) of ∼0.2 mg/ml
p25α. Below the CAC, there is not enough monomer
to form fibrils. Above the CAC, the monomer
concentration remains essentially constant irrespec-
tive of the total protein concentration. To confirm
the existence of such a threshold concentration, we
followed the ThT signal during fibrillation of p25α
at various concentrations using 10 μg/ml heparin
(Fig. 2c). Indeed, the endpoint ThT levels only rises
gradually at low concentrations and then shows a
steep increase above ∼0.17 mg/ml (6.8 μM) p25α.
The other two p25α constructs with missing

C- or N-termini (p25α Δ3–43 in Fig. S1a and p25α
Δ156–219 in Fig. S1b) show a small degree of

fibrillation by themselves (2- to 10-fold increase in
ThT fluorescence), and fibrillation levels peak
already at 1 μg/ml heparin, though the lag times
are shortest at 10 and 100 μg/ml heparin. No
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overshoot is seen at 100 μg/ml heparin, unlike full-
length p25α. Thus, the two unstructured terminal
regions of p25α influence, but are not critical for,
aggregation.
Next, we examined the effect of heparin polymer

length on the stimulation of p25α aggregation. We
monitored the aggregation propensity of p25α in the
presence of smaller heparin species with a degree of
polymerization (DP) of 2, 6, 10, and 14 heparin
monosaccharide units, respectively (Fig. 3). DP2 did
not increase ThT fluorescence beyond that in the
absence of heparin at any concentration. Similarly,
the addition of 1 μg/ml DP6 did not result in further
increases in the ThT levels. Hardly any material
could be spun down, corroborating the lack of
aggregation (data not shown). In contrast, the
addition of 10 and 100 μg/ml DP6 to p25α led to
an increase in ThT intensity of ∼19-fold and ∼37-
fold compared to the background, respectively.
However, unlike p25α incubated with 100 μg/ml
HW heparin, no overshoot in ThT signal was
observed using the 1–100 μg/ml DP6 heparin
evaluated here.
When increasing the DP to 10 and 14 units,

respectively, we observed a time profile with
characteristic lag phases and order of final ThT
signals resembling those observed in the presence of
high MW heparin. With 1 μg/ml DP10 heparin, a
lag phase of ∼32 h was observed, whereas the
longer DP14 decreased the lag phase to ∼23 h,
which is close to that of HW heparin. The addition of
10 μg/ml DP10 and DP14 shortens the lag phase to
∼20 and ∼14 h, respectively, and led to the highest
ThT fluorescence signals. Further shortening of the
lag phases to ∼10 and ∼4 h was observed when the
concentration of DP10 and DP14 was increased
10-fold to 100 μg/ml, respectively. A gradual decline
in ThTfluorescence over time to levels below those of
10 μg/ml heparin was also observed at high DP10
and DP14 concentrations, although without the
spike-like appearance seen for full-length heparin
(Fig. 1a). Fibrils were seen at all three heparin
concentrations according to EM (shown as insets in
Figs. 3a–c for DP14), typically interspersed with
more amorphous material. The DP10–DP14 samples
had aggregated sufficiently to allow material to be
spun down for Fourier transform infrared (FTIR)
analysis, yielding a shoulder around 1627 cm−1

characteristic of amyloid structure (data not shown).
Summing up, DP2 does not stimulate p25α

aggregation, DP6 results in an aggregation
pattern similar to high MW heparin in the
presence of p25α Δ156–219 and p25α Δ3–43
mutants, whereas DP10 and DP14 result in
aggregation patterns similar to high MW heparin
although the overshoot at 100 μg/ml heparin
concentration is less pronounced. Furthermore, an
increasing DP decreases the lag phase of aggre-
gation. Thus, a polymerization degree of 10–14

heparin units is sufficient to recapitulate the
aggregation-stimulating properties of full-length
heparin.
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Heparin binds stably to both fibrillar and
monomeric p25α

To elucidate whether heparin only interacted
transiently with p25α or was involved in a more
stable complex, we incubated 10 μg/ml fluorescein-
labeled HW heparin with 15 μM p25α under the
same aggregation conditions as in the previous
section. After 160 h of incubation at 37 °C, centri-
fugation or filtration removed 40±10% of fluores-
cein fluorescence from solution, similar to the
55±10% of p25α removed from solution in Fig. 2a.
This indicates that heparin forms a stable complex
with p25α in the aggregated state.
We next sought to elucidate to what extent HW

heparin interacts with soluble p25α. Accordingly,
we applied isothermal titration calorimetry (ITC)
to obtain a thermodynamic description of the
heparin:p25α interaction. ITC measurements of the
binding of HW heparin to p25α were done by
stepwise titration of 200 μM HW heparin into
15 μM p25α at 37 °C while recording the evolved
heat (Fig. 4, inset). Clearly, the interaction of
heparin with p25α is exothermic. The peaks were
integrated over time to obtain the heat evolved per
mole of heparin and corrected for the contribution
of heparin into buffer and buffer into protein
(Fig. 4). Thermodynamic binding parameters were
obtained by fitting data to a model with n binding
sites for p25α per heparin molecule, yielding the
following parameters: n=2.44±0.06, dissociation

constant Kd=2.14±0.64 μM, ΔH=−14.0±1.7 kcal/
mol, −TΔS=5.99 kcal/mol, and thus a Gibbs free
energy of interaction of −8.1 kcal/mol. Clearly, the
reaction is driven by enthalpy (binding interactions
between p25α and heparin) and opposed by
entropy (immobilization of the two components).
Similar thermodynamic values (Kd=3.73±0.93 μM,
ΔH=−4.5±1.7 kcal/mol, −TΔS=3.2 kcal/mol, and
thus a Gibbs free energy of interaction of −7.7 kcal/
mol) were obtained using the more homogeneous
DP14 heparin preparation (Fig. 4). This indicates
that our HW heparin binding data were not skewed
by, for example, preferential binding to higher
molecular weight species.
The high affinity compares well to that of αSN wt

and A30P mutant (Kd values of 0.19 μM and
0.6 μM, respectively)12 and other heparin binding
proteins.29 The exothermic interaction likely arises
from multiple interactions of basic amino acid
residues with the negatively charged sulfate and
carboxyl groups of heparin.29,30 This is further
emphasized by the high pI of p25α (calculated pI,
∼9.48). We have previously reported that mono-
meric p25α does not undergo significant structural
changes over shorter time scales in the presence of
heparin.3 The present report shows that aggrega-
tion only occurs after prolonged incubation with
heparin. Electrostatic interactions may therefore
coordinate the protein in an aggregation-prone yet
largely native conformation.
The fitted parameters are consistent with a simple

model in which ∼2 p25α molecules bind per
heparin. However, in view of the repetitive poly-
meric nature of heparin, we do not rule out a shift in
the heparin:p25α stoichiometry as we titrate hepa-
rin into p25α solution; such a “sliding model”
cannot be excluded from the data. Remarkably,
amyloid formation is observed only when binding
enthalpies close to the maximum of −14.0 kcal/mol
are observed. This indicates that essentially all
added heparin bind to p25α, and each heparin
molecule may thus potentially interact with multiple
p25α monomers. AF4 separation of 15 μM p25α
further showed that the protein peak (A205 nm)
shifted toward higher retention times in the presence
of 10 μg/ml heparin (data not shown), indicating
that a significant proportion of p25α in solution
interacts with heparin. The molar ratio at 15 μM
p25α and 10 μg/ml heparin is 1 heparin:25 p25α,
which leads to ∼1.2 disaccharide units per p25α
(assuming an average disaccharide molecular mass
of 580 Da based on the disaccharide repeat 2-O-
sulfated iduronic acid and 6-O-sulfated, N-sulfated
glucosamine).

p25α aggregates contain amyloid structure

We decided to investigate the nature of these ThT-
positive aggregates in more detail. The CD spectra
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sites per p25α (continuous line for HW heparin, broken
line for DP14 heparin) to obtain thermodynamic binding
parameters.
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of p25α incubated in the presence of DP2–DP14 and
HW heparin all show a minimum centered around
205 nm with a shoulder around ∼220 nm (Fig. S3).
For heparin-free p25α, the minimum is at ∼220 nm
and the shoulder is around 205 nm. At the lowest
heparin concentrations (1 μg/ml), the amplitude of
the CD signal is similar for samples incubated with
DP2, DP6, and DP10, whereas the amplitude is
slightly reduced in the presence of DP14 (Fig. S3a).
On increasing the concentration to 10 μg/ml, the CD
signal of DP2 remains unchanged whereas the CD
signal of DP6, DP10, and DP14 is reduced (Fig. S3b).
This effect is even more prominent in p25α samples
incubated in the presence of 100 μg/ml heparin (Fig.
S3c), leading to CD signals with amplitudes de-
creasing in the order DP2NDP6NDP10NDP14, the
latter of which approaches the spectrum obtained in
the presence of HW heparin.
The fact that the CD signal intensity decreases both

with increasing heparin concentration and with
decreasing polymerization can be rationalized in
several ways. Either there could be a partial
conversion of largely unstructured p25α into
β-sheet structures (which has a lower signal intensity
than random coil), or there could be a loss in overall
signal intensity because increased aggregation leads
to more light scattering and thus less signal. The
latter is consistent with ThT measurements in which
an increased aggregation propensity is observed at
both increasing DP and increasing concentration. We
therefore turned to attenuated total reflectance (ATR)-
FTIR, which is not sensitive to light-scattering
artifacts. The spectra of the p25α aggregates generally
display a broad peak in the amide I region around
1656 cm− 1 and a shoulder at approximately
1627 cm−1, whereas freshly prepared p25α present
a single peak at ∼1656 cm−1 (Fig. 5a). The center
and breadth of the ∼1656 cm−1 peak are likely to
arise from α-helical structures (1653±4 cm−1)31

with a certain degree of conformational freedom,32

in agreement with previous studies of p25α in
which the protein was identified as flexible yet
natively folded.33 The shoulders identified at
∼1627 cm−1 in aggregated p25α samples arise
from amyloid structures (which manifest a peak at
1611–1630 cm−1).34

Consistent with ThT measurements, we observed
an increase in the amyloid shoulder from 0 to
10 μg/ml heparin after which the shoulder appears
to decrease in intensity. This is clearly manifested in
the amount of amyloid structure determined by
deconvolution of the FTIR spectra by Lorentzian
line fitting in Fig. 5b (example of fit shown in inset).
Clearly, the largest amount of amyloid structure
of ∼25–30% is observed at a heparin concentra-
tion of 0.4–10 μg/ml, whereas a loss in amyloid
structure is observed at higher heparin concentra-
tions (∼10–19%) but remain higher than heparin-
free p25α (∼4%). We conclude that heparin favors

amyloid formation by p25α in a dose-dependent
manner at concentrations of up to around 10 μg/ml
heparin, after which the binding of heparin may
immobilize p25α in a state from which it may not
take part in the fibrillation process.
Together with our CD data, this emphasizes that

the presence of heparin favors amyloid formation by
p25α. Further, the coexistence of amyloid and
flexible structures in the FTIR analysis and the
decrease in CD amplitude combine to suggest that
the secondary structure of aggregates formed by
p25α in the presence of heparin consists of an
amyloid core surrounded by one or more flexible
regions.
To determine in a non-spectroscopic manner if

aggregation leads to a significant rearrangement
of p25α, we subjected free p25α as well as
heparin incubated in the presence of 100 μg/ml
heparin to trypsin digestion. Both types of p25α
are degraded by trypsin, yielding similar bands
(Fig. S4). However, the extent of proteolysis was
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Fig. 5. (a) FTIR spectra of p25α aggregates formed in
the presence of high MW heparin. (b) Estimation of
amyloid structure content by deconvolution of FTIR
spectra at different heparin concentrations by fitting of
Lorentzian line shapes as shown in the inset.
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reduced for aggregated p25α as shown already at
the lowest trypsin concentration of 2 nM employed
since clear bands persist in the aggregated samples,
whereas intact free p25α had almost entirely dis-
appeared and turned into lower molecular weight
fragments. This may be due to simple steric
inaccessibility in aggregated p25α and does not
indicate a very substantial rearrangement of the
protein structure. Incubation with lower concentra-
tions of heparin led to smaller protection levels but
no changes in the band distribution, suggesting that
the heparin reduces proteolytic cleavage by simple
steric protection.
We have previously shown that monomeric p25α

incubated in the presence of αSN stimulates the
latter's ability to fibrillate.1 αSN fibrils do not
stimulate aggregation of monomeric p25α (data
not shown). To investigate whether the p25α
aggregates formed in the presence of heparin
could stimulate αSN aggregation, we sonicated
these p25α–heparin aggregates (to fragment the
aggregates and thus increase the number of avail-
able growing ends for potential fibril elongation)
and incubated them together with αSN. However,
we observed no significant change in either the
kinetics or overall yield of αSN fibrils (data not
shown). Furthermore, these sonicated aggregates
did not lead to any significant fibrillation of p25α in
the absence of anionic components. The implication
of this observation is that heparin is needed in
stoichiometric amounts to stabilize the p25α fibril-
like aggregates, and p25α is not able to incorporate
into existing aggregates by itself.

