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ABSTRACT

In this thesis, aspects of �uid �ow with disordered interfaces are investigated by numerical
and theoretical means, and their relations to geophysically relevant systems are discussed.
�e research output consists of physical models, numerical methods and tools, and
applications of the models and methods to problems ranging from the pore to the pipe
scale.

A part of the work focuses on single-phase �uid �ow. In order to address the
universality class of the laminar–turbulent transition in pipe �ow, particle-based models
for the interaction between turbulent domains are introduced. To illuminate the joint
e�ects of a disordered geometry and �uid inertia on macroscopic transport properties,
transitional �ow in rough fractures is investigated by direct numerical simulations. In
the limit of creeping �ow, the coupling between �ow and stress in dissolving porous
rock is studied.

�e remainder of the work concerns �ows where the e�ects of a second phase,
chemical transport, and electric �elds, are included. Models for such electrohydrodynamic
and two-phase �ows are analysed herein. Furthermore, e�cient numerical methods are
developed both for single- and two-phase electrohydrodynamic �ow, and a simulation
framework, based on a di�use-interface model, is introduced to facilitate simulation of
phenomena including we�ing at the pore scale and micro�uidic devices.

dansk resumé

I denne a�andling undersøges aspekter af væskestrømning med uordnede grænse�ader i numeriske og
teoretiske termer. Forskningsresultaterne består af fysiske modeller, numeriske metoder og værktøjer samt
anvendelser af modellerne og metoderne til problemer, der spænder fra pore- til rørskala.

En del af arbejdet fokuserer på enfasestrømning. For at undersøge universalitetsklassen for overgangen
fra laminær til turbulent strømning i rør, introduceres partikelbaserede modeller for interaktionen mellem
turbulente domæner. For at belyse den koblede virkning af en uordnet geometri og væskens inerti på de
makroskopiske transportegenskaber, undersøges strømning ved den turbulente overgang i ru sprække ved
hjælp af direkte numerisk simulering. I grensen af krybende strømning undersøges forbindelsen mellem
strømning og spænding i porøse stenarter der undergår opløsning.

Resten af arbejdet beskæ�iger sig med strømning, hvor virkningerne af en anden fase, kemisk transport
og elektriske felter er inkluderet. Modeller af sådan elektrohydrodynamisk strømning og tofasestrømning
analyseres. Yderligere udvikles e�ektive numeriske metoder til både en og to faser, og et simuleringsværktøj
baseret på en di�us-grænse�ademodel, indført for at muliggøre simulering af fænomener som vædning på
poreskala og mikro�uidiske indretninger.
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1IN TRODUCTION

1.1 a contemporary survey of fluid natural resources

How do �uids �ow through rocks? Answers to this blunt question are not simple and
straightforward, but the advances made by humanity in addressing this question has
had widespread consequences for the standard of living in the 21st century. From the
moment you wake up in the morning and brew yourself a cup of co�ee, you enjoy the
fruits of �uid �ow in porous media.

From a purely geophysical perspective, �uid circulation from the mantle to the
atmosphere shapes the world around us. In porous rocks, �uid �ow is an important
factor for pa�ern formation and rock weathering [215], as it controls mineral transport
and heat �ow from the nanoscale to the �eld scale [359]. Deformation coupled to �uid
�ow is also tightly connected with the triggering of earthquakes [171,303,384,409]. Hence,
understanding the intimate coupling between �uid �ow, reaction and deformation of
rocks is crucial for understanding how pa�erns form in nature and how sceneries are
sculpted.

From a more industrial point of view, many of the Earth’s most desired natural re-
sources are found below the surface, in a liquid state of ma�er in porous rock formations.
Freshwater stored in aquifers, i.e. underground water-bearing rock formations, is an
essential natural resource. Groundwater accounts for roughly a third of the available
freshwater resources in the world [407], and has served to keep the author, among others,
hydrated during the last three years. Due to food production requirements for a rapidly
growing global population, many groundwater resources are becoming depleted [114]. Un-
sustainable harvesting of groundwater may not only have dire consequences for drinking
and irrigation purposes, but may also reduce the integrity of rock formations [12]. Simul-
taneously, human activity has led to unintended groundwater contamination [103].1 In 1 As anyone knows who has

seen the movie Erin Brock-

ovich (2000).
fact, the scarcity of drinkable water (being in surface or subsurface reservoirs) represents
such a fundamental issue that it can trigger future wars.2 In this respect, technological

2 Like it has in the past, see
e.g. [348].

progress in desalination—roughly speaking, turning seawater into freshwater—could
prevent future con�icts. �e downside with many current methods is that they are highly
energy consuming.

In this respect, petroleum (oil and natural gas)—another important �uid resource
found in porous geological formations—has been a major contributor to covering the
Earth’s exploding energy consumption during the last century. At the time of writing,
petroleum accounts for more than half of the total global energy usage [65]. Many renew-
able energy sources, such as wind and solar energy, cannot produce energy on-demand,
as both wind and sun conditions �uctuate in time and space. �e only completely re-
newable energy source that can be used to provide a base load in the global electrical
grid is hydroelectricity. However, in many developed countries, the majority of available
waterfalls are already exploited [469], at least to the point where they pose a threat to
biological diversity in and around the a�ected drainage systems. It thus seems clear that
hydroelectricity alone cannot compensate for the soaring demand for (green) energy in

3



4 CHAPTER 1. INTRODUCTION

the world. An alternative candidate for providing a base load is nuclear energy, where
the basic energy production process does not release CO2. Despite large reserves, unfor-
tunate accidents, most recently caused by earthquakes (Fukushima, 2011), have degraded
public and political opinion on nuclear energy and stalled development [469].Geothermics is another

practically renewable energy
resource, where water heated

deep in the Earth’s crust is
pumped from reservoirs to

either drive power plants or
directly heat buildings.

In the advent of su�ciently large-scale renewable energy production, petroleum
will therefore remain a major source of energy. If coal is the direct alternative (as with
Germany’s phase-out of nuclear plants), oil and (in particular) natural gas appear to be the
lesser of evils. In this respect, basic knowledge of how �uid �ows from the nanometer to
the basin scale is essential. A contrasting laissez-faire a�itude likely leads to unforeseen
consequences such as, e.g., induced seismicity [173,434] (generation of earthquakes by
human activity), and land lowering or groundwater contamination due to shale gas
extraction [98].

�e Paris Agreement from 2015 states that global warming should be limited to 1.5 ◦C
above pre-industrial levels—a goal which seems to be at odds with current trends in
energy consumption. A possible remedy from the dire consequences of continued reliance
on fossile fuels, is to reduce the net release of CO2 by means of carbon capture, transport
and storage (CCS) [204]. �e idea behind CCS is to capture the CO2 where it is released,
typically at an industrial site; transport it to suitable storage sites, e.g. saline aquifers
or depleted petroleum reservoirs; and inject it into the formation through injection
wells [203,260,328]. Injected CO2 should then bind to the rock [291], and by that and other
trapping mechanisms [112,203] remain permanently stored in the geological formations.
Although CCS is already being carried out in practice (e.g. in Norwegian deep saline
aquifers since 1996), many fundamental processes are not fully understood [203]. Injection
of CO2 into petroleum reservoirs can be used to increase the amount of oil that can be
harnessed—called enhanced oil recovery—closing the circle between CCS and petroleum
production. Enhanced oil recovery is, however, usually carried out using other �uids
and water of varying salinity, surfactants, or other chemicals [382].

Taken together, �uid natural resources are essential to our existence. Knowing
how �uids �ow in rocks, pipes, fractures, and other geophysical systems, can improve
safety and e�ciency of energy harnessing and transport and storage of CO2.3 While the3 And is, of course, interesting

in itself. applications di�er, the underlying physical mechanisms, the resulting equations, and
the methods used to investigate them, are largely similar. In these cases the results are
not limited to, e.g., a given type of rock or �uid composition, but universal or general
properties can be found which have consequences for a broad range of systems. �us, it
makes sense to address these topics in a uni�ed way.

1.2 scope and objectives

�e survey in the previous section is not intended to be complete, but merely to motivate
why �uid �ow in disordered geometries—and in particular why the question asked at
the beginning of the chapter—is relevant.

�e present thesis does not mainly concern speci�c applications, but addresses
instead the general physical concepts behind the applications, using theory and numerical
simulations. A recurrent theme in this thesis is �ow resistance, or conversely, permeability.
In most applications, it is desirable to minimize the driving force needed to sustain a
certain �ow rate; that is, to maximize the permeability. �is holds valid for �ow across
several scales; from the pore scale, through networks of pores and fractures, to the
corrugated internal surface of a pipe. Complex interfaces, between either a solid and
a �uid phase, or between two �uid phases, also have consequences for �ow resistance
on macroscopic scales, and are not fully understood. Physical processes such as ion
migration and surface charges inducing an electric �eld, may in�uence �ow properties
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figure 1.1: A conceptual
dead-end pore �lled with con-
ceptual oil, while water is
�owing above. A slight dis-
tortion of the oil surface is
observed, but the oil remains
stuck in the pore. (Figure
courtesy of A. Bolet.)

u

even on large scales.
As an illustrative example, consider Fig. 1.1 where we show a schematic dead-end

pore wherein an amount of “oil” is stuck. Above the pore, another phase a shear �ow
of “water” is imposed, and the two phases are taken to be immiscible. �is is a basic
example of a multiphase system with complex interfaces, where a solid phase provides a
disordered con�ning geometry and the two liquid phases interact nonlinearly.

To both a petroleum engineer (seeking to harness the oil) and an environmental
remediator (seeking to decontaminate the soil), it would be desirable to get the oil out of
the pore. As the water �ows above it, however, the droplet remains stuck in its dead-end
pore. Two apparent suggestions on how to get the droplet out are the following:

• Increase the �ow rate, i.e., the e�ect of inertia.

• Account for the e�ect of ions in the solution and the electric �eld due to surface
charges on the pore walls, i.e., include electrohydrodynamics (EHD).

�e scope of this thesis is rather broad, and it aims to address e�ects on �ow typically
present in geologically relevant systems—in particular, the roles of inertia, disordered
interfaces, and the e�ect of surface charges and ionic solutions.

Using continuum-scale descriptions, these e�ects are investigated on scales from
a single pore, through fractures and pore networks, to pipe �ow. As these scales span
roughly from sub-micrometer to the kilometer scale, it is clear that this thesis cannot
cover all aspects of �ow in this range. Hence, the objectives can (in some retrospect) be
summarized as the following:

1. Develop and analyse physically consistent continuum-scale models for single- and
two-phase �ow in geophyisically relevant systems, including solute transport and
electric �elds.

2. Develop methods for simulating such models, predominantly using the �nite
element method.

3. Apply the developed models and methods to studying �ows with complex inter-
faces.

In particular, both models and methods are developed, and studies are carried out.
Although the broad, overarching question was posed already in the �rst sentence

of this chapter, the more speci�c physical research questions in this thesis include the
following:

• How does a disordered geometry in�uence the macroscopic transport properties
of geophysically relevant media?
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• What is the combined e�ect of inertia and a disordered geometry?

• How do charged surfaces and ions in solution in�uence the we�ing behaviour and
macroscopic �ow properties in disordered geometries?

Progress towards answering these questions is presented in this thesis. Moreover, nu-
merical methods and so�ware are developed that can help gaining even more insights
into these questions in the future.

�e results are primarily given in the papers that make up the thesis. Summaries
of these and more speci�ed research questions are given in chapter 5, along with some
complementary information. In Table 1.1, the interested reader will �nd a simple overview
of how the appended papers relate to each other.

table 1.1: How the dif-
ferent papers comprising this
thesis relate to each other.
�e overview indicates in-
cluded physical e�ects and
novelties in the appended pa-
pers. �e papers are grouped
according to the summary in
chapter 5.

Paper Phases Scale Including Novelty
1 2 Pore Fracture Pipe Inertia EHD Model Method Study

Turbulent fronts in pipe �ow (section 5.1)

1 X X X X X X
Flow in fractured and porous media (section 5.2)

2 X X X X
3 X X X X

Electrohydrodynamics (section 5.3)

4 X X X X X X
5 X X X X X X X
6 X X X X X X
7 X X X X X

Homogenized models for two-phase �ow (section 5.4)

8 X X X X
9 X X X X X X

1.3 applications to other fields

Obviously, although the results presented in this thesis have in common that they are
related to geophysics, the results are by no means limited to such systems. Below follows
a brief and incomplete list of topics to which the results presented here may be of
relevance.

• Micro�uidics: �e coupling of two-phase �uid �ow and electrochemistry prob-
ably has even more applications within micro- [74,418] and nano�uidics [400] than
in geophysics. Technological applications span from fabricating microelectrome-
chanical devices [249,361,419], electronic displays [37,38,183,210], desalination devices [411],
inkjet printing, and more.

• Phase separation: Two-phase systems with electric �elds and chemical e�ects
have applications to electrocoalescers, i.e., devices used to separate water and
crude oils in emulsions [135,280].

• Biology: Unsteady, inertial �ow in disordered geometries, e.g. rough pipes, has
applications to how blood �ows in our bodies. In particular, inertial e�ects are
important in the larger artieries; in the aorta the Reynolds number (see next
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chapter) is around 4000 [238], which is far beyond the point where turbulence arises
in smooth pipes or tubes [23].
Moreover, electrohydrodynamic (or at least electrokinetic) e�ects control how
�uid is transported in the brain [198], and how neural signals propagate [281,416]. As
another unexpected link, the Barkley model [28–30] that describes the turbulent
transition in pipe �ow as an excitable medium, is inspired by models for nerve
signals.
Multiphase porous �ows and poroelasticity is also relevant in biological tissue, e.g.
in the dynamics of cancerous invasions [461].

• Nuclear engineering: Many of the models for two-phase �ow that are now
extensively used for petroleum and CO2 transport, have not only applications to,
but actually their origin in, nuclear engineering [24,46]; where they describe the
�ow of the working �uid (heated in the nuclear reactors) used to drive the steam
turbines that produce electricity.

• Semiconductor physics: �e equations of electrohydrodynamics, in particular
the Nernst–Planck equations, �nd wide use in semiconductor physics [91,268]. At
least through the use and development of numerical methods, these �elds could
�nd common ground.

• Food industry: Foams, sauces (some of which are oil-in water emulsions), milk,
etc., are all realizations of two-phase �ow with chemical interactions, and thus
relevant to the present work.
Finally, we return to the �rst paragraph of the chapter, and to the freshly brewed
cup of co�ee that you might enjoy in the morning. Consolidated, grinded co�ee
is perhaps the archetypical example of a porous medium. In the art of co�ee
making, a multitude of physical and chemical processes are at play and must be
controlled. In�uenced by gravity, one �uid (water) intrudes and displaces the other
(air) within the porous medium, the porous medium deforms, chemical reactions
and di�usion (extraction) occur, and heat �ows through the system; but still you are
likely le� with a reproducible cup of co�ee.4 Adding the socio-economic aspects 4 For a popular-science based

introduction to co�ee brew-
ing, see [185].

of cultivating co�ee to the picture (e.g. freshwater requirements, global export),
makes it clear that co�ee brewing is a far too complicated task to take on in this
project. We will therefore leave it to the baristas, for now.5 5 Perhaps, some day, co�ee

brewing will be the subject of
a Horizon 2020 Initial Train-
ing Network.1.4 structure of the thesis

�e structure of this thesis is as follows. Chapter 1, which you are now reading, is
an a�empt to put the topics of this thesis into a broader context, without diving into
too speci�c details; and in a broad sense to motivate the work presented. Chapter 2
gives an overview of historical development, phenomenology, and the state of the art of
the topics involved. Chapter 3 deals with the physical models employed in the present
work. In chapter 4, an overview is given of the numerical methods, spatial and temporal
discretization strategies, and numerical so�ware employed and developed in this work.
In chapter 5, brief summaries of the research articles that comprise the results of this
thesis are given. Finally, chapter 6 concludes and points to future avenues of research.
�e research papers are collated in appendix A.
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2BACKGROUND

2.1 brief historical development and phenomenology

�e Navier–Stokes equations, which can be stated for an incompressible �uid evolving
in space x and time t, as

ρ (∂tu + u ·∇u)− µ∇2u = −∇p, (2.1a)
∇ · u = 0, (2.1b)

are at the heart of this thesis. Equation (2.1) describes the velocity u(x, t) and pressure
p(x, t) of a �uid of constant density ρ and dynamic viscosity µ. �e le� hand side of
eq. (2.1a) constitutes a balance between intertial forces, represented by the parenthesis
term, and viscous forces, represented by the last term. Roughly speaking, the viscous
term dampens out �uctuations, and when it dominates over the inertial term, the �ow
�eld tends to be smooth and predictable, i.e. laminar, much like the �ow of syrup under
calm breakfast conditions. Conversely, when the inertial term dominates, �uctuations
may be enhanced rather than dampened, eventually leading to unsteady and irregular
�ow pa�erns—colloquially termed turbulence. Such �ows can be observed (under the
same breakfast conditions) by vigorously pouring milk into your co�ee, leading to the
formation of unsteady swirls, or turbulent eddies. �is simple physical experiment is
shown in �g. 2.1 (b). �e eddies eventually decay, as the viscous term takes its toll, when
you stop injecting energy.

figure 2.1: Di�erent
�ow regimes related to cof-
fee. (a) Creeping �ow (Re�
1) through a consolidated
porous medium during the
brewing process. (b) Turbu-
lent �ow (Re� 1) triggered
by pouring of milk into a cup
of co�ee. Turbulent eddies
can be observed. (Photos by
Linn Helmich Pedersen.)

(a) (b)

Building on work by, among others, Euler [138], Navier [330] with the improvements of
Stokes [102,423] arrived at the equations (2.1) which bear their name. However, scienti�c
investigations of �uid dynamics predate these, as will become apparent below. As
an example, the �rst recorded sketch and description of turbulent eddies is due to da
Vinci [202]. �e following account is neither complete (reference is given to more elaborate

9



10 CHAPTER 2. BACKGROUND

texts where appropriate) nor chronological, but gives a primer on the phenomenology
and history of the themes encountered in this thesis.

In 1883, Reynolds [380] set out to investigate the “circumstances which determine
whether the motion of water shall be direct or sinuous,” or in modern terms, what
conditions determine whether �ow in pipes is laminar or turbulent. �e investigation
led to the identi�cation of a dimensionless number, now called the Reynolds number,

Re =
ρud

µ
, (2.2)

where u is the mean axial velocity and d is the pipe diameter. �e number Re roughly
measures the ratio of inertial to viscous forces. Reynolds indenti�ed Re, as the sole
parameter determining the �ow regime: when Re was below a “critical” value Rec '
2000, the �ow was laminar, whereas above, it could become turbulent. In a transitional
region around Rec, the turbulence would appear as intermi�ent �ashes, being neither
fully laminar nor turbulent. We will revisit this transitional region in section 2.1.2.

As we will see, the Reynolds number is an extremely useful quantity for all aspects
of �uid �ow, giving a simple criterion for which �ow regimes are relevant, and which
approximations can be made.

2.1.1 Flow in disordered media

Due to its ubiquity, �ow in porous media has been a subject of scienti�c investigations
since the days of Euler [111,139,140]. Two examples of porous media are shown in �g. 2.1
(a) and in �g. 2.2 (b). A porous medium can arise as an aggregation of solid particles and
by chemical or biological processes. �e resulting solid matrix contains pores that, if
connected from inlet to outlet, can allow a macroscopic �ow through the system. As
a lowest-order description of its geometry, a porous medium can be characterised by
its porosity φ. Due to the unfeasibility of analytically solving the equations of �uid
motion within the pore, much of the theory of porous media �ow has been focused on
obtaining macroscopic equations for �ow through representative elementary volumes.
A basic question (in e.g. hydrogeology) has thus been how to relate the �ow rate q, i.e.
volumetric discharge per unit area, through a porous medium, to the imposed pressure
gradient ∇p. Following pioneering work by Woltmann [468], Delesse [117], and Fick [149],
Darcy [106] came up with his celebrated law,

q = −k
µ
∇p, (2.3)

where k is the permeability of the porous medium. �is linear relationship has a direct
link from the Re� 1 limit of the Navier–Stokes eq. (2.1), where the inertial part can be
neglected, leading to the Stokes equations,

µ∇2u = ∇p, ∇ · u = 0. (2.4)

�is is o�en a good approximation in porous media, where the characteristic pore diam-
eter d is exceedingly small. For a more complete historical account of the development of
the theory for porous media, see e.g. [111]. Herein, of particular relevance to the present
thesis might be the work of Biot concerning the mechanical behaviour of �uid-saturated
solids, called poroelasticity

[49–52,384,459].
Historically, much e�ort has been devoted to relating the permability, k in eq. (2.3),

to quantities such as the porosity φ [99,292]. �e arguably most popular such relation is
the Kozeny–Carman equation [84,85,237],

k ∝ φ3d2

(1− φ)2
. (2.5)
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figure 2.2: Examples of
rough and porous systems
in nature. (a) Rough stylo-
lite surface. (b) Sample of a
reservoir rock (Fontainebleu
sandstone), imaged by X-
ray microtomography. �e
blue color indicates poros-
ity. (Courtesy of François Re-
nard.)

(a) (b)

where d is a characteristic pore diameter. �e relation (2.5) is typically applicable to
packed beds. Other common modelling choices is to use empirical power laws, k ∼ φm
(with high exponents m) suitable for soils [159], or exponential forms, cf. [131].

Darcy obtained eq. (2.3) (in a one-dimensional form) by empirically-based considera-
tions, but both eq. (2.3) and improvements thereof have been found by systematic means.
Homogenization techniques (e.g. volume averaging) can be used, as demonstrated by
Whitaker [465], to derive from �rst principles a generalized version of eq. (2.3),

q = −k

µ
∇p, (2.6)

where k is the permeability tensor, re�ecting the fact that the discharge need not be
directed parallel to the pressure gradient. For non-negligible inertia (moderate Re),
empirical corrections eq. (2.3) are due to e.g. Forchheimer [156] and Ergun [134], who both
on empirical grounds proposed to add a positive term ∝ ρ|q|q (where ρ is still the
density), to the le� hand side of eq. (2.3) [159,412]. A more general power-law description
∝ ρ|q|nq (where n is an empirical exponent) is due to Izbash [209]. Correction terms can
also be found by homogenization, see e.g. [466] for the Forcheimer term above, which is
valid for strong inertia. For weaker inertia, Mei and Auriault [298] found a correction term
∝ |q|2q [412]. Early disputes concerned whether the departure from the linear Darcy law
was due to turbulence, but careful analysis has shown that this is not a necessity (see
section I in [243]).

In crustal rock, the permeability is o�en so low that the �uid transport is not con-
trolled by the microscopic pore size distribution, but takes place mainly in fracture
networks spanning large scales [36,297,390]. When both the porous rock

and the fracture network
contribute to permeability,
so-called dual-porosity

models are o�en applied,
where voids can correspond
to either pores or
fractures [120].

To estimate the macroscopic permeability
of such rocks, a description of both the fracture network topology and of the single
fractures is necessary. An intriguing property of fracture surfaces is that they display
scale-invariance. In particular, they are self-a�ne

[61], i.e. the fracture surface z = h(x, y)
is statistically invariant under the transformation

x→ λx, y → λy, z → λHz, (2.7)

or h(x, y) ∼ λ−Hh(λx, λy) in a statistical sense [26,146]. Here, H is called the Hurst
exponent, characterizing how correlated the surface is, and λ is a real number. �e expo-
nent H = 0.8 has been shown to hold for both synthetic and natural three-dimensional
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fractures in a wide range of materials [61,62,282,398]. �ere are, however, notable exceptions,
such as in sandstones (H ' 0.6) [364], and in glassy ceramics (H ' 0.4) [59,333].

Classically, a fracture geometry was approximated by two parallel plates separated
by a constant separation d, which amounts to so-called plane Poiseuille �ow where an
analytical solution is available—o�en termed the parallel plate law. Improvements to
the la�er can be found when the �ow is creeping (Re � 1), and the in-plane length
scale of the height variations is much larger than the local fracture aperture d(x, y)
(here, the local distance between the upper surface zmax and the lower surface zmin). In
particular, the lubrication approximation can be used. De�ning the aperture-averaged �ux
by Q =

∫ zmax(x,y)
zmin(x,y) u(x, y, z) dz, a variant of the Darcy equation (cf. eq. (2.3)) arises [336],

Q = −d
3(x, y)

12µ
∇p. (2.8)

Equation (2.8) is commonly termed the local cubic law (LCL) [40] due to the (local) presence
of the d3 term. �e parallel plate law is given by eq. (2.8) with a constant d. Generaliza-
tions to eq. (2.8) for the case of non-neglible inertia in the lines of Forchheimer [156] are
commonly applied [412]. By imposing conservation of mass, i.e. ∇ ·Q = 0, the velocity
can be eliminated, which yields the Reynolds equation [381]

∇ · (d3(x, y)∇p
)

= 0, (2.9)

which has been of extensive use in the literature. However, once the roughness varies
abruptly over small length scales, the lubrication approximation is inapplicable. Mod-
elling approaches for �ow in fractured rock were reviewed by Zimmerman and Yeo [484],
and on somewhat larger scales by Berre et al. [42].

In general, increasing inertia, and decreasing permeability, is associated with in-
creased energy dissipation or equivalently pressure loss (or hydraulic head loss). Since
this is o�en unsought in industrial se�ings, �ow in fractures is scienti�cally closely
connected to �ow in pipes, with smooth or rough internal surfaces. All industrial pipes
are rough on some microscopic scale [9], and in many cases (such as in geothermics)
transport supersaturated aqueous solutions that lead to precipitation pa�erns on the
pipe walls; a phenomenon known as scaling

[174]. Scaling increases �ow resistance and
can lead to clogging.66 Similar to the e�ect that can

lead to atherosclerosis in ar-
teries.

E�orts to estimate the friction loss, or conversely, the permeability, in pipes and
channels date back at least to measurements by French hydrologists Chézy and Prony in
the early 18th century (see [71]). Poiseuille [360] and Hagen [177] independently empirically
found the relation between �ow rate, pressure gradient, and tube dimensioms for laminar
�ow in smooth tubes (now known as Hagen–Poiseille �ow, see [429] for a more complete
historical account), which can be summarized as

u =
d2

32µ
|∇p|, (2.10)

where u is the mean velocity and R is the tube radius. Weisbach [464] collected results
from several experiments and proposed to write the relation in the following form,
known as the Darcy–Weisbach equation,

|∇p| = fD

1
2ρu

2

d
(2.11)

where the dimensionless quantity fD is called the Darcy friction factor (due to improved
experiments by Darcy [107]). �e Fanning [144] friction factor fF, which is also o�en used,
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figure 2.3: Variations
over percolation. (a) Numeri-
cally resolved �ow through a
porous rock sample, from [261].
(b) Bond percolation on a
hexagonal la�ice, slightly
above the percolation thresh-
old. �e percolating clus-
ter was extracted, Darcy’s
law was assumed to hold
for each bond, and a pres-
sure drop was imposed from
top to bo�om. �e pres-
sure is shown in the back-
ground color coding (lighter
is higher). �e collection
of squiggly dark lines is the
conducting part of the clus-
ter, i.e. the percolation back-
bone. (c) Directed percola-
tion model, below the critical
point (blue are active sites).
(d) Spatio-temporal dynamics
of pu�s (blue), slightly below
criticality, in the experiments
by Mukund and Hof [327].
(Reprinted from [327].)

is simply fF = fD/4. For turbulent �ow in smooth pipes, Blasius, a student of Prandtl,
found the scaling f ∼ Re−1/4 for large Re. Rough pipes turned out to be more elusive.
Nikuradse [339], another student of Prandtl, carried out an impressive range of experi-
ments, where the interior of pipes were coated with sand of a characteristic particle size,
i.e. roughness size, r. From his data, spanning many decades in Re and several roughness
sizes, it could be seen that the friction factor fD stabilized at a certain value for hight
Re. �is asymptotic value displays the Strickler scaling fD ∼ (r/d)1/3 [164,424]. In the
years following, e.g., Colebrook and White [96] provided experiments with less uniform
roughness. With the introduction and resultant popularity of the Moody diagram [316]

(which plots fD as a function of Re), the Darcy–Weisbach equation (2.11) and the Darcy
friction factor fD became the accepted way of expressing friction in pipe �ow [71]. �e
data from Nikuradse’s experiments are plo�ed in a Moody diagram in �g. 2.4 (e), showing
the friction factor fD as a function of Re for varying roughness. Much research has been
directed into a�empts to connect the empirical laws to fully developed turbulence; in
particular recently due to the evident connection to dynamical critical phenomena from
statistical physics [164,165]. �e fully-developed limit will not be a focus of this thesis;
rather we will be focused in coming sections on the transition region from laminar �ow to
turbulence. �is region is indicated as the crossover region between laminar and Blasius
scaling in �g. 2.4 (e).

Having taken a detour into high-velocity �ows with disordered boundaries, we now
return to the pore network scale. �e perhaps most obvious contribution from the
statistical physics community to �ow in porous and fractured media has been to draw
a�ention towards spatial (or temporal) �uctuations, e.g. in porosity and velocity, instead
of the average quantities. In this respect, percolation is a conceptually important class
of models. �ese models were originally devised by Flory [155] and Stockmayer [422] to
describe polymers. �e application to porous �ows was pioneered by Broadbent and
Hammersley [70], who coined the name due to its resemblance to the phenomena taking
place in a co�ee percolator [390]. �e basic variant of percolation considers a la�ice with
sites (site percolation) or bonds (bond percolation) that all can be open with a probability s.
�e analogy to a porous medium is striking, both on the level of pores and single fractures
in a fracture network—s being analogous to porosity. A comparison between �ow in
porous rock and a percolation cluster is shown in �g. 2.3 (a) and (b). At a certain value
s = sc, there appears a connected path through the system from one end to the other, and
the system is permeable. Continuing the analogy to porous media �ow, it is clear (from
conservation of mass) that the same �ux of �uid must pass through any cross-section,
implying that in sych systems, close to sc, the local velocities will vary by orders of
magnitude. �is is illustrated in �g. 2.3 (b). Considering s as a control parameter, and the
percolation probability P (s) as the order parameter, the system exchibits a continuous
phase transition at sc, with associated critical exponents. A thorough introduction to
percolation can be found in the book by Stau�er and Aharony [420] and their many
applications and implications for �ow in rocks have been reviewed by Sahimi [390,391].
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Several versions of percolation models beyond the basic ones apply to porous media,
such as invasion percolation (one phase displacing another), or gradient percolation
(in the presence of an external �eld). In this work, we shall mainly be acquainted with
directed percolation (DP), which is a variant of bond percolation where the bonds are
directed. Typically, one considers a 45° tilted square la�ice, where the “�uid” is only
allowed to �ow downwards. A realisation of directed percolation is shown in �g. 2.3 (c),
and is seen to yield a di�erent pa�ern than regular percolation, cf. �g. 2.3 (c). Percolation
models have in general had important consequences for understanding �uctuations in
two-phase �ow (e.g. related to imbibition and drainage) in porous media, but we will not
consider that here. For overviews of such studies, the reader is referred to the recent
thesis of Moura [322] and references therein, or the review of pore network models by
Joekar-Niasar and Hassanizadeh [225].

2.1.2 Pipe �ow phenomenology

figure 2.4: From lam-
inar to turbulent �ow in
pipes. Figures (a)–(d) show
the four �ow regimes of sin-
gle phase pipe �ow, for in-
creasing Reynolds number
Re. Figure (e) shows the
data from the seminal exper-
iments by Nikuradse [339] re-
plo�ed in a Moody diagram.
Here, the Darcy friction fac-
tor fD is plo�ed against
Re, k is a roughness ampli-
tude and R is the pipe ra-
dius. �e laminar scaling
fD ∼ Re−1, corresponding
to (a), and the Blasius scaling
fD ∼ Re−1/4 correspond-
ing to (d) are indicated as
dashed lines. Additionally,
the region of transitional �ow,
where (b) and (c) belong, is in-
dicated, along with the criti-
cal point Re×, measured by
Avila et al. [23], where solitary
pu�s are equally likely to split
as to decay.
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We now return to Reynolds’ experiments on transitional �ow in smooth pipes.
Although his investigations led to the estimate of a critical Re, the picture of the transition
between laminar �ow and turbulence was not complete—and remains incomplete to this
day [29,327]. Nevertheless, he noted that depending on how carefully the inlet conditions
were prepared, laminar �ow (see �g. 2.4 (a)) could be sustained up to Re ' 13000. �at,
along with the identi�cation of a critical Re below which turbulence would ultimately
decay, pointed to the fact that he already then identi�ed the transition to turbulence
as subcritical: �nite perturbations are required to trigger turbulence, and nonlinearity
drives the instability that ultimately leads to turbulence. It is now generally believed that
the laminar Hagen–Poiseuille solution (see �g. 2.4 (a)) to the Navier–Stokes equation
is linearly stable for all Re—as demonstrated in simulations up to Re ' 107 [300,392],
and underpinned by experiments [105,470]. �is supports the view of the transition as a
subcritical one, and also helps explain why approaches to account for this transition using
hydrodynamic stability theory (Orr–Sommerfeldt method) have been fruitless [129]. Other
shear �ows, such as that in a Taylor–Coue�e cell (shear �ow between counter-moving
cylinders), does exhibit a linear instability at �nite Re, and for such systems, the global
‘period doubling’ route to turbulence by chaos theorists proved successful (see e.g. [430]).
Here, we will consider only the transition to turbulence in pipe �ow. For fully developed
turbulence, consider standard textbooks on the topic (e.g. [313,440]), and for the transition
in shear �ows in general, consider the reviews by Manneville [283,284].

Reynolds noted that around the critical point, turbulence did not rise uniformly, but
occurred as intermi�ent “�ashes,” which are now usually termed turbulent pu�s and slugs.
�ese structures are shown, respectively, in �g. 2.4 (b) and (c). �is underpins the notion
that transitional �ow does not consist of a di�use mix of laminar �ow and turbulence,
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but rather as a spatial and temporal distribution of relatively sharply separated domains
of either turbulence or laminar �ow. Pu�s are arrowhead-shaped patches of localized
turbulence that travel downstream at approximately the mean velocity of the �ow. A
turbulent pu� is separated upstream from laminar �ow by a sharp interface, leading to
early analogies to gas–liquid phase transitions [29,97,470]. At the downstream front the �ow
more gradually relaminarises, eventually reaching the Hagen–Poiseuille pro�le (unless a
trailing pu� comes along). �e pu�s may either split or decay spontaneously. During
pu� spli�ing, a daughter pu� is created at the downstream end of a mother pu� [23,29,471],
leading to two coexisting pu�s, and accordingly a higher fraction of the pipe being in
a turbulent state. At low Re, pu�s are more likely to decay than to split, whereas for
higher Re, they are more likely to split than to decay. Evidently, for (spatially localized)
pu�s, the upstream front travels at the same net speed as the downstream one. At a
certain second critical Re, the downstream pu� starts to move faster than the upstream
front, and single pu�s start to expand. �ese expanding pu�s are known as slugs. When
the downstream front is characterized by gradual relaminarization, the slugs are termed
weak slugs, whereas when the Re is su�ciently high for the downstream edge to invade
the laminar �ow as aggressively as the upstream front, the slugs are termed strong slugs.
At the Reynolds where slugs are present, the entire system will be �lled with turbulence;
see �g. 2.4 (d). A clear description of the transition of turbulence in pipe �ow is given
by Barkley [29], and, in particular, the Barkley model [28–30] has given a near complete
understanding—at least qualitatively—of the dynamics that gives rise to turbulence in a
smooth pipe.

2.1.3 Two-phase �ow

Two-phase �ow in pipes and tubes, typically of two immiscible �uids (e.g. gas and liquid),
displays a signi�cantly more complex phase diagram than what does single-phase �ow
in the same geometries. �ese �ows can, for example, be classi�ed into the following
categories [6,104,197], which are also shown schematically in �g. 2.5:

(a) Stratified flow

(b) Dispersed flow

(c) Annular flow

(d) Slug flow

figure 2.5: �e author’s
impression of the four �ow
regimes listed in the text.

• Strati�ed �ow: �e lighter phase (e.g. gas) �oats on top of the liquid, and there is
a clear interface separating the phases. Such �ows occur when gravity is important
and the pipe is horizontal or inclined from vertical.

• Dispersed �ow: One of the phases is dispersed in the other, as small bubbles,
drops or droplets.7

7
Droplet means ‘small drop’

and typically refers to a drop
less than 500 µm in size.

• Annular �ow: �e lighter phase �ows through the center of the pipe, while the
other phase �ows along the walls.

• Slug �ow: Alternating, unsteady, intermi�ent �ow of extended bubbles of one
�uid, intersped by the other phase.

In addition to the fact that turbulence can occur in both phases, the phenomena are further
complicated by the existence of surface forces on the �uid-�uid interface. Nevertheless,
accurate phenomenological descriptions of the thermophysical properties of two-phase
mixtures transported in tubes is of critical importance for an impressively wide range of
applications, including nuclear reactors [46], heat exchangers, petroleum production [1]

and CO2 transport [328]. As a �rst-principles simulation of the complex interface is
generally unachievable for large systems, experimentally based correlations are usually
employed in simulations [266]. �ese correlations are algebraic expressions that relate
the macroscopic heat transfer, friction, etc., to dimensionless parameters describing the
�ow. In two-phase �ow, there can be several other dimensionless parameters than the
Reynolds number Re which control the �ow. Some of these are:
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figure 2.6: We�ing. (a)
A droplet we�ing a substrate,
where the contact angle θ is
indicated. A close-up of the
force balance at the contact
line is shown. (b) An elec-
trowe�ing setup, reprinted
from [264]. �e setup corre-
sponds to (a), but an elec-
trolyte is added to the sur-
rounding phase, and an elec-
tric �eld is applied across the
system. �e close-up shows
that the apparent (on scales
beyond λD) contact angle dif-
fers from the local one, θ0.
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• �e Weber number, We: inertia to surface forces,

• �e Capillary number, Ca: viscous to surface forces,

• �e Bond number Bo or Eötvös number Eo: buoyant to surface forces.

At smaller scales, such as in porous media (where two-phase �ow was brie�y in-
troduced in section 2.1.1) or when modelling individual droplets, the Reynolds number
will o�en be small, and a more important control parameter will then be the capillary
number Ca. As mentioned above, it measures the ratio of viscous to surface forces, and
it is de�ned by

Ca =
uµ

γ
, (2.12)

where u is a characteristic velocity, and γ is the �uid–�uid interface tension. For �ow
near solid boundaries, an essential concept is we�ing, which is the ability of a liquid phase
to adhere to the surface. �e we�ing properties of two-phase �ows are of importance in
a wealth of applications (see e.g. [60]), including in geophysics, as they are a controlling
factor e.g. oil recovery [44]. Observations of we�ing and capillarity date, at least, back
to da Vinci, and the foundations of its theoretical understanding were laid by, among
others, Hauksbee [180], Young [478], Laplace [242], Plateau [357], and Gibbs [162] (see [251]).

For a static droplet (or drop) immersed in another liquid, the Young–Laplace law
states

∆p = γκ, (2.13)

where ∆p is the pressure di�erence between the inside and the outside of the droplet,
and κ is the curvature, which for a spherical droplet with radius R (in 3D) is given by
κ = 2/R. �e we�ability is o�en quanti�ed through the spreading parameter S:

S = γ1 − (γ + γ2), (2.14)

where γ1 is the surface tension between the solid and the surrounding phase and γ2

is that between the solid and the droplet. If S > 0, it is energetically favoured for the
droplet to wet the entire solid; in practice a thin (nanometer-sized) �lm will remain.
If S < 0, the droplet is partially we�ing. �en, in equilibrium, the contact angle θeq,
which quanti�es partial we�ability, is given by the energy balance—or alternatively force
balance—at the three-phase contact line. �is balance gives Young’s law,

cos θeq =
γ1 − γ2

γ
. (2.15)

A droplet we�ing a solid substrate is shown in �g. 2.6 (a), along with the force balance,
and the contact angle, at the contact line.
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Out of equilibrium, e.g. when a glass plate is slowly li�ed out of a water bath,
the contact line may be forced to move along the solid substrate. Huh and Scriven [201]

demonstrated that blindly assuming that there is no hydrodynamic slip (which is common,
and usually valid, for the single phase case) leads to a logarithmically diverging energy
dissipation near the contact line. �us, in their words, “not even Herakles could a
sink a solid” [60,201]. �e no-slip Navier–Stokes equations are therefore not directly
compatible with a moving contact line (MCL). Near the moving contact line, a more
precise microscopic description is needed to supplement the purely hydrodynamic model.
One way is to abandon the no-slip condition and regularize the microscopic length scale
that leads to the divergence, with a slip length; referred to as a Navier slip boundary
condition. �is is compatible with the Voinov–Tanner–Cox law for Ca� 1 [81,101,435,455],

θ ∼ Ca1/3, R(t) ∼ t1/10. (2.16)

Here, R is the radius of a droplet spreading on a substrate in time t, and θ is an apparent

contact angle, valid on scales beyong the moving contact line. Equation (2.16) also
has experimental support for a range of systems [60]. Other models for the moving
contact line include molecular kinetic theory [54], and evaporation and condensation
at the fronts, which is particularly relevant for a moving liquid droplet surrounded by
its vapour [60]. Another complicating factor is that surfaces usually have a micro- to
macroscopic roughness or chemical inhomogeneities, which means that in the static
case there are several metastable states that locally minimize the energy, imparting
hysteresis e�ects [374]. For a broader introduction to the �eld of we�ing, consider the
seminal reviews by de Gennes [113], Leger and Joanny [251], and Bonn et al. [60], as well as
that by Snoeijer and Andreo�i [415] for modelling contact line motion.

2.1.4 Electrohydrodynamics

Loosely speaking, electrohydrodynamics constitutes the joint e�ects of �uid �ow and
solute transport in the presence of electric �elds. Such e�ects are important within
geophysics [207], because charged surfaces appear naturally as rocks are exposed to
water. Electrohydrodynamic e�ects can be harnessed for detecting seismic events or
earthquakes [35,310,442], and have been suggested as a source of increased dissipation
during seismic activity [366]. Moreover, electrohydrodynamics is of relevance e.g. for
geothermics [379] and environmental remediation of soils or aquifers [163]. In addition
to being important for the permeability of reservoirs, electrokinetic e�ects may be of
importance for two-phase �ow, as surface charges and electric �elds are known to
change the we�ing properties of �uids [145,382]. Electrohydrodynamic e�ects could thus
be instrumental in the explanation of why and how oil recovery can be enhanced by
injecting water of a particular salinity [179,192].

�e possibly �rst report of electric �elds generating �uid motion was given by
Reuss [378], who observed that clay particles moved relative to the �uid when subjected
to an electric �eld; an e�ect now known as electrophoresis. �e streaming potential, i.e.
the build-up of an electric potential due to the �ow of an electrolyte solution through a
charged channel, was �rst observed by �incke [375]. von Helmholtz [457,458] provided
early theoretical results explaining the ‘double layer’ at the electrolyte-solid interface,
and its role as a capacitor. Separate from this, Nernst [331,332] and Planck [355,356] worked,
albeit not together (see the review [281]), on the problem of electrodi�usion. Not long a�er,
Smoluchowski modelled electrophoresis and streaming potential [413,414]. Gouy [167,168],
and later Chapman [90], derived the Poisson–Boltzmann equation, which gave an expres-
sion for the extent of the electrical double layer. �e la�er is termed the Debye length λD,
named a�er Debye, who rederived it in his work with Hückel [115,116]. �ese theoretical
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descriptions formed the basis for re�nements by Stern [421], Grahame [169], and others.
A more complete historical review can be found e.g., in [34], and introductions to the
broader �eld of electrochemistry can be found in several books, see for example [27,233,367].

Observations of electrohydrodynamics in two-phase �uid systems date back to the
seminal experiments by Lippmann [267] in 1875, where he pioneered the �eld of electro-

capillarity, or, the study of the relationship between capillarity and electric �elds [325].88 Lippmann later went on to
win the Nobel prize for in-
venting color photography.

Lippmann observed that the contact angle of mercury in contact with an electrolytic
solution in a capillary could be modi�ed by applying a potential di�erence V0 between
the mercury and the electrolyte. In particular, he found the quadratic relation

cos θ = cos θeq +
1

2
BV 2

0 , (2.17)

where θ is the observed (apparent) contact angle, θeq is the equilibrium contact angle
without any applied �eld, typically given by eq. (2.15), and B is a phenomenological
parameter. A similar setup (on an electrode instead of in a capillary), demonstrating the
e�ect of imposing an electric �eld on the we�ing properties of a single droplet, is sketched
in �g. 2.6 (b). Eq. (2.17) can also be inferred from Gibbs’ adsorption isotherm [257,314].
�is discovery not only led to the �rst electrocardiograph by Waller in 1887 [45,462], but
also laid the foundation for the �eld of electrowe�ing. Further studies were carried
out by Pellat [350,351]. Frumkin et al. [160] studied we�ing of an oil droplet si�ing on a
mercury electrode. More recently, electrowe�ing-on-dielectric (EWOD) was pioneered
by Berge [39,450] and this technology has since found wide use in e.g. electronic dis-
plays [37,38,183,210]. For a more complete overview of the state-of-the-art of electrowe�ing,
the reader is referred to the reviews by Mugele and coworkers [324–326].

Around 1905, it was discovered that applying electric �elds to water-in-oil emulsions
(i.e. dispersed �ows, cf. the start of section 2.1.3) could help speed up the deemulsi�cation
process [135] needed for the oil to become usable as fuel. �is led to the invention of
the electrocoalescer by Co�rell and Speed [100] (see [135] for a brief history of the la�er
invention). Recent reviews of electrocoalescence are available in the literature [280,302].

In 1913, Millikan [304] published the �ndings from his and Fletcher’s elegant oil drop
experiment.�e controversy regarding

the share of labour between
Millikan and Fletcher is not

entered here; it su�ces to
state that Fletcher’s own

recollection [154] is an
interesting read.

Oil droplets were charged and sprayed into a chamber, and by measuring
the terminal velocity with and without an electric �eld, they could �nd the charge of
a droplet. �is charge turned out always to be an integer multiplum of the elementary
charge, qe, which they could measure with (overly) high precision. �is led to Millikan
receiving the Nobel prize in 1923.

Much of the early theoretical work on two-phase electrohydrodynamics was, if not
directly motivated by electrocoalescers, at least applicable to such con�gurations, as it was
concerned with the physics of single droplets of one liquid suspended in another. �e early
models assumed that the two phases were either perfectly dielectric (non-conductive) or
perfectly conductive materials. Both these models predict a prolate deformation of the
droplet in the direction normal to the applied electric �eld [8,345]. Careful experiments
by Allan and Mason [8], on the other hand, showed that the deformation could be either
prolate or oblate depending on the conductivities in the two phases. �e conundrum was
partly resolved by Taylor [436]. In his “leaky-dielectric” model, the phases were assumed to
be weakly conducting, thus allowing a net current through the system including droplets.
�is, in turn, could drive a circulation in the droplet and gives rise to interfacial stresses
that enables the oblate shape, which was shown analytically for small displacements.
�e main approximation behind Taylor’s model is (1) that the electric �eld is strong, and
(2) that the electric double layer is vanishingly thin compared to the droplet; hence the
conductivity is taken to be constant and net charges are con�ned to the interface, i.e.,
di�usion of charges is neglected. When either of these assumptions are not satis�ed, the



2.2. STATE OF THE ART 19

model cannot be expected to hold quantitatively. �is concerns in particular situations
with mobile charge carriers, where there can be regions of net charge, and where the
conductivity is not uniform [43,88]. Phenomena such as concentration polarization cannot
be captured by such models.9 As an improvement over Taylor’s analytical solution 9 �at being said, neither

could Millikan’s experiment,
since in Taylor’s model, no
droplet can have a net charge.

to the leaky-dielectric model, Zholkovskij et al. [483] developed analytical expressions
for droplets with arbitrarily thick Debye layers in one of the phases (but still for small
perturbations). �e la�er could interpolate between the asymptotic solutions for a
perfectly dielectric and a leaky-dielectric model. Saville [396] outlined how the leaky-
dielectric model can be derived from the basic electrokinetic equations, illuminating the
assumptions made in the process. Schnitzer and Yariv [399] showed rigorously, building
on the work by Baygents and Saville [32], how the leaky-dielectric model can be seen as
a limit of the full model.

2.2 state of the art

2.2.1 Direct simulation of �ow in disordered geophysical media

Pore scale simulations

�e search for macroscopic transport properties such as porosity, permeability and turtu-
osity from a pore-scale description has recently become possible to address numerically,
through the development of numerical methods and improved computational facilities.
�e development of the �eld of digital rock physics imparts calculation of �ow properties,
as well as mechanical properties, from 3D images of porous samples obtained using X-ray
microtomography or other imaging techniques [14,20,56,76,488]. Methods for numerically
simulating such �ow, reviewed by Meakin and Tartakovsky [294], has enabled simulation
of solute transport [47,48,226,307], multiphase �ow [308], and time-dependent evolution of
the microstructure e.g. through dissolution and precipitation kinetics [341] Simulations
have revealed that the macroscopic behaviour is controlled by local heterogeneities [41].
Computed elastic properties depend on the initial microstructure and change during
rock transformation processes [467], and the preferred dissolution pa�erns impact the
mechanical properties and seismic wave velocities [21].

Pore-scale simulations have revealed that there exists large (several orders of mag-
nitude) variations in local �ow velocities in porous networks [48,110,247] and in fracture
joints [72]. Much of the information that is contained in the Eulerian velocity �eld can
be captured by the probability distribution function (PDF) sampled uniformly over the
pore space. Recent simulations of ensembles of synthetically generated porous media
have suggested that the velocity PDFs can be captured by either a stretched exponen-
tial [95,199,410] or a ‘power-exponential’ distribution [293]

P (u) =




a
(
u
us

)η−1
exp

[
−
(
u
us

)η]
(stretched exponential),

a exp
[
−
(
u−u0
us

)η]
(power-exponential).

(2.18)

Here u0 (peak), us (spread) and η (exponent) are ��ed parameters that depend on
the geometry, a is a normalizaton factor, and u ≥ 0 can refer to both the (absolute)
transveral and longitudinal component of the velocity �eld u, as well as to its absolute
value. Note that the two distributions have the same asymptotic behaviour for u� us,
i.e. P (u) ∼ exp[−(u/us)

η]. In particular, Matyka et al. [293] found the exponent η in
the power-exponential distributions for the longitudinal component and the absolute
value to be an increasing function of the porosity which interpolates between a broad
distribution (η < 1/2) at (relatively) low porosity, through exponential (η ' 1) and a
Gaussian distribution (η ' 2) at high porosity. Here, the considered porosities were
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in the range φ > 0.4, as compared to 0.2 < φ < 0.6 in the study of Siena et al. [410],
who suggested a stretched exponential distribution. �e la�er study also encompassed
a di�erent porous medium generation protocol. A stretched exponential distribution
can be theoretically inferred by heuristically assuming the medium to be a collection
of cylindrical pores with exponentially distributed radii, wherein the �ow is given by
the Hagen–Poiseuille solution, as demonstrated by [199]. Other studies have suggested
both exponential and Gaussian distributions for di�erent porous systems [48,108,223,248,285].
Close to the percolation threshold, the velocity PDF obeys a power-law distribution over
several orders of magnitude, as shown in Navier–Stokes simulations in the backbone of
a site percolation network [15]. �ese observations together suggest that (i) the velocity
distributions are not a simple function of porosity alone, but that (ii) a general trend
is that a broad (power-law) distribution at low porosity (the percolation threshold) is
gradually turned into a more narrow stretched exponential, exponential, and �nally
Gaussian distribution as the porosity is increased. However, these observations apply
only for porous media when �ow and deformation are decoupled.

Mechanical coupling

Voronov et al. [460] considered the viscous stress associated with the �ow �eld in a highly
porous medium, and proposed a gamma distribution to describe the PDF of the largest
eigenvalue of the rate of strain tensor for the bulk. Pham et al. [354] performed a similar
study on packed beds and Berea sandstone, and found a lognormal distribution of stress.
For assessing the impact of �uid stress on the state of stress in the solid, the pore-wall
stress would be more relevant. In deformable porous media, numerical simulations have
suggested that the relationship between the imposed pressure gradient and velocity
�ux becomes non-linear and saturates for large pressure gradients [189], and can impart
hysteresis e�ects [176]. Saenger et al. [389] studied the e�ect of �uid viscosity on the ef-
fective elastic parameters of rocks. Nonetheless, rocks can usually only deform very
slightly (less than 1%) before they are irreversibly damaged. Opening of microfractures
and collapse of pores lead to a non-linear evolution of porosity and permeability with
the pore pressure gradient [109]. Jasinski et al. [219] considered the evolution of elastic
parameters and permeability of a Bentheim sandstone under small deformations, through
experiments and simulations. Lan et al. [239] found normal (within grains) and bimodal
(at grain boundaries) distributions of principal stress in 2D discrete simulations of com-
pressing granite rock. Laubie et al. [244] studied the stress distributions in 2D arti�cial
“swiss cheese” porous media. �e probability density functions were found to decay
as stretched exponentials for high stresses, and the distributions broadened with the
degree of disorder. �ey also observed the formation of stress chains analogously to
what are known for granular packings. Other researchers have considered transient cou-
pling between the �uid �ow and solid matrix through precipitation [222], dissolution [352]

(thermodynamically driven morphology evolution), erosion and deposition [213,214].

Fracture �ow

Most numerical studies of �ow in rough fractures, up until about a decade ago, have been
carried out in the regime of creeping �ow, o�en using a lubrication approximation (i.e.
the local cubic law, eq. (2.8)) [40]. �e main challenge is then to relate the permeability
to the aperture �eld [358,432]. �e default assumption is to use the distance between
boundaries along the normal direction to the �ow plane [40], but this is clearly unsuitable
for situations e.g. where the surface varies sharply over short distances, or perfect fracture
joints resulting from ‘mode 1’ fracture (no shear displacement). To compensate for this
discrepancy, Mourzenko et al. [323] suggested the method of ��ing the largest possible
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spheres at each point in the fracture to calculate the e�ective aperture. Brown [72] solved
the Reynolds equation (2.9) in a synthetic rough fracture and showed that wall roughness
strongly a�ected the transport. Méheust and Schmi�buhl [295,296] showed experimentally
and numerically (in the same lubrication paradigm) that the heterogeneity of the rough
surfaces can lead to both enhanced and inhibited �ow compared to parallel plates with
the same mean separation, and is moreover dependent on the orientation of the pressure
gradient. Further, long-range correlations in the aperture �elds are transmi�ed to the
�ow �elds, leading to �ow channeling [297].

Gutfraind and Hansen [175] and Zhang et al. [482] simulated �ow in 2D and 3D fractures,
respectively, beyond the lubrication approximation, considering creeping �ow in 2D
self-a�ne channels. Drazer and Koplik [121] studied �ow in self-a�ne fractures, and the
analysis was extended to 3D and compared to e�ective medium theory [122]. �rough
direct 3D simulations, Brush and �omson [73] evaluated the e�ect of roughness and
Re on the validity of the lubrication approximation, giving explicit bounds (on Re and
roughness) on the validity range of the la�er. Previous such analyses were based on an
order-of-magnitude analysis [346]. Lo and Koplik [269,270] considered both pure �uid and
suspension �ow in similar geometries. Jin et al. [224] investigated the role of roughness in
2D simulation, and found, following Talon et al. [433], three regimes for the permeability
dependency on roughness. In particular, it has been found that the permeability is o�en
dominated by the narrowest constriction, but this e�ect is more pronounced in 2D than
in 3D [412,432].

Auradou et al. [22] investigated the e�ect of a shear displacement on fracture walls,
comparing experiments to numerical simulations, and found that the permeability de-
pended linearly on the variance in local aperture. �is e�ect was previously estimated
by geometric considerations [386], and may reduce permability by several orders of mag-
nitude, as shown in laboratory experiments [125]. Flow in rough fractures imposes a
signi�cant stress on the solid walls, as numerically demonstrated by Lo and Koplik [270].
Boundary roughness also leads to increased solute dispersion [64]. Other lines of re-
search concern the coupling of �uid �ow to heat transfer in fractures [333–335], solute
transport [64], and �ow in propped fractures [218].

Inertial e�ects on the �ow properties in porous media have been considered in
2D geometries [15,16,130,385] and in 3D spherical packings [157,190,191], suggesting that for
moderate Re, steady eddies are responsible for the quadratic deviation from Darcy �ow.
Lo Jacono et al. [271] simulated weak inertial �ow (�rst-order correction to Poiseuille
�ow) in a rough channel, verifying the initial cubic deviation. Gutfraind and Hansen [175]

simulated �ow in a channel with one self-a�ne wall. High-velocity �ow in a 2D self-
a�ne fracture joint was simulated by Skjetne et al. [412] up to Re = 52, who found that
the relation between pressure gradient and velocity was well described by a weak inertial
correction at low Re and a Forchheimer equation at higher Re. Cardenas et al. [80]

simulated �ow and solute transport in a 2D asymmetric fracture, paying particular
a�ention to the role of eddies. A similar study for a larger range in Re, and for several
values of the Hurst exponent H , was carried out by Briggs et al. [69], but display only
a weak nonlinearity and an Izbash (power-law) equation provided a be�er �t than
a Forchheimer equation. �e Forchheimer equation also appears to be applicable to
�ow of non-Newtonian �uids in 2D fractures [474]. Zou et al. [486] studied unsteady
�ow in 2D fractures up to Re = 1000. �e same authors studied steady �ow in 3D
fractures up to Re = 400 [487] (see also [485]), while Wang et al. [463] studied steady �ow
in self-a�ne fractures for somewhat lower Reynolds numbers. On the experimental
side, laboratory experiments [220,448] yield good agreement with the phenomenological
Forchheimer equation. Experimental studies of �ow in fractures indicate that turbulence
sets in at lower Re for rougher fractures [369,370]. In general, a “critical” Reynolds number,
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where either (i) laminar non-linear e�ects (steady eddies) become apparent, or (ii) the
laminar �ow �eld becomes linearly unstable, seems to be highly sample-dependent.
Conceptually, this is understandable for 2D geometries, where the �ow is limited by the
narrowest passage along the path. In 3D, however, the �ow will tend to pass around
obstacles, yielding lesser impact [412]. �e comparative investigation of (i) and (ii) above
have been largely omi�ed in the literature, particularly in 3D, where most studiest have
been carried out by solving the time-independent Navier–Stokes equations. On the other
hand, the spatiotemporal dynamics of the transition to turbulence in rough channels was
recently investigated numerically by Ishida et al. [206]. �ese simulations were concerned
with homogeneous small-scale roughness that could be numerically incorporated as
an e�ective body force near the domain walls [77], thus not enabling the possibility of
eddies dea�aching from the boundary and entering into the bulk �ow. Nevertheless,
their results showed spatially localized turbulent structures similar, and complementary,
to the stripes and bands observed for transitional plane Poiseuille �ows. �us, they
provide a �rst link between the studies of the transition to turbulence in shear �ows and
the �eld of fracture �ow, brie�y introduced above.

Electrohydrodynamics in disordered media

Due to the strong inherent nonlinearity that arises when coupling the Navier–Stokes
equations to electrokinetic transport, computational studies of such phenomena have
been largely limited to two-dimensional [150,151] or axisymmetric geometries [286,287]. Re-
cently, a method to simulate steady-state electrohydrodynamic phenomena in nanopores
was presented by Mitscha-Baude et al. [309]. As an alternative, Obliger et al. [344] studied
the transport properties of a pore-network model of electrokinetic �ow.

2.2.2 Directed percolation and the transition to turbulence in pipe �ow

Since Reynolds performed his pipe experiment, much experimental e�ort has been
invested into determining the precise value of the critical Reynolds number Rec (see [327]

for a concise historical overview). However, it was not until the work of Avila et al. [23]

that an unambiguous value, (approximately) free of �nite-size e�ects and other systematic
errors, could be determined. �is was done solely based on single-pu� statistics. �e
‘life times’ of uncorrelated single pu�s are distributed exponentially, so the probability
distribution can be expressed as Pd(t) ∼ exp(−t/τd) where τd(Re) is a function of Re.
An equivalent distribution holds for the characteristic spli�ing times τs. By ��ing to
experimental data, precise values of τs and τd could be obtained for a wide range of
Re. It turns out that both these characteristic times depend superexponentially on the
Reynolds number, i.e. like τi ∼ exp(exp(aiRe + bi)), where i ∈ {s, d} and ai, bi are
empirically determined numerical prefactors. �e dependence of the lifetime τd on Re
can be inferred from extreme value statistics [166]. When the two values are equal, i.e.
when a single pu� is equally likely to decay as to spread, a critical Reynolds number
Re× can be de�ned. Avila et al. [23] found a value Re× ' 2040, strikingly close to the
value Re ' 2000 estimated by Reynolds. �e transition is, however, not fully quanti�ed
by simply locating a critical value of the control parameter.

Pomeau [362] �rst pointed out that the spreading of turbulent spots in pipe �ow had a
striking analogue to directed percolation (DP, described in section 2.1.1). In this picture,
the downward (‘�ow propagation’) direction in DP must be identi�ed as the time axis,
and the horizontal direction corresponds to the �ow direction (in a co-moving reference
frame). Here, an occupied site corresponds to a coarse-grained region of turbulence, i.e.
a pu�, while unoccupied sites corresponds to laminar regions. �is analogy between the
rise of turbulence in pipe �ow and directed percolation is seen by comparing �g. 2.3 (c) and
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(d). Like in DP, there is in transitional pipe �ow a spatio-temporal competition between an
active (turbulent) state and an absorbing inactive (laminar) state. �e absorbing property
of laminar �ow is given by its linear stability: a laminar region must by contaminated by
a nearby pu� to become turbulent; it does not turn turbulent by itself.

As a universality class, DP models have proven to be robust with respect to the details
of the microscopic interaction rules. Janssen and Grassberger [170,193,216] conjectured that
models should belong to the DP universality class provided that they possess the following
necessary ingredients:

1. �e system exhibits a continuous phase transition from a �uctuating active state
to a unique absorbing state,

2. the system is characterised by a positive one-component order parameter,

3. the system has no additional symmetries or quenched randomness,

4. there are only short-range interaction rules.

In this picture, the turbulent fraction F , i.e. the fraction of the pipe occupied by turbu-
lence,10 ful�ls the condition for being the order parameter, and the other conditions seem 10 In DNS or experiments, the

square of the non-axial part of
the velocity vector averaged
over the cross section, viz.

q =
〈
u2
r + u2

θ

〉
r,θ

(2.19)

makes up a good indicator for
whether a region is turbulent
or not.

also to be satis�ed. Hence, Pomeau’s conjecture—a view that since has been advocated
by several others [283,284]—is that pipe �ow belongs to the universality class of 1+1 DP
(which refers to 1 spatial and 1 temporal dimension). If this conjecture holds true, the
instantaneous turbulent fraction Ft, i.e., the fraction of the pipe that is occupied by
turbulence at any time t, should display the dynamic power-law scaling

Ft ∼ tα (2.20)

at the critical Re. Close to criticality, the order parameter F = limt→∞ Ft should obey
the scaling

F ∼ (Re− Rec)
β, (2.21)

close to the critical point. Moreover, the distributions of laminar gaps in space (`x) and
time (`t) should display the scalings

P (`x) ∼ `νxx and P (`t) ∼ `νtt (2.22)

at the critical point. �e critical exponents α, β, νx, and νt given here should be those of
1+1 DP, which are listed in table 2.1.

table 2.1: Critical expo-
nents in 1+1 directed percola-
tion. Values taken from [221].

Exponent Value

β 0.276 486(8)
νx 1.733 847(6)
νt 1.096 854(4)

α = β
νx

0.159 464(6)

Finding experimental realizations of DP, even in other systems than pipe �ow, has
proven to be a delicate ma�er.11

11 Despite the theoretical
success, experimental
observations of DP were
lacking [194] until 2+1 DP
scaling was displayed for
electrohydrodynamic
convection in nematic liquid
crystals by Takeuchi
et al. [431].

Lemoult et al. [252] provided strong evidence that Coue�e
�ow (countermoving plates, or actually countermoving cylinders with large radii and
small gap size) belongs to the 1+1 DP universality class. Experiments by Sano and
Tamai [393] indicated that plane Poiseuille �ow (PPF) belongs to the universality class
of 2+1 DP (two spatial dimensions). �e la�er experiments hinged on grid-generated
turbulence at the inlet and were far from reaching a steady state [327] and reported a
critical Re in disagreement with more elaborate studies [472]. Hence the quality of their
observations is dubious. On the other hand, Chantry et al. [89] recently provided clear
evidence that a reduced-order model of Navier–Stokes PPF, Wale�e �ow, belongs to
2+1 DP. �is type of �ow, though less computationally requiring, contains the essential
self-sustaining mechanisms of turbulence and provides strong hints to what should be
expected in experiments.

With regard to pipe �ow, Shih et al. [406] provided a conceptual link between transi-
tional �ow and predator-prey models, where zonal �ow takes on the role as predator,
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which could be shown to belong to DP by renormalization group methods. However,
the numerical simulations on which their model was based were incomprehensive, and
the signi�cance of zonal �ow is generally believed to be minor [29].12

12 �e predator-prey
oscillations they observe are
not unlikely to be the result

of the feedback between
friction factor and mean �ow,
which is a pronounced �nite
size e�ect that is ubiquitous

for periodic pipes with short
lengths—see the discussion
near the end of this section.

Using his model
for pipe �ow, Barkley [28,29] performed simulations which are consistent with 1+1 DP,
whereas a validation using experiments or DNS is still lacking. Mukund and Hof [327]

observed in 7800d long pipe experiments a discontinuous transition without signs of
scale invariance. Instead, above criticality, the system was jammed in a ‘crystalline’ state,
where pu�s were approximately equidistantly spaced (at Re ' 2060). Below, the system
would always die out (at Re ' 2020). �is points to two possible explanations:

• �e DP scaling range in Re is extremely narrow, i.e. smaller than 2020 . Re .
2060 (within 2 %); or

• the transition to turbulence in pipe �ow is not in the DP universality class.

�e la�er position was advocated by Pomeau [363], against his own conjecture [362], 30
years a�er he posed it. A reason for the transition not being in the DP universality
class, could be the asymmetric interaction observed between pu�s. As noted already by
Hof et al. [195] and Barkley [29], the interaction between two pu�s manifests itself in the
properties of the downstream pu�, while the upstream pu� remains una�ected [327]. As
the downstream pu� is fed less energetic �ow, i.e. a more �a�ened pro�le than that of
Hagen–Poiseuille �ow, the closer to the upstream pu� it is, it will be more likely to decay
and less likely to split. Additionally, it will travel at a faster speed downstream, moving
away from the upstream pu�. Furthermore, in the crystalline pu� state, dowstream waves,
originating from colliding pu�s, were observed, representing an emergent property of
pu�–pu� interactions.

A �nal point in this section concerns the friction factor for transitional �ow. At the
same Re, pipe �ow completely contaminated by turbulence will exhibit a higher friction
than what will a compeletely laminar �ow. �is is connected to the transitional region in
the Moody diagram, where the friction factor fD crosses over from the laminar branch,
where f (lam)

D ∼ Re−1, to the turbulent branch, where f (turb)
D ∼ Re−1/4. For �ow in �nite

tubes driven by a constant body force (or pressure gradient), this gives rise to a negative
feedback loop between friction and �ow velocity; shown schematically:

Higher speed → More turbulence → Higher friction
↑ ↓

Lower friction ← Less turbulence ← Lower speed

�is leads to the instananeous Re being a �uctuating quantity. For su�ciently long pipes,
i.e. in the termodynamic limit, these �uctuations should vanish and the Re number can
be considered as the prescribed control parameter. For DNS, this e�ect must however be
accounted for.

Recent experimental work by Cerbus et al. [87] has shown that the friction factor in
transitional �ow can be wri�en as the linear combination

fD(Re) = Ftf
(turb)
D (Re) + (1− Ft)f (lam)

D (Re), (2.23)

where Ft ∈ [0, 1] is (still) the instantaneous turbulent fraction, which they could measure
directly from experiments. �us, the transtional region in the Moody diagram in reality
appars directly from the spatial mixture of turbulent and laminar patches. In the steady
state, in particular close to the critical point, the behaviour of F is expected to be
described by the universal exponents (table 2.1). �is illustrates also a practical need
for a �rst-principles description and understanding of the dynamics, and in particular,
knowledge of whether the transition belongs to the DP universality class.
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2.2.3 Models and methods for two-phase �ow

Overview of methods

Methods for modelling the �ow of two immiscible �uids (components or phases) where
the detailed interface is resolved, can be classi�ed into two groups: interface-tracking and
interface-capturing methods. In general, these methods adopt a “one-�uid” formulation,
such that the governing equations are wri�en in terms of one continuous �eld [368]. Some
of the most popular methods are the following:

• �e volume-of-�uid (VOF) method [397], an improvement of the now obsolete
marker-in-cell method by Harlow and Welch [178], is perhaps the most widely
used method for the computation of multiphase �ows. Here, a marker function
(the volume fraction of one of the phases) which takes the value zero or one, is
advected in a conservative manner. �e surface is then reconstructed typically
using piecewise linear interface calculation. Surface forces typically depend on
the curvature (which is found from the reconstructed surface), and are o�en im-
plemented using the continuous surface force (CSF) approach, which means that
the singular (‘delta function’) force on an interface is replaced by a surface force
that is smeared over a �nite “interface thickness” [66]. VOF conserves mass locally
very well, but provides inaccurate curvature calculation [427].

• �e front-tracking method for multiphase �ow belongs to the class of interface-
tracking methods. Pioneered by Unverdi and Tryggvason [449], the methods con-
sists of representing the interface as a collection of connected Lagrangian markers,
i.e. a mesh of codimension 1, which is advected with the �ow [368]. �is method is
closely linked to the immersed boundary method, which was originally developed
for �uid-structure interaction in the heart (see [353]). Hence, such methods may be
particularly suitable for elastic interfaces [137], and can simulate, for example, very
low capillary number �ows [4]. �e method can be highly accurate, but topological
changes, such as bubble spli�ing and collapse, are not easily handled. �is is
particularly true in 3D, where the required remeshing can be cumbersome and
deteriorate the solution. �e method is also prone to numerical instabilities.

• �e level-set (LS) method [347,428] (see also the review [401]) describes the interface
as the zero-level of a level-set function which is de�ned in the whole domain. �is
method handles topological changes automatically, provided that the level-set
function is well-behaved. In order to do this, it must be reinitialized every few
time steps (which is based on heuristics and tends to degrade the solution) [368].
Further, robust curvature calculations can be challenging [136,253]. Interface forces
can be included either using the ghost-�uid method (sharp inclusion of forces)
or by using the continuous surface force approach. A weakness of the level-set
method is that it does not properly conserve mass, although mitigation strategies
have been proposed.

• La�ice Boltzmann methods (LBM) [425], founded on statistical mechanics and de-
veloped as a re�nement of la�ice-gas automata, represent a completely di�erent
class of methods. Rather than approximating the Navier–Stokes equations, �uid
dynamics is simulated by collisions of particle distributions which obey Boltzmann
statistics (with a discrete set of velocities). Several methods are available that ex-
tend the la�ice Boltzmann method to multiple phases. One advantage of the la�ice
Boltzmann method is that it is trivially parallelizable as all interactions are local;
another is that it easily handles complex boundaries. Hence, it has been applied to,
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for example, porous media �ows, and constitutes thus another important contri-
bution from the statistical physics community to �ow in porous media. However,
time step limitations are more restricted than in other methods, as the method
is (at least in principle) fully explicit. In industrial se�ings unstructured meshes
are o�en used, and the unstructured la�ice Boltzmann method (ULBM) for both
single and multiphase �ow has been a research topic in the group of the author
(see [186,288–290,307,308]). However, some of the intuitiveness and e�ciency contained
in the (structured) la�ice Boltzmann method is lost through this generalization.

• �e phase-�eld (or di�use-interface) method (see [13] for an early review, and [232]

for a more recent one) represents the interface implicitly by the phase �eld φwhich
interpolates the �uid parameters smoothly between the phases, and includes the
interface forces through a phase �eld chemical potential derived from a free energy.
�is method has been used in the present thesis, and is discussed in more depth
below.

In addition, less established methods such as smoothed particle hydrodynamics (see
e.g. the review [312]), and stochastic rotation dynamics [205], are available, but these are
not discussed here. Moreover, there exist methods that a�empt to exploit the strengths
and eliminate the shortcomings of the di�erent methods, such as the combined level-
set/volume-of-�uid (CLSVOF) method [427]. More extensive overviews than presented
here are found in e.g. several books [368,447] and reviews [306,365,397,426].

Phase-�eld models

Phase-�eld models can typically be derived as a gradient �ow of a free energy functional
describing the system, imparting that interface forces can be included directly in a
thermodynamically consistent way. Typically, the order parameter, or phase �eld, φ,
equals 1 in one phase, and −1 in the other. At the interface, the phase �eld interpolates
between the two values. �e gradient �ow can be taken in L2 or H−1, which leads
to a non-conserved and conserved order parameter, respectively. We will in this work
consider the la�er, which, coupled to hydrodynamics, typically results in variations over
the Cahn–Hilliard–Navier–Stokes system.

In phase-�eld models, topological changes are handled automatically without reini-
tialization. Provided that all relevant physical terms are included in the free energy
functional, the topological changes should also be physically sound. In practical simula-
tions, however, the interface width must be chosen to be much higher than the physical

interface width (which is typically a few molecules wide), and it is not clear whether
the thermodynamic consistency represents an advantage over other methods when the
interface is unrealistically thick. On the other hand, it has become standard for many
of the sharp-interface methods to incorparate the interface forces in a continuous way
over a smoothed interface (cf. the continuous surface force approach in volume-of-�uid
or level-set methods). Sharp jumps in physical quantities such as density and viscosity
also represent a numerical challenge, and smoothing is o�en done in other methods (e.g.
smoothed Heaviside function). �us the conceptual di�erence is not all di�erent.

�e phase-�eld model generally conserves mass globally well, but the phase �eld is
allowed to move by di�usion in addition to advection, and thus larger droplets will grow
at the expense of smaller ones (Ostwald ripening) [479]. However, this can be mitigated by
using a phase-�eld mobility that makes this time scale much longer than the simulation
time. On the other hand, standard phase-�eld models may give equilibrium solutions
where |φ| > 1 in the pure phases, which can be catastrophic if the density ratio is
large [306,479]. Mitigations exist, but however they mean that the model is no longer a
gradient �ow.
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Other advantages of phase-�eld methods is that they are relatively easy to implement
in any �nite element framework, and that it is possible to rigorously prove stability and
convergence of numerical schemes.

In general, it is probably not possible to �nd a method that is entirely satisfactory,
and it is hard to �nd completely fair comparisons between methods in the literature. An
important advantage of phase-�eld methods over other methods, however, is the way
complex boundaries are handled. �e phase-�eld model can be easily implemented in
�nite-element methods, and can thus operature on unstructured meshes representing
complex geometries. Moreover, implementation of moving contact line models does
not require any additional ad-hoc modelling, in contrast to most other methods. �e
contact line moves by di�usion, but contact line dissipation can be introduced in di�erent
ways, which reproduces experimental results both in the nanoscale [371,373] and at the
continuum scale [83].

We now focus on the phase-�eld models directly applicable to the purposes of this
thesis. Phase-�eld models have a long history in �uid mechanics, as the concept of
a di�use interface dates back to Lord Rayleigh [376] and van der Waals [454]. However,
they have only relatively recently appeared as a serious tool for quantitative simulation,
notably starting with the work by Jacqmin [211,212]. �e basic phase-�eld model is the
‘Model H’ by Hohenberg and Halperin [196], which was introduced to describe phase
separation of binary �uids near the critical point. �is model consists of the coupled
Cahn–Hilliard–Navier–Stokes equations and describes �uids with matched densities and
viscosities. Lowengrub and Truskinovsky [276] derived a thermodynamically consistent
generalization of Model H for �uids with di�erent densities in the two phases, however
with the numerical di�culty that the velocity �eld was not divergence free. In contrast,
the model by Ding et al. [118] is a straightforward generalization of Model H, where a
constant density is replaced by a phase dependent one, while the velocity �eld remains
solenoidal. �at model does not appear to be thermodynamically consistent, as it seems
unfeasible to construct a free energy functional for the model that decays in time. To
circumvent these issues, Shen and Yang [403] heuristically added a term proportional
to ∂tρ + ∇ · (ρu) (which vanishes in the bulk but contributes at the interface) to the
momentum equation; and found an associated energy dissipation law. From a more
fundamental starting point, Abels et al. [2] developed a thermodynamically consistent,
frame invariant model for two-phase �ow with density contrast. In contrast to the model
by Lowengrub and Truskinovsky [276], the velocity �eld in the la�er three models [2,118,403]

is divergence free, allowing for the use of e�cient numerical methods.

Electrohydrodynamic simulations

Most simulations of electrohydrodynamics have been concerned with the leaky-dielectric
model or perfect dielectrics. In this respect, Fernández et al. [147] extended the front-
tracking method by Unverdi and Tryggvason [449] to include electric forces at the �uid-
�uid interface. Zhang and Kwok [481] developed a la�ice Boltzmann method with the
same capabilities. Tomar et al. [443] developed a combined level-set/volume-of-�uid
(CLSVOF) method to simulate the aforementioned mentioned models. López-Herrera
et al. [274] developed a charge-conservative CLSVOF as an enhancement to the model
by Tomar et al. [443]. As a re�nement to the model by López-Herrera et al. [274], Berry
et al. [43] developed a CLSVOF method that resolves the full electrokinetic problem,
where ions were allowed to dissolved in only one of the phases. Bjørklund [53], Teigen
and Munkejord [437,438] developed a LS method for a leaky-dielectric model including
surfactants. �e possibly �rst phase-�eld model for such phenomena was introduced
by [277], but their model was limited to Hele–Shaw cells, using a Darcy equation to



28 CHAPTER 2. BACKGROUND

describe the hydrodynamics, and the electric e�ects were only e�ectively modelled.
Eck et al. [128] presented a charge conservative phase-�eld model of the dielectric type
with the purpose of studying electrowe�ing, and Noche�o et al. [340] followed therea�er
with a similar model which included a generalized Navier boundary condition and
density contrast. Lin et al. [258] presented a leaky-dielectric phase-�eld model which is
a straightforward simpli�cation of the model by Eck et al. [128]. A thermodynamically
consistent phase-�eld model which fully accounts for electrokinetic e�ects, based on
the model by Abels et al. [2], was derived by Campillo-Funollet et al. [79]. �is model
is of central importance to the electrohydrodynamic simulations in this thesis, as its
single-phase limit is consistent with standard electrokinetic description. Numerical
resolution of these models is addressed in chapter 4.

Homogenized models

We now move to several orders of magnitude larger scales. A whole di�erent class of
methods for two-phase �ows are those that deal with transport of compressible �uids
over large scales, where the interface and the �ow pa�erns are so complex that it is
impossible to resolve the full interface in practical situations. As indicated previously,
this is typically the case for �ows in industrial pipelines. Although early models were
purely empirical, it has been recognized that physical modelling strategies are needed
e.g. to be�er predict operating conditions.

In order to obtain models that are tractable, and that simultaneously contain the
essential physics, homogenization techniques (much like those that can be employed to
derive Darcy’s law in a porous medium [465]) are employed; see Drew and Passman [124].
�us, by averaging either over a representative elementary volume, over time [208], over
ensembles, or simply over cross sections, one ends up with a set of equations that describes
each phase without any notion of an interface. �e resulting two-�uid models are derived
from such considerations, and are distinguished from one-�uid models in that both �uids
are governed by a separate set of quantities, including velocity, occupying the same
space [123].13 Additionally, a separately governed volume fraction (which summed over13 Separate velocities allows,

for example, a coarse-grained
dispersed phase to move in
the opposite direction of the
other phase within the same
computational cell.

phases must add up to 1) of each phase is added to the description. �e detailed description
of the interaction between the two phases is replaced by (more or less empirical) source
terms, typically driving the phases towards thermodynamic equilibrium, and e�ectively
introducing dissipation due to friction between the phases or between the �uid and the
pipe wall. Since di�usive processes are slow, second order di�erential terms are typically
omi�ed (with coarse grids, they will o�en be dominated by numerical di�usion anyway),
and we are le� with models that can be wri�en as �rst-order hyperbolic systems with
source terms [279,317].

One such averaged model is the Baer–Nunziato model [24], originally developed to
model the detonation-to-de�agration transition in solid-gas systems. �is model was
revived and stated in a more practical form for the purpose of modelling compressible
multiphase �ow by Saurel and Abgrall [394], and has since found wide use. �e Baer–
Nunziato model describes two phases which are not in equilibrium with each other, in the
sense that all thermodynamic quantities are governed separately in each phase. However,
for many practical purposes, it is both physically and numerically sound to simplify
by imposing partial equilibrium between the two phases, e.g. in temperature, pressure,
chemical potential, or velocity.14 Combination of zero or more of these partial equilibrium14 �at is, imposing equal

phase velocities, which can
be valid e.g. for well-mixed
�ows.

conditions leads to a possible hierarchy of models, one model for each combination. �e
assumption of equilibrium in velocity leads to the branch of the hierarchy denoted as
homogeneous �ow models, which was studied by Flå�en and Lund [153], Lund [278]. For an
overview of models studied by other authors, see the introduction of Paper 8 [259].



2.2. STATE OF THE ART 29

Accurate prediction of the �uid-mechanical speed of sound (in practice, the velocity
of information propagation) is important for many purposes—from preventing running
ductile fracture of pipelines [317] to constructing e�cient numerical schemes. It has long
been folklore knowledge in the community that equilibrium constraints tend to decrease
the speed of sound in the resulting models. In the terminology of hyperbolic relaxation
systems (see the review by Natalini [329]), this corresponds to the subcharacteristic condi-

tion, which is closely linked to the stability of such systems. By building on results from
the literature, Flå�en and Lund [153], Lund [278] showed that this condition was satis�ed
for the entire homogeneous �ow branch of the hierarchy. Other authors [148,318] have
shown this condition to hold also for two-�uid models. �e reader is referred to recent
theses [279,317] or to the appended article [259] (Paper 8), for a broader overview of the topic.
A continuation of this discussion is found in section 5.4.
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3PHYSICAL MODELLING

3.1 single-phase flow

In reality, �uids are composed of discrete atoms and molecules that a�ract and repel each
other. In practice, however, the basic assumption underpinning most of �uid mechanics,
and the work presented in this thesis, is the continuum assumption, i.e., that all ma�er
can, beyond a certain scale, be assumed to be continuous. On the one hand, the success
of continuum mechanics in describing physical phenomena and enabling industrial
applications is a testimony of the validity of this assumption. On the other hand, the
macroscopic equations of �uid �ow can be formally derived from kinetic theory (see for
example, [425] Chapter 5). For our purposes, not much is gained from the la�er procedure
compared to the macroscopic approach, which we will adopt in the following.

We assume for now that the �uid we consider is a pure phase and that in the region it
occupies, it is completely space-�lling, described by a continuous velocity �eld u, density
ρ, dynamic viscosity µ, etc. For macroscopic derivations of the equations of �uid �ow,
e.g. using the Reynolds transport theorem, consider standard textbooks on the topic,
e.g. [245].

3.1.1 Fundamental principles

Now, we consider a �xed domain Ω, with a boundary ∂Ω, which does not vary in time.
For a closed system, the following fundamental physical principles should be satis�ed:

• Conservation of mass,

• conservation of momentum (in the absence of friction),

• conservation of (total) energy,

• the second law of thermodynamics, i.e. that the global entropy should be non-
decreasing.

We next present the fundamental compressible �ow model and show that the above
points are satis�ed.

�e equation of state

Generally, �uids, and in particular gases, are compressible. We assume the �uid to
be in local thermodynamic equilibrium, such that the thermodynamic quantities, e.g.
pressure p, temperature T , and chemical potential µ, are state functions. In particular
they are related by an equation of state. �us all thermodynamic quantites can be found
as di�erentials of a thermodynamic Helmholtz free energy a. Given that we are by
de�nition in a pure stable phase (not on the spinodal), any thermodynamic quantity can
then be found by knowledge of exactly two others.15

15 �is is not strictly
necessary, but will su�ce for
the arguments made here.
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For real �uids, their ‘real’ equations of state must be approximated by algebraic
expressions with complexity and parameter values that depend on the physical parameter
ranges of interest. Examples of equations of state o�en employed in simulations, ordered
by increasing complexity, are (i) the ideal gas, (ii) the sti�ened gas, (iii) van der Waals [453]

and other cubic equations of state, and (iv) the Span–Wagner equation of state for
CO2

[417]. �e la�er expression contains a total of 51 terms, including exponentials and
logarithms, and uses accurate critical exponents16 for the behaviour near the gas-liquid16 Which illustrates the

importance of universality
classes in practical se�ings.

critical point. It can therefore be computationally costly to use in numerical simulations.
�e following variables are of central to the thermodynamic description of a com-

pressible single-phase �uid:

ρ — density [kg m−3],

p — pressure [Pa],

e — speci�c internal energy [J kg−1],

T — temperature [K],

s — speci�c entropy [J K−1 kg−1],

g — speci�c chemical potential [J kg−1].

Compressible �ow

�e archetypal model of compressible �uid �ow can be stated as the following set of
equations:

∂tρ+ ∇ · (ρu) = 0, (3.1a)
∂t(ρu) + ∇ · (ρu⊗ u) + ∇p−∇ · σvisc = 0, (3.1b)
∂tE + ∇ · ((E + p)u)−∇ · (h + σviscu) = 0. (3.1c)

Here, σvisc is the (objective and symmetric) viscous stress tensor. For a Newtonian
�uid, where the stress is linear in the velocity �eld u, the following stress–strain rate
relationship holds:

σvisc = 2µDu + λI∇ · u, (3.2)

where the symmetric rate-of-strain tensor is given by Du = (∇u + ∇u>)/2, and
µ, λ > 0 are viscosity parameters. Further, the total energy per volume is de�ned by

E =
1

2
ρu2 + ρe. (3.3)

�e heat �ux, h, is proportional to the temperature gradient, and given by

h = KT∇T (3.4)

where KT > 0 is the thermal di�usivity. As noted above, the internal speci�c energy e
is assumed to be a thermodynamic state variable. �us it is speci�ed by any two other
thermodynamic variables, such as the pair (ρ, T ). Note that in the absence of any viscous
dissipation and heat transfer, σvisc,h→ 0, and we arrive at the classical Euler equations.

Boundary conditions

In addition to bulk equations, boundary conditions for x ∈ ∂Ω must be speci�ed. �e
no-slip boundary condition u = 0 is usually applied. �e la�er is valid down to the
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nanometer scale, but for certain materials it be replaced by the more general Navier slip
condition (see e.g. [31]),

u · n̂ = 0, [σviscn̂ + lu]× n̂ = 0, (3.5)

where l is a slip coe�cient. In the limit l → 0, a shear-free boundary condition is
achieved, while the no-slip condition is recovered in the limit l→∞.

Conservation laws

Local mass conservation is given by eq. (3.1a). �e total massM =
∫

Ω ρ is conserved:

dM
dt

=

∫

Ω
∂tρ = −

∫

Ω
∇ · (ρu) = −

∫

∂Ω
ρn̂ · u = 0, (3.6)

where n̂ is the outward directed normal of the domain, and we have used that the velocity
�ux vanishes at the boundary. For a thermally insulated system, n̂ · h = 0 can be set on
the boundary; otherwise Dirichlet boundary conditions on T can be imposed.

�e evolution of momentum is governed by eq. (3.1b). Note that due to the presence
of viscous dissipation, the global momentum P =

∫
Ω ρu is not generally conserved.

Energy balance can in general be wri�en as eq. (3.1c). �e global energy E =
∫

ΩE
is conserved:

dE
dt

=

∫

Ω
∂tE = 0, (3.7)

given that either the shear stress or the tangential velocity vanishes at the boundary, and
that the heat �ux across the boundary, n̂ · h = 0.

Entropy production

�e global entropy is given by S =
∫

Ω ρs. Now, the second law of thermodynamics
states that the entropy should be non-decreasing. �e fundamental thermodynamic
di�erential can be wri�en as

de = Tds+
p

ρ2
dρ. (3.8)

Using eqs. (3.1a) to (3.1c) and (3.8), we �nd, with some calculation, that the time derivative
of the global entropy can be wri�en as

dS
dt

=

∫

Ω

2µ|Du|2
T

dΩ +

∫

Ω

λ|∇ · u|2
T

dΩ +

∫

Ω
KT |∇ lnT |2 dΩ, (3.9)

which, given that µ, λ, T > 0 on physical grounds, must be non-negative. Hence, the
second law of thermodynamics is satis�ed. It is worth noting that when no di�usive
processes (viscous damping and heat transfer) are present in the system, the entropy is
conserved.

3.1.2 Approximations

Isothermal �ow

In many physical applications, the temperature can be taken to be constant. �is amounts
to assuming that the heat generated externally or internally, i.e. by viscous dissipation,
is negligible, or that temperature equilibrium with the surroundings is enforced instan-
taneously. �e energy equation eq. (3.1c) can then be replaced directly by the condition
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T = T0, where T0 is a speci�ed temperature. In this case, the thermodynamic pressure,
density, internal energy, and so forth, becomes dependent on a single variable.

It is clear that in the case of thermal equilibrium with the surroundings, the energy
conservation principle will not be satis�ed. �e laws of thermodynamics require that [373]

dF
dt

= −T dS
dt

+
dW
dt

, (3.10)

whereW denotes work and F is a free energy. In the absence of external work, it can be
seen that the equivalent to entropy increase, in the case of isothermal �ow, is a decrease
in the free energy. �is is a relevant quantity to inspect for many of the models presented
in this work.

Incompressible �ow

In many cases, in particular those considered herein, the �ow can be considered to be
incompressible, i.e., the density is constant:

ρ = constant. (3.11)

�is is a good approximation for most liquids. A more general condition can be found
based on the Mach number Ma = u/c, i.e. the ratio of the �uid speed u to the speed
of sound c. �e incompressibility assumption is physically justi�ed when Ma2 � 1
(see [446], sec. 5.8).

Using eq. (3.11), we �nd from eq. (3.1a):

∇ · u = 0, (3.12)

i.e., the velocity �eld is solenoidal, or divergence free. In particular, the condition eq. (3.12)
imparts that information propagates in�nitely fast, i.e. all points in the domain a�ect
each other instantly. �is is because the pressure wave associated with eq. (3.1a) travels
with the speed c→∞ in an incompressible (in�nitely sti�) medium.1717 From a numerical stand-

point, the velocity �eld being
divergence free can be both
advantageous and disadvan-
tageous. On the one hand, it
is a simpli�cation, as one does
not have to resolve the fast
pressure wave. On the other
hand, the in�nitely fast in-
formation propagation means
that no interactions are local,
yielding possible issues with
parallel scalability. Further,
incompressible �ow is prone
to numerical instabilities; see
the Babuska–Brezzi criterion
in section 4.3.

Now, the momentum eq. (3.1b) can be wri�en as

ρ (∂tu + u ·∇u) + ∇p−∇ · (2µDu) = 0 (3.13)

and the energy eq. (3.1c) becomes decoupled from the mass and momentum equations,
and is thus super�uous to the �ow description. �e only thermodynamic variable le�
now is the pressure, which can be seen as a Lagrange multiplier that makes the velocity
�eld solenoidal. All other thermodynamic quantities, although uncoupled from the �ow,
are given by p alone.

