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Abstract

Transport of electrolytes in rock–formations, where the fluid paths are on the scale of micrometers
down to nanometers, are common in geology. If the rock–electrolyte interface is charged, the effect
on flow–permeability can be rather dramatic on such a small scale due to the electric double layer.
Good theoretical and numerical studies of such effects have been rather limited because of strong
non-linearities of the governing equations, which are even difficult to handle in simple geometries.
However, in this work we present a numerical study of geometrical effects on electrohydrodynamic
flow in a model fracture, a channel with sinusoidal varying depths. The simulations suggest that
electrohydrodynamics leads to increased channeling of the flow which might be of importance in rock
precipitation and dissolution.

Furthermore, electrolytes can also play a key role in two-phase flow as it can change the wetting
properties on a macroscopic scale, leading to vastly different transport properties. Such electrowet-
ting effects are present near charged rock–fluid–interfaces and play a vital role in settings where two
immiscible fluids coexist in a porous media. To study such phenomena in pore–like geometries we
have performed a numerical study of two–phase electrohydrodynamics. In these simulations we have
seen clear evidence that the release of an electric–inert fluid from a charged pore can be driven by
electric–interactions between the pore-wall and the ions of electrolyte.
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Resumé

Transport af elektrolytter igenne stenformationer, hvor væske porene er på skalaen af mikrometer ned
til nanometer, er almindelige forkommende i geologi. Hvis stenmarterialets overflade er elektrisk
ladet, kan effekten på strømningsgennemtrængelighed være temmelig dramatisk på disse små skalaer
på grund af det elektriske dobbeltlag. Teoretiske og numeriske undersøgelser af sådanne effekter har
været ret begrænsede på grund af stærke ikke-lineariteter af de styrende ligninger, der er vanskelige at
håndtere i selv enkle geometrier. I dette arbejde præsenterer vi imidlertid en numerisk undersøgelse
af geometriske effekter på elektrohydrodynamisk strømning i en modelfractur, en kanal med sinus
varierende dybder. Simuleringerne tyder på, at elektrohydrodynamik fører til øget lokalisering af
væskestrømmen, som kan være af betydning for sten-udfældning og opløsning.

Endvidere kan elektrolytter også spille en nøglerolle i to-fase strømning, da det kan ændre væd-
ningsegenskaberne på makroskopisk skala, hvilket kan fører til vidt forskellige transportegenskaber.
Sådanne elektrovædningsphenomener er til stede nær ladede sten-væske-grænseflader og spiller en
afgørende rolle i situation, hvor to ublandbare væsker sameksisterer i et porøst medium. For at studere
sådanne fænomener i porøse geometrier har vi udført en numerisk undersøgelse af to-fase elektrohy-
drodynamik. I disse simuleringer har vi set klare tegn på, at frigivelsen af en elektrisk-inert-væske fra
en ladet pore kan drives af elektriske interaktioner mellem porevæggen og ionerne fra en elektrolyt.

iii





Publication List

Publications by Asger Bolet

Manuscripts published
• Bolet, Asger and Linga, Gaute and Mathiesen, Joachim (2018) Electrohydrodynamic channel-

ing effects in narrow fractures and pores. Physical Review E 97, 043114

Manuscripts under review
• Linga, Gaute and Bolet, Asger and Mathiesen, Joachim (2018) Phase-field modelling of dynamic

electrowetting with electrolytes. Physical Review E, preprint ad: http://arxiv.org/abs/1805.01435

Manuscripts in draft form
• Linga, Gaute and Bolet, Asger and Mathiesen, Joachim (2018) Decoupled energy-stable schemes

for transient electrohydrodynamic flow.

• Linga, Gaute and Bolet, Asger and Mathiesen, Joachim (2018) BERNAISE: A flexible frame-
work for two-phase electrohydrodynamic flow.

v





Acknowledgements

I want to thank:
The Villum foundation and the State of Denmark for providing the capital for the project.
The Niels Bohr Institute for giving me an office and a bureaucracy to work within.
Joachim Kaj Matthisen for being both Ph.D. and trip advisor.
Gaute Linga for collaboration both scientifically and as a taco producer.
Florian Uekermann for the help with programming, discussing computers and German politics.
Rastin Matin, Anier Hernandez and Olga Henneberg, for sharing office with me, helping me out in
times of need, and having the same interests in boats and planes.
Jens Tarp, Amalie Christensen, Anders Møllgaard, Marek Miztal and Jonas Juul for being good col-
leagues both at the Institute and at Sørenes.
Henrik Bruus, for suggestions and discussion on microfluidics.
The Biocomplexity group for nice lunch discussions on all matters from bacteria to the Carlsberg stock
and a nice yearly break dance fight-night a.k.a. The Christmas lunches.
Stephane Santucci, Francois Renard, Christophe Raufaste and Céleste Odier, for their hospitality on
different occasions visiting the 5th Republic.
“Loppen” For never giving up even if its silicon is getting old and its tasks are getting heavier.
Lars Bolet, Lisbeth Jeppesen, for giving me food when I was less than two meters and sending me to
school instead of the lignite quarry.
Sigrid and Olav for helping conquering the world several times during my childhood and the continu-
ing support.
To my other friends for making my remaining weekends and hours less dull and sometimes even fun
and memorable.

vii





Contents

1 Introduction 1
1.1 One Phase Electrohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two Phase Electrohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 One Phase Electrohydrodynamics 4
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 The Governing Equations of Electrohydrodynamics . . . . . . . . . . . . . . . 5
2.2.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Dimensionless Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Statistical Treatment of The Ion-solution . . . . . . . . . . . . . . . . . . . . 11

2.3 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 The Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 FEniCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Numerical Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Effects for an Undulated Surface . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Two Phase Electrohydrodynamics 41
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Boundary and Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Dead-end Pore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 Pore Throat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Conclusion 53

A Electrohydrodynamics channeling effects in narrow fractures and pores 60

ix



B Phase-field modelling of dynamic electrowetting with electrolytes 76

C Decoupled energy-stable schemes for transient electrohydrodynamic flow 88

D Bernaise: A flexible framework for simulating two-phase electrohydrodynamic flows in
complex domains 121

x



List of Figures

2.2.1 Grahame equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 The electro visosity as a fuction of κa . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Sketch of a micro channel in equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Sketch of a micro channel under pressure driven flow . . . . . . . . . . . . . . . . . . 19
2.4.1 Schematic of the computational domain used for validation. . . . . . . . . . . . . . . . 31
2.4.2 Validation of marcro scoping effects for 2D-channel . . . . . . . . . . . . . . . . . . . 33
2.4.3 Vailation of macrosopic effetces in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Schematic of computational domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.5 Total flow rate in an undulated channel. . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.6 The electro viscus effect and Streaming potential in undulated channel. . . . . . . . . . 37
2.4.7 The marcro scopic asymetri for undulated channel . . . . . . . . . . . . . . . . . . . . 38
2.4.8 A map of the reduction of velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Oil filled pore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Water intrusion in a oil filled pore do to electro wetting . . . . . . . . . . . . . . . . . 44
3.3.1 Dead-end pore geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Pore throat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Oile release Dead-end Pore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Pore Throat ∆p = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Pore Throat ∆p = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 Pore Throat ∆p = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



List of Tables

2.1 Model Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Simulation parameters, single phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Simulation parameters, two phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Simulation parameters, two phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xii



Chapter 1

Introduction

1.1 One Phase Electrohydrodynamics
Electrohydrodynamics has a history spanning now over 200 years. The first resisted observation of
electric forces affecting fluid motion in a controlled experiment, is attributed to the two scientists
Strakhov and Reuss. They observed that dispersed clay particles migrated when placed in an electric
field, which today is attributed to ( electrockinetics1), a phenomenon known as electrophoresis. The
observation of a streaming potential was made by Quincke around 1859 in capillary experiments. On
the theoretical side early results were provided by Helmholtz (1879), and later Smoluchowski [81, 82]
modelled electrophoresis and the streaming potential. At the same time Nernst [55] and Planck [60]
were working on the equation that bears their name. The theoretical development continued with the
works of Gouy and Chapman introducing the Poisson–Boltzmann equation, a statistical description of
the electric double layer, just prior to the Great War. Debye and Hückel used a linearized form of the
Poisson-Boltzmann equation by the early twenties [78] which provided the foundation for much of
later theoretical estimates. More elaborated models for the electrolyte solid interfaces were further de-
veloped throughout the twentieth century to include chemical reactions and high-density corrections,
and to allow studies of catalysts and batteries. However, in the context of this work, Verwey and Over-
beek’s [79] and Rice and Whitehead’s [63] solutions of Gouy and Chapman’s equations in different
settings have been of great importance.

In the more specific context of geophysics, electrokinetic effects have proved to be a tool to mea-
sure seismic events [76], and to be able to infer some properties of rocks under influence of seis-
mic waves [46]. Such electroseismic responses were demonstrated to be useful in the exploration of
aquifers and monitoring of pollution at shallow to moderate depths under the Earth’s surface [75].
Electrokinetic effects associated with seismic activity have also been proposed as a means of earth-
quake detection [49, 10], and as sources of increased dissipation in water-filled rocks shaken by the
seismic activity [61]. The effects of electrokinetics on permeability in artificial porous materials have
been studied by network analysis [58] and in experimental settings in various types of stone and ce-
ramic [74].

Although computational studies of electrodynamic effects have a rather long history, these effects
in more complicated geometries other than channels and pipes have, however, to our knowledge not
been studied by direct calculations, neither analytically nor numerically.

By the late seventies, computers had become so commonly available that numerical solutions of
the Poisson-Nernst-Planck problem were possible for the 1-dimensional case [14] and was used for

1The terms electrohydrodynamics, electrokinetics and sometimes electro-fluid-dynamics are used more or less synony-
mously, especially in the early literature.
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the studies of ion-exchange membranes [45]. The advances in microprocessors meant that 2- and
3-dimensional Poisson–Nernst–Planck problem simulations were possible around the turn of the mil-
lennium [16, 39]. The back coupling to the hydrodynamics leading to Stokes–Poisson–Nernst–Planck
problem was considered in two-dimensions by 2005 [44] and in thee-dimensions by 2008 [80]. In
both cases this was done with a commercial software, COMSOL, making the numerics somewhat a
black-box. However, with the use of FEniCS, an open source software library, Mitscha-Baude et al.
[48] were able to implement a solver for the full Poisson-Nernst-Planck problem to study electric ef-
fects in cell membranes. This means that studies of flow change in simple nontrivial geometries due
to electrohydrodynamic effects should be within the reach of modern computational resources. This
will be the subject of Chapter 2 of this work.

1.2 Two Phase Electrohydrodynamics

The electric effects of two-phased electrolytes have been seen as early as 1875 by Lippmann in his
electrocapillarity based electrometer [38, 53]. The Lippmann electrometer was due to its sensitivity
used for some of the first experimental electrocardiographies(EKG/ECG) done by Waller [84] in the
late 1880, but it was soon replaced by more sensitive alternatives.

In a modern context, electrohydrodynamics in two-phase electrolytes has received renewed interest
with theoretical as well as experimental work on non-coalescence droplets [64, 52]. But also the
increased focus on micro/nanofluidics have sparked renewed interested [72, 68] as electrowetting can
be used to control and manipulate small volume of fluids fast and precisely [53, 54].

For other applications, there might be some prospects in the generation of blue energy [71] and in
the continued development of electronic ink used in displays [11, 12, 23, 20]. Furthermore, effects of
electrohydrodynamic has been exploited in petrochemical recovery where the flooding of a reservoir
by so-called “smart water” (petrochemical lingo for a dilute ion-solution), gives increased yield [62].
The effect of smart water have been studied on a laboratory scale and have shown to change the wetting
properties of the rock surface [19, 21].

Different models for electrowetting have been proposed over the years, the early models were
established by Taylor and Melcher for a leaky Dielectric [73, 47]. However, the leaky dielectric as-
sumption is not valid in the limit where the Debye length is comparable to the droplet size and if the
electric field is weak [67].

Recent developments in models have taken the effects of the electrolytes directly into consideration
so they are now valid on small-scale droplets [50, 51] Further simulations of droplet deformation
in electric fields have successfully been carried out by Yang et al. [85, 86], and some effects of
electrowetting were studied by numerical means in the setting of microfluidic devices by Walker et al.
[83]

Two-phase flow can be modelled with different approaches, one being sharp–interface models,
another is diffuse–interface models. In our case we have used a diffuse–interface model, as this type
of model avoids the explicit tracking of the interface. Furthermore, with the model used the phase
field equations that do the implicit tracking of the phase can with relative ease be solved within a finite
element framework, as used in our studies.

For the history of phase field for two-phase flow, see the review by Anderson et al.[8]. The phase
field model for electrolytes continued herein was developed on top of a thermodynamical consistent
version of Hohenberg et al.’s H-model [22] by Lowengrub et al. [43]. This model was further im-
proved with a divergent free velocity field by Abels et al.[1], before it reached its final form including
electrolytes in a thermodynamical consistency, through the Onsager variational principle due to the

2



work of Campillo-Funollet et al. [15]
The field of work to which we have contributed is mainly the numerical implementation of the

model by Camillo-Funollet et al. and qualitative study of electrowetting in different complex geome-
tries. These studies will be presented in Chapter 3 of this work.
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Chapter 2

One Phase Electrohydrodynamics

To give an outline of the present chapter we will begin by motivating the importance of one-phase
electrohydrodynamics and then continue in the second section with an introduction to the theoretical
background of electrohydrodynamics and some important analytical results. In the third section we
discuss numerical methods for solving the introduced equations, along with the problem of mesh gen-
eration. Finally, in the last section we present the results of our simulations and discuss what can be
done in order to make further progress. This work has also been published in “Electrohydrodynamics
channeling effects in narrow fractures and pores” found in Appendix A. Further the time dependent
scheme used for bench marking the code in “Electrohydrodynamics channeling effects in narrow frac-
tures and pores” have been drafted into a paper called: “Decoupled energy-stable schemes for transient
electrohydrodynamic flow” and can be found in Appendix C.

2.1 Motivation

Electrohydrodynamics can be important in situations involving fluids containing dissolved ions. Es-
pecially in confined conditions like a micro-porous sample electrohydrodynamics is likely to become
a controlling phenomenon. Micro-porous conditions are routinely found in a number of industrial and
natural occurring situations. Such situations are: Purification of water, especially desalination, which
can be done by pushing the fluid through a porous ion-selective membrane working by electrostatic
repulsion of ions. Fluid-filled porous rocks both in the situation of transport, and in the dissipation of
energy during earthquakes [61] or similar events. Furthermore, electrohydrodynamics is also relevant
in the petrochemical recovery industries, as flow resistances is important for determining porosity and
thereby determining the nature of a reservoir [77]. Finally, water transport in underground settings, like
ground-water flow, water saturated rocks and oil wells are as porous settings typically also associated
with some dissolved ions.

The effects of surface charge on ion-solutions have been studied in many cases over the years. The
studies regard the effects on flowrates of fluids in tubes [63, 61], the effects on charge transport [57],
and the effects on generated electric potential in tubes [44].