Modeling p25α aggregation in the presence
of heparin

We have attempted to recapitulate the kinetic data
for p25α–heparin interactions in a mechanistic
model outlined in Fig. 6a. The model has to capture
the biphasic feature of these interactions, namely,
that at 15 μM, p25α can form amyloid fibrils at an
optimal heparin concentration of 10 μg/ml, while
higher heparin concentrations lead to amorphous
aggregates after a transient buildup of amyloid
material. Accordingly, the model consists of three
basic reactions: (1) nucleation of p25α onto heparin,
(2) addition of p25α-monomers onto the nucleus to
form amyloid structures, and (3) (at higher heparin
concentrations) heparin-dependent formation of
amorphous aggregates through addition of an
extra heparin molecule to the existing p25α:heparin
complex. Our model only requires one additional
heparin molecule to bind at stage 3, though binding
of a larger number of bound molecules is also
possible. Details are provided in Supplementary
Information.
The resulting differential equations describing the

system are shown in Fig. 6b. The equations have

been solved numerically in MATLAB. As shown in
Fig. 7a, the model nicely fits the experimental data
from Fig. 1a (fit parameters indicated in the legend
to Fig. 7a) and recaptures the existence of an optimal
heparin concentration for amyloid production (Fig.
7b). The simple model captures a great deal of the
experimentally observed phenomena. At low hepa-
rin concentrations, all heparin polymers are quickly
bound to p25α, and additional monomers are
incorporated until they reach the maximal capacity,
N=43. At higher heparin concentrations, excessive
free heparin can bind to the p25α:heparin units and
thereby form amorphous aggregates, leading to a
lower ThT signal. Importantly, the concentration of
free (uncomplexed) p25α declines slowly to what
appears to be a plateau level. In our model,
prolonged incubation will eventually lead to com-
plete complexation due to the postulated irrevers-
ibility of the reaction, but a small backward reaction
cannot be ruled out, leading to true equilibrium. The
general shape of this curve is similar to the
experimental data for free p25α (Fig. 2b) down to
the minimum around 20 μg/ml heparin, although
the overall plateau levels are lower in the model.
This discrepancy in plateau levels can, to some
extent, be explained by the fact that the model data
only show free p25α, whereas some p25α:heparin
complexes with small numbers of bound p25α may
remain free in solution. The minimum around
20 μg/ml in Fig. 2b only shows borderline statistical
significance but may be rationalized as follows in
the model: The minimum indicates an optimum
concentration for sequestering p25α as insoluble
amyloid structures. p25α sequestering occurs
through two processes, namely, nucleation onto
free heparin and elongation onto growing p25α:
heparin complexes. At 20 μg/ml heparin, there is
enough heparin to allow p25α to bind and nucleate
to a significant extent before the second heparin
binding step occurs; at higher heparin concentra-
tions, binding of additional heparin to the growing
p25α:heparin complex occurs so rapidly as to block
further incorporation of p25α.
We have also tested how the model responds to

different concentrations of p25α at a fixed heparin
concentration [Hep]=10 μg/ml. The model nicely
reproduces the experimental results (Fig. 2c). The
simulated data make it more obvious that the curve
is close to horizontal at low concentrations before
starting to rise at higher concentrations, leading to
an apparent threshold concentration of ∼0.05 mg/
ml p25α required for amyloid formation. Within the
framework of our model, this threshold is not a
consequence of the second-order p25α concentration
dependence in Fig. 6b (where a minimum of two
p25α molecules bind to each heparin molecule),
since first- or third-order p25α concentration de-
pendences give a similar shape though they do not
fit the experimental data nearly as well (data not
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shown). The threshold is retained (although the fit is
reduced in quality) if the maximal number of p25α
molecules binding per heparin molecule (N) is
reduced. Removal of the logistical aspect (growth
proportional to the number of incorporated p25α
molecules) has the same consequences. All these
modifications (except the third-order [p25α] depen-
dence) reduce the steepness of the concentration
dependence beyond the threshold value and the
overall dynamics of fibril growth. Thus, the thresh-
old is likely a cumulative consequence of the many
steps involved in the nucleation and elongation
processes.

Other anionic assemblies can also stimulate
aggregation to different extents

Having observed the strong effect of heparin on
p25α, we reasoned that other anionic assemblies
might also induce aggregates in p25α. Indeed, the
anionic surfactant SDS and the anionic lipid dioleoyl
phosphatidylglycerol (DOPG) could induce ThT-
positive aggregates to some extent, and this effect is
attenuated when DOPG is diluted out with the
zwitterionic lipid DOPC, which by itself does not
induce any aggregates (Fig. S5a). However, the
aggregates were in all cases amorphous according to

Fig. 6. (a) Model for p25α aggre-
gation on heparin. The three pro-
cesses included in the model are as
follows: (1) Nucleation, in which
two free p25α monomers bind to
heparin. (2) Addition of free p25α
monomers to the p25α:heparin units
that are already formed. The p25α:
heparin units can keep adding
monomers until they have reached
the maximum capacity of N mono-
mers. (3) Addition of another hepa-
rin molecule, which will cause the
p25α:heparin unit to restructure into
an amorphous aggregate. (b) Differ-
ential equations describing time
evolution of the mass concentration
of p25α monomer, heparin, fibrillar
p25α:heparin units (Ul), and amor-
phous p25α:heparin units (Al). The
total amount of amyloid fibrils is at
all times given by the sum of
fibrillar p25α:heparin units (Total
fibril mass concentration=∑[Ul]),
and similarly, the total amount of
amorphous aggregates is given by
the sum of amorphous p25α:hepa-
rin units (Total amorphous mass
concentration=∑[Al]).
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AFM images (Fig. S5b) and, unlike heparin, did not
show any significant changes in CD spectra apart
from a general decrease because of aggregate
formation. More fibril-like aggregates were obtained

using polyglutamate, where we observed an opti-
mum ratio of polyE needed to stimulate aggrega-
tion, similar to heparin (Fig. S6a and b). Other
polyanionic species such as RNA (Fig. S6c) and

Fig. 7. (a) Model fit to three different heparin concentrations (1, 10, and 215 μg/ml). The parameters that gave the best
fit were the following: knu=0.6 μM−2 s−1, kadd=36 μM−1 s−1, and kam=120 μM−1 s−1. (b) Model predictions of ThT end
intensities as a function of heparin concentration at 15 μM p25α. Experimental data from Fig. 1b were included for
comparison. Inset showsmodeled time course of aggregation (ThT intensities); the stippled arrow line shows the direction
of increasing heparin concentration. (c) Predicted ThT signal for different concentrations of p25α, with heparin
concentration fixed to [Hep]=10 μg/ml. Experimental data from Fig. 2c were included for comparison. Inset: ThT time
profiles for the different concentrations of p25α indicated in the figure (in milligrams per milliliter).
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arachidonic acid (Fig. S6d) were also able to
stimulate the aggregation process.

Discussion

A model for heparin-induced aggregation of p25α

Here, we demonstrate that low concentrations of
the polyanionic polymers heparin and polygluta-
mate induce the formation of fibril-like aggregates of
p25α. Anionic self-assembling amphiphiles such as
SDS and DOPG also lead to aggregates but they
have a less fibrillar character. In general, however,
amyloid formation does not seem to involve
rearrangement of a large part of the protein.
Although ThT fluorescence signals of the resulting
aggregates are relatively low in intensity compared
to bona fide fibrils of αSN, deconvoluted FTIR
spectra of heparin-induced aggregates indicate up to

26% amyloid structure depending on heparin
concentration, and the proteolysis experiments
suggest that the same overall fold is retained in the
aggregate as in the monomeric protein. Further-
more, the fact that heparin molecules of polymeri-
zation 6–10 (corresponding to 26–43 Å in length for
fully extended heparin, cf. PDB structure 1HPN
and,35 which is equivalent to 8–14 amino acid
residues in β-sheet conformation36) are sufficient
to stimulate aggregation suggests that only a small
part of the protein needs to be aligned.
Based on the existing data and the close agreement

with our model outlined in Fig. 6a, we propose the
following scenario for aggregation:
A few residues of the protein (possibly those

corresponding to the small β-sheet structure in the
human and murine homologues) align with the
heparin or polyglutamate structure. The interaction
is probably driven by electrostatic (exothermic)
interactions, just as has been suggested for many
other heparin–protein interactions including
apomyoglobin.14 Based on ITC data, we estimate
that each heparin molecule binds 2.4 p25α mole-
cules, corresponding to 20–24 monosaccharide units
and consistent with our observations that 10–14
monosaccharide units are sufficient to recapitulate
the effect of full-length heparin. The initial binding
of two p25α molecules serves as template for the
subsequent alignment of additional p25αmolecules,
and this core structure is sufficient to propagate the
amyloid structure, presumably surrounded by more
or less native-like structure (explaining the rather
modest spectroscopic changes observed by CD and
FTIR). This is similar to the ability of a grafted Gln10
sequence to induce fibrillation of RNase where
native domains align along a central amyloid
zipper.37 If too much heparin is added, it will bind
to existing p25α:heparin complexes and block
further buildup of p25α aggregates. We can rule
out the alternative scenario that free heparin
immobilizes p25α molecules and reduces the
amount of free p25α that is needed to build onto
templated p25α and form proper fibrils, since this
will not produce the observed highly reproducible
overshoot at the beginning of the fibrillation process
(Fig. 1a). The amorphous aggregates represent
association of heparin-complexed p25α molecules
where the large concentration of heparin sterically
prevents large-scale fibrillar alignment. In this
model, the overshoot observed at higher heparin
concentrations represents transient amyloid forma-
tion, after which more heparin binds to reorganize
the aggregates to a more amorphous structure
(leading to a more amorphous appearance).
The apparent ease of reorganization is consistent

with our minimal amyloid model, in which only a
small part of p25α participates in intermolecular
cross-β contacts. The small number of intermolecu-
lar contacts will likely make binding weak and

Fig. 7 (legend on previous page)
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dynamic, allowing the fibrils to form quickly but
then rearrange to form amorphous aggregates in the
presence of more heparin. The fact that the
overshoot does not happen in the truncated versions
of p25α, where increasing amounts of heparin
uniformly leads to a lowering of the ThT fluores-
cence, suggests that both termini are required to
facilitate the transient formation of this amyloid-like
aggregate, possibly by protecting against too strong
binding to heparin and allowing monomeric p25α to
congregate on templated p25α. Although both
terminal regions contain a small preponderance of
positive charge, they are both highly charged (a
third of all residues contain acidic or basic regions),
and this high charge density may reduce binding to
heparin.
Interestingly, our model confirms the existence of

a residual monomer concentration corresponding to
CAC of p25α after a plateau ThT level has been
reached. This is an inherent property of the model
and is probably a consequence of the many steps
involved in nucleation and elongation, which leads
to a gradually decreasing rate of incorporation of
p25α into fibrils or amorphous aggregates. CACs
also play a role in aggregation processes that require
formation of oligomeric assemblies as precursors or
nucleators of fibrillation.38 However, we have no
evidence for specific oligomeric structures of p25α;
rather, heparin appears to serve as the template to
start the aggregation reaction by stabilizing a
continuum of different heparin:p25α complexes.
The fact that p25α aggregates do not significantly

seed αSN aggregation indicates that stimulation of
αSN aggregation is a separate phenomenon. Mono-
meric p25α undergoes a conformational change
when complexed with monomeric αSN prior to
aggregation,3 and this possibility is obviously
reduced when p25α is aggregated. We have
previously observed that many other polyanionic
structures do not have an effect on the structure of
monomeric p25α,3 implying that structural changes
for p25α are coupled to aggregation. SDS can also
induce aggregation of αSN to form structures
midway between fully rigid classical fibrils and
more amorphous aggregates.39 However, the mech-
anism is likely to be different from heparin, since
SDS draws proteins together by forcing them to
cluster around a shared micelle. This leaves a small
part of the protein free to extend from the micelle
and possibly bridge to other micellar clusters via
overlapping amyloid sequences.39

Role of polyanionic biomolecules in vivo

It is as yet unclear if the p25α-positive inclusions
detected in neurons affected in Alzheimer's disease,
Pick's disease, and multiple systems atrophy contain
aggregated p25α, but they definitely present as
inclusions with a high content of p25α without the

presence of αSN or tau.6,7 However, we have
demonstrated that biological polyanionics can trig-
ger aggregation. Some are more obvious candidates
than others for stimulation of p25α aggregation in
vivo. Heparin is produced by mast cells and
basophilic cells and released only into the vascula-
ture at sites of tissue injury. It is commonly isolated
from the mucosal lining. However, the closely
related heparan sulfate is reported to colocalize
with tau aggregates in nerve cells of the Alzheimer's
disease brain,40 suggesting that these GAGs also can
play a role in stimulating p25α aggregation in the
brain. Other GAGs are also found intracellularly.19

Zwitterionic phospholipids, which have no effect on
p25α aggregation, are ubiquitous, but their anionic
counterparts, which can stimulate p25α aggregation
in this study and as reported elsewhere for many
other proteins,41,42 are typically only exposed on cell
surfaces upon apoptosis. It is of particular interest
that arachidonic acid also triggers the aggregation,
as polyunsaturated fatty acids can trigger oligomer-
ization of αSN,43 and perturbations in polyunsatu-
rated fatty acids have been demonstrated in models
of PD.44,45

Materials and Methods

Materials

Heparin sodium salt from bovine intestinal mucosa
(33 mg/ml stock solution; size range, ∼6–80 kDa with a
center at approximately 17 kDa, see Supplementary
Information and Fig. S2), polyglutamate (molecular
mass, 15–50 kDa), and RNA (R6750) were from Sigma-
Aldrich (St. Louis, MO). Fluorescein–heparin was from
Life Technologies (Grand Island, NY). Heparin oligosac-
charides (dp2, dp6, dp10, and dp14 produced by
enzymatic cleavage) were from Dextra (Reading, UK).
All lipids were from Avanti Polar Lipids (Alabaster, AL).

Production of different p25α constructs

p25α (219 residues)1 and p25 Δ3–43 (lacking residues
3–43)3 were produced as previously described. The p25α
constructs lacking the C-terminus (residues 156–219) were
constructed from the pET-11d expression vector harboring
the p25α gene as previously described.46 Correct insertion
was verified by DNA sequencing (MWG-Biotech). Prior to
use, all p25α solutions were filtered through a 0.22-μm
filter. AF4-MALS analyses (see experimental details in
Supplementary Information, p. 2) indicated no species
larger than monomeric p25α.

Aggregation of recombinant p25α constructs

p25α (20 μM; full-length or truncated) was incubated
with PBS buffer (150 mM NaCl and 20 mM sodium
phosphate, pH 7.4) in round-bottomed tubes and
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incubated for 3 days at 37 °C with orbital shaking at
300 rpm. Aggregation was induced by addition of
heparin (0–12.5 μg/ml), arachidonic acid (0–1 mM),
polyglutamate (0–0.175 μg/ml), or RNA (0–1 mg/ml).
Aggregation efficiency was evaluated by ThT fluores-
cence and/or centrifugation. For ThT analysis, p25α
samples of 100 μl were pipetted in triplicate into a 96-well
plate and 100 μl of 40 μM ThT diluted in 90 mM glycine–
NaOH, pH 8.5, was added. The fluorescence intensity
was measured with a Wallac Victor 1420 multilabel
counter (Perkin Elmer, Waltham, MA), using excitation at
450 nm and fluorescence emission at 486 nm. To separate
the supernatant and pellet, 100 μl of the sample was spun
down in a Beckman airfuge at 14,000 rpm for 20 min,
and the supernatant and pellet were separately run on
SDS-PAGE.