Taking now the viscosity µ to be constant, which is valid approximation unless
temperature or pressure variations are too large, we obtain the classical incompressible
Navier–Stokes equations,

ρ (∂tu + u ·∇u) + ∇p− µ∇2u = 0, (3.14a)
∇ · u = 0. (3.14b)

Laminar and creeping �ow

As introduced in the previous chapter, an important dimensionless quantity that arises
in the study of �uid �ow is the Reynolds number Re, de�ned as the ratio of intertial to
viscous forces in eq. (3.14),

Re =
ρud

µ
' ρ|u ·∇u|

µ|∇2u| , (3.15)
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where d is a typical length scale, and u is a characteristic velocity.
Laminar �ow is a regime associated with low Re, where the �uid travels in a smooth

and predictable way, and there is essentially no transfer of energy across scales. Since
perturbations have a tendency to decay in such �ows, such �ows can o�en be taken to
be time-independent. Still assuming incompressibility, the �ow can then be described by
the time-independent Navier–Stokes equations, obtained by imposing steady-state �ow,
∂tu = 0, in eqs. (3.14a) and (3.14b):

ρu ·∇u + ∇p− µ∇2u = 0, ∇ · u = 0. (3.16)

With the presence of the advective term u ·∇u, the time-symmetry is broken, and
standing vortices may be present e.g. behind obstacles.

When the characteristic velocity and the length scale is so small that Re� 1, the
�ow is not only laminar, but creeping.18 �at is, the viscous forces completely dominate 18 �is can be shown by

nondimensionalization of
eq. (3.16), and matching the
‘Lagrange multiplier’ p to the
dominating term.

over the inertial forces and eqs. (3.14a) and (3.14b) simpli�es to

µ∇2u = ∇p, ∇ · u = 0 (3.17)

which are known as the Stokes equations. As can be seen from eq. (3.17), the equation is
linear and the solution is completely speci�ed by the boundary conditions.19 In fact, the 19 Since the equation is

invariant under the transfor-
mation (u, p) → (−u,−p),
the �ow �eld is reversible.
�e implications of this can
be observed in captivating
experiments on ‘reversible
mixing’ of tracer dyes in a
Taylor–Coue�e cell. See e.g.
h�ps://www.youtube.com/
watch?v=p08 KlTKP50.

�ow �eld becomes—up ta a scaling with the value of the forcing—a purely geometric
property. To see this, consider a domain Ω with the no-slip condition u = 0 imposed on
the boundary ∂Ω, except at an inlet ∂Ωin, where an inlet pressure pin is speci�ed, and
an outlet ∂Ωout, where an outlet pressure pout is speci�ed. We can then introduce the
dimensionless variables ũ, p̃, x̃, de�ned by:

ũ =
µ

L(pin − pout)
u, p̃ =

p− 1
2(pin + pout)

pin − pout
, x̃ =

x

L
. (3.18)

�e scaled problem (3.17) then becomes

∇̃2
ũ = ∇̃p̃, with p̃ =

{
1
2 for x̃ ∈ ∂Ω̃in and
−1

2 for x̃ ∈ ∂Ω̃out,
(3.19)

where ∂Ω̃ is the boundary of the scaled domain. Clearly, the solution (ũ, p̃) is independent

of the inlet/outlet pressures pin, pout, the viscosity µ and the scale L of the system. �us,
the �ow �eld inherently only depends on the shape of the domain, including the location
of the inlet and outlet. �e �ux Q is proportional to the magnitude of the physical �ow
�eld, and hence we can write down the relation

Q = kA
pin − pout

Lµ
, (3.20)

where the permeability k is a function of the shape of the domain, and A is a cross-
sectional area. Heuristically taking the continuum limit, i.e. le�ing (pin−pout)/L→ |∇p|
and Q→ A|q|, we �nd that this is consistent with Darcy’s law,

q = −k
µ
∇p, (3.21)

where q is the discharge per area. �is invariance is heavily exploited in Paper 2 [261],
which will be summarized in section 5.2.

https://www.youtube.com/watch?v=p08_KlTKP50
https://www.youtube.com/watch?v=p08_KlTKP50
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figure 3.1: Two phase
�ow modelling. (a) �e
sharp-interface description.
(b) A di�use-interface model
meant to represent (a). �e
red line corresponds to (c). (c)
Pro�le of the phase �eld φ
across the interface.
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3.2 two-phase flow

Having established the fundamental equations for the continuum description of single-
phase �ow, we proceed now to describing the concurrent �ow of two �uid phases.
Equations (3.1a) to (3.1c) describe a single phase, and these equations are expected to
hold in the bulk of the two phases; but the sets of parameters in the two phases will be
separate. �erefore, we can replace ρ by ρi, and correspondingly for the other quantities,
where i = 1, 2 denotes either of the two phases. However, the bulk phases are separated
by an interface which requires an explicit description. For simplicity, we will consider, in
the bulk of this section, isothermal and incompressible �ow. Under the same conditions
as with single-phase �ow, this is usually a good approximation at scales where the
interface is explicitly modelled. We brie�y return to compressible two-phase �ow in
section 3.2.3.

3.2.1 Interface conditions

As mentioned brie�y already, the two-phase interface is not sharp on the molecular scale,
but rather a di�use one. However, this thickness is usually only a few molecular layers
thick [475] (i.e. ∼ 10−9 m),20 and thus already below the micrometer scale (∼ 10−6 m) it20 At least far from the gas–

liquid critical point, where
the interface thickness di-
verges.

is perfectly valid to view it as an in�nitely thin region where the physical properties
change sharply and local interface forces are acting. A sharp-interface two-phase domain
is sketched in �g. 3.1 (a).

We denote the jump in a physical quantity χi across the interface by [χi]
+
−. �at is,

assuming that the interface is located at x = 0, and that phase 1 is in the subdomain
x < 0 and phase 2 in the subdomain x > 0:

[χi]
+
− = χ2|x→0+ − χ1|x→0− . (3.22)

Further, we take n̂int to be the unit vector normal to the interface.
Due to the incompressibility condition (3.14b), the continuity condition holds for the

velocity �eld:
[u]+− = 0. (3.23)

Further, the interface stress condition is given by

[p]+− n̂int − [2µiDu]+− · n̂int = γκn̂int, (3.24)

where κ is the curvature. In equilibrium, shear stresses vanish, and this condition trivially
reduces to the Young–Laplace law (2.13), which in the new notation reads [p]+− = γκ.

Boundary conditions

At the solid–�uid interface, i.e. the boundary of the domain ∂Ω, the no-slip condition is
still expected to hold in the bulk of each phase. However, as mentioned in section 2.1.3,
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the hydrodynamic theory with a no-slip condition predicts a non-integrable stress
singularity at the MCL (the Huh–Scriven paradox [201]). By some physical means, this
must be regularized; and as listed by Bonn et al. [60] several mechanisms have been
proposed and are relevant in di�erent se�ings. In particular, hydrodynamic slip at the
contact line was proposed by Huh and Scriven [201] (see also [126]) as a mitigation strategy,
and it has since been shown in molecular dynamics simulations that this slip is physically
justi�ed, and moreover extends a signi�cant distance from the contact line [371,372,377,426].
Ren and E [377] proposed a boundary condition for the sharp-interface contact line motion,
which amounts to imposing the Navier slip condition, cf. eq. (3.5),

liux = µi∂yux away from the contact line, and (3.25a)
lCLux,CL = γ

(
cos θeq − cos θ

)
, at the contact line. (3.25b)

Here, the surface is oriented along x, and the surface normal is in the y direction, θeq is
the equilibrium contact angle given by Young’s law (2.15), θ is the instantaneous dynamic

contact angle, and li, lCL are the slip coe�cients in the bulk phases and at the contact
line, respectively. It is, however, not straightforward to implement such a boundary
condition numerically.

3.2.2 Phase-�eld modelling

Phase-�eld modelling is a way to avoid the numerical di�culties associated with satisfy-
ing the jump conditions at the �uid–�uid interface (eqs. (3.23) and (3.24)), and is on sound
physical grounds, as the interface on the microscopic scale is di�use. Early phase-�eld
models included compressibility and and an energy equation, and were reviewed by
Anderson et al. [13], but as noted by Kim [232], much progress has taken place since then.21 21 Much progress has oc-

curred also since the la�er re-
view [232], as brie�y surveyed
in section 2.1.3.

Here we focus on the fully incompressible formulation by Abels et al. [2], and compare
it to other formulations. A phase-�eld model is characterized by the order parameter
�eld, i.e. the phase �eld, φ, which typically takes the value 1 in one phase, and −1 in the
other.22 At the interface, φ ∈ (−1, 1). In the forthcoming, the value φ = 1 corresponds 22 It is also commonplace to

let it denote a local phase frac-
tion, so that φ ∈ [0, 1] but the
di�erence is trivial.

to phase i = 1 (with the associated phasic quantitites), while φ = −1 corresponds to
phase i = 2.

�e thermodynamically consistent and frame indi�erent model by Abels et al. [2] is
given by

ρ(φ)∂t(u) + (m ·∇)u−∇ · [2µ(φ)Du] + ∇p = −φ∇gφ, (3.26a)
∇ · u = 0, (3.26b)

∂tφ+ u ·∇φ = ∇ · (M(φ)∇gφ), (3.26c)
gφ = χγ

[
ε−1W ′(φ)− ε∇2φ

]
. (3.26d)

Here, eqs. (3.26a) and (3.26b) are the Navier–Stokes equations, but augmented by a body
force and a few new factors, which are explained below. Equations (3.26c) and (3.26d)
govern the conservative evolution of the phase �eld, and represent the Cahn–Hilliard
equation coupled to an advective �eld. �us the system (3.26) is called the (augmented)
Navier–Stokes–Cahn–Hilliard system.

�e following new quantities have been introduced:

ρ(φ) — the phase-dependent density, which interpolates between the phasic values
such that ρ(1) = ρ1 and ρ(−1) = ρ2. Here, we use the arithmetic average:

ρ(φ) =
1 + φ

2
ρ1 +

1− φ
2

ρ2, (3.27)
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which is the only average that ensures global mass conservation; as realized
by integrating over the domain and using that the �ux of the phase �eld
vanishes at the boundary.

µ(φ) — the phase-dependent dynamic viscosity. It interpolates between the phasic
values, corresponding to ρ(φ) above; an arithmetic average is usually used,
but again a harmonic or geometric average may be more suitable if the
viscosity contrast is large.

gφ — the phase-�eld chemical potential [N m−2]. It containsW (φ), a double well-
potential, which has minima at φ = ±1. Here, we use the Ginzburg–Landau
potential

W (φ) =
1

4
(1− φ2)2. (3.28)

Moreover,χ is a numerical prefactor to ensure the correct surface energy [211]

given by χ = 3/
√

8 ' 1.06.
ε — the interface thickness [m].
m — the advecting momentum, given by:

m = ρ(φ)u− ρ′(φ)M(φ)∇gφ, (3.29)

which only di�ers from the canonical momentum ρu at the interface, since
gφ is constant in the bulk.

M(φ) — �e phase-�eld mobility function [m3 s kg−1]. Two common alternatives
are given by:

M(φ) = εM0, (3.30a)
M(φ) = M0(1− φ2)+, (3.30b)

where M0 is a constant parameter, and (·)+ = max(·, 0). An aim of these
mobility functions is to reduce the di�usive mass currents that lead to
unphysical (numerical) Ostwald ripening e�ects. To the author’s knowledge,
there have been few comparative studies of the e�ect of various mobility
functions.

Abels et al. [2] showed through a matched asymptotic expansion that the model (3.26)
reduces to the correct sharp-interface description (see previous section) in the limit
where the interface thickness ε→ 0, provided that the phase-�eld mobility is modelled
as in eq. (3.26). In particular, the correct �uid–�uid interface conditions are contained in
the model, provided that the interface is su�cently thin. �e model by Ding et al. [118] is
simply (3.26) with m = ρ(φ)u instead of eq. (3.29). �is formulation is not thermody-
namically consistent (see below), but reduces to the correct interface description. �e
model by Shen and Yang [403] is similar to the model by Ding et al. [118] in thatm = ρ(φ)u,
but additionally a term

u

2
(∂tρ+ ∇ · (ρu)) (3.31)

is added to the le� hand side of eq. (3.26a). �is admits an energy dissipation law
(thermodynamic consistency), but the model does not appear to be frame invariant. It
is not known (at least to the author) whether this model reduces to the correct sharp-
interface limit.

Note that the weighted arithmetic average (WAA), e.g. as in eq. (3.27), is not the only
interpolation function that can be used for phasic quantities across the interface. Two
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common alternatives are the weighted harmonic (WHA) and the weighted geometric
average (WGA). For a general quantity A, these three averages are de�ned by

Aj(φ) =





Aj,1
1+φ

2 +Aj,2
1−φ

2 (WAA),[
A−1
j,1

1+φ
2 +A−1

j,2
1−φ

2

]−1
(WHA),

A
1+φ
2

j,1 ·A
1−φ
2

j,2 (WGA).

(3.32)

and they are compared as a function of φ in �g. 3.2. A problem with the WAA, and to
some extent the WHA, is that for values of |φ| numerically only slightly above 1 (which
can occur in phase-�eld simulations), is that the value of the interpolated quantity may
become negative. �is is also seen in �g. 3.2 and can lead to ill-posed problems. �e
WGA avoids this, but is more costly to compute. Some authors claim that using the WHA
instead of the WAA for the density, yields more accurate computations [232,476,477], but
this strictly imparts to violate mass conservation (however, the phase-�eld is conserved).
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figure 3.2: A compar-
ison of three ways to in-
terpolate a phasic quantity
across the phase-�eld inter-
face: Weighted arithmetic av-
erage (WAA), weighted har-
monic average (WHA), and
weighted geometric average
(WGA).

Boundary conditions

A boundary condition directly on the contact angle and contact line motion, as that
speci�ed in the sharp-interface limit, i.e. eq. (3.25), cannot be directly applied to a di�use
interface. �e static contact angle θeq can be imposed through the condition

χεn̂ ·∇φ = cos(θeq)f ′w(φ), n̂ ·∇gφ = 0, (3.33)

where the wall energy function

fw(φ) =
1

4

(
2 + 3φ− φ3

)
(3.34)

interpolates smoothly between 0 (at φ = −1) and 1 (at φ = 1). Note that other forms of
fw(φ) that satisfy the criterion fw(1)− fw(−1) = 1 (and are smooth) are viable options,
as discussed by Huang et al. [200]. However, the formulation (3.34) is the only one that is
compatible with the equilibrium solution to eqs. (3.26c) and (3.26d), i.e. gφ = constant.

Due to the presence of a di�use interface, the contact line will move even when
eq. (3.33) is coupled to a no-slip condition on the velocity, due to interface di�usion.
�is can be admissible when the dynamics are governed by processes away from the
contact line, but is not satisfactory on the microscopic scale. A remedy is due to Qian
et al. [371,373], who extracted phase-�eld parameters from carefully executed molecular
dynamics simulations, and proposed a generalized Navier boundary condition (GNBC) [5]

valid for x ∈ ∂Ω:

u · n̂ = 0, [σviscn̂ + l(φ)u− L[φ]∇φ]× n̂ = 0, on the velocity �eld, (3.35a)
∂tφ+ u ·∇φ = −ΓL[φ], n̂ ·∇gφ = 0, on the phase �eld, (3.35b)

where

L[φ] = γ
[
χεn̂ ·∇φ+ cos(θeq)f ′w(φ)

]
, (3.35c)

l(φ) = l1
1 + φ

2
+ l2

1− φ
2

. (3.35d)

Here, l(φ) can be interpreted as an inverse slip length, interpolating between the values
in the two phases, and Γ is a phenomenological parameter. It should be noted that the
simulations supporting the GNBC were carried out in a slow we�ing regime [82], and the
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interface width was matched to the actual, molecular one. It is less clear how well the
GNBC works outside this domain.

An important limit to the GNBC is that of short slip length, which is obtained by
le�ing l1, l2 →∞ in eq. (3.35). �en the no-slip boundary condition u = 0 is recovered,
along with the phase-�eld boundary condition

Γ−1∂tφ = γ
[
−χεn̂ ·∇φ+ cos(θe)f

′
w(φ)

]
, (3.36)

which was obtained by Carlson et al. [82] on phenomenological grounds, and previously
proposed by Jacqmin [211]. Here, τw = ε/(Γγ) can be interpreted as a characteristic
relaxation time. It was shown e.g. in Refs. [82,83] that the condition (3.36) is fully capable
of modelling rapid non-equilibrium we�ing at the millimeter scale. In the limit τw → 0
(Γ→∞), the static condition eq. (3.33) is recovered.

Free energy

Fundamental to most phase-�eld models is that they can be derived as the gradient �ow
of some energy functional. �e system eq. (3.26) is associated with the energy functional

F = Fφ + Fw + Fu, (3.37)

where the Cahn–Hilliard free energy [78] is given by:

Fφ =

∫

Ω
χγ
[
ε−1W (φ) + 1

2ε|∇φ|2
]
. (3.38)

�e �uid-solid interface energy is given by:

Fw =

∫

∂Ω
[γ2 + (γ1 − γ2)fw(φ)] , (3.39)

where Young’s law eq. (2.15) gives γ1 − γ2 = γ cos θeq. �e kinetic energy is given by

Fu =

∫

Ω

1
2ρ(φ)|u|2. (3.40)

�e time evolution of F is given by using eqs. (3.26a) to (3.26c), along with the GNBC
(3.35), and yields

dF

dt
= −

∫

Ω

[
M(φ)|∇gφ|2 + 2µ(φ)|Du|2

]
−
∫

∂Ω

[
l(φ)|u|2 + Γ|L[φ]|2

]
. (3.41)

In particular, all terms within brackets are squares with positive coe�cients, i.e. the
conditions M,µ, l,Γ ≥ 0 ensure that the model is dissipative.

3.2.3 Homogenized models

We now return to two-phase �ow in pipes. In typical phenomena of interest to these �ows,
such as rapid decompression, running ductile fracture [317], the phenomena of interest
occur at Ma ∼ 1; i.e. incompressibility cannot be justi�ed. �us, fully compressible
models must be employed. Instead of resolving the interface, the Baer–Nunziato model [24]

is based on averaged equations where the interaction between the phases across the
interface is modelled e�ectively. �e model is widely used in practice and extensively
studied in the literature [480]. �ese e�ective interaction processes, that should drive the
phases towards equilibrium (i) with each other, and (ii) with the surroundings, can be
modelled as relaxation source terms.

�e following processes can be physically motivated to take place:
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p — Volume transfer: Relaxation towards mechanical equilibrium due to pres-
sure di�erences between the phases, i.e. expansion or compression.

T — Heat transfer: Relaxation towards thermal equilibrium, due to temperature
di�erences between the phases.

g — Mass transfer: Relaxation towards chemical equilibrium due to di�erences
between the phases in chemical potential.

u — Momentum transfer: Relaxation towards equal velocities, which occurs
through momentum transfer due to interface friction when the phasic
velocities are di�erent.

Additionally, heat and momentum transfer can occur due to interaction with the sur-
roundings, e.g. the con�ning pipe.

With all possible relaxation terms, the Baer–Nunziato model [24], formulated in the
lines of Saurel and Abgrall [394], can be stated compactly as

∂tαk + uint ·∇αk = Ik, (3.42a)
∂t(αkρk) + ∇ · (αkρkuk) = Kk, (3.42b)

∂t(αkρkuk) + ∇ · (αkρkuk ⊗ uk + αkpkI)− pint∇αk = uintKk + Mk

+ Mk,ext,
(3.42c)

∂tEk + ∇ · (Ekuk + αkpkuk)− pintuint ·∇αk = −pintIk + uint ·Mk

+
(
gint + 1

2u
2
int
)
Kk

+Hk +Hk,ext,

(3.42d)

for each phase k ∈ {g, `}, where g denotes gas and ` denotes liquid. Here, pint, gint,
uint are interface quantities that result from the homogenization procedure and must
be explicitly modelled in a physically consistent way. Moreover, αk denotes the volume
fraction of the phase k, such that the condition αg + α` = 1 makes eq. (3.42a) for one
of the phases super�uous. �us, we are le� with 7 independently governed partial
di�erential equations (where two are vectorial).

In the model (3.42), the relaxation source terms Ik , Kk , Hk and Mk , are modelled as
the following:

• Ig = −I` = J (pg− p`) drives the phases towards equal pressure through volume
transfer,

• Kg = −K` = K(g` − gg) drives the phases towards equal chemical potential
through mass transfer,

• Hg = −H` = H(T` − Tg) drives the phases towards equal temperature through
heat transfer,

• Mg = −M` =M(u` − ug) drives the phases towards equal velocities through
momentum transfer.

• Mk,ext = αkρkagrav − fk,Du represents momentum transfer due to external
sources; here agrav represents the graviational acceleration, and fk,D represents
friction with the pipe wall (proportional to a Darcy friction factor for phase k).

• Hk,ext represents the heat transfer from surroundings.
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�e quantities J ,K,H,M can be interpreted as coe�cients that can depend on ther-
mophysical properties of the �ow, e.g. �ow regime or temperature. On physical grounds,
they must all be non-negative; see e.g. [153,259,278].

It should be noted that the model (3.42) in practice is comprised of the Euler equations
for each of the phases, supplemented by interface interaction terms and source terms. In
the absence of external source terms, the model (3.42) conserves

• total mass,M =
∫

Ω(αgρg + α`ρ`), which is realized by summing eq. (3.42b) over
the phases k;

• total momentum, P =
∫

Ω(αgρgug + α`ρ`u`), as seen by summing (3.42c) over k;
and

• total energy, E =
∫

Ω(Eg + E`), as seen by summing eq. (3.42d) over k.

Moreover, a second law analysis similar to that shown in section 3.1.1, but by combining
the two phases, can be used to determine the interface parameters such that the model is
thermodynamically consistent [259].

Writing out the di�erentials and for simplicity assuming a one-dimensional descrip-
tion along x (which is currently of most practical importance), eq. (3.42) can be wri�en
in the quasilinear form

∂tU + A(U)∂xU =
∑

i

1

τi
Qi(U), (3.43)

Here, U is the (seven-dimensional) vector of unknowns, the matrix A is denotes the
Jacobian of the system, and Qi contains the relaxation terms for each relaxation process
i, with the associated characteristic timescale τi (explicit expressions are omi�ed here).
�e eigenvalues of A are independent of the choice of U and determine the propagation
velocities, i.e. the �uid-mechanical sound velocities, of the system.

Partial equilibrium

When one or more of the timescales τi are much faster than other time scales involved in
the problem, it may be physically valid and practically advantageous to directly enforce
equilibrium in one or more of the aforementioned processes. For example, pressure
equilibrium imparts that

pk ≡ p, which corresponds to J → ∞, (3.44)

and similarly for the other processes. Enforcing eq. (3.44) e�ecively removes one un-
known from the problem, so that one of the 7 equations in eq. (3.42) becomes super�uous.
Typically, eq. (3.42a) is removed for such p-relaxation. Evidently, all the combinations of
equilibrium conditions lead to di�erent models, as mentioned in section 2.2.3. When all
equilibrium are enforced, the homogeneous equilibrium model arises, which is basically
the Euler equations supplied with a two-phase equation of state.

Zein et al. [480] discuss the physical mechanisms of the involved relaxation processes,
arguing that pressure relaxation is much faster than temperature relaxation, which again
is faster than chemical potential relaxation; i.e.

τp � τT � τg, (3.45)

which are also common assumptions in the literature. �e velocity relaxation time τu is
expected to depend strongly on the �ow regime. For strati�ed �ow, the phase velocities
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can be very di�erent, while for dispersed �ow it is reasonable to assume that the velocity
relaxation is fast [279]. On the other hand, for these processes, full equilibrium in pressure
will not be achieved. �is is due to (i) gravity, which in strati�ed �ow gives a pressure
di�erence between the upper and lower phase, and (ii) surface tension, which through
the Young–Laplace law (2.13) gives a higher pressure inside droplets in dispersed �ow.

It is evident that replacing a PDE in eq. (3.42) by a functional relationship, such as
eq. (3.44), changes the eigenstructure of the problem. �ereby, the propagation velocities,
i.e. the �uid-mechanical speeds of sound, of the system change. In particular, it can be
shown in the limit of equal phase velocities, that any equilibrium assumption reduces
the �uid-mechanical speed of sound of such models [153,259,278]. �is supports the folklore
knowledge in the compressible multiphase �ow community that the equilibrium speed
of sound is always lower than the frozen speed of sound.

3.3 single-phase electrohydrodynamics

�e previous section concerned how to extend the modelling of single-phase �ow to
including a second phase. In this and the next section, we discuss the extension to
modelling electrohydrodynamics, In the literature, the terms

electrohydrodynamics (EHD),
electrokinetics (EK) and (to
some extent)
electro-�uid-dynamics are
o�en used interchangably.
Bazant [33] uses
electrokinetics to refer to
models which explicitly take
into account ion transport,
while electrohydrodynamics
refers to modelling weakly
conducting liquids with
charged interfaces. �e
reason for the separate
terminology is, in part, that
the two �elds have evolved
separately and only recently
are starting to become
uni�ed. Bruus [74, pp. 141]

uses electrohydrodynamics
in a broad sense, including

electrokinetic e�ects. We
have in this work opted for
the la�er de�nition; in
particular electrokinetics
refers to the part of
electrohydrodynamics where
di�usion of ions is important.

i.e. how to include the joint e�ects of dissolved ions and
applied electric �elds. �e present section considers single-phase electrohydrodynamics,
while in section 3.4 electrohydrodynamics in two phases is described.

�e archetypical model for electrohydrodynamic �ow, with N chemical species,
is given by the following set of equations. �e �ow is assumed to be incompressible,
isothermal and the electric currents are (safely) assumed to be to su�ently small for
magnetic forces to be neglected.

ρ (∂tu + u ·∇u) + ∇p− µ∇2u = −
N∑

j=1

cj∇gcj , (3.46a)

∇ · u = 0, (3.46b)

∂tcj + u ·∇cj = ∇ ·
(
Djcj
kBT

∇gcj

)
, (3.46c)

gcj = kBT ln

(
cj

cref
j

)
+ qezjV, (3.46d)

ε0εr∇2V = −ρe. (3.46e)

Herein, the following physical quantities are introduced:

cj — number density, i.e. concentration, of species j ∈ {1, . . . , N} [m−3].

gcj — chemical potential of species j [J].

kB — �e Boltzmann constant [J K−1].

Dj — di�usivity of species j [m2 s−1].

cref
j — reference concentration for species cj [m−3].

qe — the elementary charge [C],

V — electric potential [V]. �e electric �eld is given by E = −∇V .

zj — valency of ionic species j [−],

ε0 — the vacuum permi�ivity [C V−1 m−1],

εr — the relative permi�ivity [–],
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ρe — the charge density �eld [C m−3]. It is given by:

ρe = qe

N∑

j=1

zjcj . (3.47)

Above, eqs. (3.46a) and (3.46b) are the Navier–Stokes equations (3.14), where the mo-
mentum equation (3.46a) is augmented, on the right hand side, by an ‘electrochemical’
body force.

�e form of the body force is somewhat unconventional. In most studies, the term
on the right hand side of eq. (3.46a) is taken to be f = −ρe∇V . �is formulation
is related to the form stated in eq. (3.46a) by a rede�nition of the pressure to include
an osmotic contribution, i.e. the thermodynamical pressure (in the conventional form)
ptherm = p+ kBT

∑
j=1 cj (where p is the same as in eq. (3.46a)). �e adopted form has

advantages over the conventional one, e.g. as it avoids pressure build-up in the electrical
double layers [337]. In this rede�nition, care must primarily be taken in applying pressure
conditions at boundaries with di�erent concentrations, but not otherwise, since the role
of the pressure in incompressible �ow is to keep the velocity divergence free.

Equation (3.46c), with (3.46d) inserted, is the Nernst–Planck equation. �e two terms
in eq. (3.46d) represent the contribution to the �ux from, in wri�en order, di�usion and
migration. Equation (3.46e) is the Poisson equation for electrostatic equilibrium (Gauss’
law).

In Paper 5 (ref. [265]), a generalized version of the model (3.46) is presented, where
�uid parameters such as density, viscosity and permi�ivity, are allowed to depend on the
local concentrations. Additionally, a source term in the concentration equation, allowing
for chemical reactions to occur, term is included. �is is discussed in more depth in
section 5.3.

Boundary conditions

�e same boundary conditions as for single-phase �ow are expected to apply to the
velocity �eld as before. Here, we assume the standard Navier slip boundary condition
(3.5).

For the concentration �elds, the constant concentrations can be set at inlet and outlet
parts of the domain ∂Ω, alternatively a no-�ux condition is set by imposing n̂ ·∇gcj = 0.
�e electric potential can e.g. be set to a �xed value V0 on a part of the boundary. In the
presence of a surface charge, the boundary condition

n̂ ·∇V =
σe
ε0εr

, (3.48)

where σe is the surface charge [C m−2].

Free energy

�e free energy functional associated with eq. (3.46) is given by

F = Fu +

N∑

j=1

Fcj + FV , (3.49)

where the kinetic energy Fu is given by eq. (3.40), the chemical energy is given by

Fcj =

∫

Ω
kBTcj

(
ln

(
cj

cref
j

)
− 1

)
, (3.50)
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and the electric �eld energy is given by

FV =

∫

Ω

1
2ε0εr|∇V |2. (3.51)

Assuming no-�ux boundary conditions and a Navier slip condition, the time derivative
becomes:

dF

dt
= −

∫

Ω


2µ|Du|2 +

N∑

j=1

Djcj
kBT

|∇gcj |2

−

∫

∂Ω
l|u|2. (3.52)

Hence, the model is dissipative, and thus thermodynamically consistent.

Creeping �ow and steady-state

For microscale �ows, the assumption Re� 1 is usually justi�ed. In this case, the inertial
term of eq. (3.46a) can be neglected. Further, we are o�en interested in the steady-state

transport through microchannels, and hence all time derivatives vanish. �e steady-state
equations for creeping �ow can be summarized as:

∇p− µ∇2u = −
N∑

j=1

cj∇gcj , (3.53a)

∇ · u = 0, (3.53b)

∇ · (cju) = Dj∇2cj + ∇ ·
(
Djqezjcj
kBT

∇V

)
, (3.53c)

ε0εr∇2V = −ρe. (3.53d)

Despite the simpli�cation, this is a strongly coupled non-linear system, which can only
be solved analytically in particular limits and simple geometries.

Equilibrium

In equilibrium, all �uxes should vanish, including the one that is proportional to ∇gci .
�us, the chemical potential de�ned in eq. (3.46d) must be constant:

gci = kBT ln

(
cj

cref
j

)
+ qeziV = kBT ln

(
c0
j

cref
j

)
, (3.54)

where we have implicitly de�ned a reference concentration c0
i at a grounded part of the

boundary. Solving this for ci yields

ci = c0
i e
− qeziV

kBT , (3.55)

i.e., the concentrations follow the Boltzmann distribution. We can now insert the distri-
butions eq. (3.55) into eq. (3.53d):

∇2V = − qe
ε0εr

N∑

i=1

zic
0
i e
− qeziV

kBT , (3.56)

which is a non-linear equation to be solved for the single variable V . �e la�er becomes
particularly appealing when considering a binary symmetric electrolyte, i.e., i ∈ {±}
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and z± = ±z, which is taken to be neutral at the reference point, such that c0
± = c0.

�en, we obtain the classical nonlinear Poisson–Boltzmann equation

∇2V =
2qezc

0

ε0εr
sinh

(
qezV

kBT

)
. (3.57)

Here, we can identify the thermal voltage VT and the Debye length λD, respectively
de�ned by

VT =
kBT

qez
, and λD =

√
kBTε0εr
2z2q2

ec
0
. (3.58)

Equations (3.57) and (3.58) yield an equation for the scaled electric potential ϕ = V/VT :

∇2ϕ =
1

λ2
D

sinhϕ. (3.59)

�e concentrations can subsequently be found from eq. (3.55) as c± = c0e∓ϕ. Equa-
tion (3.59) can be solved exactly in the one-dimensional case, considering a semi-in�nite
domain. �e so-called Gouy–Chapman solution, given in the domain Ω = {x ∈ [0,∞)},
with the potential ϕ = ϕ0 prescribed at x = 0, is given by [74]

ϕ = 4 tanh−1
[
tanh

(ϕ0

4

)
e−x/λD

]
. (3.60)

Clearly, the magnitude of |ϕ0| determines the ‘nonlinearity’ of the potential distribution.
In many practical se�ings, the magnitude of the scaled surface potential ϕ0 is so small
that eq. (3.59) (and (3.60)) can be linearized. In this limit, the so-called Debye–Hückel
approximation, |ϕ| � 1 (|V | � VT ), yields the linearized Poisson–Boltzmann equation,

∇2ϕ =
1

λ2
D

ϕ, (3.61)

where the corresponding solution to (3.60) is ϕ = ϕ0e
−x/λD . �us, it is clearly seen that

the Debye length λD is a characteristic length of the di�usive layer, i.e. it measures the
extent of the electric double layer (EDL).

In many applications, a surface charge is prescribed instead of a surface potential. In
the general nonlinear case, these are related through eq. (3.60). By using the surface-
charge boundary condition σe = −n̂ · E at the surface, we can obtain the Grahame
equation,

σe =
2ε0εrVT
λD

sinh

(
ζ

2VT

)
=
√

8kBTε0εrc0 sinh

(
ζ

2VT

)
, (3.62)

which relates the surface charge to the surface potential ζ = ϕ0VT , o�en referred to as
the zeta potential.

Streaming potential and the electroviscous e�ect

We now have a basic understanding of the electrokinetic e�ects present in the absence
of �uid �ow. A qualitative impression of the e�ect of coupling to �uid �ow becomes
apparent by inspecting �g. 3.3. Here, we consider a capillary of �nite length, where
a surface charge is applied to the capillary walls. In �g. 3.3 (a), there is no pressure
di�erence between inlet and outlet, and hence, in equilibrium, the surface charge is
screened by counterions. In �g. 3.3 (c) a pressure di�erence is applied across the system.
In the steady state, the ion distributions are continuously advected by the velocity �eld,
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figure 3.3: Streaming po-
tential, electric double layer,
and the electroviscous ef-
fect. Red indicates positive
net charge, and blue indi-
cates negative net charge. (a)
�e charge distribution in a
model capillary with surface
charges on the wall, where
the pressure is the same at
inlet and outlet. (b) Same
as (a), but a pressure di�er-
ence is imposed across the
system, skewing the electric
double layer. (c) �e stream-
ing potential e�ectively re-
sulting from the skewed elec-
trical double layers in (b). A
net negative charge builds up
to the le�, and a net posi-
tive charge builds up to the
right, which sets up an elec-
tric �eld counteracting �uid
motion. (Courtesy of Asger
Bolet.)
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which means that the electrical double layer is distorted and ions are moved away from
the inlet side and spill out on the outlet side. �is, as shown in �g. 3.3 (c) e�ectively
induces a dipole moment and sets up an electric �eld E due to the di�erence in net
charge at each end. �is electric �eld can be a�ributed to a streaming potential Vstr, i.e.
E = −∇Vstr. �e associated electric �eld will act on the �uid, which has a net charge,
e�ectively inhibiting the �ow.

�is e�ect can be quanti�ed through the Helmholtz–Smoluchowski relation. For
�ow in an in�nite cylindrical pore (oriented along z, with radius R), it may heuristically
be derived by considering symmetric binary electrolyte. �en, the total charge �ux can
be wri�en using eqs. (3.46c), (3.46d) and (3.47):

Je = ρeu−D∇ρe +KE, (3.63)

such that ∂tρe = ∇·Je. Here, we have identi�ed the conductivityK = Dz2q2
e(c+ + c−)/(kBT ).

Further, we assume the �ux to be given by the Hagen–Poiseuille solution:

u = uz(r)ẑ =
fz
4µ

(R2 − r2)ẑ, (3.64)

where fz = −∂p/∂z + fe is the total average driving force on the �uid, composed by
the constant average pressure gradient, ∂p/∂z, and the induced electric force, fe. In the
steady state, the cross sectional integral of Je must vanish, and so must the integral of the
di�usive term; i.e. the second term on the right of eq. (3.63). By taking the cross-sectional
integrals of eq. (3.63), we �nd

Istr + Icond = 0, (3.65)

where we have identi�ed the streaming current Istr and the conducting current Icond
respectively as

Istr = 2π

∫ R

0
ρe(r)uz(r)r dr and Icond = 2π

∫ R

0
KEzr dr (3.66)

Within the realm of the linearized Poisson–Boltzmann equation (3.61), we may approxi-
mate c+ + c− ' 2c0 and thus K can be taken constant. Further, in the expression for
Istr, we may introduce the new coordinate ξ = R− r, linearize the resulting expression
in ξ (assuming λD � R), insert eq. (3.46e) and integrate by parts. We thus obtain

Istr = −fzε0εrζ

µ
and Icond = KEz =

2Dz2q2
ec

0

kBT
Ez. (3.67)

Using eqs. (3.58) and (3.65) we �nd

Ez = −λ
2
Dζ

Dµ
fz. (3.68)
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Using the fact that |fe| � |fz|, and the relation Ez = ∂Vstr/∂z, we �nd the Helmholtz–
Smoluchowski relation:

∂Vstr/∂z

∂p/∂z
= −λ

2
Dζ

µD
. (3.69)

We are, however, interested in an approximation of the �ow resistance in the capillary.
�us we retain eq. (3.68) and seek an approximation of fe, i.e. we take the cross-sectional
average over fe = −ρeE:

fe '
2

R2

∫ R

0
ρe(r)Ezr dr ' 2Ez

ε0εrζ

RλD
= −2ε0εrζ

2

Dµ

λD

R
fz, (3.70)

where we have integrated by parts using eq. (3.46e), used the linearized Grahame eq. (3.62),
and �nally inserted eq. (3.68) in the last equality. Solving for fz , we obtain

fz =
−∂p/∂z
1 + Ξ

, where Ξ =
2ε0εrζ

2

Dµ

λD

R
. (3.71)

Clearly, the actual driving force that acts on the �uid in the capillary is less than the
average pressure gradient, −∂p/∂z, since Ξ ≥ 0 on physical grounds. Now, interpreting
this expresion in terms of an e�ective electric viscosity µe as a proportionality factor
between �ow rate and imposed pressure (see e.g. eq. (2.10)), gives the following relation:

µe = (1 + Ξ)µ, (3.72)

which is larger than the viscosity in the absence of electrokinetic e�ects, µ. While the
derivation of eq. (3.72) was heuristic, it su�ces to illustrate the electroviscous e�ect, which
in practice quanti�es the increased �ow resistance due to surface charges and ions in
solution. A more general version of eq. (3.72), using a more elaborate derivation with
less restrictive assumptions, was presented by Rice and Whitehead [383] and later by
Mansouri et al. [286,287]. Here, e.g. the distortion of the velocity pro�le due to the electric
force near the boundary is taken into account.

In Paper 4 [58] (see also [57]), corresponding expressions to those in Refs. [286,287] are
found for plane Poiseuille �ow. �ese expressions are mainly used for the purpose of
validating a numerical code. Clearly, the assumption of in�nitely long capillaries is
highly idealized, and the results are expected to di�er for �nite and less ideal geometries.
�e main purpose of Paper 4 [58] is to investigate electroviscous e�ects beyond those
present in the simplest geometries—we will revisit these in section 5.3.

3.4 two-phase electrohydrodynamics

We now consider electrohydrodynamics in two phases. In this respect, we will �rst
present the sharp-interface relations that we expect to hold when the interface thickness
becomes vanishingly thin, and therea�er present the related phase-�eld modelling

Much is known about elec-
trical double layers at solid-
�uid interfaces. However, at
�uid-�uid interfaces double
layers have been less stud-
ied, although an overview
for oil–water interfaces can
be found in [456]. Depending
on the concentration, the De-
bye length λD can generally
stretch from (roughly) 10−10–
10−6 m, meaning that the
clear separation of scales
which is usually the case in
the study of droplets/two-
phase �ow is less clear here,
since the EDL and the phys-
ical interface thickness can

have comparable size.

approach. We assume the single-phase description (3.46) to hold within the bulk of each
�uid. At the interface, however, new conditions must be supplied.

3.4.1 Sharp-interface conditions

�e same continuity in the velocity �eld should hold as without any electric �elds,
namely [u]+− = 0. �e stress balance at the interface changes from eq. (3.73), in that the
electric stresses must be included:

[p]+− n̂int − [2µiDu]+− · n̂int −
[
ε0εr,iE⊗E− 1

2ε0εr,i|E|2I
]+
− · n̂int = γκn̂int, (3.73)
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where E = −∇V is (still) the electric �eld. �e Maxwell stress tensor,

σM = ε0εr,iE⊗E− 1
2ε0εr,i|E|2I (3.74)

is included in the above expression, and should balance the viscous and pressure forces at
the interface. Here, εr,i denotes the relative permi�ivity of phase i. Note that an osmotic
contribution (see section 3.3) has been integrated in the de�nition of the pressure p
above.

In general, the same ionic species j can be present in both phases, such that it
can cross the interface. However, the ionic species will have a di�erent solubility and
di�usivity in the two phases. Similar to what is done with other phasic quantities, such
as density and viscosity, the la�er can be included by generalizing (i) the reference
concentration cref

j to cref
j,i , denoting reference concentration of species j in phase i; and

(ii) the di�usivity Dj to Dj,i, denoting the di�usivity of species j in phase i.
Now, the missing pieces is the continuity of the electric potential V across the

interface (in the absence of any accumulated charges) and the continuity of the normal
component of the displacement �eld:

[V ]+− = 0, and n̂int · [εr,iE]+− = 0. (3.75)

Finally, the chemical potential gcj must be continuous across the interface:

[
gcj
]+
− = 0. (3.76)

Using eqs. (3.46d), (3.75) and (3.76), the following relation is shown to hold at the interface:

cj |x→0+

cj |x→0−
=
cref
j,2

cref
j,1

, (3.77)

which gives a direct interpretation of the quantities involved at the right hand side.
Alternatively, the quantities cj can be related via a Henry jump condition [2]:

cref
j,2

cref
j,1

= exp

(
−βj,2 − βj,1

kBT

)
, (3.78)

where

βj,i = −kBT ln

(
cref
j,i

cref

)
(3.79)

can be interpreted physically as an energy penalty for dissolving species j in phase i,
i.e. a solubility energy. In eq. (3.79), cref is an arbitrary global reference concentration (to
make the units consistent). With eq. (3.79) inserted, eq. (3.46d) becomes

gcj = kBT ln
( cj
cref

)
+ βj,i + qezjV. (3.80)

�e energetic approach to the solubility of a species in a phase di�ers from the approach
by Berry et al. [43], who, in their sharp-interface model, strictly assumed the ionic species
to be con�ned to one of the phases. Nonetheless, such immiscibility can be captured
e�ciently with the energetic approach, as demonstrated e.g. in Refs. [263,264,301].
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3.4.2 Phase-�eld modelling

Campillo-Funollet et al. [79] presented an extension of the two-phase �ow model by
Abels et al. [2] (which was presented in the previous section), by including electrokinetic
transport. �e model is given by the following set of equations:

ρ(φ)∂tu + m ·∇u + ∇p−∇ · (2µ(φ)Du) = − φ∇gφ −
N∑

j=1

cj∇gcj , (3.81a)

∇ · u = 0, (3.81b)
∂tφ+ u ·∇φ =∇ · (M(φ)∇gφ), (3.81c)

gφ =χγ
[
ε−1W ′(φ)− ε∇2φ

]

+
N∑

j=1

β′j(φ)cj − 1
2ε0ε

′
r(φ)|∇V |2,

(3.81d)

∂tcj + u ·∇cj =∇ ·
(
Dj(φ)cj
kBT

∇gcj

)
, (3.81e)

gcj = kBT ln
( cj
cref

)
+ βj(φ) + qezjV,

(3.81f)
∇ · (ε0εr(φ)∇V ) = − ρe. (3.81g)

Here, we have introduced interpolation functions for the di�usivities Dj , the solubility
energies βj , and the relative permi�ivities εr(φ). For the di�usivity, both weighted
arithmetic average (WAA) and the weighted geometric average (WGA) are viable options;
see eq. (3.32) for their de�nitions. �e advantage of using the la�er, is that this prevents
leakage of ions across the interface if the associated ionic di�usivity is much lower in
one phase than in the other (see [263]). Further, it strictly does not allow negative values
of the interpolated function (if |φ| > 1 numerically), which would lead to ill-posedness
of the discretized problem. For the solubility energy βj and the relative permi�ivity εr,
we use the WAA:

βj(φ) = βj,1
1 + φ

2
+ βj,2

1− φ
2

, (3.82a)

εr(φ) = εr,1
1 + φ

2
+ εr,2

1− φ
2

. (3.82b)

By considering the averaging eq. (3.82a) in terms of the reference concentration, cref
j ,

instead, using the de�nition (3.79) and eq. (3.82a), we �nd that

cref
j (φ) = cref exp

(
−βj(φ)

kBT

)
=
(
cref
j,1

) 1+φ
2 ·

(
cref
j,2

) 1−φ
2
, (3.83)

which is exactly a WGA, ideal for preserving the physically required positivity of cref
j .

Choosing the arithmetic averages also simpli�es the numerical treatment of the equations
above, as the derivatives with respect to their arguments, β′j and ε′r, simply become con-
stants and do not require matrix assembly (in the �nite element method, see section 4.1)
at each time step.

Other choices for interpolating the permi�ivity have been reported in the literature.
Tomar et al. [443] found, for their combined level-set/volume-of-�uid leaky-dielectric and
perfect-dielectric models with smoothed interfacial properties, that a weighted harmonic
average (WHA) gave more accurate computations of the electric �eld than what the
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WAA did. However, for a model including free charges, López-Herrera et al. [274] found
no evidence that WHA was superior.

�e model stated in eq. (3.81) is a uni�cation of the two-phase model eq. (3.26), and
the single-phase electrohydrodynamics model eq. (3.46). �e eqs. (3.81a) and (3.81b)
are the incompressible Navier–Stokes equations with variable density, augmented by
a body force that accounts for the interface forces and the chemical forces.23 �e 23 Accordingly, the pressure p

is not the thermodynamic one
here, either. But as before, for
incompressible �ow, it only
imparts that care must be
taken at the pressure bound-
aries.

eqs. (3.81c) and (3.81d) are the Cahn–Hilliard equations, where two new terms have been
added in eq. (3.81d) due to the chemical transport, compared to the formulation without
electrohydrodynamics, eq. (3.26d). �ese give, e�ectively, rise to new force contributions
in the momentum eq. (3.81a). �e third term in eq. (3.81d) gives an osmotic contribution,
while the last term yields a Helmholtz force, which arises due to permi�ivity gradients.
�e eqs. (3.81e) to (3.81g) are the Poisson–Nernst–Planck system, where the permi�ivity
and solubility now depends on the phase φ.

Campillo-Funollet et al. [79] showed that the model reduced to the correct sharp-
interface description in the limit ε → 0 by a matched asymptotic expansion. �e
same boundary conditions as for the pure two-phase problem, and the single-phase
electrohydrodynamic problem, apply to this model.

Free energy

Associated with the model (3.81), we have the free energy functional

F = Fu + Fφ + Fw +
N∑

j=1

Fcj + FV . (3.84)

Here, Fu is given by eq. (3.40), the phase-�eld energy Fφ is given by eq. (3.38), and the
�uid-solid interface energy is given by eq. (3.39). �e chemical free energy (3.50) can be
wri�en in terms of the solubility energy βj(φ) as

Fcj = kBTcj

[
ln
( cj
cref

)
− 1
]

+ βj(φ)cj , (3.85)

while FV is given by eq. (3.51).
With the general GNBC boundary condition, the time evolution of the free energy

can be wri�en as

dF

dt
= −

∫

Ω


2µ(φ)|Du|2 +M(φ)|∇gφ|2 +

N∑

j=1

Djcj
kBT

|∇gcj |2



−
∫

∂Ω

[
l(φ)|u|2 + Γ|L[φ]|2

]
. (3.86)

�us, the model is dissipative.

Comparison to other models

Several authors have noted the need to connect the electrokinetic description of two-
phase �ow to the leaky-dielectric description [396,399,445,483]. Taylor’s original assump-
tion [436] was to impose an instantaneous steady-state charge distribution in the system,
neglecting the di�usive and convective contributions and the continuity of the displace-
ment �eld. �rough the solution of the Poisson eq. (3.81g), this gives rise to charge
accumulation at the interface. Melcher and Taylor [299] reviewed the la�er model, and in-
cluded in their updated model the e�ect of convection of charges located at the interface.
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Baygents and Saville [32] outlined the analysis of how electrokinetic e�ects could
alter the leaky-dielectric results. Zholkovskij et al. [483] considered the electrokinetic
description for two phases, and assumed that no solute could be adsorbed to the interface.
�ey obtained an expression for in�nitesimal droplet deformation under a weak �eld
approximation, which was shown to reduce to the leaky-dielectric result [436] in the
limit of vanishingly thin Debye layers, and to the perfect dielectric result [8,345] in the
opposite limit. Schnitzer and Yariv [399] considered a binary electrolyte and included
rates for the adsorption of charges at the interface, meaning that a net charge would
generally accumulate there in a steady-state. �ey showed rigorously that the model
using for electrokinetics for each phase, in the limit of strong �elds and thin Debye layers,
reduced to the original model of Taylor [436]. In particular, the convection of charge at
the interface was found to be insigni�cant to the lowest order in their expansion.

In the model (3.81), ions are not allowed to be adsorbed at the interface, although
they may accumulate in thin layers on either side. It is possible that a phase contrast in
βj could su�ce to model these e�ects. On the other hand, using ideas from the related
topic of surfactants—molecules that tend to stick to the interface and change the surface
tension [135,438]—it may be possible to extend the model to incorporate this e�ect.

Several phase-�eld models for soluble surfactants have been proposed, see e.g. [3,4,7,133,161,439].
Engblom et al. [133] discuss well-posedness of such models derived from a variational
principle, i.e. as a gradient �ow. A surfactant species can be included in the model by
endowing the surfactant concentration ψ with the free energy functional

Fψ =

∫

Ω

{
kBT

[
ψ ln

(
ψ

ψmax

)
+ (ψmax − ψ) ln

(
1− ψ

ψmax

)]
+ ψβψ(φ)

}
(3.87)

where ψmax is a maximum concentration such that ψ ∈ [0, ψmax], and the solubility
energy is given by

βψ(φ) = −Aψ
(1− φ2)2

4
+Bψ

φ2

4
. (3.88)

Here, the �rst term on the right hand side is a smooth approximation of a Dirac delta
function centered at the interface, which makes it energetically favorable to dissolve
surfactants there. Conversely, the last term penalises the presence of surfactant in either
of the pure phases. �e coe�cients Aψ, Bψ are related to the adsorption rates. �e
resulting chemical potential (assuming non-ionic surfactants) is given by

gψ = kBT ln
ψ

ψmax − ψ
+ βψ(φ), (3.89)

�e dynamics is analogous to how chemical transport occurs:

∂tψj + u ·∇ψj = ∇ · (Mψ∇gψ), (3.90)

except that the mobility is modelled as Mψ(ψ) = Mψ,0ψ(1−ψ). �is was shown in [133]

to yield the Langmuir adsorption isotherm. In precursor work of [133], Van der Sman and
Van der Graaf [451] showed that the Langmuir equation of state for the measured surface
tension γ′,

γ′ − γ ∼ kBT ln

[
1− ψ

ψmax

]
, (3.91)

where γ is the equilibrium surface tension entering into the model, could be obtained
with approprately chosen coe�cients.

For discussions on alternative phase-�eld models with soluble and insoluble surfac-
tants, see e.g. [3,4,7,161]. Note also that in a similar manner as above, increased interface
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conductivity can be modeled by supplementing the interpolation function Dj(φ) with a
similar delta function term at the interface as above.

In the review by Saville [396], chemical reactions are an integral part to how the author
arrives at the macroscopic model for electrohydrodynamics. Chemical reactions can
trivially be included in the model, as was done originally by Campillo-Funollet et al. [79].
In Paper 5 [265], a single-phase model with reactions is considered. �e formulation
Saville [396] ends up with is of a leaky-dielectric type, except that net charge is described
by a conservation law of the type

∂tρe + u ·∇ρe = ∇ · (K(φ)∇V ), (3.92)

where K is the conductivity. A corresponding phase-�eld model was presented by Eck
et al. [128], albeit a di�usive term was included for numerical purposes. As mentioned,
such a model can be rigorously [399] derived from the full electrokinetic model (3.81)
above, but the procedure is fairly cumbersome. Here, we do it instead heuristically by
linearising the concentrations around cref, i.e.

cj = cref + δcj , (3.93)

and truncating at the lowest order, assuming a weak electric �eld, which gives

∂tδcj + u ·∇δcj = ∇ ·
[
Dj(φ)∇δcj +

Djqezjc
ref

kBT
∇V

]
. (3.94)

Assuming Dj(φ) = D(φ) for all j, we multiply eq. (3.94) by qezj , sum over j and obtain

∂tρe + u ·∇ρe = ∇ · [D(φ)∇ρe +K(φ)∇V ] (3.95)

where we have identi�ed the conductivity as K(φ) = D(φ)q2
ec

ref(kBT )−1
∑N

j=1 z
2
j (cf.

eq. (3.63) and the expression there for K). In this picture, ρe can be seen as a single
chemical species associated with a modi�ed free energy density ∝ ρ2

e . In the limit where
we can neglect convection and di�usion, i.e. assume instantaneous steady-state, we
obtain the following Laplace equation:

∇ · [K(φ)∇V ] = 0, (3.96)

which yields V directly, and replaces all solute transport. �is constitutes the leaky-
dielectric approximation.

A phase-�eld model for leaky dielectrics was proposed by Lin et al. [258], constituted
by the normal phase-�eld equations, supplied by force terms in the momentum equation,
due to the permi�ivity and conductivity gradients in the two phases. �e electric gradient
terms were only included in the momentum equation, not in the chemical potential,
and hence the model is further from being thermodynamically consistent than that of
Eck et al. [128]. However, such terms in the phase-�eld chemical potential can lead to
O(ε) deviations from the pure phase values φ = ±1 [133,311] (also curved interfaces may
lead to this [479]). A possible mitigation strategy is to omit the additional terms in the
phase-�eld equation, but include them in the momentum equation—a consequence being
that the model loses its dissipative property. However, as mentioned earlier, it is not
clear whether the thermodynamic consistency for unphysically large interface widths
poses a signi�cant advantage with regards to convergence to the correct sharp-interface
description, apart from being advantagous when constructing numerical schemes [403,404].
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3.4.3 Electrokinetic scaling of the equations

For both analytical and numerical purposes, it is useful to limit the problem to involving
as few parameters as possible. �us, we now nondimensionalize the equations, focusing
in particular on the model (3.81) which also covers the special cases of single-phase
electrohydrodynamics and pure two-phase �ow. Dimensionless versions of physical
variables are marked by a tilde, while reference values are marked with an asterisk (see
also [263,264]). We let t̃ = t/t∗, ρ̃ = ρ/ρ∗, ũ = u/u∗, p̃ = p/p∗, µ̃ = µ/µ∗, c̃j = cj/c

∗,
Ṽ = V/V ∗, D̃± = D±/D∗, ε̃ = εr/ε

∗, and γ̃ = γ/γ∗. �e spatial dimensions are scaled
by a reference linear size R∗, such that x̃ = x/R∗. �e electrostatic potential V is scaled
by a thermal voltage (cf. eq. (3.58)),

V ∗ = VT =
kBT

qe
, (3.97a)

while all other reference values are given by

t∗ =
R∗

u∗
, ρ∗ =

qec
∗VT

(u∗)2
, D∗ = u∗R∗, p∗ = qec

∗VT , (3.97b)

µ∗ =
qec
∗VTR∗

u∗
, ε∗ =

qec
∗(R∗)2

ε0VT
, γ∗ = qec

∗VTR∗. (3.97c)

Altogether, this represents an invertible set of relations between the physical and dimen-
sionless variables. Now, adopting the dimensionless variables and subsequently omi�ing
the tildes, yields the model (3.81) with qe = kBT = 1 and ε0εr → ε. �is represents a
simpli�cation to the equations where the same physics is contained, which will be taken
advantage of in the next section.



4NUMERICAL METHODOLOGY

For all geometries but the very simplest ones, computational methods must be employed
to solve the governing equations. In particular, the problems under scrutiny must be
discretized both in space and time. �is chapter gives an overview of the numerical
methodology employed in this project. We will �rst introduce the �nite element method,
which is the main spatial discretization strategy used. Secondly, we consider temporal
discretization strategies. In particular, we propose a general numerical scheme that is
applicable to most of the systems in this thesis. �erea�er, we present methods for the
simpli�ed case of single-phase �ow. Finally, we present an overview of the numerical
so�ware employed and developed in this work.

4.1 the finite element method

�e �nite element method (FEM) is a popular and e�cient method for solving partial
di�erential equations (PDEs) in arbitrary geometries. �e method relies on discretizing
the domain by dividing it into simpler, �nite elements. In contrast to �nite di�erence
and �nite volume methods, that typically seek to �nd discrete approximations to the
equations that are to be solved, the FEM consists in approximating the solution itself.
�is is achieved using calculus of variations, and by expressing an approximate solution
as a linear combination of basis functions that are compactly supported on the elements.
In the FEM, the original PDE is converted into a weak formulation, which, by using the
Galerkin method, can be turned into a linear system of equations. �e Galerkin method
provides a solution that minimizes an error residual between the approximate solution,
found by the �nite basis, and the true solution. �e �nite element method works on
linear PDEs, but by appropriate linearization and iterated solutions (Newton or Picard
iteration) it can be straightforwardly adapted to solve nonlinear problems.

We shall illustrate the above concepts with an exemplary problem. For a more
thorough and technical introduction into the theory of FEM, the reader is referred to
standard textbooks on the topic (e.g. [67,132,172]).

A fairly general PDE relevant to many of the PDEs described in this thesis,24 can be 24 For example, when α,w
vanish, eq. (4.1) reduces to
the Poisson equation, which
arises many places in this
work (Gauss’ law for electro-
statics, Darcy �ow, pressure
correction). �en, k is anal-
ogous to a space dependent
permi�ivity/permeability
and f is a space-dependent
source term. It is also easy
to see how eq. (4.1) can be
turned into a temporally
discretized advection–
di�usion–reaction equation.

stated in the following form. Find u ∈ U such that

Du
def
= −αu+ ∇ · (w(x)u+ k(x)∇u) = f(x), for x ∈ Ω, (4.1)

u = fD(x), for x ∈ ∂ΩD, (4.2)
n̂ ·∇u = fN(x), for x ∈ ∂ΩN. (4.3)

Here, U is the function space where the solution u lives, and the �elds w(x), k(x), f(x)
are taken only to depend on the spatial variable x ∈ Ω ⊂ Rd, and not on u, while α
is a constant. �e subdomains ∂ΩD and ∂ΩN denote, respectively, the Dirichlet and
Neumann parts of the boundary ∂Ω of the domain Ω. We also let n̂ ·w(x) = 0 on ∂Ω.

�e inner product of two �elds will be used recurrently in the forthcoming. It is
denoted by (•, •), and can be taken between a pair of scalars a, b; vectors a, b; or tensors

55
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A, B—related to the integral over the domain Ω respectively by

(a, b) =

∫

Ω
ab, (a,b) =

∫

Ω
a · b, (A,B) =

∫

Ω
A : B. (4.4)

Now, we can �nd the variational form of eq. (4.1), by considering u as a trial function

and multiplying eq. (4.1) by the test function v it and integrating over the domain,

(Du, v) = −α (u, v)− (wu,∇v)− (k∇u,∇v) +

∫

∂ΩN

kfNv = (f, v) , (4.5)

where we have integrated by parts and inserted eq. (4.3). Note that Equation (4.5) holds
for any v.

�e discretized domain Ωh approximates the true domain Ω, and consists of a tesse-

lation of Nel �nite elements Ωi, such that

Ωh =

Nel⋃

i=1

Ωi. (4.6)

�ese elements can are typically simplicials; i.e. triangles (2D) and tetrahedra (3D); but
other shapes, such as quadrilaterals (2D) and hexahedra (3D), are also common [132].
Here, we will primarily be concerned with simplicials. �ese unit cells share vertices,
edges, and faces (in 3D) with their neighbouring elements. An exemplary discretized
two-dimensional domain is shown in �g. 4.1 (a).

(a) Node i

(b)

figure 4.1: �e �nite ele-
ment method in two dimen-
sions. (a) Illustration of a dis-
cretized domain, i.e. a triangu-
lar mesh. (b) �e P1 ‘hat func-
tion’ ϕi associated with node
i indicated in (a). �e maxi-
mum of φi(x) is φi(xi) = 1,
where xi is the location of
node i.

�e discretized domain is usually called
a mesh, and is typically unstructured. In the following, we consider a mesh with Nvert
vertices, Nedge edges, and Nel elements.

We shall now brie�y discuss ways of constructing a set of basis functions ϕj from
the discretized mesh, i.e. which discrete function spaces the solution should belong to.
�e most common elements belong to the Pk family (k times di�erentiable), e.g.:25

25 See also [19] or
h�ps://www.femtable.org for

an overview of �nite
elements.

P0 — Piecewise constant basis functions. (Note that these may be of limited use
alone as their derivative is zero.)

P1 — Piecewise linear basis functions.
P2 — Piecewise quadratic basis functions.

Generally, Pk−1 elements yield kth order spatial convergence. Using a P0 basis yields a
set of Nel basis functions, while P1 yields Nvert basis functions. P2 elements have ‘nodal’
values also at the middle of each edge, such that a polynomial of order 2 can be uniquely
�xed [132], and thus contain Nvert + Nedge basis functions. In the Pk family, the basis
functions are chosen such that ϕj(xi) = δij where xj are the positions of these nodes.
An example of a single basis function from the common piecewise linear P1 element, is
shown in �g. 4.1 (b). Note that the set of such ‘hat functions’ for all nodes consitutes the
P1 basis for this domain. �e generalization to three dimensions is straightforward, but
harder to visualize.

We shall here employ a set of basis functions ϕi, i ∈ {1, . . . , n}, which in principle
could represent all of the above elements. In the following, we use the Einstein convention,
summing over repeated indices.

An approximation to the solution u of eq. (4.1) can be wri�en as a linear combination
of the basis functions:

u ' û = Uiϕi(x), (4.7)
where Ui are the hitherto unknown coe�cients in this expansion. �e Galerkin method
now imparts le�ing the test functions belong to the same function space as û. �us,

v ' v̂ = Viϕi(x). (4.8)

https://www.femtable.org
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Now, we can insert these into the terms in eq. (4.5) to obtain

(û, v̂) = (φi, φj)UiVj , (4.9a)
(wû,∇v̂) = (wφi,∇φj)UiVj , (4.9b)

(k∇û,∇v̂) = (k∇φi,∇φj)UiVj , (4.9c)∫

∂ΩN

kfNv =

∫

∂ΩN

kfNφjVj , (4.9d)

(f, v) = (f, φj)Vj . (4.9e)

Since eq. (4.5) should hold for any v̂, the equations resulting from inserting eq. (4.9)
should be independent of the choice of Vj . �us, eq. (4.5) becomes

α (φi, φj)Ui + (wφi,∇φj)Ui + (k∇φi,∇φj)Ui =

∫

∂ΩN

kfNφj − (f, φj) , (4.10)

We now de�ne the matrix

A = [Aij ], where Aij = α (φi, φj) + (wφi,∇φj) + (k∇φi,∇φj) , (4.11)

where the three contributing terms represent, respectively, the mass matrix, the advection
matrix and the sti�ness matrix. Further, the right hand side can be wri�en as

b = [bj ], where bj =

∫

∂ΩN

kfNφj − (f, φj) , (4.12)

and the vector of unknowns can be wri�en as U = [Ui]. �us, eq. (4.10) becomes

AU = b, (4.13)

which must be solved for U. �e numerical calculation of the elements of the matrix M
and right hand side vector b in in eq. (4.13), is called to assemble the system. In terms
of computationa, this process can o�en be comparatively costly to solving the matrix
system [320].

Mixed elements

It should be noted that a to represent a PDE of order 2k, one would expect that a
discretized function space of (at least) order k is necessary, as this is the best balancing
between trial and test functions that can be achieved by successive integration by parts.
In the present work, this is particularly relevant for the fourth order phase-�eld equation,
see eqs. (3.26c) and (3.26d). However, low-order elements can be used by introducing an
auxiliary �eld, and employing mixed elements. For example, solving the equation

∇4u = f, (4.14)

for u (with appropriate boundary conditions), would intuitively correspond to the fol-
lowing variational problem: Find u ∈ U such that

(∇2u,∇2v
)

= (f, v) , (4.15)

for all v ∈ U . Instead, one can introduce the auxiliary variable g = ∇2w, which turns
eq. (4.14) into

∇2u = g, ∇2g = f. (4.16)

�e corresponding variational form becomes: Find (u, g) ∈ U ′ × G′ such that

(∇u,∇v) = − (g, v) , (∇g,∇h) = − (f, h) , (4.17)

for all (v, h) ∈ U ′ × G′. Here, the discrete approximations to the subspaces U ′ and G′
can be of lower order than the approximation to the function space U in eq. (4.15). It is
then a trivial task to turn eq. (4.17) into a matrix equation of the form eq. (4.13).
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4.1.1 Solvers and preconditioners

Having assembled the system, as stated in the form (4.13), the task is now to isolate
the vector U with as li�le computation—or as quickly—as possible. �is is in general a
task for numerical linear algebra routines. �e most robust methods solve this directly

(using lower–upper (LU) decomposition or Gaussian elimination). However, this is
highly memory consuming for large systems and does not scale well with the number
of unknowns. Be�er results are therefore achieved with methods that can exploit the
structure of A.

Since the basis functions have compact support, they are typically only nonzero in a
small neighbourhood of a given node or element. �us the involved inner products are
predominantly zero, i.e., the resulting matrix M is very sparse. Moreover, the bulk of
the nonzero entries are found close to the diagonal.

Such matrix structures are o�en suitable for use with iterative Krylov subspace
methods. It is not within the scope of this thesis to enter into the technical theory
on Krylov subspaces and sequences—the interested reader is referred to literature on
the �eld, e.g. [387]. We will only brie�y outline some of the most popular methods. For
symmetric, positive de�nite systems, the conjugate gradient (CG) method [188] is typically
the optimal method. For symmetric systems, the minimal residual (MinRes) method [349]

is a viable option. For less restrictive requirements to the system matrices, the more
robust generalized minimal residual (GMRES) method [388], or the biconjugate gradient
stabilized (BiCGSTAB) method [452] can be used.

For these methods to converge, it is essential to use good preconditioners. �is basi-
cally amounts to multplying both sides of eq. (4.13) by a matrix P ' A−1 (the inverse
of A) to bring the system matrix closer to the identity matrix, or, generally make the
system easier to solve. Common preconditioning techniques include Jacobi precondi-
tioning, algebraic multigrid (AMG), incomplete LU factorization (ILU), and successive
over-relaxation (SOR). �e choice of an appropriate preconditioner also depends on
the choice of linear solver, and for large-scale applications, it is fundamental to access
parallel implementations of the preconditioner–solver pair. A thorough overview of
preconditioners and linear solvers, with emphasis on �uid-mechanical problems, can be
found in the book by Elman et al. [132].

4.1.2 Comparison to other methods

�e main advantage of using the �nite element method (FEM) is its versatility. �e
method is not restricted to a speci�c physical problem, and is intrinsically suited for
a wide variety of physical models and problems. �is includes elasticity and solid
mechanics (where it originates from), advection and di�usion, �uid �ow, and many
more. Further, the method is not limited to speci�c mesh structures, but is formulated
in terms of general discretized domains. �is is in contrast to �nite di�erence (FDM)
and �nite volume methods (FEM), which typically rely on structured meshes or grids. It
is possible to extend FDM and FVM to unstructured grids, but it is not as intuitive as
for the FEM [172]. In particular, FEM formulations on structured meshes o�en become
equivalent to FDM or FVM stencils. Further, implicit or semi-implicit versions of all
three problems typically reduce to solving a linear system of equations [241]. Gresho and
Sani [172], sec. 1.7 provide an interesting discussion on the relation between FEM and FVM.

Another advantage of the FEM is that it straightforwardly allows to construct nu-
merical schemes where certain stability properties can be shown. In particular, implicit
and semi-implicit schemes can be constructed with easy by using �nite di�erences in
time. Moreover, enforcing Neumann (or even Robin) boundary conditions in a FEM is
straightforward, as they enter directly in the weak formulation. �is is, e.g., particularly
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useful for imposing contact angle boundary conditions in phase-�eld simulations.
Progress in recent years indicate that for incompressible �ow, the �nite element

method is fully competitive with FVM [320] in terms of computational performance.
Compared to the la�ice Boltzmann method (LBM), FEM solves the actual PDEs while
the LBM approximates them using kinetic theory. If steady-state solutions are sought,
implicit or semi-implicit schemes are preferred, as larger time steps are allowed. For
turbulent �ow, however, the time-step restrictions may be of lesser importance, and
explicit methods such as the LBM (where all interactions are local) may be advantageous
for parallel scalability. However, unbiased comparisons of the various methods for a
representative spectrum of problems, is in general hard to �nd. In part, it is also a
question of implicit versus explicit methods. Implicit methods are more stable, but also
tend to smear out the solution more; i.e. they are more dissipative. For other applications,
such as for compressible �ow, the FVM is possibly still more mature than the FEM [395].
�e unstructured la�ice Boltzmann method (ULBM) represents an extension of LBM
to unstructured meshes, opening the way for the same geometric �exibility as found
with the FEM (or FVM). However, the velocities must typically be interpolated on the
unstructured meshes by using FVM or FEM methods, and thus the method loses some of
its advantages.

Finally, it should be mentioned that the choice of basis functions in the Galerkin
method need not be limited to the compactly supported functions employed in the FEM.
In simple geometries with a high degree of symmetry, such as periodic channels, pipes,
and fully periodic geometries, spectral (and spectral Galerkin) methods yield superior
accuracy and e�ciency. For example, Lee and Moser [250] presented direct numerical
simulations of plane channel �ow at impressively high Reynolds number using a Fourier
basis in the streamwise and spanwise directions and a B-spline collocation method in
the wall-normal direction. Another option is the use a Chebyshev basis in the wall-
normal direction, see e.g. [319]. However, these methods cannot be easily adapted to
more complicated geometries. An alternative, conceptually halfway between these
two approaches is the spectral element method (which is used e.g. in the CFD code
NEK5000 [152]) but that shall not be evaluated here.

For two-phase �ow simulations, including front-tracking, level-set, volume-of-�uid
and phase-�eld methods, it is also possible to combine di�erent methods. �e methods
typically need some Navier–Stokes solver to advect the �uids, but are not dependent on
which method is used for this purpose. For example, Campillo-Funollet et al. [79] used
a FVM on a dual grid to solve the convective terms, while using FEM on the di�usive
terms; thus taking advantage of the strengths of both methods.

Having discussed spatial discretization strategies, we now proceed to temporal
discretization strategies, which are o�en independent of the spatial method. In particular,
we consider �nite-di�erence integration in time.

4.2 a numerical scheme for transient flow

To apply the models considered herein to realistic time-dependent problems, reliable
time-discretization schemes are needed. �e models covered in this thesis concern, in a
general sense, the incompressible Navier–Stokes equations, in many cases coupled to
external �elds. �e la�er �elds are either an arbitrary number of concentration �elds, or
a single phase �eld.
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We can state the models in the following compact form:

ρ∂tu + m ·∇u−∇ · [2µDu] + ∇p = −
N∑

i=0

ψi∇gi, (4.18)

∇ · u = 0, (4.19)
∂tψi + u ·∇ψi −∇ · (Ki∇gi) = 0, (4.20)

∇ · (ε∇V ) = −ρe, (4.21)

with appropriate boundary conditions, where ψi are the transported scalar �elds, i.e. the
collection of all phase and concentration �elds,

ψi =

{
φ for i = 0,

ci for i ∈ {1, . . . , N}.
(4.22)

�e associated chemical potentials can be wri�en as the general functionals

gi = gi[{ψj}Nj=0, V ] =

{
gφ for i = 0,

gci for i ∈ {1, . . . , N}.
(4.23)

and the generalized mobilities can be de�ned by

Ki =

{
M(φ) for i = 0,

Di(φ)ci for i ∈ {1, . . . , N}.
(4.24)

�e advecting momentum m is, as before, given by eq. (3.29), such that the total density
evolution can be wri�en as

∂tρ+ ∇ ·m = 0. (4.25)

�e coupled problem of �uid �ow, transport of scalar �elds, and electrostatics, is in
general a hard problem to solve numerically. It is thus bene�cial to split the problem into
multiple substeps. Here, we separate out the �uid �ow problem from the scalar transport,
while still being able to prove the same energy stability property that is associated with
the continuous problem.

As unconditionally stable schemes of second or higher temporal order still seems
lacking for two-phase �ow with unmatched density, we will consider the following
temporally �rst-order scheme. In particular, the spli�ing between velocity and pressure,
as seen below, introduces an O(τ) error. �e method is of arbitrary order in space, as it
depends on the chosen �nite element basis.

We will �rst present the step solving for the scalar �elds, including the electric �eld,
and subsequently the hydrodynamics step will be considered. We assume here for brevity
that the dynamic boundary condition with no-slip (3.36), although the extension to a
generalized Navier boundary condition (GNBC) (3.35) is straightforward (e.g. along the
lines of [5]). To simplify the notation, we use the electrokinetic scaling of the model (3.81)
outlined in section 3.4.3.

We consider schemes that use �nite elements in space, and �nite di�erences in time.
�us, we consider a discrete time step τ , and denote for conciseness the �rst-order
discrete time derivative by

∂−τ Ak
def
=
Ak −Ak−1

τ
. (4.26)

Finally, we use the shorthand notation that when a general quantity A is evaluated at a
timestep k, it is denoted by Ak, e.g., Ak = A(φk).
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For completeness, we de�ne the following �nite element subspaces:

Uh = (Uh)d where Uh =
{
v ∈ H1(Ω)

}
for velocity, (4.27a)

Ph =
{
p ∈ L2

0(Ω)
}

for pressure, (4.27b)
Φh =

{
φ ∈ H1(Ω)

}
for scalar �elds, (4.27c)

Gh =
{
g ∈ H1(Ω)

}
for chemical potentials, (4.27d)

Uh =
{
V ∈ H1(Ω)

}
for the electrostatic potential. (4.27e)

4.2.1 Scalar transport step

�e scalar transport step is given by the following discrete problem at each time step k.
Assume that ψk−1

0 , . . . , ψk−1
N , gk−1

0 , . . . , gk−1
N , V k−1,uk−1, pk−1 are given. �en, using

eqs. (4.22) and (4.23), solve:

∂−τ ψ
k
j + ∇ · (u∗ψk−1

j ) = ∇ · (Kk−1
j ∇gkj ), (4.28a)

gkφ = χγ
[
ε−1W ′ − ε∇2φk

]
+
∑

j

∂βj
∂φ

cj −
1

2

∂ε

∂φ
|∇V k|2, (4.28b)

gkcj = α′ + βj + zjV
k, (4.28c)

∇ · (εk∇V k) = −ρke . (4.28d)

Here,
u∗ = uk−1 − τ

ρk−1

∑

j

ψk−1
j ∇gkj (4.29)

is a forward-projected velocity, building on an idea by Minjeaud [305]. Moreover, we have
introduced the following discretizations:

W ′ — A discrete approximation of the derivative of the Ginzburg–Landau double
well potential, W ′(φ), see eq. (3.28). Here, a convex-concave decomposition
W (φ) = W+(φ)−W−(φ) is used (see e.g. [404]):

W ′ = W ′+(φk)−W ′−(φk−1) (4.30)

where W+(φ) = (1 + φ4)/4 and W−(φ) = φ2/2.
f ′w — A discrete approximation of the derivative of the wall energy interpolation

function. Here, it is given by

f ′w =
1

4

[
3− (φk)2 − φkφk−1 − (φk−1)2

]
. (4.31)

cj — interpolated concentration cj = ωckj + (1− ω)ck−1
j , where ω ∈ [0, 1] is an

arbitrary weighting coe�cient.
βj — interpolated solubility energy, βj = (1− ω)βkj + ωβk−1

j .

α′ — An approximation of the derivative of a generalized chemical energy α(c);
we use

α′ = α′(ckj ) = ln ckj , (4.32)

where the last equality holds for standard Nernst–Planck transport.

�ese discretizations have been made in this way to satisfy a discrete energy dissipation
law, which we will show in the coming sections.
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Weak form

For a �nite-element implementation, a weak form of the above scheme must be found.
�e following variational problem corresponds to the scheme (4.28).
Find (ψk0 , . . . , ψ

k
N , g

k
0 , . . . , g

k
N , V

k) ∈ ΦN+1
h ×GN+1

h × Uh such that
(
∂−τ ψ

k
j , ξj

)
−
(
u∗ψk−1

j ,∇ξj

)
+
(
Kk−1
j ∇gkj ,∇ξj

)
= 0, (4.33a)

(
gkφ, h0

)
= χγε−1

(
W ′, h0

)
+ χγε

(
∇φk,∇h0

)

+

∫

∂Ω

[
γ cos(θeq)f ′w + Γ−1∂−τ φ

]
h0

+
∑

j

(
∂βj
∂φ

cj , h0

)
−
(

1

2

∂ε

∂φ
|∇V k|2, h0

)
,

(4.33b)

(
gkcj , hj

)
=
(
α′, hj

)
+
(
βj , hj

)
+
(
zjV

k, hj

)
, (4.33c)

(
εk∇V k,∇U

)
=
(
ρke , U

)
+

∫

∂Ω
σeU, (4.33d)

for all test functions (ξ0, . . . , ξN , g0, . . . , gN , U) ∈ ΦN+1
h ×GN+1

h × Uh.

4.2.2 Fluid �ow step

To solve the Navier–Stokes equations with a non-constant density, many approaches
exist, speci�cally solving for velocity and pressure either in a coupled or in a decoupled
manner. �e present method is based on a decoupled fractional-step method, which has
its roots back to the seminal works of Chorin [92,93]. �e �uid �ow step consists of three
substeps: velocity prediction, pressure correction, and velocity correction. �ey are given in
the following.

Assume that the scalar transport step (4.28) has been carried out, and thus

ψk0 , . . . , ψ
k
N , g

k
0 , . . . , g

k
N , V

k,uk−1, pk−1

are given. �en, carry out the following substeps.

1. Tentative velocity step: Solve the following problem for the tentative velocity
step ũk.

ρk−1 ũ
k − uk−1

τ
+ (mk−1 ·∇)ũk −∇ ·

(
2µkDũk

)
+ ∇pk−1

+
1

2
ũk
[
∂−τ ρ

k + ∇ ·mk−1
]

= −
∑

i

ψk−1
i ∇gki , (4.34a)

with the Dirichlet boundary condition ũk = 0 on ∂Ω. Here we have used

mk = ρkuk − ρ′(φ)Mk∇gkφ. (4.34b)

Note also the presence of the last term in the right hand side of eq. (4.34a), which
is an approximation of 0, cf. eq. (4.25). It is needed to satisfy a discrete energy law,
as will be shown below.
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2. Pressure correction step: Solve the following problem for the pressure pk.

1

ρ0
∇2(pk − pk−1) =

1

τ
∇ · ũk, (4.34c)

where ρ0 = min(ρ1, ρ2). Here the arti�cial Neumann conditionn·∇(pk−pk−1) =
0 should be enforced.

3. Velocity correction step: To obtain the corrected velocity uk, solve

ρk
uk − ũk

τ
= −∇

(
pk − pk−1

)
, (4.34d)

with the Dirichlet boundary condition uk = 0 on ∂Ω.

Weak form

�e following variational problem corresponds to the scheme (4.34) above.

1. Tentative velocity step: Find ũk ∈ Uh such that for all v ∈ Uh,
(
ρk−1 ũ

k − uk−1

τ
,v

)
+
(

(mk−1 ·∇)ũk,v
)

+
(

2µkDũk,Dv
)

−
(
pk−1,∇ · v

)
+

1

2

(
ũk∂−τ ρ

k,v
)
− 1

2

(
mk−1,∇(ũk · v)

)

= −
∑

i

(
ψk−1
i ∇gki ,v

)
, (4.35a)

with the Dirichlet boundary condition ũk = 0 on ∂Ω.

2. Pressure correction step: Find pk ∈ Ph such that for all q ∈ Ph, we have
(

1

ρ0
∇(pk − pk−1),∇q

)
= −1

τ

(
∇ · ũk, q

)
. (4.35b)

3. Velocity correction step: Find uk ∈ Uh such that for all v ∈ Uh,
(
ρk

uk − ũk

τ
,v

)
=
(
pk − pk−1,∇ · v

)
, (4.35c)

which we solve by explicitly imposing the Dirichlet boundary condition uk = 0
on ∂Ω.

�is completes the numerical time discretization scheme. Some remarks are in order:

• At each time step, the scalar transport equations (section 4.2.1) need to be solved
before the hydrodynamic equations (section 4.2.2).

• �e scalar transport equations (4.28) (or (4.33)) are at least weakly coupled through
V k and need to be solved simultaneously.

• Multiplying eq. (4.34d) by τ/ρk , taking the divergence, and using eq. (4.34c), yields:

∇ · uk = τ∇ ·
[(

1

ρ0
− 1

ρk

)
∇
(
pk − pk−1

)]
, (4.36)

i.e., the scheme admits a smallO(τ2) compressibility in the corrected velocity �eld.
�is might, however, stabilize the spatial method; see the discussion in section 4.3.
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4.2.3 Energy stability

We now set out to show that there is a discrete energy law associated with the given
scheme.

We start with the hydrodynamic part. First, we note that, using eq. (4.29), eq. (4.35a)
can be wri�en as
(
ρk−1 ũ

k − u∗

τ
,v

)
+
(

(mk−1 ·∇)ũk,v
)

+
(

2µkDũk,Dv
)

−
(
pk−1,∇ · v

)
+

1

2

(
ũk∂−τ ρ

k,v
)
− 1

2

(
mk−1,∇(ũk · v)

)
= 0. (4.37)

We let v = ũk in eq. (4.37):

1

2τ

[∥∥∥
√
ρkũk

∥∥∥
2
−
∥∥∥
√
ρk−1u∗

∥∥∥
2
]

+
∥∥∥
√

2µkDũk
∥∥∥

2
−
(
pk−1,∇ · ũk

)

= − 1

2τ

∥∥∥
√
ρk−1(ũk − u∗)

∥∥∥
2
, (4.38)

and test eq. (4.29) with ρk−1u∗/τ :

1

2τ

∥∥∥
√
ρk−1u∗

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk−1uk−1

∥∥∥
2

= −
∑

j

(
ψk−1
j ∇gkj ,u

∗
)
− 1

2τ

∥∥∥
√
ρk−1(u∗ − uk−1)

∥∥∥
2
. (4.39)

Further, we let q = −τpk in eq. (4.35b):

(
∇ · ũk, pk

)
= − τ

2ρ0

[∥∥∥∇pk
∥∥∥

2
−
∥∥∥∇pk−1

∥∥∥
2

+
∥∥∥∇(pk − pk−1)

∥∥∥
2
]
, (4.40)

and put v = ũk in eq. (4.35c):

1

2τ

∥∥∥
√
ρkuk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρkũk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk(uk − ũk)

∥∥∥
2

=
(
pk − pk−1,∇ · ũk

)
.

(4.41)

From eq. (4.34d), we �nd

∥∥∥
√
ρk(uk − ũk)

∥∥∥
2

= τ2

∥∥∥∥∥
1√
ρk

∇(pk − pk−1)

∥∥∥∥∥

2

. (4.42)

Combining eqs. (4.38) to (4.42) we obtain:

∂−τ F k
u = −

∥∥∥
√

2µkDũk
∥∥∥

2
− 1

2τ

∥∥∥
√
ρk−1(ũk − u∗)

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk−1(u∗ − uk−1)

∥∥∥
2

− τ

2

∥∥∥∥
√

1

ρ0
− 1

ρk
∇(pk − pk−1)

∥∥∥∥
2

−
∑

j

(
ψk−1
j ∇gkj ,u

∗
)
, (4.43)

where we have identi�ed the discrete kinetic energy,

F k
u = 1

2

∥∥∥
√
ρkuk

∥∥∥
2

+
τ2

2ρ0

∥∥∥∇pk
∥∥∥

2
, (4.44)
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which contains an additional O(τ2) compressibility term compared to its continuous
counterpart, eq. (3.40).

Now, we consider the evolution of the scalar �elds. In the general case, eq. (4.33a)
becomes, using ξj = gkj :

(
∂−τ ψ

k
j , g

k
j

)
−
(
u∗jψ

k−1
j ,∇gkj

)
= −

∥∥∥∥
√
Kk−1
j ∇gkj

∥∥∥∥
2

. (4.45)

For the phase �eld, we �nd, using h0 = ∂−τ φ
k in eq. (4.33b):

(
gkφ, ∂

−
τ φ

k
)

= χγε−1
(
W ′, ∂−τ φ

k
)

+ χγε
(
∇φk,∇∂−τ φ

k
)

+ ∂−τ F k
w

+

∫

∂Ω

[
Γ−1|∂−τ φ|2

]
+
∑

j

(
cj , ∂

−
τ β

k
j

)
−
(

1
2 |∇V k|2, ∂−τ εk

)
.

(4.46)

Here we have used that

f ′w∂
−
τ φ

k =
1

τ

[
fw(φk)− fw(φk−1)

]
, (4.47)

and identi�ed the discrete �uid-solid interface energy (cf. eq. (3.39)),

F k
w =

∫

∂Ω

[
γ2 + γ cos θeqfw(φk)

]
. (4.48)

Now, note that bothW±(φ) are convex functions, i.e.W ′′±(φ) ≥ 0 for all φ. By Taylor
expansion, we �nd, using the mean value theorem,

W+(φk) = W+(φk−1) +W+(φk)(φk − φk−1)− 1
2(φk − φk−1)2W ′′+(φ̄+), (4.49a)

W−(φk) = W−(φk−1) +W−(φk−1)(φk − φk−1) + 1
2(φk − φk−1)2W ′′−(φ̄−), (4.49b)

for some φ̄± ∈ [min(φk−1, φk),max(φk−1, φk)]. We thus �nd
(
W ′, ∂−τ φ

k
)

=
(
W ′+(φk)−W ′−(φk−1), φk − φk−1

)
(4.50)

=

∫

Ω

[
W (φk)−W (φk−1)

]
+ ∆W, (4.51)

where ∆W = 1
2(φk − φk−1)2

(
W ′′+(φ̄+) +W ′′−(φ̄−)

)
≥ 0. We also �nd that

(
∇φk,∇∂−τ φ

k
)

=
1

2τ

∥∥∥∇φk
∥∥∥

2
− 1

2τ

∥∥∥∇φk−1
∥∥∥

2
+

1

2τ

∥∥∥∇(φk − φk−1)
∥∥∥

2
. (4.52)

For the chemical potential for the ions, we let hj = ∂−τ c
k
j in eq. (4.33c):

(
gkcj , ∂

−
τ c

k
j

)
=
(
α′, ∂−τ c

k
j

)
+
(
βj , ∂

−
τ c

k
j

)
+
(
zjV

k, ∂−τ c
k
j

)
, (4.53)

where we �nd that
(
α′j , ∂

−
τ c

k
j

)
=

∫

Ω

[
αj(c

k
j )− αj(ck−1

j ) + ∆αj

]
(4.54)

where c̄j ∈ [min(ck−1
j , ckj ),max(ck−1

j , ckj )] and the last term, ∆αj = 1
2α
′′
j (c̄j)(c

k
j −

ck−1
j )2 is non-negative since α′′j (c) ≥ 0 for all c.
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From eq. (4.33d) we �nd
(
εk∇V k,∇V k

)
=
(
ρke , V

k
)

+

∫

∂Ω
σeV

k, (4.55)
(
εk−1∇V k−1,∇V k

)
=
(
ρk−1
e , V k

)
+

∫

∂Ω
σeV

k, (4.56)

which gives
(
εk∇V k − εk−1∇V k−1,∇V k

)
=
∑

j

zj

(
ckj − ck−1

j , V k
)
. (4.57)

Combining eqs. (4.45), (4.46), (4.51) to (4.54) and (4.57), and summing over j where
appropriate, we obtain

∂−τ


F k

φ + F k
w +

∑

j

F k
cj + F k

V


 =

∑

j

(
u∗jψ

k−1
j ,∇gkj

)
−
∑

j

∥∥∥∥
√
Kk−1
j ∇gkj

∥∥∥∥
2

−
∫

∂Ω

[
Γ−1|∂−τ φ|2

]
−
∫

Ω
χγε−1∆W − χγε

2τ

∥∥∥∇(φk − φk−1)
∥∥∥

2

− 1

2τ

∥∥∥
√
εk−1(∇V k −∇V k−1)

∥∥∥
2
−
∑

j

∫

Ω
∆αj (4.58)

where we have used(
cj , ∂

−
τ β

k
j

)
+
(
βj , ∂

−
τ c

k
j

)
=

1

τ

[
βkj c

k
j − βk−1

j ck−1
j

]
, (4.59)

and identi�ed the following discrete free energy expressions:

F k
φ = χγ

[∫

Ω
ε−1W (φk) +

ε

2

∥∥∥∇φk
∥∥∥

2
]

(4.60)

F k
cj =

∫

Ω

[
αj(c

k
j ) + βkj c

k
j

]
(4.61)

F k
V = 1

2

∥∥∥
√
εk∇V k

∥∥∥
2
. (4.62)

�ese are the discrete counterparts of eqs. (3.38), (3.50) and (3.51), respectively.
Now, we are in a position to combine the above results. Summing eqs. (4.43) and (4.58),

we obtain

∂−τ F k = −
∑

j

∥∥∥∥
√
Kk−1
j ∇gkj

∥∥∥∥
2

−
∥∥∥
√

2µkDũk
∥∥∥

2
−
∫

∂Ω

[
Γ−1|∂−τ φ|2

]

−
∫

Ω
χγε−1∆W − χγε

2τ

∥∥∥∇(φk − φk−1)
∥∥∥

2
− 1

2τ

∥∥∥
√
εk−1(∇V k −∇V k−1)

∥∥∥
2

−
∑

j

∫

Ω
∆αj −

1

2τ

∥∥∥
√
ρk−1(ũk − u∗)

∥∥∥
2

− 1

2τ

∥∥∥
√
ρk−1(u∗ − uk−1)

∥∥∥
2
− τ

2

∥∥∥∥
√

1

ρ0
− 1

ρk
∇(pk − pk−1)

∥∥∥∥
2

(4.63)

where we have identi�ed the total discrete energy,

F k = F k
u + F k

φ + F k
w +

∑

j

F k
cj + F k

V . (4.64)

We observe that all terms on the right hand side of eq. (4.63) are negative; hence ∂−τ F k ≤
0, i.e. a discrete counterpart of eq. (3.86) is satis�ed. Comparing eqs. (3.86) and (4.63), we
also note that only the three �rst terms in eq. (4.63) are present in eq. (3.86); the rest of
the terms in eq. (4.63) represent numerical dissipation and are at least of order O(τ).
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4.2.4 Discussion

An advantage of using the above scheme is that it is highly decoupled: �e hydrodynamic
computation is decoupled from the scalar transport, and within the hydrodynamic
subproblem, the computation of the velocity is decoupled from the pressure computation.
�is is achieved by a fractional step method, based on Chorin’s method [92,93] and similar
to that presented in [404] for pure two-phase �ow. As noted, the method introduces a
small numerical compressibility, see eq. (4.36), which also serves to stabilize the problem
with regard to the Babuska–Brezzi criterion (see section 4.3 below). Furthermore, the
discrete energy inequality, which is also an important property of the continuous version
of the model, serves to limit the energy blowup that is o�en associated with the sharp
gradients typically present in two-phase �ow. �e functional can possibly be used to
prove convergence of the numerical scheme in the same way as done by Shen and
Yang [404] for the case of pure two-phase �ow, and more recently by Metzger [301] for a
similar scheme to this.

