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Abstract
Periodic driving has recently been investigated as a mechanism for generating nontrivial
topological phases of matter within otherwise ordinary systems. Periodic driving can
even induce new, so-called anomalous topological phases, which have no counterpart in
equilibrium. This thesis studies such topological phenomena and phases in periodically
driven systems. The first part of the thesis introduces the concept of topological phases
in periodically driven systems, and classifies the noninteracting topological phases
that can arise in such systems, including the anomalous phases. The second part of
the thesis studies the anomalous Floquet insulator (AFI), which is an example of an
anomalous topological phase. The discussion here shows that the AFI is characterized
by a quantized, nonzero bulk magnetization density, and demonstrates that strong
disorder can stabilize the phase in the presence of interactions. The third part of
the thesis explores driving-induced topological effects in other physical systems. The
discussion here shows that periodic driving can lead to new, topologically-robust
energy pumping effects. In some cases, these effects can be described as fully classical
phenomena and have potentially useful applications. A novel master equation for
dissipative, periodically driven quantum systems is derived in this connection.
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Introduction to the thesis

This introductory section briefly presents the context and motivation for the work which is
discussed in this thesis. The section moreover contains a short summary of the thesis’ structure
and results.

Background

In the last decade, topology has gained a new importance in physics, due to the theoretical
prediction [9–11], and experimental discovery [12, 13] of new classes of materials known as
topological insulators and superconductors. Topological insulators and superconductors exhibit
exotic phenomena which are characterized by their universality and extreme robustness. Examples
of such topological phenomena include topologically-protected Majorana end states, chiral edge
modes, and quantized bulk Hall conductance [9,11,14–17]. A unified theoretical description of
topological insulators and superconductors was developed shortly after the discoveries above [18,19].
These advances show that the nontrivial topological effects described above can be seen as intrinsic
properties of the bulk material which supports the phenomena. However, while topological
insulators and superconductors are theoretically well-understood, robust experimental signatures
of these materials have been elusive, with the notable exception of the integer quantum Hall
effect [14].

More recently, periodic driving has been studied extensively as a means for realizing such
topological phases of matter. Periodic driving means subjecting the system to an externally
oscillating force, such as the electromagnetic field induced by a laser. Such external oscillating
forces can effectively modify the Hamiltonian of the system, thereby giving a way for driving an
otherwise ordinary material into a nontrivial topological phase [20–40]. While the manipulation of
a material’s properties by a periodic drive has a huge potential for applications, the high intensity
and frequency required to significantly affect solid-state Hamiltonians mean that realizations of
the effect in such settings remain a challenge. However, the method has been used with success
in gases of ultracold atoms in optical lattices, where it led to the experimental realization of the
Haldane model [41].

The initial idea of realizing nontrivial topological phases with a periodic drive inspired extensive
theoretical efforts in characterizing the topological phases of periodically driven systems. An
important and surprising result has been the realization that periodically driven systems support a
richer topological structure than their nondriven counterparts [1,2,5,42–56]. In particular, periodic
driving may induce new topological phases of matter, that are of intrinsically nonequilibrium
nature. These so-called anomalous phases are characterized by nontrivial topological properties
of the dynamics that take place within a driving period. Examples of such anomalous phases
include the anomalous Floquet insulator [2, 6], which exhibits quantized bulk magnetization (see
Chapter 4), and the Floquet-time crystals [49, 50] which is characterized robust, period-doubled
oscillations. Although the nonequilibrium nature of these systems lead to some complications –
notably, the uncontrolled heating induced by periodic driving in isolated, thermalizing systems –
theoretical work shows that such anomalous phases may in principle be realized in interacting
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many-body systems when strong disorder is present (see Chapters 5-6). Floquet time-crystals
have been realized in trapped-ion systems [52], while concrete experimental protocols have been
proposed for realizing the anomalous Floquet insulator with ultracold atoms in optical lattices [53].

In addition to the topological phases of matter described above, other setups have been
explored as platforms for realizing topological phenomena in periodically driven systems. Such
platforms include optical systems [57, 58], and, notably, photonic crystals [59–61]. Another
direction of current research is to use combinations of periodic driving fields to realize novel,
topological pumping effects. [3, 8, 9, 62–64], analogous to Thouless’ adiabatic charge pump [65].

Structure of thesis
The work discussed in this thesis explores topological phases and phenomena in periodically
driven systems. The thesis is divided into three parts.

• Part 1, which contains Chapters 1-3 serves as the introduction of the thesis. Chapters 1
and 2 introduce the subject of topological insulators and topology in periodically driven
systems, respectively. Chapter 3 explores the nature of the additional topological structure
in periodically driven systems, and develops a general scheme for classifying the topological
phases of (noninteracting) periodically driven systems.

• Part 2 of the thesis, which includes Chapters 4-6, studies the anomalous Floquet insulator
(AFI). The AFI is a newly-discovered, driving-induced phase of matter that intriguingly
has no counterpart in equilibrium [2]. Chapter 4 focuses the physical manifestations of the
AFI in the absence of interactions, showing that the phase is characterized by a nonzero,
quantized magnetization density in the bulk. Chapter 5 demonstrates the stability of the
AFI in the presence of interactions, where many-body localization prevents the system
from heating to infinity. Finally, Chapter 6 studies the topological properties of the AFI in
the presence of interactions, showing that the AFI is characterized by an infinite family of
topological invariants, linked to the magnetization density in the system.

• Part 3 of the thesis, which includes Chapters 7-8, explores the idea of realizing topological
effects in driven systems beyond the solid-state settings considered in the previous chapters.
Chapter 7 studies the dimensional reduction of the AFI to an adiabatic pump, analogously
to Thouless’ charge pump [65]; in the case studied in Chapter 7, the adiabatic pumping
parameter, together with the periodic driving field, leads to a topologically-robust energy
pumping effect. Chapter 8 explores an idea introduced Ref. [3], where a periodically driven
magnetic particle effectuates a transfer of energy from the driving field to a cavity mode.

The appendices of this thesis contain technical derivations that support the discussion in the main
text. These are primarily necessary if the reader wants further verification of the details in the
main text. A notable exception is Appendix A, which contains a result which may have relevance
beyond the discussion in this thesis. Specifically, Appendix A derives a master equation that
describes the evolution of a periodically driven quantum system coupled to external bath, only
making use of the Markov approximation. The resulting master equation is used in Chapter 8 to
describe a driven system consisting of a magnetic particle and a cavity mode coupled to external
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baths. However, the master equation derived in Appendix A can in principle be applied to any
periodically driven quantum system coupled to external baths.





Part I

Topological Phases in Periodically
Driven Systems





Chapter 1

Topological Insulators

This chapter is partially based on Chapter 2 from the author’s master’s thesis (2015). The
master’s thesis is cited as Ref. [4].

Topology has gained a major relevance in condensed matter physics in recent years. One
major reason for this is the theoretical prediction and experimental detection of a new class of
materials known as topological insulators. Topological insulators are characterized by universal,
exotic and extremely robust phenomena with potentially useful applications. Such topological
phenomena include the possible Majorana end states of proximity-coupled nanowires (Fig. 1.1a),
the integer quantum Hall effect (Fig. 1.1b), or single Dirac cone at in the edge dispersion of
Bismuth Selenide (Fig. 1.1c) [10, 15, 16]. Topology is a plays a major role in the theoretical
description of these effects, and has been used as a guiding principle for predicting some of the
new materials above [11, 16, 66]. This chapter introduces the concept of topology in physical
systems, with a specific focus on topological insulators.

1.1 Topological phases of matter

The discussion of this thesis takes its starting point in a relatively simple, but powerful question:
which properties of a system remain unaffected by perturbations that preserves its band gaps and
symmetries? Properties that have this “invariance”, if such exist, are referred to as topological
invariants of the system. A priori, the existence of topological invariants in real-world materials
might seem unlikely. However, the question above in many cases has a nontrivial answer: the
defining feature of a topological insulator is a nontrivial value of one (or more) topological
invariants.

The existence of topological invariants has profound implications. In particular, Hamiltonians
with a given symmetry fall into distinct topological classes or phases: two Hamiltonians belong
to the same topological class or phase if and only if they can be smoothly deformed into each
other while preserving all energy gaps and symmetries of the system. By definition, two systems
characterized by distinct values of one or more topological invariants must belong to different
topological phases. A topological insulator is defined to be a system which belongs to a nontrivial
topological phase. Topological phases by nature have some highly nontrivial properties. Since the

17
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ca b

Magnetic Field [T]

Resistance [kW] 

Figure 1.1: Examples of topological insulators and superconductors. a) Topological supercon-
ductor: experimental setup that may support Majorana fermions. b) A system exhibiting the
integer quantum Hall effect (IQHE). Top panel shows the quantized Hall resistance in an IQHE
system, as a function of the applied perpendicular magnetic field. Bottom panel depicts of the
skipping orbits in an IQHE system. These can be seen as the classical analogue of the chiral edge
modes described in Sec. 1.2. c) Topological insulators protected by time-reversal symmetry. Top
panel shows a sample of BiSe, a time-reversal symmetry protected topological insulator. Bottom
panel schematically depicts of the spin quantum Hall-effect, a manifestation of a 2D topological
insulator with time-reversal symmetry. From Ref. [4].

defining properties of the phases by definition are identical for a wide class of systems (related by
continuous, gap-preserving deformations), signatures of topological phases are universal: they lead
to the same effects in a wide range of experimental setups. Moreover, due to their insensitivity to
a wide class of perturbations, the novel phenomena arising from topological phases are extremely
robust. In addition to these two facts, the topological phases of a system are often associated with
exotic experimental signatures, although this is not always the case. The universality, robustness,
and exotic nature of topological phenomena is what makes them interesting. The best example
of these aspects is the universal, quantized Hall conductance in the integer Quantum Hall effect
(see Fig. 1.1b), which is possible to detect to extremely high precision in relatively dirty and
uncontrolled macroscopic systems [14]. The universality and extreme robustness of this effect
means that it is used as an international standard for electrical resistance [67].

To exploit the powerful concept of topological invariance in the this thesis, we will make use
of some terminology which is common in the literature: in the following, the term topological
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Figure 1.2: Schematic depiction of how topologically-invariant features can arise in a two-
dimensional band insulator (see main text). Panel a) shows the energy spectrum of an infinitely-
large band insulator as a function crystal momentum kx. When confined to a strip geometry
[panel b)], the system may host modes in the gaps of its bulk bands corresponding to localized
states at the edges (iii). The system depicted in panel c) has a topologically-invariant feature:
the single rightmoving mode on edge 1 (green) cannot be removed, unless the bulk gap closes.
From Ref. [4].

refers to features of a system which are topologically invariant (by the definition we gave in the
beginning of this section). The term topology refers to the topological properties of a system.

1.2 Topological features of two-dimensional band insulators
The ideas introduced above are best illustrated on a system of noninteracting fermions in a
two-dimensional lattice.

For simplicity we assume the system to have discrete translational symmetry1. In this case,
Bloch’s theorem dictates that the eigenstates of the Hamiltonian H are plane waves with well-
defined crystal momenta k, as illustrated in Fig. 1.2(i). In the subspace with crystal momentum
k, the Hamiltonian is given by the Bloch space Hamiltonian H(k). Note that locality implies
that the Bloch Hamiltonian H(k) is continuous in crystal momentum. The energy spectrum of
the system is formed by the eigenvalues E(k) of the Bloch Hamiltonian, and forms smooth bands
as function of k, as schematically depicted in Fig. 1.2a. We consider the case where the system
has N bands, separated by finite gaps (as a function of k). As discussed in the introduction
above, the finiteness of the energy band gaps will play a major role in this chapter. Ordering the
bands of H(k) according to the energies, we refer to the gap above band n as the nth energy gap
of the system.

To illustrate how topologically invariant features can arise in the system, we confine the
system to the geometry of a strip with edges at y = y1 and y = y2 (where y1 < y2), such that

1Note that the results quoted in this section also hold in the presence of disorder
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translational invariance along the x-direction remains unbroken, as depicted in Fig. 1.2b (we
refer to the edge at y = y1 as edge 1, and the edge at y2 as edge 2 in the following). Since the
x-component of crystal momentum kx in this case remains a good quantum number, the system’s
energy spectrum still depends continuously on kx, as depicted in Fig. 1.2b.

When the strip is wide enough, most of the system is not significantly affected by the presence
of the edges: sufficiently far within the strip, the eigenstates are delocalized plane waves, and
the energy bands from the infinite system are intact (ii). We refer to this part of the systems’
energy spectrum as the bulk bands of the system. In addition to the bulk bands, the Hamiltonian
can have localized eigenstates confined to either of the edges (iii). These are referred to as edge
modes. The energies of the edge modes must lie in the gaps of the bulk bands: once the energy
of an edge mode comes within the range of the bulk bands, the edge mode hybridizes with the
continuum of bulk eigenstates2, and is no longer confined to the edge [68].

Nontrivial topology arises when a mode on edge 1 connects two bands across a bulk gap gap,
as depicted in Fig. 1.2c (green). If this is feature is present, it must persist under any continuous
deformation of the system that keeps the bulk energy gap open3. By the definition in Sec. 1.1,
this feature is topologically invariant. Generalizations of this argument show that number zn of
rightmoving edge modes in gap n (on edge 1) can only change under a continuous deformation
of the system, if bulk gap n closes4 . In this way, we identify the integer zn as a topological
invariant of of the system. Note that the existence of zn rightmoving modes at edge 1 implies the
existence of zn leftmoving modes5 localized around edge 2, as indicated by red in Fig. 1.2c. In
the following we refer to the unidirectional modes described above as chiral edge modes.

The discussion above demonstrates that the simple two-dimensional model introduced in the
beginning of this section supports nontrivial topological features. Specifically, the net number of
chiral edge modes in each bulk gap zn is a topological invariant of the system. Systems with a
nonzero number zn of chiral edge modes are known as Chern insulators. Such systems notably
include two-dimensional electron gases subject to strong perpendicular magnetic fields. These
systems exhibit the integer quantum Hall effect (Fig. 1.1b), and nonzero values of the invariants
{zn} (i.e. the numbers of chiral edge modes) is a defining feature of this phenomenon [14, 15,69].

Although the discussion above relies on unbroken translation symmetry, the robustness of
the invariants {zn} even persist in the presence of disorder: since there are no leftmoving modes
near y1 at the fermi energy, a rightmoving particle at this edge cannot be backscattered by
impurities [69]. The extreme robustness of the invariants {zn} allows for detection of their
signatures at extremely high precision in macroscopic and relatively dirty systems. The physical
signatures of these invariants and the integer quantum Hall effect are discussed in further detail
below.

2Except in fine-tuned cases.
3Removing this feature in any other way than closing the bulk gap would require “ripping” the edge mode apart

during the deformation, which implies breaking locality – a fundamental principle of nature.
4 The invariant zn can be rigorously defined as the number of edge modes at any given energy in the gap whose

energies have positive slope, subtracted by the number of edge modes with negative slope. Fig. 1.2c depicts a
situation where zn = 1.

5See for example Ref. [65] for a proof.
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1.2.1 Bulk-edge correspondence

The discussion above shows that the net number of chiral edge modes zn is a topological invariant,
and hence may only change if bulk gap n closes. This suggests that zn is closely related with the
properties of the bulk system. Here we confirm this intuition by demonstrating that the invariant
zn can be computed directly from the bulk Hamiltonian H(k).

Specifically, theoretical results [70] show that there exist exactly N −1 independent topological
invariants {Cn} of a Hamiltonian with N bands6. Each of these invariants Cn can be expressed
in terms of the spectral decomposition of the Hamiltonian H(k):

H(k) =
N∑

n=1
|Ψn(k)〉〈Ψn(k)|En(k). (1.1)

Here {|Ψn(k)〉} denote the eigenstates of H(k), ordered according to their energies. The fact
that H(k) is continuous in k implies that each eigenspace projector Pn(k) ≡ |Ψn(k)〉〈Ψn(k)| is
also continuous as a function of k whenever the gaps above and below band n are finite. The
invariant Cn can then be computed as Cn = C[Pn], where

C[P ] = 1
2πi

∫ 2π~
a

0
d2k Tr(P [∂kxP, ∂kyP ]). (1.2)

The number Cn is the so-called Chern number of band n7. Remarkably, the Chern number C[P ]
is an integer and cannot change under any smooth deformation of the projector P , as long as P
remains continuous in crystal momentum8. Thus, we identify the integers {Cn} as topological
invariants of the system.

The integers C1 . . . CN−1 form a complete set of topological invariants of the system9. Specifi-
cally, two Hamiltonians with N bands can be smoothly deformed into each other while keeping all
gaps open, if and only if the invariants C1 . . . CN−1 take the same values for the two systems [70].
This completeness property implies that any topological invariant of the system is expressable
as a function of the integers {Cn}. This in particular holds for the net number of chiral edge
modes {zn}, which were identified as a topological invariants of the system in the beginning of
this section. Indeed, spectral flow arguments [65] show that

Cn = zn − zn−1. (1.3)

Since there can be no chiral edge modes below the lowest band (i.e. z0 = 0), we thus find

zn =
∑

m≤n

Cm. (1.4)

This non-trivial relation establishes that the net number of chiral edge modes zn is a property of
the bulk system.

6See discussion below Eq. (1.2).
7Note that the Chern number is also defined for disordered systems, see e.g., Ref. [71].
8To show this, let P (s) describe a continuous deformation of P , controlled by the parameter s. Using that

P (s) is a projector for all s, it follows that ∂sP (k) = −i[X(k), P (k)], where X(k) is a Hermitian operator which is
continuous in k. Using this result, along with Eq. (1.2), one can show that ∂sC[P ] vanishes.

9It can be shown that the sum of all N Chern numbers always vanishes [15]. Hence CN = −
∑N−1

n=1 Cn.
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A result that relates the topological invariants of the edge spectrum with the topological
invariants of the bulk is known as a bulk-edge correspondence. The existence of such a relation is
a key feature of topological insulators.

1.2.2 Physical signatures of nontrivial topology

The physical significance of the invariant zn becomes apparent once the chemical potential of the
system µ lies in gap n, as depicted in Fig. 1.2c. While a topologically trivial system would be
insulating in this case, a nonzero value of zn results in a quantized, nonzero transverse conductance.
To show this, we consider the current carried by the edge modes in gap n at low temperatures.
In this case, the current carried by a single edge mode is well-approximated by the formula
I = −e

∫ µ
E0
dE ρ(E)v(E). Here v(E) = ∂E

dkx
is the group velocity of the mode, ρ(E) is the density

of states in the edge mode at energy E (i.e. the number of states at energy E, divided by the
length of the system), and E0 denotes the energy where the edge mode merges with the bulk
band. The density of states in a single mode at x-momentum kx is given by (2π~)−1 (here we
assume no spin degeneracy), and thus ρ(E) is given by ρ(E) = (h∂E/∂kx)−1, where we used
h = 2π~. Thus, letting µ1 denote the chemical potential at edge 1, each rightmoving mode at
edge 1 carries a current of − e

h(µ1 −E0), while each leftmoving mode at the same edge carries an
opposite current. Suppressing the gap index n, the total rightmoving current running along edge
1

I1 = −zne

h
(µ1 − E0). (1.5)

The same considerations show that the chiral modes at edge 2 carry the current I2 = zne
h (µ2 −E0),

where µ2 denotes the chemical potential at the edge near y = y2. This value ensures that no
current runs along the strip in equilibrium where µ1 = µ2.

To study the signatures of nontrivial topology, we consider the case where a nonzero electric
field Ey is applied along the y-direction in the system. The electric field generates a voltage
difference between the two edges of the strip, such that µ1 − µ2 = eEyLy, where Ly = y2 − y1 is
the width of the strip. When the system is in equilibrium in the presence of the field Ey, more
electrons occupy the rightmoving mode than the leftmoving mode. This results in a nonzero net
current Iedges ≡ I1 + I2, carried by the edge modes along the x-direction:

Iedges = −zne
2

h
EyLy. (1.6)

We note that the current density must vanish everywhere when the system is in equilibrium,
even in the presence of the field Ey. Thus, the field Ey, must generate a current of bulk particles
Ibulk that exactly cancels the current from the edges:

Ibulk = zne
2

h
EyLy. (1.7)

Taking the derivative of Ibulk with respect to Ey, and dividing by the width of the strip, we obtain
the associated transverse (Hall) conductance of the bulk system σxy ≡ ∂jx

∂Ey
, where jx denotes the

current density along the x-direction. The result in Eq. (1.7) implies that the Hall conductance
is quantized:

σxy = znσ0/2. (1.8)
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where σ0 ≡ 2e2/h ≈ (12.91 kΩ)−1 is the conductance quantum10.
The quantized Hall conductance is a topologically invariant property of the system: at low

temperatures, the Hall conductance can only change if the chemical potential comes within the
range of a bulk band, either due to a bulk gap closing, or due to the bulk bands being shifted in
energy. Similarly to the chiral edge modes, the quantization of Hall conductance even persists in
the presence of disorder.

1.2.3 Integer quantum Hall effect

The situation described above is the mechanism behind the integer quantum Hall effect (IQHE).
The IQHE arises in 2-dimensional electron gases, such as for example GaAs/AlGaAs interfaces,
subject to strong perpendicular magnetic fields [14]. The strong magnetic field induces discrete
bands in energy spectrum of the electron gas, corresponding to distinct, quantized angular
momenta of cyclotron orbits [72]. The bands, known as Landau levels, are flat and evenly spaced
in energy. Their separation is given by the cyclotron frequency ∆E = eB~

m , where m is the carrier
mass.

Remarkably11, each Landau level has Chern number 2. Hence, when the system is confined
to a geometry with edges, there are 2n chiral edge modes in the gap above the nth Landau level.
Semiclassically, the chiral edge modes can be interpreted as “skipping orbits” of electrons that
arise due to their circular motion in the magnetic field (see bottom of Fig. 1.1b for a schematic
depiction of this effect). As the discussion in Sec. 1.2.2 shows, the nonzero Chern numbers and
chiral edge modes implies a quantized Hall conductance in the bulk. Specifically, when the Fermi
energy lies in the gap above the nth Landau level, the Hall conductance of the system is given
by nσ0. This quantized bulk response leads to one of the most noticeable features of the integer
quantum Hall effect, namely the plateaus formed by the Hall conductance as a function of the
magnetic field (see top panel of Fig. 1.1b)12.

The topological robustness of the edge modes protects this effect against disorder (in fact,
the quantum Hall effect would not exist without disorder [69]), which means the quantized
conductance nσ0 can be observed in wild and relatively uncontrolled solid state samples to
a accuracy of a few parts per billion. Due to its universality and robustness, the Quantum
hall conductance is used as an international standard for electrical resistance [67]. The integer
quantum Hall effect is a prominent example of the robust and exotic effects that can arise from
nontrivial topology.

10The factor of 1/2 arises since a two-fold spin degeneracy was not assumed.
11The factor of two arises because of the spin degeneracy of electrons, which is not lifted significantly unless the

magnetic field is very strong.
12To see how the plateaus form, note that the spacing ∆E between the Landau levels depends linearly on the

magnetic field. As the magnetic field B is increased, a Landau levels will therefore cross the chemical potential
at certain strengths of B. Each time a Landau level crosses the chemical potential, the sum of Chern numbers
of bands below the chemical potential decreases by 2, and hence the Hall conductance decreases by σ0 (see
Eqs. (1.8) and (1.4)). This leads to the plateau-structure of the Hall resistance as function of magnetic field shown
in top panel of Fig. 1.1b (the figure depicts the Hall resistance on the y-axis, which is obtained by taking the
inverse of the Hall conductance).
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a b c d

Figure 1.3: Schematic depiction of how particle-hole symmetry can lead to the topological
protection of features in a one-dimensional system. Panel a) shows the energy spectrum of an
infinite 1-dimensional system (wire) with particle-hole symmetry. Particle-hole symmetry implies
that the energy spectrum is symmetric around zero. Panel b) shows the spectrum of the same
system in a wire of finite length, with the spectrum of edge modes at one edge displayed (a
schematic depiction of such an edge mode is shown in panel d)). This system has an even number
of edge modes in the gap at E = 0, and is topologically trivial. c) Spectrum of a system with a
single self-conjugate edge mode at energy zero. Due to particle-hole symmetry, the zero-energy
mode can only disappear if the bulk gap closes, or the symmetry is broken; the zero-energy mode
is thus a topologically-protected feature of the system.

1.3 Topological features of superconducting wires
Sec. 1.2 identified the numbers of chiral edge modes {zn} as topological invariants of two-
dimensional systems. In this section, we give an example where the presence of a symmetry can
also assist in protecting the topological features of a system.

Specifically, we consider a one-dimensional system with particle-hole symmetry13. Particle-hole
symmetry is present when the Hamiltonian H is purely imaginary in some basis: H = −H∗. The
symmetry H = −H∗ implies that the eigenstates of H come in pairs: if |Ψn〉 is an eigenstate
of H with energy En, the state |Ψ∗

n〉 also is an eigenstate, but with energy −En
14. The energy

spectrum of the system is thus symmetric around E = 0, as schematically depicted in Fig. 1.3a
for the infinite one-dimensional wire. We consider the case where the infinite system has an
energy gap around E = 0.

As in Sec. 1.2, we study the system’s topological properties by confining it to a geometry with
edges, such that the wire has a finite extent. In this case, as in Sec. 1.2, the system may have
localized edge modes in its bulk gaps, as depicted in Fig. 1.3d. Due to the symmetry described
above, edge modes with nonzero energies come in pairs with opposite energies, as depicted in
Fig. 1.3b.). Importantly, it is possible for zero-energy edge modes to be their own conjugates, as
in Fig, 1.3c.

The localized edge modes can be eliminated under perturbations of the system, by shifting
their energies until they merge with the bulk bands. Crucially, when the bulk gap is fixed,
edge modes can only be eliminated pairwise in this fashion, due to the symmetry of the energy

13Specifically, we consider symmetry class D in the Altland-Zirnbauer classification (see Sec. 1.4).
14Here |Ψ∗

n〉 is obtained by complex-conjugating the components of |Ψn〉 in the basis where H = −H∗.
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spectrum. Thus, if the number N0 of self-conjugate edge modes on one edge is odd (this case is
shown in Fig. 1.3c), at least one edge mode has to stay confined at E = 0 during any deformation
of the system that preserves particle-hole symmetry and keeps the bulk gap at energy 0 open.

The above discussion shows that the parity of the number of zero-energy edge modes (−1)N0

as a topological invariant of the system (by the definition in Sec. 1.1). In contrast to Sec. 1.2,
the invariant (−1)N0 is a Z2 index: it can only take two distinct values, corresponding to the
topologically trivial and nontrivial cases.

Analogously to the Chern numbers the two-dimensional systems (see Sec. 1.2), it is also
possible to identify a topological invariant directly from the Bloch-space Hamiltonian H(k) of
the system [16]. The bulk invariant is given by

p = sgn (Pf[H(0)] Pf[H(~π/a)]) , (1.9)

where z = −1 corresponds to the topologically nontrivial case, and a denotes the lattice constant.
The so-called Pfaffian Pf(·) is a scalar quantity defined for antisymmetric matrices which is
invariant under orthogonal transformations15 . Analogously to the Chern numbers, the index p
gives a complete topological classification of the system [18]. As for the two-dimensional system
in Sec. 1.2, the parity of the number of zero-energy edge modes must therefore be given by some
function of p. Indeed, it was established by in Ref. [16] that

(−1)N0 = p. (1.10)

This constitutes the bulk-edge correspondence for the one-dimensional wire with particle-hole
symmetry.

Majorana modes at the ends of superconducting wires

Particle hole-symmetry is notably found in Boguliubov-de Gennes (BdG) Hamiltonians that
provide a mean-field description of fermionic systems with superconductivity. BdG-Hamiltonians
act on a space that consists of two particle-hole conjugate copies of the same system. In this
way, particle-hole symmetry is artificially present in BdG Hamiltonians. Nevertheless, such
systems can have edge-modes that are their own conjugates [16]. The self-conjugate modes
correspond to many-body excitations that are their own antiparticles. These excitations are
known as Majorana fermions, and have non-trivial exchange statistics with potential applications
in quantum computation. Majorana fermions have for instance been predicted in a 1-dimensional
wire with strong spin-orbit coupling in the proximity of superconductivity (see e.g. Refs. [66,74]).
Fig. 1.1a shows a scanning electron microcopy (SEM) image of such an experimental setup.
While the Majorana fermions’ exotic topological properties have not yet been experimentally
demonstrated, these excitations are subject of intensive studies [75–77].

1.4 Topological insulators
Sec. 1.3 demonstrates that particle-hole symmetry can lead to the topological protection of
zero-energy edge modes in a one-dimensional system: these features cannot vanish under any

15More information about Pfaffians can e.g. be found in Ref. [73]. Note that the matrix representation of the
Hamiltonian that enters in Eq. (1.9) should be given in a basis where that H = −H∗.
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Figure 1.4: Periodic table of topological insulators (see discussion in Sec. 1.4). The table classifies
the topological properties for systems with each of the 10 Altland-Zirnbauer (AZ) symmetry
classes [78]. Each row correspond to distinct symmetry classes, identified by the first four columns:
the first column shows the index of the class in the AZ classification, while the Greek letters
Θ, Ξ, and Π in columns 2-4 indicate whether, respectively, time-reversal, particle-hole or chiral
symmetry are present. For the two former, the sign indicates whether the symmetry operator
squares to 1 or −1; these two cases correspond to physically distinct situations. Columns 5-12
show how many topologically distinct phases are supported, for each combination of symmetry
class, and dimensionality d. The number 0 corresponds to all phases being topologically identical,
Z2 indicates the existence of two distinct topological phases, and Z indicates that an infinite
family of topological phases exists that can be labelled by integers. Note that chiral symmetry is
automatically present when time-reversal and particle hole symmetry is present. The table was
obtained in Refs. [18, 19].
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deformation of the system that preserves the system’s bulk gap and symmetry. In similar
ways, any symmetry can potentially lead to the topological protection some property in a
system. As described in Sec. 1.1, materials where nontrivial properties are topologically protected
by the systems’ band gaps and symmetries are collectively known as topological insulators.
Topological insulators host a wide range of interesting, and potentially useful, physical phenomena
characterized by their robustness, universality, and exotic nature [79]. In addition to the two cases
discussed in Secs. 1.3, notable examples of topological insulators include topological insulators
protected by time-reversal symmetry in two and three dimensions (see Fig. 1.1c). In this class
of materials, time-reversal symmetry respectively leads to the topological protection of helical
modes and Dirac nodes in the system’s edge spectrum [9–11].

Any symmetry class can potentially support its own family of topological insulators by
protecting topological features in the system. However, the most interesting symmetry classes
from a physical perspective are the symmetries that are generically present in real-world systems
– in particular, symmetries which are not broken by disorder. The most important among these
are time-reversal symmetry, particle-hole symmetry, and chiral symmetry [78]. Dividing into
cases where each of these four symmetries are present or not, one can verify that 10 distinct
combinations of the symmetry classes are possible, including the trivial cases (See Fig. 1.4). These
10 symmetry classes are collectively described in the Altland-Zirnbauer (AZ) classification of
symmetries [78].

After the discovery of topological insulators protected by time-reversal symmetry [9–11],
extensive theoretical work sought to identify the topological phases that are supported by various
symmetry classes16. An important result was the classification of all topological phases supported
by each of the 10 AZ symmetry classes in any given dimension [18,19]. The resulting “periodic
table” of topological insulators is shown on Fig. 1.4 (see caption for explanation). Note that
not all combinations of dimensionality and symmetry class can support a topological insulator –
for example there exists no 1-dimensional version of the Chern insulator17. Note also that all
combinations of symmetry class and dimensionality support a trivial topological phase: it is
always possible for a system with of a given symmetry and dimensionality to be topologically
trivial even though topological insulators are supported. For instance, not all 2-dimensional
systems are Chern insulators.

The 10 AZ symmetry classes are not the only symmetries that can support topological
insulators. Notably, crystal symmetries, such as inversion symmetry, can support new types
of topological insulators, by topologically-protecting features in the bands of materials. Such
crystal-symmetry protected topological insulators are a subject of current research [80].

1.5 Discussion

This chapter introduced a new class of materials – the topological insulators and superconductors.
These materials are characterized by exotic, universal extremely robust properties. The theoretical
description of topological insulators and superconductors have led to the the discovery of several

16See the beginning of this chapter for the definition of topological phase.
17In fact, in each dimension, only 5 of the 10 symmetry classes in the periodic table (Fig. 1.4) support a topological

insulator.
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materials with these novel properties, such as HgTe quantum wells, Bi2Se3, or proximity-coupled
nanowires with strong spin-orbit coupling [11–13, 66, 76, 77]. While topological insulators and
superconductors have been identified and studied experimentally, their novel properties have
been challenging to realize as robust and useful effects [80,81], except for the well-known (and
remarkable) integer quantum Hall effect [14, 67]. Topological insulators and superconductors
remain under intensive investigation, due to the exotic and potentially useful phenomena these
materials may support.

Even while experimental signatures remain elusive, the theoretical discovery of topological
insulators has had a profound impact. In particular, the theoretical advances described above
have inspired the explorations of new topological effects far beyond the originally-imagined
solid-state settings. Settings where topological effects are explored in this way include photonic
crystals [59,82–85], optical cavities [3,57], mechanical systems [86–88], and adiabatic pumping
effects [8,65]. A solid-state field which has emerged after the discovery of topological insulators is
the characterization of topological properties of non-gapped materials (Weyl semimetals) [89]. In
several of the cases above, the theory of topological insulators played a crucial role in predicting
new effects. The discoveries above open up the possibility for additional unexplored topological
effects in non-solid-state settings.

A prominent direction of studies which originates from the discovery of topological insulators
is the exploration of topological phases in periodically driven systems. This topic is the focus
Chapters 2-7 in this thesis. Chapter 8 explores a novel, driving-induced topological effect that
arises in a classical, non-solid-state setting [3].



Chapter 2

Topological Phases in Periodically
Driven Systems

Secs. 2.1 and 2.2 of this chapter are partially based on Chapter 3 from the author’s master’s
thesis (2015). The master’s thesis is cited as Ref. [4].

The last chapter introduced a class of materials known as topological insulators and supercon-
ductors. Topological insulators and superconductors are characterized by universal, exotic, and
extremely robust phenomena that have multiple potential applications. These effects can be seen
as arising from the topological properties of the bulk materials. Here the term “topological” refers
to the properties of materials which are invariant under gap-preserving deformations, as described
in Sec. 1.1. Remarkably, as the discussion in Sec. 1.2 showed, materials can have such nontrivial
topological features. The theoretical description and classification of topologically-invariant prop-
erties of materials has led to predictions and discovery of several materials and setups that act as
topological insulators or superconductors [18,19]. Examples which are now well-known include
Bismuth Selenide, Mercury-Telluride quantum wells [11–13], and proximity-coupled nanowires
with strong spin orbit coupling [66,76,77]. With the notable exception of the integer quantum
Hall effect [14] however, signatures of topological insulators or superconductors have so far proven
elusive to realize as roubst experimental effects [80,81].

In recent years, periodic driving has been proposed as new a way of manipulating the
properties of materials. Here periodic driving in practice means subjecting the system to an
external oscillating force, such as the electromagnetic field from a laser. As we demonstrate
in this chapter (Secs. 2.1-2.2), periodic driving can in certain respects be used to effectively
modify the Hamiltonian of a system. Initial motivation for theoretical work in this field was
to use this effect to drive an otherwise ordinary solid-state system into a nontrivial topological
phase [21,23,24]. Currently, experimental realizations of such solid-state effects remain a challenge
due to the high frequency and intensity required to significantly affect a material’s properties.
Still, subsequent theoretical work has led to multiple new discoveries and experiments beyond
the originally-imagined solid-state setting [3, 37, 42, 49, 50, 52, 53, 57, 59–61, 63]. For instance,
periodic driving has been used to realize the Haldane model1 [90] in gasses of cold atoms in

1The Haldane model is an example of the Chern insulator that was discussed in Sec. 1.2.

29
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optical lattice [41]. Other notable advances include the prediction of Floquet time crystals and
its subsequent experimental discovery in systems of trapped ions [49, 50, 52], as well as novel
topological effects in photonic crystals [59–61].

An important and surprising result has been the realization that periodically driven systems
host a richer variety of topological phases than their nondriven counterparts [1,5,42]. In particular,
it is possible to achieve entirely new topological phases in periodically driven systems, which
have no equivalent in nondriven systems [1, 2, 5, 42, 46, 49, 50]. The topological properties of
these new phases are not captured by an effective static Hamiltonian, but are encoded in the
nontrivial dynamics of the system that takes place within each driving period. Such novel
phases are of intrinsically nonequilibrium nature, and are known as anomalous topological phases.
Anomalous topological phases include the Floquet time crystals [49,50], as well as the anomalous
Floquet-Anderson insulator, which can can support nonzero, quantized charge transport on its
edges [2, 6, 91].

An important challenge to be overcome in the field is that large, interacting many-body
systems almost always act as thermal baths. Systems with this property (known as thermalizing
systems) irreversibly absorb energy from the periodic driving field, leading to an continuous
and uncontrollable heating effect [92–94]. The fixed pint of this heating process is a trivial,
infinite-temperature steady state which cannot support any nontrivial phase structure. There
are currently several proposed strategies to counter the heating effect, such as coupling the
system to external baths [95, 96], or realizing topological effects in the transient dynamics of
the system, before heating becomes significant [62]. An important approach, which forms the
basis of discussion in Chapters 5-6, is to prevent the system from acting as a thermal bath in the
first place. Importantly, using disorder-induced many-body localization [97,98]. The existence of
nontrivial topological invariants of the micromotion (i.e., the dynamics of the system that take
place within each driving period) allows driven many-body localized systems to support nontrivial
topological phases [7, 45, 47, 49, 50, 99]. Chapters 5-6 will study the stability and topological
features of such many-body localized topological phases.

This chapter introduces the subject of topological phases in periodically driven systems. The
first part (Sec. 2.1) of this chapter reviews the theory of periodically driven quantum systems.
The results of this section forms the basis for discussion in the rest of this chapter, and the
remaining part of this thesis. Subsequently, Sec. 2.2 discusses the topological phases supported by
noninteracting driven systems. In particular, Secs. 2.2.2-2.2.4 demonstrating that driven systems
may host a richer topology than their nondriven counterparts. Following this, Sec. 2.3 discusses
the qualitative differences between noninteracting and interacting driven systems, providing a
more detailed description of the heating effect that was discussed above, as well as the possible
strategies to counter this effect. The Chapter concludes with a brief review of experimental
proposals in the field (Sec. 2.4) and a discussion (Sec. 2.5).
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2.1 Theory of periodically driven systems
We begin the chapter by reviewing the theory of periodically driven systems in quantum mechanics.
The results obtained here forms the basis for the description of topological phases in periodically
driven systems. Moreover, this section common terminology, which will be used extensively in
this thesis.

According to the laws of quantum mechanics, the state of a physical system associated with a
vector |ψ(t)〉. The time-evolution is of the system is described by the Schrödinger equation

∂t|ψ(t)〉 = −iH(t)|ψ(t)〉, (2.1)

where H(t) is the Hamiltonian operator of the system2. The above differential equation can be
formally integrated, and its solution reads

|ψ(t)〉 = U(t)|ψ(0)〉, (2.2)

where the U(t) denotes the time-evolution operator of the system. The time-evolution operator is
unitary, and can be written as

U(t) ≡ T e−i
∫ t

0 H(t′)dt′
, (2.3)

Here T denotes the time-ordering symbol3. This symbol orders the factors of H(t′) in the
expansion of the exponential above according to the time t′, such that operators associated with
later times are placed left of operators associated with earlier times.

In the case where the Hamiltonian of the system is time-independent, H(t) = H, the time-
evolution operator is given by U(t) = e−iHt. In this case, the solution of the Schrödinger equation
is simplified by the diagonalization of the Hamiltonian:

H|Ψn〉 = En|Ψn〉. (2.4)

The solutions {En, |Ψn〉} to eigenvalue problem above allows one to compute the time-evolution
of the system analytically, given any initial state. In this case, one can verify that U(t) =∑

n |Ψn〉〈Ψn|e−iEnt, and thus the solutions to the Schrödinger equation take the form

|ψ(t)〉 =
∑

n

cne
−iEnt|Ψn〉. (2.5)

The coefficients {cn} are constant in time, and are thus determined by the initial state: cn =
〈Ψn|ψ(0)〉. In this way, Eq. (2.5) allows one to compute the time-evolution of any state, given
the initial conditions. Systems where the Hamiltonian is time-independent are referred to as
nondriven systems.

If the Hamiltonian H(t) is not constant in time, it generally impossible to compute the
system’s time-evolution analytically as in Eq. (2.5). However, there is notable exception: if the
Hamiltonian depends periodically on time, such that H(t) = H(t+ T ) for some driving period T ,

2In this chapter, we set ~ = 1.
3 In practice, the-time-evolution operator can by computed from the Suzuki-Trotter expansion: U(t) ≈

e−iH(tN )δt . . . e−iH(t1)δt, where tn = nδt, and δt = t/N . The approximation becomes an equality in the limit
N → ∞.
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it is possible to analyze the time-evolution of the system in a similar fashion as for non-driven
systems. Such systems are referred to as periodically driven systems.

In periodically driven systems, the time-evolution operator satisfies the relation

U(t+ T ) = U(t)U(T ). (2.6)

This result can for instance be verified using the Suzuki-Trotter expansion (see Footnote 3). In
particular, U(mT ) = U(T )m for each integer m. Hence, the time-evolution of a state |ψ(t)〉 at
any integer multiple m of the driving period is given by

|Ψ(mT )〉 = U(T )m|Ψ(0)〉. (2.7)

In the following, we will refer to the time evolution of the system at integer multiples of the
driving period as the stroboscopic evolution of the system. Eq. (2.7) shows that the time-evolution
operator U(T ) over one driving period fully describes the stroboscopic dynamics of periodically
driven systems. This important operator is referred to as Floquet operator.

One of the most useful results in the theory of periodically driven systems is that the eigenvalues
and eigenstates4 of the Floquet operator describe the stroboscopic dynamics of the system in a
similar way that the eigenstates and eigenvalues of the Hamiltonian describe the dynamics of
nondriven systems. The central eigenvalue problem for periodically driven systems thus reads

U(T )|Ψn〉 = e−iεnT |Ψn〉, (2.8)

where εn is real and has units of energy5. The numbers {εn} are referred to as quasienergies,
and the eigenstates {|Ψn〉} are known as Floquet eigenstates. The Floquet eigenstates and
quasienergies, allows one to analytically compute the stroboscopic evolution of any state |ψ(t)〉.
Specifically, any integer multiple of the driving period m, the solutions to the time-dependent
Schrödinger equation takes the form

|ψ(mT )〉 =
∑

n

cn|Ψn〉e−iεnmT , (2.9)

where, as for non-driven systems, the coefficients {cn} are determined by the initial conditions:
cn = 〈Ψn|ψ(0)〉. Note that Eq. (2.8) only defines quasienergy εn up to an integer multiple of the
driving frequency ω ≡ 2π/T . Thus, in order to be represented by a real number, quasienergy
requires a specification of an interval of width 2π/T in which it should take value, analogously to
the choice of Brillouin zone for crystal momentum. Such a quasienergy interval is known as a
quasienergy Brillouin zone.

From Eq. (2.9), we see that the stroboscopic evolution of the system are identical to the
evolution generated by a static Hamiltonian, namely the Hamiltonian

Heff =
∑

n

|Ψn〉〈Ψn|εn. (2.10)

We refer to Heff as the effective Hamiltonian of the system. Note that the effective Hamiltonian is
not uniquely defined, but requires a specification of quasienergy Brillouin zone (see the discussion

4Note that the Floquet operator is unitary, and therefore diagonalizable.
5Since U(T ) is unitary, its eigenvalues are complex numbers of unit modulus. Thus εn must be real.
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below Eq. (2.8)). Formally, the effective Hamiltonian is given by the logarithm of the Floquet
operator, i.e., Heff = i

T logU(T ), where the choice of branch cut for the logarithm determines the
quasienergy Brillouin zone for Heff .

Comparing Eq. (2.9) to Eq. (2.5), we see that quasienergy plays a role analogous to energy
for the time-evolution in periodically systems. Like energy, quasienergy is a conserved quantity in
periodically driven systems6. Importantly, however quasienergy is only defined up to an integer
multiple of 2π/T , and is thus of periodic nature. The periodicity of quasi-energy constitutes
one of the main qualitative differences in the analysis of non-driven and periodically driven
systems. The distinction has important implications for the many-body dynamics and topological
properties of periodically driven systems, as will be shown in the following sections.

Micromotion and Floquet states

The above discussion shows that the stroboscopic evolution of a periodically driven system is
determined by the Floquet eigenstates and quasienergies of the system (Eq. (2.9)). However, in
some cases, important properties of a system are not captured by its stroboscopic evolution, but
depend on the dynamics of the system that takes place within a driving period [1, 100,101]. This
is in particular a defining feature for the new, intrinsically-nonequilibrium topological phases
(the so-called anomalous Floquet phases) that can arise in periodically driven system, and will
be a focus in the following. In this subsection, we therefore briefly discuss how the to analyze
the motion of the system that takes place during the driving period. This part of a periodically
system’s dynamics is referred to as the micromotion.

The micromotion of a periodically driven system is conveniently expressed by a family of
time-dependent states {|Φn(t)〉}, known as the Floquet states (not to be confused with Floquet
eigenstates). These states are defined from the Floquet eigenstates such that

|Ψn(t)〉 = e−iεnt|Φn(t)〉, (2.11)

where |Ψn(t)〉 ≡ U(t)|Ψn〉. By construction, the Floquet states are periodic in time: |Φn(t)〉 =
|Φn(t+T )〉, as can be verified using Eqs. (2.6) and (2.8). The Floquet states can be used to express
the continuous time-evolution of the system. Specifically, the solution to the time-dependent
Schrödinger equation at any time takes the form

|ψ(t)〉 =
∑

n

cn|Φn(t)〉e−iεnt, (2.12)

where the amplitudes {cn} are determined from the initial conditions: cn = 〈Ψn|ψ(0)〉. The
existence of the solution in Eq. (2.11) was first established by Gaston Floquet in 1883 (although
not in the context of quantum mechanics) and is known as the Floquet theorem [102].

The solutions Eq. (2.11) bear a clear resemblance to the Bloch wave functions of a periodic
crystal. The Bloch theorem dictates that each eigenstate of a translationally-symmetric Hamil-
tonian can be expressed as a periodic function times a complex plane wave. The plane wave’s
wavenumber determines the crystal momentum of the state. Similarly to quasienergy, crystal

6This can be verified by explicitly computing the expectation value of the quasienergy 〈ε〉 =
∑

n
〈Heff〉 as a

function of time.
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Figure 2.1: a) Schematic depiction and quasienergy spectrum of an infinite two-dimensional
system subject to periodic driving. Red labels denote the indices of the bands, while blue labels
denote the indices of the gaps, with the labelling scheme introduced in Sec. 2.2.1. Bright colors
indicate copies of the quasienergy bands in the repeated-zone scheme. b) Schematic depiction
and quasienergy spectrum of a topologically nontrivial system, confined to the geometry of a
strip. In addition to the spectrum of bulk modes, only edge modes confined to the lower edge are
displayed. Adapted from Ref. [4].

momentum is only defined up to an integer multiple of 2π/a, where a is the lattice constant.
Thus, quasienergy can be viewed as the temporal analogue of crystal momentum: while crystal
momentum is conserved due to discrete spatial translation symmetry [103], the conservation of
quasienergy results from the discrete time-translation symmetry which is present in periodically
driven systems.

2.2 Topological phases in driven, noninteracting systems
Having reviewed the theory of periodically driven systems in quantum mechanics, we now explore
their topological properties. Compared to nondriven systems, periodic driving leads to significant
qualitative differences between noninteracting and interacting systems [92–94]. For this reason,
this section will focus on noninteracting systems, while the case of interacting many-body systems
in discussed in Sec. 2.3. The distinction between noninteracting and interacting driven systems is
discussed in detail in Sec. 2.3.

Using the driven version of the two-dimensional system studied in Sec. 1.2 as an example,
we demonstrate that periodically driven systems can support topologically-nontrivial band
structures, as well as entirely new, intrinsically non-equilibrium phases of matter (Secs. 2.2.2-2.2.4).
Subsequently, we briefly describe the role of symmetries in topologically-protecting nontrivial
features in a driven systems (Sec. 2.2.5), and conclude by discussing the general topological
classification of periodically driven systems (Sec. 2.2.6). The discussion in this section extensively
uses the concepts and models that were introduced in Chapter 1.

2.2.1 Topological phases in a driven 2-dimensional system

We illustrate how topologically-nontrivial features can arise in a periodically driven system by
considering a system of noninteracting fermions on a two-dimensional lattice. The system is
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subject to periodic driving, meaning that the Hamiltonian depends on time in a periodic fashion:
H(t) = H(t+ T ). Here T denotes the driving period. While we note that the results discussed
in this section can be obtained even for disordered systems, we assume for simplicity that the
Hamiltonian has discrete spatial translation symmetry [2]. The discussion here will proceed
analogously to Sec. 1.2, where the nondriven version of this system was studied in Sec. 1.2.

Due to the presence of spatial translation symmetry, crystal momentum k is a good quantum
number in the system: Specifically, the Hamiltonian is block-diagonal in crystal momentum, such
that the Hamiltonian is given by the Bloch space Hamiltonian H(k, t) within the subspace with
crystal momentum k. The time-evolution operator U(t), which is obtained as an exponential of
the Hamiltonian, inherits the block-diagonal structure of the Hamiltonian. In particular, time-
evolution in the subspace with crystal momentum k is generated by the Bloch-space evolution
operator

U(k, t) = T e−i
∫ t

0 dt′H(k,t′). (2.13)

The locality and boundedness of the Hamiltonian implies that the time-evolution operator is
continuous in crystal momentum and time, respectively [5]. The spectral decomposition of the
Bloch-space Floquet operator U(k, T ) defines the Floquet eigenstates {|Ψn(k)〉} and quasienergy
bands {εn(k, t)} of the system, analogously to the energy bands in the nondriven case (see
Sec. 1.2):

U(k, T ) =
∑

n

e−iεn(k)T |Ψn(k)〉〈Ψn(k)|, (2.14)

The continuity of U(k, T ) implies that the quasienergy bands {ε(k)} are continuous in crystal
momentum.

At this point, a qualitative difference between driven and nondriven systems arises: due
to their periodic nature, there is no obvious way to label the quasienergy bands7. Specifically,
the labelling of quasienergy bands requires a choice of quasienergy Brillouin zone (QBZ): we
choose some arbitrary quasienergy ε0 and label the quasienergy bands according to their values
in the quasienergy Brillouin zone [ε0, ε0 + 2π/T ). With this labelling, we let gap n denote the
quasienergy gap above band n, such that gap n separates band n and n+1 (for n < N), while gap
1 separates band N and 1. Fig. 2.1a, schematically depicts a possible quasienergy band structure
for the two-dimensional system we study, as function of x-crystal momentum kx, represented in a
repeated zone scheme. Fig. 2.1 depicts the labelling of quasienergy bands (red) and gaps (blue)
in the two-band system which results from a QBZ choice where ε0 = 0.

To reveal the nontrivial topological features of the model, we confine the system to the
geometry of a strip, in such a way that translational invariance is not broken along the x-axis
(left panel in Fig. 2.1b). The strip has edges at y = y1 and y = y2, where y1 < y2, and we refer
to these edges as 1 and edge 2, respectively. Due to the unbroken x-translation symmetry, kx

remains a good quantum number, and the quasienergies of the system are still given by smooth
functions of kx. As for the nondriven system discussed in Sec. 1.2, the quasienergy bands of the
infinite system are unaffected by the presence of the edges and remain intact, when the strip is
wide enough. These bands, indicated by (i) in Fig. 2.1b, are referred to as the bulk quasienergy
bands of the system. In addition to the bulk quasienergy bands, the quasienergy spectrum can

7However, there is in fact a natural labelling of quasienergies, defined by continuation in t of the spectrum of
U(k, t). See Sec. 3.2.2 for a discussion of this labelling scheme.
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also contain edge modes, corresponding to states localized on either of the edges of the strip. In
the same way as for the edge modes in the nondriven case (see Sec. 1.2), the quasienergies of
these edge modes must lie within the gaps of the bulk bands.

As in the nondriven case (see Sec. 1.2), the quasienergy spectrum may hold chiral edge modes8

that connect two bulk quasienergy bands across a gap. Such a situation is depicted in Fig. 2.1b:
here, one of the the system’s quasienergy gaps holds a single chiral edge mode (indicated by
green), corresponding to a state located on the lower edge. As for the analogous nondriven
case, this feature can only be eliminated under a smooth deformation of the system, if the bulk
quasienergy gap closes. In this way, the single chiral edge mode is topologically protected by the
finite width of the quasienergy gap. More generally, we identify the number zn of chiral edge
modes in quasienergy band n (confined to edge 1) as a topological invariant of the system9: As
for the nondriven case, the existence of zn rightmoving modes in gap n on the lower edge implies
the existence of zn leftmoving modes on the top edge. This is indicated by red in Fig. 2.1b.

As for the nondriven case in Sec. 1.2, the topologically nontrivial edge modes carry a
topologically-protected chiral current. In particular, a wave packet constructed from a chiral
edge mode will move unidirectionally along the edge, and is insensitive to any backscattering by
impurities10.

2.2.2 Anomalous topology and the micromotion invariant

For nondriven a system (Sec. 1.2), chiral edge modes are a manifestation of nontrivial topological
properties of the bulk. This relationship is summarized by a bulk-edge correspondence, which
links the Chern numbers {Cn} of the bulk energy bands (see Eq. (1.2)) to the numbers {zn} of
chiral edge modes in bulk energy each gap:

Cn = zn − zn−1 (2.15)

Since the number of rightmoving modes below the lowest energy band must be zero (z0 = 0), the
Chern numbers of the bulk energy bands {Cn} fully determine the number of edge modes in any
given gap.

For the periodically driven system discussed in this section, a result analogous to Eq. (2.15)
holds for the chiral edge modes of quasienergy bands11. In this case, zn refers to the number
of chiral edge modes in quasienergy gap n, and Cn refers to the Chern number of the nth bulk
quasienergy band12. Note that gap 0 is identical to gap N due to the periodic nature of the
quasienergy bands. Crucially, due the periodic nature of quasienergy, chiral edge states may
connect band N with band 1 across the edge of the quasienergy Brillouin zone, thus allowing z0
to be nonzero; indeed, the location of gap 0 is matter of convention. Thus, the Chern numbers of

8See also Sec. 1.2 for definition of chiral edge modes.
9See Footnote 4 in Chapter 1 for a rigorous definition of zn.

10This can for instance be shown using the fact that the stroboscopic dynamics of the driven system are replicated
by a static “effective” Hamiltonian Heff(kx) (see discussion in Sec. 2.1). The energy spectrum of Heff(kx) is identical
to the quasienergy spectrum {εn(kx)} of the system (including the chiral edge modes), and hence features a
rightmoving edge mode at the bottom edge.

11The result in Eq. (2.15) can be established using similar spectral-flow arguments as for the nondriven case [65]
12The Chern number Cn is computed using the band projector |Ψn(k)〉〈Ψn(k)| in Eq. (1.2).
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the quasienergy bands do not fully determine the numbers of chiral edge modes. For instance, the
relationship in Eq. (2.15) implies that the Chern number of bands 1 and 2 in Fig. 2.1b are given
by 1 and −1, respectively. This configuration of Chern numbers in Fig. 2.1b are also consistent
with a situation where gap 0 and 1 hold 1 and 2 chiral edge modes, respectively. It is even possible
for the system to have a nonzero number of chiral edge modes in each gap, while Chern numbers
of all bulk bands are zero, as shown in Fig. 2.2 [1]. This situation is described in Sec. 2.2.3 below.

The discussion above shows that the periodically-driven, two-dimensional system has a richer
topological structure than its nondriven counterpart [1]. Specifically, while the topological phase
of nondriven system with N bands is characterized by N − 1 independent integers, the topological
phase of its driven counterpart is characterized by N integers. The integers characterizing
nondriven systems are the numbers of chiral edge modes z1 . . . zN−1, or, equivalently, the Chern
numbers13 C1 . . . CN−1, while the N invariants characterizing periodically driven systems are the
number of chiral modes z0 . . . zN−1. The existence of the additional invariant z0 in driven systems
results from the presence of an additional “quasienergy Brillouin zone edge gap” that can host
chiral edge modes.

Importantly, even while the topological phase of a driven N -band system is characterized by
N independent integers, the system’s bulk quasienergy bands are only characterized by N − 1
independent integers14, namely the Chern numbers C1 . . . CN−1. Thus, as also described above,
Eq. (2.15), the Chern numbers of the bulk bands do not capture all topological properties of the
system: there exists exactly one additional integer-valued topological invariant of the bulk, ν,
which is not associated with the quasienergy bands. As we show below, this invariant is associated
with the bulk system’s micromotion, and we refer to this invariant ν as the micromotion invariant.

The micromotion invariant will be play an important role in the discussion below, and
throughout this thesis: the next chapter (Chapter 3) develops a general method for classifying
the topological properties of the micromotion in periodically-driven systems (given any symmetry
class), identifying ν with nodal points in the spectrum of the bulk evolution operator U(k, t).
Following this, Chapter 4 explores the physical nature of the micromotion invariant, showing that
ν characterizes the the orbital magnetization of the bulk: specifically, when disorder is present,
the average orbital magnetization density of particles in the bulk takes the quantized value ν/T .