Plate reader assays

These were used to follow p25α aggregation in real
time. Conditions included 50 min/h orbital shaking at
300 rpm with one 3-mm-diameter glass microsphere
(Glaswarenfabrik Karl Hecht GmbH&Co. KG, Sondheim,
Germany) to increase reproducibility28 in a sealed clear-
bottom 96-well plate (Nunc, Thermo Fisher Scientific,
Roskilde, Denmark). p25α (15 μM) in PBS buffer was
supplemented with 40 μM ThT and appropriate amounts
of heparin, SDS or DOPC, DOPG, and DOPC:DOPG
vesicles. Fluorescence measurements were carried out
every 12 min using excitation at 448 nm and emission at
485 nm in a Tecan GENios Pro plate reader (Männedorf,
Switzerland). To determine the residual p25α concentra-
tion in solution, we collected samples from the plate after
140 h and centrifuged them at 13,000 rpm for 10 min. The
concentration of soluble p25α species was determined by
UV absorbance at 280 nm using a Nanodrop ND-1000
(Thermo Fisher Scientific, Wilmington, DE) using a
calculated extinction coefficient of 0.425 mg cm−1 ml−1.
Errors are estimated to ∼15% for end plateau ThT
fluorescence levels and 20% for lag times based on visual
inspection of triplicates.

ATR-FTIR spectroscopy

ATR-FTIR analysis of p25α aggregates was performed
on a Bruker Tensor 27 FTIR (Bruker, Karlsruhe, Germa-
ny) equipped with a Golden Gate single reflection
diamond ATR unit (Specac Ltd., Orpington, UK).
Aggregates were concentrated by centrifugation at
13,000 rpm for 5 min by removal of the supernatant
and resuspended in a minimum volume of MilliQ H2O
by gentle pipetting. Aliqouts of sample (typically 4–10 μl)
were transferred to the ATR cell and dried in a stream of
nitrogen gas until the water signal had stabilized. The
adsorption spectrum was recorded in the interval 1000–
4000 cm−1 using a nominal resolution of 2 cm−1 and
noise was reduced through 128 accumulations. Peak
fitting was done by the use of Lorentzian lines between
1575 and 1725 cm−1 wave numbers and the percentage of
individual secondary-structure elements was calculated
from the integral of peaks centered between 1600 and
1700 cm−1. Data treatment was done using OPUS version
5.5 (Bruker).

Electron microscopy

Two hundred microliters of a 15-μM p25α aggregation
sample was produced as described above using 1, 10, or
100 μg/ml DP2–DP10 or HW fraction heparin. The
aggregated p25α was isolated by centrifugation as
described above, and the pelleted aggregates were
resuspended in 21 μl of ddH2O. Grids were washed in
two drops of double-distilled water and stained with 1%
phosphotungstic acid (pH 6.8) and blotted dry on filter
paper. Samples were viewed with a JEOL 1010 transmis-
sion electron microscope.

Atomic force microscopy

The morphology of p25α aggregates was visualized on
a PicoSPMI apparatus (Molecular Imaging Corporation,
Tempe, AZ). Aggregated sample (5 μl) was pipetted onto
freshly cleaved mica, air dried for ∼10 min, washed with
water, and blown dry. The images were recorded in
contact mode using a cantilever (Sini AFM probe,
NanoAndMore GMBH), and the images were visualized
by the software Picoscan 5.5.3 (Molecular Imaging
Corporation).

Solubilization of p25α aggregates

p25α aggregates were isolated by centrifugation. The
pellet was washed in PBS, pH 7.2, and then resuspended
in 1% Triton X-100 followed by incubation at 37 °C for
15 min. The suspension was centrifuged again and the
pellet was resuspended in 1% SDS and incubated at 37 °C
for 15 min. After another round of centrifugation, the
supernatants and pellets were analyzed by SDS-PAGE.

Isothermal titration calorimetry

The binding of heparin to p25α was monitored using a
VP-ITC form MicroCal (Northampton, MA) at 37 °C. The
solutions were degassed under vacuum with a Thermo-
Vac accessory from MicroCal. Heparin (200 μM; HW
heparin or DP14 heparin) was titrated into 1.4 ml of
15 μM p25α in PBS, pH 7.2, using 12 injections of 5 μl
and 22 injections of 10 μl, and the peak areas were
integrated using the ITC data analysis module in
MicroCal Origin 7.0. Reference titrations in which PBS
buffer, pH 7.2, was titrated into p25α and heparin
titrations into PBS, pH 7.2, were subtracted but did not
give rise to significant signals.

Acknowledgements

This work was supported by the Innovation
Consortium CureND via a grant from the Danish
Ministry of Science, Technology and Innovation
(D.E.O., L.G., S.S., and P.H.J.) and from the
Lundbeck Foundation (D.E.O., S.B.N., and M.H.J.).

613Multiple Roles of Heparin in p25α Aggregation



D.E.O. is supported by the Danish Research
Foundation (inSPIN).

Supplementary Data

Supplementary data associated with this article
can be found, in the online version, at doi:10.1016/
j.jmb.2012.01.050

References

1. Lindersson, E., Lundvig, D., Petersen, C., Madsen, P.,
Højrup, P., Moos, T. et al. (2005). P25a is co-expressed
with α-synuclein in α-synucleinopathies and stimu-
lates its aggregation. J. Biol. Chem. 280, 5703–5715.

2. Hlavanda, E., Kovacs, J., Olah, J., Orosz, F.,
Medzihradszky, K. F. & Ovadi, J. (2002). Brain-
specific p25 protein binds to tubulin and microtu-
bules and induces aberrant microtubule assemblies
at substoichiometric concentrations. Biochemistry, 41,
8657–8664.

3. Otzen, D. E., Lundvig, D., Wimmer, R., Hatting, L.,
Pedersen, J. R. & Jensen, P. H. (2005). p25alpha is
flexible but natively folded and binds tubulin in an
oligomeric complex. Protein Sci. 14, 1396–1409.

4. Monleón, D., Chiang, Y., Aramini, J. M., Swapna,
G. V. T., Macapagal, D., Gunsalus, K. C. et al. (2004).
Backbone 1H, 15N and 13C assignments for the 21 kDa
Caenorhabditis elegans homologue of “brain-specific”
protein. J. Biomol. NMR, 28, 91–92.

5. Takahashi, M., Tomizawa, K., Ishiguro, K., Sato, K.,
Omori, A., Sato, S. et al. (1991). A novel brain-specific
25 kDa protein (p25) is phosphorylated by a Ser–Thr–
Pro kinase (Tpk-Ii) from Tau protein-kinase fractions.
FEBS Lett. 289, 37–43.

6. Baker, K. G., Huang, Y., McCann, H., Gai,W. P., Jensen,
P. H. & Halliday, G. M. (2006). P25α immunoreactive
but α-synuclein immunonegative neuronal inclusions
inmultiple system atroph.Acta Neuropathol. 111, 193–195.

7. Kovacs, G. G., Laszlo, L., Kovacs, J., Jensen, P. H.,
Lindersson, E., Boton, G. et al. (2004). Natively
unfolded tubulin polymerization promoting protein
TPPP/p25 is a common marker of alpha-synucleino-
pathies. Neurobiol. Dis. 17, 155–162.

8. Zhu, H. L., Fernández, C., Fan, J. B., Shewmaker, F.,
Chen, J., Minton, A. P. & Liang, Y. (2010). Quantitative
characterization of heparin binding to tau protein.
J. Biol. Chem. 285, 3592.

9. Gendron, T. F. & Petrucelli, L. (2009). The role of tau in
neurodegeneration. Mol. Neurodegener. 11, 13.

10. Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, K.,
Smith, M. J. & Crowther, R. A. (1996). Assembly of
microtubule-associated protein tau into Alzheimer-like
filaments induced by sulphated glycosaminoglycans.
Nature, 383, 550–553.

11. Kuret, J., Chirita, C. N., Congdon, E. E., Kannanayakal,
T., Li, G., Necula, M. et al. (2005). Pathways of tau
fibrillization. Biochim. Biophys. Acta, 1739, 167–178.

12. Cohlberg, J. A., Li, J., Uversky, V. N. & Fink, A. L.
(2002). Heparin and other glycosaminoglycans stimu-
late the formation of amyloid fibrils from [alpha]-
synuclein in vitro. Biochemistry, 41, 1502–1511.

13. McLaurin, J., Franklin, T., Zhang, X., Deng, J. & Fraser,
P. E. (1999). Interactions of Alzheimer amyloid-beta
peptides with glycosaminoglycans: effects on fibril
nucleation and growth. Eur. J. Biochem. 266, 1101–1110.

14. Vilasi, S., Sarcina, R., Maritato, R., De Simone, A., Irace,
G. & Sirangelo, I. (2011). Heparin induces harmless
fibril formation in amyloidogenic W7FW14F apomyo-
globin and amyloid aggregation inwild-type protein in
vitro. PLoS One, 6, e22076.

15. Suk, J. Y., Zhang, F., Balch, W. E., Linhardt, R. J. &
Kelly, J. W. (2006). Heparin accelerates gelsolin
amyloidogenesis. Biochemistry, 45, 2234–2242.

16. Yamamoto, S., Yamaguchi, I., Hasegawa, K., Tsutsumi,
S., Goto, Y., Gejyo, F. & Naiki, H. (2004). Glycosami-
noglycans enhance the trifluoroethanol-induced exten-
sion of β2-microglobulin-related amyloid fibrils at a
neutral pH. J. Am. Soc. Nephrol. 15, 126–133.

17. Zhang, X. & Li, J. P. (2010). Heparan sulfate pro-
teoglycans in amyloidosis. Prog. Mol. Biol. Transl. Sci.
93, 309–334.

18. Bourgault, S., Solomon, J. P., Reixach, N. & Kelly, J. W.
(2011). Sulfated glycosaminoglycans accelerate trans-
thyretin amyloidogenesis by quaternary structural
conversion. Biochemistry, 50, 1001–1015.

19. Kolset, S. O., Prydz, K. & Pejler, G. (2004). Intracellular
proteoglycans. Biochem. J. 379, 217–227.

20. Maji, S. K., Schubert, D., Rivier, C., Lee, S., Rivier, J. E.
& Riek, R. (2008). Amyloid as a depot for the
formulation of long-acting drugs. PLoS Biol. 6, e17.

21. Nielsen, S. B., Franzmann, M., Basaiawmoit, R. V.,
Wimmer, R., Mikkelsen, J. D. & Otzen, D. E. (2010). β-
Sheet aggregation of kisspeptin is stimulated by heparin
but inhibited by amphiphiles. Biopolymers, 93, 678–689.

22. Valnickova, Z., Petersen, S. V., Nielsen, S. B., Otzen,
D. E. & Enghild, J. J. (2007). Heparin binding induces
a conformational change of pigment epithelium-
derived factor. J. Biol. Chem. 282, 6661–6667.

23. Sandwall, E., O'Callaghan, P., Zhang, X., Lindahl, U.,
Lannfelt, L. & Li, J. P. (2010). Heparan sulfate mediates
Aβ internalization and cytotoxicity. Glycobiology, 20,
533–541.

24. Zacharia, E., Metzger, S., Chajek-Shaul, T., Aingorn,
H., Elkin, M., Firedmann, Y. et al. (2004). Transgenic
expression of mammalian heparanase uncovers
physiological functions of heparan sulfate in tissue
morphogenesis, vascularization and feeding behavior.
FASEB J. 18, 252–263.

25. Li, J. P., Galvis, M. L. E., Gong, F., Zhang, X., Zacharia,
E., Metzger, S. et al. (2005). In vivo fragmentation of
heparan sulfate by heparanase overexpression ren-
ders mice resistant to amyloid protein A amyloidosis.
Proc. Natl Acad. Sci. USA, 102, 6473–6477.

26. Nandi, P. K. & Nicole, J. C. (2004). Nucleic acid and
prion protein interaction produces spherical amyloids
which can function in vivo as coats of spongiform
encephalopathy agent. J. Mol. Biol. 344, 827–837.

27. Otzen, D. E. (2010). Amyloid formation in surfac-
tants and alcohols: membrane mimetics or structural
switchers? Curr. Protein Pept. Sci. 11, 355–371.

28. Giehm, L. & Otzen, D. E. (2010). Strategies to increase
the reproducibility of α-synuclein fibrillation in plate
reader assays. Anal. Biochem. 400, 270–281.

29. Capila, I. & Linhardt, R. J. (2002). Heparin–protein
interactions. Angew. Chem., Int. Ed. 41, 390.

614 Multiple Roles of Heparin in p25α Aggregation



30. Hileman, R. E., Fromm, J. R., Weiler, J. M. & Linhardt,
R. J. (1998). Glycosaminoglycan–protein interactions:
definition of consensus sites in glycosaminoglycan
binding proteins. BioEssays, 20, 156–167.

31. Kong, J. & Yu, S. (2007). Fourier transform infrared
spectroscopic analysis of protein secondary structures.
Acta Biochim. Biophys. Sin. 39, 549.

32. Chirgadze, Y., Brazhnikov, E. & Nevskaya, N. (1976).
Intramolecular distortion of the [alpha]-helical struc-
ture of polypeptides. J. Mol. Biol. 102, 781–792.

33. Otzen, D., Lundvig, D., Wimmer, R., Nielsen, L.,
Pedersen, J. & Jensen, P. (2005). p25α is flexible but
natively folded and binds tubulin with oligomeric
stoichiometry. Protein Sci. 14, 1396–1409.

34. Zandomeneghi, G., Krebs, M. R. H., McCammon,
M. G. & Fandrich, M. (2004). FTIR reveals structural
differences between native β-sheet proteins and
amyloid fibrils. Protein Sci. 13, 3314–3321.

35. Gandhi, N. S. &Mancera, R. L. (2008). The structure of
glycosaminoglycans and their interactions with
proteins. Chem. Biol. Drug Des. 72, 455–482.

36. Creighton, T. E. (1993). Proteins. Structures and
Molecular Properties, 2nd edit. W.H. Freeman & Co.,
New York, NY.

37. Sambashivan, S., Liu, Y., Sawaya, M. R., Gingery, M. &
Eisenberg, D. (2005). Amyloid-like fibrils of ribonu-
clease A with three-dimensional domain-swapped
and native-like structure. Nature, 437, 266–269.

38. Powers, E. T. & Powers, D. L. (2006). The kinetics of
nucleated polymerizations at high concentrations:
amyloid fibril formation near and above the
“supercritical concentration”. Biophys. J. 91, 122–132.

39. Giehm, L., Oliveira, C. L. P., Christiansen, G.,
Pedersen, J. S. & Otzen, D. E. (2010). SDS-induced
fibrillation of α-synuclein: an alternative fibrillation
pathway. J. Mol. Biol. 401, 115–133.

40. Snow, A. D., Willmer, J. P. & Kisilevsky, R. (1987).
Sulfated glycosaminoglycans in Alzheimer's disease.
Hum. Pathol. 18, 506–510.

41. Zhao, H., Tuominen, E. K. J. & Kinnunen, P. K. J.
(2004). Formation of amyloid fibers triggered by
phosphatidylserine-containing membranes. Biochemistry,
43, 10302–10307.