A main disadvantage of this scheme is that all scalar �elds must be solved simultane-
ously, and additionally, it requires using a nonlinear solver, for the discrete energy law to
be satis�ed. �is may impart a FEM problem that is not necessarily easy to precondition
and solve. Alternatively, a fully linear scheme where all nonlinear terms above are
linearised around the variables at time step k− 1 (and higher order terms are omi�ed) is
presented in Paper 6 [263]. Although free energy dissipation, as represented by eq. (4.63),
can then not be guaranteed, the problem could be split between (i) computing the phase
�eld, (ii) computing the chemical transport, and (iii) hydrodynamics. For the resulting
subproblems (i) and (iii) there are e�cient and robust solvers that can be used. For (ii) it
has proven harder to solve the equations, in particular when the electric �elds are so
strong that we are well into the nonlinear electrokinetic regime (V & VT ).

Another disadvantage, compared to solving all equations (including hydrodynamics)
simultaneously—i.e. using a fully implicit scheme—is that the operator spli�ing imparts
an explicit inclusion of the advective velocity. �is introduces a restriction on how
large time steps can be used for the scheme to remain stable, governed by the Courant–
Friedrichs–Lewy (CFL) criterion. Again, however, it is not straightforward to �nd robust
and e�cient preconditioners and solvers for this problem, and fully implicit schemes are
also a�liated with excessive numerical dissipation.

Finally, we propose here a way to provide e�cient energy-stable simulations, i.e.
solving for the scalar transport values simultaneously. Within the scalar transport
subproblem, the following Picard iteration should be carried out at each time step k.

1. Let the tentative variables φ̂k0 = φk−1, V̂ k
0 = V k−1, ĉkj,0 = ck−1

j , and let i = 1.

2. Solve the phase �eld equations linearized around φ̂ki , and obtain the tentative value
φ̂ki+1.

3. Solve the electrostatic problem with the newly obtained φ̂ki+1, and obtain V̂ k
i+1.

4. Solve the chemical transport problem with the new φ̂ki+1, V̂
k
i+1, and obtain ĉkj,i+1.

5. Compute

Eki+1 =

√∥∥∥φ̂ki+1 − φ̂ki
∥∥∥

2
+
∥∥∥V̂ k

i+1 − V̂ k
i

∥∥∥
2

+
∑

j

‖ĉj,i+1 − ĉj,i‖2. (4.65)

If Eki+1 < tol, where tol is some tolerance, assign φk = φ̂ki+1, V k = V̂ k
i+1, ckj =

ĉkj,i+1, and proceed to the next time step k + 1. Otherwise, increase i← i+ 1 and
go to step 2.
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Steps 2–4 above are fairly standard procedures, as they require solving a sequence of
decoupled linear equations. Nevertheless, when applicable, a Newton solver would
converge in fewer iterations. However, with the iteration scheme above, e�ective reuse
of matrices could be permi�ed in a �nite element method, as outlined e.g. in [320] for a
pure single-phase case, and in [119] for a two-phase model.

4.2.5 Pure single-phase schemes

Now we consider the �ow of a pure single-phase �uid, i.e. the �ow is not coupled to any
additional scalar �elds. �e scheme above reduces to the classical Chorin scheme when
applied to a single-phase case, where ρ, µ are taken to be constant. �en, the numerical
problem reduces to sequentially solving

ρ

(
ũk − uk−1

τ
+ uk−1 ·∇ũk

)
− µ∇2ũk + ∇pk−1 = 0, (4.66a)

∇2(pk − pk−1) =
ρ

τ
∇ · ũk, (4.66b)

ρ
uk − ũk

τ
= −∇(pk − pk−1). (4.66c)

Here, the �rst and last equations should be solved with the no-slip boundary condition,
ũk = 0 and uk = 0, respectively. �e pressure correction equation is typically solved
with the arti�cial boundary condition n̂ ·∇(pk − pk−1) = 0. A temporally second-order
version of Chorin’s method can be found by a modi�cation of the above equations (4.66)
to arrive at the following fractional step scheme [320]:

ρ

(
ũk − uk−1

τ
+ u

k−1/2
AB ·∇ũ

k−1/2
CN

)
− µ∇2ũ

k−1/2
CN + ∇p∗ = 0, (4.67a)

∇2(pk−1/2 − p∗) =
ρ

τ
∇ · ũk, (4.67b)

ρ
uk − ũk

τ
= −∇(pk−1/2 − p∗) (4.67c)

Here, ũk−1/2
CN = (ũk + uk−1)/2 is the Crank–Nicolson interpolated velocity, and

u
k−1/2
AB = (3uk−1 − uk−2)/2 is the Adams–Bashforth projected convecting velocity.

Equations (4.67a) and (4.67b) are solved in an inner loop, where, before each iteration,
p∗ ← pk−1/2.26 Hence, this scheme is called an incremental pressure correcting scheme26 �e initial pk−1/2 can be

assigned by e.g. a projec-
tion pk−1/2 ← 2pk−3/2 −
pk−5/2.

(IPCS). A convergence criterion based on
∥∥pk−1/2 − p∗

∥∥, or a desired maximum number
of iterations, is typically set. See also the review by Langtangen et al. [241] for an overview
of methods for incompressible single-phase �ow.

Assuming the inner loop is solved with high accuracy, such that p∗ = pk−1/2, we
obtain from eq. (4.67c) that ũk = uk . Inserting these expressions into eq. (4.67a), testing
with ukCN = ũkCN = (uk + uk−1)/2, and as usual using the no-slip condition, we obtain

1

2τ
ρ
∥∥∥uk

∥∥∥
2
− 1

2τ
ρ
∥∥∥uk−1

∥∥∥
2

= −
∥∥∥2µDu

k−1/2
CN

∥∥∥
2
, (4.68)

where we have also used that ∇ · ukCN = 0. Comparing to the �rst-order counterpart
(4.43) (le�ing u∗ = uk−1 and ρk = ρ and disregarding chemical potential terms) it is
clear that the second-order scheme is less dissipative, while still retaining the sought
energy stability. It is tempting to pursue such a direction for two-phase �ow with density
contrast, solute transport and electric �elds, and it is trivial to construct schemes that
are, at least, formally second order [403]. However, to the author’s knowledge, even for
two-phase �ow with mass contrast it is an open question how to achieve energy stability,
which again can allow for rigorous convergence results.
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4.3 steady-state schemes

For problems where a steady-state solution is sought, it is o�en undesirable to go
through thousands of time steps to reach a steady state. Moreover, as seen from eq. (4.63),
the steady state reached by a time-spli�ing scheme may contain spurious numerical

dissipative terms of the orderO(τ), and the arti�cial boundary condition on the pressure
Poisson equation introduces an error O(τ) [241], sec. 5.1—which can be detrimental to the
overall solution even when a higher-order method is used.

In this case, it might be worthwhile to solve for velocity and pressure in a coupled
manner. For clarity, we consider the Stokes equation (3.17) for creeping �ow, which we
restate here,

−µ∇2u + ∇p = f , (4.69)
∇ · u = 0. (4.70)

Here, we have added the constant body force f to the right hand side of eq. (4.69). We
impose the no-slip condition u = 0 on the boundary ∂Ω.

Equation (4.69) can be wri�en as the following linear variational problem. Find
(u, p) ∈ Uh × Ph such that

µ (∇u,∇v)− (p,∇ · v) = (f ,v) (4.71a)
(∇ · u, q) = 0, (4.71b)

for all test functions (v, q) ∈ Uh×Ph. Solving and preconditioning this system remains
an important area of research to this day. Particularly, this is relevant for cases where an
accurate steady state is sought.

Finite element approximation

In the �nite element method, as explained in section 4.1, we can expand the solution
functions in a �nite basis. For the velocity, we write the approximated solution as [241]

u ' û =

n∑

j=1

ndim∑

r=1

Uj,rN
r
j (4.72)

where Nr
j = Nj êr (êr are unit vectors), while the pressure can be approximated as

p ' p̂ =
m∑

j=1

PjLj . (4.73)

Here, Ur,j , Pj are constant coe�cients, whileNj , Lj are basis functions. Here, the veloc-
ity is represented by n ·ndim unknowns (ndim is the number of spatial dimensions) and the
pressure is represented by m unknowns. Using the Galerkin method, as demonstrated
in section 4.1, we can express (4.71) in terms of the basis functions. We then obtain the
following equation sets:

n∑

j=1

µ (∇Nj ,∇Ni)Uj,r −
m∑

k=1

(Lk, ∂rNi)Pk = (fr, Ni) ,

for r ∈ {1, . . . , ndim},
and i ∈ {1, . . . , n},

(4.74a)

ndim∑

r=1

n∑

i=1

(Lk, ∂rNi)Ui,r = 0, for k ∈ {1, . . . ,m}. (4.74b)
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Evidently, we can identify the inner products as the matrices A = [Aij ] where Aij =
µ (∇Nj ,∇Ni), and Br = [Bik,r] where Bik,r = − (∂rNi, Lk); the source term vectors
Qr = [Qr,i] where Qr,i = (fr, Ni); and the vectors of unknowns Ur = [Ui,r], P = [Pi].
Here A is an n × n matrix, Br is a n × m matrix, Ur is an n-vector, and P is an
m-vector. By de�ning U = [U1, . . . ,Undim ,P] as the system vector of unknowns,
Q = [Q1, . . . ,Qndim ,0m] (0m is an m-dimensional zero vector) as the source term
vector, and

M =




A B1

. . . ...
A Bndim

BT
1 . . . BT

ndim


 (4.75)

as the (n · ndim +m)× (n · ndim +m) system matrix, we can write the linear system as

MU = Q. (4.76)

Now, the main quest is to solve eq. (4.76), i.e. choose basis functions Nj , Lk such that
M is not singular. In this respect, the Babuska–Brezzi condition [67,68,241] is a central
concept, which determines whether a �nite element approximation is stable and leads
to a uniquely de�ned solution vector U. In practice, it imparts that a standard P1–P1

discretization (of (u, p)), i.e. piecewise continuous basis functions on the discretized
domain, cannot generally be used to solve the Stokes equations. �e arguably most
obvious choice is to use Taylor–Hood elements, which consists of P2–P1 elements; i.e.
piecewise quadratic basis functions for the velocity and piecewise linear basis functions
for the pressure. �is, however, leads to a larger number of unknowns, and in general, a
large linear system that is hard to solve. �e criterion also enables several other mixed
element formulations, such as Pk+1–Pk for k > 1, and more advanced elements such as
the MINI element, the “bubble” elements, and Crouzeix–Raviart elements. We will not
discuss such methods here, and the interested reader is referred elsewhere [132,172].

A more intuitive way of stabilizing the Stokes equations is to modify the governing
equations, and include a mesh dependent parameter that ensures that convergence to
the correct solution is obtained when the mesh is su�ciently re�ned, i.e. let the typical
linear element size h → 0. Such stabilization can enable the use of elements of the
same order for both pressure and velocity, i.e. elements that would otherwise violate the
Babuska–Brezzi criterion. When solving the Stokes equations numerically with elements
that violate this criterion, the pressure �eld is usually found to be highly oscillatory. It
is therefore consistent with physical intuition to add a term to the right hand side of
eq. (4.70) that dampens out short-wavelength oscillations in the pressure �eld. Such a
term can be expressed by

∇ · u = δh2(x)∇2p, (4.77)

where h(x) is a local mesh size, and δ is parameter that is typically chosen heuristically. It
is clear that the modi�cation of the continuity equation, eq. (4.77), admits a compressibility
proportional to δ, i.e. the velocity �eld is no longer divergence free. In particular, δ should
be large enough to provide stable convergence, but small enough for the introduced
compressibility to be unimportant for the �nal results.

�e modi�cation (4.77) leads to a resulting in a modi�cation (from eq. (4.75)) of the
system matrix M in eq. (4.76):

Mstab =




A B1

. . . ...
A Bd

BT
1 . . . BT

d −δC


 , (4.78)
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where the m×m matrix C = [Cij ] is de�ned by Cij = h2 (∇Li,∇Lj). For su�ciently
large δ, the matrix Mstab becomes nonsingular even for P1–P1 elements.

�e Babuska–Brezzi criterion is in general not only applicable to mixed elements
and steady-state problems. It also applies to transient problems (the generalisation is
straightforward), including those that inmpart spli�ing between velocity and pressure.
However, for spli�ing methods, such as that presented in section 4.2, a weak numerical
compressibility is introduced, ∇ · u ∝ τ2∂tp, which can be seen from eq. (4.35b). �is
has a similar e�ect as the stabilization term (4.77) above, rendering simulations using
P1 elements for all �elds possible. �is can be a particularly viable alternative when
the O(τ) spli�ing error dominates. Finally, mixed element formulations that actually
violate the Babuska–Brezzi criterion may also work well in practice. For instance, the
P2–P0 element has found wide use [241]. For more discussions on stabilization methods
for single-phase �uid �ow, see e.g. [172,241].

4.4 numerical software and tools

Computational tools are needed to numerically solve the discretized equations presented
in the preceding sections. To consider the �nite element method, the numerical tasks
at hand include constructing meshes, computing basis functions, assembling system
matrices (typically at each time step), preconditioning and solving the resulting sparse
linear systems, and storing and analysing the data. Many of these steps are in themselves
well-developed scienti�c topics, and hence it would be daunting task to implement
everything from scratch. Luckily, there exist freely available numerical resources which
allow to use highly optimized routines for all of these tasks. �e obvious advantages of
this approach is that one avoids ‘reinventing the wheel’ and the approach thus allows to
obtain reliable results in a shorter amount of time—both in terms of implementation and
simulation time. Obviously, this relies on the employed so�ware to be trustworthy.

�e importance of reproducibility in science was pointed out already by Boyle in
the 17th century [402] pp. 82. Recently, an increased interest in reproducible research
has emerged, particularly in computational science [75,135]. An essential component to
reproducible science is transparency. For computational science, this imparts that the
numerical codes should be available to the public, so that anyone can inspect and critically
evaluate the validity of the tools with which results have been obtained. An important
facilitator for development of such open source so�ware has been the open version control
system such as Git [444] and Mercurial, combined with public code repositories such as
GitHub and BitBucket.27 In order to keep in line with this policy, we have opted both to 27 Not only does this pro-

vide a powerful and trans-
parent change-tracking envi-
ronment, and allow users to
quickly update their code (by
“pulling” from the repository);
it invites users to interact,
point out errors or shortcom-
ings (�le “issues”), and pro-
vide �xes or new features
themselves (submit “pull re-
quests”), which in term can
be incorporated into the main
branch of the project by the
code authors.

use and develop open source codes.28

28 Open science is also an im-
portant target for the Hori-
zon 2020 programme of the
European Commission [141], a
funding agent for the present
project.

4.4.1 FEniCS

Most of the simulations presented in this thesis have been carried out within the �nite el-
ement framework FEniCS [272]. FEniCS is an open-source computing platform for solving
partial di�erential equations using the �nite element method, which aims to automatize
the discretization and assembly of the problems in question. �e backend code is wri�en
in c++, while the features can be accessed using high-level Python code. Since the bulk
of the computation time in a �nite element problem is spent on matrix assembly and
linear solvers, the high-level Python interface does not pose a signi�cant cost in terms of
e�ciency [320]. Rather, it serves to cut time spent on code development, documentation,
and maintenance. FEniCS consists as a collection of dedicated components that together
make se�ing up �nite element problems straightforward. Dolfin [273] is the c++/Python
interface to the computational backend of FEniCS. �e FEniCS Form Compiler FFC [235]
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translates variational forms into e�cient c++ code for FEM assembly. �e discretized
variational forms can be speci�ed by users via the Uni�ed Form Language (UFL) [10]. �e
Finite element Automatic Tabulator (FIAT) [234] generates various types of �nite elements
(including Pk) elements. Dijitso [11] is a just-in-time compiler for c++ code generated by
Python code.

Within a Python script, FEniCS users can specify a mesh, set up �nite element
spaces, specify a weak form of the governing equations, and impose boundary conditions.
�e numerical problem is then automatically converted to a linear matrix system by
the c++ backend. �e computational backend interfaces to highly optimized linear
solver libraries, such as PETSc [25], Hypre [142], and Trilinos [187]. Which linear solvers
and preconditioners to use can be speci�ed by the user. In particular, all the solvers
and preconditioners mentioned in section 4.1 can be accessed through FEniCS, and
additional preconditioners are found e.g. in Fenapack [55]. In common with (and partly
due to) its linear algebra backend, FEniCS is highly parallelized and developed with
high-performance computing in mind. In particular, it uses the Message Parsing Interface
(MPI) for parallel communication.

For a more thorough introduction to how FEniCS is used in practice, the reader is
referred to the extensive tutorial by Langtangen and Logg [240]. In this project, FEniCS has
been used as the underlying framework for solving the equations of elasticity, creeping
�ow, transient single-phase �ow, and multiphase �ow with electric �elds and solutes, as
we will se below.

4.4.2 Oasis

�e Oasis (Optimized and Stripped Solver) so�ware, developed by Mortensen and Valen-
Sendstad [320], is a high-level, fast and �exible solver for the Navier–Stokes equations.
Oasis is wri�en entirely in Python, built on top of the FEniCS platform, and heavily
exploits its PETSc backend. �e runtime of the solver has been shown to be dominated
by Krylov solver iterations, underpinning the fact that the high-level Python interface
is insigni�cant to the overall performance. In particular, the solver was shown to yield
similar e�ciency as solvers wri�en entirely in low level code, i.e. OpenFoam [217] and
CDP [86] by comparative simulations on the Abel supercomputer at the University of
Oslo, and weak scaling was demonstrated up to 256 cores.

Oasis is distributed as a Python package and is modular by design. Several solvers,
i.e. numerical schemes, given as separate Python scripts, are implemented in the code.
�ese include Chorin’s method, i.e. eq. (4.66), and an optimized IPCS, i.e. eq. (4.67), and
other methods. Problems, i.e. simulation cases, are implemented as separate Python
scripts in a similar manner, and user speci�c problems can be easily de�ned, for example
by modifying some of the default problems to �t the needs of the user. A customized
version of Oasis29 used in this project was developed by the author jointly with MSc29 �e code can be found

on the Git repository h�ps:
//github.com/gautelinga/
Oasis/tree/nbiOasis.

student Mads H. A. Madsen, whom the author co-advised during the spring of 2016.

4.4.3 Bernaise

Bernaise (Binary Electrohydrodynamic Solver) is a �exible, high-level �nite element
solver of two-phase electrohydrodynamic �ow problems in complex geometries, which
has been developed in this project [263], in a joint venture with colleague Asger Bolet.
Inspired by the famous sauce—and oil-in-water emulsion—Béarnaise30, the solver aims30 �e missing a in Bernaise

compared to the sauce stands
for adaptivity, which is at the
present not an implemented
feature.

at solving problems involving the smallest constituents of such phases, namely small
droplets of one phase immersed in another phase, possibly subject to chemical transport
and electric �elds. �e basic version of the solver targets solving the phase-�eld model
(3.81) as proposed by Campillo-Funollet et al. [79], while other phase-�eld models can be

https://github.com/gautelinga/Oasis/tree/nbiOasis
https://github.com/gautelinga/Oasis/tree/nbiOasis
https://github.com/gautelinga/Oasis/tree/nbiOasis
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integrated with ease. Employing a phase-�eld model, the solver is be�er suited to handle
topological changes and moving contact lines than comparable sharp-interface models;
cf. [43]. Several numerical schemes are implemented, which include coupled velocity and
pressure computation, fractional-step methods, energy stable schemes and fully linear
schemes. �is permits simulations both in two and in three dimensions. �e 3D version
of the solver is fully iterative and demonstrated strong scaling up to about 40 cores on
an in-house computing cluster.

Bernaise is inspired by the Oasis solver, and is similar to the la�er in both structure
and implementation. �is approach is chosen both in order to appeal to the same user
base, and because it was the developers’ opinion that the approach of Oasis is a sensible
one. Many of the routine functions are similar, and problems and solvers can easily
be implemented in a reminiscent31 way by the user, i.e. by supplying single Python 31 As the two codes simulate

related, but in many ways
quite di�erent physical prob-
lems, signi�cant di�erences
in the code structure are nec-
essary.

scripts. Nevertheless, it is our hope and opinion that most users—familiar with Oasis or
not—should easily arrive at a decent level in Bernaise.

In addition to the simulation environment, Bernaise comes with a set of utility tools.
�is includes post-processing tools for analysing data, producing �gures, etc., a mesh
generation utility, and a plo�ing utility.

�e appended Paper 6 [263] which documents the so�ware, simulation method, and
code validation, is described also section 5.3. Additionally, the code has been used for
several of the other appended publications.

4.4.4 Meshing tools

Although meshing was mentioned only in passing in section 4.1, it represents a genuinely
hard and important problem. Unstructured meshes have the initially persuasive feature
that they allow to represent parts of the domain with �ner elements and thus allowing to
obtain locally higher accuracy. However, for complex domains in 3D, constructing quality
meshes is a challenging task. In many se�ings, such as in simulation of incompressible
�ow, ‘bad’ elements can deteriorate the solution, and lead to instabilities in otherwise
stable methods [241]. Moreover, spli�ing schemes for transient �ow are subject to the CFL
criterion and therefore strongly inhibited by the smallest grid size (or speci�cally, the
highest local Courant number).

�e CGAL library [441] is an extensive c++ library for meshing in 2D and 3D, but
is di�cult to master. TetGen [408] is another robust mesh generation tool with a more
modest feature list. FEniCS’ built-in meshing tool, the Python package Mshr [230] inter-
faces to both the above libraries. Another good Python package is MeshPy [236], which
interfaces to Triangle [405] for 2D meshes and above-mentioned TetGen. Iso2Mesh [143]

is a MatLab toolbox which both interfaces to CGAL and TetGen, and contains several
other features.

In this work, Iso2Mesh was used to generate meshes from segmented X-ray micro-
tomography data of a porous limestone (see section 5.2), using the interface to TetGen
to produce the surface mesh and the CGAL interface to produce the interior tetrahedra.

Periodic domains constitute an additional di�culty, as nodal values must be mapped
exactly to the opposing sides. �is is particularly relevant for constructing meshes for
rough channel or pipe geometries. To do this, a meshing tool was developed in Python,32 32 Some of the meshing

tools used in this project
are available at the Git
repository h�ps://github.
com/gautelinga/meshtools.

that takes an arbitrary (rough) surface as input and creates a periodic mesh from it. Using
a combination of manually wri�en routines for the edges, Triangle (via MeshPy) for
the �at (periodic) sides, and TetGen for the interior tetrahedra, reasonably high-quality
meshes could be obtained that were also fully periodic. As will become obvious in the
next chapter, these routines were taken advantage of in both electrohydrodynamic and
transitional �ows.

https://github.com/gautelinga/meshtools
https://github.com/gautelinga/meshtools
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5SUMMARY OF PAPERS

In this chapter, the research articles produced in this project are summarized. �e papers
are roughly organized into four overarching themes for which background material has
been introduced in the previous chapters.

5.1 turbulent fronts in pipe flow

paper 1: Statistical mechanics of pu�-spli�ing in the transition to pipe turbulence
Hong-Yan Shih, Gaute Linga, Grégoire Lemoult, Mukund, Vasudevan, Björn
Hof, Joachim Mathiesen, and Nigel Goldenfeld
In preparation (2018)

�is manuscript addresses the

spatio-temporal transition to

turbulence in pipe �ow. Re-

sults from Paper 1 were pre-

sented by the author at the con-

ference Computational Meth-

ods in Water Resources, held in

Saint-Malo, France, 3–7 June

2018.

Paper 1 concerns the spatio-temporal transition to turbulence in a smooth pipe,
and starts o� where the discussion in section 2.2.2 ended. As noted there, whether
or not the transition belongs to the directed percolation universality class has been a
long-standing puzzle in the community at the intersection between �uid mechanics and
statistical physics. Recent experiments by Mukund and Hof [327] showed that even in
(quasi-periodic) pipes of length 7800d (d is pipe diameter), a continuous transition to
turbulence could not be observed. Rather, a discontinuous behaviour was observed, from
the point where all turbulence died out at Re ' 2020, shown in �g. 2.3 (d), to a point
where turbulent pu�s were ‘jammed’ in a crystalline state at Re ' 2060, shown in �g. 5.1
(a). �is relied on the standard view of considering the turbulent fraction F as the order
parameter and Re as the control parameter [28,29]. Moreover, knowledge from studies on
directed percolation suggests that the critical point, Rec, is somewhat higher than at the
Re× ' 2040 found by Avila et al. [23] based on single-pu� statistics [23,29,193].33 Here, we 33 However, as noted also

by Avila et al. [23], the split-
ting and decay rates change
so abruptly around Re× that
Rec is likely only be slightly
larger.

summarize and give some supplementary information to the appended preprint.
In this work, the main assumption is that the statistical properties of a pu� depend

(in average) only on the shear pro�le at its upstream front. In particular, the la�er should
depend only on the distance to the nearest neighbour upstream, and not on anything
happening downstream of it. �us, the dynamics are controlled only by one-way two-
particle interactions. Moreover, the pu�s can stochastically spontaneously split and
decay with rates (or conversely, characteristic times) that depend only on Re and the
distance ` to its upstream neighbour, and the speed u at which they travel downstream
is also only dependent on ` and Re. Carefully executed experiments presented in this
work show that, at �xed Re, both the decay times τd, spli�ing times τs, and downstream
velocities u, can be described by the exponential34 relations 34 Which is perhaps not sur-

prising given the exponential
(in time) development of a
Hagen–Poiseuille pro�le, see
e.g. [321].

τd(`) = τd,∞
[
1− ade

−`/λ
]
, τs(`) = τs,∞

[
1 + ase

−`/λ
]
, (5.1)

u(`) = u∞
[
1 + be−`/λ

]
, (5.2)

where the parameters τd,∞, τs,∞, u∞ are the single-pu� properties. �e �rst two, τd,∞
and τs,∞, depend superexponentially on Re and can be obtained from [23]. �e last,
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figure 5.1: Pu�-spli�ing
in the transition to pipe turbu-
lence. (a) �e experiments by
Mukund and Hof [327] above
the critical point. (b) Simula-
tions of the continuous model
above the critical point. (c)
Ensemble-averaged turbulent
fraction in the steady-state.

u∞, which has a weaker dependence on Re can be found from [30]. Finally, the ampli-
�cation/reduction factors ad, as, and b, and the interaction distance λ, are empirical
parameters found from the experiment. Now, the motion of pu� i can be described by
the Langevin equation

dxi
dt

= u(xi − xi−1) +
√
Dξi(t), (5.3)

where xi is the pu� position, and i− 1 is the upstream pu� (to the le� of i) such that
xi > xi−1. �e noise ξi is taken to be uncorrelated and Gaussian, i.e. 〈ξi(t)ξj(t′)〉 =
δijδ(t− t′). D is a heuristic di�usion coe�cient that represents the stochastic motion
of pu�s observed experimentally, and can be determined from experiments or direct
numerical simulations. We assume periodic boundary conditions in the axial direction in
a pipe with length L, and pu�s can be removed (‘decay’) and spawned at the downstream
end of another (‘split’) with rates τ−1

d , τ−1
s , respectively.

For numerical implementation purposes, and to limit the number of parameters to a
minimum, it is useful to nondimensionalize the equations. First, we move into a reference
frame moving at the mean speed of newly spawned pu�s, i.e. Ū = u∞(1 + b). �en,
we introduce new space and time variables denoted by tildes, through xi = Xx̃i and
t = T t̃, and correspondingly D = D̃X2/T , λ̃ = Xλ, L = XL̃, u = ũX/T , τi = T τ̃i.
Here, X and T are the spatial and temporal scales.

Equation (5.3) becomes

dx̃i

dt̃
= ũ(x̃i − x̃i−1) + sgn(X)

√
D̃ξi(t̃), (5.4)

where we have used ξi(T t̃) = ξi(t̃)/
√
T , and

ũ(˜̀) =
Tu∞b
X

[
e−

˜̀/λ̃ − 1
]
, τ̃i(˜̀) =

τi,∞
T

[
1− ade

−˜̀/λ̃
]
. (5.5)

It is practical to choose the time scale T = τ× = τd,∞(Re×) = τs,∞(Re×) where Re×
is the single-pu� critical Reynolds number found by Avila et al. [23]. We also choose the
spatial scale X = τ×u∞b(Re×). For convenience, and compliance with the next model,
we omit the tildes, �ip the sign of the x-axis and invert the order over the pu� indices, so
that xi+1 > xi. Further, we introduce the simpli�ed control parameter ϕ = Re− Re×.
We thus obtain eq. (5.4) with

u(`) = α(ϕ)
[
e−`/λ − 1

]
, α(ϕ) =

u∞b(Re× + ϕ)

u∞b(Re×)
, (5.6a)

τi(`) = βi(ϕ)
[
1− ade

−`/λ
]
, βi(ϕ) =

τi,∞(Re× + ϕ)

τi,∞(Re×)
. (5.6b)
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Here, α(0) = βi(0) = 1, and can be linearized around ϕ = 0.35 �is model, which we
call the continuous model, captures the dynamics of pu� interaction well.

�e equations can be numerically integrated explicitly using the Itô formalism. At
time step k, we calculate

∆x∗ = ∆t u(xki+1 − xk) +
√
D∆tN(0, 1), (5.7)

where ∆t is the discrete time step, andN(0, 1) is an uncorrelated random number drawn
from a Gaussian distribution with mean 0 and variance 1. �e position is then updated
by

xk+1
i = xki + max(0,min(∆x∗i , x

k
i+1 − xki )), (5.8)

to strictly avoid pu�s passing each other. �e integration is combined with an e�cient
double-linked list implementation in c++, where pu�s are removed ifPd = 1−e−∆t/τd >
Rd, where Rd is a random number drawn from a uniform distribution in the interval
(0, 1).35 Likewise, a pu� is inserted into the list if Ps = 1− e−∆t/τs) > Rs, where Rs is 35 �e code is available at the

Git repository h�ps://github.
com/gautelinga/pu�dyn.

another (uncorrelated) random number drawn from the same distribution as Rd. Since
we are interested in ensemble properties, the optimal parallillization strategy is to run
thousands of independent simulations simultaneously. 36 Avila et al. [23] gave the

functional form τi(ϕ) =
exp(exp(aiϕ − bi)) for i ∈
{s, d}, including numerical
values for the parameters ai,
bi. �us, τi are rapidly grow-
ing analytic functions. �e
linear range may however be
very narrow, as seen by Tay-
lor expansion of τi. Using the
values from [23], we �nd that
the contribution of the second
order term is of the order 10%
when ϕ/Re× ' 2%.

By coarse-graining the continuous model, a simpli�ed la�ice-based model can be
obtained, which contains the basic phenomenology of pu� interaction. �e basic ingre-
dients are spli�ing, decay, and propagation, which are all described by the rates ωs, ωd, p.
In this picture, we are in a frame co-moving with the pu�s going fastest downstream (as
with the rescaled and shi�ed continuous model), and in this frame of reference, the pu�s
are propagating upstream.37 If there are no pu�s in front (i.e. upstream) of a given pu�,

37 �is is also the correct way
of looking at it, according to
Barkley [29]; by viewing the
pu� motion as an interface
propagation phenomenon.

the pu� is free to move in that direction. If there is a pu� in front of it, the pu� cannot
propagate, and a queue starts to form.

Readers who have experience with commuting to work by car, will probably recognize
this dynamics from tra�c congestion. Indeed, this la�ice model is tightly connected to
tra�c models, namely those belonging to the class of asymmetric exclusion processes
(ASEP) [94,184]. Such models have been well studied by statistical physicists [184]. In
particular, the la�ice model of pu� dynamics is reminiscent of the totally asymmetric
exclusion process (TASEP), in which only unidirectional motion is allowed. Pu� dynamics
displays, however, two notable di�erences from tra�c applications: (i) “Cars” (or pu�s)
can spontaneously appear or disappear from the queue, and (ii) the boundary is periodic,
i.e., the “cars” drive in circle. �e la�ice model is straighforward to implement, and the
la�ice sites can be set to be updated synchronizously. �e processes split, decay, and
propagate can be picked in a random order at each discrete time step.

�e mean �eld equation for this process is given by

∂t 〈ni〉 = −p 〈ni(1− ni+1)〉+ p 〈ni−1(1− ni)〉 − ωd 〈ni〉+ ωs 〈ni−1(1− ni)〉 (5.9)

where ni is the occupation number of site i of the la�ice. Here, the �rst two terms
represent propagation, and the last two represent decay and spli�ing, respectively.
If p = 0, the model contains the four ingredients of DP: di�usion, de-coagulation,
coagulation and annihilation [193]. We can identify e.g. ωs as a control parameter, such
that the mean number of particles ρ = 〈ni〉 ∼ (ωs,c − ωc)

β , where the exponent β is
found in table 2.1.

By performing a Kramers–Moyal expansion to second order, a Fokker–Planck equa-
tion can be obtained, which again can be transformed to a Langevin equation representing
the model. In this (further) coarse-grained continuum description, i.e. i → x, the re-
placements

ni → ρ(x) and ni+1 → ρ(x) + ∂xρ(x) + 1
2∂

2
xρ(x), (5.10)

https://github.com/gautelinga/puffdyn
https://github.com/gautelinga/puffdyn
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must be made, leading to the equation

∂tρ = −ωdρ+ 1
2(p+ ωs)∂

2
xρ− (p+ ωs)∂xρ+ ωsρ(1− ρ)

+ (2p+ ωs)ρ∂xρ−
ωs
2
ρ∂2

xρ+
√
ρ(1− ρ)ξ, (5.11)

where ξ(x, t) is a white noise, such that 〈ξ(x, t)ξ(x′, t′)〉 = δ(x−x′)δ(t− t′). Compared
to the corresponding Langevin equation for DP, eq. (5.11) contains two terms proportional
to ∼ ρ∂jxρ where j = 1, 2, which in TASEP models lead to shocks or ‘tra�c jams.’ �e
question is now whether the presence of these terms change the universality class away
from DP. By a renormalizaton group argument outlined in the appended preprint, it can
be shown that these terms are indeed irrelevant at the DP �xed point.

To test this prediction, numerical simulations were carried out both for the continuous
model and the la�ice model. �e experimental values provide a basis for the parameters
in the continuous model, while in the la�ice models the parameters are chosen more
heuristically. Nevertheless, universal dynamics should not be sensitively dependent on the
details of the implementation. Figure 5.1 (a) shows the pu� dynamics in the experiment
by Mukund and Hof [327], and in �g. 5.1 (b) we show corresponding simulations with the
continuum model. �e similarity between the two is striking, in particular with regard
to how waves of pu� repulsion propagate through the system. �is behaviour is also
captured in the discrete model, but in a more coarse-grained way. In this picture, the
typical interaction distance λ in the continuous model, which presumably is proportional
to a pu� size, should correspond to a la�ice unit. By carefully accounting for �nite size
e�ects, the DP scaling ρ ∼ ϕβ could be reproduced with both models. For the continuous
model a system size L/λ = 105 (and a simulation time T/τ× = 5 · 104) was required to
obtain a reasonable scaling range, see �g. 5.1 (c).

In light of these insights, we can reinterpret the results of Mukund and Hof [327].
It is clear that with a pu� interaction distance λ ' 15d (estimated from experiments),
the system size L = 7800d corresponds to L/λ ' 500, which is nearly three orders
of magnitude smaller than what we needed to obtain an acceptable range numerically.
Knowing that asymptotically close to the critical point, the equilibration time diverges,
it seems clear that an experimental measurement would be hard. A simple extrapolation
from the continuous simulations carried out here, indicates that a system size of at
least L ∼ 105d and a simulation time of T ∼ 1011 advective units would be necessary
(τ× ∼ 107 advective units, from [23]). As a large ensemble is needed to obtain robust
results, this might pose signi�cant challenges to realize experimentally.

remaining work �e experimental work needs to be included in the manuscript.
Furthermore, it would strengthen the paper to give a more quantitative prediction on
how large systems and simulation times would be required to observe the DP scaling in
an actual experiment.

contributions For the �rst paper, the idea of probing the large-scale behaviour
by using ‘two-particle’ pu� statistics was conceived by Lemoult. �e experiments were
carried out by Mukund and Hof. Goldenfeld, Shih, Mathiesen and I developed an in-
dependent model and made through discussions the connection to the TASEP model.
Lemoult, Mathiesen and I implemented di�erent versions of the la�ice model and car-
ried out simulations. Lemoult and I developed independent versions of the continuous
molecular dynamics model and carried out simulations. Goldenfeld and Shih derived
the Langevin equation from the la�ice model, and performed the renormalization group
analysis. �e manuscript in the appended state, was wri�en mainly by Goldenfeld, with
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input from the other authors, while the section on the continuous model was wri�en by
me.



80 CHAPTER 5. SUMMARY OF PAPERS

5.2 flow in fractured and porous media

paper 2: Self-similar distributions of �uid velocity and stress heterogeneity in a
dissolving porous limestone
Gaute Linga, Joachim Mathiesen, and François Renard
Journal of Geophysical Research: Solid Earth 122, 1726–1743 (2017)

paper 3: Transitional �ow in self-a�ne rough fractures
Gaute Linga, Luiza Angheluta, and Joachim Mathiesen
In preparation (2018).

�ese papers concern �ow in

disordered geophysical media.

Paper 2 concerns the mechan-

ical coupling between creep-

ing �ow and solid stress in

an evolving porous medium,

while Paper 3 focuses on the

role of unsteady �ow on the

transport properties in a frac-

ture. Paper 2 was the basis

for an oral presentation at the

EGU General Assembly, Vi-

enna, 2016, while a prelim-

inary version of the second

paper formed the basis for a

poster presentation at the AGU

General Assembly, New Or-

leans, 2017.

As mentioned in section 2.1.1, the disordered microstructure of porous rocks is known to
cause a strong heterogeneity in local �ow rates and solid stress. Accordingly, an evolving
microstructure will have consequences on the distributions of �uid �ow and stress in
the solid. In Paper 2, we consider numerically the coupling between �uid �ow and solid
stress in a dissolving porous limestone sample. �e aim of the study is to assess (i) how
an imposed �uid �ow through the pore space can a�ect the stress distribution in the
solid, and (ii) how an evolving microstructure can a�ect the same distribution, and (iii)
how dissolution in the rock can modify the �ow heterogeneity. �e simulation set-up is
shown in �g. 5.2 (a).

�e starting point for the investigation is the experiments by Noiriel et al. [342,343],
where an acidic �uid was injected into a core sample of porous limestone in multiple
rounds, leading to dissolution and porosity increase. �e sample was imaged using
X-ray microtomography at each stage of dissolution. Noiriel generously provided to the
authors segmented three-dimensional images (consisting of �uid and solid voxels) at
four stages of dissolution, with porosities φ ranging from 0.09 to 0.2. �e segmented
data was then post-processed, and unstructured meshes were generated of the sample at
each dissolution stage (see section 4.4.4).

To model the coupling between the �uid �ow and the state of stress in the solid,
two main approximations are made. �e �rst is to assume creeping �ow, i.e. the Stokes
equations (3.17) is assumed to hold. �is assumption, which amounts to Re � 1, can
also be veri�ed based on parameters from the actual experiment Noiriel et al. [342]. �e
second assumption is to consider quasi-static deformation; i.e., the time-scale of geometry
change is considered to be slow, so that we can seek equilbrium solutions to the elastic
problem. �e assumption also imparts a one-way coupling from the �uid to solid: we
assume that the e�ect of �uid �ow and external forces is so small that the geometry does
not deform enough for the velocity �eld to be a�ected. In particular, locally in�nitesimal
displacements of the solid matrix are assumed, and linear elasticity should be a valid
description.

�e assumptions imply that the Stokes equations need to be solved in a constant
geometry, with the no-slip conditions at the pore wall, and with pressure boundary
conditions at the inlet and outlet. As demonstrated in section 3.1.2, this is then a linear
problem, and the velocity can be shown to be dependent solely on the geometry on the
one hand, and (is proportional to) the pressure di�erence on the other hand. A similar
linear relation holds for the pressure distribution, and accordingly for the �uid stress
tensor. It is thus only necessary to perform one accurate steady-state solution in each
mesh, and the solution for all pressure conditions can be found by a trivial rescaling. �e
boundary conditions entering the elasticity problem are given by the traction on the
pore walls due to �uid �ow and pressure.

Elastostatics is described by
∇ · σs = 0, (5.12)
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figure 5.2: Flow and stress
in a dissolving porous lime-
stone, reprinted from [261]. (a)
Schemetic setup of the prob-
lem. (b) Probability density
functions of the of the ve-
locity sampled over the pore
space, rescaled by mean ve-
locity. A stretched exponen-
tial decay is plo�ed alongside
the data. �e inset shows the
raw data. (c) Probability den-
sity functions of von Mises
stress in the solid. �e in-
set shows how the distribu-
tions collapse when rescaled
by their means.
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where the σs is the solid stress tensor, and external body forces have been neglected.
Equation (5.12) is analogous to Stokes equations for creeping �ow, except that it is not
supplied by a divergence criterion. In linear elasticity, the stress tensor is given by

σs[d] =
E

1 + ν

[
Dd +

ν

1− 2ν
∇ · d

]
, (5.13)

where d(x) is the displacement vector, E is Young’s modulus and ν is the Poisson ratio.
�e strain tensor is given by Dd = sym(∇d) (analogously to its �uid counterpart,
the strain rate tensor Du). In our set-up, eq. (5.12) is subjected to external loading
on the outer boundary, along with internal stress from the �uid, in order to mimic
experimental se�ings. Hence, we are le� with solving a set of linear equations for a
range of parameters.

With respect to the �uid phase, the results show that for the porosity range considered,
the permeability k varies over more than an order of magnitude, and can be well described
by a power law k ∼ φβ where β ' 4. �is is consistent with observations in the literature
(see section 2.1.1, but contrary to the Kozeny–Carman relation [84,85,237]. Secondly, we �nd
that the probability density functions of velocity (sampled over volume) can be described
by a stretched exponential function with exponent 1/2 (see eq. (2.18) in section 2.2.1).
�e distributions are shown in �g. 5.2 (b). Moreover, even though the porosity varies by
a factor two, and the permeability varies by a factor 10, the distributions can be collapsed
onto the essentially same master curve by rescaling with the mean velocity. Whether
these observations are a result of e.g. preferential dissolution in dominant channels, or
of more generic nature, remains an open question.

By analyzing the pressure and viscous stress, we show that the contribution to
the traction by pressure (normal stress) is dominant over that by viscous shear by an
order of magnitude. Probability density functions of the invariants of the stress tensor
(mechanical pressure and von Mises stress) also display a heavy tail, consistently with
e.g. [244], and for all considered loading and �ow conditions, they can be collapsed onto
the same universal curve, cf. �g. 5.2 (c). With regard to the von Mises stress, which is
o�en used as a fracture criterion, the heavy tail of the distribution implies that a small
increase in dissolution and �uid �ow rate can bring a large number of ‘sites’ in the rock
across a critical threshold. Hence, if these results can be extrapolated to other rocks, they
could provide an additonal explanation of the sensitivity of rocks to failure under slight
changes of stress.

�e stress that a �owing �uid exerts on the con�ning boundaries is directly related
to the �ow resistance, and thus the friction factor. In Paper 3, we disregard the state
of stress in the solid, and abandon the paradigm of creeping �ow. As documented in
section 2.2.1, most numerical studies have considered steady-state �ow, either creeping
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figure 5.3: Transitional
�ow in self-a�ne rough chan-
nels, from [262]. (a) A snapshot
from a simulation. (b) �e
instantaneous Reynolds num-
ber as a function of time. In-
set: a close up of the sampling
time in the steady state. (c)
Geometric friction factor as
a function of Reynolds num-
ber. Inset: Darcy friction fac-
tor. (d) �e �uctuation-based
Reynolds number, indicating
the presence of turbulence, as
a function of (�uxed-based)
Reynolds number.

or laminar. Despite its apparent industrial relevance, unsteady, transitional �ow in three
dimensional fractures is largely unexplored. In this study, we consider a simple and
generic fracture geometry that consists of a periodic self-a�ne surface (see eq. (2.7))
that has been shi�ed vertically by a distance d to form a rough model fracture joint.
�e main research questions underlying the investigations can be summarized as the
following: (i) What is the impact of a generic roughness on the transport properties
of a channel geometry? (ii) What is the e�ect of velocity �uctuations? (iii) How is
the laminar–turbulent transition in such channels a�ected by including a boundary
roughness?

To construct a mesh for the fracture joint, we generate a periodic self-a�ne surface
h, parametrized in terms of (x, y) ∈ [0, 10d]× [0, 10d]. �is forms the lower boundary
of the �ow geometry. �e same surface, shi�ed by a distance d along the z-axis, forms
the upper boundary, and the �ow is con�ned to the slab between these two boundaries.
Since a self-a�ne surface does not have an intrinsic length scale, we de�ne the roughness
amplitude A as the root-mean-square height undulations of the surface h(x, y). Here,
we consider the four roughness amplitudes A ∈ {0.1d, 0.2d, 0.5d, 0.8d} with the same
self-a�ne realization.

Fluid �ow in the spanwise and streamwise periodic domain is enforced using a �xed
uniform body force f = f x̂, and the Navier–Stokes equations (3.14) are integrated in
time using an incremental pressure-correction scheme (see eq. (4.67) in section 4.2.5) in a
modi�ed Oasis solver (see section 4.4.2 and ref. [320]). Simulations are run until a steady
state is reached, either in an absolute or in a statistical sense; the la�er for unsteady �ow.
�e instantaneous �ow rate ux(t) can then be computed, and a �ux-based Reynolds
number can be measured by averaging it in time (indicated by an overline), i.e.

Re =
ρud

µ
, (5.14)

In �g. 5.3 (a) an instantaneous snapshot of a typical simulation is shown, and in �g. 5.3
(b) we display the development of the instantaneous Reynolds number Ret (based on
ux(t) instead of the time-averaged ux). In �g. 5.3 (c) we show the geometric friction factor,
de�ned by

Cf =
fd2

12µu
(5.15)

as a function of Re, for all four considered roughness amplitudes A. �is quantity has
the property that it equals Cf = 1 in the double limit Re, A→ 0, and can be seen as an
inverse permeability relative to plane Poiseuille �ow. �e inset of the �g. 5.3 (c) shows
the same data, but plots instead the Darcy friction factor fD = 2fd/ρu2 versus Re.

As discussed in section 2.2.1, the Forchheimer law is o�en used to describe rela-
tionships between friction loss and �ow rates. In this work, we �nd that a generalized
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Forchheimer equation, which takes into a �nite crossover region between the scaling
Cf ∼ constant for Re � Rec, and Cf ∼ Re for Re � Rec, �ts the data well. �is
leads us to identify a critical Reynolds number Rec, which quanti�es the point where
nonlinear �ow sets in, and a purely geometric friction Cf,0. �e la�er two quantities
depend on the roughness A, and lead to a reasonable data collapse for the data shown
in �g. 5.3 (c). However, nonlinear friction is not synonymous with unsteadiness, and to
assess the e�ect of transitional �ow, we perform a Reynolds decomposition of the �ow
�eld,

u′(x, t) = u(x, t)− u(x), (5.16)

to obtain the velocity �uctuations u′(x, t). Here, u(x, t) is the transient �ow �eld,
and u(x) = u(x, t) is the time-averaged �ow �eld, sampled over a time period in the
steady state as indicated in �g. 5.3 (b). Now, taking the time and space average of the
squared velocity �uctuations, q = 〈|u′(x, t)|2〉, we obtain an indicator of the global
turbulent intensity as the �uctuation-based Reynolds number Re′ = ρ

√
qd/µ. In �g. 5.3

(d), we show the �uctuation-based Reynolds number Re′ plo�ed against the �ux-based
Reynolds number Re for all roughness amplitudes A. We observe that the relation
between the two quantities is linear beyond a certain second critical Reynolds number
Rec,q . For su�ciently high roughness, this linear relation extends down to Re′, indicating
a supercritical transition to turbulence, while for low Re, the transition is subcritical.
�is suggests that at a certain roughness amplitude A, the transition changes character
from subcritical to supercritical.

Further, given that Rec,q and Rec are of comparable magnitude, we conclude that
transitional �ow may play a signi�cant role in fracture �ow, and must be accounted for
in simulations on larger scales when roughness and �ow rates are su�ciently high.

remaining work It would strengthen the results in Paper 3 to provide a more quan-
titative investigation of the suggested change of the transition from sub- to supercritical.
Further, the robustness of the results to the particular realization of a self-a�ne surface,
and secondly, to the streamwise and spanwise scale of the periodic domain, should be
assessed. Numerical simulations investigating this are underway. Finally, it would be
useful to estimate the quantitative contribution of the �uctuations to the friction factor.

contributions For the �rst paper, I wrote most of the manuscript, carried out
simulations and analysed data. Renard initiated the study and wrote signi�cant parts of
the introduction and discussion. Renard and Mathiesen contributed in discussions and
interpretation of the results.

�e second manuscript was wri�en by me, and I carried out simulations and analysed
data. Angheluta and Mathiesen participated in discussions and in interpretation of results.
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5.3 electrohydrodynamics

paper 4: Electrohydrodynamic channeling e�ects in narrow fractures and pores
Asger Bolet, Gaute Linga, and Joachim Mathiesen
Physical Review E 97, 043114 (2018)

paper 5: Transient electrohydrodynamic �ow with concentration-dependent �uid
properties: modelling and energy-stable numerical schemes
Gaute Linga, Asger Bolet, and Joachim Mathiesen
Submi�ed to Journal of Computational Physics (2018)

paper 6: Bernaise: A �exible framework for simulating two-phase electrohydrody-
namic �ows in complex domains
Gaute Linga, Asger Bolet, and Joachim Mathiesen
Submi�ed (2018)

paper 7: Controlling we�ing with electrolytic solutions: Phase-�eld simulations of a
droplet-conductor system
Gaute Linga, Asger Bolet, and Joachim Mathiesen
Physical Review E 98, 013101 (2018)

�ese four papers concern

�uid �ow with solutes and

electric �elds. Papers 4 and 5

deal with single-phase electro-

hydrodynamics, while Papers

6 and 7 deal with two-phase

systems. Some of this work

was the basis for an invited

talk by Mathiesen at AGU Gen-

eral Assembly, New Orleans,

2017. Some of this work was

also presented in the thesis by

Bolet
[57]

.

In Paper 4, we consider steady-state single-phase �ow in a charged model microfracture.
As mentioned brie�y in section 2.1.1, the inherent nonlinearity of the governing equations
has imparted that most numerical studies having been limited to geometries with a high
degree of symmetry, such as 2D geometries [150,151] or axisymmetric cylindrical capillaries
of �nite length [286,287]. Here, we consider full three-dimensional simulations in a model
fracture or narrow pore. Even simpler than the self-a�ne geometry in which we studied
transitional �ow (see section 5.2), we consider here a periodic channel where the bo�om
surface is sinusoidally undulated along the spanwise direction (see �g. 5.4).
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Inlet
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σe

figure 5.4: Sketch of the
model microfracture or pore,
wherein electrohydrody-
namic channeling e�ects are
studied. Reprinted from [58].

We are here interested in electroviscous �ow channeling, i.e. how �uid �ow is directed
to or from narrow parts of the channel, in the presence of a surface charge. �is e�ect can
have consequences for both transport on larger scales and surface growth in geological
systems. We investigate the (i) impact of the Debye length λD (which characterises
the extent of the electric double layer, see section 3.3), relative to the fracture aperture
d, and (ii) the additional impact of the undulation amplitude on the �ow channeling.
�e steady-state Stokes–Poisson–Nernst–Planck equations are solved using a hybrid
algorithm similar to that proposed by Mitscha-Baude et al. [309]. �e algorithm combines
a Picard iteration scheme in an outer loop, spli�ing between the Stokes and the Poisson–
Nernst–Planck subproblems. Here, the solver alternates between a linear solver for the
linear Stokes problem, and a nonlinear solver for the Poisson–Nernst–Planck problem,
which uses a Newton method in an inner loop. �e method is detailed in the paper,
and the problem is solved using FEniCS, with preconditioning using Fenapack [55]. To
quantify the �ow channeling relative to the reference case of vanishing Debye length,
we de�ne the relative asymmetry (Eq. (29) in the paper). We �nd that compared to the
case without surface charge, the �ux can be reduced in the narrowest regions by up to
5%, and locally up to 10% velocity can be observed. �us ridges may be more prone to
precipitation than valleys, leading to even more pronounced channeling.

In Paper 5, we consider modelling of transient single-phase electrohydrodynamic
�ow. �e model is derived by considering the single-phase electrohydrodynamic energy
functional similar to that stated in eq. (3.49):

F =

∫

Ω


1

2ρ|u|2 +

N∑

j=1

Mj + 1
2ε|E|2 − ρx · agrav


 . (5.17)
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figure 5.5: Snapshots
of simulations of a dead-
end pore under a shear �ow.
�e black phase (“oil”) does
not contain solutes, and the
other phase (“water”) con-
tains a symmetric monova-
lent electrolyte. �e color
indicates net charge, red is
positive and blue is nega-
tive. �e le� column shows
a simulation without surface
charge (and hence only nu-
merical noise can be seen of
the charge �eld), while the
right columns shows a sim-
ulation with surface charge.
Reprinted from [263].

(a) t = 3.0, σe = 0 (b) t = 3.0, σe = −10

(c) t = 6.0, σe = 0 (d) t = 6.0, σe = −10

(e) t = 9.0, σe = 0 (f) t = 9.0, σe = −10

Here, the added last term represents gravitational energy, and Mj is a generalized
chemical energy. In contrast to the modelling in section 3.3, �uid parameters such as
density, permi�ivity, and viscosity, are allowed to depend on the concentration �elds,
and we allow for chemical reactions to occur. We determine the chemical �uxes and the
induced body force by using the Onsager variational principle in a similar way as in
Refs. [2,79]. For the resulting model, we propose a set of energy-stable numerical schemes,
similar to the more general scheme presented in section 4.2. �e numerical schemes are
implemented in Bernaise, and validated in the last part of the paper.

In Paper 6, we present Bernaise, which was already described in section 4.4.3,
a framework for simulating two-phase electrohydrodynamics in complex geometries.
�e literature and background for the modelling approach is introduced in the �rst
part of the paper. �e basic model [79] is then presented, whereupon we present two
numerical schemes: (i) a fully implicit scheme, and (ii) an alternative linear, decoupled
scheme which splits the problem into three subproblems, as outlined in section 4.2. �e
la�er scheme is validated through numerical simulations. First, the convergence of the
scheme towards the theoretical pro�le of the phase-�eld interface is veri�ed in both
space and time. While, to our knowledge, no analytical reference solutions are available
for dynamical simulations of two-phase electrohydrodynamics with soluble species,
phase-�eld models can (in contrast to sharp-interface models) provide such solutions if
augmented by appropriate source terms. �is is known as the method of manufactured

solution, which constitutes a powerful tool for validating numerical implementations.
To this end, we present an electrohydrodynamic Taylor–Green vortex to address the
temporal and spatial convergence, and �nd satisfactory convergence results. Finally,
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(a) t = 0.0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1.0 (f) t = 1.25 (g) t = 1.5

(h) t = 1.75 (i) t = 2.0 (j) t = 2.25 (k) t = 2.5 (l) t = 2.75 (m) t = 3.0 (n) t = 4.0

figure 5.6: Coalescence
and break-up of charged
droplets, simulated using
Bernaise. Reprinted
from [263].

convergence from the solution of the equations with �nite interface thickness ε to the
sharp-interface description in the limit ε → 0+ is veri�ed by comparison to a high-
resolotion reference solution. In a �nal part, we demonstrate two possible applications
of the framework. First, we consider the expulsion of a droplet of one phase (“oil”) which
is placed in a dead-end pore, where another phase (“water”) �ows above. �is should be
a familiar set-up for readers who still remember section 1.2.

As shown in �g. 5.5, with shear �ow and without any electrohydrodynamic e�ects,
the droplet is stuck in the pore. By including electrohydrodynamic e�ects, a thin �lm
of water is drawn into the pore and expels the oil droplet from the pore and releases
it in the bulk �ow. Although the parameter values used in the simulations are not real
values, the results indicate that such a minimal model of electrochemical interactions
at the pore scale can be a contributing factor to the enhanched oil recovery observed
when injecting water of a particular salinity into porous rocks (see e.g. [145,179,192,382]).
Secondly, we demonstrate that the code can be applied to studying droplet breakup and
coalescence in full 3D, as shown in �g. 5.6.

In Paper 2, we quantitatively inspect the we�ing properties of a single droplet of one
phase si�ing on an electrode, surrounded by a second phase. A potential drop is imposed
across the system, and changes the we�ing properties of the droplet, i.e. the contact
angle. �is set-up is fairly well-studied in terms of conducting liquids and relatively
strong �elds, in the context of electrowe�ing-on-dielectric (EWOD) devices. Here, we
consider weak �elds and a dissolved binary electrolyte in the surrounding �uid. We
also consider an insulated electrode where no net current is allowed to pass through the
system. Important theoretical progress in describing this system was achieved by Monroe
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et al. [314,315], who used non-linear Poisson–Boltzmann theory to obtained an expression
for the total Gibbs free energy of a so-called ITIES38 system. �ey assumed that the Debye 38 Interface between two

immiscible electrolyte
solutions; where no ions can
cross the �uid-�uid interface.

length was small enough to assume that one-dimensional back-to-back distributions
could describe the chemical and potential distributions (and for the contact line region
to be neglected), and by an energy minimization they obtained an expression for the
dependence of the apparent contact angle (see section 2.1.3) on the applied potential and
system parameters. In this work, we propose a heuristic generalization (or simpli�cation)
of the la�er theory to concern a pure droplet phase. Dynamical simulations carried out
using Bernaise for a range of realistic parameters indicate that the theory well describes
the apparent contact angle, and allows us to �t the only phenomenological dependence
that appears in the theoretical description. From the simulations, we deduce an e�ective
boundary condition that can be used in simulations on a larger scale, where the electric
double layer is not fully resolved.

contributions In the �rst paper, all authors took part in designing the study. �e
numerical program used to carry out most of the simulations was wri�en by Bolet, with
input from me. Bolet performed most of the simulations, and I constructed the meshes,
performed complementary simulations and theory, and contributed in discussions.

�e remaining papers were wri�en mainly be me. �e topics studied in the papers
are results of discussions with Bolet, who also wrote some sections in the last paper,
and performed some of the code validation. Both Bolet and Mathiesen contributed with
discussions and feedback on the manuscripts.
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figure 5.7: �eory and
application of homogenized
two-phase �ow models.
(a) �e hiererarchy of
non-equilibrium two-phase
�ow models; reprinted
from [259]. (b) Flow regimes in
a CO2 injection well during a
blow-out scenario; reprinted
from [260].
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5.4 homogenized models for two-phase flow

paper 8: A hierarchy of non-equilibrium two-phase �ow models
Gaute Linga and Tore Flå�en
Submi�ed to ESAIM: Proceedings & Surveys (2018).

paper 9: A two-�uid model for vertical �ow applied to CO2 injection wells
Gaute Linga and Halvor Lund
International Journal of Greenhouse Gas Control 51, 71–80 (2016)

�ese two papers concern

homogenized models for

two-phase �ow, which are

typically applied to pipe �ow.

Flå�en presented paper 8 at

the Workshop on Compressible

Multiphase Flows: Derivation,

closure laws, thermodynamics,

Strasbourg, May 2018. Most of

the work forming the basis of

this section was carried out

before starting the PhD

project, but the papers were

completed during the course

the period.

In Paper 8, we start out with the Baer–Nunziato model [24], and consider the relaxation
processes discussed in section 3.2.3. From this, we can derive a hierarchy of relaxation
models for two-phase �ow with equilibrium in one or more of the variables pressure,
temperature, chemical potential, and velocity. We review the resulting hierarchy, derive
the remaining models and provide expressions for the sound velocities of the models.39

39 �at is, in the limit of
instantaneously equal phase
velocities, which makes the
eigenstructure analytically

tractable

In the context of two-phase �ow models, the subcharacteristic condition implies that the
�uid-mechanical speed of sound is reduced by every equilibrium assumption. We show,
using simple techniques, that this condition is everywhere respected in the hierarchy, in
the analytically tractable limit of equal phase velocities. �is analytical result is supported
numerically by plots of the model speeds of sound for the entire hierarchy, using data
from two industrially relevant two-phase mixtures.

Paper 9 is of a more applied nature, and concerns modelling and simulation of two-
phase �ow in an injection well for CO2. �e model, which assumes equilibrium in
pressure, temperature and chemical potential, incorporates correlations for interface
friction, wall friction and heat condition based on �ow regimes (see section 2.1.3), and
employs the accurate industrial Span–Wagner equation of state for CO2

[417]. We apply
the model to studying sudden blowout and shut-in cases, in a well con�guration chosen
to resemble the Sleipner CO2 injection well. �e model is simulated numerically using a
�nite volume method detailed in the paper.

contributions �e �rst paper was wri�en by me, and I carried out the analysis.
Flå�en contributed in designing the research, contributed in discussions, gave comments
on the manuscript, and veri�ed the analysis.

�e second paper was wri�en jointly with Lund. Both authors took part in develop-
ment and implementation of the model and method, running simulations and writing of
the paper.
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It is now time to revisit the blunt question asked in the opening lines of the introduction:
How does �uid �ow through rocks? Although it is apparent that this question touches
upon many scienti�c disciplines, and poses neither a single nor a simple answer, the author
is of the opinion that some insights have been provided through the work presented
in this thesis. Perhaps more importantly, the results provided lay the foundations for
ensuing research that could potentially continue in many directions.

�e unifying theme has been numerically resolving �uid �ows with disordered
interfaces. In one aspect, �uid �ows near complex solid boundaries, i.e. �uid-solid
interfaces, have been considered, spanning from laminar �ow in an evolving porous
medium, through high-Reynolds number �ows in rough model fractures, to electro-
hydrodynamic �ow over charged surfaces. Another aspect concerns the propagation
of turbulent–laminar interfaces, i.e. turbulent fronts. A third aspect is the concurrent
motion of �uid–�uid interfaces, which has been investigated also in the presence of
electrohydrodynamic e�ects. Although these interfacial �ows are governed by inherently
di�erent mechanisms, where the role of inertia and the time scale of interface motion
varies strongly, the theory describing them, and the tools used to explore them, bear
many similarities.

In this work, the research output has been threefold: We have contributed with (i)
physical modelling, (ii) development of numerical methods and tools, and (iii) applications
of the developed models and methods.

In the part of the work concerning single-phase transitional �ow, we have developed
a model that could help resolve the conundrum regarding Pomeau’s hypothesis on the
universality class of the transition to turbulence in pipe �ow. Also in fracture �ow, the
laminar–turbulent transition was investigated. Here, the friction factor was found to
be sensitive to the roughness, leading to unsteady transitional �ow accompanying the
departure from linear friction. By numerically investigating the solid stress due to �ow
in a porous rock under dissolution, we observed a heavy-tailed distribution that could
be useful to explaining how sensitive rocks are to slight increases in loading or �uid
pressure.

In the part of the work concerning two-phase and electrohydrodynamic �ows, mul-
tiple �ow phenomena have been considered. �is includes a numerical investigation
of �ow channeling in microfractures, we�ing behaviour of droplets subject to electric
�elds, modelling of �ow with concentration-dependent �uid properties, an analysis
of a hierarchy of homogenized two-phase �ow models, and modelling and simulation
of a CO2 injection well. Numerical methods that could provide e�cient and robust
simulations of electrohydrodynamic and interfacial �ows have been developed.

Finally, and perhaps most prominently, the Bernaise framework for simulating
two-phase electrohydrodynamic �ow has been developed and documented. It is our hope
that this framework can be of use not only for studying geophysically relevant se�ings,
but also to be a useful tool to the micro�uidics community, where many researchers rely
on using proprietary (and to some extent black-box) so�ware.

89
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6.1 outlook

Having experienced the ups and downs of a project with a broad focus, it has occurred to
me that project management and planning skills might be underrated assets in (at least
some parts of) academia. An optimum of scienti�c quality and productivity—relative to
the workload—would, in the author’s opinion, be obtained with a narrower focus and
more rigid planning. On the other hand, perfect is the enemy of good. �e broad scope
(and the accompanying heavy workload) has, at least for the author, opened connections
between topics that would otherwise seem less apparent.

It is my sincere hope that the work contained in this thesis will be helpful to others.
In the following, I give some suggestions for avenues of future research, particularly
with emphasis on the limitations of the present work.

truly evolving microstructure: With regard to the work presented in Papers
2 and 3, on single-phase �ow in disordered geometries, it would be a natural step onwards
to abondon the one-way coupling from the solid to �uid phase. �e solid phase, and thus
the accessible space for the �uid, would then deform due to �uid motion. �is could occur
due to dissolution or precipitation processes, either including a thermodynamic descrip-
tion, or along the lines of Hawkins et al. [181,182], where the solid grows proportionally to
a concentration gradient. A part of the author’s stay at the University of Oslo was dedi-
cated to developing a phase-�eld model for interface evolution incorporating solid stress
into the thermodynamic description. �is essentially couples an Asaro–Tiller–Grinfeld
instability (see e.g. [228,229]) to �uid �ow. Evolving the microstructure by a sharp-interface
method [17,18,338] would also be a possibility. However, precipitation kinetics becomes
harder to model, since the precipitated solid need not inherit the state of stress from the
solid it is precipitated onto; see e.g. [127] for a relevant discussion on crystal growth in
con�nement. A simpler approach is that taken by Jäger et al. [213,214] where interface
evolution is driven by deposition and erosion depending on the tangential shear force.

flow and stress distributions: A limitation of the work presented in Paper 2
is that it is unclear whether the results can be extrapolated to other rocks, and to other
deformation mechanisms than dissolution. A di�erent mechanism of deformation would
be fracturing of a rock, and an investigation of �ow and stress evolution is underway in
collaboration with François Renard at the University of Oslo.

Another open question concerns the observed “universal” stretched-exponential or
power-exponential distribution of velocity [293] in porous media, and how much informa-
tion about the pore geometry is necessary to predict the velocity (and stress) distribution.
It seems likely that the ‘distance’ (in porosity) from the percolation threshold might
determine the range of power-law scaling. Moreover, the e�ects on the distributions
of wall slip, which could be important at the nanoscale [31], and inertia, which could be
important at larger scales, remain, to the author’s knowledge, open questions.

phase-field modelling: �e phase-�eld modelling considered herein, and the
related numerics, could be improved in many ways. Although fairly complicated (at
least in terms of number of �elds and equations), the model in the state presented in the
current thesis, constitutes an idealised representation of electrohydrodynamics. Real
systems are usually dirty. As such, many possibly important e�ects have been neglected
in the present work, including electrochemical reactions at the �uid-solid interface,
thermal gradients, surfactants or other large molecules at the �uid-�uid interface (which
could imply elastic e�ects [137]), and boundary inhomogeneities, to name a few. It would
therefore be important to properly benchmark the models against experiments and/or
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ab initio simulations. (It was brie�y outlined in section 3.4.2 how to include surfactants,
but no proper testing of this has yet been done.)

Another avenue would be to extend the model, with and without electrohydrody-
namics, to encompassing more than two �uid phases. It is possible that augmenting
the three-phase model by Minjeaud [305] with electrohydrodynamics is not particularly
challenging, but extending that formulation to more than three phases (even without
electrohydrodynamics) is known to be a non-trivial task. It could also be useful for
simulation of many relevant systems, to let the third phase be a solid phase, such that
interface evolution with two �uid phases could be simulated. By evolving the solid
interface, one should then be able model electrodeposition [338] in the single-phase limit;
relevant phase-�eld modelling approaches can be found in Refs. [181,182,473].

numerical methods: �e general scheme for two-phase electrohydrodynamics
was presented and shown to be energy stable in section 4.2 and should thus provide robust
solutions without energy blow-up. However, it is possible that these schemes introduce
too much dissipation, i.e. that they require unecessarily �ne mesh and small time steps
to reproduce the continuum equations. Another point in question is whether phase-�eld
models (with �nite interface thickness) in themselves may be overly dissipative compared
to the sharp-interface equations which they are meant to represent. In particular, a critical
evaluation of (i) which weighted averages should be used for the �uid properties across
the interface, and (ii) how to model the phase-�eld mobility, should be carried out.

A limitation of the schemes presented here is that they are only �rst-order in time. It
would be desirable to obtain higher-order temporal accuracy, and as shown e.g. in [403], it
is easy to construct schemes that are formally second-order using a backward di�erencing
formula (BDF). However, it has not yet been possible to construct second-order schemes
with the desired energy stability.

Finally, the solvers implemented in Bernaise could be optimized heavily, especially
in terms of reusing system matrices along the lines of ref. [320] and in particular ref. [119],
possibly in combination with the Picard iteration scheme outlined in section 4.2.

heat and solute transport: In the spirit of e.g. [333–335], it would be interesting
both from a fundamental and a geothermal engineering point of view to extend investigate
heat transfer both in 3D and to higher Re �ows, particularly in fractures. �is would, as
a �rst approximation, amount to a one-way coupling of incompressible �uid �ow to a
passive scalar temperature �eld (much like how a passive concentration �eld is described
herein). �e natural �rst investigative steps would then be to seek the dependence of the
Nusselt number, Nu (which measures the ratio of convective to conductive heat transfer),
on the Reynolds number Re.

Another topic, which has drawn much a�ention both by the author, collaborators
and others, is that of passive tracer transport in disordered media. In contrast to the
concentration �elds described previously in this thesis, we are here concerned with
ensembles of particles advected solely by the velocity �eld u (not by di�usion), similar
to how tracer statistics is studied in turbulence. Early e�orts on simpli�ed models
were reviewed by Bouchaud and Georges [63], while the recent access to high-�delity
simulation tools and high-resolution tomography data of natural rocks has revived the
subject and complemented the early models with direct simulations in a variety of real
and synthetic porous geometries. �e displacement of particles has been observed to
be superdi�usive (in the direction of forcing) and subdi�usive (in the direction normal
to forcing), see e.g. [199,226,246,275]. �is is closely connected to the wide distribution
of velocities in such geometries, as manifested in the Eulerian velicity PDFs. In 2D
(synthetic) and 3D (synthetic and natural) systems, continuous-time random walks have
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provided a framework for describing such transport [158]. While homogeneous porous
media is well understood [254–256,256], less is certain for dense and heterogeneous porous
media, in particular close to the percolation point. However, as a numerical velocity
�eld is only approximately divergence free, simulations in such geometries cause the
problems that passive tracers can be spuriously ‘adsorbed’ to the boundary. �is is
particularly relevant for very narrow pore throats, and raises doubts about the validity
of the results of e.g. Kang et al. [226]. As a �rst step, numerical solvers must be properly
tested against pore network models, where quasi-analytical reference solutions can be
found. Our prelimary results were reported in [186], but are omi�ed here.

Solute transport in fractures has also been studied [122], but many unanswered ques-
tions remain. In this respect, it would be interesting to study solute transport in 3D
self-a�ne fractures at higher Re; in particular, can the results of Bouquain et al. [64] be
generalized or extended to such geometries?

turbulent fronts in rough pipes: As mentioned in section 2.1.2, �ow in rough
pipes has been extensively investigated in the fully turbulent regime, and transitional
�ows in smooth pipes have been studied for many years. However, li�le work has
concerned the intersection of these two o�en separate areas—transitional �ow in rough
pipes—even though both roughness and transitional �ows may appear in the context of
blood �ow in our bodies [238]. A reason for this being uncharted territory might be that it
is extremely challenging to numerically resolve turbulent �ow in large domains in the
presence of complex boundaries, as spectral methods are not easily applicable to these
se�ings (see section 4.1.2). Numerically, even lifetime statistics of pu�s, at least close to
criticality, may be out of reach for direct numerical simulations. It would therefore be a
natural �rst step to investigate the speeds of turbulent fronts of single pu�s and slugs in
rough pipes, similar to the smooth-pipe study by Barkley et al. [30]. In this respect, the
experiments by Cerbus et al. [87], who essentially measured the friction factor of single
pu�s and slugs, would be interesting to compare with.

spatio-temporal transition to turbulence: �e Barkley model [28–30] has
provided great qualitative insight into the transition to turbulence in pipe �ow. Moreover,
it can also quantitatively describe most features of the spatio-temporal dynamics near
the transition. However, this relies on ��ing a set of model parameters to resemble
the observations from experiments or direct numerical simulations. As discussed by
Barkley [29], a �rst-principles derivation of a macroscopic model (Barkley model or
similar) for the transition is still lacking. �e ‘holy grail’ is to predict, for example,
front speeds from the Navier–Stokes equations. Another point to add, is the lack of
an equivalent of the Barkley model for e.g. plane Poiseuille �ow, which could help in
understanding o�-critical transitional �ow in that system.

In this work, we studied transitional �ow in fractures, but as demonstrated e.g.
in Paper 1, the really interesting dynamics occurs in the study of collective motion of
turbulent structures. By considering ensembles of large systems, thus, one might be able
to investigate whether adding a ‘quenched randomness’ such as boundary roughness
(possibly di�erent from self-a�ne) may push shear �ows out of the directed-percolation
universality class.4040 Similar to how adding

a quenched noise to the
Kardar–Parisi–Zhang equa-
tion [227] changes its universal-
ity class [231].

Investigations in this direction are already underway. Notably, the direct numerical
simulation study by Ishida et al. [206] with transitional �ow in the presence of several
types of (e�ectively modelled) roughness displayed a richer phase diagram (in terms of
�ow regimes) than what has been observed for smooth-walled transitional �ow. For large
systems, however, computations are incredibly demanding. It is likely that the approach
mainly taken in this project; involving unstructured meshes (explicitly representing
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the boundary) and using the �nite element method, is not the way to proceed for large
systems. Instead, spectral methods on structured grids which e�ectively incorporate the
rough boundary as a body force (see [77,206]) would likely lead to signi�cant computational
speedup.

applications of bernaise: �e simulation framework developed in this project
enables many possible applications, one of which being electrowe�ing, as shown in
Paper [264] [264]. Another interesting application could be to study phase separation
kinetics (spinodal decomposition) in the presence of an electric �eld; related to the
original motivation of Hohenberg and Halperin [196] to introduce their ‘Model H’ phase-
�eld model. Droplet motion, coalescence, break-up, and pinch-o�, particularly in the
presence of solid surfaces and electrokinetic e�ects, would all provide interesting studies.
Such e�ects are now possible to simulate e�ciently in full 3D, in contrast to earlier
studies which have o�en been limited to axisymmetric geometries; cf. [43] and related
publications. Finally, we hope that, in time (and with possibly more validation, testing,
and incorporation of necessary additional features), the framework could be used by the
micro�uidics community for prototyping and optimizing lab-on-a-chip devices.
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[174] I. Gunnarsson and S. Arnórsson. Impact of silica scaling on the e�ciency of heat ex-
traction from high-temperature geothermal �uids. Geothermics, 34(3):320–329, 2005. doi:
10.1016/j.geothermics.2005.02.002.

[175] R. Gutfraind and A. Hansen. Study of fracture permeability using la�ice gas automata. Transp. Porous

Media, 18(2):131–149, 1995. doi: 10.1007/BF01064675.

[176] R. A. Guyer and H. A. Kim. �eoretical model for �uid-solid coupling in porous materials. Phys. Rev.

E, 91(4):042406, 2015. doi: 10.1103/PhysRevE.91.042406.

[177] G. Hagen. Ueber die bewegung des wassers in engen cylindrischen röhren. Ann. Phys., 122(3):423–442,
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[267] G. Lippmann. Relations entre les phénomènes électriques et capillaires. PhD thesis, Sorbonne, 1875.

[268] J.-L. Liu and B. Eisenberg. Numerical methods for a Poisson–Nernst–Planck–Fermi model of biological
ion channels. Phys. Rev. E, 92(1):012711, 2015. doi: 10.1103/PhysRevE.92.012711.

[269] T. S. Lo and J. Koplik. Suspension �ow and sedimentation in self-a�ne fractures. Phys. Fluids, 24(5):
053303, 2012. doi: 10.1063/1.4717529.

[270] T. S. Lo and J. Koplik. Channeling and stress during �uid and suspension �ow in self-a�ne fractures.
Phys. Rev. E, 89(2):023010, 2014. doi: 10.1103/PhysRevE.89.023010.
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10.1002/andp.18591830502.

[376] L. Rayleigh. On the theory of surface forces. II. Compressible �uids. Philos. Mag., 33(201):209–220,
1892. doi: 10.1080/14786449208621456.

[377] W. Ren and W. E. Boundary conditions for the moving contact line problem. Phys. Fluids, 19(2):
022101, 2007. doi: 10.1063/1.2646754.

[378] F. Reuss. Charge-induced �ow. Proceedings of the Imperial Society of Naturalists of Moscow, 1809, 3:
327–344, 1809.

[379] A. Revil, H. Schwaeger, L. Cathles, and P. Manhardt. Streaming potential in porous media: 2. theory
and application to geothermal systems. J. Geophys. Res. Solid Earth, 104(B9):20033–20048, 1999. doi:
10.1029/1999JB900090.

[380] O. Reynolds. An experimental investigation of the circumstances which determine whether the
motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos.

Trans. R. Soc., 174:935–982, 1883. doi: 10.1098/rstl.1883.0029 2053-9223.

https://doi.org/10.1038/ngeo3009
https://doi.org/10.1038/ngeo3009
https://doi.org/10.1039/b110474h
https://doi.org/10.1016/0167-2789(86)90104-1
https://doi.org/10.1038/nphys3684
https://doi.org/10.1103/PhysRevE.76.036108
https://doi.org/10.1103/PhysRevE.76.036108
https://doi.org/10.1146/annurev-fluid-122316-045034
https://doi.org/10.1146/annurev-fluid-122316-045034
https://doi.org/10.1190/1.1443125
https://doi.org/10.1016/j.jhydrol.2005.01.013
https://doi.org/10.1016/j.jhydrol.2007.03.015
https://doi.org/10.1016/j.jhydrol.2007.03.015
https://doi.org/10.1103/PhysRevE.68.016306
https://doi.org/10.1103/PhysRevLett.93.094501
https://doi.org/10.1017/S0022112006001935
https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1002/andp.18591830502
https://doi.org/10.1002/andp.18591830502
https://doi.org/10.1080/14786449208621456
https://doi.org/10.1063/1.2646754
https://doi.org/10.1029/1999JB900090
https://doi.org/10.1029/1999JB900090
https://doi.org/10.1098/rstl.1883.0029 2053-9223


BIBLIOGRAPHY 113

[381] O. Reynolds. On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments,
including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc., 177:
157–234, 1886. doi: 10.1098/rstl.1886.0005.

[382] A. RezaeiDoust, T. Puntervold, S. Strand, and T. Austad. Smart water as we�ability modi�er in
carbonate and sandstone: A discussion of similarities/di�erences in the chemical mechanisms. Energy

Fuels, 23(9):4479–4485, 2009. doi: 10.1021/ef900185q.

[383] C. L. Rice and R. Whitehead. Electrokinetic �ow in a narrow cylindrical capillary. J. Phys. Chem., 69
(11):4017–4024, 1965. doi: 10.1021/j100895a062.

[384] J. R. Rice and M. P. Cleary. Some basic stress di�usion solutions for �uid-saturated elastic porous media
with compressible constituents. Rev. Geophys., 14(2):227–241, 1976. doi: 10.1029/RG014i002p00227.

[385] S. Rojas and J. Koplik. Nonlinear �ow in porous media. Phys. Rev. E, 58(4):4776, 1998. doi: 10.1103/Phys-
RevE.58.4776.

[386] S. Roux, J. Schmi�buhl, J.-P. Vilo�e, and A. Hansen. Some physical properties of self-a�ne rough
surfaces. Europhys. Le�., 23(4):277, 1993. doi: 10.1209/0295-5075/23/4/007.

[387] Y. Saad. Iterative methods for sparse linear systems, volume 82. SIAM, 2003.

[388] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. and Stat. Comput., 7(3):856–869, 1986. doi: 10.1137/0907058.

[389] E. H. Saenger, F. Enzmann, Y. Keehm, and H. Steeb. Digital rock physics: E�ect of �uid vis-
cosity on e�ective elastic properties. Journal of Applied Geophysics, 74(4):236–241, 2011. doi:
10.1016/j.jappgeo.2011.06.001.

[390] M. Sahimi. Flow phenomena in rocks: from continuum models to fractals, percolation, cellular au-
tomata, and simulated annealing. Rev. Mod. Phys., 65(4):1393, 1993. doi: 10.1103/RevModPhys.65.1393.

[391] M. Sahimi. Applications of percolation theory. CRC Press, 2014.

[392] H. Salwen, F. W. Co�on, and C. E. Grosch. Linear stability of Poiseuille �ow in a circular pipe. J.

Fluid Mech., 98(2):273–284, 1980. doi: 10.1017/S0022112080000146.

[393] M. Sano and K. Tamai. A universal transition to turbulence in channel �ow. Nat. Phys., 12:249–254,
2016. doi: 10.1038/nphys3659.

[394] R. Saurel and R. Abgrall. A multiphase Godunov method for compressible multi�uid and multiphase
�ows. J. Comput. Phys., 150(2):425–467, 1999. doi: 10.1006/jcph.1999.6187.

[395] R. Saurel and C. Pantano. Di�use-interface capturing methods for compressible two-phase �ows.
Annu. Rev. Fluid Mech., 50(1), 2018. doi: 10.1146/annurev-�uid-122316-050109.

[396] D. A. Saville. Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid

Mech., 29(1):27–64, 1997. doi: 10.1146/annurev.�uid.29.1.27.

[397] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial �ow. Annu.

Rev. Fluid Mech., 31(1):567–603, 1999. doi: 10.1146/annurev.�uid.31.1.567.

[398] J. Schmi�buhl, F. Schmi�, and C. Scholz. Scaling invariance of crack surfaces. J. Geophys. Res. Solid

Earth, 100(B4):5953–5973, 1995. doi: 10.1029/94JB02885.

[399] O. Schnitzer and E. Yariv. �e Taylor–Melcher leaky dielectric model as a macroscale electrokinetic
description. J. Fluid Mech., 773:1–33, 2015. doi: 10.1017/jfm.2015.242.

[400] R. B. Schoch, J. Han, and P. Renaud. Transport phenomena in nano�uidics. Rev. Mod. Phys., 80(3):839,
2008. doi: 10.1103/RevModPhys.80.839.

[401] J. A. Sethian and P. Smereka. Level set methods for �uid interfaces. Annu. Rev. Fluid Mech., 35(1):
341–372, 2003. doi: 10.1146/annurev.�uid.35.101101.161105.

[402] S. Shapin. �e experimental philosophy and its institutions. In �e Scienti�c Revolution, chapter 3,
pages 72–100. Wiley-Blackwell, 2008.

https://doi.org/10.1098/rstl.1886.0005
https://doi.org/10.1021/ef900185q
https://doi.org/10.1021/j100895a062
https://doi.org/10.1029/RG014i002p00227
https://doi.org/10.1103/PhysRevE.58.4776
https://doi.org/10.1103/PhysRevE.58.4776
https://doi.org/10.1209/0295-5075/23/4/007
https://doi.org/10.1137/0907058
https://doi.org/10.1016/j.jappgeo.2011.06.001
https://doi.org/10.1016/j.jappgeo.2011.06.001
https://doi.org/10.1103/RevModPhys.65.1393
https://doi.org/10.1017/S0022112080000146
https://doi.org/10.1038/nphys3659
https://doi.org/10.1006/jcph.1999.6187
https://doi.org/10.1146/annurev-fluid-122316-050109
https://doi.org/10.1146/annurev.fluid.29.1.27
https://doi.org/10.1146/annurev.fluid.31.1.567
https://doi.org/10.1029/94JB02885
https://doi.org/10.1017/jfm.2015.242
https://doi.org/10.1103/RevModPhys.80.839
https://doi.org/10.1146/annurev.fluid.35.101101.161105


114 BIBLIOGRAPHY

[403] J. Shen and X. Yang. A phase-�eld model and its numerical approximation for two-phase incompress-
ible �ows with di�erent densities and viscosities. SIAM J. Sci. Comput., 32(3):1159–1179, 2010. doi:
10.1137/09075860X.

[404] J. Shen and X. Yang. Decoupled, energy stable schemes for phase-�eld models of two-phase incom-
pressible �ows. SIAM J. Numer. Anal., 53(1):279–296, 2015. doi: 10.1137/140971154.

[405] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In
M. C. Lin and D. Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering,
volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, 1996.

[406] H.-Y. Shih, T.-L. Hsieh, and N. Goldenfeld. Ecological collapse and the emergence of travelling waves
at the onset of shear turbulence. Nat. Phys., 12:245–248, 2015. doi: 10.1038/nphys3548.

[407] I. A. Shiklomanov. Appraisal and assessment of world water resources. Water International, 25:11–32,
2000. doi: 10.1080/02508060008686794.

[408] H. Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. So�w., 41(2):
11:1–11:36, 2015. ISSN 0098-3500. doi: 10.1145/2629697.

[409] R. Sibson. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics,
211(1-4):283–293, 1992. doi: 10.1016/0040-1951(92)90065-E.

[410] M. Siena, M. Riva, J. Hyman, C. L. Winter, and A. Guadagnini. Relationship between pore size and
velocity probability distributions in stochastically generated porous media. Phys. Rev. E, 89(1):013018,
2014. doi: 10.1103/PhysRevE.89.013018.

[411] A. Siria, M.-L. Bocquet, and L. Bocquet. New avenues for the large-scale harvesting of blue energy.
Nat. Rev. Chem., 1(11):0091, 2017. doi: 10.1038/s41570-017-0091.

[412] E. Skjetne, A. Hansen, and J. Gudmundsson. High-velocity �ow in a rough fracture. J. Fluid Mech.,
383:1–28, 1999. doi: 10.1017/S0022112098002444.

[413] M. v. Smoluchowski. Contribution to the theory of electro-osmosis and related phenomena. Bull. Int.

Acad. Sci. Cracovie, 3:184–199, 1903.

[414] M. v. Smoluchowski. Zur theorie der elektrischen kataphorese und der ober�ächenleitung. Phyz. Z.,
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Kanäle und geschlossene Leitungen. Mi�eilungen des Amtes für Wasserwirtscha�, 1923.

[425] S. Succi. �e La�ice Boltzmann Equation: For Complex States of Flowing Ma�er. Oxford University
Press, 2018.

[426] Y. Sui, H. Ding, and P. D. M. Spelt. Numerical simulations of �ows with moving contact lines. Annu.

Rev. Fluid Mech., 46:97–119, 2014. doi: 10.1146/annurev-�uid-010313-141338.

[427] M. Sussman and E. G. Pucke�. A coupled level set and volume-of-�uid method for computing 3D
and axisymmetric incompressible two-phase �ows. J. Comput. Phys., 162(2):301–337, 2000. doi:
10.1006/jcph.2000.6537.

[428] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible
two-phase �ow. J. Comput. Phys., 114(1):146–159, 1994. doi: 10.1006/jcph.1994.1155.

[429] S. P. Sutera and R. Skalak. �e history of Poiseuille’s law. Annu. Rev. Fluid Mech., 25(1):1–20, 1993.
doi: 10.1146/annurev.�.25.010193.000245.

[430] H. L. Swinney and J. P. Gollub. Hydrodynamic instabilities and the transition to turbulence. Oxford
University Press, 1981.
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Statistical mechanics of puff-splitting in the transition to pipe turbulence
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Very close to the laminar-turbulent transition in pipe flow, localized regions of turbulence known
as puffs proliferate and interact, leading to spatio-temporal intermittency. We develop a one-
dimensional stochastic model of puff dynamics, taking into account puff decay, propagation and
splitting, as well as short-range interactions whereby a puff experiences lifetime suppression and ve-
locity pushing by a sufficiently close upstream puff. The universality class for the resulting laminar-
turbulence transition in pipe flow is 1+1-dimensional directed percolation, with puff-puff interactions
irrelevant at the renormalization group fixed point. Continuum and discrete numerical simulations
are in agreement with the theory, after taking into account finite-size and crossover effects.

Fully-developed turbulence remains one of the most
challenging problems in physics [1], due to the strong
non-linearities arising from advection and the lack of an
appropriate small parameter that can be used to identify
and control the observed universal scaling behavior [2].
The phase diagram for simple fluid flows is governed by
the Reynolds number, Re ≡ UD/ν, where U is a char-
acteristic velocity, which in pipe flow we will take to be
the centerline flow speed, D is a length scale that we will
take to be the pipe diameter, and ν is the kinematic vis-
cosity. At low Re, below about 2000 in pipes, fluid flow is
smooth, deterministic and predictable (i.e. laminar), but
becomes irregular, stochastic and unpredictable (i.e. tur-
bulent) at higher Re, resulting in fully-developed turbu-
lence in the asymptotic limit of Re→∞. An impressive
body of recent work has explored the laminar-turbulent
transition observed in pipe flow around Re ∼ 2000 with
considerable experimental ingenuity [3, 4] and theoret-
ical detail, from multiple perspectives that encompass
dynamical systems theory and statistical mechanics (for
recent reviews and perspectives, see (e.g.) [5–9]). A syn-
thesis is emerging that suggests the existence of universal
scaling phenomena associated with transitional phenom-
ena too. In this case, the universality class appears to be
directed percolation (DP), as supported by experiments
on Couette flow [10] and perhaps channel flow [11], simu-
lations of Waleffe flow [12], theoretical predictions of pipe
flow [13], and anticipated by earlier studies [14–16].

Despite the clear evidence for a non-equilibrium statis-
tical mechanical phase transition in bounded flows, the
situation for pipe flow is not yet clear despite the preci-
sion of modern measurements. Near the transition, puffs
decay and split in a way that is memoryless with a char-
acteristic time that depends super-exponentially on Re
[3, 4], not the power-law divergence that one might have
expected. Such behavior can nonetheless be consistent
with DP [13, 17], because the time for turbulence to de-
cay can be identified with the length of the longest di-
rected percolation path. It also can arise through a sep-

arate connection with extreme value statistics [18, 19],
because Reynolds number-dependent thresholds control
the fate of puffs [20]. Finally, recent experimental work
has documented strong interactions between puffs [21],
raising the question of whether or not they cause DP to
break down close to the critical point.

In this Letter, we propose a model for puff interactions
that is abstracted from the experimental observations,
and solve for the critical behavior using field theoretic
arguments and numerical simulations. We find that the
puff interactions give rise to strong nonlinearities, but
these are irrelevant at the renormalization group (RG)
fixed point governing the DP transition in all dimensions
less than 4. The experimental situation is strongly lim-
ited by finite-size effects in pipe length and timescale, and
we describe how these mask the underlying critical point
behavior, leading to artifactual first-order transitions and
anomalously low, non-universal effective order parameter
exponents. These results show that in sufficiently long
pipes, it would be possible to extract the universal crit-
ical exponents of the laminar-turbulent transition, and
they would be consistent with DP also.