The existence of a micromotion invariant is a general feature in periodically driven sys-
tems [1,2, 5, 42,104]. Its existence implies that periodically driven systems support topological
phases of matter which have no analogues in static systems [1, 2, 5, 42, 104]. These phases,
which are characterized by a nontrivial value of the micromotion invariant, and of intrinsically
non-equilibrium nature, are referred to as anomalous (topological) phases15. The following sub-
section explores the nature and manifestations of these anomalous topological phases in the
two-dimensional system that was introduced in Sec. 2.2.1.

13 The Chern number of band N is determined from the Chern numbers of the remaining bands: CN = −
∑N−1

n=1 Cn
and is therefore not independent from the others [15]. Note that the bulk-edge correspondence in Eq. (2.15) ensures
that the two sets of invariants ({zn} and {Cn}) are equivalent: distinct configurations of the invariants z1 . . . zN−1
correspond one-to-one to distinct configurations of the Chern numbers C1 . . . CN−1.

14The sum of all quasienergy bands’ Chern numbers must be given by zero [15], and hence the Chern number of
band N is determined from the Chern numbers of the previous N − 1 bands, see footnote 13.

15More generally, anomalous refers to topological features, which have no analogue in nondriven systems.
Anomalous topological features are typically associated with the driven system’s micromotion.
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Bulk-edge correspondence Even though the Chern numbers of the bulk quasienergy bands
are not sufficient to determine the number of chiral edge modes in the quasienergy gaps, the
bulk-edge correspondence for the two-dimensional system we study is well-established, and was
first identified by Rudner et al in Ref. [1]. Here, it was shown that the number of chiral edge
modes in quasienergy gap n is related to the full Bloch-space time-evolution operator U(k, t) as
follows:

zn = − 1
8π2

∫
d2kdtTr

(
U †

n∂tUn [U †
n∂kxUn, U

†
n∂kyUn]

)
− x ↔ y, (2.16)

where the time-periodic unitary operator Un(k, t) is given by Un(k, t) = U(k, t)eiH
(n)
eff (k)t. Here

H
(n)
eff is the effective Hamiltonian of the system, defined with a quasienergy Brillouin zone whose

boundary lies in gap n (see Eq. (2.10)).
Eq. (2.16) demonstrates that the number of chiral edge modes depends on the entire

micromotion of the system (i.e., the evolution that takes place within a driving period), which is
encoded in the full time-evolution operator U(k, t). This result is thus is in good agreement with
the discussion above Eq. (2.15).

2.2.3 The AFAI phase

The discussion above shows that periodically driven systems are characterized by an additional
micromotion invariant, compared to their nondriven counterparts. The existence of the micromo-
tion invariant implies that driven systems support new, anomalous, topological phases, that have
no equivalent in nondriven systems. This subsection studies the nature of such anomalous phases
in the two-dimensional system that was introduced in Sec. 2.2.1.

To see how an anomalous topological phase can be realized in the system, note that
quasienergy’s periodic nature allows each gap in the quasienergy spectrum to hold a single
chiral edge mode16, in such a way that the edge modes “wrap” around the entire quasienergy
Brillouin zone. This situation is depicted schematically in Fig. 2.2c. The relationship between edge
modes and the Chern numbers in Eq. (2.15) implies that the Chern number of each quasienergy
bulk band is zero. Thus the periodically driven system can host chiral edge modes, even though
its bulk bands are topologically trivial. Note that chiral edge modes in nondriven systems implies
the existence of topologically-nontrivial bulk bands. The configuration of chiral edge modes
depicted in Fig. 2.2 is thus an anomalous topological feature: it cannot arise in any nondriven
system.

The manifestations of the anomalous topology become apparent once disorder is introduced:
as discussed in the end of Sec. 2.2.1, the chiral edge modes are unaffected by disorder, due to
the absence of channels for backscattering by impurities [69]. However, even while the chiral
edge modes persist, the presence of disorder can lead to localization of all Floquet eigenstates in
the bulk, in a mechanism equivalent to Anderson localization [2]. In this way, a situation can
arise where a fully localized bulk coexists with delocalized, topologically-protected chiral edge
states, as depicted in Fig. 2.3a. Note that the coexistence of delocalized chiral edge states and a

16In this subsection (and in Fig. 2.2c) only we refer only to edge modes confined one edge, while we note that a
chiral edge mode implies the existence of a counterpropagating mode localized at the other edge.
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Figure 2.2: Schematic depiction of the configuration of edge modes that signifies the AFAI – an
anomalous topological phase. The right panel shows the quasienergy spectrum of the system
when confined to strip geometry. In addition to the bulk quasienergy bands, only quasienergies of
edge modes confined to the lower edge are shown (green). Adapted from Ref. [4].

localized bulk states is a feature unique to periodically driven systems. In nondriven systems, the
chiral edge modes implies the existence of bulk energy bands with nonzero Chern numbers. As
originally explained by Laughlin (see Ref. [105]), bands with nonzero Chern numbers will always
host delocalized states, even in the presence of disorder. The coexistence of chiral edge modes
and localized bulk bands described above is the defining feature of an anomalous topological
phase17 known as the Anomalous-Floquet-Anderson Insulator (AFAI) [2]. The AFAI and its
generalizations plays a major role in this thesis, and will be the focus of discussion in Chapters 4-7.

To explore the physical properties of the AFAI note that localization of all Floquet eigenstates
in the bulk of the AFAI means that any particle initially located in the bulk remains confined
near its initial position indefinitely18; in this sense, the bulk is fully insulating. At the same
time, the persisting chiral edge modes cause particles at the edges move to unidirectionally along
the system’s edges, while the particles never penetrate into the bulk, due to the localization
of Floquet eigenstates here. This situation is first described by Titum et al in Ref. [2], and is
schematically depicted in Fig. 2.3a (taken from Ref. [2]). Interestingly, Ref. [2] showed that,
when all states along one edge of the strip are filled, the chiral edge modes carry a quantized
average current of ν/T . Here ν is the micromotion invariant identified in Sec. 2.2.2, which fully
determines the topological phase of the system when all bulk Floquet eigenstates are localized19.
Remarkably, this quantized effect is robust to perturbations, due to the stability of localization

17 Formally, the AFAI denotes a family of topological phases, that are each characterized by a distinct (nonzero)
number ν of chiral edge modes that appear in each gap while the bulk bands are trivial [2].

18To see this, note that a particle localized at position r in the bulk only overlaps significantly with nearby,
localized Floquet eigenstates {|ψn〉} whose centers are located near r: |ψ(0)〉 =

∑
n
cn|Ψn〉. Hence, at any integer

multiple of the driving period, the state of the system must be a superposition of these localized Floquet eigenstates
with the same weights (up to time-dependent phase factors), see Eq. (2.9). Thus, the particle remains confined
near r after each multiple of the driving period. During the driving period, the particle must also remain confined
near r, due to the limited duration of the driving period, and the existence of a maximal velocity in the system
(the Lieb-Robinson velocity) [106].

19See Footnote 17
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Figure 2.3: a) Schematic depiction of the AFAI phase, from Titum et al, Phys. Rev. X 6 021013
(2016) [2]:. When chiral edge modes coexist with a trivial bulk (as in Fig. 2.2), disorder can localize
all bulk Floquet eigenstates, while the chiral modes persist. In this case, a quantized current runs
along the edge, once all states near the edge are filled [2]. b) Numerical simulations of possible
detectable signatures of the AFAI, adapted from Kundu et al, arxiv:1708.05023 (2017) [91]. The
figure shows time-averaged density in the system, when two leads are coupled to two opposite
ends of the system (indicated by W0 on the left and right edge), and a large bias is applied
between the leads. In this case, a quantized current runs between the two leads [91].

of eigenstates in two dimensions [2].
Note that the effect described above only arises in periodically driven systems. Specifically,

the effect relies on the presence of chiral edge modes in a system with a fully-localized bulk
coexisting with a fully-localized bulk. If delocalized bulk states are present (as must be the
case for a nondriven system with chiral edge modes), particles initially confined to the edges
will eventually dissipate into the bulk. In this case, a quantized current will not run along the
edges. Thus the novel signatures of the AFAI relies on the coexistence of chiral edge modes and
topologically trivial bulk bands, which is only possible to achieve in periodically driven systems.

The novel signatures of the AFAI described above can lead to highly nontrivial experimental
effects, such as quantized charge transport: in Ref. [91], it was shown by Kundu et al that the
delocalized chiral edge modes of the AFAI conduct a quantized current, when two fermionic
leads are coupled to opposite edges AFAI (in a rectangular geometry), and a large bias is applied
between them. Fig. 2.3b is taken from Ref. [91], and depicts the time-averaged density in the
system in such a setting, where ν = 1. The behavior of the system in the simulation is in good
agreement with the description of the AFAI phase above (see Fig. 2.4a). The current running
between the two leads was found in Ref. [91] to be given by 1/T , to exponential accuracy.

While the AFAI has so far not been realized in fermionic many-body systems, such as solid-
state systems or gases of cold atoms, phenomena analogous to the AFAI have been detected
in experiments with photonic crystals [59–61] (see Fig. 2.6). This experimental realization is
discussed in more detail in Sec. 2.4.

2.2.4 Model of the AFAI phase

The above discussion established the AFAI as an anomalous topological phase In this subsection,
we present a specific model that realizes the AFAI phase. The model was first introduced in Ref. [1],
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Figure 2.4: Tight-binding model that realizes AFAI phase, adapted from Rudner et al, Phys. Rev.
X 3, 031005 (2015) [1]. a) Depiction of the driving protocol introduced in Sec. 2.2.4. b) Depiction
of the three qualitatively different trajectories of particles in the model: particles in the bulk
(blue) traverse closed loops, while particles at the edge (red and green) are shifted by one unit
cell along the edges of the system after one driving period. c) Quasienergy spectrum of the model,
in a strip geometry (as a function of crystal momentum along the strip). Blue color indicates the
bulk quasienergy bands, while red and green indicate the respective chiral edge modes.

and variants of the model have studied extensively in the literature, e.g., in Refs. [2, 6, 7, 46,91].
The model we present below will also feature in multiple chapters of this thesis (Chapters 3-7).

The model consists of noninteracting fermions on a two-dimensional bipartite square lattice
with lattice constant `, subject to a time-dependent Hamiltonian H(t). The system is periodically
driven, implying that the Hamiltonian depends on time in a periodic fashion: H(t) = H(t+ T ),
where T denotes the driving period. The driving period is divided into four segments of equal
length T/4, such that within the nth segment, H(t) = Hn, where

Hn = 2π
T

∑
r∈A

(c†
r+ancr + c†

rcr+an). (2.17)

Here cr annihilates a fermion on the lattice site with coordinate r, and the first sum runs over
all sites r on sublattice A in the bipartite square lattice. Finally, the vectors {an} are given by
a1 = −a3 = (`, 0) and a2 = −a4 = (0, `). The driving protocol described above thus turns on
hopping on every other bond in the lattice, in a clockwise fashion, as depicted in Fig. 2.4a. The
amplitude of the Hamiltonian Hn ensures that the time-evolution in the nth segment perfectly
transfers a particle on site r ∈ A to site r + an, and vice versa. Letting |r〉 denote the state c†

r|0〉
with a particle on site r (here |0〉 denotes the vacuum), we have e−iHnT/4|r〉 = −i|r ± an〉, where
the sign depends on whether or not site r is in sublattice A.

In an infinite geometry, the driving protocol described above results in particles traversing
perfect clockwise loops around a single plaquette during each driving period, as indicated by blue
in Fig. 2.4b. After each of the four segments, each particle gains a phase factor of −i, resulting in
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an overall phase factor of 1 after the driving period. We thus conclude that the Floquet operator
of the infinite system is given by the identity: U(T )|r〉 = |r〉. We conclude that any state is a
Floquet eigenstate of the system with quasienergy zero; the bulk bands of the system are thus
topologically trivial.

To study the topological properties of the model, we confine the system to the geometry of
a strip, such that translational invariance along the x-direction is not broken. In this case, the
dynamics of particles in the bulk of the strip are unaffected by the presence of the edges. The
only case where the edges affects a particle’s dynamics is when it initially located on a site in
sublattice A on the bottom edge (we ignore the top edge in the following discussion); due to the
presence of the edge, this particle will not be able to tunnel during the second or fourth segment
(see Fig. 2.4a). In this way, one can verify that a particle initially located on site r in sublattice
A will be shifted by one unit cell along the x-axis after each driving period, as indicated by green
in Fig. 2.4b. Since U(T ) acts as the translation operator on A-sites on the edge, and acts trivially
on all other states, one can verify that the system’s quasienergy spectrum (shown in Fig. 2.4c)
has a single, linearly dispersing edge mode (green) with fixed group velocity ∂ε

∂k = 1
T as function

of crystal momentum k along the x direction [1]. Sin nce the Floquet operator acts as the identity
on all other states, all other quasienergy bands take value 0 (blue), and correspond to trivially
localized eigenstawtes. The model thus features a single chiral edge mode, while its bulk bands
are fully localized. We thus conclude that the model realizes the AFAI phase.

We note that the localization of the bulk bands for the specific model above arises from
fine-tuning the model such that U(T ) takes value 1 in the bulk. However, the model above is a
stable phase once disorder is introduced, e.g., in the form of a constant, random on-site potential.
In this case, as was first shown in Ref. [2], the bulk Floquet eigenstates remain localized within a
certain range of the disorder strength, while the chiral edge modes persist. The stability of the
phase results from the robustness of localization of Floquet eigenstates in the bulk [2].

2.2.5 Symmetry-protected topological phases in driven systems

The discussion in this chapter has so far focused on the topological properties of a driven 2D
system in the absence of any symmetries. However, as for nondriven systems (see Secs. 1.3-1.4),
the presence of symmetries can lead to the topological protection of additional features in the
system. In this section, we briefly discuss how symmetries may protect topological features in
periodically driven system. As for the two-dimensional case in Sec. 2.2.3, symmetries may even
lead to the topological protection of features which have no equivalent in nondriven systems.

These facts are illustrated by considering the case of a one-dimensional system with (Class
D) particle-hole symmetry. The corresponding nondriven case is discussed in Sec. 1.3, and the
discussion below proceeds analogously to Sec. 1.3. Particle-hole symmetry implies that the
Hamiltonian is purely imaginary in some basis: H(t) = −H∗(t) at any point in time [5,42]. In
this case, one can verify that the Floquet operator is real in the same basis: U(T ) = U(T )∗.
This in turn implies that the Floquet eigenstates of the system come in pairs: if |ψ〉 is a Floquet
eigenstate with quasienergy ε, the complex conjugate20 |ψ∗〉 is also a Floquet eigenstate of the
system, with quasienergy −ε (mod 2π/T ). Fig. 2.5a schematically depicts the bulk quasienergy

20Here, as in Sec. 1.3, the state |ψ∗〉 is obtained by complex-conjugating the elements of |ψ〉 in the basis where
H(t) = −H∗(t).
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Figure 2.5: a) Quasienergy spectrum of a one-dimensional system of finite extent with particle
hole symmetry. Red and blue colors indicates the particle-hole symmetric quasienergies that
may support topologically-protected edge modes. Bright colors indicate copies of the quasienergy
spectrum in the repeated-zone scheme, such that the quasienergy Brillouin zone is taken to be the
interval (−π/T, π/T ]. b) Schematic depiction of the system and the two distinct topologically-
protected edge modes.

spectrum with this symmetry (black). Analogously to the nondriven case in Sec. 1.3, the Floquet
operator of a finite one-dimensional system can have localized eigenstates at the two ends of the
one-dimensional system, whose quasienergies lie within the system’s bulk quasienergy (Fig. 2.5b).
Moreover, it is possible for these localized end states to be their own particle-hole conjugates. In
the same way as for nondriven case in Sec. 1.3, the parity of the number of self-conjugate end
states in a given gap (on the same end of the system) is a topologically invariant feature of the
system.

Importantly, since −π/T ≡ π/T (mod 2π/T ), two distinct quasienergies can support self-
conjugate Floquet eigenstates, namely 0, and π/T (indicated by blue red, respectively in Fig. 2.5a).
Hence the system can support two distinct types of topologically protected edge states, in contrast
to the nondriven case, which can only host a single protected edge mode [42]. The topologically-
protected self-conjugate edge state at quasienergy π/T (known as a “π-Majorana”) is an anomalous
topological feature: it can only arise in periodically driven systems. The discussion above thus
shows that driven particle-hole symmetric systems can support anomalous topological phases.
In the same way as for the two-dimensional case in Sec. 2.2.1, π-Majoranas reflect nontrivial
topological properties of the bulk system’s micromotion [42].

2.2.6 Topological classification of noninteracting, driven systems

The above discussion demonstrates that symmetries can lead to the topological protection of
features in driven systems. In the same way as for topological insulators and superconductors [18,
19], recent theoretical work has classified all the topological phases that may be protected
by the 10 Altland-Zirnbauer (AZ) symmetry classes in periodically driven systems [78]. This
includes particle-hole symmetry [42], the trivial class [1], time-reversal symmetry [107], and chiral
symmetry [104]. In each of the cases mentioned above, the symmetry can support anomalous
topological features that are associated with the system’s micromotion. Ref. [5], introduced
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a unified method for classifying the topological properties of a periodically driven system’s
micromotion. The approach, which is applicable in any symmetry class, gives an exhaustive
classification of a periodically driven system’s topological properties. This approach will be the
focus of Chapter 3.

Symmetry classes of periodically driven systems We conclude with a brief discussion of
the symmetry classes that may lead to the topological protection of features in periodically driven
systems. For nondriven topological insulators, the discussion in Secs. 1.3-1.4 demonstrated that a
symmetry S of the Hamiltonian can lead to the protection features of the system’s edge spectrum.
For analogous features to be topologically-protected in the edge spectrum of a driven system, its
effective Hamiltonian Heff must have the same symmetry S. Importantly, this condition is not
equivalent to the instantaneous Hamiltonian of the system having the symmetry S.

This is illustrated in the case time-reversal symmetry. Time-reversal symmetry is present in a
periodically driven system if Heff = V HeffV

−1, where V is some antiunitary operator21. One can
show that this is achieved when the Hamiltonian H(t) satisfies H(t) = V H(T − t)V −1 [5, 107].
Hence, time-reversal symmetry relates the Hamiltonian at time t with its time-reversed conjugate
at time T − t. More generally, the AZ symmetry classes can be divided into two groups for
periodically driven systems [5]: the first group of symmetries are time-local, meaning they impose
a condition on the instantaneous Hamiltonian, as in the particle-hole symmetric case discussed
above. This group includes the particle-hole symmetric and trivial classes22. The other group of
symmetries, which includes the remaining 7 symmetry classes of the AZ table of symmetries, are
time-nonlocal: this group of symmetries relates the Hamiltonian at time t with the Hamiltonian
at time T − t, as in the time-reversal symmetric case above. Importantly, this implies that
time-nonlocal symmetry classes can be broken by imperfections of the driving field. Thus, in
contrast to the nondriven case where all 10 AZ symmetry classes may remain unbroken in
imperfect “real-world” systems, only particle hole-symmetry is generically robust in periodically
driven systems.

2.3 Topological phases in driven many-body systems

The discussion in this chapter has so far focused on topological phases in periodically driven
systems of noninteracting particles. Sec. 2.2 showed that it is possible to realize topologically
nontrivial phases in periodically driven systems in the absence of interactions. The discussion
in Sec. 2.2 relied on the many similarities between driven and nondriven systems. In particular,
the evolution of periodically driven systems is determined by a conserved quantity (quasienergy)
which plays a role analogously to energy in nondriven systems.

While driven and nondriven systems have many similarities in the noninteracting case, inter-
acting driven systems exhibit fundamentally different behavior from their nondriven counterparts.
Specifically, whereas isolated, nondriven many-body systems usually approach (nontrivial) thermal
equilibrium steady-states, isolated, driven many-body systems almost always absorb energy from

21Antiunitary operators are operators on the form UC, where U is a unitary operator and C is the complex
conjugation operator with respect to some basis

22These three classes are classes C, D, and A in the Altland-Zirnbauer classification [78].
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the driving field, resulting in a continuous and uncontrollable heating process whose fixed point
is the trivial infinite-temperature state. Systems that experience this heating effect can therefore
not support any phase structure. Importantly, however, there are cases where the heating effect
is avoided, and nontrivial topological effects can be realized.

This section describes the above heating effect in detail, and in particular the conditions under
which it does not arise. Crucially, Sec. 2.3.2 shows that many-body localized systems are not
subject to the heating effect above, and moreover can support nontrivial topological phases.

2.3.1 Thermalization in many-body systems

This heating effect described above follows from one of the basic assumptions of statistical
mechanics: namely, that large, interacting many-body systems act as thermal reservoirs. Systems
with this very generic property are referred to as thermal. When a periodic driving field performs
work locally on a thermal system, a portion of the energy inevitably dissipates into the surrounding
system, which acts as a heat reservoir. In large many-body systems, which effectively follow
the laws of thermodynamics, the absorption of energy is irreversible. As a result, thermal
systems continuously heat up when subjected to periodic driving, and approach a trivial infinite
temperature state [92–94].

To describe the effect in more concrete terms, we consider an observable q that only acts
locally on a small subsystem A of a large complicated many-body system. Here q can for example
be the local current, charge or spin density somewhere within subsystem A. Given an initial
state |Ψ(0)〉, we are interested in the evolution 〈q(t)〉 of the observable q’s expectation value. The
fundamental laws of quantum mechanics imply that 〈q(t)〉 can be computed as

〈q(t)〉 = Tr
(
|Ψ(t)〉〈Ψ(t)|q

)
, (2.18)

where |Ψ(t)〉 ≡ U(t)|Ψ(0)〉 denotes the time-evolved state of the system. As a first step, we
we split the trace into the traces over degrees of freedom within subsystem A, and within the
remaining part of the system, which we denote by B:

Tr(O) = TrA [TrB(O)] . (2.19)

Here TrS(O) denotes the trace of the operator O over all degrees of freedom within subsystem S.
Since q only acts on the degrees of freedom in subsystem A, we have that TrB(qO) = qTrB(O).
Thus, we find that

〈q(t)〉 = TrA(ρA(t)q), where ρA(t) = TrB|Ψ(t)〉〈Ψ(t)|. (2.20)

The operator ρA(t), referred to as the reduced density matrix within subsystem A, is a density
matrix that describes the state of the system within subsystem A.

For subsystem B, which forms the main part of the system, is an extensive, interacting
many-body systems. One of the basic assumptions of statistical mechanics is that large and
complicated systems, like subsystem B, act as thermal reservoir. In the case where this assumption
holds, the system is referred to as thermal. In this case, subsystem A can be analyzed as a small
system coupled to a large thermal reservoir (subsystem B), with the density matrix ρA describing
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the state of system A. In this case, the laws of thermodynamics dictate that the state ρA of
subsystem A relaxes to a thermal equilibrium state ρ0, after a transient relaxation period τ . The
time-scale τ is determined from the parameters of the system, and is referred to as the thermal
relaxation time here. The thermal-equilibrium state ρ0 is the maximum-entropy state, given the
conservation laws in the system23 (a so-called Gibbs-state).

Thermalization in nondriven systems

In nondriven fermionic systems, where energy and particle number is conserved, the maximum-
entropy state ρ0 is described by the grand-canonical ensemble. Thus, for t � τ , ρA(t) takes the
form

ρA(t � τ) ≈ ρ0, ρ0 = λ e−βHA−µNA . (2.21)

Here HA is the Hamiltonian within subsystem A, NA is the particle number operator within
subsystem A, and λ = TrA(e−βHA−µNA) is a normalizing constant that ensures that TrA(ρA) = 1.
The temperature 1/β and chemical potential µ are determined from the energy E0 and particle
number N0 of the system24. In this way, the thermal-equilibrium steady state ρ0 only depends on
the initial energy E0 and particle number N0 of the system, and thus takes the form

ρ0 = ρA(E0, N0). (2.22)

for some function ρA(E0, N0) that takes value of a density matrix. Using this result, along with
Eqs. (2.20) and (2.21), we thus find

〈q(t � τ)〉 = fq(E0, N0). (2.23)

where the function fq(E0, N0) is given by TrA(q ρA(E0, N0)).
Eq. (2.23) shows that the expectation value of the observable q settles to a constant value

fq(E0, N0) after a transient relaxation period of duration τ . Importantly, the steady-state value
fq(E0, N0) only depends on the initial energy E0 and particle number N0 in the system. In thermal
systems, any information about the initial state that can be extracted from local observables is
therefore lost over time, except for the values of quantities such as energy and particle number
which are conserved due to the symmetries of the system. The mechanism described above, known
as thermalization, is a generic feature of large, interacting many-body systems. Breakdown of
thermalization is very rare, and only arises in systems where integrals of motion (i.e. conserved
quantities) exist that can be expressed as local observables. A notable example of such a situation
are many-body localized systems, which are subject of discussion in Sec. 2.3.2 below.

Thermalization in periodically driven systems

We now apply the above discussion to the case of a periodically driven system. When the
system is thermal (i.e. the basic assumptions of statistical mechanics apply), the arguments

23Here the entropy S of a state is defined as S = Tr(ρ log ρ).
24Specifically, β and µ are determined by requiring the expectation values of energy and particle number in the

state ρ(β, µ) ≡ e−βH−µN/Tr(e−βH−µN ) to be given by E0 and N0, respectively [108], where N denotes the particle
number operator of the full system. Since energy and particle number are conserved quantities, E0 and N0 can be
found from the initial state of the system |Ψ(0)〉.
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below Eq. (2.20) show that the state of the system within subsystem A relaxes to a steady
state ρ0 which maximizes the entropy, given the conservation laws in the system. The breaking
of continuous time-translation symmetry to discrete time-translation symmetry means that
quasienergy ε, rather than energy E, is conserved. Thus, unless any other symmetry is present,
the only conserved quantities in the system are quasienergy and particle number. Retracing the
subsequent arguments that lead to Eq. (2.23) in the nondriven case, we find that the expectation
value 〈q(t)〉 settles to a constant value fq(ε0, N0), which only depends on the initial quasienergy
ε0 and particle number N0 of the system:

〈q(t � τ)〉 = fq(ε0, N0). (2.24)

Here ε0 and N0 respectively denote the quasienergy and number of particles in the system in the
state |Ψ(0)〉 (these are conserved quantities).

Due to the periodic nature of quasienergy, the function fq(ε,N) must be periodic in its first
argument: fq(ε,N) = fq(ε+ 2π/T,N). At the same time, an initial small perturbation of the
system somewhere far away from region A may change the initial quasienergy system by an
amount comparable to 2π/T 25. In this way, any quasienergy in the interval [0, 2π/T ] can be
reached by weakly perturbing the system far away from subsystem A. Since the steady-state value
of 〈q(t)〉 should not be significantly affected by such perturbations, we conclude that fq(ε,N)
must be constant as a function of ε: fq(ε,N) = fq(N). Hence, steady-state value of 〈q(t)〉 only
depends on the number of particles N0:

〈q(t � τ)〉 = fq(N0). (2.25)

As a next step, consider the projector Ik into the sector with k particles. Since particle
number is conserved, the time-evolution operator U(t) commutes with Ik. This implies that
the state ρk ≡ Ik/Tr(Ik) is always a steady state of the system. Specifically, ρk(t) = ρk, where
ρk(t) ≡ U(t)ρkU

†(t) denotes the time-evolution of the (mixed) state described by ρk. The above
discussion shows that the expectation value 〈q(t)〉k ≡ Tr(ρk(t)q) remains constant in time when
the system is initialized in the state ρk, and is given by

〈q(t)〉k = Tr(ρkq). (2.26)

Since Eq. (2.25) holds given any initial state of the system, it must in particular hold if the
system is initialized in the state26 ρk. We conclude that fq(N0) = Tr(ρN0q). Noting that ρN0

projects into the subspace with N0 particles (up to a normalization factor), we finally obtain

〈q(t � τ)〉 = TrN0(q), (2.27)

where TrN0(O) denotes the trace of the operator O within the subspace with N0 particles. Thus,
for thermalizing, driven systems, any local observable q settles to the same fixed value TrN0(q),
regardless of the Hamiltonian or the initial state of the system. This situation is identical to the

25This can for instance be shown using the extended Hilbert space formalism, see, e.g., Ref. [1].
26The discussion in Sec. 2.3.1 assumed for clarity the system to be in a pure state, but it generalizes straightfor-

wardly to the case where the system is in a mixed state.
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infinite-temperature limit of nondriven equilibrium systems. Physically, the infinite-temperature
steady-state results from the irreversible absorption of energy from the driving field which was
described in the beginning of this section. The absorption of energy from the drive leads to a
continuous heating process in the system, whose fixed point is the trivial infinite-temperature
state.

The discussion above shows that, after a transient relaxation period τ , it is not possible to
extract any information from local observables in a thermalizing, periodically driven system27.
This in particular includes information about the Hamiltonian of the system: it is formally
impossible to distinguish the Hamiltonians of thermalizing, periodically driven systems from
each other, using physical (local) observables. Thus, thermalizing periodically driven systems
cannot support any nontrivial phase structure. Physically, this fact results from the irreversible
heating induced by the driving field that was described in the beginning of this section. This
uncontrollable heating effect means that all thermal periodically driven systems have the same,
trivial, infinite-temperature steady state.

2.3.2 Strategies to counter the heating problem

The above discussion shows that all thermal, periodically driven systems eventually reach a
featureless, trivial, infinite-temperature steady-state, which cannot support any non-trivial phase
structure; in fact, it is impossible to distinguish any feature of the system’s Hamiltonian in the
steady state. However, as mentioned in the beginning of this section, there are ways to prevent
(or postpone) the heating effect described above, thus allowing for nontrivial topological effects
to be realized in periodically driven many-body systems. This section discusses three of main
approaches which are currently being studied.

Many-body localization The first approach, which forms the basis of Chapters 5-6 in this
thesis, is to prevent the system from thermalizing, through many-body localization. The heating
effect discussed in Sec. 2.3.1 was a consequence of thermalization, and a breakdown of thermal-
ization allows the system to avoid the heating effect described in Sec. 2.3.1 [109]. Many-body
localization arises when strong disorder localizes the many-body eigenstates of a system’s Hamil-
tonian or Floquet operator, in mechanism analogous to Anderson localization of single-particle
eigenstates [110, 111]. In this case, a complete set of local conserved quantities emerges, and
the basic assumptions of statistical mechanics are violated [112], leading to a breakdown of
thermalization. Physically, the breakdown of thermalization results from the vanishing heat
conductance in many-body localized systems, which prevents the system from acting as a thermal
reservoir. The breakdown of thermalization allows many-body localized periodically driven
systems to avoid the heating effect described in Sec. 2.3.1.

While the bulk quasienergy bands of many-body localized systems are necessarily topologically
trivial, periodically driven systems are characterized by an additional topological invariant that
characterizes the dynamics of the system that take place within each driving period. The existence
of the micromotion invariant thus allows driven, many-body localized systems to support nontrivial
topological phases (see Sec. 2.2.2). There are several examples of nontrivial topological phases

27Other than the number of particles and other quantities conserved by the system’s symmetries.
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Figure 2.6: Realization of the AFAI phase in a photonic crystal. From Mukherjee et al, Nature
Communications 8, 13918 (2017) [60]. a) Schematic depiction of the photonic crystal’s structure.
b) White-light transmission micrograph of a xy facet of the photonic crystal. c) Emitted signal
in the case where light enters the crystal on the edge (red circle). d) Emitted signal when in the
case where light enters the crystal on the bulk (red circle). Note the similarity between panels c)
and d) and Fig. 2.4b.

that arise in driven many-body localized systems [7, 45–47,49,50,56]: notable examples include
the Floquet time crystal [49,50], and the Anomalous Floquet Insulator [7] (AFI), which can be
seen as the interacting version of the AFAI phase discussed in Secs. 2.2.3-2.2.4. Verifying the
picture above, these phases are all characterized by topologically nontrivial micromotion, and are
thus of intrinsically non-equilibrium nature.

Stabilization of steady state with external baths Another approach to counter the heating
from the driving field is to couple the system to an external bath, such as a phonon reservoir in a
solid-state system. This approach has for instance been explored in Refs. [95, 96]. The presence
of the external baths allows heat to escape from the system, thus preventing the system from
heating to infinite temperature [95]. Appropriate couplings to external baths can stabilize steady
states of driven systems which have topologically nontrivial features [96].

Prethermal phases A final approach to avoid the issue of heating in driven many-body systems
is to realize topological effects in the transient (prethermal) dynamics of the system. Specifically,
while a driven system may eventually heat up to a trivial infinite-temperature state, the thermal
relaxation time τ , which sets the time-scale τ at which the heating becomes significant (see
Eq. (2.27)), can be very long. For instance, in rapidly driven systems, the thermal relaxation time
is exponentially large in driving frequency [113]. In strongly disordered systems, heating effects
can be so slow that they can be ignored in any experimentally-relevant time scale [7]. Importantly,
before the heating becomes significant, the system can reach prethermal (i.e., transient) steady
which which for all purposes resemble a phase [114–116]. These prethermal steady states may
have topologically non-trivial properties such as quantized average current [62].
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2.4 Experimental realizations

We conclude this introductory chapter with a brief review of possible experimental realizations of
topological phases in periodically driven systems that are currently proposed.

Solid state realizations Topological phases in periodically driven systems have originally
been imagined in the setting of solid-state systems [21, 23, 24]. Notable proposals for realizing
topological effects in these systems include inducing a topologically nontrivial quasienergy by
irradiating graphene with circularly polarized light [21], or creating topological band inversion in
a periodically driven semiconductor [24]. Current challenges with these experimental proposals
arise from the high frequencies and intensities necessary to induce significant topological effects,
while at the same time minimizing heat absorption.

In the setting of solid-state systems, the crystal-momentum dependent quasienergy bands
that were the focus of discussion in Sec. 2.2.1 have been experimentally observed in Ref. [38].
Specifically, the experiment detected significant effects from periodic driving in the surface
excitation spectrum of Bi2Se3, when irradiated by strong laser fields. The competing requirements
of high intensity and low heat absorption were reconciled by irradiating the system with short
(picosecond) intensive pulses of circularly polarized light. The excitation spectrum of the system
were probed as a function of time, at a time-resolution finer than the pulses, using time- and
angle resolved photoemission spectroscopy (TrARPES).

Cold atoms Gases of ultracold atoms in optical lattice is perhaps the most promising platform
for realizing topological phases in periodically driven systems. The high degree of control in
these systems allows for realization of many proposed models and driving protocols with current
techniques. Periodic driving has for instance been used to realize the Haldane model (an example
of a Chern insulator) in a gas of cold atoms [41]. In this experiment, periodic modulation of the
optical lattice was used to generate an effective Hamiltonian Heff with topologically nontrivial
properties28. Concrete experimental protocols have also been proposed for realizing the AFAI
phase in gases of cold atoms [53].

Photonic crystals Photonic crystals offer another platform for realizing topological phases in
periodically driven systems. Photonic crystals are three-dimensional nanostructures engineered
to control the motion of light that passes through the structure. While these systems cannot
be characterized as many-body systems, they may support topological effects analogous to the
topological phases discussed in this chapter.

Specifically, as light traverses these photonic crystals in the z direction, the evolution of
electromagnetic waves in the xy plane is equivalent to that of fermionic wave functions in a
two dimensional lattice model, such that slices of the photonic crystal at different values of z
correspond to different points in time [59,82,83,85]. Appropriate engineering the photonic crystals
can result in dynamics of light analogous to static or time-dependent Hamiltonians. The effects
of periodic driving are incorporated by making the properties of the crystal vary periodically
along the z-direction.

28See Eq. (2.10) for a definition of the effective Hamiltonian.
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Several experimental groups [60, 61] have constructed photonic crystals that “realize” the
AFAI phase in the way described above. Figure 2.6 shows experimental data from Mukherjee
et al published in Ref. [60]: Fig. 2.6a schematically depicts the structure of the waveguides in
the photonic crystal, which “replicate” the AFAI model introduced in Sec. 2.2.4 (see Fig. 2.4).
Fig. 2.6b shows a microscopic image (white-light transmission micrograph) of a xy facet of the
photonic crystal. Fig. 2.6c,d show the initial location in the xy plane where light enters (red),
analogous to the initial location of the fermionic wave function, along with the emitted signal
(yellow), analogous to the final wave function of the fermions after one driving period. Fig. 2.6c
shows these data in the case where the light enters the crystal at the xy-plane’s edge, while
Fig. 2.6c show the data in the case where light enters the crystal in the middle of the xy plane.
The emitted signals in Fig. 2.6cd are consistent with the insulating bulk and chiral edge modes
that are characteristic of the AFAI model in Sec. 2.2.4. Note the close similarity between the
experimental data in Fig. 2.6cd and the predicted dynamics of the AFAI model in Fig. 2.6b. This
photonic-crystal realization of the AFAI has been explored as a possible platform for loss-free or
unidirectional propagation of light [85].

Optics A final experimental platform mentioned here is optical systems: for instance, Refs. [3,57]
explore ideas where the degrees of freedom of light in an optical cavity, such as, e.g., orbital
angular momentum, are be used as analogues for lattice degrees of freedom. Effects analogous to
periodic driving can be realized with a succession of optical components that the light traverses
in a cavity. In this way, experiments have detected topologically nontrivial signatures in the
orbital angular moment of light, analogous to the chirally-symmetric topological phases driven
systems [57].

2.5 Discussion

This chapter introduced the subject of topological phases in periodically driven systems. This
Chapter, together with Chapter 1, serves as an introductory chapter, and hopefully gives the
sufficient background for reading the rest of this thesis.

After reviewing the theory of periodically driven quantum systems, the discussion in Sec. 2.2
demonstrated that periodically driven systems may support topological phases of matter. In fact,
as Secs. 2.2.2-2.2.5 showed, periodically driven systems support a richer variety of topological
phases than their nondriven counterparts. The richer structure arises from the existence of a
micromotion invariant which characterizes the dynamics of the system that take place within a
driving period. The following two Chapters (Chapter 3-4) explore the nature of this micromotion
invariant in further detail.

The existence of the micromotion invariant gives rise to new, so-called anomalous topological
phases can arise in driven systems. These intrinsically non-equilibrium phases are characterized
by nontrivial topological properties of the particles’ motion, and have no equivalents in nondriven
systems. An example of such an anomalous phase is the Anomalous Floquet-Anderson Insulator
(AFAI) which arises in two-dimensional systems and supports quantized charge transport on
its edges of a fully insulating bulk. Chapters 4-6 explores the nature of this phase, and its
generalizations in further detail.
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The discussion in Sec. 2.3 demonstrated that periodically driven many-systems typically heat
up in an uncontrolled process, due to the absorption of heat from the driving field. However,
as Sec. 2.3.2 discussed, there are several strategies to avoid this effect and realize nontrivial
topological phases in driven many-body systems. Notably, many-body localized systems are not
subject to the heating process described in Sec. 2.3.1. Crucially, and perhaps surprisingly, such
many-body localized systems can support nontrivial topological phases. Notable examples of
such phases include the Floquet time crystal [49, 50, 52], and the anomalous Floquet insulator [7],
which is the interacting version of the AFAI introduced in Sec. 2.2.3. Chapters 5-6 explore the
anomalous Floquet insulator in more detail.



Chapter 3

Topological Classification of
Floquet-Bloch Systems

The contents of this chapter forms a part of an article published in New Journal of Physics
17, 125014 (2015) by FN and Mark S. Rudner. The article is cited as Ref. [5] in this
thesis.

The discussion in Chapter 2 shows that periodically driven systems can have topologically-
protected properties which have no equivalent in nondriven systems. These anomalous topological
features, which include anomalous edge states (Sec. 2.2.1), and π-Majoranas (Sec. 2.2.5), may lead
to effects with no equivalent in nondriven systems, such as quantized charge transport on edges
of insulating systems [2]. The discussion in Sec. 2.2.2 shows that the new anomalous topological
features are encoded in the bulk system’s micromotion (i.e., the dynamics in the bulk that take
place within a driving period). In particular, in addition to the Chern numbers that characterize
of quasienergy bands of two-dimensional driven systems, an additional micromotion invariant ν
characterizes the systems’ micromotion. The existence of the micromotion invariant means that
periodically driven systems have a richer topological structure than their nondriven counterparts.

This chapter introduces an an intuitive method for classifying the topological properties of
micromotion in periodically-driven systems. A main result of the chapter is that micromotion
invariants manifest themselves as topologically-protected nodal points in the bulk time-evolution
operator’s spectrum (see Fig. 3.1). The method developed in this chapter leads to an exhaustive
classification of the topological phases in (noninteracting) periodically driven systems, given any
symmetry class. While this chapter studies the case of a two-dimensional system in the absence
of any symmetry, several other symmetry classes are considered in Ref. [5], which forms the basis
of this chapter.

3.1 Introduction

After the discovery [14, 117] and explanation [15, 69, 70, 118, 119] of the quantized Hall effects,
topology gained new importance as a mechanism for generating extremely robust quantum
mechanical phenomena. The realization that the Bloch bands of solid state systems could

53
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possess non-trivial topological characteristics led to the prediction [11,17,120] and experimental
discovery [121,122] of whole new classes of materials [123,124] – the topological insulators and
superconductors – which host a variety of remarkable and potentially useful phenomena. On a
theoretical level, a complete topological classification [18, 19] of such systems has been developed,
predicting a number of new phases. However, finding materials that realize these phases remains
a very challenging task, with no known examples for many topological classes.

Motivated by the great successes and open challenges in the arena of topological matter,
many authors have begun to explore the possibilities for realizing topological phenomena in
driven quantum systems [20–32, 42, 95, 101, 104, 125–135]. Time-dependent driving offers the
opportunity to control a material’s properties in a variety of new ways, potentially opening new
routes for studying topological phenomena in solid state [38], atomic [41, 42, 136], and optical
systems [59,137].

Intriguingly, driven systems may host an even richer array of topological phenomena than
their non-driven counterparts. To date several examples of topological phenomena which can
only be realized in driven systems have been found [1,23,42,104,107], such as the existence of
robust chiral edge states in two dimensional systems whose Floquet bands have trivial Chern
indices [1], and pairs of non-degenerate Majorana end modes with protected quasienergy splittings
in one-dimensional systems [42]. This indicates that periodically driven systems feature additional
topological structure beyond that found in non-driven systems. However, a unifying principle for
understanding and classifying these new phenomena remains lacking.

In this work we answer the question: under what conditions does the evolution of a driven
system become topologically distinct from that of a non-driven system? In doing so we develop
a powerful and general framework that can be used to understand the topology of periodically
driven systems.

In the analysis of periodically driven systems, the Floquet operator, denoted U(T ), plays
a central role as the stroboscopic evolution operator that propagates the system forward in
time through each complete driving period, T . The spectrum of the Floquet operator, given
by U(T )|Ψn〉 = e−iεnT |Ψn〉, plays an analogous role to the spectrum of the Hamiltonian in
a non-driven system, with real-valued energies replaced by periodically-defined quasienergies,
εn + 2πN/T = εn for any integer N . For a system on a lattice, the single particle spectrum forms
bands, the so-called Floquet bands. Throughout this work we focus on systems defined on a
lattice, with a finite number of bands. While knowledge of the Floquet bands is sufficient to
understand many aspects of the dynamics of a driven system, it was recently shown that the
topological properties of the evolution are in particular not described by U(T ) alone [1]. A proper
description of the topology of driven systems must take into account the full evolution U(t) for
times t throughout the entire driving period, 0 ≤ t ≤ T .

As a means of elucidating the nature of the evolution U(t), we focus on the “phase bands”
of the system, i.e., the time-dependent spectrum of the system’s evolution operator throughout
one driving period. As depicted in Fig. 3.1, for each time t in the interval 0 ≤ t ≤ T , the
eigenvalues {eiφ(k,t)} of the Bloch evolution operator U(k, t) form bands as a function of the
crystal momentum k. For illustration we use a “repeated zone” representation for the phase
bands, though the complete spectrum is contained within a single phase Brillouin zone of width
2π, as indicated by the shaded region in Fig. 3.1d. As a function of time, these phase bands
form sheets which, along with the corresponding eigenvectors, contain full information about the
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Figure 3.1: Phase band representation of the evolution operator U(k, t), Eq. (3.1). a) For a
non-driven system, the phase eigenvalues grow linearly in time. b) Here we show phase bands
of a periodically driven system which are non-degenerate for all k and t. The evolution can be
smoothly deformed into one obtainable in a non-driven system without closing any quasienergy
gaps. c) In this case the evolution operator features non-removable degeneracies which prevent
such a deformation. The evolution is therefore topologically distinct from that of any non-driven
system. d) Illustration of the phase band labeling scheme defined in Sec. 3.2. The shaded region
indicates the “phase Brillouin zone.”
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evolution of the system.
Below we examine smooth deformations of the phase bands which, keeping the Floquet

operator U(T ) fixed, determine when a given system’s evolution can be smoothly deformed into
one obtainable in a non-driven system. At time t = 0 the evolution is the identity. Therefore all
phase bands must originate with phases φ which are integer multiples of 2π. For a non-driven
system with Hamiltonian H, the evolution operator is given by U(t) = e−iHt. In this case the
phase bands diverge from one another linearly in time due to the linear phase winding φ = Et
for each eigenstate of H with energy E (see Fig. 3.1a). For the case of a driven system as
shown in Fig. 3.1b, the phase bands can be straightened through a continuous deformation,
such that the evolution becomes indistinguishable from one generated by a time-independent
Hamiltonian. Crucially, as we show below, phase bands may be connected via topologically-
protected degeneracies, or “topological singularities” (Fig. 3.1c), which prevent the evolution
from being deformed into the canonical form for a non-driven system. These singularities play a
central role in defining the topology of periodically driven systems.

After establishing the existence of topological singularities in the bulk evolution, we study
their ramifications for the edge mode spectrum of U(T ) for a two-dimensional system defined in
a geometry with edges. If such a system may host genuine topologically-protected chiral edge
modes, then by definition the net number of modes in each bulk gap may not change under
smooth deformations of the evolution that keep the bulk gaps open. Focusing first on the bulk
evolution, we then identify a complete set of independent topological quantities which are (by
definition) invariant under any smooth deformation of the bulk evolution that preserves the
Floquet operator U(k, T ). Since we have identified above a complete set of quantities that are
invariant under such deformations, we conclude that the net number of topologically-protected
chiral edge modes in a given gap must be given by some function of these invariant bulk quantities.
Standard spectral flow arguments that relate features of the bulk and edge spectra [119,138, 139]
let us determine the form of this function, thereby demonstrating the existence and form of the
bulk-edge correspondence in terms of the bulk invariants that we found [see Eq. (3.10) below].

Ref. [5] (in which this chapter is included) shows how the method can be extended to systems
in arbitrary dimensions, also including the role of symmetries, thus providing means for a
complete topological classification of Floquet-Bloch systems. Ref. [5] that symmetries considered
previously, e.g. in Refs. [42, 107], which generalize the Altland-Zirnbauer symmetry classes to the
case of periodically driven systems, can be naturally incorporated into the phase-band picture.
Importantly, Ref. [5] find that these symmetries can protect new types of topological singularities
in the bulk.

In general we find that, for each bulk gap, the edge mode spectrum of a driven system in
a given symmetry class has the same set of protected features as that of a non-driven system
in the corresponding class. However, the global edge mode spectrum and the relation between
edge modes and bulk bands can be quite different. Examples of such new or “anomalous” edge
phenomena include Floquet-Majorana edge modes [42, 140] with quasi-energy π/T and chiral
edge modes [1] in a 2D system with topologically trivial bulk Floquet bands. Here we also show
that periodic driving, for example, allows two-band systems with time-reversal symmetry to have
helical edge modes, while a minimum of four bands is required in the non-driven case.

Interestingly, we find that all the above phenomena are closely connected with the appearance
of topological singularities in the bulk evolution. Due to the additional freedom presented by
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time-dependence, we further speculate that there may be other new types of symmetry conditions
(beyond those familiar from non-driven systems) which can protect new types of topological
singularities and anomalous edge mode phenomena.

The remainder of the chapter is structured as follows. In Sec. 3.2 we formalize the description
of phase bands, and characterize the singularities which may prevent them from being deformed
into a trivial configuration. Then in Sec. 3.3 we cast the topological characterization of two-
dimensional systems (without symmetries) in terms of the phase bands and their singularities,
giving new insight into the winding number invariants found previously in Ref. [1]. Ref. [5]
shows how additional symmetries (e.g., time reversal or particle-hole symmetry) can be naturally
incorporated into this picture through their abilities to protect new types of singularities. Finally,
in Sec. 3.4 we summarize our results and discuss the outlook for future work. Technical aspects
of derivations are provided in appendices.

3.2 Phase bands of the evolution operator

We now study the question of when the evolution of a periodically-driven Floquet-Bloch system
can be considered topologically distinct from that of a non-driven system. In order to do this, we
begin by defining the phase band picture of Floquet-Bloch evolution. In this section we focus on
“bulk” systems with discrete translation symmetry (with infinite extent or periodic boundary
conditions). Here, the crystal momentum k is a good quantum number. For now we leave the
number of spatial dimensions arbitrary.

The evolution of a periodically-driven quantum system may equivalently be prescribed in
terms of either a Hamiltonian H(t + T ) = H(t), where T is the driving period, or by the
corresponding evolution operator U(t) = T e−i

∫ t
0 H(t′)dt′

, where T denotes time ordering. In
this chapter we primarily work directly with the evolution operator U(t), which most clearly
exposes the topological features of the evolution. Importantly, although the Hamiltonian satisfies
H(t+ T ) = H(t), the evolution operator U(t) is generally not periodic in time.

For bulk systems, crystal momentum k and time t parametrize a family of Bloch evolution
operators U(k, t), which act within the space of periodic Bloch functions. When the time-
dependent Hamiltonian is local and bounded, U(k, t) is continuous in crystal momentum and
time.

As an important first step in our analysis, we express U(k, t) in terms of its spectral decom-
position

U(k, t) =
N∑

n=1
Pn(k, t)e−iφn(k,t), (3.1)

where Pn(k, t) is the projector onto the n-th eigenstate of U(k, t) and e−iφn(k,t) is the corresponding
eigenvalue. Here N is the number of bands in the system.

We refer to the functions {φn(k, t)} as the phase bands of the system. In contrast to the
quasienergy bands associated with a driven system’s Floquet operator U(k, T ), the phase bands
depend on time, and are continuously defined throughout an entire driving cycle, 0 ≤ t ≤ T . At
time t = T , the phase bands coincide with the system’s Floquet bands. An illustration of phase
bands for a one-dimensional system with two bands is shown in Fig. 3.1.
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Figure 3.2: Graphical depiction of the deformation described in Sec. 3.2, where the time-evolution
operator of a periodically driven system is deformed into the time-evolution operator of a
non-driven system. This deformation is always possible if the time-evolution operator has no
degeneracies. After flattening, the linear ramp region is expanded to the entire interval 0 < t < T ,
and the bands are straightened into a form as in Fig. 3.1a.

To resolve the ambiguity of the labeling of eigenstates of U(k, t) we now define a prescription
for assigning the values of the n indices. We focus on the phase bands {φn(k, t)}, and work
in a repeated zone representation where the spectrum is copied and shifted through all integer
multiples of 2π. Recalling that U(k, 0) = 1, each phase eigenvalue must start from an integer
multiple of 2π. However, as mentioned above, the full spectrum {e−iφn(k,t)} of U(k, t) is contained
within one “phase Brillouin zone.”

While in principle we could choose φn(k, 0) to be equal to any integer multiple of 2π, we
choose to work in a fundamental phase Brillouin zone in which all phases originate from zero, i.e.,
φn(k, 0) = 0, for n = 1 . . . N (see bold curves in Fig. 3.1d). Next, we demand that each φn(k, t)
is a real-valued continuous function1 of both k and t. Finally, we impose an ordering condition:
if φn(k, t) ≥ φm(k, t) for one point in k, t-space, then this relation must hold for all k, t. By
ordering the indices such that n > m implies φn ≥ φm, this prescription defines a unique labeling
of the phase bands.

The ordering condition above is constructed such that if two phase bands become degenerate
at a particular value of k, t, the bands do not “cross” (e.g., the index m stays with the lower
branch everywhere, while the index n stays with the upper branch). This arrangement is in
particular maintained when a band in the fundamental zone meets a band originating from a
different zone, see for example band #3 in Fig. 3.1d. Such degeneracies between phase bands
associated with different branches play an essential role in defining the topological characteristics
that distinguish driven and non-driven systems.

We now use the phase band picture to demonstrate when it is possible to continuously deform
the evolution of a Floquet-Bloch system into that of a non-driven system, while keeping U(k, T )

1Since the “phases” φn are treated as real-valued continuous functions in the repeated zone scheme, their
absolute values may exceed 2π. However, the labeling scheme guarantees that the full set of phase bands, in
particular the Floquet bands εn = φ(k, T )/T , are always grouped within a window of at most 2π.
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fixed. Naively, the continuity of U(k, t) and of the phase bands might lead one to expect that
the projectors Pn(k, t) are continuous as well. If this were true, any continuous deformation of
the phase bands φn(k, t) would preserve the continuity of the evolution operator. It would then
always be possible to deform the evolution into that of a non-driven system using a two-step
“band-flattening” procedure (see Fig. 3.2). First, for every n = 1 . . . N , deform φn(k, t) to zero
for all 0 ≤ t ≤ T − δt until a small time-interval δt before T , after which it grows linearly to its
final value. If the interval δt is small enough, we can assume that the projectors are constant
there, Pn(k, t) = Pn(k, T ). In the second step, let δt → T , while keeping the projectors constant
throughout the linear ramp of the phase. The deformed evolution is now identical to that of a
non-driven system with the Hamiltonian

h(k) = 1
T

∑
n

φn(k, T )Pn(k, T ). (3.2)

The picture above seems to imply that all periodically-driven systems are topologically
equivalent to non-driven systems (i.e., they can be related by smooth deformations that keep
the Floquet operator fixed). However, the existence of phenomena such as anomalous edge
modes [1, 23] shows that this cannot be the case.

Where could the argument break down? In the first step, we assumed that the phase bands
could be continuously deformed to zero throughout the entire driving period, up to a short interval
δt in which the projectors were assumed to be constant. However, in principle one may imagine
that the evolution operator could host degeneracies around which the projectors are discontinuous
(the degeneracy of the eigenvalues ensures that U stays continuous). In the presence of such a
discontinuity, the degeneracy could not be lifted without breaking the continuity of U . In this way
a phase band in the fundamental zone may become “glued” to another band from a neighboring
branch of phases (see Fig. 3.1c).

In the absence of the discontinuities described above, the evolution of any driven system can
be smoothly deformed to that of a non-driven system, as in Fig. 3.2, and anomalous edge states
would be impossible. Thus we are led to the unavoidable conclusion that the evolution operators
of periodically driven systems must support topologically-protected degeneracies. In the next
subsection we show explicitly that such degeneracies can exist in two-dimensional (2D) systems.
Ref. [5] generalizes these ideas to other dimensions and symmetry classes. Below we refer to these
topologically-protected degeneracies as “topological singularities.”

3.2.1 Topological singularities in two-dimensional systems

In this subsection we explicitly demonstrate the existence and nature of topological singularities
in the evolution operators of two-dimensional systems. We furthermore show that in a region in
k, t-space where U(k, t) is degenerate, the degeneracy can either be lifted everywhere or reduced
to a cluster of isolated singularities.

Let U(k, t) be the bulk time evolution operator of a two-dimensional system with no symmetries
other than the discrete translational symmetry of the lattice. Consider now a point s0 = (k0, t0)
in k, t-space where two adjacent phase bands, m and m′, are degenerate (mod 2π). At s0, the
degenerate subspace is spanned by the Bloch states |ψm〉 and |ψm′〉. Due to the continuity of
U(k, t) and the existence of gaps to other phase bands, we can assume that the subspace spanned
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by the two intersecting bands is constant within some finite sized neighborhood around s0 in
k, t-space. The remaining non-degenerate bands {|χn〉} and their associated phases {φn} can also
be assumed to be constant within this neighborhood. Close to s0, the time evolution operator
thus takes the form

U(s) =
∑

n6=m,m′

|χn〉〈χn|e−iφn +
∑

a,b=m,m′

|ψa〉〈ψb|Mab(s), (3.3)

where M is a 2 × 2 unitary matrix and we parametrize the three-dimensional (k, t) space by a
single variable s.

The unitarity of M means that we can write it as

M(s) = exp [−iφd(s) − ifj(s)σj ] , (3.4)

where summation over repeated indices is used. Here φd(s) is a real-valued function, whose value
at s0 gives the common eigenvalue of the two degenerate bands, {σj} are the Pauli matrices, and
{fj(s)} are real continuous functions that satisfy fi(s0) = 0.

We assume that U , and thereby f , is differentiable in a neighborhood around s0, and expand
fj to linear order in (s − s0) around s0. Noting that fj(s0) = 0, we write

M(s) ≈ exp [−iφd(s) − i(s − s0)jSjkσk] , (3.5)

where Sjk = ∂jfk(s0) is a real 3 × 3 matrix. The case where the linear term in (s − s0) also
vanishes will be covered shortly.

We first consider the case where the matrix S has rank three, such that the coefficients of
all three Pauli matrices vary independently as s explores the neighborhood around s0. In this
case, the degeneracy is topologically protected, similar to the case of a Weyl node [141]: an
infinitesimal change of the time evolution operator can never lift the degeneracy, but rather can
only infinitesimally shift the location where it appears. A single such degeneracy can thus not be
lifted with a continuous deformation of the system, and is therefore topologically protected. We
thus define a topological singularity of a two-dimensional system to be an isolated degeneracy of the
time evolution operator where the matrix S describing the linearization of U in its neighborhood
[Eq. (3.5)] is invertible.