42. Knight, J. D. & Miranker, A. D. (2004). Phospholipid
catalysis of diabetic amyloid assembly. J. Mol. Biol.
341, 1175–1187.

43. Perrin, R. J., Woods, W. S., Clayton, D. F. & George,
J. M. (2001). Exposure to long chain polyunsaturated
fatty acids triggers rapid multimerization of synucleins.
J. Biol. Chem. 276, 41958–41962.

44. Sharon, R., Bar-Joseph, I., Mirick, G. E., Serhan, C. N.
& Selkoe, D. J. (2003). Altered fatty acid composition
of dopaminergic neurons expressing alpha-synuclein
and human brains with alpha-synucleinopathies.
J. Biol. Chem. 278, 49874–49881.

45. Assayag, K., Yakunin, E., Loeb, V., Selkoe, D. J. &
Sharon, R. (2007). Polyunsaturated fatty acids induce
α-synuclein-related pathogenic changes in neuronal
cell. Am. J. Pathol. 171, 2000–2011.

46. Kleinnijenhuis, A. J., Hedegaard, C. J., Lundvig, D.,
Sundbye, S., Issinger, O. G., Jensen, O. N. & Jensen, P. H.
(2008). Identification of multiple post-translational
modifications in the porcine brain specific p25 α.
J. Neurochem. 106, 925–933.

615Multiple Roles of Heparin in p25α Aggregation





RESEARCH ARTICLE Open Access

Modeling the NF-�B mediated inflammatory
response predicts cytokine waves in tissue
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Abstract

Background: Waves propagating in “excitable media” is a reliable way to transmit signals in space. A fascinating
example where living cells comprise such a medium is Dictyostelium D. which propagates waves of
chemoattractant to attract distant cells. While neutrophils chemotax in a similar fashion as Dictyostelium D., it is
unclear if chemoattractant waves exist in mammalian tissues and what mechanisms could propagate them.

Results: We propose that chemoattractant cytokine waves may naturally develop as a result of NF-�B response.
Using a heuristic mathematical model of NF-�B-like circuits coupled in space we show that the known
characteristics of NF-�B response favor cytokine waves.

Conclusions: While the propagating wave of cytokines is generally beneficial for inflammation resolution, our
model predicts that there exist special conditions that can cause chronic inflammation and re-occurrence of acute
inflammatory response.

Background
Inflammatory response (IR) in higher organisms requires
efficient chemotaxis of neutrophils to sites of infection
[1]. At the same time excessive neutrophil accumulation
has been shown to play a role in diseases such as
asthma, atherosclerosis, multiple sclerosis, inflammatory
bowel disorder and arthritis [2]. It however remains an
open question how the chemoattractant signal is trans-
mitted through the tissue. “Propagating waves” present
an optimal way of transmitting a signal across large dis-
tances and occur in many biological systems [3], [4]. In
particular, propagating waves of chemoattractant are uti-
lized by the social amoeba Dictyostelium D. - a model
system for neutrophil chemotaxis [5]. While neutrophils
can efficiently chemotax through chemoattractant waves
[5] it is unclear if they ever encounter such situations.
Unlike Dictyostelium, neutrophils do not generate the
waves themselves and it remains an open question if
there exists a mechanism that could initiate and propa-
gate waves of chemoattractant during IR.
We here suggest that NF-�B is the missing link relat-

ing IR in tissue cells to the propagation of a chemoat-
tractant signal. NF-�B upregulates transcription of many
cytokines which serve as chemoattractants for

neutrophils e.g. TNF, IL-1, IL-6, IL-8 and IL-11 [6-8].
At the same time these cytokines activate NF-�B
response. We show that a simple model of spatially
coupled tissue cells contains all the necessary compo-
nents to initiate and propagate waves of chemoattractant
cytokines. This model behaves as an “excitable medium”
[9] and relies on the following well-known characteris-
tics of IR: 1) fast transient response of NF-�B, 2) a posi-
tive feedback from NF-�B to cytokines and 3) short
half-life of cytokines. Using mathematical modeling, we
find that all these properties favor formation and propa-
gation of cytokine waves.

Propagating waves - an optimal strategy for signaling in
the tissue?
In principle there are multiple ways a chemoattractant
signal can be transmitted through the tissue, however
not all of them are equally efficient and reliable. In the
simplest scenario the chemoattractant molecule pas-
sively diffuses from the site of infection. This will result
in a short-ranged signal where the concentration decays
exponentially with the distance from the source (see
Figure 1A). The range of the signal will be further lim-
ited by the typical short half-life of the chemoattractant
molecules.
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Some neutrophil chemoattractants, e.g. the cytokines
TNF and IL-1, have the unique ability to self-amplify by
means of tissue cells or tissue resident macrophages.
For example, the upregulation of TNF in a localized
area of myocardium can easily induce TNF upregulation
in neighboring normal myocardium [10]. This active
participation of tissue cells amplifies the cytokine con-
centration across the tissue as illustrated in Figure 1B.
Blood vessels serve as a sink for cytokines where they

are carried away by the bloodstream. As a result a
sharp gradient develops near the blood vessel. It is
important to note that both the “diffusion” and the
“amplification” (Figure 1A and 1B) scenarios create sta-
tic gradients, i.e. once in steady state the gradients are
not changing in time. Such static gradients are intrinsi-
cally toxic for the tissue as, for example, continuous
exposure of tissue cells to high TNF levels triggers
apoptosis [11]. Interestingly, some experimental evi-
dences suggest that static gradients are also suboptimal
for neutrophil chemotaxis; neutrophils seem to orient
themselves better when exposed to temporally varying
gradients [5,12-15].
If the cytokine concentration is not amplified continu-

ously but transiently (i.e. with a peak-like profile), the
tissue cells will avoid sustained exposure to toxic cyto-
kines while the signal - the chemoattractant gradient -
can still penetrate far in the tissue. Such transient ampli-
fication can result in single or re-emerging “propagating
waves” as shown in Figure 1C.
It turns out that cytokines are indeed amplified only

transiently [16]. Cytokines induce activation of NF-�B -
a key regulator of IR in tissue cells. In turn active
NF-�B upregulates cytokine production [6-8], thus con-
stituting an amplifying positive feedback. If NF-�B-
response to inflammatory stimuli is transient, so will be
the amplification. And indeed, the synthesis and secre-
tion of inflammatory cytokines from tissue cells were
shown to be parallel to the the NF-�B transient activa-
tion [16].

Results and Discussion
Model
The model consists of spatially distributed cells each
containing NF-�B-like circuits. The circuit in each cell
thus contains 3 variables: An NF-�B-like variable N, a
regulator variable R that combines the effects of all inhi-
bitors in one variable and a cytokine-like variable T see
Figure 2A. The key features of our model which we
shall explain in more detail below are: 1) slow inhibition
due to negative feedback from inhibitors (R), 2) fast
amplification due to positive feedback from cytokines
(T) and 3) spatial coupling of the NF-�B-like circuits
due to diffusion of extracellular cytokines.
Transient response through negative feedback
Upon extracellular stimulation the level of active NF-�B
increases to reach a peak value after approximately 30
minutes and has decreased again after approximately
one hour [17-19]. It has been shown that this transient
NF-�B response is assured by multiple negative feed-
back loops where active NF-�B induces expression of its
own inhibitors. Some of these inhibitors act directly on
NF-�B, e.g. I�Ba, b and ε. Others, as for example the
members of A20 family proteins A20 [20] and Cesanne

Figure 1 Three scenarios for signal propagation from the site
of infection. Three scenarios for signal propagation from the site of
infection marked by the black circle. Cells are aligned vertically and
changes of chemoattractant concentrations in time are developing
from left to right. The blue (red) encode low (high) concentrations
of chemoattractant (T). White lines represent trajectories of
neutrophils chemotaxing from blood vessels (dashed lines). The
trajectories were calculated using a “Local Excitation - Global
Inhibition” model, described in the additional file 1. In A) the
chemoattractant is diffusing from the site of infection. The signal is
short-ranged, and no neutrophils are recruited from the distant
blood vessels. In both B) and C) the signal is long-ranged. In B) the
diffusing chemoattractant is continuously amplified by tissue cells.
The gradient is sharp at the blood vessel but it disappears deeper
in the tissue thus leaving neutrophils devoid of direction. In C)
diffusing chemoattractant is amplified transiently. The waves recruit
neutrophils from the blood stream and also serve as a directing
signal for the neutrophils that are already in the tissue.

Yde et al. BMC Systems Biology 2011, 5:115
http://www.biomedcentral.com/1752-0509/5/115

Page 2 of 9



0.0

0.2

0.4

0.6

0.0

1.0

0.0
2.0
4.0
6.0

0 1 2 3 4 5 6

0 1 2 3 4

0
2
4
6
8
10

0

1

2

Figure 2 Model. Model construction: A) Multiple feedbacks in NF-�B regulatory network are reduced to the core circuit consisting of positive
cytokine feedback, T ® N ® T, that allows signal amplification and negative feedback, N ® R ⊣ N, that captures NF-�B transient dynamics. B)
Mathematical description of the NF-�B-like circuit. N denotes the fraction of active NF-�B; T is the fold induction in cytokine concentration and R
is a negative regulator of N. C) The transient response of N to the stimuli S, and D) corresponding T profile in single isolated cell. E) The model
of spatially coupled NF-�B-like circuits. The coupling is through the diffusion of cytokines, T, and results in “propagating waves “ of T shown in
space-time plot in F) and G). In G) we illustrate the 2D variant of the model simulated with the same parameters.
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[21] inhibit upstream signaling components at the level
of IKK or above.
The main intent with our model is not to capture all

the intricacies of the NF-�B system, but rather to focus
on the few mechanisms we believe are crucial for link-
ing the transient response of NF-�B to spatio-temporal
profiles of cytokines. With that in mind we choose to
reduce the multiple nested negative feedbacks compris-
ing the NF-�B regulatory network to a single negative
feedback, see Figure 2A and 2B, equations 1 and 2. The
main purpose of this negative feedback, N ® R ⊣ N, is
to reproduce the transient dynamics of NF-�B in
response to TNF-stimulation. It is important to note
that this part of the model is a phenomenological gener-
alization, i.e. it aims at a simple mathematical reproduc-
tion of observed results while not relating to the exact
mechanisms. We have tested and confirmed that the
main results hold if the nested negative feedbacks are
modeled explicitly, see Figure S2 in additional file 1.
Amplification through positive cytokine feedback
The positive feedback where nuclear NF-�B up-regu-
lates production of cytokines and they in turn induce
NF-�B nuclear localization is described by equations 1
and 3 in Figure 2A. The strength of the N®T upregula-
tion is governed by the parameter p, and thus captures
the strength of the entire positive feedback (the strength
of the T®N upregulation, ka is fixed, see Methods sec-
tion). For simplicity we replace the double negative NF-
�B activation pathway - where cytokines (e.g., TNF)
activates IKK, which in turn inhibits the NF-�B inhibitor
- by T directly activating N. Mathematically this T ® N
activation term is modeled by a Hill function. It encodes
an activation threshold in NF-�B system, as recently
reported by Turner et al. and Tay et al. [19,22].
Spatial coupling of single cells
The spatial coupling of cells is schematically shown in
Figure 2E. Newly synthesized cytokines are secreted into
the extracellular space where they diffuse and induce
NF-�B response in neighboring cells. The diffusion of T
is described by the diffusion term in equation (4). Note
that T is the only variable that diffuses. The variables N
and R are bounded inside the individual cells. The blood
vessels are placed at the two ends of the line of cells and
are modeled as absorbing (open) boundaries. Absorbing
boundaries take into account that the cytokines are car-
ried away by the blood flow, thus producing a sink for
the variable T. We further assume that the small blood
vessels have negligible effect on cytokine diffusion (the
results also hold if the small blood vessels are taken into
account, see Figure S1 in additional file 1).
In our analysis we assume the parameters estimated for

TNF to be characteristic of multiple cytokines constitut-
ing the positive feedback loop. Our model consists of
3 variables for each cell and 8 parameters. Among the

8 parameters there is only one that is essentially uncon-
strained: The strength of positive feedback, p. The other
parameters are estimated as described in Methods
section.

Propagating Waves Arise from Spatially Coupled NF-�B-
like circuits
The dynamics of a single isolated NF-�B-like circuit is
shown in Figure 2C and 2D. The results are obtained by
numerical integration of the ordinary differential equa-
tions (1)-(3) (Figure 2B). To trigger the response we add
an extracellular stimulus S (see equation (3)). Here and
in all following simulations the stimulus, S, is added at
time 0 and is present at all times unless otherwise men-
tioned. The stimulus S should be thought of as bacterial
endotoxin or initiating cytokines secreted by
macrophages.
Shortly after stimulus is added the cell responds by

increasing the level of active NF-�B (N). Because of the
negative feedback from inhibitors (R), NF-�B (N)
decreases back to lower values after approximately an
hour. The positive feedback from NF-�B (N) amplifies
the concentration of cytokines (T) to become many
orders of magnitude larger than it would have reached
by the small stimulus S alone (Figure 2D). Note that the
cytokine concentration (T) also peaks on a timescale
similar to that of NF-�B.
Interestingly, our model, although simplified, can cap-

ture characteristic biphasic response in both the NF-�B-
like variable, N (Figure 2C, blue line), and the cytokine-
like variable, T (Figure 2D, red line). Here an acute
phase - with a well pronounced peak - is followed by a
late phase - where the concentrations are lower than in
the acute phase, but are above the pre-stimulus concen-
trations. In our model the late-phase of the response is
entirely due to cytokine positive feedback. This observa-
tion agrees well with in-vivo experiments by Han et al.,
where authors demonstrated that both TNF and IL-1
are required for the late-phase response [16].
When multiple cells are aligned next to each other (in

a one-dimensional lattice) a peak in T propagates from
cell-to-cell, see Figure 2E and 2F. These results are
obtained using equations (1), (2) and (4).
The main focus of this study is the response to a well

localized source of inflammation, i.e. the source of bac-
terial endotoxin or the cytokine-secreting macrophages
accumulated at the location of the damaged cells. We
model this by adding a small external stimuli, S, at time
t ≥ 0 only to the cell in the middle (Figure 2E, F black
circle). The cytokines produced by the stimulated cell at
the site of infection will diffuse away and thereby trigger
the transient response of the NF-�B system in neighbor-
ing cells. The result of this cell-to-cell coupling is a
“propagating wave” of NF-�B induction followed by
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cytokine production and hence a wave of high T-con-
centration propagating through the tissue, see Figure 2F
and 2G. Note that the result above relies only on three
requirements: 1) Transient response in NF-�B-like vari-
able N (slow negative feedback), 2) amplification of the
cytokine-like variable T (positive feedback) and 3) diffu-
sion of T in extracellular space (spatial coupling). Varia-
tions in the parameter p, show that strong positive
feedback generates a more pronounced wave. Both the
amplitude and the speed of the wave increase with p
(see Figure 3).