Our scope is however to investigate the effects on flowrates in porous samples rather than in tubes
via computational methods, as this is beyond what can be achived from an analytical approach. The
end goal, if possible, would be to establish some sort of simple Darcy’ law like relation for electric-
kinetic flow.

4



2.2 Theory
In order to discuss the results of simulating electrohydrodynamics we will need a theoretical under-
standing of the system. Therefore, we will in this section introduce the equations used to model the
electrolyte and the boundary conditions found in physical settings. Furthermore, we will introduce
a way to make the equations dimensionless and in addition give some well-known analytical results
relating to the electro-viscous effect.

Let us be begin with the models for electrohydrodynamics.

2.2.1 The Governing Equations of Electrohydrodynamics
The three sets of equations that form the foundation of electrohydrodynamics (EHD) are the Navier-
Stokes equations for fluid dynamics, the Poisson equation for an electric field and the Nernst-Planck
equation for the ion number density. In the following sections, we introduce these equations, their
origin, relevant boundary conditions, dimensionless forms and approximate forms in relevant regimes.
We will start with the Nernst-Planck equation.

The Nernst-Planck Equation

Let us start with a standard derivation of the Nernst-Planck equation based on phenomenology Fick’s
law approach 1 and then discuss its shortcomings afterwards. Consider the continuity equation for a
number-density of ions in some solution:

∇ · Ji +
∂ni
∂t

= 0, (2.2.1)

where Ji is the total number-current-density of the i ion species and ni is the number-density2 of the i
ion species.

Now if some flow field is imposted on the solution, one will have an advective contribution to the
current of the form:

Jadi = niu, (2.2.2)

where u is the advection velocity or more specific the velocity of fluid.
However, if the number-density is not homogeneous in space or the system is exposed to an external

electric field one must consider a diffusion-migration term due to an in-homogeneous electrochemical-
potential. Such a term would have the following form:

Jmdi = +λiniFi, (2.2.3)

where λi is the mobility of the ions and Fi is the electrochemical-forces acting on the ions. Fi is given
as:

Fi =−∇µi(r), (2.2.4)

where µi(r) is the electrochemical potential for a diluted ion-solution and is given as:

µi(r) =µ0
i + kbT lnni(r) + ziqeϕ(r). (2.2.5)

1The original derivation can be found in [55, 60].
2In chemistry it is normal to use concentration in favor of number-density
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Here µ0
i is the equilibrium chemical potential, kb is the Boltzmann constant, T is the temperature, zi

is the valency meaning the relative charge compared to qe the electron charge 3, and finally, ϕ is the
electric potential.

Now calculating Jmdi explicitly by using Eqs. (2.2.4) and (2.2.5) in conjunction with Eq. (2.2.3)
one gets:

Jmdi =− λikbT∇ni − λiziqeni∇ϕ (2.2.6)

=−Di∇ni −
Diziqe
kbT

ni∇ϕ

where Di is defined by the second equality and is the thermal mobility.
Finally, we arrive at the Nernst Planck equation by identifying the total number-current-density as

the sum of Jmdi and Jadi and plugging it into Eq. (2.2.1):

∂ni
∂t

= ∇ ·
(
−niu +Di∇ni +

Diziqe
kbT

ni∇ϕ
)

(2.2.7)

Note that the term −∇ϕ is some times exchanged with its gauge invariant form −∇ϕ − ∂A
∂t

. This is
in principle fine, but one should be aware that any direct effects of magnetic-fields is still not present.
How to introduce such direct effects of magnetic-fields in the Nernst-Planck equation is beyond the
scope of this text, but it should be safe to ignore them.

From the number-densities and the number-current-densities of the Nernst-Planck equation one can
define the charge-densities and charge-current-density. The charge density is given by the following
sum:

ρe = qe

N∑
i=1

zini, (2.2.8)

where N is the number of ion-species. Likewise, the charge-current-density is defined as:

Je =
N∑
i=1

ziJi, (2.2.9)

With those derivate quantities let us turn to the equation that governs the electric-potential.

The Poisson Equation

In principal one can derive the full Maxwell equations and thereby an equation for electric-potential
from first principal along the lines given in [7]. However, as we are not in need of full electrodynamics,
we will simply start our treatment of the Poisson equation from the Gauss law as found in [30, 24].
The Gauss law states a relation between the charge-density and the electric-displacement-field in the
following manner:

∇ ·D = ρe (2.2.10)

where D is know as the electric-displacement-field.

3Normally in chemistry lingo the valency is only the absolute value of our definition, however we have expressed it this
way in order not to carry an extra parameter just for the sign.
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This equation simplifies in the context of a linear-dialectic media as here to the following linear
relation between the electric-displacement-field and the electric-field:

D = εrε0E (2.2.11)

where ε0 is the vacuum permittivity and εr is relative permittivity.
In the case of a none-space-dependent relative permittivity, which is typically the case in one-phase

electrohydrodynamics, one can rewrite Eqs. (2.2.10) and (2.2.11) as4:

∇2ϕ = − ρe
εrε0

, (2.2.12)

where we have introduced that E = −∇ϕ. It should be noted that we have ignored the Faraday law of
induction in the definition of the electric field, but that should hardly be a surprise after the discussion
in the section of the Nernst-Planck equation.

With an equation for the electric-potential, the only remaining thing we need in order to close the
system of equations is to have a way to find the electrolytes velocity field. Here we are going to use
the Navier-Stokes equation with a prober force term.

The Navier-Stokes Equation

The Navier-Stokes equation are normally derived from the continuum hypotheses which strictly speak-
ing is a phenomenological approach. Such a derivation can be found in [34, 32]. However, one can
also derive the Navier-Stokes equation from a microscopic approach using the Boltzmann equation.
This is mainly interesting from a theoretical point of view as it is much more cumbersome than the
phenomenological and gives no real advantages such as direct calculation of the model parameters –
at best one gets that the parameters depend on temperature. A kinetic derivation of the incompressible
Navier-Stokes equation can be found in [9].

Without further to say on the derivation, let us state the incompressible Navier-Stokes equations:

ρ

(
∂u

∂
+ u · ∇u

)
=−∇P + µ∇2u + F, (2.2.13)

∇ · u =0 (2.2.14)

where the first equation is the momentum continuity equation and the second is the incompressibility
statement. ρ is the fluids mass-density, P is the pressure, µ is the dynamical viscosity and F is an
external force. The force explicitly in mind is the electro-static force on a charge-density in a nontrivial
electric-potential:

F = −ρe∇ϕ (2.2.15)

Of course, one can imagine other contributions to the force e.g. gravitation, but as we are planning on
applying the equations on a micrometer scale it should be fine to leave such contributions out as the
Galilei number is small under these circumstances.

With this closed system of the equations we can now turn to the boundary conditions we will need
in order to solve them in realistic conditions.

4Note that relative permittivity of a specific substance may typically depend on the density and temperature. As we are
interested in rather diluted water-ion solutions and as water can be considered to be incompressible, we have chosen not to
consider variation of the temperature at all. A further elaboration on the subject can be found in [61].
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2.2.2 Boundary Conditions
Boundary conditions are rather important for the structure of solutions to a partial differential equation
especially in confined spaces. This means that boundary conditions should be chosen with care and in
such a way that they are consistent the physical situation they are trying to describe. As we have three
equations to discuss we will take their boundary condition one at a time.

Let us start with the Nernst-Planck equation. Here we would like to introduce two different bound-
ary conditions: A no-flux condition and a number-density condition. We will consider with the latter
first as it is straight forward to formulate as a Dirichlet boundary condition:

ni(x) = n∞i (x); x ∈ ΓO (2.2.16)

where n∞i is the number-density of the i-ion at an open boundary given by the set ΓO. The using of a
number-density condition is to model the contact with bulk systems of the solution with a specific ion
number-density. In conjunction with the number-density at an open boundary it is important to note
that charge density given Eq. (2.2.8) should be consistent with the imposed boundary condition of the
Poisson equation see Eqs. (2.2.20) and (2.2.21).

Moving on to the no-flux condition which is used to mimic the case of a chemical no-reacting
channel wall. In a formal manner it is written as:

Ji(x) · n(x) = 0; x ∈ ΓS, (2.2.17)

where, n is the surface normal and ΓS is the set of solid surface e.g. a channel wall. Using the
expressions for the number-current-density found in Eqs. (2.2.2) and (2.2.6) and anticipating the no-
slip condition on the velocity one gets the following:

Di∇ni(x) · n(x) +
Diziqe
kbT

ni(x)∇ϕ(x) · n(x) = 0; x ∈ ΓS (2.2.18)

This is the final form of the no-flux condition for the Nernst-Planck equation. We will however make
a slight return after we have discussed the boundary conditions of the Poisson equation.

For the Poisson equation we will also consider two types of boundaries: A fixed potential and
a surface charge condition. Let us begin with the constant fixed potential condition which we will
mainly use for choosing a gauge for the electric-potential and which is having the following Dirichlet
typed condition 5:

ϕ(x) = ϕΓ(x); x ∈ ΓG, (2.2.19)

where ϕΓ is the potential on the boundary given by the set ΓG.
The surface charge condition takes the form of a Neumann condition and is typical written as:

∇ϕ(x) · n =
σe(x)

εrε0
; x ∈ ΓCW , (2.2.20)

where σe is the surface charge density of the wall and ΓCW is the domain of the boundary where the
condition is imposed. Note that this condition is not only used for walls but also for open boundaries
where one wants to set the normal component of electric-field to zero.

5Note that one can also use the fixed potential to specify the so called ζ-potental at a charged-wall ionic-solution
interface. However, one will have to be careful when doing this as the concept of a ζ-potental is tied to the Poisson-
Boltzmann equation which is a strictly equilibrium equation. Therefore it is not in general valid to impose a ζ-potental in
a non-equilibrium situation so in the context of transport one has to use the corresponding surface charge. The concept of
the ζ-potental will be revisited and properly explained in Section 2.2.4 under ”The Grahame equation”.
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In addition we can also use Eq. (2.2.20) to specify the no-flux condition of the Nernst-Planck
equation a bit more in the situation where ΓS and ΓCW coincidences, in which case Eq. (2.2.18)
becomes:

Di∇ni(x) · n(x) +
Diziqe
kbT

ni(x)
σe(x)

εrε0
= 0; x ∈ ΓS ∩ ΓCW (2.2.21)

Note that we are considering the case where ΓS ⊆ ΓCW , so Eq. (2.2.21) is the form of the no-flux
condition we are going to use.

Finally, we will introduce the boundary conditions for the fluid system. Again we will have two
types: A Neumann condition that specifies a pressure boundary and a Dirichlet condition for imposing
a velocity at a boundary.

The Dirichlet condition is stated as:

u(x) = uΓ(x); x ∈ ΓV , (2.2.22)

where uΓ(x) is the velocity on the boundaries in ΓV . This boundary condition of course reduces to the
no-slip condition if uΓ(x) is the zero vector. This special case is normally used to model a solid-fluid
interface and it is so important that it will have its own equation:

u(x) = 0; x ∈ ΓW , (2.2.23)

where ΓW is the path of ΓV that is a solid-fluid interface. It should be noted that the no-slip condition
for some interface material is violated on nanometer scales, however we have considered scales larger
than this so we have ignored the phenomenon. 6. The Neumann condition for a pressure boundary is
given as:

∇u(x) · n(x) + Pn(x) = g(x); x ∈ ΓI (2.2.24)

where g is some surface force to be applied at the boundary and ΓI is the set of open boundaries.
After this introduction to the boundary conditions for the different equations we will continue by

considering the dimensionless equations and an approximation.

2.2.3 Dimensionless Equations
In this section we will present the dimensionless form of the equations given in Section 2.2.1. But
before introducing the non-dimensional equations we will approximate the Navier-Stokes equation in
the limit of vanishing Reynolds numbers.

As the Reynolds number is the ratio between the convection term divided by the diffusion term
one can ignore the non-linear convection term if the Reynolds number vanishes. To get an idea of the
Reynolds number in as specific case it is given as [34]:

Re =
ρuR

µ
, (2.2.25)

where u is the fluid speed and R is the characteristic length of the system.
In the case we want to consider, i.e. water flow in channels on nanometer to micrometer scale and

low fluid speed in the order of maximum centimeter second, the Reynolds number is never larger that

6For some introduction to slip effects on nanometer scales see [56].
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Variable Symbol Normalization
Ion-number-density ni n∞

Electric-potential ϕ VT = kbT
z̄qe

Length x R

Velocity u U0 =
ε0εrV 2

T

µR

Time t R2

D̄

Pressure P µU0

R

Table 2.1: The tree columns are from left to right: The name of the variable in question, its symbol in the
above discussed section and finally the normalization that is used to make the given quantity dimensionless.
Note that z̄ = 1

N

∑N
i=1 |zi|, D̄ = 1

N

∑N
i=1Di and n∞ is chosen to be one of the ion-spices inlet number-

density

0.1. Without the convection term the Navier-Stokes equation is known as the time-dependent Stokes
equation:

meρ
∂u

∂t
=−∇P + µ∇2u + F, (2.2.26)

and the mass-continuity equation is still on the form given in Eq. (2.2.14).
As we have carried out our approximation, let us turn to the dimensionless equations. The equa-

tions will be scaled by following the convention outlined in Table 2.1[18]. Applying the chosen scaling
to the Nernst-Planck equation, Eq. (2.2.7), gives the following:

∂ñi

∂t̃
= ∇̃ ·

(
− 1

Pe
ñiũ + D̃i∇̃ñi + D̃iz̃iñi∇̃ϕ̃

)
, (2.2.27)

where the tilde denotes that the quantities are made dimensionless through the scalings given in Ta-
ble 2.1 and where Pe is the Péclet number describing the ratio between advective and diffusive trans-
port and defines as 7:

Pe =
RU0

D̄
, (2.2.28)

The charge density, Eq. (2.2.8), simplifies to:

ρ̃e =
N∑
i=1

z̃iñi. (2.2.29)

The Poisson equation, Eq. (2.2.12), along with the just stated dimensionless charge density, becomes:

∇̃2ϕ̃ = − R2

2λ2
D

ρ̃e, (2.2.30)

where λD is the Debye length and is defined as:

λD =

√
kBTε0εr
2z̄2q2

en
∞ , (2.2.31)

7Note, that we mostly consider cases where D̃i equals 1 and z̃i reduces to sgn(zi) as this is the case of a symmetric two
species ion-solution.
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A precise discussion of the physical meaning of the Debye length is postponed until Section 2.2.4 after
the introduction of the linearized Poisson-Boltzmann equation Eq. (2.2.48), but for now it is sufficient
to know that it is the length scale to expect departure for electro-neutrality near a charged interface.

Finally we have Stokes equation, Eq. (2.2.26), in its dimensionless form:

1

Sc

∂ũ

∂t̃
=− ∇̃P̃ + ∇̃2ũ +

R2

2λ2
D

ρ̃e∇̃ϕ̃, (2.2.32)

where the Sc is the Schmidt number defined as:

Sc =
µ

ρD̄
, (2.2.33)

and describing the ratio between viscous diffusion and mass diffusion of the ions. Note that the
Schmidt number have not been of big impotence in our studies as we have been concerning steady
state solutions, but it relates to the time scale where a steady flow is obtained while the ions-number-
densities are steady. This means that for a Schmidt number smaller than one the ion-number-densities
will equilibrate faster than the flow, while for a Schmidt number larger that one the ion-number-
densities will have a longer transient.