Phenomenology of puff interactions:- The question we ad-
dress is the following. We start with a description of tur-
bulent puffs in a pipe that is coarse-grained so that each
puff is considered to be a single particle that can move
on a line or a one-dimensional (1D) lattice. Later we will
comment on the hydrodynamic basis for this assumption.
The turbulent puffs can spontaneously relaminarize (i.e.
“die”), diffuse and split (i.e. “birth”). A general config-
uration will be a gas of puffs that is very dilute near the
laminar-turbulence transition, and becomes increasingly
dense as the Reynolds number is increased. We wish to
understand the functional form of this mean density field,
which we will sometimes call the turbulent fraction. In
addition to their intrinsic dynamics, puffs are being ad-
vected downstream by the mean flow, which we will take
to be moving from left to right.
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Systems of particles hopping predominantly in one di-
rection along a line, with strong repulsive interactions,
arise in many fields of physics, and are generally de-
scribed by a class of models known as asymmetric exclu-
sion processes (ASEP) [22, 23]. The variant of these mod-
els that is appropriate here as a minimal model is based
upon the totally asymmetric exclusion process (TASEP),
in which only unidirectional hopping is allowed. The
question that is usually asked of ASEP models is how is
the bulk dynamics of the particles affected by the bound-
ary conditions? In these models, particles are injected at
a given rate on the left and removed with a given rate
on the right of the system. In our case we are primarily
interested in the case of periodic boundary conditions.
Particles are, however, not conserved in our case: they
are born through splitting, and they die through decay.
Thus the appropriate model for puffs combines TASEP
with the additional birth and death processes of DP.

Let ni be the occupation number of the site i in a 1D
periodic lattice of N sites. Then the puff-splitting model
(ignoring for now puff-puff interactions) is given by the
following stochastic processes:

1. Puff at site i is removed with rate ωd (decay)

2. Puff at site i moves to site i+1, if that site is empty,
with rate p (propagation)

3. Puff at site i creates a puff at site i+ 1, if that site
is empty, with rate ws (splitting)

To implement this model, random asynchronous up-
dating should be used, in which the three rate processes
are carried out on randomly chosen particles in random
order, with probabilities per unit time given by the coef-
ficients p, ωd and ωs.

The mean field equation for this process is given by

∂t〈ni〉 = −p〈ni(1− ni+1)〉+ p〈ni−1(1− ni)〉
−ωd〈ni〉+ ωs〈ni−1(1− ni)〉 (1)

The first term describes the process in which a puff
hops away from site i onto the neighbouring downstream
site i+ 1, but only if the destination site is empty. This
process happens with a rate p. If the puff does not hop,
it is effectively moving backwards (i.e. upstream) com-
pared to the mean flow of the puffs. The second process
is similar but is a flow onto site i from the upstream site
i− 1. Together these terms represent single puff hopping
unless blocked by a downstream puff. The third term
represents decay, and the forth term puff-splitting. Note
that this term resembles the second half of the puff hop-
ping process, but its effect is different because there is no
term which effectively removes the puff at site i, as does
the first term in eq. (1).

Living in one dimension, puff-puff interactions are very
strong, and there are two additional microscopic interac-
tions that need to be considered in addition to the fact
the puffs cannot pass through one another: a puff that is
upstream of another occupying its nearest-neighbour site
can neither split nor hop to the right, until the down-
stream puff has itself hopped downstream or decayed.
First, the lifetime of the puff that is downstream of its
nearest-neighbour will have a drastically shortened life-
time (by perhaps 5 orders of magnitude) compared to a
free puff. We will call this “suppression”; it arises from
the way in which a puff distorts the mean velocity pro-
file. Second, the puffs have a strong short-range repul-
sion, which we will call “pushing”: a puff that is created
by splitting will for a short distance experience a faster
downstream velocity that has the effect of separating it
quickly from its mother puff. If the daughter does not
get pushed then it will have a high likelihood of decaying
rapidly.

These interactions can be added to the simple puff-
splitting model by two additional rules. Suppression can
be modeled by assuming that the decay rate is much
greater if a puff is immediately downstream of another
puff, i.e. ωd → ω̃. Pushing can be modeled by intro-
ductin an increased hopping rate r if a puff is immedi-
ately downstream of another puff, i.e. p → r. For now,
we will not include these terms.

If we set p = 0, then this model describes purely split-
ting and decay. Since splitting followed by decay repre-
sents hopping (i.e. anisotropic diffusion), and there is a
limit of one puff per site, this model includes the four
basic processes of directed percolation (DP): diffusion,
de-coagulation, coagulation and annihilation [24]. For
ωd large enough, the ultimate fate of the system is to be
empty. As ωd becomes smaller, there will be a continuous
transition in the DP universality class to a state with per-
sistent mean number of particles ρ ≡ 〈ni〉 ∼ (ωc − ωd)β ,
with β = 0.276 in 1D.

The question that we now address is how the additional
terms in the puff-splitting model modify the critical be-
havior from DP. We will answer the question by writ-
ing down a stochastic hydrodynamic model for the puff-
splitting model, and then analyze its critical behaviour
using renormalization group arguments.

Stochastic hydrodynamics for puff-splitting model:- The
discrete stochastic puff-splitting model can be expressed
as a field theory using standard techniques that use the
Doi formalism [25], followed by a Martin–Siggia–Rose
[26–28] transformation to a coherent state path integral
[29]. We will not use that method here, although we will
need to use the result later. An alternative, shown in the
Appendix, is to derive the stochastic equation by writ-
ing down the master equation, and then performing a
Kramers-Moyal expansion to second order to derive the
corresponding Fokker-Planck equation, and thence the
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Langevin equation [30]. In this coarse-grained formu-
lation that neglects higher order derivatives, the lattice
becomes a continuum (i → x). This amounts to writing
ni → ρ(x) and

ni+1 ≈ ρ(x) + ∂xρ(x) +
1

2
∂2xρ(x) (2)

and reading off the noise, to obtain

∂tρ = −ωdρ+
1

2
(p+ ωs)∂

2
xρ− (p+ ωs)∂xρ+ ωsρ(1− ρ)

+(2p+ ωs)ρ∂xρ−
ωs
2
ρ∂2xρ+

√
ρ(1− ρ)η

(3)

where η(x, t) is a white noise delta-correlated in space
and time. The dynamics is controlled by multiplicative
noise, which has the effect that the empty state is ab-
sorbing. This form of the noise arises because of the
rule that there can only be one particle per site. If this
were enforced by an explicit coagulation term of the form
2ni → ni + ∅, the equations would be the same but the
minus sign in the noise term would be replaced by a plus
sign.

Eq. (3) is similar to the Langevin equation for DP, but
with the addition of three terms: the term proportional
to ∂xρ and the last two terms of second order in ρ. The
linear term arises because the puff dynamics is diffusive
(the second order term, linear in ρ) but in a frame moving
with the net velocity of the puffs. This anisotropic dif-
fusion can be removed by a Galilean transformation into
the comoving frame. The second term is proportional to
ρ∂xρ and has the functional form of the advective nonlin-
earity in Burgers equation. Such terms naturally arise in
TASEP models, and loosely speaking lead to shocks that
model the bunching up of particles, as occurs in traffic
jams, transcription by ribosomes moving on mRNA etc.
These shocks are regularized by the higher order deriva-
tive terms, including the third extra term and the linear
diffusive term. We will refer to the terms ρ∂xρ and ρ∂2xρ
as the Burgers-like terms.

Universality class of the puff-splitting model:- The puff-
splitting model without the Burgers-like terms is in the
universality class of DP. We now examine whether or not
the Burgers-like terms change the universality class, by
calculating whether or not they are relevant or irrelevant
in the renormalization group sense at the fixed point that
controls DP. To do that, we will use the field theoretic
RG, in which the critical dynamics of DP is generated by
a Martin–Siggia–Rose action of the form [29]

A(ρ, ρ̃) =

∫
ddx dt

[
ρ̃
(
∂t +D(r − ∂2x)

)
ρ

−u3ρ̃(ρ− ρ̃)ρ+ u4ρ̃
2ρ2 +O(ρ5)

]
(4)

where ρ̃ is a so-called response field that arises during the
representation of the problem as a field theory, u3 and u4

are coupling constants of cubic and quartic terms, D is an
effective diffusion coefficient, and r is a control parameter
that vanishes at the critical point (for an excellent review,
see Ref. [29], pp. 173-174). The requirement that the
action be dimensionless implies that the dimensions of
the fields can be expressed in terms of the momentum
cut-off µ as follows: [x] = µ−1, [t] = µ−2, [ρ] = µd/2,
[D] = µ0, [r] = µ2, [u3] = µ2−d/2, [u4] = µ2−d.

The lowest order nonlinearity beyond free field theory
is the cubic term, whose scaling dimension is 2 − d/2,
implying that the critical behavior deviates from mean
field theory for d < 4 (for an introduction to the renor-
malization group for DP, see Ref. [29], p. 404 et seq.).
The cubic nonlinearity is the only contributor to the non-
analytic scaling behavior below four dimensions, and the
critical behavior can be calculated using (e.g. an expan-
sion in 4 − ε dimensions) (see (e.g.) [31]). The quartic
coupling constant u4 has scaling dimension 2 − d, so as
the momentum cut-off µ→∞, the quartic coupling gets
weaker and weaker, and is irrelevant in the RG sense at
the four dimensional fixed point that controls the behav-
ior for d < 4. Thus, even as low as d = 1, DP is controlled
by the cubic nonlinearity only. We now apply the same
reasoning to the Burgers-like terms in Eq. (3), but work
directly with the stochastic differential equation rather
than the field theoretic action.

The stochastic differential equation corresponding to
the DP action of Eq. (4) is [29]:

∂tρ = −D(r − ∂2x)ρ− u3ρ2 + ξ (5)

〈ξ(x, t)ξ(x′, t′)〉 = 2u3ρ(x, t)δ(x− x′)δ(t− t′) (6)

Note that the dimension of all the terms in the equa-
tion is µ2+d/2. Thus, to see how the Burgers-like terms
scale under renormalization, we calculate the coupling
constant dimensions using the known scaling dimensions
of space and the field ρ. Denoting the coupling constant
of the Burgers term as λ1, we equate

[λ1ρ∂xρ] = µ2+d/2 (7)

to obtain

[λ1] = µ1−d/2 (8)

At the fixed point in d = 4, this has negative scaling
dimensions and flows to zero as µ → ∞. We conclude
that this Burgers-like term is irrelevant for DP. Similarly,
the coupling constant λ2 for the Burgers-like term ρ∂2xρ
scales as µ−d/2 and thus is also irrelevant at the DP fixed
point. These results are consistent with earlier studies
briefly mentioned in Ref. ([32]) (p. 471 and 477).

Puff suppression and pushing:- The experiments suggest
that puffs that are close and downstream of another puff,
experience an additional rate of decay, ω̃ and a higher
velocity to the right. We can model suppression in the
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stochastic hydrodynamic model by a term that in mean
field theory follows:

∂t〈ni〉 = −ω̃〈ni−1ni〉 (9)

and model pushing by an enhanced hopping at a rate r
for nearest neighbour downstream puffs:

∂t〈ni〉 = −r〈nini−1(1− ni+1)〉+ r〈(1− ni)ni−1ni−2〉.
(10)

Going to the continuum stochastic hydrodynamical de-
scription, these terms will all be represented by high or-
der operators of the form

Iαβγ ≡ λαβγρα
(
∂βxρ

)γ
(11)

where the coupling constants λαβγ scale as µyαβγ with

yαβγ = 2(2− α− γ)− βγ. (12)

For α, β, γ ≥ 1, yαβγ < 0, so the effect of puff suppres-
sion and pushing, at least at large scales is irrelevant and
should not change the universality class of the transition
from DP.

Numerical results on lattice model:- To verify these pre-
dictions, we have performed numerical simulations. The
RG calculation reveals the asymptotic critical scaling,
but in practice there might be slow crossovers to the true
critical behavior, due to the finite length of a pipe and
the finite time for sampling puff dynamics. These ef-
fects will be acute near any putative critical point, and
so it is important to be able to predict how these ef-
fects will be manifested in experiments and simulations.
In addition, the divergence of the relaxation time near
the critical point means that simulations may be biased
by long-lived transients, and these need to be taken into
account also.

To rule out sensitive dependence on the numerical im-
plementation, two different computer codes with different
update rules and parameter sets were used to check the
results. In the first, a minimal discrete model was used
to check numerically the conclusions based on perturba-
tive RG arguments given above. In the second, a contin-
uum stochastic dynamics simulation was performed, with
a greater level of realism regarding the interactions be-
tween the puffs, as determined experimentally. In both
simulations, we observe the emergence of a jammed or
crystalline phase above the turbulence transition due to
the “traffic jams” experienced by puffs. As the transi-
tion is approached from higher Reynolds numbers, the
crystalline phase effectively melts due to strong fluctua-
tions through the appearance of interspersed disordered
regions. Both simulations, when analysed properly, show
that the asymptotic universality class is directed perco-
lation, but we identify strong artifacts that complicate
the direct observation in experiments of the asymptotic
critical scaling.

FIG. 1. Numerical simulations of the lattice model for systems
respectively below (left panel) and above (right panel) the
critical point. Clearly visible above the critical point are traf-
fic jams of puffs, forming a crystalline phase, interspersed with
regions of disordered puffs. As the transition is approached
from above, the disordered eventually dominate, leading to
the pure DP behavior at the critical point. In these simula-
tions, ωd = 0.01, ω̃ = 0.01, p = r = 0.5, and ωpush = ωs with
ωs = 0.0175 in the left panel and ωs = 0.0375 in the right
panel.

We performed the numerical simulations on a periodic
lattice of length L (see Fig. 1). In addition to the nearest-
neighbor rules propagation, decay and splitting described
above, additional rules are implemented modeling sup-
pression and pushing. Specifically, in each time step
all puffs on the lattice are submitted randomly to one
of three actions, move, split and decay. After we have
picked a given action, we execute it with a probability
computed from predefined rates. The move shifts a puff
on site i one lattice unit ahead at a rate p provided that
the site i+ 1 is vacant. A splitting event of a puff on site
i introduces a new puff either at site i + 1 or site i + 2
with pre-defined rates ωs and ωpush, respectively. The
push is only possible if the sites i + 1 and i + 2 are va-
cant. Please note that we could instead have introduced
the new puff on either of the sites i− 1 or i− 2 without
changing quantitatively the dynamics. A puff on a site
i decays with a rate ωd if the site i + 1 is vacant. Oth-
erwise it decays at a higher rate ω̃. We then performed
the simulations for different systems sizes and for a given
number of time steps. We output the density of puffs on
the lattice at regular time steps and check whether the
system has collapsed into the absorbing state. We also
take care to remove long-lived transients, and only take
data once the transients have decayed. This required us
to run as much as 107 time steps before equilibration,
when close to the transition.

The results of our simulations are summarized in
Fig. (2). The turbulent fraction ρ varies with the split-
ting rate (ωs − ωc)β with 0.27 < β < 0.285, consistent
with the expectation from DP. We have verified that the
puff dynamics is in a range where there are strong push-
ing and “traffic jam” effects.
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FIG. 2. Turbulent fraction ρ as a function of splitting rate,
for a system size L = 3200 and averaged over 400 simulations
and after a transient of T = 107 time steps. The vertical axis
is the turbulent fraction ρ1/β where β has been estimated by
a linear model whose residual is shown as function of β in
the inset. The value of β = 0.278 used in the vertical axis
varies slightly but has a sample variation in the range 0.270
to 0.285, which is consistent with the known value β ≈ 0.276
for DP. In these simulations, ωd = 0.04, ω̃ = 0.2, p = r = 0.5,
and ωpush = ωs as on the abscissa.

Numerical results on continuum model:- The discrete
model of puff dynamics captures the basic puff inter-
actions efficiently, allowing the universality class to be
determined. Nevertheless, it is important to check that
a molecular dynamics simulation of interacting puffs, us-
ing the measured effective potential between puffs, is in
the universality class of the minimal models presented
above, and so indeed exhibits the predicted DP scalings.
We have checked this by solving the equations of motion.
The experimental results indicate the excess velocity of a
downstream neighbour puff depends exponentially on the
separation, with a decay constant that is roughly twice
the puff extent. Puffs extend about 20D, so the interac-
tion range is given by λ ∼ 40D. The stochastic equations
of motion of puffs are given by:

dxi
dt

= v(xi+1 − xi) +
√
Dξi(t) (13)

where v(`) = 1−e−`/λ, ωd(`) = ω0
d [A+ (1−A)v(`)] and

ωs(`) = ω0
s

[
A−1 +

(
1−A−1

)
v(`)

]
, and ξi(t) is a Gaus-

sian white noise, such that 〈ξi(t)ξj(t′)〉 = δijδ(t − t′).
Here A is a prefactor for the exponential amplifica-
tion/reduction when a puff is close upstream. Note that
these equations of motion have been formulated in a co-
moving frame, in order to limit the number of input vari-
ables.

In our simulations, we have introduced a model
Reynolds number R through setting ω0

d = ω̄ − R and

ω0
s = ω̄ + R. We have chosen the fixed model values
ω̄ = 0.005, A = 50, λ = 0.1, and D = 0.001 to mimic
the experimental results in Ref. [21]. The initial state
was chosen to be equidistant spacing with ` resulting
from solving ωd(`) = ωs(`) (i.e. the mean field solution).
Eq. (13) was solved numerically using the Itô formalism
and an explicit Euler scheme. Fig. 3 shows space-time
plots over three realisations in a rather small (L = 100
system) for the initial time window t ∈ [0, 10000]; for R
below, approximately on, and above the critical point.
Below criticality (Fig. 3a), the turbulent fraction quickly
decays and less of the domain is in a crystalline state,
whereas above (Fig. 3c), the turbulent fraction stays
higher and the puffs remain jammed. Fig. 4 shows the
time-asymptotic turbulent fraction as a function of R, av-
eraged over up to 10 realisations per R. Every R where
at least one of the realisations died out has been omit-
ted; hence we should be guaranteed to move towards the
true curve from above. It is clear that increasing system
size yields consistent results and the possibility stabilize
at lower values of ρ. The critical point at R = Rc was
computed by plotting ρ1/β versus R and extrapolating a
linear fit to the lowest 20% of the data points to intersect
with the abscissa (see inset of Fig. 4). With the parame-
ters above, our results give the value 3.455× 10−5. Now,
plotting tαρt against t|ε|ν , where ε = R−Rc, should give
two scalings below and above criticality. Shown in Fig. 5
are only data from the L = 10000 simulations, and in-
deed the results are consistent with DP, since, by using
only the DP exponents and the computed Rc, the scaled
data collapses onto two universal curves.

Finite-size effects and artifactual first-order transitions:-
Directed percolation lifetimes diverge rapidly near the
critical point, and failure to take this properly into ac-
count can generate misleading results. This is illustrated
in Fig. 6. In particular these effects are related to the
finite size in space L and the finite simulation time (num-
ber of time steps) T . Since the system exhibits critical
slowing down ρt ∼ t−α at the critical point, the number
of time steps required to reach a converged turbulent frac-
tion ρ, diverges. Near the transition correlation lengths
in space and time respectively diverge with critical ex-
ponents ν⊥ and ν‖ respectively. Thus, if the simulation
domain does not scale in the same way as the transition
is approached, finite size or finite time effects will arise.
This can be quantified by the quantity

Q ≡ T/Lν‖/ν⊥ . (14)

If Q = O(1) as the critical point is approached, the scal-
ing is not contaminated by finite-size or finite-time ef-
fects. If Q � 1, the time of simulation is too short,
and so some sample paths will survive even though they
would in fact die out at longer times. This corresponds
to the regime in Fig. (6) where T is the limiting fac-
tor, and ωc is under-estimated. On the other hand, if
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(a) R = 0.00001 (b) R = 0.000035 (c) R = 0.00005

FIG. 3. Spacetime plots at (from left to right) increasing model Reynolds numbers R for the continuous numerical model.
Panel (a) shows subcritical behaviour, while (b) and (c) are supercritical. The continuum model clearly exhibits the same
phenomenology as the minimal discrete model, with puff traffic jams (crystalline phases) interspersed by disordered regions,
whose extent grows as the critical point is approached from above.
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FIG. 4. Time-asymototic turbulent fraction ρ versus model
Reynolds number R for the continous model. The solid black
line is the DP asymptote (determined in the inset). Inset:

ρ1/β versus R, to be consistent with DP the data should be
linear close to the critical point. (Corrections to scaling are
expected and clearly observed.)

Q � 1 as ω → ωc, L is not large enough for there to
be enough trajectories to survive to T , and so some of
the trajectories that should have survived to long times
will have decayed due to stochastic effects, so that it ap-
pears that ρ vanishes at a higher ω than the correct ωc.
As a result, it will seem that ρ jumps discontinuously or
rises very quickly from the over-estimated ωc, implying
the interpretation of a first-order transition, or a small

10−8 10−7 10−6 10−5 10−4 10−3

t|ε|νt

104

105

tα
ρ
t

FIG. 5. Data collapse for the continous model for the L =
10000 case shown in Fig. 4. The only parameter used was Rc,
determined from the linear extrapolation shown in the inset
of Fig. 4. The critical exponents are from DP.

value of β (which would give rise to a steeper rise of the
order parameter). Only if Q = O(1) as the transition is
approached will the correct scaling be found.

These scaling arguments lead to a surprising conse-
quence. In the regime where Q� 1, running the simula-
tions for too long a time will mean that the trajectories
will ultimately die out, leading to the artifactual conclu-
sion that the transition is first order, or has a value of β
that is smaller than the DP value, and in fact, will not
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ρ

ω

true
low N
low T

FIG. 6. Sketch of how finite size effects that give rise to error
in the estimation of the critical exponent β close the critical
point at ω = ωc. If the system size L (called N in the figure
but we will change that) is the limiting factor, fluctuations will
kill turbulent states above ωc, leading to an overestimation of
ωc and a lower perceived exponent β (or the perception of
a discontinuous phase transition). If the simulation time T
is the limiting factor, long-lived turbulent states do not have
time to decay and this leads to an underestimation of ωc, and
a higher perceived β.

have a fixed value, but will appear to continually change
as a function of the finite time T .

We have verified these scaling predictions in the dis-
crete and continuous simulations. For example
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FIG. 7. Demonstration of finite size and time artifacts on the
order parameter scaling of directed percolation. (a) System
size L = 800, simulation time shown in legend. As the sim-
ulation time is increased, the transition becomes apparently
first order. As the simulation time is decreased the transition
does not occur until an anomalously small value of ωs. (b)
System size is varied between 200 and 12800 while simulation
time is held constant at T = 5 · 107. The transition becomes
apparently first-order for small system sizes.

Effects of weak and strong pushing:- We can use the finite-
size scaling to deduce how artifacts can arise in finite-
size and time simulations as the strength of the pushing
effect, denoted here as F , is increased. Physically, the

strength of pushing is determined by the magnitude of
the puff interaction range λ, but this can also be a range
of hopping parameter in the discrete model. The essential
result of increasing F is that the puff interactions have
an effective hard core size that is of order F . Thus in
effect, the system size has been reduced by the factor F .
This means that if we keep L and T fixed but simply vary
F , the effective value of Q is replaced by QF ≡ QF ν‖/ν⊥ .
Then for QF � 1, the transition will be rounded and
the critical ωs will be under-estimated. For QF � 1,
the transition will appear to be discontinuous or have
an unexpectedly small β. This artifactual result will be
found in the strong pushing limit.

Discussion:- We conclude that RG theory and simula-
tions indicate that even with strong puff-puff interactions
of the suppression-pushing type, the universality class
for the transition to pipe turbulence is consistent with
directed percolation.

In the model considered here, the unit of turbulence
is considered to be a single puff, and the model purely
describes the interactions between puffs treated as space-
filling particles. The dynamics of these puffs is modeled
by rules that encapsulate the actual hydrodynamic inter-
actions arising from the way in which one puff influences
the mean velocity profile across the pipe. However, one
can also ask what is the dynamics of turbulence in gen-
eral, and in particular on scales smaller than a single
puff? Do they also exhibit the characteristics of directed
percolation, as originally implied by Pomeau [15]. This
question is distinct from the model considered here, and
can be addressed by attempting to derive the effective
theory for turbulence from the Navier-Stokes equation,
as was done in Ref. [13]. The result in this case was
that the most singular contribution to the behavior near
the onset of turbulence arose from the interplay between
a collective large-scale zonal flow and small scale turbu-
lent anisotropy. Remarkably, the ensuing Landau the-
ory model turns out also to be in the universality class
of directed percolation, at least asymptotically close to
the transition. The point we wish to emphasise is that
the occurrence of directed percolation in this case is very
different from what happens in the puff-splitting model
of the present paper. In fact, the puff-splitting model
describes decay, merging and splitting of point particles
and these dynamics are all that is needed in order for the
directed percolation universality class to emerge.

Acknowledgments:- One of us (NG) thanks Uwe Täuber
for a useful discussion. GL and JM are thankful to
A. Hernandez-Garcia for stimulating discussions on the
topic.
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SUPPLEMENTARY MATERIAL: MASTER EQUATION FOR THE PUFF SPLITTING MODEL

In this Supplementary Material, we derive Eq. (3) of the main paper. The puff splitting model is based on the
reactions of decay, hopping and splitting process in one dimension:

Ai
ωd−−→ Ei, (15)

Ai + Ei+1
p−→ Ei +Ai+1, (16)

Ai + Ei+1
ωs−→ Ai +Ai+1, (17)

where Ai denotes a particle at site i, Ei represents the vacancy at site i, and i = 1, 2, .., L. We introduce the
coarse-grained particle density centered at site i over a length scale of K lattice sites with a uniform kernel as ni,
specifically,

ni =
1

K

K/2∑

j=−K/2
Ni+j , (18)

where Ni = 0, 1 is the particle number at each site i. We denote the state vector by n = (n1, n2, ..., nL)T and define
the lattice density operator E±i as

E±i f(ni) = f(ni ±∆), (19)

and the master equation can be represented as

∂tP (n, t) =
1

∆

∑

i

[
(Ei − 1)ωdni + (Ei−1E−1i − 1)ωsni−1(1− ni) + (Ei−1E−1i − 1)pni−1(1− ni)

]
P (n, t), (20)

where ∆ = 1/K. By applying Kramers-Moyal expansion with truncation to the second order,

E±i ≈ 1±∆∂ni +
1

2
∆2∂2ni + ..., (21)
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Eq. (20) can be rewritten into a Fokker-Planck equation:

∂tP (n, t) = −
∑

i

∂(AiP )

∂ni
+

1

2
∆
∑

i,j

∂2(BijP )

∂ni∂nj
, (22)

where

Ai = −ωdni − pni(1− ni+1) + (p+ ωs)ni−1(1− ni), (23)

Bij = [ωdni + ωsni(1− ni+1) + pni(1− ni+1) + pni−1(1− ni)] δij + 2pni(1− nj)δj,i+1. (24)

The corresponding Langevin equation in Ito’s sense is

∂tn = A(n) + ξ(t), (25)

〈ξi(t)ξi′(t′)〉 = ∆Bii′δ(t− t′). (26)

In continuum limit in space, the density operator is defined as

Ẽ±x f [ρ(y)] = f [ρ(y)±∆δ(y − x)], (27)

and Eq. (20) becomes

∂tP (ρ, t) =
1

∆

{∫
(Ẽx − 1)ωdρ(x)P dx

+

∫∫ (
ẼyẼ−1x − 1

)
pρ(y) [1− ρ(x)] δ(x− y − ε)P dxdy

+

∫∫ (
Ẽ−1x − 1

)
ωsρ(y) [1− ρ(x)] δ(x− y − ε)P dxdy

}
, (28)

where ε is the lattice spacing. The Kramers-Moyal expansion gives

Ẽ±x ≈ 1±∆
δ

δρ(x)
+

1

2
∆2 δ2

δρ(x)2
+ ..., (29)

and with truncation to the second order, Eq. (28) becomes

∂tP (ρ, t) ≈ −
∫

δ

δρ(x)
{−ωdρ(x− ε) + (p+ ωs) ρ(x− ε) [1− ρ(x)]− pρ(x) [1− ρ(x+ ε)]} dx

+∆

∫
δ2

δρ(x)2
{ωdρ(x) + (p+ ωs) ρ(x− ε) [1− ρ(x)] + pρ(x) [1− ρ(x+ ε)]} dx

+∆

∫∫
δ2

δρ(x)δρ(y)
{−2pρ(y) [1− ρ(x)] δ(x− y + ε)} dxdy. (30)

By using

ρ(x± ε) ≈ ρ(x)± ε∂xρ(x) +
1

2
ε2∂xρ(x) + ..., (31)

Eq. (30) can be written into a Fokker-Planck equation:

∂tP (ρ, t) ≈ −
∫

δ

δρ(x)
[A(ρ, x)P ] dx+

1

2
∆

∫∫
δ2

δρ(x)δρ(y)
[B(ρ, x, y)P ] dxdy, (32)

where

A(ρ, x) = −ωdρ(x) + ωsρ(x) [1− ρ(x)] +
1

2
ε2(p+ ωs)∂

2
xρ(x)

−ε(p+ ωs)∂xρ(x) + ε(2p+ ωs)ρ(x)∂xρ(x)− 1

2
ε2ωsρ(x)∂2xρ(x), (33)

B(ρ, x, y) =

{
ωdρ(x) + (2p+ ωs)ρ(x) [1− ρ(x)] +

1

2
ε2(p+ ωs)∂

2
xρ(x)

−ε(p+ ωs)∂xρ(x) + εωsρ(x)∂xρ(x)− 1

2
ε2(2p+ ωs)ρ(x)∂2xρ(x)

}
δ(x− y)

−2p

{
ρ(x) [1− ρ(x)] + [1− ρ(x)]

[
−ε∂xρ(x) +

1

2
ε2∂2xρ(x)

]}
δ(x− y + ε). (34)
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The corresponding Langevin equation in Ito’s sense is

∂tρ(x) = A(ρ, x) + ξ(x, t), (35)

〈ξ(x, t)ξ(y, t′)〉 = ∆B(ρ, x, y)δ(t− t′). (36)

By setting ε = 1, near transition ρ� 1, one obtains

∂tρ ≈ −ωdρ+ ωsρ (1− ρ) +
1

2
(p+ ωs)∂

2
xρ− (p+ ωs)∂xρ

+(2p+ ωs)ρ∂xρ−
1

2
ωsρ∂

2
xρ+

√
aρ− bρ2η, (37)

where η(x, t) is a Gaussian white noise and a and b are functions of ωd, ωs and p. The nonlinear term in the square
root that multiplies the white noise η can be replaced by

√
ρ near the transition where ρ→ 0. This equation is of the

form of Eq. (3).
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Abstract In a porous rock, the spatial distribution of the pore space induces a strong heterogeneity
in fluid flow rates and in the stress distribution in the rock mass. If the rock microstructure evolves
through time, for example, by dissolution, fluid flow and stress will evolve accordingly. Here we consider
a core sample of porous limestone that has undergone several steps of dissolution. Based on 3-D X-ray
tomography scans, we calculate numerically the coupled system of fluid flow in the pore space and stress
in the solid. We determine how the flow field affects the stress distribution both at the pore wall surface
and in the bulk of the solid matrix. We show that during dissolution, the heterogeneous stress evolves in a
self-similar manner as the porosity is increased. Conversely, the fluid velocity shows a stretched exponential
distribution. The scalings of these common master distributions offer a unified description of the porosity
evolution, pore flow, and the heterogeneity in stress for a rock with evolving microstructure. Moreover,
the probability density functions of stress invariants (mechanical pressure or von Mises stress) display heavy
tails toward large stresses. If these results can be extended to other kinds of rocks, they provide an additional
explanation of the sensitivity to failure of porous rocks under slight changes of stress.

1. Introduction

Reactive fluid flow in porous rocks under stress is ubiquitous both in nature and in industrial applications.
Porous flow controls rock weathering, diagenesis in the crust, karst formation, and large-scale fluid circulations
at the origin of ore deposits [Jamtveit and Hammer, 2012; Bjørlykke and Høeg, 1997]. Fluid flow coupled to
deformation of porous rocks control the degree to which earthquake-induced deformation can drive transient
or permanent changes in crustal permeability [Rice and Cleary, 1976]. In fault zones, fluid may exert a pore
pressure large enough to reduce the apparent strength along the slip surface, providing an explanation for
the apparent low heat frictional force observed on the San Andreas Fault in California [Byerlee, 1990]. When
coupled to rock transformations in fault zones, this mechanism was also proposed to explain how long-term
variations of fluid pressure could control the seismic cycle [Sibson, 1992; Gratier et al., 2003].

Industrial applications include enhanced oil recovery, carbon dioxide sequestration, hydraulic fracturing, and
cement aging. Injection of CO2 into geological formations, aquifers, or depleted petroleum reservoirs, poses
a promising route to reduce greenhouse gas emissions in the framework of Carbon Capture and Storage [IEA,
2014]. Since such formations often contain carbonate minerals, they may react with the injected CO2-rich
fluid, resulting in changes of the pore space geometry that couples to deformation [Rohmer et al., 2016]. This
modifies both reactive surface area, porosity, permeability, and, finally, the ability of the rock to store carbon
in minerals [Noiriel et al., 2004, 2005].

Search for macroscopic properties, such as porosity or permeability, from local-scale description of microstruc-
tures, show that the presence of heterogeneities controls nonlinearities in the transport properties of a porous
medium [Bernabé and Revil, 1995]. The recent development of the field of Digital Rock Physics now allows to
calculate various mechanical and transport properties in rocks based on the full 3-D images of the samples
measured by X-ray microtomography [Arns et al., 2002; Andrä et al., 2013; Øren et al., 2007]. Fluid flow at the
pore scale has been studied using 3-D porous media extracted by X-ray microtomography to characterize
processes such as capillary trapping, CO2 sequestration, multiphase flow, solute transport, time-dependent
evolution of microstructures during fluid-rock interactions [Blunt et al., 2013; Noiriel, 2015; Bultreys et al.,
2016; Misztal et al., 2015], and numerical modeling methods are reviewed in [Meakin and Tartakovsky, 2009].
Elastic properties change during rock transformation (dissolution and precipitation) and depend on the initial
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microstructure [Wojtacki et al., 2015]. For example, if either micropores or macropores dissolve preferentially
in a limestone rock, the resulting change of elastic parameters and seismic wave velocities would be different
[Arson and Vanorio, 2015].

On the one hand, simulations of flow through porous solids have determined that there exists orders of mag-
nitude variations in local fluid velocity, even at the millimeter scale [Brown, 1987; Bijeljic et al., 2013; De Anna
et al., 2013; Le Borgne et al., 2013], indicating that both local pressure gradients and channeling flow are impor-
tant [Brown, 1987]. On the other hand, the study of coupled fluid flow and solid deformation is the basis of the
theory of poroelasticity [Rice and Cleary, 1976; Coussy, 2004]. Here we study the coupling between stress and
fluid flow in a porous rock that dissolves. The complexity of fluid flow and stress heterogeneity stems from
randomness of the medium and the possible coupling between forces in the solid and forces exerted by the
flowing fluid. The stress distribution in the solid phase, and in particular at the solid-fluid interface, is highly
heterogeneous at the scale of grains and pores in the rock. Regions of high stress are prone to stress-enhanced
dissolution and crack formation, while regions of low stress are prone to precipitation due to solute transport
in the pore space. These processes, over time, alter the pore space geometry and constitute a feedback loop
between flow and deformation.

We characterize numerically how heterogeneities in stress, fluid flow, and microstructures impact the
hydromechanical behavior of a limestone rock that has undergone several steps of dissolution. We aim to
answer the following questions:

1. How does single-phase fluid flow through the pore space of a rock sample under external load affect the
stress distribution in it, and, in particular, what is the effect of a heterogeneous microstructure on the stress
distribution?

2. How does rock dissolution modify the state of stress and yield strength in the solid?
3. How does dissolution in the rock modify single-phase fluid flow?

The main objectives are (1) to examine whether the stress distributions in the bulk of the solid and at the
solid-fluid interface can be described by a common probability density function (PDF) and (2) to quan-
tify the effects of dissolution, i.e., changes in the complex pore space, on the stress distribution, and flow
properties. We address these objectives by computational means, using the finite element method to solve
the coupled fluid-solid mechanics problem in three-dimensional digitized porous rocks. From our com-
putations, we achieve the fluid velocity field and the stress field in both the fluid and in the solid. We
further estimate the mechanical pressure and von Mises stress in the solid under various conditions of
external and internal loading. We apply our method to a sample of limestone that has undergone succes-
sive steps of dissolution through the percolation of an acidic fluid. This sample was imaged in 3-D before
percolation and at three successive steps of dissolution using synchrotron X-ray microtomography [Noiriel
et al., 2004, 2005].

The results of the present study can be of primary interest in domains where the heterogeneous and multi-
scale nature of rocks plays a key role, including, for example, oil and gas reservoir engineering, CO2 geological
sequestration, and fracture mechanics.

2. Model and Method

In this section, we present the numerical methods and the computational model used to calculate the state of
stress in a porous solid with a percolating fluid. As we are interested in the instantaneous effects of steady fluid
flow, we assume a timescale where the effect of chemical reactions is negligible and where the pore space
geometry does not change—i.e., there is no evolution of the microstructure. In this regime, the computational
problem involves a one-way coupling of normal stress from the fluid flow to the solid stress field.

2.1. Fluid Flow in the Pore Space
The Navier-Stokes equations, governing the incompressible fluid flow in the pores, are given by

𝜌
(𝜕v
𝜕t

+ (v ⋅ 𝛁)v
)
− 𝜇𝛁2v = −𝛁P, (1)

𝛁 ⋅ v = 0, (2)
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defined on a domain Ω𝓁 . Here v(x, t) is the velocity field, P is the pressure of the fluid, 𝜌 is the (constant) fluid
density, and 𝜇 is the dynamic viscosity. Closure is obtained by supplying an initial condition v(x, 0) = v0(x),
and a set of boundary conditions:

v(x, t) = 0 for x ∈ Γwall, (3)

P(x, t) = Pin for x ∈ Γin, (4)

P(x, t) = Pout for x ∈ Γout. (5)

HereΓ = Γwall∪Γin∪Γout represents the entire boundary ofΩ𝓁 , which we, for now, assume does not deform in
time, while Pin and Pout are constant fluid pressures imposed at the inlet and outlet of the system, respectively.

For a porous rock we consider that the characteristic length scale 𝓁p of the pore space is small, such that
the ratio between inertial and viscous forces is low, i.e., the Reynolds number Re = 𝜌|v|𝓁p∕𝜇 ≪ 1. Thus, the
advection part of equation (1), 𝜕v∕𝜕t + (v ⋅ 𝛁)v, is assumed to be negligible. This assumption is verified, as in
experiments by Noiriel et al. [2004] (see section 2.4), the speed |v| is in the range 1–4 ×10−3 m s−1, the typical
pore size 𝓁p is in the range 1–3 ×10−4 m, and the kinematic viscosity of water 𝜇∕𝜌 = 1 × 10−5 m2 s−1, which
gives a Reynolds number Re < 0.1.

In the limit of low Reynolds number, the Navier-Stokes equations (1) and (2) reduce to the Stokes equations,
which are linear in velocity and pressure, and can therefore be solved using optimized linear solvers. The time
dependence has now vanished, and we are seeking the steady flow field. By introducing the dimensionless
variables x̃, ṽ, and P̃, implicitly defined by

x = Lx̃, v = L
𝜇
(Pin − Pout)ṽ, P=(Pin − Pout)P̃ +

Pin + Pout

2
, (6)

where L is the system length; we obtain from equation (1) the well-known Stokes equation in nondimen-
sional form,

�̃�2
ṽ = �̃�P, (7)

�̃� ⋅ ṽ = 0, (8)

ṽ(x̃) = 0 for x̃ ∈ Γ̃wall, (9)

P̃(x̃) = 1
2

for x̃ ∈ Γ̃in, (10)

P̃(x̃) = −1
2

for x̃ ∈ Γ̃out. (11)

Here �̃� = L𝛁 is the scaled del operator, and Γ̃ (with the respective subscripts) is the scaled domain. Since these
expressions are all independent of the constants 𝜌, 𝜇, Pin, and Pout, all solutions to the Stokes equations are
the same up to a scaling constant and a shift in pressure.

The stress tensor in Stokes flow in dimensional quantities is given by

𝛁 = −PI + 𝜇
(
𝛁v + 𝛁v⊤

)
, (12)

which means that the dimensional strain tensor can be found from the nondimensional one,

�̃� = −P̃I + �̃�ṽ + �̃�ṽ⊤, (13)

by the transformation

𝛁 = (Pin − Pout)�̃� −
Pin + Pout

2
I. (14)
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As a consequence, for a given pore space geometry, performing one single steady state simulation is sufficient
to obtain the stress field for arbitrary inlet and outlet fluid pressures. Only the linear transformation described
above is required to achieve the field resulting from the sought inlet/outlet conditions.

In the forthcoming, we use the following definitions:

P0 =
Pin + Pout

2
(base pressure) (15)

ΔP = Pin − Pout (pressure drop) (16)

to quantify the effect of fluid flow in the pore space.

2.2. Fluid-Solid Stress Coupling at the Pore Scale
At the boundary between fluid and solid, Γwall, the normal stress should be continuous if the solid-fluid
interfacial tension is neglected:

[[𝝈]] = 𝝈 ⋅ n||Γ(s)
wall

− 𝝈 ⋅ n||Γ(𝓁)
wall

= 0, (17)

where n is the unit normal at the interface, pointing into the solid. The superscripts (s) and (𝓁) denote eval-
uation at the solid and liquid sides of the interface, respectively. If we assume that we consider time scales
in which the solid does not deform due to fluid flow (equations (7)–(11)), the no-slip boundary condition (9)
on the fluid is valid, and hence, the viscous stress boundary condition on the solid is prescribed by the fluid.
As mentioned above, this yields a one-way coupling from the fluid to the solid phase which encompasses
computational simplification.

2.3. State of Stress in the Solid Phase
For small deformations, the solid phase is described by linear elasticity, such that stress, 𝝈, and strain, 𝝐, are
related via Hooke’s law

𝝈 = E
1 + 𝜈

[
𝝐 + 𝜈

1 − 2𝜈
Itr(𝝐)

]
, (18)

where E is Young’s modulus and 𝜈 is Poisson’s ratio. The strain tensor in the solid is given by

𝝐 = 1
2

(
𝛁u + 𝛁u⊤

)
, (19)

where u(x) is the displacement field. By considering the static elastic field (i.e., time scales much larger than
the time elastic waves take to propagate through the system), stress equilibrium in the rock is expressed by

𝛁 ⋅ 𝝈[u(x)] = 0, (20)

where the right-hand side is equal to zero since we neglect body forces, such as gravity.

Closure of the equation system is obtained by supplying the following boundary conditions. Inside the rock,
at the interface between fluid and solid interface, this boundary condition is given by equation (17). At the
outside boundary of the solid, Γext, i.e., the part of the boundary which is not in contact with the fluid, a
prescribed normal traction (equivalent to a pressure force) is imposed:

𝝈 ⋅ n = −Pextn, for x ∈ Γext ⧵ Γbot, (21)

except at the bottom plane Γbot, where we apply a no-slip condition on the displacement field,

u(x) = 0, for x ∈ Γbot, (22)

in order to remove translational and rotational freedom and thereby achieve uniqueness of solution. Doing
so, the force exerted by the fluid flowing in the pore space to the solid surfaces are integrated as a boundary
condition and therefore coupled to the state of stress of the solid.
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Figure 1. Fluid meshes of the limestone sample at different steps of dissolution. Subfigures show (a) initial geometry,
and (b) one step, (c) two steps, and (d) three steps of dissolution. Fluid flow was from bottom to top during the
experiments.

2.4. Geometry and Mesh of the Porous Samples
We consider a digital 3-D rock sample which was studied and described by Noiriel et al. [2004]. It is a crinoï-
dal limestone of middle Oxfordian age extracted from the Lérouville formation (Paris Basin). Acidic fluid was
injected into this sample, leading to dissolution and porosity increase. The experiments were performed in the
diffusion-controlled regime, at low injection rates to avoid dissolution fingering instabilities. The sample has
undergone three steps of dissolution, and, between each dissolution step, it was scanned in 3-D, using X-ray
microtomography at the European Synchrotron Radiation Facility, at a voxel resolution of 4.91 μm. The results
are four digitized volumes: the initial sample before percolation and three volumes after the three stages of
dissolution (Figure 1). The original 3-D digitized volumes were segmented to separate the pore space from
the solid phase and resampled at 9.8 μm voxel size. The volumes used in the present study have dimensions
of 3403 voxels. The segmented images were prepared such that they constituted one connected cluster both
for the solid and fluid phases; i.e., all disconnected “islands” were removed. The removed disconnected pores
represented a fraction less than 0.05 of the total pore volume. The segmented volumes were then converted
to a tetrahedral mesh for the fluid phase using ISO2MESH [Fang and Boas, 2009], a MATLAB interface to TETGEN
[Si, 2015] for the surface mesh, and CGAL [The CGAL Project, 2016] for the volumetric mesh. The triangulated
surface of this mesh is used as the inner surface of the solid mesh. This surface mesh was then embedded into
a cubic surface mesh, which constituted the outer mesh (Figure 2). This cubic mesh was chosen to be slightly
(about 2%) larger than the fluid mesh, such that the whole sample could be loaded uniformly, yielding the
same total force on each side of the cube. A tetrahedral volume mesh was then generated between these sur-
faces. In this way, (1) the solid matrix can be loaded with a uniform normal stress at the outside boundary and
(2) no-slip conditions can be appropriately applied for the fluid phase at the entire surface Γ, except inlet Γin

and outlet Γout.

2.5. Computational Model
The rock we consider is a cubic, sealed, elastic porous sample which can be mechanically loaded along all
axes, and saturated with a steadily flowing single-phase liquid. With this model, by varying the flow rate and
the externally applied stress, one may obtain (1) the fluid velocity field in the pore space of the sample at

Figure 2. (left) Schematic setup of the model. (right) Simulated 3-D volume, after three dissolution steps, with fluid
velocity streamlines and von Mises stress in the solid. The upper half has been clipped to display the fluid phase.
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the different steps of dissolution, (2) the stress distribution in the solid space of the sample as a function of
applied fluid pressure and external stress, and (3) the probability distributions of invariants of the stress tensor
throughout the sample surface or volume.

2.6. Implementation
The coupled fluid-solid problem is solved numerically using the FENICS/DOLFIN framework [Logg et al., 2012a,
2012b]. The FENICS project is a collection of software for automated solution of differential equations using
the Finite Element Method (FEM), whereas DOLFIN is a C++/PYTHON library functioning as the main user inter-
face to FENICS. It allows for efficient solution of differential equations requiring only a weak (variational)
formulation of the problem to be specified.
2.6.1. Fluid Phase
The fluid equations (7) to (11) are solved using a continuous Galerkin method with first-order Lagrange (P1)
elements both for the velocity and pressure fields [Langtangen et al., 2002]. Since this mixed-space formu-
lation of the Stokes equations causes stability problems, as it violates the Babuska-Brezzi condition [Brenner
and Scott, 2008], we use a pressure stabilization technique. This amounts to allowing a small grid-dependent
compressibility which will smooth out the pressure field solution [Langtangen et al., 2002], i.e.,

𝛁 ⋅ v = 𝛿h2𝛁2P, (23)

where h is the element size and 𝛿 is a heuristically chosen parameter. Here we have omitted the tildes used for
scaled units for the sake of visual clarity. We verified that 𝛿 (= 0.04) was chosen small enough for the absolute
difference in inlet/outlet flux to be well below 2%, such that the mass of fluid is almost conserved.

The weak formulation of the fluid equations can thus be stated as the following: Find v ∈  , P ∈  such that

∫Ω𝓁

(
𝛁v ∶ 𝛁v′ − P𝛁 ⋅ v′ + P′𝛁 ⋅ v + 𝛿h2𝛁P ⋅ 𝛁P′)dV = −∫Γin

Pinn ⋅ v′dS − ∫Γout

Poutn ⋅ v′dS (24)

for all v′ ∈  , P′ ∈  , and v(x) = 0 for x ∈ Γwall. Here  and  are the function spaces for velocity and
pressure, respectively.

2.6.2. Solid Phase
The elasticity problem is resolved similarly as the fluid phase using P1 finite elements for the displacement
field. The stress in the fluid is transferred to the boundary of the solid phase. The pressure field is given as
nodal values, due to the use of first-order Lagrange elements, and can therefore be transferred directly to
the solid mesh. However, the viscous stress is a derivative of the velocity field, and therefore exists as con-
stant values on each element. Therefore, by stress reconstruction, the stress is interpolated on the boundary
nodes, yielding an error of the order of the element size. To minimize this error, the mesh was refined near the
fluid-solid boundaries. Additionally, the magnitude of the viscous stress is orders of magnitude smaller than
that of the pressure, as shall be demonstrated in the next section, yielding an even smaller relative error in the
boundary stress.

The weak problem formulation can be put as follows: Find u′ in  such that

∫Ωs

𝝈[u] ∶ 𝝐[u′]dV = −∫Γext⧵Γbot

Pextn ⋅ u′ dS − ∫Γwall

P n ⋅ u′ dS + ∫Γwall

u′ ⋅ 𝝈visc
𝓁 ⋅ n dS, (25)

for all u′ ∈  , and u(x) = 0 for x ∈ Γwall.

2.7. Probability Density Functions
In the simulated samples, the empirical probability density functions (PDFs), p(𝜓) for any given scalar field
(e.g., pressure, stress invariants, and fluid velocity components), 𝜓 , can be calculated either on the surface or
in the bulk (volume) of the sample. That is, p(x)dW gives the probability of finding the value x in an arbitrary
infinitesimal volume or area dW .

For the volumetric probability distribution functions, optimal representation is achieved by weighting each
nodal value by the size of its surrounding volume, similar to its Voronoi cell. For a given node i, this weight can
be expressed as

wi =
1

4V

∑
j∈i

Vj. (26)
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Here i is defined as the set of all mesh elements which contain node i, Vj is the volume of element j, and V is
the total volume. Similarly, for the surface PDFs, the nodal weight is found by

wi =
1

3A

∑
j∈i

Aj (27)

where i is defined as the set of all mesh facets which have node i as a vertex, Aj is the area of facet j, and A is
the total area. The PDF is then calculated by normalizing the weighted histogram of the given field. In order
to minimize the effect of application of external loading, the nodes closest (within 2%) to the cubic bounding
box are omitted.

3. Results

This section presents the results from the coupled fluid-solid simulations. In turn, we present the results from
the fluid, and then the stress calculations in the solid due to fluid flow and porosity increase.

3.1. Main Assumptions
Our results are sensitive to a series of assumptions made, mainly related to the discretization of flow in the
porous samples:

1. The segmentation process of solid and fluid does not unambiguously capture microporosity as some voxels
could contain a fraction of solid and a fraction of porosity.

2. The removal of disconnected pores and the micropores smaller than the voxel size should contribute to
stress heterogeneities. Note that the removed disconnected pores represented a fraction less than 0.05 of
the total pore volume.

3. The meshing of the complex microstructure could be done in different ways. Note that we are here
using unstructured meshes which better approximate the true microstructures than what would using,
e.g., a Cartesian grid.

4. The elastic parameters of the solid phase are assumed to be constant throughout the sample.
5. The boundary conditions could have been chosen differently (e.g., strain controlled rather than stress

controlled).
6. The sample has a finite size, limiting the range of length scales for the observed spatial correlations.

As such, perfect agreement in comparison to experiments should not be expected. However, the meshes cor-
responding to snapshots of the sample at different stages of dissolution are prepared in the same way, and
therefore the evolution of the distributions should hold as long as we consider viscous flow and linear elasto-
statics. Moreover, the largest stress concentrations are expected to be found near the biggest pores, meaning
that the discretization is justified, although, e.g., the “mesh porosity” is not the true porosity. Moreover, the
fluid-solid solver was validated against cases where analytical expressions where available, e.g., for fluid flow
in a cylindrical pipe and the stress field around a fluid-filled spherical pore. However, as the methods are rather
standard and the framework is tested by the group of developers, we believe that the main sources of error
lie in the points above, not in the solver itself.

3.2. Fluid Flow in the Pore Space
Here we present the results from pure fluid flow simulations. Due to the invariance under a linear transforma-
tion described in section 2.1, the results are given in scaled units. Similarly as in section 2.6.1, we have omitted
the corresponding tildes for scaled units. Physical values are found by using equations (6) and (14).

In Figure 3, the simulated flow field is visualized by streamlines, i.e., integrated Lagrangian trajectories of the
velocity field. As expected with increasing porosity, the flow through the sample increases. At low porosity, a
few preferential flow paths are present. At higher porosities, more paths appear and cross-link with each other.

Flow through porous media is on the macroscale governed by Darcy’s law,

q = − k
𝜇
𝛁P, (28)

where q is the flux (discharge per area) and k is the permeability. Here the flux is related to the mean velocity
through the relation q = 𝜙v. Historically, much effort has been devoted to relating the permeability k to
porosity 𝜙, the most popular being the Kozeny-Carman relation commonly expressed as k = C𝜙3∕(1 − 𝜙)2
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Figure 3. (a–d)Streamlines of simulated velocity field in the sample at different steps of dissolution. Figures 3a and 3b
correspond to those in Figure 1.

[Costa, 2006; Matyka et al., 2008], where C is a constant of dimension (length)2 related to the geometry of
the porous medium. The mean absolute velocity (speed) and the mean axial velocity (parallel to the pressure
gradient) are plotted as functions of porosity,

⟨
vy

⟩
(𝜙), in Figure 4 (left), and display superlinear increase with

porosity. The solid lines represent power law fittings to the data, which both yield exponents ≃3. Taking the
pressure drop to be constant, the Kozeny-Carman relation predicts that the flux through any cross section of
the sample q= q ⋅ n̂ = 𝜙

⟨
vy

⟩
of a porous media should depend on porosity as

q ∝ 𝜙3

(1 − 𝜙)2
. (29)

This means that the average velocity should scale as ⟨v⟩∼ q∕𝜙 ∼ 𝜙2∕(1 − 𝜙)2. The fittings shown in Figure 4
are thus not in quantitative agreement with Kozeny-Carman relations. However, this is not unexpected, as
Kozeny-Carman relations, being derived for packed beds, are usually more applicable to configurations such
as high-porosity sandstone, and less so for low-porosity limestone undergoing dissolution. This observation
is consistent with the data presented in Figure 4 (right), where permeability k in physical units is plotted as a
function of porosity 𝜙, and the relationship k ∼ 𝜙4 grows faster than the prediction from the Kozeny-Carman
relation. The behavior seen here is comparable to the data reported by Ehrenberg et al. [2006], although the
magnitude is somewhat higher here, especially as dissolution progresses. The permeability calculated here,
however, coincides well with the permeability reported in the original experiment [Noiriel et al., 2004].

Figure 5 displays the measured probability distribution of fluid speed in the four volumes. The inset of Figure 5
shows the raw (nonnormalized) data, with a shift of the distribution toward higher speed as porosity is
increased. The relevant features of the distributions are extracted by rescaling the speed, v, by the mean speed
⟨v⟩ in each sample (displayed in Figure 4), as shown in the main panel of Figure 5. The distributions collapse,
apart from in the tail (possibly due to the finite size of the computational meshes). As the porosity increases,
the distribution approaches a stretched exponential function for large v,

p
(

v̂
)
∼ exp

(
−𝛼v̂𝛽

)
(30)

Figure 4. (left) Mean axial velocity/speed in the bulk of the fluid versus porosity in the sample, in scaled units.
(right) Corresponding permeability in SI units.
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Figure 5. Probability density of the fluid velocity in the pore space at different steps of dissolution. The velocity
distributions are collapsed upon rescaling by the average velocity. Inset: Nonnormalized distribution.

where v̂ = v∕ ⟨v⟩, the exponent 𝛽 ≃ 1∕2, and the scale parameter 𝛼 ≃ 0.25. This observation is consistent with
established velocity statistics for disordered porous media [Matyka et al., 2016], and the stretched exponential
distribution can theoretically be inferred by considering the porous media as a collection of cylinders with
exponentially distributed radii [Holzner et al., 2015].

The fluid pressure distribution is shown in Figure 6 and displays a highly heterogeneous distribution between
the inlet pressure Pin = 1∕2 and the outlet pressure Pout = −1∕2. The distribution is characterized by fluctua-
tions (spikes) that are interpreted to be related to a heterogeneous distribution of dead-end pores. To quantify
the heterogeneity in the pressure field arising from the flow, the deviation from a linear pressure profile
(like what appears in hydrostatics with a constant gravitational force) can be calculated as

ΔPlin(x) = P(x) − Plin(x), (31)

where Plin(x) = 1∕2 − y, y ∈ [0, 1] is the scaled coordinate along the direction of the imposed pressure drop,
such that y = 0 corresponds to the inlet face, and conversely for y = 1. The resulting distribution is shown in
the inset of Figure 6. The distribution is seen to be sharply peaked around ΔPlin = 0, due to the fixed pressure

Figure 6. Fluid pressure statistics at the pore walls in the sample at different steps of dissolution.
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Figure 7. Fluid shear stress statistics at the pore walls in the sample at different steps of dissolution.

at inlet and outlet, but apart from this, slightly skewed toward negative values. This indicates a geometrical
asymmetry in the sample: more dead-end pores stretch from the top (low pressure) to the bottom of the
samples, than the other way around.

The fluid pressure exerts a normal traction pn̂ upon the solid matrix. The viscous flow field, on the other hand,
contributes to a tangential traction. The scaled viscous stress tensor is given by

𝝈visc = 𝛁v + 𝛁v⊤, (32)

and to quantify this (while suppressing the influence of the boundary normal, which must be reconstructed
on nodes, introducing an error of order element size), we report the distribution of 𝜏 , the largest absolute
eigenvalue of 𝜎visc, sampled over the surface nodes (as in Voronov et al. [2010]). The resulting distribution is
shown in Figure 7. From the latter figure, it is clear that the viscous forces are, generally, at least 1–2 orders of
magnitude lower than the pressure drop, which again is lower than the base pressure P0 and the external pres-
sure Pext. We emphasize that this observation is independent of the value of the viscosity 𝜇, as the equations
are linear, and therefore, only one unique solution for the stress field exists apart from a scaling (by ΔP) and a
shift (by P0).

3.3. Stress in the Porous Solid
In the following, the results from calculating the state of stress in the solid due to fluid flow and porosity
increase are reported. In all cases, a Poisson’s ratio 𝜈 = 0.3, an external pressure Pext = 2.2×107 Pa, and a base
pressure P0 = 1.0 × 107 Pa were used.

3.3.1. Measures of State of Stress in the Solid
In order to assess the impact of applied external stress on the porous sample, we consider frame-invariant
quantities. Combinations of the first two invariants of the stress tensor will therefore be used (I1 and I2). First,
the mechanical pressure is defined as

Pmech = − tr(𝝈)
3

. (33)

Second, the von Mises stress [von Mises, 1913] is defined by

𝜎vM =
√

3
2
𝝈dev ∶ 𝝈dev, (34)

where the deviatoric stress tensor is defined by 𝝈dev = 𝝈 + PmechI. The von Mises stress is commonly used
to predict yielding of materials under multiaxial loading. The tightly related von Mises yield criterion states
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Figure 8. Probability density function of the mechanical pressure Pmech at the pore walls in the sample before
dissolution, at various imposed fluid pressure drops ΔP. Here Pext = 2.2 × 107 Pa, P0 = 1.0 × 107 Pa. Inset: data collapse
by rescaling. The straight line shows power law decay p(x) ∼ x−5 as a guide to the eye. Similar plots are also found for
the various dissolution steps.

that a material starts to deform irreversibly when 𝜎vM reaches a certain critical threshold 𝜎yield. As such, it is
a measure of how close to fracturing the material is when considering a brittle material such as a rock in
the first kilometers of the Earth’s crust. We note that we could as well have considered some of the common
alternatives to the von Mises stress, such as the maximum principal stress (strain), i.e., the largest eigenvalue
of the stress (strain) tensor, 𝜎1 (or 𝜎1 − 𝜈(𝜎2 + 𝜎3)), and the results are largely similar.

3.3.2. Influence of Pressure Drop Over Fluid on Stress in the Solid
Figure 8 shows the probability distributions of Pmech in the sample before dissolution, normalized by the exter-
nal pressure Pext, obtained for various fluid pressure drops ΔP ∈ [0, Pext]. The distributions are peaked around
Pmech∕Pext = 1, with a markedly heavy tail for large Pmech.

In the inset of Figure 8 the distributions are seen to collapse by the normalization

P̂ =
Pmech − Pext

PextSΔP

(
ΔP

Pext

) . (35)

Here SΔP(ΔP∕Pext) is a scaling function described below.

For large P̂, a power law behavior p(P̂) ∼ P̂−𝛾 , where 𝛾 ≃ 5, can possibly be observed. The support is, however,
only over 1 order of magnitude, and therefore, other distributions might also provide good fits, e.g., a stretched
exponential distribution.

The probability distributions of the von Mises stress 𝜎vM, corresponding to Figure 8, are shown in Figure 9. The
distributions of 𝜎vM display similar characteristics as the distributions for Pmech. Scaling by SΔP(ΔP∕Pext) yields
the same data collapse as for P̂, i.e., distributions of

�̂�vM =
𝜎vM

PextSΔP

(
ΔP

Pext

) (36)

are independent of ΔP.

In Figure 10, the data points show the mean of the pore wall distribution of 𝜎vM∕Pext, plotted as a function of
(normalized) pressure drop. A linear least squares fit is used to determine the scaling function:

SΔP

(
ΔP
Pext

)
= 0.27

ΔP
Pext

+ 0.82. (37)
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Figure 9. Probability density function of the von Mises stress 𝜎vM at the pore walls in the initial step of the sample, at
various imposed pressure drops ΔP. Pext and P0 are the same as in Figure 8. Inset: data collapse by rescaling. A power
law decay with exponent −5 is shown as a guide to the eye. Similar plots are also found for the various dissolution steps.

3.4. Influence of Dissolution and Increasing Porosity
The probability distributions of the mechanical pressure at the pore walls of the sample at different stages of
dissolution are shown in Figure 11. Here the pressure values used were Pext = 2.2 × 107 Pa, P0 = 1.0 × 107 Pa,
and ΔP = 0. The peaks of the distributions are located at the same position, Pmech = Pext, but the distributions
become wider as the porosity is increased, indicating more stress concentration and more stress shadows
with increasing dissolution.

To segregate the distributions of values above (+) and below (−) the peak at Pmech = Pext, we define

f± = ±
Pmech − Pext

PextS
(

ΔP
Pext

)
S𝜙(𝜙)

(38)

where the scaling function S𝜙(𝜙) is defined below (see equation (39)). As shown in the inset of Figure 11, the
resulting distributions largely collapse: the distributions of f+ are seen to fall onto the same curve, while f−

displays a slightly varying slope with dissolution step.

Figure 10. Mean von Mises stress as a function of the pressure drop ΔP inducing flow through the sample. The means
are taken over the distributions in Figure 9.
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Figure 11. Probability density function of the mechanical pressure at the pore walls for all dissolution steps, at fixed
ΔP = 0. Pext and P0 are the same as in Figure 8. Inset: data collapse by rescaling. The line shows a power law with
exponent −5 as a guide to the eye. Similar plots exist for other pressure drops.

The probability distribution of the (relative) von Mises stress is plotted for the pore walls in Figure 12 and for
the solid bulk in Figure 13. The pore wall distributions display the same behavior and collapse by S𝜙(𝜙) as that
of f+ above. In comparison, the bulk distribution extends the suggested power law distribution, p(𝜎vM) ∼ 𝜎−𝛾vM,
𝛾 ≃ 5, for large 𝜎vM.

The bulk averages of 𝜎vM, corresponding to the probability distributions shown in Figure 13, are plotted in
Figure 14. The scaling function S𝜙(𝜙) is approximated as a fit to these points. We expect no deviatoric stress
at S𝜙(0) = 0, and the simplest form satisfying this is

S𝜙(𝜙) = C𝜙𝛽. (39)

Here the exponent 𝛽 ≃ 0.56 yields the best fit of the experimental data using a least squares method. An even
better fit would be achieved by using more complicated expressions with more fitting parameters, but for that

Figure 12. Probability density function of the von Mises stress at the pore walls for all samples, at fixed ΔP = 0. Pext and
P0 are the same as in Figure 8. Inset: data collapse by rescaling. Similar plots exist for other pressure drops.
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Figure 13. Probability density function of the von Mises stress in the bulk for all samples, at fixed ΔP = 0. Pext and P0 are
the same as in Figure 8. Inset: data collapse by rescaling, and a superimposed power law with exponent −5 as a guide to
the eye. Similar plots exist for the other pressure drops.

to be justified one would also have required more than the four porosity levels available herein. Alternatively,
exponential fits could be used, analogous to the compiled data of critical axial stress as a function of porosity
in limestones summarized in Croize et al. [2013, section 3.1.3].

3.5. Common Probability Density Functions
As a consequence of the above analysis, all distributions considered will collapse onto the same master curves,
by the scaling relationships

̂̃P =
Pmech − Pext

PextSΔP

(
ΔP

Pext

)
S𝜙(𝜙)

, (40)

and

�̃�vM =
𝜎vM

PextSΔP

(
ΔP

Pext

)
S𝜙(𝜙)

, (41)

where the scaling functions SΔP(ΔP∕Pext) and S𝜙(𝜙) are given by equations (39) and (37), respectively. This uni-
fied description of stress heterogeneities in the limestone sample studied here represents the main outcome
of the present study.

Figure 14. Bulk mean von Mises stress versus porosity. The data points correspond to the distributions in Figure 13.
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4. Discussion
4.1. Complexity of Fluid Flow in a Porous Medium
Brown [1987] solved Reynolds equations in 2-D in a synthetic rough aperture fracture and showed that for low
aperture, the roughness of the walls had a significant effect, leading to flow channeling. In a porous medium,
the pore structure complexity generates a wide range of flow velocities, from the fast advective flows in the
main channels, to the very slow diffusive flows in dead ends where the fluid is almost stagnant and rarely
mix with that in the main channels [Bijeljic et al., 2013]. The pore heterogeneities have a strong effect on the
long-range spatial correlations of the flux. Numerical simulations show that the distributions of the kinetic
energy and the velocity in the fluid follow power laws over at least 5 orders of magnitude [Andrade et al.,
1997; Makse et al., 2000] and that the flow is correlated in space and time [Le Borgne et al., 2008], leading to
intermittency [De Anna et al., 2013]. Increasing the complexity of pore geometry, from a simple bead-pack
porous medium to natural rock samples with micropores and microfractures increases as well the range of
velocities observed in the fluid. The velocity distribution is characterized by a main peak, controlled by the
pressure drop imposed on the system, and a tail of slow velocities that increases with pore network complexity
[Bijeljic et al., 2013; Jin et al., 2016]. Based on Lattice Boltzmann simulations, Matyka et al. [2016] proposed
that the probability distribution function of fluid velocity, for velocities larger than the average fluid velocity,
follows a “power exponential” law. This is in contrast with other studies which have proposed either a Gaussian
or an exponential distribution [Mansfield and Issa, 1996; Datta et al., 2013; Bijeljic et al., 2013; Lebon et al., 1996].

With regard to the speed distributions presented in section 3, a stretched exponential probability density
function provides a good fit for large speeds. A shifted, stretched exponential (power exponential) distribu-
tion, as proposed by Matyka et al. [2016], would also be in agreement with our results, but this would require
introducing another fitting parameter. Moreover, the evolving pore structure due to dissolution in our sample
does not significantly alter the functional dependence of the probability density function of fluid velocities,
when rescaled by the average velocity.

4.2. Coupling Fluid Flow and Deformation
The fluid flow in the porous medium exerts both shear and normal stress on the solid walls, as shown numer-
ically for a rough fracture [Lo and Koplik, 2014]. Because of the complexity of the porous medium, additional
complexity of the flow pattern exists and long-range correlations in the stress distribution at the solid
interface emerge.

Flow-induced stresses have been modeled for several biological applications where porosity of the medium
was quite high (above 80 %) and the solids were very soft. Under these conditions, numerical simulations
indicate that the fluid viscous stress at the pore walls follows a gamma distribution [Voronov et al., 2010].
Numerical models of fluid flow in highly deformable elastic porous media indicated that as the elastic solid
deforms under flow, the relationship between pressure drop and flux becomes nonlinear and saturates for
large-pressure gradients [Hewitt et al., 2016]. Hysteresis due to the coupling between fluid and solid can
emerge [Guyer and Kim, 2015]. Pham et al. [2014] calculated the stress exerted by a fluid around a spherical
solid using Lattice Boltzmann simulations, and the existence of areas with stress concentration on the solid,
and lognormal stress distribution was observed. However, in all these studies, the porosity was quite large
and/or the solids were very soft and relevant for bioengineering applications. This renders comparison with
solids that are stronger and with lower porosity, such as rocks, challenging.

In rocks, elastic deformations are quite small, usually below one percent, before irreversible strain occurs.
Depending on stress and the mechanisms of irreversible deformation, such as closure and opening of micro-
cracks or pore collapse, the relationship between porosity and permeability evolves, controlling the pore
pressure gradient [David et al., 1994]. Under loading, the microscale heterogeneities control both the ini-
tiation of microcracks and the overall strength of the material. Using a 2-D discrete element modeling
approach applied to a granite rock, Lan et al. [2010] showed a difference between geometrical heterogeneities
(i.e., difference of grain size), which control the nucleation of microfractures and initiation of damage, and
strength heterogeneities at the grain contacts (i.e., elastic stiffness), which control the overall strength of the
solid under uniaxial loading. In these simulations, the stresses inside the grains show a normal distribution
for both the maximum and the minimum principal stresses, with an average value which corresponds to the
external loading. Conversely, the normal stress at grain contacts shows a bimodal distribution. Some contacts
are under tensile normal stress conditions and provide sites for the nucleation of extensional microfractures.
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The evolution of elastic parameters and permeability during small elastic deformations of a Bentheim sand-
stone was experimentally measured and successfully modeled using X-ray microtomography images where
unstructured meshes were built [Jasinski et al., 2015]. The effect of fluid viscosity on the effective elastic prop-
erties of rocks and the attenuation of elastic waves was studied in Saenger et al. [2011] by solving the dynamic
elastic equation in 3-D rock samples imaged with X-ray microtomography. Other researchers have simulated
deformation of calcium carbonates with a back coupling to flow through dissolution [Pereira Nunes et al.,
2016] and precipitation [Jiang and Tsuji, 2014], although without accounting for the stress distribution in the
solid matrix. In the present work, the fluid-solid coupling is only one way, and therefore, the effect of flow on
changing pore space geometry cannot be assessed.

By considering probability density functions of bulk and pore wall properties, the results presented in
section 3 show that for a steadily flowing fluid in the pore space of a limestone, the dominating force from
the fluid stems from the base pressure in the solid, as the viscous force generated by the fluid is generally
orders of magnitude lower. This implies that under such conditions, the viscous stress is of minor importance.
Moreover, the stress distributions are controlled by the pressure dropΔP in a simple manner. In particular, the
position of the tail of the distributions of stress in the sample may ultimately depend on the maximum dif-
ference between external and internal pressure. This broad tail, with a power law decay with a quite strong
exponent of −5, has the following consequence: a slight increase in fluid pressure or a small amount of disso-
lution will significantly increase the number of locations in the solid where the von Mises criteria (or another
failure criteria) will be reached. A consequence of such behavior is the following. It is known that the injection
or removal of fluid at depth can trigger induced seismicity [Talwani and Acree, 1984]. Recent field observations
at the outcrop scale show that a small fluid injection can trigger microearthquakes at some distance from the
injection point [Guglielmi et al., 2015]. If they can be extended to other kinds of rocks, our results, with a heavy
power law tail of stress heterogeneities, show that a small change in fluid pressure can drive a significant vol-
ume of the rock toward failure. The nature of microstructural heterogeneities and their relationships to fluid
flow and stress would then provide an additional explanation of induced seismicity.

Whether the observed self-similarity persists if the porosity is increased beyond the range considered here,
is an open question, and could be assessed, e.g., by using tomography data from experiments where more
dissolution is performed. However, in the Earth’s crust failure would occur before reaching a high porosity,
which is what happens, for example, in karst with the formation of caves. Further, how the distribution changes
if such failure occurs, i.e., the stress heterogeneity leads to fractures, is an interesting point in question. We
expect the self-similar behavior will reach its end at latest when the first failure occurs, as the solid matrix will
then reorganizes itself.

5. Conclusion

We have in this work computationally studied how an evolving microstructure influences fluid flow in the
pore space of a rock, and how fluid flow influences the state of stress in the solid phase. We have considered
a limestone which has been scanned at four stages of dissolution using X-ray microtomography.

Steady incompressible laminar fluid flow in the sample at each stage of dissolution was computed by solving
Stokes’ equations. By assuming negligible displacement of the fluid-solid boundary due to elastic deforma-
tion, the stress field from the fluid enters as a boundary condition on the solid, yielding a one-way numerical
coupling. Both the fluid and the solid problems were solved numerically using the finite element method
through the FEniCS/DOLFIN framework.

Our main finding is that as the rock is dissolved, and as the pressure drop driving the fluid flow is increased, the
distribution of heterogeneous stress in the sample evolves in a self-similar manner. In particular, the proba-
bility distributions of the mechanical pressure and the von Mises stress can be collapsed onto the same curve
by a normalization. The common master curves display a broad distribution, with a suggested power law tail
for high stresses. The broad tail shows that the rock is very sensitive to small perturbations, and a slight fluid
pressure increase locally would drive a significant number of local heterogeneities toward failure. We propose
that this heavy tail can be used as a simple criterion for the integrity of porous rocks.

Whether the observed self-similar evolution is restricted to dissolution processes remains to be answered. For
example, do other morphology-changing processes, such as fracturing or precipitation (lowering porosity)
evolve similarly? A more fundamental question is related to identifying the link between pore geometry and
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the velocity distribution/stress distribution. Future work will include a back coupling from solid deformation
to fluid flow, yielding transient dynamics of fracture and/or precipitation-dissolution processes.
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Abstract

We present comprehensive direct numerical simulations of fluid flow in three-dimensional (3D)

self-affine channels that are representative of fractures. We solve the time-dependent Navier–Stokes

equations, from laminar flow, through transitional, to turbulent flow, focusing our investigation on

the role of inertia and roughness on the macroscopic transport properties. In contrast to previous

studies, we have access to the full, 3D time-dependent velocity field, and quantify the effect of

unsteady and transitional flow on fracture permeability. We compute friction factors (geometric

and Darcy fraction factor fD) for flow spanning three orders of magnitude in velocity and one order

of magnitude in roughness amplitude. The dependence of the friction factors on the Reynolds

number Re can be approximated using a generalized Forchheimer law, which takes into account

a finite transition region between a laminar asymptotic scaling, fD ∼ Re−1 (Re � Rec), and an

inertial asymptote, fD ∼ constant (Re � Rec). For each roughness amplitude, this leads to the

identification of a critical Reynolds number Rec, where inertial effects arise, and a characteristic

geometric friction factor. Based on the latter two quantities, the friction factor for all roughness

amplitudes can be collapsed onto a single curve, where only the transition region is roughness

dependent. To quantify the onset of unsteady flow, we compute the fluctuation-based Reynolds

number Re′, which beyond a certain second critical Rec,q, is shown to depend linearly on Re.

For sufficiently high roughness, the linear dependence extends from Re′ = 0, suggesting that the

turbulent transition changes character from sub- to supercritical as the roughness increases. We

find that Rec,q is comparable in magnitude to the Rec for the departure from laminar friction,

implying that transitional flow is an integral part of fracture flow, and must be accounted for in

coarser simulations when Re and the roughness amplitude are sufficiently high.
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I. INTRODUCTION

The transport properties of fractured materials are industrially relevant for a range of

reasons [1]. In aquifers and petroleum reservoirs, fractures are ubiquitous, and often the

dominating part of the fluid transport in such media takes place in fracture networks [2–5].

Knowledge of the flow properties in the single fractures that together form the networks

is hence necessary for safe and efficient operation downhole [6]. High velocity flow in such

systems is of particular importance for geothermics, since turbulent mixing is known to

increase heat conduction by several orders of magnitude. Further, hydraulic fractures may

be driven by transitional flow [7]. Historically, much effort has been devoted to estimating

the permeability (or conversely, flow resistance) of fractures [8, 9], e.g. by considering the

properties of the aperture field [1, 10, 11]. For flows in pipes and channels, it was early on

debated whether the departure at high flow rates from Darcy’s law [12], which states that

pressure loss is proportional to the discharge rate, was due to turbulence. However, careful

studies have shown that this departure can be attributed to steady eddies; see e.g. [13, Sec.

I].

On the other hand, flow in rough fractures is interesting from a turbulence perspective.

The onset of turbulence in pipes and channel flow is a phenomenon that historically has

received broad attention since the early experiments by Reynolds [14]. Only during the

last decades, the phenomenon is beginning to be fully understood [15–19]. However, in the

presence of roughness, much less is known. In the 1930’s, Nikuradse undertook an extensive

set of experiments on flow in pipes with a characteristic roughness length scale [20]. Dur-

ing recent years, this has been characterized as a non-equilibrium critical phenomenon by

numerical and theoretical considerations [21–23]. The transition to turbulence in smooth-

walled shear flows is believed to be subcritical, meaning that it is not driven by a linear

instability, but requires a perturbance of a finite size to proliferate. In particular, experi-

ments and simulations indicate that it belongs to the directed percolation (DP) universality

class [24–27]. This expectedly holds for Hagen-Poiseuille (pipe) [15, 18, 28], Taylor–Couette

(TCF) [29], plane Couette [30], and plane Poiseuille flow (PPF) [31].

It has been established experimentally that fractures in both geological and other mate-

rials are self-affine [32], i.e. the fracture surface z = h(x, y) is statistically invariant under
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the transformation

x→ λx, y → λy, z → λHz, (1)

or h(x, y) ∼ λ−Hh(λx, λy) in a statistical sense [33, 34]. Here, H is the Hurst exponent,

which is broadly considered to take the universal value H = 0.8 for fractures in three

dimensions (3D). Note however, that there are exceptions, such as in sandstones (H ' 0.6)

[35] and in glassy ceramics (H ' 0.4) [36, 37].

The early models for computing flow in fractures encompassed approximating fractures as

two parallel plates, stated as the parallel plate (PPL) or cubic law, which gives the discharge

rate Q as a function of the average pressure gradient ∇p as

Q = − d3

12µ
∇p, ∇ ·Q = 0. (2)

An improvement of the PPL amounts to letting d be a field that depends on the in-plane

coordinates, which is termed the local cubic law (LCL) or the Reynolds equation (lubrication

appriximation). An important research topic encompasses solving this equation for self-affine

fractures, see e.g. [4, 38–40]

Beyond the lubrication approximation, Gutfraind and Hansen [41] and Zhang et al. [42]

were probably the first to consider flow in self-affine geometries, albeit in two dimensions

(2D). Drazer and Koplik [43, 44] considered the transport properties of 2D and 3D self-affine

fractures. Brush and Thomson [45] evaluated the validity of the lubrication approximation

by comparison to full 3D simulations. Lo and Koplik [46, 47] considered flow in self-affine

fractures of both pure fluid and suspension flow in 3D self-affine fractures, and studied

especially the flow channeling and fluid stress on the wall. Inertial effects have been studied

both in fractures [48], in 2D porous media [49–52] and in 3D spherical packings [53–55]

Notably, Skjetne et al. [48] simulated high-velocity time-independent flow in a self-affine 2D

fracture joint in two dimensions. They found that the relationship between average forcing

f and mean flow ux was well described by a (weak inertia) cubic form [56, 57], f ∼ ux +ku3
x

(k being an empirical constant) at low Reynolds numbers Re, and a Forchheimer law [58],

f = aux + bu2
x, (3)

at higher Re (a, b are empirical coefficients). The functional form (3) has provided good

quantitative fits also in other rough geometries [52]. Zou et al. [59] studied unsteady flow in

2D fractures, and subsequently steady flow in 3D fractures [60]. Wang et al. [61] and Briggs
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et al. [62] studied steady flow in self-affine fractures for somewhat lower Reynolds num-

bers. However, a proper assessment of the role of unsteady flow and the impact of velocity

fluctuations on macroscopic transport properties seems to be lacking in the literature.

In the other end of the spectrum, an extensive body of research considers fully developed

turbulence near rough walls (see [63] for a review). To our knowledge, however, there have

been few works that have considered the transition to turbulence in fracture-like geometries.

As such, addressing the universality class of the transition to turbulence, including resolving

the associated large-scale spatiotemporal intermittency, would require domain sizes compa-

rable to that considered by Chantry et al. [30]. In this direction, significant progress was

made recently for rough-walled PPF [64] and TCF [65]. The present paper aims to show

that it is possible, for significantly smaller domains, to address whether the transition to

turbulence remains subcritical as a boundary roughness is imposed. In particular, we will

find, by quantifying the velocity fluctuations, that the transition becomes supercritical given

a sufficiently large roughness amplitude.

In this work, we consider high-velocity flow in three dimensional self-affine channels which

realistically mimic real fracture geometries. The geometry is constructed to be a simple,

albeit generic, description of a fracture: the same surface is shifted vertically to constitute

both the upper and lower wall, and the channel is periodic in the x and y directions. This

allows a Reynolds number based on the flux through any perpendicular cross section to

be uniformly well-defined. Within this setup, we are primarily interested in the transport

properties of the fracture when the flow within it goes from being stationary, in a time-

independent steady-state (i.e. well within the laminar regime, which, as outlined above, is

fairly well studied in the literature), to being in a steady state in a time-sampled statistical

sense.

As already indicated, the main research questions underlying this investigation are:

• What is the impact of a generic roughness on the macroscopic flow properties (perme-

ability, or conversely, friction factor) of a channel geometry?

• What is the effect of velocity fluctuations?

• How does the nature of the turbulent transition in a channel depend on roughness?

To characterize the effect of this transition, we first consider the geometrical properties

of the fractures; i.e., we estimate in a classical way the permeability field of the fractures;
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which gives a first estimate of the expected permeability of the fractures. Secondly, based on

extensive direct numerical simulations (DNS) we measure the friction factor of the channels

as a function of Reynolds number and roughness amplitude. We evaluate the prediction

from the geometrical estimates, and are able to collapse the friction factors onto a single

curve by a scaling argument. In particular, we find that a generalized Forchheimer law well

captures the dependence of the friction factor on the Reynolds number. We also quantify

the point where the flow becomes transitional by inspecting the temporal fluctuations in the

velocity field.

The article is organized as follows. In Sec. II, we describe the fracture geometry and

computational mesh used in the simulations. In Sec. III, we describe the problem set-up,

the governing equations and the numerical methods, and in Sec. IV, we present our results.

Finally, in Sec. V we discuss implications and limitations of our study, draw conclusions,

and point to future work.

II. FRACTURE GEOMETRY AND MESH

In this section we describe the geometry of the rough channels, and the computational

meshes used to represent them.

A. Self-affine channel

There is significant evidence for fracture surfaces being self-affine [32]. We therefore

choose to study a system comprised of two identical, vertically shifted (along z), self-affine

surfaces z = h(x, y) and z = h(x, y) + d. Together they form a channel of constant height d,

wherein an incompressible fluid is forced to flow along the x axis. This direction is henceforth

called the streamwise direction, while the y direction is called the spanwise direction. In

geoscience, this type of geometry is known as a fracture joint, resulting from mode I fracture,

in contrast to a fault, where the surfaces woul be shifted both vertically and in the xy plane

[48].

The self-affine profile is, as mentioned, described as a 2D surface in 3D space, which

is statistically invariant under the transformation (1). Using a self-affine surface is also a

simple and generic way of describing a rough surface profile where as few as possible length

5



scales are involved. In addition to the Hurst exponent H, there needs to be specified a lower

cut-off (larger than the finite element size ∆x), and a system size, L. However, this does

not fully fix the vertical undulation of the surface. We therefore specify a root-mean-square

height deviation, A = L−1

√∫ L
0

∫ L
0
h2(x, y) dx dy, which we call roughness amplitude, which

ultimately fixes the surface. Clearly, due to the self-affine nature of the surface, the latter

scales with the finite system size as A ∼ LH . It is therefore evident that a proper study of

the scaling properties of flow in self affine geometries would require to properly correct for

finite-size effects, etc., which has been done in the lubrication approximation (see e.g. [4]),

but is computationally costly for DNS in 3D. With this in mind, we will in the present work

hold L fixed, leaving a scaling analysis for future work.

Our motivation for using a self-affine channel is twofold: (i) It is a simple way to introduce

a random perturbation to an otherwise linearly stable flow, and (ii) it is a physically relevant

system as it results from natural processes, such as brittle fractures [32, 66] and surface

growth [34].

B. Computational meshes

Unstructured tetrahedral meshes are generated by first constructing a 256× 256 (lattice

units) self-affine surface with H = 0.8 using a Fourier filtering method [67]. There are several

other ways of constructing such surfaces, but the Fourier method has the advantage that

it results in a periodic surface, which will be of importance in imposing periodic boundary

conditions on the flow field. To check that the surface is actually self-affine with the correct

Hurst exponent, we compare the power spectrum of the surface height (measured along a

line in the plane) with the theoretical one,

P (ki) ∼ k−1−2H
i , for i ∈ {x, y}, (4a)

P (kr) ∼ k−1−H
r . (4b)

Here, k = (kx, ky) is the wave vector in Fourier space and kr = |k|. The power spectrum of

the self-affine surface is shown in Fig. 1, and is seen to yield a self-affine scaling, consistent

with (4), over roughly two orders of magnitude.

After the self-affinity has been established, we interpolate the surface smoothly (using

bicubic interpolation) between all the points of the lattice, in order to remove sharp edges in
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FIG. 1. Power spectrum of the self-affine surface used in this study, along x and y in Fourier

space (kx, ky), and radially averaged, kr. The solid lines show the theoretical power spectra of a

surface with the Hurst exponent H = 0.8.

the mesh that could cause unsought numerical inaccuracies. Note that this implies that the

roughness cut-off scale is somewhat larger than the mesh size. The resulting 512× 512∆x2

surface, which is ensured to be periodic, is scaled in the plane to 10 × 10 simulation units.

The surface height is rescaled to yield a specified roughness amplitude A. The surface mesh

is then copied and shifted a distance d vertically. At the corners making up the slab, nodes

are added with a spacing ∆x. The side faces nodes are then triangulated (with a typical

length ∆x) using the MeshPy [68] interface to Triangle [69]. Finally, the interior of the

slab is meshed using TetGen [70]. The mesh is refined near the surface to represent the

complex surface (but to resolve turbulent flow, a fine mesh in the bulk is also necessary).

To address the effects of inertia and roughness, we have in the simulations used one

single initial self-affine surface, with the power spectrum shown in Fig. 1. The roughness

amplitudes have been chosen to be A = 0, 0.1d, 0.2d, 0.5d, and 0.8d, as compared to the

channel width d = 1. More detailed mesh information is given in Appendix A, and the four

meshes used in this study are visualized in Fig. 2.
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(a) A = 0 (b) A = 0.1 (c) A = 0.2 (d) A = 0.5 (e) A = 0.8

FIG. 2. The five meshes used in this study.

C. Brief discussion of length scales

For transitional flow, Re ∼ 1000, the Kolmogorov scale `K is comparable to the typical

element size `elem (cf. Table II in Appendix A), which is generally smaller than the most

dissipative eddies. As a comparison, extrapolation of the relationship `K ∼ Re−0.78 from the

simulations by Mortensen and Valen-Sendstad [71] at a shear Reynolds number Reτ ' 180

(Re ' 3000), yields a comparable grid scale. Since their simulations were almost indis-

tinguishable from the reference data by Moser et al. [72], we estimate that our simulation

results, which are mostly concerned with Re . 2000, should be sufficiently well-resolved.

(However, rough meshes at Re ' 3000 will be pushing the limits.) This is particularly true

as the dominating source of error lies, in our case, in the particular realization of a self-affine

surface. Finally, we verified a posteriori that mesh refinement gave no significant change in

the macroscopic flow properties even for the highest roughness.

III. FLOW PROBLEM SETUP AND NUMERICAL METHOD

A. Governing equations and problem setup

As outlined above, the setup we consider is a flow in a rough channel. We consider the

domain Ω to be periodic in the x and y directions, and constrained by the same, shifted,

rough surface above and below in the z direction. The mean sampled over the xy plane of

the lower surface is at z = 0, and the mean at the upper surface is at z = d.

Within the slab, we perform direct numerical simulation (DNS) of fluid flow. The incom-

pressible flow is governed by the Navier–Stokes equations:

∂tu + u ·∇u− ν∇2u = −∇p+ f , ∇ · u = 0. (5)

Here u is the velocity field, ν is the kinematic viscosity, and p is the pressure. For convenience

of notation, we have absorbed the constant density into the latter quantity.
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The flow is driven by a constant, uniform body force f , either to a laminar or a transi-

tionally turbulent flow depending on the magnitude of f . The force f is in the steady state

(where the velocity is at, or temporally fluctuating around, a constant value) compensated

by the friction between the flow field and the rough walls. At the same time it controls the

injected energy per time,
∫

Ω
f ·u dV (V is volume), which is compensated by the (turbulent

or laminar) dissipation rate, both at the walls and in the bulk. The present work is con-

cerned with the transport properties of rough channels in this statistical steady state. The

proper quantification of the transient dynamics of the transition process is left for future

work.

In all simulations, no-slip conditions are applied at the boundaries, u = 0 for x ∈ ∂Ω. In

order not to trigger any spurious long-lived turbulent modes, we start all simulations from

below, i.e. either at Re = 0 or from a steady laminar or a transitional state below the sought

Re.

B. Numerical methods

The finite element method (FEM) for fluid flow simulations in regular geometries such as

smooth pipes, ducts, and channels, is usually outperformed by spectral methods. However,

when complex boundaries are present, the latter methods cannot be applied without loss

of performance. Irregular geometries, such as in our case of rough cracks, are accurately

represented by unstructured meshes, which leaves the FEM as a viable option.

In order to numerically resolve the Navier–Stokes equations (5), we use a customized

version of the Oasis software [71], which is both fast and highly flexible. Oasis is built on

top of the FEniCS/Dolfin framework [73, 74], which in turn interfaces to highly optimized

linear solvers through the PETSc backend [75]. In fact, although most of the user inter-

action with Oasis/FEniCS is through the high-level Python interface, the runtime of the

simulations are dominated by the backend PETSc Krylov solvers. This makes the runtime

comparable to e.g. OpenFOAM [76].