Inflammatory response exhibits the characteristics of an
“excitable media”
Propagating waves are employed by many other biologi-
cal systems, which share the need of sending informa-
tion over relatively large distances, where passive
diffusion is insufficient. Similar phenomena are observed
in movement of calcium in differentiating Xenopus
oocytes [3] and the rapidly propagating action potentials
of neurons [4]. These systems, as well as the spatially
coupled NF-�B-like circuits, share the properties of an
“excitable media”. An excitable medium is comprised of
locally excitable regions - in our case it is a tissue cell -
which all have the ability to get induced (excited) and
inhibited. Such systems are characterized by the “excita-
tion threshold”, so that sub-threshold stimuli are rapidly
damped, and the system persists in a resting state (low
T, N and R). Super-threshold stimuli induce sharp local
response and the system transits into the excited state
(high T and N). Shortly after the response occurs, the

region becomes insensitive to further perturbation and
is said to be in a refractory period (high R), after which
it can relax back to the resting state where it is again
sensitive to perturbations [9].
We have performed a detailed mathematical analysis

of the mechanism behind the excitable-media properties
of NF-�B-like circuits (see Figure 1S in additional file
1). The analyses confirm that the NF-kB responses
coupled in space present a novel example of excitable
media.

Predictions and physiological relevance
It has recently been shown that the circuits combining
positive and negative feedbacks allow for robust oscilla-
tions [23,24]. We find that our model, where such cir-
cuits are coupled in space, can indeed produce re-
emerging waves.
The model predicts that the conditions for re-estab-

lishment depend strongly on two parameters: The
strength of cytokine positive feedback, p and the cyto-
kine half-life, τT. These parameters control the amount
of cytokines, T, and have to be inversely related, i.e. p ∞
1/τT to minimize the exposure of tissue cells to cyto-
kines (e.g., a strong positive feedback, that we found to
favor wave formation, can be compensated by short
cytokine half-life). Remarkably, the reported cytokine
half-life is indeed short and ranges between 3-25 min-
utes [25-27].
The analyses of the parameter p (Figure 3A-D) show

that: 1) The frequency of waves can be modulated by
the strength of positive feedback and 2) the dependence
is non-monotonic, i.e. the frequency is maximal (corre-
sponding to period of 4.5 hours) at intermediate values
of p (Figure 3A-D) and 3) there exists a “locked” state
with high T concentration and infinite refractory period
- see Figure 4D.
The frequency of the cytokine waves can have a direct

implication on the amounts of neutrophils recruited to
the site of infection (i.e., more frequent waves recruit
more neutrophils). As the NF-�B response is modulated
at multiple levels (e.g., cytokine receptor desensitization,
cooperative transcriptional regulation, etc.) one can ima-
gine a scenario where the strength of positive feedback
can be modulated to encode the severity of infection by
e.g. increasing the transcription, translation or secretion
rates of cytokines.
Chronic and recurrent acute inflammation
Surprisingly, the “locked” state with continuously high T
(Figure 3D), appears to be self-sustained. Unlike the
repetitive waves in Figure 3A-C - which disappear once
stimuli is removed - the sustained high production of T
can be triggered by just a short pulse of stimuli (Figure
3D and 4A). In the context of IR this situation resem-
bles chronic inflammation - meaning that the response

Figure 3 The role of positive feedback. Propagating waves re-
emerge A)-C) at low to intermediate strengths of positive feedback,
p = 25, 50, 75. If the amplification is too strong the system is locked
in “high T” state, D) p = 200.
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does not resolve even after the damage has been
repaired [2].
In Figure 4A it is apparent that the “locked” state is

not uniform for all tissue cells. There are roughly two
groups of cells: The cells neighboring the source are in
a locked state, with T above the excitation threshold.
Close to the blood vessels the cytokine concentration
will always be low and the nearby cells are able to
return to their resting state. At these cells waves can re-
emerge, hence creating the situation as in Figure 4A. A
similar partitioning of Dictyostelium D. cells into sus-
tained pacemakers (the cites where waves originate) at
the center of aggregation and signal transducing cells
elsewhere has been first theoretically predicted by
Geberth et al. [28] and later experimentally shown by
Gregor et al. [29]. In the case of Dictyostelium D. the
state with self-sustained and self-organized pacemakers
(which corresponds to “chronic inflammation” state in
our model) is desired and so the population works
towards reaching high concentration of inducer, i.e.
towards a locked state. In the case of NF-�B, the self-
sustained pacemakers are undesirable. We expect this
system to function at intermediate concentrations of
inducer, i.e., a concentration that allows the cells near
the cite of infection to be “inducible pacemakers”. While
these would oscillate in response to the external stimuli,
the rest of the cells will propagate the signal (acute
response). It is interesting to note that the apoptosis
induced by sustained high concentrations of inducer
might serve a mechanism that further limits the estab-
lishment of self-sustained pacemakers in inflammatory
response.

If we consider cytokine waves as a signature for acute
inflammatory response and sustained cytokine levels as
characteristic of chronic inflammation, then Figure 4A
predicts that the two coexist. That is, the chronic
inflammation will be accompanied by the recurrent
acute IR. Although somewhat contra-intuitive it is fre-
quently observed that, acute and chronic inflammation
coexist over long periods, implying continual reinitia-
tion. Examples are found in rheumatoid arthritis,
asthma, chronic obstructive pulmonary disease, multiple
sclerosis, Crohn’s disease, ulcerative colitis, and cancers
[2].
Another observation, which is interesting from a phy-

siological perspective is that the frequency of propagat-
ing waves can depend on the distance to the boundary
for some values of p (Figure 4B). The frequency is
higher at the nearby boundary, which suggests that
recruitment of neutrophils will be more frequent from
the closest blood vessels - a mechanism that can poten-
tially contribute to a faster and a more localized IR.
The physiological significance of each of the above

profiles might be determined by e.g. vascularization
properties of the tissue as well as the severity of the
infection. Thus if the source of infection is small a sin-
gle wave might be enough to attract a sufficient amount
of neutrophils, whereas a larger damage would benefit
from repetitive and more frequent waves. In fact this
tendency is experimentally observed during IR to myo-
cardial injury [10]: In rodent models of myocardial
infarction, the cytokines, IL-1, TNF and IL-6 are upre-
gulated up to 50 fold within first hours. They can return
to baseline levels if the infarction is small or, if the

Figure 4 The effects of absorbing boundaries at the blood vessels. The effects of absorbing boundaries at the blood vessels. A) Waves
persistently re-emerge close to the boundary in response to a short, 30 minutes, pulse of stimuli when p >= 105. The group of cells
neighboring the source is locked in “high T"- state as shown by green color. B) The frequency of re-initiation is higher if the source is located
closer to the absorbing boundary, here p = 83.
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infarction is large, there is either sustained cytokine
upregulation or a second wave of cytokine upregulation
[30,31].

Conclusions
The ability of sending information from one point in
space to another is crucial for multicellular organisms,
and biological systems have developed many different
strategies that address this challenge.
In case of inflammation, the information about the

insult - i.e. inflammatory cytokines - can be carried
either passively, i.e. through diffusion or actively ampli-
fied by tissue cells. An active transmission of the inflam-
matory signal is supported by numerous experimental
observations [10,32,33] (e.g., local RNA transcription
and translation is required for efficient neutrophil emi-
gration [32]).
We here show that the characteristics of the NF-�B

regulatory network - fast spatially coupled positive feed-
back combined with slow negative feedback - are neces-
sary for active propagation of the cytokine wave.
Additionally, the characteristic short half-life of cyto-
kines and the recently discovered threshold in NF-�B
activation in single cells, are both conditions favoring
emergence of the cytokine waves.
While there exists extensive literature on mathemati-

cal models addressing the role of the multiple negative
feedbacks in NF-�B dynamics [17-19,27,34-36], the posi-
tive cytokine feedback has only been considered by
Werner et al. [37]. To our knowledge, this is the first
time that mathematical modeling addresses the role of
cytokine positive feedback in the context of spatially dis-
tributed cells.
The cessation or “resolution” of the inflammatory

response is as important as its initiation. While moder-
ate and appropriately timed inflammatory response is
beneficial - excessive, delayed or prolonged inflamma-
tion was shown to be a primary cause in many inflam-
matory diseases [2,38]. Furthermore, in cases such as
tuberculosis, it is the host inflammatory response and
not bacterial toxins that are responsible for the damage
to the host. In this regard, both the transient nature of
cytokine waves and the resulting transient neutrophil
recruitment (also observed experimentally [16,33,39-41])
are the mechanisms that naturally minimize inflamma-
tory tissue damage. Additionally, the presence of an
obligate “refractory period” following the wave and last-
ing 5-12 hours will impose further constraints on the
IR. Furthermore, our results in Figure 4 showing the
persistent IR to transient damage predict that the
chronic inflammation ("locked” region) will be accompa-
nied by the re-current acute inflammation ("oscillatory
region” close to the blood vessels). Remarkably, acute
and chronic inflammation do coexist over long periods

in such diseases as rheumatoid arthritis, asthma, multi-
ple sclerosis etc. [2].
The accumulated experimental evidence together with

our modeling results suggest that 1) NF-�B is a strong
candidate for a mechanism generating “propagating
waves” of chemoattractant cytokines. 2) The mechanism
behind the propagating waves can have both beneficial
and deleterious effects. While it assures reliable signal
propagation and avoids long-lasting exposure to toxic
cytokines, there are special conditions when the system
over-reacts and generates situations which can be inter-
preted as inflammatory dysfunction as e.g. chronic
inflammation.

Methods
The tissue cells are modeled as discrete units all con-
taining NF-�B-like circuits consisting of the variables N,
R and T, which influence each other as sketched in Fig-
ure 2E. The interactions are modeled by the following
differential equations:

dN
dt

= ka
T3

T3 + 1
(1 − N) − kaiR (1)

dR
dt

= kbN − kbiR (2)

dT
dt

= S + p
N2

N2 + K2
N

− T
τT

(3)

N is activated by T and inhibited by R. The T ® N
activation term is proportional to the amount of in-

active NF-�B, (1 - N), and the Hill function, T3

T3+1
, which

ensures that activation only occurs when T exceeds a
certain activation threshold. Here T is normalized rela-
tive to its activation threshold which is thus given by T*
= 1. The R ⊣ N inhibition term is proportional to R and
is assumed to be saturated in N (equation 1). See addi-
tional file 1 for details on the choice of parameters and
normalization of the variables. In equation (2) R is acti-
vated by N (N ® R activation term is proportional to
N) and decays with the half-life 1/kbi. Finally, in equa-
tion (3), T is activated by N and decays with the half-
life τT . The N ® T activation term is modeled with the

Hill function, N2

N2+K2
N
, since NF-�B was reported to form

dimers, but the results hold if it is replaced by a term
linear in N.
The system is induced by the small stimulus, S, which

represents a small influx of T. In-vivo this influx could
correspond to cytokines secreted by macrophages or
bacterial endotoxin. We have used S = 5 · 10 -4h-1 and
this influx of T is only added at the site of infection
(black dot in Figure 2F) and only at times t ≥ 0. To
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account for T diffusion between cells, we add a diffusion
term to equation (3), which then becomes:

dT
dt

= S + p
N2

N2 + K2
N

− T
τT

+ D
∂2

∂x2
T (4)

The distance between the tissue cells is set to δx ≈ 15μm
corresponding approximately to the cell size. We set

D = 2 · 10−7 cm2

sec
, a numerical value estimated for the diffu-

sible factors of similar size [42] (we have also tested that
our main results hold against several fold variation in D).
The cytokine half-life in bloodstream has been experimen-
tally measured to range between 3-15 minutes [25,26] and
was estimated to be 25 minutes in [27]. As short cytokine
half-life promotes wave propagation, we use a conserva-
tively long τT = 25 min. The results are qualitatively
unchanged in the entire range of τT = 3 - 25 min.
The parameters for the negative feedback were chosen

to be such that the output qualitatively reproduces the
transient dynamics of NF-�B, i.e. peak around 30 min-
utes and the response is decreased by 1 hour; ka = kai =
kb = 5h-1 and kbi = 0.5h-1. The parameter KN = 0.3 is
chosen relatively to the peak-hight of N which can
maximally obtain the value N = 1 (See normalization in
additional file 1). The Hill coefficient H = 2 used in the

term N2

N2+K2
N
is chosen because NF-�B is known to form

dimers. The model however also works if we use a sim-
ple linear regulation. Thus the only free parameter
remaining is the strength of positive feedback, p.

Generating the alternative scenarios, considered in Figure
1A and 1B
In the scenario seen in Figure 1A there is no regulation
of T. The system is modeled by a single differential
equation:

dT
dt

= S − T
τ

+ D
∂2T
∂x2

(5)

In the scenario seen in Figure 1B, T is amplified by N,
but there is no transient response of N-corresponding
to no R. The system is modeled by the two differential
equations:

dN
dt

= ka
T3

T3 + 1
(1 − N) − kaiN (6)

dT
dt

= S + p
N2

N2 + K2
N

− T
τ

+ D
∂2T
∂x2 (7)

All results are found using 4th-order Runge-Kutta
integration. In Figures 1C, 2F, 3 and 4 we modeled a
row of 400 cells and always add the stimulus S, to the
middle cell.

Additional material

Additional file 1: Supplementary results. In this file we provide the
details of the model derivation and its robustness to modifications.
Please use Acrobat Reader to open this file.
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Analyzing inflammatory response as excitable media
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The regulatory system of the transcription factor NF-κB plays a great role in many cell functions, including
inflammatory response. Interestingly, the NF-κB system is known to up-regulate production of its own triggering
signal—namely, inflammatory cytokines such as TNF, IL-1, and IL-6. In this paper we investigate a previously
presented model of the NF-κB, which includes both spatial effects and the positive feedback from cytokines. The
model exhibits the properties of an excitable medium and has the ability to propagate waves of high cytokine
concentration. These waves represent an optimal way of sending an inflammatory signal through the tissue as
they create a chemotactic signal able to recruit neutrophils to the site of infection. The simple model displays
three qualitatively different states; low stimuli leads to no or very little response. Intermediate stimuli leads
to reoccurring waves of high cytokine concentration. Finally, high stimuli leads to a sustained high cytokine
concentration, a scenario which is toxic for the tissue cells and corresponds to chronic inflammation. Due to
the few variables of the simple model, we are able to perform a phase-space analysis leading to a detailed
understanding of the functional form of the model and its limitations. The spatial effects of the model contribute
to the robustness of the cytokine wave formation and propagation.