For completion we also state the dimensionless form of the fluid mass continuity equation, Eq. (2.2.14),
which is:

∇̃ · ũ = 0. (2.2.34)

With the dimensionless equations covered we will now turn to introducing some theoretical results in
the equilibrium of the Poisson-Nernst-Planck coupled problem. We will furthermore discuss the de-
parture from equilibrium by introducing a non-zero velocity field, where we will be especial interested
in the phenomenology of the steady-state.

2.2.4 Statistical Treatment of The Ion-solution
As the coupling between the Poisson equation and the Nernst-Planck equation is strongly non-linear
it is challenging to solve even in the simplest of cases. However, in the regime where the electrolyte
is at rest, one can turn to a statistical equilibrium approach in order to get an ansatz on the ion number
densities that eliminates the Nernst-Planck equation in favor of the Poisson-Boltzmann equation [78].
Furthermore one can get some reasonable results in steady state for simple geometries from such
calculation [63].

Starting with the result within equilibrium we will derive the Poisson-Boltzmann equation in detail
and then move on with that as a vantage point.

Let us begin by considering the ions as being Boltzmann distributed, i.e. we consider them being in
a thermodynamical equilibrium. This means that their momentum follows a Maxwellian distribution
if they are otherwise only affected by a classical potential field that acts on the ions center off mass
and more important the ions number-density follows the Boltzmann formula [31]:

ni(x) = n∞i exp

(
−Ui(x)

kBT

)
, (2.2.35)

where Ui(x) us the external potential experienced by the i’ed type of ions. Now, if the n∞i is so
small that the mean distance of the ions are large than (ziqe)

2/(εrε0kbT )8[28] one can approximate the
8For water at room temperature and monovalent ions the distance is ∼ 10nm corresponding to number-densities of

∼ 1025m−3
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external potential by only considering the electric-potential 9:

Ui(x) = ziqeϕ(x) (2.2.36)

Introducing Eq. (2.2.36) into Eq. (2.2.35) gives the distribution:

ni(x) = n∞i exp

(
−ziqeϕ(x)

kBT

)
, (2.2.37)

One could continue in calculating the charge-density via Eq. (2.2.8) and by introducing it to the Poisson
equation, Eq. (2.2.12), and end up with a none-linear source term. Instead of pursuing the general
case we will, however, consider a symmetric monovalent two species ion-solution which yields to the
conventional form of the Poisson-Boltzmann equation, as it allows us to get some derived relations on
closed form.

The number-densities in monovalent case is given as:

n±(x) = n∞ exp

(
∓|z±|qeϕ(x)

kBT

)
, (2.2.38)

where n± is the number-density for the positive and the negative ions respectively and where n∞− =
n∞+ = n∞10.

Introducing Eq. (2.2.38) to Eq. (2.2.12) via Eq. (2.2.8) we arrive at the Poisson-Boltzmann equa-
tion:

∇2ϕ =
2qen

∞

εrε0
sinh

(
qeϕ

kBT

)
, (2.2.39)

Having established such a nice form of the Boltzmann equation we will derive some results.

The Grahame Equation

First we will consider the semi-infinite space sketched in Fig. 2.2.1 as a basis for deriving the Grahame
equation. The Grahame equation describes the relation between the surface charge and the earlier
mentioned ζ-potential.

We begin by considering that the charge in the “Gauss pillbox” should vanish:

0 =

∫
Ω

(σeδ(x) + ρe(x))ds

= A
(
σe +

∫ ∞
0

ρe(x))dx

)
⇒ σe = εrε0

∫ ∞
0

d2ϕ(x)

dx2
dx = −εrε0

dϕ(x)

dx

∣∣∣∣
x=0

, (2.2.40)

where Ω is the domain of the Gauss pillbox, ds is the volume integral andA is the yz area of the pillbox.
For the second equality we have used that neither σe nor ρe depends on the y or the z coordinate. From
the second to the third line we have used Eq. (2.2.12) and then integrated the equation.

9Be aware that the electric-potential is fixed and that it is zero infinitely far away from the surface.
10Note, that |z±| strictly specking equals 1, but the term is kept in the equation to make the result slightly more general.
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A
Ex = 0σe

∞O
x

y

z

Figure 2.2.1: A semi-infinite geometry, at the plane x = 0 we marked a charge wall with surface charge
σe in blue. The dashed box is a Gauss pillbox the includes the charge wall and goes to infinity, where the
electric field is assumed to vanish, the x transverse area of the pillbox is A as indicated on the figure.

Now to continue we need to find a relation for the electric field’s x component. By multiplying the
Poisson-Boltzmann equation with 2dϕ

dx
11:

2
dϕ

dx

d2ϕ

dx2
=

d

dx

(
dϕ

dx

)2

= 4
dϕ

dx

[
qen
∞

εrε0
sinh

(
qeϕ

kBT

)]
, (2.2.41)

and then integrating the equation with respect to ϕ we find:(
dϕ

dx

)2

=
4kBTn

∞

εrε0
cosh

(
qeϕ

kBT

)
+ c, (2.2.42)

Now, in order to ensure consistency with the asymptotic behavior of the electric field in line with what
is describe in Fig. 2.2.1 we will have to choose c as:

c = −4kBTn
∞

εrε0
. (2.2.43)

We can now use the half-argument formula for hyperbolic functions to rewrite Eq. (2.2.42) as:(
dϕ

dx

)2

=
2kBTn

∞

εrε0
sinh2

(
qeϕ

2kBT

)
. (2.2.44)

By taking the square root of Eq. (2.2.44) we get a relation for the x component of the electric field up
to a sign, that can be fixed by consistency with Eq. (2.2.20):(

dϕ

dx

)
=

√
8kBTn∞

εrε0
sinh

(
qeϕ

2kBT

)
, (2.2.45)

11Note than the y and z components of the electric field both equals zero due to symmetry.
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Finally, introducing Eq. (2.2.45) to Eq. (2.2.40) we arrive at the Grahame equation:

σe =
√

8kBTn∞εrε0 sinh

(
qeζ

2kBT

)
(2.2.46)

where ζ is the electric-potential at the surface in equilibrium, sometimes simply called the ζ-potential
and is widely used in electro-chemistry.

Note, that the ζ-potential can be somehow generalized to express the voltage difference over the
electric doubled layer due to its exponential nature. Also note, that the Grahame equation, like the
Poisson-Boltzmann equation, have a linear regime for small values of ζ and that the upper limit for the
linearity is around the thermal-voltage where it takes the form 12:

σe =

√
2εrεon∞

kBT
ζ =

εrε0ζ

λD
(2.2.47)

Streaming Potential and the Electro-viscous Effect

The concept a streaming-potential is an out-of-equilibrium phenomenon and is typically addressed
theoretical in steady state. Consequently, we now depart from equilibrium, however our insight in the
equilibrium case will still be of great value when treating this topic as the result still have some validity
under certain symmetries and since we are not to far away form equilibrium.

The derivation of the streaming-potential and the related electro-viscous effect will be carried out
in an infinity long tube, in the linear-regime (Debye-Hückel approximation) of the Poisson-Boltzmann
equation where it takes the simpler form [44, 63]

∇2ϕ =
1

λ2
D

ϕ, (2.2.48)

one sees that the Debye length λD sets the characteristic decay-length the of solution in the semi-
infinite case given in Fig. 2.2.1.

As we consider an infinite long channel we will assume translation invariance along both the flow-
direction and in the non-bounded transverse-direction. Solving the linearized Poisson-Boltzmann
equation under the boundary conditions that the electric-potential at the channel walls equals the
ζ-potential (ϕ|x=±a = ζ) and that its transverse derivative is zero in the center of the channel,
( d

dx
ϕ
∣∣
x=0

= 0), yields:

ϕ(x) = ζ
cosh(κx)

cosh(κa)
, (2.2.49)

where κ is the inverse Debye length λD. Note that the definition of ζ-potential is a bit murky if the
radius a does not go to infinity.

From the electric potential, Eq. (2.2.49), we get the charge density via inspection of Eq. (2.2.48)
in conjunction with Eq. (2.2.12) to be:

ρe(x) = −ζεrε0
λ2
D

cosh(κx)

cosh(κa)
. (2.2.50)

12The thermal-voltage for a monovalent solution is around 25 mV at room temperature corresponding to a surface charge
of 0.19 mC/m2 for an ion concentration at 0.01 mol/m3.
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Up until this point our solution have been exact under the approximation. However, we want to intro-
duce a streaming-electric-field Ez in the axial direction in order to model a no charge-flux thorough
the channel.

An electric field along the axial direction is a bit problematic in terms of the electric potential,
as it must divergence, but if Ez is independent of z we still have translation invariance and the re-
sult in Eqs. (2.2.49) and (2.2.50) should still be valid. For Ez we will furthermore assume that it is
independent of the tube’s radial and angular coordinates as well.

Now, considering the Stokes equation 2.2.13 forced by the electro static force from Ez acting on
the free charge, along a constant pressure gradient in the z-direction, d

dz
P . Noting, that the velocity

field only can have a non-trivial dependence on x due to symmetry leads to a balance between the
pressure gradient in the x-direction, d

dx
P , and the x-component of electric forces due to the electric-

double-layer. The equation for the velocity field hence becomes:

µ
∂2uz
∂x2

= −∂P
∂z
− ρeEz. (2.2.51)

Now, inserting the charge density form the Possion-Boltzmann equation, Eq. (2.2.50) into Eq. (2.2.51)
and solving it under the no-slip boundary on the tube walls leads to:

uz(x) =
∂P
∂z

2µ

(
a2 − x2

)
− εrε0ζEz

µ

(
1− cosh(κx)

cosh(κa)

)
. (2.2.52)

In order to continue we now need to find Ez by using the non-charge-flux assumption. Consider the
axial component of charge-current-density giving by Eqs. (2.2.2), (2.2.6) and (2.2.9). Obviously, the
diffusion term vanishes per translation invariance, so we are left with the following:

Je(z) = ρe(x)uz(x) +
2Dq2

e

kBT
Ezn

∞ cosh

(
qeϕ(x)

kBT

)
, (2.2.53)

Note that cosh in the second term is due to the fact that it is the sum of number-densities weighted
with their valency squared. Since the second term can only vanish for a vanishing electric field and the
first term does not vanish for a Poiseuille flow, the two terms need to be at balance. In order to find the
electric field that balance the two terms fluxes we integrate them over the cross section.

Starting by integrating the velocity term in Eq. (2.2.53) to get the flux, note that due to symmetry
the y-integration is trivial and just gives the with L:

L
∫ a

−a
ρe(x)uz(x)dx = −2L

∫ a

0

[
∂P
∂z

2µ

(
a2 − x2

)
− εrε0ζEz

µ

(
1− cosh(κx)

cosh(κa)

)]
ζεrε0
λ2
D

cosh(κx)

cosh(κa)
dx

(2.2.54)

= −a
2L∂P

∂z
ζεrε0

µλ2
D

∫ a

0

cosh(κx)

cosh(κa)
− x2

a2

cosh(κx)

cosh(κa)
dx

+
2Lε2rε20ζ2Ez

µλ2
D

∫ a

0

cosh(κx)

cosh(κa)
− cosh2(κx)

cosh2(κa)
dx

= −2La∂P
∂z

Ω

[
1− λD

a
tanh(κa)

]
+
LaΩ2Ezµ

λ2
D

[
λD
a

tanh(κa)− sech2(κa)

]
,
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where Ω = εrε0ζ
µ

. Integrating the second term of the charge current, Eq. (2.2.53), is apparently not
possible on a closed form as the electric-potential have a rather non-trivial form 13

2LDq2
en
∞

kBT
Ez

∫ a

−a
cosh

(
qeζ

kBT

cosh(κx)

cosh(κa)

)
dx (2.2.55)

=
2LaDq2

en
∞

kBT
Ez

∫ 1

0

2 cosh

(
qeζ

kBT

cosh(κaX)

cosh(κa)

)
dX,

where X = x/a. If multiplied with n∞ the integral in the last line is half the total amount of charge
carries in the channels cross section. It has a minimum value when ζ = 0 or if λD � a where it
equals unity so one recovers the bulk conductivity. Its maximum is obtained when λD � a and here
it simply becomes 2 cosh[(qeζ)/(kBT )]a. Below we will abbreviate this integral Fcc. Now we can get
an expression for Ez under the already advertised assumption that the charge flux vanish:

Ez
∂P
∂z

∣∣∣∣∣
Je(z)=0

=
εrε0ζkBT

µDq2
en
∞Fcc

f (κa, β) . (2.2.56)

Where the last term f(κa, β) is:

f (κa, β) =
1− λD

a
tanh(κa)

1 + β
Fcc

(
λD
a

tanh(κa)− sech2(κa)
) , (2.2.57)

and where β is:

β =
Ω2µkBT

2λ2
DDq

2
en
∞ =

εrε0ζ
2

µD
. (2.2.58)

If we identify 2Dq2en
∞

kBT
in Eq. (2.2.56) as the conductivity, we get the Helmholtz-Smoluchowski equa-

tion [82] with some correction factors that deal with the finite extent of the Debby layer, Fcc, and a
geometrical factor, f( a

λD
, β) 14. From the Helmholtz-Smoluchowski equation (or Eq. (2.2.56)) one

can also define the so called streaming potential by isolating the electric field and integrating over the
length of the channel:

Vstr = − εrε0ζkBT

µDq2
en
∞Fcc

f (κa, β) ∆P, (2.2.59)

where Vstr is the stream potential i.e. the potential-difference between two points at the ends of a
infinite tube with and ∆P is likewise the pressure-difference between the same two points. Note, that
in reality the relation is used for finite length objects where one would simply use the drops in voltage
and in pressure over the channels length and assume that entry effects are minor.

To continue the endeavor to find an expression for the electro-viscous effect we use the newly
found relation between the streaming-electric-field and the applied pressure gradient Eq. (2.2.56) to
eliminate the streaming-electric-field in the equation for the axial velocity field Eq. (2.2.52) and thus
finding an equation that only depends on the axial component of the pressure gradient:

uz(r) =
∂P
∂z

2µ

[(
a2 − x2

)
− 4βλ2

D

Fcc
f (κa, β)

(
1− cosh(κx)

cosh(κa)

)]
. (2.2.60)

13It could be expressed as an infinitive sum of generalized hypergeometric functions, but that is hardly more convenient.
14The Helmholtz-Smoluchowski limit of Eq. (2.2.56) is more precisely obtained in the limit where a

λ � 1 as both Fcc
and f( a

λD
, β) goes towaqrds 1 in this limit.
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Now, integrating the velocity over the cross section will yield the mass-flux of the fluid:

Qz =
2La∂P

∂z

3µ

[
a2 − 6βλ2

D

Fcc
f (κa, β)

(
1− 1

κa
tanh(κa)

)]
, (2.2.61)

where Qz is the mass-flux. A more efficient way of handling the electric braking can be obtained by
introducing the electric-viscosity µe so equation Eq. (2.2.61) becomes:

Qz =
2La3 ∂P

∂z

3µe
, (2.2.62)

and the electric viscosity must then be give as:

µe = µ

[
1− 6β

κ2a2Fcc
f (κa, β)

(
1− 1

κa
tanh(κa)

)]−1

, (2.2.63)

This result concludes the mathematical treatment of the streaming potential and the electro-viscous
effect, however we will note that we have plotted µe for relevant parameters in Fig. 2.2.2. Now we

1

1.1

1.2

1.3

0 5 10 15 20

µ
e µ

κa

{ζ̃, β} = {0.5, 0.1148}
{1.0, 0.4570}
{1.5, 1.0283}
{2.0, 1.8282}

Figure 2.2.2: Here we have plotted electro viscosity, µe for different values of ζ and related β values. We
see that the electro-viscosity mush more relevant the higher the surface potential and that it peaks when the
channel width is 4 times the Debye length.

will turn to discussing the phenomenological origin of the streaming potential in finite channels.