To discretize the flow equations, we use a temporally second-order incremental pressure

correction scheme (IPCS) [71]. The equations we solve, at time t = n∆t (n is time step
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number, ∆t is the time step size), are

u∗ − un−1

∆t
+ û ·∇ũ = ν∇2ũ−∇p∗ + f , (6a)

∇2φ = − 1

∆t
∇ · u∗, (6b)

un − u∗

∆t
= −∇φ. (6c)

Here, û = (3un−1 − un−2)/2 is an Adams–Bashforth projected advecting velocity, ũ =

(u∗ + un−1)/2 is the Crank–Nicholson interpolated advected velocity, and φ = pn−1/2 − p∗

is an incremental pressure difference. In the above, velocity and pressure are solved in a

segregated manner; Eq. (6a) is a velocity prediction step, Eq. (6b) is a pressure correction

step, and Eq. (6c) is a velocity correction step. In this scheme, which is further documented

in Ref. [71], Eqs. (6a) and (6b) are solved iteratively in an inner loop until a convergence

criterion is reached, before in the end of a timestep (outer loop), Eq. (6c) is solved. For

the spatial discretization, we use piecewise-linear Lagrange elements both for velocity and

pressure (P1–P1), which yields second-order convergence in space.

IV. RESULTS

In this section, we report the results from our simulations of flow in rough channels. First

we consider the geometrical properties of the fractures, and then we proceed to qualitatively

inspecting the flow field and a typical simulation. We subsequently consider the macroscopic

flow resistance, and finally the velocity fluctuations characterizing transitional flow.

A. Effective aperture field

It is well known in the literature that the actual fracture width is not limited by the

vertical width (along the z coordinate), d, but rather by an effective channel width deff , which

can be better approximated as the smallest distance between the channel walls measured

perpendicularly to the local flow direction [48, 77]. Since this direction changes along the

rough surface, it consitutes an effective aperture field in the xy plane. In our simulations,

the vertical displacement is given by d = 1 everywhere, but the effective apperture depends

sensitively and nontrivially on the roughness of the surfaces.
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Now, we estimate the effective aperture field on purely geometrical grounds. The method

we use is based on that by Mourzenko et al. [78], who suggested to fit the largest possible

sphere at each point in the fracture to calculate the effective aperture. At a given in-plane

coordinate (x, y), we locate a sphere of radius R(z) centered at (x, y, z). Varying z, we seek

a sphere of such a size that it barely touches the lower and upper channel walls, i.e. find the

z for which the minimal distance to the above surface equals the minimum distance to the

lower surface. This gives us an optimum z = zopt and a smallest effective channel width,

deff = 2R(zopt). Doing this for all (x, y) ∈ [0, L] × [0, L], we obtain the fields zopt(x, y) and

deff(x, y). The former can be related to the tortuosity of the flow field [79]. The latter, which

is of primary interest here, is a geometric approximation to the effective aperture field.

(a) (b) (c) (d)

FIG. 3. Effective aperture field deff(x, y) for increasing roughness amplitude A. Subfigures (a)–(d)

correspond to (b)–(e) in Fig. 2.

The effective aperture fields deff(x, y) are shown in Fig. 3 for increasing roughness. Here,

it can be readily seen that the effective width depends strongly on the roughness amplitude,

and for higher roughness, some areas are shielded by the most pronounced fracture tooths.

In particular, it seems that an area with particularly low permeability emerges near the

lower left corner, mimicking an obstacle.

It is also of interest to inspect the probability density functions of the effective aperture,

sampled over the xy plane, which are shown in Fig. 4. We note that the distributions are

slightly skewed, decrease as the roughness amplitudes increases, and seem to approach a

normal distribution for the highest roughness. This is further seen in the inset, where we

show the dependence of the mean effective aperture upon the roughness amplitude.
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The mean of the distributions in the main panel, with the standard deviations plotted as bars.

B. Qualitative inspection of the velocity fields

We now turn to inspecting the velocity fields that arise in the self-affine channels as a

body force (or average pressure gradient) f is imposed. Figure 5 (a) shows an instantaneous

snapshot of the velocity field in the statistical steady state. Here, it can be seen that

transient flow patterns are present, particularly at the streamwise periodic cross-sectional

plane, show to the left in the figure.

To investigate the flow rate in time, we define a flux-based Reynolds number [80],

Re =
Qx

Lν
=
〈ux〉 d
ν

(7)

where Qx is the flux, i.e. volume per time, that passes through any (due to the incompress-

ibility) cross section normal to the x-axis. Correspondingly, 〈ux〉 is the mean velocity in the

x direction. We can interpret Eq. (7) either in an instantaneous or a in statistical sense,

depending on whether Qx is a fluctuating quantity—which again will depend on the forcing

f . In particular, for a given f , the instantaneous Reynolds number (for which we emphasize

the time dependence by a subscript t) yields a unique value of Re in the following sense.

Either, if the flow is unsteady, Re is found as the average over a sufficiently long time in the

statistical steady state, i.e. Re = Ret; or if the flow is laminar and steady, the relation is
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FIG. 5. A typical simulation in a self-affine channel with roughness amplitude A = 0.2, forcing

f = 1.5 × 10−6 and viscosity ν = 9 × 10−5. (a) A snapshot from the simulation after roughly

450 advective time units. The direction of forcing is shown, and the lighter color indicates higher

speed. (b) Instantaneous Reynolds number Ret (based on instantaneous flux) as a function of time.

The time when a statistical steady state has been reached is indicated by t0, and we indicate a

sampling time T over which statistical quantities are estimated. Inset: Amplification of the Ret

signal during the sampling time, and the eventually estimated Re is indicated by a horizontal solid

red line. The standard deviation (shown around Re as horizontal dashed red lines) shows that the

error in the time signal is less than 0.4%. The snapshot in (a) is taken at the time indicated by a

vertical black line.

Re = limt→∞Ret. The notion of the statistical steady state is exemplified in Fig. 5 (b). The

latter shows the time evolution of Ret, in the simulation shown in Fig. 5 (a), starting from

a quiescent state at Ret = 0. After an initial transient of exponential relaxation toward a

steady value, a noisy signal develops. Indicated in the figure is a sampling interval between

t = t0, where the statistical steady state has been reached, and t = t0 + T . The inset of

Fig. 5 (b) shows a close-up of the velocity signal in the sampling interval, displaying a fluc-
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FIG. 6. Depth-averaged velocity fields for low Re, i.e. laminar flow. The figure shows the

three components of the velocity vector, for four values of roughness amplitude A. The velocity

components are normalized by 〈ux〉.

tuating signal. However, the standard deviation of this signal is less than 0.4% of Re, which

is much less than the local fluctuations, meaning that limt→∞Ret ' Re, and the steady and

unsteady methods of computing Re are virtually equivalent.

Next, to qualitatively visualize the spatial distribution of local fluxes, we consider depth-

averaged velocity fields, i.e. the velocity fields in the xy plane that result from averaging

over z ∈ [h, d+ h]. First, we present plots of the flow fields in the fully laminar, low inertia

regime (Re ∼ 1), shown in Fig. 6 for all velocity components normalized by 〈ux〉. It is clear

that similar features are present for all roughness amplitudes. In particular, one obstacle

(the dark region in rows 1 and 2) leads to flow being directed around it. A bottleneck effect

may result from this (see [10]), but this effect will be significantly smaller in 3D than in 2D

fractures, since the flow is allowed to simply pass around the obstacle [48].

For the case of high inertia (Re ∼ 1400), the velocity fields are well above the turbulent

thresholds and thus strongly fluctuating in both time and space. In order to isolate the

spatial fluctuations and visualize the mean transport channels, we therefore consider the

time-averaged velocity fields, which are computed by averaging the flow field over time in
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FIG. 7. The depth-and-time-averaged velocity field from high-Re simulations. Rows and columns

correspond to Fig. 6.

the statistical steady state, i.e.,

u(x) =
1

T

∫ t0+T

t0

u(x, t) dt, (8)

where t0 is some initial transient that ensures that the system is equilibrated, and T is

the sampling time. We present in Fig. 7 corresponding plots to the above, and show the

depth-averaged time-averaged velocity fields u for varying roughness. From these plots,

in particular by inspecting ux (row 1), it is clear that at low roughness, preferential paths

emerge that extend across the finite system. The slowest channel coincides with the obstacle

noticed in the low Re regime (cf. Fig. 6). For higher roughness, this effect is less noticeable, in

particular, the obstacle region cannot be seen for ux (but it is possible to see it for uy). This is

possibly because the roughness amplitude is so high that there is now no continuous straight

chord that connects the flow field “to itself” (through the periodic boundary condition).
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C. Macroscopic flow properties

Now we proceed to inspecting the macroscopic properties of flow through self-affine chan-

nels. This amounts to relating the properties such as the flow rate, the imposed forcing,

and the roughness amplitude of the channel. Since f = f x̂, we may define a dimensionless

geometrical friction coefficient (which can be seen as an inverse relative permeability):

Cf =
fd2

12ν 〈ux〉
. (9)

The reason for choosing this quantity is that, for Stokes flow (Re → 0), this Cf comes out

of the equations as a purely geometric quantity. Moreover, it takes the lowest value possible

(with no-slip condition on all fixed boundaries) in a plane channel. The only requirement

is the no-slip condition and a prescribed mean flow direction. The prefactor 1/12 is chosen

such that Cf = 1 for laminar PPF.

Another commonly applied quantity e.g. for flow in pipes is the Darcy friction factor fD,

defined through the Darcy–Weisbach relation [81, 82]:

fD =
fd

1
2
〈ux〉2

. (10)

Between these two quantities, we have the relation

Cf =
fDRe

24
. (11)

For the special case of laminar PPF, we thus have fD = 24/Re.

In Fig. 8, we present a diagram of the statistical steady-state relationship between the

Reynolds number Re and the friction factor Cf for the various roughness amplitudes. It

is clear that for low Re, Cf attains a constant value dependent on the roughness A. At

higher Re, there seems to be a certain threshold where the scaling of Cf crosses over and

starts to grow, for higher Re, close to linearly. The point where the dependence departs

from the constant behaviour is where the inertial effects come into play. However, these

effects are not necessarily due to turbulence, and may come from growth of steady eddies

in the laminar regime. It is seen from Fig. 8 that the transition point appears at lower

Re for higher roughness amplitude A. For A = 0, owing to the subcritical nature of the

transition, unsteady flow does not occur by itself, since the flow is always linearly stable. In

particular, the flow needs a perturbation of a certain finite size for turbulence to proliferate
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FIG. 8. Friction factor Cf plotted against Reynolds number Re for the five roughness amplitudes.

The data for PPF marked with star symbols are taken from Xiong et al. [83]. Inset: Darcy friction

factor fD versus Re number for the same roughness amplitudes.

and spread [18, 26]. In Fig. 8, we therefore include the friction factor measurements of [83].

Their results are in good agreement with the current data, as the transition point is moved

towards higher Re, and the same slope is evident for large Re. It should be noted that in

the range roughly above Re = 1000, the latter authors observed and investigated large-scale

turbulent patterns (bands and stripes), which are generally unattainable in our simulations

due to domain size limitations. However, features of single turbulent bands were observed

for the lowest roughness around Re = 1100.

The same data is plotted as a Moody diagram [84] in the inset of Fig. 8, showing the

dependence of the Darcy friction factor fD on Re. From the figure, we note that fD seems

either to almost saturate at a constant value, or to decay very weakly with Re. Whether

this behaviour persists for higher Re remains an open question.

In order to quantify the point at which the inertial effects become apparent, the following
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functional form provides a good fit to the entire range of data, at each roughness:

Cf
Cf,0

=

[
1 +

(
Re

Rec

)β]1/β

. (12)

Here, Cf,0 is the purely geomeric friction factor, identified in the limit Re → 0, while Rec

is a critical Reynolds number where the inertial effects come into play. This function (the

`β-norm of (1,Re/Rec)) has the feature that it interpolates between two scalings over the

range in Re,

Cf
Cf,0

=





1 for Re� Rec,

Re
Rec

for Re� Rec.
(13)

The exponent β in Eq. (12) controls the width of the transition region between the two

regimes; a high exponent indicates a narrow region (fast decay) and vice versa. Note also

that when β →∞, Cf/Cf,0 = max(1,Re/Rec). When β = 1, Eq. (12) is consistent with the

Forchheimer law (3). Further, when β = 2, Eq. (12) attains a quadratic correction term for

Re/Rec � 1, which is consistent with the weak inertia law. Using Eq. (11), Eq. (12) can be

written in terms of the Darcy friction factor as

fD

fD,∞
=

[(
Rec

Re

)β
+ 1

]1/β

, (14)

which attains the qualitatively correct asymptotes fD ∼ Re−1 for Re � Rec, and fD ∼
fD,∞ = const. for Re � Rec, cf. [52, Eq. (5)]. The asymptote is then given by fD,∞ =

24Cf,0/Rec.

It is thus clear that Eq. (12) (or equivalently, Eq. (14)) can be seen as a generalized

Forchheimer equation. While Eq. (12) does not have a direct physical motivation, it describes

the data well and provides an unbiased determination of Rec for all roughness amplitudes

A. Cf,0 can be read off directly from the simulation data in the Re ' 0 limit, which means

that β and Rec can be considered as the only two fitting parameters in the expression,

and are readily calculated using a nonlinear least squares method. In Fig. 9, we show the

parameters computed from the data in Fig. 8 as a function of roughness A. Figure 9 (a) shows

the purely geometric friction factor Cf,0 as a function of roughness amplitude A, computed

by three methods. The first method is by direct numerical simulations, solving the Navier–

Stokes (NS) equations. The data show that Cf,0 depends approximately quadratically on

the roughness amplitude, increasing with roughly a factor 4 for the highest roughness. The
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FIG. 9. Parameters based on the friction factor data in Fig. 8. The computed values at A = 0

are based on Ref. [83]. (a) The purely geometric friction factor computed from Navier–Stokes

(NS) simulations, compared to that found by using the local cubic law (LCL) and the parallel

plate law (PPL). A quadratic fit to the NS data is shown as a guide to the eye. (b) Critical

Reynolds number Rec where inertial effects arise, estimated by a least squares fit the generalized

Forchheimer equation Eq. (12). (The error bars are smaller than the points.) (c) The exponent β

which characterizes the transition region in Eq. (12), estimated the same fit as Rec in (b).

second method applies the lubrication approximation and computes Cf,0 by the local cubic

law (LCL), and the third approach consists in further assuming the confining boundaries

to be flat, using the parallel plate law (PPL). The LCL method amounts to solving the

Reynolds equation (2) using the effective aperture fields (see Fig. 3), effectively letting

d = deff(x, y). The PPL method assumes the constant plate separation d = 〈deff〉, which are

shown in the inset of Fig. 4 (disregarding all fluctuations). Both the LCL and PPL predict

the true friction factor fairly well, overestimating the friction loss by less than 10%. The

overestimation may be due to the fact that a parabolic flow profile (which is the essence

of the lubrication approximation) is not the least dissipative one when short-wavelength

roughness is taken into account. We observe also that the PPL, which is a simplification of

the LCL, performs better than the latter. A more thorough assessment of these predictions

would require simulations in several realisations of self-affine surfaces at the same roughness

amplitude A; see e.g. Ref. [45] for a study in this direction.

Figure 9 (b) shows the estimated critical Reynolds number Rec as a function of roughness

amplitude A. The estimated Rec displays a decrasing trend with A, being reduced by more

than an order of magnitude for the highest amplitudes. Combination of the quadratically

increasing Cf,0(A), in Fig. 9 (a), and the decaying Rec(A), in Fig. 9 (b), precludes the
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existence of a Strickler scaling [21, 85], i.e., fD,∞ ∼ A1/3 [86]. However, the latter scaling is

found in pipe flow with a Nikuradse-type roughness and furthermore at Re & 105, and thus

disagreement with our data is expected. Figure 9 (c) shows the estimated exponent β in

Eq. (12). For low roughness amplitude A, the exponent is high, indicating a sharp transition

between the two scaling regimes. For increasing A, β decreases monotonously, indicating

broader transition regions, and approaches the standard Forchheimer value β = 1 for the

highest roughness amplitudes considered.

A final test of the unified description of the data presented in Fig. 8 is to inspect how

well they collapse when rescaled by the parameters Cf,0, Rec (leaving now the additional

fitting parameter β out of the picture). In Fig. 10, we plot for all simulated roughness

amplitudes A, Cf/Cf,0 as a function of Re/Rec. For all A, the data is seen to follow the
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FIG. 10. Data collapse of the scaled geometric friction factor, Cf/Cf,0, as a function of scaled

Reynolds number Re/Rec for all roughness amplitudes A considered in the present work. In

particular, we show the data presented in Fig. 8, when Cf and Re are rescaled by the parameters

Cf,0 and Rec, respectively shown in Fig. 9 (a) and (b).

same asymptotic behaviour, differing only in the transition region (which in the least squares

fit was captured by β). In particular, the transition region is seen to become wider as the

roughness is increased, consistent with the quantitative observation of the behaviour of β(A)

in Fig. 9 (c).
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D. Temporal fluctuations

We have until now characterized the onset of non-linear flow; however, to characterize

the appearance of unsteady, transitional or turbulent flow, we need a method to estimate

presence of such flows. Here, we separate between steady flow, which is always laminar,

and unsteady flow, which can in principle both time-periodic laminar flow (where there is

essentially no nonlinear transfer of energy across scales) or turbulent flow. However, we

assume that for flow over a sufficiently large rough surface (with high enough amplitude to

produce detaching vortices), a time-periodic signal from a single defect will not contribute

noteworthy to the overall transport properties. Above this, there will be several (for an

infinitely large domain, infinitely many) interacting ‘defects’ that produce vortices, and thus

no time-periodic signal should be found. We therefore adopt the following heuristic notion of

turbulence. By using Reynolds decomposition, the velocity field u(x, t) can be decomposed

into its expectation value u(x) and the velocity fluctuations u′(x, t):

u(x, t) = u(x) + u′(x, t). (15)

Now, an indicator function for turbulent intensity can be found by defining

q(x, t) = |u′(x, t)|2. (16)

Since we are primarily interested in the global presence of transitional flow, we use the space-

and-time averaged indicator function 〈q〉, which should only depend on Re and A, where the

error (or standard deviation) can be estimated based on the temporal fluctuations of 〈q〉 (t).
This leads to the definition of a fluctuation-based Reynolds number [87],

Re′ =

√
〈q〉d
ν

, (17)

which has the property that it is approximately zero for steady or close to steady (laminar)

flow, and positive for extended unsteady (transitional) flow.

In Fig. 11, we show the dependence of the fluctuation-based Reynolds number Re′ on the

flux-based Re for all simulated roughness amplitudes A. For sufficiently high Re, the data for

all roughness amplitudes seemingly obey linear relationships. For the lowest amplitude, A =

0.1, the transition appears to be subcritical (as it is for A = 0). Around Re ' 1100, the error

bars increase, indicating large temporal oscillations in the instantaneous turbulent intensity
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FIG. 11. The fluctuation-based Reynolds number Re′ (indicator of turbulence) as a function of

the flux-based Reynolds number Re, for all considered roughness amplitudes A.

〈q〉. This indicates the presence of a metastable turbulent band which will eventually decay

given sufficiently long time [31]. Furthermore, the linear trend found by fitting a linear

slope to the data points for which Re′ ≥ δ (δ = 10−3 is a small numerical tolerance), does

not extend down to Re′ = 0. However, for A ≥ 0 it does, meaning that unsteady flow

is continuously produced by the boundary for Re > Rec,q, where Rec,q is a second critical

Reynolds number which quantifies the point where transitional flow sets in, in contrast to

the point of nonlinear flow resistance quantified by Rec. This suggests that the transition to

turbulence changes from being subcritical to being supercritical at a roughness amplitude

A ∈ [0.1, 0.2].

Based on the adequacy of linear fits (as outlined above) to describe the Re′(Re) data over

roughly an order of magnitude, we propose the following relation:

Re′ =





0 for Re < Rec,q,

kq(Re− Rec,q) for Re ≥ Rec,q,
(18)
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FIG. 12. Parameters estimated from least squares linear fits to the data shown in Fig. 11. (a) The

proportionality factor kq shown in a double logscale plot. (b) The critical Reynolds number Rec,q

where turbulence proliferates. The values for A ≥ 0.2 (marked with blue error bars) are computed

by linear extrapolation of the slopes to the Re′ = 0 plane. The estimated values (marked as red

dots) are computed as described in the main text. (c) The ratio between the turbulent critical

Reynolds number Rec,q and the inertial critical Reynolds number Rec.

which should hold for amplitudes A & 0.2. In Eq. (18), both the proportionality factor kq

and the second critical Reynolds number Rec,q should depend on A.

In Fig. 12 we plot the parameters kq and Rec,q resulting from linear fits of to the data

shown in Fig. 11 (where Re′ ≥ δ). In Fig. 12, we show the relationship between the pro-

portionality factor kq, which is well captured by a functional form kq = kq,0A
γ (kq,0 ' 0.8,

γ ' 0.7). However, neither the range in A nor the number of data points strictly suffice

to justify this relation, but the functional form illustrates the general trend. Figure 12 (b)

shows the relation between the critical Reynolds number Rec,q where transitonal flow sets

in. By extrapolating the linear fits to the data in Fig. 11, we obtain three values of Rec,q

(which are positive), which is not enough to get an idea of a trend. Thus, to give an idea of

the trend, we augment the figure by two heuristically estimated values, based on simulations

and the available literature. Here, the estimated values are, for A = 0.1, given by the highest

value of Re where turbulence was not triggered in our simulations, and for A = 0, given by

the point Re ' 4/3×1000 (see [80] for the origin of the prefactor), where turbulence in PPF

is more likely to spread than to decay [83].

The latter plot, Fig. 12 (b), calls for a comparison with Fig. 9 (b). In particular, we inspect

now the relation between Rec and Rec,q, and since Rec,q could not be reliably computed, we

consider only the highest roughness amplitudes, i.e., A ≥ 0.2. As shown in Fig. 12 (c),
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we find here that Rec,q(A) and Rec(A) are comparable, but that Rec,q(A) > Rec(A) for

sufficiently high roughness amplitude A. This implies that for the rough geometries, there

is a window for Rec < Re < Rec,q, where there are significant inertial effects, but no

transitional or unsteady features are present. For low roughness amplitudes, Rec,q < Rec,

and there is no such region; however, due to the finite transition region there may still

be weak inertial features present below Rec,q. In the former regime, i.e. when Rec,q >

Rec, standard (nonlinear) laminar correlations are expected to hold; whereas above, the

transitonal and fluctuating flow patterns will have a significant effect on friction (which is

already incorporated into the results herein), solute dispersion and heat transfer.

V. DISCUSSION

In this work, we have investigated flow in self-affine channels, representative of fracture

joints, by extensive direct numerical simulations. The motivation for this study was twofold,

in the sense that we sought to investigate the role of a generic, naturally occurring roughness

both for the macroscopic transport properties, and the nature of the transition to turbulence

in the presence of boundary roughness. A major advance compared to previous studies is

that we pay particular attention to transitional flow, including the velocity fluctuations that

are present during strong continuous forcing of such flows. In the following, we summarize

and discuss our main findings, as well as the major limitations of our work.

In the geometries considered, the impact of a generic roughness on the macroscopic flow

properties was found to be the following: (i) The purely geometric friction factor, Cf,0 cor-

responding to the Re → 0 limit of the geometric friction factor Cf , scales approximately

quadratically with roughness amplitude A (root-mean-square height undulation of the rough

surface). (ii) Secondly, the critical Reynolds number Rec where inertial effects come into

play decreases monotonously with A. (iii) The crossover region from the constant asymp-

tote, Cf ∼ Cf,0 for Re � Rec, to the linear asymptote Cf ∼ Re for Re � Rec, can be

described by a generalized Forchheimer equation (12). The velocity fluctuations associated

with transitional flow turn out to have a pronounced effect, and in particular they appear

at a second well-defined Rec,q, which has a qualitatively similar dependence on A as Rec,

and is larger than Rec for sufficiently high A. Thus, there is then a region Re ∈ [Rec,Rec,q]

where inertial effects are present but the flow remains laminar. This implies that turbulent
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effects must be accounted for in simulations on larger scales already at such moderate Re.

Finally, our simulations and subsequent analysis suggest the turbulent transition in a rough

channel goes from being subcritical (at low A) to being supercritical at some Ac ∈ [0.1, 0.2].

A major limitation of the present work is that we have, due to computational limitations,

considered only a single realization of a self-affine surface, and varied only the amplitude of

the undulation of that surface. In order to investigate the robustness and possible universal

aspects of the present work, future research should not only consider ensemble averages of

self-affine surfaces, but also of other types of roughness (e.g. Nikuradse-type roughness [20,

88]). Indeed, there is a possibility that our results are sensitive to e.g. the largest obstacle in

the domain. A second limitation, related to this, is the question of scale. In our simulations,

the domain size was fixed to L = 10d, while it is known that transport properties of self-affine

channels scale nontrivially with the system size [4]. Future work should therefore critically

reexamine whether the functional forms found here are valid regardless of L. Finally, to

properly quantify the universality class of the transition, significantly larger domains are

needed. As a comparison, the length scale of the domain considered by Chantry et al. [30]

for Waleffe flow (model plane Couette flow), was roughly equivalent to L ' 1280d (in our

units). Such domain sizes are out of reach with the finite element method presented herein,

and an alternative route might be to follow in the lines of Ishida et al. [64], who instead of

resolving the complex boundary directly, used an effective body force to model boundary

friction [89]. However, this type of roughness cannot produce vortices that are released into

the bulk, and it is therefore doubtful whether the latter approach is valid when the roughness

amplitude is sufficiently large. We hope to address some of these issues in the near future.

In conclusion, we believe that our results can be of interest both to the geophysical and

to the turbulence communities, as we have provided new light on the role on transitional

flow in the presence of a generic roughness found in many natural and industrial settings.
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Appendix A: Detailed mesh information

The properties of the surface meshes used in this study are listed in Table I. As is seen from

the table, the surface area increases with the roughness amplitude A, but this is independent

of the self-affine property, as any undulated surface should scale as S2(A) − S2(0) ∼ A2.

Here, S is the area of the self-affine part of the mesh with a given roughness scaling A,

i.e. when the slab’s faces are excluded. As a check, we verified that our meshes satisfy this.

In principle, since S ∼ ∆x−H , it is not expected to be finite for any nonzero roughness

amplitude A. The surface that is accessible to the flow field will in any case be limited by

the viscous boundary layer, which in the Reynolds number range we are considering is larger

than this smallest scale.

TABLE I. Surface mesh information. The faces of the slabs are included.

A Nodes Facets Total area `facet

0.0 698,146 1,396,288 240.0000 0.01311

0.1 698,606 1,397,208 245.4747 0.01325

0.2 699,008 1,398,012 260.5035 0.01365

0.5 698,382 1,396,760 339.2817 0.01558

0.8 697,110 1,394,216 441.2603 0.01779

The properties of the full mesh are listed in Table II. The number of nodes and elements

in the meshes are fairly constant, as the meshes were generated using identical procedures.

TABLE II. Full mesh information, including bulk and surface.

A Nodes Elements Volume `elem

0.0 3,696,368 21,526,314 100.0 0.0166

0.1 3,690,237 21,440,983 100.0 0.0167

0.2 3,672,117 21,302,242 100.0 0.0167

0.5 3,607,372 20,905,569 100.0 0.0168

0.8 3,518,454 20,382,889 100.0 0.0170
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Appendix B: Probability density functions of the velocity field

Here, we consider the probability density functions (PDFs) of the velocity distributions

for flow in the rough cracks. The probability distribution of velocity links the spatial velocity

field to macroscopic properties such as permeability and tortuosity [90].

It is useful to compare our empirical PDFs with a case for which there is an analytical

solution, namely Hele-Shaw flow along the x-direction. The velocity field is then given by

u(z) = 6 〈ux〉
z

d

(
1− z

d

)
x̂. (B1)

This gives, sampled uniformly over z ∈ [0, d], the PDF

p (ûx) =





1√
3(3−2ûx)

for ûx ∈ [0, 3
2
],

0 otherwise.

(B2)

Here, we have defined the normalized velocity ûi = ui/ 〈ux〉 for i ∈ {x, y, z}. Note that this

distribution diverges as ∼ (1− ux/umax)−1/2 as ux → u−max. The other components, i = y, z,

have the PDF p(ûi) = δ(ûi), where δ(·) is the Dirac delta distribution.

We obtain the velocity PDFs by sampling randomly 106 points over the entire volume,

and creating a normalized histogram from the resulting values.

In Fig. 13, we show for low-inertia flow (Re ∼ 1) the empirical velocity PDFs, for all five

roughness amplitudes. In the main panel of Fig. 13, the distribution of the streamwise com-

ponent is shown, and the left and right insets show, respectively, the spanwise and vertical

components. Along with the empirical distribution, we show the theoretical distributions.

We note first that the empirical distributions for A = 0 agree very well with the theoretical

predictions, which serves as a validation of the method. Inspecting the main panel of Fig. 13,

we notice a trend in how the PDF changes as the roughness amplitude is increased. The

sharp peak at the maximum velocity which is present for A = 0 is gradually smoothed out

as A increases, and another finite peak appears at ûx = 0, and the distribution becomes

bimodal. This can be attributed to the fact that when the roughness increases, more of the

fluid is located within shielded areas, e.g. in “cavities” of the rough walls.

The spatial distributions of the spanwise component of the velocity fields are shown

in the left inset of Fig. 13. Here, the distributions of ûy are sharply peaked around 0,

fairly symmetric, and fall off superexponentially at higher values. The magnitude of the

fluctuations in ûy increases with roughness, as seen from the increasing spread in values.
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FIG. 13. Probability density functions of the velocity distributions at low Re, scaled by the mean

axial velocity 〈ux〉. Main panel: Velocity component in the streamwise direction, x. Inset, left:

Velocity component in the spanwise direction, y. Inset, right: Velocity component in the vertical

direction, z.

The same observation holds for the vertical velocity component ûz, but the magnitude of

the fluctuations are roughly twice the size of uy, independently of the roughness.

We are now interested in how the PDF evolves as the inertia is increased. For demon-

strational purposes, we hold the roughness fixed at A = 0.8. The data for ûx is presented

in Fig. 14. The most notable feature here occurs for negative velocities. As the Reynolds

number increases, a larger portion of the velocity field is negative. Since negative velocities,

in the stationary frame, stems from backflow, this must be related to vortices forming in

the wake of the roughness elements. This is furter justified by the fact that at the lowest

Reynolds number, no backflow occurs, since vortices cannot exist at Re→ 0 (in the absence

of singularities at the boundary, see e.g. [91]).

The height of the first peak seems to decrease with increasing Re. The location of the

second peak does not seem to vary with Re in a monotonous manner. This is possibly due

to the fact that 〈ux〉, with which the fields are scaled, depends on the amount of fluid where

ux < 0.

In the left inset of Fig. 14, the distributions of the spanwise velocity component ûy are

shown. The same trend is observed as for the distributions of negative ûx; higher inertia
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ûz

FIG. 14. Probability density functions of velocity at a constant roughness amplitude A = 0.8.

Main panel: velocity component along the streamwise direction, x. Left inset: velocity component

in the spanwise direction, y. Right inset: velocity component in the vertical direction, z.

leads to higher spatial fluctuations (even relative to the mean flow). This effect is not

present for the vertical component, shown in the right inset of Fig. 14. This indicates that

the spatial fluctuations in this velocity component are imposed in essence by the vertical

spatial fluctuations in the bounding surfaces.

Appendix C: Correlation functions

Here we present correlation functions in Fourier space, i.e. the power spectra of some of

the involved fields.

It can be seen in Fig. 3 that a length scale typical of the shielding area emerges as the

roughness amplitude is increased. This is quantified in Fig. 15, where the power spectrum

of deff is plotted (along x and y). Here, cross-over from one exponent to another is seen

to takes place. (For low roughness amplitudes, when no shielding takes place, one would

expect that deff (and its scaling) is related to ∇z.)

In Fig. 16, we plot the power spectra of the depth-and-time averaged velocity components,
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both for the low and the high Reynolds number cases. We first discuss the former. From the

figure we see that at low roughness, the power spectra for ux and uy scale as the confining

surfaces themselves, while at higher roughness, they scale as the effective aperture. We can

interpret this in the sense that, as the roughness increases, the spatial fluctuations of the

velocity field goes from being controlled by the surface undulations (of small amplitude), cf.

Fig. 1, to being controlled by the effective aperture (i.e. angular effects), cf. Fig. 15. With

regards to uz, the situation is more involved. The latter is also the case for the high Re

simulations.
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In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of
micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may
considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations,
numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited
to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations
of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom
surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative
to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can
be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5%
compared to the same geometry without charge, for the highest amplitude considered. This indicates that elec-
trohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

DOI: 10.1103/PhysRevE.97.043114

I. INTRODUCTION

Electric double layers (EDLs) play an important role in
many chemical and physical processes, and are a controlling
factor in many industrially applied microfluidic devices [1]
and electrochemical cells [2]. Examples include nanofluidic
devices for electrophoretic separation or the large-scale har-
vesting of energy by mixing fluids of different salinity (“blue
energy”) [3]. In biological systems, EDLs are important, e.g.,
for ion transport across membranes or for polymer aggregation
[4–6]. In fluid-saturated low-permeability rock, the presence
of an EDL can significantly alter the mineral transport and
thereby inhibit or amplify transformation reactions, as demon-
strated by field observations and nanopore molecular dynamics
simulations [7]. Furthermore, EDLs alter the effective wetting
properties of mineral surfaces (see, e.g., [8] for a study of
reservoir sandstone), which could play an important role in
enhanced oil recovery based on injection of low salinity fluids.

The transport of fluid and minerals in fluid-saturated porous
rock often occurs in networks of narrow fractures or pores,
many of which have (sub) micrometer-sized apertures. When
the pore walls are charged, and the resulting EDL extends
significantly into the pore fluid, it may change the bulk flow
properties of single fractures and pores, and consequently of
the whole network. Electrokinetic flow, however, is a highly
nonlinear process, which is hard to quantitatively describe in
even the most simple systems. In general, mean-field approxi-
mations are often used to model systems beyond the nanometer
range [9,10]. From a number of simplifying assumptions,
e.g., neglecting ion-ion correlations and non-Coulomb forces
(so-called Gouy-Chapman theory), one obtains field equations,
which can be used for basic theoretical considerations. Even
then, only simple geometries permit analytical solutions, such

*mathies@nbi.dk

as cylindrical capillaries [11]. In equilibrium and when the
electric field is weak, the linearized Poisson-Boltzmann equa-
tion can be applied:

∇2ϕ = κ2ϕ, (1)

where ϕ is the electric potential and κ−1 is the Debye length
characterizing the extent of the EDL. However, when ion
transport is coupled to fluid advection, the equilibrium as-
sumption generally breaks down and other means must be
pursued. Further, numerical simulations can be challenging,
and have in general been limited to simple geometries such as
finite-length symmetric channels, e.g., in studies of transient
streaming potentials in single-phase flow [12,13] or in studies
of electroconvection near permselective membranes [14,15].

Here, we consider electrokinetic flow in a model porous
material or fracture by solving numerically the Stokes-Poisson-
Nernst-Planck (SPNP) equations. In particular, we quantify
how the permeability changes as the extent of the EDL
compared to channel size is varied, and we also describe how
the EDL can switch the channeling of the flow in our system
from regions of small aperture to regions of larger aperture.
The paper is organized as follows. In Sec. II, we present the
model setup, the governing equations, and their dimensionless
form; in Sec. III we present the simulation method and our
numerical scheme; and in Sec. IV we present the results of
the simulations, including validation, and effects of varying
amplitude and relative Debye length. In Sec. V we discuss the
technical aspects of our work and finally the conclusions and
future directions follow in Sec. VI.

II. MODEL

A. Flow geometry and problem setup

We consider a model system consisting of an ionic solution
near an undulated charged wall, as shown schematically in
Fig. 1. Pressure-driven flow is imposed along the z direction.

2470-0045/2018/97(4)/043114(11) 043114-1 ©2018 American Physical Society



ASGER BOLET, GAUTE LINGA, AND JOACHIM MATHIESEN PHYSICAL REVIEW E 97, 043114 (2018)

FIG. 1. Schematic setup of the model system. The inlet, charged-
surface, and outlet areas (see text) are indicated. The x direction is
periodic. Note that the dimensions are not to scale.

In the transverse direction, i.e., along the x axis, the system
is considered to be periodic. In the y direction the domain
is bounded by two surfaces, where the bottom surface is
undulated and the top surface is flat. Along the flow direction,
the domain is decomposed into three regions: an inlet region
with no surface charge, a region of uniform surface charge,
and an outlet region again with no surface charge. The inlet
and outlet regions must be long enough in the flow direction
so as to properly account for the decay of the EDL, as discussed
in more detail in Sec. IV.

In our three-dimensional (3D) fluid slab (Fig. 1), the bottom
surface is described by the function y = h(x) and the top
surface is located at y = Ly . In the plane perpendicular to y,
our system is limited to a rectangle (x,z) ∈ [0,Lx] × [0,Lz].
We seek to quantify how the EDL changes our flow when the
translational symmetry is broken, which we here break in the
x direction by a harmonic undulation,

h(x) = A cos

(
2πx

Lx

)
, (2)

where A is the amplitude of the undulation.

B. Governing equations

The electrohydrodynamic problem is described by the
SPNP equations, which couple three processes: fluid flow, elec-
trostatics, and ion transport. The transport of ions is described
by the Nernst-Planck equation. For ion i, the evolution of its
number density, ni , is given by

∂ni

∂t
= ∇ ·

(
−niu + Di∇ni + Diziqe

kBT
ni∇ϕ

)
. (3)

Here, u is the fluid velocity, Di and zi are, respectively, the
diffusion constant and valency for ion i, qe is the electron
charge, kB is Boltzmann’s constant, T is the temperature, and
ϕ is the electric potential.

In the limit of negligible inertia (i.e., Reynolds number
Re � 1), assuming the fluid to be incompressible, fluid flow
is governed by the Stokes equations:

ρ
∂u
∂t

= −∇P + μ∇2u − ρe∇ϕ, (4)

∇ · u = 0. (5)

Here, ρ is the density of the fluid, P is the pressure, μ is the
dynamic viscosity, and the charge density ρe is given by

ρe = qe

N∑
i=1

zini, (6)

where N is the number of ion species in the fluid. Finally, the
electrostatic problem is given by the Poisson equation:

∇2ϕ = − ρe

εrε0
, (7)

where ε0 is the vacuum permittivity and εr is the relative per-
mittivity. Together, Eqs. (3)–(7) constitute the time-dependent
SPNP problem.

Boundary conditions

With regard to the velocity field, the Stokes equation is
solved with a no-slip condition at the top and bottom walls of
the undulated channel. In the z direction the flow is assumed
to be periodic, such that the velocity field at the inlet matches
that at the outlet. We drive the flow by introducing a body force
along the z direction, which is equivalent to having an average
pressure gradient, which we denote by ∂P/∂z. In addition,
we find that the resulting pressure at the inlet-outlet plane is
approximately constant, and hence the solution is equivalent
to having a constant-pressure boundary condition [16].

The Nernst-Planck equation is solved with a no-flux condi-
tion on the top and bottom channel walls, and at the inlet and
outlet, we prescribe the number density n∞ of the ions. Finally,
for the Poisson equation, a surface charge boundary condition
is specified:

∇ϕ · n̂ = σe(x)

εrε0
, (8)

where n̂ is the surface normal pointing out of the domain
and σe is the surface charge. The prescribed surface charge
is adjusted to keep a constant surface potential, through the
Grahame equation for a symmetric monovalent solution [17]:

σe =
√

8kBT n∞εrε0 sinh

(
qeζ

2kBT

)
. (9)

In deriving this equation, the ion-number density n∞ is con-
sidered to be set infinitely far away from the charged wall, and
ζ is the surface potential when also the electric potential is set
to zero at infinity. Hence, the inlet is grounded, i.e., ϕ = 0, and
at the outlet, a zero normal electric flux density is imposed,
i.e., n̂ · ∇ϕ = 0. As indicated above, all fields are taken to be
periodic along the x direction.

C. Dimensionless form

For both numerical and analytical purposes, it is convenient
to express the model in terms of dimensionless variables.
We further limit ourselves to a system with a symmetric
monovalent ion solution, where both ions have the same
diffusion constant. Using the scaling reported in Table I [18],
we obtain the following form of the Nernst-Planck equation
(3):

∂ñ±
∂t̃

= ∇̃ · (−Peñ±ũ + ∇̃ñ± ± ñ±∇̃ϕ̃), (10)

043114-2
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TABLE I. Physical variables, their symbols, and the normaliza-
tion used in deriving dimensionless quantities, based on Ref. [18].
Note that n∞ is chosen to be one of the ion-number densities at the
inlet.

Variable Symbol Normalization

Ion-number density ni n∞

Electric potential ϕ VT = kBT

zqe

Length x R

Velocity u U0 = ε0εr V
2
T

μR

Time t R2

D

Pressure P μU0
R

where a tilde denotes that it is a dimensionless field, and the
Péclet number is defined as Pe = RU0/D. Here R is a typical
length scale. The Stokes equations (4) and (5) become

1

Sc

∂ũ
∂t̃

= −∇̃P̃ + ∇̃2
ũ − R2κ2

2
ρ̃e∇̃ϕ̃, (11)

∇̃ · ũ = 0, (12)

where the Schmidt number is defined as Sc = μ/(ρD), the
Debye length is defined as

κ−1 =
√

kBT εrε0

2z2q2
e n

∞ ,

and the dimensionless form for the charge density is

ρ̃e = ñ+ − ñ−. (13)

Finally, the Poisson equation (7) becomes

∇̃2
ϕ̃ = −R2κ2

2
ρ̃e. (14)

D. Time-independent form of the dimensionless equations

In this work, we are mainly interested in the steady-state
behavior and the properties of electrohydrodynamic flow
in narrow channels. We therefore seek the time-asymptotic
solutions to the coupled equations (10), (11), (12), and (14).
The time-independent set of equations is given by

∇̃ · (−Peñ±ũ + ∇̃ñ± ± ñ±∇̃ϕ̃) = 0, (15a)

−∇̃P̃ + ∇̃2
ũ − R2κ2

2
ρ̃e∇̃ϕ̃ = 0, ∇̃ · ũ = 0, (15b)

∇̃2
ϕ̃ = −R2κ2

2
ρ̃e. (15c)

III. SIMULATION METHOD

A. Numerical scheme

We solve the time-independent nonlinear equations (15)
by a splitting scheme, where the flow equations (15b) are
solved in one step, while the other equations, the nonlinear
Poisson-Nernst-Planck (PNP) problem [Eqs. (15a) and (15c)],
are solved in a second step using a Newton method. The final
solution is achieved by iteratively alternating between the two
steps using the algorithm outlined in Ref. [19]. The splitting

Algorithm 1. Hybrid solver for the SPNP system (adapted from
Ref. [19]).

1. Solve Stokes equations (15b) to obtain (u,P ).
2. Solve the linearized Poisson-Boltzmann equation (1) to get an

initial guess for (ϕ,n+,n−).
3. Solve one Newton step [Eq. (A3)] in the PNP problem

[Eqs. (15a) and (15c)] for (δϕ,δn+,δn−).
4. Update (ϕ,n+,n−) ← (ϕ + δϕ,n+ + δn+,n− + δn−).
5. Store (uold,Pold) ← (u,P ).
6. Solve Stokes equations (15b) to get (u,P ).
7. Find (δu,δP ) ← (uold − u,Pold − P ).
8. Compute Error := 1

2 ( ‖(δϕ,δn+,δn−)‖
‖(ϕ,n+,n−)‖ + ‖(δu,δP )‖

‖(u,P )‖ ).
9. If Error < τ , stop.
10. Else, go to step 3 for another iteration.

scheme results in a significant reduction in computational cost
in comparison to monolithic solvers and further reduces the
size of the system matrix. Finally, the scheme permits the use
of specialized solvers for the two subproblems.

The proposed scheme is well suited for physical conditions
where the electric field strength is relatively weak and the solute
number density is low. However, for simulations where the
field strength is high, it would be necessary to solve the non-
linear Poisson-Boltzmann equation in step 2 of Algorithm 1.
This could give a sufficiently precise initial guess to achieve
convergence in the subsequent PNP solution step. See, e.g.,
Refs. [20,21] for algorithms suitable for this purpose.

B. Implementation

Our numerical solvers are implemented in the open-source
finite element framework FEniCS [22] through the Python
interface to DOLFIN [23]. The Stokes equation is solved using
an iterative finite element solver with a pressure-convection-
diffusion preconditioner and Taylor-Hood elements, imple-
mented in FENAPACK [24]. In Appendix A, we derive the
Newton method to solve the PNP problem. The final method for
solving the fully coupled problem is given in Algorithm 1. The
Newton step Eq. (A3) is solved using the generalized minimal
residual method with block Jacobi and incomplete LU pre-
conditioning. To achieve convergence it is essential to provide
a good initial guess. We establish an initial guess by solving
the linearized Poisson-Boltzmann equation (1) with the same
boundary conditions as the PNP problem. Note that the precon-
ditioning of this system is done in an ad hoc manner and might
be less robust when solving systems beyond the sizes consid-
ered here. More sophisticated preconditioners such as HYPRE

EUCLID, which was used by [19] for similar purposes, were
found not to be robust enough for strongly interacting EDLs.

C. Mesh generation

The mesh for the test case of a channel was generated by the
built-in FEniCS function RectangleMesh for two dimensions
(2D) and BoxMesh for three dimensions (3D), which produces
a structured triangular or tetrahedral mesh. The mesh for the
undulated channel was made by combining Triangle [25], via
the Python package MESHPY [26], to produce the surface mesh,
and TETGEN [27] for the volumetric mesh. The combination of
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TABLE II. Numerical values of parameters used in the simula-
tions, with physical units where applicable.

Quantity Parameter Value Unit

Ref. concentration n∞ [6.691 − 240.8] × 1020 No./m3

Zeta potentiala ζ −51.34 × 10−3 V
Channel apertureb a 288 × 10−9 m
Ref. length R 96 × 10−9 m
Temperature T 298 K
Diffusivity D 1.0 × 10−9 m2/s
Boltzmann const. kB 1.38 × 10−23 J/K
Permittivity εrε0 8.854 × 10−23 C/V m
Dyn. viscosity μ 1.003 × 10−3 Pa s
Electron charge qe 1.602 × 10−19 C
Valency z 1
Pressure gradient ∂P

∂z
1.0 × 107 Pa/m

Error tolerance τ 1.0 × 10−5

aPrescribed.
bThat is, channel half-height.

the two meshing tools allows us to produce a mesh that is
periodic in both x and z directions. The grid resolution δx was
varied within the interval δx ∈ [0.2,0.5].

IV. RESULTS

Using the model and methods described in the preceding
sections, we performed simulations of electrohydrodynamic
flow in channels in two and three dimensions, with and without
undulations of the bottom surface. The physical parameters
used in our simulations are given in Table II, although they enter
through the dimensionless quantities given in Table I. Note that
we assume a numerically moderate value of the zeta potential,
which is in the relevant range for geological settings [28,29].
The computations were performed on an in-house computing
cluster using up to 28 CPU cores @ 3.0 GHz and 512 GB
RAM.

A. Electroviscous effects in a straight channel

We first validated our numerical methods against a theo-
retical expression for the flow in an infinitely long channel
with noninteracting EDLs. In a straight channel (i.e., plane
Poiseuille flow between charged plates), the flow is expected
to be modified from the plane Poiseuille result by an effective
electric viscosity μe, defined through

〈u〉 = a2

3μe

∂P

∂z
. (16)

Here, 〈u〉 is the mean velocity of the fluid, and a is the channel
half-height, henceforth denoted aperture. The aperture is in
physical units given by 3R where R can be found in Table II.
This expression is directly related to the permeability, K ,
defined through Darcy’s law by K = 〈u〉μ/(∂P/∂z). Hence,
we expect K = 1

3a2μ/μe, and thus μe/μ can be seen as an
inverse permeability (corrected for the scaling with a). In
our simulations, with the parameters given in Table II, the
permeability is in the absence of electroviscous effects given
by K 	 28 mDa.

In Appendix B, assuming noninteracting EDLs, we derive
the following theoretical estimate of the electric viscosity:

μe = μ

[
1 − 6β

κ2a2Fcc
f (κa,β)

(
1 − 1

κa
tanh(κa)

)]−1

,

(17)

where β = εrε0ζ
2/(μD), and ζ is the surface potential, and

we have used the expressions

Fcc =
∫ 1

0
2 cosh

(
qeζ

kBT

cosh(κaX)

cosh(κa)

)
dX, (18)

f (κa,β) = 1 − 1
κa

tanh(κa)

1 + β

Fcc

[
1
κa

tanh(κa) − sech2(κa)
] . (19)

The integral in the expression for Fcc is computed numerically.
The expression for the streaming potential Vstr is given by

Vstr = 2ζ

μDκ2Fcc
f (κa,β)P. (20)

In the limit of small Debye length compared to the
channel width, i.e., κa → ∞, we have that Fcc = 2 and
f (κ,β) = 1. Equation (20) then reduces to the classical
mean-field Helmholtz-Smoluchowski equation Vstr/P =
εrε0ζ/(μσf ), where we have identified the conductivity
σf = 2Dz2q2

e n
∞/kBT .

We compare our simulations to the analytical prediction
of μe by integrating the total fluid flux Qz(κa) through the
channel for a range of values of the ratio of aperture to Debye
length, κa. Note that we vary κa indirectly, by varying n∞.
Then, we use the following relation:

μe,h

μ
= Qz(0)

Qz(κa)
. (21)

As only half of the length of the channel in our numerical
simulations is charged, we denote the resulting electroviscosity
by μe,h. In order to obtain a value for the electric viscosity that
should correspond to the theoretical one, we scale it in the
following way:

μe

μ
=

μe,h

μ
− 1
l

Lz

+ 1. (22)

The value in the denominator is the ratio of the length of the
charged part of the channel, l, to total length,Lz, such that in our
simulations we have that l/Lz = 0.5. As increased dissipation
is expected mainly to take place in the charged part of the
channel, we have here ignored inlet and outlet effects, and
the accuracy of these expressions would therefore improve for
longer domains. The streaming potential is measured by

Vstr

l
=

∫
�outlet

ϕ ds

l
∫
�outlet

ds
, (23)

where the integral is taken over the outlet boundary of the
domain, �outlet .

We tested our numerical simulations against the analytic
results using both 2D and 3D versions of our code. In addition,
we tested the influence of the numerical resolution on the
results. In Fig. 2(a) we present plots of the measured electric
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FIG. 2. Comparison of 2D simulations of two channel lengths to
theoretical predictions. The blue points, where the resolution δx has
a subscript ln correspond to simulations with channel length 160R,
and the red points, with a subscript sh, to simulations with channel
length 40R. Both channels have a width of 6R. The solid lines denote
the analytical results from Eqs. 17 (a) and 20 (b). In both cases the
center half of the channel has a surface charge. (a) Plot of the electric
viscosity as a function of κa. (b) The streaming potential in units of
the thermal voltage.

viscosity and in 2(b) the streaming potential per length for
2D simulations, compared to the theoretical predictions of,
respectively, Eqs. (17) and (20). For the theoretical curves,
the ζ potential in Eq. (9) is not used directly. Instead we
use an empirical value computed from our simulations, which
here in physical units has the value ζ = −45.2 mV. The
quantities are plotted as a function of κa, i.e., the ratio of
the channel aperture to the Debye length. We also investigate
the effect of the domain length using two lengths, Lx = 40R

and Lx = 160R. With regard to the electric viscosity, shown in
Fig. 2(a), it is clear that the value μe approaches the theoretical
one for large values of κa but departs for small values of
κa. This departure has different reasons for the two channel
lengths. For the long channel, the departure arises because
the linear Poisson-Boltzmann theory breaks down when we
have strongly interacting EDLs, and for the short channel the
departure is caused by surface charge which cannot be screened
within the domain. The effect of strongly overlapping EDLs
could be incorporated into the theoretical estimate by solving
the nonlinear Poisson-Boltzmann equation numerically, or
using the implicit solution found by Verwey and Overbeek
[30, pp. 67] and extending the procedure in Appendix B.

In Fig. 2(b), we observe that the streaming potential Vstr is
in good agreement with the theory in the limit of large values
of κa. The departure from the theoretical prediction for small
values of κa appears for the same reasons as for the electric
viscosity.

We further validated that our 2D steady-state solver gives
the physically correct solution by comparing with the asymp-
totic solution to the full time-dependent equation system. For
that purpose, we applied the independently developed time-
dependent solver [31], implemented in the Bernaise framework
[32], for flow through a circular packing with similar boundary
conditions as considered in this paper. It was confirmed that the
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2D, δx = 0.4
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FIG. 3. Comparison of 3D versus 2D channel flow simulations.
The 2D channel is the short channel described in Fig. 2, and the 3D
channel has the same size in the streamwise and vertical dimensions,
while the additional horizontal dimension is periodic with length R.
The analytical predictions shown as solid lines are the same as in
Fig. 2. (a) Electric viscosity as a function of κa. (b) The streaming
potential in units of thermal voltage as a function of κa.

time-dependent solver approached the steady-state solution in
the large-time limit; in particular, the difference in streaming
potential was less than 1% after a simulation time T 	 10τD ,
where the Debye length based diffusive time scale is τD =
κ−2/D 	 5 (see [31] or Supplemental Material [33]).

Figure 3 shows a comparison of our 3D simulations with
2D simulations in equivalent geometries, i.e., geometries
translationally invariant in the transverse direction. In (a), we
see that the curves for the electric viscosity coincide, meaning
that the 3D simulations give comparable results to the 2D case.
Likewise, we see in (b) that the streaming potentials of 2D and
3D compare well to each other. This gives a strong indication
that the full 3D simulation constitutes a reliable approach.

An apparent discrepancy between the analytical and simu-
lated results occurs when the Debye length becomes larger
than the channel height. There are two reasons for this:
(i) the overlapping double layers from top and bottom, and
(ii) leakage of ions into the inlet and outlet zones, which leads
to unphysical boundary conditions and a spurious negative
streaming potential. The latter effect can be compensated by
extending the inlet and outlet zones to be sufficiently long, such
that to a good approximation, both ñ± = 1 and n̂ · ∇ϕ̃ = 0 at
both inlet and outlet [34].

B. Macroscopic effects due to an undulated surface

In order to quantify how the flow is affected by electrovis-
cous effects in uneven channels, simulations were run in the ge-
ometry shown in Fig. 1 with an amplitude A varying from 0.5R

to 3R, and the other dimensions fixed to Lx = 12R, Ly =
6R, Lz = 40R, and l = 20R. From these simulations, we
calculated μe and Vstr as described in Sec. IVA, and the results
are shown in Fig. 4. As shown in (a), the electric viscosity does
not seem to be strongly affected, but it is worth noting that for
increasing amplitude, a slight decrease is observed for small
values of κa. The streaming potential, shown in (b), seems to be
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FIG. 4. Comparison of electric viscosity and streaming potential
in 3D channels with varying undulation amplitude. The channels,
shown schematically in Fig. 1, have dimensions given in the text, and
A is given in the legend. The solid lines are theoretical predictions
and the same as in Figs. 2 and 3. (a) The electric viscosity plotted as a
function of κa. (b) The streaming potential in units of thermal voltage
plotted as a function of κa.

more affected by the change of amplitude. This could be due to
the overlap of double layers in the narrow regions, leading to a
stronger nonlinear effect, but also more leaking to the boundary
(i.e., a finite-size effect). However, these plots yield limited
insight into the effect of any asymmetry induced by the undu-
lation, as these quantities are averaged over the whole domain.

C. Quantification of flow channeling

In order to quantify the asymmetry induced by the electro-
viscous effect in the charged part of the channel, we define the
following subdomains of �:

�tot = [0,12R] × [−3R,6R] × [15R,25R], (24)

�y = [0,12R] × [3R,6R] × [15R,25R], (25)

�x = [−3R,3R] × [−3R,6R] × [15R,25R]. (26)

Here �tot is a total cross-sectional subdomain of the channel,
while �x is the half of �tot where the channel is narrowest
along the x direction. Further, �y is the top half (along the y

direction) of �tot .
Note that the domain of �y has half the volume within

the computational domain compared to that of �tot for the
undulated channel, as long as the amplitude is smaller or equal
to 3R. We then integrate the longitudinal component of the
velocity field, uz, in the subdomains and divide by the length
in order to find the average flux through each subdomain:

Qz,i(A,κa) = 1

10R

∫
�i

uz dv, (27)

where the index i refers to the subdomains defined in
Eqs. (24)–(26).
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FIG. 5. Simulations in an undulated 3D channel without any
electric effects included, i.e., κa = 0. (a) Flow rate in undulated
channels as a function of undulation amplitude A, relative to the flat
channel A = 0. (b) The absolute asymmetry of the flow in the channel
as a function of amplitude A. The linear dependence of �x on A is
in good agreement with the theoretical prediction �theor

x derived in
Appendix C.

Now, we define the absolute asymmetries �x and �y by

�i(A,κa) = Qz,i(A,κa)

Qz,tot(A,κa)
, i ∈ {x,y}, (28)

and finally the relative asymmetries θx and θy by

θi(A,κa) = �i(A,κa)

�i(A,0)
, i ∈ {x,y}. (29)

This quantity gives a measure of how the flow is re-distributed
between regions of small and large aperture (θx) and between
top and bottom (θy) due to a surface undulation, with amplitude
A, and the effect of EDL, through κa.

It is interesting to first consider the isolated effect of an
undulated geometry, i.e., flow without any electric effects,
but with a variable amplitude on one of the sides. This is
achieved by setting κa = 0 in our simulations. In principle,
this limiting case results in translational symmetry along
the streamwise direction and thus reduces to a 2D Poisson
problem (see Appendix C), but here we show results from
full 3D simulations. In Fig. 5, both the relative flow rate,
Q(A,0)/Q(0,0), and the absolute asymmetries, �i(A,0), are
plotted as a function of amplitude A. In (a), we see that
the total flow rate is significantly reduced. In (b), the absolute
asymmetry along the vertical direction displays a rather weak
dependence on the amplitude (it becomes pronounced only
at A = 2.5R), while the absolute asymmetry along the x

direction seems to depend linearly on the amplitude. This is
also in agreement with the theoretical prediction based on a
first-order expansion in the undulation amplitude A obtained in
Appendix C.

The plots presented in Fig. 5(b), without electric effects,
serve as a reference for the simulations with electrohydro-
dynamic effects, i.e., the relative asymmetries θi for κa > 0.
Plots of the relative asymmetries θx(A,κa) and θy(A,κa) are
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FIG. 6. Relative asymmetries are plotted as a function of κa.
(a) The relative asymmetry in the plane of flow, θx . (b) The relative
asymmetry normal to the plane of flow, θy .

shown in Fig. 6. Inspecting θx in Fig. 6(a), we see that there is
an increased damping of the flow in the narrow part of the
channel, which means that the electric effects amplify the
channeling beyond what is caused by the amplitude alone
[shown in Fig. 5(b)]. The effect in the vertical direction is
weaker, as shown in Fig. 6(b), and only becomes visible when
the amplitude is large enough to form a narrow region in the
bottom of the channel. Even then, the effect is less than 1%. It
should be noted that in our simulations only half of the channel
is charged, and if a larger fraction of the wall was charged,
the effect would presumably be stronger. An open question is
whether this effect is linear in the length of the charged domain,
as is the case with the electric viscosity [see Eq. (22)].

D. Local effects

In order to get a detailed understanding of the increased
asymmetry and channeling of the flow in the undulated
channel, we visualize the local ratio between the flow
field with and without electric effects. To this end, we
measured uz in 40 cross sections evenly spaced in the interval
z ∈ [12.5R,27.5R], which is inside the charged region of the
channel. This was done for both the uncharged realization
and the one corresponding to κa = 3.0. The 40 cross sections
were averaged in order to cancel out noise, and we denote the
resulting z-averaged fields by 〈uz〉z(κa). However, near the
walls there are still some artifacts present (see Fig. 7 below)
due to a structured surface mesh and an amplification of errors
as the reference solution was near 0 here—a consequence
of the no-slip condition. In Fig. 7, we plot the ratio between
the charged and noncharged flow fields, 〈uz〉z(κa)/〈uz〉z(0).
The panels in the figure show increasing amplitudes A for
a fixed κa = 3. In panels (a) and (b), we see that the main
difference is in the boundary layer near the walls and there
is only a minor increase in channeling. For sufficiently high
amplitudes, shown in panels (c) and (d), it is clear that the
flow is channeled to the region where the amplitude is largest.
The local change in the flow rate is of the order of 10%−15%
in the narrow regions, particularly visible near the walls.
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FIG. 7. The flow field at κa = 3 divided by the flow field for
the flow without any electric effects, probed as described in the text.
(a) to (d) show increasing amplitude.

V. TECHNICAL DISCUSSION

In Figs. 2–4 and 6, we have plotted the physical quantities
as a function of the ratio, κa, of the channel aperture and the
Debye length. We note that there is a subtlety when varying κa,
either through the Debye length κ−1 or by tuning the channel
aperture a. This is due to the quadratic dependence on κ in
Eq. (20). In this work, we have held a fixed while varying κ ,
indirectly by setting the reference concentration n∞. There is
also another effect at play when approaching low concentration
in finite channels, namely, that the equilibrium approach of the
Poisson-Boltzmann equation is less accurate as the advection
term becomes more dominant in the Nernst-Planck equation.
This effect could in part be responsible for the increase in the
streaming potential, which was observed from Fig. 2 for the
long tube. Mansouri et al. [12] avoided such complications
by instead varying a when addressing the dependence of the
streaming potential on κa for axially symmetric capillaries.

In this work, we have considered dilute solutions and
moderate electric fields. When the ion concentrations approach
that of, e.g., sea water, we would have to include the effect
of dispersion forces near the charged walls, high-density
corrections to the Nernst-lanck chemical potential, and ac-
count for other strongly coupled phenomena [35]. Simulations
taking into account such size and correlation effects have, for
example, been carried out in biological ion channels by Liu and
Eisenberg [21]. In the context of strong electric fields, standard
finite element methods have been shown to fail due to the vi-
olation of the Scharfetter-Gummel stability condition [20,21].
Methods employed, e.g., in simulating semiconductors [20],
could be augmented with an advective term and thereby permit
simulations of our system in the regimes of high ion-number
densities and/or strong electric field.

As pointed out in Sec. IV, there is a quite pronounced
effect of having a short inlet and outlet. This was, however,
necessary in order to run full simulations in 3D since the PNP
problem becomes increasingly hard to solve numerically when
the system size increases—a hallmark of ill-preconditioned
matrices for Krylov-subspace solvers. Therefore, in order to
handle larger systems, we would have to either (i) rely on
a direct solver implying a massive increase in the need for
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computational resources, (ii) find a better preconditioner, or
(iii) discard the Newton method approach in favor of other
methods [21]. This could allow for a deeper investigation into
the regime where the EDLs overlap and the linear Poisson-
Boltzmann theory breaks down.

VI. CONCLUSION

Flow in highly irregular geometries with charged surfaces
is commonplace in many geological and industrial settings.
In some situations, even a moderate change of the local
flow distribution can have an impact on the precipitation and
chemical reactions [36]. We have in this paper considered the
electrohydrodynamic effects on flow by numerically solving
the Stokes-Poisson-Nernst-Planck equation in narrow undu-
lated channels. The undulated channel geometry serves as a
simplified model of microscale fractures, which often mediate
the large-scale transport, e.g., in porous rock. By varying the
amplitude of the channel undulation and the Debye length,
we have analyzed the macroscopic flow changes in terms of
the streaming potential and electric viscosity. Further, we have
observed an enhanced channeling of the flow. In particular,
we observe for the larger undulation amplitudes up to 5% flux
reductions, relative to a system without surface charge. The
local flow may vary as much as 10%. In comparison to pure
hydrodynamic channeling, our results indicate that ridges may
be even more prone to precipitation than valleys, leading to a
positive feedback with enhanced channeling effects.

Our results offer insight into electrohydrodynamic flow in
realistic pore and fracture geometries. Further studies would
be of interest, primarily in larger and more complex samples,
to get an even deeper understanding of electrohydrodynamic
effects in geological settings. Further, it would be interesting to
study the precipitation and/or dissolution dynamics in the pres-
ence of surface charge. Finally, electrohydrodynamics might
be important in two-phase flow, where the local forces could
alter the wetting properties and hence control the macroscopic
fluid flow.
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APPENDIX A: NEWTON METHOD FOR THE
NERNST-PLANCK-POISSON PROBLEM

The Nernst-Planck-Poisson problem takes the following
nonlinear weak form:

0 =
∫

�

ψ∇2ϕ + ψ
R2κ2

2
(n+ − n−) − c+Pe∇ · (un+)

+ c+∇2n+ + c+∇ · (n+∇ϕ) − c−Pe∇ · (un−)

+ c−∇2n− − c−∇ · (n−∇ϕ)dv, (A1)

where ψ is the test function for the electric potential and
c+,c− are the test functions for the cation and anion number
densities, respectively. We can develop a Newton method for
solving the equation by viewing the weak form in Eq. (A1)
as a functional called F (U), where U = (ϕ,n+,n−), and then
expanding around some U0. This gives

0 = F (U0) +
∫

�

δF (U)

δU
δU dv

∣∣∣∣
U=U0

+ O(δ2), (A2)

where δU is a variation away from U0. Now, performing this
for Eq. (A1) and applying the appropriate boundary conditions
gives the following linearized weak form:

0 =
∫

�

[
−∇ψ · ∇ϕ0 + ψ

R2κ2

2
(n0

+ − n0
−)

+ 1

Pe
∇c+ · (un0

+) − ∇c+ · ∇n0
+ − ∇c+ · (n0

+∇ϕ0)

+ 1

Pe
∇c− · (un0

−) − ∇c− · ∇n0
− + ∇c− · (n0

−∇ϕ0)

]
dv

+
∫

�

[
−∇ψ∇δϕ + ψ

R2κ2

2
(δn+ − δn−)

+ 1

Pe
∇ · c+(uδn+) − ∇c+ · ∇δn+ − ∇ · c+(δn+∇ϕ0)

− ∇ · c+(n0
+∇δϕ) + 1

Pe
∇c− · (uδn−) − ∇c− · ∇δn−

+ ∇c− · (δn−∇ϕ0) + ∇c− · (n0
−∇δϕ)

]
dv

+
∫

�

ψ
R2κ2

2
σeds. (A3)

This weak form can then be discretized and solved using the
finite element method.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR
THE ELECTROVISCOUS EFFECT

Here we derive analytical expressions for flow in a channel,
used as a comparison to our numerical simulations. The
derivation closely follows the one found in [11,12], but is
considered with channel flow instead of flow in a tube.

Consider the steady-state Nernst-Planck equation with a
zero velocity field:

∇ · (Dini∇gi) = 0, (B1)

where gi is the chemical potential defined as

gi = ln(ni) + qezi

kbT
ϕ. (B2)

Now if Eq. (B1) has to be satisfied, ni must be given by

ni = n∞ exp

(
−qezi

kbT
ϕ

)
, (B3)

where n∞ is the mean or inlet number density of the ions.
Plugging Eq. (B3) for a symmetric monovalent solution into
Eq. (7) yields the Poisson-Boltzmann equation

∇2ϕ = 2qen
∞

εrε0
sinh

(
qezi

kbT
ϕ

)
. (B4)
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Now expanding in ϕ around zero linearizes the Poisson-
Boltzmann equation:

∇2ϕ = κ2ϕ. (B5)

This can now be solved in a channel with walls at x = ±a,
under the following boundary conditions ϕ|x=±a = ζ , and that
its transverse derivative is zero in the center of the channel,
∂ϕ

∂x
|x=0 = 0. This gives

ϕ(x) = ζ
cosh(κx)

cosh(κa)
, (B6)

and the charge density within the linear approximation be-
comes

ρe(x) = −ζ εrε0κ
2 cosh(κx)

cosh(κa)
. (B7)

Consider the Stokes equation in the same infinitely long
channel with a pressure gradient and electric field along the
z-direction:

μ
∂2uz

∂x2
= −∂P

∂z
− ρeEz. (B8)

Solving this with a no-slip condition at the walls and the charge
density for Eq. (B7) yields

uz(x) =
∂P
∂z

2μ
(a2 − x2) − εrε0ζEz

μ

(
1 − cosh(κx)

cosh(κa)

)
. (B9)

Now, to close the system, we assume that the charge-current
flux along the z direction in the channel vanishes at steady
state. The charge-current density is given as

Je(z) = ρe(x)uz(x) + 2Dq2
e

kBT
Ezn

∞ cosh

(
qeϕ(x)

kBT

)
, (B10)

and integrating it over the channel cross section gives the flux

L
∫ a

−a

Je(z)dx = − 2La
∂P

∂z
�

[
1 − 1

κa
tanh(κa)

]

+ La�2Ezμκ2

[
1

κa
tanh(κa) − sech2(κa)

]

− 2LaDq2
e n∞

kBT
EzFcc, (B11)

where � = εr ε0ζ

μ
and

Fcc =
∫ 1

0
2 cosh

(
qeζ

kBT

cosh(κaX)

cosh(κa)

)
dX. (B12)

Using the no-flux condition to get an expression of the ration
of Ez and ∂P

∂z
gives

Ez

∂P
∂z

∣∣∣∣∣
Je(z)=0

= 2ζ

μDκ2Fcc
f (κa,β), (B13)

where

f (κa,β) = 1 − 1
aκ

tanh(κa)

1 + β

Fcc

[
1
aκ

tanh(κa) − sech2(κa)
] , (B14)

β = εrε0ζ
2

μD
. (B15)

Integrating Eq. (B13) from one end of the channel to the other
gives the Helmholtz-Smoluchowski equation

Vstr = 2ζ

μDκ2Fcc
f (κa,β)P. (B16)

To find the electroviscous effect, we use Eq. (B13) to eliminate
Ez in Eq. (B9) and integrate to get the velocity flux Qz along
the z direction:

Qz = 2La ∂P
∂z

3μ

[
a2 − 6β

κ2Fcc
f (κa,β)

(
1 − 1

κa
tanh(κa)

)]
.

(B17)

Now, the electric viscosity μe must be defined implicitly by

Qz = 2La3 ∂P
∂z

3μe

; (B18)

hence, from consistency, we have

μe = μ

[
1 − 6β

κ2a2Fcc
f (κa,β)

(
1 − 1

κa
tanh(κa)

)]−1

.

(B19)

Note that μe also have the following functional definition

μe

μ
= Qz,0

Qz,n∞
, (B20)

where the extra subscript on Qz denotes the ion-number
density.

APPENDIX C: FIRST-ORDER AMPLITUDE EXPANSION
OF THE FLOW FIELD IN THE ABSENCE

OF SURFACE CHARGE

Here we expand the flow field to the first order in a small
surface undulation. We consider first the case where there is
no surface charge. Hence, we consider a system and solution
independent of the z coordinate; considering for simplicity
the domain between y = 0 and y = h(x). Without loss of
generality, the domain has been inverted along y compared
to the numerical simulations. The surface undulation function
is given by h(x) = H (1 + ε cos kx). We seek an expression
which is first order in ε for the flow field (u = uzẑ). The
equation to solve is the Poisson problem

∇2uz = −f (C1)

with the no-slip condition uz = 0 on the top and bottom
boundaries specified above. Following [37], we make the
coordinate transformation

η = x, (C2)

ζ = y

h(x)
, (C3)

and in these coordinates, the domain is ζ ∈ [0,1]. In the new
coordinates, the Laplace operator is given by [37]

∇2 = 1

h2

(
1 + ζ 2h2

η

)
∂ζζ − 2ζ

hη

h
∂ζη + ∂ηη

+ζ

[(
2
hη

h

)2

− hηη

h

]
∂ζ , (C4)
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so to first order in ε, Eq. (C1) gives (letting uz = u(0) + εu(1))

H 2∇2uz = u
(0)
ζ ζ + �2u

(0)
ββ + ε

[
u

(1)
ζ ζ − 2 cos βu

(0)
ζ ζ

+ 2ζ�2 sin β + �2u
(1)
ββ + �2 sin β cos βu

(0)
ζ

]
= −f, (C5)

where β = kη, and � = kH characterizes the ratio between
channel height and wavelength of the undulation. Solving this
to zeroth and first order gives the solution

u(0) = f

2
ζ (1 − ζ ), (C6)

u(1) = f

2

[
(1 − 2ζ )ζ + sinh �ζ

sinh �

]
cos β (C7)

and, hence, the full expression in the original coordinates
becomes

uz = f

2

[
y

H

(
1 − y

H

)
+ sinh �y

H

sinh �
ε cos kx

]
, (C8)

to the first order in ε.
Integrating (C8) over y and subsequently over the narrowest

region, x ∈ [Lx/4,3Lx/4] yields (note that the x axis is shifted

compared to the numerical simulations), according to the
definition (27) of Qz,x(A,0),

Qz,x(A,0) = f HLx

2

[
1

12
− ε

π�

(
1 − 1

cosh �

)]
, (C9)

while the total flux is given by

Qz,tot(A,0) = f HLx

12
. (C10)

This yields, using Eq. (28), the absolute asymmetry

�x(A,0) = 1

2
− 6ε

π�

(
1 − 1

cosh �

)
. (C11)

Finally, identifying H = Ly , A = Lyε, and � = 2πLy/Lx ,
we may write this in the somewhat more familiar form

�x(A,0) = 1

2
− 6ALx

2π2L2
y

[
1 − 1

cosh
(
2π

Ly

Lx

)
]
. (C12)

It is interesting to note that corrections to Qz,t (A,0) and
Qz,y(A,0) are both of at least order O(ε2), and hence the curves
plotted against A should be flat at A = 0.
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Abstract

Transport of electrolytic solutions under influence of electric fields occurs in phenomena ranging
from biology to geophysics. Here, we present a continuum model for single-phase electrohydrody-
namic flow, which can be derived from fundamental thermodynamic principles. This results in a
generalized Navier–Stokes–Poisson–Nernst–Planck system, where fluid properties such as density
and permittivity depend on the ion concentration fields. We propose strategies for constructing
numerical schemes for this set of equations, where solving the electrochemical and the hydrody-
namic subproblems are decoupled at each time step. We provide time discretizations of the model
that suffice to satisfy the same energy dissipation law as the continuous model. In particular, we
propose both linear and non-linear discretizations of the electrochemical subproblem, along with a
projection scheme for the fluid flow. The efficiency of the approach is demonstrated by numerical
simulations using several of the proposed schemes.

Keywords: electrokinetic flow, electrohydrodynamics, energy stable numerical schemes

1. Introduction

Electrokinetic or electrohydrodynamic flow concerns the coupled transport of charged species
and fluid flow in the presence of electric fields. Such phenomena have gained increasing attention
in recent years due to the rise of the fields of micro- [1] and nanofluidics [2]. Important tech-
nological applications include biomedical lab-on-a-chip devices [3], electrophoretic separation of
macromolecules such as DNA and RNA [4], battery and fuel cell technology [5, 6], desalination
of water [7], and the possibility of harvesting of energy due to salinity gradients (“blue energy”)
[8]. Further, electrokinetic effects can be important within geophysics [9, 10], as fluid flow through
charged pores induces a streaming potential that counteracts the fluid motion and increases the
apparent viscosity [11, 12, 13, 14]. In fluid-saturated porous rocks, large-scale transport can be
mediated by electrochemical gradients [15].

Electrohydrodynamics is usually described by coupling incompressible fluid flow, governed by
the Navier–Stokes equations, to solute transport, governed by the Nernst–Planck equations, and
electrostatics, governed by a Poisson equation, thereby neglecting magnetic forces. This results in
the strongly coupled Navier–Stokes–Poisson–Nernst–Planck (NSPNP) system of equations. Numer-
ical approaches have often aimed for the steady-state solution to the governing equations [16, 14].
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To this end, commercial multi-physics software packages (e.g. Comsol) are available, and have long
been successfully applied to simulate a variety microfluidic systems. With regard to the transient
development of streaming potential, detailed simulations have often been limited to two-dimensional
or axisymmetric geometries such as finite-length symmetric channels [17, 18]. In studies of elec-
troconvection near permselective membranes [19], both finite element [20] and (pseudo-) spectral
methods [21, 22, 23] have proven efficient. Recently, a spectral method was also applied in a study
of the interaction between electrokinetics and turbulent drag [24]. In simulations of electrokinetic
flow, the electrolyte solutions are usually assumed to be dilute enough for density, viscosity and
permittivity to be independent of the local ion concentrations. The ion mobilities are usually taken
to be proportional to the concentrations.

For the separate subproblems comprising the NSPNP problem, there exists many efficient nu-
merical methods. For the Poisson–Nernst–Planck (PNP) problem, efficient approaches have been
demonstrated for semi-conductors [25] and biological ion channels [26], where e.g. dispersion and
size effects of ions can be included. For transient simulation of the Navier–Stokes equations, pro-
jection methods that date back to Chorin [27, 28] (see also Guermond, Minev, and Shen [29]), have
imparted speedup compared to solving the monolithic problem, since it effectively decouples the
computation of velocity and pressure (although at the cost of some reduced accuracy). For the full
NSPNP problem, however, less is certain, but it seems clear that succesful numerical schemes should
aim to decouple, at least, the fluid mechanical subproblem from the electrochemical subproblem,
and thus take advantage of the progress made in numerically resolving each of these, although a
direct combination does not necessarily yield a successful scheme.

In the field of diffuse-interface (or phase-field) methods for two-phase flow, recent years have
seen progress in developing energy-stable numerical schemes. Such schemes are appealing because
they share the common property with the physical models in the sense that they, in the absence
of external driving forces, unconditionally dissipate energy. Hence, the schemes can be said to be
thermodynamically consistent. Schemes that do not respect this energy law are prone to numerical
errors and instabilities near singularities [30, 26], particularly applicable to flows involving sharp
gradients such as both two-phase and electrohydrodynamic flow. Further, the energy laws permit
to establish results on the convergence of numerical schemes. Schemes that require solving the fully
coupled (nonlinear) problem implicitly can relatively easily be constructed to satisfy this property,
while a splitting stategy introduces additional difficulty [31, 32]. Notably, Shen and Yang [26]
presented linear, decoupled schemes for phase-field models with density contrast, relying in part on
a projection method for the NS equations and a stabilization method for the phase-field equation.

The NSPNP system with two chemical species has been extensively studied by, e.g., Prohl and
Schmuck [33, 34, 35, 36] who considered also the construction of an energy-stable scheme [35] with
a coupling between the PNP and NS subproblems. Schemes for multi-ion electrohydrodynamics are
also available [37]. An energy stable-splitting scheme for a thermodynamically consistent model for
two-phase electrohydrodynamics [38] was presented and recently elaborated by Metzger [39, 40].

1.1. Contributions of this work
The objective of this paper is twofold. One is to obtain a generalized, thermodynamically con-

sistent, model for electrohydrodynamics where the density, viscosity, mobilities, and permittivity
depend on the ion concentrations. The second is to construct a decoupled energy-stable numerical
scheme. To this end, we will consider a general, thermodynamically consistent model for single-
phase flow including electric fields and transport of ions, i.e. a generalized NSPNP system. The
subproblems of fluid flow and electrochemistry will be decoupled, where the key to energy-stability
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lies in a forward-projected velocity that enters in the advection term in the solute transport equa-
tion, an idea which builds heavily on appraches used in two-phase flow models [31, 32, 26, 39].
For the electrochemical suproblem we propose discretization strategies that suffice to satisfy energy
stability [35], one of which consititutes a linear scheme. For the fluid-mechanical part we consider
two linear approaches, both a coupled strategy and a projection scheme for this subproblem. To
the authors’ knowledge, it is the first time an energy-stable projection scheme has been presented
for electrohydrodynamic flow, in particular with concentration-dependent densities, viscosities and
permittivities. Our schemes are shown to be numerically convergent by means of an electrohydro-
dynamic Taylor–Green vortex; to be numerically energy stable by a stress test of ions flowing in a
closed container; a reaction cell to test the reliability of the reaction kinetics; and lastly applied to
a geophysical setting, a porous media flow, to demonstrate the potential of the schemes in practical
simulations.

1.2. Outline
The outline of the paper is as follows. In Sec. 2, we present a derivation of the model for

electrohydrodynamic flow that we consider, and in Sec. 3, we investigate some properties of the
resulting model. In Sec. 4 we present discretization strategies for the model, i.e. numerical schemes
for the electrochemical and hydrodynamical subproblems. Further, in Sec. 5 we present numerical
simulations using combinations of the numerical schemes presented, for the case of the conventional
NSPNP model, and in Sec. 6 we conclude and provide a brief discussion.

1.3. Notation
Some remarks on notation is in place before we embark on the main part of the paper. We will

denote an integral of a general quantity f over the domain Ω by
∫

Ω
f dΩ. (1)

The L2 inner product of the quantities a and b is denoted by (a, b). For example,

(f, g) =

∫

Ω
fg dΩ (2)

if f and g are scalars. The L2 norm of a general quantity a is denoted by ‖a‖. In particular,

‖f‖2 = (f, f) =

∫

Ω
|f |2 dΩ. (3)

A general time-discretized quantity a evaluated at the time step k is denoted by ak. For the time
discretization strategies in the forthcoming, we will make use of the backwards-differencing discrete
differential operator. For the sake of simplicity, we adopt the following notation for a discrete time
derivative:

∂−τ f
k =

fk − fk−1

τ
, (4)

where f is a general function (scalar or vector), and τ is a discrete time step.
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2. A general model for single-phase electrohydrodynamics

Physically, single-phase electrohydrodynamic flow consists of the coupled system of fluid flow,
ion transport and electrostatics. Such a continuum modelling approach is realistic down to the
scale of a few nanometers. We will in the coming sections present a derivation, using variational
principles, of a thermodynamically consistent and frame-invariant model of electrohydrodynamic
flow, where the fluid properties are allowed to depend on the local concentrations of the chemical
species. The main approximation underlying the model is that the volume of a fluid element does
not change with increasing concentrations, only the weight, and hence the velocity field can be
taken to be solenoidal. We will end up with the following partial differential equations, evolving in
the spatial coordinate x ∈ Ω ⊂ Rd, where Ω is the domain and d is the dimension, and in time t:

ρ∂tu + (m ·∇)u−∇ · (2µDu) + ∇p = −
∑

i

ci∇gi, (5)

∇ · u = 0, (6)
∂tci + u ·∇ci = ∇ · (Ki∇gi) +Ri (7)

gi =
∑

j

∂Mj

∂ci
+ ziV −

∂ρ

∂ci
ag · x−

1

2
|∇V |2 ∂ε

∂ci
, (8)

∇ · (ε∇V ) = −
∑

i

zici. (9)

Here, the following quantites are involved.

ρ — fluid density,
u — velocity field,
m — advecting momentum (defined below),
µ — dynamic viscosity,
p — pressure,
ci — concentration of ion species i ∈ 1, . . . , N ,
gi — the chemical potential associated with species i,
Ki — the mobility of species i,
Ri — reaction source term for species i,
Mi — a specific energy related to having ion species i dissolved,
zi — valency of species i,
ag — the gravitational acceleration,
V — electric potential,
ε — electric permittivity.

In this general formulation, the fluid properties ρ, µ, Ki, Mi, and ε are allowed to depend on the
set of concentrations {cj}Nj=1. In particular, we assume that the following linear equation of state
holds for the density:

ρ({cj}) = ρ0 +

N∑

j=1

∂ρ

∂cj
cj . (10)

Here, ρ0 is the density of the “background” fluid, typically water, and the constant ∂ρ/∂ci =Mwi,
whereM is a constant conversion factor and wi is the number of nuclei in a given species j. Note
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that in our formulation, we have reduced the number of parameters to a minimum, such that some
prefactors have been absorbed into the relevant variables.

Eqs. (5) and (6) are the Navier–Stokes equations with variable density. Here, the advecting
momentum m = ρu−∑i

∂ρ
∂ci
Ki∇gi, m differs from the canonical ρu due to mass diffusion and mi-

gration through ci. An unconventional forcing term on the right hand side (RHS) of (5), −∑i ci∇gi
can by a redefinition of the pressure, and integration by parts, be written as the more conventional

ρag − ρe∇V − 1

2
|∇V |2∇ε, (11)

which reveals the origin of the (conservative) driving forces in that may be present in the system.
The terms represent, respectively, gravity, electric force, and a Helmholtz force due to permittivity
gradients. However, the formulation of the RHS in (5) has e.g., numerical advantages, as gi is
constant at equilibrium, and therefore near equilibrium, the term −∑i ci∇gi will be less prone
to catastrophic cancellation and pressure-buildup in the electric double layer [5]. Further, the
symmetric gradient entering into the viscous term is defined by Du = sym(∇u) = (∇u+∇uT )/2.

Eqs. (7) and (8) can be seen as a generalized Nernst–Planck equation. Typically in electro-
hydrodynamics, the standard Nernst–Planck equation is used and the mobility that enters here is
then given by Ki = Dici, where Di is the diffusion constant of species i. Further, Mj is then given
by Mj = cj(ln cj − 1) + βjcj , where is a constant that shall be elaborated on later.

Finally, (9) is the Poisson equation, or Gauss’ law, with non-constant permittivity.
To close the system, we assign the following boundary conditions on the boundary ∂Ω of Ω:

u = 0, (12)
n · ε∇V = σe, or V = 0, (13)

n ·∇gi = 0. (14)

Eq. (12) is the standard no-slip condition on the velocity field. Further, σe in Eq. (13) is the assigned
surface charge of the boundary, and n is the unit normal vector pointing out of the domain. We
consider a boundary that will either be charged or grounded. Eq. (14) represents a no-flux condition
on the chemical species, i.e., impenetrable boundaries.

With regard to modelling the reaction terms Ri, we consider a sequence of reactions m ∈
1, . . . ,M , where each reaction m can be written in the compact form

0 

∑

m

νm,iχi, (15)

where νm,i is the net stoichiometric coefficent (products minus reactants) of ion i in reaction m,
and χi is the chemical symbol of ion i. In Appendix A, we argue that we can model

Ri =
∑

m

νm,iRm with Rm = −Cm ·
∑

j

νm,jgj , (16)

where Cm ≥ 0 is a function of the involved variables. Such modelling of the reaction term was also
considered by, e.g., Refs. [41, 39, 40]. Note that Cm can also be a function of the spatial coordinate
x, i.e., a reaction can be promoted or demoted in a certain region of the domain; effectively allowing
to simulate, e.g., catalytic or other electrochemical systems.
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2.1. Derivation of the model
We now present a derivation of a model for general electrohydrodynamic flow. The forthcom-

ing analysis is similar to that considered by previous authors [38, 41]. We seek to formulate a
model where the fluid properties are allowed to depend on the concentrations, which is both frame-
invariant (Galilei invariant), thermodynamically consistent (dissipates free energy), and where the
velocity field is solenoidal (divergence-free). The latter point limits the generality of the model,
in the sense that we consider quasi-incompressible fluids; such that the local concentration fields
only makes a fluid element heavier, but does not make it expand. This is a fair assumption for
e.g. dissolving table salt in water under certain conditions. In general, however, liquids can both
contract and expand with the addition of another component. Moreover, this behaviour can be
non-monotonous.

The evolution of the concentration fields ci can in general be written in the conservative form

∂tci + ∇ · (ciu) = −∇ · Jci +Ri, (17)

where Jci is an undetermined diffusive flux, and Ri is a reaction source term. The left hand side is
for convenience written in the convective form.

For the density field we assume the linear equation of state (10). With the quasi-incompressible
assumption, the velocity field will still, as without any solutes, be solenoidal, i.e.,

∇ · u = 0. (18)

Using (10), (18) and (17) we can derive the evolution of the density,

∂tρ+ ∇ · (ρu) =
∑

i

∂ρ

∂ci
[∂tci + ∇ · (ciu)] (19)

=
∑

i

∂ρ

∂ci
[−∇ · Jci +Ri] (20)

= −∇ ·
(∑

i

∂ρ

∂ci
Jci

)
, (21)

or
∂tρ+ ∇ · (ρu) = −∇ · Jρ, (22)

where we have used the condition that a reaction does not change the density, i.e.,
∑

iRi∂ρ/∂ci = 0.
This follows from the quasi-incompressible condition, and the fact that mass is conserved in a
reaction (for all practical purposes, as the binding energy is, as far as these conservation laws are
concerned, negligible compared to the rest energy of an atom or molecule). We have also implicitly
defined the diffusive density flux,

Jρ =
∑

i

∂ρ

∂ci
Jci . (23)

Eq. (22) suggests that the momentum is transported by the velocity

umom = u + ρ−1Jρ. (24)

Following the discussion in Refs. [38, 41], the momentum should be transported by

m = ρu + Jρ (25)
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in order for the model to be frame-invariant and not to introduce further nonlinearities. This gives
the following evolution equation for the momentum:

ρ∂tu + (m ·∇)u−∇ · S + ∇p = K, (26)

where K is a forcing term that will be determined by thermodynamic consistency, and S is a stress
tensor to be decided.

The electric field can be found through Gauss’ law:

∇ · [ε({ci})E] = ρe, (27)

where the total charge is
ρe =

∑

i

zici. (28)

In Eq. (27) we have taken the permittivity ε to be a function of the concentrations. This is motivated
by, e.g, observations for aqueous NaCl solutions where it has been observed that permittivity can
be significantly reduced due to multibody effects [42]. For simplicity we have dropped the weak
dependence of permittivity on the electric fields [43] which for most purposes are insignificant [11].
Now, using (28) and (17) we can write,

∂tρe + ∇ · (ρeu) = −
∑

i

∇ · (ziJci),= −∇ · Je, (29)

where we have used that
∑

i ziRi = 0 due to charge conservation in a reaction, and defined Je =∑
i ziJci . Using (27), we find

∂t [ε({ci})E] + ρeu = −Je. (30)

or
ε∂tE = −ρeu− Je −

∑

i

E
∂ε

∂ci
∂tci. (31)

We can now define the following general free energy density f :

f [u, {ck},E](x, t) =
1

2
ρ({ck})u2 +

∑

i

Mi({ck}) +
1

2
ε({ck})E2 − ρx · ag (32)

and thus the total energy density

F =

∫

Ω
f dΩ. (33)

Now,
dF

dt
=

∫

Ω

[
u · ρ∂tu +

∑

i

∂f

∂ci
∂tci + E · ε∂tE

]
dΩ (34)

Further,
∂f

∂ci
=

(
u2

2
− x · ag

)
∂ρ

∂ci
+
∑

k

∂Mk

∂ci
+

E2

2

∂ε

∂ci
(35)
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and hence

dF

dt
=

∫

Ω

[
u · (−(m ·∇)u + ∇ · S−∇p+ K) +

∑

i

∂f

∂ci
∂tci

−E ·
(
ρeu + Je +

∑

i

E
∂ε

∂ci
∂tci

)]
dΩ (36)

Integrating in parts, using that all fluxes vanish at the boundary, we obtain

dF

dt
=

∫

Ω

[∑

i

(gi − ziV )∂tci + u ·K− ρeE · u−E ·
∑

i

ziJci

]
dΩ−

∫

Ω
Du : SdΩ (37)

where we have defined the chemical potential

gi =
∂f

∂ci
− 1

2
u2 ∂ρ

∂ci
−E2 ∂ε

∂ci
+ ziV (38)

= −x · ag
∂ρ

∂ci
+
∑

k

∂Mk

∂ci
− E2

2

∂ε

∂ci
+ ziV (39)

Now,
∑

i

∫

Ω
(gi − ziV )∂tcidΩ = −

∑

i

∫

Ω
(gi − ziV )(∇ · (ciu + Jci)−Ri) dΩ (40)

=
∑

i

∫

Ω
(∇gi + ziE) · (ciu + Jci) dΩ +

∑

i

∫

Ω
giRi dΩ (41)

such that
dF

dt
=

∫

Ω
u · [K + ci∇gi] dΩ−

∫

Ω
Du : SdΩ +

∑

i

∫

Ω
Jci ·∇gi dΩ +

∑

i

∫

Ω
giRi dΩ. (42)

To choose the fluxes according to Onsager’s variational principle (as in Refs. [38, 41]), we identify

Jci = −Ki({ck})∇gi, (43)

where Ki ≥ 0 are the mobilities. Further, the viscosity tensor can be modelled with the Newtonian
form,

S = 2µ({ck})Du. (44)

Note that the viscosity µ ≥ 0 can also depend on Du to model non-Newtonian fluids, but we shall
not consider that here. Finally, to minimize the dissipation we choose the forcing term according
to

K = −
∑

i

ci∇gi. (45)

The motivation for modelling the last term in (42) is given in Appendix A.