DOI: 10.1103/PhysRevE.84.051913 PACS number(s): 87.18.Gh, 82.40.Ck, 05.45.−a

I. INTRODUCTION

Excitable media are naturally encountered in many biolog-
ical systems. A typical excitable medium behaves in a manner
much resembling spectators making a wave of raised hands at
a sports game. The excitable units (or sections) get stimulated
by their neighbors and amplify the exciting stimuli. At this
stage the units are said to be in an excited state. Subsequent to
excitation there is a recovery period in which new excitation
is not possible, referred to as the refractory period. As a result
of this behavior, spatially coupled excitable units are able
to propagate undamped waves of high stimuli concentration
through the system.

Some biological species have evolved to utilize the un-
damped waves that excitable media produce as a means of
sending information through the system. Two well-known
examples of biological excitable media are the neuron
[1,2], which is able to propagate action potentials down
the axon, and colonies of the social amoeba Dictyostelium
discoideum [3,4], which propagate spiral waves of cyclic
adenosine monophosphate (cAMP) and accordingly perform
self-organized directed migration toward a common center.
Both systems share the need for sending information through
relatively large distances, where simple processes, such as, for
example, diffusion, would not be adequate.

As recently shown by the authors, the regulatory system
of nuclear factor κB (NF-κB) also contains the necessary
components in order to exhibit “excitability,” i.e., behave as
an excitable medium [5].

NF-κB is present in all mammalian cells and is known to
play an important role during inflammatory response [6–8].
The NF-κB system is triggered by inflammatory cytokines
and in turn amplifies the cytokine signal, thus creating an
excited state in which cytokine production is high. But because
NF-κB also triggers production of its own inhibitors, the
excited state will not last: eventually inhibitor concentration
will become abundant and bind all NF-κB, making it inactive
and hence cytokine production ceases. As long as inhibitors

are plentiful, new activation of NF-κB cannot result in an
excitation comparable to the initial one, although NF-κB has
been shown to exhibit secondary small-amplitude peaks [6,7].
Thus the state with high inhibitor concentration constitutes a
refractory period.

As a result of this behavior tissue cells containing NF-κB
regulatory systems should theoretically be able to propagate
traveling waves of high cytokine concentration through the
tissue. Since cytokines also function as a neutrophil chemoat-
tractant, this scenario is in good agreement with the current
belief that neutrophils chemotax in a similar fashion as
Dictyostelium d., namely, through waves of chemoattractant.

As recently shown, a simple model of spatially coupled
NF-κB units (cells) naturally leads to the propagation of
cytokine waves in the tissue [5]. The model is a simplification
of the real NF-κB system and provides a useful tool for
investigating and understanding the underlying mechanisms
of the complex regulatory system. In this paper we present
and analyze the model in greater detail and obtain a better
understanding of the many mechanisms that the simple model
captures. The findings of this paper can hence contribute
to the general understanding of inflammatory response—in
particular, how different components of the immune system
may send and transmit information through the organism.
In addition, these findings contribute to the understanding of
neutrophil recruitment during inflammatory response.

II. MODEL

In order to create an excitable medium it is important that
the excitable unit responds with a transient amplification of
the stimuli (opposed to persistent amplification). This means
that the excitable unit must be an adapter in the sense that the
system must adapt to the new surroundings after a transient
phase. It is experimentally observed that the NF-κB system
responds with a pronounced initial peak in nuclear NF-κB and
thereafter, secondary oscillation of much smaller amplitude
[6,7]. The damped oscillatory behavior arises due to several

051913-11539-3755/2011/84(5)/051913(8) ©2011 American Physical Society
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FIG. 1. (Color online) The NF-κB regulatory system is simplified
as sketched here. Cytokines such as TNF, IL-1, and IL-6 activate the
NF-κB system through the IKK pathway. The cytokines are simplified
as a single variable denoted T. Active NF-κB is highly correlated to
active IKK, and these two variables are thus also simulated as a single
variable denoted N. Since cytokines activate IKK (and hence NF-κB)
and NF-κB in return up-regulates production of cytokines, there is a
positive feedback between the variables T and N . Inhibitors (IkBα,β,ε)
and upstream regulators (A20, cesanne) all function to perform a
negative feedback on either IKK or NF-κB and are hence simulated as
the single regulating variable R, which performs a negative feedback
on N . Activating interactions are sketched with → and inhibiting
interactions are sketched with �.

inhibitors performing negative feedback, but for our purpose
it is sufficient to note that the secondary behavior is of much
smaller amplitude than the initial peak, and hence the NF-κB
system is an adapter.

In order to analyze the system we have constructed a
simple model which captures the overall behavior of the
NF-κB system. (We have verified our results by also simulating
the system in greater detail, including several inhibitors and
upstream regulators, and confirm that the qualitative behavior
is also exhibited for this more sophisticated model.) The
NF-κB system is simplified as sketched in Fig. 1. Cytokines
such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and
interleukin-6 (IL-6) stimulate the NF-κB system though the
IκB kinase (IKK). The cytokines are simulated by a single
variable which we denote T . When IKK is activated inhibitors
are degraded and NF-κB is released, translocating into the
nucleus where it is active. Thus the concentrations of IKK and
NF-κB follow each other and can be simulated by one variable,
which we denote N . The inhibitors (IkBα,β,ε) and upstream
regulators (A20, cesanne) all cause either IKK or NF-κB
concentration to go down. These inhibitors and regulators are
simulated by a “regulator” variable which we denote R.

The effect of inhibitors and other regulators is to perform
a negative feedback on NF-κB, and is modeled by a simple
negative feedback loop (see interactions between N and R in
Fig. 1). These interactions can be described by the equations

dN

dt
= kactivate f (T ) × (NT − N ) − kinhibitR (1)

dR

dt
= ronN − roffR (2)

The activation of N corresponds to translocating NF-κB
into the nucleus. This term is proportional to some function of
the cytokine concentration f (T ) and the amount of cytoplasmic
NF-κB (we assume the total amount of NF-κB (NT ) is
constant. Thus the amount of NF-κB which is available for
activation is given by the amount of cytoplasmic NF-κB;
NC = NT − N ) [9].

Inhibition of NF-κB is proportional to the amount of in-
hibitors R and is considered to be saturated in N. (Simulations
have shown that this approximation does not introduce an error
of noticeable size.)

The activation of R is proportional to N and inactivation of
R is modeled as a spontaneous degradation, only proportional
to R. In order for this simple model to function as an adapter,
it is important that the rate constant roff is slow compared with
the other rate constants of the system [5,10].

When the NF-κB network is stimulated by cytokines
it responds by up-regulating hundreds of genes, including
those coding for cytokine production. The newly synthesized
cytokines are secreted into the extracellular matrix, where they
can again stimulate the IKK pathway. Thus the interaction
between NF-κB and cytokines constitutes a positive feedback
(see interactions between N and T in Fig. 1).

The local concentration of cytokines (T ) is modeled by the
equation

dT

dt
= p

N2

N2 + K2
− T

τ
+ S. (3)

NF-κB–induced production of cytokines is proportional
to the rate constant p (for positive feedback) and to the
Hill function N2/(N2 + K2), because NF-κB is a dimeric
transcription factor. As we shall see below, this term could
also be modeled as a simple linear response (pN ) and still
give similar results. The cytokine degradation is modeled by
a simple linear decay with a typical lifetime τ . The term S

represents an additional cytokine production functioning as an
external stimuli: during inflammatory response cytokines are
secreted from nearby macrophages, which would correspond
to a small flux of cytokines. This flux is “turned on” at time
t = 0 and is modeled by a step function

S =
{

0 for t < 0
Son for t > 0,

(4)

where S = 0 corresponds to no stimuli. In the case of spatially
coupled cells only the cytokines are secreted into extracellular
space, and hence only the variable T is allowed to diffuse in
between cells. In this case the equation describing cytokine
concentration (at the ith cell) is given by

∂Ti

∂t
= p

N2
i

N2
i + K2

− Ti

τ
+ Si + D

∂2Ti

∂x2
, (5)

with the only difference being the addition of the diffusion
term.

For the system to react as an excitable medium the
activation of the excitable units must be strongly thresholded.
This threshold is in accordance with recent experimental
findings [11,12]. We implement this by modeling the acti-
vation of NF-κB with a sigmoidal response to T (and Hill
coefficient = 3):

f (T ) = T 3

T 3 + K3
A

. (6)

The variables have been renormalized in the following way:
N → N/NT and T → T/KA, which is equal to putting the
parameters NT and KA [Eqs. (1) and (6)] equal to unity (and
redefining the remaining parameters [5]). This also means that
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FIG. 2. (Color online) Simulation of reaction to stimulus using Eqs. (1), (2), and (3). The stimulus is turned on at time t = 0 [see Eqs. (3)
and (4)]. Top panels: cytokine concentration (T ). Middle panels: Active NF-κB concentration (N ). Bottom panels: regulator concentration (R)
(representing the combined effect of all inhibitors). The unit [M] stands for molar concentration. KA and NT are normalization constants of T

and N , respectively. (a) The weak stimulus (S = 0.5 M/(KA hr)) causes T to increase a little but not enough to activate N . The system comes
to rest in a new steady state with low concentrations of all three variables. (b) The intermediate stimulus (S = 1 M/(KA hr)) causes the system
to oscillate. The increase in T exceeds the triggering threshold for activating N and consequently, all variables rise to high levels. The high
level of R inhibits N, which decreases back to almost prestimulation levels after approximately 2 hours. At low N level T and R will begin
to decrease; R decreases slowly because of the slow degradation rate roff [see Eq. (2)]. After approximately 9 hours R has decreased back to
prestimulation levels and the system spikes again. (c) At high stimulus (S = 2 M/(KA hr)) the system will not settle back to prestimulation
levels, because the inhibition from R is not enough to drive N back down, once the positive feedback is present. As a result, the system comes
to rest in a new steady state in which both N and T levels are much higher than triggering levels. R is sustained at a high level, creating an
infinite refractory period.

the cytokine triggering threshold for activating N is reached
when T exceeds T ∗ ≈ 1.

The parameter K [Eqs. (3) and (5)] describes the NF-
κB positive-feedback threshold for internal transcription of
cytokines. To achieve maximal sensitivity to N this parameter
was chosen to match approximately half-maximum of the
initial N peak, which gave K = 0.3. (N reaches a maximum
of ≈0.6 in our simulation.)

The rate constants kactivate, kinhibit, ron, and roff have been
fitted to match the typical time scale of the NF-κB initial
peak (kactivate = kinhibit = ron = 5.0 hr−1 and roff = 0.5 hr−1).
The lifetime and diffusion constant of TNF have previously
been estimated [13] and are used here as the cytokine lifetime,
τ = 25 minutes, and diffusion constant, D = 2 × 10−7 cm2

min .
Thus the only free parameter of our model is the parameter p.
This parameter sets the strength of the positive feedback, and as
we shall see in the Results section, this parameter can be varied
to be both too small, not obtaining an adequate feedback, or
too large, making the system incapable of returning to resting
state.

III. RESULTS: TEMPORAL BEHAVIOR
OF A SINGLE CELL

The system described by Eqs. (1), (2), and (3) is simulated
starting from an initial steady state where all concentrations
are low and there is no stimuli (S = 0). At time t = 0 the
system is stimulated by “turning on” the small cytokine flux
(S = Son). Had there been no interaction with NF-κB, T would
increase to a steady-state level given by a balance between Son

and τ [see Eq. (3)]. But if the stimulation Son is strong enough
(roughly speaking, if T exceeds the threshold T ∗ ≈ 1), the
system will respond with an up-regulation of N , which in
turn amplifies T to values manyfold larger than the initial

stimulation. Depending on the value of Son, three qualitatively
different scenarios can be achieved: if Son is too small the
increase in T will not activate N [Fig. 2(a)]. If Son, on the
other hand, is large enough to make T exceed the triggering
threshold, T ∗ ≈ 1, N will increase and cause T to increase
further [Figs. 2(b) and 2(c)]. As a result N will also increase
to a high level and consequently activate production of its
own inhibitors: R begins to increase. As R peaks the negative
feedback causes N to decrease and settle back to lower values.
If Son is large, [Fig. 2(c)] a new steady state will be obtained in
which R is high and both N and T are balanced at levels
significantly higher than prestimulation values [Fig. 2(c)].
Interestingly, intermediate values of Son [Fig. 2(b)] will lead to
situations where N and T settle back to prestimulation values
when R is high. Because N decreases to such low values, the
inhibitor R will also start to decrease, although this is a slow
process because of the slow degradation rate roff [see Eq. (2)].
When R decreases sufficiently N is no longer inhibited and
after some time N and T can peak again [Fig. 2(b)].

A. Phase-plane analysis of the system

The intermediate Son, leading to oscillatory behavior, is of
course a very interesting situation. The system has many things
in common with classical excitable media, such as, e.g., the
Belousov-Zhabotinsky reaction, and we follow an approach
similar to the one described in the review by Meron [14].