In addition to the isolated singularities described above, we may also find cases where S
is not invertible. This occurs when two phase bands are degenerate along a line, surface, or
three-dimensional region in k, t-space, such that s0 is one point on this manifold. In such cases,
the rank of S is equal to 3 − D, where D is the dimension of the degenerate manifold. These
extended degeneracies are not topologically protected: the degeneracy can generically be lifted in
a neighborhood of s0 with a local perturbation, letting fi(s) → fi(s) + δg(s)vi in Eq. (3.4). Here
δ controls the strength of the perturbation, v is a 3-dimensional vector satisfying viSij = 0, and
g(s) is a real continuous function that vanishes outside a neighborhood around s0, within which
|ψm,m′〉 can be taken to be constant.

Importantly, the local perturbations described above only lift the degeneracy patch-wise, in
one small region at a time. If one tries to lift the degeneracy over the entire manifold, two cases
are possible: either the degeneracy can be lifted everywhere, or there will be a discrete set of
points where topological singularities remain. Hence we conclude that, if the time evolution
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operator is degenerate throughout a finite-dimensional manifold, it is always possible to apply an
infinitesimal perturbation that either completely lifts the degeneracy, or reduces it to a cluster of
topological singularities.

With the existence of topological singularities established, we now further characterize their
properties. Each singularity can be assigned a charge (or vorticity) q:

q = sgn [detS], (3.6)

where S is the linearization of fk(s) around s0, see Eqs. (3.4) and (3.5).
In two-dimensional systems, the charges of topological singularities have direct connections

with the Chern numbers of the phase bands. Consider the “instantaneous” Chern number of phase
band n, Cn(t) = 1

4π

∫
d2kTr{Pn[∂kxPn, ∂kyPn]}. As long as no singularities are encountered, the

Chern number Cn(t) cannot change due to the continuity of Pn(t). However, when two phase
bands meet at a singularity with vorticity q, the Chern number for the “upper” phase band
changes by q as the singularity is traversed in time, while the Chern number of the other band
changes by −q. Here, the “upper” band is band m+ 1 if the singularity connects bands m and
m+ 1, and band 1, if the singularity connects band 1 and N through the phase Brillouin zone
edge. As a consequence of the argument above, any driving protocol that yields Floquet bands
with different Chern numbers from those of the initial Hamiltonian H(0) must induce one or
more topological singularities in U(k, t).

In this section we showed that the evolution operator of a periodically-driven system may
host topologically-protected degeneracies, or “topological singularities.” As we concluded in
the beginning of the section, topological singularities can obstruct the smooth deformation of
the evolution of the driven system into that of a non-driven system. Specifically, in the case
where the “bottom” and “top” phase bands, 1 and N , are connected by a singularity through
the phase Brillouin zone-edge, their respective phase values at the singularity must differ by 2π.
In this situation it is impossible to simultaneously flatten both of the bands to zero (compare
Figs. 3.1c, d with Fig. 3.2). In contrast, for singularities that do not pass through the phase zone
edge (i.e., those connecting bands m and m + 1, with m < N), the two corresponding phase
eigenvalues coincide at the singularity. In this case nothing prevents deforming the two phase
bands simultaneously to zero, thereby removing the singularity. Hence singularities of the first
type, i.e., “zone-edge singularities,” are special: it is precisely these singularities that cannot
be eliminated by smooth phase-band deformations, thus distinguishing driven from non-driven
evolution. In Sec. 3.3 below we formulate the topological classification for two-dimensional
periodically driven systems in terms of the phase bands and zone-edge topological singularities,
and derive the corresponding bulk-edge correspondence.

3.2.2 Natural quasienergy zone

Before moving on to classification, we briefly introduce some further labeling notation that will
be useful for referring to specific Floquet bands and gaps in the discussion below. In particular,
we apply the phase band labeling prescribed in the beginning of this section to the Floquet bands
themselves. We define a convention where we label Floquet band n such that εn(k) = φn(k, T )/T ,
with φn(k, t) determined by the labeling convention explained below Eq. (3.1), see Fig. 3.1d.
This uniquely determines “natural” quasienergy band indices for a system, and the bands {εn}
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for n = 1 . . . N define a natural choice of the quasienergy (or Floquet) Brillouin zone within the
repeated zone scheme.

Below we will also apply the labeling scheme to the quasienergy gaps. For the following
discussion, we refer to the quasienergy gap above band m as gap m. Due to the periodicity of
quasienergy, a driven system with N bands has an additional gap (as compared to a non-driven
system), which separates band N from band 1, across the quasienergy zone edge. We thus refer
to gap N as the “zone-edge gap” of the Floquet spectrum. In the non-driven limit T → 0, the
zone-edge gap becomes infinitely wide, while the other gaps remain finite.

We note that the natural quasienergy zone identified above has physical meaning, as the
quasienergy bands within the zone are directly related to the spectrum of the time-averaged
Hamiltonian. In particular, within the convention above, the quasienergy bands in the natural
zone satisfy

∑
n

εn(k) = 1
T

∑
n

φn(k, T )

= 1
T

∫ T

0
dtTr

[
U †(k, t)i∂tU(k, t)

]
.

The last equality follows from the spectral decomposition (3.1), after using the relations Pn∂tPn =
∂tPn−(∂tPn)Pn, and

∑
n Pn = 1 to eliminate the derivatives of the projectors. Finally, substituting

i∂tU(k, t) = H(k, t)U(k, t) we find the following non-trivial relation

∑
n

εn(k) = 1
T

∫ T

0
dtTr [H(k, t)] . (3.7)

Within the repeated zone scheme, this relation is uniquely satisfied for the quasienergy bands
within the natural zone.

3.3 Topological classification of Floquet-Bloch systems in two
dimensions

Having introduced the concept of phase bands and demonstrated the existence of topological
singularities, we now consider the implications of these results for the topological properties of
a two-dimensional Floquet-Bloch system with no symmetries. By “topological” we mean those
properties that are invariant under any continuous deformation of the bulk time-evolution operator
that preserves its continuity in crystal momentum and time, and keeps the bulk gaps open in the
quasienergy spectrum of the Floquet operator U(T ). Any such quantity is a topological invariant
of the system. Importantly, this definition means that topological invariants must be independent
of the choice of time origin2

Analogous to a Chern insulator, a two-dimensional Floquet-Bloch system defined in a geometry
with edges may host protected chiral edge modes within its bulk quasienergy gaps. The chiral

2To see this, note that a continuous change of time origin from 0 to t′ gives rise to a smooth deformation of the
evolution operator from U(t) to U(t+ t′)U†(t′). Given that the quasienergy spectrum is invariant under changes of
time origin, the topological invariants must remain the same for any choice of time origin as well.
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Figure 3.3: Continuous deformation of a generic time evolution operator which only preserves
information about the topological singularities spanning the zone-edge gap (region I), and the
Floquet bands (region II). These features cannot be removed, since the Chern indices of the
Floquet bands and the total charge of the zone-edge singularities can only be changed by closing at
least one quasienergy gap. Any topological invariant should be expressible in terms of only these
non-removable features. Note that the singularity in the gap around phase φ = 0 is eliminated
under the deformation.

edge modes are topologically protected, meaning that the net number nedge(m) of chiral edge
modes in bulk quasienergy gap m is invariant under continuous deformations of the bulk evolution
operator U(k, t), or equivalently of the Hamiltonian H(t), that keep quasienergy gap m open.
Thus we recognize nedge(m) as a topological invariant of the system.

In this section we demonstrate that considerations about the bulk phase bands allow us
to identify all independent topological invariants of a two-dimensional Floquet-Bloch system.
Subsequently, we use these invariants to construct the bulk-edge correspondence, providing a direct
link between the edge mode spectrum and the bulk phase band properties of two-dimensional
Floquet-Bloch systems.

3.3.1 Topological invariants of 2D systems

In this subsection we identify the properties of a two-dimensional Floquet-Bloch system that
are invariant under smooth deformations of the phase bands. In Sec. 3.2.1 we found that the
phase bands of a 2D system can safely be deformed anywhere in k, t-space except at isolated
topological singularities. Therefore we may expect that the singularities play an important role
in the topological classification of periodically driven systems.

To elucidate the importance of topological singularities we consider the following deformation
of a time-evolution operator U(k, t), shown schematically in Fig. 3.3. Without changing the
eigenstate projectors Pn(k, t), deform the phase bands φn(k, t) to zero everywhere except for
within small isolated regions that surround each zone-edge singularity and within a small time-
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interval δt before T , where the phase bands wind linearly to their final values. These final values,
which define the Floquet bands, are kept fixed under the deformation. We refer to the region
t < T − δt in k, t space as region I, and to the final region t > T − δt as region II (see Fig. 3.3).
Any time-evolution operator can be deformed in this way such that continuity is preserved and no
quasienergy gap is closed. Without changing any topological invariant, the deformation effectively
discards all information about the time-evolution operator except for the phase bands at time
t = T (i.e., the Floquet bands themselves), and the zone-edge singularities.

Consider now the remaining features of the phase band structure that could not be smoothly
deformed away. We found in Sec. 3.2.1 that it was possible to change the location k, t of each
singularity through a continuous deformation. Through such a deformation, it is furthermore
possible to create and annihilate pairs of zone-edge singularities with opposite charges. Hence
the only invariant quantity we can associate with region I is the sum of the charges {q(ZES)

i } of
all zone-edge singularities,

∑
i q

(ZES)
i . For region II, we note that at t = T any two projectors

P (k, T ) and P ′(k, T ) can be continuously deformed into each other if and only if their Chern
numbers are the same [70]. Hence the only independent invariants we can associate with region
II are the Chern numbers of the individual phase bands at t = T .

The arguments above show that a two-dimensional Floquet-Bloch system with N bands has
exactly N independent topological invariants characterizing it. These invariants are the integers(

C1, . . . CN−1,
∑

i

q
(ZES)
i

)
, (3.8)

where Cn is the Chern number of Floquet band n (see Sec. 3.2.2 for definition of the quasienergy
band indices). The index i in the sum runs over all topological singularities in the zone-edge
gap. The Chern number of the last band CN is not included since

∑
nCn = 0. We see that

while an N -band non-driven system is characterized by N − 1 independent integer-valued (Z)
invariants (the Chern numbers of each of the N − 1 lowest bands), Floquet-Bloch systems are
characterized by N integer (Z) topological invariants. The additional invariant is the net charge
of the topological singularities in the zone-edge gap.

Bulk-edge correspondence for two-dimensional Floquet-Bloch systems

We now seek to derive a bulk-edge correspondence that gives the net number of chiral edge states
that will appear within a given gap m of the bulk Floquet spectrum when the system is defined
in a geometry with an edge. To this end we identify which nontrivial combinations of the N
numbers in Eq. (3.8) remain invariant when all gaps except for gap m are allowed to close (see
Sec. 3.2.2 for the labeling convention for the quasienergy gaps). Later we will use this feature
to relate the invariant combination to the number nedge(m) of edge modes in gap m, which also
shares this property.

In order to find the combinations of the above quantities which have this invariance, we note
that the Chern numbers of the individual bands 1 to m can be changed by closing the quasienergy
gaps between them. Only their sum Sm =

∑m
n=1Cn remains constant under such operations [70].

Furthermore, if m 6= N , all zone-edge singularities can be removed through the plane t = T by
closing the zone-edge quasienergy gap (i.e., the gap between band N and band 1). Importantly,
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however, the Chern number of band 1, and thereby Sm, changes by q each time a singularity of
charge q is removed in this way (see the discussion at the end of Sec. 3.2.1 on the relationship
between Chern numbers and singularities). Hence there only exists one independent combination
of the invariants in Eq. (3.8) which remains invariant under all of these operations, i.e., when
only gap m is required to stay open:

wm[U ] =
m∑

n=1
Cn −

∑
i

q
(ZES)
i . (3.9)

Any two evolutions characterized by the same value of the invariant wm can be smoothly
deformed into one another without closing quasienergy gap m. Crucially, this tells us that if
topologically-protected chiral edge modes are possible, the number nedge(m) of them in gap m
should be some function of wm, and possibly m itself. Standard spectral flow arguments show
that chiral edge modes must exist in certain cases, and that nedge(m) − nedge(m− 1) = Cm, see
e.g., Refs. [119, 138, 139]. The only way this can be realized is if nedge(m) = wm +K for some
universal constant K. Considering the trivial special case H(t) = 0, where both wN and nedge(N)
are zero, we find that K must be zero. We thus arrive at the following new result for the net
number of chiral edge modes in a two-dimensional system:

nedge(m) =
m∑

n=1
Cn −

∑
i

q
(ZES)
i . (3.10)

The simple expression above provides a direct way of evaluating the edge mode count given
by the winding number formula found in Ref. [1]. The first term is the result one obtains simply
when analyzing a non-driven system with the phase band framework, taking T to be so small
that the phase bands do not cross. The second term has no equivalent in non-driven systems,
and accounts for the anomalous edge modes that were discussed in Refs. [1, 23]. Additionally,
Eq. (3.10) shows that the number of edge modes in the zone-edge gap is given by the net charge
of all zone-edge topological singularities.

In Appendix B.1 we provide an explicit derivation showing that Eq. (3.10) is equivalent to
the winding number formula of Ref. [1]. Below we refer to wm[U ] as the winding number of U in
gap m.

3.3.2 Topological singularities in a specific 2-band model

To make our discussion more concrete, in this subsection we demonstrate the results above on a
variation of the explicit model considered in Ref. [1]. Consider a tight-binding model on a 2D
bipartite square lattice, described by the time-dependent Bloch Hamiltonian

H(k, t) =
4∑

n=1
Jn(t)

(
σ+eibn·k + σ−e−ibn·k

)
+ V σz, (3.11)

where σz and σ± = (σx ± iσy)/2 are the Pauli matrices acting in the sublattice space, and the
vectors {bn} are given by b1 = −b3 = (a, 0), and b2 = −b4 = (0, a), with a being the lattice
constant. In real-space, Hamiltonian (3.11) consists of hopping terms between nearest neighbor
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Figure 3.4: Explicit demonstration of topological singularities and anomalous edge states. a-c)
Phase band structures for the model in Eq. (3.11) for fixed values of kx, with singularity charges
(all ±1) indicated. The kx values are a) 0.245/a, b) 1.533/a, c) 2.084/a. d) Quasienergy band
structure of the model in a strip geometry. Both bands have Chern number zero, and we find one
chiral mode on each edge, in each quasienergy gap. Edge modes on opposite edges are indicated
by different colors.

sites on the bipartite lattice. The Hamiltonian is T -periodic in time. Each driving cycle consists
of five time intervals of length T/5, with Jn(t) = λn during the n-th interval, while all the other
hopping amplitudes are set to zero. In the fifth interval, all hopping amplitudes are zero while
the sublattice potential V remains on.

In Ref. [1], anomalous edge modes were observed in the case where λn = J , for certain ranges
of the parameters J and V . According to the discussion in the subsections above, this implies
that topological singularities are present. Indeed, when in a nontrivial phase, the two phase bands
touch through the zone-edge along the line kx = ky, at a specific time that depends on parameter
values. To demonstrate that this degenerate region contains topological singularities, we add a
small time-dependent perturbation to break the extended degeneracy into isolated singular points
(see section 3.2.1). We implement the perturbation by reducing the hopping in the y-direction
slightly compared to the x-direction, such that λ1 = λ3 = J and λ2 = λ4 = (1 − α)J , where α is
a small parameter. We then numerically calculate the time-evolution operator at a representative
set of points in (k, t)-space for the parameter choice J = −2.5π/T , V = 0.8π/T , and α = 0.2.
From diagonalization of the time-evolution operator we obtain the phase band structure of the
model, and find four topological singularities (see Fig. 3.4). One singularity has charge −1 and
connects the two bands through the zone edge, while the other three have charges 1,−1, and −1,
but do not cross the zone-edge. The charges are found numerically.

In Figs. 3.4a-c, the phase band structure is plotted for three values of fixed kx. The kx values
are chosen where the four topological singularities appear (two of the singularities appear at the
same kx). The Chern numbers of the Floquet bands are zero.

Next we confine the model to a strip geometry with edges parallel to the y-direction, by
truncating the real-space Hamiltonian of the model in the x-direction. We numerically calculate
the Floquet operator of this truncated tight-binding Hamiltonian and obtain the quasienergy
band structure shown in Fig. 3.4d. On each edge we find the net number of chiral edge modes to
be 1, in both bulk quasienergy gaps. This behavior is fully consistent with result (3.10) above.
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3.4 Discussion
In this chapter we found that the “phase-band structures” of time evolution operators provide
a powerful basis for visualizing and understanding the topology of Floquet-Bloch systems. By
considering smooth deformations of the phase bands, we showed that topologically protected
degeneracies, or topological singularities, play a crucial role in distinguishing the topology of
driven and non-driven systems. In particular, the presence of phase Brillouin zone edge topological
singularities can present an obstruction to smoothly deforming the evolution of a driven system
into one obtainable in a non-driven system.

In this chapter, we studied the case of a two-dimensional system in the absence of any
symmetries. However, the approach we introduced here can also be applied to the classify systems
with symmetries, such as particle-hole, time-reversal or chiral symmetries. Ref. [5], which forms
the basis for this chapter, demonstrates that the method can be used to exhaustively classify the
topological properties of a Floquet-Bloch system, given any symmetry class.

Our work thus demonstrates a general method for topological classification of Floquet-Bloch
systems, based on identifying all features of the phase band structure of a given system that cannot
be removed by smooth deformations [5]. This approach appears to offer means to exhaustively
classify Floquet-Bloch systems and to straightforwardly derive the corresponding bulk-edge
correspondences.

In the case we considered, we found that the edge spectra associated with individual bulk gaps
of the Floquet operator have the same features as those of the corresponding non-driven system.
However, we found that periodic driving could induce global edge spectra that are impossible
to obtain in non-driven systems. This same is the case, when symmetries are present [5]. For
instance, with periodic driving, topologically protected helical edge states can be produced in
time-reversal invariant systems with only two-bands, while a minimum of four bands is needed
without driving. In each of these cases, these new “anomalous” features are closely related
with the appearance of zone-edge singularities in the time-bulk [5]. These phenomena further
demonstrate that the relation between the topological properties of the bulk evolution and the
appearance of protected edge modes is fundamentally changed in the driven context: the topology
of a periodically driven system cannot be fully characterized by the stroboscopic Floquet operator
U(k, T ) or the corresponding effective Hamiltonian alone.

Finally, our results provide new intuition about the topology of Floquet-Bloch systems. While
time-domain invariants such as the winding number found in Ref. [1] offer a mathematically
well-defined prescription for characterizing topology in driven systems, often a clear physical
picture is missing. Here, one of our central results is that non-trivial topological phenomena in
periodically driven systems appear when topological singularities are introduced into the phase
bands of the bulk time-evolution operator. In particular, in any driven system where the Floquet
bands have different topology from that of the initial instantaneous Hamiltonian (i.e., at t = 0),
at least one topological singularity must be encountered during the evolution. We expect that
this insight may help provide guidance for the construction of new driving protocols to realize
non-trivial topological phases in periodically driven systems.
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Chapter 4

Quantized Magnetization Density in
Periodically Driven Systems

This chapter has been published in Physical Review Letters 119, 186801 (2017) by the
author, Mark S. Rudner, Netanel H. Lindner, Erez Berg, and Gil Refael. The article is
cited as Ref. [6] in this thesis.

Chapters 2-3 demonstrated that periodically driven systems in two dimensions are characterized
by one additional topological invariant compared to their nondriven counterparts. The additional,
so-called micromotion invariant, ν is associated with the the dynamics of the system that take
place within a driving period, and is unique feature of periodically driven systems. Nonzero
values of ν result in phenomena with no equivalent in nondriven systems, such as quantized
charge transport at the edges of fully insulating systems [2]. Chapter 3 explored the nature of the
micromotion invariant ν in more detail, demonstrating its relation with nodal points in the bulk
evolution operator’s spectrum. This chapter studies the physical significance of the micromotion
invariant.

The physical meaning of the micromotion invariant is revealed when disorder is introduced in
the two-dimensional system. In this case, disorder can fully localize all bulk quasienergy bands,
even while the micromotion invariant ν remains nonzero [2]. In this case, the system is in a stable
topological phase protected by disorder, known as the Anomalous Floquet-Anderson Insulator
(See Sec. 2.2.3). As a main result, this chapter demonstrates that nontrivial topology of the
system, characterized by a nonzero (integer) value of the micromotion invariant ν, results in a
nonzero, quantized orbital magnetization density. Specifically, this chapter finds that the orbital
magnetization density within regions where all sites are occupied (Fig. 6.1) is given by ν/T . This
result establishes the physical significance of the micromotion invariant ν which was introduced
in Sec. 2.2.2. Interestingly, the results of this chapter demonstrate that, while nontrivial topology
in nondriven systems lead to quantized response functions, topological features in driven systems
can lead to the quantization of observables.

71
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Figure 4.1: Quantized magnetization density in a two-dimensional periodically driven system
where all Floquet eigenstates are localized. In a region where all sites are initially occupied
(shaded area), the time-averaged orbital magnetization density 〈〈m〉〉 is quantized as ν/T , where
ν is an integer and T is the driving period. A quantized average current 〈〈I〉〉 = ν/T runs along
the edge of the filled region.

4.1 Introduction

Periodic driving was recently introduced as a means for achieving topological phenomena in a wide
variety of quantum systems. Beyond providing new ways to obtain topologically nontrivial band
structures [20–31,125–129,131], periodic driving can give rise to wholly new types of topological
phenomena without analogues in equilibrium [1,2, 5, 23,42,44–50,52,99,104,107,142].

In a periodically driven system, the unitary Floquet operator acts as a generator of discrete time
evolution over each full driving period. As in non-driven systems, the spectrum and eigenstates of
the Floquet operator can be classified according to topology [21–24]. However, in addition to the
stroboscopic evolution of the system, the micromotion that takes place within each driving period
is crucial for the topological classification of periodically driven systems [1,5,42,44–48,104,107,142].

Here we uncover a new type of topological quantization phenomenon associated with the
micromotion of periodically driven quantum systems. We focus on periodically driven two-
dimensional (2D) lattice systems in which all bulk Floquet eigenstates are localized by disorder
(see Fig. 6.1). We show that, within a region where all states are occupied, the time-averaged
orbital magnetization density 〈〈m〉〉 is quantized: 〈〈m〉〉 = ν/T , where ν is an integer and T is
the driving period. The bulk observable 〈〈m〉〉 thus serves as a topological order parameter,
characterizing the topologically distinct fully-localized phases found in Ref. [2]. We propose a
bulk interference measurement to probe this invariant in cold atom systems.

Topological invariants are often associated with quantized response functions. Famously, the
Hall conductivity of an insulator is proportional to the TKNN invariant, or Chern number [15].
Interestingly, topology in driven systems may directly give rise to quantization of time-averaged
observables, such as the pumped current in the Thouless pump [65]. Similarly, the response of
magnetization density to changes of chemical potential in a quantum Hall system is quantized
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when the chemical potential lies in an energy gap1. In contrast, here we find quantization of the
magnetization density itself.

4.2 Setup
For concreteness, we consider a periodically-driven two-dimensional lattice model with one
orbital per site. The dynamics in the system are governed by a time-periodic Hamiltonian
H(t) = H(t + T ), where T is the driving period. The periodic driving gives rise to a unitary
evolution U(t) = T e−i

∫ t
0 dt′ H(t′), where T denotes time ordering. The spectrum of the Floquet

operator U(T ), given by U(T )|ψn(0)〉 = e−iεnT |ψn(0)〉, defines the Floquet eigenstates {|ψn(t)〉}
and their quasienergies {εn}.

We characterize micromotion in this system via the orbital magnetization2

M(t) = 1
2 (r × ṙ(t)) · ẑ, (4.1)

where ṙ(t) = −i[r,H(t)]. The magnetization operator (4.1) is equivalently expressed as the
response of the Hamiltonian to an applied uniform magnetic field B: M(t) = −∂H(t)

∂B (see
Appendix). In non-driven systems, the magnetization of a state hence determines the response of
its energy to the field: ∆E ∼ −M · B. In periodically driven systems, a similar relation holds
between a Floquet eigenstate’s time-averaged magnetization and the response of its quasienergy
to an applied magnetic field. We define 〈O〉τ ≡ 1

τ

∫ τ
0 dt 〈ψ(t)|O(t)|ψ(t)〉 as the time-averaged

expectation value of an operator O(t) in the state |ψ(t)〉. The single-period averaged magnetization
of a (localized) Floquet eigenstate |ψn(t)〉 is given by3 (see Appendix):

〈M〉(n)
T ≡ 1

T

∫ T

0
dt 〈ψn(t)|M(t)|ψn(t)〉 = −∂εn

∂B
. (4.2)

Using Eqs. (4.1) and (4.2), we may associate a net magnetization with a single particle in a
localized Floquet eigenstate. It is useful to define a local time-averaged magnetization density,
associated with each plaquette p of the lattice, that characterizes the response of quasienergy
to a magnetic flux φp applied locally through plaquette p. We define the magnetization density
operator as4

mp(t) = −∂H(t)
∂φp

, φp =
∫

p
d2r B(r), (4.3)

where the integral is taken over the area of plaquette p. The total time-averaged magnetization,
〈M〉τ , is given by the sum of magnetization densities over all plaquettes: 〈M〉τ =

∑
p〈mp〉τa

2,
where a is the lattice constant.

1This follows from the Streda formula [143–145].
2 The orbital magnetization, Eq. (1), is independent of shifts of origin r → (r − r0) when evaluated in stationary

states with 〈ṙ〉 = 0. In a fully localized system, this implies that the magnetization of a Floquet eigenstate averaged
over an integer number of driving periods is origin-independent.

3We measure magnetic field in units of [1/Area], such that the Aharonov-Bohm phase of a closed trajectory is
equal to the flux enclosed by the path.

4Although the particle density is not strictly stationary, localization implies limτ→∞ 〈ρ̇〉τ = 0. Therefore the
long time average 〈〈mp〉〉 is gauge invariant (see Footnote 2) and obeys Ampere’s law, Eq. (4.4)
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The definition of magnetization density in Eq. (4.3) applies for both single particle and
many-body systems. In particular, for a (single or many particle) Floquet eigenstate |ψ(t)〉 with
quasienergy ε, the time-averaged magnetization density is given by 〈mp〉T = − ∂ε

∂φp
.

In the continuum, equilibrium magnetization density is related to the current density j through
Ampere’s law, j = ∇ × m. For a (stationary) system on the lattice, Ampere’s law relates the
time-averaged magnetization densities on adjacent plaquettes p and q to the time-averaged current
〈Ipq〉τ on the bond between them (see Appendix):

〈Ipq〉τ = 〈mp〉τ − 〈mq〉τ . (4.4)

Here we take positive current to be counterclockwise with respect to plaquette p.

4.3 Magnetization in finite droplets.

We now discuss the consequences of the quantized magnetization density for the experimentally
relevant case of a finite droplet We now show that the time-averaged magnetization density is
quantized in a finite “droplet,” where all states in a region of linear dimension R are initially
occupied while the surrounding region is completely empty (Fig. 6.1). Specifically, we consider
the long-time average of the magnetization density for a plaquette p deep inside the droplet,
〈〈mp〉〉, where 〈〈O〉〉 ≡ limτ→∞〈O〉τ . Below we show that 〈〈mp〉〉 takes a constant value m̄∞, up to
exponentially small corrections (see Footnote 4). We then show that m̄∞ is quantized.

Since all Floquet eigenstates are localized, the particle density will only evolve significantly
in a strip of width ξ around the boundary of the filled region, where ξ is the single-particle
localization length of the Floquet eigenstates. Hence, the droplet retains its shape up to a
smearing of its boundary. At a distance d � ξ from this boundary, the density change remains
exponentially small in d/ξ at any time. Within the droplet, all (time-averaged) bond currents
therefore vanish: 〈Ipq〉τ = 0 for all τ . The magnetization density 〈〈mp〉〉 must therefore be the
same for all plaquettes deep within the droplet.

The uniform value of the magnetization density deep within the droplet may depend on the
droplet’s size. We note that 〈〈mp〉〉 is given by the sum of magnetization contributions from
all occupied states that overlap with plaquette p. Therefore, if the droplet size is increased
by adding a section of new (filled) sites in a region far away from plaquette p, 〈〈mp〉〉 can only
change by an exponentially small amount due to the contributions of the tails of the newly
added localized states. Thus, for a plaquette located a distance d from the boundary, we obtain
〈〈mp〉〉 = m̄∞ + O(e−d/ξ), where m̄∞ is the value in the thermodynamic limit. As we show below,
m̄∞ is quantized.

Interestingly, a nonzero value of m̄∞ implies that a current circulates around the boundary of
the droplet. The magnetization density drops from the value m̄∞ to zero over a distance of order
ξ across the droplet’s boundary. Using Amperes law (4.4), the total time-averaged current 〈〈I〉〉
passing through a cut through this strip (see Fig. 6.1) is 〈〈I〉〉 = m̄∞ + O(e−R/ξ).
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4.4 Quantization of magnetization density.
To prove the quantization of m̄∞, we consider the total magnetization 〈〈M〉〉 of a droplet of N
particles. On one hand we have 〈〈M〉〉 =

∑′
n 〈M〉(n)

T + O(N1/2), where the sum runs over single
particle Floquet eigenstates |ψn〉 with centers localized within the perimeter of the droplet. The
O(N1/2) correction accounts for the partially-occupied Floquet eigenstates near the droplet’s
boundary. On the other hand, since the magnetization density deep inside the droplet is constant
and given by m̄∞, we have 〈〈M〉〉 = Na2m̄∞ + O(N1/2). Here Na2 is the total area of the droplet,
with the O(N1/2) correction capturing the uncertainty of the area due to its fuzzy boundary. By
equating the expressions for 〈〈M〉〉 and taking the N → ∞ limit, we identify

m̄∞ = lim
N→∞

1
Na2

∑
n

′
〈M〉(n)

T . (4.5)

The quantity 1
N

∑′
n 〈M〉(n)

T is simply the average magnetization of Floquet eigenstates in the
droplet; below, we show that this average is quantized in large, fully-localized systems. To do this,
we explicitly compute the average magnetization over all Floquet eigenstates for a fully-localized
system on a large torus of area A = L2a2, where L2 is the number of sites.

For the system on a torus, we compute the time-averaged magnetization 〈M〉(n)
T of each

Floquet eigenstate |ψn(t)〉 using Eq. (4.2). To use the form 〈M〉(n)
T = −∂εn

∂B , we must specify
how the field B is introduced. Crucially, on a torus, the net magnetic flux must be an integer
multiple of Φ0 (the flux quantum)5; consequently, the strength of a uniform field cannot be varied
continuously. However, for ξ/L � 1, we may use 〈M〉(n)

T = −∂εn
∂B + O(e−L/ξ), where εn(B) is

the quasienergy of state |ψn〉 in the presence of a locally uniform magnetic field, of strength B
within the support region of |ψn〉, but zero net flux through the torus. The O(e−L/ξ) correction
arises from the non-uniformity of the field, which is concentrated where the wave function is
exponentially small.

To evaluate the average magnetization of localized Floquet eigenstates, 1
L2
∑

n 〈M〉(n)
T =

− 1
L2
∑

n
∂εn
∂B , we examine the Floquet operator U(T ) in the presence of a global uniform magnetic

field of strength B0 = 2π/A, corresponding to precisely one flux quantum piercing the torus.
For large A, the quasienergy in the uniform field B0 is equal to that in the locally uniform field
described above (with B = B0), up to an exponentially small correction in L/ξ. Moreover, for
small field strengths, ∂εn

∂B is well approximated by a finite difference, such that6:

〈M〉(n)
T = −[εn(B0) − εn(0)]/B0 + O(1/A). (4.6)

The O(1/A) correction accounts for the error in discretizing the derivative.
Using Eq. (4.6), we can access

∑
n 〈M〉(n)

T directly via the determinant of the system’s Floquet
operator [5], |U(T )|. Writing log |U(T )| =

∫ T
0 dt ∂t log |U(t)|, we use the identity ∂t log |U(t)| =

5This follows from the Dirac quantization condition: the torus can enclose an integer number of magnetic
monopoles, each with a quantized charge of Φ0.

6The labeling of Floquet eigenstates in the presence of the uniform field B0 is defined such that
〈ψn(t, B0)|ψm(t, 0)〉 = δnm + O(1/A). For large systems, this prescription holds for all but an exponentially
small subset of disorder realizations.
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Tr
[
U †(t)∂tU(t)

]
, together with ∂tU(t) = −iH(t)U(t), and find7

log |U(T )| = −i
∫ T

0
dtTr [H(t)] . (4.7)

When a magnetic field is introduced, the hopping amplitudes between sites of the lattice acquire
additional Peierl’s phases: Hab → Habe

iθab . In the position basis, the magnetic field thus only
affects the off-diagonal elements of the Hamiltonian, and we conclude that Tr[H(t)] and hence
|U(T )| are independent of magnetic field. Using |U(T )| = e−i

∑
n

εnT , we find∑
n

εn(B0) =
∑

n

εn(0) − 2πν
T

, (4.8)

where ν is an integer.
We now recall that m̄∞ (the magnetization density in a filled droplet) is obtained from the

average magnetization of the Floquet eigenstates in the droplet, see Eq. (4.5). The torus geometry
discussed above allows us to compute this average in the thermodynamic limit. Using Eqs. (4.6)
and (4.8) we obtain 1

L2
∑

n〈M〉(n)
T = 2πν

L2B0T
8.Comparing to Eq. (4.5), we find:

m̄∞ = ν

T
. (4.9)

Remarkably, this quantization has a topological origin. As we show in the Appendix, the integer
ν is equal to the winding number invariant characterizing the Anomalous Floquet-Anderson
Insulator (AFAI) phase, introduced in Ref. [2]. The magnetization density thus serves as a bulk
topological order parameter that characterizes distinct fully-localized Floquet phases. Note that
the emergence of a non-zero, quantized magnetization density is a unique dynamical phenomenon,
with no counterpart in non-driven systems: for static systems, Eq. (4.9) must hold for all values
of T , which requires ν = 0.

4.5 Interferometric probe of quantized magnetization.
We now outline an interferometric scheme for measuring the spatially averaged magnetization
density 〈〈m〉〉 = 〈〈M〉〉/Afilled of a cloud of fermionic cold atoms in an optical lattice (see Fig. 4.2),
where Afilled is the area of the initially filled region. We thus offer a direct probe to measure the
bulk topological invariant of the AFAI.

Consider an atom traversing a closed trajectory in the presence of a weak magnetic field B.
Semiclassically, the wave-function picks up an additional phase shift ∆φ = BAorb due to the field,
where Aorb is the area enclosed by the orbit9. Correspondingly, a simple quantum mechanical
calculation (see Appendix) shows that the phase shift acquired by an atom in Floquet eigenstate
|ψn(t)〉 over a full driving period is proportional to the state’s magnetization, ∆φn = 〈M〉(n)

T BT.

7Here we choose log |U(t)| to be continuous in time, with log |U(0)| = 0.
8On the torus,

∑
n

〈M〉(n)
T is used mathematically to find the average magnetization of Floquet eigenstates. It

does not represent the magnetization of a fully filled torus, which is unmeasurable.
9More precisely, the overlap between the wave functions evolved with and without the magnetic field given by

1 − i∆φ to first order in B.
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Figure 4.2: Interferometric measurement of quantized orbital magnetization density in a cold-atom
system. a) The system is prepared by filling a region of an optical lattice with spin-1/2 atoms
fully polarized along x. b,c) The system is evolved with a spin-independent periodic driving
Hamiltonian, plus a weak spin-dependent uniform synthetic magnetic field. d) The spin-dependent
field gives rise to a phase-difference ∆φ between the |↑〉 and |↓〉 components of each atom’s wave
function. The phase shift yields a net y-polarization of total spin, proportional to the system’s
time-averaged magnetization.

Using this phase shift, the magnetization of a cloud of atoms can be measured in a Ramsey-
type interference experiment in a situation where the atoms have two internal (“spin”) states |↑〉
and |↓〉. First, the system should be prepared by completely filling a region of known area, Afilled,
with atoms fully spin-polarized along the “x”-direction, |ψ(0)〉 ∝ (|↑〉 + |↓〉)/

√
2, (Fig. 4.2a). The

system should then be evolved with the driving Hamiltonian to allow the particle density to
reach a steady profile10, as in Fig. 4.3a. To perform the measurement, the cloud of atoms is then
evolved through N driving periods in the presence of a weak spin-dependent orbital effective
magnetic field B (Figs. 4.2bc), which, e.g., acts only on the |↑〉 species. Through the evolution,
the |↑〉 component of each atom’s wave function gains a phase shift relative to the |↓〉 component,
yielding a nonzero average y-spin per particle, 〈σy〉, (Fig. 4.2d). For small precession angles, the
average y-spin after N periods is given by 〈σy(NT )〉 ≡ ΩNTBa

2NT , with (see Appendix)

ΩNT = 〈〈m〉〉 + 1
NT

O
(
ξ3/2

aR1/2

)
+ O(B). (4.10)

Importantly, the second term vanishes in the long time limit (and scales to zero at finite times
for large systems), thus revealing the quantized magnetization density (see Appendix).

10This initial evolution step minimizes systematic transients due to the sharp boundary, see SOM.
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Figure 4.3: a) Particle density in the system after 20 driving periods, for an initially filled 50 × 50
square of sites. b) Normalized growth rate ΩNT of the average y-spin per atom [see text above
Eq. (4.10)]. The long-time-averaged magnetization density 〈〈m〉〉 is extracted from the saturation
value at long times. Inset: Deviation ∆Ω50T of Ω50T from the quantized value m̄∞ vs. droplet
size R. The value of ∆Ω50T is obtained as an RMS average of Ω50T − m̄∞ over 100 disorder
realizations. c) Depiction of the tight-binding model.
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4.6 Numerical results
We simulated the experimental protocol outlined above using a tight-binding model on a two-
dimensional bipartite square lattice, with Hamiltonian H(t) = Hclean(t) + Vdisorder. The Hamilto-
nian Hclean(t) was considered in Ref. [1], and is of the form

Hclean(t) =
∑
r∈A

4∑
n=1

Jn(t)(c†
r+bncr + h.c.), (4.11)

where cr is the fermionic annihilation operator on the lattice site with coordinate r, and the
first sum runs over sites r on sublattice A. The vectors {bn} are given by b1 = −b3 = (a, 0)
and b2 = −b4 = (0, a), where a is the lattice constant. The driving period is divided into five
segments of equal length T/5. In the nth segment (n ≤ 4), Jn(t) = J , while all other hopping
amplitudes are set to zero; in the 5th segment all hopping amplitudes are set to zero (see Fig. 4.3c).
We introduce disorder through a time-independent potential Vdisorder =

∑
rwrc

†
rcr, where the sum

runs over all sites, and the on-site energies {wr} are randomly drawn from a uniform distribution
in the interval [−W,W ]. The model has hopping amplitude J and disorder strength W both set to
2.5π/T . This brings the system well into the AFAI phase, for which we expect m̄∞ = 1/T [146].

To find the magnetization density of the system, we consider a single disorder realization on a
lattice of 80 × 80 sites and open boundary conditions. We initially fill a region of 50 × 50 sites
(i.e., R = 50) centered in the middle of the lattice, and prepare the state by evolving it for 20
driving periods at zero magnetic field (see Fig. 4.3a). For further times ranging from 0 to 50T we
evolve the system in the presence of a spin-dependent magnetic field of strength Ba2 = 2π · 10−4.
We extract the spatially averaged magnetization density 〈〈m〉〉 from the long-time limit of the
normalized growth rate ΩNT of average y-spin per atom, 〈σy(NT )〉. ΩNT rapidly converges (up to
a finite-size correction) to the quantized value of the magnetization density, 1/T , reaching 0.9998
after 100 periods (see Fig. 4.3b and SOM). The inset in Fig. 4.3b shows the deviation of Ω50T

from the quantized value m̄∞ = 1/T for various sizes of the droplet, taken as a root-mean-square
average over 100 disorder realizations at each system size. We find a power law decay of the
fluctuations with system size, ∆Ω50T ∼ R−0.55.

4.7 Discussion
In this chapter we showed that the orbital magnetization density is quantized in fully-filled
regions of localized Floquet systems. We then proposed an experimental scheme for measuring
the quantized magnetization density in cold atomic systems.

We derived the quantization of magnetization density within a tight-binding model with
one (s-type) orbital per site. This means that each on-site orbital does not carry any intrinsic
magnetization. In the continuum, small non-quantized contributions to the magnetization density
may arise due to mixing with higher bands. Such contributions are strongly suppressed when the
driving is adiabatic with respect to the gap to higher bands, and the lattice is very deep such
that the gap is large compared to the bandwidth [146].

It is natural to expect that our results will hold also in the presence of interactions, given
that the system is strongly disordered and hence may be many-body localized. Recently, progress
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has been made in constructing interacting analogues of the AFAI [56, 147]. The fate of the
magnetization in the presence of interactions will be studied in the following chapters.



Chapter 5

Anomalous Floquet Insulators

This chapter has been submitted for publication, and can be found as an arxiv preprint on
arxiv:1712.02789 (2017) by FN, Mark S. Rudner, Dmitry Abanin, Netanel H. Lindner, and
Erez Berg. The article is cited as Ref. [7] in this thesis.

Chapter 2 introduced the Anomalous Floquet-Anderson Insulator (AFAI) as a stable phase in
periodically driven systems of noninteracting fermions1. Chapter 4 subsequently showed that the
AFAI phase is characterized by a quantized, nonzero orbital magnetization density. The quantized
value of magnetization, which serves as an order parameter for the AFAI, is topologically protected
from changing whenever all Floquet eigenstates in the systems remain localized. The robustness
of the AFAI, and its signature of quantized magnetization, thus arises from the stability of
eigenstate localization in noninteracting systems [2].

This chapter studies the stability of the AFAI in the presence of interactions. As explained in
Sec. 2.3.1, thermalizing periodically driven many-body systems cannot support any nontrivial
phase structure, due to the uncontrolled heating induced by the driving [92,93,98]. However, many-
body localization (MBL), induced by strong disorder, may prevent thermalization [109]. With
MBL, periodically driven systems may therefore in principle support nontrivial topological phases.
The potential for realizing the AFAI in many-body localized systems raises a highly nontrivial
question: are the requirements for the AFAI phase compatible with many-body localization?

At first sight, a positive answer to the question above seems unlikely: the AFAI phase is
characterized by nontrivial motion of particles within a driving period, while MBL is characterized
by particles remaining “frozen” in the system. However, using a rotating frame transformation,
we find that the AFAI phase can be realized in a model that meet the expected requirements for
MBL (although this chapter does not prove the existence of MBL). This supports the existence of
a stable, many-body localized topological phase in two-dimensional periodically driven systems:
the so-called anomalous Floquet insulator (AFI). This chapter focuses on the stability of the AFI,
while the following chapter (Chapter 6) explores the topological properties of this phase.

1This result was originally obtained Ref. [2].
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Figure 5.1: Schematic illustration of the anomalous Floquet insulator (AFI) – an interacting
phase of matter only possible out-of-equilibrium. The bulk states are many-body localized in the
presence of disorder and interactions, under conditions discussed in the main text. The nontrivial
topology of the AFI is manifested in chiral edge states that exhibit protected thermalization.

5.1 Introduction

At or near equilibrium, the emergence of universal phenomena enables us to organize our
description of physical systems in terms of distinct phases of matter. Intriguingly, a similar
phase structure can emerge far from equilibrium, in periodically-driven quantum many-body
systems. While some of the corresponding “Floquet phases” are analogous to phases that occur
in equilibrium [20–41,59], others, such as discrete time crystals [44–52] or the anomalous Floquet-
Anderson insulator (AFAI) [1,2,53] and its generalizations [42,43,54–56], display unique dynamical
and topological features that cannot occur in equilibrium. We label such phases “anomalous
Floquet phases.”

The fact that stable phases of matter can exist at all in isolated periodically-driven systems
is itself a non-trivial statement: in the absence of a heat bath that can extract energy and
entropy, such systems are generally expected to continually absorb energy from the driving field
and heat towards a featureless infinite-temperature state at long times [93,148,149]. Crucially,
in the presence of strong disorder, many-body localization (MBL) may prevent such heating
[98,109,150]. Despite their localization, MBL systems support a rich variety of symmetry-breaking
and topological phases [151,152].

Previous works [98, 109] have shown that MBL may persist in periodically-driven systems
when the driving field has a high frequency and low amplitude. However, the genuinely new phases
of Floquet systems (anomalous Floquet phases), cannot be realized in the high-frequency regime.
Specifically, anomalous Floquet phases are characterized by nontrivial evolution over the course
of a single driving period, which requires the drive frequency to be at most comparable to other
energy scales of the system. In order to realize the full potential of many-body Floquet systems,
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we thus must understand the conditions under which anomalous Floquet phases may be realized.
In this work we investigate the stability of the two-dimensional (2D) anomalous Floquet

insulator (AFI) phase, an interacting version of the AFAI [2] (see Fig. 5.1). The AFAI is a
topologically nontrivial single-particle anomalous Floquet phase, characterized by a quantized
bulk magnetization density [6] and protected chiral edge states. Here we show that the AFI bulk
may be many-body localized in the presence of interactions.

To demonstrate MBL, we find conditions under which the original problem can be mapped
onto an effective high-frequency driving problem in an appropriately constructed rotating frame.
The same arguments that support MBL in the high-frequency limit [109] then imply MBL of the
AFI in the corresponding regime. This approach can also be applied to establish the stability of
other anomalous Floquet phases, such as discrete time crystals [49, 50] (see Appendix), and other
generalizations of the AFAI [55,56]. We support our conclusions with numerical simulations of
the long-time dynamics and level statistics of the AFI.

The crucial differences between the AFI and the AFAI, and some of the AFI’s most intriguing
properties, are revealed in a geometry with edges. First, due to interactions, we expect the
topologically protected edge states to give rise to “protected thermalization” at the AFI edge,
with the particle distribution on the edge rapidly approaching an infinite-temperature-like state.
Second, interactions couple thermalizing edge states and localized bulk states, resulting in a
non-trivial competition. We explore this competition numerically and conclude that, in finite-size
samples, the edge and bulk may effectively remain decoupled. This opens prospects for realizing
quantized edge transport [2, 91] in AFIs at high temperature.

5.2 Existence of the anomalous Floquet insulator.

We first show the existence of the AFI phase for sufficiently weak interactions between particles.
We consider a system of spinless fermions on a square lattice with two sublattices, A and B,
described by the following time-periodic Hamiltonian (with driving period T ):

H(t) = Hid(t) +Hdis(t) +Hint, H(t+ T ) = H(t). (5.1)

Here Hid(t) is the translationally invariant, single-particle Hamiltonian, which realizes the ideal
limit of the AFAI (see Ref. [1] and below). Hdis describes a random on-site disorder potential,
which stabilizes the AFAI in the absence of interactions [2]. The new ingredient is the two-particle
interaction described by Hint.

For concreteness, we consider the following driving protocol, illustrated in Fig. 6.2a. More
general driving schemes will be discussed below. Each period T is divided into five segments: the
first four segments each have duration αT/4, and the last segment has duration (1 − α)T . Hid
acts during the first four segments, while disorder is applied during the last segment; interactions
are always present. Importantly, the parameter 0 < α ≤ 1 tunes the effective strength of the
disorder. Below we define how H(t) acts within a single driving period, 0 ≤ t < T ; its form at
later times is obtained from time-periodicity, H(nT + t) = H(t), for any integer n.

The Hamiltonian Hid consists of hopping terms, which are cyclically applied as illustrated in
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Figure 5.2: a) Each driving period consists of five segments. During the first four segments,
time-dependent hopping Hid(t) [Eq. (6.20)] transfers particles between A and B sublattices,
cyclically around plaquettes of the lattice. Disorder, Hdis [Eq. (E.66)], is applied during the fifth
segment, while interactions, Hint [Eq. (5.5)], are always present. b) Schematic depiction of the
terms contained in the transformed interaction Hamiltonian, see Eq. (5.7). Three kinds of terms
are illustrated: (i) density-density interaction; (ii) hopping with an amplitude dependent on the
density of a nearby site; (iii) correlated hopping of pairs of particles.

Fig. 6.2a:

Hid(t) = J
∑
r∈A

4∑
n=1

fn(t)(c†
r+bncr + h.c.), (5.2)

where the first sum runs over sites r on sublattice A, and fn(t) = 1 for (n− 1)αT/4 ≤ t < nαT/4,
and fn(t) = 0 otherwise. The vectors {bn} are given by b1 = −b3 = (a, 0) and b2 = −b4 = (0, a),
where a is the lattice constant. The amplitude J is chosen such that the nth “pulse” perfectly
transfers a particle on site r ∈ A to site r + bn, and vice versa:

JαT/4 = π/2. (5.3)

Here and throughout we set ~ = 1. We write the disorder Hamiltonian as:

Hdis(t) = Hdisf5(t), Hdis =
∑

r
Wrc

†
rcr, (5.4)

where Wr ∈ [−W,W ] is a random on-site potential, and f5(t) = 1 for αT ≤ t < T , and 0 otherwise.
Finally, we choose Hint to consist of nearest-neighbor interactions:

Hint = λ
∑
〈rr′〉

nrnr′ . (5.5)

In the non-interacting limit, λ = 0, this model is exactly solvable and describes an ideal AFAI
with topological edge states and zero localization length in the bulk.
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5.2.1 Rotating frame transformation.

Our goal is to find the conditions when the AFI can be many-body localized. Importantly, the
driving described above is manifestly not in the high-frequency limit: condition (5.3) implies that
the hopping amplitude J is of the same order as the driving frequency, ω = 2π/T . Therefore, a
priori, the analysis of Ref. [109] cannot be directly applied.

We now perform a time-dependent unitary transformation to map our problem onto an equiv-
alent one, which lies in the high-frequency regime as long as W � ω, J . To avoid complications
arising from delocalized edge states, we first consider a system on a torus. We transform to a
rotating frame in which the fast motion associated with Hid is removed:

|Φ(t)〉 = Q†(t)|Ψ(t)〉, Q(t) = T e−i
∫ t

0 dsHid(s), (5.6)

where |Ψ(t)〉 (|Φ(t)〉) is the state in the original (rotating) frame. We note that Q(T ) = I is the
identity operator: over one full period, evolution with Hid(t) alone returns every particle to its
initial position. It follows that Q(t) is time-periodic: Q(t) = Q(t+ T ).

The time evolution of |Φ(t)〉 is generated by a transformed Hamiltonian H̃(t), given by
H̃(t) = Q†(t)H(t)Q(t) − iQ†(t)∂tQ(t). By construction, Eq. (5.6) gives Q†Hid(t)Q− iQ†∂tQ = 0.
Thus we obtain:

H̃(t) = Q†(t)(Hdis(t) +Hint)Q(t). (5.7)
Since Q(t) and Hdis(t) are both T -periodic, H̃(t) is also time-periodic with period T . The
periodicity of Q(t) further implies that the Hamiltonian H̃(t) generates the same Floquet operator
as H(t), and therefore the same stroboscopic evolution, |Ψ(nT )〉 = |Φ(nT )〉. It follows that if the
system described by H̃(t) is many-body localized, so is the system described by H(t).

With the help of the unitary transformation Q, we have eliminated the large-amplitude term
Hid(t) from the Hamiltonian. The resulting Hamiltonian H̃(t) has terms of order W,λ, which
can be much smaller than the driving frequency ω. In this limit, the system in the rotating frame
is in the high-frequency regime, where MBL can be stable with respect to driving.

5.2.2 Conditions for many-body localization.

To establish the conditions for MBL more precisely, we examine the transformed Hamiltonian
(5.7), see also Eqs. (E.66) and (5.5). Due to the fact that Hid(t) acts only during the first
four segments of the driving cycle, Q(t) = I for all t ∈ [αT, T ]. Since Hdis(t) acts only during
the fifth segment, the disorder Hamiltonian [Eq. (E.66)] is unchanged by the transformation
Q(t). The disorder term can be decomposed into a time-averaged component (1 − α)Hdis, and a
time-dependent component, which changes step-wise at times t = αT and T . In the absence of
interactions, Hdis(t) gives (single-particle) eigenstates that are trivially localized on each site of
the lattice.

The transformed interaction Hamiltonian, H̃int(t) = Q†(t)HintQ(t), has a clear structure
including three kinds of terms of extended but finite range (see Fig. 6.2b): (i) density-density
interactions between nearby sites, (ii) hopping between nearby sites with an amplitude that
depends on the density on one of the nearby sites, and (iii) correlated hopping of pairs of particles.
Explicit expressions for these terms and the ranges over which they act are discussed in the
appendix.
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Crucially, the transformed interactions remain short-ranged. All of the terms described above
have time-averaged (constant) parts with strengths ∼ O(αλ), as well as oscillating parts at
frequency ω and higher harmonics, see the appendix.

We proceed in two steps, first analyzing the dynamics generated by the static, time-averaged
part of H̃(t), then investigating the role of the remaining (small) time-dependent terms. The
time-averaged part of H̃(t) contains on-site potential disorder with characteristic scale W (1 − α),
and one- and two-particle hopping terms induced by interactions, with strength ∼ λα. In the
limit λα � W (1 −α) the delocalizing processes induced by interactions are typically off-resonant,
and the (static) system is in the MBL phase [110]. At a critical interaction strength λc, the
system undergoes a transition into a thermal, delocalized phase. Thus stability requires:

λα

W (1 − α) ≤ κc, (5.8)

where κc is the critical ratio at which the MBL-delocalization transition occurs.
As we explain in the appendix, the time-dependent terms of H̃(t) have Fourier components

with amplitudes of the order αλ, αW . In the “high-frequency” limit, ω � αW,αλ, the analysis
of Ref. [109] shows that such time-dependent terms do not lead to delocalization.

The above arguments show that our system exhibits MBL for λ,W � 1
αω, λ < 1−α

α Wκc. The
AFI thus constitutes a stable anomalous Floquet phase of matter.

5.3 Numerics: existence of AFI phase.
We support the above analytical arguments with numerical simulations. To investigate the
stability of the phase, we compare two driving protocols: (i) the model defined by Eqs. (5.1)-(5.5),
with disorder applied only during the fifth segment, and (ii) the same as (i), but with (constant)
disorder applied throughout the driving cycle.

As an indicator of MBL, we study the quasienergy level statistics of the Floquet operator
U(T ) = T exp

(
−i
∫ T

0 H(s) ds
)
, obtained via exact evolution [93,98,150,153]. The level spacing

ratio around many-body Floquet state n is defined as rn = min{δn/δn+1, δn+1/δn}, where
δn = εn − εn−1 is the quasienergy gap below level n. For a Poisson distribution of levels, this
ratio is ∼ 0.4; for the Circular Unitary Ensemble, it is ∼ 0.6 [93].

We computed the average level spacing ratio by exact diagonalization of the Floquet operator
for multiple realizations of the model with 8 particles on a 4 × 4 square lattice with periodic
boundary conditions. For model (i) we take W = 0.1ω, and for model (ii) we take W = ω.

Figure 5.3 shows the resulting data as a function of λ/W . Each curve shows the mean value of
the average level spacing ratio obtained from an ensemble of 100 disorder realizations per point 2,
for a fixed value of α. The peaks visible near the transition for α = 1

16 and α = 1
64 in model (i)

arise due to resonances where the periodic driving breaks up clusters of 2, 3 and 4 particles that
are otherwise bound by the interactions 3.

2For a given value of α, the realizations are different for each value of λ.
3In the rotating frame, interactions may bind small droplets of particles together. However, when λ = zω

n
for

integers z, n, the residual periodic driving in the rotating frame can lead to resonances where these clusters break
up. Due to the breaking up of clusters at these values of λ, the system becomes more delocalized.



5.3. NUMERICS: EXISTENCE OF AFI PHASE. 87

Figure 5.3: Average level spacing ratio as function of interaction strength, in a half-filled system
of 4 × 4 sites. Each point on each curve results from averaging over 100 disorder realizations.
Light curves correspond to model (i), with W = 0.1ω, while dark curves correspond to model (ii)
with W = ω. In all cases, Poisson level statistics, indicating MBL, are observed at low enough
interaction strength.

The data in Fig. 5.3 show that, for all the values of α we examined, the level spacing ratio
converges to 0.38 for sufficiently small values of λ, indicative of Poisson level statistics and MBL.
Additionally, the critical value λcritical/W at which the localization-delocalization transition occurs
shifts upwards for smaller values of α, as anticipated above. When α = 1/64, the system is
localized even when the interaction strength is an order of magnitude larger than W . Smaller
values of α will likely push up the transition further.

For a given α, the value of λcritical in model (ii), where W = ω, is shifted to lower values than
in model (i). However, λcritical remains finite and controllable by α. The AFI phase thus appears
to extend beyond the regime of the sufficient condition W � ω discussed above.

5.3.1 Dynamics of an AFI with edges.

So far, we have established the stability of the AFI in a closed geometry without an edge.
In the non-interacting AFAI in an open geometry (i.e., a geometry with edges), the system’s
nontrivial topology gives rise to propagating chiral edge states and novel quantized transport
phenomena [2, 91]. Due to the topological and chiral nature of the edge states, we expect
that interactions will lead to thermalizing behavior at the edge. The competition between
thermalization on the one-dimensional edge and MBL of the two-dimensional bulk is a subtle and
important issue to explore, in particular, as bulk localization is required to observe quantized
edge transport.