3. Properties of the model

In this section, we inspect some properties of the model presented in the preceding section.
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3.1. Evolution of ion concentration
The first notable feature of the model is that the total ion concentration evolves only due to

the reaction source term Ri:

d

dt

∫

Ω
ci dΩ =

∫

Ω
∂tci dΩ = −

∫

Ω
∇ · Ji dΩ +

∫

Ω
Ri dΩ =

∫

Ω
Ri dΩ, (46)

where we identified the chemical flux as Ji = uci −Ki∇gi. When no reactions occur, the number
of ions (integrated concentration) is conserved.

3.2. Mass conservation
The evolution of the density ρ can be expressed by using Eqs. (10) and (7):

∂tρ =
∑

i

∂ρ

∂ci
∂tci =

∑

i

∂ρ

∂ci
(−∇ · Ji +Ri) = −∇ ·m, (47)

where we have, as in the previous section, used the condition that a reaction can not change the
density, i.e.,

∑
i
∂ρ
∂ci
Ri = 0. Thus mass is conserved in the model:

d

dt

∫

Ω
ρdΩ =

∫

Ω
∂tρdΩ = −

∫

Ω
∇ ·mdΩ = 0. (48)

3.3. Free energy
Associated with the above system we have the free energy

F =

∫

Ω

[
1

2
ρ|u|2 +

1

2
ε|∇V |2 +

∑

i

Mi − ρag · x
]

dΩ, (49)

where the first term represents the kinetic energy, the second the electric field energy, the third
term the chemical energy, and the last term the gravitational energy. We are now interested in an
expression for the evolution of the free energy in time, i.e. dF/dt. We therefore decompose the free
energy into:

F = Fu + FV +
∑

i

Fci + Fg, (50)

where

Fu =

∫

Ω

1

2
ρ|u|2 dΩ, FV =

∫

Ω

1

2
ε|∇V |2 dΩ, (51)

Fci =

∫

Ω
Mi dΩ, and Fg = −

∫

Ω
ρag · x dΩ. (52)

Now, we seek the temporal evolution of these quantities.
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• The kinetic energy:

dFu

dt
=

∫

Ω
∂t

[
1

2
ρ|u|2

]
dΩ (53)

= (u, ρ∂tu) +

(
1

2
|u|2, ∂tρ

)
(54)

= (u,∇ · (2µDu) + ∇p−
∑

i

ci∇gi) (55)

= −
∥∥∥
√

2µDu
∥∥∥

2
− (u,

∑

i

ci∇gi) (56)

= −
∥∥∥
√

2µDu
∥∥∥

2
+
∑

i

(gi,u ·∇ci) (57)

= −
∥∥∥
√

2µDu
∥∥∥

2
−
∑

i

[
(gi, ∂tci) +

∥∥∥
√
Ki∇gi

∥∥∥
2
− (gi, Ri)

]
, (58)

where we have used the fact that Ki is non-negative.

• The electric field energy:

dFV
dt

=
d

dt

∫

Ω

1

2
ε|∇V |2 dΩ (59)

= (∇V, ε∂t∇V ) +

(
1

2
|∇V |2, ∂tε

)
(60)

= (∇V, ∂t(ε∇V )−∇V ∂tε) +

(
1

2
|∇V |2, ∂tε

)
(61)

= (∇V, ∂t(ε∇V ))−
(

1

2
|∇V |2, ∂tε

)
(62)

= −(V, ∂t∇ · (ε∇V ))−
∑

i

(
1

2
|∇V |2, ∂ε

∂ci
∂tci

)
(63)

=
∑

i

(ziV −
1

2
|∇V |2 ∂ε

∂ci
, ∂tci) (64)

• The chemical energy:

dFci
dt

=

∫

Ω
∂tMi dΩ =

∑

j

∫

Ω

∂Mi

∂cj
∂tci dΩ (65)

• The gravitational energy:

dFg
dt

= −
∫

Ω
∂tρag · x dΩ (66)

= −
∑

i

(
∂ρ

∂ci
ag · x, ∂tci

)
(67)
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Using eqs. (50), (58), (64) and (67) and the definition of gi in Eq. (8) we obtain:

dF

dt
= −

∥∥∥
√

2µDu
∥∥∥

2
−
∑

i

∥∥∥
√
Ki∇gi

∥∥∥
2

+
∑

i

(gi, Ri) . (68)

Clearly, the two first terms on the right hand side of Eq. (68) are negative. Thus, what remains is
to model the reaction terms Ri in such a way that the last term is also negative.

In particular, we obtain from Eq. (68) the free energy evolution

dF

dt
= −

∥∥∥
√

2µDu
∥∥∥

2
−
∑

i

∥∥∥
√
Ki∇gi

∥∥∥
2
−
∑

m

Cm
∫

Ω

(∑

i

νm,igi

)2

dΩ ≤ 0. (69)

Hence the free energy is decaying in time — i.e. the model is dissipative. This is an important
property, as it guarantees that, in the absence of external driving forces, the system at all instances
does not produce energy, i.e. it evolves towards a state of lower energy. Hence, a proper time
discretization scheme should also have this property, in order to avoid spurious energy blow-up.

Note that we will not attempt to quantitatively model the reaction function Cm (apart from the
example considered in Appendix A). This will in general require more detailed or phenomenological
modelling of the particular chemical reaction m.

In the remainder of this article, we will for concreteness consider the chemical energy functions

Mi({ck}) = α(ci) + βici, (70)

where βi are constants. The role of βi is to energetically penalize (or promote) the presence of a
species ci in comparison to ther species. Hence, the set of βij should fix a (chemical) equilibrium
state of the system. Now, the derivative of Mi that enters into the model can be expressed by

∂Mi

∂cj
= α′(cj)δij + βjδij , (71)

where δij is the Kronecker delta function.Note that since the βi are constant, they will not affect
the system through the chemical fluxes ∝∇gi, but will enter in the reaction term Ri.

Further, we will consider only permittivities which can be written in the form

ε({ck}) = ε0 +
∑

k

εk(ck), (72)

where, in particular, no cross terms are present. Here, ε0 is not the vacuum permittivity, but
the permittivity of the background fluid. Note that on physical grounds ε > 0 (in particular, the
vacuum permittivity is an absolute lower bound) and hence εk should be always positive. This
formulation is consistent, e.g., with the empirical relation found in simulations by Hess et al. [42]
for a NaCl solution, where a relation 1/ε(c) ∝ 1 + kc (k is a constant) was reported.

4. Energy-stable time discretization

We will in the forthcoming consider schemes that are finite difference in time, and finite element
in space. We present schemes to simulate the general model for single-phase electrohydrodynamics
which was presented in the previous section. In this section, we will first present the schemes and
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afterwards the appropriate variational form which is used in the finite element spatial discretization.
To this end, for the velocity components we define the function space V as

V = {v ∈ H1(Ω) : v = 0 on ∂Ω} (73)

whereH1(Ω) is the Sobolev space containing functions f such that f2 and |∇f |2 have finite integrals
over Ω. For the remaining scalar fields we will use the spaces X which we define as simply V without
the boundary restrictions.

4.1. Decoupled schemes
We will in this paper adopt a strategy known from simulating, e.g., two-phase flow. It is

beneficial to split the problem in a hydrodynamical step and an electrochemical step, since it is
in general harder both to effectively precondition and to solve the coupled system. On the other
hand, there exists approaches for the effective solution of the subproblems PNP system (for the
electrochemistry) and for the NS system (for the hydrodynamics). The decoupling strategy may
also enable the construction of linear schemes, instead of non-linear, which are more easily solved.

The main advantages of the schemes presented here are that the computation of the electro-
chemical problem is decoupled from the hydrodynamic problem, while we are still able to guarantee
the energy dissipation associated with the physical problem.

Hence, we shall now consider schemes which employ a divide-and-conquer strategy, with two
subproblems to be solved sequentially at each time step k:

1. Electrochemistry: Using information from the previous time step k − 1, i.e., {uk−1, pk−1,
ck−1

1 , . . ., ck−1
N , V k−1}, obtain a numerical approximations of the primary electrochemical

variables, i.e. {ck1, . . ., ckN , V k} at the present time step k.
2. Hydrodynamics: Using the newly updated electrochemical variables {ck1, . . ., ckN , V k} and

hydrodynamic variables {uk−1, pk−1} from the previous time step k − 1, obtain an approxi-
mation of the primary hydrodynamical variables, i.e. {uk, pk} at the present time step k.

4.2. Strategy for the electrochemistry step
Scheme. Suppose {uk−1, pk−1, ck−1

1 , . . . , ck−1
N , V k−1} are given. Now, to obtain {ck1, . . . , ckN , V k},

solve
∂−τ c

k
i −∇ · (u∗c̃i)−∇ ·

(
K̃i∇gki

)
= R̃i, for i ∈ [1, N ], (74a)

∇ ·
(
εk∇V k

)
=
∑

i

zic
k
i , (74b)

where
gki = α̃′ + βi + ziV

k − 1

2
|∇V k|2ε̃′i −

∂ρ

∂ci
x · ag. (74c)

Here, α̃′(cki , c
k−1
i ) is a numerical approximation to α′(ξk), where min(cki , c

k−1
i ) ≤ ξk ≤ max(cki , c

k−1
i ).

Further, K̃i(c
k
i , c

k−1
i ) ≥ 0 approximatesKi, c̃i is an approximation to ci, and R̃i is an approximation

to Ri. Moreover,

ε̃′i(c
k
i , c

k−1
i ) =





εi(c
k
i )−εi(ck−1

i )

cki−c
k−1
i

for cki 6= ck−1
i ,

∂εi
∂ci

(ck−1
i ), for cki = ck−1

i ,
(75)

is an approximation to ∂εi/∂ci. Recall also that ∂ρ/∂ci is a constant.
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The following boundary conditions are enforced on the boundary ∂Ω

n ·∇gki = 0, (76a)

n · εk∇V k = σ or V k = 0. (76b)

In eq. (74a) we have used the definition:

u∗ = uk−1 − τ

ρk−1

∑

i

c̃i∇gki , (77)

which is a forward-projection of the velocity based on the chemical fluxes, and introduces a first-
order error in τ . This projection is a key ingredient to obtaining Note that when the system
approaches equilibrium, the second term, which is already close to equilibrium, vanishes.

Variational form. A variational form of eqs. (74a) to (74c) can be written as the following.
Find (ck1, . . . , c

k
N , g

k
1 , . . . g

k
N , V

k) ∈ XN ×XN ×X , such that for all (bk1, . . . , b
k
N , h

k
1, . . . h

k
N , U

k) ∈
XN ×XN ×X , we have

(
∂−τ c

k
i , bi

)
− (u∗c̃i,∇bi) +

(
K̃i∇gki ,∇bi

)
=
(
R̃i, bi

)
, (78a)

(
gki , h

)
=

(
α̃′ + βi + ziV

k − 1

2
|∇V k|2ε̃′i −

∂ρ

∂ci
x · ag, h

)
(78b)

(
εk∇V k,∇U

)
−
∫

∂Ω
σU dΓ =

N∑

i=1

(
zic

k
i , U

)
. (78c)

4.2.1. Free energy evolution
Lemma 1. For the electrochemical step, the following inequality holds:

∂−τ F
k
EC ≤

∑

i

(
u∗, c̃i∇gki

)
− 1

τ

∑

i

∆F kci −
∑

i

∥∥∥∥
√
K̃i∇gki

∥∥∥∥
2

+
(
R̃i, g

k
i

)
. (79)

Here,
F kEC =

∑

i

F kci + F kV + F kg , (80)

and
∆F kci = τ

(
α̃′(cki , c

k−1
i ) + βi, ∂

−
τ c

k
i

)
− F kci + F k−1

ci , (81)

which represents an excess free energy introduced by the numerical approximation α̃′(cki , c
k−1
i ) to

α′(c).

Proof. By testing eq. (78a) with bi = gki , we get:

(
∂−τ c

k
i , g

k
i

)
−
(
u∗c̃i,∇gki

)
= −

∥∥∥∥
√
K̃i∇gki

∥∥∥∥
2

+
(
R̃i, g

k
i

)
, (82)
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and further, testing eq. (78b) with h = ∂−τ c
k
i , we obtain:

(
gki , ∂

−
τ c

k
i

)
=

1

τ

(
α̃′(cki , c

k−1
i ) + βi + ziV

k − 1

2
|∇V k|2ε̃′i −

∂ρ

∂ci
x · ag, cki − ck−1

i

)
(83)

= ∂−τ F
k
ci +

∆F kci
τ

+
(
ziV

k, ∂−τ c
k
i

)
−
(

1

2
|∇V k|2, ∂−τ εki

)
−
(
∂ρ

∂ci
x · ag, ∂−τ cki

)
, (84)

where we have introduced the splitting (81) and the shorthand definition of the discrete total
chemical energy:

F kci =

∫

Ω

[
α(cki ) + βic

k
i

]
dΩ. (85)

By defining the shorthand discrete gravitational energy,

F kg = −
∫

Ω
ρk x · ag dΩ, (86)

where ρk = ρ({cki }), we find that the sum over the phases in the last term in Eq. (84) becomes

∑

i

(
∂ρ

∂ci
x · ag, ∂−τ cki

)
=

(
x · ag, ∂−τ

[
ρ0 +

∑

i

∂ρ

∂ci
cki

])
=
(
x · ag, ∂−τ ρk

)
= −∂−τ F kg . (87)

We also define the discrete electric energy by

F kV =

∫

Ω

1

2
εk|∇V k|2 dΩ. (88)

Now, testing eq. (78c) with U = V k yields:

(
εk∇V k,∇V k

)
−
∫

∂Ω
σV k dΓ =

∑

i

(
zic

k
i , V

k
)
. (89)

Considering eq. (78c) with k → k − 1, and testing it with U = V k, yields:

(
εk−1∇V k−1,∇V k

)
−
∫

∂Ω
σV k dΓ =

∑

i

(
zic

k−1
i , V k

)
. (90)

Subtracting eq. (90) from eq. (89) and dividing by τ gives

∑

i

zi

(
∂−τ c

k
i , V

k
)

=
1

τ

(
∇V k, εk∇V k − εk−1∇V k−1

)
(91)

=

(
Ek + Ek−1

2τ
+

Ek −Ek−1

2τ
, εk
(
Ek −Ek−1

))
+
(
Ek, ∂−τ ε

kEk−1
)

(92)

=
1

2τ

(
εk, |Ek|2 − |Ek−1|2

)
+

1

2τ

∥∥∥
√
εk
(
Ek −Ek−1

)∥∥∥
2

+
(
Ek, ∂−τ ε

kEk−1
)

(93)

= ∂−τ F
k
V +

1

2τ

∥∥∥
√
εk−1

(
∇V k −∇V k−1

)∥∥∥
2

+
1

2

(
∂−τ ε

k, |∇V k|2
)

(94)
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Now, combining eqs. (82), (84), (87) and (94), we obtain

∑

i

∂−τ F
k
ci + ∂−τ F

k
V + ∂−τ F

k
g = −1

τ

∑

i

∆F kci +
∑

i

(
u∗, c̃i∇gki

)

−
∑

i

∥∥∥∥
√
K̃i∇gki

∥∥∥∥
2

− 1

2τ

∥∥∥
√
εk−1

(
∇V k −∇V k−1

)∥∥∥
2

+
(
R̃i, g

k
i

)
. (95)

which yields eq. (79) and thus completes the proof.

4.3. Strategies for the hydrodynamic step
For the hydrodynamic step, we can consider either the standard coupled approach, which is to

solve the velocity and pressure simultaneously at each time step, or an approach which decouples
the velocity and pressure at each step. We shall denote the former as Scheme I and the latter as
Scheme II.

4.3.1. Scheme I: Coupled hydrodynamics
Scheme. The first scheme can be written in variational form as the following. Suppose that
{uk−1, pk−1, ck−1

1 , . . . , ck−1
N , ck1, . . . , c

k
N , g

k
1 , . . . , g

k
N} are given. Now, in order to obtain {uk, pk}, we

solve

ρk−1∂−τ u
k + (mk−1 ·∇)uk −∇ ·

(
2µkDuk

)
+ ∇pk

+
1

2
uk
(
∂−τ ρ

k + ∇ ·mk−1
)

= −
∑

i

c̃i∇gki , (96a)

∇ · uk = 0. (96b)

Note that the last two terms on the left hand side of Eq. (97a) are an approximation to the mass
conservation equation (47), i.e., ∂tρ + ∇ ·m = 0. The incorporation of these terms is a standard
way of satisfying the discrete energy law at each time step. The equations (96a) and (96b) are
solved in combinaton with the no-slip condition uk = 0.

Variational form. Find (uk, pk) ∈ Vd ×X such that for all (v, q) ∈ Vd ×X ,
(
ρk−1∂−τ u

k,v
)

+
(

(mk−1 ·∇)uk,v
)

+
(

2µkDuk,Dv
)
−
(
pk,∇ · v

)

+
1

2

(
uk∂−τ ρ

k,v
)
− 1

2

(
mk−1,∇(uk · v)

)
= −

∑

i

(
c̃i∇gki ,v

)
, (97a)

(
q,∇ · uk

)
= 0, (97b)

with the Dirichlet boundary condition uk = 0.

4.3.2. Scheme II: Fractional-step hydrodynamics
Instead of solving for velocity and pressure in a coupled manner, we may use a projection method

to decouple the velocity computation from the pressure. Such a scheme describing the somewhat
similar equations of two-phase flow, was already proposed by, e.g., Shen and Yang [26].

15



Scheme. In the spirit of the latter reference, the scheme is given by the following. Suppose that
{uk−1, pk−1, ck−1

1 , . . . , ck−1
N , ck1, . . . , c

k
N , g

k
1 , . . . , g

k
N} are given.

• Tentative velocity step: To obtain the intermediate velocity ũk, solve

ρk−1 ũ
k − uk−1

τ
+ (mk−1 ·∇)ũk −∇ ·

(
2µkDũk

)
+ ∇pk−1

+
1

2
ũk
(
∂−τ ρ

k + ∇ ·mk−1
)

= −
∑

i

ck−1
i ∇gki , (98)

with ũk = 0 on ∂Ω.

• Pressure correction step: To obtain the corrected pressure pk, solve

∇2(pk − pk−1) =
ρ0

τ
∇ · ũk, (99)

with the artificial Neumann condition n ·∇(pk − pk−1) = 0. Note that this introduces an
O(τ) error at the boundary.

• Velocity correction step: To obtain the final velocity uk, solve

ρk
uk − ũk

τ
= −∇

(
pk − pk−1

)
, (100)

with the Dirichlet boundary condition on uk = 0, which supresses the error from the Neumann
condition above.

Together with the analysis in the previous section, this constitutes a scheme which is decoupled
between the three parts electrostatics, velocity and pressure. Therefore, it is significantly easier to
solve than the fully coupled problem, and easier than solving for only velocity and pressure in a
coupled manner.

Variational form.

• Tentative velocity step: Find ũk ∈ Vd such that for all v ∈ Vd,
(
ρk−1 ũ

k − uk−1

τ
,v

)
+
(

(mk−1 ·∇)ũk,v
)

+
(

2µkDũk,Dv
)
−
(
pk−1,∇ · v

)

+
1

2

(
ũk∂−τ ρ

k,v
)
− 1

2

(
mk−1,∇(ũk · v)

)
= −

∑

i

(
ck−1
i ∇gki ,v

)
, (101)

with the Dirichlet boundary condition ũk = 0 on ∂Ω.

• Pressure correction step: Find pk ∈ X such that for all q ∈ X , we have
(

1

ρ0
∇(pk − pk−1),∇q

)
= −1

τ

(
∇ · ũk, q

)
. (102)
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• Velocity correction step: Then, find uk ∈ Vd such that for all v ∈ Vd,
(
ρk

uk − ũk

τ
,v

)
=
(
pk − pk−1,∇ · v

)
, (103)

which we solve by explicitly imposing the Dirichlet boundary condition on uk = 0.

Note that using v = (ρk)−1∇q in eq. (103) yields, in combination with eq. (102)

(
∇ · uk, q

)
= τ2

((
1

ρk
− 1

ρ0

)
∇(∂−τ p

k),∇q

)
, (104)

i.e., that the fractional-step scheme introduces a weak compressibility of order O(τ2), which becomes
increasingly small when ρk ' ρ0. When the density does not vary with concentration, ρk = ρ0 and
the final velocity field uk is divergence free.

Remark 1. With a slight reformulation of the variational problem, we can simplify the computation
of the velocity steps ũk and uk, by solving for each of the components successively, since in the
decoupled approach none of the components ũkj and ukj , j ∈ {1, . . . , d} of ũk and uk, respectively,
depend on the other components. This simplification is fairly commonplace [44]. We shall leave this
technical detail for further work.

4.3.3. Free energy evolution
Now we set out to show that a free energy inequality is satisfied for a discrete time update.

Lemma 2. For the hydrodynamic step, the following inequality holds:

∂−τ F
k
NS ≤ −

∥∥∥
√

2µkDuk
∥∥∥

2
−
∑

i

(
c̃i∇gki ,u

∗
)
, (105)

where

F kNS =




F ku for Scheme I,

F ku + τ2

2

∥∥∥ 1√
ρ0
∇pk

∥∥∥
2

for Scheme II.
(106)

Here,

F ku =

∫

Ω

1

2
ρk|uk|2dΩ. (107)

Proof. We will first show that eq. (105) holds for Scheme I, and subsequently that it holds for
Scheme II.

Scheme I. First, note that eq. (97a) can be written as

(
ρk−1u

k − u∗

τ
,v

)
+
(

(mk−1 ·∇)uk,v
)

+
(

2µkDuk,Dv
)
−
(
pk,∇ · v

)

+
1

2

(
uk∂−τ ρ

k,v
)

+
1

2

(
uk∇ ·mk−1,v

)
= 0. (108)
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Testing this with v = uk yields:
1

2τ

∥∥∥
√
ρkuk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk−1u∗

∥∥∥
2

= −
∥∥∥2µkDuk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk−1(uk − u∗)

∥∥∥
2
, (109)

since (
(mk−1 ·∇)uk,uk

)
+

1

2

(
uk∇ ·mk−1,uk

)
= 0. (110)

By considering eq. (77), and taking the inner product of it with ρk−1u∗, we obtain
1

2τ

∥∥∥
√
ρk−1u∗

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk−1uk−1

∥∥∥
2

= −
∑

i

(
c̃i∇gki ,u

∗
)
− 1

2τ

∥∥∥
√
ρk−1(u∗ − uk−1)

∥∥∥
2
. (111)

Summing eqs. (109) and (111) yields

∂−τ F
k
u = −

∥∥∥
√

2µkDuk
∥∥∥

2
− 1

2τ

∥∥∥
√
ρk−1(uk − u∗)

∥∥∥
2

−
∑

i

(
c̃i∇gki ,u

∗
)
− 1

2τ

∥∥∥
√
ρk−1(u∗ − uk−1)

∥∥∥
2
. (112)

Using eq. (106), this yields eq. (105).

Scheme II. The analysis for this scheme follows the same lines as in the above and closely resembles
the lines of Shen and Yang [26].

Testing eq. (101) with ũk and using the definition of u∗ yields
1

2τ

∥∥∥
√
ρkũk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk−1u∗

∥∥∥
2
+

1

2τ

∥∥∥
√
ρk−1(ũk − u∗)

∥∥∥
2
+
∥∥∥2µkDũk

∥∥∥
2

=
(
pk−1,∇ · ũk

)
. (113)

Testing eq. (102) with τpk yields
(
∇ · ũk, pk

)
= −τ

(
1

ρ0
∇(pk − pk−1),∇pk

)
(114)

= −τ
2

∥∥∥∥
1√
ρ0

∇pk
∥∥∥∥

2

+
τ

2

∥∥∥∥
1√
ρ0

∇pk−1

∥∥∥∥
2

− τ

2

∥∥∥∥
1√
ρ0

∇(pk − pk−1)

∥∥∥∥
2

. (115)

Testing eq. (103) with ũk, yields:
1

2τ

∥∥∥
√
ρkuk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρkũk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk(uk − ũk)

∥∥∥
2

=
(
pk − pk−1,∇ · ũk

)
. (116)

We also have that, from Eq. (100),

∥∥∥
√
ρk(uk − ũk)

∥∥∥
2

=

∥∥∥∥∥
1√
ρk

∇(pk − pk−1)

∥∥∥∥∥

2

τ2. (117)

Combination of eqs. (111), (113) and (115) to (117) gives

1

2τ

∥∥∥
√
ρkuk

∥∥∥
2
− 1

2τ

∥∥∥
√
ρk−1uk−1

∥∥∥
2

+
τ

2

∥∥∥∥
1√
ρ0

∇pk
∥∥∥∥

2

− τ

2

∥∥∥∥
1√
ρ0

∇pk−1

∥∥∥∥
2

= −τ
2

∫

Ω

(
1

ρ0
− 1

ρk

)
|∇(pk − pk−1)|2 dΩ−

∑

i

(
c̃i∇gki ,u

∗
)
− 1

2τ

∥∥∥
√
ρk−1(u∗ − uk−1)

∥∥∥
2

− 1

2τ

∥∥∥
√
ρk−1(ũk − u∗)

∥∥∥
2
−
∥∥∥2µkDũk

∥∥∥
2
. (118)
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The first term on the right hand side is positive, since ρ0 ≤ ρk. Now, Eq. (105) follows trivially by
noting the definition (106). This concludes the proof.

Remark 2. Compared to Scheme I, the free energy in Scheme II has an extra O(τ2) term related
to pressure variations, cf. eq. (106). This is related to the weak numerical compressibility introduced
by the splitting approach.

4.4. Free energy evolution for the combined steps
Lemma 3. For the schemes presented above, the following free energy inequality holds:

∂−τ F
k ≤ −1

τ

∑

i

∆F kci −
∥∥∥
√

2µkDuk
∥∥∥

2
−
∑

i

∥∥∥∥
√
K̃i∇gki

∥∥∥∥
2

+
∑

i

(
R̃i, g

k
i

)
, (119)

where
F k = F kNS + F kEC. (120)

Proof. This follows directly by summing eqs. (79) and (105).

For any of the possible schemes considered above, if all ∆F kci ≥ 0, the scheme is energy stable,
i.e.,

∂−τ F
k ≤ 0, (121)

given the approriate boundary conditions and the fact that K̃k
i ≥ 0.

We will now consider approximations α̃′(c) of the chemical energy α(c) in order to satisfy the
condition (121).

4.5. Approximating the chemical energy
In the previous section, several quantities were undefined. We now consider various numerical

approximations of the chemical energy derivative α̃′.

Nonlinear discretizations.

NL1 The first option is to use the non-linear approximation

α̃′(cki , c
k−1
i ) =

α(cki )− α(ck−1
i )

cki − ck−1
i

, (122)

which yields ∆F kci = 0. This gives the least possible dissipation, while still leading to the cor-
rect inequality. On the downside, the expression (122) is ill-defined when |cki −ck−1

i | � 1, and
in order not to focus on this issue we will not consider implementations of this approximation
in the present paper.

NL2 A second option is to use the non-linear (unless α′(c) ∼ c) approximation

α̃′(cki , c
k−1
i ) = α′(cki ). (123)

Taylor expansion around cki and the mean value theorem gives

F kci − F k−1
ci =

∫

Ω

[
α′(cki )(c

k
i − ck−1

i )− α′′(ξk)
2

(cki − ck−1
i )2

]
dΩ (124)
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where ξk ∈ [min(ck−1
i , cki ),max(ck−1

i , cki )]. This gives

∆F kci = τ
(
α̃′(cki , c

k−1
i ), ∂−τ c

k
i

)
− F kci + F k−1

ci (125)

=

∫

Ω

1

2
α′′(ξk)(cki − ck−1

i )2 dΩ. (126)

Typically, α′′(c) > 0, such as for a weak solution, where α(c) = c(log c − 1). The latter
leads to the common Nernst–Planck equation for the ion transport. For such a system, where
α′′(c) ≥ 0 everywhere, the inequality is satisfied. Note that if α′′(c) < 0 anywhere, a locally
higher ion concentration would be favoured energetically, and effectively we could then have
a negative mobility (which is mathematically ill-posed).

Linear discretizations.

L1 Another option is to use the linear approximation

α̃′(cki , c
k−1
i ) = α′(ck−1

i ) + γα′′(ck−1
i )(cki − ck−1

i ). (127)

Taylor expansion around ck−1
i and the mean value theorem gives

F kci − F k−1
ci =

∫

Ω

[
α′(ck−1

i )(cki − ck−1
i ) +

α′′(ck−1)

2
(cki − ck−1

i )2 +
α′′′(ξk)

3!
(cki − ck−1

i )3

]
dΩ,

(128)
where ξk ∈ [min(ck−1

i , cki ),max(ck−1
i , cki )]. This gives

∆F kci = τ
(
α̃′(cki , c

k−1
i ), ∂−τ c

k
i

)
− F kci + F k−1

ci (129)

=

∫

Ω

[(
γ − 1

2

)
α′′(ck−1

i )− α′′′(ξk)
3!

(cki − ck−1
i )

]
(cki − ck−1

i )2 dΩ. (130)

If γ > 1/2 the first term will be positive. For sufficiently small τ , it will dominate over the
second term. However, we have in general no control over neither sign nor magnitude of the
second term.

L2 To circumvent the latter problem, we may introduce a regularization of α(c), denoted by ᾱ(c).
Assuming α′′(c) is always positive and monotonously non-increasing, we define

ᾱ′′(c) = α′′(max(c, cδ)), (131)

where cδ is a small cut-off concentration. Hence 0 ≤ ᾱ′′(c) ≤ ᾱ′′(cδ). We use the linear
numerical approximation

α̃′ = ᾱ′(ck−1
i ) +

[
γᾱ′′(ck−1

i ) +
1

2
ᾱ′′(c0)

]
(cki − ck−1

i ), (132)

where the second term inside the brackets is a stabilizing term of order τ , similar to what was
used by Shen and Yang [26] for the case of two-phase flow. We expand around ck−1

i :

F kci − F k−1
ci =

∫

Ω

[
ᾱ′(ck−1

i )(cki − ck−1
i ) +

ᾱ′′(ξk)
2

(cki − ck−1
i )2

]
dΩ. (133)
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This gives

∆F kci =

∫

Ω

[
γᾱ′′(ck−1

i ) +
1

2

(
ᾱ′′(c0)− ᾱ′′(ξk)

)]
(cki − ck−1

i )2 dΩ (134)

≥ γ
∫

Ω
ᾱ′′(ck−1

i )(cki − ck−1
i )2 dΩ ≥ 0, (135)

where we have used that ᾱ′′(c0) − ᾱ′′(ξk) ≥ 0, and that γ ≥ 0, and that ᾱ′′(c0). Hence,
we have derived a linear, and energy stable scheme, which approximates the equations of
electrohydrodynamics, given some rather general assumptions on, and a regularization of,
α(c). A similar regilarisation was considered recently by Metzger [40].

In order to ensure that the whole electrochemical step is linear, it is necessary to model K̃i and
c̃i to depend on the previous time step. To this end, we will set

K̃i = K̃i(c
k−1
i ), and c̃i = ck−1

i . (136)

We have now considered general numerical schemes for electrohydrodynamics, and it is now neces-
sary to give a brief summary and come with some concrete expressions.

Remark 3. The regularization defined in eq. (131) can be applied also to the non-linear schemes
to ensure that the energy is defined even if concentrations are numerically slightly negative, which
might occur in simulations of highly depleted solutions, e.g. simulations of electrokinetic instabilities.

4.6. Approximating the reaction term
It is in place to approximate the discrete reaction term R̃i which enters in (119). This term was

modeled in the continuous model in (16) and discussed in Appendix A. Using (16), we can write
the discrete version as

R̃i = −
∑

m

C̃m
∑

j

νm,iνm,jg
k
j . (137)

Here, the reaction functions C̃m can be modelled as C̃m = Ckm, i.e. using values from the current
step, for a non-linear scheme, or as C̃m = Ck−1

m , i.e., using values from the previous step, for a linear
scheme. In either case, we have that

∑

i

(
R̃i, g

k
i

)
= −

∑

m

∥∥∥∥∥

√
C̃m
∑

i

νm,ig
k
i

∥∥∥∥∥

2

≤ 0, (138)

where the last equality holds given that C̃m ≥ 0. For the remainder of this article, we shall for
concreteness assume C̃m = Ck−1

m .

4.7. Tentative summary
It is now appropriate to briefly summarize the major results so far.

Theorem 1. Any decoupled scheme consisting of the combination of Scheme I or Scheme II (for the
hydrodynamics), the chemical discretizations NL1, NL2 or L2, and the reaction term formulation
(137), is energy stable.
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Proof. This follows from Lemma 3 and the results for ∆F kci in the definitions of the discretizations
NL1, NL2, L2 above, along with the result (138) for the source term.

Remark 4. Because of the mentioned problem with the chemical discretization L1, this approxi-
mation is not generally energy stable. The discretization L1 can only be energy stable provided that
α′′′(c) = 0.

Remark 5. When all ∆F kci ≥ 0, and the source term is modelled as (137), the free energy inequality
eq. (119) becomes

∂−τ F
k ≤ −

∥∥∥
√

2µkDuk
∥∥∥

2
−
∑

i

∥∥∥∥
√
K̃i∇gki

∥∥∥∥
2

, (139)

which bears striking similarity with its continuous counterpart, eq. (68). In particular, it can be
verified that the terms that differ between ∂−τ F k and ∂tF are of order O(τ).

4.8. Concretization and specification
The analysis thus far has considered quite general forms of the chemical energy α, that we have

presented energy-stable approximations of, the mobility K̃i, and the chemical concentration c̃i. To
be more specific, we therefore consider concrete forms of the undefined approximations that will be
discretized and tested numerically.

4.8.1. Chemical energy function, mobility and permittivity assumptions
We consider the Nernst–Planck equation for solute transport. For the continuous equations,

this imparts the following:

α(ci) = ci(ln ci − 1), and Ki(ci) = Dici, (140)

where Di is the diffusion coefficient of ion species i. This corresponds to dilute ionic solutions.
Since α′(c) = ln c is undefined when c→ 0, we can regularize α below a small cut-off cδ, as outlined
above. Then, in the next time step, we assign ck−1

i ← max(ck−1
i , cδ). An examplary regularisation

of the functional form α(c) = c(ln c− 1) is shown in Fig. 1. The regularised functional forms are:
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Figure 1: Regularisation of the chemical energy function α(c) = c(ln c − 1), with the artificially high cutoff
concentration cδ = 0.5 for visual clarity. The cutoff concentration is indicated by a dotted vertical line.
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ᾱ′′(c) =
1

max(c, cδ)
, (141)

ᾱ′(c) =

{
ln c for c > cδ,

ln cδ + c
cδ
− 1 for c ≤ cδ,

(142)

ᾱ(c) =

{
c(ln c− 1) for c > cδ,

c(ln cδ − 1) +
c2−c2δ

2cδ
for c ≤ cδ.

(143)

The same regularisation was assumed by Metzger [40].
Further, we will for simplicity assume in our simulations that the permittivity does not depend

on the concentrations. Nevertheless, the schemes themselves support energy stability also in this
case.

4.8.2. Schemes used in simulations
We define now the different schemes that will be used in simulations, and the associated ap-

proximations to (140) that will be used. In general, the approximations should be chosen to impart
soluble equation systems, i.e., for which the finite element method yields spatial convergence.

We will in this work focus on the following discretizations:

NL2 Since the discretization NL2 is non-linear, it is necessary to use e.g. a Newton solver, where
the matrices will be reassembled at each iteration, to solve this step. A weak coupling between
the Nernst–Planck and Poisson equations can be obtained by

K̃i = Dic
k−1
i and c̃i = ck−1

i . (144)

L2 The linear discretization in L2 imparts the following:

K̃i = Di max(ck−1
i , cδ) and c̃i = ck−1

i . (145)

Without further ado, we might set γ = 0 to minimize the dissipation in this scheme.

Remark 6. A stronger coupling between the Nernst–Planck and Poisson equations in the non-linear
scheme NL2, could be obtained by letting K̃i = Dic

k
i and c̃i = cki . In general, we cannot control

the sign of K̃i here, since we solve for ck. Hence, if ck becomes (numerically) negative, we are not
guaranteed to dissipate energy (but then the energy is not defined either). This issue could possibly
be mitigated by a regularization.

5. Numerical simulations

We have in the previous section shown how various discretization schemes satisfy a free energy
inequalitity, which is also present in the models they are meant to approximate. In this section we
proceed to show and compare the effectiveness of these schemes. The schemes have been imple-
mented and simulations are carried out within the Bernaise framework, developed by the authors
[45]. Bernaise is a flexible simulation environment for two-phase electrohydrodynamic flow, which
is built on top of the Dolfin [46] interface to Python within the finite element framework Fenics
[47]. As single-phase flow is a special case of two-phase flow, it works equally well for single-phase
flow, which we consider in this paper. For all simulations we use triangular meshes and piecewise
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quadratic (P2) finite elements for the velocity field, and piecewise linear (P1) elements for the re-
maining fields. We use meshes that resolve the spatial problem sufficiently well for the error to be
dominated by the time discretization errors.

In the following, we consider simulations of a few interesting cases.

• First, to test the accuracy of the schemes, we consider the convergence towards an analytic
solution.

• Second, to demonstrate the energy stability of the schemes, we consider an isolated, closed
system of a concentration spreading in a charged cell. We display the various terms in the
free energy and compare the various schemes evolving in time, with varying time step τ .

• Third, we consider a reaction cell to test the reaction part of the numerical schemes.

• Fourth, we show for a system the efficiency of the schemes to approach a steady state in an
open complex geometry (porous medium) where energy is injected through a body force.

The schemes we consider are denoted by the following:

• I-NL2: Scheme I with the non-linear NL2 discretization.

• I-L2: Scheme I with the linear L2 discretization.

• II-NL2: Scheme II with the non-linear NL2 discretization.

• II-L2: Scheme II with the linear L2 discretization.

5.1. Accuracy test: Manufactured solution
Now we verify the accuracy of the schemes by inspecting whether the scheme converges to a

manufactured analytical solution. Taylor–Green flow is one of a few cases for the Navier–Stokes
equations where analytical solutions are available, and is therefore standard to use for validation
purposes. To this end, we consider a two-dimensional Taylor–Green flow extended to account for
electrohydrodynamics. The derivation of this manufactured solution is given in Appendix B. We
consider flow of two counterions i = ±, such that z± = ±1, and assume constant density, viscosity,
and permittivity, and neglect gravity.

We consider the double periodic domain x ∈ [0, 2π]×[0, 2π], where the pressure p and the electric
potential V is set to zero at x = (π/4, π/4) to fix the pressure and potential gauges, respectively.
We obtain an analytical solution augmenting eq. (7) with the source term q on the right hand side,
where

q(x, y) =
Dc2

0C
2(t)

2ε
[cos 2x+ cos 2y + 2 cos 2x cos 2y] . (146)

The analytical solution to this Taylor–Green vortex is given by:

u = U(t)(x̂ cosx sin y − ŷ sinx cos y), (147)

p = −1

4

(
ρ0U

2(t) +
c2

0C
2(t)

ε

)
(cos 2x+ cos 2y)− c2

0C
2(t)

4ε
cos 2x cos 2y (148)

c± = c0(1± cosx cos y C(t)) (149)

V = −c0

ε
cosx cos y C(t) (150)
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where

U(t) = exp(−2µt/ρ0), (151)

C(t) = χ exp
(
−2D

(
1 +

c0

ε

)
t
)
. (152)

A constraint ensuring that c± > 0 is 0 ≤ χ < 1. The parameters used in these simulations are
ρ = 3, µ = 2, D = 2, c0 = 1, ε = 2, and χ = 0.5. Further, we stop the simulation after a final time
T = 0.25, and measure the error norm respective to the analytical solution. In Fig. 2, we show
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Figure 2: Temporal convergence of the schemes considered in the electrohydrodynamic Taylor–Green vortex case.
The plots (a)–(d) show the L2 error norm for the various schemes for all fields compared to the reference analytical
solutions as a function of time step τ . The simulations are in good compliance with the theoretical first-order
convergence prediction, indicated as a black solid slope (same in all plots).

convergence in the L2 error norm for the four schemes considered. Schemes I and II are virtually
indistingushable. The errors are about an order of magnitude smaller for the nonlinear NL2 scheme
than for the linear L2 scheme, which not unexpected as the NL2 provided a better approximation of
the derivative of α. Nonetheless, all schemes seem to be reliable in that they achieve the expected
O(τ) convergence.

5.2. Stress test: Ion spreading in a charged reservoir
To numerically test the energy stability of the schemes in a complex and challenging setting,

we construct a system setup where the individual contributions to the free energy from inertia,
chemistry and electrostatics are of comparable magnitude during the simulation. The aim of this
system is not to be physically realistic, but to reveal possible weaknesses of the schemes. We
consider a fixed domain Ω = [0, 1] × [0, 2], which could represent a microchannel. The geometry
and initial state is sketched in Fig. 3.

On the lower boundary, we assume a uniform surface charge σe, and the upper boundary is
assumed to be grounded, i.e. V = 0. The left and right boundary are assumed to be insulators. All
four walls are subject to no-slip boundary conditions on the velocity, u = 0. We consider an initial
state where a Gaussian concentration profile of negatively charged species is placed above, and the
same profile of positively charged species is placed below the center of the microchannel.

The electrochemical interaction between the upper and lower boundaries and the two species
in the bulk leads to motion due to two mechanisms. The fluid regions with positive and negative
charge are pulled (i) towards each other, and most prevalently, (ii) attracted towards opposite ends
of the reservoir. This creates a flow in the system which eventually decays due to dissipation.
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Figure 3: Schematic set-up of the initial state in the test case of ion spreading in a charged reservoir.

The simulation parameters are listed in Table 1. Note that we have assumed here a linear
dependency of the viscosity upon the concentrations, i.e.,

µ(c±) = µ0 +
∂µ

∂c+
c+ +

∂µ

∂c−
c−, (153)

where the constant coefficients ∂µ/∂c± are given in Table 1. Chosing ∂µ/∂c± ≥ 0 ensures that
the viscosity is always positive. We have also assumed a dependency of the density upon the
concentration, given through the parameters ∂ρ/∂c± > 0.

In Fig. 4 we show snapshots from a simulation of this system at several instances of time. The
corresponding total free energy contributions, integrated over the domain, are shown in Fig. 5.
Here, we have compared the two chemical discretization strategies L2 and NL2, and two time step
sizes. From the latter figure, it is evident that the schemes approach the same equilibrium state
regardless of the time step size τ and discretization. We observe that the increased dissipation due
to a larger time step size results in lower fluid speed, which in turn leads to delayed equilibration.
Moreover, as expected, the linear L2 scheme is more dissipative than the NL2 scheme and requires
much a smaller time step to produce a reliable kinetic energy development, cf. Fig. 5. Nonetheless,
the schemes always decrease the total free energy in every time step, as expected.
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Table 1: Parameters used in the case of ion spreading in a reservoir.

Parameter Symbol Value

Base density ρ0 1.0
Base dynamic viscosity µ0 0.08
Diffusivity D 0.01
Permittivity ε 0.5
Surface charge σe 1.0
Density per concentration ∂ρ/∂c± 0.02
Dyn. viscosity per concentration ∂µ/∂c± 0.001
Solute mass C0 3.0
Initial spread of concentration (std. dev.) R 0.25
Width of domain Lx 1
Height of domain Ly 2
Horizontal displacement of initial conc. `x 0.125
Vertical displacement of initial conc. `y 0.5
Total simulation time T 10
Cut-off concentration (L2) cδ 0.1

5.3. Reaction cell
To verify the modelling and implementation of the reaction term, we now simulate a reaction

cell test case. We consider the simple reaction

A+ + B− 
 AB. (154)

We define cA+ , cB− and cAB to be the associated concentrations. The associated stoichiometric
coefficients are now νA+ = νB− = −1 and νAB = 1. We let the reference concentrations (at
equilibrium) be defined by c0

A+ = cB− ≡ c0 = 3 and cAB = 1. We consider reaction kinetics as the
example discussed in Appendix A, i.e.,

C = C0
egAB − e−gA+−gB−

gAB − gA+ − gB−
, (155)

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (c) t = 1.0 (c) t = 2.5 (c) t = 5 (c) t = 10

Figure 4: Snapshots in time of the ion spreading simulation case. The flow lines are normalized for each simulation
and omitted in the first and last snapshots. The color indicates the net charge, red is positive, blue is negative, and
gray is neutral. The related color scale is normalized for the entire simulation. For this simulation, Scheme II-NL2
with a time step τ = 0.005 was used.
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Figure 5: Free energy in time. All simulations are done using fractional step hydrodynamics, i.e., Scheme II.

which is a generalization of the law of mass action. Here, C0 is a constant coefficient. The same
reaction kinetics was considered, e.g., by Campillo-Funollet et al. [41], Metzger [40]. Hence, in
equilibrium, we should have

gAB − gA+ − gB− = 0, which gives
cA+ · cB−

cAB
=

(
c0
)2

c0
AB

= K−1
sp = 9. (156)

We consider a domain Ω = [−0.5, 0.5]×[−0.5, 0.5], where we start out the simulation with a Gaussian
distribution of neutral species AB centered at (0, 0) and with a standard deviation R = 0.15. At the
bottom boundary we apply a surface charge σe, and the top boundary is grounded. At the left and
right boundary we apply no-flux conditions, and all boundaries are subject to the no-slip condition
on the velocity field. We take the initial average concentration of the chemical species AB in the
domain to be c0 = 10. The other ions are set to a (negligibly) low concentration cA+ = cB− = 10−4.
Hence, in the absence of an applied electric field, the uniform equilibrium concentrations should be
cA+ = cB− = 6 and cAB = 4.

The equilibrium state with an applied electric field is also possible to find quasi-analytically.
The solution will thus only depend on the vertical coordinate y. We consider a domain y ∈ [−`, `].
At equilibrium, the electrochemical potentials must be constant:

gi = ln

(
ci(y)

c0
i

)
+ ziV (y) = const. (157)

Without loss of generality, we take the electrostatic potential V (y) to be antisymmetric about
y = 0 (and thus omit the grounded boundary condition at the top). Thus, V (0) = 0. Further,
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due to symmetry, the concentrations cA+(0) = cB−(0) ≡ c̄ (const.) here. Therefore, the constant
gi = ln

(
c̄/c0

i

)
for i ∈ {A+,B−}, and

ci(y) = c̄e−ziV (y) for i ∈ {A+,B−}. (158)

The neutral concentration will be uniform, i.e., cAB = Kspc̄
2. This gives, in the Poisson equation,

ε
d2V

dy2
= −cA+ + cB− = 2c̄ sinh(V ), (159)

where we still need to determine the value of the unknown constant c̄.
The average number of ions must be conserved. We started out with an average concentration

c0 of only AB which contains both A+ and B−. Conservation of both ions can, e.g., be written as:

cAB +
1

2`

∫ `

−`

cA+ + cB−

2
dy = c0, (160)

since we have already assumed that that the total number of ions of A+ and B− is equal. Inserting
for cAB and cA+ , cB− , we get

Kspc̄
2 + c̄

∫ `

−`
cosh(V ) dy = c0. (161)

The charged boundary condition can be written as

dV

dy
= −σe

ε
(162)

at both the upper and the lower boundary. We thus have to solve the nonlinear Poisson–Boltzmann
equation (159) with the Neumann boundary conditions (162) coupled with the integral (161). This
can be done numerically with standard ordinary differential equation solvers.

With the chosen parameters, we obtain FV = 1.5516, FcA+ = FcB− = −0.6890 and Fcn =
0.9927. We choose also the dynamic parameters D = 0.01, C0 = 10, ∂ρ/∂cA+ = ∂ρ/∂cB− = 0.1,
∂ρ/∂cAB = 0.2, ∂µ/∂cA+ = ∂µ/∂cB− = 0.02, ∂µ/∂cAB = 0.04, a time step τ = 0.01 and a total
simulation time T = 10. In Fig. 6 we demonstrate how the energy decays towards these values
for the scheme II-NL2. As shown in the inset, the values are fairly close to the equilibrium values
although we have not simulated many diffusive time scales. Therefore the (total) chemical energy
is slightly above the equilibrium values. The other schemes yield similar results, but are omitted in
the figure for visual clarity.

5.4. Application: Electrohydrodynamic flow in a charged porous medium
Finally, we test the applicability of the schemes in a case where energy is injected into the

system. The overall discrete free energy inequality will then be broken. Energy stable schemes
are nevertheless useful, since the dissipation guarantee in the bulk will still hold. The departure
from global energy dissipation will be controlled by the flux through the inlet and the outlet of the
system.

We consider flow in a two-dimensional domain Ω = {(x, y) ∈ [−Lx/2, Lx/2] × [−Ly/2, Ly/2]},
where Lx, Ly are domain size along the x, y directions, respectively, and Lx > Ly. The domain is
taken to be periodic in the y-direction. Within the domain, there are N = 8 circular obstacles with
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Figure 6: Free energy in time for the reaction cell simulation case. These simulations were carried out using Scheme
II-NL2. The inset shows a close-up of the data (except the total energy, for clarity).

radius R placed randomly within the subdomain [−Ly/2, Ly/2]× [−Ly, Ly/2], but no closer to any
other obstacle than R. We assume the no-slip boundary condition, u = 0, on the obstacles, and
p = 0 on left and right boundaries. The flow is driven by an average pressure gradient, implemented
as a uniform body force fb = fbx̂. Further, a constant concentration c+ = c− = c0 is assumed at
both inlet and outlet. The left side is grounded, V = 0, and on the right side we assume a no-flux
condition on the electric field, n̂ ·∇V = 0. These boundary conditions are fairly standard in this
kind of computation [17, 18, 14].

We will now compare the time-dependent solution using the schemes presented herein to the
steady-state solution provided by the independently developed solver presented in a companion
paper [14]. The simulations parameters are given in Table 2. A fine mesh size h = 0.25 was used
to minimize errors from the spatial discretization. Based on the resulting maximum velocity U '
3 · 10−1, the pore radius R, and the kinematic viscosity µ/ρ, we can estimate the Reynolds number
to be Re = ρUR/µ ' 0.02. Further, the Schmidt number can be estimated to Sc = µ/(ρD) ' 100,
and Péclet number Pe = UR/D = Re · Sc ' 2. We can also estimate the Debye length in these
units to be λD =

√
ε/(2c0) ' 1.5, i.e., the dimensionless Debye length to pore size is λD/R ' 0.5.

The steady-state solver was run with the same settings as the time-dependent solver, only
differing in the fact that the velocity field is periodic also in the x-direction (while the ionic system
is finite in the x-direction), and that the inertial term is completely ignored (Re = 0). Hence, this
steady-state should represent a minimum of dissipation. The electric potential of the steady-state
solver is presented in Fig. 7 and the velocity field is shown in Fig. 8.

In Fig. 9, we measure in time the potential at the right boundary, i.e. the streaming potential, as
a function of time, obtained with the various time-dependent schemes. Also plotted is the reference
streaming potential obtained with the steady-state solver. The total simulation time is T = 50. We
may define a diffusive time scale τD based on the Debye length, τD = λ2

D/D ' 5; hence we have
simulated here over about 10 of this diffusive time scale. This time scale may be present in the fast
decay seen in the initial stages in Fig. 9. From Fig. 9, it is clear that the time step τ has a relatively
strong effect on the resulting streaming potential. In particular, the O(τ) dissipative term that will
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Table 2: Parameters used in the simulations presented here.

Parameter Symbol Value

Domain length along x Lx 60
Domain length along y (periodic direction) Ly 30
Number of obstacles N 8
Obstacle radius R 3.0
Concentration c0 1
Surface charge σe −5
Density ρ 0.02
Dynamic viscosity µ 4.5
Permittivity ε 4.5
Diffusivity of ions D 0.457
Average pressure gradient fb 0.09
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Figure 7: Steady state electric potential for the case of electrohydrodynamic flow in a porous medium.

be present in the steady state, due to the presence of u∗ in the scheme, has consequences also for
the streaming potential. Hence, good agreement is only found for relatively fine time steps. Finally,
we conclude from this figure that the linear EC scheme L2 is less precise than the NL2 scheme, and
hence NL2 may be required for this type of computation. For this particular problem, there does
not seem to be a pronounced difference between the coupled and the splitting scheme.

6. Discussion and conclusion

The contribution of the work presented here is twofold. Firstly, we have presented a general
model for single-phase electrohydrodynamic flows, where the fluid properties are allowed to depend
on the concentrations of ions. Secondly, we have proposed discretization strategies for the resulting
set of equations. The proposed schemes impart decoupled computation of electrochemistry and
hydrodynamics, while still satisfying the same free energy inequality as the underlying model.

The results presented allow for the following discussion.
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Figure 8: Steady-state velocity field for the case of electrohydrodynamic flow in a porous medium.

• The model presented in this work is fairly general, and provides a consistent way of including
permittivity gradients, gravitational effects and vscosity dependence on salinity in simulations
of electrohydrodynamics. This also imparts that the model can be used to study simplified
systems, such as the effects of salinity gradients in the absence of electric fields. Further, the
effects of non-constant density and permittivity can be included in studies of electrokinetic
instabilities beyond the Boussinesq approximation.

• The limitations of the model are (i) that we have assumed quasi-incompressibility (solenoidal
velocity field), and (ii) that we have assumed isothermal flow. The first assumption is com-
monplace even beyond the Boussinesq approximation, see e.g., [48, 49]. The second is standard
in electrokinetics.

• Dependence on the electric field strength, in particular for the permittivity, has been ignored
in the model, although studies indicate that it might be significant at high field strengths
[11, 43]. It is in principle trivial to include this effect by letting ε be a function of |E|2 (as
well as {ci}) in (27).

• The decoupling strategy is highly efficient, in the sense that it permits the use of specialized
numerical routines for the resulting subproblems. Hence, the schemes hould facilitate efficient
simulations of electrohydrodynamic flows in arbitrary complex geometries.

• In particular, the fractional-step method (Scheme II) for the hydrodynamics leads to sig-
nificant speed-up compared to the coupled hydrodynamics (Scheme I). Combined with the
linear chemical discretization L2, which is based on a regularisation and a stabilization of the
chemical potential, it yields a completely linear scheme that can be solved at each time step.

• Since the velocity field will typically have to be resolved with a higher spatial order than
the pressure field (e.g., P2-P1 elements for the mixed problem) to deal with the Babuszka–
Brezzi condition [50], the main computational cost may still be associated with computing the
velocity field. In these cases, choosing a nonlinear chemical discretization (e.g., NL2) might
be worthwhile, as it gives a more accurate solution while not contributing significantly to the
computational runtime. The results shown in Sec. 5.4 underpin this observation.
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• The decoupling between electrochemistry and hydrodynamics introduces a time step restric-
tion (related to the Courant number), since the advective term in the chemical transport
equation is integrated explicitly. Thus, fully implicit methods will possibly be more stable,
allowing larger time steps, and may for certain applications be more efficient.

• The work presented here, in particular related to the numerical schemes, builds on many
known results from the literature, e.g. [31, 32, 39, 26, 40]. A main novelty in the present work
is to combine the results on chemical potential stabilization and fractional schemes known
from phase-field simulations of two-phase flows [26] with electrochemical gradients [39, 40].
Further, these methods have been adapted to the case where fluid properties depend on
concentrations rather than an order parameter (phase) field.

• Rigorously proving existence of solutions and convergence of the proposed numerical schemes
is a challenge that has not been undertaken in the present work. Progress here could be made
along the lines of related work, see e.g., Ref. [26, 40].

In future work, the model and scheme should be generalized to multiphase systems. In particular,
this would impart a combination of the present work and the model by Campillo-Funollet et al.
[41]. To simulate solid-liquid interaction, the geometry could be described by a phase field which
could evolve due to chemical reactions at the interface, i.e., the function C could be nonzero only
here. Then phase transformations from solute to could occur only at the phase field interface and
proportionally (or another functional dependence) to the concentration of a given species. This
could provide a refinement to other studies [51, 52].

A more challenging, but highly physically relevant, extension of the model would be to extend it
to encompass non-isothermal flow and non-solenoidal velocity fields. This would require a derivation
taking into account entropy production rather than free energy dissipation. Non-solenoidal velocity
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fields would also require more sophisticated numerical schemes for reliable and efficient simulation.

Appendix A. Modelling the reaction terms

The reaction term Ri remains to be modelled, and the dissipation related to the reaction is
given by (cf. (42)) ∑

i

∫

Ω
giRi dΩ. (A.1)

We consider a set of M possible reactions including all N chemical species, where we can write the
reactions in the following way:

ν1,1χ1 + . . .+ ν1,NχN 
 0,

...
νM,1χ1 + . . .+ νM,NχN 
 0,

where χi symbolizes the chemical species, and νi is the corresponding net stoichiometric coefficent.
The latter is such that νi > 0 for (net) products and νi < 0 for (net) reactants. If the chemical
species does not enter into the reaction, νi = 0. More compactly, we can write

∑

i

νm,iχi 
 0, ∀m ∈ [1,M ]. (A.2)

Note that due to charge conservation in a reaction,
∑

i ziνm,i = 0 and due to mass conservation in a
reaction,

∑
i νm,i∂ρ/∂ci = 0, for all reactions m. For each reaction m we have a reaction rate Rm.

The reaction source term that enters in the concentration equation of species i, can be written as

Ri =
∑

m

νm,iRm. (A.3)

Now, what remains is to define Rm on physical grounds. We have from statistical mechanics that
in equilibrium, the reaction (A.2) is given by

∑

i

νm,ig
0
i = 0, (A.4)

where the superscript “0” indicates local equilibrium. This suggests that a form

Rm = −Cm ·
∑

i

νm,i(gi − g0
i ) = −Cm ·

∑

i

νm,igi, (A.5)

where Cm ≥ 0, should drive the species towards equilibrium; in the sense that

• a term with gi > g0
i should promote generation of more reactants (νm,i < 0) and less products

(νm,i > 0),

• a term with gi < g0
i should push towards less reactants and more products, and

• a term with gi = g0
i should not contribute.
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Inserting (A.3) and (A.5) into (A.1),
∑

j

∫

Ω
gjRj dΩ = −

∑

m

Cm
∑

i

∑

j

∫

Ω
gjνm,jνm,igi dΩ (A.6)

= −
∑

m

Cm
∫

Ω

(∑

i

νm,igi

)2

dΩ ≤ 0, (A.7)

which is clearly dissipative.
Note that in general, no assumptions were made about Cm except that it should be nonnegative.

For dilute systems described by the classical Nernst–Planck equations this is in general satisfied.
Here, gi = ln ci − ln c0

i + ziV , and in general, we can model by statistical rate theory:

Rm = −kb,m
∏

νm,i>0

c
νm,i
i + kf,m

∏

νm,i<0

c
−νm,i
i (A.8)

=


−kb,m

∏

νm,i>0

(c0
i )
νm,ie

∑
νm,i>0 giνm,i + kf,m

∏

νm,i<0

(c0
i )
−νm,ie

−∑
νm,i<0 giνm,i


 e−

∑
νm,i>0 ziνm,iV .

(A.9)

Here, kf,m] is the forward reaction rate and kb,m the backward rate. The references c0
i are defined

through the equilibrium condition

0 = −kb,m
∏

νm,i>0

(c0
i )
νm,i + kf,m

∏

νm,i<0

(c0
i )
−νm,i , (A.10)

which relates to the solubility product Ksp through the law of mass action,

Ksp,m =
kf,m

kb,m
=

∏
νm,i>0(c0

i )
νm,i

∏
νm,i<0(c0

i )
−νm,i . (A.11)

Inserting into the above,

Rm = −kb,m
∏

νm,i>0

(c0
i )
νm,ie−ziνm,iV

[
e
∑
νm,i>0 giνm,i − e−

∑
νm,i<0 giνm,i

]
(A.12)

= −kb,m
∏

νm,i>0

(c0
i )
νm,ie−ziνm,iV

e
∑
νm,i>0 giνm,i − e−

∑
νm,i<0 giνm,i

∑
i giνm,i

∑

i

giνm,i (A.13)

= −Cm
∑

i

giνm,i. (A.14)

Where we have identified

Cm = kb,m
∏

νm,i>0

(c0
i )
νm,ie−ziνm,iV

e
∑
νm,i>0 giνm,i − e−

∑
νm,i<0 giνm,i

∑
i giνm,i

(A.15)

Note that for any x1, x2 ∈ R,

ζ(x1)− ζ(x2) = ζ ′(x)(x1 − x2), (A.16)

for some x ∈ [min(x1, x2),max(x1, x2)]. Since [exp(x)]′ ≥ 0 for all x, we have that Cm ≥ 0.

35



Appendix B. Derivation of manufactured solution

Here we derive the analytical solution used to show convergence. We will assume an incom-
pressible flow where neither density nor permittivity depends on the ion concentrations.

A Taylor–Green vortex flow in the periodic domain (x, y) ∈ Ω = [0, 2π]× [0, 2π], is given by

u = U(t)(x̂ cosx sin y − ŷ sinx cos y), (B.1)
c± = c0(1± cosx cos y C(t)). (B.2)

Solving the electrostatic problem yields

ρe = 2c0 cosx cos y C(t) (B.3)

V =
c0

ε
cosx cos y C(t) (B.4)

which gives a residual of order O(c0/ε). We assume the mobilities K± = Dc±, and the chemical
energy function α(c) = c(ln c− 1).

The divergence criterion is obtained by taking the divergence of the Navier–Stokes equations
with constant density:

ρ0(∇u)T : ∇u + ∇ · (ρe∇V ) = −∇2

(
p+

∑

i

ci

)
= −∇2p (B.5)

Hence, inserting the manufactured solutions eqs. (B.1) and (B.2) yields

−∇2p = −ρ0U
2(t)(cos 2x+ cos 2y)− c2

0C
2(t)

ε
(cos 2x+ cos 2y + 2 cos 2x cos 2y) (B.6)

= −
(
ρ0U

2(t) +
c2

0C
2(t)

ε

)
(cos 2x+ cos 2y)− 2c2

0C
2(t)

ε
cos 2x cos 2y (B.7)

we find that the pressure is

p = −1

4

(
ρ0U

2(t) +
c2

0C
2(t)

ε

)
(cos 2x+ cos 2y)− c2

0C
2(t)

4ε
cos 2x cos 2y (B.8)

We have that

ρe∇V = −c
2
0

2ε
C2(t) [x̂ sin 2x(1 + cos 2y) + ŷ(1 + cos 2x) sin 2y] (B.9)

and that

∇p =
1

2

[(
ρ0U

2(t) +
c2

0C
2(t)

ε
(1 + cos 2y)

)
sin 2xx̂ +

(
ρ0U

2(t) +
c2

0C
2(t)

ε
(1 + cos 2x)

)
sin 2yŷ

]

(B.10)
so that

∇p+ ρe∇V =
ρ0U

2(t)

2
[sin 2xx̂ + sin 2yŷ] (B.11)

and since

u ·∇u = x̂(ux∂xux + uy∂yux) + ŷ(ux∂xuy + uy∂yuy) (B.12)

= −U
2(t)

2
[x̂ sin 2x+ ŷ sin 2y] . (B.13)
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Hence, the Navier–Stokes equations give

U ′(t)
U(t)

= −2µ

ρ0
=⇒ U(t) = exp(−2µt/ρ0). (B.14)

Further, the ion transport equations must both be augmented by a carefully chosen source term q:

∂tc± + u ·∇c± −D∇ · (∇c± + z±c±∇V ) = q(x, y), (B.15)

where

q(x, y) =
Dc2

0C
2(t)

2ε
[cos 2x+ cos 2y + 2 cos 2x cos 2y] . (B.16)

This gives local charge conservation, but a local reaction changes the concentration of both ions.
Insertion gives us that

C(t) = χ exp
(
−2D

(
1 +

c0

ε

)
t
)
. (B.17)

Hence the concentrations decay to the equilibrium concentrations. Note that χ < 1 in order for the
ion concentrations to stay positive.
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Abstract

Bernaise (Binary Electrohydrodynamic Solver) is a flexible high-level finite element solver

of two-phase electrohydrodynamic flow in complex geometries. Two-phase flow with electrolytes

is relevant across a broad range of systems and scales, from ‘lab-on-a-chip’ devices for medical

diagnostics to enhanced oil recovery at the reservoir scale. For the strongly coupled multi-physics

problem, we employ a recently developed thermodynamically consistent model which combines a

generalized Nernst–Planck equation for ion transport, the Poisson equation for electrostatics, the

Cahn–Hilliard equation for the phase field (describing the interface separating the phases), and the

Navier–Stokes equations for fluid flow. As an efficient alternative to solving the coupled system

of partial differential equations in a monolithic manner, we present a linear, decoupled numerical

scheme which sequentially solves the three sets of equations. The scheme is validated by comparison

to limiting cases where analytical solutions are available, benchmark cases, and by the method of

manufactured solution. The solver operates on unstructured meshes and is therefore well suited

to handle arbitrarily shaped domains and problem set-ups where, e.g., very different resolutions

are required in different parts of the domain. Bernaise is implemented in Python via the FEniCS

framework, which effectively utilizes MPI and domain decomposition, and should therefore be

suitable for large-scale/high-performance computing. Further, new solvers and problem set-ups

can be specified and added with ease to the Bernaise framework by experienced Python users.

∗ linga@nbi.dk
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I. INTRODUCTION

Two-phase flow with electrolytes is encountered in many natural and industrial settings.

Although Lippmann already in the 19th century [1, 2] made the observation that an ap-

plied electric field changes the wetting behaviour of electrolyte solutions, the phenomenon

of electrowetting has remained elusive. Recent decades have seen an increased theoretical

and experimental interest in understanding the basic mechanisms of electrokinetic or elec-

trohydrodynamic flow [3, 4]. Progress in micro- and nanofluidics [5, 6] has enabled the use

electrowetting to control small amounts of fluid with very high precision (see e.g. the com-

prehensive reviews by Mugele and coworkers [2, 7] and Nelson and Kim [8] and references

therein). This yields potential applications in, e.g., “lab-on-chip” biomedical devices or

microelectromechanical systems [9–11], membranes for harnessing blue energy [12], energy

storage in fluid capacitors, and electronic displays [13–16].

It is known that electrohydrodynamic phenomena affects transport properties and energy

dissipation in geological systems, as a fluid moving in a fluid-saturated porous medium sets

up an electric field that counteracts the fluid motion [17–19]. Electrowetting may also be an

important factor in enhanced oil recovery [20, 21]. Here, the injection of water of a particular

salinity, or “smart water” [22], is known to increase the recovery of oil from reservoirs as

compared to brine [23]. Further, transport in sub-micrometer scale pores in low-permeability

rocks in the Earth’s crust may be driven by gradients in the electrochemical potential [24],

which may have consequences for, e.g., transport of methane-water mixtures in dense rocks.

Hence, a deepened understanding of electrowetting and two-phase electrohydrodynamics

would be of both geological and technological importance. While wetting phenomena (or

more generally, two-phase flow) on one hand, and electrohydrodynamics on the other, remain

in themselves two mature and active areas of research which both encompass a remarkably

rich set of phenomena, this article is concerned with the interface between these fields. For

interested readers, there are several reviews available regarding wetting phenomena [25–27]

and electrohydrodynamics [28–30]. Notably, the “leaky dielectric” model originally proposed

by Taylor [31] (and revisited by Melcher and Taylor [28]) to describe drop deformation, is

arguably the most popular description of electrohydrodynamics, but it does not describe

ionic transport and considers all dielectrics to be weak conductors. In this work, we shall

employ a model that does not make such simplifications. Recently, Schnitzer and Yariv
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[32] showed rigorously that models of the latter type reduce to the Taylor–Melcher model

in the double limit of small Debye length and strong electric fields. The simplified model

may therefore have advantages in settings where those assumptions are justified, e.g., in

simulations on larger scales; while the class of models considered here are more general and

expected to be valid down to the smallest scale where the continuum hypothesis still holds.

Experimental and theoretical approaches [33–35] in two-phase electrohydrodynamic flows

need to be supplemented with good numerical simulation tools. This is a challenging task,

however: the two phases have different densities, viscosities and permittivities, the ions have

different diffusivities and solubilites in the two phases, and moreover, the interface between

the phases must be described in a consistent manner. Hence, much due to the complex

physics involved, simulation of two-phase electrohydrodynamic phenomena with ionic trans-

port is still in its infancy. It has been carried out with success e.g. in order to understand

deformation of droplets due to electric fields [36–38], or for the purpose of controlling mi-

crofluidic devices (see e.g. [39]). Lu et al. [40] simulated and performed experiments on

droplet dynamics in a Hele-Shaw cell. Notably, Walker et al. [41] simulated electrowetting

with contact line pinning, and compared to experiments. In practical applications, such as

in environmental remediation or oil recovery, the complex pore geometry is essential and it

is therefore of interest to simulate and study electrowetting in such configurations. However,

to our knowledge, there have been few numerical studies of these phenomena in the context

of more complex geometries.

In this article, we introduce and describe Bernaise (Binary Electrohydrodynamic

Solver), which is an open-source software/framework for simulating two-phase electrohy-

drodynamics. It is suitable for use in complex domains, operating on arbitrary unstructured

meshes. The finite-element solver is written entirely in Python and built on top of the

FEniCS framework [42], which (among other things) effectively uses the PETSc backend

for scalability. FEniCS has in recent years found success in related applications, such as

in high-performance simulation of turbulent flow [43], and for single-phase, steady-state

electrohydrodynamic flow simulation in nanopores [44] and model fractures [45]. Since

Bernaise was inspired by the Oasis solver for fluid flow [43], it is similar to the latter in

both implementation and use.

In this work, we employ a phase-field model to propagate the interface between the two

phases. Such diffuse interface models, as opposed to e.g. sharp interface models (see for
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instance [46]), assume that the fluid-fluid interface has a finite size, and have the advantage

that no explicit tracking of the interface is necessary. Hence, using a phase-field model

has several advantages in our setting: it takes on a natural formulation using the finite

element method; in sub-micrometer scale applications, the diffuse interface and finite inter-

face thickness present in these models might correspond to the physical interface thickness

(typically nanometer scale [47]); and the diffuse interface may resolve the moving contact

line conundrum [27, 48]. Note that although ab initio and molecular dynamics simulation

methods are in rapid growth due to the increase in computational power, and do not require

explicit tracking of the interface or phenomenological boundary conditions, such methods

are restricted to significantly smaller scales than continuum models are. Nevertheless, they

serve as valuable tools for calibration of the continuum methods [48–51]. We note also that

sharp-interface methods such as level-set [52, 53] and volume-of-fluid methods [38, 54, 55]

are viable options for simulating electrohydrodynamics, but such methods shall not be con-

sidered here.

The use of phase field models to describe multiphase flow has a long history in fluid me-

chanics [56]. Notably, the “Model H” of Hohenberg and Halperin [57], for two incompress-

ible fluids with matched densities and viscosities, is based on the coupled Navier–Stokes–

Cahn–Hilliard system, and was introduced to describe phase transitions of binary fluids or

single-phase fluid near the critical point. Lowengrub and Truskinovsky [58] later derived

a thermodynamically consistent generalization of Model H where densities and viscosities

were different in the two phases, however with the numerical difficulty that the velocity field

was not divergence free. To circumvent this issue, Abels et al. [59] developed a thermody-

namically consistent and frame invariant phase-field model for two-phase flow, where the

velocity field was divergence free, allowing for the use of more efficient numerical methods.

Lu et al. [40] proposed a phase-field model to describe electrohydrodynamics, but was re-

stricted to flow in Hele-Shaw cells, using a Darcy equation to describe the flow between the

parallel plates [60]. A phase-field approach to the leaky-dielectric model was presented by

Lin et al. [61]. Using the Onsager variational principle, Campillo-Funollet et al. [62] aug-

mented the model of Abels et al. [59] with electrodynamics, i.e. inclusion of ions, electric

fields and forces. This can be seen as a more physically sound version of the model proposed

by Eck et al. [63], which only contained a single “net charge” electrolyte species. A model

for two-phase electrohydrodynamics was derived, with emphasis on contact line pinning, by
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Nochetto et al. [64], but this does not appear to be frame-invariant, as the chemical potential

depends quadratically on velocity [62]. In this work, we will therefore focus on the model

by Campillo-Funollet et al. [62].

There is a vast literature on the discretization and simulations of immiscible two-phase

flows including phase-field models (see e.g. [46, 56]), but here we focus on research which

is immediately relevant concerning the discretization and implementation of the model by

Campillo-Funollet et al. [62]. Grün and Klingbeil [65] discretized the model in Ref. [59] (with-

out electrohydrodynamics) with a dual mesh formulation, using a finite volume method on

the dual mesh for advection terms, and a finite element method for the rest. Based on the

sharp-interface model benchmarks of Hysing et al. [66], Aland and Voigt [67] provided bench-

marks of bubble dynamics comparing several formulations of phase-field models (without

electrodynamics). Energy-stable numerical schemes for the same case were presented and

analyzed in [68, 69]. Campillo-Funollet et al. [62] provided preliminary simulations of the

two-phase electrohydrodynamics model in their paper, however with a simplified formulation

of the chemical potential of the solutes. A scheme for the model in [62] which decouples

the Navier–Stokes equations from the Cahn–Hilliard–Poisson–Nernst–Planck problem, was

presented and demonstrated by Metzger [70, 71]. In the particular case of equal phasic per-

mittivities, the Cahn–Hilliard problem could be decoupled from the Poisson–Nernst–Planck

problem. Recently, a stable finite element approximation of two-phase EHD, with the simpli-

fying assumptions of Stokes flow and no electrolytes, was proposed by Nürnberg and Tucker

[72].

The main contributions of this article is to give a straightforward description of Bernaise,

including the necessary background theory, an overview of the implementation, and a demon-

stration of its ease of use. Solving the coupled set of equations in a monolithic manner (as is

done in Ref. [62] using their in-house EconDrop software) is a computationally expensive

task, and we therefore propose a new linear splitting scheme which sequentially solves the

phase-field, chemical transport and the fluid flow subproblems at each time step. We demon-

strate the validity of the approach and numerical convergence of the proposed scheme by

comparing to limiting cases where analytical solutions are available, benchmark solutions,

and using the method of manufactured solution. We demonstrate how the framework can

be extended by supplying user-specified problems and solvers. We believe that due to its

flexibility, scalability and open-source licensing, this framework has advantages over soft-
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ware which to our knowledge may have some of the same functionality, such as EconDrop

(in-house code of Grün and co-workers) and Comsol (proprietary). Compared to sharp-

interface methods, the method employed in the current framework is automatically capable

of handling topological changes and contact line motion, and the full three-dimensional (3D)

capabilities allows to study more general phenomena than what can be achieved by axisym-

metric formulations [38]. We expect Bernaise to be a valuable tool that may facilitate the

development of microfluidic devices, as well as a deepened understanding of electrohydro-

dynamic phenomena in many natural or industrial settings.

The outline of this paper is as follows. In Sec. II, we introduce the sharp-interface equa-

tions describing two-phase electrohydrodynamics; then we present the thermodynamically

consistent model of electrohydrodynamics by Campillo-Funollet et al. [62]. In Sec. III, we

write down the variational form of the model, present the monolithic scheme, and present a

linear splitting scheme for solving the full-fledged two-phase electrohydrodynamics. Sec. IV

gives a brief presentation of Bernaise, and demonstrates its ease use through a minimal

example. Further, we describe how Bernaise can be extended with user-specified problems

and solvers. In Sec. V, we validate the approach as described in the preceding paragraph.

Finally, in Sec. VI, we apply the framework to a geologically relevant setting where dy-

namic electrowetting effects enter, and present full 3D simulations of droplet coalescence

and breakup. Finally, in Sec. VII we draw conclusions and point to future work.

We expect the reader to have a basic familiarity with the finite element method, the

Python language, and the FEniCS package. Otherwise, we refer to the tutorial by Langtan-

gen and Logg [73].

II. MODEL

The governing equations of two-phase electrohydrodynamics can be summarized as the

coupled system of two-phase flow, chemical transport (diffusion and migration), and electro-

statics [62]. We will now describe the sharp-interface equations that the phase-field model

should reproduce, and subsequently the phase-field model for electrohydrodynamics. For

the purpose of keeping the notation short, we consider a general electrokinetic scaling of the

equations. The relations between the dimensionless quantities and their physical quantities

are elaborated in Appendix A.
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A. Sharp-interface equations

In the following, we present each equation of the physical (sharp-interface) model. With

validity down to the nanometer scale, the fluid flow is described by the incompressible

Navier–Stokes equations, augmented by some additional force terms due to electrochemistry:

ρi (∂tv + (v ·∇)v)− µi∇2v + ∇p = −
∑

j

cj∇gcj , (1)

∇ · v = 0. (2)

Here, ρi is the density of phase i, v is the velocity field, µi is the dynamic viscosity of phase

i, p(x, t) is the pressure field [74], cj(x, t) is the concentration of solute species j, and gcj

is the associated electrochemical potential. The form of the right hand side of Eq. (1) is

somewhat unconventional (and relies on a specific interpretation of the pressure), but has

numerical advantages over other formulations as it avoids, e.g., pressure build-up in the

electrical double layers [75].

The transport of the concentration field of species i is governed by the conservative

(advection–diffusion–migration) equation:

∂tcj + v ·∇cj −∇ · (Kijcj∇gcj) = 0, (3)

where Kij is the diffusivity of species j in phase i. The electrochemical potential is in general

given by

gcj(cj, V ) = α′(cj) + βij + zjV, (4)

where α′(c) = ∂α/∂c(c), and α(c) is a convex function describing the chemical free energy,

βij is a parameter describing the solubility of species j in phase i, zj is the charge if solute

species j, and V is the electric potential. Eq. (3) can be seen as a generalized Nernst–Planck

equation. With an appropriate choice of α(c), Eq. (3) reduces to the phenomenological

Nernst–Planck equation, which has been established for the transport of charged species in

dilute solutions under influence of an electric field. The latter amounts to a dilute solution,

using the ideal gas approximation,

α(cj) ∝ cj(ln cj − 1). (5)

With this choice of α, the solubility parameter βij can be interpreted as related to a reference
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concentration cref,i
j , through the relation

βij = − ln cref,i
j . (6)

This gives a chemical energy Gj = α(cj) + βijcj = cj(ln(cj/c
ref,i
j )− 1) which has a minimum

at cj = cref,i
j (see also [76]).

Since the dynamics of the electric field is much faster than that of charge transport, we

can safely assume electrostatic conditions (i.e., neglect magnetic fields). This amounts to

solving the Poisson problem (Gauss’ law):

∇ · (εi∇V ) = −ρe, (7)

Here, εi is the electrical permittivity of phase i, and ρe =
∑

j zjcj is the total charge density.

In the absence of advection, for the case of two symmetric charges, and under certain

boundary conditions, Eqs. (3)–(7) lead to the simpler Poisson–Boltzmann equation (see

Appendix B).

1. Fluid-fluid interface conditions

It is necessary to define jump conditions over the interface between the two fluids. We

denote the jump in a physical quantity χ across the interface by [χ]+−, and the unit vector

n̂int normal to the interface.

Firstly, due to incompressibility, the velocity field must be continuous:

[v]+− = 0. (8)

The electrochemical potential must be continuous across the interface,

[
gcj
]+
− = 0. (9)

Due to conservation of the electrolytes, the flux of ion species j into the interface must equal

the flux out of the interface,
[
Kijcj∇gcj

]+
− · n̂int = 0, (10)

and the normal flux of the electric displacement field D = −εi∇V , and the electric potential,

should be continuous (since by assumption, no free charge is located betweeen the fluids):

[εi∇V ]+− · n̂int = 0, [V ]+− = 0. (11)
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Finally, interfacial stress balance yields the condition

[p]+− n̂int − [2µiDv]+− · n̂int −
[
εiE⊗ E− 1

2
εi|E|2I

]+

−
· n̂int = σκn̂int, (12)

where σ is the surface tension, κ is the curvature, and E = −∇V is the electric field.

Moreover, we have defined the shorthand symmetric (vector) gradient,

Dv = sym (∇v) =
1

2

(∇v + ∇vT
)
. (13)

Further, all gradient terms have been absorbed into the pressure. Note that Eq. (12) leads

to a modified Young–Laplace law in equilibrium, which include Maxwell stresses.

2. Boundary conditions

There are a range of applicable boundary conditions for two-phase electrohydrodynamics.

Here, we briefly discuss a few viable options. In the following, we let n̂ be a unit normal

vector pointing out of the domain, and t̂ be a tangent vector to the boundary.

For the velocity, it is customary to use the no-slip condition u = 0 at the solid boundary.

Alternatively, the Navier slip condition, which is useful for modelling moving contact lines

[50], could be used:

n̂ · v = 0, (γv − 2µDv n̂)× n̂ = 0, (14)

where γ is a slip parameter. The slip length µ/γ is typically of nanometer scale and depen-

dent on the materials in question. However, since the implementation of such conditions

may become slightly involved, we omit it in the following.

With regards to the electrolytes, it is natural to specify either a prescribed concentration

at the boundary, ci = c0, or a no-flux condition out of the domain,

n̂ ·
(
−ucj +Kijcj∇gcj

)
= 0. (15)

For the electric potential, it is natural to prescribe either the Dirichlet condition V = V̄ ,

or a prescribed surface charge σe(x),

n̂ ·∇V =
σe
εi
. (16)
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B. Phase-field formulation

In order to track the interface between the phases, we introduce an order parameter

field φ which attains the values ±1 respectively in the two phases, and interpolates between

the two across a diffuse interface of thickness ε. In the sharp-interface limit ε → 0, the

equations should reproduce the correct physics, and reduce to the model above, including

the interface conditions. A thermodynamically consistent phase-field model which reduces

to this formulation was proposed in Ref. [62]:

∂t(ρ(φ)v) + ∇ · (ρ(φ)v ⊗ v)−∇ · [2µ(φ)Dv + v ⊗ ρ′(φ)M(φ)∇gφ] + ∇p

= −φ∇gφ −
∑

i

ci∇gci ,
(17)

∇ · v = 0, (18)

∂tφ+ v ·∇φ−∇ · (M(φ)∇gφ) = 0, (19)

∂tcj + v ·∇cj −∇ · (Kj(φ)cj∇gcj) = 0, (20)

∇ · (ε(φ)∇V ) = −ρe. (21)

Here, φ is the phase field, and it takes the value φ = −1 in phase i = 1, and the value φ = 1

in phase i = 2. Eq. (19) governs the conservative evolution of the phase field, wherein the

diffusion term is controlled by the phase field mobility M(φ). Here, ρ, µ, ε, Kj depend on

which phase they are in, and are considered slave variables of the phase field φ. Across the

interface these quantities interpolate between the values in the two phases:

ρ(φ) =
ρ1 + ρ2

2
+
ρ1 − ρ2

2
φ, (22)

µ(φ) =
µ1 + µ2

2
+
µ1 − µ2

2
φ, (23)

ε(φ) =
ε1 + ε2

2
+
ε1 − ε2

2
φ, (24)

Kj(φ) =
K1,j +K2,j

2
+
K1,j −K2,j

2
φ. (25)

These averages are all weighted arithmetically, although other options are available. For

example, Tomar et al. [54] found that, in the case of a level-set method with smoothly inter-

polated phase properties, using a weighted harmonic mean gave more accurate computation

of the electric field. However, López-Herrera et al. [55] found no indication that the har-

monic mean was superior when free charges were present, and hence we adopt for simplicity
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and computational performance the arithmetic mean, although it remains unsettled which

mean would yield the most accurate result.

Further, the chemical potential of species cj is given by

gcj(cj, φ) = α′(cj) + βj(φ) + zjV, (26)

where we, for dilute solutions, may model α(c) = c(log c − 1) to obtain consistency with

the standard Nernst–Planck equation. Further, we use a weighted arithmetic mean for the

solubility parameters βj:

βj(φ) =
β1,j + β2,j

2
+
β1,j − β2,j

2
φ, (27)

which, under the assumption of dilute solutions and with the interpretation (6), corresponds

to a weighted geometric mean for the reference concentrations:

cref
j (φ) =

(
cref,1
j

) 1+φ
2 ·

(
cref,2
j

) 1−φ
2
. (28)

In analogy with gcj being the chemical potential of species cj, we denote gφ as the chemical

potential of the phase field φ. It is given by:

gφ =
∂f

∂φ
−∇ · ∂f

∂∇φ
+
∑

j

β′j(φ)cj −
1

2
ε′(φ)|∇V |2. (29)

The free energy functional f of the phase field is defined by

f(φ,∇φ) =
3σ

2
√

2

[ ε
2
|∇φ|2 + ε−1W (φ)

]
= σ̃

[ ε
2
|∇φ|2 + ε−1W (φ)

]
, (30)

where where σ is the surface tension, ε is the interface thickness, and W (φ) is a double well

potential. Here, we use W (φ) = (1 − φ2)2/4. We have also implicitly defined the scaled

surface tension σ̃ for convenience of notation. With this free energy, we obtain

gφ = σ̃ε−1W ′(φ)− σ̃ε∇2φ+
∑

j

β′j(φ)cj −
1

2
ε′(φ)|∇V |2. (31)

We will assume this form throughout.

After some rewriting, exploiting Eq. (18) and the fact that ρ′(φ) is constant due to

Eq. (22), Eq. (17) can be expressed as

ρ(φ)∂tv + ((ρ(φ)v − ρ′(φ)M(φ)∇gφ) ·∇) v −∇ · [2µ(φ)Dv] + ∇p

= −φ∇gφ −
∑

j

cj∇gcj .
(32)
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1. Phase field mobility

Given a proper definition of the phase-field mobility M(φ), the phase-field model should

reduce to the sharp-interface model given in the previous section. As discussed at length in

Ref. [62], the two following ways are viable options:

M(φ) = εM0, (33a)

M(φ) = M0(1− φ2)+. (33b)

Here M0 is a constant, and (·)+ = max(·, 0). Other formulations of M are possible; some of

these will in the limit of vanishing interface width reduce to a sharp-interface model where

the interface velocity does not equal the fluid velocity [59, 62].

2. Boundary conditions

Some of the interface conditions from the sharp-interface model carry over to the phase

field model, but in addition, some new conditions must be specified for the phase field. Here

we give a brief summary. We assume that the boundary of the domain Ω, ∂Ω, can be divided

into an inlet part ∂Ωin, an outlet part ∂Ωout, and a wall part ∂Ωwall. We shall primarily

discuss the latter here.

For the velocity field, we assume the no-slip condition

v(x, t) = 0 for x ∈ ∂Ωwall. (34)

Alternatively, a no-flux condition and a slip law could have been used; in particular, a

generalized Navier boundary condition (GNBC) has been shown to hold yield a consistent

description of the contact line motion [48, 49]. However, to limit the scope, the moving

contact line paradox will in this work be overcome by interface diffusion.

With regards to the flow problem, the pressure gauge needs to be fixed. To this end,

the pressure could be fixed somewhere on the boundary, or the pressure nullspace could be

removed.

For the concentrations cj, we may use a prescribed concentration, or the no-flux condition

n̂ ·
(
Kj(φ)cj∇gcj

)
= 0 on ∂Ωwall. (35)
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For the electric potential, we use either the Dirichlet condition V = V̄ (which is reasonable

at either inlet or outlet), or in the presence of charged (or neutral) boundaries, the condition

n̂ ·∇V =
σe
ε(φ)

on ∂Ωwall, (36)

similar to the sharp-interface condition. Note that σe(x) is prescribed and can vary over the

boundary.

We assume that the no-flux conditons hold on the phase field chemical potential,

n̂ ·∇gφ = 0 on ∂Ωwall. (37)

For the phase field itself, a general dynamic wetting boundary condition can be expressed

as [77]:

ετw∂tφ = −σ̃εn̂ ·∇φ+ σ̃ cos(θe)f
′
w(φ), (38)

where θe is the equilibrium contact angle, τw is a relaxation parameter, and fw(φ) = (2 +

3φ− φ3)/4 interpolates smoothly between 0 (at φ = −1) and 1 (at φ = 1). In this work, we

limit ourselves to studying fixed contact angles, i.e. considering Eq. (38) with τw = 0. For

a GNBC, the phase-field boundary condition (38) must be modelled consistently with the

slip condition on the velocity [48].

III. DISCRETIZATION

For solving the equations of two-phase EHD, i.e. the model consisting of Eqs. (17)–(21),

there are four operations that must be performed:

1. Propagate the phase field φ.

2. Propagate the chemical species concentrations ci.

3. Update the electric potential V

4. Propagate the velocity v and pressure p.

The whole system of equations could in principle be solved simultaneously using implicit

Euler discretization in time and e.g. Newton’s method to solve the nonlinear system. How-

ever, in order to simulate larger systems faster, it is preferable to use a splitting scheme

to solve for each field sequentially. One such splitting scheme was outlined in [70], based
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on the energy-stable scheme without electrochemistry as developed by [68, 69]. However,

that scheme did not take into account that the electric permittivities in the two fluids may

differ, and when they do, the phase field and the electrochemistry computations become

coupled through the electric field [71]. We will here discuss two strategies for solving the

coupled problem of two-phase electrohydrodynamics. First, we present the fully monolithic,

non-linear scheme, and secondly, we propose a new, fully practical linear operator splitting

scheme. As we are not aware of any splitting schemes that are second-order accurate in time

for the case of unmatched densities, we shall constrain our discussion to first-order in time

schemes.

In the forthcoming, we will denote the inner product of any two scalar, vector, or tensor

fields A,B by (A,B). Further, we consider a discrete time step τ , and denote the (first-order)

discrete time derivative by

∂−τ Ak =
Ak −Ak−1

τ
. (39)

The equations are discretized on the domain Ω ⊂ Rd, d = 2, 3, with the no-slip boundary Γ.

Since we do not consider explicitly in- and outlet boundary conditions in this work, we will

omit this possible part of the domain for the sake of brevity.

We define the following finite element subspaces:

Vh = (Vh)
d where Vh =

{
v ∈ H1(Ω)

}
for velocity, (40)

Ph =
{
p ∈ L2

0(Ω)
}

for pressure, (41)

Φh =
{
φ ∈ H1(Ω)

}
for phase field, (42)

Gh =
{
g ∈ H1(Ω)

}
for phase field chemical potential, (43)

Ch =
{
c ∈ H1(Ω)

}
for concentrations, (44)

Uh =
{
V ∈ H1(Ω)

}
for the electrostatic potential. (45)

A. Monolithic scheme

Here we give the fully implicit scheme that follows from a näıve implicit Euler discretizion

of the model (17)–(21), and supplemented by Eq. (31).