Notice that N and T are fast variables whereas R is a rather
slow variable. Thus the model contains two effective time
scales and we can assume that N and T will effectively reach
steady state and follow changes in R adiabatically. In order to
understand the system in greater detail, we plot the nullclines
of N and T for fixed values of R. The nullclines are plotted in
N -T space (see Fig. 3). Before stimulation (t < 0) the
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FIG. 3. (Color) The situation shown in Fig. 2(b) is here shown in the phase plane of N and T . Nullclines are plotted in blue (dN/dt = 0)
and green (dT /dt = 0) lines. Stable fixed points are indicated with solid red dots. Unstable fixed points are indicated with dashed red circles.
Initially (t < 0) the system has three fixed points located at the intersections of the nullclines. Two of these fixed points have low N and T

values and are shown in the zoom of panel (a) (first panel). The system is at rest in the low stable fixed point, which we refer to as fixed point
A. At time t = 0 the stimulus S is turned on [see Eqs. (3) and (4)], causing the T nullcline to shift to the right as shown in the zoom of panel
(a) (first panel). Consequently, fixed point A and the unstable fixed point disappear in a saddle-node bifurcation and the system starts to evolve
toward the fixed point with high N and T , which we refer to as fixed point B [see panel (a)]. As N increases, R will also increase [see Eq. (2)],
causing the N nullcline to move as shown in panels (b)-(e). The system will dynamically change and always evolve toward the stable fixed
point, eventually causing N and T to decrease [panels (d)-(f)]. At some point R becomes so large (the N nullcline has moved so far) that
fixed point B disappears in a saddle-node bifurcation [panels (d) and (e)], and the system will now evolve toward fixed point A which has been
re-established [since panel (b)]. At this point N has decreased back to a relatively low level and R will consequently begin to decrease, causing
the N nullcline to move back [panels (f)–(h)]. Meanwhile, the system is caught in the basin of attraction of fixed point A [see panel (g)] and
will move toward this fixed point [panel (h)]. Eventually, R has decreased sufficiently and the N nullcline has moved such that fixed point A
disappears again and the system begins a new round in phase space [panel (i)]. The times corresponding to the panels are: (a) t = 0.0 to t = 1.0,
(b) t = 1.1, (c) t = 1.2, (d) t = 1.4, (e) t = 1.6, (f) t = 2.0, (g) t = 2.7, (h) t = 3.7, and (i) t = 9.1 hours. Panel (j) shows the nullclines as
they would look if cytokine production (up-regulation of T ) had been modeled with a simple linear term pN instead of the sigmoidal term
(N 2/(N 2 + K2)) used in Eq. (3).

nullclines intersect in three distinct fixed points—two stable
fixed points separated by an unstable fixed point in between.
We refer to the two stable fixed points as fixed point A and
fixed point B. For t < 0 fixed point A and the unstable fixed
point lie very close to each other in N -T space, and both have
relatively low levels of N and T . [See intersections of dotted
green line and blue line in the first panel of Fig. 3 (zoom of
panel (a))].

When S is shifted from S = 0 to S = Son, the T nullcline
is shifted to the right by an amount δ = 	Sτ . Hence, if Son

is large enough, fixed point A and the unstable fixed point
will disappear in a saddle-node bifurcation, and the only
fixed point of the system is now fixed point B [Fig. 3(a)].
As the system begins to evolve toward fixed point B, N

increases and causes R to increase correspondingly. As this
happens the N nullcline will begin to move, dynamically

changing the phase space as shown in Figs. 3(a)–3(c). The
system will continuously evolve toward fixed point B as it
moves “down” [Figs. 3(a)–3(c)], eventually making N and T

decrease [Fig. 3(d)]. While the N nullcline moves, fixed point
A and the unstable fixed point have re-established in a new
saddle-node bifurcation [since Fig. 3(b)]. Eventually R will
increase to such high values that fixed point B coalesces with
the unstable fixed point and disappears in a second saddle-node
bifurcation [Figs. 3(d) and 3(e)]. Now the system will evolve
toward fixed point A, causing N and T to decrease back to
almost prestimulation values [Figs. 3(e) and 3(f)]. As N is no
longer high, R will no longer be up-regulated and will begin to
decrease because of spontaneous degradation. This will cause
the N nullcline to move “back” [as shown in Figs. 3(f)-3(h)],
although as mentioned above this is a slow process (because
of slow roff). As the N nullcline moves, fixed point B and
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the unstable fixed point are re-established [Fig. 3(g)], but
now the system is caught in the basin of attraction of fixed
point A [Fig. 3(g)]. As R slowly decreases, the system rests
in fixed point A [Fig. 3(h)]. Eventually, the N nullcline has
moved such that fixed point A and the unstable fixed point
once again disappear in a saddle-node bifurcation, and the
system will once again make a round in the phase space
[Fig. 3(i)].

The three qualitatively different scenarios of Fig. 2 can be
well understood from an investigation of the phase space. In
order to exhibit oscillations the system must be able to undergo
the two saddle-node bifurcations described above: first, fixed
point A and the unstable fixed point coalesce, and second,
fixed point B and the unstable fixed point coalesce. The value
of Son sets the size of the T -nullcline shift, δ = 	Sτ (recall
Fig. 3, first panel). A too-small Son will not cause the first
bifurcation because the T nullcline is not shifted far enough.
A too-high Son will inhibit the system from undergoing the
second bifurcation because the shift is too large and the system
will come to rest in fixed point B.

As mentioned in the Model section, we could also choose
to model the positive feedback from NF-κB on cytokine
production as a simple linear response, pN , instead of the
sigmoidal response, N2/(N2 + K2), which is only valid if
NF-κB is truly a dimeric transcription factor [see Eq. (1)].
In this case the T nullcline would be a straight line and the
N nullcline would remain unchanged. We plot this situation
in Fig. 3(j), from which it can be inferred that such a
simplification of the model would lead to similar results. From
this plot we conclude that at least one of the nullclines must
have a sigmoidal form in order to obtain a bistable system. This
means that a smaller Hill coefficient, H = 2, would suffice in
Eq. (6). Hence a minimal model could be obtained by modeling
N and T dynamics by the equations

dN

dt
= kactivate

T 2

T 2 + K2
A

× (NT − N ) − kinhibitR

dT

dt
= pN − T

τ
+ S.

Compare with Eqs. (1), (3), and (6).

B. The excitability of the system depends on the strength
of positive feedback p

The effect of the positive feedback can be understood by
investigation of the nullclines upon variation of p [see Eq. (3)].
The slope of the T nullcline is roughly set by p [see dashed
green lines in Fig. 4(a)]. Qualitatively there are three distinct
behaviors with weak, intermediate, and strong feedback being
similar to the three states with weak, intermediate, and strong
stimuli in Fig. 2.

If p is small (p ≈ 10) the slope of the T nullcline is very
steep and hence fixed point B will have a small T value. The
system cannot get excited as even a small increase in R will
move fixed point B down to low N and T values and the system
will have only a very small round in the phase space before
reaching this fixed point. The system comes to rest in fixed
point B, because R will never become large enough to cause
the second saddle-node bifurcation. The resulting situation is
very similar to the one in Fig. 2(a).

On the other hand, a strong positive feedback (p >≈ 100)
allows for a single excitation followed by an infinite refractory
period. Large p makes the slope of the T nullcline flatter
[Fig. 4(a)]. Right after the stimulus is induced the system
follows a long trajectory in the phase space, resulting in a
spike in N and T . However, the system comes to rest in fixed
point B because the maximal R value is not high enough to
move the N nullcline sufficiently far down for fixed point B to
disappear in a saddle-node bifurcation. In this case fixed point
B has significantly higher N and T levels, meaning that the
cytokine concentration is sustained high above the triggering
level. The relatively high N level causes R to be sustained at
a high level, hence creating an infinite refractory period. This
situation will be very similar to the one shown in Fig. 2(c). We
refer to this situation as a locked state because the nullclines
are locked in fixed point B, even when the stimulus is removed.
In the picture of inflammatory response the locked situation
would correspond to chronic inflammation.

The nullclines of the system can of course also be altered
by other parameters of the model, and in order to explore
changes in cytokine production we have varied the parameter
τ which determines the typical lifetime of the cytokines before
they are degraded (the inverse degradation rate). Hence a high

FIG. 4. (Color online) (a) The slope of the T nullcline (dashed green line) becomes steeper as p decreases and flatter when p increases.
The N nullcline (solid blue line) is shown for two different values of R and will move from the high plateau to the low plateau as R increases
(recall Fig. 3). In the case of small p the N nullcline will not need to move very far before fixed point B (recall Fig. 3) has moved to relatively
low levels of N and T , hence creating a situation as shown in Fig. 2(a), where the system comes to rest in fixed point B. In the case of high p

the system will also come to rest in fixed point B, which in this case is created at high T levels. R will never become large enough to make
fixed point B disappear in a bifurcation and the system is locked in fixed point B. (b) Combinations of the parameters p and τ which lead to
oscillatory behavior. The color of the graph indicates the frequency of the oscillations.
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p (a high production rate of cytokines) should be counteracted
by a low τ in order to keep the cytokine concentration balanced
such that it can repeatedly transcend the triggering threshold
at T ∗ ≈ 1, corresponding to repetitive rounds in phase space
as shown in Fig. 3. In other words, the nullclines must lie such
that they are able to undergo saddle-node bifurcations both at
fixed point A and at fixed point B. Whereas p sets the slope of
the T nullcline, τ sets the size of the shift to the right when the
stimulus S is introduced. The frequency at which the system
can spike depends on how fast the system will undergo the two
bifurcations. In Fig. 4(b) we show a plot of the combinations
of p and τ which lead to self-oscillatory situations together
with their spiking frequencies.

IV. RESULTS: SPATIOTEMPORAL MODEL OF THE
TISSUE LEADS TO PROPAGATING WAVES

When the cells are coupled in space and cytokines are
allowed to diffuse between them, waves of high cytokine
concentration arise [see Fig. 5(a)]. We have constructed a
spatial model consisting of a one-dimensional lattice of cells.
Every cell is able to regulate cytokine production as described
in Eqs. (1), (2), and (5), and only the variable T is allowed
to diffuse between cells. We use open boundaries representing
the bloodstream in which the cytokines (T ) will be absorbed.
During inflammatory response only cells at the site of infection
would be subject to the external stimulus S [see Eq. (5)], and

we simulate this by adding the external stimulus S only to the
central cell of the one-dimensional lattice; Si = S × δ(i,0).
Adding the diffusion term [see Eq. (5)] causes the effective
removal of cytokines to become larger, and in order to
counteract this we have increased S tenfold compared to the
above (Son = 10 hr−1).

At time t = 0 the central cell is stimulated and starts to
amplify the cytokine concentration. The cytokines will diffuse
to neighboring cells which consequently also get stimulated,
and thus a wave is created. We stress that the second (and later)
waves arise because of the oscillatory behavior of the central
cell which will initialize new waves that can propagate through
the system. The cells which do not feel the external stimulus S

will only get stimulated when they feel a spillover of cytokines
from their neighbors. Hence the situation is indeed cooperative
in the sense that the cytokine wave is truly propagated from
one cell to the next; the cells are not oscillating individually.
If the external stimulus S is removed from the central cell,
no new waves will be initialized and the system will settle
back to rest as soon as the last wave has reached the absorbing
boundary.

A. Space contributes to the robustness of the model

An interesting observation is that the spatial model seems
more robust toward creating repetitive waves. In Fig. 5(d) we
plot the combinations of p and τ which lead to propagating

(a) (b) (c)

(d) (e) (f)

FIG. 5. (Color) (a)–(c) Space-time plots of the cytokine (T ) concentration for three different values of the parameter p, which describes
the strength of the positive feedback between N and T [see Eqs. (1), (2), and (5)]. (a) The central cell is stimulated at time t = 0 and initializes
waves of high cytokine concentration which are propagated through the spatial system. (b) At higher values of p the positive feedback is so
strong that the system becomes flooded with cytokines (the cells are in the locked state described in the text). But diffusion effects from the
absorbing boundaries enable the system to resettle to prestimulation values and new waves can propagate. (c) If p is very large only the cells
close to the boundary will be able to escape the locked state. Here oscillations will arise even though p is very high. Notice the different
time scales. (d)–(f) Combinations of p and τ which lead to repetitive waves in the spatial model. We plot frequency (d), velocity (e), and
amplitude (f).
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(a) (b)

FIG. 6. (Color online) Diffusion effects will shift the T nullcline
(dashed green line) horizontally and can be both positive (correspond-
ing to a shift to the right) and negative (corresponding to a shift to
the left). (a) The N nullcline (blue line) is plotted for a relatively
low R level. If the diffusion term is positive, it can cause the system
to bifurcate such that fixed point A disappears. This stimulates the
system to move around in phase space as shown in Fig. 3. (b) The
N nullcline (blue line) is plotted for a relatively high R level. If
the diffusion term is negative, it can cause the system to bifurcate
such that fixed point B disappears and the system is unlocked from
the locked state. This effect contributes to the ability to bifurcate at
both fixed points and makes the spatial model more prone to exhibit
repetitive waves than the single isolated cell.

waves. As can be seen from the plot, there are far more
p-τ -combinations that lead to repetitive waves than in the
case of a single isolated cell [recall Fig. 4(b)]. Figures 5(d)–
5(f) also display how typical wave characteristics such as
frequency, velocity, and amplitude change with p and τ .
Velocity and amplitude of the waves grow with increasing
p (and decreasing τ ), which leads to strong and fast cytokine
production. On the other hand, the frequency is highest where
p and τ are correctly balanced, in order to be able to undergo
the saddle-node bifurcations, described above, as fast as
possible.

The reason why the spatial model is more robust can be
found in the effects of diffusion. In the nullcline picture,
the diffusion term [see Eq. (5)] acts to shift the T nullcline
horizontally (see Fig. 6). As opposed to the external stimulus
S, which also shifts the T nullcline horizontally, the diffusion
term can become both positive and negative. A positive
diffusion term corresponds to cytokines diffusing in from the
neighbors, leading to an increased positive flux of cytokines
and hence a shift of the T nullcline to the right [see Fig. 6(a)].
In this situation the diffusion terms acts as a stimulus just like
S, but a stimulus which travels through space and stimulates
the cells one by one, creating a wave. On the other hand a
negative diffusion term, meaning that cytokines diffuse away,
leads to a shift of the T nullcline to the left. The spacial
organization increases the chance that somewhere between
the source and the absorbing boundary there will be a cell
where the positive and negative diffusion terms balance such
that cells can undergo saddle-node bifurcations at both fixed
points. If, for example, p is high, a group of cells near the center
become locked in fixed point B (locked state). For cells further
away from the source a large negative diffusion term will shift
the T nullcline to the left [see Fig. 6(b)]. In this situation the
diffusion term unlocks the system so that it will again be able
to undergo the bifurcation; hence the diffusion term expands
the parameter space that can undergo both bifurcations and
hence create waves.

Of course, some combinations of the parameters p and τ

will lead to situations where most cells in the system cannot
undergo bifurcations because diffusion is not strong enough.
This can lead to situations where almost all cells become
locked in fixed point B [see Fig. 5(c)]. In this situation we still
observe oscillations but only close to the boundaries. These
oscillations arise because the diffusion term will be very large
and negative close to the boundary. Hence the cells which are
close enough to the boundary will always be able to undergo
bifurcations and oscillate. In Fig. 5(b) we show an intermediate
situation where diffusion into the absorbing boundaries also
plays a large role — it enables the system to oscillate, although
with a smaller frequency.

V. CONCLUSION

The simple model presented in this paper captures many of
the most important features of the NF-κB system, although it
is highly simplified and consists of only three variables. The
model essentially consists of a coupled positive and negative
feedback, which makes it able to transiently amplify a signal
of high cytokine concentration. This simple system provides a
good tool for investigating and understanding the interactions
between NF-κB and cytokines, especially because it makes it
possible to explore the phase space, thereby achieving a greater
understanding of the parameters.