Phenomenology of the Streaming-potential in Finite Tubes.

With a basic understanding of the effects due to the streaming potential in infinite tubes we will now
turn to discuss its phenomenological origin in the finite counterpart.

In our derivation of equation Eq. (2.2.59) the streaming potential was mainly introduced in order to
have a zero flux condition on the charge-current in the case of steady state. However this hardly gives
an explanation of the physical mechanism behind the streaming-potential in realistic systems. So let
us consider a finite tube with an inlet and outlet as showed on Fig. 2.2.3.
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Figure 2.2.3: A micropore with homogeneous surface charge σe in equilibrium, the Debye length λD is set
by the inlet and outlet ion-number-density n∞i , and screens the surface charge completely on scales much
larger than the Debye length. The red shade in the channel is to indicate the electric double layer.

In equilibrium, and for that matter to some extend also in steady state, the electric double layers are
locally screening all long-range electric effects. However, in the channels things differ quite dramati-
cal, e.g. in the case of equilibrium the advection charge current is zero by definition15, which implies
that there can be no conduction-charge-current in excess of what balance the diffusion-charge-current
at the interfase.

In steady-state, as we do not have that the currents vanish locally but only can assume them to
be time independent along all other quantities, the time independence of the currents implies that all
cross-sectional-fluxes of a certain quantity must be equal since the channel walls does not allow any
flux to pass. Now considering the boundary condition that the inlet and outlet enforces on the value
of cross-sectional-fluxes. The fluid-mass-flux is specified implicitly through the pressure, geometrical
and electro-viscous effects, likewise to the specification of the ion-number-flux by the inlet velocity.
The charge-current-flux is vanishing if the electric-fields at the inlet and outlet are specified to be zero
and the charge density is zero at the inlet and outlet.

Knowing that the cross-sectional-charge-flux should vanish throughout the channel and that we will
have advective transport of charges in the double layers we must conclude that there must be either
a conduction or a diffusion-charge-current to counter for it. Diffusive-charge-currents does not exist
without a departure from electro-neutrality meaning that they are only found near charged interfaces as
when they are present they will lead to conduction-charge-currents 16. Conduction-charge-currents on
the other hand can account for huge amounts of electric transport even in the case of charge neutrality,
but it needs a electric-field to drive it. The origin of such a electric-field stems from a distortion of the
double layers at the inlet and outlet due to the imposed flow efficiently generating an electric ”dipole”;
for an illustration see Fig. 2.2.4 [44].

Now, with a good phenomenological and theoretical insight in electrohydrodynamics in confide
spaces we would like to turn to the numerical methods we have used to solve the full system of
equations given in Section 2.2.1 in three dimensions. The following section is dedicated to this subject.

15We understand equilibrium as all currents i.d.: Ji,Je and u have to be zero locally.
16This in principal is what can be seen in the electric double layer under strict equilibrium conditions.
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Figure 2.2.4: (a) The same microchannel as in Fig. 2.2.3 but with at pressure difference ∆P that drives
the flow from left to right. The flow leads to a distortion of the electric double layer as illustrated by the
distortion of the red shade which in turn generate a streaming potential in its steady-state configuration.
(b) An illustration of the difference between equilibrium and steady-state electric double layer. One gets
an electric-dipole in the channel that breaks the flow as it acts on the electric double layer. Note that the
surface charge in this figure in assumed to be negative.
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2.3 Numerical Setup

Numerical studies of coupled systems consisting of the Nernst-Planck equation, the Poisson and the
time dependent Stokes equation, sometimes called the Poisson-Nernst-Planck-Stokes Problem(PNPS-
Problem) have been investigated broadly in one and two dimensional cases.

COMSOL17 [44, 18, 35], however also a lattice Boltzmann approach have been used in the studies
of transients [87].

Three dimensional simulations have however not been investigated much as this increase in the
computational demands is quite significant. Some investigations have, however, been done in FEn-
iCS18 for biological membranes [48].

So what we have done in our study is to implant our own three dimensional FEniCS solver for
the steady state PNPS-problem. Before going in to details of the implantation let us give a short
introduction to Finite element methods.

2.3.1 The Finite Element Method

The finite element method (FEM) is one of the most used computational methods. It is especially
usefull in situations where the geometry is complicated as it uses locally defined basis functions as
opposed to the otherwise similar spectral methods’ globally defined functions. Furthermore, the sim-
plicity of formulating finite element methods for all kinds of partial differential equations makes it a
flexible and versatile tool.

The increased geometrical flexibility of the finite element method comes with increased computa-
tional costs and with worse converges rates compared to spectral methods in simple geometrics.

It should be mentioned that also the so-called lattice Boltzmann method is an efficient method for
flow in complex geometries, especially for transient problems such as turbulent flow. As we are mainly
interested in steady state results such kinetic based approaches are however of little use.

We will in the coming section describe the basic steps in driving a finite element method for partial
differential equations.

The Galerkin Method

The Galerkin method is a way to convert a linear partial differential equation into a set of linear
algebraic equations. The introduction given here is not aimed to be precise in a mathematical sence
but is mainly intended to give an introduction to the origins of the Galerkin method.

If one whats to use the Galerkin method on non-linear equations one has to provide some kind of
linearizion first, one can for instance utilize the Newton method. We will cover the Newton method
explicitly below as it is needed for the coupled Poisson-Nernst-Planck equation.

For the derivation of the Galerkin method let us start by considering a linear partial differential
equation given on some domain Ω with a surface Γ of the form:

Du = f, (2.3.1)

17COMSOL is a commercial available finite element solver with a rather extensive implementation of physical equations
both for time dependent and steady state simulations.

18FEniCS is a free high performance finite element API allowing one to implement general problems with relatively
ease. At broader introduction is given in section Section 2.3.2.
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where u is a solution of the equation in the domain Ω that is satisfying the boundary conditions given
on Γ 19, f is some well-behaved function and D is a linear differential operator on the form:

D = k1∇2 +∇ · k + k2, (2.3.2)

where the k is a space dependent vector, k1 is some positive constant and k2 is a constant 20.
Now let us define a scalar product between the solutions u and some the so called test functions ω

that have the property that they equals zero on the boundary Γ as follows21:

〈ω, u〉 =

∫
Ω

ωu dv. (2.3.3)

This makes it possible to test our differential equation from Eq. (2.3.1) with ω to get the following
equation: ∫

Ω

ω [Du− f ] dv = 0, (2.3.4)

Now, by using linearity of the differential operator and the Stokes theorem we can get what is effec-
tively a higher dimensional partial derivative to reform Eq. (2.3.4):∫

Γ

ω [k1∇u+ ku] · n ds−
∫

Ω

∇ω · [k1∇u+ ku]− k2ωu+ ωf dv = 0, (2.3.5)

where we have used the form of D given in Eq. (2.3.2).
Using the definition of the inner product from Eq. (2.3.3) allows us to rewrite the equation as:

A(ω, u) + b(ω) = 0, (2.3.6)
A(ω, u) = 〈∇ω, [k1∇u+ ku]〉 − 〈k2ω, u〉 ,

b(ω) = 〈ω, f〉+ 〈ω,BNR〉Γ ,
Here A(ω, u) is a bilinear map and b(ω) is a linear map as the term [k1∇u+ ku] · n is replaced with
the Nuemann/Robin boundary conditions denoted by BNR.

The form in Eq. (2.3.5) or Eq. (2.3.6) is know as the weak form of Eq. (2.3.1) as a solution to
Eq. (2.3.1) always satisfy Eq. (2.3.5) but not the other way around. It should also be noted that
Eq. (2.3.5) allows us to relax the differentiability condition on u so that is only one time differentiable
instead of two times differentiable. That Eq. (2.3.6) yields weak solutions is sometimes known as the
Galerkin principle as well.

In order to progress from the Galerkin principle to something that can be implemented on a com-
puter we will need to expand the solution u and the test function ω on some linear independent finite
basis. We denote these finite basis’s functions φi, where i is the numbering, and write out the approxi-
mation of solution u and test function ω in the basis 22:

ud = uΓ(x) +
N∑
i=1

uiφi(x) (2.3.7)

ωd =
N∑
i=1

ωiφi(x) (2.3.8)

19u is throughout the derivation dealt with as a scalar but there is no problems in extending it be a tensor of an arbitrary
rank (the vector being obviously the first extension), only it will have to carry some extra indies.

20Note that the form of D is not choosen particular general, but it covers all the cases we will consider in practice.
21Note that u and ω are not found in the same space as u have to satisfy some boundary conditions.
22φi can in principal be any sufficiently well-behaved function that goes to zero on Γ, in our case being at least one time

differential and having a H1 norm would be adequate.
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where ud or ωd is the approximated solution resp. test function of our equation in the finite basis,
uΓ(x) is a function that satisfy the Dirichlet boundary conditions, N is the number of basic functions
and ui or ωi is coefficients like the ones in a Fourier sum.

In addition we can define derivatives of ud and ωd in a similar manner:

∇ud = ∇uΓ(x) +
N∑
i=1

ui∇φi(x) (2.3.9)

∇ωd =
N∑
i=1

ωi∇φi(x)

(2.3.10)

This gives us all we need to reformulate Eq. (2.3.5), along some Einstein notation for the sums. In the
finite basis we can write Eq. (2.3.5) as:

−
∫

Ω

ωi∇φi(x) · [k1uj∇φj(x) + k(x)uj(x)φj(x)(x)]− k2ωiφiujφj + ωiφi(x)f(x) dv (2.3.11)

−
∫

Ω

ωi∇φi(x) · [k1∇uΓ(x) + k(x)uΓ(x)]− k2ωiφi(x)uΓ(x) + ωiφi(x)f(x) dv

+

∫
Γ

ωiφi(x)BNR(x) ds = 0,

where we have explicitly stated that k and f can depend on space.
Now, by noting that the coefficients vi and wi is independent of space we can rewrite Eq. (2.3.11)

as:

−ωi
∫

Ω

∇φi(x) · [k1∇φj(x) + k(x)φj(x)]− k2φi(x)φj(x) dvuj (2.3.12)

−ωi
∫

Ω

∇φi(x) · [k1∇uΓ(x) + k(x)uΓ(x)]− k2φi(x)uΓ(x) dv

+ωi

∫
Ω

φi(x)f(x) dv + ωi

∫
Γ

φi(x)g(x) · n ds = 0,

Now, by defining the following matrix Aji and vector bi:

Aji = −
∫

Ω

∇φi(x) · [k1∇φj(x) + k(x)φj(x)]− k2φi(x)φj(x) dv (2.3.13)

bi =

∫
Ω

∇φi(x) · [k1∇uΓ(x) + k(x)uΓ(x)]− k2φi(x)uΓ(x) dv (2.3.14)

+

∫
Γ

φi(x)g(x) · n ds+

∫
Ω

φj(x)f(x) dv = 0,

we get the following algebraic equation:

ωiAijuj + ωibi = 0, (2.3.15)

As this, however, should hold for all ωd it is equivalent the linear equation:

Aijuj + bi = 0, (2.3.16)
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Using this equation to finding uj is known as the Garelkin method.
Now in oder to use this equation in any practical circumstances we need to calculate Aij , and for

that matter bi. This of course can be done in any linear independent basis functions φ one would like
to choose but then the matrix would in general be dense 23. A simple way to avoid a dense matrix is to
choose the φi to be mutual orthogonal on their domain Ω 24. Another more general applicable way is
to choose basis functions with compact support in such a way that they only overlap their neighboring
functions.

To make this clearer let us discretize the domain Ω. This can be done many ways, but a com-
mon way to do it is to approximate the surface with a polyhedron in three dimension or with polygon
in two dimension, and then subdivide it into small and simple polyhedrons/polygons like tetrahe-
drons/triangles. We will consider tetrahedrons and we note that for the union of them the following
should hold:

Ω =
M⋃
t=1

Ωt, (2.3.17)

where Ωt is the domain of the t’ed tetrahedron and M is the number for tetrahedrons used to form Ω
25.

Now we label each vertex of the tetrahedrons by an i. Note, that each vertex will be shared by
several tetrahedrons and that we do not allow for the vertex of a tetrahedron to be on the facet of one
of the other tetrahedrons. The total number of vertices is called N .

In this model we can associate every vertex with a piecewise linear function that is zero on all other
verities but between itself and its neighboring sits where it is an interpolation between zero and some
finite value given by ui 26.

Such a choice of basis functions Eq. (2.3.16) is known as the finite element Galerkin method and
Dirichlet boundary conditions can be fixed by setting the value of ui equal to uΓ on the boundary
and then just solving the homogeneous problem with the appropriate Neumann conditions, hence the
integral containing uΓ disappears from bi.

Finally in order to solve the equation Eq. (2.3.16) one simply have to invert Aij and multiply it on
bi which yields:

vi = A−1
ij bi, (2.3.18)

However, the inversion of a matrix scales computational rather much (i.e. bad) with size so in a three
dimensional problem one will have to turn to less memory intensive methods such as Krylov subspace
iterative solvers. This we will cover in the next section.

Krylov Subspace Iterative Solvers

Will here introduce briefly the idea of krylov subspace iterative solvers but refer to more specialized
literature for more precise and extensive treatment of the subject[65]. Krylov subspace solvers utilizes

23A dense matrix has in general no non-zero components and is consequently from a computational point of view
unmanageable even for moderate large amounts of basis functions.

24Choosing orthogonal basis functions is precisely what is done in the so-called spectral methods. But such basis
functions with the right completeness qualities are only known in highly symmetric cases.

25Note, that in order to simplify the notation we do not distinguish between the possible smooth domain Ω and it’s
polyhedron counterpart.

26One can use more elaborate higher polynomial elements to get a better local approximation of the solution but one
would then have to fix more constants. For an overview of the more elaborate higher polynomial elements see https:
//femtable.org/.

23

https://femtable.org/
https://femtable.org/


a so called Krylov sequence to from at a basis from a initial residual iteratively, by some matrix-vector
operation. After each iteration the found basis is used to minimize residual and if the residual is smaller
that some tolerance, one assume the method have converges to a good approximation of the solution
and stops further iteration. One can use different Krylov solvers to generate a basis, but typical the
choice depends problem that need to be solved. Further to get better converges and robustness one
can apply what is known preconditioners to the problems, which typical some transformation of the
problem or the use of partial solution that makes the Krylov solver reliable. Both the Krylov solvers
and preconditions we have used will be mentioned in context with the equation they are meant to solve.
From this brief note on Krylov solvers let us introduce the framework where we have implemented
our solves FEniCS.