To gain insight into the dynamics at the edge, we numerically investigated the AFI in an
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Figure 5.4: Time evolution of 4 particles on a square lattice of 8 × 9 sites (black dots) with open
boundary conditions. We simulate model (ii), with time-independent disorder, and parameter
values W = ω, λ = 0.1W , and α = 1

16 . a) The two different initial site occupations considered,
indicated by red and blue squares. b) The cluster initialized in the bulk (blue, upper panel)
remains stable over 105 periods. For the edge initialization (red, lower panel), the particle density
is homogenized around the perimeter, with negligible leakage into the bulk. c) Eigenvalues of the
one-body reduced density matrix, ρ(1)

R . For the bulk initialization (blue), we take R to be the full
lattice; a clear gap between near-unity and smaller eigenvalues indicates localization. For the
edge initialization, we consider R as the full lattice (orange), or only the sites along its edge (red).
The nearly identical plateaus of eigenvalues in the two cases indicate thermalization confined to
the edge.

open geometry. We simulated model (ii) discussed above, for 4 particles moving in a rectangle of
9 × 8 sites with open boundary conditions 4. We initialized the particles either in a droplet of
2 × 2 sites in the center of the system, or in sites along the edge (Fig. 5.4a). In Fig. 5.4b, we
show the corresponding particle densities after time-evolution for 100, 000 driving periods. Even
after this very long evolution the droplet profile has only slightly broadened, indicating that the
bulk acts localized on this time scale (and likely indefinitely). For the edge initialization, the
particle distribution has homogenized around the perimeter 5, and broadened in a narrow strip
near the edge. We have further confirmed that, at long times, the system carries a nonvanishing

4For real time dynamics we are able to simulate larger systems than for level statistics due to the smaller number
of particles and because full diagonalization is not needed.

5In the non-interacting, clean limit, the chiral edge mode resides on alternating sites on the edge. The observed
distribution is homogeneous on these sites, with remaining fluctuations on other sites due to finite-size effects.
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circulating current around its perimeter (see appendix).
To further investigate thermalization, we first define a region R to be “thermalized” if the

reduced density matrix on R takes an infinite temperature form, ρR ∼ exp(−ηN̂), where N̂ is the
number operator on R and η is a constant that fixes the particle density. This definition implies,
in particular, that on a thermalized region the eigenvalues pi of the one-body reduced density
matrix

[
ρ

(1)
R

]
rr′ ≡ 〈Ψ(t)|c†

rcr′ |Ψ(t)〉, with r, r′ in R, are all equal within each particle number
sector [154]: pi = N/NR, where N is the number of particles, and NR is the number of sites in R.

In Fig. 5.4c, we show the eigenvalues of ρ(1)
R after a long time evolution, for both the droplet

and edge initializations. The initial states in both cases are four-particle Slater determinants.
The corresponding one-body density matrices on regions containing all particles would have four
unit eigenvalues, with the rest being equal to zero. For the droplet initialization we choose the
region R to be the entire 9×8 lattice; we see that four eigenvalues remain close to one, with only
weak correlations among other “natural orbitals.” This is a signature of localization [154]. For the
edge initialization we show the spectra of ρ(1)

R evaluated on a one-site-wide strip running around
the perimeter of the system, and on the whole lattice. For both we find a long plateau of nearly
equal eigenvalues signifying thermalization on the edge.

5.4 Discussion.
Our study establishes the AFI as a stable anomalous Floquet phase protected by MBL and opens
up several directions for future investigations. First, our results strongly suggest that for finite
strengths of disorder and interactions, the bulk remains localized for, at least, time scales that are
exponentially long time in the system size, even while the edge thermalizes. This gives promise
that the AFI may support quantized transport on all practical/experimental time-scales. We
leave a detailed analytical study of the edge-bulk competition in the thermodynamic limit for a
future study.

Second, we found that the chiral AFI’s edge hosts protected thermalization. The competition
between thermalizing and MBL regions is a subject of ongoing debate [155], and the AFI may
provide an interesting platform for systematically investigating this interplay. For example,
consider an AFI punched with holes of circumference ∼ `, typically separated by a distance L.
The system can then be viewed as an array of thermalizing regions, each comprised of ∼ ` sites,
embedded in a localized background. Tuning `, L allows one to change the volume fraction of
thermalizing regions in the system. Thus, the geometry of an AFI sample may be used to control
and study thermalization.





Chapter 6

Quantized Properties of the
Anomalous Floquet Insulator

This chapter is written in collaboration with Mark S. Rudner, Dmitry Abanin, Netanel H.
Lindner, and Erez Berg and is being prepared for submission to a journal.

The results of the last chapter strongly suggest that the anomalous Floquet insulator (AFI) is a
stable phase in periodically driven systems. The AFI can be seen as the interacting version of
the Anomalous Floquet-Anderson Insulator (AFAI) [2], which was introduced in Sec. 2.2.3, and
discussed in Chapter 4. Chapter 5 found that the topological properties of the AFAI are captured
in a quantized, nonzero magnetization density within regions where all sites are occupied.

This chapter explores the topological properties of the AFI. The results obtained here generalize
the results from Chapter 4 to systems of interacting particles. In contrast to the noninteracting
special case (the AFAI phase), which is characterized by a single integer-valued invariant, the
AFI is characterized by a family of invariants, that are encoded in the system’s time-averaged
magnetization operator. Specifically, the kth topological invariant is associated with k-particle
correlations of the system’s time-averaged magnetization.

Interestingly, the topological properties of the AFI do no rely on full many-body localization,
but rather on partial localization, where all Floquet eigenstates with up to k particles (for some
finite k) are localized. In this case, the system is characterized by k topological invariants, where
the kth invariant is protected by the localization of Floquet eigenstates in the k-particle subspace.
This opens up the potential for detecting nontrivial topological signatures in periodically driven
systems that are not fully many-body localized.

6.1 Introduction

In recent years, a wide range of new, intrinsically non-equilibrium phases of matter have been found
in periodically driven systems [1,2,6, 8, 44,46–52]. These “anomalous” phases are characterized
by novel, topologically robust properties of their micromotion (the dynamics of the system
that takes place within a driving period), such as frequency-locked oscillations in Floquet time
crystals [49,50], or quantized orbital magnetization density in the two-dimensional Anomalous
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Floquet-Anderson Insulator (AFAI) [1, 2, 6].
Disorder plays a crucial role for stabilizing Floquet phases. In particular, in the presence of

interactions, disorder-induced many-body localization (MBL) may play a crucial role in stabilizing
Floquet phases by providing a mechanism for the system to avoid absorbing energy uncontrollably
from the driving field [97]. Importantly, the requirement of many-body localization does not
forbid topologically-nontrivial micromotion from taking place during the driving period [7, 49, 50].

In this chapter, we study the topological properties of time-evolution in localized, two
dimensional interacting fermionic systems subject to periodic driving (see Fig. 6.1). Starting from
the assumption that the system is many-body localized (see Ref. [7]), we show that the system’s
evolution is characterized by a family of (bulk) topological invariants, {µk}. The values of these
invariants are encoded in the long-time-averaged magnetization density operator in the Fock space
of the system. Interestingly, in the absence of interactions, only a single one of these invariants
(µ1) can be nonzero; this is the topologically-quantized orbital magnetization found in Ref. [6].
With interactions, higher invariants can become nonzero. Generalizing the orbital magnetization
captured by µ1, these higher invariants can be associated with correlated circulating orbits of two
or more particles. The topological protection of each invariant µk relies not on full many-body
localization in the thermodynamic limit, but rather on partial localization (i.e. localization of all
states consisting of up to k particles).

The invariants {µk} characterize the Fock space evolution operator of the system as a whole,
independent of any particular state. Once a specific number of particles is present, and a state
specified, the nontrivial topology encoded in the {µk} is manifested as a quantized magnetization
density in any filled region of the lattice, as schematically depicted in Fig. 6.1.

When one or more of the higher invariants are nonzero, the system is in a new, intrinsically
many-body phase which has no equivalent in noninteracting systems. It is not presently clear
if nonzero values of the new invariants can be realized together with MBL. However, since the
invariants do not rely on full MBL for their protection, it may be possible to see signatures of the
new invariants in large, but finite systems. We demonstrate that nonzero values of the higher
invariants may be realized in models with correlated hoppings.

The rest of the chapter is organized as follows. In Sec. 6.2, we first briefly review the structure
of the Floquet operator in many-body localized systems, and of the orbital magnetization operator
(Sec. 6.2 below). Following this, we identify from the time-averaged magnetization operator a set
of topological invariants {µk} that characterize the AFI phase (Sec. 6.3). After establishing the
the topological invariance of the invariants {µk}, we show that they must be quantized as integers
(Sec. 6.3.1), and that nonzero values of the invariants gives rise to quantized bulk magnetization
density (Sec. 6.3.2). We support our discussion with numerical simulations (Sec. 6.4), and conclude
with a discussion (Sec. 6.5).

6.2 Structure of the Floquet operator

In this chapter we study the dynamics of interacting fermions in a two-dimensional lattice with
disorder. The system is subject to periodic driving, described by the time-periodic Hamiltonian
H(t) = H(t+T ). In the following we assume that the system is fully many-body localized (MBL),
due to strong disorder (see Ref. [7]). In this case, the system has a complete emergent set of
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Figure 6.1: Schematic depiction of the two-dimensional anomalous Floquet insulator. This
interacting phase is characterized by driving-induced circular motion of bulk particles, and
is described by a family of integer-valued topological invariants {µk} that are protected by
localization. Nontrivial topology reveals itself in a quantized, nonzero magnetization density
within regions where all states are filled, given by 〈m〉 = 1

T

∑
k µk.

quasilocal integrals of motion [97,112] (LIOMs), {n̂a}. The Floquet operator U(T ) = T e−i
∫ T

0 dtH(t)

can be written as U(T ) = e−iHeffT (here and throughout we set ~ = 1), where Heff takes the
simple form in terms of the LIOMs {n̂a}:

Heff =
∑
a1

n̂a1εa1 +
∑

a1,a2

n̂a1 n̂a2εa1a2 + . . . . (6.1)

Here the coefficients εa1...ak (referred to as quasienergy coefficients in the following) are real
numbers with units of energy. The operators {n̂a} mutually commute and form a complete set
of integrals of motion. Finally, the sum

∑
a1...ak

runs over all
(D

k

)
distinct configurations of the

indices a1 . . . ak, where
(a

b

)
denotes the binomial coefficient, and D denotes the number of distinct

LIOMs in the system (or, equivalently, the dimension of the system’s single-particle Hilbert space).
For a system on a square lattice with one orbital per unit cell, D is given by A/`2, where A is
the area of the system, and ` is the lattice constant. The above form of the Floquet operator
implies that each of the LIOMs {n̂a} is preserved by the stroboscopic evolution of the system,
and thus the operators {n̂a} can manifestly be seen to be integrals of motion.

Each of the integrals of motion can be written in the form n̂a = f̂ †
a f̂a, where f̂a is a

(dressed) localized fermionic annihilation operator. The fermionic annihilation operator f̂α can
be constructed from the original lattice annihilation and creation operators as f̂a =

∑
α f

α
a ĉα +∑

α...γ f
αβγ
a ĉ†

αĉβ ĉγ +
∑

α...ε f
αβγδε
α ĉ†

αĉ
†
β ĉγ ĉδ ĉε + . . ., where ĉα annihilates a fermion on site α in

the lattice. In this way, the LIOM operators {n̂a} count the number of fermions such that∑
a n̂a gives the total number of fermions in the system. Moreover, each integral of motion n̂a

is localized around a particular location ra in the system1. Specifically, the magnitude of the

1The point ra may for instance be defined as ra = ΣkΣα1...αk
|fα1...αk

a |2(rα1 +...rαk
)

ΣkΣα1...αk
|fα1...αk

a |2 .
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coefficient fα1...αk
a decreases exponentially with the distance δ from any of the sites α1 . . . αk to ra:

fα1...αk
a ∼ e−δ/ξ, where ξ is the localization length in the system. We refer to the operators {n̂a}

as localized integrals of motion (LIOMs) in the following. In addition to the operators {n̂a} being
localized, the quasienergy coefficients {εa1...ak} also exhibit similar localized behavior. Specifically,
εa1...ak decays as e−d/ξ, where d is the distance between any two of the LIOMs a1 . . . ak.

The LIOM decomposition above defines a labelling for the Floquet eigenstates, which we
make use of in the following. Specifically, we let |Ψa1...ak〉 denote the k-particle Floquet eigenstate
which satisfies n̂a|Ψa1...ak〉 = |Ψa1...ak〉 if a ∈ {a1 . . . ak}, while n̂a|Ψa1...ak〉 = 0 if a /∈ {a1 . . . ak}.
In the same way, we let Ea1...ak denote the quasienergy associated with the Floquet eigenstate
|Ψa1...ak〉. The quasienergy Ea1...ak can be found from the quasienergy coefficients as

Ea1...ak =
k∑

n1=1
εan1

+
k∑

n1,n2=1
εan1 an2

+ . . . . (6.2)

In the following, we use the LIOM structure of the Floquet operator to identify the invariants
{µk} that characterize the AFI phase. As mentioned in the introduction of this section, these
invariants are encoded in the time-averaged magnetization density operator of the system. Before
we identify the invariants we therefore briefly review the properties of orbital magnetization in
two-dimensional systems.

6.2.1 Characterization of micromotion

As mentioned in the introduction, the topological properties of the system are encoded in the
system’s micromotion, specifically in circulating currents within the system. Circulating currents
are reflected in the system’s magnetization density. In this section, we therefore discuss the
magnetization density operator and its properties.

In two-dimensional systems, magnetization density mp in a given plaquette p measures the
total current that encircles the plaquette. It can be defined from the response of the Hamiltonian
to the insertion a magnetic flux in the plaquette p2:

mp(t) = −∂H(t)
∂φp

, φp =
∫

p
d2r B(r), (6.3)

where the integral is taken over the area of plaquette p.
As defined above, the magnetization density operator depends on the gauge used to implement

the magnetic flux φp. However, expectation values of M are gauge-independent when evaluated
in states where the particle density ρα ≡ ĉ†

αĉα is stationary. More generally, we define 〈O〉τ ≡
1
τ

∫ τ
0 dt 〈ψ(t)|O(t)|ψ(t)〉 as the time-averaged expectation value of an operator O(t) in the state

|ψ(t)〉. The time-averaged magnetization 〈mp〉τ is then gauge-independent if 〈ρ̇a〉τ = 0 (see
Appendix ?? for proof). Importantly, in an MBL system, any state is stationary in the long-time
limit since limτ→∞〈ρ̇〉τ = 0. Hence the long-time average ⟪mp⟫ ≡ limτ→∞〈mp〉τ is always
gauge-independent.

2In this work, magnetic field has dimensions of [1/Area], such that the Aharonov-Bohm phase acquired by
following a closed path equals the enclosed magnetic flux.
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The magnetization density is related to the current through Ampere’s law. Letting Ipq(t)
denote the bond current operator on the bond between two adjacent plaquettes p and q (such
that positive current is counterclockwise with respect to plaquette p), we have, in any stationary
state [6]:

〈Ipq〉τ = 〈mp〉τ − 〈mq〉τ . (6.4)

The above result is the lattice version of Ampere’s law in the continuum3: j = ∇ × m.

Below, we show that the topological invariants characterizing the AFI phase are encoded in
the long-time average of the magnetization density operator. For any given initial state |Ψ〉, the
long-time averaged magnetization can be computed as ⟪mp⟫ = 〈Ψ|m̄p|Ψ〉, where

m̄p = lim
τ→∞

1
τ

∫ τ

0
dt U †(t)mp(t)U(t). (6.5)

Note that the magnetization density operator is explicitly time-dependent in the Schrodinger
picture due to the time-dependence of the Hamiltonian [see Eq. (6.3)]. The magnetization
density operator in the Heisenberg picture that enters in the integral above is thus obtained by
transforming the time-dependent operator mp(t) with the time-dependent unitary U(t).

Since the long-time average of any Heisenberg picture operator is diagonal in the basis of
Floquet eigenstates4, m̄p must be an integral of motion [156]. Thus, it can be written in terms of
the of the LIOMs {n̂a} introduced in Eq. (6.1) as

m̄p = 1
T

(∑
a1

µp
a1 n̂a1 +

∑
a1a2

µp
a1a2 n̂a1 n̂a2 + . . .

)
. (6.6)

Here, for each term involving a product of k LIOMs, the sum
∑

a1...ak
runs over the

(D
k

)
distinct

choices of a1 . . . ak. Noting that m̄p has units of energy, the magnetization coefficients {µp
a1...ak

}
are dimensionless.

As we now argue, Ampere’s law implies that these coefficients vanish as e−d/ξ, where d is the
distance from the plaquette p to any of the LIOMs a1 . . . ak. To see this, note that the operators
f̂a and f̂ †

a that “flip” the LIOM n̂a only act on the system locally, in the vicinity of ra, or hence
by the value of n̂a. If ra is sufficiently far away from plaquette p, the total current that circulates
around plaquette p is not significantly affected when acting on the system with f̂a or f̂ †

a . In
this way, m̄p can only depend significantly on the values of the LIOMs that are located within a
localization length of the plaquette. Thus µp

a1...ak
decays exponentially as e−d/ξ with the distance

d from any of the LIOMs a1 . . . ak to the plaquette p (due to the exponentially decaying tails of
the LIOMs)5.

3This relation implies that magnetization is only well-defined when particle density is stationary: ∇ · j = 0.
4In case of degeneracies, one can always pick a basis of eigenstates where m̄p is diagonal
5 Specifically, note that the magnetization density in a plaquette can be computed from Ampere’s law as

〈〈mp〉〉 = −Σn 〈〈Ipn+1pn〉〉, where (p1, p2, . . .) can be any sequence of neighboring plaquettes that goes from infinity
to p. Flipping an l-bit a0 at some point r0 away from plaquette p does not affect the value of 〈〈mp〉〉since we can
always compute this number with a sequence (p1, . . .) that never approaches the flipped LIOM. The change of the
bond currents 〈〈Ipn+1pn〉〉 along this path is exponentially suppressed in the distance from the flipped LIOM to the
path. Thus µpa1...ak

must be exponentially suppressed in d/ξ, where d is the distance of any of the LIOMs a1 . . . ak
to plaquette p.
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6.3 Topological invariants of the time evolution

We now show that, for each order of the product of LIOMs (i.e., for each value of k), the sum of
the magnetization coefficients

∑
a1...ak

µp
a1...ak

remarkably does not depend on the location of the
plaquette p, and is insensitive to (locality-preserving) perturbations of the system. The sum is
given by a universal constant µk, which we identify as a topological invariant of the system.

To show that each sum
∑

a1...ak
µp

a1...ak
is a topological invariant (for different values of k),

we consider the case where the system is confined to a closed geometry, such as, a torus6 of
dimensions L×L. As a first step, we compare the traces of m̄p and m̄q, in the k-particle subspace,
for two neighboring plaquettes p and q. To compute the traces we note that Ampere’s law
[Eq. (6.4)] dictates that

〈Ψ|m̄p|Ψ〉 − 〈Ψ|m̄q|Ψ〉 = 〈Ψ|Īpq|Ψ〉, (6.7)

where Īpq ≡ limτ→∞
1
τ

∫ τ
0dt U

†(t)Ipq(t)U(t), Thus, ⟪Ipq⟫ = 〈Ψ|Īpq|Ψ〉. The above result holds
for any given state |Ψ〉. Letting Trk(A) indicate the trace of the operator A in the k-particle
subspace, we thus have that

Trkm̄p − Trkm̄q = TrkĪpq, (6.8)

Using the cyclic property of the trace, we note that TrkĪpq = limτ→∞
1
τ

∫ τ
0dtTrkIpq(t). Since the

current operator is traceless, we find that TrkĪpq = 0, and hence

Trkm̄p = Trkm̄q. (6.9)

Since this relation holds for any two neighboring plaquettes, it must hold for any two plaquettes
in the lattice.

We now insert the expansion (6.6) of m̄p into Eq. (6.9). One can verify from combinatorial
arguments that Trk(n̂a1 . . . n̂an) =

(D−n
k−n

)
. Using this fact,

Trkm̄p =
k∑

n=1

(
D − n

k − n

) ∑
a1...an

µp
a1...an . (6.10)

Comparing the traces Trkm̄p and Trkm̄q for each value of k, an inductive argument7 can be used
to show that, for each value of k, ∑

a1...ak

µp
a1...ak

=
∑

a1...ak

µq
a1...ak

. (6.11)

6 In the case of a closed geometry, the definition of mp(t) from the response of the Hamiltonian to a magnetic
flux in Eq. (6.3) technically requires the specification of a compensating magnetic field somewhere else on the
torus, since the total magnetic flux through the surface cannot be varied continuously (See Ref. [6]). As we show in
Appendix E.1, this fact does not affect any of the conclusions above. Furthermore, the dependence of mp on the
exact implementation of the compensating field is of order e−L/ξ, and thus vanishes in the thermodynamic limit.

7To see why Eq. (6.11) holds, we note first that Eq. (6.11) trivially follows from Eqs. (6.9) and (6.10) in the
case k = 1. Additionally, using the same two results, one can show that Eq. (6.11) holds in the case k = k0 if it
holds for all values of k smaller than k0. Hence Eq. (6.11) must hold for all k.



6.3. TOPOLOGICAL INVARIANTS OF THE TIME EVOLUTION 97

The above result holds for any two plaquettes p and q in the lattice, and hence
∑

a1...ak
µp

a1...ak
must be given by the same value for all plaquettes in the lattice8:∑

a1...ak

µp
a1...ak

= µk. (6.12)

We now argue that the constant µk is a topological invariant of the system in the thermodynamic
limit (L → ∞)9.

To show this, consider smoothly changing the parameters of the system in some region R of the
system, in such a way that MBL is not broken. We recall that the coefficient µp

a1...ak
only depends

on the details of the system around the plaquette p, up to an exponentially small correction
(due to the exponentially decaying tails of the LIOMs). Hence, for a plaquette p0 located a
distance d ≈ L/2 from the region R, the coefficient µp0

a1...ak
may only change by an amount of

order e−L/2ξ during the deformation. These considerations imply that the sum
∑

a1...ak
µp0

a1...ak
remains constant during the deformation in the thermodynamic limit. Noting that the result
in Eq. (6.12) holds for any plaquette in the system (including p0) we conclude that µk does not
change during the deformation. Since the global parameters of the system can be changed by a
sequence of local perturbations of the type above, µk must remain invariant under any smooth
change of the system that preserves MBL. We thus conclude that µk is a topological invariant of
the system which can only change its value at a phase transition where the system delocalizes. In
the following subsection, we show that µk is quantized, and must take the value of an integer.

6.3.1 Values of the invariants {µk}

Here we show that the topological invariants {µk} are integers. The approach we use here is
analogous to the noninteracting case (see Ref. [6]). We give here an outline of the arguments,
while technical details of the proof can be found in Appendix E.2. We find the value of µk by
computing the trace of m̄p in the k-particle subspace, Mk ≡ Trkm̄p. Specifically, Eq. (6.10)
implies that that Mk =

∑
n

(D−n
k−n

)
µn. Having found the value of Mk for all k, we may infer the

values of the invariants {µk}.
Using Eq. (6.9), i.e., that the value of Trkm̄p is the same for every plaquette on the lattice,

we compute Mk by taking the average value of Trkm̄p over all plaquettes in the lattice. Noting
that there are (L2/`2) plaquettes in total, where ` is the lattice constant, we thus have Mk =
`2

L2
∑

p Trkm̄p. Explicitly writing out the trace Trkm̄p in terms of the k-particle Floquet eigenstates,
we thus find

Mk = `2

L2

∑
p

∑
a1...ak

〈Ψa1...ak |m̄p|Ψa1...ak〉. (6.13)

8Technically, the magnetization operator m̄p is only defined up to a correction of order e−L/ξ (see Footnote 6)
and thus, the above result holds up to a correction of order e−L/ξ for systems of finite size. At the same time,
an increase the system size can only change the sum Σa1...akµ

p
a1...ak

by an amount of order e−L/ξ, due to the
exponentially decaying tails of the LIOMs. Thus, for systems of finite size, the sum Σa1...akµ

p
a1...ak

. is given by µk,
where µk is the value of the sum in thermodynamic limit.

9For a finite system, the fact that µpa1...ak
is exponentially insensitive to the details of the system far away from

the plaquette p means that it may only change by an amount of order e−L/ξ when the system size is increased.
This implies that the sum Σa1...akµ

p
a1...ak

is given by its value in the thermodynamic limit, up to a correction of
order e−L/ξ.
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Recall that 〈Ψa1...ak |m̄p|Ψa1...ak〉 gives the time-averaged magnetization density ⟪mp⟫ of the
Floquet eigenstate |Ψa1...ak〉 in plaquette p. Thus the sum `2

∑
p〈Ψa1...ak |m̄p|Ψa1...ak〉 gives the

total time-averaged magnetization ⟪M⟫ ≡
∫
d2r ⟪m(r)⟫ of the Floquet eigenstate |Ψa1...ak〉. In

analogy to non-driven systems, where the magnetization of a state gives the response of its energy
to a uniform perpendicular magnetic field, the time-averaged magnetization of a Floquet eigenstate
gives the response of its quasienergy Ea1...ak to the application of a uniform perpendicular magnetic
field B in the region of support of the state |Ψa1...ak〉 (see Appendix E.2):

∑
p

`2〈Ψa1...ak |m̄p|Ψa1...ak〉 = −∂Ea1...ak

∂B
. (6.14)

As we show in Appendix E.2, the derivative ∂Ea1...ak
∂B can be approximated from the response

of the system’s quasienergy spectrum to the insertion of a (weak) uniform field B0 = 2π
L2

corresponding to precisely one flux quantum piercing the torus. In particular, we show that, even
though the system’s quasienergy spectrum of undergoes exponentially many avoided crossings
under a continuous perturbation, the eigenstates and quasienergies in the presence of the field
B0 are approximately identical to those of the the system in the absence of the field B0 (for
all but a measure zero set of disorder realizations). Specifically, with a probability that goes
to 1 in the thermodynamic limit (and for any finite value of k), we may label the Floquet
eigenstates {|Ψ̃a1...ak〉} of the one-flux system such that, for each choice of the LIOM indices
a1 . . . ak, |Ψ̃a1...ak〉 = |Ψa1...ak〉 + O(`/L), up to a gauge transformation. With this labelling, the
associated quasienergy Ẽa1...ak of the one-flux system satisfies

Ẽa1...ak = Ea1...ak +B0
∂Ea1...ak

∂B
+ O(ASB0

√
`/L), (6.15)

where AS is the area of the region where the Floquet eigenstate |Ψa1...ak〉 has its support. The
correction above is subleading in L, and can be neglected in the thermodynamic limit where
L → ∞ while k remains constant. We may thus use Eq. (6.15) to approximate the value of the
derivative −∂Ea1...ak

∂B .
Making this substitution in Eq. (6.14), and using Eq. (6.13), along with B0 = 2π/L2, we find

Mk = 1
2π

∑
a1...ak

(Ẽa1...ak − Ea1...ak). (6.16)

As our next step, we relate the sum on the right hand side above to the determinants of the
Floquet operators U1(T ) and U(T ) of the one- and zero-flux systems, respectively. Letting |A|k
denote the determinant of the operator A within the k-particle subspace, we find that

|U1(T )|k
|U(T )|k

= e
−i
∑

a1...ak
(Ẽa1...ak−Ea1...ak )T

. (6.17)

Crucially, the determinants |U1|k and |U |k must be identical. To see this, note that the determinant
of any time-evolution operator can be found from the time-averaged trace of the Hamiltonian:
|U(T )|k = exp(−i

∫ T
0 dt

′ TrkH(t)) (for proof, see e.g., Ref. [5]). Since the insertion of a magnetic
flux only modifies off-diagonal elements of the Hamiltonian (in position space), the trace of the
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Hamiltonian is unaffected by the magnetic field B0. We thus find |U1(T )|k = |U(T )|k. The
expression in Eq. (6.17) must therefore be equal to 1. By comparing with Eq. (6.16), we conclude
that Mk must be an integer multiple of 1/T .

We now use this result to infer the values of the invariants {µk}. According to Eq. (6.10),
Mk = 1

T

∑k
n=1

(D−n
k−n

)
µk. From this fact, along with the result that Mk is an integer multiple of

1/T for any value of k, it follows that each µk must be an integer10.

6.3.2 Quantized magnetization density in fully occupied regions

Here we show that the values of the invariants {µk} can be measured directly from the magneti-
zation density within a region of the system where all sites are occupied.

We consider preparing the system in a state |Ψ〉 by filling all sites in some finite region of
the lattice, of linear dimension d, with all sites outside remaining empty. For a plaquette p
located deep within the fully occupied region, we find the time-averaged magnetization density as
⟪mp⟫ = 〈m̄p〉, where we introduced the shorthand 〈O〉 ≡ 〈Ψ|O|Ψ〉. Using the expansion of m̄p in
Eq. (6.6), we thus find:

⟪mp⟫ =
∑
a1

µp
a1

T
〈n̂a1〉 +

∑
a1a2

µp
a1a2

T
〈n̂a1 n̂a2〉 + . . . . (6.18)

To analyze the sum, we note that, for a LIOM n̂a whose center ra is located deep within the filled
region, all sites where n̂a has its support are occupied. Thus11 n̂a|Ψ〉 = |Ψ〉 + O(e−d/ξ). Here the
correction arises from the exponentially decaying tail of n̂a outside the filled region. For terms in
the above equation where the centers of all the LIOMs a1 . . . ak are located near the plaquette p,
the above result implies that 〈n̂a1 . . . n̂ak〉 = 1 + O(e−d/ξ), since all of the LIOMs n̂a1 . . . n̂ak are
located deep within the initially occupied region. For all remaining terms in Eq. (6.18), one or
more LIOMs a1 . . . ak are located outside the filled region, and thus at least a distance ∼ d from
the plaquette p. In this case, the magnetization coefficient µp

a1...ak
is exponentially small in d/ξ

[see the discussion below Eq. (6.6)]. For both categories of terms, we thus find that we can set
〈Ψ|µp

a1...ak
n̂a1 . . . n̂ak |Ψ〉 = µp

a1...ak
, at the cost of a correction which is exponentially small in d/ξ.

Doing this, we obtain

⟪m̄p⟫ = 1
T

(∑
a1

µp
a1 +

∑
a1a2

µp
a1a2 + . . .

)
+ O(e−d/ξ).

Using Eq. (6.12), we identify the kth sum above as the invariant µk. Thus, since 〈Ψ|m̄p|Ψ〉 = ⟪mp⟫,
we find

⟪mp⟫ =
∑

k

µk + O(e−d/ξ). (6.19)

10Specifically, setting k = 1, we find µ1 = M1T , which implies that µ1 is an integer. Next, setting k = 2, we
find M2T = µ2 + (D − 1)µ1. Since both µ1 and M2T are integers, it follows that µ2 must itself be an integer . By
repeating this argument for higher values of k, we conclude that µk is an integer for each value of k.

11To see this, note that n̂a|Ψ〉 = (1 − faf
†
a)|Ψ〉. The operator f†

a is a polynomial in {cα} and {c†
α}, where each

term has the net effect of creating one fermion in the region around LIOM a. Since all sites near the LIOM a are
occupied for the state |Ψ〉, f†

a |Ψ〉 = 0, and thus n̂a|Ψ〉 = |Ψ〉.
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Hence the magnetization density deep within the filled region is given by the sum of the invariants
{µk}12

6.3.3 Nature of higher-order invariants

Above, we found that the AFI phase is characterized by a family of topological invariants {µk}.
In this subsection, we briefly discuss the nature of this family of invariants.

The invariant µk is computed from the terms in the expansion (6.6) that involve products
of k LIOMs (i.e. k fermions). Thus µk encodes information about the k-body correlations of
the system. In the absence of interactions, where the evolution of the system is described by
a slater-determinant of time-evolved single particle states, correlations between two or more
particles are absent, and we must have µp

a1...ak
= 0 when k ≥ 2. Therefore, only the invariant µ1

may be nonzero when interactions are absent. In this case, the system is in the AFAI phase [1,2,6],
and we identify µ1 as the “winding number” invariant that characterizes this phase.

The arguments in the end of Sec. 6.3 show that the invariant µk cannot change under smooth
deformations that keep the Floquet eigenstates with k particles or less localized. Hence, the
“higher” invariants µ2, µ3, . . . must all take value zero for an AFI that can be smoothly connected
to the noninteracting AFAI without breaking MBL (for instance if the Hamiltonian of the AFI
is constructed by adding weak interactions to an AFAI). However, it is in principle possible for
the higher invariants to be nonzero. Systems characterized by nonzero values of one or more of
the invariants µ2, µ3 . . . will be in a new, intrinsically interacting phase that cannot exist in the
absence of interactions. In Appendix E.3, we demonstrate that a nonzero value of the invariant
ν2 can be realized in a model with correlated hopping. A more detailed study of the nature of
these additional invariants is beyond the scope of this work, but may be an interesting direction
for future studies.

We note that the topological protection of the invariant µk does not require full many-
body localization. While the discussion above for simplicity assumed the system to be MBL,
the arguments proving the topological invariance and quantization of µk only rely on Floquet
eigenstates with k particles or less being localized13. In this way, the topological robustness of the
system relies on partial localization (i.e., localization of the system when constricted to sectors
with up to k particles, where k is finite). In particular, if all Floquet eigenstates with k0 particles
or less are localized, the system is characterized by the k0 topological invariants µ1 . . . µk0 . The
invariant µk can only change its value at phase transitions where the Floquet eigenstates with k
particles or fewer become delocalized. From this perspective, the 2D AFI can exhibit non-trivial
topological properties in the presence of interactions, regardless of whether or not it is MBL in
the thermodynamic limit.

12To see that the sum in Eq. (6.19) converges, note that the coefficient µpa1...ak
vanishes when the distance from

the LIOM centers ra1 . . . rak to the plaquette p is much larger than ξ. When k is much larger than the number
of LIOMs whose centers are located within a radius ∼ ξ from the plaquette p, the coefficient µpa1...ak

therefore
vanishes, and we conclude that µk must equal zero.

13When restricted to the the subspace with n particles or less, the Floquet operator can in this case be represented
in terms of LIOMs {n̂a} as in Eq. (6.1). Here the LIOM operators {n̂a} have all of the properties described in
Sec. 6.2 when restricted to the subspace with k particles or less. The arguments proving the topological invariance
of the invariant µk0 only relies on the existence of LIOMs in the subspaces with k particles or less, and hence µk0

will be a topologically-protected integer for all k0 smaller than k.
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Figure 6.2: a) Schematic depiction of the model studied in Sec. 6.4. Each driving period consists
of five segments. During the first four segments, time-dependent hopping Hid(t) [Eq. (6.20)]
transfers particles between A and B sublattices, cyclically around plaquettes of the lattice, while
disorder Hdis and interactions Hint [Eq. (E.66)] are always present. b-e): Particle density and
magnetization density in a system with 5 particles on a square lattice of 7 × 8 sites. The sites are
indicated by black dots. b) Initial density in the system, c) Density after 14400 periods for a
realization with parameters α = 1/16, W = 2π/T , V = 0.5W . d) Time-averaged magnetization
density over 14400 periods for the same system. e) Particle density after 14400 periods, for a
realization with parameters for α = 1/16, W = 2π/T , V = 2W .

6.4 Numerical simulations

To support our conclusions above, we numerically investigate the magnetization density of a
droplet of particles for the model also studied in Ref. [7]. We study a system on a two-dimensional
bipartite square lattice with periodic boundary conditions. The Hamiltonian of the system is
given by H(t) = Hdr(t) +Hdis +Hint, where Hdr(t) consists of piecewise-constant, time-dependent
hopping, while Hdis and Hint are time-independent disorder and interaction potentials. The
driving protocol is divided into five segments, and is schematically depicted in Fig. 6.2. The first
four of the segments each have duration αT/4, while the fifth segment has duration (1 − α)T ,
where the parameter α is a number between 0 and 1. In the fifth segment, Hdr(t) = 0. In
the remaining four segments, Hdr(t) turns hopping on for the four different bond types in a
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counterclockwise fashion, as indicated in Fig. 6.2, such that, in the nth segment (where n ≤ 4),

Hdr(t) = J
∑
r∈A

(ĉ†
r+bn ĉr + h.c.). (6.20)

Here ĉr annihilates a fermion on the site with location r̂, and the sum runs over sites r in sublattice
A. The vectors {bn} are given by b1 = −b3 = (`, 0) and b2 = −b4 = (0, `), where ` is the lattice
constant. The tunneling strength J is given by 2π

T , such that Hdr generates a perfect transfer of
particles across the active bonds in each of the first four segments. The terms Hint and Hdis that
contain disorder and interactions are given by

Hdis =
∑

r
wrρ̂r, Hint = V

∑
〈rr′〉

ρ̂rρ̂r′ . (6.21)

For each site, wr is a random number in the interval [−W,W ], and ρ̂r ≡ ĉ†
rĉr denotes the

occupancy on site r. The parameter V has units of energy and denotes the strength of the
interactions.

The model above was studied in Ref. [7], and was found to remain stable on all numerically
accessible time-scales in the regime where 1/αT � W � V . Here the parameter α controls how
rapidly the “hopping pi-pulses” are applied, and was found to control the localization properties of
the model. In this section, we study the model in the same regime, and compute the magnetization
of a droplet of particles. We consider a single realization of the model, with 6 particles on a
lattice of 7 × 6 sites with periodic boundary conditions. In the simulation, we set W = 2π/T ,
V = 0.5W , and α = 1/16, which, following the results in Ref. [7] appears to bring the model into
the localized regime.

Since the model is obtained by adding weak interactions to a model of the AFAI with winding
number 1 (see Refs. [2, 6]), we that expect µ1 = 1, while µk = 0 for all other values of k (see
the discussion in Sec 6.3.3). When the system is completely filled with particles, the average
magnetization density in the system mav ≡ 1

D

∑
p⟪mp⟫ is given by 1/T . Here D = L2/`2 is

the number of plaquettes in the system. Noting that the completely filled system contains D
particles, we expect that that average magnetization density in the system with a finite number
of particles n is given by n/DT . Following these considerations, we use the normalized average
magnetization density m̄av ≡ mavD/n to probe the topological properties of the model, with
m̄av = 1/T indicating nontrivial topology.

We initialized the system by filling a small region of the lattice with particles (the particle
density of the initial system is shown in Fig. 6.2a). We then evolved this state through 14400
driving periods. The resulting final particle density is shown in Fig. 6.2b. From the time-average
bond-currents, we calculated the time-averaged magnetization density. We show in Fig. 6.2c the
local bond-current and magnetization density in the system, averaged over the first 14000 periods.
With the 5 particles present, the normalized average magnetization density in the system was
found to be m̄av = −1.0001/T , in good agreement with the predicted quantized value.

6.5 Discussion
In this chapter, we studied the topological properties of the two-dimensional anomalous Floquet
insulator. We identified a family of topological invariants that are encoded in the time-averaged
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magnetization operator, and characterize the phase. Importantly, the nontrivial topological
properties of the system does not rely on full many-body localization, but rather on partial
localization, where the system remains localized up to a finite number of particles.

Interestingly, we find that the AFI is not characterized by a single invariant, but rather a
family of invariants. The nature of these invariants is not clear at this point, and a characterization
of their properties will be an interesting direction of future studies. In particular, since their
existence does not rely on full many-body localization, the additional topological invariants may
lead to experimental signatures in the prethermal dynamics of the system (regardless of whether
or not the system is fully MBL).
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Chapter 7

Topological Floquet-Thouless Energy
Pump

This chapter is published in Physical Review Letters 120, 150601, 2018 (Ref. [8]) by Michael
H. Kolodrubetz, FN, Takahiro Morimoto, Snir Gazit, and Joel E. More. MHK, who is first
author in Ref. [8], is the primary contributor to this chapter. The author of this thesis,
who is second author in Ref. [8], contributed by connecting the studied phenomenon studied
with the quantized magnetization of the AFAI. This allowed for identification of the pumped
quantity in the model, and contributed to identifying disorder as a factor that stabilizes
the effect. The author of this thesis moreover took part in the writing and editing of the
manuscript.

Parts 1 and 2 of this thesis has focused on topological phases of matter in periodically driven
systems. Importantly, however, topological phenomena can arise in many other ways than as
phases of matter1. There are multiple examples of physical effects which are not manifestly of
solid-state nature, but still exhibit the universality and robustness characteristic of topological
phenomena. Notable examples of such topological phenomena include quantized adiabatic
pumping effects [9, 65], or topologically-protected modes in photonic crystals [59, 82–85] and
mechanical metamaterials [86–88].

In the same way that topological phenomena arise outside the world of solid-state physics, the
topological classification of phases of matter (in nondriven or driven systems) can be applied far
beyond the originally-imagined solid-state setting: many of the novel topological effects described
in the paragraph above have been theoretically predicted by “mapping” the Hamiltonian of
a topological insulator to a non-solid state setting. For instance, Thouless’ charge pump is
constructed by by letting a tunable parameter replace crystal momentum of a Chern insulator
(see Sec. 1.2) [65]. Similarly the nontrivial photonic effects described in Sec. 2.4 arise when
wavefunctions in a topologically-nontrivial lattice model are replaced with the electromagnetic
field in an analogous photonic crystal [82].

1Here “topological” means that the effects are a topologically-protected by some well-motivated constraint on
the system. For instance, the quantized charge transport in Thouless’ adiabatic charge pump (discussed below)
is topologically-protected by the adiabaticity of the cycling protocol: the quantized transport resulting from a
full tuning cycle Qcycle is not affected by any perturbation of the system, as long as the cycling protocol remains
adiabatic (relative to the instantaneous energy gap of the model).

107



108 CHAPTER 7. TOPOLOGICAL FLOQUET-THOULESS ENERGY PUMP

Figure 7.1: Illustration of the topological energy pump. Upon ramping the pump adiabatically
around a cycle, the filled region of length ` � 1 remains localized, but nevertheless quantized
work is performed at the edges of the filled region in quanta of the drive energy ~Ω.

Using a similar approach as the one discussed above, Chapters 7-8 explores analogous novel
effects in periodically driven systems, exploiting the theoretical results that were described in
Chapters 1-6. The phenomena described in Chapters 7-8 are of topological nature, but arise
in different systems than the solid-state settings considered in Chapters 1-6. Below, Chapter 7
explores the dimensional reduction of the AFI to an adiabatic pump, analogously to Thouless’
charge pump [65]. As the following discussion shows, the adiabatic pumping parameter, together
with the periodic driving field, can lead to a topologically-robust energy pumping effect.

7.1 Introduction

The Thouless charge pump serves as a simple yet fundamental example of topology in quantum
systems [65]. The hallmark of this effect is the transport of a precisely quantized amount of
charge during an adiabatic cycle in parameter space. This remarkable phenomenon has been
demonstrated experimentally in various physical systems such as few-body semiconductor quantum
dots [157–160] and more recently in a one-dimensional chains of ultra-cold atoms trapped in an
optical lattice [161–163].

Recently, the classification of topological phases of matter has been extended to periodically
driven (Floquet) systems far from equilibrium [1,5, 23, 42, 44]. In particular, periodic driving can
lead to new topological phases that have no analogy in undriven systems [2,44–50,55,56,142,
164–169], an idea which has been confirmed experimentally [54, 60]. A natural question to ask is
whether these far-from equilibrium systems can also exhibit new topological pumping effects?

In this chapter, we answer this question in the affirmative by explicitly constructing a
generalized adiabatic pump in a Floquet system. We find a novel phase in which energy, rather
than charge, undergoes quantized pumping. Specifically, upon adiabatic cycling of a particular
parameter, partially filled systems in this phase transport energy from one side of the filled region
to the other, as illustrated in Fig. 7.1. The energy transported per cycle is quantized in units of
the drive frequency ~Ω.

Using numerical and analytical arguments, we show that this phenomenon is stabilized by
disorder and, via many-body localization, remains robust in the presence of interactions. In this
way, we demonstrate the existence of a stable topological pump that can only be realized in the
presence of periodic driving.
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7.2 Model
Let us begin by introducing a simple model that exhibits topological energy pumping, which we
will later demonstrate is topologically robust to perturbations. The model consists of a five-step
driving protocol, with Hamiltonians Hj = hj + h.c., where

h1 = −J
L/2∑
x=1

c†
A,xcB,x, h2 = −J

L/2∑
x=1

eiλc†
B,xcA,x+1

h3 = −J
L/2∑
x=1

c†
B,xcA,x+1, h4 = −J

L/2∑
x=1

eiλc†
A,xcB,x,

h5 = ∆
2

L/2∑
x=1

(
c†

A,xcA,x − c†
B,xcB,x

)
(7.1)

acting on L sites with open boundary conditions. The protocol is chosen to be time periodic with
H(t) = H(t+ T ) such that H(0 < t < T/5) = H1, H(T/5 < t < 2T/5) = H2, etc. This model is
particularly simple if the tunneling strength J takes the value Jtuned ≡ 5~Ω/4, where Ω = 2π/T .
At this fine-tuned point, the fermions hop exactly one site at each step, such that a fermion
initialized at any site returns to the same site after one driving cycle, as illustrated in Fig. 7.2a.

Using the Floquet formalism, we write the single-particle time evolution U in the form
U(t) = P(t)e−iHF t, where the micromotion P(t) = P(t+ T ) describes the dynamics within each
cycle and HF is the effective Hamiltonian that describes stroboscopic behavior at multiples of
the period T [101]. For J = Jtuned, the Floquet eigenstates are localized states |x, α〉 ≡ c†

α,x|vac〉.
The eigenvalues of HF , known as quasienergies, are only well-defined modulo ~Ω. For a particle
initially located on a site in the bulk, the phase eiλ acquired during step 2 is cancelled by the
phase e−iλ during step 4, yielding flat quasienergy bands at εFbulk = ±∆/5. However, a particle
initially located at site |1, B〉 or |L,A〉 is unable to hop during steps 2 and 3, causing it pick
up a λ-dependent phase during the driving cycle, which translates into a λ-dependence of these
edge state quasienergies (Fig. 7.2b). While the bulk bands are trivial and can be shown to have
vanishing Chern number with respect to λ and quasimomentum k 2, the edge states (red and
blue) clearly exhibit topologically nontrivial winding. The question, then, is how to characterize
and measure the topological properties of this model?

7.3 Topology and measurement.
The main insight for understanding our model comes from noting that the band structure in
Fig. 7.2b is identical to that found in the two-dimensional anomalous Floquet insulator (cf. Fig. 1
in Ref. [1]) with the the pump parameter λ playing the role of momentum ky. In this way, our
model is a dimensionally reduced version of the anomalous Floquet insulator [1, 2], in the same
way that the Thouless pump may be thought of as the dimensional reduction of a Chern insulator.

2Explicitly, if |uαF (k, λ)〉 is a single-particle Floquet eigenstate in band α with quasienergy εαF (k, λ), then the
Floquet Chern number CF,α1 ≡ i

2π

∫
dλdk (〈∂kuαF |∂λuαF 〉 − h.c.) vanishes. Note that CF1 is independent of the

choice of origin t0 used to define HF = i log(U [t0 → t0 + T )]/T .
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Figure 7.2: (a) Illustration of the anomalous Floquet pump (Eq. 7.1), which involves five steps of
period T/5 with fined-tuned hopping Jtuned = 5~Ω/4. Red and black arrows trace the positions of
edge and bulk states respectively. (b) Quasienergy spectrum as a function of the tuning parameter
λ show bulk bands (black), left edge state (red), and right edge state (blue). (c) Illustration of
response measured in numerics, for which only the left half of the system is filled. (d) Numerical
results for the local work and charge density for the model in Eq. 7.1 averaged over a single ramp
from λ = 0 to 2π with L = 20, Nc = 12, and Nλ = 1. Data for ρW

x is in units of ~Ω.
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This immediately implies the existence of a topological invariant characterizing our pump, namely
the winding number of the micromotion,

ν = 1
8π2

∫
dtdλdkTr

([
P†∂λP,P†∂tP

]
P†∂kP

)
, (7.2)

defined on the compact three-dimensional parameter space (t, λ, k). While the micromotion
and thus the winding number in principle depend on the branch cut defining HF , the fact that
Chern numbers of the bulk bands vanish implies that the winding number is independent of this
choice [1]. In particular, the winding number for a branch cut at quasienergy εcut in some gap
gives precisely the number of edge states crossing that gap. For the model we consider here,
ν = 1.

One hint for the observable consequences of this topological index comes from examining the
quasienergy spectrum in the presence of open boundary conditions (Fig. 7.2b). Upon adiabatically
ramping λ from 0 to 2π, the bulk remains unchanged while the left (right) edge state wraps
around the Floquet Brillouin zone, absorbing (emitting) a quantum of energy. Upon completing
the cycle, the system returns to its initial electronic state. Therefore the nontrivial topology does
not lead to any direct pumping of the fermions. Instead, as we will show, ramping λ performs
quantized work on the external driving fields.

Specifically, we now show that the quantized observable is the λ-averaged “force polarization”
PF ≡

∑
x xρ

F
x , where

ρF
x = 1

2

〈{∑
α

c†
α,xcα,x, ∂λH

}〉
(7.3)

is the local generalized force required to change λ by a small amount. Here curly braces denote
the anti-commutator, α = {A,B} sums over sublattices, and the expectation value is taken with
respect to an arbitrary quantum state 3. Changing λ by a finite amount thus requires a local
work

ρW
x =

∫
ρF

x [λ(t), t] λ̇(t)dt.

While the above expressions hold for arbitrary non-equilibrium situations, the work becomes
independent of speed in the limit of slow ramps, for which the wave function is given by (Floquet)
adiabatic transport. Thus a finite work polarization PW =

∫
PFdλ =

∑
x xρ

W
x implies that work

is done on one half of the system and done by the other half. We will see that quantization of
PW thus implies that this differential work is quantized, as illustrated in Fig. 7.1.

Quantization of PW follows immediately from dimensionally reducing the anomalous Floquet
insulator, as the topologically quantized magnetization [6] immediately reduces to PW . In practice,
the work polarization may be directly measured by filling part of the system and measuring
the time-dependence local force ρF

x near the edges of the filled region, as illustrated in Fig. 7.1.
Within the fully filled or fully empty regions nothing is able to move, hence no work is done:
ρW

x = 0. Furthermore, as the net work on the entire system vanishes, the work done near the left
edge of the filled region, WL, must exactly cancel that done near the right edge: WR = −WL.

3One may readily see this by analogy: if H(x) is a complicated potential acting on a point particle due to the
fermions in the lattice, then −〈ψ|∂xH|ψ〉 is the force acting on x. Note that this is true for arbitrary state ψ,
whether or not in equilibrium.
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For a filled region of length ` lattice sites which is much larger than the localization length ξ, the
total work polarization is then given by P tot

W ≈ (WR −WL)`/2. As the average work polarization
per filled unit cell is quantized to be PW = ν~Ω, we also have P tot

W = ν~Ω`. Equating these
expressions, we find that

WR = −WL = ν~Ω. (7.4)
Further details on this derivation may be found in the Appendix.

To confirm these predictions, we consider a slightly different setup in which we fill only the
left half of the system, i.e., sites 1 through L/2. Then the only contribution to the force comes
from the density step at L/2, such that the entire system absorbs/emits an integer number of
photon quanta. Fig. 7.2c illustrates how this emerges from adding the quantized polarization in
each localized state. Numerically, we start from this initial state and ramp λ from 0 to 2πNλ at a
constant rate λ̇ = 2π/(NcT ). While slow time-dependence of λ formally breaks the T -periodicity,
it has been shown than an appropriate extension of adiabaticity may be defined [64, 170, 171],
which is nevertheless subtle due to the presence of resonances which must be crossed diabatically.
In practice, we find that an appropriate adiabatic limit is reached for Nc � 1 and ramping over
many adiabatic cycles (Nλ � 1) to remove initial transients 4. We then expect the total energy
absorbed by the system,

Eabs ≡
∫

〈∂λH〉λ̇dt, (7.5)

to be quantized in units of ~Ω. In the Appendix, we show this analytically for our simple model,
and we verify this numerically in Fig. 7.2d.

7.4 Disorder and interactions.
Having determined the basic properties of our topological energy pump in an analytically tractable
limit, we now demonstrate its robustness to disorder and interactions. One might naively expect
this robustness to be trivial, as topological states are often argued to be protected against weak
perturbations. However, in the presence of disorder, the ability to adiabatically track a given
localized eigenstate is known to be ill-defined, as the eigenstate will undergo weakly avoided
crossings on arbitrary length scales [172]. We will address this issue analytically in a follow up
work [173], but for now we provide numerical support regarding its stability.

Specifically, we add static chemical potential disorder to our Floquet system,

Hdis =
∑
α,x

wα,xc
†
α,xcα,x , (7.6)

where the disorder is drawn from a box distribution wα,x/Ω ∈ [−W,W ]. We also consider
deviating from the fine-tuned limit by a “detuning” α 5. such that

∆ = αΩ , J = Jtuned(1 − α). (7.7)
4In follow up work, we will prove many of our claims in the extreme adiabatic limit

∣∣λ̇∂λεF ∣∣� ∆2
miniband, where

∆minibands ∼ e−L/ξ is the exponentially-small gap between disorder minibands. In the numerics, we are nowhere
near this limit, but nevertheless find surprising robustness of our results. We postulate therefore that adiabaticity
should be in reference to other characteristic energy scales of the system, such as the hopping amplitude J and the
drive frequency Ω. This is equivalent to the statement that Nc � 1.

5This choice of detuning ∆ and J simultaneously is not unique. Other choices will give similar results.
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Figure 7.3: (a) Phase diagram of energy pump as a function of disorder W and detuning α (see
Eq. 7.7) at fixed L = 100 and Nc = Nλ = 25. In the absence of disorder a phase transition occurs
at α = 1/2. In the presence of disorder, the topological plateau appears stable over a wide region.
Note that some data, particularly at small W , is not fully converged to the L,Nc, Nλ → ∞ limit
due to large localization length. We analyze this limit further in the Appendix. (b) Cut at fixed
α = 0.2 showing a slow crossover to topologically trivial independent of L, Nc, and Nλ. (c)
Histogram over disorder configurations of Eabs at three points along the crossover showing the
breakdown of topological quantization.

We then carry out the same procedure as in Fig. 7.2c to measure topological energy absorption.
The disorder-averaged phase diagram for a wide range of disorder strengths and detunings is

shown in Fig. 7.3a. There is clearly a wide region with well-quantized energy pumping (red), up
to disorder strengths and detuning of order ~Ω. In fact, for the majority of the phase diagram,
disorder is actually necessary to see quantization of the energy transport. The simplest reason
for this is that, in the absence of disorder, any generic model will not be localized and our
measurement of Eabs at the localized density edge is not meaningful. This is seen in our phase
diagram for α 6= 0, where a small amount of disorder clearly improves the quantization for the
system size shown. Furthermore, we will show in a follow up work [173] that even the appropriately
defined clean limit of PF has a non-topological contribution which is suppressed by localization.
In either case, the phase diagram clearly shows a large nearly quantized plateau at weak disorder
below the topological transition at α = 1/2. For instance, the data in Fig. 7.3b is quantized to
within 0.4% and 0.8% at W = 1 and 3/2 respectively for L = 150, Nc = Nλ = 40. We also note
that the quantized work polarization is robust to choice of initial conditions, as demonstrated
numerically in the Appendix.

At large disorder strengths, we expect a topological transition to a trivial state while main-
taining Anderson localization throughout 6. Surprisingly, we instead find a slow crossover for

6Anderson localization should always exist, even in the presence of driving, for this one-dimensional model
[174–176].
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which energy is still pumped, but not quantized. This is unlike the sharp transition found in the
anomalous Floquet Anderson insulator [2], and illustrates a fundamental difference regarding the
role of disorder in one dimensional pumps compared to their higher-dimensional counterparts.
For the energy pump, one of the tuning parameters, λ, couples strongly to the quasienergies,
even when the system is localized. For the anomalous Floquet Anderson insulator, the winding
number is defined as in Eq. (7.2) with angles θx and θy defining twisted boundary conditions in
place of the parameters λ and k. For that model, the localization of Floquet eigenstates implies
that the change of quasienergy due to either twist angles is exponentially suppressed. In contrast,
the “dimensional extension” of the energy pump features Floquet states that are delocalized in
the y-direction. Hence the quasienergy spectrum is sensitive to changes of θy, i.e., λ.

The breakdown of topological energy pumping may be traced to this increased sensitivity to
λ. As the disorder strength W is increased, the L individual quasienergy mini-bands εn(θx, λ)
may undergo topological gap closings and reopenings, potentially introducing non-trivial Chern
numbers. This yields a Floquet branch cut dependence of the winding number ν(εFgap) [1], where
in the disordered case the winding number is defined as in Eq. (7.2) with θx in place of kx. As
our measurement populates quasienergy states at random (the “infinite temperature” ensemble),
we stochastically sample over these winding numbers. Thus the non-quantized energy pump
may be thought of as an average of the topological winding number over both gaps and disorder
realizations [173].

This argument is consistent with the histogram of Eabs in this crossover region (Fig. 7.3c), which
shows broadening from a perfectly quantized δ-function peak at Eabs = ~Ω towards statistical
ensemble that will eventually be non-topological (Eabs = 0). Importantly, this breakdown by a
proliferation of Berry monopoles is precisely the mechanism that leads to the loss of charge pump
quantization in disordered systems [177,178]. Thus the crossover behavior in our system likely
falls into the same class as this undriven case.