Assume that (vk−1, pk−1, φk−1, gk−1
φ , ck−1

1 , . . . , ck−1
M , V k−1) is given. The scheme can then

be summarized by the following. Find (vk, pk, φk, gkφ, c
k
1, . . . , c

k
N , V

k) ∈ Vh×Ph×Φh×Gh×
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(Ch)
N × Uh such that

(
ρk∂−τ vk,u

)
+
((

mk ·∇)vk,u
)

+
(
2µkDvk,Du

)
−
(
pk,∇ · u)

= −
(
φk∇gkφ,u

)
−
∑

j

(
ckj∇gkcj ,u

)
, (46a)

(∇ · vk, q) = 0, (46b)

(
∂−τ φ

k, ψ
)
−
(
vkφk,∇ψ

)
+
(
Mk∇gkφ,∇ψ

)
= 0, (46c)

(
gkφ, gψ

)
=
(
σ̃ε−1W ′(φk), gψ

)
− σ̃ cos(θe)

∫

Γ

f ′w(φk)gψ dΓ +
(
σ̃ε∇φk,∇gψ

)

+
∑

j

(
β′jc

k
j , gψ

)
−
(

1

2
ε′|∇V k|2, gψ

)
, (46d)

(
∂−τ c

k
j , bj

)
−
(
vkckj ,∇bj

)
+
(
Kk
j c
k
j∇gkcj ,∇bj

)
= 0, (46e)

(
εk∇V k,∇U

)
=
(
ρke , U

)
+

∫

Γ

σeU dΓ, (46f)

for all test functions (u, q, ψ, gψ, b1, . . . , bN , U) ∈ Vh×Ph×Φh×Gh× (Ch)
N ×Uh. Here we

have used

mk = ρkvk − ρ′Mk∇gkφ (47)

and the shorthands

ρk = ρ(φk), µk = µ(φk), Mk = M(φk), εk = ε(φk),

Kk
j = Kj(φ

k), and ρke = ρe({ckj}).

Note that Eqs. (46) constitute a fully coupled non-linear system and the equations must thus

be solved simultaneously, preferably using a Newton method. This results in a large system

matrix which must be assembled and solved iteratively, and for which there are in general no

suitable preconditioners available. On the other hand, the scheme is fully implicit and hence

expected to be fairly robust with regards to e.g. time step size. There are in general several

options for constructing the linearized variational form to be used in a Newton scheme.

B. A linear splitting scheme

Now, we introduce a linear operator splitting scheme. This scheme splits between the pro-

cesses of phase-field transport, chemical transport under an electric field, and hydrodynamic

flow, such that the equations governing each of these processes are solved separately.
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a. Phase field step Find (φk, gkφ) ∈ Φh ×Gh such that

(
∂−τ φ

k, ψ
)
−
(
vk−1φk,∇ψ

)
+
(
Mk−1∇gkφ,∇ψ

)
= 0 (48a)

(
gkφ, gψ

)
= σ̃ε−1

(
W ′(φk, φk−1), gψ

)
+ σ̃ε

(∇φk,∇gψ
)

− σ̃ cos(θe)

∫

Γ

f ′w(φk, φk−1) gψ dΓ +
∑

j

β′j
(
ck−1
j , gψ

)
− 1

2
ε′
(
|∇V k−1|2, gψ

)
, (48b)

for all test functions (ψ, gψ) ∈ Φh × Gh. Here, W ′(φk, φk−1) is a linearization of W ′(φk)

around φk−1:

W ′(φk, φk−1) = W ′(φk−1) +W ′′(φk−1)(φk − φk−1). (49)

We have also used the discretization of Eq. 38

σ̃εn ·∇φk = σ̃ cos(θe)f ′w(φk, φk−1), (50)

where we have used the linearization

f ′w(φk, φk−1) = f ′w(φk−1) + f ′′w(φk−1)(φk − φk−1). (51)

b. Electrochemistry step Find (c1, . . . , cN , V ) ∈ (Ch)
N × Uh such that

(
∂−τ c

k
j , bj

)
−
(
vk−1ckj ,∇bj

)
+
(
J̄kcj ,∇bi

)
= 0 (52a)

(
εk∇V k,∇U

)
+

∫

Γ

σeU dΓ +
(
ρke , U

)
= 0 (52b)

for all test functions (b1, . . . , bN , U) ∈ (Ch)
N ×Uh. Here J̄kcj is a linear approximation of the

diffusive chemical flux Jcj = Kj(φ)cj∇gcj . For conciseness, we here constrain our analysis

to ideal chemical solutions, i.e. we assume a common chemical energy function on the form

α(c) = c(ln c− 1). To this end, we approximate the flux by:

J̄kcj = Kk
j (∇cki + cki β

′
i∇φk + zic

k−1
i ∇V k). (53)

c. Fluid flow step Find (vk, pk) ∈ Vh × Ph such that

(
ρk−1∂−τ vk,u

)
+
((

m̄k−1 ·∇)vk,u
)

+
1

2

(
vk∂−τ ρ

k,u
)
− 1

2

(
m̄k−1,∇(vk · u)

)
+
(
2µkDvk,Du

)
−
(
pk,∇ · u)

= −
(
φk∇gkφ,u

)
−
∑

j

(
ckj∇gkcj ,u

)
(54a)
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(
q,∇ · vk) = 0 (54b)

for all test functions (u, q) ∈ Vh × Ph. Here, we have used the following approximation of

the advective momentum:

m̄k−1 = ρk−1vk−1 − ρ′Mk∇gkφ. (55)

Note that the terms in (54a) involving ∂−τ ρ
k + ∇ · m̄k−1, which is a discrete approximation

of ∂tρ + ∇ · m = 0, is included to satisfy a discrete energy dissipation law [78] (i.e., to

improve stability). This step requires solving for the velocity and pressure in a coupled

manner. This has the advantage that it yields accurate computation of the pressure, but

the drawback that it is computationally challenging to precondition and solve, related to

the Babuska–Brezzi (BB) condition (see e.g. [79]). Alternatively, it might be worthwhile to

further split the fluid flow step into the following three substeps, at the cost of some lost

accuracy [80].

• Tentative velocity step: Find ṽk ∈ Vh such that for all u ∈ Vh,

(
ρk−1 ṽk − vk−1

τ
,u

)
+
(
(m̄k−1 ·∇)ṽk,u

)
+
(
2µkDṽk,Du

)
−
(
pk−1,∇ · u)

+
1

2

(
ṽk∂−τ ρ

k,u
)
− 1

2

(
m̄k−1,∇(ṽk · u)

)
= −

(
φk∇gkφ,u

)
−
∑

i

(
ck−1
i ∇gki ,u

)
, (56a)

with the Dirichlet boundary condition ṽk = 0 on Γ.

• Pressure correction step: Find pk ∈ Ph such that for all q ∈ Ph, we have

(
1

ρ0

∇(pk − pk−1),∇q

)
= −1

τ

(∇ · ṽk, q) . (56b)

• Velocity correction step: Then, find vk ∈ Vh such that for all u ∈ Vh,

(
ρk

vk − ṽk

τ
,u

)
=
(
pk − pk−1,∇ · u) , (56c)

which we solve by explicitly imposing the Dirichlet boundary condition uk = 0 on Γ.

Eqs. (56a), (56b), and (56c) should be solved sequentially, and constitutes a variant of a

projection scheme, i.e., a fractional-step approach to the fluid flow equations [78, 80–83].

We will in this paper refer to the coupled solution of the fluid flow equations, unless stated
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otherwise. Specifically, the fractional-step fluid flow scheme will only be demonstrated in

the full 3D simulations in Sec. VI B.

The scheme presented above consists in sequentially solving three decoupled subproblems

(or five decoupled subproblems for the fractional-step fluid flow alternative). The subprob-

lems are all linear, and hence attainable for specialized linear solvers which could improve

the efficiency. We note that the splitting introduces an error of order τ , i.e. the same as the

scheme itself. Moreover, our scheme does not preserve the same energy dissipation law on

the discrete level, that the original model does on the continuous level. We are currently

not aware of any scheme for two-phase electrohydrodynamics with this property, apart from

the fully implicit scheme presented in the previous section.

IV. BERNAISE

We have now introduced the governing equations and two strategies for solving them.

Now, we will introduce the Bernaise package, and describe an implementation of a generic

simulation problem and a generic solver in this framework. For a complete description of

the software, we refer to the online Git repository [84]. The work presented herein refers to

version 1.0 of Bernaise, which is compatible with version 2017.2.0 of FEniCS [42].

A. Python package

Bernaise is designed as a Python package, and the main structure of the package is shown

in Fig. 1. The package contains two main submodules, problems and solvers. As suggested

by the name, the problems submodule contains scripts where problem-specific geometries

(or meshes), physical parameters, boundary conditions, initial states, etc., are specified. We

will in Sec. IV B dive into the constituents of a problem script. The solvers submodule, on

the other hand, contains scripts that are implementations of the numerical schemes required

to solve the governing equations. Two notable examples that are implemented in Bernaise

are the monolithic scheme (implemented as basicnewton) and the linear splitting scheme

(implemented as basic). We shall in Sec. IV C describe the building blocks of such a solver.

Further, a default solver compatible with a given problem is specified in the problem, but

this setting can—along with most other settings specified in a problem—be overridden by
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providing an additional keyword to the main script call (see below). Note that not all solvers

are compatible with all problems, and vice versa.

BERNAISE

sauce.py

postprocess.py

common

init .py

bcs.py

cmd.py

functions.py

io.py

...

problems

init .py

charged droplet.py

taylorgreen.py

snoevsen.py

charged droplets 3D.py

...

solvers

init .py

basic.py

basicnewton.py

fracstep.py

...

utilities

...

...

FIG. 1: Part of the directory structure of Bernaise.

A simulation is typically run from a terminal, pointing to the Bernaise directory, using
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the command

>> python sauce.py problem=charged_droplet

where charged droplet may be exchanged with another problem script of choice; albeit we

will use charged droplet as a pedagogical example in the forthcoming. The main script

sauce.py fetches a problem and connects it with the solver. It sets up the finite element

problem with all the given parameters, initializes the finite element fields with the specified

initial state, and solves it with the specified boundary condition at each time step, until the

specified (physical) simulation time T is exceeded. Any parameter in the problem can be

overridden by specifying an additional keyword from the command line; for example, the

simulation time can be set to 1000 by running the command:

>> python sauce.py problem=charged_droplet T=1000

After every given interval of steps, specified by the parameter checkpoint interval, a

checkpoint is stored, including all fields, and all problem parameters at the time of writing

to file. The checkpoint can be loaded, and the simulation can be continued, by running the

command:

>> python sauce.py problem=charged_droplet \

restart_folder=results_charged_droplet/1/Checkpoint/

where the restart folder points to an appropriate checkpoint folder. Here, the problem

parameters stored within the checkpoint have precedence over the default parameters given

in the problem script. Further, any parameters specified by command line keywords have

precedence over the checkpoint parameters.

The role of the main module sauce.py is to allocate the required variables to run a

simulation, to import routines from the specified problem and solver, to iterate the solver in

time, and to output and store data at appropriate times. Hence, the main module works as

a general interface to problems and solvers. This is enabled by overloading a series of func-

tions, such that problem- and solver-specific functions are defined within the problem and

solver, respectively. The structure of sauce.py is by choice similar to the NSfracStep.py

script in the Oasis solver [43]; both in order to appeal to overlapping user bases, and to
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keep the code readable and consistent with and similar to common FEniCS examples. How-

ever, an additional layer of abstraction in e.g. setting up functions and function spaces is

necessary in order to handle a flexible number of subproblems and subspaces, depending

on e.g. whether phase field, electrochemistry or flow is disabled, or whether we are running

with a monolithic or operator splitting scheme. To keep the Bernaise code as readable and

easily maintainable as possible, we have consciously avoided uneccessary abstraction. Only

the boundary conditions (found in common/bcs.py are implemented as classes.

B. The problems submodule

The basic user typically interacts with Bernaise by implementing a problem to be

solved. This is accessible to Bernaise when put in the subfolder problems. The imple-

mentation consists in overloading a certain set of functions; all of which are listed in the

problems/ init .py file in the problems folder. The mandatory functions that must be

overloaded for each problem are:

• mesh: defines the geometry. Equivalent to the mesh function in Oasis [43].

• problem: sets up all parameters to be overloaded, including defining solutes and types

of finite elements. The default parameters are defined in the problems/ init .py

file.

• initialize: initializes all fields.

• create bcs: sets all subdomains, and defines boundary conditions (including point-

wise boundary condtions, such as pressure pinning). The boundary conditions are

more thoroughly explained below.

Further, there are functions that may be overloaded.

• constrained domain: set if the boundary is to be considered periodic.

• pf mobility: phase field mobility function; cf. (33a) and (33b).

• start hook: hook called before the temporal loop.

• tstep hook: hook called at each time step in the loop.

21



• end hook: hook called at the end of the program.

• rhs source: explicit source terms to be added to the right hand side of given fields;

used e.g. in the method of manufactured solution.

Note here the use of three hooks that are called during the course of a simulation. These

are useful for outputting certain quantities during a simulation, e.g. the flux through a cross

section, or total charge in the domain. The start hook could also be used to call a steady-

state solver to initialize the system closer to equilibrium, e.g. a solver that solves only the

electrochemistry subproblem such that we do not have to resolve the very fast time scale of

the initial charge equilibration.

In Listing 1, we show an implementation of the problems function, which sets the neces-

sary parameters that are required for the charged droplet case to run. Here, the solutes

array (which defines the solutes), contains only one species, but it can in principle contain

arbitrarily many.

def problem():

info_cyan("Charged droplet in an electric field.")

# Define solutes

# Format: name, valency, diffusivity in phase 1, diffusivity in phase 2,

# solubility energy in phase 1, solubility energy in phase 2

solutes = [["c_p", 1, 1e-5, 1e-3, 4., 1.]]

# Default parameters to be loaded unless starting from checkpoint.

parameters = dict(

solver="basic", # Solver to be used.

folder="results_charged_droplet", # Folder to store results in.

dt=0.08, # Timestep

t_0=0., # Starting time

T=8., # Total simulation time

grid_spacing=1./32, # Mesh size

interface_thickness=0.03, # Extent of diffuse interface
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solutes=solutes, # Array of solutes defined above

Lx=2., # Length of domain along x

Ly=1., # Length of domain along y

rad_init=0.25, # Initial droplet radius

V_left=10., # Potential at left side

V_right=0., # Potential at right side

surface_tension=5., # Surface tension

concentration_init=10., # Initial (total) concentration

pf_mobility_coeff=0.00002, # Phase field mobility coeff. (M_0)

density=[200., 100.], # Density in phase 1, phase 2

viscosity=[10., 1.], # Viscosity in phase 1, phase 2

permittivity=[1., 1.] # Permittivity in phase 1, phase 2

)

return parameters

Listing 1: The problems function for the charged droplet case.

In Listing 2, we show the code for the initialization stage. Here, initial pf and

initial c are functions defined locally inside the charged droplet.py problem script, that

set the initial distributions of the phase field and the concentration field, respectively. Here,

it should be noted how the (boolean) parameters enable PF, enable EC and enable NS al-

low to switch on or off either the phase field, the electrochemistry or the hydrodynamics,

respectively.

def initialize(Lx, Ly, rad_init, interface_thickness, solutes,

concentration_init, restart_folder, field_to_subspace,

enable_NS, enable_PF, enable_EC, **namespace):

""" Create the initial state. """

w_init_field = dict()

if not restart_folder:

x0, y0, rad0, c0 = Lx/4, Ly/2, rad_init, concentration_init

# Initialize phase field
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if enable_PF:

w_init_field["phi"] = initial_pf(

x0, y0, rad0, interface_thickness,

field_to_subspace["phi"].collapse())

# Initialize electrochemistry

if enable_EC:

w_init_field[solutes[0][0]] = initial_c(

x0, y0, rad0/3., c0, interface_thickness,

field_to_subspace[solutes[0][0]].collapse())

return w_init_field

Listing 2: The initialize function for the charged droplet case.

C. The solvers submodule

Advanced users may develop solvers that can be placed in the solvers subdirectory.

In the same way as with the problems submodule, a solver implementation constists of

overloading a range of functions which are defined in solvers/ init .py.

• get subproblems: Returns a dictionary (dict) of the subproblems which the solver

splits the problem into. This dictionary has points to the name of the fields and the

elements (specified in problem) which the subspace is made up of.

• setup: Sets up the FEniCS solvers for each subproblem.

• solve: Defines the routines for solving the finite element problems, which are called

at every time step.

• update: Defines the routines for assigning updated values to fields, which are called

at the end of every time step.

The module solvers/basicnewton.py implements the monolithic scheme, while the module

solvers/basic.py implements the segregated solver [85]. The problem is split up into the
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subproblems corresponding to whether we have a monolothic or segragated solver in the

function get subproblems. Within the setup function, the variational forms are defined,

and the solver routines are initialized. The latter are eventually called in the solve routine

at every time step. Note that the element types are defined within the problem, and that

the solvers in general can be applied for higher-order spatial accuracy without further ado.

The task of get subproblems is simply to link the subproblem to the element specification.

In Listing 3, we show how the get subproblems function is implemented in the basic

solver. As can be readily seen, the function formally splits the problem into the three

subproblems NS, PF, and EC.

def get_subproblems(solutes, enable_NS, enable_PF, enable_EC, **namespace):

""" Returns dict of subproblems the solver splits the problem into. """

subproblems = dict()

if enable_NS:

subproblems["NS"] = [dict(name="u", element="u"),

dict(name="p", element="p")]

if enable_PF:

subproblems["PF"] = [dict(name="phi", element="phi"),

dict(name="g", element="g")]

if enable_EC:

subproblems["EC"] = ([dict(name=solute[0], element="c")

for solute in solutes]

+ [dict(name="V", element="V")])

return subproblems

Listing 3: The get subproblems subroutine of the basic solver.

The other functions (such as setup) are somewhat more involved, but can be found at the

Git repository [84].

Note that the implementations of the solvers presented above are sought to be short

and humanly readable, and therefore quite straightforwardly implemented. There are sev-

eral ways to improve the efficiency (and hence scalability) of a solver, at the cost of lost

intuitiveness [43].
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D. Boundary conditions

Boundary conditions are among the few components of Bernaise which are implemented

as classes. Physical boundary conditons may consist of a combination of Dirichlet and Neu-

mann (or Robin) conditions, and the latter must be incorporated into the variational form.

The boundary conditions are specified in the specific problem script, while the variational

form is set up in the solver. To promote code reuse, keeping the physical boundary condi-

tions accessible from the problems side, and simultaneously independent of the solver, the

various boundary conditions are stored as classes in a separate module. The boundaries

themselves should be set by the user within the problem. By importing various boundary

condition classes from common/bcs.py, the boundary conditions can be inferred at user-

specified boundaries.

Within the bcs module, the base class GenericBC is defined. The boolean member func-

tions is dbc and is nbc specifies, respectively, whether the concrete boundary conditions

impose a Dirichlet and Neumann condition, and both return false by default. The base class

is inherited by various concrete boundary conditon classes, and by overloading these two

member functions, the member functions dbc or nbc are respectively called at appropriate

times in the code. There is a hierarchy of boundary conditions which inherit from each

other. Some of the boundary conditions currently implemented in Bernaise are:

• GenericBC: Base class for all boundary conditions.

– Fixed: Dirichlet condition, applicable for all fields.

∗ NoSlip: The no-slip condition—a pure Dirichlet condition with the value 0,

applicable for velocity.

∗ Pressure: Constant pressure boundary condition—adds a Neumann condi-

tion to the velocity, i.e. a boundary term in the variational form.

– Charged: A charged boundary—a Neumann conditon intended for use with the

electric potential V .

– Open: An open boundary—a Neumann condition is applied.

We note that when a no-flux condition is to be applied, no specific boundary condition class

needs to be supplied, since the boundary term in the variational form then disappears (in

particular when considering conservative PDEs).
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As an example, we show in Listing 4 the create bcs function within the

charged droplet case. Here, the boundaries Wall, Left, etc., are defined in the standard

Dolfin way as instances of a SubDomain class.

def create_bcs(field_to_subspace, Lx, Ly, solutes, V_left, V_right,

enable_NS, enable_PF, enable_EC,

**namespace):

""" The boundary conditions are defined in terms of field. """

boundaries = dict(

wall=[Wall(Lx)],

left=[Left()],

right=[Right(Lx)]

)

noslip = Fixed((0., 0.))

bcs = dict()

bcs_pointwise = dict()

bcs["wall"] = dict()

bcs["left"] = dict()

bcs["right"] = dict()

if enable_NS:

bcs["wall"]["u"] = noslip

bcs["left"]["u"] = noslip

bcs["right"]["u"] = noslip

bcs_pointwise["p"] = (0., "x[0] < DOLFIN_EPS && x[1] < DOLFIN_EPS")

if enable_EC:
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bcs["left"]["V"] = Fixed(V_left)

bcs["right"]["V"] = Fixed(V_right)

return boundaries, bcs, bcs_pointwise

Listing 4: The create bcs function within the charged droplet case.

E. Post-processing

An additional module provided in Bernaise is the post-processing module. It operates

with methods analogously to how the main Bernaise script operates with problems. The base

script postprocess.py pulls in the required method and analyses or operates on a specified

folder. The methods are located in the folder analysis scripts/ and new methods can be

implemented by users by adding scripts to this folder.

To exemplify its usage, we consider a method to analyse the temporal development of

the energy. This is done by navigating to the root folder and calling

>> python postprocess.py method=energy_in_time folder=results_charged_droplet/1/

where we assume that the output of the simulation, we want to analyse, is found in the

folder results charged droplet/1/. The analysis method energy in time above can, of

course, be exchanged with another method of choice. A list of available methods can be

produced by supplying the help argument from a terminal call:

>> python postprocess.py -h

Similar to the problems submodule, the methods are implemented by overloading a set of

routines, where default routines are found in analysis scripts/ init .py. The routines

required to implement an analysis method are the following:

• description: routine called when a question mark is added to the end of the method

name during a call from the terminal, meant to obtain a description of the method

without having to inspect the code.

• method: the routine that performs the desired analysis.
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The implementation hinges on the TimeSeries class (located in utilities/TimeSeries.py),

which efficiently imports the XDMF/HDF5 data files and the parameter files produced by

a Bernaise simulation. Several plotting routines are implemented in utilities/plot.py,

and these are extensively used in various analysis methods.

V. VALIDATION

With the aim of using Bernaise for quantitative purposes, it is essential to establish that

the schemes presented in the above converges to the correct solution—in two senses:

• The numerical schemes should converge to the correct solution of the phase-field model.

• The solution of the phase-field model should converge to the correct sharp-interface

equations [86].

Unless otherwise stated, we mean by convergence that the error in all fields χ should behave

like,

‖χ− χe‖h ∼ Chh
kh + Cττ

kτ (57)

where ‖·‖h is an L2 norm, χ is the simulated field, χe is the exact solution, h is the mesh

size, τ is the time step, kh is the order of spatial convergence, kτ is the order of temporal

convergence (kτ = 1 in this work), and Ch and Cτ are constants.

In the following, we present convergence test in three cases. Firstly, in the limiting case

of a stable bulk intrusion without electrochemistry, an analytical solution is available to

test against. Secondly, using the method of manufactured solution, convergence of the full

two-phase EHD problem to an augmented Taylor–Green vortex is shown. Thirdly, we show

convergence towards a highly resolved reference solution for an electrically driven charged

droplet.

We note that the aim of Bernaise is to solve coupled multi-physics problems, and while

the solvers may contain subtle errors, they may be negligible for many applications, and

dominant only in limiting cases. In addition to testing the whole, coupled multi-physics

problem of two-phase EHD, a proper testing should also consider simplified settings where

fewer physical mechanisms are involved simultaneously. A brief discussion of testing and

such reduced models is given in Appendix C. In this section, we show the convergence of
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the schemes in a few relevant cases, which we believe represent the efficacy of our approach.

Tests of simplified-physics problems are found in the GitHub repository [84].

A. Stable bulk intrusion

A case where an analytic solution is available, is the stable intrusion of one fluid into

another, in the absence of electrolytes and electric fields. A schematic view of the initial

set-up is shown in Fig. 2. A constant velocity v = v0x̂ is applied at both the left and right

sides of the reservoir, and periodic boundary conditions are imposed at the perpendicular

direction. We shall here consider the convergence to the solution of the phase-field equa-

tion, i.e. retaining a finite interface thickness ε. This effectively one-dimensional problem is

implemented in problems/intrusion bulk.py.

L
y

=
1

Lx = 5

oil: ρo, µo, εo

v = 0.10 x̂

periodic boundary

water: ρw, µw, εw

Li = 1

FIG. 2: Schematic set-up of the stable bulk flow intrusion test case. Here, the ‘water’

(subscript w) displaces the ‘oil’ (subscript o). At the left and right boundaries, a constant

velocity is prescribed.

Due to the Galilean invariance, we expect the velocity field to be uniformly equal to the

inlet and outlet velocities, i.e. v(x, t) = v0x̂. The exact analytical solution for the phase

field is given by

φ(x, t) = tanh

(
x− x0 − v0t√

2ε

)
, (58)
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for which we shall consider the error norm. Note that the only parameters this analytical

solution depends on are the initial position of the interface x0, the injection velocity v0,

and the interface width ε. We consider the parameters ρ1 = ρ2 = 1000, µ1 = 100, µ2 = 1,

σ = 2.45, ε = 0.03, M(φ) = M0 = 2 · 10−5, x0 = 1, Lx = 5, Ly = 1 and v0 = 0.1.

Fig. 3 shows the convergence to the analytical solution with regards to temporal resolu-

tion. The order of convergence is consistent with the order of the scheme, indicating that

the scheme is appreciable at least in the lack of electrostatic interactions.
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FIG. 3: Convergence in time for the case of stable intrusion. The mesh size is held fixed

at h = 0.0039. Left: We show the phase field interpolated at equidistant points along the

centerline for increasing temporal resolution. The solid black line is the analytical solution.

Right: The integrated L2 norm of the phase field plotted against time step. The solid

black line shows the theoretical convergence order of the scheme (∼ τ). As can be seen

from the figure, it displays close to ideal scaling.

Fig. 4 shows the convergence of the phase field with regards to the spatial resolution.

The scheme is seen to converge at the theoretical rate, ∼ h2.

B. Method of manufactured solution: a two-phase electrohydrodynamic Taylor–

Green vortex

Having established convergence in the practically one-dimensional case, we now consider

a slightly more involved setting where we use the method of manufactured solution to obtain

a quasi-analytical test case.

The Taylor–Green vortex is a standard benchmark problem in computational fluid dy-
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FIG. 4: Convergence in space for the case of stable intrusion. The time step is held fixed

at τ = 0.0025. Left: Phase field interpolated at equidistant points along the centerline for

increasing spatial resolution. Right: The L2 norm of the phase field is plotted against

mesh resolution. The solid black line shows the theoretical convergence order (∼ h2).

namics because it stands out as one of the few cases where exact analytical solutions to the

Navier–Stokes equations are available. However, in the case of two-phase electrohydrody-

namics, the Navier–Stokes equations couple to both the electrochemical and the phase field

subproblems. In Ref. [76] the authors augmented the Taylor–Green vortex with electrohy-

drodynamics, and in this work we supplement the latter with a phase field and non-matching

densities of the two phases.

We consider the full set of equations on the domain Ω = [0, 2π] × [0, 2π], where all

quantities may differ in the two phases. The two ionic species have opposite valency ±z.

The fields are given by

u = U(t)(x̂ cosx sin y − ŷ sinx cos y), (59a)

p = −
∑

mn

Pmn(t) cos(2mx) cos(2ny), (59b)

φ = Φ(t) cosx cos y, (59c)

c± = c0(1± cosx cos y C(t)), (59d)

V =
zc0C(t)

ε
cosx cos y. (59e)

32



Here, the time-dependent coefficients are given by

U(t) = U0 exp

(
−2µ̄

ρ̄
t

)
, (60)

C(t) = C0 exp
(
−2D̄

(
1 +

c0

ε̄

)
t
)
, (61)

Φ(t) = Φ0 exp

(
−2Mσ̃

(
2ε− 1

ε

)
t

)
, (62)

where U0, C0 and Φ0 are scalars, and

Pmn =





Q1(t) +Q2(t) for (m,n) ∈ {(0, 1), (1, 0)},

Q2(t) for (m,n) ∈ {(1, 1)},

0 otherwise.

(63)

where

Q1 =
1

4
ρU2

0 (t), and Q2 =
z2c2

0C
2(t)

4ε
. (64)

Further, a bar indicates the arithmetic average over the value in the two phases, i.e. χ̄ =

(χ1 + χ2)/2 for any quantity χ, and D̄ = (D̄+ + D̄−)/2 = (D+,1 + D+,2 + D−,1 + D−,2)/4

is the arithmetic average over all diffusivities. The time-dependent boundary conditions

are set by prescribing the reference solutions at the boundary of Ω for all fields given in

(59a)–(59e), except the pressure p, which is set (to the reference value) only at the corner

point (x, y) = (0, 0). The method of manufactured solution now consists in augmenting the

conservation equations (17), (19), (20) and (21) by appropriate source terms, such that the

reference solution (59a)–(59e) solves the system exactly. These source terms were computed

in Python using the Sympy package, and are rather involved algebraic expressions. The

expressions are therefore omitted here, but can be found as a utility script in the Bernaise

package. Note that in the special case of single-phase flow without electrodynamics, i.e. φ ≡ 1

and z = 0, we retrieve the classic Taylor–Green flow (with a passive tracer concentration

field), where all artificial source terms vanish.

We consider now the convergence towards the manufactured solution. We let the grid

size ∆h ∈ [2π/256, 2π/16] and the time step τ ∈ [0.0001, 0.01], and evaluate the solution

at the final time T = 0.1. The parameters for two phases used the simulation are given in

Table I, while the non-phase specific parameters are given in Table II. Note that in order

to test all parts of the implementation, all parameters are kept roughly in the same order

of magnitude. When all the physical processes are included, the manufactured solution
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TABLE I: Phasic parameters used in the Taylor–Green simulations.

Parameter Symbol Value in phase 1 Value in phase 2

Density ρ 3 1

Viscosity µ 3 5

Permittivity ε 3 4

Cation diffusivity D+ 3 1

Anion diffusivity D− 4 2

Cation solubility β+ 2 −2

Anion solubility β− 1 −1

TABLE II: Non-phase-specific parameters used in the Taylor–Green simulations.

Parameter Symbol Value

Surface tension σ 0.1

Interface thickness ε 1/
√

2

Phase field mobility M 1

Initial velocity U0 1

Initial concentration c0 1

Initial phase field Φ0 1

Initial conc. deviation C0 0.5

becomes an increasingly bad approximation and thus the resulting source terms become

large. Thus, in order to avoid numerical instabilities, it was necessary to evaluate the error

at a relatively short final time T . However, it should be enough to locate errors in most

parts of the code.

We plot the L2 errors of all the fields as a function of the grid size h in Fig. 5. In these

simulations, we used a small time step τ = 0.0001 to rule out the contribution of time

discretization to the error, cf. Eq. (57). It is clear that the spatial convergence is close to

ideal for all fields, indicating that the scheme approaches the correct solution. The pressure

p displays slightly worse convergence and higher error norm than the other fields, which may
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be due to the pointwise way of enforcing the pressure boundary condition (all other fields

have Dirichlet conditions on the entire boundary).
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FIG. 5: Convergence in space for the two-phase electrohydrodynamic Taylor–Green

manufactured solution. The solid black line shows the theoretical convergence rate based

on the order of the finite elements chosen (∼ h2). All fields display close to ideal

convergence.

In Fig. 6, we plot the L2 errors of the same fields as in Fig. 5, but as a function of the

time step τ . In the simulations plotted here, we used a fine grid resolution with h = 2π/256

to rule out the contribution of spatial discretization to the error, cf. Eq. (57). Clearly, first

order convergence is achieved for sufficient refinement, for all fields including the pressure.

C. Droplet motion driven by an electric field

We now consider a charged droplet moving due to an imposed electric field; a problem for

which there is no analytical solution available. However, by comparing to a highly resolved

numerical solution, convergence for the fully coupled two-phase electrohydrodynamic prob-

lem can be verified. This problem has already been partly presented in the above, and is

implemented in problems/charged droplet.py. A sketch showing the initial state is shown

in Fig. 7. We consider an initially circular droplet, where a positive charge concentration is

initiated as a Gaussian distribution, with variance δ2
c , in the middle of the droplet. In this

set-up, we consider only a single, positive species. The total amount of solute, i.e. integrated
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FIG. 6: Convergence in time for the two-phase electrohydrodynamic Taylor–Green

manufactured solution. The solid black line shows the theoretical convergence rate of the

scheme (∼ τ 1). All fields display close to ideal convergence.

concentration, is C0 =
∫

Ω
c0 dA. The left wall of the reservoir is kept at a positive potential,

V = ∆V , while the right wall is grounded, V = 0. The top and bottom walls are assumed to

be perfectly insulating, i.e. a no-flux condition is applied on concentration fields and electric

fields, and a no-slip condition is applied on the velocity. The fluid surrounding the droplet

is neutral, and its parameters are chosen such that the solute is only very weakly soluble

in the surrounding fluid, and the diffusivity here is very low here to prevent leakage. The

droplet is accelerated by the electric field towards the right, before it is slowed down due to

viscous effects upon approaching the wall.

With regards to reproducing the sharp-interface equations, we consider now the case of

reducing the interface thickness ε → 0. To this end, we keep the ratio h/τ between mesh

size and time step fixed, and further we keep the interface thickness ε proportional to h.

The latter spans roughly 3-4 elements. Since the interface thickness ε changes, an important

parameter in the phase-field model changes, which couples back to the equations, and thus

the L2 norm does not necessarily constitute a proper convergence measure. We therefore

resort to using the picture norm or contour of the droplet as a measure, i.e. the zero-level set

of the phase field φ = 0. In particular, we will consider two observables: circumference and

the center of mass (along x) of the droplet, as a function of resolution. A similar approach

was taken for the case of phase-field models without electrodynamics by Aland and Voigt

36



σe = 0

σe = 0

V
=

10

+

L
y

=
1

Lx = 2

oil: ρo, µo, εo

water: ρw, µw, εw

positive ions

R = 0.25

R

R

FIG. 7: Schematic set-up of the test case of droplet motion driven by an electric field.

The ‘water’ droplet contains positive ions and is driven by the electric field set up between

the high potential on the left wall and the grounded right wall.

[67] who compared their benchmarks to sharp interface results by Hysing et al. [66].

The resolutions used in our simulations are given in Table III. In order not to have to

adjust the phase field mobility when refining, whilst still expecting to retrieve the sharp-

interface model in the limit ε → 0, we choose the phase field mobility given by (33b). All

parameters for the phasic quantities are given in Table IV, while the remaining parameters

are given in Table V. From these parameters, using the unit scaling adopted in this paper,

we find an approximate Debye length λD =
√
ε/(2z2cR) '

√
1/(2 · 10) ' 0.2 (see Section

B 2 in the Appendix for this expression), since we can approximate the order of magnitude

of cR < C/(πR2) = 10/(π · 0.252) for a moderate screening.

In Fig. 8, we show the contour of the driven droplet at two time instances t = 4 and t = 8,

and compare increasing resolution (simultaneously in space, time and interface thickness).

Qualitatively inspecting the contours by eye, the droplet shapes seem to converge to a

well defined shape with increasing resolution at both time instances. However, qualitive

comparison is clearly not enough to assess the convergence. As in Refs. [66, 67], we define

three observables:
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TABLE III: Numerical parameters that vary with resolution in the charged droplet

simulations: Mesh size h, time step τ , and interface thickness ε.

h τ ε

0.04 0.04 0.06

0.02 0.02 0.03

0.01 0.01 0.015

0.005 0.005 0.0075

0.0025 0.0025 0.00375

TABLE IV: Numerical parameters for the phases that are common for all charged droplet

simulations.

Parameter Symbol Value, phase 1 Value, phase 2

Density ρ 200.0 100.0

Permittivity ε 1.0 1.0

Diffusivity D 1 · 10−5 (' 0) 0.001

Solubility β 4.0 1.0

Viscosity µ 10.0 1.0

TABLE V: Numerical parameters not specific to phase for the charged droplet simulations.

Parameter Symbol Value

Potential difference ∆V 10.0

Integrated concentration C0 10.0

Phase field mobility coeff. M0 1.5 · 10−5

Initial droplet radius R 0.25

Initial conc. std. dev. δc 0.0833

Surface tension σ 5.0

Length in x-direction Lx 2.0

Length in y-direction Ly 1.0
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FIG. 8: Shape comparison of electrically driven charged droplet at two time instances.

The effect of the four resolutions given in Table III is shown. The legend shown in the

figure refers to both spatial (h) and temporal resolution (τ).

• Center of mass: We consider the center of mass of the dispersed phase (phase 2,

i.e. φ < 0),

xCM =

∫
φ<0

x dA∫
φ<0

dA
, (65)

where we approximate the integral over the droplet (phase 2) by
∫
φ<0

(·) dA =
∫

Ω
(1−

φ)(·)/2 dA.

• Drift velocity: Similarly as above, the velocity at which the droplet is driven is mea-

sured by

V =

∫
φ<0

u · x̂ dA∫
φ<0

dA
. (66)

• Circularity: Defined as the ratio of the circumference of the area-equivalent circle to

the droplet circumference,

C =
2
√
π
∫
φ<0

dA

`
. (67)

.

The circumference ` and the integrals are computed by the post-processing method geometry in time

which is built into Bernaise.

Fig. 9 shows the three quantities as a function of time for increasing resolution. (Here we

have omitted the coarsest resolution h = 0.04 for visual clarity.) The curves seem to converge
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towards well-defined trajectories with resolution. For a more quantitative comparison, we
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FIG. 9: Observable quantities as a function of time. Increasing resolutions (spatial and

temporal) are compared.

define the time-integrated error norm,

‖e‖p =

(∫ T
0
|qref(t)− q(t)|p dt
∫ T

0
|qref(t)|p dt

)1/p

(68)

for a given quantity q. We can compute an empirical convergence rate of this norm,

kp,i =
log
(
‖e‖p (hi+1)/‖e‖p (hi)

)

log (hi+1/hi)
(69)

for two successive resolutions (hi+1 > hi). Here we shall consider the L2 error norm in time,

i.e. p = 2, and in practice we compute the integrals in time by cubic spline interpolation of
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TABLE VI: Mesh size h, error norm ‖e‖2, and empirical convergence rate k2 for increasing

grid refinement, assuming the solution for the finest resolution to be exact.

h ‖e‖2 k2

Center of mass

0.04 0.1798

0.02 0.0955 0.9129

0.01 0.0410 1.2186

0.005 0.0126 1.7033

Drift velocity

0.04 0.3427

0.02 0.2067 0.7293

0.01 0.1032 1.0025

0.005 0.0341 1.5932

Circularity

0.04 0.0891

0.02 0.0423 1.0757

0.01 0.0205 1.0467

0.005 0.0060 1.7612

measurement points saved at every 5 time steps. There is no exact solution, or reference

high-resolution sharp-interface solution available for this set-up. However, if we now assume

that the finest resolution is the exact solution, and use this as the reference field in Eq. (68),

we can compute error norms and convergence rates. These values are reported in Table VI.

The computed convergence rates increase for all three observables and reach 1.6–1.7 with

increasing resolution, indicating also quantitatively a convergence that is in agreement with

the anticipated convergence rate. Considering Eq. (57), from the temporal discretization,

we expect k2 ' 1, and from the spatial k2 ' 2. Depending on which term contributes most

to the error, we will measure either of these rates. The values measured here indicate that

both terms may be comparable in magnitude; however if we instead of using directly the

finest solution as reference, extrapolated the trajectories further, we would presumptively
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TABLE VII: Phasic parameters for the simulations of shear flow over a dead-end pore.

The subscript ± indicates the value for both the positive and negative ions.

Parameter Symbol Value in phase 1 Value in phase 2

Viscosity µ 1.0 1.0

Density ρ 10.0 10.0

Permittivity ε 1.0 1.0

Solution energy β± 4 1

Ion mobility D± 0.0001 0.01

have achieved lower convergence rates. This might indicate that the convergence error is

eventually dominated by the temporal discretization, cf. Eq. (57).

VI. APPLICATIONS

A. Oil extrusion from a dead-end pore

Here, we present a demonstration of the method in a potential geophysical application.

We consider a shear flow of one phase (“water”) over a dead-end pore which is initially

filled with a second phase (“oil”). The water phase contains initially a uniform concen-

tration of positive and negative ions, c±|t=0 = c0, and the water–oil interface is modelled

to be impermeable. The simulation of the dead-end pore is carried out to preliminarily

assess the hypothesis that electrowetting could be responsible for the increased expelling

of oil in low-salinity enhanced oil recovery. The problem set-up is schematically shown

in Fig. 10. The phasic parameters used in the simulations are given in Table VII, and

the remaining parameters are given in Table VIII. This problem is implemented in the file

problems/snoevsen.py.

To investigate the effect of including electrostatic interactions, we show in Fig. 11 instan-

taneous snapshots of simulations with and without surface charge at different times. The

left column, Figs. 11(a), 11(c), and 11(e), shows the results for vanishing surface charge,

and the right column, Figs. 11(b), 11(d), and 11(f), shows the results for a surface charge

of σe = −10.
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FIG. 10: A schematic depiction of the “dead-end pore” geometry, with the appropriate

boundary conditions for the problem and specified initial conditions for the phase field.

The geometry is specified by the two lengths Lx, Ly, and the radius R used to define the

dead-end pore in the center of the channel by a circle and a circular smoothed inlet. The

roman numerals indicate the phase, along with the tone of gray. The darker phase is the

oil-like phase (I), and the lighter one is the water-like phase (II).

For the uncharged case, the frames that are shown are almost indistinguishable. In fact,

the main difference is the numerical noise of the total charge, which is due to roundoff errors

of machine precision. The initial dynamics of the oil plug interface, which is to equilibrate

with the neutral contact angle and the shear flow, mainly happens before the first frame

presented; compare Figs. 10 and 11(a).

A markedly different behavior is displayed in the right column, Figs. 11(b), 11(d), and

11(f), where a uniform surface charge density is enforced the walls at the simulation start,

t = 0. Here, we see first that two tongues are intruding on both sides of the droplet, which

push the droplet out into the center of the dead-end pore. The process is continued, as

shown in the second frame, and finalized, as shown in the third frame, with the complete

release of the droplet as the two tongues meet at the bottom of the dead-end pore, cutting
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TABLE VIII: Simulation parameters for the simulations of shear flow over a dead-end

pore.

Parameter Symbol Value

Length Lx 3.0

Height Ly 1.0

Total simulation time T 20

Radius R 0.3

Time step τ 0.01

Resolution h 1/120

Interface thickness ε 0.02

Phase field mobility M0 2.5 · 10−6

Surface tension σ 2.45

Surface charge σe {−10, 0}

Reference concentration c0 2

Shear velocity utop 0.2

the final contact point.

With these simulations, we have demonstrated the effects when a surface charge couples

to hydrodynamics. This has lead to the observation that oil phase, on a larger scale than

the Debye length, behaves like it is completely dewetting even when we locally enforce a

neutral contact angle.

B. 3D simulations of droplet coalescence and breakup in an electric field

Finally, to demonstrate the ability of Bernaise to simulate 3D configurations, we present

simulations of two oppositely charged droplets that coalesce. In order to achieve this ef-

ficiently, a fully iterative solver was implemented. The solver consists of a fractional step

version of the basic solver, in the sense that within the fluid flow step, it splits between

the velocity and pressure computations, as shown in Eqs. (56a), (56b), and (56c). The

splitting introduces a weak compressibility which suffices to stabilize the problem [80] (with

44



respect to the BB condition) and thus we can use P1 finite elements also for the velocity.

The combination of fewer degrees of freedom and the applicability of iterative linear solvers

imparts significant speed-up compared to coupled solvers, which is of paramount impor-

tance for 3D simulations. This yields advantages over solvers which rely on a mixed-element

formulation of the hydrodynamic subproblem [71]. The detailed analysis of the fractional

step solver will be published in a separate paper, but the implementation can be found in

solvers/fracstep.py. For solving the linear systems iteratively, we use an algebraic multi-

grid (AMG) preconditioner and a generalized minimal residual (GMRES) linear solver for

the electrochemical and the pressure correction step; Jacobi preconditioner (Jacobi) and a

stabilized bi-conjugate gradient method (BiCGStab) for the velocity prediction, and Jacobi

and GMRES for the velocity correction. For the phase field we use Jacobi and a conjugate

gradient method.

To prevent leakage of ions out of the two coalescing droplets, a weighted geometric mean

was used for the diffusivities:

Kj(φ) = K
1+φ
2

j,1 ·K
1−φ
2

j,2 , (70)

instead of the arithmetic mean (25) used in most of the article.

We consider a setup of two initially spherical droplets in a domain Ω = [0, Lx]× [0, Ly]×
[0, Lz]. The droplets are centered at (Lx/2, Ly/2, (Lz ± Lx)/2) and have a radius R. The

lower droplet (along the z-axis) is initialized with a Gaussian concentration distribution of

negative ions (z− = −1), whereas the upper droplet is initialized with positive ions (z+ = 1).

The average concentration of the respective ion species within each droplet is c0, such that

the total charge in the system is zero, and the initial spread (standard deviation) of the

Gaussian distribution is R/3. A potential V0 is set on the top plane at z = Lz and the

bottom plane at z = 0 is taken to be grounded. We assume no-slip and no-flux conditions

on all boundaries, except for the electrostatic potential V at the top and bottom planes, and

the fluid is taken to be in a quiescent state at the initial time t = 0. The phasic parameters

used in the simulations are given in Table IX, and the remaining parameters are given in

Table X. The problem is implemented in the file problems/charged droplets 3D.py.

Fig. 12 shows snapshots from the simulations at several instances of time. As seen

from the figure, the droplets are set in motion towards each other by the electric field and

collide with each other. Subsequently, the unified droplet is stretched, until it touches both

electrodes. The middle part then breaks off, and as it is unstable, it further emits droplets
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TABLE IX: Phasic parameters for the simulations of droplet coalescence and breakup in

an electric field. The subscript ± indicates the value for both the positive and negative

ions.

Parameter Symbol Value in phase 1 Value in phase 2

Viscosity µ 1.0 0.5

Density ρ 500.0 50.0

Permittivity ε 1.0 2.0

Solution energy β± 2 0

Ion mobility D± 0.0001 0.1

TABLE X: Simulation parameters for the simulations of droplet coalescence and breakup

in an electric field.

Parameter Symbol Value

Length along x Lx 1.0

Length along y Ly 1.0

Height Lz 2.0

Total simulation time T 20

Initial radius R 0.2

Time step τ 0.005

Resolution h 1/64

Interface thickness ε 0.01

Phase field mobility M0 1 · 10−5

Surface tension σ 2.0

Initial avg. concentration c0 20.0

that are released to two two sides. Finally, two spherical caps form at each electrode, and a

neutral drop is left in the middle, due to the initial symmetry. Similar behaviour has been

observed in axisymmetric simulations (e.g. [87]).

We finally carry out a strong scaling test of the linear iterative solver on a single in-house
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server with 80 dedicated cores. The results of average computational time per time step (av-

eraged over 10 time steps) versus number of cores are shown in Fig. 13. We show here the

amount of time spent per time step for all substeps in order to illuminate where most of the

computational resources are spent. As can be seen, a significant portion of the computational

time is spent on the electrochemical substep. Overall, the solver displays sublinear scaling

with the number of cores, but the results are promising given that neither the solver nor

the FEniCS install (a standard PPA install of FEniCS 2017.2.0 on Ubuntu 16.04 server) are

fully optimized. Much could be gained by improving the two steps where solving a Poisson

equation is involved; in particular it seems possible that more specifically tailored precon-

ditioners than the straightforward AMG preconditioning could impart speedup. However,

we stress that the division of labour between the steps is highly problem-dependent, and

in particular, the electrochemical subproblem is susceptible to how far into the non-linear

regime we are (see e.g., [45]).

VII. DISCUSSION AND CONCLUSION

We have in this work presented Bernaise, a flexible open-source framework for simulating

two-phase electrohydrodynamics in complex geometries using a phase-field model. The

solver is written in its entirety in Python, and is built on top of the FEniCS/DOLFIN

framework [42, 88] for solving partial differential equations using the finite element method

on unstructured meshes. FEniCS in turn interfaces to, e.g., scalable state-of-the art linear

solvers through its PETSc backend [89]. We have proposed a linear operator-splitting scheme

to solve the coupled non-linear equations of two-phase electrohydrodynamics. In contrast

to solving the equations directly in a monolithic manner, the scheme sequentially solves

the Cahn–Hilliard equation for the phase field describing the interface, the Poisson–Nernst–

Planck equations for the electrochemistry (solute transport and electrostatics), and the

Navier–Stokes equations for the hydrodynamics, at each time step. Implementation of new

solvers and problems has been demonstrated through representative examples. Validation

of the implementation was carried out by three means: (1) By comparison to analytic

solutions in limiting cases where such are available, (2) by the method of manufactured

solution through an augmented Taylor–Green vortex, and (3) through convergence to a

highly resolved solution of a new two-phase electrohydrodynamics benchmark problem of
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an electrically driven droplet. Finally, we have presented applications of the framework in

non-trivial settings. Firstly, to test the applicability of the code in a complicated geometry,

and to illuminate the effects of dynamic electrowetting, we simulated a shear flow of water

containing an electrolyte over a dead-end pore initially filled with oil. This problem is

relevant from a geophysical standpoint, and exemplifies the potential of the method to

simulate the dynamics of the interaction between two-phase flow and electric double layers.

Secondly, the ability of the framework to simulate three-dimensional configurations was

demonstrated using a fully iterative version of the operator-splitting scheme, by simulating

the coalescence and subsequent breakup of two oppositely charged droplets in an electric

field. The parallel scalability of the latter solver was tested on in-house computing facilities.

The results presented herein underpin our aim that Bernaise can become a valuable tool

both within the micro- and nanofluidics community and within geophysical simulation.

There are several possible avenues for further development and use of Bernaise. With re-

gards to computational effort, the linear operator-splitting scheme constitutes a major com-

putational improvemnt over a corresponding monolithic scheme. For the resulting smaller

and simpler subproblems, more specialized linear solvers and preconditioners can be used.

However, the implementation of the schemes are still not fully optimized, as in many cases

it is not strictly necessary to reassemble entire system matrices (multiple times) at every

time step. Using ideas e.g. from Ref. [43] on how to effectively preassemble system matrices

in FEniCS, one could achieve an implementation that is to a larger extent dominated by

the backend linear solvers. However, as the phase field is updated at every time step, there

may be less to gain in performance than what was the case in the latter reference.

With regard to solving the Navier–Stokes equations, the solvers considered herein either

rely on a coupled solution of the (the basic and basicnewton solvers) or a fractional step

approach that splits between the computations of velocity and pressure (the fracstep solver

that was considered in Sec. VI B). Using direct linear solvers, the coupled solvers yield

accurate prediction of the pressure and can be expected to be more robust. However,

direct solvers have numerical disadvantages when it comes to scalability, and Krylov solvers

require specifically tailored preconditioners to achieve robust convergence. An avenue for

further research is to refine the fracstep solver and develop decoupled energy-stable schemes

for this problem, which seems possible by building on literature on similar systems [68–

71, 76, 78]. The implementation of such enhanced schemes in Bernaise is straighforward, as
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demonstrated in this paper.

A clear enhancement of Bernaise would be adaptivity, both in time and space. Adaptivity

in time should be implemented such that time step is variable and controlled by the globally

largest propagation velocity (in any field), and a Courant number of choice. Adaptivity

in space is presently only supported as a one-way operation. Adaptive mesh refinement is

already used in the mesh initialization phase in many of the implemented problems. However,

mesh coarsening has currently limited support in FEniCS and to the authors’ knowledge

there are no concrete plans of adding support for this. Hence, Bernaise lacks an adaptive

mesh functionality, but this could be implemented in an ad hoc manner with some code

restructuring.

In this article, we have not considered any direct dependence of the contact angle (i.e. the

surface energies) on an applied electric field. However, the contact angle on scales below

the Debye length is generally thought to be unaffected, albeit on scales larger than the

insulator thickness, an apparent contact angle forms [90, 91]. Using the full two-phase

electrohydrodynamic model presented herein, effective contact angle dependencies upon the

zeta potential could be measured and used in simulations of more macroscopic models;

i.e. models admissible on scales where the electrical double layers are not fully resolved.

This would result in a modified contact angle energy that would be enforced as a boundary

condition in a phase field model [92].

Physically, several extensions of the model could be included in the simulation framework.

Surfactants may influence the dynamics of droplets and interfaces, and could be included as

in e.g. the model by Teigen et al. [93]. The model in its current form further assumes that

we are concerned with dilute solutions (i.e., ideal gas law for the concentration), and hence

more complicated electrochemistry could to some extent be incorporated into the chemical

free energy α(c).

Finally, the requirement of the electrical double layer to be well-resolved constitutes the

main constraint for upscaling of the current method. Thus, for simulation of two-phase

electrohydrodynamic flow on larger scales, if ionic transport need not be accounted for, it

would only require minor modifications of the code to run the somewhat simpler Taylor–

Melcher leaky dielectric model, e.g. in the formulation by Lin et al. [61], within the current

framework.
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Appendix A: Electrokinetic scaling of the equations

For completeness, we show here, as in a companion paper [91], how the dimensionless

variable scaling assumed in this paper arises from the equations formulated in physical (e.g.,

SI) units. The scaling results in equations that are easier to work with, but that need to be

scaled back to physical units in order to be e.g., compared to experiments.

For concreteness, we consider the standard Nernst–Planck equation (i.e., dilute solutions)

for solute transport, which in physical units can be written as

∂cj
∂t

+ u ·∇cj = ∇ ·
(
Dj∇cj −

zjqecj
kBT

E

)
, (A1)

where kB is Boltzmann’s constant, T is the temperature, and qe is the elementary charge.

The Poisson equation is in physical units given by

∇ · (ε0εrE) = ρe, (A2)

where the net charge is given by ρe = qe
∑

j cj. The Navier–Stokes equations are given by

the usual

ρ (∂tu + u ·∇u)− µ∇2u + ∇p = −ρe∇V, (A3)

∇ · u = 0. (A4)

Continuity of the normal stress across the interface between the phases can be formulated

as [
2µDu− p′I + σκI + ε0εrE⊗ E− 1

2
ε0εrE

2I
]
· n̂int = 0, (A5)

where p′ is a pressure which has absorbed some extra gradient terms. We introduce now

dimensionless versions of all physical variables, and indicate the dimensionless versions by

a tilde. Further, all reference values are marked with an asterisk. Hence, we let t̃ = t/t∗,

ρ̃ = ρ/ρ∗, ũ = u/u∗, p̃ = p/p∗, µ̃ = µ/µ∗, c̃j = cj/c
∗, Ṽ = V/V ∗, D̃± = D±/D∗, ε̃ = εr/ε

∗,
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and σ̃ = σ/σ∗. All spatial dimensions are scaled by a reference linear size R∗, such that

x̃ = x/R∗. The electrostatic potential V is scaled by a thermal voltage,

V ∗ = VT =
kBT

qe
. (A6)

The other reference values are given by [91]

t∗ =
R∗

u∗
, ρ∗ =

qec
∗VT

(u∗)2
, D∗ = u∗R∗, p∗ = qec

∗VT , (A7)

µ∗ =
qec
∗VTR∗

u∗
, ε∗ =

qec
∗(R∗)2

ε0VT
, σ∗ = qec

∗VTR
∗. (A8)

This constitutes an invertible set of relations between the physical and dimensionless vari-

ables. In particular, adopting the dimensionless variables and subsequently dropping the

tildes, results in the set of equations (A1) to (A5) with qe = kBT = 1 and ε0εr → ε. This is

essentially the scaling adopted in this paper.

Appendix B: Poisson–Boltzmann equation for two phases

Here, we derive a generalized Poisson–Boltzmann equation for the case of two phases, valid

in equilibrium. We are here considering the steady state of the sharp interface equations.

Considering Eq. (3) with ∂t = 0 and v = 0, taking the inner product of it with gcj , and

integrating over the domain Ω, we obtain

∫

Ω

Kijcj|∇gj|2 dΩ =

∫

∂Γ

Kijcjgcj n̂ ·∇gcj dΓ = 0, (B1)

where the last equality holds, since at equilibrium the fluxes must vanish at the boundary

(and hence also in the bulk). Since cj is positive, gcj may not vary. Hence, the electrochemical

potential associated with electrolyte j must satisfy:

gcj = α′(cj) + βij + zjV = Cj, (B2)

where Cj is a constant. We assume that one of the two phases is connected to a reservoir far

away, such that here βij = βR, cj = cR and V = VR. Evaluating Eq. (B2) at the reservoir,

we have

Cj = α′(cR) + βR + zjVR. (B3)
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By defining χ(·) as the inverse function of α′(·), we may combine Eqs. (B2) and (B3) and

invert with respect to cj:

cj = χ (α′(cR) + βR − βij − zj(V − VR)) . (B4)

Hence, by Eq. (7), we obtain a closed equation for V :

∇2V = −ε−1
i

∑

j

zjχ (α′(cR) + βR − βij − zj(V − VR)) , (B5)

with the above boundary conditions at the reservoir. The interface condition between the

phases is [V ]+− = 0, i.e. continuity in V , and the boundary condition at the reservoir is

V = VR. Next, we consider some special cases of this equation.

1. Standard Poisson–Boltzmann

With two symmetric electrolytes, j ∈ {±}, z± = ±z, βij = βi, VR = V and the ideal gas

chemical potential, we have that α′(c) = ln c, χ(a) = ea, and we obtain from Eq. (B5):

∇2V =
2zcR
εi

eβR−βi sinh (zV ) =
sinh (zV )

λ2
D,iz

, (B6)

where we have defined a phase-dependent Debye length λi,D =
√
εie−βR+βi/(2z2cR). Now,

Eq. (B4) yields that the concentration is retrieved by

c± = cRe
βR−βi∓zV . (B7)

a. Linearized

When |zV | � 1, we may expand Eq. (B6) to the first order to obtain the linearized

Poisson–Boltzmann equation:

∇2V =
V

λ2
D,i

. (B8)

In principle, we can also expand Eq. (B7):

c± = cRe
βR−βi (1∓ zV ) , (B9)

so that the total charge density is given by

ρe = −2z2cRe
βR−βiV. (B10)
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2. Net charge

Now we consider the single “net charge” model which was proposed in Ref. [63] and used

in the simulations of Ref. [62]. (Note that these papers redefined the diffusivity to absorb the

net charge, effectively Kijcj → K; but this does not have consequences in the forthcoming.)

Here, we have only one species c1 = ρe with charge z, and α′(c) = λc, such that χ(a) = λ−1a.

We consider the reservoir to be neutrally charged. Further, VR = 0, for simplicity. Eq. (B5)

yields

∇2V =
z2

εiλ

(
V − βR − βi

z

)
, (B11)

and Eq. (B4) becomes

ρe = zλ−1 (βR − βi − zV ) . (B12)

Note that in the case of single-phase flow, Eq. (B11) becomes Eq. (B5) yields

∇2V =
z2

ελ
V = λ−2

D V, (B13)

which is the linearized Poisson–Boltzmann equation (see Sec. B 1), where we have identified

a Debye length λD =
√
ελ/z. Eq. (B12) becomes:

ρe = −λ−1z2V. (B14)

Comparison to (B10) leads us to identify 2cR = λ−1, which yields λD =
√
ε/(2z2cR) in

compliance with the definition in Sec. B 1. Note that even though the equilibrium solution

complies with the linearized, equilibrium Nernst–Planck equation, the dynamics, particularly

with two phases, may differ significantly.

a. Simple case

It is interesting to investigate this equation for a single phase in a finite 1-D geometry,

x ∈ [0, L]. We assume the boundary conditions dV/dx|x=0 = −σe/ε and V |x=L = 0. The

solution is

V = −σe
εk

(sinh kx− tanh kL cosh kx) , (B15)

where k = z/
√
ελ. Thus,

ρe =
z2σe
εkλ

(sinh kx− tanh kL cosh kx) . (B16)
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Hence this form of the chemical potential yields an exact solution. Note however, that there

is in principle no mechanism controlling the sign of ρe, which is natural given that it should

here signify a net charge.

The total charge is

Q =

∫ L

0

ρe dx =
z2σe
εkλ

∫ L

0

(sinh kx− tanh kL cosh kx) dx (B17)

=
z2σe
εk2λ

[cosh kx− tanh kL sinh kx]L0 (B18)

= −σe
[
1− 1

cosh kL

]
, (B19)

which approaches the (negative) applied surface charge in the limit of infinite domain, L→
∞, as it should.

Appendix C: Some considerations on testing and applicability of the framework

To simplify the complexity of the problem, the scheme can be reduced to describe settings

where fewer physical mechanisms are present simultaneously.

• The very simplest is pure single-phase flow, containing only point 4 from the list in

Sec. III.

• Slightly more demanding is single-phase flow with transport of a tracer dye (in the

absence of electric charges and fields), using points 2 and 4.

• More demanding, pure two-phase flow (with unmatched densities and viscosities),

where only points 1 and 4 from the list above enter.

• In the absence of electric charges and external electric potential, two-phase flow with

passive transport of a tracer dye can be modelled, i.e. using the points 1, 2 and 4.

• Time-dependent single-phase EHD can be modelled using points 2, 3 and 4.

• There is also a subtle case where all concentrations ci = 0, but the electric field acts

as a force on the interface of the two-phase flow only due to the jump in permittivity

ε. This includes points 1, 3 and 4.

• Finally, the full-fledged two-phase EHD includes all the points in the list in Sec. III.
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Rigorous testing the solver should therefore follow these steps of increasing complexity.
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[68] F. Guillén-González and G. Tierra, J. Comp. Math. 32, 643 (2014).
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(a) t = 3.0, σe = 0 (b) t = 3.0, σe = −10

(c) t = 6.0, σe = 0 (d) t = 6.0, σe = −10

(e) t = 9.0, σe = 0 (f) t = 9.0, σe = −10

FIG. 11: Oil released from a dead-end pore. We show instantaneous snapshots from the

simulations of the dead-end pore under a shear flow. The black phase is the oil phase,

which does not contain solutes, and the other phase is the water phase, which contains

monovalent positive and negative ions. The color in the lighter phase indicates the local

net charge, red meaning positive charge, blue negative charge, and gray neutral charge.

The color scale is relative to the maximum deviation from neutral charge for an entire

simulation; therefore the neutral simulations display numerical noise (which is of the order

of machine precision). In the left column the surface charge is zero, and in the right

column, a uniform surface charge density σe = −10 is set. The rows show snapshots at

different times t.
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(a) t = 0.0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1.0 (f) t = 1.25 (g) t = 1.5

(h) t = 1.75 (i) t = 2.0 (j) t = 2.25 (k) t = 2.5 (l) t = 2.75 (m) t = 3.0 (n) t = 4.0

FIG. 12: Snapshots from the simulations of droplet coalescence and subsequent breakup

in an electric field. The phase boundary shows the φ = 0 isosurface of the phase field. The

coloring indicates charge: red is positive and blue is negative. The color bar goes from -20

(deep blue) to 20 (deep red). The quivers show the velocity field in the x = 0.5 plane

(color indicates intensity).

61



1

10

100

1000

10000

1 10 100

C
om

pu
ta
ti
on

al
ti
m
e
[s
]

Number of cores N

Predict velocity
Correct pressure
Correct velocity
Electrochemistry

Phase field
Total
Ideal

FIG. 13: Strong scaling test. We show computational time per timestep versus number of

processor cores for the coalescence and breakup of droplets in 3D. The results are averaged

over the 10 first timesteps for simulations with 128× 128× 256 = 4194304 degrees of

freedom, with a time step τ = 0.02.
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The wetting properties of immiscible two-phase systems are crucial in applications ranging from laboratory-
on-a-chip devices to field-scale oil recovery. It has long been known that effective wetting properties can be altered
by the application of an electric field; a phenomenon coined as electrowetting. Here, we consider theoretically
and numerically a single droplet sitting on an (insulated) conductor, i.e., within a capacitor. The droplet consists
of a pure phase without solutes, while the surrounding fluid contains a symmetric monovalent electrolyte, and
the interface between them is impermeable. Using nonlinear Poisson-Boltzmann theory, we present a theoretical
prediction of the dependency of the apparent contact angle on the applied electric potential. We then present
well-resolved dynamic simulations of electrowetting using a phase-field model, where the entire two-phase
electrokinetic problem, including the electric double layers (EDLs), is resolved. The simulations show that, while
the contact angle on scales smaller than the EDL is unaffected by the application of an electric field, an apparent
contact angle forms on scales beyond the EDL. This contact angle relaxes in time towards a saturated apparent
contact angle. The dependency of the contact angle upon applied electric potential is in good agreement with
the theoretical prediction. The only phenomenological parameter in the prediction is shown to depend on the
permeability ratio between the two phases. Based on the resulting unified description, we obtain an effective
expression of the contact angle which can be used in more macroscopic numerical simulations, i.e. where the
electrokinetic problem is not fully resolved.

DOI: 10.1103/PhysRevE.98.013101

I. INTRODUCTION

Precisely controlling the effective wetting properties of
droplets in immiscible two-phase flows is desirable in many
applications [1,2], from fabricating microfluidic devices [3–5]
and electronic displays [6–9] to understanding the microscopic
dynamics of enhanced oil recovery, which has field-scale
consequences [10–14]. Lippmann already in the 19th century
[15,16] laid the groundwork for the field of electrowetting, by
making the observation that applying an electric field indeed
can change the wetting behavior of conductive liquid-liquid
systems. The dependence of the contact angle θ on the applied
electric potential V0 could be described by a quadratic law,

cos θ = cos θ0 + 1
2BV 2

0 , (1)

where θ0 is the contact angle in the absence of electrical fields,
and B is a phenomenological parameter. Eq. (1) can also be
inferred from Gibbs’ adsorption isotherm [17,18].

Theoretical and experimental works have explained the
basic mechanisms of electrowetting, particularly in the case
of conducting liquids [16,19] separated from a conductor by
a thin insulating layer. This concept of electrowetting-on-
dielectric (EWOD) was pioneered by Berge [20,21], and such
devices have an operating voltage of 10–20 V [22]. Careful
experiments have shown that the contact angle described
by Eq. (1) is a macroscopic effect, apparent only on scales

*linga@nbi.dk
†mathies@nbi.dk

beyond the insulator thickness [23]. Two notable remaining
open issues within electrowetting are (1) the dynamics of
the contact line [24], and (2) the effect of electrolytes in
either of the phases on the wetting properties [19]. The latter
point was explored theoretically by Monroe et al. [17,25],
who considered interfaces between two immiscible electrolytic
solutions (ITIES), and obtained a transcendental expression for
the contact angle of a droplet sitting on an isolated, grounded
plate using an energy minimization approach. In contrast to
conventional EWOD systems, the phases in ITIES systems
contain ions which cannot pass over to the other phase (nor to
the plate). The apparent contact angle in the case of conductive
liquids can only become more acute with the application of
a potential, while the latter work showed that contact angles
in the presence of electrolytes (and in the absence of flow)
could become both obtuse or acute depending on the con-
centrations, permittivities, and applied potential. Moreover,
both theory and experiments [22] suggest that such electrolytic
ITIES systems could operate on voltages in the range of 10–
1000 mV, i.e., 1–2 orders of magnitude lower than conventional
EWOD devices. This indicates that the energy consumption of
such devices could be greatly reduced by incorporating such
effects.

For conductive liquids with low net concentration of charge,
the leaky-dielectric model is admissible. Originally, this model
was proposed by Taylor [26] (and revisited by Melcher and
Taylor [27]) to describe the distortion of drops in electric
fields. Since advection and diffusion of charges is neglected
in this model, the electric double layers (EDLs), characterized
by the Debye length, are not resolved. As shown rigorously by
Schnitzer and Yariv [28], it can be seen as a thin Debye layer

2470-0045/2018/98(1)/013101(11) 013101-1 ©2018 American Physical Society
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limit of the full electrokinetic model [29,30]. However, when
ionic effects are important and charges are not constrained to
the liquid-liquid interface, the more detailed level of descrip-
tion (i.e., resolving the full electrokinetic model) is necessary.
Several authors have considered the full model in the absence of
boundaries (i.e., for droplets immersed in a liquid). Berry et al.
[31] presented a sharp-interface combined level-set/volume-
of-fluid method to simulate such systems, as an enhancement
compared to the leaky-dielectric simulations by Tomar et al.
[32] and the charge conservative model by López-Herrera
et al. [33]. Eck et al. [24] provided the first direct simulation
studies of dynamic electrowetting with electrolytes. The model
used in the latter work belongs to the leaky-dielectric type,
as the mobility does not depend on concentration. However,
it contains a concentration regularization parameter which
introduces a length scale, and effectively sets the thickness
of the Debye layer. A similar model and a more detailed
study were carried out by Nochetto et al. [34]. Other works
have adopted a more macroscopic viewpoint and used the
electrowetting contact angle as an input to model effective
behavior on the microfluidic scale [35–37]. On the other hand,
there are a number of assumptions underpinning the purely
theoretical works of Monroe et al. [17]. As experiments remain
sparse (albeit Frumkin undertook such studies already in the
1930s [22,38]), simulations would be of interest to test validity
of, and extensions to, the theory. To the authors’ knowledge,
there has been no systematic numerical study of the direct
dependency of the contact angle on applied electric potential
for a fully resolved electrohydrodynamic model with partially
soluble electrolytes.

In this work, we consider theoretically and numerically
the effect of an applied potential on the wetting properties
of an immiscible two-phase system consisting of a single
droplet placed on an insulated electrode. The droplet phase
is nonconducting, while the surrounding fluid contains an
electrolyte, and all interfaces are taken to be impermeable.
Such approximations are valid for many industrially and
geologically relevant systems such as oil-in-water flows [31].
Using Poisson-Boltzmann theory and following the approach
of Ref. [17], we develop a theoretical prediction for the
apparent contact angle dependency on applied potential. In
our simulations, we use the thermodynamically consistent
and frame-invariant model for two-phase electrokinetic flow
which was proposed by Campillo-Funollet et al. [39]. This
phase-field model combines the Nernst-Planck equation for
chemical transport, the Poisson equation for electrostatics, the
Cahn-Hilliard equation for the description of the interface, and
the Navier-Stokes equations for fluid flow. Using a recently
introduced solver [40] for this model, we simulate electrowet-
ting dynamically. We demonstrate explicitly that the contact
angle is only apparent on scales beyond the Debye length,
whereas the microscopic contact angle remains unaffected. Our
main finding is that the apparent contact angle dependency is
well described by the theoretical prediction, in particular when
our only phenomenological quantity, the effective screening
area, is modeled as a function solely of the ratio between
the permittivities. This, microscopically viewed, apparent
contact angle, can thus be turned into a fixed contact angle
boundary condition which can be used for simulations on more
macroscopic scales.

y (sym. axis)

x

Ly

LxR0

λw

V0

+

θ

s

d
θ0

e

θ θ0

FIG. 1. Schematic setup of the numerical experiment. Here, d
indicates the droplet phase, s indicates the surrounding phase, and
e indicates the electrode. The figure shows the final state after the
application of a potential difference V0 between the two electrodes.
Due to the dissolved electrolytes in phase s, an electric double
layer, characterized by the Debye length λs is formed near the lower
electrode, and an apparent contact angle θ is formed. Also indicated
with a dotted line is the initial state of the droplet (where V0 = 0),
forming the contact angle θ0. Note that the simulations considered
herein exploit the indicated axial symmetry of the problem. A close-up
view of the contact line shows how the contact angle θ0 persists on
small scales, whereas the apparent contact angle θ is only evident on
sufficiently large scales.

II. MODEL SYSTEM

We consider a droplet (phase d), surrounded by another
fluid (phase s), sitting on an electrode (phase e) in the presence
of an electric field. A sketch of the system setup is shown in
Fig. 1. Within the surrounding fluid, a binary salt is dissolved.
We denote the concentrations of these ionic species by c±. We
consider symmetric ions, such that z± = ±z are the valencies
of the ions. The ions are not allowed to pass through the liquid-
liquid interface (ds), and the droplet contains no ions. This
setup is representative of most oil-in-water systems and most
microfluidic applications.

The substrate is held at a constant electric potential V = V0,
while the system is grounded far from the droplet. We take the
lower boundary, representing the electrode, to be impermeable
for ions and the fluid phase, and hence assume a no-slip
condition. This assumption, which implies zero conduction
through the system, is the main distinction from most of the
existing literature [16].

Conversely, the top boundary mimics a reservoir and thus
assumes constant concentrations, i.e., c± = c0. Due to the
impermeable boundary, an EDL is formed near the electrode,
as quantified by the Debye length λs indicated in Fig. 1. It
is well known that the local contact angle θ0 is given by the
interfacial energies between the three phases, while, on scales
beyond λs, an apparent contact line θ is formed. Using the
presented setup, we shall in the forthcoming consider how this
apparent contact angle depends on the applied potential V0.

III. THEORY

Two-phase electrokinetic fluid dynamics is described by
the coupled problem of solute transport, fluid flow, and
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electrostatics. The Nernst-Planck equation governs the chem-
ical transport,

∂c±
∂t

+ u · ∇c± = ∇ ·
(

D±∇c± ∓ zqec±
kBT

E
)

, (2)

where t is the time, u is the fluid velocity, E = −∇V is the
electric field, D± are the diffusivities of the “±” ions, kB

is Boltzmann’s constant, T is the temperature, and qe is the
elementary charge. Electrostatic equilibrium is determined by
the Poisson equation,

∇ · (ε0εrE) = ρe, (3)

where ε0 is the vacuum permittivity, εr is the relative permit-
tivity, and the total charge is given by ρe = qez(c+ − c−). The
fluid flow is governed by the Navier-Stokes equations,

ρ(∂tu + u · ∇u) − μ∇2u + ∇p = −ρe∇V, (4)

∇ · u = 0, (5)

where ρ is the density, μ is the dynamic viscosity, and p is the
pressure. The equations are closed by boundary conditions and
the continuity of the normal stress across the interface between
the phases,[

2μDu − p′I + σdsκI + ε0εrE ⊗ E − 1
2ε0εrE2I

] · n̂ = 0.

(6)
Here, the pressure p′ has been redefined to absorb an osmotic
contribution, Du = (∇u + ∇uT )/2 is the (symmetric) strain-
rate tensor, σds is the fluid-fluid surface tension, κ is the
interface curvature, and n̂ is an interface normal.

A. Scaled variables

We employ a standard electrokinetic scaling to obtain
dimensionless variables which are more practical to work with
in the following. To this end, we introduce the dimensionless
variables indicated by a tilde, such that t̃ = t/t∗, ρ̃ = ρ/ρ∗,
ũ = u/u∗, p̃ = p/p∗, μ̃ = μ/μ∗, c̃ = c/c∗, Ṽ = V/V ∗,
D̃± = D±/D∗, ε̃ = εr/ε

∗, and σ̃ds = σds/σ
∗
ds. Here, all the

quantities marked by an asterisk are reference values. Further,
all length variables are scaled by a droplet reference linear
size R∗, i.e., x̃ = x/R∗. In particular, the electric potential V

is scaled by the thermal voltage,

V ∗ = VT = kBT

zqe

. (7)

The remaining reference quantities are given by

t∗ = R∗

u∗ , ρ∗ = zqec
∗VT

(u∗)2
, (8)

D∗ = u∗R∗, p∗ = zqec
∗VT , μ∗ = zqec

∗VT R∗

u∗ , (9)

ε∗ = zqec
∗(R∗)2

ε0VT

, σ ∗
ds = zqec

∗VT R∗. (10)

Note that time t̃ is given in advective time units. Adopting
the chosen scaling, and subsequently skipping the tildes, now
results in a model consisting of the set of equations (2) to (6),
but where zqe = kBT = ε0 = 1 and εr → ε. For simplicity
of notation we shall thus retain this normalization throughout
the paper.

B. Equilibrium free energy

We are here interested in the time-asymptotic steady state of
the droplet. Since there is an impermeable no-slip boundary at
y = 0, and hence no charge transport through the system in the
steady state, the steady state will be without fluid circulation.
We can thus safely neglect the velocity field in seeking the
time-asymptotic state.

We denote the phasic quantities of the concentrations by
ci , the (dynamic) viscosity by μi , the permittivities by εi ,
for phases i ∈ {d,s}, and the interface energies by σj , for
j ∈ {ds,de,es}. The droplet and surrounding subvolumes are
denoted by 	d and 	s, respectively.

Following Monroe et al. [17], we write the Gibbs energy G

of the system as

G = −1

2

∑
i=d,s

∫
	j

εjE2 d	

+
∑
j=±

∫
	s

[
(ln cj − 1)cj + zj

z
cjV

]
d	 +

∑
i=d,s

p 	i

+Adsσds + Adeσde + Aesσes. (11)

Here, Ade is the area between the droplet and the electrode, Ads
is the area between the droplet and the surroundings, and Aes is
the area between the electrode and the surrounding fluid. Like
	s and Aes, this energy scales with the size of the domain, and
we need to fix it by defining some reference. The reference state
can be chosen as the state without a droplet, G0. We denote
the deviation from this reference by 
G = G − G0.

In contrast to Monroe et al. [17], we consider here a
droplet which does not contain electrolytes. Neglecting the
energetic contribution of the electric field within the droplet
and the charge distribution around the droplet, the deviation
in Gibbs free energy from a reference state without a droplet
can be written in the large-droplet approximation of nonlinear
Poisson-Boltzmann theory [17] as


G

σds
= Ade

[
8
√

2εsc0

σds
sinh2

(
V0

4

)
− cos θ0

]

+Ads + 	d

σds

p. (12)

Here, 
p is the pressure difference across the interface, which
here is to be considered as a Lagrange multiplier. Since Eq. (12)
was derived without accounting for the energy within the
droplet, this expression provides an upper bound for the energy.
This can be realized by considering the contribution from the
thin screening layer outside the droplet (interface ds) and the
negative sign of the electric field inside the droplet.

C. A scaling ansatz

To somewhat simplify, we define the quantity

f0 = 8
√

2εsc0

σds
, (13)

which, along with the applied potential V0, is predicted to be
a control parameter of the system. To incorporate the effect of
screening the electric field due to the droplet, we heuristically
generalize Eq. (12). Since the electric flux into the droplet

013101-3



GAUTE LINGA, ASGER BOLET, AND JOACHIM MATHIESEN PHYSICAL REVIEW E 98, 013101 (2018)

is roughly proportional to the contact area Ade, we postulate
that the effect can effectively be incorporated by making the
modification


G

σds
= Ade

[
f sinh2

(
V0

4

)
− cos θ0

]
+ Ads + 	d

σds

p,

(14)

where f → f0 in the limit of no electrical flux through the
droplet (and hence no screening around). Note that, to be
consistent with the “upper bound” observation made above, we
must have f � f0 for all sets of parameters. Further, making
the ansatz that f/f0 should depend only on quantities present
in both phases, that further contribute to the energy in the
equilibrium state [cf. Eq. (11)], we have

f = f0h

(
εd

εs

)
, (15)

where h � 1 is an unknown function.

D. Expression for the contact angle

When the surface tension σds is sufficiently high, and
considering a two-dimensional (2D) system, we may take the
droplet to be a circular cap. We can write down expressions for
the interfacial areas and the droplet volume in terms of circle
radius r and angle θ :

Ade = 2r sin θ, Ads = 2rθ,

	d = r2

(
θ − 1

2
sin 2θ

)
.

The latter yields

r =
√

	d√
θ − 1

2 sin 2θ

. (16)

Now, Eq. (14) can be written as


G

σds
= 2	d

1/2 ξ sin θ + θ√
θ − 1

2 sin 2θ

+ 	d

σds

p, (17)

where

ξ = f sinh2

(
V0

4

)
− cos θ0. (18)

We need to minimize 
G with respect to the apparent contact
angle θ ; this amounts to finding the θ that minimizes

χ (θ ) = ξ sin θ + θ√
θ − 1

2 sin 2θ

, (19)

i.e., solving

χ ′(θ ) = ξ cos θ + 1√
θ − 1

2 sin 2θ

− (ξ sin θ + θ )(1 − cos 2θ )

2
(
θ − 1

2 sin 2θ
)3/2 = 0.

(20)

This gives

(ξ + cos θ )(θ cos θ − sin θ ) = 0. (21)

The second factor on the left-hand side is nonzero for θ ∈
(0,π ). Hence, the apparent contact angle is given by cos θ =
−ξ (which can also be verified to correspond to a minimum in
χ ). This can be written as

cos θ = cos θ0 − f sinh2

(
V0

4

)
. (22)

Thus we have a simple expression for what to expect from
numerical simulations.

Notably, since we know from before that f � f0, we thus
have a prediction of a lower bound for the contact angle, namely

cos θ − cos θ0 � −f0 sinh2

(
V0

4

)
. (23)

Furthermore, expression (22) is consistent with Lippmann’s
expression (1) in the limit of V0 	 1. This leads us to the
identification

B = −f

8
, (24)

and hence we have obtained a prediction of the phenomeno-
logical parameter B.

We shall check the validity of Eqs. (22) and (15) numerically
in the forthcoming.

IV. PHASE-FIELD MODEL AND SIMULATIONS

For simulating the two-phase flow problem of dynamic
electrowetting, we adopt a phase-field (or diffuse-interface)
approach. The interface is described by the order parameter
field φ which attains the values ±1 respectively in the two
phases, and interpolates between the two across the diffuse
interface of thickness ζ . In the limit ζ → 0, the equations
should reproduce the correct sharp-interface physics (see
Ref. [40]). A thermodynamically consistent phase-field model
fit for our purpose was formulated by Campillo-Funollet et al.
[39], and is given by the following set of equations:

∂t (ρ(φ)u) + ∇ · (ρ(φ)u ⊗ u)

−∇ · [2μ(φ)Du + u ⊗ ρ ′(φ)M(φ)∇gφ] + ∇p

= −φ∇gφ −
∑

j

cj∇gcj
, (25)

∇ · u = 0, (26)

∂tφ + u · ∇φ − ∇ · (M(φ)∇gφ) = 0, (27)

∂tcj + u · ∇cj − ∇ · (Dj (φ)cj∇gcj
) = 0, (28)

∇ · (ε(φ)∇V ) = −ρe. (29)

Here, Eqs. (25) and (26) are the incompressible Navier-
Stokes equations, the Nernst-Planck equation (28) governs
solute transport, and the Poisson equation (29) determines
electrostatic equilibrium. The phase field φ takes the value
φ = −1 in phase s, and the value φ = 1 in phase d. The
(conservative) temporal evolution of φ is governed by the
Cahn-Hilliard equation (27), wherein the diffusion term is
controlled by the phase-field mobility M(φ). Here, we use the
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nonlinear phase-field mobility

M(φ) = M0(1 − φ2)+, (30)

where M0 is a constant and (·)+ = max(·,0).
The chemical potential of species c± is given by

gc±(c±,φ) = ln(c±) + β±(φ) ± zV, (31)

where β±(φ) is an energy penalty for dissolving ions c± in the
phase given by φ. The chemical potential gφ of the phase field
φ is given by

gφ = 3σds

2
√

2
[ζ−1W ′(φ) − ζ∇2φ]

+
∑

j

β ′
j (φ)cj − 1

2
ε′(φ)|∇V |2, (32)

where ε is the interface thickness and W (φ) is a double well
potential. Here, we adopt the commonly used W (φ) = (1 −
φ2)2/4.

The density field ρ, viscosity field μ, permittivity field ε,
solubility energies β±, and diffusivity fields D± all depend on
the phase, i.e., φ. In this work, they are given by the following
weighted arithmetic averages (WAA):

ρ(φ) = ρd + ρs

2
+ ρd − ρs

2
φ, (33)

μ(φ) = μd + μs

2
+ μd − μs

2
φ, (34)

ε(φ) = εd + εs

2
+ εd − εs

2
φ, (35)

D±(φ) = D±,d + D±,s

2
+ D±,d − D±,s

2
φ, (36)

β±(φ) = β±,d + β±,s

2
+ β±,d − β±,s

2
φ. (37)

Tomar et al. [32] found, for a level-set electrohydrodynam-
ics model with smoothed interfacial properties, that using a
weighted harmonic average (WHA) for the permittivity yielded
more precise results for the electric field than the WAA did.
However, for a model including free charges, López-Herrera
et al. [33] found no evidence that WHA was superior, and for
simplicity we therefore use the WAA for all fields.

A. Boundary conditions

Most boundary conditions involved in the present work are
of Dirichlet type. We set fixed electric potential at the top and
bottom boundaries, and a no-slip condition on the velocity
field at the bottom boundary, and fixed concentrations on the
top boundary. Further, we assume a no-flux condition on the
concentration fields at the bottom boundary. With regard to
the phase field, a dynamic wetting boundary condition can be
expressed as the following Robin condition [41]:

ζ τw∂tφ = σds

[
− 3ζ

2
√

2
n̂ · ∇φ + cos(θ0)f ′

w(θ )

]
, (38)

where θ0 is the prescribed contact angle, τw is a relaxation pa-
rameter, and fw(φ) = (2 + 3φ − φ3)/4 interpolates smoothly
between 0 (at φ = −1) and 1 (at φ = 1). In order not to
introduce an additional unknown timescale into the problem,

FIG. 2. Typical mesh used in simulations. The zero-level set of
the phase field is shown as a solid yellow line.

we limit ourselves to considering Eq. (38) with τw = 0.
Electrowetting with emphasis on contact line pinning was
previously studied numerically by Nochetto et al. [34], who
used a generalized Navier boundary condition on the velocity
field (cf. [42]). However, as contact-line modeling remains
phenomenological, we shall leave it for further work.

B. Numerical implementation

We consider computationally the 2D domain [0,Lx] ×
[0,Ly], since, as indicated in Fig. 1, a mirror symmetry is
present. Although alternatively an axially symmetric geometry
could have been considered, we consider here the 2D case.
In order to mimic a reflective boundary and without loss
of generality, we use a free slip condition on the left-hand
side and a no-flux condition on both electrolyte concentration
and electric potential. The numerical benefits are that this
avoids drift of the droplet (due to numerical noise or mesh
asymmetries) and limits the computational domain to half the
size.

The simulation is initiated with a (half) circular droplet cap
of area πR2

0/4 (in the half domain) that forms a contact angle
of θ0 with the surface, and a uniform concentration of both ions
is set in the surrounding phase. At time t = 0, a potential V is
set at the bottom electrode.

To solve the equations numerically we use the finite-element
solver BERNAISE developed by the authors, and presented and
validated in a separate work [40]. BERNAISE is written in
Python and builds on the FENICS/DOLFIN framework [43,44].
The solver operates on unstructured meshes and is therefore
suitable when different parts of the domain require very
different resolutions.

A typical mesh used in the simulations is shown in
Fig. 2. The mesh is gradually refined near the electrode, to
resolve the electrical double layer that arises here. Further,
around the evolving interface, a fine mesh is required, both to
resolve the diffuse interface associated with the phase field,
and to resolve the Debye layer. In order to capture the motion
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TABLE I. Physical parameters of a water-nitrobenzene system.
The parameters related to solubility are typical of a monovalent
electrolyte such as NaCl.

Phase i

Parameter d (nitrobenzene) s (water) Unit

εr,i 
40 
80
ci 0 0.1 M

0 6 × 1025 No./m3

λi 
3 nm
D±,i 
1 × 10−9 m2/s
ρi 
1.2 g/mL 
1.0 × 10−3 kg/cm3

μi/ρi 
1.7 × 10−6 m2/s 
10−6 m2/s

of the interface without having to refine adaptively (which is
both undesirable for parallelization, and has limited support
in FENICS), the mesh is refined beforehand over an extended
area suitable for circle caps with both acute and obtuse contact
angles.

We discretize the equations using finite elements in space,
and finite difference in time. For the temporal integration of
the equations, we use a first-order linearized operator-splitting
scheme. The scheme is presented and validated in a companion
paper [40], but is briefly outlined here. At each time step,
we solve sequentially three subproblems. First, the phase-field
equations (27) and (32) are solved in a coupled manner; then
the electrochemical equations (28), with (31) inserted, and (29)
are solved together; and finally the Navier-Stokes equations
(25) and (26) are solved simultaneously. Each substep is
semi-implicit, in that the equations are linearized around the
variables at the previous time step. This yields an efficient,
decoupled and fully linear scheme. More details on the scheme
can be found in Ref. [40, Sec. III B], and the implementation
is openly available.1 With regard to spatial discretization, we
use P2 finite elements for the velocity field and P1 elements for
the scalar fields, which imparts second-order convergence in
space. We use FENICS’ built-in direct linear solvers to achieve
robust convergence.

C. Physical parameters

In Sec. IIIA, the governing equations were scaled, and
since the simulations are carried out in these scaled variables,
the results may correspond to a variety of parameter sets.
However, it is interesting to consider concrete physical values
in order to relate the numerical experiments to reality. We
consider as an example the components of the ITIES setup
considered by Monroe et al. [25], with a nitrobenzene droplet
and water surroundings. The relevant phasic parameters are
given in Table I. Additionally, the surface tension of the
water-nitrobenzene interface is (in the order of magnitude)
σds 
 25 × 10−3 kg/s2 [45]. We are now in a position to

1See the GitHub repository https://github.com/gautelinga/
BERNAISE. The numerical scheme is implemented in
solvers/basic.py, and the simulation set-up is a customized
version of problems/electrowetting.py.

estimate the expected control parameter f0 defined in Eq. (13).
Translating back to the dimensional quantities, we have the
expression

f0 = 8V
3/2
T

√
2zqec0ε0εr,s

σds
, (39)

which gives a numerical (dimensionless) value of the order
f0 
 0.3. By inspecting (23), we see that this value imparts
significant deviations from the neutral angle even at moderate
VT . For example, complete dewetting is predicted at V0 
 7VT

(assuming the neutral contact angle θ0 = π/2 in the absence of
electric field). For systems with lower surface tension and/or
higher concentration, the effect should be stronger.

Inspired by the parameters for the water-nitrobenzene sys-
tem, we make the simplifying assumptions ρd 
 ρs, μd 
 μs,
and D− 
 D+. On the other hand, we choose μs/ρs ∼ D±
in order to reduce the computation required to equilibrate the
charges in the system. This does not have consequences for the
time-asymptotic solution [cf. Eq. (11)], and should only have
minor consequences for the dynamics.

V. RESULTS

Here, we study numerically the dynamic relaxation to an
apparent contact angle when an electric field is suddenly
turned on. Simulation parameters, in scaled units, common
for all simulations are set to ρd = ρs = μd = μs = 10, M0 =
2 × 10−6, D±,s = 1, D±,d = 0.001, β±,s = 0, β±,s = 4. For
specific sets of simulations, further parameters are given in
Table II below. We use a time step τ = 0.25 for all simula-
tions, a minimum grid size hmin = 0.0125 (unless otherwise
stated), interface thickness ζ = 2hmin, and a domain size Lx =
Ly = 2R0.

A. Qualitative description

When the potential difference is applied at time t = 0,
charge quickly flows towards the bottom electrode to screen
the charge. Gradually, the contact line moves and an apparent
contact angle forms. In Fig. 3, we visualize the relaxation to
the apparent contact angle for one specific applied voltage.
Inspecting the local contact angle, we see that the contact angle
approaches the strictly enforced angle, here θ0 = π/2. This is
further quantified in Fig. 4, where we compare the final state for

TABLE II. Parameters used in the simulations shown in Fig. 6, 7,
and 9.