2.3.2 FEniCS
As finite element methods are rather common apporaches for solving partial differential equations,
there already exist extensive computational liberates for the core-components of the method and fur-
thermore these components can be found in assemblies under general finite element platforms.

One such platform is known as FEniCS [3]. The FEniCS platform consists of different comments
that makes setting up and solving finite element problems straight forward for simple linear equations
and for more complicated none-linear equations still quite seamless. The main components of FEniCS
are: DOLFIN [42, 40], FFC [27, 41], UFL [2, 6], FIAT [25, 26] and UFC [5, 4].

DOLFIN is the API component and exists for both PYTHON and in C++ and it is what is used to
write scricps that sets up a problem, solves it, store data, etc. The commands given in DOLFIN are
passed on to the other components of FEniCS which compiles the commands down to high preforming
C++ that can be parallelized to use efficiently in the order of 104 parallel processors.

One of the big advantages of FEniCS from a physicists point of view is that it only needs a weak
form of the equation in question along the appropriate boundary condition in order to implement a
solver, the rest of the Galerkin procedure is done by the computational back end.

2.3.3 Numerical Schemes
As the steady state Poisson-Nernst-Planck-Stokes problem is highly non-linear one can not just simply
solve the problem using the finite element method directly, one have to find some way of linearizing
the system of equations.

The standard way of doing this is to apply some sort of Newton method, hence linearizing the full
equation system around some initial guess and then iterate until it converges. The Newton method is
however not guaranteed to converge of any initial guess and furthermore it is very memory intensive
to run for a problem with several different fields.

Another approach would be to solve the equations decoupled in sequence and then iterate this pro-
cedure until it converges. Such decoupled methods typical have the advantage that the sub-problems
are linear in nature and consequently can be solve by quite easily. The down side shows off when the
coupling term is too strong so that the rate of convergence can be very long.

In the specific case of the steady state Poisson-Nernst-Planck-Stokes problem one will turn to a
so-called hybrid method [48] as the Poisson and Nernst-Planck equations are strongly coupled and the
Stokes equation only are weakly coupled to the two other equations. The hybrid method in this context
means that one solves the Poisson and Nernst-Planck equations coupled with a Newton method and
then solves the Stokes equation as a normal linear equation with an electric force term. This procedure
is then repeated until convergence.
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Note, that in order to increase chance of convergence of the Poisson-Nernst-Planck problem we
will provide an initial guess on the solution using a solution of the linearized Poisson-Boltzmann
equation. A flow chart of the hybrid method can be found in figure Algorithm 1.

Algorithm 1 Hybrid Solver for Stokes–Poisson–Nernst–Planck system (from [48]).

1: Solve Stokes equation Eqs. (2.3.23) and (2.3.24) to obtain (~u, P ).
2: Solve the linearized Poisson–Boltzmann equation (2.3.28) to get an initial guess for (φ, n+, n−).
3: Solve one Newton step Eq. (2.3.37) in Poisson–Nernst–Planck problem Eqs. (2.2.27) and (2.2.30)

for (δφ, δn+, δn−).
4: Update (φ, n+, n−)← (φ+ δφ, n+δn+, n− + δn−).
5: Store (~uold, Pold)← (~u, P )
6: Solve Stokes equation to get ~u and P .
7: Find (δ~u, δP )← (~uold − ~u, Pold − P )

8: Compute Error := 1
2

(
‖(δφ,δn+,δn−)‖
‖(φ,n+,n−)‖ + ‖(δ~u,δP )‖

‖(~u,P )‖

)
9: If Error < τ , stop.

10: Else, go to Step 3 for another iteration.

With this general idea of the numerical scheme let us turn to discuss the specific sub-problems.
Let us start with the Stokes equation, then the linearized Poisson-Boltzmann equation and endwith the
Nernst-Planck-Poisson problem.

Weak Form of the Stokes Equation

The Stokes equation is quite well known in the context of the finite element method and standard meth-
ods exits to solve the equation. However, in the context of incompressible flow things become a bit
more complicated due to the saddle point structure of the equation. The challenges of the instabilities
of the Stokes problem can in be handled by satisfying the Bobuska-Brezzi condition [33] leading to
the use of so called Taylor-Hood elements or other more advanced types of elements. This however
only solves the problem of instability of the solution and not how to actual solve the problem itself.

Off course, if one would use a direct inversion algorithm like the Upper-Lower-decomposition to
solve the system there is no theoretical troubles as the Stokes equation is linear. But there is a com-
putational problem as all known direct inversion algorithm scales rather bad both concerning memory
use and regarding the floating point operation needed . This means that epically in 3 dimensional sim-
ulations one would like to utilize Krylov subspace solves. Here it turns out that the Stokes problem,
again due to its saddle point structure, is particular badly preconditioned and will typical not converge
sufficiently fast to be usefull27.

Luckily there exist so-called triangular preconditions for the Stokes problem that rely on a Schur
complement to precondition the equation in a better way which should make it possible for a Kylov
solver to solve the resulting equation in three iterations when using the exact Schur complement[17].
There is however a slight problem concerning the Schur complement in relations to the Stokes prob-
lem: It turns out to result in a dense matrix, which is not really fit for computations.

But everything is not totally lost as one can approximate the Schur complement in different ways.
One such way is known as the pressure-convection-diffussion preconditioner, or PCD preconditioner
for short. Which we have used for solving the Stokes problem [17, 59]. We will not go in to further de-

27Actual from my own experiences it does not converge at all.
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tails on the PCD preconditioner as it i as big topic itself, and we have utilized an already implemented
version called FENaPack 28.

With this introduction to the preconditioner let us recapitulate the dimensionless steady state Stokes
equation as found in Section 2.2.329:

−∇P +∇2u = − R2

2λ2
D

ρe∇ϕ, (2.3.19)

∇u = 0, (2.3.20)

Note that we can absorb a constant part of the pressure gradient in the force if we transform the
boundary conditions for the pressure adequately. This possibility is especially helpful in systems
where one has parallel in- and outlets with a simple pressure difference between them, as one can then
transform the problem simple homogeneous boundary conditions for the pressure.

Now finding the weak form of the Stokes equation by taking the inner product of Eq. (2.3.19)
with a velocity test-function, and Eq. (2.3.20) with a pressure test-function adding them together, then
integrating over space, using partial integration to get30:∫

Ω

∇u : ∇v + P∇ · v +Q∇ · udv +

∫
ΓI

P (x)n · vds(x) (2.3.21)

=

∫
Ω

R2

2λ2
D

ρe∇ϕ · v + fP · vdv,

whereQ is the pressure test-function, v is the velocity test-function and fP is a constant of the pressure
gradient meaning that the pressure P is slightly redefined. Note that we have flipped the sign of the
pressure in order to get a symmetric equation. To implement the weak-form numerically, one needs
second order elements, P2-elements, for the velocity and first-order elements, P1-elements, for the
pressure, which is the so-called Taylor-Hood-elements. To solve the equation, we apply the above
mentioned PCD precondition on the problem from the right side and solve the resulting system using
the generalized minimal residual method (GMRES) Krylov subspace solver.

One could also consider less memory intensive alternatives by stabilizing the Stokes equation via
an artificial compressibility which in turn allows for using the simpler P1−P1 elements. The artificial
compressibility will change the continuity equation in the following way Eq. (2.3.20)[33]:

∇u− εh2∇2P = 0, (2.3.22)

where ε is a constant that controls the compressibility and should be chosen as small as possible in
order to avoid compressibility errors yet so big that it suppresses pressure oscillations. h is the lattice
size parameter, so one sees explicitly that the term vanishes to second order in space. The weak form
of our problem becomes when Eq. (2.3.22) is used instead of Eq. (2.3.20):∫

Ω

∇u∇v + P∇ · v +Q∇ · u− εh2∇P · ∇Qdv (2.3.23)

+

∫
ΓI

P (x)n · vds(x) =

∫
Ω

R2

2λ2
D

ρe∇ϕ · vdv

28https://fenapack.readthedocs.io/
29We have dropped the tilde over the dimensionless fields as all fields will be dimensionless in this section.
30Formally we have used the linearity of the differential operator along the Stokes theorem to get a higher dimensional

equivalent
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Now, in order to solve the discreet equation originating from this weak form, we have applied the
following preconditioner:

b =

∫
Ω

∇u : ∇u +∇P · ∇Qdv (2.3.24)

along the FEniCS native ”amg”(algebraic-multi-grid-preconditioner) and finally it was solved with the
minimal residuum Krylov space solver. However, the method has not been used in the further study
due to the compression error being too large in our initial tests.

Weak-form of the linearized Poisson-Boltzmann Equation

In order to get a good initial guess for the Poisson-Nernst-Planck equation, we have to solve the
linearized Poisson-Boltzmann equation. Note that the linearization have been done for a binary sym-
metric monovalent ion-solution, but it is possible to extend it to more general chases. In Section 2.2.4
we have derived the Poisson-Boltzmann equation to have the following form:

∇2ϕ =
2qen

∞

εrε0
sinh

(
qeϕ

kBT

)
, (2.3.25)

Finding the dimension less form by using Table 2.1 and expanding in the potential around zero yields
the none dimensional linearized Poisson-Boltzmann equation:

∇2ϕ =
R2

λ2
D

ϕ, (2.3.26)

Now, in order to find the weak form version we multiply with a test function, then integrate over space
and finally partial integrate which leads us to:

−
∫

Ω

∇ϕ∇ψ +
R2

λ2
D

ϕdv +

∫
ΓCW

ψ∇ϕ · nds = 0, (2.3.27)

where ψ is the test function for the electric potential. Now we can use Eq. (2.2.20) to eliminate the
electric potential from the boundary integral, hence getting:

−
∫

Ω

∇ϕ∇ψ +
R2

λ2
D

ϕψdv +

∫
ΓCW

ψ
R2

2λ2
D

σeds = 0, (2.3.28)

where σe here is the dimension less surface charge, which is scaled with the constant z̃qen∞R.
With the weak form expression of the linearized Poisson-Boltzmann equation, we can now specify

how we solved it. For preconditioner, we used the FEniCS native ”hypre euclid” which is a massively
parallelized incomplete LU 31 decomposition from the HYPRE-library32. To solve the resulting linear
system, we used the generalized minimal residuum Krylov space solver. It should be noted that when
solving the Poisson type equation, there is an issue of fixing a gauge, however, this has not been a
larger concern for us as we have always had a Dirichlet condition for grounding the potential hence
setting a zero point.

Having found the electric potential from the linearized Poisson-Boltzmann equation one can use
the relation given in Eq. (2.2.38) to get the ion-number densities. Note that in principle one should

31LU stands for Lower-Upper
32https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
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also Taylor expand ion-number densities around zero potential in order to get a consistent density.
But keeping the exact form prevents the number density from becoming negative even if we leave the
linear regime.

With a method to get an initial guess on the electric system, we will now discuss the Newton solver
for the Nernst-Planck-Poisson problem.

Newton solver for the Nernst-Planck-Poisson problem

Again we want to find the weak form with only first order derivatives, but as the Nernst-Planck-Poisson
problem is non-linear we have to linearize it first if we hope to solve it by a finite element method. To
linearize we start by sing multiplying Eqs. (2.2.27) and (2.2.30) by appropriate test functions, adding
them together and integrating over the domain 33:

0 =

∫
Ω

[
ψ∇2ϕ+ ψ

R2

2λ2
D

(n+ − n−) (2.3.29)

− c+Pe∇ · (un+) + c+∇2n+ + c+∇ · (n+∇ϕ)

− c−Pe∇ · (un−) + c−∇2n− − c−∇ · (n−∇ϕ)
]
dv

where ψ is the test function for the electric potential and c+, c+ is the test function for the cation and
anion number-densities respectively.

Using the integral in Eq. (2.3.29) can be seen as functional called F (U), where U = (ϕ, n+, n−).
We can linearize the equation by expanding F (U) around some given U called U0. To first order, the
expansion gives us what is essentially a Newton method for finding U:

0 = F (U0) + δF (U)|U=U0 +O(δ2) (2.3.30)

where δF (U) is the functional derivative 34 , defined as

δF (U) =

∫
Ω

δF (U)

δU
δUdv, (2.3.31)

where δU is the variation away from U0. Now calculating Eq. (2.3.31) explicitly in the chase of
Eq. (2.3.29) gives:

δF (U)|U=U0 =

∫
Ω

[
ψ∇2δϕ+ ψ

R2

2λ2
D

(δn+ − δn−) (2.3.32)

− c+Pe∇ · (uδn+) + c+∇2δn+

+ c+∇ ·
(
δn+∇ϕ0

)
+ c+∇ ·

(
n0

+∇δϕ
)

− c−Pe∇ · (uδn−) + c−∇2δn−

− c−∇ ·
(
δn−∇ϕ0

)
− c−∇ ·

(
n0
−∇δϕ

) ]
dv

33Note that we here use the convention that the differential operator only act on the object to their immediate right.
34Note that the functional derivative in the field of mathematics is called different things depending of the precise context.

In the context of Banach spaces it is formally known as a Fréchet derivative and in more general setting it call a Gâteaux
derivative.
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Using the linearity of the differential operator along with the Stokes theorem on Eqs. (2.3.29) and (2.3.32),
evaluating them in U0 and introducing the result in Eq. (2.3.30) gives:

0 =

∫
Ω

[
−∇ψ∇ϕ0 + ψ

R2

2λ2
D

(
n0

+ − n0
−
)

(2.3.33)

+ Pe∇c+ ·
(
un0

+

)
−∇c+ · ∇n0

+ −∇c+ ·
(
n0

+∇ϕ0
)

+ Pe∇c− ·
(
un0
−
)
−∇c− · ∇n0

− +∇c− ·
(
n0
−∇ϕ0

) ]
dv

+

∫
Ω

[
−∇ψ∇δϕ+ ψ

R2

2λ2
D

(δn+ − δn−)

+ Pe∇ · c+ (uδn+)−∇c+ · ∇δn+

−∇ · c+

(
δn+∇ϕ0

)
−∇ · c+

(
n0

+∇δϕ
)

+ Pe∇c− · (uδn−)−∇c− · ∇δn−
+∇c− ·

(
δn−∇ϕ0

)
+∇c− ·

(
n0
−∇δϕ

) ]
dv

+

∫
Γ

[
ψ∇

(
ϕ0 + δϕ

)
· n− Pe

(
c+

(
n0

+ + δn+

)
+ c−

(
n0
− + δn−

))
u · n

+ c+∇
(
n0

+ + δn+

)
· n + c+

(
n0

+ + δn+

)
∇
(
ϕ0 + δϕ

)
· n

+ c−∇
(
n0
− + δn−

)
· n− c−

(
n0
− + δn−

)
∇
(
ϕ0 + δϕ

)
· n

− (c+δn+ − c−δn−) δϕ · n
]
ds,

Notethat the last term is of second order in δ and will therefore be dropped in the following, but it have
allowed us to write all the boundary terms so the full solutions satisfy them U .