Many-body localization. Finally, let us see that our results hold in the presence of many-body
localization. We test this by adding nearest neighbor interactions

Hint = U
∑

j

(
nj − 1

2

)(
nj+1 − 1

2

)
(7.8)

throughout the cycle and simulate the dynamics via exact diagonalization 7. In Fig. 7.4a, we map
out the phase diagram as a function of interaction and disorder strengths. The data confirm that
the energy absorption remains beautifully quantized in the topological phase (Fig. 7.4b). We
note that, in the absence of disorder, the system is expected to heat to infinite temperature, and
thus approach Eabs = 0 for Nλ → ∞. The remarkable quantization we see is likely a prethermal
phenomenon. Interestingly, the data indicate that weak interactions also stabilize the topological
phase. While this may be due to a trivial microscopic effect such as shortening of the localization
length due to interactions, it leaves open the tantalizing possibility that interactions stabilize the
phase and lead to an energy pump that is again topologically protected.

7Here we mean nearest neighbors independent of sublattice, i.e., |1B〉 neighbors |1A〉 and |2A〉.
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Figure 7.4: Phase diagram of energy pumping in an interacting many-body localized (MBL)
system for α = 0, L = 16, Nλ = 64, and Nc = 256. Error bars in (b) show standard error over a
fixed number of disorder configurations. Interestingly, the error bars become smaller – indicating
increased stability of the MBL energy pump – in the presence of weak nonzero interactions. Eabs
is in units of ~Ω, while W and U are in units of hopping amplitude J .

7.5 Experiments

The topological energy pump is directly amenable to being realized experimentally, requiring
hopping models in one dimension similar to those recently realized in optical lattice charge
pumps [161–163]. Instead of measuring local charge, these experiments would simply have to
measure local force, ρF

x . This should be readily realized by combining adiabatic pump protocols
with systems that enable site-resolved measurement, such as optical lattice microscopes [179,180],
trapped ion arrays [181], and other engineered platforms [182–184], where ρF

x is simply the
measurable local current operator during steps 2 and 4 [185]. In addition to the pulsed multi-step
protocols discussed in this work, which are quite natural in such engineered systems, we will
show elsewhere that the topological pumping may also occur in monochromatically driven models,
such as a driven version of the Rice-Mele model [173,186]. This opens the intriguing possibility
to directly measure the back-action on the drive lasers. For instance, if the periodic driving is
realized by a pair of Raman lasers with frequency difference Ω, adiabatic cycling of the pump
parameter λ would result in quantized transfer of ν photons from one Raman beam to the other.
If one further quantizes the Floquet drive photons, for instance by use of a high-Q cavity, then
each adiabatic cycle would directly back-act on the cavity photons. This can, for example, lead
to either quantized absorption/emission of cavity photons, whose behavior at low photon number
represents an interesting quantum limit of our problem.

7.6 Conclusion

We have introduced a novel topological energy pump which exhibits a new type of topologically
protected response with no equivalent in undriven systems. The pump is inspired by a dimensional
reduction scheme from the anomalous Floquet insulator, but features fundamentally different
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topological protection and transport properties. We note that other topological energy pumps
recently introduced in the driven qubit systems derive instead from reducing the Thouless charge
pump to zero dimensions, replacing momentum with a magnetic field angle [64] or the phase of a
second incommensurate drive [3]. This suggests a number of fascinating future directions from
dimensional reduction of other entries in the Floquet periodic table [5, 44], such as the Floquet
generalization of the Z2 pump [9, 187] or fractionalized systems [188]. Furthermore, studying the
back-action of our topological pump on a classical or a quantum drive represents an interesting
quantum adiabatic limit on statistical mechanics, where pumping of bosonic objects such as the
drive photons is a long sought-after goal [189,190].



Chapter 8

Robustness of Topological Frequency
Conversion with a Magnetic Particle

This chapter is written in collaboration with Ivar Martin and Gil Refael, and is being
prepared for submission to a journal.

Chapter 7 introduced the topological Floquet-Thouless energy pump. This adiabatic pump can
be seen the dimensional reduction of the Anomalous Floquet insulator that was explored in
Chapters 4-6. In the system, the combination of a periodic driving field, and an adiabatically-tuned
parameter can result in a novel, topologically-robust energy pumping effect.

This chapter explores a different topological energy pumping effect which can also arise in
periodically driven systems. Specifically, this chapter studies an implementation of Thouless’
adiabatic charge pump with photons in an optical cavity. The model consists of a magnetic
(spin-1/2) particle, coupled to a single, circularly polarized cavity mode. The combined state
of the particle and the cavity mode describes a spin-1/2 particle in a one-dimensional lattice,
where the number of photons in the cavity mode plays the role of the lattice index. When an
appropriate, slowly oscillating driving field is applied to the magnetic particle, the analogous
lattice model can act as a Thouless pump. This quantized charge transfer in the analogous lattice
model implies a topologically-robust transfer of photons to the cavity.

The chapter explores the robustness of the mechanism in further detail, and finds that that
the topological energy transfer persists in the presence of dissipation. Interestingly, this chapter
finds that the “photon-space Thouless pump” described above can be understood purely as a
purely classical effect.

Some of the results in this chapter are obtained using a novel, Floquet-Lindblad master
equation, which is derived in Appendix A. This master equation may have applications beyond
the system discussed here.

8.1 Introduction

In recent years, theoretical developments have predicted the existence an extensive family of new
phases of matter – the topological insulators – that exhibit exotic, but robust phenomena with

117
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Figure 8.1: Schematic depiction of the setup discussed in this chapter (see main text for details).
The model consists of a single magnetic particle (black), with angular moment L, coupled to two
circularly polarized electromagnetic modes, where one (red) is externally driven, while the other
(blue) is a cavity mode. When dissipative effects of a semitransparent mirror is included in the
system’s dynamics, the model supports a “lasing” steady state, where the cavity emits photons
at the topologically-quantized rate of Ė = ω1ω2L/π.

useful applications [9, 11,15, 17–19]. More recently, it has been shown that analogous [20–41], or
entirely new [1, 2, 5, 42–56] topological phases of matter may be realized in periodically driven
systems.

In addition to these advances, other setups that can not necessarily be characterized as phases
of matter have been explored for utilizing the novel topological effects that were predicted by the
theoretical work above. These systems are analogous to topological insulators, in the sense that
the electronic degrees of freedom (or some of them) have been substituted with other degrees of
freedom. The most well-known example is perhaps Thouless’ adiabatic charge pump [65], which
can be seen as a two-dimensional Chern insulator, where one of the spatial dimensions is replaced
with a tunable parameter; more recent examples of this idea include Refs. [8, 9, 63, 64], where, for
instance, novel, energy pumping effects arise when the tunable parameter is assisted by one or
more external driving fields.

The approach which is the focus of this chapter is to use the numbers of photons in electro-
magnetic modes as an analogy to lattice degrees of freedom, with which nontrivial topology can
be realized [3, 63, 191–193]. Specifically, this chapter focuses on the setup discussed in Ref. [3] by
Martin, Refael, and Halperin, where a spin is coupled to two circularly polarized electromagnetic
modes. Interpreting the photon numbers of the two modes as lattice degrees of freedom, and
the spin as an orbital degree of freedom, this setup is equivalent to a two-dimensional, two-band
lattice model. In topologically-nontrivial parameter regimes, where the analogous lattice model
is a Chern insulator, it was shown in Ref. [3] that the spin effectuates a transfer of energy
between the two modes (1 and 2), at the topologically-quantized rate of one photon of mode 1
per cycle of mode 2. This topological effect can be used for amplification of frequency conversion



8.1. INTRODUCTION 119

of electromagnetic radiation.
In this work, we study the setup of Ref. [3] in further detail, in particular focusing on the

robustness of the effect. We investigate the experimentally relevant case where one of the modes
is an external driving field (such as an externally applied laser) while the other is a degree of
freedom in the system (such as a cavity mode), as schematically depicted in Fig.8.1.

We first study the model as a quantum mechanical system. Analyzing the dynamics of the
system in detail, we find, among other things, that the energy transfer effect can arise even if the
cavity mode is initially empty.

The robustness of the effect becomes clear when dissipation is included. We couple the
cavity mode to the external electromagnetic environment, and include the effects extrinsic spin
fluctuations to the model, exploring its dynamics using a novel Floquet-Lindblad master-equation
approach (Appendix A). With these sources of dissipation and (quantum) noise included, we find
that the pumping effect persists, and the system settles to a steady state, where a single photon
of the cavity mode is on average emitted per driving period (see Fig. 8.1).

The dissipation makes the cavity field more classical, which hints that the topological energy
transfer is not an intrinsically quantum-mechanical effect. We verify this intuition, demonstrating
that the topological energy transfer can be understood fully as a classical effect. Specifically, we
consider a classical version of the model, where a macroscopic a magnetic particle with angular
moment L is coupled to two classical, circularly-polarized modes, with one mode being an external
driving force, while the other is a dynamical variable. We show that, for this fully classical model,
there exists a topologically nontrivial regime, in which energy is transferred between the two
modes at the quantized rate Ė = ω1ω2L/π, where ω1 and ω2 are the angular frequencies of the
two modes. This demonstrates that the quantized, topological frequency conversion [3] is not of
quantum mechanical nature, but can arise in purely classical systems.

To further explore the robustness of the effects, we investigate the dynamics of the system
when multiple cavity modes are included in the model. In realistic settings, the magnetic particle
is coupled to multiple electromagnetic modes, such as the higher harmonics of the fundamental
cavity mode, as well as their time-reversed partners. Exploring the effects of these additional
modes on the classical system, we find that the energy transfer effect is stable in certain parameter
regimes, and with suitable, experimentally achievable engineering of the cavity.

The results of this work thus indicate that the topological energy transfer is a stable effect,
and opens up the possibility for realizing the effect in realistic, macroscopic settings, such as, e.g.,
with Weyl-semimetals, Yttrium-Iron Garnet (YIG) spheres, or mechanical gyroscopes.

The rest of the chapter is organized as follows: in Sec. 8.2, we present the model we will
study in this chapter. Subsequently, we study in Sec. 8.3 the dynamics of the model , treating
it as a quantum mechanical system. We consider both the case where dissipation is absent
(Sec. 8.3.3) and the case where dissipation is present (Sec. 8.3.4), demonstrating the stability
of the effect. Following this, we show in Sec. 8.4 that the effect can be understood as a purely
classical phenomenon, by analyzing the analogous classical model. In Sec. 8.5, we investigate the
stability of the energy transfer in the classical model when cavity multiple modes are present. We
conclude with discussing the results of this chapter, as well as possible experimental realizations
(Sec. 8.6).
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8.2 Model system
Here we present the model that we will study in this chapter.

8.2.1 Hamiltonian

The setup we consider is an electromagnetic cavity, containing a magnetic particle with angular
momentum L. The moment is subjected to two perpendicular, circularly polarized electromagnetic
modes B1, B2 in the x and y-direction, with angular frequencies ω1, ω2. There is also a static
magnetic field B0 in the z-direction that can be used to tune the direction of energy pumping
between the modes. The Hamiltonian of the magnetic moment reads

Hmag = −gB0Lz − g(B1 + B2) · L. (8.1)

Here g is the moment’s gyromagnetic ratio, and the circularly polarized modes can be written in
terms of their phases {φi} and amplitudes {Bi} as

B1 = B1(0, sinφ1,− cosφ1), (8.2)
B2 = B2(sinφ2, 0,− cosφ2). (8.3)

While in Ref. [3] the amplitudes Bi and phases φi were considered as externally imposed, here we
will make them dynamical variables. The Hamiltonian of the two modes Hfield = V

µ0
(|B1|2 + |B2|2),

where µ0 is the vacuum permeability, and V is the volume of the cavity (assumed the same for
both modes). For the circularly polarized modes, the conjugate momentum to the phase φi is

V
µ0ωi

B2
i . Thus, the complete Hamiltonian of the spin-field system reads

H = V

µ0

(
|B1|2 + |B2|2

)
+Hmag. (8.4)

This Hamiltonian describes coupled dynamics of two cavity modes and the magnetic particle.
In this chapter, however, we will focus on the case where the energy of the mode mode 1 is
provided externally, e.g. by a coherent laser field, while the second mode is free. Later in the
chapter we will also allow for damping of the cavity and spin relaxation. Thus, we set B1 = Bd,
and φ1 → Ωt, where Ω and Bd are constants (here Ω is the driving frequency). This makes the
Hamiltonian explicitly time-dependent, describing a system driven with the period T = 2π

Ω . In
the following, we suppress the subscript 2 from the variables and parameters associated with the
second mode.

8.2.2 Rescaling of parameters

In order to simplify the discussion below, we rescale the remaining variables and parameters,
to make the dynamical variables dimensionless. Specifically, we introduce an arbitrary scale of
action L0

1, and define the coefficient β0 ≡
√
ωµ0L0/V which has the units of magnetic field,

(for ω in the THz range, V ∼ 10−9m3, and with L0 = ~, this field is of order 10−10T.) From
1the value of L0 does not affect the dynamics of the dimensionless quantities A, φ (see below), but only the

overall energy scale
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this coefficient, we introduce the new parameters η = gβ0, which has units of frequency, and the
dimensionless fields M = B0/β0, Ad = Bd/β0, A = B2/β0. In terms of these new quantities, the
conjugate momentum to φ is L0A

2. We reexpress the system’s Hamiltonian in terms of these
new quantities, suppressing the constant shift due to the driving field’s energy, obtaining

H(t) = L0ωA
2 + ηh · L. (8.5)

Here the dimensionless field h is given by

h(A,φ, t) =

 Ac sin(ωdt)
A sin(φ)

M −A cos(φ) −Ad cos(ωdt))

 (8.6)

8.3 Quantum treatment

We first perform a quantum mechanical analysis of the problem, where both the magnetic moment
and the cavity mode are treated as quantum objects. We first confirm that the the external
driving indeed produces pumping, consistent with the result obtained previously in Ref. [3] under
the assumption that both electromagnetic modes are classical variables. The full treatment
reveals, however, that the dynamical quantum state is highly non-classical, with spin and field
states entangled, including the possibility of macroscopic ”cat” states. The pumping itself finds
a natural interpretation in terms of the one-dimensional Thouless pump. We also include the
effects to decoherence and dissipation of cavity mode and spin, and see that it leads to reduced
entanglement, collapse of the ”cat” states and leads to stabilization of pumping, thus foreshadowing
the classical interpretation and description of the pumping phenomenon, that is the subject of
Section 8.4.

8.3.1 Quantum Hamiltonian

To quantize the model, we treat the observables L, A and φ as operators whose pairwise
commutators are given by the respective Poisson brackets, with an additional factor of −i~. In
this way, L describes a quantum mechanical angular momentum. The quantization of angular
momentum implies that its magnitude must be a half-integer z/2 multiple of ~. In order to
quantize the cavity field, we introduce the classical variables Z = Aeiφ and Z∗ = Ae−iφ. From
the Poission bracket {A,φ} = 1

2AL0
, it follows that Z and Z∗ have the poisson bracket i

L0
, where

L0 was an arbitrary scale of action we introduced in Sec. 8.2. With canonical quantization means
the associated operators Ẑ and Ẑ† have commutator ~

L0
. With the choice L0 = ~, we thus have

[Ẑ, Ẑ†] = 1. We identify Ẑ as the operator a that annihilates a photon in the cavity mode. Thus,
expressing the classical Hamiltonian in terms of Z and Z∗, and using the canonical quantization
prescription Z → a, we obtain the following quantum mechanical Hamiltonian describing the
system:;

H(t) = ~ω
(1

2 + a†a

)
− η h(t) · L (8.7)
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where

hx(t) = a− a†

2i , (8.8)

hy(t) = Ad sin(ωdt), (8.9)

hz(t) = M − a+ a†

2 −Ad cos(ωdt). (8.10)

Below, we neglect the constant shift ~ω/2 to H(t), due to the cavity’s vacuum energy.

8.3.2 Frequency conversion as a photon Thouless pump

Here we demonstrate that, in the frequency conversion regime of the classical model, the quantum
Hamiltonian H(t) acts locally in photon space as an adiabatic Thouless pump.

The quantized energy transfer arises when ηh � Ω, and the cavity field energy is in the
interval [E0, E1], where E0,1 = L0ω(M ±Ad)2. The first requirement implies that the scale of M
and Ad is large compared to Ω

η . In the quantum case where we set L0 to ~, the second condition is
equivalent to requiring the number of cavity photons to be in the interval (M −Ad)2, (M +Ad)2.
Thus the number of cavity photons must also be large compared to Ω

η .
To simplify the discussion, we restrict ourself to looking at states where the number of photons

is in the interval [n0 − ∆n, n0 + ∆n] for some large n0, and ∆n � n0. We may locally write the
photon annihilation operator as

a = A0
∑

n

|n− 1〉〈n| (1 + O (∆n/n0)) , (8.11)

where A0 ≡ √
n0 is the dimensionless amplitude of the cavity field around this number of photons.

With this approximation, the Hamiltonian of the system then reads

H(t) = −ηA0
2i (T − T †)Lx − ηAd sin(ωct)Ly

− η

(
M − A0

2 (T + T †) −Ad cos(ωdt)
)
Lz

+ ~ωn̂+ O
(
ηL∆n
A0

)
.

Here, T =
∑

n |n− 1〉〈n| is the “translation operator” in photon space, and n̂ ≡ a†a =
∑

n n|n〉〈n|
is the photon counting operator. Since A0 = √

n0, we see that the last term is supressed by ∆n
n0

compared to the other terms, and we ignore it below. Apart from the last term, we see that the
above Hamiltonian is translationally invariant in photon space, and hence diagonal in the basis of
“crystal momentum states” |k〉 ≡ 1√

Λ
∑Λ

n=0 e
−ikn|n〉, where Λ is some arbitrary cutoff number of

photons. The term ~ωn̂ can be eliminated by a rotating frame transformation |k〉 → |k−ωt〉, and
H(t) is then purely diagonal in k. After this transformation, the Bloch Hamiltonian associated
to this Hamiltonian is given by

H(k, t) = H0(k − ωt, t), (8.12)
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where

H0(k, t) = −η

 Ad sin(Ωt)
A0 sin(k)

M −A0 cos(k) −Ad cos(Ωt))

 · L (8.13)

As a function of k and t, the Hamiltonian H0(k, t) has 2k energy bands, corresponding to different
(quantized) value of the projection of the spin onto the field h(k − ωt, t). The typical gap
∆E between each band is of the order of ~ηAmin, where Amin = min |M ± A0 ± Ad|. As long
as Amin � Ω

η , the change of H(k, t) is therefore slow enough for the system to be considered
adiabatic. In this case, if the system is initialized in a particular band (a particular projection fo
L along the field), it will remain there at all times.

The Hamiltonian H0(k, t) has previously intensively studied in the context of two-dimensional
topological insulators, with t replaced by crystal momentum in the y-direction. It is well-
established, that, if A0 < Ac < A1, where A0 = |M −Ad|, A1 = |M +Ad|, the mth lowest band
of H0(k, t) has Chern number Cm = (2q + 1 −m) with respect to k and t [65]. The Hamiltonian
H(t) thus describes an adiabatic Thouless pump locally in photon space, with a weak electric
field of strength ω applied longitudinally. As long as the system remains in the mth band, the
photon number 〈n̂〉 will on average change by Cm each driving period. Thus, if the spin is aligned
with the field (lowest band), the energy of the cavity field changes at the rate

〈Ėc〉 = z~ω
T

. (8.14)

Here z indicated the magnitude of the angular momentum in units of ~/2.

8.3.3 Dynamics with no dissipation

Above, we concluded that the frequency conversion took place if the spin is aligned with the
field, and the dimensionless amplitude of the cavity mode is initialized between A0 and A1. This
corresponding to the number N of photons being between N0 and N1, where N0,1 = (M ±Ad)2.
If N ∈ [N0, N1], the number of photons will on average increase at the quantized rate 2q

T , where q
is the spin of the magnetic moment.

To test this picture, we simulated a realization of the setup, with a spin-1
2 magnetic moment,

using direct time-evolution from some given initial state, with the first 800 photon states included
in the Hilbert space (Fig. 8.2a-d). In the simulation, we picked the parameters η = 5

2Ω, ω = Ω/ϕ,
M = 8, Ad = 17.

The system was first initialized at time 0 in a direct product of a coherent cavity state and a
spin state. The cavity state was centered at 289 photons, corresponding to an initial amplitude
of

√
289 = 17, at phase zero. The spin was initially in the state |↓〉, aligned with the field. This

choice of initial state clearly brings the system in the topological regime, which is between N0 = 81
and N1 = 625 photons. Fig. 8.2a shows the absolute square of the system’s wave function in
photon space, as function of time for the subsequent evolution, for the first 200 driving periods.
As can be seen in the figure, the photon number increases with the quantized rate 1

T (indicated
by blue line), as expected.

The energy transfer rate depends on the way spin is aligned with respect to the instantaneous
direction of the field. If the spin initially anti-aligned with the field (i.e. in the state |↑〉), as can



124 CHAPTER 8. FREQUENCY CONVERSION WITH A MAGNETIC PARTICLE

Figure 8.2: Wave function (Absolute square) of the driven cavity-spin system in various setups.
Vertical axis shows number of photons. a-c) Evolution of the wave function, when the cavity
field is initialized in a coherent state with amplitude 17 and phase 0, and the spin is initially
a) aligned along the z-axis (the direction of the initial field), b) anti-aligned with the z-axis. c)
aligned along the x axis. Dashed lines indicate the topological phase boundaries N0 = 81, and
N1 = 625. d) Evolution of the wave function for the same system as in panel a, at longer times.
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be seen in Fig. 8.2b, the number of photons decreases at the rate 1
T (indicated by blue line). This

behavior continues until the photon number reaches the phase boundary N0 = 81, indicated by
the lower dashed line. In the subsection below, we discuss what happens at this point.

The quantization of angular momentum implies a quantization of the energy transfer rate –
the number of photons can only change at rates which are integer multiples of 1

T . If the system is
not in a unique “band” of H0(k, t), the different components of the wave function will be subject
to different energy pumping rates. This is demonstrated in Fig. 8.2c. Here we show the evolution
of a system, with cavity initialized in the same way as in Figs. 8.2a-b, but with the spin initially
perpendicular to the field (in the state 1√

2(|↑〉 + |↓〉)). The subsequent evolution shows that the
aligned and anti-aligned components of the system’s wave function evolve separately. For this
system, the number of cavity state is highly entangled with the spin of the magnetic moment.

Boundary effects

If there is no dissipation, the system will eventually reach one of phase boundaries N = N0
or N = N1. At this point, the gap between the bands of H0(k, t) will become so small that
the driving can no longer be considered adiabatic: specifically, the spin will have a significant
probability of Landau-Zener tunneling between bands (corresponding to different projections of
the angular momentum onto the direction of the instantaneous field). Thus, the wave function
will gradually be modified, until the energy transfer rate is reversed for the entire wave function.
The full reversal process occurs over many driving periods, and the wave function of the system
therefore gets smeared out in time. If the evolution of the system goes on undisturbed over long
periods, one should be able to see multiple such “Landau Zener reflections” – at each reflection,
the wave function gets increasingly smeared out in time.

This picture is indeed born out numerically in Fig. 8.2d. Here we plot the evolution of the
same system as in panel a, but over a longer time-window. The phase boundaries at N0 and N1
are indicated by the dashed lines in the figure. In the figure, the wave function gets reflected
around 5 times during the time period from 0 to 2000T . Over time, the wave function gets
increasingly smeared out. The wave function clearly remains confined to the topological regime
[N0, N1], as expected.

The behavior described above is only possible in the absence of dissipation. If even slight
dissipation is introduced to the dynamics of the spin, the spin will tend to align itself with the
field, and the Landau-Zener tunneling described above will be suppressed. In this case, the state
of the cavity will be “stuck” at the upper phase boundary.

8.3.4 Dynamics with dissipation

We now discuss the behavior of the driven cavity-spin system when dissipation is introduced.
We consider two sources of dissipation: dissipation of cavity mode and spin relaxation. The
cavity dissipation can for example result from a partially-transparent mirror in the cavity that
results in emission of photons to the outside electromagnetic environment. The spin relaxation is
introduced to model a more realistic setting, where the magnetic energy of the spin can dissipate
into the surrounding environment.

As we will see, both sources of dissipation lead to a stabilization of the energy pumping. With
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no dissipation, the quantization of energy transfer depends on the degree of alignment of the spin
with the field, which is sustained by adiabaticity condition ηh � Ω. Spin dissipation increases
the tendency of the spin to align with the field, and thus stabilizes the quantized energy transfer
beyond the frequency ranges allowed by the adiabaticity condition.

Moreover, since cavity dissipation is proportional to the mode energy, while the pumping
rate is constant, we find that the introduction of cavity dissipation allows the system to reach a
“lasing” steady state, where all the energy transferred to the cavity mode by the driving (at the
rate 2q~ω

T ) is exactly compensated by the cavity emission losses.
To model the effects of cavity and spin dissipation, we use a master equation approach. In

quantum mechanics, dissipation arises when a degree of freedom in the system is coupled to an
external bath. When the bath is so large that its degrees of freedom form a continuum, the
resulting exchange of energy and entropy with the bath is effectively irreversible, and this leads
to dissipation in the system.

In our case, we model cavity dissipation by connecting the cavity field 1
2(a+a†) to an external

bath in the way described above, with coupling strength γc, which determines the reflection
coefficient of the partially-transparent mirror. Spin dissipation is modeled by coupling each of
the spin’s components Lx, Ly, Lz to individual external baths, with the same coupling strength
γs. For both the cavity and spin degrees of freedom, we take the associated baths to be Ohmic,
meaning that the spectral functions S(ω) are linear in ω [194]: Sc,s(ω) = S(ω) ≡ ω

ω0
, where ω0 is

some fixed energy scale. Absorbing all variable parameters into the coupling strength γ, we set
ω0 = 1/T .

The dynamics of the system can in principle be obtained by computing the time-evolution
generated by the full system-bath Hamiltonian HSB. Having obtained the time-evolution of the
full system-bath state |Ψ(t)〉 we can compute the evolution of any system observable from the
reduced density matrix ρ(t) ≡ TrB|Ψ(t)〉〈Ψ(t)|, where TrB traces out all the bath degrees of
freedom.

Often, the physical baths are found to be nearly Markovian (short time correlated, compared
to the relevant time scale of the system), meaning that the density matrix of the system at time
t+ dt depends only on the density matrix at time t. This implies that the evolution of ρ(t) can
be described by a linear first order differential equation, referred to as a master equation. In
Appendix A we derive a master equation for periodically driven system, making this assumption.
Doing so, one finds that the evolution of ρ obeys the following differential equation:

ρ̇ = −i[H, ρ] +
∑

k

2πγk

(
LkρL

†
k − 1

2{L†
kLk, ρ}

)
. (8.15)

Here the sum runs over the four different channels of dissipation. The so-called jump operators
Lk(t) are time-dependent with the same periodicity as the Hamiltonian, and are defined from the
quasienergies {εa} and the time-periodic Floquet states |φa(t)〉 2 of HS(t) as follows:

Lk(t) =
∑
a,b,n

|φa(t)〉〈φb(t)|e−inΩtLab
k [n], (8.16)

2Here the Floquet states are the unique sets of states whose evolution is given by a linearly increasing phase
times a time-periodic state: U(t)| φa(0)〉 = e−iεat| φa(t)〉, where | φa(t)〉 = | φa(t+ T )〉. The Floquet theorem
dictates that a complete orthonormal basis of states with this property always exist for periodically driven systems.
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Figure 8.3: a) Evolution of the wave function (Absolute square) of the driven cavity-spin system,
in the presence of spin- and cavity dissipation, for a randomly picked SSE realization (see Sec. 8.3.4
for details. Vertical axis shows number of photons. The dashed line indicates the predicted
number of photons (250) in the steady state consistent with the emission of one photon per driving
period. b) cumulative number of photons emitted, as function of time for the SSE realization
depicted in panel a (blue). The black dashed line indicates the slope consistent with emission of
one photon per driving period.

where Lab
k [n] =

√
2πγkJk(εb − εa + nΩ)Aab

k [n], and

Aab
k [n] = 1

T

∫
dt〈φa(t)|Ak|φb(t)〉e−iΩnt. (8.17)

In the above, Ak is the operator connected to bath k (i.e. either 1
2(a+ a†), or Sx,y,z), and the

function Jk(ω) is given by Jk(ω) = Sk(|ω|)(θ(ω) + nk(|ω|)), where Sk(ω) is the spectral function
that enters in the kth system-bath coupling in Eq. (??), and nk(ω) is the thermal expectation
value of the photon number at frequency ω in bath k. In our case, we set the bath temperatures
to zero, so Jk(ω) = θ(ω)ω/ω0.

Numerical results

To learn about the behavior of the system when subject to dissipation, we simulate the evolution
of the system using the above master equation. The Master equation is integrated stochastically,
using the Stochastic Schrödinger Equation (SSE) method [195]. Doing this, we obtain trajectories
of the system that can be seen representative for the actual time evolution with the above master
equation.

The parameters we use are η = 5
2π, L = ~

2 , M = Ad = 10.The latter brings the system to the
special point, where N0 = 0. We include 400 photon states in the Hilbert space we simulate. We
set S(ω) = ωT , γs = 0.001

T , γc = 0.0006366
T – the latter leads to a steady state with 250 photons. In

Fig. 8.3a, we show the evolution of a single, randomly picked realization of the SSE evolution
for the first 2000 periods, after the cavity is initialized in a coherent state centered around 50
photons, and the spin is initially aligned perpendicularly initial field. The predicted steady state
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of 250 photons is indicated by the dashed line. As can be seen, the system quickly reaches a
steady state, number of photons in the cavity mode fluctuates around the predicted value of 250.

As another indicator for the robustness of the energy transfer to the cavity mode, we compute
the cumulative number of photons emitted from the cavity, Nemitted, as a function of time [195],
for the realization depicted in Fig. 8.3a. The results are shown Fig. 8.3b. Here the dashed line,
indicates the predicted slope of Nemitted consistent with the quantized rate of one photon per
driving period. As can be seen, the Nemitted quickly reaches a slope consistent with emission of
one photon per driving period, thus confirming the picture discussed in the beginning of this
subsection.

Note that the spin dissipation leads to an alignment of the spin with the field, and there is no
reversed pumping in the system, unlike in the non-dissipative case.

8.4 Classical treatment

We will now consider the classical limit of the system in Hamiltonian (8.5) and show that the
topological frequency conversion can be understood as a purely classical effect. Qualitatively, the
pumping occurs when the classical magnetic moment nearly follows the instantaneous direction
of the magnetic field. Because the instantaneous magnetic field direction rotates, the center of
moment precession becomes slightly offset from the field direction. This retardation is the root
of the energy pumping phenomenon. Just like in the classical case, spin relaxation improves
pumping stability, as it suppresses spin unlocking from the field direction that inevitably occurs
due to non-adiabaticity.

8.4.1 Equations of motion

In classical mechanics, the equations of motion for an observable X can be written in terms of
the Hamiltonian H as

Ẋ = {X,H}, (8.18)

where {a, b} = −{b, a} denotes the Poisson bracket between the variables a and b. Poisson
brackets obey the chain rule {a, bc} = {a, b}c+ b{a, c}, and the equations of motion can thus be
constructed from the Poisson brackets between the independent variables L, φ, A. Going back to
the Hamiltonian in Sec. 8.2, we recall from the discussion there that the phase φ of the cavity
field was canonically conjugate to the variable A2L0, where A was the dimensionless amplitude
of the field – i.e., {φ,L0A

2} = 1. Using this, along with the usual Poisson bracket relations for
the angular moment L, we find that variables A,φ,L obey the following Poisson bracket relations

{φ,A} = 1
2AL0

, {Li, Lj} = εijkLk, (8.19)

while all other possible Poisson brackets between the variables are zero. In the above, εijk denotes
the Levi-Civita symbol, and L0 was the arbitrary scale of action introduced in Sec. 8.2 to make
A dimensionless.

The chain rule property of the Poisson brackets imply that the φ-Poisson bracket for any
quantity F (L, A, φ) in the system can be written as {φ, F} = {φ,A}∂F

∂A , while {A,F} = {A,φ}∂F
∂φ .
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Using this in Eq. (8.18), together with the definition of the Hamiltonian in Eq. (8.6), the equations
of motion for A, φ and L become

φ̇ = ω + η

2AL0
∂Ah · L. (8.20)

Ȧ = − η

2AL0
∂φh · L. (8.21)

L̇ = η h × L. (8.22)

Below, we analyze these equations of motion, showing they give rise to a quantized, topologically-
protected frequency conversion in certain parameter regimes.

8.4.2 Classical pumping conditions

We find that, the energy transfer between the two modes is quantized (and may be nonzero) when
the following two requirements are met: 1) the moment should precesses much faster than the
field oscillates: ηh � Ω0, where denotes the magnitude of h on the time scale of the two modes’
oscillations, and Ω0 = max(ω,Ω) denotes the typical frequency scale of the field’s oscillations. 2)
the field amplitude should be large enough that the presence of the angular moment only weakly
perturbs the motion of the cavity field on the time-scale of the two modes’ oscillations.These
conditions parallel those discussed in the quantum treatment of Section 8.5, and can be quantified
by introducing the dimensionless parameter α ≡ Ω0

ηh and dimensionfull κ ≡ ηL
AL0

, which has the
units of frequency. The parameter α measures the ratio between the field’s oscillations and
the moment’s precession frequency, and condition 1) is equivalent the requiring α � 1. The
parameter κ−1 sets the time scale over which the magnetic moment L significantly affects the
cavity field, and for condition 2) to hold, κ must be much smaller than the modes’ frequencies ω
and Ω. Specifically, since ∂Ah is of order unity, Eq. (8.20) implies φ̇ = ω + O(κ). At the same
time, since ∂φh = O(A), Eq. (8.21) implies that Ȧ = O(κA). Thus, when κ � ω,Ω, the relative
change in the cavity field amplitude is negligible on the time-scales ω−1, Ω−1 of the two modes’
oscillations.

8.4.3 Trajectory of L

We now focus on the equations of motion for L, expressing the in terms of the magnitude h
hand direction n̂ of the field h. If the field h was stationary, Eq. (8.22) implies that L would
precess around n̂ with precession frequency ηh. For the setup we discuss here, however, the field
h depends on time, and oscillates with typical frequency Ω0, which is much smaller than the
precession frequency ηh,

|ḣ| ∼ O(Ω0h). (8.23)

To analyze the equations of motion in the limit α → 0, we exploit the separation of time
scales between the precession and the field’s oscillations in the limit.

Specifically, we write L(t) = Lslow(t) + Lfast(t), where Lfast(t) contains the fast, precessing
component of L(t) that oscillates with typical frequency ηh, while the remaining, slow component
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Figure 8.4: Trajectories for the classical model discussed in Sec. 8.4.3. a) Trajectory of L (red)
and h (blue) for the model in the absence of dissipation. b) Trajectories of the estimated center
of precession Lslow (red), along with n̂ (blue) and S0 (green) for the same system. c) Trajectories
of n̂ (blue), L (red), and S0 (green) for the system, when weak spin-dissipation is included in the
equations of motion.

Lslow contains the component of the spin’s motion that changes on the time-scale 1
Ω0

3. Writing
h = hn̂, the equation of motion for L becomes

L̇slow + L̇fast = ηhn̂ × (Lslow + Lfast). (8.24)

Using the separation of time-scales, we find

L̇fast = ηhn̂ × Lfast (8.25)
L̇slow = ηhn̂ × Lslow. (8.26)

These equations imply that the magnitudes of Lslow and Lfast, respectively, are constants of
motion. We denote these by λ0 and λ1.

Analyzing the above equations of motion (see Appendix G.1 for details), we find that Lslow is
given by

Lslow = λ0S0 + O(α2λ0), (8.27)

where
S0 = n̂ − 1

ηh
n̂ × ˙̂n (8.28)

Additionally, we find that Lfast precesses around S0 with frequency ∼ ηh, and with a fixed radius
of precession given by λ1. Note that the instantaneous axis of precession is not given by the
field’s direction n̂, but has a finite offset from this given by n̂ × ˙̂n/ηh. As we will show, this finite
offset is responsible for the topological frequency conversion.

3the distinction between Lslow and Lfast can be made rigorous by letting Lfast(t) consist of the Fourier components
of L(t) with frequency above some cutoff Ω0 � Λ � ηh.
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To support the conclusion that L precesses around S0(t) rather than n̂(t), we plot in Fig. 8.4b
the time-averaged trajectory of L(t) on the unit sphere (red) for the same model studied in Fig. 8.4a.
Specifically, we plot the trajectory of V(t) on the unit sphere, where V(t) ≡ 1

∆t

∫ t+∆t/2
t−∆t/2 L(t)dt,

and ∆t = 0.1, in units where Ω = 2π. Within time-windows of this width, Lfast approximately
averages out to zero, while Lslow remains constant, and we thus expect V̂ to be a good estimate
for the instantaneous axis of precession, Lslow. In addition to showing the trajectory of V(t), we
plot the trajectory of the field n̂ (blue), and the predicted axis of precession S0 (green). The data
shows that V tracks S0(t) closely, which further supports our conclusion above that L precesses
around S0 rather than n̂.

Effects of dissipation

We now consider the case where the motion of the spin is a subject to dissipative forces. If the
field h were static, the dissipation would cause the spin to aligning with the direction n̂ of the
field. Now we will show that if h is time-dependent, dissipation of will lead to relaxation to the
direction S0(t) (rather than n̂) for a wide range of dissipation strengths, leading to an increased
stability of the frequency conversion, as we will show in the following section. In particular, the
frequency conversion will not depend as much on a separation of time-scales as was necessary for
the dissipationless case.

The equations of motion for L can be expressed as a first-order differential equation, which
implies that the dissipation depends on L and L̇. With dissipation, the equation of motion for
L thus takes the form L̇ = {L,H(t)} + Fdis(L, L̇) for some function Fdis. We consider the case
where the dissipative forces conserve the magnitude of L. In this case, the equation of motion for
L in the frequency conversion setup takes the form

L̇ = −
(
ηh(t) + vdis(L, L̇)

)
× L. (8.29)

The dissipation potential vdis(L, L̇) has units of angular velocity and can in principle take any
form. For simplicity, we consider here the case where the dissipative forces enter as a Gilbert-type
term above [196]. Specifically, vdis(L, L̇) = − γ

L L̇, where γ denotes the dimensionless dissipation
strength.

In Appendix G.2, analyze this equation of motion in detail. By going to the rotating frame
where h is aligned with the ẑ axis, we find that L(t) aligns itself with LS0(t) when γ is in the
regime

α2 � γ � 1. (8.30)

Trajectory of L from numerical simulations

These analytical results above are in good agreement with numerical simulations. We numerically
solved the equations of motion for the model, with the parameters η = 0.1Ω, ωc = ωc/ϕ, where
ϕ = (1 +

√
5)/2, while L = L0

2 , and Ad = M = 100. We initialized the cavity field in the state
A = 100, φ = π, while the spin was initially aligned along the z-direction (which was also the
initial direction of the field), first without dissipation. In this case, the field amplitude is typically
of order 100, so the precession frequency ηh is of order 10 times faster than the oscillation
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frequency Ω, ωc of the field. Fig. 8.4a shows the computed trajectory of L on the unit sphere over
first three driving periods (red), and the direction of the field (blue), while the blue and the red
points indicate the final values of L and n̂. The data clearly show that L precesses with with
the center of precession approximately following n̂, and the radius of precession approximately
constant. We then computed the trajectory of L for the same parameters, but with a weak
dissipative force acting on the spin. The dissipation is included in the equations of motion in
the form of a Gilbert-type term with strength γ = 0.05, which brings the system well within the
regime α2 � γ � 1 (since α = 0.1). In Fig. 8.4c we plot the resulting trajectory of L over the
first three driving periods (red), along with the trajectory of the field n̂ (blue), and the predicted
“relaxed” direction S0(t) (green). The data clearly shows that L(t) = LS0(t).

8.4.4 Emergence of energy transfer

Having found the trajectory of L both in the presence and the absence of dissipation, we now
consider the consequences for the dynamics of the cavity field. Here we show that the deviation
of Lslow (or L in the dissipative case) from the cavity field direction gives rise to a quantized
energy transfer between the driving field and the cavity mode.

As a first step, we note from Eqs. (8.20) and (8.21) that the time-scale on which the amplitude
A and phase φ change significantly is of order 1

Ω0
, and therefore the contribution from Lfast to

Eq. (8.20) and (8.21) on average cancels out. We may therefore replace L with Lslow = λ0S0 in
these equations, where λ0 was a constant of motion, up to bounded, time-dependent fluctuations.
In the case where the moment L is subject to dissipation, we found above that L = LS0 after a
transient relaxation period of duration ∼ 1

ηhγ . In either case, in the equations of motion for the
cavity field, we may substitute L with λ0S0, where λ0 was a constant of motion (specifically, in
the dissipative case, λ0 = L). Making this substitution in Eqs. (8.20) and (8.21), we obtain

φ̇ = ω + ηλ0
2AL0

∂Ah · S0 (8.31)

Ȧ = − ηλ0
2AL0

∂φh · S0 (8.32)

We first consider the equation of motion for the field’s amplitude A. Writing h = n̂h, and
inserting the expression (G.7) for S0 in Eq. (8.31), we find 4

Ȧ = − ηλ0
2AL0

∂φh− λ0
2AL0

∂φn̂ · (n̂ × ˙̂n), (8.33)

where we, used ∂φn̂ · n̂ = 1
2∂φ(n̂ · n̂) = 0, and n̂ · (n̂ × ˙̂n) = 0.

We now consider the evolution of the energy Ec = L0ωA
2 stored in the cavity mode. The

field energy obeys the equation of motion Ėc = 2AL0ωȦ. Inserting this in the expression for Ėc,
and using a · (b × c) = b · (c × a), we find

Ėc = −ηωλ0∂φh+ ωλ0 n̂ · ( ˙̂n × ∂φn̂). (8.34)

4recall that the definition n̂ = h/|h| implies that n̂ is a function of A, φ, t.
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We now make use of the assumption that κ � ω,Ω – i.e., that the angular moment only weakly
perturbs the motion of the cavity field on the time scales of the two modes’ oscillations. On these
time scales, we may set ˙̂n ≈ ∂tn̂ + ω∂φn̂, and we find

Ėc = −ηωλ0∂φh+ ωλ0 n̂ · (∂tn̂ × ∂φn̂) + ∆Ė. (8.35)

Where ∆Ė is an insignificant correction due to the approximation made above. As show in
Appendix G.3, the time-averaged value of ∆Ė goes to zero as λ0ω/τ , where τ denotes the
averaging time.

We now recall that κ � 1 implies that the amplitude A of the cavity field stays effectively
constant on the time scales Ω−1, ω−1, while φ increases linearly at the rate ω, up to a small
correction of order κ. If ω/Ω is a sufficiently irrational number, the trajectory of (φ(t), t) will then
effectively cover the entire 2D manifold t ∈ [0, T ], φ ∈ [0, 2π] within a finite time-window, within
which A(t) can be assumed constant. In this case, the time-averaged value of Ėc is given by

〈Ėc〉 = ωλ0
2πT

∫ T

0
dt

∫ 2π

0
dφ (η∂φh+ n̂ · (∂tn̂ × ∂φn̂)) , (8.36)

where T = 2π
Ω is the driving period.

In the above expression, the first term is zero, since h is periodic in φ. We identify the second
term as the solid angle on the unit sphere S2 covered by the image of the torus T2 = [0, T ]× [0, 2π]
with respect to the mapping n̂ : T2 → S2. The image of the torus is a closed manifold, and must
hence cover the sphere an integer number of times, which implies that the solid angle is an integer
multiple ν of 4π. Thus 〈Ė〉 = ν · 2λ0ω

T . In the case where dissipation is present (or the spin is
initially aligned with the field), λ0 = L, and we obtain

〈Ėc〉 = ν · 2Lω
T

, (8.37)

where ν must be an integer. For the model we consider, it has previously been established that
the index ν takes the value 1 when A0 < A < A1, where A0 = |M −Ad|, and A1 = M +Ad [11]
(assuming, wihtout loss of generality, that M,Ad > 0). In other words, the invariant ν takes
value 1 if the energy Ec of the cavity is in the interval [E0, E1], where E0,1 = ωL0(M ± Ad)2.
This implies that the energy of the cavity field will continually incrase at the quantized average
rate 2Lω

T as long as Ec is in the interval between E0 and E1. When Ec is outside this interval,
ν = 0, and the energy in the cavity field on stays constant on average.

Notably, by naive interpolation, this purely classical analysis predicts that the smallest possible
energy pumping rate is exactly one cavity photon per driving period; this is achieved when the
angular momentum L along S0 takes the minimal nontrivial value possible: ~

2 (a single spin-1/2
degree of freedom). In this case, 〈Ėc〉 = ν · ~ω/T . Thus, the pumping rate is quantized in units
of one cavity photon per driving period. This is the exact same result that was arrived at in the
quantum problem.

In the case when there is no dissipation, while the field energy Ec = L0ωA
2 is in the

“topological regime” [E0, E1], energy is transferred from the driving field to the cavity mode. The
energy transfer rate is given by 2λ0ω/T , where λ0 is approximately given by the projection of L
onto the field. As shown in the above subsections, λ0 is a constant of motion when α � 1, which
is ensured when E0 < Ec < E1 (since h ∼ O(A,Ad) in this range).
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Classical boundary effects

The increase of the cavity field energy Ec will go on until it reaches the upper phase boundary
at E1. In the “ideal” case α → 0, the energy of the cavity will keep increasing exactly until it
reaches E1. In practice, however, the energy transfer rate will begin deviate from the quantized
value before this point. To see why, note that the energy transfer rate is only quantized as long
as the dimensionless field strength |h| is much larger than the ratio ω/η.For a fixed amplitude of
the cavity field, the minimal value of h is given by hmin = min |M ± Ad ± A| (this is achieved
when φ or Ω take values 0 or π). When hmin becomes comparable to ω/η, the field magnitude
will be too weak for the moment’s axis of precession to keep up with the motion of the field’s
direction, and the derivation made in Sec. 8.4.3 breaks down. At this point, the energy transfer
rate may deviate from the quantized value, and L · S0 is no longer conserved.

8.4.5 Classical numerical simulations of pumping

No dissipation

To test the above derivations, we numerically simulate the model, first without dissipation, for the
coupling strength η is set to 5

2Ω, while Ad = 17, M = 8, which leads to α ∼ 25 in the topological
regime (where h ∼ O(Ad, A)). The parameters of the model were chosen to be identical to the
parameters used in the quantum mechanical model case (see Fig. ??): The resonance frequency
ω of the cavity is set to Ω/ϕ, where ϕ = (1 +

√
5)/2. Setting L0 = L, the driving frequency Ω

and angular moment L fix the energy and time scales of the system. The results above imply
that the field energy Ec should grow at a constant rate 2ωλ0fd as long as Ec is between 162ωL
and 1250ωL.

We initialize the cavity field in the state with A = 17, and φ = 0, while the spin is initialized
with a small deviation angle of 0.01 radians from the direction of the field, such that λ0 ≈ L
(specifically, L(0) = L√

1.0014(0.01, 0.01,−1). The spin is thus initially nearly aligned with the field,
whose initial value is given by h(0) = (0, 0,−26). In Fig. 8.5a, we show the energy of the cavity
mode Ecav = ωA2 as function of time (red curve) for the subsequent motion of the system. Note
that the time-scale in the figure is linear from 0 to 400T , and from 400T to 3000T .

As can be seen in the figure, the energy initially increases at the quantized rate Lω/T ,
indicated by the slope of the light blue line in the figure, as predicted in the previous subsection.
The energy keeps increasing until t ≈ 250T , where Ec is too close to the upper phase boundary at
E1 = 1250Lω1 for the energy pumping rate to remain quantized. From this point, the energy of
the cavity field remains at the upper phase boundary until t ≈ 2000T , where Ec suddenly starts
decreasing at a constant rate.

This behavior can be explained by the system’s moving chaotically at the upper phase
boundary (it cannot cross the phase boundary, since above the phase boundary Ė = 0, due to the
results from the previous section). Hence the projection λ(t) = L(t) · S0(t) changes chaotically
in time. At some point, the system may be at the lower end of the phase boundary, where the
quantized energy transfer will begin to have significant effect. If λ is negative at this instant,
the quantized energy transfer will begin to drive the field energy further down into the regime
where λ is conserved. This gives a mechanism for the system to escape the upper phase boundary,
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Figure 8.5: Dynamics of the classical system (see main text for details). The time-scale in panels
a-c is piecewise linear, with the vertical dashed line indicating the shift of time-scale. Horizontal
dashed lines indicate the boundaries E0, E1 of the pumping regime. a) Energy of the cavity field
as function of time for three different initializations of the system when there is no dissipation.b)
Energy of the cavity field for the same system as in panel a, with the addition of spin dissipation.
c) Energy of the cavity field, at the special point M = Ad in the phase diagram, where the cavity
field is initially zero, and the spin is subject to dissipation. d) Energy of the cavity field when
cavity dissipation is included in addition to spin dissipation.
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and in this case, the Ec begin to decrease at a constant rate, given by the value at which λ gets
“frozen”.

This behavior will continue until the system reaches the lower phase boundary, where a similar
process can happen. On long time scales, the energy of the system will thus “zig-zag” between
the two phase boundaries, as in the right end of Fig. 8.5a. The time it takes for the system to
perform a “bounce” is essentially random, due to the chaotic nature of the system’s motion near
the phase boundaries. In addition, the value of λ after a bounce may not exactly be ±L, but can
take any value in the interval [0,±L].

To verify the chaotic nature of the bounces, we investigated the motion of the system
with a slightly different initial state than discussed above, namely A(0) = 17, φ(0) = 0, but
L(0) = L√

1.0026(0.01, 0.05,−1). The motion is plotted in the blue curve in Fig. 8.5a. As can be
seen the motion of the red and the blue curve is approximately identical until the first bounce at
t = 250T . Here, the trajectories of the two systems begin to deviate, and the first “bounce” of
the second system takes place much earlier than for the first system. Note also that the slope of
Ec is not as large after the second and third bounces, indicating that |λ| in these parts of the
system’s motion has acquired a value smaller than L.

To demonstrate that the projection λ indeed decides the energy pumping rate, we also
initialized the system in the state A = 17, φ = 0, L = L(1, 0, 0), such that L is approximately
orthogonal to S0 (since S0 ≈ n̂ and the field initially points along the z axis). In this case,
λ = 0, which should lead to no energy transfer. We plot the motion in the green curve of
Fig. 8.5a. As can be seen, the energy remains constant for the first 1000 driving periods – the
energy transfer is thus indeed absent with this initialization. Eventually, the energy of the cavity
does begin to change. This deviation may be due to fact that the separation of time scales in
Eqs. (8.26) and (8.25) is only valid on finite (although long) time scales.

Stabilization of energy transfer with dissipation

As discussed in the previous section, spin dissipation is expected to stabilize the energy pumping,
since it will cause L to relax to LS0, (i.e., always cause λ0 to relax to L), which in turn should
lead to quantized energy transfer at the rate 2ωL

T .
To test this expectation, we simulated the same model as described in the above subsection,

but adding a Gilbert-type dissipation of the form γsL × L̇ in the right hand side of the equations
of motion for L (8.22). In our simulation, we set γs = 0.001L−1. We initialize the system in the
state A = 17, φ = 0, with the L initially orthogonal to the field – i.e. the same initialization as
for the green curve in Fig. 8.5a.

In Fig. 8.5b, we plot the evolution of Ec as a function of time (red curve). As can be seen,
the system immediately enters the frequency conversion regime, and Ec grows at the quantized
rate 2Lω

T (indicated by the slope of the light blue line). This is in contrast to the dissipationless
case, where the energy transfer rate depended on the initial alignment of L with the field – in
the case where L was initially orthogonal to the field, the cavity field energy Ec would remain
constant for the first ≈ 1000 driving periods. At the upper phase boundary E1, we do not see
chaotic behavior as in the dissipationless case, since the dissipation keeps L pointing along S0. In
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this case, we find that the energy keeps increasing, although at a slower rate5

To further demonstrate the stability of the energy transfer with spin dissipation, we repeat
the same simulation, but with dissipation strength two orders of magnitude higher, γs = 0.1/L.
The data are shown in the blue curve in Fig. 8.5b. We see that the trajectory of Ec is nearly
qualitatively identical to the previous case, which demonstrates that the energy transfer rate
remains quantized over several orders of magnitude of the dissipation strength.

If we set Ad = M , there is no lower phase boundary (E0 = 0), and the cavity can in principle
absorb energy from the drive at the quantized rate, even when the cavity amplitude is zero.
Without dissipation, the field amplitude would be too weak for L to track the motion of the field,
and there will be no pumping (at least not immediately). But sufficient dissipation, can make L
track S0 even for small field amplitudes. This is demonstrated in Fig. 8.5c, where we plot the
trajectory of Ec for a system where Ad = M = 14. We set γs = 0.02/L, and initialize the system
in the empty cavity state, with L(0) = L(1, 0, 0). As can be seen, the energy starts to increase at
the constant rate 2ωL

T (light blue curve) after a few periods.

“Lasing” steady state with cavity dissipation

As the final step, we include dissipation of the cavity field in the equations of motion, to simulate
the effect of a partially-transparent mirror. This is included as a term −1

2γcA on the right hand
side of the equation of motion for the cavity field amplitude (8.21). This type of dissipation leads
to the cavity emitting energy at the rate −γcEc, where Ec was the energy of the cavity field. In
our simulation, we consider the same system as in panels a-b in Fig. 8.5, with the spin dissipation
rate set to γs = 0.01

L , and a cavity dissipation rate γc = 0.0025/T .
With this type of dissipation included, we expect the system to reach a steady state Es where

the energy absorption rate from the drive 2Lω
T exactly matches the energy loss due to cavity

dissipation γcEs, provided E0 < Es < E1 (provided that the energy of the cavity field is initially
in the same “topological” range). The parameters we use result in Es = 400Lω, which is well
within this regime. In Fig. 8.5d, we plot the motion of Ec for three different initializations of the
cavity field, namely L(0) = (L, 0, 0), φ(0) = 0, A(0) = 13 (green), 17 (red), or 22 (blue). The
black horizontal line indicates the predicted steady state energy Es = 400Lω. As can be seen, the
cavity reaches the steady state for all three initializations. The steady state thus appears to be
very robust. Once the steady state is reached, the cavity emits energy at the quantized rate 2Lω

T .

8.5 Multiple cavity modes

So far, the discussion in this chapter has focused on the case where there a single circularly-
polarized cavity mode is connected to the magnetic particle. However, in an actual cavity, the
magnetic particle will generally be coupled to several electromagnetic modes. In this section,
we discuss how these additional modes affect the topological frequency conversion. Based on
analytic arguments, we identify below conditions in which topological frequency conversion may
be possible. Subsequently, we support our conclusions with numerical simulations (see Fig. 8.6)

5Even though the arguments leading to Eq. (8.37) break down in this regime, the system may still absorb energy
from the driving, although not necessarily at the quantized rate.
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Figure 8.6: Evolution of squared amplitudes of the cavity modes in a setting where the first
harmonic is in the topological regime, while the remaining modes are only weakly excited initially.
See discussion in Sec. 8.5.2 for details. a) squared amplitudes of modes ±2 . . .± 15 (green-purple
curves) and mode −1 (red curve). b) squared amplitude of mode 1 (green curve).

that firmly demonstrate that topological frequency conversion can persist, even though the cavity
holds multiple modes.

To include the additional modes in our model, we assume that the cavity is effectively one-
dimensional. In this case, it will support an infinite number of circularly polarized modes with
frequencies nω for all positive integers n, along with their time-reversed partners (i.e. modes with
the same frequency, but reversed polarization). The cavity field is thus described by the variables
(B±1, φ±1); (B±2, φ±2); . . . where the variables Bn and φn describe the amplitude and phase of
mode n, and the modes are labelled such that mode −n is the time-reversed partner of mode n.
The variables Bn and φn have the poisson bracket {B2

n, φn} = ωnµ0
V , where ωn = nω, and ω is

the fundamental frequency of the cavity.
The full Hamiltonian of the system is given by

H(t) =
∑

n

(
V

µ0
B2

n + gnBn · L
)

+ gdBd(t) · L, (8.38)

where Bd(t) = (Bd sin Ωt, 0,M−Bd cos Ωt) denotes the driving field, and Bn = Bn(0, sinφn,− cosφn)
denotes contribution to the field from mode n. Note that we allow the coupling gn to depend on
the frequency on the mode.

The above Hamiltonian can be written in terms of dimensionless variables {An, φn}, similar
to the ones introduced in Sec. 8.2.2, by substituting V

µ0
B2

n → L0|ωn|A2
n, and gnBn → ηnhn. Here

ηn = gnβn, where βn ≡
√

|ωn|µ0L0/V , and hn = An(0, sinφn,− cosφn). Finally, L0 denoted an
arbitrary scale of action that was introduced in Sec. 8.2. Below, we will work with these variables.
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8.5.1 Qualitative discussion

We now consider how the additional cavity modes may affect the frequency conversion. In
Sec. 8.4, we found that topological frequency conversion arises in the regime where the magnetic
moment’s instantaneous precession frequency η|h| is much larger than the field’s oscillation
frequencies. However, if more than one cavity mode has significant amplitude, the “effective”
field heff =

∑
n ηnhn + ηdhd(t) that acts on L will in general become zero for some values of

the phases 6. This will cause the spectral gap to close at some times during the evolution, thus
making the derivation of quantized frequency conversion in Sec. 8.4 break down.