The model captures how a single unit (cell) can become an
oscillator if it is stimulated appropriately (close to the site of
infection), but also how it can simply pass on the signal if it is
stimulated transiently (in tissue farther away).

From phase-space analysis we conclude that the system
is bistable and able to oscillate because it can undergo
bifurcations, shifting the system between low and high
fixed points [14]. The phase-space analysis also provides a
useful understanding of the unknown parameter p, describing
the strength of the positive feedback between NF-κB and
cytokines. We find that the positive feedback must have an
appropriate intermediate strength in order to create oscilla-
tions. Too-weak positive feedback leads to almost no response,
whereas too-strong positive feedback leads to a sustained
strong amplification of cytokine concentration, a situation
which can be related to chronic inflammatory response.

A spatial model is highly relevant for understanding
possible spatial effects that might appear in nature and which
are not captured in most laboratory experiments because of
space-averaging or mixing. Our spatial model of the tissue
naturally leads to the propagation of traveling waves of high
cytokine concentration, because the system behaves as an
excitable medium.

Excitable media are also observed in many other biological
systems which share the need of sending information over
many-cell distances, and the resulting traveling waves are in
good agreement with the expected spatial form of a neutrophil
directing signal.

We find that spatial effects play a large role in the
model and contributes to the model’s ability to propagate
repetitive waves. By changing the parameters of the model,
we observe qualitatively different spatial patterns and we see
that a even very strong positive feedback leading to chronic
inflammation gives rise to oscillations close to the absorbing
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boundaries representing the blood stream. Hence the situation
corresponding to chronic inflammation would also recruit
neutrophils from the bloodstream, but they would not be able
to orient themselves once in the tissue because there is no
directed signal to guide them.
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Modular networks of word correlations
on Twitter
Joachim Mathiesen, Pernille Yde & Mogens H. Jensen

Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.

Complex networks are important tools for analyzing the information flow in many aspects of nature and
human society. Using data from themicroblogging service Twitter, we study networks of correlations in the
occurrence of words from three different categories, international brands, nouns and US major cities. We
create networks where the strength of links is determined by a similarity measure based on the rate of
co-occurrences of words. In comparison with the null model, where words are assumed to be uncorrelated,
the heavy-tailed distribution of pair correlations is shown to be a consequence of groups of words
representing similar entities.

N
etworks are elegant representations of interactions between individuals in large communities and orga-
nizations1–3. These networks are constantly changing according to demands, fashions and flow of ideas4–6.
The worldwide popularity of social media such as Twitter5–7 have made them a considerable component

in research on social networks8,9. Twitter is a microblogging service that allows registered users to post short text-
based announcements, limited to 140 characters in length, known as ‘‘tweets’’, to an online stream. The frequency
by which users interact on a global scale on Twitter allows for a high-resolution real-time analysis of movements
in the society.

From automatic queries to Twitter, we have estimated tweet rates of words from a given set M containing
selected words from one of the three different categories, international brand names, nouns and US major city
names. The rate is measured by the number of new tweets posted per hour. For each query submitted at time t
about a specific word agM, Twitter returns a finite set of the na(t) latest tweets T1, . . . , Tna tð Þ

� �
. In addition to

the message text string s, each tweet contains the username of the author, the time ti when the tweet was posted
and further details that we have not used. A tweetTi is therefore a list of information Ti5 (s, ti,…). Themaximum
number of tweets returned from each query is na 5 1500.

The time signal of tweets mentioning a specific word a, ga(t), can be written on the form

ga tð Þ~
X
i

d t{tið Þ, ð1Þ

From the number of tweets and the timestamps we compute an averaged tweet rate of a word a,

ca tð Þ~ 1
t

ðt1zt

t1

ga tð Þdt~ na tð Þ
t

, ð2Þ

Similarly we define a rate by which words a and b co-occur in a tweet at the same time, cab(t) 5 nab(t)/t.
Tweets containing words from the aforementioned categories were recorded over a period of 4 months

November 2010 – February 2011 and a period of two months January 2012 – February 2012. In general the rate,
at which new tweets appear containing words from each of the categories, is too high to count the total number of
tweets. Our analysis is based on estimated tweet rates computed from Eq. (2) using na 5 100–1500. When
averaging overmany queries, we did not see a significant difference in the results when using different values ofna.

We analyse the correlation between individual words within the mentioned categories. For that purpose, we
define a measure of similarity in terms of the co-occurrence rate of words. The measure is then used to construct
networks where links represent the degree of similarity. The way that we consider correlation networks can be
seen as an alternative to existing studies on semantic networks (see e.g.10).

Results
We define a similarity measure between two words a and b in terms of the rate cab by which new tweets occur
containing both a and b. For example, by considering queries to Twitter containing the terms ‘‘Google’’ and
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‘‘Microsoft’’, we get cGoogle< 130000 tweets per hour and cMicrosoft<
17000 tweets per hour whereas cGoogle,Microsoft < 700 tweets per hour
(January 2011). A normalized symmetric measure of similarity (the
Jaccard index) is naturally defined by

vab~
ca\b

ca|b
~

cab
cazcb{cab

ð3Þ

Alternatively one can use information theory to compute the sim-
ilarity from the joint probability of observing two words in the same
tweet11. This approach is in particular useful when we have access to
the normalized probabilities of observing A and B. Here, because of
limitations to the permissible sample rate of data we only have access

Figure 1 | Networks of correlations between international brands
computed from the corresponding tweet rates on Twitter. A link in the

networks represents the similarity measure computed using Eq. (3). In

panel A, we show a network with links that have a strength larger than

0.004. The color of the nodes are modules found using community

detection. Darker link colors mean stronger links. In Panel B, we show the

adjacency matrix where the individual brands are ranked in modules. The

colors represent the link strengths on a logarithmic scale. The block-

structure is consistent with the clear modularity observed in panel A.

Figure 2 | Network of cities with high similarity. In panel A), we show a

similarity network where nodes are located according to the algorithm of

Fruchterman-Rheingold. In panel B), the corresponding network is shown

where nodes are arranged according to the geographical location of the

cities. In both panels only links with a strength larger than 0.004 are shown.

In the network, darker link colors mean stronger links. In panel C), the

network is shown in the corresponding matrix form.

www.nature.com/scientificreports
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to a fraction of the total number of posted tweets and can therefore at
best estimate the relative probabilities.
In Fig. 1A we present a network of international brand names

where the link strength is given by the measure Eq. (3). A threshold
is introduced on the link strength in order to visualize primary
structures, i.e. links between brand with a similarity vAB , 0.004
are omitted. We observe that the network is strongly modular with
groups of brands representing similar products or services. As an
example one can observe distinct groups of European car brands,
Asiatic car brands, consulting and IT companies, and fashion brands.
The modules in the network are coloured according to the commun-
ity detection algorithm introduced in12. Most of the connections
inside the modules are rather obvious, whereas a few links connect-
ing the modules represent less obvious relations between brands. In

Fig. 1B we show the corresponding weighted adjacency matrix,
where individual brands are ranked inmodules. Note that the matrix
contains information about brands that were not part of the largest
connected component shown in Fig. 1A.
In Fig. 2A, a similarity network of US cities is shown. The network

provides an alternative map where individual cities only to some
extent are grouped according to their geographical location. The
network is dominated by a central module consisting of New York,
Chicago, Atlanta, Los Angeles and Boston. This is not surprising as
these cities are hubs in the American society.We observe amodule of
Californian cities that connects naturally to cities like Denver and
Seattle. We also detect a module of east-coast to mid-western cities
connecting to a module of southern cities. Again the modules were
detected by the algorithm presented in12. It is natural to ask how

Figure 3 | Network of nouns with high similarity. Similarity network of 200 randomnouns chosen from a list of the 2000most common nouns.We only

show the largest connected component for links with a strength larger than 0.04. The corresponding matrix form of the network including all nouns is

shown in pnael B).

www.nature.com/scientificreports
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much of the similarity between cities is influenced by the geograph-
ical distance between them. To answer this question, we have com-
pared tweet rates with the distance between cities as well as the size of
the cities. It turns out that there is a weak to moderate correlation
between the size of a city and the number of tweets referring to that
city. The co-occurrence of two cities, however, has no clear correla-
tion with their sizes and the distance between them. That said, when
the nodes in the similarity network are arranged according to their
geographical location it is evident that cities in same regions (states or
neighbouring states) are better inter-connected and therefore often
belong in the same module, see Fig. 2B.
As a final example of a similarity network, we present in Fig. 3 a

network of nouns. From a list of 2000 common nouns in the English
language, 200 nouns are randomly selected and the corresponding
pairwise similarities are computed. Like the previous networks for
brands and cities, the network of nouns also exhibits a pronounced
modularity with modules e.g. representing similar food products.
We now consider further the data underlying the link strengths. As

a main result, we obtain scale free distributions,

p cabð Þ*c{a
ab , ð4Þ

of the pairwise tweet rates cab over six orders of magnitude using the
brand names, nouns as well as major cities, see Fig. 4A. Surprisingly,
the distributions all have the same scaling exponent a5 1.406 0.02
(s.d.). The distribution of the tweet rates of individual search terms a,
ca, does not follow a clear scale invariant distribution (see inset of
Fig. 4). Moreover, the tweet rate of pairs cab does not follow trivially
from the rate of the individual brands, that is, the rate is not propor-
tional to the product cacb which would be the case if a and b were
uncorrelated. In particular we notice that if the distribution of the
rates cx could be approximated by a scale invariant distribution
p cxð Þ*c{a

x then the product z 5 cacb would follow a distribution

p zð Þ*z{a log z2
� �

: ð5Þ
which follows from introducing the auxiliary variable v5 ca/cb and
performing the integral

ðz= 2

2=z
p z, vð Þdv~

ðz= 2

2=z
p ca z, vð Þ, cb z, vð Þð Þ L ca, cbð Þ

L z, vð Þ
����

����dv, ð6Þ

where is a characteristic minimum tweet-rate that we observe.
The logarithmic correction to the scaling does not provide a stat-

istically significant fit to the data presented in Fig. 4, that is a best fit
has an exponent a < 2 significantly larger than the tweet rate cx of
individual search terms (see the inset of Fig. 4). A power-law distri-
bution has also been observed for the co-occurrence of tags in social
annotation systems14 where users annotate online resources such as
web pages by lists of words. The exponent of the distribution in the
annotation systems (a. 2) is larger than the one reported here and is
close to the distribution of co-occurrence of nouns in sentences of
novels considered below. The distribution of the similarity measure,
Eq. (3), also has a scale invariant form. The value of a is in this case
slightly larger, see Fig. 4B.

Discussion
For comparison, we have performed a similar analysis using search
engines such as Google and Bing. The similarity between two words
was computed fromEq. (3) by inserting the number ofweb pages that
the search engines return containing the words. That is, instead of a
rate we now use a fixed number. The distributions turn out to be
significantly different (see Fig. 5A) and do not show a clear scaling
behavior as in the case of Twitter. This may in part be explained by
the fact that the search engines return results from web pages which
are not restricted in size and they cover a wide range of media.
Finally, we compare the scaling behavior of word correlations

observed on Twitter by considering the corresponding distribution

of nouns in sentences of novels by Mark Twain (Huckleberry Finn)
and Herman Melville (Moby-Dick). The sentences in these novels
turn out to have a typical length comparable to the 140 character

Figure 4 | Probability density function of tweet rates of pairs of
international brands, major cities in the USA and common English
nouns. The distributions include rates of individual search terms. The

violet circles correspond to brand names, the blue triangles to cities and the

green squares to nouns. Note that the rates of the cities have been

multiplied by 20 to allow for a direct comparison. The distributions of the

rates are scale invariant over more than six orders of magnitude and have

the same exponent a5 1.406 0.02 (s.d.). The dashed line corresponds to a

5 1.4. The inset shows distributions of tweet rates of single brands (purple

circles),major US cities (blue triangles) and English nouns (green squares).

For comparisonwe have inserted the same line as in themain panel and it is

observed that the individual categories do not have the same scaling

behavior. In panel B), we show the corresponding distribution for the

similarity measure in Eq. (3).
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limit of a tweet and do indeed lead to broad but significantly steeper
distributions in the word correlations (see Fig. 5B). The novels are
written by single authors and typically exhibits a more formal struc-
ture compared to the text messages. At the same time, the pair dis-
tribution of nouns are for the novels compatible with the null model
where all words in the novels are randomized meaning that the
correlated structures in the novels are rather weak. The distributions
of individual words were considered for the same novels in15.
Compared to the novels the distribution of the co-occurrence of
words in tweets is less broad, which might be because the active
vocabulary of the average user of Twitter is less diverse than that
of the authors of the two novels.
Scale invariance is often described by Zipf’s law13 which states that

the frequency of a word (for instance in a language) is inversely
proportional to the rank in the frequency table. In its general for-
mulation Zipf’s law says that the frequency c of a word is a power law
in the rank c, r2a. For the corresponding probability density func-

tions we have p cð Þdc~p rð Þdr?p cð Þ~p rð Þ dr
dc

����
����. Since dk

dc
~c{

1za
a

making the natural assumption that the PDF of the rank is a constant,
we obtain the PDF of the frequency as

p cð Þ*c{
1za
a ð7Þ

Empirically the value a, 1 has been found for words in a corpus of a
natural language where as for the population size of cities a, 1.1. In
Fig. 5 (inset) we observed a frequency distribution p(c) , c22 for
words in the two novels leading to a, 1 in good agreement with the
‘established’ Zipf result. For Twitter sentences on the other hand we
found p(c) , c21.4 leading to a rank exponent of the order a 5 2.5
which is quite far from the usual Zipf exponent. We thus conclude,
that texts from human communication on social media leads to a
self-organized state that appears to have no resemblance with the
structure of written texts.
Social media have become vital channels for advertising, dissem-

ination of news and spreading of political opinions, therefore an
understanding of the communication between users in social media
provides important input not only to several branches of science but
also for commercial purposes. For example, the value of a brand is
determined by the consumer awareness and its apparent uniqueness.
Companies put enormous efforts into positioning, i.e. to create the
right image in the mind of potential customers. The modular struc-
ture of the brand network gives a first indication of the association
between the various brands. For high-end fashion brands for
instance, it might be preferable to be associated with similar brands
instead of less valuable brands. At the same time the modular
network can also be used to detect competing brands and as such
provide invaluable information for commercial campaigns. In par-
ticular, the similarity measure could measure the correlation with
‘up-coming’ brands that might eventually turn into serious compe-
titors. Likewise for cities, the network structure could provide a basis
for urban strategies and business planning for travel-agencies.
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