The above is the Newton method formulation of the Poisson-Nernst-Planck-problem, and we will
use it to find solutions to the full Poisson-Nernst-Planck problem. The solution is found by solving
Eq. (2.3.33) successively and after each step update U0 by:

U0 = U0 + δU, (2.3.34)

until L2=norm δU becomes smaller that some tolerance meaning that U0 have converged to U .
In order to make Eq. (2.3.33) ready for direct applications the boundary terms will have to be

specified by using the ones introduced in Section 2.2.2. Let’s take the boundary terms one by one,
starting with the term for the electric potential:

∫
ΓCW

ψ∇
(
ϕ0 + δϕ

)
· nds =

∫
ΓCW

ψ
R2

2λ2
D

σeds (2.3.35)

where we used Eq. (2.2.20). The second term in Eq. (2.3.33) is zero due to the no-slip boundary
condition Eq. (2.2.23) on the velocity field. Finally we have the following two flux terms which
should vanish as we have a no-flux conditions:∫

ΓCW

c±∇
(
n0
∓ + δn∓

)
· n± c±

(
n0
± + δn±

)
∇
(
ϕ0 + δϕ

)
· nds = 0 (2.3.36)

With the boundary terms simplified by introducing the prober boundary condition our weak form of
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the Newton method becomes:

0 =

∫
Ω

[
−∇ψ∇ϕ0 + ψ

R2

2λ2
D

(
n0

+ − n0
−
)

(2.3.37)

+
1

Pe
∇c+ ·

(
un0

+

)
−∇c+ · ∇n0

+ −∇c+ ·
(
n0

+∇ϕ0
)

+
1

Pe
∇c− ·

(
un0
−
)
−∇c− · ∇n0

− +∇c− ·
(
n0
−∇ϕ0

) ]
dv

+

∫
Ω

[
−∇ψ∇δϕ+ ψ

R2

2λ2
D

(δn+ − δn−)

+
1

Pe
∇ · c+ (uδn+)−∇c+ · ∇δn+

−∇ · c+

(
δn+∇ϕ0

)
−∇ · c+

(
n0

+∇δϕ
)

+
1

Pe
∇c− · (uδn−)−∇c− · ∇δn−

+∇c− ·
(
δn−∇ϕ0

)
+∇c− ·

(
n0
−∇δϕ

) ]
dv

+

∫
Γ

ψ
R2

2λ2
D

σeds.

In order to get fast and robust converges for a Newton method one needs a good initial guess to lin-
earize around at the beginning. In our case we can use the solution we got from the linearized Poisson
Boltzmann equation, as an initial guess and as long as we stay in the linear regime it works quite well.
To solve the linearized equation given in Eq. (2.3.37) we have used the FEniCS ”GEMRES” (gen-
eralized minimal residuum) and its default preconditioning which is a Jacobi precondition combined
with an incomplete LU precondition. The Jacobian based preconditioners yield fairly robust solvers,
however, it turns out for the Nernst-Planck-Poisson problem that it is only working for moderately big
systems. As a consequence we have not been able to run big 3 dimensional systems as this requires
better preconditions to get proper converges, which is a non-trivial task to develop and beyond the
scope of this work. Finally, it should be mentioned that there is no guarantee that a newton scheme
will converge in general but in our case, it has been rather successful with the provided the initial
guess.

2.3.4 Mesh generation
Our simulations have been carried out in straight and undulated channels in both 2 and 3-dimensions, a
more precise description of the geometries will be postponed to the discussion of the numerical results,
as we in this section is mainly interested in the mesh generation.

For the mesh for the straight channels one can use structured triangular/tetrahedron discretizations
that are natively implemented in FEniCS, and is called RectangleMesh and BoxMesh for 2 and
3-dimensions respectively. Structured discretization also allows for easy control over the resolution
and ensures that the mesh was periodic which is needed in order to insurer better numerical stability.

For the more complex undulated channels there is no standard function in FEniCS that can be used
to generate such meshes. As further constrained we need periodic meshes in some of the directions
which means that the mesh generation are a bit tedious as this not a generally supported feature in
most meshing software. One could take different approaches for generating the periodic undulated
channels as they in our case have a mirror symmetry, but if the method should be generally valid one
have to define the surface mesh manually in such a way that the faces of the mesh that are periodic can
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be mapped trivially to each other. We used the Triangle[69] along the Python package MeshPy35 to
make the surface mesh such that it had the qualities needed. With the surface mesh from MeshPy, we
used the meshing tool TetGen[70] to mesh the volume with homogeneous tetrahedron size. Besides
ensuring the periodic properties manually defining the surface mesh also has the advantage that one
can avoid an unnecessary rough surface that can be the result of meshing surfaces by more automatic
methods utilized by programs like CGAL.

Now, with all the components needed in order to simulate electrohydrodynamics let us turn to the
section where we describe the results of our simulation in the advertised geometrics discussed above.

2.4 Numerical Results
With the technical details of the program covered and some theoretical predictions of macroscopic
quantities introduced. We will now turn our attention towards the use of the program. The first
step will be to validate that the code in fact produces results comparable to the different theoretical
predictions. After the validation, we will present the found effect of undulating one of the walls of the
channel with different amplitudes

2.4.1 Validation
In order to validate the numerical scheme presented in Section 2.3, we have first conducted simulations
in 2-dimensional channels and compared the results to theoretical predictions. This was done in two
geometries: one long channel to avoid any boundary conditions to interfere with the results and one
short channel as to keep the system size small enough so the solver could obtain convergence in the
3-dimensional chase. A sketch of the channel can be found in Fig. 2.4.1

ni = n∞i

Ez = 0

ni = n∞i

σe

σe

L
l

2a

W

z

y
x

Figure 2.4.1: The fully draw par of the fisher is the 2-dimensional geometry where the charged walls is
made with blue and have the surface charge of σe, the ends of the channel we have in the indicated boundary
condition, the dimension is given by L the total length o the channel, l the charge path of the channel and a
half width of the channel. The dashed part of the figure is the 3D extension and should be understood as a
periodic dimension it has the width of W .

The parameters that were chosen in order to non-dimensional the Stokes-Poisson-Nernst-Planck
problem is given in Table 2.2. The long and short channel have the length of respectively L = 160R

35MeshPy, https://documen.tician.de/meshpy/
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Simulation Parameters Value
n∞ [6.691− 240.8]× 1020#/m3

ζ −51.34mV
R 96nm
a 288nm
T 298K
D 1.0× 10−9m2/s
kB 1.38× 10−23J/K
εrε0 8.854× 10−23C/Vm
µ 1.003× 10−3Pa s
qe 1.602× 10−19C
z 1
∂P
∂z

1.0× 107Pa/m
τ 1.0× 10−5

Table 2.2: The simulation parameters, note that interval for the number-density is not cover equidistant in
the number-density, but rater in the Debye length.

and L = 40R .
The macroscopic quantities we have been interested in the electro-viscosity µe and the streaming

potential Vstr. To measure the electro-viscosity, we solved the Stokes equation without considering the
electric effects. This gave us the mean velocity flux along the z-axes by integrating the velocity field’s
z-component. Then we repeated the numerical experiment including the electric system for different
values of inlet number-density and extracted the resulting mean velocity flux as in the electric neutral
chase. Mean velocity flux was calculated from simulation by:

Qz(κa) =
1

L

∫
Ω

uz(κa)dv, (2.4.1)

where L is the total length of the channel and Qz(κa) is the total z-flux across the channel for a given
value of κa. Note that κa = 0 corresponds with the fluid being electrically neutral. Now the following
ratio would give the electro-viscosity in the infinite chase:

µe,h
µ

=
Qz(0)

Qz(κa)
(2.4.2)

where the subscript h denote that only half of the tube is charged. To make a direct comparison to
the theoretical predictions we will have to scale the found electro-viscosity as it should be tied to the
amount of the channel that is charged:

µe
µ

=
1

0.5

(
µe,h
µ
− 1

)
+ 1 (2.4.3)

where the division with one half is due to the fact that only half the channel was charged.
The steaming potential was measured by the performance of the following integral over electric-

potential found by the numerical simulations:

Vstr
l

=

∫
Γoutlet

ϕds

l
∫

Γoutlet
ds

(2.4.4)
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Note that we have divided with the length of the charged part of the channel in order to compare the
results from both the short and long channel as the streaming potential as given in Eq. (2.2.59) scales
linearly with length of the charged part for the channel.

The last thing we have measured is the ζ-potential at the center of the charged region and it was
measured in all the simulations to be approxemately ζ = −45.2mV. This value is lower than
the specified, but it should be noted that it was imposed implicitly through the Grahame equation.
Furthermore, as we are both on the edge of linearity regarding the Poisson-Boltzmann equation and in
a different geometry than where Grahame equation is an exact relation this should not be surprisingly.
The measured values for the ζ-potential have been used to produce the theoretical curves for both the
streaming potential and the elector viscosity.
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Figure 2.4.2: Top: The solid line denote the analytical result for the electro-viscosity, Eq. (2.2.63) with
ζ = −45.2mV. The blue and red points denote the long and the short channels respectively, the legend
further specifies the resolution. The measurements of the electro-viscosity were done as presented in the
text. Bottom: The solid line denote the analytical streaming potential per length of channel, Eq. (2.2.59)
again with ζ = −45.2mV. The blue and red points denote long short channels respectively, the legend
further specifies the resolution. The measuring technique was the one described in the text.

The measured electro-viscosity and stream-potential in the 2-dimensional channel can be found in
Fig. 2.4.2 along with the theoretical predictions. We see the measured quantities coincidence more or
less with the theoretical values of κa above 3 for both channels, and that seems to be valid even though
we have a surface potential on the limit of where the linearized Poisson-Boltzmann equations should
hold. However, for values of κa below 3 we begin to see some different behavior for the two lengths.

The difference between the two lengths of channels can be attributed to the fact that the inlet
for the short one is only a couple of Debye length long for κa = 1, leading to an accidental bias
voltage, inducing the drop in streaming-potential and electro-viscosity. Meaning there have de facto
been introduced an uncontrolled electro-osmosis due to the finite size of the computational domain,
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this might also break the electric-flux condition that was central for the derivation of Eqs. (2.2.59)
and (2.2.63).

For the long channel, the difference signals a theoretical break down of the linearized Poisson-
Boltzmann equation for the strongly interacting double layers. In order to capture the effect of over-
lapping double layers, one will have to consider the full nonlinear Poisson-Boltzmann equation and
redo the calculation of section Section 2.2.4, under such conditions. Such calculations would rely
heavily on numerical methods as the solution to the Poisson-Boltzmann equation in a channel is only
known as implicit relations of elliptic integrals as can be found in [79, pp. 67]. Furthermore, one
could imagine the inlet and outlet from the charge region become more prominent as the Debye length
increases. To validate how our code works in 3 dimensions as well we ran the simulation of the same
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Figure 2.4.3: Top: The solid line denote the analytical result for the electro-viscosity, Eq. (2.2.63) with
ζ = −45.2mV. The point is measurements of the electro-viscosity from the simulations and the legend
gives their origin. Bottom: The solid line denote the analytical result for the stream-potential, Eq. (2.2.59)S
with ζ = −45.2mV. The point is measurements of the stream-potential from the simulations and the legend
gives their origin.

channel in 3 dimensions, hence we just added an extra cyclic dimension transverse to the flow as de-
scribed in Fig. 2.4.1. The transverse dimension had a width of = 1R The results for this simulation
can be found in Fig. 2.4.3 and one sees that the 3-dimensional realization produces the same results
with some minor differences that can be attributed to the slightly lower resolutions and to numerical
errors.

However the 3-dimensional code seem to correspond to the theoretical predictions, so with this
validated code, we can now study the effects of having a non-uniform channel. Further details on the
validation of the solver can be found in Appendices A and C where it is compared to a time-depended
scheme.
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2.4.2 Effects for an Undulated Surface
As channel flow described above is highly idealized and does not depend on the third dimension due
to symmetry, we would like to add some complexly to the geometry in order to break this. This will
allow us to study of the electric effects on channeling and the general redistribution of the flow in
complex geometries. In order to achieve this, we have to add an undulated surface at the bottom of

Outlet

Ly

A

Lz
`

Lx

x
z

y

Inlet

Surface charge
σe

Figure 2.4.4: Schematic set-up of the model system. The inlet, charged-surface, and outlet areas (see text)
are indicated. The x-direction is periodic. Note that the dimensions are not to scale.

the channel as shown on Fig. 2.4.4, which clearly breaks the symmetry along the x-direction and will
of course change the flow due to the change in geometry. More precisely the top wall was placed at
y = Ly and spanned the interval (x, z) ∈ [0, Lx] × [0, Lz], the y-position of undulated surface, the
bottom wall, was given by the following x-dependent function:

h(x) = A cos

(
2πx

Lx

)
, (2.4.5)

the x− and z−coordinate spanned the same interval as the top plane. Surface charge was placed in
a band on both walls in the middle of the channel so the inlet and outlet was half the length of l,
furthermore l was half the length of Lz. In the simulations the four lengths was set to Lx = 12R,
Ly = 6R, Lz = 40R and A ∈ [0R, 3R]. Finally, please note that in order to compare the simulation
with the straight channel we have used the average width of the channel as a = 3R.