The problem above can be avoided if only a single mode is significantly excited, while the
amplitudes of all the other modes are kept small. This is achieved if the undesirable modes
dissipate energy sufficiently quickly. To study how dissipation affects the system, we include
cavity dissipation in the model n the same way as in Sec. 8.4.5. Specifically, we modify the
equations of motion for the field amplitudes An such that Ȧn = {H(t), An} − γn

2 An (here we
allow the dissipation rate γn to depend on the index of the mode).

Having included cavity dissipation in our model, we now consider the energy flows in and
out of a mode n during time evolution. The motion of the magnetic particle’s moment L pumps
energy into mode n at a rate which is controlled by ηn, and the energy is dissipated away at the
rate controlled by γn. Since the mode n oscillates at frequency ωn, it is moreover driven by the
Fourier component of L(t) around the frequency ωn. In Appendix ?? we study this problem in
further detail, and find that the rms-averaged amplitude of mode n is given by

|An| = qn|Φn|, where qn ≡
√
π

ηnL√
γnL0

. (8.39)

Here |Φn| is the rms averaged value of Φ(ω) in a window of width γn around ωn
7, where Φ(ω)

is the Fourier transform8 of the complex-valued function Φ(t) ≡ 1
L(Lx(t) + iLy(t)). The above

considerations show that we need to keep Φn and {qn} as small as possible in order to avoid the
spurious modes obstructing the energy transfer.

Note, that Eq. (8.39) applies not only to the spurious modes, but also to the selected mode
that we are trying to pump. Let n0 be the index of the excited mode; then Eq. (8.39) implies
conditions on ηn0 and γn0 . Using that Φn0 ≤ 19, the coefficient qn0 must be larger than A0,
where A0 is the amplitude of the excited mode in the steady state predicted in Sec. 8.4.5, i.e.,
A2

0 = ωn0ΩL/γn0 .
There is a variety of strategies to minimize Φn and {qn} for the spurious modes. To minimize

the former, we can utilize the fact that in the frequency-conversion regime, the Fourier transform
of Φ(ω) will contain sharp peaks at integer-multiple combinations of ωn0 and Ω. Thus, the energy
pumped into the undesirable modes can be dramatically decreased if the frequencies {ωn} are

6In this case heff will depend on more than two independent variables, namely on time t, and the phases of the
excited modes. Since heff lives in a three-dimensional space, there will generically be points where heff is tuned
to zero, similar to Weyl points in case of 3 parameter space, and higher dimensional heff = 0 in case of more
independent variables.

7Specifically, it is weighted with a Lorentzian around ωn, of width γn/2 (see Eq. (??) in Appendix ?? for the
exact expression).

8Note that Φ(ω) is a Wiener measure, and has dimensions of ω−1/2

9This follows from the fact that |Φ(t)| ≤ 1, and that
∫
dω|Φ(ω)|2 is the rms average of Φ(t).
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even slightly detuned from those peaks, e.g., if ωn = nω0 + δω. Such detuning can be realized by
inserting phase-shifting mirror in the cavity [197,198].

The coefficients {qn} can be minimized independently of qn0 if the physical coupling gn and
dissipation strengths γn depend on the frequencies of the modes. The coupling gn can for example
be made frequency dependent if the magnetic particles are distributed over an extended spatial
region in the cavity. In this case, the effective coupling gn to modes with higher frequency (shorter
wavelength) decreases as |n|−1. Frequency dependence of the dissipation parameter γn can be
realized if the mirrors in the cavity have frequency-dependent reflection coefficients. This can
for instance be realized with Fabry-Pérot devices, which may effectively suppress all undesirable
harmonics [199–201].

8.5.2 Numerical study

Making use of the above discussion, we now demonstrate in numerical simulations that the system
can indeed be in a regime where mode 1 undergoes topological energy transfer, while the rest of
the modes remain only weakly excited.

We include the first 15 harmonics in the simulation, along with their time-reversed partners.
Following the discussion above, we consider the case where the frequencies of the modes are
slightly detuned from the integer multiples of the fundamental frequency, and where the couplings
and dissipation strengths are frequency dependent. Specifically, we set ωn = nω0 + δω, with
δω = 0.05ω0, where the value ω0 is given below. In addition to this, we let the coupling strengths
{gn} decrease as |n|−1. Thus, since ηn ∝ |ωn|1/2, and |ωn| ≈ nω1, we set ηn = η1|n|−1/2. Finally,
we let the absorption coefficients of the mirror be proportional to the frequency of the mode such
that γn = |n|γ1.

Working in units where Ω = 2π, we set ω0 = 2π/ϕ with ϕ = (1 +
√

5)/2. The dissipation
strength of the spin is set to γs = 0.01, and γ1 is set to 10−6. Finally, we set ηd = η1 = 0.03,
while M = 2,000, Ad = 1,400 and L/L0 = 3. Mode 1 is thus in the frequency conversion regime
if its amplitude lies in the interval [600, 3400]. In this case, it should go to a steady state with
squared amplitude A2

0 = LΩ
πL0γ1

= 6 · 106.
We initialize mode 1 in a state with amplitude 1000, while the initial amplitudes of the

remaining 29 modes are randomly distributed in the interval [0, 32]. The phases of all modes are
initially set to zero. From this initial state, we numerically solve the classical equations of motion,
and plot in Fig. 8.6ab the resulting evolution of the modes’s squared amplitudes over the first 106

driving periods. The red curve in panel a) indicates the squared amplitude of mode −1, while the
dark green curve on panel b) indicates that of mode 1. The remaining curves in panel a) indicate
the squared amplitudes of the other modes, with green colors indicating lower harmonics, while
blue/purple colors indicate higher harmonics. In panel b), the lower topological phase boundary
is indicated by the orange horizontal line, while the predicted steady state A2

0 = 106 is indicated
by the horizontal dashed line.

As can be seen in panel a), the amplitudes of all modes other than mode 1 decay to near
zero10, over a few hundred thousand driving periods, with the higher-frequency modes decaying

10The slower decay of mode −1 is due to the fact that this mode’s time-reversed partner, mode 1, is excited.
Thus L(t) thus has a major Fourier component at frequency ±ω1. Since ω−1 ≈ −ω1, the coefficient Φ−1 should
take a relatively large value.



8.6. DISCUSSION 141

more rapidly. If more harmonics were included in the simulation, we expect them to decay even
faster. The fact that their amplitudes remain small means that these modes do not obstruct
the topological energy transfer to mode 1. As can be seen in panel b), the squared amplitude of
mode 1 does indeed approaches the steady state value of A2

0 = 106, consistent with topological
frequency conversion11.

8.6 Discussion

In this work, we demonstrated the robustness of the topological energy transfer between two circu-
larly polarized modes that was studied in Ref. [3]. We studied the setup under the experimentally
relevant settings where one of the modes is externally driven, while the other is a dynamical
cavity mode. Using a novel Floquet-Lindblad master equation approach (see Appendix ??),
we established that the quantum mechanical version of the effect is stable in the presence of
dissipation. In particular, cavity dissipation, in the form of a semitransparent mirror, can stabilize
a steady state where cavity photons are emitted at the quantized rate of one per driving period.
The dissipation due to the magnetic particle’s motion may even add to the robustness of the
effect, by keeping the magnetic moment aligned with the instantaneous field. Finally, we find
that the effect can be realized even if the cavity is initially empty.

The robustness of the topological energy transfer is further reflected in the fact that the effect
can be understood purely as a classical phenomenon. Hence, it does not rely on coherence of wave
functions for its stability, and can be realized in noisy, macroscopic systems. Interestingly, this
work thus demonstrates that classical systems can also exhibit quantized, topologically-robust
behavior.

The fact that the topological energy transfer is a classical phenomenon furthermore implies
that the effect can be effectively simulated by classical equations of motion. This allows for
simulation of the effect under much more complex settings than if it were a purely quantum
mechanical effect. We used the latter fact to show that the effect can persist even if multiple modes
are present in the cavity. These facts together opens up the possibility for realistic experimental
realizations.

Experimental realization and future work — To realize the topological energy transfer
experimentally, one can exploit the fact that the effect is classical. Hence the effect may be
demonstrated in macroscopic, mechanical systems. We speculate that the model discussed in this
work for example can be realized with a gyroscope coupled to mechanical harmonic oscillators
(rather than electromagnetic modes), such as pendulums or springs.

Alternatively, the model can be realized with an actual magnetic moment coupled to elec-
tromagnetic modes. As discussed in Ref. [3], large values of the coupling g can for example be
achieved with an Yttrium-Iron garnet (YIG) sphere [202], or electronic or NMR spin resonance
systems [203].

We note that the coupling g between the electromagnetic modes and the angular moment L
(See Eq. (8.1)) sets the range of available frequencies. Specifically, the discussion in Secs. 8.3 and ??

11The amplitude might eventually settle at a value slightly below the steady state value, due to the energy loss
to the other modes.
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shows that the effect arises when the moment’s instantaneous precession frequency g|B| is larger
than the frequency of the modes. For a magnetic moment with the largest possible gyromagnetic
ratio (namely that of the electron), i.e. g ∼ 1010 Hz T−1, and for strong radiation intensities of
1 W/mm2 , equivalent to magnetic field amplitudes |B| ∼ 10−4 T, the precession frequency of
the moment is in the MHz range. Thus the setup may work in the radio-frequency range with
magnetic particles.

The above discussion show that the electromagnetic modes need to be coupled to an electric
degree of freedom (where much stronger couplings can be achieved), in order to realize the effect
with higher frequencies. . The question of how this can be implemented is an interesting direction
of future studies. For instance, it may be possible to substitute the moment L with the orbital
(pseudospin) degree of freedom in a Weyl semimetal [204–207], as is also dicussed in Ref. [3], thus
allowing for topological energy transfer at higher frequencies. Note that the quadratic dependence
of the energy transfer rate on the frequencies (Ė = ω1ω2L/π) mean that a tiny net angular
moment can result in macroscopic energy transfer rates, for sufficiently large frequencies.

Finally, the discussion in Sec. 8.5 shows that the effectiveness of the topological frequency
conversion is highly dependent on the properties of the electromagnetic cavity. In particular, the
effect depends strongly on the spectrum of modes in the cavity, and their dissipation rates. A
detailed discussion of how a cavity with suitable properties can be implemented is beyond the
scope of this work, and is left for future work.
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Concluding remarks and outlook

As discussed in the beginning of this thesis, periodically driven systems may host topological
phases with no equivalent in nondriven systems. These anomalous phases are defined by a nonzero
value of a so-called micromotion invariant ν, which characterizes the topological properties of the
driven system’s micromotion (i.e. the dynamics of the system that take place within a driving
period). The results of this thesis elucidate the nature of the micromotion invariant, and the
anomalous topological phases it defines.

Chapter 3 introduced a method for classifying the topological properties of noninteracting
periodically driven systems, in two dimensions. The method showed that the micromotion
invariant ν is associated with nodal points in the bulk-evolution operator’s spectrum. Ref. [5],
in which Chapter 3 is published, shows that the method is applicable to any combination of
symmetry class and dimensionality, and thus leads to an exhaustive classification of noninteracting,
periodically-driven systems.

The physical meaning of the micromotion invariant was revealed when disorder was introduced.
Chapter 4-6 studied the anomalous Floquet insulator (AFI), which is the anomalous topological
phase that arises when the micromotion invariant ν is nonzero, and disorder is present. These
chapters found that the AFI is characterized by quantized, nonzero bulk magnetization density,
given by ν/T . The further study of the nature of this micromotion invariant, as well as its
analogues in different symmetry classes could lead to new insights about the role of topology in
condensed matter physics.

In addition to studying the nature of the micromotion invariant, Chapters 5-6 explored the
stability of the AFI. The discussion in Chapter 5 strongly suggests that the AFI can be realized
as a stable many-body localized phase in periodically-driven systems. Importantly, a nonzero
value of the micromotion invariant is compatible with many-body localization, even though the
bulk quasienergy bands necessarily are topologically trivial in this case. A conclusive proof of the
stability of the AFI is beyond the scope of this work, due to the challenges in proving the existence
of many-body localization in more than one dimension. However, the results of Chapters 5-6
strongly suggest that the AFI can at least support nontrivial topological effects in extremely long
time-scales.

Interestingly, with interactions present, the AFI is characterized by a family of integer-valued
topological invariants, rather than a single invariant as in the noninteracting special case. The
nature of this family of invariants is not fully clear, and could be an interesting subject for
future studies. The discussion in Chapter 6 reveals several remarkable properties of the family of
invariants. Firstly, the topological invariants of the AFI do not rely on full many-body localization
for their protection. Secondly, the invariants of the AFI are properties of the system’s evolution
operator, and do not rely on the particular state of the system.

Chapters 7-8 explored novel topological pumping effects that can arise in periodically driven
systems. Chapter 7 demonstrated that the dimensional reduction of the AFI leads to a novel,
topological energy pumping effect, analogously to the charge pumping effect that arises from the
dimensional reduction of the Chern insulator [65]. Chapter 8 demonstrated a different energy
pumping effect, which arises in a strongly driven magnetic particle, and can be seen as a Thouless
pump of photons. As Chapter 8 further demonstrated, the latter phenomenon can be understood
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as a purely classical effect. Remarkably, the discussion in Chapter 8 thus demonstrates that a
seemingly simple classical system can exhibit highly nontrivial topological effects, when subject to
periodic driving. Possible realizations of the effects described in Chapters 7,8 (see also Ref. [3]),
such as in Weyl semimetals, could also be an interesting direction of future studies.

The discussion in the last chapters of this thesis show that surprising and potentially useful
topological effects can arise when a topological insulator is mapped to a seemingly unrelated
system. Such unconventional realizations of topological insulators have resulted in the discovery
of novel topological effects in systems photonic crystals, mechanical metamaterials, and (as
Chapter 8 showed) even in the classical dynamics of driven harmonic oscillators. The recent
discoveries of these novel effects in otherwise well-understood systems opens up the possibility for
additional unexplored topological phenomena beyond solid-state systems.
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Appendix A

Master Equation for Periodically
Driven Systems

In this appendix we derive the Master equation in Eqs. (8.15)-(8.17), which used in the main
text to describe the behaviour of the system when subject to dissipation. We derive this master
equation, using only a single approximation in our derivation, namely that the bath is Markovian.
The master equation derived in this appendix in principle describes any periodically driven system
which is coupled to external baths, as long as the baths are effectively Markovian.

In this appendix, we consider the case where only a single variable is connected to a bath.
The case of multiple baths follows the same lines.

Absorbing all prefactors into the system operator A, the Hamiltonian describing the full
system-bath setup of a non-driven system is of the form

HSB = HS(t) +HB +A

∫
dω
√
S(ω)(b†(ω) + b(ω)). (A.1)

where HB =
∫
dω ωb†(ω)b(ω), and AS and HS only act on the system degrees of freeedom. As our

starting point, we perform a rotating frame transformation generated by HB +HS(t), thus going
to the interaction picture. In this case, the full time-evolution operator of the system U(t) is given
by U(t) = US(t)UB(t)U(t), where US,B(t) = T e−i

∫ t
0 HS,B(t′)dt′

, with T denoting the time-ordering
symbol. The interaction picture evolution operator U(t) is generated by the Hamiltonian

H(t) = A(t)B(t). (A.2)

With
B(t) =

∫
dω(b(ω)e−iωt + b†(ω)eiωt)

√
S(ω), (A.3)

and A(t) = U †
S(t)AUS(t). At this point, we are interested in finding the time-evolution of full

density matrix in the system, ρF (t) = |Ψ(t)〉〈Ψ(t)|, where |Ψ(t)〉 is the time-evolution of the
combined system-bath state from some initial state |Ψ0〉. Later, we will trace out the bath degress
of freedom, obtaining the time-evoluton of the reduced density matrix of the system.
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A.1 Time evolution in the superoperator picture

To achieve this, it turns out to be convenient to make use of superoperator notation. With
this formalism, we exploit the fact that linear operators on the Hilbert space are themselves as
vectors, whose (Heisenberg picture) time-evolution obeys a Schrodinger-type equation. To make
the vector nature of the operators explicit, we use double brackets |·⟫ to indicate operators in the
following. These vectors live in the “operator Hilbert space” H2, whose inner product refers the
Hilbert-Schmidt inner product, i.e. ⟪X|Y ⟫ ≡ Tr(X†Y ).

Using the notation above, the time-evolution of the combined system-bath state ρF is given
by

∂t|ρF⟫ = −iĤ(t)|ρF⟫. (A.4)

where Ĥ is a superoperator (i.e. a linear operator that acts on vectors in H2), and is defined
from the Hamiltonian H of the system as follows:

Ĥ|M⟫ = |HM −MH⟫. (A.5)

The above linear differential equation has the solution

|ρF (t)⟫ = U(t)|ρF (0)⟫. (A.6)

Here U(t) is the full time-evolution (super)operator, given by

U(t) = T e−i
∫ t

0 dt′Ĥ(t′). (A.7)

The time-evolution operator U(t) can formally be written

U(t) =
∞∑

n=0
(−i)n

∫ t

0
dt1 . . . dtn

n∏
k=1

θ(tk − tk−1)Ĥ(tn). (A.8)

In the following, it will be useful to rewrite, inserting Ĥ(t) = A(t)lB(t)l −A(t)rB(t)r, where the
superoperators Xl, Xr are defined from the operator X as

Xl|M⟫ = |XM⟫, Xr|M⟫ = |MX⟫. (A.9)

Note that, by this definition, ArBr = (BA)r. Using these definitions,

U(t) =
∞∑

n=0

∑
d

(−i)n
∫ t

0
dt1 . . . dtn

n∏
k=1

θ(tk − tk−1)sdkA(tk)dkB(tk)dk . (A.10)

where t0 = 0, and we introduced the symbol sd, defined by sl = 1, sr = −1. Finally, the sum
∑

d

is used as shorthand for
∑

d1∈{l,r} . . .
∑

dn∈{l,r}, and hence sums over 2n tems.
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A.2 Reduced time evolution operator for the system
We consider now the case, where the system is initially in some state ρ(0), and the bath is in a
thermal state ρB at some fixed temperature. The combined system-bath initial state can then
be written ρF (0) = ρ(0) ⊗ ρB. The goal of this appendix is to find the evolution of the reduced
density matrix of the system ρ(t) = TrB(ρF (t)). In this subsection, we show from Eq. (A.10)
that ρ(t) in the form |ρ(t)⟫ = UR(t)|ρ(0)⟫ for some linear superoperator UR(t), which we will
find below.

As our first step, we note that partial trace TrB over the bath degree of freedom can be
expresed as the dual vector (i.e. a bra) of the bath identity operator |IB⟫1. Specifically,
|TrB(M)⟫S = ⟪IB| ◦ |MSB⟫. Thus, the reduced density matrix can be found as

|ρ(t)⟫ = ⟪IB|U(t)
(
|ρ(0)⟫⊗ |ρB⟫

)
. (A.11)

We can express this as
|ρ(t)⟫ = UR(t)|ρ(0)⟫, (A.12)

where the reduced time-evolution operator UR(t) acts on the operator space of HS , and is given
by

UR(t) = ⟪IB|U(t)|ρB⟫. (A.13)

Inserting the expression (A.10) for U(t) in the above, and using the fact that only the operators
{B(t)l,r} act on the bath degrees of freedom, we obatin

UR(t) =
∞∑

n=0

∑
d

(−i)n
∫ t

0

n∏
k=1

θ(tk − tk−1)dtk

n∏
k=1

sdkA(tk)dk ·Kd(t1 . . . tn) (A.14)

where Kd(t1 . . . tk) is a scalar function, and is given by

Kd(t1, . . . tn) ≡ ⟪IB|
n∏

k=1
B(tk)dk |ρB⟫. (A.15)

Using the explicit form of B(t) in Eq. (A.3), we can write Kd(t1 . . . tk) as

Kd(t1, . . . tn) =
∫ ∞

0
d2lω ⟪IB|

n∏
k=1

√
S(ωk)[

e−iωktkb(ωk)dk + eiωktkb†(ωk)dk

]
|ρB⟫. (A.16)

The thermal state |ρB⟫ is diagonalized by the eigenstates of the photon number operators
{b†(ω)b(ω)}. Expanding the product above, the integrand above can then only be nonzero when

1Since the Hilbert space has a direct product structure (i.e. it is spanned by a basis of the form |a〉S ⊗ | b〉B),
the operator Hilbet space inherits the same structure, and is spanned by the basis vectors {|a1a2〉〉S ⊗ |b1b2〉〉B},
where |ab〉〉i ≡ |a〉i 〈b |i. The bath identity operator can be written as |IB〉〉 = Σb|bb〉〉B .
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n is even, and for the values of (ω1, . . . ωn), for which each distinct freuqency appears an even
number of times. Summing together all possible pairings of the frequencies, we can rewrite the
above as

Kd(t1, . . . t2l) =
∫ ∞

0
dlω ⟪IB|

∑
σ∈S2l

l∏
k=1

S(ωk)

[
e−iωk(tσ2k+1 −tσ2k )b(ωk)dσ2k+1

b†(ωk)dσ2k

+eiωk(tσ2k+1 −tσ2k )b†(ωk)dσ2k+1
b(ωk)dσ2k

]
|ρB⟫.

where S2z is the set of all permutations σ of the integers 1 . . . 2z such that σ2i+1 > σ2i for all
i. The sum over permutations count all distinct sequences of emissions that result in the same
configuration of emitted photons.

Next, we use that both |ρB⟫ and |IB⟫ can be written as direct products of operators that live
in the operator Hilbert spaces of the individual modes: |ρB⟫ =

∏
ω |ρω⟫, |IB⟫ =

∏
ω |Iω⟫. Here

|ρω⟫ denotes the density matrix for the mode at frequency ω, and |Iω⟫ is the identity operator
on the Hilbert space of the mode with frequency ω.

Doing this, we obtain

Kd(t1, . . . tn) =
∫ ∞

0
dlω

∑
σ∈S2l

l∏
k=1

S(ωk) fdσ2k+1 ,dσ2k
(ωk; tσ2k+1 − tσ2k). (A.17)

where

fµ,ν(ω; t) ≡ ⟪Iω|b(ω)µb
†(ω)ν |ρω⟫e−iωt + ⟪Iω|b†(ω)µb(ω)ν |ρω⟫eiωt.

We recall that ⟪Iω|X|ρω⟫ is different notation for TrBω [X ◦ ρω], where TrBω traces out the degree
of freedom in the mode with frequency ω. Using the definitions (A.9), and considering all four
possible configurations of µ and ν, one can verify that

⟪Iω|b(ω)µb(ω)†
ν |ρω⟫ = n(ω) + δνl.

⟪Iω|b(ω)†
µb(ω)ν |ρω⟫ = n(ω) + δνr.

Here 〈n(ω)〉 = Tr(ρωb
†(ω)b(ω)) is the thermal expectation value of the photon number in the

bath mode with frequency ω. This is given by the Bose-Einstein distribution. The symbol δνl

takes value 1 if ν = l, and value 0 if ν = r, and δνr is defined in a similar fashion.
Inserting this into the expression for fµ,ν(ω, t), we find

fµ,ν(ω; t) = n(ω)(eiωt + e−iωt) + e−isνωt (A.18)

We now consider the ωk integral in the above expression, and find that∫ ∞

0
dωkS(ωk)fµ,ν(ωk; t) = gν(t). (A.19)

Here the bath correlation function gν(t) is given by

gν(t) ≡
∫ ∞

−∞
dωJ(sνω)e−iωt, (A.20)
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where the spectral function of the bath J(ω) given by

J(ω) = S(|ω|)(θ(ω) + n(|ω|)) (A.21)

The bath correlation function describes how fast information is lost in the bath, and generally
decays rapidly to zero.

Inserting the result Eq. (A.19) into Eq. (A.17), we write Kd(t1, . . . tn) in terms of the bath
correlation function as2:

Kd(t1, . . . tn) =
∑

σ∈S2l

l∏
k=1

gdσ2k
(tσ2k+1 − tσ2k) (A.22)

Inserting this result into the expression (A.14) for UR(t), and using Kd(t1 . . . tn) = 0 for odd n,
we find

UR(t) =
∞∑

l=0
(−1)l

∑
d

∫ t

0

2l∏
k=1

dtkθ(tk+1 − tk)sdkA(tk)dk

∑
σ∈S2l

l∏
k=1

gdσ2k
(tσ2k+1 − tσ2k)

As our next step, we write A(t) in terms of its fourier transform: A(t) =
∫
dqA(q)e−iqt in the

above, obtaining

UR(t) =
∞∑

l=0
(−1)l

∑
d

∫
d2lq

∫ t

0

2l∏
k=1

dtkθ(tk+1 − tk)sdk

2l∏
k=1

A(qk)dke
−iqktk

∑
σ∈S2l

l∏
k=1

gdσ2k
(tσ2k+1 − tσ2k).

Here we introduced the notation q = (q1 . . . q2l), and d2lq = dq1 . . . dq2l. As our next step, we
collect the time integrals in one factor, obtaining

UR(t) =
∞∑

l=0
(−1)l

∑
d

∫
d2lq

2l∏
k=1

sdkA(qk)dkMd(q, t), (A.23)

where d is shorthand for (d1 . . . d2l), and

Md(q, t) =
∑

σ∈S2l

∫ t

0

2l∏
k=1

dtkθ(tk+1 − tk)e−iqktk

l∏
k=1

gdσ2k
(tσ2k+1 − tσ2k). (A.24)

2Even though it is not necessary for the following, it turns out that the “correlation kernel” can be written as
Kd(t1, . . . tn) = n!Π2l

k=1θ(tk − tk−1)Hf(Gd[{tn}]) where Hf(M) is the so-called Hafnian of the matrix M , and the
matrix Gd is defined as Gd(ab) = g(sda |ta − tb|).
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Inserting the expression (A.20) for the bath correlation function gν(t),

Md(q, t) =
∑

σ∈S2l

∫ t

0

2l∏
k=1

dtkθ(tk+1 − tk)
∫ ∞

−∞
dωkJ(sdσ2k

ωk)

l∏
k=1

e−i(ωk+qσ2k+1 )tσ2k+1e−i(−ωk+qσ2k )tσ2k

A.3 Markov Approximation

Up to this point, our analysis has been exact. To move on from here we make our first and
only approximation, namly the approximation of the bath as Markovian. This approximation
is necessary to arrive at a linear, first-order differential equation for ρ, which we will do in the
following.

To motivate our approximation, we consider the integral above for a given permutation σ
in S2l. We note that the integral above can be seen as a sum of paths, where tk indicates the
time of the k th photon emission or absorption from the bath. This time is typically integrated
over time-windows of length 1

Γ , where Γ indicates the average rate of photon emission. The
tσ2k integral is only nonvanishing if the integrand is non-oscillatory on this time-scale – i.e. if
ωk ∼ qσ2k ± Γ. The same arguments show that the tσ2k+1 integral is nonzero if ωk ∼ −qσ2k+1 ± Γ.
Taken together, this means that we must have qσ2k ∼ −qσ2k+1 ± Γ for the tσ2k integral to be
nonvanishing.

We now assume that J(ω) is a smooth, slowly changing function that can be assumed constant
over intervals of width Γ. In this case, since the integral is only nonvanishing when ω ∼ qσ2k ± Γ,
we may replace J(sdσ2k

ωk) with J(sdσ2k
qσ2k) in the above. Equivalently, we can replace it with

J(−sdσ2k
qσ2k+1), since the difference between qσ2k and −qσ2k+1 must be of order Γ, for the t2k

and t2k+1 integrals to be nonzero. In this way, there are several ways of approximating J(ωk)
in the above that result in the same value of the integral, given our assumption about J holds.
In fact, the above arguments show that any approximation of J(ω) is valid if it equals J(qσ2k)
or J(−qσ2k+1) up to a correction of order Γ. In the following, we choose to make the following
approximation, which is also valid from the above arguments:

J(sdσ2k
ωk) ≈

√
J(−sdσ2k

qσ2k+1)J(sdσ2k
qσ2k). (A.25)

Making the abpve approximation in the expression for Md(q, t), and subsequently integrating
out ω1 . . . ωk, we obtain

Md(q, t) ≈
∑

σ∈S2l

∫ t

0

2l∏
k=1

dtkθ(tk+1 − tk)(2π)l

l∏
k=1

√
J(−sdσ2k

qσ2k+1)J(sdσ2k
qσ2k)

e−i(qσ2k+1 +qσ2k )tσ2k δ(tσ2k+1 − tσ2k)



A.4. DERIVATION OF MASTER EQUATION 153

By comparing with Eq. (A.24), we see that the our approximation assumes the bath correlation
function gν(t) to be proportional to the Dirac delta function. Thus, our approximation assumes
the bath to be Markovian (i.e. to have no memory of the system at any time). Note that it would
not be possible to obtain a linear first-order differential equation for ρ below if we did not assume
g to be proportional to the δ function.

As our next step, we now note that the time integral in the above is only nonzero for a single
permutation in S2l – namely the identity permutation σk = k. For all other permutations in S2l,
the δ functions require tk = tk′ for some k, k′ such that k − k′ ≥ 2. In this case, the product of
step functions above vanishes, since θ(tk − tk−1) . . . θ(tk′+2 − tk′+1)θ(tk′+1 − tk) = 03. Using this
result, along with δ(t)θ(t) = 1

2δ(t), we integrate out tk for all odd k. Relabelling the remaining
integrands, the resulting expression reads

Md(q, t) = πl
∫ t

0

l∏
k=1

dtkθ(tk+1 − tk)

e−i(q2k+1+q2k)tk
√
J(−sd2kq2k+1)J(sd2kq2k)

Inserting the above expression for Md(q, t) in Eq. (A.23), we obtain

UR(t) ≈
∞∑

l=0

∑
d

(−π)l
∫
d2lq

∫ t

0

l∏
k=1

dtkθ(tk+1 − tk)

sd2ksd2k+1A(q2k)d2kA(q2k+1)d2k+1e
−i(q2k+1+q2k)tk√

J(−sd2kq2k+1)J(sd2kq2k) (A.26)

A.4 Derivation of master equation
Having rewritten the reduced time-evolution operator using the Markov approximation, we now
show that it can be written as a time-ordered exponential. This in turn implies that ρ obeys a
linear first-order differential equation.

To show this, we interchange the time integrals with the d sum and q integrals in Eq. (A.26),
obtaining

UR(t) =
∞∑

l=0

∫ t

0

l∏
k=1

dtkθ(tk+1 − tk)L(tk), (A.27)

where the superoperator L(t) is given by

L(t) = − π
∑

d1,d2

sd1sd2

∫
dq1dq2A(q1)d1A(q2)d2e

−i(q1+q2)t
√
J(−sd2q1)J(sd2q2). (A.28)

3We recall that the sum over permutations takes into account interference between different orders of emissions
that result in the same configuration of emitted photons. By assuming a Markovian bath, non-identical times of
emissions result in completely non-overlapping states of the bath (i.e., the bath “learns” about the emission of a
photon instantly), and hence we don’t have interference between different orders of photon emissions.
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We note that the sum on the right-hand side in Eq. (A.27) is simply a time-ordered exponential,
and thus the reduced time-evolution operator UR(t) is given by

UR(t) = T e
∫ t

0 dt′L(t′). (A.29)

Returning to the equation of motion (A.12) for ρ, and taking the time-derivative, we then arrive
at the interaction picture master equation

ρ̇(t) = L(t) ◦ ρ(t). (A.30)

To obtain a simple expression for L(t), we introduce the operator

L(t) =
∫
dq
√

2πJ(q)e−iqtA(q). (A.31)

Using this definition in Eq. (A.28), along with
∫
dq
√

2πJ(−q)e−iqtA(q) = L†(t)4, we find

L(t) = −1
2
∑

d1,d2

sd1sd2L
(−sd2 )(t)d1L

(sd2 )(t)d2 ,

where we used the shorthand L(−1) = L†, L(1) = L. Writing out the four terms in the d1,d2 sum
explicitly,

L(t) = −1
2(L†(t)lL(t)l + L(t)rL

†(t)r) + 1
2(L†(t)rL(t)l − L(t)lL

†(t)r).

Note that the operator L(t) is an operator of the Lindblad form and hence UR(t) conserves the
complete positivity and unit trace of ρ.

Using the above result in Eq. (A.30), along with the definitions of the superoperators Xl and
Xr in Eq. (A.9), we then arrive at the master equation (which holds for general time-dependent
Hamiltonians in the interaction picture)

ρ̇ = −1
2{L†(t)L(t), ρ} + L†(t)ρL(t). (A.32)

where the jump operator L(t) was introduced in Eq. (A.31) above.

A.5 Master equation for periodically driven systems
Having derived the Master equation (A.32) for general time-dependent Hamiltonians, we now
find L(t) in the special case of a periodically driven system.

The jump operator L(t) is defined Eq. (A.31) from the fourier transform of the operator
A(t) ≡ U †

S(t)AUS(t). In the case we consider here, US(t) = T e−i
∫ t

0 dt′HS(t′) is the time-evolution
operator of the periodically driven system described by HS(t). As our starting point, we we write
A(t) in the basis of Floquet eigenstates {|φa〉} of the system:

A(t) =
∑
ab

|φa〉〈φb|Aab(t). (A.33)

4this follows from the Hermiticity of A(t), which implies A†(q) = A(−q)
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Here, by definition,
Aab(t) = 〈φa|U †

S(t)AUS(t)|φb〉. (A.34)

Next, we note that US(t)|φa〉 = e−iεat|φa(t)〉, where the {|φa(t)〉 = |φa(t + T )〉} denote the
T -periodic Floquet states associated with the Hamiltonian HS(t). In terms of the Floquet states,

Aab(t) = 〈φa(t)|A|φb(t)〉e−i(εb−εa)t. (A.35)

Thus Aab(t) is given by e−i(εb−εa)t times a T -periodic function, and we may write

Aab(t) =
∑

n

Aab[n]e−i(εb−εa+Ωn)t. (A.36)

Using the definition of the fourier transform, A(t) =
∫
dqA(q)e−iqt, A(q) can be written in terms

of the coeficcients {Aab[n]} as

A(q) =
∑
ab,n

δ(q + εa − εb − Ωn)|φa〉〈φb|Aab[n] (A.37)

Inserting this in the definition of L(t) in Eq. (A.31), we thus find, that for periodically driven
systems

L(t) =
∑
ab,n

|φa〉〈φb|Lab[n]e−i(Ωn−εa+εb)t (A.38)

with
Lab[n] =

√
2πJ(εb − εa + nΩ)Aab[n]. (A.39)

Here the coefficients {Aab[n]} were defined in Eqs. (A.35) and (A.36). From these equations, it
follows that we can find them as

Aab[n] = 1
T

∫ T

0
dt〈φa(t)|A|φb(t)〉einΩt. (A.40)

A.5.1 Master equation in Schrodinger picture

The above result holds in the interaction picture. We obtain the Schrodinger picture master
equation by reversing the rotating frame transformation that was generated by the unitary
transformation US(t) = T e−i

∫ t
0 dt′HS(t′). Doing this, we find

ρ̇(t) = −i[HS(t), ρ] + L̃†(t)ρL̃(t) − 1
2{L̃†(t)L̃(t), ρ} (A.41)

where L̃(t) = US(t)L(t)U †
S(t). Using US(t)|φa〉 = e−iεat|φa(t)〉,

L̃(t) =
∑
ab,n

|φa(t)〉〈φb(t)|e−iΩntLab[n], (A.42)

where the matrix elements {Lab[n]} were defined in Eqs. (A.39)-(A.40).





Appendix B

Appendix for Chapter 3

B.1 Time-domain expressions for the invariants ν0 and ν1

In this appendix we derive a time domain integral expression for the bulk invariant wm[U ] in
Eq. (3.9), which corresponds to the number of edge modes appearing in gap m when the system
is defined in a geometry with edges. We directly show that this invariant is equivalent to the
winding number invariant W [Uε] of Ref. [1], with ε set equal to a quasienergy value inside gap m:

W [Um] =
∫
d2kdt

8π2 Tr
{
U †

m∂tUm [U †
m∂kxUm, U

†
m∂kyUm]

}
. (B.1)

Here Um is a time-periodic evolution operator, satisfying Um(k, T ) = 1, which is obtained from
the original evolution U by a smooth deformation in which gap m of the quasienergy spectrum is
kept open. Explicitly, the time-periodic evolution operator Um can be obtained by deforming
the final values of the phase bands φn(k, T ) to zero for n = 1 . . .m, while the final values of the
remaining bands are deformed to 2π.

In order to demonstrate the equivalence of the two invariants, i.e., to show wm[U ] = W [Um],
we first consider two special cases and then discuss the general situation. In this appendix we
label points in the three dimensional k, t-space by a single dimensionless vector

s =
( k

2π/a,
t

T

)
.

B.1.1 Winding number in case of no singularities

To begin, we first consider the case where Um(k, t) has no topological singularities in the zone-edge
gap. It is then possible to continuously deform the evolution operator Um into one corresponding
to a non-driven system, as described in Sec. 3.2. In doing so, the winding number W [Um], a
topological invariant, cannot change its value. After the deformation, W [Um] is simply the
winding number of a non-driven system described by the Hamiltonian

Hm(k) = 2π
T

N∑
n=m+1

Pn(k, T ). (B.2)

157
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Figure B.1: The deformation of an isolated singularity discussed in Sec. B.1.2. In the figure,
phase band 1 (blue) is shifted up by 2π for clarity of illustration.

The winding number of a system governed by such a Hamiltonian was found in Ref. [1] to be∑m
n=1Cn, where Cn is the Chern number of Floquet band n. Hence

W [Um] =
m∑

n=1
Cn, (no zone-edge singularities). (B.3)

Note that the winding number will always be zero in the quasienergy zone-edge gap if the phase
bands do not host any zone-edge singularities. This follows from the fact that the sum of Chern
numbers for all bands must evaluate to zero,

∑N
n=1Cn = 0.

B.1.2 Winding number in the case of one singularity

We now consider the case where φn(k, T ) = 0 for all n, and Um(k, t) has only one singularity
in the zone-edge gap, located at s0 = (k0/(2π/a), t0/T ). At the singularity, the two touching
bands N and 1 have phases φd and φd − 2π, where φd is a real number determined by details of
the evolution. In this case we can deform the phase bands to zero for all k, t, except in a small
spherical neighbourhood of radius δs that surrounds the singularity (here lengths are computed
with respect to the usual norm on the dimensionless vector s). Within the neighborhood, all
N − 2 bands not involved in the singularity can still be flattened. The phase values of the two
intersecting bands are deformed to evolve linearly from zero at the edge of the neighbourhood to
π and −π at the center (letting φd go continuously to π in the process), see Fig. B.1. Under the
deformation we keep the eigenstates of Um(s) constant everywhere.

The deformed evolution operator Ũm is equal to the identity for all s, except in the small
region of radius δs that surrounds the singularity (see Fig. B.1). Within this neighbourhood, Ũm

takes the form
Ũm(s) =

∑
n6=1,N

|χn〉〈χn| +
∑

a,b=1,N

|ψa〉〈ψb|Mab(s), (B.4)

where Mab(s) is a 2×2 matrix whose eigenvectors are the eigenvectors of the matrix (s−s0)jSjkσk.
Here, the real invertible 3 × 3 matrix S was defined in Sec. 3.2.1, and {σk} are the Pauli matrices.
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From the description of the flattened phase bands above, we know that the logarithms of the
eigenvalues of M must grow linearly from 0 at |s − s0| = δs to −iπ and iπ at s = s0. For
|s − s0| < δs, Mab thus takes the form

Mab(s) =v−
a (s)v−∗

b (s)eiπ(|s−s0|/δs−1)

+ v+
a (s)v+∗

b (s)e−iπ(|s−s0|/δs−1). (B.5)

The vectors v−(s) and v+(s) are the eigenvectors of the traceless 2 × 2 Hermitian matrix
(s − s0)jSjkσk, corresponding to negative and positive eigenvalue, respectively. Since the matrix
S is real and invertible, we can write it as S = R1ΛR2, where R1 and R2 are orthogonal and
Λ is a diagonal matrix with positive entries (this is the singular value decomposition of S, see
e.g., Ref. [208]). A continuous deformation of the entries of Λ to 1 results in a orthogonality-
preserving continuous interpolation of the eigenvectors v±(s) to the eigenvectors of Rjk(s−s0)jσk,
where R = R1R2. By continuously deforming the vectors v± in this way, Ũm is deformed into an
evolution operator Vm still of the form (B.4), but with the matrix M given by

M(s) =
{

1, |s − s0| > δs

− exp
[

−iπ
δs (s − s0)iRijσj ·

]
, |s − s0| < δs.

(B.6)

Recall that R is orthogonal and its determinant |R| is the charge of the singularity, q =
|R1||R2| = |S|, see Eq. (3.6). In Appendix B.1.4 we explicitly evaluate the winding number (B.1)
of the evolution operator Vm. We find:

W [Vm] = −|R| ≡ −q. (B.7)

Using the fact that the winding number could not change during the deformation from Um to
Vm, we thus establish

W [Um] = −q. (B.8)

In other words, if Um contains one isolated singularity, the winding number of Um is given by the
corresponding charge of the singularity (with a minus sign).

B.1.3 The general case

We now consider the general case, where Um has N topological singularities in the zone-edge gap,
with charges {q(m)

i }. In order to evaluate the winding number, we deform Um(k, t) as described
in Sec. 3.3.1 and shown in Fig. 3.3. The deformed evolution is the identity everywhere except for
in small isolated regions surrounding the singularities (region I), as well as in the short ramping
time-interval δt at the end of the driving (region II).

The winding number (B.1) is defined as an integral over k, t-space of the quantity Fm(k, t) =
1

8π2 Tr{U †
m∂tUm [U †

m∂kxUm, U
†
m∂kyUm]}. For the deformed, “band-flattened,” system, Fm is only

nonzero in each of the isolated regions that surround the singularities, and in the final ramp
region II. We can therefore split up the integral of Fm into a sum of integrals over each of these
nontrivial regions.

From the first special case we examined, i.e., for an evolution with no singularities, we know
that the integral of Fm(k, t) over region II equals

∑m
n=1Cn, where {Cn} are the Chern numbers
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of Floquet bands 1 . . .m. From the second special case, we know that the integral of Fm(k, t) over
one of the regions surrounding a zone-edge singularity equals minus the charge of the singularity,
i.e., −q.

Summing the integrals over all regions, we obtain:

W [Um] =
m∑

n=1
Cn −

N∑
i=1

q
(m)
i . (B.9)

Note that Um can be constructed by deforming the phase bands of U only at the end of the
driving. Therefore the net charge of all zone-edge singularities in the time-bulk should be the
same for U and Um. Thus

∑
i q

(m)
i =

∑
i q

(ZES)
i , where {q(ZES)

i } are the zone-edge singularity
charges for the original system with evolution governed by U . Hence, we finally have the result
for the number of edge modes in a two-dimensional system:

W [Um] =
m∑

n=1
Cn −

∑
i

q
(ZES)
i = wm[U ]. (B.10)

This is what we set out to show.

B.1.4 Derivation of Eq. (B.8)

In this appendix we prove that the winding number (B.1) of an evolution operator Vm of the
form in Eq. (B.4), with the matrix M given in (B.6), is equal to −|R|. We begin by inserting Vm

from Eqs. (B.4) and (B.6) into Eq. (B.1), to obtain

W = εijk

24π2

∫
|s−s0|<δs
d3s Tr

{
M †∂siMM †∂sjMM †∂skM

}
, (B.11)

where εijk is the Levi-Civita symbol. Summation over repeated indices is used and will be used
in the rest of this appendix.

In order to exploit the s-space spherical symmetry of the deformed evolution Vm, we shift
from Cartesian coordinates to spherical coordinates centred around s0, defined such that

s − s0 ≡ (s sin θ sinφ, s sin θ cosφ, s cos θ). (B.12)

After the coordinate transformation, W is expressed as

W = εijk

24π2

∫ δs

0
ds

∫ π

0
dθ

∫ 2π

0
dφ |J |JiαJjβJkγ

· Tr
{
M †∂αMM †∂βMM †∂γM

}
, (B.13)

where J is the Jacobian matrix of the coordinate transformation, and the Greek letters α, β, γ
run over the coordinates s, θ, φ. We now use the following useful identity for the Levi-Civita
symbol that holds for any real invertible 3 × 3 matrix A [208]:

AiαAjβAkγεijk = εαβγ

|A|
. (B.14)
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With the help of this identity we see that the Jacobian matrices always cancel out:

W = εαβγ

24π2

∫ δs

0
ds

∫ π

0
dθ

∫ 2π

0
dφ

Tr
{
M †∂αMM †∂βMM †∂γM

}
.

Summing over the indices, we obtain:

W = 1
8π2

∫ δs

0
ds

∫ π

0
dθ

∫ 2π

0
dφ

Tr
{
M †∂sM [M †∂θM, M †∂φM ]

}
.

Using the cyclic property of the trace as well as the identity ∂MM † = −M∂M †, we get

W = − 1
8π2

∫ δs

0
ds

∫ π

0
dθ

∫ 2π

0
dφ

Tr
{
M †∂sM [∂θM

†, ∂φM ]
}
. (B.15)

We now consider the explicit canonical form of M , Eq. (B.6), in polar coordinates, in the region
|s − s0| ≤ δs:

M(s, θ, φ) = − exp
(

− iπ

δs
(s − s0) · τ

)
, (B.16)

where τi = Rijσj . Defining ŝ(θ, φ) = (s − s0)/s, we evaluate each of the factors in the integrand

M †∂sM = − iπ

δs
ŝ · τ

∂θM = i sin
(
πs

δs

)
∂θŝ · τ

∂φM = i sin
(
πs

δs

)
∂φŝ · τ.

Hence, after performing the integral over s, we obtain

W = i

16π

∫ π

0
dθ

∫ 2π

0
dφTr {ŝ · τ [∂θŝ · τ, ∂φŝ · τ ]} . (B.17)

Working on the integrand, we note:

Tr {(ŝ·τ)(∂θŝ·τ)(∂φŝ·τ)}
= ŝi ∂θŝj ∂φŝk RiaRjbRkc Tr {σaσbσc} . (B.18)

Using the Pauli matrix identity Tr{σiσjσk} = 2iεijk, we obtain

Tr {(ŝ·τ)(∂θŝ·τ)(∂φŝ·τ)} = ŝi∂θŝj∂φŝk · 2iRiaRjbRkcεabc

= ŝi∂θŝj∂φŝk · 2i|R|εijk.
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Here we used the Levi-Civita symbol identity (B.14), and the fact that |R|−1 = |R|. Restoring
antisymmetry in θ and φ, and going back to vector notation, we have

Tr {(ŝ·τ)[(∂θŝ·τ), (∂φŝ·τ)]} = 4i|R| ŝ · (∂θŝ× ∂φŝ)
= 4i|R| sin θ. (B.19)

Hence the integrand in Eq. (B.17) is simply 4i|R| times the surface area element of the sphere.
We thus have

W = i

16π

∫ π

0
dθ
∫ 2π

0
dφ 4i|R| sin θ

= −|R|

Recalling that q = sgn|S| = |R|, we see that the winding number contribution of an isolated
singularity is given by the charge q of the singularity.



Appendix C

Appendix for Chapter 4

C.1 Magnetization as the response of quasienergy to a magnetic
field

Here we derive Eq. (2) in the main text, showing that the single-period averaged magnetization
〈M〉(n)

T of a Floquet eigenstate |ψn〉 with quasienergy εn is given by the response of its quasienergy
to an applied “probing” uniform magnetic field, B: 〈M〉(n)

T = −∂εn
∂B . (Note that, in addition to

the probing field B, a nontrivial field B0(r, t) may already be present in the system.) Throughout
this work the magnetic field is given in units of [1/Area], such that the flux quantum has value
2π.

As a first step, we note that ∂εn
∂B can be written as

∂εn

∂B
= i

T
〈ψn|

(
U †(T ) ∂

∂B
U(T )

)
|ψn〉. (C.1)

This relation can be checked using the spectral decomposition U(T ) =
∑

n |ψn〉〈ψn|e−iεnT , together
with the identity 〈ψn| ∂

∂B |ψn〉 + ∂
∂B

[
〈ψn|

]
|ψn〉 = 0. Here ∂

∂B |ψn〉 measures the change of Floquet
eigenstate |ψn〉 when a uniform magnetic field B is introduced to the system.

We now use U(T ) = T e−i
∫ T

0 dtH(t) to obtain

U †(T ) ∂

∂B
U(T ) = −i

∫ T

0
dtU †(t)∂H(t)

∂B
U(t). (C.2)

Hence, substituting back into Eq. (C.1), we get

∂εn

∂B
= 1
T

∫ T

0
〈ψn(t)|∂H(t)

∂B
|ψn(t)〉, (C.3)

where |ψn(t)〉 = U(t)|ψn〉 is the time-evolved Floquet eigenstate at time t.
What is the nature of the operator ∂H

∂B ? By analogy to equilibrium systems, clearly it is
suggestive of magnetization. However, similar to the magnetization density operator mp discussed
in the main text, the operator ∂H

∂B is gauge-dependent. Nonetheless, expectation values of ∂H
∂B

taken in stationary states are in fact gauge invariant, and therefore physical (see next section).

163
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The stationarity condition is satisfied for the full-period average of ∂H
∂B in a Floquet eigenstate, as

appears on the right hand side of Eq. (C.3). Indeed this must be the case, since the quantity ∂εn
∂B

on the left hand side is itself gauge-invariant.
To obtain an expression for ∂H(t)

∂B , we consider the change of the Hamiltonian when the small
uniform probing magnetic field B is introduced. In this case, the matrix elements Hab(t) of
the Hamiltonian in the lattice site basis (here a, b refer to lattice site indices) acquire Peierl’s

phases: Hab(t) → Hab(t)e
i
∫ ra

rb
dr·A(r), where the contour of integration is a straight line from

site b to site a and B = ∇ × A. Given that the result of Eq. (C.3) is gauge-independent,
we work in the symmetric gauge below. This gauge choice highlights the direct relation to
the magnetization defined in Eq. (1) of the main text. In the symmetric gauge, a uniform
perpendicular “probing” magnetic field B is produced by the vector potential A(r) = B

2 ẑ × r.
Using the identity A · (B ×C) = B · (C ×A), we thus obtain the following modification of Hab(t)
due to the probe field B :

Hab(t) → Hab(t) exp
[
iB

2

∫ ra

rb
dr · (ẑ × r)

]
= Hab(t) exp

[
iB

2 ẑ ·
(∫ ra

rb
r × dr

)]
= Hab(t) exp

[
iB

2 ẑ · (ra × (ra − rb))
]
.

Here we used that ra × (ra − rb) = rb × (ra − rb).
Taking the derivative of Hab(t) with respect to the probe field strength B, we obtain

∂Hab(t)
∂B

= i

2Hab(t) (ra × (ra − rb)) · ẑ. (C.4)

This structure of the matrix elements of H implies that

∂H(t)
∂B

= i

2 (r × [r,H(t)]) · ẑ. (C.5)

Equation (C.5) can be verified by taking a matrix element with 〈a| and |b〉 on the left and right,
respectively, and comparing with Eq. (C.4). Comparing with Eq. (1) of the main text, and
using ṙ(t) = −i[r,H], we identify the right hand side above as minus the magnetization, −M(t).
Substituting this result into Eq. (C.3), we obtain Eq. (2) in the main text.

C.2 Gauge invariance of magnetization density
Here we show that the magnetization density operator mp(t), defined in Eq. (3) of the main
text, yields gauge-independent time-averaged expectation values if and only if the density is
stationary over the averaging interval τ , i.e., 〈ρ̇〉τ = 0. In this case, we furthermore show that the
magnetization density obeys the lattice version of Ampere’s law given in Eq. (4) of the main text.

In the presence of a magnetic flux φp piercing through plaquette p, the matrix elements of the
Hamiltonian in the lattice site basis are given by Hab(φp) = eiAab(φp)Hab(φp = 0). (Here we work
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in units where the lattice constant is 1). Here the vector potential {Aab(φp)} should have the
following property: for a sequence of sites (a1, a2, . . . aN ) forming a closed counterclockwise loop
on the lattice, the phase

∑N
n=1Aan+1an(φp) should equal φp if the loop encloses the plaquette

p, while the sum should vanish otherwise (here we set aN+1 = a1). The magnetization density
operator is then given by

mp(t) = −∂H(t)
∂φp

= −
∑
〈a,b〉

∂H(t)
∂Aab

∂Aab

∂φp
, (C.6)

where the sum runs over all pairs of sites on the lattice connected by bonds.
We note that there is a gauge freedom in choosing Aab(φp): if the vector potential {Aab(φp)}

results in a flux φp on plaquette p, then so will a vector potential {A′
ab(φp)} that satisfies

A′
ab(φp) = Aab(φp) + fa(φp) − fb(φp), (C.7)

where {fa(φ)} can be any set of scalar functions.
In order for 〈mp〉τ to be gauge-invariant, the time-averaged expectation value of the right

hand side of Eq. (C.6) should remain unchanged if we replace Aab with A′
ab. In order for this to

be satisfied, we must have ∑
〈a,b〉

〈
∂H

∂Aab

〉
τ

(ga − gb) = 0, (C.8)

where {ga = ∂fa
∂φ

∣∣
φ=0} are arbitrary coefficients. Equation (C.8) is satisfied if we require that the

net current flowing into or out of every site a on the lattice vanishes:

∑
b∈n.n.(a)

〈Iab〉τ = 0, Iab(t) = −∂H(t)
∂Aab

. (C.9)

Here the sum runs over all sites b that are connected with a bond to site a. It is trivial to see
that this condition ensures that the sum over terms proportional to ga in Eq. (C.8) vanishes. The
vanishing of the sum over terms proportional to gb follows by relabeling.

The sum on the left hand side of Eq. (C.9) gives the net current flowing into site a, which is
equal to the rate of change of density:

∑
b∈n.n.(a)Iab = ρ̇a, where ρa is the density operator on site

a. Therefore the gauge invariance condition for expectation values of the magnetization density,
Eq. (C.8), is satisfied if and only if the density on every site is stationary over the time-window
from 0 to τ : 〈ρ̇a〉τ = 0. This condition is the lattice-analogue of the condition that the current
density in the continuum must be divergence-free.

C.2.1 Ampere’s law on the lattice

To prove the lattice version of Ampere’s law, we first consider the case where the vector potential
is given by Aab on a single bond ab, in the direction from site b to site a, and zero everywhere
else. In this situation the magnetic flux is zero everywhere, except for the two plaquettes p and q
adjacent to the bond ab, here taken such that the direction from site b to site a is counterclockwise
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with respect to plaquette p. In these two neighboring plaquettes, the fluxes are given by φp = Aab

and φq = −Aab, respectively. Hence, with this choice of gauge (i.e., A nonzero on a single bond),

∂H(t)
∂Aab

= ∂H(t)
∂φp

− ∂H(t)
∂φq

. (C.10)

Noting that ∂H(t)
∂Aab

= −Iab(t), and mp = −∂H(t)
∂φp

, we obtain an operator equation similar to Eq. (4)
in the main text. However, this operator equation holds only in the specific gauge above, where A
is nonzero only on the bond ab. Importantly, as shown above, the time-averaged expectation value
of the right hand side is gauge-independent for times τ where the density is stationary, 〈ρ̇〉τ = 0.
Therefore Eq. (C.10) produces meaningful physical results, and reduces to Eq. (4) of the main
text, when it is used to compute time-averaged expectation values in stationary states.

C.3 Relation to winding number

Here we show that the quantized value of the magnetization density for a fully-localized Floquet
system on a torus, m̄∞, is a topological invariant; its value is equal to W [U ]/T , where W [U ] is the
winding number introduced in Ref. [2]. Noting that the numbers W [U ] and m̄∞ do not change
when we increase the system size, provided that all Floquet eigenstates remain localized, we will
consider the limit where the size L goes to infinity. In this section, we work in the Heisenberg
picture.

In order to define the winding number W [U ], we consider the Hamiltonian H(A, t) of the
system when a uniform vector potential A is introduced along the surface of the torus. Let
U(A, t) be the corresponding evolution operator of the system. As an important ingredient in
the computation of the winding number, we first define the effective Hamiltonian of the system,
Heff, ε(A), via: U(A, T ) = e−iHeff,ε(A)T , where the eigenvalues of Heff,ε(A) lie in the interval
[ε, ε+ 2π/T ). Here ε is chosen within one of the system’s quasienergy gaps, which are present
due to the finite extent of the system for any fixed L (see Ref. [2]). To find the system’s winding
number, we define the 2T -periodic evolution Ũε(A, t), obtained by first evolving the system
with Hamiltonian H(A, t) in the time-interval [0, T ], and then applying a static Hamiltonian
−Heff,ε(A) in the time-interval [T, 2T ]. The evolution operator Ũε(A, t) is given by U(A, t) in
the first half of the driving, from 0 to T , and by e−iHeff,ε(A)(2T −t) in the second half of the driving.
In particular, the extended evolution satisfies Ũε(A, 2T ) = 1.

With the definition of Ũε(A, t) above, we obtain the winding number of the evolution via:

W [U ] = 1
8π2

∫ 2T

0
dt

∫ 2π/L

0
d2A

Tr
(
Ũ †∂tŨ · Ũ †∂AxŨ · Ũ †∂Ay Ũ

)
− x ↔ y. (C.11)

Given that W is independent of ε (see Ref. [2]), for brevity we drop the subscript ε on Ũ here
and below.

As a first step in our derivation, we rewrite the above formula using basic identities for the
time-evolution operator. We first use the identities ∂tŨ = −iH̃Ũ and ∂AxŨ · Ũ † = −Ũ∂AxŨ

† to



C.3. RELATION TO WINDING NUMBER 167

obtain

W [U ] = iεαβ

8π2

∫ 2T

0
dt

∫ 2π/L

0
d2A Tr

(
H̃∂AαŨ · ∂Aβ Ũ

†
)
.

Here εαβ is the antisymmetric tensor, with α, β = {x, y}. Next, we perform partial integration
over Aα and obtain

W [U ] = iεαβ

8π2

∫ 2T

0
dt

[∫ 2π/L

0
dAβTr

(
H̃Ũ · ∂Aβ Ũ

†
)Aα=2π/L

Aα=0

−
∫ 2π/L

0
d2A Tr

(
∂AαH̃Ũ · ∂Aβ Ũ

†
)]
. (C.12)

We now make use of the fact that we can write H̃(A + êα2π/L, t) = X†
αH̃(A, t)Xα, where êα is

the α-unit vector, and Xα = e2πixα/L (see Ref. [2] for more details). Similarly, Ũ(A+ êα2π/L, t) =
X†

αŨ(A, t)Xα. Using that ∂AβXα = 0 when α 6= β, together with the cyclic property of the trace,
we obtain

Tr
(
H̃Ũ · ∂Aβ Ũ

†
)

A=
(

2π
L

,Aβ
) = Tr

(
H̃Ũ · ∂Aβ Ũ

†
)

A=
(

0,Aβ
) .

Hence the integrand in the first term in Eq. (C.12) vanishes, and

W [U ] =−iεαβ

8π2

∫ 2T

0
dt

∫ 2π/L

0
d2ATr

(
∂AαH̃ · Ũ∂Aβ Ũ

†
)
. (C.13)

Using the identity ∂Aβ Ũ
† = −Ũ †∂Aβ Ũ Ũ

†, along with the cyclic property of the trace, we get

W [U ] = i

8π2

∫ 2T

0
dt

∫ 2π/L

0
d2ATr

(
Ũ †∂AαH̃Ũ · Ũ †∂Aβ Ũ

)
.

Going to the thermodynamic limit L → ∞, we treat the integrand as constant within the
A-interval [0, 2π/L] (cf. Ref. [209]). Thus we arrive at the formula

W [U ] = i

2L2

∫ 2T

0
dtTr

(
Ũ †
(
∂AαH̃

)
Ũ · Ũ †∂Aβ Ũ

)
. (C.14)

What we have achieved so far, with Eq. (C.14), is to relate the winding number to two Heisenberg
picture operators, Ũ †∂AŨ, and Ũ †

(
∂AH̃

)
Ũ. Below we expose the physical meaning of each of

these operators, and thereby link the winding number to the system’s magnetization.

C.3.1 Displacement operator

Having transformed the original winding number formula (C.11) into the form of Eq. (C.14), we
now introduce an additional operator that will be useful in making the final connection with
the magnetization. Specifically, for a system with Hamiltonian H(t), and evolution U(t), we
introduce the “displacement operator” ∆r(t):

∆r(t) ≡ −iU †(t)∂AU(t). (C.15)
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With this definition, we note that ∂t∆r(t) = U †(t) (−∂AH(t))U(t). The displacement operator
can be seen as the Heisenberg picture operator that measures the displacement of a particle
relative to its starting point, in the sense that displacement is the time-integral of the velocity.
This definition is important because the standard position operator on the torus is complicated by
the necessity of imposing a branch cut due to the periodic boundary conditions. The displacement
operator in Eq. (C.15) is insensitive to this issue.

To further elucidate the physical meaning of the displacement operator ∆r(t), we consider the
case where the system has open boundary conditions, where the position operator r is naturally
single-valued. In the lattice site basis, the Hamiltonian’s matrix elements depend on the vector
potential A in the following way:

Hab(A) = Habe
iA·(ra−rb). (C.16)

Consequently, ∂H(t)
∂A = i[r,H(t)], and we find ∂t∆r(t) = ∂tr(t), where r(t) = U †(t)rU(t) is the

time-evolved position operator in the Heisenberg picture. Using the initial condition ∆r(0) = 0,
we find

∆r(t) = r(t) − r(0). (C.17)

For a system with periodic boundary conditions (e.g., a torus), it is not possible to write ∆r(t)
as a difference of initial and final positions, as in the above equation. However, when ∆r(t) acts
on a state |ψ〉 that stays localized within a region S that is much smaller than the size of the
torus, we can ignore the boundary conditions and write

∆r(t)|ψ〉 = (rS(t) − rS)|ψ〉, (C.18)

where rS is a position operator defined with a branch cut outside S. (We note that the right-hand
side does not depend on the exact location of the branch cut, as long as it is located far outside
the region S.)

C.3.2 Relationship with magnetization density

Having defined the displacement operator, we now rewrite the winding number formula (C.14) in
terms of this operator. Using the definition in Eq. (C.15), we replace Ũ †∂AŨ with i∆r̃(t), where
∆r̃(t) is the displacement operator for the system governed by H̃(t). Similarly, as noted in the
text below Eq. (C.15), we may replace Ũ †(∂AH̃)Ũ with −∂t∆r̃(t). Thus we obtain

W [U ] = 1
2L2

∫ 2T

0
dtTr (∆r̃(t) × ∂t∆r̃(t)) . (C.19)

The integrand in Eq. (C.19) above has a very similar form to that of the magnetization, Eq. (1) of
the main text. It remains to show that this expression, which involves the displacement operator
defined in Eq. (C.15), precisely reduces to the magnetization discussed in the main text.

Writing out the trace in terms of the (localized) Floquet eigenstates {|ψn〉}, and using
Eq. (C.18), we obtain

W [U ] = 1
2L2

∫ 2T

0
dt
∑

n

〈ψn|(r̃n(t) − rn) × ∂tr̃n(t)|ψn〉.
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Here r̃n(t) ≡ Ũ †(t)rnŨ(t), where rn is a position operator, defined with a branch cut far away from
the region where the state |ψn〉 is localized. Using that Ũ(2T ) = 1, such that r̃n(2T ) = r̃n(0) = rn,
we find

W [U ] = 1
2L2

∫ 2T

0
dt
∑

n

〈ψn|r̃n(t) × ∂tr̃n(t)|ψn〉. (C.20)

In the first half of the driving, i.e., for 0 ≤ t ≤ T , the system evolves according to the
original Hamiltonian H(t). Here r̃n(t) = rn(t) ≡ U †(t)rnU(t), where U(t) is the corresponding
evolution operator of the original system. In the second half of the driving, from T to 2T , the
Hamiltonian of the system is given by H̃(t) = −Heff , and the time-evolution operator is given by
Ũ(t) = e−iHeff(2T −t). Using r̃n(t) = Ũ †(t)rnŨ(t), we then have (for T ≤ t ≤ 2T ):

r̃n(t) × ∂tr̃n(t) = −ieiHeff(2T −t)rn × [rn,Heff ]e−iHeff(2T −t).

Using Heff =
∑

n Pnεn, where Pn = |ψn〉〈ψn|, we obtain

〈ψn|r̃n(t) × ∂tr̃n(t)|ψn〉 = −i
∑
m

〈ψn|rn × [rn, Pm]|ψn〉εm.

Thus the integrand in Eq. (C.20) is actually constant over the interval T ≤ t ≤ 2T . This allows
us to perform part of the integration and obtain

W [U ] = 1
2L2

∫ T

0
dt
∑

n

〈ψn|rn(t) × ∂trn(t)|ψn〉

+ iT

2L2

∑
m,n

〈ψn|rn × [rn, Pm]|ψn〉εm. (C.21)

We now argue that the last term in Eq. (C.21) must be zero. To do this, we note that for a
fully-localized system, the winding number is independent of the choice of the quasienergy zone
(i.e., the position of the branch cut ε in Heff,ε, see Ref. [2]). If we shift the quasienergy cut to the
gap between εm0 and εm1 , where εm0 and εm1 are the lowest- and second lowest quasienergies,
respectively, the quasienergy εm0 changes by 2π/T , while all other quasienergies remain the
same: εm0 → εm0 + 2π/T . The invariance of the left-hand side of Eq. (C.21) under this shift of
quasienergy zone implies that ∑

n

〈ψn|rn × [rn, Pm0 ]|ψn〉 = 0. (C.22)

Since the branch cut could be placed anywhere in the spectrum, the argument above should in
fact hold for any choice of m0. Therefore the last term in Eq. (C.21) must vanish, and we arrive
at

W [U ] = 1
2L2

∫ T

0
dt
∑

n

〈ψn|rn(t) × ∂trn(t)|ψn〉. (C.23)

Following the discussion in the main text, we identify

1
2T

∫ T

0
dt 〈ψn|rn(t) × ∂trn(t)|ψn〉 = 〈M〉(n)

T (C.24)
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as the time-averaged magnetization of Floquet eigenstate n. Hence

W [U ] = T

L2 〈M〉T , 〈M〉T =
∑

n

〈M〉(n)
T , (C.25)

where 〈M〉T is the total magnetization of the system when all states are occupied (on a torus).
Using 〈M〉T = L2m̄∞, we finally arrive at

m̄∞ = W [U ]
T

. (C.26)

This is what we set out to show: the magnetization density of a fully-localized Floquet system is
a topological invariant, with its value equal to the winding number identified in Ref. [2], divided
by the driving period, T .

C.4 Measurement of magnetization in a cold atoms experiment
In this section, we prove Eq. (10) in the main text. We show that the time-averaged magnetization
can be measured via the net y-component of total (pseudo)-spin of a cloud of two-component
cold atoms subjected to a spin-dependent artificial magnetic field. In this section, we will work in
the Heisenberg picture. For an individual atom in the experiment, the wave function before the
measurement is given by

|ψ〉 = 1√
2

|χ〉 ⊗ (|↑〉 + |↓〉) , (C.27)

where |χ〉 denotes the orbital part of the atom’s wave function, and the tensor product separates
the orbital and spin parts of the wave function. The time evolution operator of the system for
the case where the spin-dependent effective field acts only on the |↑〉 spin component is given by

U(τ) = UB(τ) ⊗ |↑〉〈↑| + U0(τ) ⊗ |↓〉〈↓|, (C.28)

where UB(τ) is the time-evolution operator (acting only on the system’s orbital degrees of freedom)
when a uniform field B is applied.

After an evolution time τ in the presence of the effective field B, the atom’s wave function is
given by

|ψ(τ)〉 = 1√
2

(UB(τ)|χ〉 ⊗ |↑〉 + U0(τ)|χ〉 ⊗ |↓〉) . (C.29)

Hence, at time τ , the expectation value of the y-spin operator σy = i
2(|↑〉〈↓ | − |↓〉〈↑|) is given by

〈σy(τ)〉 = i

2〈χ|
(
U †

B(τ)U0(τ) − U †
0(τ)UB(τ)

)
|χ〉. (C.30)

Using UB(τ) = U0(τ) + B ∂
∂BUB(τ)|B=0 + O(B2), valid in the linear response regime of weak

fields, we obtain

〈σy(τ)〉 = −iB〈χ|
(
U †

0(τ) ∂

∂B
U0(τ)

)
|χ〉 + O(B2), (C.31)
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where for brevity we write ∂
∂BUB(τ)|B=0 ≡ ∂

∂BU0(τ ). To arrive at Eq. (C.31), we used the identity
∂

∂BU
†
0 · U0 = −U †

0 · ∂
∂BU0. Using Eq. (C.2) we obtain the following result, which is valid on short

times where the spin precession angle remains small:

〈σy(τ)〉 = B

∫ τ

0
dt 〈χ(t)|M(t)|χ(t)〉 + O(B2). (C.32)

Here we have introduced the operator M(t) as a shorthand for −∂H(t)
∂B . We note that this operator,

and its expectation values (for non-stationary states), in general depend on the implementation
of the gauge field, see discussion below.

The above result, Eq. (C.32), holds for an individual atom. For a droplet of many non-
interacting atoms the droplet’s total y-spin 〈Sy〉 can be obtained by summing together their
individual contributions:

〈Sy(NT )〉 = BNT
∑

j

〈M〉(j)
NT + O(B2), (C.33)

where the sum runs over all atoms j in the droplet, and 〈M〉(j)
τ denotes the time-averaged

expectation value of M(t) for the atom j, taken over the interval 0 ≤ t ≤ τ . Importantly, for
long times, N → ∞, the particle density is stationary and 〈M〉(j)

NT becomes gauge independent.
In this limit,

∑
j〈M〉(j)

NT → 〈〈M〉〉 and we find

lim
NT →∞

1
BNT

〈Sy(NT )〉 = 〈〈M〉〉 + O(B). (C.34)

For a finite number of periods N , there will in general be a transient correction to the relation
in Eq. (C.34) above. Consider a filled droplet, as described in the main text, where the many-body
state is described by a single Slater determinant. Within such a state, atoms localized deep inside
the bulk of the droplet (i.e., centered many localization lengths from its boundary), where all
sites are filled, can be taken to be occupying Floquet eigenstates. For an atom j initialized in
a Floquet eigenstate n, 〈M〉(j)

NT = −∂εn
∂B for any integer number of periods, N . Thus atoms in

the bulk do not give any transient corrections to Eq. (C.34). However, an atom j localized near
the boundary of the droplet does not generically occupy a single Floquet eigenstate. In this
case, the contribution of atom j to the total density is not stationary over a single period, and
〈M〉(j)

NT generally depends on N . Thus the motion of atoms localized in a strip of width ∼ ξ along
the boundary of the droplet produces a transient deviation of 1

BNT 〈Sy(NT )〉 from its long-time
asymptotic value 〈〈M〉〉.

The non-universal transient depends on details of the implementation, including in particular
the choice of “gauge” used for producing the effective spin-dependent magnetic field. That
is, the spin rotation of an atom moving through the lattice depends explicitly on the “vector
potentials” A↑ and A↓ for up and down spins, respectively, and not only on the effective magnetic
fields B↑ = ∇ × A↑ and B↓ = ∇ × A↓. Independent “gauge” transformations of A↑ and A↓
correspond to position-dependent spin rotations around the z-axis. Since the system is initialized
and measured in a fixed, spatially uniform frame, there is no symmetry under spin-dependent
gauge transformations.
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We now estimate the magnitude of the transient correction. To do so, we consider the case of
a circular droplet of radius R, where the magnetic field is implemented in the symmetric gauge
(here the origin of the coordinate system is located in the droplet’s center). In the symmetric
gauge, recall from Sec. C.1 that M(t) = −∂H(t)

∂B = 1
2 ẑ · (r × ṙ(t)). For an atom at the boundary of

the droplet we write r(t) = R + δr(t), where R = 〈〈r(t)〉〉 is a vector of length ∼ R pointing from
the origin to the atom’s long-time-averaged position, and δr(t) describes the motion around this
point, with |δr| ∼ ξ. The time-averaged expectation value of M for an atom in the boundary
region is then

〈M〉(j)
NT = 1

2 ẑ · [R × 〈δṙ〉NT + 〈δr × δṙ〉NT ] . (C.35)

The first term yields a contribution to 〈M〉NT of order R
〈
ṙ‖
〉

NT
, where ṙ‖(t) denotes the

tangential component of the atom’s velocity along the boundary. Since the atom must remain
confined within a region of linear dimension ξ for all times, the N -period average of the tangential
velocity takes a typical value of order ξ/NT . Therefore we expect the corresponding transient
contribution to 〈M〉(j)

NT to have a magnitude at most ∼ Rξ
NT . Assuming that the atoms are initially

randomly distributed within their respective localization areas (this is assured by letting particle
density in the droplet reach a steady profile before the measurement begins), the sign of

〈
ṙ‖
〉

NT
is

expected to be random. Any transient contributions to 〈M〉(j)
NT from the second term in Eq. (C.35)

involving δr × δṙ are expected to be relatively suppressed by a factor ξ/R, and we ignore them
below.

Having estimated the scale of the transient contribution to 〈M〉(j)
NT for each boundary atom,

we now infer the net contribution of all atoms to the net transient deviation of 1
BNT 〈Sy(NT )〉

from the asymptotic value 〈〈M〉〉. First, note that total number of atoms in the boundary region
(a strip of width ξ around the perimeter of the droplet) is of order Rξ/a2. Assuming a random
sign for the contribution of each atom, we get a net transient correction with magnitude of order√

Rξ
a2 · Rξ

NT . Using Aloc = ξ2, and Afilled ∼ R2, we thus obtain

∑
j

〈M〉(j)
NT = 〈〈M〉〉 + 1

NT
O
(
AlocAfilled
a
√
Rξ

)
. (C.36)

While this result was obtained for a field implemented in the symmetric gauge, analogous
arguments to those above can be used for other natural implementations, e.g. the Landau gauge,
to show that the transient should have the same magnitude as above.

Using Eq. (C.36) in Eq. (C.33), we see that

〈Sy(NT )〉
BNT

= 〈〈M〉〉 + 1
NT

O
(
AlocAfilled
a
√
Rξ

)
+ O(B). (C.37)

Hence the cloud’s total magnetization can be extracted from the asymptotic behaviour of the
growth rate of 〈Sy(τ)〉 in the long-time limit. The result for the average y-spin per particle
〈σy(NT )〉, in Eq.(10) in the main text, is obtained by dividing both sides of Eq. (C.37) with the
total number of atoms, Afilled/a

2.
The “long time limit” in which the magnetization can be extracted should be understood as a

time that is long compared with the damping of transients due to the system’s initialization, but
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Figure C.1: Statistical behaviour of the normalized growth rate ΩNT , whose saturation value
yields the long-time-averaged magnetization density. a) Normalized growth rate ΩNT as function
of droplet size R, obtained for 100 disorder realizations, with parameters set as in the main
text (for each R, each realization corresponds to one black cross). The red shading indicates
the interval within one standard deviation from the data points’ mean. b) Deviation ∆ΩNT of
the net y-spin growth rate from the expected saturation value m̄∞ = 1/T , as a function of the
averaging time NT , taken as an rms-average over 100 disorder realizations. The data are shown
in a logarithmic plot.

still short enough that the atoms’ spin precession angle is small. The necessary separation of
timescales can be guaranteed both by working at small fields, B, and by taking a large enough
droplet (since the transient correction to 〈σy(NT )〉 decays as 1/

√
R). In practice, our numerics

show that the transients can be made quite small for square droplets of only a few tens of lattice
sites per side (see below and main text).

Finally, we note that our results were derived for a tight-binding model with one (s-type)
orbital per site. This means that each on-site orbital does not carry any intrinsic magnetization.
Due to mixing with higher bands, small non-quantized contributions to the magnetization density
may arise, as discussed in the main text. However, such contributions are strongly suppressed
when the driving is adiabatic with respect to the gap to higher bands, and gap is large compared
to the bandwidth. In this limit, over one driving period the center of mass of the orbital on
each site shifts by a distance that is small compared with the lattice spacing. The non-quantized
contribution to the magnetization density (in units of the driving frequency) is proportional to
the area swept out by the center of mass, divided by the area of the unit cell, and is therefore
small compared to m̄∞ = 1/T in the AFAI phase.

C.5 Numerical simulation

Here we provide additional details from the numerical simulations, beyond what was discussed
in the main text. The magnetic field in the simulation was implemented in the Landau gauge,
A = (0,−B(x− x0)), where x0 is located in the center of the lattice.

To explore the generic behavior of the system in the parameter regime used in the main
text, we find and diagonalize the Floquet operator for 100 random disorder realizations, on
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a lattice of 80 × 80 sites with periodic boundary conditions. Among all Floquet eigenstates
across these 100 realizations, we find the largest localization length to be 11.7a, where a is the
lattice constant. Thus we are well within the fully-localized, AFAI regime. We furthermore
have compiled statistics to demonstrate how the normalized growth rate ΩNT ≡ 1

Ba2NT
〈σy(NT )〉

converges to the quantized value with system size and averaging time, which we now discuss.
In Fig. C.1a we show the time-averaged magnetization density after 50 periods as function of

R (the side length of the filled squared droplet) for each of the 100 realizations. For each value of
R, each black cross indicates the the value obtained for a specific realization. The red area marks
the interval within one standard deviation from the mean value of Ω50T , obtained from the 100
realizations. For all disorder realizations we see that Ω50T rapidly converges to the quantized
value as the size of the filled region, L, is increased.

To see how the average magnetization converges to the quantized value with the averaging
time, NT , we investigate the deviation ∆ΩNT of ΩNT from the quantized value m̄∞ = 1/T as a
function of N . The value of ∆ΩNT is obtained as a root-mean-squared deviation, taken over the
100 realizations, in the case where a region of 50 × 50 sites is initially occupied. The data are
shown in a log-log plot in Fig. C.1b. The linear trend indicates that the deviation decreases with
a power-law scaling behaviour. From a linear fit (green line), we find that the deviation from the
quantized value decreases as (NT )−0.64.
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Appendix for Chapter 5

D.1 Hamiltonian in the rotating frame.

Here we explicitly compute the transformed interaction Hamiltonian in the rotating frame,
H̃int(t) ≡ Q†(t)HintQ(t). The interacting part of the Hamiltonian is a sum of terms:

Hint =
∑
r,i

H
(i)
int,r, H

(i)
int,r = λnrnr+bi , (D.1)

where i = 1, . . . , 4, with b1 = −b3 = (a, 0) and b2 = −b4 = (0, a). In the rotating frame, the
transformed interaction Hamiltonian is computed using Eq. (D.1) with

H̃
(i)
int,r(t) = λñr(t)ñr+bi(t), (D.2)

where ñr(t) ≡ Q†(t)nrQ(t) is the time-evolved site occupation operator.
We now explicitly compute ñr(t) for the first segment of the driving protocol, 0 ≤ t < αT/4.

From this we will be able to infer the form of the terms for all later times. Note that the direction
of hopping is opposite for particles initially in the A or B sublattice. Therefore, in order to
explicitly write ñr(t), we introduce an index σr = 1 for r in the A sublattice, and σr = −1 for r
in the B sublattice. A straightforward computation gives:

nr(t) = cos2(Jt)c†
rcr + sin2(Jt)c†

r+σrb1
cr+σrb1 + i

2 sin(2Jt)(c†
rcr+σrb1 − h.c.), 0 ≤ t < αT/4.

(D.3)
Note that condition (3) of the main text, JαT/4 = π/2, yields a simple form for nr(t) at the end
of the segment: nr(αT/4) = nr+σrb1 . Similar expressions are obtained for driving segments 2-4.

The full expression for ñr(t)ñr+bi(t) is too cumbersome to write out. For the first segment,
using Eq. (D.3), it is evident that there are three kinds of terms:

• density-density interaction between nearest and next-nearest neighbor sites.

• hopping between nearest-neighbor sites with amplitude that depends on density on one of
the nearby sites (terms such as c†

rcrc
†
r+bicr+bi−b1),

175
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• hopping of pairs of particles (terms such as c†
rcr+b1c

†
r+bicr+bi−b1).

In the remaining three segments, ñr(t) can be constructed from Eq. (D.3), starting the
evolution in each segment with the result of the previous one, by 90◦ rotations and translations
in the x- and/or y-directions. At any time, ñr(t) has its support only on the nearest- and
next-nearest neighbor sites of r. In these later segments, the terms in H̃int(t) are also of the three
types described above, although the distance between coupled sites may be larger than in the
first segment. The distances between coupled sites in the term ñrñr+bi are always bounded by
(1 + 2

√
2)a, since ñr has all of its support within a radius of

√
2a from r.

The above discussion shows that H̃int(t) is always local with a strictly finite range. This
transformed interaction has an off-diagonal part in the site occupation number basis, whose
time-averaged component has a magnitude of order αλ. To see this, note that H̃(t) only has
off-diagonal components in the interval 0 ≤ t < αT , and these have magnitude λ.

D.2 Other protocols.

The arguments used in this paper can be extended to other driving protocols. As an example, we
consider a setup in which both Hdis and Hint act throughout the whole driving period. We still
assume that W,λ � ω.

Similar to the analysis above, we employ a unitary transformation Q(t) to eliminate the
largest part of the time-dependent Hamiltonian, Hid(t). We are left with transformed terms
H̃dis(t), H̃int(t). One important difference compared to the main protocol discussed in the text is
that the transformed disorder Hamiltonian in this case also contains finite-ranged hopping terms,
of the order αW . In the absence of interactions (λ = 0), the system is in the localized phase for
small disorder W � ω, as shown in Ref. [2]. Moreover, tuning parameter α allows one to tune
the localization length in the single-particle problem: at very small α (corresponding to very
strong hopping during first four segments of the period), the localization length can be made
much shorter than the lattice constant.

The interaction terms transform in the same way as described in the previous subsection.
Provided λ is sufficiently small compared to W , these terms will not delocalize the system. We
note that the presence of single-particle hopping terms originating from the disorder Hamiltonian
will reduce the critical value of the interaction strength at which delocalization occurs. Residual
hopping outside of Hideal(t) (i.e., imperfect hopping “π-pulses”) will have a similar effect. We
thus conclude that AFI phase is generally stable with respect to weak interactions, irrespective of
the precise driving protocol.

D.3 Localization controlled by α.

Here we briefly comment on how α controls the localization properties of models (i) and (ii)
discussed in the main text. This analysis applies to both models. After applying the rotating
frame transformation, Eq. (6) of the main text, we write the transformed Hamiltonian H̃(t),
Eq. (7), as H̃(t) = H̄ + δH̃(t). Here H̄ is the time-average of H̃(t). We further decompose H̄ as
H̄ = Hint + H̄dis + O(αW,αλ), where H̄dis is the time average of Hdis(t) over the fifth segment.



D.4. STABILITY OF TIME CRYSTALS 177

The O(αW,αλ) corrections arise due to the transformation during the window 0 ≤ t < αT where
the hopping is applied.

Both Hint and H̄dis are diagonal in the site occupation number basis. The off-diagonal
contributions to H̄, contained in the O(αW,αλ) terms, can be made arbitrarily small by taking
α small enough. In this way we can ensure that, in the absence of the time-dependent terms
δH̃(t), H̄ describes a many-body localized system.

Next, we consider the oscillating part of H̃(t), δH̃(t), which has a magnitude of order W,λ,
varies rapidly in the interval 0 ≤ t < αT , and is constant for the rest of the period. Turning to
the Fourier transform of δH̃(t), these properties dictate that its n-th Fourier component is of
order αW,αλ for |n| . 2π

α , and falls off as 1/n for large n. In the limit ω � αλ, αW , even the
lowest harmonics correspond to high frequencies in the rotating frame, and therefore the system
remains localized. For ω comparable to or greater than W,λ, the amplitude of the oscillating
terms can be made arbitrarily small by taking α → 0. This again brings the system into the
Floquet-MBL regime.

D.4 Stability of time crystals
To demonstrate the universality of our approach, we now outline an argument for the stability of
the discrete time crystal (DTC) [49, 50]. The DTC is an example of an anomalous Floquet phase
where the discrete time-translational symmetry of the drive, t → t+ T , is broken. We note that
the stability of DTCs has been previously investigated numerically and through other analytical
arguments in Refs. [45, 49,50].

First, following Ref. [49], we consider a solvable driving protocol for a one dimensional spin-1/2
chain, which illustrates the basic physics of the DTC:

H0(t) = f(t)Hx + [1 − f(t)]Hdis, (D.4)

where f(t) = 1 for t ∈ [nT, nT + T/2] and zero otherwise. With this protocol, the first (second)
term in the Hamiltonian is turned on during the first (second) half-period. The Hamiltonian Hx

induces a global spin rotation around the x axis. The strength of the uniform applied x-field is
chosen such that the evolution over the first half-period gives a perfect π-pulse:

Hx = π

T

∑
i

σx
i . (D.5)

The disorder Hamiltonian is chosen as a random, nearest-neighbor Ising interaction:

Hdis =
∑
〈ij〉

Jijσ
z
i σ

z
j , Jij ∈ [J̄ −W, J̄ +W ], (D.6)

where J̄ sets the average interaction strength, and W is the width of the distribution of random
couplings.

The evolution generated by protocol (D.4) can be solved exactly. For simplicity, consider an
initial product state |Ψ(0)〉 =

⊗
i |σi〉 ≡ |{σi}〉, in which each spin points up or down along z,

σi = ±1. (The argument works for all such configurations.) During the first half-period, each
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spin is flipped: |{σi}〉 → |{−σi}〉. Note that the state remains a product state in the z-basis.
During the second half of the period, the state acquires a dynamical phase due to the Ising
interaction (D.6). Over the next driving period, a second π-pulse flips all spins back to their initial
configuration. In total, the local z-projection 〈σz

i 〉 of each spin oscillates with twice the period of
the drive. Remarkably, this behavior is stable with respect to generic T -periodic perturbations of
the Hamiltonian.

To show the stability of DTCs using our approach, we add a small local, but otherwise generic
perturbation to the time-dependent Hamiltonian (D.4):

H(t) = H0(t) + λHpert(t), λ � 1. (D.7)

We assume that Hpert(t) shares the same periodicity as the drive, Hpert(t+ T ) = Hpert(t).
Similar to the AFI discussed in the main text, this problem is not in the high-frequency limit.

More specifically, the frequency ω is comparable to the amplitude of the local field in Hx, as it
must be in order to induce a spin flip during one half-cycle. Similar to our analysis of the AFI, we
move to a rotating frame which removes the large-scale micromotion (i.e., the repeated π-pulses).
This is accomplished via the transformation |Φ(t)〉 = S†(t)|Ψ(t)〉, with

S(t) = T e−i
∫ t

0 dsf(t)Hx(s). (D.8)

We note that S(nT ) = Pn (mod 2), where

P =
∏

i

(iσx
i ) (D.9)

is a global spin-flip operator.
Taking into account the fact that the Ising disorder Hamiltonian commutes with S(t), the

Hamiltonian in the rotating frame is given by:

H̃(t) = [1 − f(t)]Hdis + S†(t)Hpert(t)S(t). (D.10)

Interestingly, the periodicity of the dressed perturbation H̃pert(t) = S†(t)Hpert(t)S(t) may be
reduced to 2T -periodicity. This is easy to see, for example, for Hpert(t) = g(t)

∑
i σ

y
i , using

Eq. (D.9) and g(t+ T ) = g(t). Importantly, this term remains local, since S(t) [Eq. (D.8)] simply
describes spin rotations over the first half-period.

Having eliminated the large term (D.5), we see that for sufficiently small interactions, J̄ ,W �
ω, the transformed Hamiltonian in the rotating frame is in the high-frequency driving regime.
Therefore, by the perturbation theory of Ref. [109], we can argue that for a sufficiently weak
perturbation, λ � W , the system is in the MBL phase. Thus the time-evolved wave function
(in the rotating frame), |Φ(t)〉 = Ũ |Φ(0)〉, with Ũ(t) = T e−i

∫ t
0 H̃(s)ds, retains the memory of the

initial state.
Finally, we discuss why MBL of the transformed problem (D.10) implies persistent oscillations

of physical observables with a doubled period. As above, choose the initial state to be a product
state |Ψ(0)〉 = |{σi}〉. Then, MBL implies that the local magnetization evaluated in the rotating
frame, 〈σ̃z

i (t)〉 := 〈Φ(t)|σz
i |Φ(t)〉, remains close to its initial value for all t → ∞ (at least in the
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Figure D.1: Persistent current in the AFI with particles initialized along its edge. Here we show
the period-averaged current, In, as a function of time. The inset shows the cut through which
the current is calculated.

strong-disorder limit λ � W � ω). Then, using Eq. (D.9) and the fact that P †σz
i P = −σz

i , we
relate the physical local magnetization at stroboscopic times to 〈σ̃z

i (t)〉:

〈σz
i (nT )〉 = 〈Ψ(nT )|σz

i |Ψ(nT )〉 = (−1)n〈σ̃z
i (nT )〉. (D.11)

Since 〈σ̃z
i (nT )〉 remains close to its initial value, we have shown that the magnetization oscillates

with period 2T , persisting to the limit t → ∞.

D.5 Circulating current
For the simulation where particles are initialized along the edge, Fig. 4, we have calculated the
current flowing across a line that extends from the middle of the system through its boundary, see
inset of Fig. D.1. The period-averaged current, In =

∫ (n+1)T
nT dtI(t), where I(t) is the instantaneous

current through the cut, is shown in Fig. D.1. The current exhibits large oscillations at short times,
due to the fact that the particles that circulate around the perimeter initially have a nonuniform
density profile. At later times, the density of particles along the edge becomes uniform, and
the value of the current settles to a nearly constant, nonzero value. This persistent current is a
signature of the chiral nature of the AFI edge.





Appendix E

Appendix for Chapter 6

E.1 Magnetization density in closed geometries
In this section, we provide a rigorous definition of magnetization density in closed geometries.
Specifically, we show how to define the time-averaged magnetization operator m̄p (defined in
Eq. (6.3) of the main text) in closed geometries. In the case of a closed geometry, such as a torus,
the operator mp(t) = ∂H(t)

∂φp
is not completely defined: due to Dirac’s magnetic flux quantization

condition, the flux in a single plaquette cannot be changed continuously without a compensating
flux change somewhere else that keeps the total flux through the system constant.

Although the quantization of magnetic flux on closed surfaces prevents a continuous variation
of total magnetic flux, it is possible to continuously vary the magnetic flux locally in the system,
as long as a compensating flux is introduced elsewhere in the system. Therefore Eq. (6.3) of
the main text naturally provides a definition for differences between magnetization densities in
compact geometries. Specifically, on the torus, the difference in the magnetization densities on
two plaquettes p and q is given by

mp(t) −mq(t) = ∂H(t)
∂φpq

. (E.1)

Here ∂H
∂φpq

measures the response of the Hamiltonian to the simultaneous insertion of a magnetic
flux φpq in plaquette p and a compensating flux −φpq in plaquette q that keeps the total flux
through the system zero. Following the same arguments as in Sec. 6.2.1 of the main text, the
long-time averaged expectation value of mp(t) −mq(t) in some given state |Ψ〉 can be found as
⟪mp −mq⟫ = 〈Ψ|m̄p − m̄q|Ψ〉, where

m̄p − m̄q ≡ lim
τ→∞

1
τ

∫ τ

0
dtU †(t) ∂H

∂φpq
U(t). (E.2)

In the same way as in Sec. 6.2.1 of the main text, the operator m̄p − m̄q is an integral of motion,
and can be expanded in terms of the LIOMs {n̂a}:

m̄p − m̄q =
∑
a1

µpq
a1 n̂a1 +

∑
a1a2

µpq
a1a2 n̂a1 n̂a2 + . . . . (E.3)
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Moreover, as for the case of open geometries (see Footnote 5 of Chapter 6), the coefficient µpq
a1...ak

is suppressed by an exponential factor e−di/ξ for each LIOM n̂ai that is located far away from
both plaquettes p and q. Here di is the minimal distance from the center of LIOM n̂ai to either
of the plaquettes p and q. This is a consequence of Ampere’s law: specifically, Ampere’s law law
dictates that the difference in the magnetization densities of two plaquettes p and q is given by the
total current that passes through a cut between the plaquettes: 〈〈mp −mq〉〉 = −

∑
n 〈〈Ipn+1pn〉〉,

where (p1, p2, . . .) can be any sequence of neighbouring plaquettes that goes from plaquette q to
plaquette p. Changing the value of the LIOM n̂ai (by acting on the state of the system with
either f̂a0 or f̂ †

a0) can then maximally affect 〈〈mp −mq〉〉 by an amount of order e−di/ξ, since the
sequence of plaquettes (p1, p2, . . .) can always be chosen to remain separated from the center of
the LIOM n̂a0 by a distance larger than di. Thus, µpq

a1...ak
must be exponentially suppressed in

di/ξ for each of the LIOMs n̂ai .
The above considerations show that the only terms in Eq. (E.3) that can take significant

values are those where each of the involved LIOMs n̂a1 . . . n̂ak is located near either plaquette
p or q. We now show that, in the case where plaquettes p and q are separated by a distance
d � ξ from each other, all of the involved LIOMs are located near the same plaquette for a
term to contribute significantly. Specifically, we show that µpq

a1...ak
is exponentially suppressed in

d/ξ if one of the LIOMs n̂a1 . . . n̂ak are located near plaquette p, while another is located near
plaquette q. In order to do this, we consider a third plaquette r on the torus, which is also
separated from plaquettes p and q by a distance of order L. From Ampere’s law, it follows that
m̄p − m̄q + (m̄q − m̄r) = m̄p − m̄r. This implies that

µpq
a1...ak

= µpr
a1...ak

− µqr
a1...ak

. (E.4)

We recall that µpr
a1...ak

vanishes expoentially with the distance from any of the LIOMs n̂a1 . . . n̂ak

to either plaquette p or r. Since one of the LIOMs n̂a1 . . . n̂ak is located near plaquette q, µpr
a1...ak

must then be of order e−d/ξ. Here we use that plaquette q is located a distance d from plaquette
p, and a distance ∼ L > d from plaquette r. Noting that another of the LIOMs n̂a1 . . . n̂ak is
located near plaquette p, the same arguments show that µpr

a1...ak
must also be of order e−d/ξ.

Using Eq. (E.4), we conclude that µpq
a1...ak

must be exponentially small in d/ξ. In this way, we
conclude that µpq

a1...ak
is exponentially suppressed in d/ξ unless all LIOMs a1 . . . ak are located

near the same plaquette (p or q).
The above considerations show that the significant terms in the expansion (E.3) can be divided

into two groups: terms where the LIOMs n̂a1 . . . n̂ak are located near plaquette p, and terms
where the LIOMs n̂a1 . . . n̂ak are located near plaquette q. This allows us to write m̄p − m̄q in
the form

m̄p − m̄q =

∑
a

µp
an̂a +

∑
a,b

µp
abn̂an̂b + . . .


−

∑
a

µq
an̂a +

∑
a,b

µq
abn̂an̂b + . . .

 (E.5)

where µp
a1...ak

decays exponentially with the distance from any of the LIOMs n̂a1 . . . n̂ak to
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plaquette p. We identify m̄p as the first term, and m̄q as the second term. As defined above m̄p

obeys Ampere’s law and thus has all the defining properties of magnetization density.
Note that, for finite systems, m̄p is only well-defined up to a correction of order e−L/ξ due to

the exponentially decaying tails of the coefficients {µpq
a1...ak

}. Here, the value of the correction
depends on how exactly the above distinction between coefficients {µpq

a1...ak
} is implemented. For

large systems, this correction is negligible, and the magnetization density m̄p is thus a meaningful
physical object.

E.2 Response of system to the insertion of a magnetic flux
Here we provide technical details of the discussion in Sec. 6.3.1 of the main text, where the
quantization of the invariants {µk} as integers is proven.

Specifically, we establish here the relation between the magnetization of Floquet eigenstates
and the response of the corresponding quasienergy to the insertion of a magnetic field (Eq. (6.14)
in the main text): ∑

p

`2〈Ψa1...ak |m̄p|Ψa1...ak〉 = −∂Ea1...ak

∂B
, (E.6)

where ∂Ea1...ak
∂B denotes the response of the quasienergy Ea1...ak to the insertion of a uniform

magnetic field B in the region of support of the state |Ψa1...ak〉. Moreover, we show here the the
derivative ∂Ea1...ak

∂B is well-approximated from the response of the system’s quasienergy spectrum
to the insertion of a (weak) uniform field B0 = 2π

L2 corresponding to precisely one flux quantum
piercing the torus (Eq. (6.15) in the main text). Specificially, we show that, for any finite value
of k, it is possible to label the eigenstates {|Ψ̃a〉} and quasienergies {Ẽa} of the one-flux system,
such that, for each choice of the LIOM indices a1 . . . ak,

Ẽa1...ak = Ea1...ak +B0
∂Ea1...ak

∂B
+ O

(
ASB0

√
`/L

)
, (E.7)

The derivative ∂Ea1...ak
∂B may thus be well-approximated by the difference (Ẽa1...ak −Ea1...ak)/B0

in the thermodynamic limit L → ∞. This step is crucial for the proof of quantization of the
invariants {µk} in the main text.

Note that Eq. (E.7) does not follow trivially from first-order perturbation theory in the field
B0: Specifically, since the system’s quasienergy spectrum undergoes exponentially many avoided
crossings under a continuous perturbation of the system (due to resonances between far-separated
Floquet eigenstates), first-order perturbation theory breaks down for the system. Instead, we
establish Eq. (E.7) with an alternative approach, using the localization of the Floquet eigenstates
|Ψa1...ak〉.

In order to follow this approach, we use a succession of auxillary results which are not
discussed in detail in the main text, but are crucial for the proof of Eqs. (E.6) and (E.7). The
line of arguments proceed as follows: we first show explicitly how the magnetic field B0 can be
implemented in the system (Sec. E.2.1). Subsequently, we show that it is always possible to choose
a gauge where the Hamiltonian H1 of the one-flux system locally resembles the Hamiltonian H of
the zero-flux system (Sec. E.2.2), and likewise for the Floquet operators U1 and U (Sec. E.2.3).
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From this, we demonstrate that the k-particle Floquet eigenstates and quasienergies of a many-
body localized system are robust to perturbations, such as the insertion of the weak magnetic
field B0 (Sec. E.2.4). Finally, using this result, we prove Eqs. (E.6) and (E.7) (Sec. E.2.5), which
is the goal of this appendix.

E.2.1 Implementation of magnetic flux

Here we briefly discuss how the magnetic flux is implemented. The system we consider consists
of interacting fermions on a lattice with the geometry of a torus, of dimensions L × L. The
Hamiltonian of the system takes the form

H(t) =
∑
αβ

ĉ†
αĉβJαβ(t) +Hint(t) (E.8)

where cα annihilates a fermion on site α in the lattice. Here the first term contains both hopping
and on-site potentials, including disorder, while the term Hint accounts for interactions (we allow
both parts of the Hamiltonian to be time-dependent, with periodicity T ). In order to keep the
discussion clear and simple, we consider the case of a square lattice model with nearest-neighbour
hoppings, and a density-density interaction described by Hint =

∑
α,β ραρβVαβ , where ρα = ĉ†

αĉα.
In the general case of a quasilocal Hamiltonian, the results below can also be derived using similar
arguments.

In this subsection we are interested in finding the Hamiltonian H1 of the system when the
uniform magnetic field B0 = 2π

L2 is insterted, corresponding to one flux quantum through the
surface of torus. Having assumed Hint to consist of density-density interactions, only the first
term in Eq. (E.8) is affected by magnetic flux, and the Hamiltonian H1 can be found as

H1 =
∑
αβ

ĉ†
αĉβJαβ(t)e−iθαβ +Hint(t), (E.9)

Here, the Peierl’s phases {θαβ} should ensure that the total phase acquired by traversing a closed
loop 1 on the torus be given by B0AS (mod 2π), where AS is the area enclosed by the loop2. The
phases {θαβ} are not uniquely defined, but depend on the gauge used for the one-flux Hamiltonian
H1.

The goal of the following is to show that the flux B0 only weakly perturbs the system locally.
To do this, we are interested in finding a gauge where the Peierl’s phases θαβ are much smaller
than 1 for bonds located in a particular finite region R of the lattice. The region R should have

1Note that we we only consider loops with zero windings around the handles of the torus. The application
of a magnetic field through the torus technically also requires a specification of Aharonov-Bohm phase acquired
when traversing a closed trajectory with a nontrivial winding on the torus. This is equivalent to specyfing the
gauge-independent magnetic flux through the handles of the torus, as function of y and x. For the gauge choice
in Eq. [PeierlsPhases:eq:app:stab], one can verify that the phase acquired by traversing the closed curve with x
constant is given by 2π(x − x0)/L, while the phase acquired with the curve with y constant is given by 2πy/L.
However, due to localization, the system is exponentially insensitive to the exact choice of flux through the handles,
since MBL implies that particles will remain confined in small, finite regions on the torus. For this reason, this
subtelty is not discussed further in the main text.

2The fact that the total flux on the torus is given by an integer multiple of 2π, means that this requirement
does not require a specification of the interior region of the loop.
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disk geometry and area AR, and be centered around the location r0 = (x0, y0) in the lattice.
We assume furthermore for simplicity that r0 is far away from either of the branch cuts of the
position operator at x = L and y = L. This can be achieved with the following Landau-type
gauge: we let θx

α denote the Peierl’s phase on the bond that goes in the positive x-direction from
the site α (and definine θy

α in a similar fashion), let these be given by

θy
α = B0(xα − x0)` θx

α = B0Lyαδxα,L. (E.10)

Here (xα, yα) denote the coordinates of site α, and δab denotes the Kronecker delta symbol, such
that δxα,L takes value 1 if xα = L, while δxα,L = 0 for all other values of xα, where ` is the lattice
constant of the system. The phases θy

α ensure that a trajectory encircling a plaquette acquries a
phase of B0`

2, if the trajectory does not cross the branch cut of the x-position operator at x = 0.
The phase θx

α ensures that the phase is also given by B0`
2(mod 2π) for trajectories encircling

plaquettes across the branch cut.
To see that the gauge choice in Eq. (E.10) implies that the Peierl’s phases are much smaller

than 1 in the region R, note that r0 is located far from the branch cut at x = 0, and hence θx
α = 0

for all sites in the region R. To see that θy
α is much smaller than 1, note that |xα − x0| ≤

√
AR

when the site α is located within R. This follows from the fact that R has disk geometry, and is
centered around r0. Thus θy

α is of order
√
AR`/L

2 for sites within R, and therefore much smaller
than 1.

E.2.2 Response of the Hamiltonian

An important result that we will use extensively in the following is that, for large systems, the
insertion of the uniform field B0 only weakly perturbs the system, up to a gauge transformation.
To see this, we consider the restriction of the Hamiltonians H1 and H to the finite region R that
was introduced in the previous subsection. In the following, we let OR denote the restriction
of an operator O to the region R. Specifically, OR is contstructed by eliminating all terms of
the operator O that involve fermionic creation or annihilation operators ĉα, ĉ

†
α on sites located

outside R. Using this definition, we have, from Eq. (E.9), that

(H1(t) −H(t))R =
∑

αβ∈R

Jαβ(t)ĉ†
αĉβ(e−iθαβ − 1). (E.11)

where the Peierl’s phases {θαβ} are given in Eq. (E.10). Below, we show that (H1 − H)R is
small when the system size is large. Specifically, we will find an upper bound for the norm3

‖(H1 −H)R‖. In order to do this, we make use of the fact that ‖M‖ ≤
√

Tr(M †M), such that

‖(H1 −H0)R‖2 ≤
∑

αi,βi∈R

K∗
α1β1Kα2β2Tr(ĉ†

β1
ĉα1 ĉ

†
α2 ĉβ2),

where Kαβ ≡ Jαβ(eiθαβ − 1). Noting that θαiβi = 0 if αi = βi, we see that the terms above are
only nonvanishing when α1 = α2 and β1 = β2. Thus, we find

‖(H1 −H0)R‖2 ≤
∑

α,β∈R

|Jαβ|2|e−iθαβ − 1|2. (E.12)

3Here ‖M‖ refers to the maximum singular value norm ‖M‖ ≡ max|ψ 〉
√

〈 ψ|M†M |ψ 〉 / 〈ψ|ψ〉.
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We now seek to estimate the maximal scale of the right hand side above. We recall from the
discussion in the end of Subsection E.2.1 that the Peierl’s phases {θαβ}, as given in Eq. (E.10), are
of order

√
AR`/L

2 for bonds within the region R. This implies that the value of each nonvanishing
term in the sum in Eq- (E.12) is of order J2AR`

2/L4 or less, where J denotes the typical scale of
the (off-diagonal) tunnelling coefficients {Jαβ}. To estimate the number of nonvanishing terms
in the sum, we recall, from the assumptions made in the beginning of Subsection E.2.1, that
the tunneling coefficients Jαβ may only couple nearest-neighbour pairs of sites in the lattice.
Hence, for each choice of the index α, Jαβ may only be nonvanishing for four choices of the
index β. These considerations show that there only is of order AR nonvanishing terms in the
sum above. Using that each nonvanishing term is of order J2AR`

2/L4 or less, we find that
‖(H1 −H)R‖2 . A2

RL
−4J2. Here a . b indicates that a is smaller than b, or of order b. Thus we

conclude that
‖(H1 −H)R‖ . JAR/L

2. (E.13)
This result can be extended to hold for any region in the torus, with a proper gauge choice of H1.

E.2.3 Response of the Floquet operator

We now use the above result to show that the Floquet operator U1 of the one-flux system is
approximately identical to the Floquet operator U of the zero-flux system, within the region R.
Specifically, we show here that ‖(U − U1)|ψ〉‖ is much smaller than 1 for any state |ψ〉 that has
its full support within the region R4. Here, |ψ〉 having its full support in the region R means that
〈ψ|ĉ†

αĉα|ψ〉 = 0 for all sites α which are not located within the region R. As a first step, we note5

that ‖(U − U1)|ψ〉‖ = ‖(U †
1U − 1)|ψ〉‖. Using that U †

1U − 1 =
∫ T

0 dt ∂t(U †
1(t)U(t)) along with the

chain rule, we find

(U †
1U − 1)|ψ〉 = −i

∫ T

0
dtU †

1(t)[H(t) −H1(t)]U(t)|ψ〉. (E.14)

We now make use of the fact that the time-evoution operator U(t) is local at all times
0 ≤ t ≤ T , due to the finite Lieb-Robinson velocity v of the system. Thus the state U(t)|ψ〉 has all
of its support on sites within the region R̄ which contains all sites located within a distance ∼ vT
from R, up to a exponentially small correction. This implies that O|ψ〉 = OR̄|ψ〉 for any local
operator O (up to an exponentially small correction which we ignore in the following). Hence

[H1(t) −H(t)]U(t)|ψ〉 = [H1(t) −H(t)]R̄U(t)|ψ〉 (E.15)

Using this result in Eq. (E.14), along with the triangle inequality

‖(U †
1U − 1)|ψ〉‖ ≤

∫ T

0
dt ‖U †

1(t)[H(t) −H1(t)]R̄U(t)|ψ〉‖.

Next, we use that ‖U †
1(t)[H(t) −H1(t)]R̄U(t)|ψ〉‖ ≤ ‖[H(t) −H1(t)]R̄‖, and thus

‖(U †
1U − 1)|ψ〉‖ ≤

∫ T

0
dt ‖[H(t) −H1(t)]R̄‖. (E.16)

4Here ‖|ψ 〉‖ =
√

〈 ψ|ψ 〉 refers to the usual Hilbert space norm.
5This can be verified using ‖U |Ψ 〉‖ = ‖|Ψ 〉‖ for any unitary operator U .
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Using inequality (E.13) from the previous subsection, we recall that ‖H1(t) −H(t)‖ . JAR̄/L
2.

We take the linear dimension of R to be larger than vT (but still much smaller than L), and hence
the regions R̄ and R approximately have the same area AR: AR̄ = AR + O(vT

√
AR). Setting

AR̄ ≈ AR in the following, and using inequality (E.13) in the above, we find

‖(U †U1 − 1)|ψ〉‖ . JTAR/L
2. (E.17)

We thus conclude that ‖(U1 − U)|ψ〉‖ . JTAR/L
2. As for the Hamiltonian, this result can be

extended to hold for any region R in the torus, by using a proper gauge for U1.
The result in Eq. (E.17) shows that (when picking a proper gauge) the Floquet operators

of the one- and zero flux systems give nearly identical results when acting on a state which is
confined to a finite region on the torus whose area is much smaller than the size of the torus. In
this sense, the insertion uniform magnetic field B0 only weakly modifies the Floquet operator for
large systems.

E.2.4 Response of Floquet eigenstates and quasienergy spectrum

We now use the result in Eq. (E.17) to show that the quasienergy spectrum and Floquet eigenstates
of the system are robust to perturbations, and only weakly affected by the insertion of the uniform
magnetic field B0. Specifically, due to many-body localization, each Floquet eigenstate of the one-
and zero flux systems each has its full support within a finite region S on the torus, with area
AS , up to a correction exponentially small in

√
S/ξ. Using this fact, we show below that, with a

probability that goes to 1 in the thermodynamic limit, the k-particle eigenstates {|Ψ̃a1...ak〉} of
U1 can be labelled such that, for each choice of the LIOM indices a1 . . . ak,

Ẽa1...ak = Ea1...ak + O(JB0AS), (E.18)

while
|Ψ̃a1...ak〉 = |Ψa1...ak〉 + O(ASL

−2+η`−η). (E.19)

Here the latter result holds up to a gauge transformation, and η can be any number greater than
2/3. In particular, by picking 2/3 < η < 2, we see that, with probability 1 in the thermodynamic
limit, each eigenstate of U1 is identical to an eigenstate of U (up to gauge transformation,
and a vanishing correction). Noting that, in the thermodynamic limit, and for 2/3 < η < 1,
AS < `1+ηL1−η, we find that |Ψ̃a1...ak〉 = |Ψa1...ak〉 + O(`/L), which is the result quoted above
Eq. (6.15) in the main text.

Due to the possibility that the introduction of the field B0 induces a resonance between
two Floquet eigenstates of U , there does exist disorder realizations where one (or more) of the
eigenstates of U1 is a hybridization of two eigenstates of U . In this case, Eq. (E.19) will not
hold for each Floquet eigenstate of the system. However, as we show here, Eq. (E.19) is only
violated for a set of disorder realizations with meausre zero in thermodynamic limit. In this way,
Eqs. (E.19) and (E.18) hold for almost all disorder realizations in the thermodynamic limit.

To show that Eqs. (E.18) and (E.19) hold, we first consider the case k = 1 (i.e., we establish
the relationship for each single-particle Floquet eigenstate). Subsequently, we generalize this result
to larger numbers of particles. In the following, we neglect corrections that are exponentially
small in system size, only keeping power law corrections.
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Single-particle eigenstates

Here we show that relationship in Eqs. (E.19) holds for the single-particle case, with a probability
that goes to 1 in the thermodynamic limit.

As a first step, we note that the one-flux system is also many-body localized6. Thus each
single-particle eigenstate |Ψ̃〉 of U1 almost surely has its full support within a finite region S
of the torus, of linear dimension d ∼ ξ, up to an exponentially small correction. This implies
that each eigenstate |Ψ̃〉 of U1 can only overlap significantly with a a finite number N1 ∼ AS/`

2

of eigenstates |Ψa〉 of U (up to an exponentially small correction); namely the eigenstates |Ψa〉
that are located in the vicinity of S. We now use this fact to show that, for each eigenstate |Ψ̃〉
of U1 with quasienergy Ẽ, there exists a unique significantly overlapping eigenstate |Ψa〉 whose
quasienergy Ea satisfies

|Ẽ − Ea| < `/LT. (E.20)

We use this as our basis for the labelling of eigenstates of U1. Subsequently, we show that
Eqs. (E.19) and (E.18) holds for this choice of labelling.

In order to prove Eq. (E.20), it is convenient to make use of the properties of the zero-flux
system’s quasienergies. For a given single-particle eigenstate |Ψ̃〉 of U1 with quasienergy Ẽ, we let
|Ψa1〉 . . . |ΨaN1

〉 denote the N1 eigenstates of U that may significantly overlap with |Ψ̃〉. We order
the indices a1 . . . aN1 according to how close the associated quasienergies {Eai} are to Ẽ, such
that |Ea1 − Ẽ| ≤ |Ea2 − Ẽ| . . . ≤ |EaN1

− Ẽ| (mod 2π/T )7. With this ordering of the indices, it
follows that8

|Ẽ − Eai | ≥ 1
2 |Ea2 − Ea1 | (mod 2π/t), for i ≥ 2. (E.21)

We now note that the two Floquet eigenstates |Ψa1〉 and |Ψa2〉 whose quasienergies are closest
to Ẽ are located in the same region on the torus. Hence their respective quasienergies Ea1 and
Ea2 . are subject to level repulsion, when the quasienergy difference |Ea1 −Ea2 | is sufficiently small.
The distribution of the gaps between eigenvalues that experience level repulsion is described by a
Wigner-dyson distribution [210]. Noting that the Floquet operator U is unitary, the probability
distribution for the value of |Ea1 −Ea2 | near zero (given a random choice of the state |Ψ̃〉) therefore
resembles a Wigner-dyson distribution for the Gaussian Unitary Ensemble. In particular, letting
p(x) denote the probability density that |Ea1 − Ea2 | = x, we have, in the limit x → 0 that

p(x) ∝ x2T 3/N1 (E.22)

Using the result in Eq. (E.22), we now seek to compute the expected number N(x) of choices
of the eigenstate |Ψ̃〉 (among all L2/`2 single-particle eigenstates of U1) for which |Ea1 −Ea2 | is
smaller than a given value x. This number can be found as

N(x) = L2/`2
∫ x

0
dx′p(x′). (E.23)

6We assume that MBL is robust to perturbations, and thus U1 also describes a many-body localized system
7Here the inequality modulo 2π/T is defined such that |a| < |b|(mod k) means that minz∈Z |a + zk| <

minz∈Z |b+ zk|
8Specifically, since |Ea2 − Ẽ| ≥ |Ea1 − Ẽ|(mod 2π/t), we have |Ẽ −Eai | ≥ 1

2 (|Ea2 − Ẽ| + |Ẽ −Ea1 |)(mod 2π/t).
Moreover, one can verify that |a| + |b| ≥ |a+ b|(mod 2π/T ), from which the result follows
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In the limit where x � 1/T , we may use the scaling behaviour in Eq. (E.22) for p(x). Evaluating
the integral above in this case, we find that N(x) scales as x3N1L

2T 3/`2 for small x. Picking
x = T−1(`/L)η, where η > 2/3, we see that the expected number of eigenstates |Ψ̃〉 for which
|Ea1 − Ea2 | < (`/L)η/T goes to zero as L2/3−η in the thermodynamic limit. Using the inequality
in Eq. (E.21), we conclude that, for each choice of the eigenstate |Ψ̃〉, it holds with probability 1
in the thermodynamic limit that

|E − Eai | > (`/L)ηT−1, (E.24)

when i ≥ 2. Here η can be any number greater than 2/3. By picking η = 1, we conclude that the
inequality (??) can maximally be satisfied for one of the signfificantly overlapping eigenstates
{|Ψai〉}, namely |Ψa1〉.