With in the defined geometry we would like to measure the asymmetry in th flow and eventually
compare the charge and none-charge reliziation, so we need to define a measure of asymmetry. This
is done in the following way, first we define some domains to integrate the flow over:

Ωt = [0, 12R]× [−3R, 6R]× [15R, 25R], (2.4.6)
Ωy = [0, 12R]× [3R, 6R]× [15R, 25R], (2.4.7)
Ωx = [−3R, 3R]× [−3R, 6R]× [15R, 25R], (2.4.8)

Note that Ωy is defined in such a way that it is constant and equals half the channel cross section for
A’s smaller than 3. The next step is to find the z-component of the flux through in the defined regions:

Qz,i(A, κa) =
1

10R

∫
Ωi

uzdv, i ∈ {t, x, y}. (2.4.9)
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This flux can now be used to define what we will call the absolute asymmetries, Θx(A, κa) and
Θy(A, κa):

Θi(A, κa) =
Qz,i(A, κa)

Qz,t(A, κa)
, i ∈ {x, y} (2.4.10)

The two absolute asymmetries is both defined such that they equals 1
2

in a straight channel. The
changes of the absolute asymmetries due to the amplitude A have be estimated and to linear order in
the amplitude A the Θy(A, κa) should be constant while Θx(A, κa) is given as36:

Θth
x (A, 0) =

1

2
− 6ALx

2π2L2
y

1− 1

cosh
(

2πLy

Lx

)
 : (2.4.11)

We have plotted the numerical results for the absolute asymmetries as defined in Eq. (2.4.10) and
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Figure 2.4.5: Top: Flow rate through the undulated channels as a function of amplitude A, in units of the
flow rate in the flat channel A = 0 at κa = 0 note that form an symmetry argument the slop at A = 0
should vanish. Bottom: the absolute asymmetry of the flow in the channel as a function of amplitude A at
κa = 0, the linear dependences of Θx on A is in good agreement whit Θth.

x found in Eq. (2.4.11)

compared it against Eq. (2.4.11) in Fig. 2.4.5 along the Qz,t(A, κa)’s observed dependence on A.
In order to quantify the change in the asymmetry due to the surface charge we compared to the

none-charge by introducing the relative asymmetries:

θi(A, κa) =
Θi(A, κa)

Θi(A, 0)
. (2.4.12)

Before presenting the results for the relative asymmetries of the charged undulated channel, let us first
discuss the effect on the electro viscosity and the streaming potential. The electro viscosity and the

36 The calculation can be found Appendix A in the articles appendixes C (not the appendixes C of the thesis)
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Figure 2.4.6: Simulation in channels as described in Fig. 2.4.4 and the dimension given in the text and A
is given in the legend. Top: The electro-viscosity does not seem to be impacted a lot on a global but it is
worth noting that for increasing amplitude the one sees a slight decrease for small values of κa. Bottom:
The streaming potential seems to be more impacted by the change of amplitude; this could be due to the
overlap of double layers in the narrow regions leading to stronger non-linear effects but also more leaking
to the boundary.

streaming potential have been plotted for the different amplitudes in Fig. 2.4.6, and we see no major
change of either of them. There is however a small effect that can be seen in the low κa limit and is
properly linked to the narrow regions of the channel. This is due to a stronger leak of the double layer to
the boundary because of strong interactions between the double layers in this region. The two relative
asymmetries for the different amplitudes can be found in Fig. 2.4.7. The θy for smaller amplitudes
do not change significantly however as amplitude increases one see a small drop due to the boundary
layers in the narrow section interacting stronger than the one in the confined region in the bottom of the
channel. A much larger effect can be seen on θx as it is only measured over the confined region where
one would expect the effects to be biggest. We observe an enhanced channeling of the flow on a mean-
field level. To get a more local notion of a decrease in the flow we will visualize this for the channel
cross section. Such a local measure for flow reduction can be found in different ways: either one could
simply subtract the charged flow from the non-charge flow or one could divide the two. However, the
absolute difference in the flow does not illustrate how the flow is redistributed in the channel. For that
one needs the relative difference in the flow. In order to measure the relative difference, we printed 40
z transverse slices of the z-component of the velocity in the region z ∈ [12.5R, 27.5R], which is well
within the charged region and then found their average them. Such average flow profiles in the charge
region were measured both for a none charge flow and for an inlet number density of 6.022 ·1021#/m3

meaning κa = 3. Finally, we divide the charged profile with the non-charged. The plot of this field
can be found in Fig. 2.4.8 for four of the amplitudes. We see for the larger amplitudes A ∈ [2.5R, 3R]
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Figure 2.4.7: Top: Plot of θx we set that the there is a incensed damping of the flow in the narrowing of the
channel which means that effectively the channeling of the amplitude gets argument by the electric effects.
Bottom: Plot of θy. We see that for low amplitude it is more or less constant and an effect only becomes
pronounced as the amplitude increases enough to make a narrow region in the bottom of the channel.

that the flow can locally change with up to 10− 15% in extended regions of the more constricted parts
of the channels, and the flow in the center region is in comparison only reduced with less than 5%.
For the smaller amplitudes A ∈ [0.5R, 1R] we that locally change is confined to a thin layer near the
walls. This means that the regions with already low permeability will exclude flow even more. Note
that due to a ”0 over 0” phenomenon the relative field becomes filled with artifacts near the edge.

With this, we conclude the section regarding the numerical results and turn to the discussion of
where such results could be of importance.

As a concluding note, all the 3-dimensional simulation was done on our in-house server with 2 64
bit CPUs, 28 cores ad 2.6 GHz and 512 Gb of RAM. On this hardware the simulations took around
1-2 hour for each the geometry for each of the ion-number densities, meaning a total computational
time of the order of 102 hours. The 2-dimensional simulations were done on a desktop computer in a
matter of hours.

2.5 Discussion

Off course, our study had some numerical shortcomings as we were not able to increase the number of
degrees of freedom in the finite element scheme due to an ill-preconditioned Poisson-Nernst-Planck
problem. As good preconditioning is not a simple endeavor to construct in general, it has not been
pursued further but it should be of importance if the one whats to continue developing the method.
It should also be noted that one might be able to avoid the preconditioning problems by using an
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Figure 2.4.8: All the figures show the relative charge flow field when compared to changeless flow at
κa = 3 the measurement was done as described in the text. In both a) and b) we do not see a major increase
in channeling but there is an indication of some in the constricted regions. Differently in both c) and d) we
see that the flow get more constricted to the center region and that there is at 10% reduction of flow in the
narrow regions ( side gab and in the bottom of the channel)

implicit time integrated method with non-resolved time steps, such methods could be based on what
was used the validation presented in the supplementary-material found Appendix A [37]. The limits
on finite element system size meant that we could not have the in- and outlet length required to avoid
the boundaries to interfere with the found solution for the lower number-densities.

Besides such oblivious limitation of our numerical method, there is also more subtle details in the
studies that must be discussed. Let us first consider the scan in κa, where we used the number density
as the scanning parameter which for the streaming potential lead to a discontinuity at κa = 0. This
discontinuity could be avoided if the scan had been done by changing the channel width instead, like
was the case for Mansouri et. al.[44], who did similar studies just in an axially symmetric pore but
with varying pore radii.

Another less obvious weakness for both the theoretical expression for electro viscosity and stream-
ing potential Eqs. (2.2.59) and (2.2.63) respectively is that they are derived from the linearized Poisson-
Boltzmann equation, hence especially for strongly interacting electric double layers this might break
down. Such breakdown of the linear theory might be a part of the reason why our results in the long
channel does not match, another reason could be that the equilibrium hypothesis used to derive the
Poisson-Boltzmann equitation have broken down. While the effect of the departure from equilibrium
might be difficult to model without solving the full system, the departure from the linearized Poisson-
Boltzmann equation should be feasible to study. A starting point for introducing non-linear effects
from Poisson-Boltzmann equations could be to use the implicit solution to the equation found by [79,
pp. 67], along with some numerical methods to obtain the electron viscosity and streaming potential
from this.

With some technical issues addressed let us also discuss the effects of electro viscosity in context
of geological and industrial settings. Under the geological conditions found in porous rocks such as
limestone and chalk the effect of electro-viscosity can affect the distribution of flow. Such change
could have a rather big influence on precipitation or dissolution and might lead to a faster closing
of pores or stronger tunneling depending on specific parameters chosen. In industrial settings, the
increase of flow resistivity can be of great importance in many applications. For an example in ion-
selective membranes for water treatment, it can be used to study how to avoid the necessary pressure
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drop due to inhomogeneity of the membrane pores. But it might also play a role in understating
non-homogenius porous catalysts and how to optimize them by avoiding or utilizing electro-kinetic
effects.

2.6 Conclusion and Outlook
By using numerical tools we were able to show that electric effects within the Poisson-Nernst-Planck-
Stokes equation play an important role in the redistribution of flow in an undulated channel. Hence
we have seen that not only can electro viscus effects reduce the flow rather dramatically in our case
∼ 20% but they can also lead to macroscopic redistribution of around ∼ 5% and a local effect that
can be in the order of ∼ 10%. The effects of electro viscus channeling are increased by increasing the
amplitude, at least within the range we studied. It should be noted that the flow asymmetries might
be underestimated due to only half of the channel being charged, furthermore one should not expect
a linear relationship in the charge fraction as for the electro viscosity. Even though such simplified
geometry as the undulated channel might not be found Nature the results for it can still be used to
get an understanding of the effects in more elaborated fracture apertures of porous media hence it
can be thought of as a first approximation to more complicated geometries. This means that the
electro-viscous effects can lead to stronger channeling also in such geometries, however in order to
quantify the effects more precisely one would have to simulate bigger systems. This high lights the
insufficiencies in our numerical solver, and what should be the main future challenge namely to make
the solver efficient for larger systems, by developing better preconditioning. The possibility of larger
system size also makes it possible to handle in- and outlet in a more proper way and to study a broader
range of Debye lengths.

Finally, it would be rather interesting to couple the Poisson-Nernst-Planck-Stokes problem to some
equation that governs precipitation/dissolution of the geometry, to study what effects the electric forces
have on such phenomenon.
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Chapter 3

Two Phase Electrohydrodynamics

This chapter will be dealing with two-phase electrohydrodynamics as the title suggests. The model,
it’s theoretical and implementation in FEniCS can be found in the attached paper, see, Appendix D
along with a study of converges and validation of the numerics. So this chapter will concern some
phenomenology of electrowetting in none trivial geometries, and the numerical modeling of this with
Bernaise, more quantitative work on electrowetting see the paper in Appendix B.

3.1 Motivation

As the document in Chapter 2 shows we have worked quite a lot with one phase electrohydrodynam-
ics, and through this work got a general understanding of related phenomenon. However, many of the
effects of electrohydrodynamics in one-phase fluids are mainly damped dynamics or introduce extra
flow resistance as was the case for electro-viscosity. On the contrary one could imagine many exotic
effects of electrohydrodynamics in a set up consisting of two immersible phases with different elec-
tric properties. A particular example where such phenomenon can be important for the dynamics is a
water-oil interface in a porous media if there are ions dissolved in the water phase and the confining
pore is charged. The idea of studying such a setup came from some none published numerical exper-
iments by Rastin Martin 1 and Marek Krzysztof Misztal 2. In their experiments, they investigated if
it was possible to expel a partial none-wetting fluid from a dead-end pore with a partial wetting fluid
under a sheer flow. From this numerical work, they saw that it was not possible to expel the droplet
from the dead-end pore by changing the contact angle up to 45 deg from neutral.

Expelling of oil droplets for pores is common to observe in nature, fx in later phases of oil recovery,
and one could speculate that might play a role in such cases [19]. The effects of electrohydrodynamics
on wetting phenomenons have been noted as early as 1875[38] and have been reviewed in recent years
due to advances of microfluidics [13], variable-focus lenses[29] and electronic paper[20, 50].

The structure of the rest of the chapter starts with a discussion the phenomenology of electrohydro-
dynamics and the origins of electrowetting, then we present the setup of some numerical experiments
and the outcome of the resulting simulations. We will end by discussing what could be done in future
studies and which problems need to be addressed.

1A Ph.D. form our group at The Niels Bohr Institute doing two-phase lattice Boltzmann simulations with none trivial
wetting.

2At the time of writing Assistant Professor at The Niels Bohr Institute, doing two-phase lattice Boltzmann simulations
with none trivial wetting.
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Figure 3.1.1: A shear flow of water moves across the inlet of a non-charged micropore filled with oil. Even
if the water is partial wetting the droplet is not pushed out due to capillarity but is only distorted.

3.2 Theory
This section will deal with the phenomenology of intrusion due to electricwetting, for a discussion of
the model for two-phase electrohydrodynamics see Appendix B, where it is introduced in the first part
of the paper.

3.2.1 Phenomenology
Two phase flow have a rich dynamic in confined geometries even without surface charge effects [36,
66]

However some dynamics of fluid can be affected by electrostatic forces leading to intrusion near a
charged wall, efficiently increasing the apparent wetting angle and preventing stagnating of the contact
line, this can all be modeled by electrohydrodynamics with two phases.

Electric Static Effects on Intrusion

Our initial motivation for the studying of two-phase electrohydrodynamics was to study if it made
expelling the oil droplet in Fig. 3.1.1 with the help of electrostatic effects. The reasoning was that as
oil and water have rather different electric and solvent properties, water being a rather good solvent to
dissolute simple salts where oils are typical not. The difference in their properties as solvents means
that the Debye length in the two fluids can easily differ in the two phases by a substantial amount. In
particular the Debye length in water will typically be smaller than the one in oil, even if the relative
permittivity of oil is typical an order of magnitude smaller than that of water3. Such difference in
Debye length means that the electric force density on the water near a charge wall is larger than the
one on oil a pointing towards the none screened surface charge . This localized force will then lead to
intrusion of a thin film along the wall if the surface tension is sufficiently small and the force can in

3Note that the relative permittivity of oil can vary quite a lot depending on the precise composition but it is typical in
the range: εr ∼ 2− 10
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some limits lead to oil phase gets displaced away from the wall, for an illustration of such a process in
dead pore see Fig. 3.2.1.

A similar effect can also be anticipated to have an effect on intrusions in porous media, as it can
have a large effect on destabilizing stagnated contact lines. This will in practice mean that it can speed
up pressure driven intrusion or even expel plugs that normally would stay due to being stabilized by a
Poisson pressure.

3.3 Numerical Setup
To get a preliminary confirmation that the numerical method developed in Bernaise has made it feasible
to study electric effects on intrusion we set up two model geometries and ran simulations in these. The
two model geometries where: a dead-end pore see Fig. 3.3.1 , and a pore throat see Fig. 3.4.2.

Both geometries were set up within the Bernaise problems submodule and can be found in the git
repository under the names "snoevsen.py" for the dead-end pore and "hourglass.py" for the
pore throat. The input mesh for the two problems was made using the ”mshr”4 tool which is developed
for FEniCS and specific script can be found in the folder: "/utilities/mesh scripts" and
can be made by typing the following in the terminal:

$ python generate mesh.py mesh=...

Where the "mesh" is chosen to be: "snoevsen" or "hourglass". If one need to use some of
the further functionality the "generate mesh.py" can be followed with a "-h" instead of the
"mesh".

The two simulations were run with the model parameters found in Table 3.2, which are given in
the Bernaise units. Note that the subscripted 1 corresponds to the phase called I in the fingers and 2 to
II.

3.3.1 Boundary and Initial Conditions
The boundary and initial conditions on the two geometries are indicated on their schematics but will
be described hereafter in full detail. For the dead-end pore Fig. 3.3.1 boundary conditions are given
so that The x-direction of the geometry is periodic, meaning that edges marked with dashed lines are
identified to each other. At the top plane which is indicated with at dotted-dashed line, a sheer flow is
applied to the velocity field so the ux = utop and furthermore a constant number-density for the two
ion types are set as ci = c0 and the electric-potential is grounded V = 0. At the bottom of the channel
marked with a fat blue line, a no-slip condition is applied for the velocity field, a no-flux condition for
the number-densities, and a flux condition is set for the electric potential to match the surface charge.
Finally, for the phase field has a no-flux condition at all of the none periodic boundaries along a neutral
contact angel, and the pressure field is fixed at one point to handle the gauge freedom.

For initial conditions the pressure, velocity and electric fields is set to zero over the entire domain,
the phase field is initialized so that the hole of the dead-end pore is filled with phase I corresponding
to φ = 1 by the following function:

φ = − tanh

(
max(y,

√
(x− Lx/22 − 2R)√

2ε

)
(3.3.1)

4https://bitbucket.org/fenics-project/mshr
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Figure 3.2.1: (a) The same geometric configuration as in Fig. 3.1.1 however, in addition, there is a surface
charge at the pore-walls. This surface charge leads to an electric double layer being form in the water phase.
(b) The same pore but at a later sated, now a water film is intruding along the pores walls due to electrostatic
effects (electro-wetting). (c) The water intrusion is completed and the oil has been pushed out of the pore.
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Name Simulation Parameters ”Dead-end” ”Throat”
Length Lx 3.0 6.0
Hight Ly 1.0 2.0
Total Time t 20 20
Radius R 0.3 0.3
Time step dt 0.01 0.02
Resolution res 120 120
Interface thickness ε 0.02 0.02
Phase field mobility M0 2.5 · 10−6 2.5 · 10−6

Surface tension σ 2.45 8.45
Surface charge σe -10–0 -10–0
Viscosities [µ1, µ2] [1.0;1.0] [1.0;1.0]
Densities [ρ1, ρ2] [10.;10.] [10.;10.]
Relative permittivities [ε1, ε2] [1.0;1.0] [1.0;1.0]
Solution energies [β±1 , β

±
2 ] [4;1] [4;1]

Ion mobilities [D±1 , D
±
2 ] [0.0001;0.01] [0.0001;0.01]

Inlet number density c±0 2 2
Sheer velocity utop 0.2 –
Pressure difference ∆p – 0–5–50

Table 3.1: The simulation parameters, both for the dead-end pore geometri and the pore throat set up. The
superscript ± means of both the posetiv and negative ions.