We now show that |Ẽ −Ea1 | must be smaller than `/LT in the thermodynamic limit, thus
proving the inequality (E.20). To do this, we pick the gauge for U such that the inequality (E.17)
holds for states that have their full support in the region S, where |Ψ̃〉 is confined. We consider the
overlap λi ≡ 〈Ψai |Ψ̃〉 of |Ψ̃〉 with the one of the significantly overlapping single-particle eigenstates
{|Ψai〉} (for all other eigenstates of U , the overlap will be exponentially suppressed). As a first
step we note that |Ψa〉 and |Ψ̃〉 are eigenstates of U and U1, respectively, and thus λi can be
found as

λi = 〈Ψa|U †U1 − 1|Ψ̃〉
e−i(Ẽ−Ea)T − 1

− (E.25)

Since |Ψ̃〉 has its full support in the region S (up to an exponentially small correction), we find
from the inequality (E.17) that |〈Ψa|U †U1 − 1|Ψ̃〉| . JTAS/L

2. Hence

|λi| .
JTASL

−2

|e−i(Ẽ−Eai )T − 1|
, (E.26)

Inequality (E.24) implies that |e−i(Ẽ−Ea)T − 1| > |e−i(`/L)η − 1| in the thermodynamic limit, when
i ≥ 2 (for almost all disorder realizations). Using this fact, and taking the limit L → ∞ (in which
|e−i(`/L)η − 1| → (`/L)η) we conclude that

|λi| < ASL
−2+η`−η, (E.27)

for i ≥ 2, and for almost all disorder realizations. Here we suppressed all factors with irrelevant
scaling in the thermodynamic limit.

We now note that, up to an exponentially small correction,
∑N1

i=1 |λi|2 = 1, and hence
|λ1|2 = 1 −

∑N1
i=2 |λai |2. Taking the square root, and using the inequality (E.27), we thus find

that
|λ1| = 1 + O(A2

SL
−4+2η`−2η), (E.28)

where we again suppressed factors with irrelevant scaling behavoiur. Picking η = 1, we see that
|λ1| = 1 + O(A2

SL
−2`−2) in the thermodynamic limit. Using this result in the inequality (E.26),

we conclude that the quasienergy difference |Ea1 − Ẽ| must be smaller than (or of order) JASL
−2.

Thus |Ea1 − Ẽ| is smaller than `/LT in the thermodynamic limit. Thus we conclude that, with a
probability that goes to 1 in the thermodynamic limit, and for each eigenstate |Ψ̃〉 of U1, the
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inequality (E.20) is satisfied for one and only one of the eigenstates of U that significantly overlaps
with |Ψ̃〉. This concludes the proof of Eq. (E.20).

We use Eq. (E.20) as a basis for labelling the eigenstates of U1. Specifically, we label the
single-particle eigenstates of U1 such that |Ψ̃a〉 denotes the eigenstate for which the eigenstate
|Ψa〉 satisfies Eq. (E.20). To show that the Eqs. (E.19) and (E.18) holds with this labelling, we
recall from the discussion below Eq. (E.28) that |Ea − Ẽa| must be smaller than (or of order)
JASL

−2. Using B0 = 2πL−2, we thus establish

Ẽa = Ea + O(JASB0). (E.29)

Next, we note, from the definition of λi that λ1 = 〈Ψ̃a|Ψa〉. Thus Eq. (E.28) implies that

|Ψ̃a〉 = |Ψa〉 + O(ASL
−2+η`−η), (E.30)

where η can be any number greater than 2/3. Thus Eqs. (E.18) (E.19) hold in the single-particle
case.

Two-particle eigenstates

Having established the relationship in Eq. (E.19) for single-particle Floquet eigenstates, we
now show that it also holds for all two-particle eigenstates. In order to do this, we consider a
two-particle Floquet eigenstate |Ψ̃〉 of the one-flux system, with quasienergy Ẽ. In the following,
we divide our argumentation into two cases, depending on whether or not the two particles are
located in the same region, i.e., within a distance . ξ from each other.

Nearby LIOMs — We first consider the case where the two particles are located in the same
region S, a distance . ξ from each other. In this case, for a Floquet eigenstate |Ψab〉 of the
one-flux system to significantly overlap with |Ψ̃〉, the LIOMs n̂a and n̂b must also be located
in the same region. This implies that there only are of order N2 ∼

(AR/a2

2
)

choices of distinct
LIOMs a, b for which |Ψab〉 to significantly overlaps with |Ψ̃〉. Here AS . 2ξ2 denotes the area of
the region in which the state |Ψ̃〉 has its support (up to an exponentially small correction).

The arguments above establishes that |Ψ̃〉 may only overlap with a finite number of eigenstates
{|Ψab〉} of U that have their full support in the same region S (up to an exponentially small
correction). Using the same arguments as for the single particle case (see above subsection), one
can then show that, for almost all disorder realizations in the thermodynamic limit, there exists
a unique two-particle eigenstate |Ψab〉 of U for each two-particle eigenstate |Ψ̃〉 of U1 such that
(up to a gauge transformation)

|Ψ̃〉 = |Ψab〉 + O(ASL
η−2`η), (E.31)

where η can be any number larger than 2/3, and

Ẽ = Eab + O(JASB0). (E.32)
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Separated LIOMs — Next, we consider the case where |Ψ̃〉 describes a state where the two
particles are separated by a large distance δ � ξ. In this case, the LIOM structure of the Floquet
operator U1 (Eq. (6.1) in the main text) implies that |Ψ̃〉 may be written as a direct product
of two single-particle eigenstates |Ψ̃a〉 and |Ψ̃b〉, up to a correction exponentially small in the
distance δ. Here a and b refer to the labelling of the single-particle eigenstates of U1 that was
established in the previous subsection. Letting Sa and Sb denote the two well-separated regions
where the states |Ψ̃a〉 and |Ψ̃b〉, respectively, have their support (up to an exponentially small
correction), we have:

|Ψ̃〉 = |Ψ̃a〉Sa ⊗ |Ψ̃b〉Sb ⊗ |0〉 + O(e−δ/ξ). (E.33)

Here |Ψ〉S denotes the restriction of the state |Ψ〉 to the Fock space of the region S (defined from
the projection of |Ψ〉 into the subspace with no particles outside region S). The state |0〉 refers to
the vacuum in the complementary region to Sa and Sb. Since the two particles in the state |Ψ̃〉
are separated by a distance much larger than ξ, the regions Sa and Sb do not overlap.

We now recall from Eq. (E.30) that |Ψ̃a〉 is approximately identical to a single-particle
eigenstate |Ψa〉 of the zero-flux system’s Floquet operator U (for all but a measure zero set of
disorder realizations). Specifically, up to a gauge transformation, |Ψ̃a〉 = |Ψa〉 + O(ASaL

−2−η`η),
where η can be any number greater than 2/3. The eigenstate |Ψa〉 moreover has its full support
in the same region Sa as |Ψ̃a〉 (up to an exponentially small correction). Letting Va being the
unitary operator that generates the transformation to the gauge in which Eq. (E.34) holds for
|Ψ̃a〉, we have

|Ψ̃a〉Sa = Va|Ψa〉Sa + O(ASaL
−2−η`η). (E.34)

Here we suppressed the exponentially small correction due to the restriction of the states |Ψ̃a〉,
|Ψa〉 to the region Sa (this can be taken to be subleading relative to the power-law correction
above). Using the relation (E.34) for the states |Ψ̃a〉Sa and |Ψ̃b〉Sb in Eq. (E.33), we obtain

|Ψ̃〉 = VaVb|Ψa〉Sa ⊗ |Ψb〉Sb ⊗ |0〉 + O(ASL
−2+η`−η), (E.35)

where AS = ASa +ASb .
We now note that the product of the two gauge transformations Va and Vb is itself a gauge

transformation. We further note that, due to the LIOM structure (Eq. (6.1) in the main text)
of the Floquet operator U , the direct product |Ψa〉Sa ⊗ |Ψb〉Sb ⊗ |0〉 is identical to the Floquet
eigenstate |Ψcd〉 of the zero-flux system, up to a correction exponentialy small in O(e−δ/ξ), which
we ignore in the following. We thus concluce that (up to a gauge transformation),

|Ψ̃〉 = |Ψcd〉 + O(ASL
−2+η`−η), (E.36)

To establish the analogous result for the quasienergies, we note that the exponential decay of
the quasienergy coefficients ε̃a1...ak for the Floquet operator U1 (see Eq. (6.1) in the main text)
with the distance between the LIOMs labelled by a1 . . . ak implies that Ẽab = Ẽa + Ẽb + O(e−d/ξ).
Recalling from Eq. (E.29) that Ẽa = Ea + O(JASaB0), we conclude that

Ẽ = Eab + O(JASB0). (E.37)

The two cases we considered above show that, in the thermodynamic limit (for all but a
measure zero set of disorder realizations), each two-particle eigenstate |Ψ̃〉 of U1 is identical to a
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unique eigenstate of U , up to a gauge transformation, and a correction of order O(ASL
−2+η`−η).

Here η can be any number greater than 2/3, and AS dentoes denotes the area of the region in
which the state |Ψ̃〉 has its support (up to an exponentially small correction). We may thus label
the two-particle eigenstates of U1 such that Eq. (E.18) and (E.19) hold with k = 2, and for each
choice of the LIOM indices a1 and a2.

k-particle-eigenstates

For the general case of a k-particle eigenstate |Ψ̃〉 of U1, we we can apply the same steps as for
the two-particle case. We divide our arguments into two cases, depending on whether or not |Ψ̃〉
describes a state where all of the particles are located within the same region.

In the case where all particles are located within the same region, we use the fact that this
type of eigenstate may only overlap with a finite, size-independent number Nk of eigenstates
{|Ψa1...ak〉 of U . Using the same arguments as for the single-particle case, we then find that, for
all but a measure zero set of disorder realizations in the thermodynamic limit, there exists a
unique eigenstate |Ψa1...ak〉 of U such that (up to a gauge transformation),

|Ψ̃〉 = |Ψa1...ak〉 + O(ASL
η−2`η), (E.38)

Ẽ = Ea1...ak + O(JASB0). (E.39)

Here AS denotes the area in which the eigenstate |Ψa1...ak〉 has its support (up to an exponentially
small correction), and η can be any number greater than 2/3.

All other eigenstates of U1 (i.e., the eigenstates where all particles are not located in the
same region on the torus) can be written as a direct products of eigenstates with fewer than k
particles, up to an exponentially small correction. Following the same line of arguments as for
the analogous two-particle case, the relationships (E.19) and(E.18) can then be demonstrated to
hold for this class of eigenstates using the fact that Eq. (E.19) and (E.18) hold for eigenstates
with less than k particles.

E.2.5 Relationship between magnetization density and quasienergy

Having established the auxillary results in Secs. E.2.1-E.2.4, we are now ready to prove Eqs. (E.6) and (E.7),
which is the goal of this appendix. In the following, we neglect corrections that are exponentially
small in system size, only keeping power law corrections.

Proof of Eq. (E.6)

We first prove the relationship between the quasienergies in Eq. (E.6). Specifically, we show that,
for a Floquet eigenstate |Ψa1...ak〉,

∑
p

`2〈Ψa1...ak |m̄p|Ψa1...ak〉 = ∂Ea1...ak

∂B
(E.40)

where ∂Ea1...ak
∂B denotes the response of the quasienegy Ea1...ak to a uniform magnetic field through

the region of support of the eigenstate |Ψa1...ak〉 (see discussion below).
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In order to prove Eq. (6.14), we consider a Floquet eigenstate |Ψa1...ak〉 which has its full
support in a region S (up to an exponentially small correction) whose area is given by AS . We
let U(B) be the Floquet operator of the system in the case where a uniform magnetic field B
is applied through the region S, while a compensating magnetic flux ASB is applied through
a plaquette q somewhere outside S. This configuration of magnetic field keeps the total flux
through the torus zero, thus allowing for a contiunuous variation of the field B (in contrast to
the case discussed in Appendix E.1). We establish Eq. (E.6) by computing the expectation value
of ∂U

∂B at B = 0 in the state |Ψa1...ak〉.
We find the operator ∂U

∂B from direct differentiation of the time-ordered exponential U =

T e−i
∫ T

0 dtH(t):
∂U

∂B
= −iU

∫ T

0
dtU †(t)∂H(t)

∂B
U(t). (E.41)

From the definition of U(B) in the above paragraph, it follows that ∂H
∂B can be written as

∂H
∂B =

∑
p∈S `

2 ∂H
∂φp

−AS
∂H
∂φq

. Using this identity, along with the definition of magnetization density
as mp(t) = ∂H(t)

∂φp
, we find

∂U

∂B
= −iU

∫ T

0
dtU †(t)

∑
p∈R

`2mp(t) −ARmq(t)

U(t).

We now take the expectation value of the above in the Floquet eigenstate |Ψa1...ak〉. We introduce
for brevity the shorthand notation 〈O〉 for the expectation value of an operator O in the state
|Ψa1...ak〉: 〈O〉 ≡ 〈Ψa1...ak |O|Ψa1...ak〉. Since U(T + t)|Ψa1...ak〉 = e−iEa1...akTU(t)|Ψa1...ak〉, one
can then verify that∫ T

0
dt 〈U †(t)mp(t)U(t)〉 = lim

τ→∞
T

τ

∫ τ

0
dt 〈U †(t)mp(t)U(t)〉.

Thus, using the definition of m̄p in Eq. (6.5) of the main text, we find∫ T

0
dt〈U †(t)mp(t)U(t)〉 = 〈m̄p〉T. (E.42)

Using 〈Ψa1...ak |U(T ) = e−iEa1...akT 〈Ψa1...ak |, we then find〈
∂U

∂B

〉
= −iTe−iEa1...akT

〈∑
p∈S

`2m̄p −ARm̄q

〉
.

We now make use of the fact that the state |Ψa1...ak〉 has its full support in the region S, up to an
exponentially small correction. We note that m̄q only has support in the region around plaquette q,
outside S, (up to a correction of order e−L/ξ which we ignore), and hence 〈Ψa1...ak |m̄q|Ψa1...ak〉 = 0.
Moreover, since 〈Ψa1...ak |m̄p|Ψa1...ak〉 is only nonzero if p is in the region S (again up to an
exponentially small correction),

∑
p∈S〈Ψa1...ak |m̄p|Ψa1...ak〉 =

∑
p〈Ψa1...ak |m̄p|Ψa1...ak〉. Using

these two results in the above, we find〈
∂U

∂B

〉
= −ie−iEa1...akT

∑
p

`2〈m̄p〉T. (E.43)
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As a next step, we rewrite ∂U
∂B in terms of the spectral decomposition

U =
∑

a1...ak

|Ψa1...ak〉〈Ψa1...ak |e−iEa1...akT , (E.44)

obtaining

∂U

∂B
=

∑
a1...ak

−iT ∂Ea1...ak

∂B
e−iEa1...akT |Ψa1...ak〉〈Ψa1...ak |

+
∑

a1...ak

e−iEa1...akT ∂

∂B
(|Ψa1...ak〉〈Ψa1...ak |).

Using that 〈Ψa1...ak | ∂
∂B (|Ψb1...bk〉〈Ψb1...bk |)|Ψa1...ak〉 = 0 for any choice of the LIOM indices

{b1 . . . bk}, we thus find

〈Ψa1...ak |∂U
∂B

|Ψa1...ak〉 = −iT ∂Ea1...ak

∂B
e−iEa1...akT . (E.45)

Comparing with Eq. (E.43) we identify

∂Ea1...ak

∂B
=
∑

p

a2〈Ψa1...ak |m̄p|Ψa1...ak〉 (E.46)

This was what we wanted to show.

Proof of Eq. (E.7)

Here we prove the relationship Eq. (E.7), showing that the derivative ∂Ea1...ak
∂B is well-approximated

from the response of the system’s quasienergy spectrum to the insertion of the uniform field
B0 = 2π

L2 :

Ẽa1...ak = Ea1...ak +B0
∂Ea1...ak

∂B
+ O(A2

RB
2
0). (E.47)

In order to prove this result, we consider, as in the previous subsection, a Floquet eigenstate
|Ψa1...ak〉, with full support within the region S (up to an exponentially small correction). We let
AS denote the area of the region S, and take this to be much smaller than the area of the torus.
The region S may consist of several simply connected regions {Si} that are disconnected from
each other and spread throughout the torus. We let HS(B) be the Hamiltonian of the system,
restricted to the region S, in the presence of a uniform perpendicular magnetic field B (since
the region S is not a closed geometry, the field B can be varied continuously, in contrast to the
case discussed in Appendix E.1). The region S should be large enough that the Hamiltonian HR

adequately describes the dynamics of the system wihtin a drivng period, when initialized in the
state |Ψa1...ak〉9, up to exponentially small corrections in system size, which we neglect in the
following. In the case where S consists of several disconnected regions, HS(B) can be written as
HS(B) =

∑
iHSi(B), where HSi(B) is the restriction of H to the region Si.

9For example, we may take S to contain all sites within a distance ∼ vT from the region of support of the state
|Ψa1...ak 〉, where v is the Lieb-Robinsion velocity of the Hamiltonian.
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The Hamiltonian HSi(B) is given in Eq. (E.9) in Sec. E.2.1, where the the Peierl’s phases are
given in Eq. (E.10), where x0 is located in the center of the region Si. With this choice of gauge,
arguments similar to those made in Sec. E.2.2 imply that

‖∂HSi(B)
∂B

‖ . ASiJ (E.48)

where ASi is the area of the region Si, and J denotes the typical scale of the (off-diagonal)
tunneling coefficients {Jαβ}. Since ‖∂H

∂B ‖ ≤
∑

i‖
∂HSi
∂B ‖, we thus have

‖∂HS

∂B
‖ . ASJ (E.49)

This result holds for any value of B.
We now let US(B) be the Floquet operator generated by HS(B). By direct differentiation of

the time-ordered exponential US(B) = T e−i
∫ T

0 dtHS(B,t), we find

∂US

∂B
= −iUS(B)X(B). (E.50)

Here
X(B) ≡

∫ T

0
dtU †

S(B, t)∂HS(B, t)
∂B

US(B, t), (E.51)

and US(B, t) ≡ T e−i
∫ t

0 dt′HS(B,t′) is the time-evolution operator in the presence of the field B.
Using the triangle inequality, together with the fact that ‖VO‖ = ‖O‖ for any unitary operator
V , and making use of Eq. (E.49),we find that ‖X‖ ∼ ASJT . Using this result in the differential
equation above, it follows that

US(B0) = US(0) − iB0
∂US

∂B
+ O(B2

0A
2
SJ

2T 2). (E.52)

To prove Eq. (E.7), we consider the expectation value of US(B0) given the Floquet eigenstate
|Ψa1...ak〉. In the following, we will, as in Subsection E.2.5 use the shorthand notation 〈O〉 ≡
〈Ψa1...ak |O|Ψa1...ak〉. We note that the Hamiltonian HS(B) adequately describes the dynamics of
the system when initialized in the state |Ψa1...ak〉. Thus, up to an exponentially small correction,
the time-evolution of |Ψa1...ak〉 generated by HS(B0) should be identical to the time-evolution
generated by the Hamiltonian H1 of the (full) one-flux system. In particular, suppressing the
exponentially small correction, US(B0)|Ψa1...ak〉 = U1|Ψa1...ak〉, where U1 is the Floquet operator
of the system in the presence of the uniform magnetic field B0. Hence,

〈US(B0)〉 = 〈U1〉, (E.53)

At the same time, the time-evolution of |Ψa1...ak〉 generated by HS(0) should be identical to the
time-evolution generated by the Hamiltonian H of the zero-flux system, and thus (up to an
exponentially small correction, which we suppress in the following),

〈US(0)〉 = e−iEa1...akT , (E.54)
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Finally, the fact that HR adequately describes the evolution of the state |Ψa1...ak〉 implies that〈
∂UR

∂B

〉
=
〈
∂U

∂B

〉
, (E.55)

where U(B) is the Floquet operator introduced in Subsection E.2.5 that describes the system
in the presence of a local uniform field B in the region S. Using Eqs. (E.53)-(E.55), along with
Eq. (E.52), we find

〈U1〉 = e−iEa1...akT − iB0

〈
∂U

∂B

〉
+ O(B2

0A
2
RJ

2T 2),

We now recall from Eq. (E.45) in subsection E.2.5 that
〈

∂U
∂B

〉
= −iT ∂Ea1...ak

∂B e−iEa1...akT . Thus

〈U1〉 = e−iEa1...akT
[
1 − iB0

∂Ea1...ak

∂B
T

]
+ O(B2

0A
2
RJ

2T 2). (E.56)

In order to link ∂Ea1...ak
∂B with the quasienergy difference Ẽa1...ak − Ea1...ak , we use the re-

sult (E.19) that relates the eigenstates of U1 and U :

|〈Ψa1...ak |Ψ̃a1...ak〉|2 = 1 + O(A2
SL

−4+2η`−2η), (E.57)

for some eigenstate |Ψ̃a1...ak〉 of U1, and for any value of η greater than 2/3. Picking 2/3 < η < 3/4,
and using that, in this case, AS < L−2η+3/2`2η+1/2 in the thermodynamic limit, we may write

|〈Ψa1...ak |Ψ̃a1...ak〉|2 = 1 + O(ASB0

√
`/L), (E.58)

where we also used that B0 = 2π/L2.
Eq. (E.58) implies that the projection of |Ψa1...ak〉 into the subspace orthogonal to |Ψ̃a1...ak〉

must have squared norm of order ASB0
√
`/L or smaller. Using these facts, along with the spectral

decomposition of U1, we find that

〈U1〉 = e−iẼa1...akT + O(ASB0

√
`/L). (E.59)

Using that Ẽa1...ak − Ea is of order JASB0, we thus have

〈U1〉 = e−iEa1...akT
[
1 − i(Ẽa1...ak − Ea1...ak)T

]
+ O(ASB0

√
`/L),

where we suppressed a correction of order B2
0 which is subleading in L (recall that B0 = 2π/L2).

Comparing with Eq. (E.45), and using that (Ẽa1...ak − Ea1...ak) is of order JB0AS , we thus we
thus find that

Ẽa1...ak = Ea1...ak +B0
∂Ea1...ak

∂B
T + O(ASB0

√
`/L).

This was what we wanted to prove.
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E.3 Specific model with nonzero ν2

In this appendix, we give an explicit example of a model, where one of the higher invariants µk is
nonzero. Specificially, we will demonstrate that the invariant µ2 takes value 2 for the model we
consider.

The model is a modified version of AFI model studied in Sec. ?? (see also Refs. [1,2,6,7]). The
model consists of interacting spin-1/2 fermions on a bipartite square lattice of dimensions L× L,
and with lattice constant `. The Hamiltonian of the system Hdr(t) consists of time-dependent
conditional tunneling terms. The driving protocol is divided into four segments, each of duration
T/4. In the nth segment, the Hdr(t) is given by Hn, where

Hn = 2π
T

∑
r∈A

∑
s=↑,↓

Γ̂rΓ̂r+bn(ĉ†
r+bn,sĉr,s + h.c.)Γ̂rΓ̂r+bn . (E.60)

Here ĉr,s annihilates a fermion on site r with spin s, and the vectors {bn} are given by b1 =
−b3 = (`, 0) and b2 = −b4 = (0, `). The r-sum above runs over all sites in sublattice A of the
bipartite lattice. Finally, the operator Γ̂r is defined as Γ̂r ≡ (1 − ρr,↑ρr,↓), where ρr,s ≡ ĉ†

r,sĉr,s. In
this way, Γr|Ψ〉 = 0 for a state |Ψ〉 where site r is occupied by two fermions, while Γ̂r|Ψ〉 = |Ψ〉, if
site r is occupied by zero, or one fermion. As defined above, Hn turns hopping on bonds between
site r and site r + bn (for each site r in sublattice A) whenever the two coupled sites r and r + bn

hold only one fermion. The tunneling strength of 2π/T ensures that a particle located on site
r is perfectly transferred to the site r + bn in the nth segment (and vice versa) in this case. If
there are two or more particles on the sites r, r + bn, Hn yields zero when acting on the state. In
this case, the configuration of particles on these two sites does not change in segment n.

E.3.1 Dynamics of the model

To characterize the topology of the model, we first analyze the dynamics of the model. We begin
by discussing the properties of the model in the single-particle subspace, before we move on to
the two-particle subspace. We discuss the time-evolution and identify the Floquet eigenstates of
the model.

Single-particle subspace

In the single-particle subspace, we may set Γ̂r = 1 for all sites r (since ρr,↑ρr,↓ gives zero when
acting on any single-particle state). In this case, the model is identified the clean limit of the AFAI
model studied in Refs. [1, 2, 6], with spinful (rather than spinless) fermions. In this case, each
fermion encircles a plaquette during the driving period in the clockwise direction. The Floquet
operator of the system in this subspace is given by the identity, and the Floquet eigenstates of
the system can be taken to be the states {|ψr,s〉}, where |ψr,s〉 ≡ ĉ†

r,s|0〉.

Two-particle subspace

Next, we consider the dynamics of the system in the two-particle subspace. In this subspace,
there are three classes of initial states that result in qualitatively different time evolutions.
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In case 1, the two particles are initially located on the same site r. We refer to this state as
|ψ1

r〉. For this class of initial states, the two particles remain confined on the same site r during
the full driving period, since hopping to and from the site is turned off by the operator Γ̂r. Thus,
letting U(t) denote the time-evolution operator of the system, U(t)|ψ1

r〉 = |ψ1
r〉 for all t.

In case 2, the first particle is located on site r in sublattice A (with spin s1), and the second
particle is located on one of the four sites r + ∆r1, . . . r + ∆r4 on sublattice B (with spin s2). Here
∆r1 = (`, 0), ∆r2 = (2`,−`), ∆r3 = (`,−2`), and ∆r4 = (0,−`). We refer this state as |ψ2

r,n;s1,s2〉.
During the time-evolution of |ψ2

r,n;s1,s2〉, the two particles in the system are always located on
distinct sites. However, during segment n, the two particles are located at two adjacent sites,
between which hopping is turned on. Thus, the two particles do not tunnel in segment n (they
still tunnel in all three remaining segments). Using this fact, one can verify that the two fermions
have switched places after one driving period, and hence U(T )|ψ2

r,n;s1,s2〉 = |ψ2
r,n;s2,s1〉10.

Case 3 covers all remaining states. We refer to these states as |ψ3
r1,s1;r2,s2〉, such that

|ψ3
r1,s1;r2,s2〉 ≡ ĉ†

r1,s1c
†
r2s2 |0〉. For this class of initial particle configurations, the particles hop in

each of the four segments, and each particle encircles one plaquette in the lattice in clockwise
direction. After one driving period, both particles have returned to their initial locations, and
one can verify that U(T )|ψ3

r1,s1;r2,s2〉 = |ψ3
r1,s1;r2,s2〉.

The three cases above show that the Floquet operator of the two-particle system has two
distinct eigenvalues, 1 and −1. The Floquet eigenstates with quasienergy −1 are the “singlet
states” |ψ2S

r,n〉 ≡ 1√
2(|ψ2

r,n;↑↓〉 − |ψ2
r,n;↓↑〉). All other of the above states (i.e, the states |ψ1

r〉,
|ψ3

r1,s1;r2,s2〉 and the spin-triplet combinations {|ψ2T
r,n;i〉} of the states {|ψ2

r,n;s1,s2〉) are Floquet
eigenstates with quasienergy zero. Note that all two-particle Floquet eigenstates of the model are
localized.

E.3.2 Topological characterization of the model

Having identified the one- and two-particle Floquet eigenstates of the model, we now characterize
the topology of the model. We first consider the single-paticle subspace, after which we consider
the two-particle subspace.

Single-particle subspace

To find the value of the coefficient µ1, we consider the response of the single-particle quasienergies
to the insertion of a magnetic flux. In the presence of a (locally) uniform magnetic field B, a
particle initially located on site r acquires an Abrahamov-Bohm phase of −B`2 during the driving
period, as it encircles a plaquette in the clockwise direction. Thus, its quasienergy in the presence
of the magnetic field B is given by −B`2/T . This holds for all Floquet eigenstates in the system.
Next, we note from Eq. (6.13)-(6.14) in the main text that the trace of the magnetization density

10The phase factor of 1 arises, since each particle acquires a phase −i during each hop. Each particle hops 3
times, and hence, the total phase acquired is given by i6 = −1. However, the two fermions have furthermore
switched places, which means that the state acquires another factor of −1.
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in the k-particle subspace M̄k ≡ Trkm̄p can be found as

M̄k = 1
L2

∑
a1...ak

∂Ea1...ak

∂B
(E.61)

We now use the above relation to compute M̄1. Noting that ∂Ea
∂B = −`2/T for each single-

particle Floquet eigenstate, and that there are D ≡ 2L2/`2 distinct single-particle Floquet
eigenstates in total, we find that M1 = − 2

T . As a final step, we recall from the discussion in
Sec. 6.3.1 that M1 = µ1/T . Thus we conclude that

µ1 = −2. (E.62)

Two-particle states

We now compute the invariant µ2 from the response of the two-particle quasienergies to the
insertion of a local magnetic field B.

The Floquet eigenstates of type 1 do not result in any current in the system, and their
quasienergies are unaffected by the magnetic field. For the Floquet eigenstates of type 2S and
2T , one can verify that each of the two particles encircle two plaquettes after two driving periods,
in clockwise direction (at this point, the final state is identical to the initial state). Hence
these Floquet eigenstates pick up an additional phase −2`2/T after a single driving period. The
quasienergies of the type 2S Floquet eigenstate in the presence of the field B is thus given by
π/T − 2`2/T , while the quasienergy of the type 2T Floquet eigenstate is given by −2`2/T . For
the type-3 Floquet eigenstates, each particle encircles a plaquette clockwise during the driving
period, and hence picks up a phase of −2`2/T . We thus conclude that ∂E

∂B = −2`2/T for all
Floquet eigenstates, except for those of type 1. For Floquet eigenstates of type 1, ∂E

∂B = 0.
We use this result in Eq. (E.61) to compute M̄2. Noting that there are

(D
2
)

distinct two-particle
Floquet eigenstates (where D = 2L2/`2 is the number of distinct single-particle states), and that
∂E
∂B = −2`2

T for all Floquet eigenstates except for those of type 1, we find that

M̄2 = 1
L2

[(
D

2

)
−N1

]
−2`2

T
. (E.63)

Here N1 counts the number of distinct Floquet eigenstates of type 1. Since there is one Floquet
eigenstate of type 1 per lattice site, we find N1 = D/2. Using this result, along with

(D
2
)

= D(D−1)
2 ,

and `2

L2 = 2
D , we thus find

M̄2T = −2(D − 2). (E.64)

Next, we recall that M̄k = 1
T

∑
n

(D−n
k−n

)
µn. Thus, M̄2T = (D − 1)µ1 + µ2. Since µ1 = −2, we

hence identify
µ2 = 2. (E.65)

E.3.3 Robustness of the invariants

The discussion here showed that the model in Eq. (E.60) is characterized by a nonzero, quantized
value of the “higher” invariant µ2. Although the quantization of µ2 appears to be the result
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of fine-tuning to a special point, where the Hamiltonian generates perfect “pi-pulses” in each
segment, we stress that it is topologically robust: the discussion in the main text shows that
the invariant µ2 is invariant under perturbations that preserve localization within the one- and
two-particle subspaces.

For instance, one can tune the model slightly away from this special point described above,
by adding a constant on-site disorder potential Hdis, given by

Hdis =
∑

r

∑
s=↑,↓

wr,sρ̂r,s, (E.66)

where the numbers wr,s are randomly drawn from the interval [−W,W ]. For disorder strengths
W smaller than some critical value, we expect the model to remain localized within the one- and
two-particle subspaces. Thus, as the disorder strength in the model is increased gradually from 0
to W , the value of the invariant µ2 cannot change, and hence the time evolution generated by
H(t) ≡ Hdr(t)+Hdis is characterized by a quantized, nonzero value of the invariant µ2 (specifically
µ2 = 2).



Appendix F

Appendix for Chapter 7

F.1 Dimensional reduction and quantized response
Let us begin by showing that the dimensional reduction of magnetization gives quantization
of the work polarization. In Ref. [6], it is shown that the time-averaged magnetization density
〈M〉 =

∑N
n=1 〈M〉n of the anomalous Floquet Anderson insulator after summing over localized

single particle Floquet eigenstates |ψn〉 is quantized as

〈M〉 = N

T
ν,

where N = L2 is the number of unit cells for an L× L system with Norb orbitals/sublattices and
both the particle charge q and lattice constant a are set to 1. This may be rewritten as average
quantization of 〈M〉n:

〈M〉n ≡ 〈M〉
N

= ν

T
= 1

N

∑
n

(
1

2T

∫ T

0
dt〈ψn|r × ∂tr|ψn〉

)

= 1
N

∑
n

(
1

2T

∫ T

0
dt〈ψn| [x̂∂tŷ − ŷ∂tx̂] |ψn〉

)
.

Noting that the velocity operator is ∂tŷ = (L/2π~)
∫
dky(∂Ĥ/∂ky) and utilizing antisymmetry of

the integrand with respect to kx and ky, we see that

ν

T
= 1

2π~L

[∫
dky

∑
n

(
1
T

∫ T

0
dt〈ψn|x̂∂kyH|ψn〉

)]
. (F.1)

Upon dimensional reduction, ky → λ, the expression in square brackets is none other than the
sum of the work polarization Pn

W over NorbL single particle eigenstates of the one-dimensional
problem. Thus the average work polarization per unit cell,

PW = 1
L
Pn

W = ν~Ω (F.2)

is quantized as promised.

201
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Let us now elaborate on how Eq. F.2 yields quantized responses near the edge of a filled region
as discussed in the main text. Let us begin by considering the many-body Floquet eigenstate
|Ψ(λ)〉 obtained by filling all Floquet eigenstates {|ψn(λ)〉} that are located in a finite region S
of the chain, of length `, as indicated in Fig. 1 from the main text. For a site x0 outside the
filled region, the force density ρF

x is trivially zero for all values of λ and t, and hence the system
can’t absorb any energy here. For a site x0 in the bulk of the filled region, ρF

x also vanishes when
averaged over λ and t:

ρ̄F
x ≡ 1

2πT

∫ T

0
dt

∫ 2π

0
dλ〈Ψ(λ, t) |∂ρ

E
x (λ, t)
∂λ

|Ψ(λ, t)〉 = 0. (F.3)

To see how the above result follows, we insert the explicit form for ρE
x in second quantized

notation,
ρE

x (λ, t) = 1
2
∑

x′,α,α′

(Hα′,x′;α,x(λ, t)c†
α′,x′cα,x +Hα,x;α′,x′(λ, t)c†

α,xcα′,x′), (F.4)

where Hα′,x′;α,x is the single particle matrix element. Noting that that for sites a, b in the bulk
〈Ψ(λ, t)|c†

α,acβ,b|Ψ(λ, t)〉 = δabδα,β for all values of t and λ, we find

ρ̄F
x0 =

∫ 2π

0
dλ
∑

α

∂Hα,x0;α,x0(λ, t)
∂λ

= 0, (F.5)

where the last equality follows from H(λ = 0, t) = H(λ = 2π, t). Finally, if the localization length
is much less than the filled region size, ξ � `, we may treat all the energy pumping as occurring
directly at the density edge and the result from the main text follows.

While the above arguments from dimensional reduction hold perfectly in the case where states
are fully localized and may be adiabatically tracked upon varying λ, it is important to note that
this is indeed not the case for the models we consider except at the fine-tuned point W = α = 0.
We have indeed seen this in the numerical results for finite disorder, as the lack of a well-defined
adiabatic limit gives rise to a smooth crossover from topological to non-topological, rather than a
sharp transition as in the two-dimensional case. Healing the above arguments when this limit is
not satisfied is a subtle issue which we will address in a follow up work to appear shortly [173].
In particular, we will show that a more careful derivation of the quantized work polarization (or
indeed the magnetization in the absence of localization) gives rise to non-topological terms as well
as the topological contribution. We will argue that non-topological contributions are suppressed
exponentially as e−L/ξ in the presence of arbitrarily weak localization, while the topological
contribution is only slowly destroyed in a system-size-independent manner as disorder strength is
increased.

F.2 Quantized response of fine-tuned model
Let us quickly see analytically that we achieve work quantization for the fine-tuned model with
J = Jtuned. This model has the nice property that for t = nT/5, the Floquet eigenstates are
simply localized on each site. The force density is clear zero except during periods 2 and 4, as
h1,3,5 are independent of λ. Consider the bulk state indicated by the black arrow in Fig. 2a
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from the main text, starting on the A sublattice of site x. During step 2, let us write the 2-site
Hamiltonian connecting |x,B〉 to |x+ 1, A〉: H2 → −J(σx cosλ+ σy sinλ). Time evolving this
effective spin-1/2 starting from the state | ↑〉, we see that 〈∂λH〉 = −J sin [π(t− T/5)/(T/5)],
which averages to 2J/π over the period T/5 < t < 2T/5. This force is evenly split between sites
x and x+ 1. During step 4, it has average force is similarly −2J/π, entirely on site x. Summing
these up, along with zero responses during the other three steps, and integrating over λ, we see
that the work polarization is

PW ≡
∫
dλPF =

(1
5

)
(2π)

(2J
π

)
[(x+ 1/2) − x] = ~Ω

2 . (F.6)

One may readily check that starting at site |x,B〉 gives the same result, such that the work
polarization for a filled unit cell is the quantized value ~Ω, as promised.

F.3 Additional numerics

In this section, we numerically address two potential sources of concern. First, the data in Figure
3 of the main text seem to give anomalous behavior at low values of disorder. For instance, at
the smallest value of W = 0.1, the pumped energy seems to first decrease as a function of α
before increasing and then decreasing again. We will show data to confirm that some of this
non-monotonicity is the result of finite size effects due to the fact that the phase diagram is taken
at fixed L = 100 and Nc = Nλ. Second, in the main text we only show data for the system with
the left half filled. Here we provide additional support for our argument of quantization of PW

independent of filling by consider three other initial conditions.
In order to understand what is happening in the low disorder regime, we first note that

analytically one may show that the band structure undergoes a simple topological transition
at α = 1/2 from ν = 1 for 0 < α < 1/2 to ν = 0 for 1/2 < α < 1. It is natural, therefore, to
expect that in the limit of weak but finite disorder, this transition should become asymptotically
exact. However, in the same weak disorder limit, the correlation length and associated time scales
become very large. Therefore, data for finite values of L, Nc, and Nλ is not as readily converged
as elsewhere in the phase diagram.

However, while time consuming, convergence may indeed be observed numerically. We begin
by considering two small values of disorder strength: W = 0.05 and W = 0.1. Note that W = 0.1
is the lowest value show in Figure 3a of the main text. We next calculate Floquet eigenstates
and determine their inverse participation ratios, ξ, which in turn are averaged over states, λ, and
disorder realizations. This averaged ξ is then a useful proxy for the localization length. We then
take L � ξ to ensure no effect of finite localization length is observed. In practice, L = 1200 is
found to be sufficient. Next we solve the dynamics for many disorders realization and different
values of Nc and Nλ. The effect of Nλ is particularly straightforward, as it amounts to suppressing
and order one transient by averaging. Therefore, we find that for fixed Nc, the data is very well
fit by a functional form a+ b/Nλ for Nλ > 100. We use this to extrapolate to the Nλ = ∞ limit
and, finally, numerically confirm independence with Nc from 50 to 150.

The data shown in Fig. F.1a has been converged according to this procedure. It is clearly
seen that the decreased of Eabs near α = 0.4 is suppressed, and thus was due to finite size
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Figure F.1: Additional numerical support. (a) Energy absorbed for the same initial conditions as
in the main text after extrapolating L, Nc, and Nλ to infinity. We expect the data to approach a
sharp transition at α = 1/2 in the W → 0+ limit but are unable to rule out other interesting
phenomena near this point for these finite values of W . (b) Work polarization extrapolated to the
same L,Nc, Nλ → ∞ limit for a fixed W = 1, α = 0.2 for which good quantization is expected.
The results are well quantized independent of initial condition.

effects. However, there remains non-monotonic behavior near α = 0.5, which is the location of
the topological phase transition in the absence of disorder. In general, there is expected to be a
singularity near this point. Based on the above arguments, we expect the singularity to become
sharper and eventually resolve to a direct topological transition in the limit W → 0+. Our data
suggests that the transitions is perhaps sharpening slightly as W is decreased, but does not rule
out the possibility of a new topological phase or other non-trivial phenomenon in the vicinity of
α = 1/2 at finite disorder strength.

Our second goal is to demonstrate the initial condition independence of our results. In the
main text, we work with an initial condition in which the left half of the system is filled, allowing
us to convert a quantized work polarization into quantized energy absorption. Here, as we
consider more generic initial conditions, we instead directly measure work polarization PW and
extrapolate to Nλ → ∞ using the same procedure as above. In particular, we consider to point
W = 1, α = 0.2, which yielded a well-quantized value of Eabs. We then consider the following
initial conditions:

(A) Every site from L/4 to 3L/4 half-filled

(B) Every site from L/4 to 3L/4 half-filled with an added “charge density wave”: A cos(2π(x−
L/4)/(L/2))

(C) A single random filling of sites L/4 to 3L/4

These initial condition are simulated and disorder averaged. We find stronger effects of Nc

compared to the case of Eabs, so they have also been extrapolated in 1/Nc to the adiabatic limit.
The results, found in Fig. F.1, are quantized to better than one part in a thousand, confirming
the independence of our results on initial conditions.
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F.4 Winding number of micromotion versus extended time evo-
lution

In earlier work [1], the winding number for a given branch cut εcut is defined as that of the
following unitary:

Ũ(t) =
{
U(t), 0 < t < T

eiHF (t−T )U(T ), T < t < 2T

where HF is chosen such that its eigenvalues range from εcut to εcut + ~Ω. We can relate this to
the micromotion invariant defined in the main text via a band-flattening procedure. First, note
that U(t) = P (t)e−iHF t. Define the family of unitaries U(t, s) ≡ P (t)e−isHF t, such that

Ũ(s, t) =
{
U(s, t), 0 < t < T

eisHF (t−T )U(s, T ), T < t < 2T.

At s = 1, we recover the original result of Rudner et al. At s = 0, we have band-flattened HF ,
such that

Ũ(0, t) =
{
P (t), 0 < t < T

1, T < t < 2T.

Hence ν
[
Ũ(s = 0)

]
= ν [P ]. But s clearly implements a smooth transformation on the family of

unitaries, and thus can’t change the winding number. So we conclude that ν
[
Ũ
]

= ν [P ].
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Appendix for Chapter 8

G.1 Derivation of Eq. (8.27)
Here we derive Eq. (G.1), showing that when α � 1, Lslow is given by λ0S0, where λ0 was a
constant of motion. Here S0 was defined in Eq. (G.7). Our starting point is the equations of
motion (8.26),(8.25) for the slow and fast components of L. In the main trext, we concluded from
these equations that the magnitude of Lslow and Lfast were constants of motion λ0, λ1. We note
here that the equations imply that their dot product Lslow · Lfast is also a constant of motion.
Since Lslow and Lfast oscillate at different time scales, their dot product can only be a constant of
motion if takes value zero – i.e., if Lfast precesses in the plane perpendicular to Lslow.

Having established the existence of these constants of motion, we consider the equation of
motion (8.26) for Lslow. We first decompose Lslow in its components parallel and perpendicular
to n̂:

Lslow = `n̂+ ∆L, (G.1)

where ∆L is orthogonal to n̂, and the scalar ` may depend on time. Inserting this decomposition
into the equation of motion for Lslow, we have

` ˙̂n+ ˙̀n̂+ ∆L̇ = ηhn̂× ∆L. (G.2)

Next, we take the cross-product with n̂ from the left and use n̂× n̂ = 0, and n̂× (n̂× v) = −v to
isolate ∆L:

∆L = − `

ηh
n̂× ˙̂n− 1

ηh
n̂× ∆L̇. (G.3)

We now note, that, in the equation of motion (8.26) for Lslow, the right hand side has
magnitude ηh|∆L|, while the magnitude of the left hand side is, from the definition of Lslow,
at most of order λ0Ω0 . This implies that ∆L must be of order Ω0λ0/ηh = αλ0, which in turn
implies ∆L̇ ∼ O (αΩλ0). This allows us to write

∆L = − `

ηh
n̂× ˙̂n+ O(α2λ0). (G.4)

We see from the above that ∆L ∼ O(αλ0), and hence the correction on the right hand side is
subleading in α.

207
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To find `, we note that, since n̂ and ∆L are orthogonal, L2
slow = `2 + ∆L2, and ∆L ∼ O(αλ0).

Using L2
slow = λ2

0, this implies
` = λ0 + O(α2λ0). (G.5)

Using this expression for ` along with the expression (G.4) for ∆L in Eq. (G.1), we find

Lslow = λ0S0 + O(α2λ0), (G.6)

where λ0 was a constant of motion, and

S0 = n̂− 1
ηh
n̂× ˙̂n (G.7)

The values of the constants of motion can be found using L = Lslow + Lfast, and that
Lfast · Lslow = 0, which implies that L · Lslow = λ2

0. Using the expression (G.6) for Lslow in this
identity, we then find

S0 · L = λ0 + O(α2L). (G.8)

Thus, up to a small correction of order α2L, λ0 can be found from the initial value of S0 · L. We
can use this result to find the constant of motion λ1. Using that Lslow · Lfast = 0, L2 = λ2

1 + λ2
0.

Inserting this in the above, we find that |L⊥| = λ1 + O(α2L), where L⊥ is the component of L
perpendicular to S0.

The above discussion shows that S0 · L and |L⊥| are constants of motion, up to small
fluctuations of magnitude α2L. This implies that L precesses around S0, at the speed ∼ ηh, and
with a fixed radius of precession given by λ1.

G.2 Alignment of L with S0

Here we derive the result in Sec. 8.4.3, showing that the angular moment L aligns itself with S0
when it is subject to dissipation, provided that the dissipation strength γ satisfies the condition
α2 � γ � 1. Our starting point is the equation of motion in Eq. (8.29), in the case where
vdis(L, L̇) = − γ

L L̇:
L̇ = −ηh(t) × L − γ

L
L̇ × L. (G.9)

In order to show that L aligns itself with S0, we apply a rotating frame transformation R(t)
in the above equation that keeps the instanteneous field h(t) pointing along the z axis: R(t)n̂ = ẑ.
Since R(t) is a time-dependent orthogonal matrix, it obeys a differential equation of the form

Ṙ(t)v = R(t)(ω(t) × v) (G.10)

for some time-dependent (angular velocity) vector ω(t). The angular velocity vector ω(t)
uniquely defines R(t) together with an initial condition for R(t). In our case, R(t) must satisfy
d
dt(R(t)n̂(t)) = 0. Using Eq. (G.10), we find that ω must satisfy ω × n̂ = − ˙̂n. Taking the cross
product from the left with n̂, and using (n̂× v) × n̂ = v, we find that ω = ˙̂n× n̂. Along with an
initial condition for R(t) which turns out to be unimportant in the followng, R(t) is uniquely
defined from the differential equation (G.10) with ω = ˙̂n× n̂.
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Having found the rotating frame transformation R that aligns n̂(t) with the z-axis, we now
consider the equations of motion of the angular moment M ≡ RL in this rotating frame. Using
Ṁ = RL̇ + ṘL along with Eq. (8.29), we find

Ṁ = R

[(
ηh − γ

L
L̇
)

× L
]

+ ṘL. (G.11)

As our next step, we use that R(a × b) = (Ra ×Rb), along with Eq. (G.10), obtaining

Ṁ = R

(
ηh − ω − γ

L
L̇
)

×RL. (G.12)

We note that ηh − ω = ηhS0, where S0 was defined in Eq. (G.7) above. Multiplying R into the
first parenthesis, and using RL̇ = Ṁ − ṘL, we find

Ṁ =
(
ηhẑ −Rω − γ

L
(Ṁ − ṘL)

)
× M. (G.13)

Next,we use ṘL = R(ω × L) = Rω × M, to find

Ṁ =
(

J(M) − γ

L
Ṁ
)

× M, (G.14)

where
J(M) = ηhẑ −Rω + γ

L
(Rω × M). (G.15)

We now consider the dynamics that result from the above equation of motion for M. If h
and ω were stationary, M would relax to a stationary point of the equations of motion with the
relaxation rate ΓL ∼ γ|J| ≈ γηh. The stationary point is found at J(M0)×M0 = 0, which implies
that M0 must be parallel to J(M0). Using |M| = L we find that J(M) = ηhẑ −Rω + O(γΩ0),
which implies that the stationary point lies at

M0 = ẑL− L

ηh
Rω + O(γαL) (G.16)

Since the second term above is of order αL, we may ignore the third term if γ � 1, and in this
case find that J will relax to

M0 = ẑL− L

ηh
Rω. (G.17)

Since RT ẑ = n̂, we identify M0 as LRS0. Reverting the rotating frame transformation, we thus
find that relaxation of M to M0 implies that L relaxes to LS0.

Above, we found that M relaxes to M0 if ω and h were stationary (assuming γ � 1). In
the system we study, however, ω and h change in time, although slowly, which implies that the
stationary point M0 moves on the unit sphere. If the angular velocity ωM0 of M0 is much smaller
than the relaxation rate ΓL, M(t) will remain relaxed and point along M0(t) at all times. To find
the angular velocity at which M0 changes in time, we note that Rω ∼ O(Ω0), and furthermore
oscillates on the same frequency scale Ω0. Hence the second term in the above equation is at most
of order αL, and oscillates on frequency scale Ω0. On the other hand, the first term is fixed along



210 APPENDIX G. APPENDIX FOR CHAPTER 8

the z-axis, and has magnitude L. Hence M0 itself changes with angular velocity ωM0 ∼ O(Ω0α).
Recalling that ΓL ∼ γηh, the requirement ΓL � ωM0 is thus met if γ � α2.

Reverting the rotating frame transformation, the above discussion shows that L(t) will always
remain aligned with LS0(t) if

α2 � γ � 1, (G.18)

which was what we wanted to show.

G.3 Correction to Eq. (8.35)

Here we show that the correcting term ∆Ė in Eq. (8.35) goes to zero as λ0ω
τ when averaged over

a time-window of width τ .
To show this, we insert ˙̂n = (∂t + φ̇∂φ + Ȧ∂A)n̂ in the expression Eq. (8.34) for Ė, obtaining

Ė = −ηωλ0∂φh+ ωλ0 n̂ · ([∂t + Ȧ∂A]n̂ × ∂φn̂). (G.19)

Comparing with Eq. (8.35), the correction ∆Ė is thus given by

∆Ė = ωλ0Ȧ n̂ · (∂An̂ × ∂φn̂). (G.20)

Noting that A changes insignificantly on the time scales of the two modes, the arguments made
in the paragraph below Eq. (8.35) imply that

∆Ė = ωλ0Ȧ

2πT

∫ T

0
dt

∫ 2π

0
dφ n̂ · (∂An̂ × ∂φn̂). (G.21)

We can find the time-averaged value of ∆Ė over a time-window of width τ as ∆E(τ)/τ , where
∆E(τ) is the integral of ∆Ė over the time-interval from 0 to τ . This can be computed as

∆E(τ) = ωλ0
2πT

∫ T

0
dt

∫ A(τ)

A(0)
dA

∫ 2π

0
dφ n̂ · (∂An̂ × ∂φn̂).

For fixed t, we recognize the A,φ-integral as the solid angle on the unit sphere covered by the
image of the two-dimensional manifold M = {(A,φ)|A ∈ [A(0), A(τ)], φ ∈ [0, 2π]} with respect to
the mapping n̂(A,φ, t). From the definition of h(A,φ, t) in Eq. (8.6), we see that, for any fixed
value of t, the mapping n̂(A,φ, t) at most covers a given point on the unit sphere once for φ in
the interval [0, 2π]. Hence the solid angle covered by the image n̂(M) must be smaller than the
area 4π of the unit sphere. Thus, for any value of t, the A,φ integral above is bounded by 4π.
This implies that

|∆E(τ)| ≤ 2ωλ0. (G.22)

The time-averaged value of ∆Ė hence goes to zero as 2ωλ0/τ with the averaging time τ .
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G.4 Multiple modes

To find the equations of motion, we reexpres the Hamiltonian in terms of conjugate pair of
variables Z and Z∗, with Z = e±iφ, where the sign depends on the chirality of the mode. Their
possion bracket is {Z,Z∗} = 1

L0
. To find the equation of motion for Zn, we apply the chain rule:

dZn
dt = ∂Zn

∂φn
dφn
dt + ∂Zn

∂A2
n

dA2
n

dt . Using the fact that for any function f of the dynamical variables {xi},∑
i

∂f
∂xi

{xi,H} = {f,H}, we obtain

Żn = {Zn,H} − γnA
2
n

∂Zn

∂A2
n

(G.23)

From the definition of Z we have ∂Z
∂A = 1

AZ, and using that only Hn has a nonzero Poisson bracket
with Zn, we find

Żn = {Zn,Hn} − γn

2 Zn. (G.24)

In terms of the variables Z, Z∗, the Hamiltonian is given by

Hn = ωnL0|Zn|2 + ηn

2 (ZnΦ + Z∗
nΦ∗) (G.25)

where Φ = (Ly + iLz), and ωn ≡ |n|ω. Cf. the discussion in the main text, we assume that the
other modes than n = 1 do not affect the motion of the spin in any significant way, and we thus
treat Φ as an external drive Φ(t) ≡ Lx(t) + iLz(t). Neglecting the subscripts on Zn, the equation
of motion for Z is

Ż =
(

−iωn − γn

2

)
Z + ηn

2L0
Φ(t). (G.26)

To obtain an estimate for the typical amplitude of mode n, we compute the average value |Z2| of
its squared amplitude A2 = |Z|2. By taking the square root of this, we find the rms amplitude in
mode n, and by multiplying |Z2| with ωnL0, we find the average energy stored in mode n.

To ease this computation, we consider the time-derivative of the field energy E = ωnL0|Z|2.
Using d|Z2|

dt = ŻZ∗ + ZŻ∗, We find

dE

dt
= −γωnL0|Z|2 + ηnωn

2 (ΦZ∗ + Φ∗Z). (G.27)

We identify the first term as the energy loss due to dissipation, and the second term as the energy
transferred to the mode from the drive. Taking the long-time average, and using the fact that the
energy in the mode remains bounded 1, dE

dt = 0. Using this in the above, we find after a few steps,

|Z2| = ηn

γnL0
Re (Φ∗Z). (G.28)

1To see this, note that the energy pumped in from the field is bounded by ηωAL, while the energy lost to
dissipation is of order A2ωγL0. For sufficiently large values, the energy can thus only decrease, and it hence remains
bounded.
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Now, using the fourier transforms of Z(t), and likewise with Φ, we obtain 2

Φ∗Z =
∫
dωΦ∗(−ω)Z(ω) =

∫
dωΦ(ω)∗Z(ω) (G.29)

The fourier transform Z(ω) has units 1√
ω

, and can be found by fourier transforming the equation
of motion for Z(ω):

−iωZ(ω) =
(

−iωn − γn

2

)
Z(ω) + ηn

2L0
Φ(ω) (G.30)

Thus,

Z(ω) = ηn

2L0

Φ(ω)
−i(ω − ωn − iγn/2) , (G.31)

and

|Z2| = Re
[

−iη2
n

2γnL2
0

∫
dω

|Φ(ω)|2

ω − ωn − iγn/2
)
]
. (G.32)

Taking the imaginary part,

|Z2| = η2
n

2L2
0

∫
dω

|Φ(ω)|2

(ω − ωn)2 + (γn/2)2 (G.33)

Numerical studies show that |Φ2(ω)| contains a few sharp peaks, at integer multiples of ω and
Ω, and combinations of these:

|Φ2(ω)| ≈
∑

k

L2δ(ω − qkl)Φ2
kl (G.34)

where qkl = kω + lΩ, and the coefficients have dimension L, and decrease with higher k and l.
If there is a phase-shift mirror, the frequencies will not coincide with ωn, except for high-order
coefficients

|Z2| ≈ η2
n|Φ(ωn)|2

γnL2
0

. (G.35)

Numerical studies show that Φn is typically of order 0.02L (the scale 0.02 is universal for a wide
range of drives).

Alternatively, if Φ(ω) has a sharp peak at ωn, of height Φn,

Φ∗Z ≈ η

γL0
Φ2

n (G.36)

so in this case, we may set Φ(ωn) = Φn√
2πγ

. The rms average of the dimensionless amplitude of the
mode is

Ān ∼
√
Ē/ωL0 ∼

√
η2

γL2
0
|Φ(ωn)|2 (G.37)

2The Fourier transform Z(ω) is defined as limT→∞
1√

2πT

∫ T
0 dteiωtZ(t).’ Z(ω) is a Wiener meausre, and the

limit of Z(ω) and is strictly speaking not well defined, but |Z2(ω)| exists and is dimensionles, and satisfies∫
dωZ2(ω) = |Z2|. The inverse mapping is defined as follows: let ZT (t) be T -periodic, and given by Z(t) for

t ∈ [0, T ), while Z(t) = Z(t+ T ) for later times. Writing Z(t) = ΣnZne−in∆ωt, the nth fourier component Zn goes
to

√
∆ωZ(n∆ω), where ∆ω = 2π

T
.
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For sharp peaks,
Ān ∼ ηL

γnL0
|Φ̃n|. (G.38)
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