Note that origo is set in the lower left corner. The initial phase field is also used to initialize the number
densities in the following way:

ci = 0.5(1− φ)c0 (3.3.2)

meaning that there will only be ions in the phase indicated with a II at the beginning of the simulations.
The boundary and initial conditions for the pore throat Fig. 3.3.2 is rather similar to that of the dead-
end pore, however, there are some differences. At the inlet and outlet, marked with a dashed line, we
have prescribed a pressure boundary condition, setting the inlet pressure to p = ∆p and the outlet
one to p = 0. The velocity field was set so there was no normal strain. The number-density at the
in/outlet were set to be constant for both of the two ions and equal to the following value ci = c0

and the electric potential was grounded in both ends. On the channel wall itself, which is marked as
the solid line black or blue depending on whether it is charged or not, we sat a no-slip condition on
the velocity field, a no-flux conditions on the number-densities and a flux-condition on the electric
potential to match the surface charge. Note that only the path where the wall is marked with blue have
a non-vanishing surface charge. Finally, for the phase field, a non-flux and neutral contact angel were
set on the wall boundaries, at the in/outlet it was set to φ = −1 which is the value of the phase marked
with a roman numeral II. The phase field was once again initialized with a tangent hyperbolic profile,
this time defined as:

φ = −2

((
tanh

(
x− (2/3Lx − 2R)√

2ε

)
− tanh

(
x− (1/3Lx + 2R)√

2ε

))
+ 0.5

)
(3.3.3)

and again origo is placed in the lower left corner and the initial number densities is given by Eq. (3.3.2).
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Figure 3.3.1: A semantic of the ”dead-end pore” geometry, with the appropriate boundary conditions for
the problem and specified initial conditions for phase field. The geometry is specified by the two lengths
Lx, Ly, and the radius R used to define the dead-end pore in the center of in the channel by a circle and a
circler soothed inlet. The roman numerals indicated the phase, along with the tone of gray, the darker one
is the oil-like phase (I) and the light on is the water like phase (II).

3.4 Numerical Results
In the two geometries discussed in the section above we ran simulations under the parameters given in
Table 3.2, and in order to see the difference we ran them both with a surface charge; σe = −10 and
without; i.e. σe = 0. Furthermore we ran the pore throat with different pressure differences. In the
following subsections, we will present the results of those simulations but as paper printings do not
support any video format it will be hard to give a detailed account of the completed dynamics, however,
one can find GIFs5 of the simulations on Bernaise git repository: https://github.com/gautelinga/BERNAISE.

It should be noted that the computational resource used was our in-house server with 2 64 bit
CPUs, 28 cores ad 2.6 GHz and 512 Gb of RAM, which ran all of the simulation in about 5 hours
So the choice of simulation resource was mainly based on convenience rather than necessity as the
simulation presented here could without problems have been run on a modern workstation in a day or
two.

3.4.1 Visualization

We have visualized the simulation in two different ways in order to illustrate the numerical experi-
ments, each having their advantages. For the dead-end pore, we have made plots with the Bernaise

5Graphics Interchange Format
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Figure 3.3.2: The schematic of the pore throat with an oil-like-plug in the narrowed region. The narrowing
of the pore is done with two arcs both with a radius of R as indicated on the drawing. The boundary
conditions are indicated on the schematic but one should refer to text for a precise description.

native GIF making tool found "postprocess.py". This produces automatically a GIF from the
simulation data where the ”water” phase shows the charge-density in a with a color map going from
blue for negative to red for positive and all scaled to the maximum density in the time series. The ”oil”
phase forms in this mapping a black region for the level set of the phase field larger than 0. The level
set visualization to make each phase appear defined in a more clear way than what is actually the case,
which means that one might not realize phase traces that are left due to under-resolved time step.

For the single pore we have used Paraview6 to make the plots and thereafter stitched them together
to form a video, where one can choose a more smooth transition that the Bernaise native one. This
visualizes the diffused interface better, however, it is way more time consuming to produce the plots
and it tends to be more useful as a previewing tool, especially if the simulation is well resolved in time
and space.

3.4.2 Dead-end Pore

The simulation of the dead-end pore was carried out to get preliminary confirmation of the hypotheses
from Section 3.2.1, that electrowetting could be responsible for the expelling. Those simulation have
also been used for the parer in Appendix B so the figures have a overlap. We wanted to see the
differences of having electrostatic effects or not, hence we present pictures of the simulation at different
times for both cases in Fig. 3.4.1. The left column Figs. 3.4.1a, 3.4.1c and 3.4.1e is for the vanishing
surface charge and the right column is for a surface charge of σe = −10. For the none-charge case
not much happen between the frames that we have shown, in fact, the main difference is the numerical
noise of the total charge and it is due to errors of machine precision. Of course there were some initial
dynamics of oil-like-plug where it was distorted so it’s interface compile with a neutral contact angel
and the shear flow, however, this mainly happens before the first frame presented.

A rather different behavior is seen in the right column Figs. 3.4.1b, 3.4.1d and 3.4.1f where a
surface charge was applied. Here we see first two tongues are intruding on both sides of the droplet,
while the oil-like fluid is pushed out in the center of the dead-end pore. The process is continued in the

6https://www.paraview.org/
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second frame and finalized in the third frame with the complete release of the droplet due to the two
tongues meeting in the middle of the dead-end severing the contact. Hence we see that the effects of
the surface charge mean that the ”water”-phase on larger scales behaves like it is completely wetting
even when we enforced a neural contact angel. To exemplify this effect furthermore we have carried
out a similar simulation in the next section for a pore throat filled with oil-like fluid, but with a pressure
difference applied.

(a) (b)

(c) (d)

(e) (f)

Figure 3.4.1: The simulation of the dead-end pore under a shear flow, the left column the surface charge is
vanishing and to the right, we have σe = −10. The first row is for t = 300dt, the second is for t = 600dt,
and finally the third row is t = 900dt.
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Name Simulation Parameters ”Dead-end” ”Throat”
Length Lx 3.0 6.0
Hight Ly 1.0 2.0
Total Time t 20 20
Radius R 0.3 0.3
Time step dt 0.01 0.02
Resolution res 120 120
Interface thickness ε 0.02 0.02
Phase field mobility M0 2.5 · 10−6 2.5 · 10−6

Surface tension σ 2.45 8.45
Surface charge σe -10–0 -10–0
Viscosities [µ1, µ2] [1.0;1.0] [1.0;1.0]
Densities [ρ1, ρ2] [10.;10.] [10.;10.]
Relative permittivities [ε1, ε2] [1.0;1.0] [1.0;1.0]
Solution energies [β±1 , β

±
2 ] [4;1] [4;1]

Ion mobilities [D±1 , D
±
2 ] [0.0001;0.01] [0.0001;0.01]

Inlet number density c±0 2 2
Sheer velocity utop 0.2 –
Pressure difference ∆p – 0–5–50

Table 3.2: The simulation parameters, both for the dead-end pore geometri and the pore throat set up. The
superscript ± means of both the posetiv and negative ions.

3.4.3 Pore Throat

As mentioned earlier we have simulated the pore throat not only with and without surface charge but
also for different pressure difference over the pore to see the effect of driving the system. The results
are shown grouped by the different pressures in Figs. 3.3.1, 3.4.3 and 3.4.4 for ∆p = 0 , ∆p = 5,
∆p = 50 respectively.

The simulation where ∆p = 0 we see in four different time frames. In the left column (Figs. 3.4.2a,
3.4.2c, 3.4.2e and 3.4.2g) the surface charge was vanishing. Due to the vanishing pressure, surface
charge and neutral contact angel we see that nothing happens to the oil-like-plug in the throat, as the
walls are perpendicular to the contact line between the oil-like fluid and ”water-like fluid. However in
the right column (Figs. 3.4.2b, 3.4.2d, 3.4.2f and 3.4.2h) we see the oil-like fluid is excludet from the
throat. This happens similar to the case of the dead-end pore by tongues intruding along the charge
wall due to the forming of electric double layers in the water-like-phase. In the last two frames of the
simulation, one sees as expected a ”spontaneous”–symmetry breaking, where the droplet is expelled to
the left side, we believe the underlying perturbation for this particular case is an underlying asymmetry
in the mesh.

The simulation where ∆p = 5 we again have shown in four different time frames, and once again
the left column (Figs. 3.4.3a, 3.4.3c, 3.4.3e and 3.4.3g) is for the vanishing surface charge. This time,
however, we see some difference from the initial state, The oil-like-plug is deformed in the outlet until
Poisson pressure balances the pressure difference over the pore. This means that no dynamics are
present after the deformation of the droplet has taken place and it is never expelled from the pore. In
the right column (Figs. 3.4.3b, 3.4.3d, 3.4.3f and 3.4.3h) we see that the dynamic of the expelling does
not change that much from the case with no pressure difference. Off course, the droplet is expelled
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4.2: The simulation of the pore throat with a pressure difference ∆p = 0, the left column the
surface charge is vanishing and in the right we have σe = −10. The first row is for t = 250dt, the second
is for t = 500dt, the third t = 750dt and finally the fourth row is for t = 1000dt.

to the right side due to the applied pressure difference, and the ”water” tongues on the left side of the
throat are not as pronounced. Note that the time scale of the expelling of the droplet is more or less
the same for both ∆p = 0 and ∆p = 5, meaning that it must be controlled by the electric forces in this
regime.

The last simulation was for a pressure difference of ∆p = 50 and here as well we show the
simulation without surface charge in the left column (Figs. 3.4.4a, 3.4.4c, 3.4.4e and 3.4.4g). Note
that in this case the time step might be on the lower end of what was needed in order to resolve the
dynamics as there is a rather large leaking of the oil-like-phase in Figs. 3.4.4g and 3.4.4h. Here we see
that as the pressure is so large that the oil-like-plug is blowns out of the throat, as the Poisson pressure
cannot balance the applied pressure. The plug is an eventually ripped apart. After the rapture of the
oil-like-plug it is not released from the wall but is still attached a the end of the simulation. For longer
simulations it would presumably stay there, but maybe it would migrate along the wall towards the
outlet. For the right column (Figs. 3.4.4b, 3.4.4d, 3.4.4f and 3.4.4h) we see that the dynamics in the
initial two frames is to a large extend similar to it’s no charge counterpart. However one begins to
see a difference in the dynamics due to the electric forces, as the motion seem slightly dampened and
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(c) (d)

(e) (f)

(g) (h)

Figure 3.4.3: The simulation of the pore throat with a pressure difference ∆p = 5, the left column the
surface charge is vanishing and in the right we have σe = −10. The first row is for t = 250dt, the second
is for t = 500dt, the third t = 750dt and finally the fourth row is for t = 1000dt.

that the oil-like fluid is eventually released from the wall in. Hence even if the flow is dominated by
enforced pressure differences the local electric forces can still change the macroscopic dynamics of
the fluids.

3.5 Future Prospects
Off course, the simulations done in the former section was preliminary studies, and one can find many
contexts where electric effects could also play a role. But to stick to the contexts already addressed in
the Bernaise paper and in this chapter, an obvious next step would be to introduce an axial symmetric
code for the problem to probe some 3-dimensional effects . Such a step would allow to extend the study
of electrowetting to the case of a 3 dimensional droplet and eventually map out the phase diagram
found by Monroe et al. [50] by numerical means. Another use of the numerical framework would be
to the study of intrusion would be to simulate Washburn regime capillary intrusion driven by either
surface potential or a surface charge. However, for the surface charge case there is a challenge as the
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(g) (h)

Figure 3.4.4: The simulation of the pore throat with a pressure difference ∆p = 50, the left column the
surface charge is vanishing and in the right, we have σe = −10. The first row is for t = 100dt, the second
is for t = 200dt, the third t = 300dt and finally the fourth row is for t = 400dt.

electric field depends extensively on the surface area if no screening occurred. So if the local intrusion
should be independent of the system size one would need to screen the electric field in both phases just
with different Debye lengths. Such an intrusion set up could be extended to even more complicated
geometries like a 2-dimensional porous media, and the change of interface dynamics could be studied.
Finally, one could consider extending the code to 3-dimensions to expand the studies of porous media
further. But one would need to invest time in making the solvers fully iterative in order to manage the
larger demand on computational resources required by the increase in system size.
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Chapter 4

Conclusion

From numerical simulations, we have studied qualitatively and quantitatively the electrohydrodynam-
ics in complex geometries. In the case of single-phase flow, we show in a model fracture aperture
that electrohydrodynamics can cause significant flow reduction and enhanced flow channeling rela-
tive to regular pressure driven flow. The work is included in the manuscripts in the Appendices A
and C. Our results may find application in natural and industrial contexts where electrolyte solutions
flow though fractures and pores. Further studies in larger complex geometries as well as systems with
higher ion-number densities would be natural next steps of our work.

In the case of two-phase flow, we have simulated electrowetting. We found that in an oil-water
system, that the oil phase was much easier expelled when there were ions present in the aqueous
phase. Furthermore, we observed that the apparent contact angle could be changed significantly, in
fact so much that the water phase effectively became fully wetting. This observation have been the
basis for more detailed studies of the electric-potential effect on electrowetting for at droplet, included
in the manuscript found in Appendix B. The simulation framework used in the two-phase flow lead
was presented in a manuscript included in Appendix D. Future work will extend the numerical code to
three-dimensions and possible include further quantitative analysis of oil extraction in porous media.
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Appendix A

Electrohydrodynamics channeling effects in
narrow fractures and pores

The paper “Electrohydrodynamics channeling effects in narrow fractures and pores” published in
American Physical Society’s Physical Review E followed by its supplementary-material.
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Appendix B

Phase-field modelling of dynamic
electrowetting with electrolytes

A paper submitted for review to Physical Review E with title: “Phase-field modelling of dynamic
electrowetting with electrolytes”
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Appendix C

Decoupled energy-stable schemes for
transient electrohydrodynamic flow

A draft for a paper with the working title: “Decoupled energy-stable schemes for transient electrohy-
drodynamic flow”, Note that section 4.3 is derived from the supplementary-material from the paper
found in Appendix A and is not in its final from, hence it is very similar.
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Appendix D

Bernaise: A flexible framework for
simulating two-phase electrohydrodynamic
flows in complex domains

A draft for a paper with the working title: “Bernaise: A flexible and robust high-level phase-field
solver for two-phase eletrohydrodynamics in complex domains”
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