Sim. R0 c0 εs εd λs σds θ0 hmin = ζ/2

A 1.0 10 0.1 0.2 0.071 5 π/2 0.0125
B 1.5 10 0.1 0.2 0.071 5 π/2 0.0125
C 4.0 10 0.1 0.2 0.071 5 π/2 0.0125
D 1.0 1 0.1 0.2 0.22 5 π/2 0.0125
E 1.0 1 0.1 0.2 0.22 5 π/2 0.025
F 1.5 10 0.1 2.0 0.071 5 π/2 0.0125
G 1.5 10 0.1 0.005 0.071 5 π/2 0.0125
H 1.5 10 0.9 0.2 0.21 5 π/2 0.0125
I 1.0 10 0.1 0.2 0.071 10 π/2 0.0125
J 1.0 10 0.1 0.2 0.071 5 π/4 0.0125
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FIG. 3. Relaxation to the apparent contact angle when an electric
field is suddenly applied. The electric potential difference is turned
on to V = 2.5 at time t = 0. The red color in the surrounding fluid
shows the net charge, and thus represents the EDL. (a) to (f) show
increasing simulation time.

the same set-up, same parameters and applied potential, where
only the droplet size is varied. As seen from the figure, the shape
of the droplet is fairly robust to the size of the droplet, but is
slightly distorted due to the presence of the three-phase contact
region. However, as the Debye length becomes small compared
to the droplet radius, the apparent contact angle persists.

B. Contact angle relaxation in time

We now seek to quantify the evolution of the apparent
contact angle through time. We compute this angle by fitting
a semicircle to the zero-level set of the phase field, for all
points where y � 0.1 (∼R0/10 for most simulations). The
intersection between this circle and the y = 0 plane determines
the apparent contact angle θ . In Fig. 5, we plot the resulting
contact angle in time for a range of potential drops.

C. Dependence of the contact angle on applied potential

In Fig. 6, we plot the contact angle as a function of applied
potential, for a range of different parameter sets. The parameter
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FIG. 4. Comparison of the droplet shape for different droplet size,
when the Debye length and other parameters are kept constant. The
Debye length is λs = √
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 0.071. The inset shows a close-up
of the contact line.
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FIG. 5. Contact angle in time for a range of potential drops V0.
The lines between points are linearly interpolated for visual clarity.

sets corresponding to Fig. 6 are given in Table II. The functional
form seems to be sensitively dependent on the parameters used.

The prediction of Eq. (22) suggests that plotting cos θ −
cos θ0 against the composite variable (

√
εsc0/σds) sinh2 (V0/4)

should make the points fall on a straight line, provided that f

is independent of V . In Fig. 7, we show for a range of different
parameters the contact angle as a function of this composite
variable. As predicted by Eq. (22), it is clear that the proposed
functional form matches very well for the entire range until
complete dewetting occurs. Indeed, we find that the points
fall onto straight lines for a range of parameters. Further, the
predicted inequality, (23), seems to be satisfied for all. From
the figure, it is apparent that the slope of the curves depend
mainly on the permittivities in the two phases.

To investigate the role of the permittivities in the two phases,
we fit linear slopes to the data plotted in Fig. 7. In particular,
we use Y = cos θ − cos θ0 and X = (

√
εsc0/σds) sinh2 (V0/4),

and find for each parameter set the slope k which minimizes
the residual of the fit of Y = kX to the (X,Y ) data points. The
resulting slopes k (which are all such that −8

√
2 � k � 0) are

plotted in Fig. 8 against the ratio between permittivities εd/εs
for the respective parameter sets. Since we expectf � f0, they

FIG. 6. We plot the apparent contact angle as a function of
applied potential, for a range of parameters. The simulation sets A–J
correspond to the parameter sets reported in Table II.
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FIG. 7. We plot the quantities involved in Eq. (22) for a range of
parameters.

axis has been shifted by the numerical prefactor in f0, 8
√

2. We
heuristically fit a function B(εd/εs)α to these points using least
squares, where B,α are (dimensionless) fitting parameters.
The best fit gives B 
 2.6 and α = 0.28 (with rather large
residuals). Note that many functional forms would yield fairly
equal results. Our motivation for using exactly this functional
form was merely that it required the fewest possible parameters
to provide a reasonable fit for the entire range. Nevertheless,
using this scaling function, we are as expected able to collapse
the data shown in Figs. 6 and 7. The resulting relationship is
shown in Fig. 9. By inspection, moderate deviations from the
exact relationship between the abscissa and ordinate quantities
can be seen, indicating that improvement could be gained by
explicitly taking into account the energy within and around
the droplet in the free energy (12). This is, however, out of the
scope of the current work.

Within the crude approximations made in deriving (22),
however, the expression

cos θ = cos θ0 −
√

εsc0

σds

[
8
√

2 − B

(
εd

εs

)α]
sinh2(V0/4)

(40)

FIG. 8. Computed slopes from the data in Fig. 7 and several other
sets of simulations, plotted against permittivity ratio εd/εs, shown
along with a least squares fit.

FIG. 9. Collapse of the contact angle data involved in Eq. (40),
using the same data as presented in Figs. 6 and 7. The black solid line
indicates an exact relationship between the ordinate and the abscissa.

well describes the apparent contact angle for the parameter
range considered herein.

D. Relaxation times

As mentioned previously, it is out of the scope of this work
to consider quantitative modeling of the contact line motion.
However, it is in place to inspect the relaxation times associated
with the final apparent contact angles presented in the previous
subsection.

We estimate the relaxation times tr by fitting an exponential
function, C + C ′ exp(−t/tr) to the contact angles as function
of time t (cf. Fig. 5), where C,C ′,tr are considered fitting
parameters. In the main panel of Fig. 10, we show the relaxation
times that correspond to the final contact angles shown in Fig. 6.
The relaxation times are fairly constant for each parameter
set. Deviations are noticeable when the applied voltage is low,

FIG. 10. The relaxation times for our simulations obtained by
fitting exponential functions to the contact angle in time. The data
correspond to what is shown in Fig. 6. Inset: Data collapse obtained
by using a dimensionless relaxation time based on surface tension
σds, viscosity μ, and the initial wetting length scale �0. The outliers at
low potential/contact angles are due to the poor fit of an exponential
function to the data when the contact angle changes only slightly.
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FIG. 11. Comparison of the evolution of the apparent contact an-
gle as a function of time for the full model, including electrochemistry,
and two-phase flow without direct resolution of the electrodynamics
but instead using the boundary condition (42) and the relationship
(40).

i.e., when the contact angle only changes very slightly and
the exponential fit becomes unreliable. Further, at higher V0,
the apparent contact angle becomes very obtuse and thus θ

becomes sensitive to the circular fit. The slight drift seen in the
relaxation times should be attributed to that.

On dimensional grounds, we might expect, for flows dom-
inated by viscous and capillary forces,

tr ∼ �0μ

σds
, (41)

where �0 is a typical length scale which we take to be the length
of the wetted area in the initial state. This time scale is related
to the capillary number Ca = μU0/σds, where U0 ∼ �0/tr is a
characteristic velocity. The expectation is further admissible
since have not introduced any (pinning) dissipation at the
moving-contact line in our model. We check this by plotting
the dimensionless quantity trσds/(�0μ) ∼ Ca−1 against, e.g.,
the quantity cos θ − cos θ0, and the resulting plot is shown
in the inset of Fig. 10. The data points collapse fairly well,
indicating that the time scale identified above is the relevant
time scale in our simulations.

E. Comparison to effective modelling

As suggested by Eq. (40), it might be useful to avoid
simulating dynamic electrowetting using the full model, and
instead incorporate the result as a modified contact angle
boundary condition. Recalling Eq. (38) (putting again τw = 0),
we may simply replace θ0 by the expression for θ (V0) given
by Eq. (40). This yields the phase-field boundary condition

3ζ

2
√

2
n̂ · ∇φ = cos [θ (V0)]f ′

w(φ). (42)

Now, we carry out a direct comparison between the full
model and the effective model, where the whole electrokinetic
problem is included only through the boundary condition. In
Fig. 11 we show a direct comparison of the time evolution (for a
simulation at V0 = 2.5) between these two approaches. As can
be seen from the figure, the effective boundary condition (BC)

approach leads to a faster relaxation to the final contact angle.
The latter also slightly overshoots compared to the simulations
using the full model, as can be seen from the inset of Fig. 11.
Hence, the two approaches differ, but not necessarily signif-
icantly more than the variations seen within the simulations
using the full model, as documented in Figs. 10 and 9. This
indicates that the effective BC approach is admissible, but that
further modeling might be necessary to quantitatively model
the contact line motion.

VI. DISCUSSION

Compared to previous numerical studies of electrowetting
[24,34,39], we have in this work used a model that accounts
for different ions, and where the conductivity depends on the
local ion concentrations instead of being held constant. We
have studied systematically the effect of varying the applied
potential, as well as other physical parameters. We confirm
the results by Mugele and Buehrle [23] that the contact angle
observed by Lippmann is a macroscopic apparent contact
angle (also commented on by, e.g., [24]). For a conducting
system, the key length scale is the insulator thickness d, and
the apparent contact angle is only observed on scales beyond
d. In our case, we consider an equipotential boundary, and
therefore the length scale that controls the apparent contact
angle is the Debye length λs in the surrounding fluid.

Monroe et al. [17] considered theoretically a setup where
ions were dissolved in both phases, whereas we have consid-
ered the case where the droplet phase contained no ions. Hence,
the analytical solution to the electrolyte system presented in
Ref. [17] was not directly applicable in our case. Nonetheless,
our numerical experiments have shown that a simplified and
slightly heuristically generalized version of the prediction in
Ref. [17] provides a good description of the contact angle as a
function of the the applied potential, even for relatively large
Debye lengths. From a theoretical point of view, a derivation
explicitly taking into account, e.g., an electrostatic potential
distribution along the droplet interface that minimizes the
energy, could improve the suggested relation between contact
angle and applied potential.

Clearly, many approximations underpin our results. First,
for the Nernst-Planck equations to hold, we are limited to
ideal (i.e., weak) ionic solutions. High concentrations would
probably not be compatible with the assumption of imper-
meable interfaces. Furthermore, we have due to resolution
requirements been limited to two-dimensional simulations.
Future studies building on the present work should consider
axisymmetric or fully three-dimensional geometries.

The assumption of a circular droplet geometry (away from
the three-phase contact line) may fail when the surface tension,
at least compared to the Maxwell stresses, becomes small.
Hence, the results presented are only expected to hold for
high surface tension. We emphasize that although the results
presented herein [e.g., Eq. (40)] should clearly not be used
outside their domain of validity, the work presented yields
a recipe for extending the covered parameter space. Further,
we demonstrated here that numerically resolving electrical
double layers constitute an alternative route to obtaining very
obtuse or acute contact angles in diffuse-interface simulations
of two-phase flow with boundaries.
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As mentioned previously, we have not attempted to model
contact line friction quantitatively, since this remains in itself
an important direction of research [41]. A next step could
be to include the generalized Navier slip boundary condition
[42,46], as was done by Nochetto et al. [34]. Finally, we have
not considered any direct dependency between surface energies
and the applied potential. In general, it would require more
detailed modeling to reproduce all the electrochemical effects
that are present in experimental settings.

VII. CONCLUSION

Controlling wetting properties of two-phase systems is
desirable for a wide range of applications. We have in this
paper considered how an applied electric field can control the
wetting properties of an electrolytic two-phase system. To this
end, the electrowetting setup of a droplet sitting on top of an
isolated conductor, and where an electrolyte is dissolved in
the surrounding phase, was numerically simulated. This was

achieved using a phase-field model for the full electrokinetic
two-phase flow problem. We have confirmed observations of
similar systems from the literature [23], i.e., that an apparent
contact angle forms on scales beyond the Debye length, which
characterizes the extent of the electric double layer. A main
result of our work is summarized in our expression for the
effective contact angle, Eq. (40), which was motivated by
predictions from nonlinear Poisson-Boltzmann theory. For
models operating on larger scales, the use of such an effective
contact angle can greatly improve the computational efficiency.
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A HIERARCHY OF NON-EQUILIBRIUM
TWO-PHASE FLOW MODELS

GAUTE LINGAA,B,* AND TORE FLÅTTENC

Abstract. We review a hierarchy of relaxation models for two-phase flow.
The models are derived from the non-equilibrium Baer–Nunziato model, which
is endowed with relaxation source terms to drive it towards equilibrium. The
source terms cause transfer of volume, heat, mass and momentum due to dif-
ferences between the phases in pressure, temperature, chemical potential and
velocity, respectively. In the context of two-phase flow models, the subchar-
acteristic condition implies that the sound speed of an equilibrium system
can never exceed that of the relaxation system. Here, previous work by Flåt-
ten and Lund [Math. Models Methods Appl. Sci., 21 (12), 2011, 2379–2407]
and Lund [SIAM J. Appl. Math. 72, 2012, 1713–1741] is extended to encom-
pass two-fluid models, i.e. models with separately governed velocities for the
two phases. Each remaining model in the hierarchy is derived, and analytical
expressions for the sound speeds are presented. Given only physically funda-
mental assumptions, the subcharacteristic condition is shown to be satisfied in
the entire hierarchy, either in a weak or in a strong sense.

subject classification. 76T10, 35L60

key words. two-phase flow, relaxation systems, subcharacteristic condition

1. Introduction

The concurrent flow of two fluid phases occurs in a wide range of industrially
relevant settings, including in nuclear reactors [10], petroleum production [1, 8],
heat exchangers [51], cavitating flows [56], and within carbon capture, transport
and storage (CCS) [9, 38, 46]. However, for most simulation purposes, resolving
the full three-dimensional flow field may be too cumbersome, due to the complex
interaction between the phases. In particular, this encompasses calculating the
temporal evolution of the interface between the phases, and the transfer of mass,
heat and momentum across it. Averaging methods (see e.g. Ishii and Hibiki [32]
or Drew and Passman [16]) may therefore be applied to avoid direct computation
of the interface. The resulting coarse-grained models may often be expressed as
hyperbolic relaxation systems with source terms accounting for the interactions
between the phases, driving them asymptotically towards equilibrium at a finite
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rate. In a quasi-linear form, one-dimensional versions of such systems may be
written as

∂tU + A(U)∂xU =
1

ε
Q(U), (1)

wherein U(x, t) ∈ G ⊆ RN is the (smooth) vector of unknowns and A(U) is a
matrix which we shall call the Jacobian of the system, in analogy to conservative
systems.1 Further, ε is a characteristic time associated with the relaxation process
described by Q(U). For an extensive review of the existing literature on such
systems, see e.g. Natalini [48], or, for a more concise summary, consider the first
few sections of Solem et al. [58] and the references therein.

Two limits of the relaxation system (1) will be considered in this paper:
• The non-stiff limit, corresponding to the limit ε→∞. In this case, we may write

(1) as

∂tU + A(U)∂xU = 0. (2)

We will refer to (2) as the homogeneous system.
• The formal equilibrium limit, which is characterized byQ(U) ≡ 0. This defines an

equilibrium manifold [11] through M = {U ∈ G : Q(U) = 0}. We now assume
that the reduced vector of variables u(x, t) ∈ Rn, where n ≤ N , uniquely defines
an equilibrium value U = E(u) ∈M. We may then express (1) as

∂tu + B(u)∂xu = 0, U = E(u), (3)

whereB(u) = P(u)A(E(u))∂uE(u) is the Jacobian of the reduced system. Herein,
we have defined the operator P(u) : RN → Rn through P(u)∂uE(u) = In, i.e. the
identity matrix. We will refer to (3) as the equilibrium system.

We expect solutions of (1) to approach solutions of (3) as ε → 0, i.e. in the stiff
limit, where the relaxation towards equilibrium is assumed to be instantaneous.

1.1. The subcharacteristic condition. An essential concept which arises in the
study of relaxation systems and their stability, is the so-called subcharacteristic
condition. It was first introduced by Leray [36], subsequently independently found
by Whitham [66], and later developed by Liu [39] for conservative 2 × 2 systems.
For more general systems, Chen et al. [11] defined an entropy condition which they
showed implies the subcharacteristic condition. Yong [68] proved that for n = N−1,
the subcaracteristic condition is necessary for the linear stability of the equilibrium
system. For strictly hyperbolic systems, Solem et al. [58] proved that it is also
sufficient. Hence, for strictly hyperbolic relaxation systems where n = N − 1, the
subcharacteristic condition is equivalent to linear stability.

For a general N × N relaxation system, such as (1), the condition may be
formulated as follows.

Definition 1 (Subcharacteristic condition). Let the N eigenvalues of the matrix
A of the homogeneous system (2) be given by Λi, sorted in ascending order as

Λ1 ≤ . . . ≤ Λi ≤ Λi+1 ≤ . . . ≤ ΛN . (4)

Similarly, let λj be the n eigenvalues of the matrix B of the equilibrium system
(3). Herein, the homogeneous system (2) is applied to a local equilibrium state

1In systems which can be written on the conservative form ∂tU + ∂xF(U) = 0, we have that
in the weak form (2), A = ∂UF is the actual Jacobian of a flux F.
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U = E(u), such that Λi = Λi(E(u)), and λj = λ(u). Now, the equilibrium system
(3) is said to satisfy the subcharacteristic condition with respect to the homogeneous
system (2) when (i) all λj are real, and (ii) if the λj are sorted in ascending order
as

λ1 ≤ . . . ≤ λj ≤ λj+1 ≤ . . . ≤ λn, (5)

then the eigenvalues of the equilibrium system are interlaced with the eigenvalues
of the homogeneous system, in the sense that λj ∈ [Λj ,Λj+N−n].

The subcharacteristic condition has been shown to be an important trait of many
physical models [5, 6, 21], since the eigenvalues then have a direct physical interpre-
tation as the characteristic wave speeds of the system. In the context of relaxation
models for two-phase flow, the fastest wave speeds are the speeds of pressure waves,
which involve the fluid-mechanical speeds of sound. The subcharacteristic condi-
tion then implies in particular that the sound speeds of an equilibrium model can
never exceed that of the relaxation model it is derived from. This is precisely the
observation, well known in the fluid mechanics community, that the “frozen” speed
of sound is higher than the equilibrium speed of sound [20, 26, 52].

1.2. The model hierarchy. In a general averaged two-phase flow model, the mix-
ture will consist of two fluids which evolve independently. We assume local thermo-
dynamic equilibrium in each phase, i.e. each of the phases may be described by an
equation of state. Specifying two thermodynamic quantities then completely deter-
mines all thermodynamic properties of that phase. Herein lies also the assumption
that the thermodynamic quantities are unaffected by the local velocity field. Each
phase k may then be thought of as having separate pressures pk, temperatures Tk,
chemical potentials µk, and velocities vk. Since the two-phase mixture will move
towards phase equilibrium in each of the mentioned variables, we may model these
interactions by employing relaxation source terms corresponding to the following
relaxation processes:

p − volume transfer. Relaxation towards mechanical equilibrium due to pres-
sure differences between the phases, i.e. expansion or compression.

T − heat transfer. Relaxation towards thermal equilibrium, due to temperature
differences between the phases.

µ − mass transfer. Relaxation towards chemical equilibrium due to differences
between the phases in chemical potential.2

v − momentum transfer. Relaxation towards velocity equilibrium, due to ve-
locity differences between the phases, i.e. interface friction.

The starting point of the forthcoming analysis will be the classical Baer–Nunziato
(BN) model [3], which is a general formulation of a two-fluid model, in the sense
that the phases are associated with separate velocity fields. The BN model is
endowed with appropriate relaxation terms corresponding to each of these processes
presented above. By considering the homogeneous and equilibrium limits of each
relaxation process, i.e. assuming all combinations of zero or more of them to be
instantaneous, we obtain a hierarchy of models, each with partial equilibrium in
one or more of the aforementioned variables.

This hierarchy can be represented as a four-dimensional hypercube, as illustrated
in Figure 1. Herein, each model is symbolized by a circle, and corresponds to a

2See also Remark 2.
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Figure 1. The 4-dimensional hypercube representing the model
hierarchy. Parallel edges correspond to the same relaxation pro-
cesses, and each vertex signifies a unique model in the hierarchy,
assuming instantaneous relaxation in zero or more of the vari-
ables p (pressure), T (temperature), µ (chemical potential) and
v (velocity). The leftmost, red circle denoted by “0” represents the
Baer–Nunziato model [3]. The colored edges represent relaxation
processes where a subcharacteristic condition has previously been
explicitly established in the literature; models described in [20]
and [40] are shown in yellow, whereas models described by [19] are
shown in green. Subcharacteristic conditions were obtained in [44]
for the model represented by the blue circle.

“corner” of the hypercube. Parallel edges, in turn, correspond to the same instan-
taneous relaxation assumption, in the direction of the arrow. The basic model,
denoted by “0” and shown in red as the leftmost circle of Figure 1, is thus reducible
to all models in the hierarchy. Many of the models in the hierarchy have already
been derived, explicitly expressed and thoroughly analyzed, and in this respect, the
current paper builds heavily on previous work [2, 7, 14, 23, 33, 35, 56, 57, 69].

The models shown in yellow circles in Figure 1 constitute the v-branch of the
hierarchy, i.e. the homogeneous flow models, wherein the phase velocities are equal.
Such models are subclass of the so-called drift-flux models, where the phasic veloci-
ties are related by an algebraic expression. Herein, the v-model was derived by [57],
the vp-model is due to [33] (see also Refs. [2, 47]), and the vpT -model was studied
e.g. by [21]. The vpTµ-model is known as the homogeneous equilibrium model and
has been studied by several authors, see e.g. Refs. [12, 18, 30, 31, 42, 60, 65]. Flåt-
ten and Lund [20] collected results on the v-, vp-, vpT -, and vpTµ-models, derived
the vpµ-model, and showed that the subcharacteristic condition was satisfied for
all relaxation processes within this branch of the hierarchy. Lund [40] completed
the v-hierarchy by deriving the vT -, vµ- and vTµ-models, and established the sub-
characteristic condition in the remainder of the v-branch, given only physically
fundamental assumptions.



NON-EQUILIBRIUM TWO-PHASE FLOW MODELS 5

With regards to the two-fluid models in the hierarchy, several of these models
have been derived, employed in simulation [8, 10], and analyzed. Here, the p-
model was analyzed e.g. in Refs. [13, 60], and the pT -model was studied e.g. in
Refs. [19, 27].

An important issue with p-relaxed (one-pressure) two-fluid models is that they
develop complex eigenvalues when the velocity difference between the phases ex-
ceeds a critical value, i.e. they become non-hyperbolic [15, 22, 44, 60, 64]. This
may lead to the lack of stable mathematical and numerical solutions. Nevertheless,
these models are extensively used for practical applications; and in numerical sim-
ulations they are often mitigated by specifying a regularizing interfacial pressure
(see [10, 49, 61]). Further, estimates of fluid-mechanical sound speeds is of practical
importance for the construction of efficient numerical schemes [27, 53]. For rela-
tions between two-fluid models, we find, as in Ref. [19], the need to state a weaker
formulation of the subcharacteristic condition.

Definition 2 (Weak subcharacteristic condition). When the subcharacteristic con-
dition of Definition 1 holds with the additonal equilibrium condition of equal phasic
velocities, the weak subcharacteristic condition is said to be satisfied.

The p- and pT -models were analyzed by Martínez Ferrer et al. [19], who showed
that the subcharacteristic condition, in a weak or strong sense, is satisfied with
respect to existing neighbouring models. Similarly, Morin and Flåtten [44] studied
the pTµ-model, and showed that subcharacteristic conditions were satisfied in rela-
tion to existing neighbouring models. The highlighted edges in Figure 1 summarize
the relations between models where a subcharacteristic condition has already been
shown to be satisfied.

1.3. Contributions of this paper. The objective of the current paper is to com-
plete the study of the subcharacteristic condition in the full hierarchy of two-phase
flow models, proving the remaining subcharacteristic conditions. In this respect, a
generalization of the work by [20] and [40] is provided, extending the hierarchy to
encompass also two-fluid models, i.e. models with separate momentum equations
for the two phases. Herein, the inclusion of the two-fluid T -, µ-, pµ- and Tµ-models
represent original contributions. A similar hierarchical derivation of two-phase re-
laxation models was done in the thesis of Labois [35], who focused primarily on
the stiffened gas equation-of-state. In our current work, expressions for the sound
speeds of the models are provided, valid for general equations of state. Moreover,
we show that the remaining 15 subcharactistic conditions are satisfied, i.e. that
the subcharacteristic condition is everywhere respected in the hierarchy, either in a
strong or in a weak sense. This is done by comparing the new expressions for the
sound speeds to many known results from the literature, and by using techniques
involving writing the difference of wave velocities as sums of squares (cf. [20, 40]).
We present each of the models for which we prove at least one subcharacteristic
condition.

1.4. Outline. The organization of the current paper is as follows. In Section 2 we
present the basic model with all possible source terms, derive evolution equations
for the primitive variables, and state a parameter set which suffices to satisfy the
laws of thermodynamics. In Sections 3 to 8, we present in turn the v-, p-, T -, µ-,
pµ- and Tµ-models. For each model we give explicit analytic expressions for the
sound speeds, and prove the remaining subcharacterisic conditions with respect to
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related models. In Section 9 we show plots of the sound speeds in the different
models, and briefly discuss physical and mathematical properties of models in the
hierarchy. Finally, in Section 10, we draw conclusions and suggest possible future
work.

2. Basic model

In this section, we present the basic BN model [3]. In this model, which is hy-
perbolic, the two phases have separate pressures, temperatures, chemical potentials
and velocities. We state the model in a form reminiscent of that proposed by Saurel
and Abgrall [54], but with all four possible relaxation source terms accounting for
the interaction between the phases. From this, we determine the evolution equa-
tions of the primitive variables. Based on the evolution equations, we derive a
parameter set which suffices for the model to satisfy fundamental physical laws.

2.1. Governing equations. In the following, we present the governing equations
in the basic model, supplemented with physically appropriate relaxation terms. We
let αk denote volume fraction, vk velocity, ρk density, pk pressure, Tk temperature,
µk chemical potential, ek internal energy per mass, for each phase k ∈ {g, `}, where
g denotes gas and ` denotes liquid.

2.1.1. Volume advection. We assume that apart from advection, the interface be-
tween the phases can only move due to pressure differences. This is commonly
formulated as

∂tαg + vi∂xαg = I (pg − p`), (6)

wherein vi is an interface velocity and I is the pressure relaxation parameter.
Hence, the volume fraction is advected with the velocity vi. There are several
discussions available on how to choose this interface velocity, see e.g. [14, 55]. In
the following, we shall motivate it from a thermodynamic point of view, using the
second law of thermodynamics.

The local volume transfer must occur so that the phase with the lowest pressure
is compressed, and the phase with the highest pressure is expanded. This is enforced
through I ≥ 0. Moreover, the volume fractions must satisfy αg + α` = 1, where
αk ∈ (0, 1), and hence only one evolution equation for the volume fractions is
needed.

2.1.2. Mass balance. The evolution of the mass of each phase is contained in the
balance equations

∂tαgρg + ∂xαgρgvg = K (µ` − µg), (7)
∂tα`ρ` + ∂xα`ρ`v` = K (µg − µ`), (8)

wherein K is the mass relaxation parameter, and the source terms on the right
hand sides of (7) and (8) account for mass transfer between the phases [24, 25]. The
mass transfer occurs from the phase with the highest chemical potential towards
the phase with the lowest, which is ensured through the assumption K ≥ 0. We
observe that conservation of total mass is contained by summing (7) and (8):

∂tρ+ ∂x (αgρgvg + α`ρ`v`) = 0, (9)

wherein we have defined the mixture density ρ = αgρg + α`ρ`.
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2.1.3. Momentum balance. Similar balance laws apply for the momentum of each
phase:

∂tαgρgvg + ∂x(αgρgv
2
g + αgpg)− pi∂xαg = viK (µ` − µg) + M (v` − vg), (10)

∂tα`ρ`v` + ∂x(α`ρ`v
2
` + α`p`)− pi∂xα` = viK (µg − µ`) + M (vg − v`). (11)

Herein, pi is an interface pressure and M is the momentum relaxation parameter.
Note that from the averaging procedure resulting in these models, the interface
velocity vi in (10) and (11) need not be the same as that in (6) (see e.g. Ref. [43]).
However, we have chosen these to be equal to keep the notation to a minimum,
as this will not influence the main conclusions of this paper. The source terms
associated with vi on the right hand sides of (10) and (11) represent the momentum
of the condensating or vaporizing fluid, which is transferred to the other phase. The
source terms associated with M represent interfacial friction, and are assumed to
cause momentum transfer from the phase with highest velocity towards the one with
lowest velocity, which is ensured by requiring M ≥ 0. We observe that conservation
of total momentum is ensured by summing (10) and (11):

∂t (αgρgvg + α`ρ`v`) + ∂x
(
αgρgv

2
g + α`ρ`v

2
` + αgpg + α`p`

)
= 0. (12)

2.1.4. Energy balance. The balance laws for the energy of each phase may be stated
as

∂tEg + ∂x (Egvg + αgvgpg)− pivi∂xαg

= −piI (pg − p`) +
(
µi + 1

2vi
2
)
K (µ` − µg) + viM (v` − vg) + H (T` − Tg), (13)

∂tE` + ∂x (E`v` + α`v`p`)− pivi∂xα`

= −piI (p` − pg) +
(
µi + 1

2vi
2
)
K (µg − µ`) + viM (vg − v`) + H (Tg − T`). (14)

Herein, µi is an interface chemical potential, H is the temperature relaxation
parameter, and we have introduced the total phasic energy per volume Ek = Eint

k +
Ekin
k , where the phasic internal and kinetic energies are given by, respectively,

Eint
k = αkρkek, (15)

Ekin
k = 1

2αkρkv
2
k. (16)

On the right hand side of (13) and (14), the terms associated with I represent
energy transfer due to expansion–compression work, the terms associated with K
represent the energy which the condensating or vaporizing fluid brings into the
other phase, the terms associated with M represent energy transfer due to frictious
momentum transfer, and the terms associated with H represent pure heat flow.
The latter should flow from the hotter to the colder phase, which is ensured through
the assumption H ≥ 0. Moreover, we see that total energy is conserved by summing
(13) and (14),

∂tE + ∂x (Egvg + E`v` + αgvgpg + α`v`p`) = 0, (17)

where we have introduced the mixed total energy per volume E = Eg + E`. Note
that the same observation on the interfacial velocity as pointed out in Section 2.1.3
applies to (13) and (14). The interface velocity is for simplicity of notation chosen
to be the same vi in (13) and (14) as in (6) and (10) and (11), but the choice
does not have consequences for our main conclusions.
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2.1.5. Phase independent form. With all possible relaxation terms, the BN model
[3], as presented in (6) to (8), (10), (11), (13) and (14), can be stated compactly
as

∂tαk + vi∂xαk = Ik, (18)
∂tαkρk + ∂xαkρkvk = Kk, (19)

∂tαkρkvk + ∂x(αkρkv
2
k + αkpk)− pi∂xαk = viKk +Mk, (20)

∂tEk + ∂x (Ekvk + αkvkpk)− pivi∂xαk = −piIk +
(
µi + 1

2vi
2
)
Kk + viMk +Hk,

(21)

for each phase k ∈ {g, `}. Herein, the shorthand forms of the relaxation source
terms, Ik, Kk, Hk and Mk, have been defined such that Ig = −I` = I (pg − p`),
Kg = −K` = K (µ`−µg), Hg = −H` = H (T`−Tg), andMg = −M` = M (v`−vg).

2.2. Evolution of primitive variables. In order to systematically derive other
models in the hierarchy, and to derive a physically valid parameter set for the
basic model, we now seek the evolution equations for primitive variables, such as
phasic velocity vk, density ρk, pressure pk, temperature Tk, entropy sk and chemical
potential µk. To simplify the notation in the forthcoming, we introduce the phasic
material derivative, defined by

Dk (·) ≡ ∂t (·) + vk∂x (·) , (22)

for each phase k ∈ {g, `}.
In the forthcoming calculations, the following relation will prove useful. For an

arbitrary quantity f , we have from (19) and (22) that

αkρkDkf = ∂tαkρkf + ∂xαkρkvkf − fKk. (23)

2.2.1. Volume fraction. For clarity we state the evolution equation for the volume
fraction. Using (18), we have that

Dkαk = Ik + (vk − vi)∂xαk. (24)

2.2.2. Velocity. We now seek the evolution equation for the phasic velocity. Using
f = vk in (23), and (20), we obtain

Dkvk = (αkρk)−1 ((pi − pk)∂xαk − αk∂xpk + (vi − vk)Kk +Mk) . (25)

2.2.3. Density. The density evolution equation is found by combining (19) and (24),

Dkρk = − ρk
αk

(vk − vi)∂xαk − ρk∂xvk −
ρk
αk
Ik +

1

αk
Kk. (26)

2.2.4. Kinetic energy. In order to obtain the evolution equation for the specific
internal energy, we start by finding the evolution equations for the kinetic energy.
Using f = v2

k/2 in (23), and (16) and (25), we obtain

∂tE
kin
k + ∂xE

kin
k vk + αkvk∂xpk + vk(pk − pi)∂xαk =

(
vivk − 1

2v
2
k

)
Kk + vkMk.

(27)
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2.2.5. Internal energy. We obtain the evolution equation for the internal energy by
subtracting (27) from (21), expanding and collecting terms:

∂tE
int
k +∂xE

int
k vk+αkpk∂xvk+pi(vk−vi)∂xαk = −piIk+gkKk+(vi−vk)Mk+Hk,

(28)
where we have introduced a shorthand interface energy gk = µi +

1
2 (vi − vk)

2. Now,
by using (15) and (28) and f = ek in (23), we obtain

Dkek = 1
αkρk

(
−pi(Ik+(vk−vi)∂xαk)−αkpk∂xvk+(gk−ek)Kk+(vi−vk)Mk+Hk

)
.

(29)

2.2.6. Entropy. The fundamental thermodynamic differential reads

dek = Tkdsk + pkρ
−2
k dρk, (30)

where sk is the specific entropy of phase k. By writing (30) in terms of material
derivatives, and inserting (26) and (29), we obtain the evolution equation for the
phasic entropy as

Dksk = (αkρkTk)−1
[
(pk−pi) (Ik + (vk − vi)∂xαk)+(gk−hk)Kk+(vi−vk)Mk+Hk

]
.

(31)
Herein, the phasic specific enthalpy is defined as hk = ek + pk/ρk. By using f = sk
in (23) along with the identity µk = hk−Tksk, (31) may be written in the balance
form

∂tSk+∂xSkvk = T−1
k

[
(pk−pi) (Ik + (vk − vi)∂xαk)+(gk−µk)Kk+(vi−vk)Mk+Hk

]

(32)
where we have defined the phasic entropy per volume Sk = αkρksk.

2.2.7. Pressure. The pressure differential in terms of the density and entropy dif-
ferentials may be written as

dpk = c2kdρk + ΓkρkTkdsk, (33)

where we have introduced the phasic thermodynamic speed of sound and the first
Grüneisen coefficient, respectively defined by

c2k = (∂pk/∂ρk)sk and Γk = ρ−1
k (∂pk/∂ek)ρk . (34)

By writing (33) in terms of the phasic material derivative, and inserting (26)
and (29), we arrive at

Dkpk =
Γk(pk−pi)−ρkc2k

αk
(Ik + (vk − vi)∂xαk)

− ρkc2k∂xvk +
Γk(gk−hk)+c2k

αk
Kk + Γk

αk
(vi − vk)Mk + Γk

αk
Hk. (35)

2.2.8. Temperature. We now seek the equation governing the phasic temperature
evolution. The temperature differential may in terms of the pressure and entropy
differentials be written as

dTk = ΓkTkρ
−1
k c−2

k dpk + TkC
−1
p,kdsk, (36)

where the specific isobaric heat capacity is defined by Cp,k = Tk (∂sk/∂Tk)pk . Now,
writing (36) in terms of phasic material derivatives, and inserting (31) and (35),
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we obtain

DkTk =




1 +
Γ2
kCp,kTk
c2k

αkρkCp,k
(pk − pi)−

ΓkTk
αk


 (Ik + (vk − vi)∂xαk)− ΓkTk∂xvk

+


ΓkTk
αkρk

+
1 +

Γ2
kCp,kTk
c2k

αkρkCp,k
(gk − hk)


Kk +

1 +
Γ2
kCp,kTk
c2k

αkρkCp,k
[(vi − vk)Mk +Hk] .

(37)

2.2.9. Chemical potential. The natural differential of the phasic chemical potential
reads

dµk = ρ−1
k dpk − skdTk. (38)

Therefore, writing (38) in terms of phasic material derivatives, and inserting (35)
and (37), we obtain

Dkµk = 1
αk

[(
Γk − sk

Cp,k
− Γ2

kTksk
c2k

)
(pk−pi)
ρk

− c2k + ΓkTksk

]
(Ik + (vk − vi)∂xαk)

−
(
c2k − ΓkTksk

)
∂xvk + 1

αkρk

[
c2k − ΓkTksk +

(
Γk − sk

Cp,k
− Γ2

kTksk
c2k

)
(gk − hk)

]
Kk

+ 1
αkρk

(
Γk − sk

Cp,k
− Γ2

kTksk
c2k

)
[(vi − vk)Mk +Hk] . (39)

2.3. Laws of thermodynamics. For the model to correctly represent physical
phenomena, it should be verified that it satisfies fundamental physical principles
[20, 21]. We have already verified that it conserves mass, momentum and energy,
respectively represented by (9), (12) and (17), where the latter is known as the
first law of thermodynamics. We now consider the second law of thermodynamics,
which states that the total entropy should be non-decreasing. The analysis in the
following is reminiscent of that of various previous works [14, 20].

2.3.1. Total entropy evolution. The total entropy per volume is given by S = Sg +
S`. The evolution equation for the total entropy is therefore found by summing
(32) over k ∈ {g, `}:

∂tS + ∂x(Sgvg + S`v`) = Sp + Sµ + Sv + ST = S , (40)

where we have defined the entropy source terms

Sp =
(
pg−pi

Tg
− p`−pi

T`

)
Ig +

[
(pg−pi)(vg−vi)

Tg
− (p`−pi)(v`−vi)

T`

]
∂xαg, (41)

Sµ =
((
µi − µg + 1

2 (vi − vg)2
)
T−1

g −
(
µi − µ` + 1

2 (vi − v`)2
)
T−1
`

)
Kg, (42)

Sv =
[
(vi − vg)T−1

g − (vi − v`)T−1
`

]
Mg, (43)

ST = (T−1
g − T−1

` )Hg. (44)

2.3.2. The second law of thermodynamics. We define the global entropy as

Ω(t) =

∫

C

S(x, t) dx, (45)

where C ⊆ R is some closed region.
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Definition 3. The second law of thermodynamics states that the global entropy is
non-decreasing, i.e.,

dΩ

dt
≥ 0 ∀t, (46)

in our context.

Proposition 1. Sufficient conditions for the relaxation model given by (6) to (8),
(10), (11), (13) and (14) to satisfy the second law of thermodynamics (Definition 3)
are

I ,K ,M ,H ≥ 0, (47)
min{µg, µ`} ≤ µi ≤ max{µg, µ`}, (48)

pi =

√
T`pg+

√
Tgp`√

Tg+
√
T`

, (49)

vi =

√
T`vg+

√
Tgv`√

Tg+
√
T`

, (50)

given only the physically fundamental assumption Tk ≥ 0 for k ∈ {g, `}.
Proof. By temporal differentiation of (45), in combination with (40) and (46), we
obtain ∫

C

dxS (x, t) ≥ 0, (51)

where we have assumed that the entropy flux of (40), Sgvg + S`v`, vanishes at
the boundary of C . For (51) to be satisfied, clearly S ≥ 0 is a sufficient crite-
rion, for which statement to hold the non-negativity of all the partial source terms
Sp,Sµ,ST and Sv is in turn sufficient. We now show this for each of the terms
under the conditions of (47) to (50).

Firstly, the conditions (49) and (50) inserted into (41) yields

Sp = I (pg − p`)2
(TgT`)

−1/2 ≥ 0. (52)

Now, (48) is equivalent to µi = βµµg + (1 − βµ)µ`, with βµ ∈ [0, 1]. Hence,
combination of (42) and (50) yields

Sµ = K (µ` − µg)2
[
(1− βµ)T−1

g + βµT
−1
`

]
≥ 0. (53)

Next, (50) inserted into (43) yields

Sv = M (v` − vg)2(TgT`)
−1/2 ≥ 0. (54)

Finally, (44) becomes

ST = H (T` − Tg)2(TgT`)
−1 ≥ 0, (55)

and hence all the source terms are non-negative. �
Remark 1. The interface conditons (49) and (50) are sufficient, not necessary,
and the square-root-of-temperature weighted average between the phasic values dif-
fers from choices in the literature, e.g. the initial choices by [3]. The reason for
this particular weighting is that we enforced the interface velocities in (6), (10),
(11), (13) and (14) to be equal. Allowing these to differ would enable other linear
combinations of the phasic quantities, which could possibly be more suitable for nu-
merical simulations [55]. These differences, however, do not have implications for
the main conclusions of this paper.
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2.4. Wave velocities. We now consider the homogeneous limit of the BN model,
where the source terms I ,K ,M ,H → 0. The resulting model has previously
been extensively studied by several authors, see e.g. [54, 69]. The model has two
fluid-mechanical sound speeds; one for each of the phases. The seven wave velocities
are given by λ0 = {vi, vg, v`, vg − cg, vg + cg, v` − c`, v` + c`} [54].

In typical applications, the flow is subsonic, i.e. |vg− v`| � cg, c` may be a valid
approximation. Evaluated in the velocity equilibrium limit, taking v ≡ vg = v`, the
eigenvalues are, sorted in ascending order,

λ
(0)
0 = {v − c0,+, v − c0,−, v, v, v, v + c0,−, v + c0,+} (56)

where we have defined c0,+ = max{cg, c`} and c0,− = min{cg, c`} as the higher and
lower sound speeds, respectively.

3. The v-model

We now study the model that arises upon imposing instantaneous equilibrium
in velocity, i.e. letting the velocity relaxation parameter M →∞, which we expect
corresponds to

vg = v` ≡ v. (57)

Simultaneously, we require the term Mg = M (v` − vg) to remain finite. By noting
that for a general function f , the phasic material derivatives are equal for the two
phases, i.e. Dkf = ∂tf + v∂xf ≡ Df , then the system that results from evaluating
(25) for the two phases k ∈ {g, `} can be solved to yield

Mg = (Ygp` + Y`pg − pi) ∂xαg + αgY`∂xpg − α`Yg∂xp`, (58)

where we have introduced the phasic mass fractions Yk = αkρk/ρ. The model that
now results from inserting (57) and (58) into the basic model of Section 2, was
analyzed by Flåtten and Lund [20, 40], as it constitutes the basic model of the v-
branch of the hierarchy. The model is hyperbolic and has previously been studied
by many authors [33, 50, 57].

3.1. Wave velocities. The wave velocities of the velocity equilibrium model, in
the homogeneous limit where I ,K ,H → 0, are given by [20]

λv = {v − cv, v, v, v, v, v + cv} . (59)

Herein, the sound speed of this model is defined by

c2v = Ygc
2
g + Y`c

2
` . (60)

Proposition 2. The v-model satisfies the subcharacteristic condition with respect
to the basic model, given only the physically fundamental conditions ρk, c2k > 0, for
k ∈ {g, `}.
Proof. We observe that Yg + Y` = 1, and due to the given positivity conditions, we
have that Yk ∈ (0, 1). Therefore, (60) implies that min{cg, c`} ≤ cv ≤ max{cg, c`}.
It then follows trivially that the wave velocities of the v-model are interlaced in
the wave velocities (56) of the basic model evaluated in the velocity equilibrium
state (57). Hence, the associated subcharacteristic condition of Definition 1 is
satisfied. �
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4. The p-model

In this section, we consider the mechanical equilibrium model, which arises when
we assume instantaneous mechanical equilibrium in the basic model of Section 2.
We let the pressure relaxation parameter I →∞, which we expect to correspond
to pg = p` ≡ p. Simultaneously, the product Ig = I (pg − p`) should remain finite.
The mechanical equilibrium model is found by using (35) evaluated for each of
the two phases. From this, we may find an expression for Ig without temporal
derivatives, and insert it into the basic model of Section 2. The resulting model
has been extensively studied previously [19, 54]. Like other one-pressure two-fluid
models, the model is not hyperbolic.

4.1. Wave velocities. We consider now the homogeneous limit, where K ,M ,H →
0. The eigenvalues to the lowest order in the small parameter ε = vg− v`, i.e. eval-
uated in the equilibrium state defined by (57), are given by [19]

λ(0)
p = {v − cp, v, v, v, v, v + cp} , (61)

where the sound speed in the p-model is given by

c2p =
(
αg

ρg
+

α`
ρ`

)(
αg

ρgc2g
+

α`
ρ`c2`

)−1

. (62)

Proposition 3. The p-model satisfies the weak subcharacteristic condition of Def-
inition 2 with respect to the basic model of Section 2, subject only to the physically
fundamental conditions ρk, c2k > 0, for k ∈ {g, `}, in the equilibrium state defined
by (57).

Proof. We see from (62) that c2p is a convex combination

c2p = ϕgc
2
g + ϕ`c

2
` , where ϕk =

(
αk
ρkc2k

)(
αg

ρgc2g
+

α`
ρ`c2`

)−1

, (63)

since ϕg + ϕ` = 1, and ϕk ∈ (0, 1), due to the given conditions. This implies that

min{cg, c`} ≤ cp ≤ max{cg, c`}, (64)

and hence the weak subcharacteristic condition is fullfilled with respect to the basic
model, whose local eigenvalues evaluated in the same state are given by (56). �

5. The T -model

In this section, we investigate the thermal-equilibrium model (T -model), which
emerges from assuming instantaneous thermal equilibrium in the basic model of
Section 2. To this end, we let H →∞ herein, which we expect corresponds to

Tg = T` ≡ T, (65)

in such a way that Hg = H (T` − Tg) remains finite. In the following we present
the governing equations.

5.1. Governing equations. The full T -model may be stated as the basic model of
Section 2, in which (13) and (14) are replaced by (17) and the thermal equilibrium
condition (65).

In order to establish the impact of instantaneous thermal relaxation on the wave
velocities, we need to express the model in a quasi-linear form, and thus obtain the
velocities as the eigenvalues of the associated Jacobian. This is most easily done
by exploiting the primitive variables, which is what we now turn to do.
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Firstly, we have that the phasic pressure differential in terms of density and
temperature may be written as

dpk = c2kζ
−1
k dρk + ΓkρkCp,kζ

−1
k dT. (66)

where we have introduced the ratio of specific heats ζk = 1 + Γ2
kCp,kT/c

2
k, and used

(65). With (66), (25) becomes

Dkvk = ∆ipk
mk

∂xαk − c2k
ρkζk

∂xρk − ΓkCp,k
ζk

∂xT + ∆ivk
mk

Kk + 1
mk
Mk, (67)

where we have defined the phasic mass per volume mk = αkρk, the phasic interface
pressure jump ∆ipk = pi − pk, and the phasic interface velocity difference ∆ivk =
vi − vk. Furthermore, (37) becomes

DkT = −
[
ζk∆ipk
C̃p,k

+ ΓkT
αk

]
(Ik −∆ivk∂xαk)− ΓkT∂xvk

+
[

ΓkT
mk

+ ζk
C̃p,k

(gk − hk)
]
Kk + ζk

C̃p,k
∆ivkMk + ζk

C̃p,k
Hk, (68)

where we have introduced the extensive heat capacity at constant pressure C̃p,k =

mkCp,k. We now define the weighting factor θk = C̃p,kζ
−1
k /(C̃p,gζ

−1
g + C̃p,`ζ

−1
` ), for

which clearly θg + θ` = 1 and θk ∈ (0, 1). Multiplying (68) by θk, and summing
over the phases yields

∂tT+(θgvg + θ`v`) ∂xT = −
[
θgΓgT
αg

+
θ`Γ`T
α`

]
vg−v`

2 ∂xαg−θgΓgT∂xvg−θ`Γ`T∂xv`

+


 pg − p`
C̃p,g
ζg

+
C̃p,`
ζ`

− θgΓgT

αg
+
θ`Γ`T

α`


 Ig +


 h` − hg

C̃p,g
ζg

+
C̃p,`
ζ`

+
θgΓgT

mg
− θ`Γ`T

m`


Kg

+
v` − vg

C̃p,g
ζg

+
C̃p,`
ζ`

Mg, (69)

where have used the interface parameter definitions of (49) and (50) evaluated in
thermal equilibrium (65) to simplify.

5.2. Wave velocities. We now seek the wave velocities, i.e. eigenvalues, in the
homogeneous limit, where the relaxation source terms I ,K ,M → 0. From (24),
it is then clear that αg is a characteristic variable of the system, since the volume
fraction is advected with the velocity vi in the absence of relaxation source terms.
By using (26), (67) and (69), the remaining, reduced system may now be expressed
in the quasi-linear form ∂tũT + ÃT (ũT ) ∂xũT = 0, where ũT = [ρg, ρ`, vg, v`, T ],
and the associated Jacobian is given by

ÃT =




vg 0 ρg 0 0
0 v` 0 ρ` 0
c2g
ρgζg

0 vg 0
ΓgCp,g
ζg

0
c2`
ρ`ζ`

0 v`
Γ`Cp,`
ζ`

0 0 θgΓgT θ`Γ`T θgvg + θ`v`



, (70)

from which we can find the remaining five eigenvalues. The characteristic polyno-
mial of the latter is a fifth-degree polynomial, for which in general no closed-form
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solution can be obtained. We now note that we may write ÃT = Ã
(0)
T + εÃ

(1)
T ,

where ε = vg − v`. The matrices are given by

Ã
(0)
T =




v̄ 0 ρg 0 0
0 v̄ 0 ρ` 0
c2g
ρgζg

0 v̄ 0
ΓgCp,g
ζg

0
c2`
ρ`ζ`

0 v̄
Γ`Cp,`
ζ`

0 0 θgΓgT θ`Γ`T v̄



, (71)

and Ã
(1)
T = diag (θ`,−θg, θ`,−θg, 0) , where we have taken v̄ = θgvg + θ`v`. Hence,

we approximate the eigenvalues by means of a perturbation expansion in the small
parameter ε. To the lowest order in ε, vg = v` = v̄ = v, and the eigenvalues of the
T -model are given by

λ
(0)
T = {v − cT,+, v − cT,−, v, v, v + cT,−, v + cT,+} (72)

where the two distinct sound speeds of the model are given by

c2T,± =

c2g+c2`
T

(
1

C̃p,g
+ 1

C̃p,`

)
+

Γ2
gc

2
`

mgc2g
+

Γ2
`c

2
g

m`c2`

2
[

Γ2
g

mgc2g
+

Γ2
`

m`c2`
+ 1

T

(
1

C̃p,g
+ 1

C̃p,`

)]

±
√[

c2g−c2`
T

(
1

C̃p,g
+ 1

C̃p,`

)
− Γ2

gc
2
`

mgc2g
+

Γ2
`c

2
g

m`c2`

]2
+ 4

Γ2
gΓ2
`

mgm`

2
[

Γ2
g

mgc2g
+

Γ2
`

m`c2`
+ 1

T

(
1

C̃p,g
+ 1

C̃p,`

)] . (73)

Proposition 4. The T -model satisfies the weak subcharacteristic condition with
respect to the basic model of Section 2, subject only to the physically fundamental
conditions ρk, Cp,k, T > 0, for k ∈ {g, `}, in the equilibrium state defined by (57).

Proof. We first show that the sound speeds are real. We note that on the given
conditions, clearly c2T,± ∈ R, and moreover, c2T,+ ≥ 0. The product of the sound
speeds may be written as

c−2
T,+c

−2
T,− = c−2

0,+c
−2
0,− + Z0

T , where Z0
T =

T
(

Γ2
g

mgc2g
+

Γ2
`

m`c2`

)

c20,+c
2
0,−

(
1

C̃p,g
+ 1

C̃p,`

) . (74)

Based on the given conditions, it is clear that Z0
T ≥ 0 and therefore

0 ≤ c2T,+c2T,− ≤ c20,+c20,−, (75)

and hence also c2T,− ≥ 0, and thus cT,± are real, and by definition, positive. Now,
using the definitions of c0,± and (73), it follows that

(c20,+ − c2T,+)(c20,+ − c2T,−)(c20,− − c2T,+)(c20,− − c2T,−) = −Q0
T , (76)

where

Q0
T =

(
c2g − c2`

)2 Γ2
gΓ2
`

mgm`

[
Γ2

g

mgc2g
+

Γ2
`

m`c2`
+ 1

T

(
1

C̃p,g
+ 1

C̃p,`

)]−2

. (77)

The given conditions ensure that Q0
T ≥ 0. The only ordering of sound speeds

compatible with (75) and (76) is 0 ≤ cT,− ≤ c0,− ≤ cT,+ ≤ c0,+, and hence the
subcharacteristic condition of Definition 1 is satisfied. �
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Proposition 5. The vT -model of Lund [40] satisfies the subcharacteristic con-
dition with respect to the T -model, given the physically fundamental assumptions
ρk, Cp,k, T > 0, for k ∈ {g, `}.

Proof. The sound speed of the vT -model is given by [40]

c2vT =
1

ρ

mgc
2
gm`c

2
`

(
Γg

mgc2g
+

Γ`
m`c2`

)2

+ 1
T

(
1

C̃p,g
+ 1

C̃p,`

)(
mgc

2
g +m`c

2
`

)

Γ2
g

mgc2g
+

Γ2
`

m`c2`
+ 1

T

(
1

C̃p,g
+ 1

C̃p,`

) . (78)

Now, using (73), we can write the product of the differences as
(
c2T,+ − c2vT

) (
c2T,− − c2vT

)
= −QTvT , (79)

where

QTvT = YgY`




1
T

(
1

C̃p,g
+ 1

C̃p,`

)(
c2g − c2`

)
− Γ2

gc
2
`

mgc2g
+

Γ2
`c

2
g

m`c2`
+
(

1
mg
− 1

m`

)
ΓgΓ`

Γ2
g

mgc2g
+

Γ2
`

m`c2`
+ 1

T

(
1

C̃p,g
+ 1

C̃p,`

)




2

.

(80)

With the given conditions, clearly QTvT ≥ 0. Hence exactly one of the factors on
the left hand side of (79) is negative, and combined with Proposition 4 we realize
that cT,− ≤ cvT ≤ cT,+, and hence the subcharacteristic condition is satisfied. �

Proposition 6. The pT -model satisfies the weak subcharacteristic condition with
respect to the T -model, given the physically fundamental assumptions ρk, Cp,k, T > 0
for k ∈ {g, `} in the equilibrium state defined by (57).

Proof. The sound speed of the pT -model is given by [19]

c2pT =

(
αg

ρg
+

α`
ρ`

)(
1

C̃p,g
+ 1

C̃p,`

)

(
αg

ρgc2g
+

α`
ρ`c2`

)(
1

C̃p,g
+ 1

C̃p,`

)
+ T

(
Γg

ρgc2g
− Γ`

ρ`c2`

)2 (81)

We may now write
(
c2T,+ − c2pT

) (
c2T,− − c2pT

)
= −QTpT , (82)

where

QTpT =
αgα`

ρgc2gρ`c
2
`T

(
1

C̃p,g
+

1

C̃p,`

)[
Γ2

g

mgc2g
+

Γ2
`

m`c2`
+

1

T

(
1

C̃p,g
+

1

C̃p,`

)]−1

×




(
1

C̃p,g
+ 1

C̃p,`

)(
c2g − c2`

)
− T

(
Γg

ρgc2g
− Γ`

ρ`c2`

)(
Γgc

2
`

αg
+

Γ`c
2
g

α`

)

(
αg

ρgc2g
+

α`
ρ`c2`

)(
1

C̃p,g
+ 1

C̃p,`

)
+ T

(
Γg

ρgc2g
− Γ`

ρ`c2`

)2




2

. (83)

Clearly QTpT ≥ 0, on the given conditions. Hence exactly one factor on the left hand
side of (82) is negative, yielding cT,− ≤ cpT ≤ cT,+, and the weak subcharacteristic
condition is satisfied. �
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6. The µ-model

We now proceed to investigate the chemical-equilibrium model (the µ-model),
which arises when we assume instantaneous chemical equilibrium, i.e. let the chem-
ical relaxation parameter K →∞, which we expect corresponds to

µg = µ` ≡ µ. (84)

Simultaneously, we require the product Kg = K (µ` − µg) to remain finite, and in
the forthcoming we seek to express this without any temporal derivatives.

Remark 2. It should be noted that there does not seem to be a general agreement
in the literature on how to properly model mass transfer (see e.g. [41, pp. 13]).
Strictly enforcing (84) may sometimes lead to unphysical results [4]. The present
choice (84) is primarily motivated by compliance with the v-subhierarchy compiled
by [40], and evaluating the physical relevance of these models is out of the scope of
the present work.

The chemical potential evolution equation (39) may be written as

Dkµ = −
[
ψk∆ipk + ξkα

−1
k

]
(Ik −∆ivk∂xαk)−ξk∂xvk+χkKk+ψk∆ivkMk+ψkHk.

(85)
where we have used (84), and defined the shorthands

ξk = c2k − ΓkTksk, ψk = Γkξk
mkc2k

− sk
C̃p,k

, χk =
ξ2
k

mkc2k
+

Tks
2
k

C̃p,k
+ 1

2 (∆ivk)2ψk. (86)

By using (85) evaluated for each of the phases, and subtracting these expressions
from each other, we obtain

Kg = κ−1
µ (ξg∂xvg − ξ`∂xv` − (ψg + ψ`)Hg)−Aµ∂xαg+(vg−v`)κ−1

µ ∂xµ+K µ
p Ig−K µ

v Mg

(87)
where we have defined the shorthands

κµ =
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`
+

ξ2
g

mgc2g
+

ξ2
`

m`c2`
+ 1

2

(
ψg(∆ivg)2 + ψ`(∆iv`)

2
)
, (88)

Aµ = κ−1
µ

[(
ψg∆ipg +

ξg
αg

)
∆ivg +

(
ψ`∆ip` +

ξ`
α`

)
∆iv`

]
, (89)

K µ
p = κ−1

µ

[
ψg∆ipg + ψ`∆ip` +

ξg
αg

+
ξ`
α`

]
, K µ

v = κ−1
µ (ψg∆ivg + ψ`∆iv`) . (90)

6.1. Governing equations. By using the expression (87) to insert for Kg in the
basic model of Section 2, the µ-model can now be summarized with the following
set of equations:

• Volume advection: ∂tαg + vi∂xαg = Ig,
• Conservation of mass: ∂tρ+ ∂x (αgρgvg + α`ρ`v`) = 0,
• Momentum balance:

∂tαgρgvg + ∂x(αgρgv
2
g + αgpg)− (pi − viA

µ) ∂xαg − viξgκ
−1
µ ∂xvg + viξ`κ

−1
µ ∂xv`

− vi(vg − v`)κ−1
µ ∂xµ = viK

µ
p Ig + (1− viK

µ
v )Mg − vi (ψg + ψ`)κ

−1
µ Hg, (91)
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• Energy balance:

∂tEg + ∂x (Egvg + αgvgpg)−
[
pivi −

(
µ+ 1

2vi
2
)

Aµ
]
∂xαg

−
(
µ+ 1

2vi
2
)
κ−1
µ [ξg∂xvg − ξ`∂xv` + (vg − v`)∂xµ]

=
[(
µ+ 1

2vi
2
)

K µ
p − pi

]
Ig+

[
vi −

(
µ+ 1

2vi
2
)

K µ
v

]
Mg+

[
1−

(
µ+ 1

2vi
2
)

(ψg + ψ`)κ
−1
µ

]
Hg,
(92)

Momentum and energy equations for the liquid phase are found by phase symmetry;
interchanging indices g and `.

6.2. Evolution of primitive variables. In order to write the system in a quasi-
linear form, and thereby find the wave speeds of the µ-model, we use the evolution
equations for the primitive variables. We therefore now seek the evolution of some of
the primitive variables under the assumption of instantaneous chemical equilibrium.

We first define the weighting factor φk = χ−1
k /(χ−1

g + χ−1
` ). Multiplying (85)

by φk and summing over the phases, we get for the chemical potential

∂tµ+ (φgvg + φ`v`) ∂xµ+Gµαg
∂xαg + φgξg∂xvg + φ`ξ`∂xv`

=
[
−φg(ψg∆ipg + ξgα

−1
g ) + φ`(ψ`∆ip` + ξ`α

−1
` )
]
Ig

+ (φgψg∆ivg − φ`ψ`∆iv`)Mg + (φgψg − φ`ψ`)Hg, (93)

where we have defined the shorthand coefficient

Gµαg
= −φg

(
ψg∆ipg + ξgα

−1
g

)
∆ivg + φ`

(
ψ`∆ip` + ξ`α

−1
`

)
∆iv`. (94)

For the phasic velocity vg, we find from (25) the evolution equation

∂tvg+
[
vg − ξg∆ivg

mgκµ

]
∂xvg+

ξ`∆ivg

mgκµ
∂xv`+

∆ivgAµ−∆ipg

mg
∂xαg+ 1

ρg
∂xpg−∆ivg(vg−v`)

mgκµ
∂xµ

=
∆ivg

mg
K µ
p Ig + 1

mg
(1−∆ivgK µ

v )Mg − ∆ivg

mg

ψg+ψ`
κµ

Hg, (95)

and v` is found by phase symmetry.
The phasic pressure evolution is found from (35). For the gas phase, it reads

∂tpg + vg∂xpg + Pµg,αg
∂xαg + Pµg,vg

∂xvg + Pµg,v`∂xv` + Pµg,µ∂xµ

= α−1
g

[
−
(
Γg∆ipg + ρgc

2
g

)
+
(
ξg + 1

2Γg(∆ivg)2
)

K µ
p

]
Ig

+ α−1
g

[
Γg∆ivg −

(
ξg + 1

2Γg(∆ivg)2
)

K µ
v

]
Mg

+ α−1
g

[
Γg −

(
ξg + 1

2Γg(∆ivg)2
)

(ψg + ψ`)κ
−1
µ

]
Hg. (96)

wherein we have defined the coefficients

Pµg,αg
= α−1

g

[(
ξg + 1

2Γg(∆ivg)2
)

Aµ −
(
Γg∆ipg + ρgc

2
g

)
∆ivg

]
, (97)

Pµg,vg
= ρgc

2
g −

(
ξg + 1

2Γg(∆ivg)2
)
ξgα
−1
g κ−1

µ , (98)

Pµg,v` =
(
ξg + 1

2Γg(∆ivg)2
)
ξ`α
−1
g κ−1

µ , (99)

Pµg,µ = −
(
ξg + 1

2Γg(∆ivg)2
)

(vg − v`)α−1
g κ−1

µ . (100)

The corresponding expressions related to the evolution of p` are found by phase
symmetry.
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6.3. Wave velocities. We now wish to derive the wave velocities of the µ-model
in the homogeneous limit, where I ,H ,M → 0. In this limit, the volume fraction
αg is a characteristic variable with the associated eigenvalue vi. The remaining,
reduced model, i.e. (93), (95) and (96) for both phases, may then be expressed
in the quasi-linear form ∂tũµ + Ãµ(ũµ)∂xũµ = 0, where the reduced vector of
unknowns is ũµ = [µ, vg, v`, pg, p`], and the reduced Jacobian reads

Ãµ =




φgvg + φ`v` φgξg φ`ξ` 0 0

−∆ivg(vg−v`)
mgκµ

vg − ξg∆ivg

mgκµ

ξ`∆ivg

mgκµ
ρ−1

g 0
∆iv`(vg−v`)

m`κµ

ξg∆iv`
m`κµ

v` − ξ`∆iv`
m`κµ

0 ρ−1
`

Pµg,µ Pµg,vg
Pµg,v` vg 0

Pµ`,µ Pµ`,vg
Pµ`,v` 0 v`



. (101)

Again the eigenvalues λ are given the roots of a fifth degree polynomial, for which in
general no closed-form solution exists. We therefore expand in the small parameter
ε = vg − v`, i.e. Ãµ = Ã

(0)
µ + εÃ

(1)
µ + . . ., and λ = λ(0) + ελ(1) + . . .. Herein, the

lowest-order system matrix reads, taking v̄ = φgvg + φ`v`,

Ã(0)
µ =




v̄ φgξg φ`ξ` 0 0
0 v̄ 0 ρ−1

g 0

0 0 v̄ 0 ρ−1
`

0 ρgc
2
g − ξ2

g/(αgκ
(0)
µ ) ξgξ`/(αgκ

(0)
µ ) v̄ 0

0 ξgξ`/(α`κ
(0)
µ ) ρ`c

2
` − ξ2

` /(α`κ
(0)
µ ) 0 v̄



, (102)

where we have used the lowest-order term of κµ, as defined in (88):

κ(0)
µ =

Tgs
2
g

C̃p,g
+

T`s
2
`

C̃p,`
+

ξ2
g

mgc2g
+

ξ2
`

m`c2`
. (103)

To the lowest order in ε, vg = v` = v̄ = v, and thus the eigenvalue problem consists
in finding the roots of det(Ã

(0)
µ − λ(0)I) = 0. Hence, the full vector of eigenvalues

is given by

λ(0)
µ = {v − cµ,+, v − cµ,−, v, v, v + cµ,−, v + cµ,+} (104)

where the two sound speeds in the µ-model are given by

c2µ,± =

(
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`

)
(c2g + c2`) +

ξ2
` c

2
g

m`c2`
+

ξ2
gc

2
`

mgc2g

2
[
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`
+

ξ2
g

mgc2g
+

ξ2
`

m`c2`

]

±

√[(
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`

)
(c2g − c2`) +

ξ2
` c

2
g

m`c2`
− ξ2

gc
2
`

mgc2g

]2
+ 4

ξ2
gξ

2
`

mgm`

2
[
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`
+

ξ2
g

mgc2g
+

ξ2
`

m`c2`

] (105)

Proposition 7. The µ-model satisfies the weak subcharacteristic condition with
respect to the basic model of Section 2, given only the physically fundamental con-
ditions ρk, Cp,k, Tk > 0 for k ∈ {g, `}, in the equilibrium state defined by (57).
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Proof. We first note that c2µ,± ∈ R on the given conditions, and that c2µ,+ ≥ 0. The
product of the sound speeds may be written as

c−2
µ,+c

−2
µ,− = c−2

0,+c
−2
0,− + Z0

µ, where Z0
µ = c−2

g c−2
`

ξ2
g

mgc2g
+

ξ2
`

m`c2`

Tgs
2
g

C̃p,g
+

T`s
2
`

C̃p,`

. (106)

Given the conditions we have that Z0
µ ≥ 0, and hence

0 ≤ c2µ,+c2µ,− ≤ c20,+c20,−. (107)

Therefore also c20,− is positive, and thus we have that c0,± are real and, by choice,
positive.

Now, the product of the differences of the sound speeds may be written as

(c20,+ − c2µ,+)(c20,+ − c2µ,−)(c20,− − c2µ,+)(c20,− − c2µ,−) = −Q0
µ, (108)

where

Q0
µ =

(
c2g − c2`

)2 ξ2
gξ

2
`

mgm`

[
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`
+

ξ2
g

mgc2g
+

ξ2
`

m`c2`

]−2

. (109)

Clearly, with the given conditions, Q0
µ ≥ 0, and hence the only ordering of sound

speeds compatible with (107) and (108) is 0 ≤ cµ,− ≤ c0,− ≤ cµ,+ ≤ c0,+, which
means that the weak subcharacteristic condition is satisfied. �

Proposition 8. The vµ-model satisfies the subcharacteristic condition with respect
to the µ-model, subject only to the physically fundamental conditions ρk, Cp,k, Tk >
0, for k ∈ {g, `}.

Proof. The sound speed in the vµ-model is given by [40]

c2vµ =
1

ρ

mgc
2
gm`c

2
`

(
ξg

mgc2g
+

ξ`
m`c2`

)2

+
(
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`

)(
mgc

2
g +m`c

2
`

)

Tgs2g
C̃p,g

+
T`s2`
C̃p,`

+
ξ2
g

mgc2g
+

ξ2
`

m`c2`

. (110)

We now consider the product of the differences in the sound speeds of the two
models, which may be written as

(c2µ,+ − c2vµ)(c2µ,− − c2vµ) = −Qµvµ, (111)

where

Qµvµ = YgY`




(
Tgs

2
g

mgCp,g
+

T`s
2
`

m`Cp,`

)
(c2g − c2`)−

ξ2
gc

2
`

mgc2g
+

ξ`c
2
g

m`c2`
+
(

1
mg
− 1

m`

)
ξgξ`

Tgs2g
C̃p,g

+
T`s2`
C̃p,`

+
ξ2
g

mgc2g
+

ξ2
`

m`c2`




2

.

(112)

Clearly Qµvµ ≥ 0. Hence, exactly one of the factors on the left hand side of (111)
must be negative, which gives cµ,− ≤ cvµ ≤ cµ,+, i.e. the subcharacteristic condition
is satisfied. �
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7. The pµ-model

We now consider the model which arises when we impose instantaneous mechanical-
chemical equilibrium, i.e. we let the relaxation parameters I ,K → ∞, which we
expect corresponds to

pg = p` ≡ p and µg = µ` ≡ µ. (113)

Simultaneously, Ig = I (pg − p`) and Kg = K (µ` − µg) should remain finite. We
now seek explicit expressions for these terms in order to find the governing equations
of the model.

In the following analysis we use the parameter set stated in Section 2 and there-
fore let the interfacial pressure jump ∆ip = pi − p = 0. From (35) and (85) we
have

Dkp = −ρkc
2
k

αk

(
Ĩk + ∂xαkvk

)
+

ξk+
1
2 Γk(∆ivk)2

αk
Kk + Γk

αk
∆ivkMk + Γk

αk
Hk, (114)

Dkµ = − ξk
αk

(
Ĩk + ∂xαkvk

)
+
[

ξ2
k

mkc2k
+

Tks
2
k

C̃p,k
+ 1

2 (∆ivk)2ψk

]
Kk + ψk∆ivkMk + ψkHk.

(115)

where we have defined Ĩk = Ik − vi∂xαk = ∂tαk.
Eqs. (114) and (115) evaluated for each phase now constitute a 4 × 4 system

which is straightforward to solve for the four unknowns ∂p/∂t, ∂µ/∂t, Ĩg, and Kg,
in terms of spatial derivatives and the remaining source terms. The final expressions
for the latter two are

Ĩg = −Ppµp (vg−v`)∂xp−Gpµp (vg−v`)∂xµ−Φg∂xαgvg + Φ`∂xα`v`+ Ipµv Mg + IpµT Hg,
(116)

Kg = −Ppµµ (vg − v`)∂xp− Gpµµ (vg − v`)∂xµ− V pµ
µ,g∂xv̄ + K pµ

v Mg + K pµ
T Hg, (117)

where the coefficients are given in Appendix A.

7.1. Governing equations. Inserting the expressions (116) and (117) into the
basic model of Section 2, we are now in a position to state the full model. The
mechanical–chemical equilibrium model may thus be formulated as follows.
• Conservation of mass: ∂tρ+ ∂x (mgvg +m`v`) = 0,
• Momentum balance:

∂tmgvg + ∂xmgv
2
g +

(
αg + viP

pµ
µ (vg − v`)

)
∂xp+ viG

pµ
µ (vg − v`)∂xµ+ viV

pµ
µ,g∂xv̄

= (1 + viK
pµ
v )Mg + viK

pµ
T Hg, (118)

• Energy balance:

∂tEg + ∂xEgvg +
[
αgvg +

((
µ+ 1

2vi
2
)

Ppµµ − pPpµp
)

(vg − v`)
]
∂xp

+
[(
µ+ 1

2vi
2
)

Gpµµ − pGpµp
]

(vg − v`)∂xµ+
[(
µ+ 1

2vi
2
)

V pµ
µ,g + pΦ`

]
∂xv̄

=
[
vi +

(
µ+ 1

2vi
2
)

K pµ
v − pIpµv

]
Mg +

[
1 +

(
µ+ 1

2vi
2
)

K pµ
T − pIpµT

]
Hg. (119)

The momentum and energy equations for the liquid phase are found by phase
symmetry. Note that, like other p-relaxed models, the pµ-model is expected to be
non-hyperbolic for nonzero difference in the velocity unless a regularising interfacial
pressure pi is defined.
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7.2. Wave velocities. We now wish to write the system in a quasilinear form, in
order to find the wave speeds of the system, in the homogeneous limit where we
let the relaxation terms M ,H → 0. To this end, we will express the model in the
vector of unknowns upµ = [p, µ, v̄, vg, v`]. We therefore seek the evolution equations
for the elements of upµ.

For the volume evolution, we find, using (24) and (116), that

∂tαg + Ppµp (vg − v`)∂xp+ Gpµp (vg − v`)∂xµ+ Φg∂xαgvg − Φ`∂xα`v` = 0, (120)

For the volume-averaged velocity v̄ we find, using (25), (116), (117) and (120),
that

∂tv̄ + (αgρ
−1
g + α`ρ

−1
` + P pµv̄ ε2)∂xp+Gpµv̄ ε2∂xµ+ αgε∂xvg

− α`ε∂xv` +
(
Φgvg + Φ`v` − V pµv̄,gε

)
∂xv̄ = 0, (121)

where we have defined the shorthand coefficients P pµv̄ , Gpµv̄ , V pµv̄,g (for which expres-
sions are given in Appendix A), used ε = vg − v`, and inserted βg = 1 − β` =√
T`/(

√
Tg +

√
T`). Now, for the pressure and chemical potentials, we get from

(114) and (115) that

∂tp+
(

Ψp
gvg + Ψp

`v`

)
∂xp+Gpµp ε∂xµ+ V pµp ∂xv̄ = 0, (122)

∂tµ+ P pµµ ε∂xp+
(

Ψµ
gvg + Ψµ

` v`

)
∂xµ+ V pµµ ∂xv̄ = 0. (123)

Again, the coefficients are given in Appendix A.
The homogeneous system in a quasilinear form thus reads ∂tupµ+Apµ (upµ) ∂xupµ =

0, where the system Jacobian is given by

Apµ =




Ψp
gvg + Ψp

`v` Gpµp ε V pµp 0 0

P pµµ ε Ψµ
gvg + Ψµ

` v` V pµµ 0 0
αg

ρg
+

α`
ρ`

+ P pµv̄ ε2 Gpµv̄ ε2 Φgvg + Φ`v` − V pµv̄,gε αgε −α`ε
1
ρg
− β`Ppµµ

mg
ε2 −β`Gpµµ

mg
ε2 −β`Vpµµ,g

mg
ε vg 0

1
ρ`
− βgPpµµ

m`
ε2 −βgGpµµ

m`
ε2 βgVpµµ,g

m`
ε 0 v`



.

(124)

Obtaining the assocated eigenvalues exactly by analytic means is again unfeasible,
as the problem consists in finding the roots of a fifth-degree polynomial. We there-
fore expand in ε: Apµ = A

(0)
pµ + εA

(1)
pµ + ε2A

(2)
pµ + . . ., where it is assumed that

the matrices A
(i)
pµ are independent of ε. To the lowest order, where ε → 0, taking

v = vg = v`, we get the matrix

A(0)
pµ =




v 0 V
pµ,(0)
p 0 0

0 v V
pµ,(0)
µ 0 0

αg

ρg
+

α`
ρ`

0 v 0 0
1
ρg

0 0 v 0
1
ρ`

0 0 0 v



, (125)
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where the superscript “(0)” on the coefficients signifies the zeroth-order expansion
in ε, such that

V pµ,(0)
p =

Tgs
2
g

C̃p,g
+

T`s
2
`

C̃p,`(
αg

ρgc2g
+

α`
ρ`c2`

)(
Tgs2g
C̃p,g

+
T`s2`
C̃p,`

)
+
(

ξg
ρgc2g
− ξ`

ρ`c2`

)2 . (126)

The eigenvalues in the pµ-model are, to the lowest order in ε,

λ(0)
pµ = {v − cpµ, v, v, v, v + cpµ} , (127)

where we have identified the sound speed cpµ of the model, given by

c2pµ =

(
αg

ρg
+

α`
ρ`

)(
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`

)

(
αg

ρgc2g
+

α`
ρ`c2`

)(
Tgs2g
C̃p,g

+
T`s2`
C̃p,`

)
+
(

ξg
ρgc2g
− ξ`

ρ`c2`

)2 . (128)

Proposition 9. The pµ-model satisfies the weak subcharacteristic condition with
respect to the p-model, given only the physically fundamental conditions ρk, Cp,k, Tk >
0, for k ∈ {g, `}, in the equilibrium state defined by (57).

Proof. From (62) and (128), we observe that we may write

c−2
pµ = c−2

p + Zppµ, where Zppµ =

(
ξg
ρgc2g
− ξ`

ρ`c2`

)2

(
αg

ρg
+

α`
ρ`

)(
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`

) . (129)

Due to the given physical conditions, Zppµ ≥ 0, and hence 0 ≤ cpµ ≤ cp, i.e. the
weak subcharacteristic condition is satisfied. �

Proposition 10. The pµ-model satisfies the weak subcharacteristic condition with
respect to the µ-model, under the physically fundamental conditions ρk, Cp,k, Tk > 0,
for k ∈ {g, `}, in the equilibrium state defined by (57).

Proof. Using the expressions (105) and (128) for the sound speeds in the two
models, we may write

(c2µ,+ − c2pµ)(c2µ,− − c2pµ) = −Qµpµ, (130)

where

Qµpµ =

αgα`
ρgc2gρ`c

2
`

(
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`

) [(
Tgs

2
g

C̃p,g
+

T`s
2
`

C̃p,`

)(
c2g − c2`

)
−
(

ξg
ρgc2g
− ξ`

ρ`c2`

)(
ξgc

2
`

αg
+

ξ`c
2
g

α`

)]2

[
Tgs2g
C̃p,g

+
T`s2`
C̃p,`

+
ξ2
g

mgc2g
+

ξ2
`

m`c2`

] [(
αg

ρgc2g
+

α`
ρ`c2`

)(
Tgs2g
C̃p,g

+
T`s2`
C̃p,`

)
+
(

ξg
ρgc2g
− ξ`

ρ`c2`

)2
]2 .

(131)
Clearly, on the given conditions, Qµpµ ≥ 0. Therefore, exactly one factor on the
left hand side of (130) is negative, and hence cµ,− ≤ cpµ ≤ cµ,+, so the weak
subcharacteristic condition is satisfied. �

Proposition 11. The vpµ-model satisfies the subcharacteristic condition with re-
spect to the pµ-model, given the physically fundamental conditions ρk, Cp,k, Tk > 0.
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Proof. The sound speed in the vpµ-model is given by [20, 40]

c2vpµ =
1

ρ

Tgs
2
g

C̃p,g
+

T`s
2
`

C̃p,`(
αg

ρgc2g
+

α`
ρ`c2`

)(
Tgs2g
C̃p,g

+
T`s2`
C̃p,`

)
+
(

ξg
ρgc2g
− ξ`

ρ`c2`

)2 . (132)

Now, we may write

c−2
vpµ = c−2

pµ + Zpµvpµ, where Zpµvpµ =
αgα`
ρgρ`

(ρ` − ρg)
2
c−2
pµ , (133)

which is clearly positive, due to the given conditions. Thus, 0 ≤ cvpµ ≤ cpµ, i.e. the
subcharacteristic condition is satisfied. �

Remark 3. By direct comparison of (128) and (132), we find the ratio

cpµ
cvpµ

=

√
ρ

(
αg

ρg
+
α`
ρ`

)
. (134)

This is exactly the same ratio as has been shown to hold for other models associated
with v-relaxation in the p-branch of the hierarchy [19, 44]. We can thus extend the
relation

cp
cvp

=
cpT
cvpT

=
cpTµ
cvpTµ

=
cpµ
cvpµ

, (135)

by the newly obtained ratio (134) between the sound speeds of the vpµ- and pµ-
models.

Proposition 12. The pTµ-model satisfies the weak subcharacteristic condition with
respect to the pµ-model, given the physically fundamental conditions ρk, Cp,k, T > 0,
in the equilibrium state defined by (57).

Proof. In the equilibrium state defined by the pTµ-model, we have Tg = T` ≡ T .
The sound velocity in the pTµ-model is given in [44], and may be rewritten as

c2pTµ =

αg

ρg
+

α`
ρ`

αg

ρgc2g
+

α`
ρ`c2`

+ C̃p,gT
[

1
∆h

(
1
ρ`
− 1

ρg

)
+

Γg

ρgc2g

]2
+ C̃p,`T

[
1

∆h

(
1
ρg
− 1

ρ`

)
− Γ`

ρ`c2`

]2 ,

(136)
where we have introduced the enthalpy difference ∆h = hg − h`.

We may reorganize the last equality in (135) to yield
cpµ
cpTµ

=
cvpµ
cvpTµ

. (137)

Flåtten and Lund [20] showed that the subcharacteristic condition is satisfied be-
tween the models on the right hand side, i.e. that 0 ≤ cvpTµ ≤ cvpµ. The same
must hold for the models on the left hand side of (137), i.e. 0 ≤ cpTµ ≤ cpµ, and
hence the weak subcharacteristic condition is satisfied. In particular, we may write
the sound speed as

c−2
pTµ = c−2

pµ + ZpµpTµ, (138)

where

ZpµpTµ = C̃p,gC̃p,`T

[
1

∆h

(
1
ρ`
− 1

ρg

)(
sg
C̃p,g

+
s`
C̃p,`

)
+

Γg

ρgc2g

s`
C̃p,`

+
Γ`
ρ`c2`

sg
C̃p,g

]2

(
αg

ρg
+

α`
ρ`

)(
s2g
C̃p,g

+
s2`
C̃p,`

) . (139)
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Clearly, ZpµpTµ ≥ 0 based on the given conditions. �

8. The Tµ-model

We now investigate the model which arises when we assume instantaneous thermal-
chemical equilibrium, i.e. let the relaxation parameters K ,H →∞, which expect-
edly corresponds to

Tg = T` ≡ T and µg = µ` ≡ µ. (140)

The products Hg = H (T` − Tg) and Kg = K (µ` − µg) remain finite, and may
be expressed in terms of spatial derivatives and remaining source terms. In the
forthcoming, we seek explicit expressions for these terms to insert into the basic
model of Section 2.

The equilibrium conditions are contained in (68) and (85). These may be
combined to yield

Kg = −ATµµ ∂xαg−GTµµ ε∂xµ−T Tµµ ε∂xT−V Tµ
µ,g∂xαgvg+V Tµ

µ,` ∂xα`v`+K Tµ
p Ĩg+K Tµ

v εMg

(141)
where the coefficients are given in Appendix B.

8.1. Governing equations. We are now in a position to state the Tµ-model in
its entirety, by inserting (141) into the basic model of Section 2. The model can
be expressed by the following equation set:

• Volume advection: ∂tαg + vi∂xαg = Ig,
• Conservation of mass: ∂tρ+ ∂x (αgρgvg + α`ρ`v`) = 0,
• Conservation of momentum:

∂tαgρgvg + ∂x(αgρgv
2
g + αgpg)

+ vi

[
GTµµ (vg − v`)∂xµ+ T Tµµ (vg − v`)∂xT + V Tµ

µ,g∂xαgvg − V Tµ
µ,` ∂xα`v`

]

+
(
vi

2
(

V Tµ
µ,g + V Tµ

µ,`

)
− pi

)
∂xαg = viK

Tµ
p Ig +

(
1 + viK

Tµ
v (vg − v`)

)
Mg, (142)

• Conservation of energy: ∂tE + ∂x (Egvg + E`v` + αgvgpg + α`v`p`) = 0.

8.2. Wave velocities. We now seek the wave velocities of the model in the homo-
geneous limit, where I ,M → 0. As usual, we are interested in the zeroth-order
expansion in ε = vg − v`.3 We may therefore directly evaluate the evolution equa-
tions in this limit, and take vg = v` = v if they are outside the differential operator.

After some tedious, but fairly straightforward algebra, we find that to the lowest
order in ε, the wave velocities of the Tµ-model are given by

λ
(0)
Tµ = {v − cTµ,+, v − cTµ,−, v, v + cTµ,−, v + cTµ,+} . (143)

3Strictly speaking, exact eigenvalues may be found analytically in this model, since noting
that αg is a characteristic variable reduces the eigenvalue problem to finding the solutions of a
fourth-degree polynomial, which is analytically tractable.
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Herein, cTµ,± are the sound speeds of this model, which may be expressed by

c2Tµ,± = 1
2

{
∆h2mgm`(c2g+c2`)
C̃p,gC̃p,`T 2c2gc

2
`

+
m`+mg

(
1+

Γ`

c2
`

∆h

)2

C̃p,gT
+

mg+m`

(
1−Γg

c2g
∆h

)2

C̃p,`T
±

[(
∆h2mgm`(c2g−c2`)
C̃p,gC̃p,`T 2c2gc

2
`

−
m`−mg

(
1+

Γ`

c2
`

∆h

)2

C̃p,gT
+
mg−m`

(
1−Γg

c2g
∆h

)2

C̃p,`T

)2

+4mgm`

(
1+

Γ`

c2
`

∆h

C̃p,gT
+

1−Γg

c2g
∆h

C̃p,`T

)2] 1
2
}

×
[

∆h2mgm`
C̃p,gC̃p,`T 2c2gc

2
`

+

m`
c2`

+
mg

c2g

(
1+

Γ`
c2`

∆h

)2

C̃p,gT
+

mg

c2g
+
m`
c2`

(
1−Γg

c2g
∆h

)2

C̃p,`T
+
(

Γ`
c2`
− Γg

c2g
− ΓgΓ`

c2gc
2
`

∆h
)2
]−1

.

(144)

Proposition 13. The Tµ-model satisfies the weak subcharacteristic condition with
respect to the T -model, given the physically fundamental conditions ρk, Cp,k, T > 0,
in the equilibrium state defined by (57).

Proof. We may write
(
c2T,+ − c2Tµ,+

) (
c2T,+ − c2Tµ,−

) (
c2T,− − c2Tµ,+

) (
c2T,− − c2Tµ,−

)
= −QTTµ, (145)

where

QTTµ = mgm`

[(
1

C̃p,`T
+

1+Γ`c
−2
` ∆h

C̃p,gT

)(
1

C̃p,gT
+

1−Γgc
−2
g ∆h

C̃p,`T
+

Γ`
m`

(
Γ`
c2`
− Γg

c2g
− ΓgΓ`

c2gc
2
`

∆h
))

c2g

−
(

1
C̃p,gT

+
1−Γgc

−2
g ∆h

C̃p,`T

)(
1

C̃p,`T
+

1+Γ`c
−2
` ∆h

C̃p,gT
− Γg

mg

(
Γ`
c2`
− Γg

c2g
− ΓgΓ`

c2gc
2
`

∆h
))

c2`

]2

×
[(

∆h2mgm`
C̃p,gC̃p,`T 2c2gc

2
`

+ 1
C̃p,gT

(
m`
c2`

+
mg

c2g

(
1 +

Γ`
c2`

∆h
)2
)

+ 1
C̃p,`T

(
mg

c2g
+

m`
c2`

(
1− Γg

c2g
∆h
)2
)

+
(

Γ`
c2`
− Γg

c2g
− ΓgΓ`

c2gc
2
`

∆h
)2
)(

1
C̃p,gT

+ 1
C̃p,`T

+
Γ2
`

m`c2`
+

Γ2
g

mgc2g

)]−2

. (146)

Moreover, we may write
(
c2T,+ + c2T,−

)
−
(
c2Tµ,+ + c2Tµ,−

)
= ZTTµ (147)

where

ZTTµ =

[(
1

C̃p,gT
+

1−Γg

c2g
∆h

C̃p,`T
+

Γ`
m`

(
Γ`
c2`
− Γg

c2g
− ΓgΓ`

c2gc
2
`

∆h
))

m`c
2
g

c2`

+
(

1
C̃p,`T

+
1+

Γ`
c2`

∆h

C̃p,gT
− Γg

mg

(
Γ`
c2`
− Γg

c2g
− ΓgΓ`

c2gc
2
`

∆h
))

mgc
2
`

c2g

]

×
[(

∆h2mgm`
C̃p,gC̃p,`T 2c2gc

2
`

+

m`

c2
`

+
mg

c2g

(
1+

Γ`

c2
`

∆h

)2

C̃p,gT
+

mg

c2g
+
m`

c2
`

(
1−Γg

c2g
∆h

)2

C̃p,`T
+
(

Γ`
c2`
− Γg

c2g
− ΓgΓ`

c2gc
2
`

∆h
)2
)

×
(

1
C̃p,gT

+ 1
C̃p,`T

+
Γ2
`

m`c2`
+

Γ2
g

mgc2g

)]−1

. (148)
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Clearly, ZTTµ ≥ 0 and QTTµ ≥ 0 on grounds of the given conditions. The only
possible ordering of sound speeds is thus 0 ≤ cTµ,− ≤ cT,− ≤ cTµ,+ ≤ cT,+, i.e. the
weak subcharacteristic condition is satisfied. �

Proposition 14. The Tµ-model satisfies the weak subcharacteristic condition with
respect to the µ-model, given the physically fundamental conditions ρk, Cp,k, T > 0,
in the equilibrium state defined by (57).

Proof. We note that we may write
(
c2µ,+ − c2Tµ,+

) (
c2µ,+ − c2Tµ,−

) (
c2µ,− − c2Tµ,+

) (
c2µ,− − c2Tµ,−

)
= −QµTµ, (149)

where

QµTµ = mgm`

[(
s`
C̃p,`

+
sg

(
1+

Γ`
c2`

∆h

)

C̃p,g

)(
sg
C̃p,g
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(
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∆h

)
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−
(

Γ`
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− Γg
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− ΓgΓ`
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2
`

∆h
)
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−
(
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(
1−Γg
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∆h
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c2gc
2
`

∆h
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]2

×
[(

∆h2mgm`
C̃p,gC̃p,`T 2c2gc

2
`

+ 1
C̃p,gT

(
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+
mg

c2g
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1 +
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(
mg

c2g
+
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(
1− Γg
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∆h
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+
(
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Now, we may also write
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Clearly, QµTµ ≥ 0 and ZµTµ ≥ 0 for the given conditions. The only possible ordering
of the sound speeds is therefore 0 ≤ cTµ,− ≤ cµ,− ≤ cTµ,+ ≤ cµ,+, i.e. the eigen-
values of the relaxed model are interlaced between the eigenvalues of the parent
model, and the weak subcharacteristic condition is satisfied. �

Proposition 15. The vTµ-model satisfies the subcharacteristic condition with re-
spect to the Tµ-model, given the physically fundamental conditions ρk, Cp,k, T > 0.
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Proof. The sound speed in the vTµ-model is given by [40]
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We may now write the product of the differences between the sound speeds as

(
c2Tµ,+ − c2vTµ

) (
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)
= −QTµvTµ, (153)

where
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Due to the given conditions, it is clear that QTµvTµ ≥ 0, and thus exactly one of
the factors on the left hand side of (153) is negative. Hence, the sound speeds
must be ordered as cTµ,− ≤ cvTµ ≤ cTµ,+, i.e. the subcharacteristic condition is
satisfied. �

Proposition 16. The pTµ-model satisfies the weak subcharacteristic condition with
respect to the Tµ-model, subject to the physically fundamental conditions ρk, Cp,k, T >
0, in the equilibrium state defined by (57).

Proof. The sound speed in the pTµ-model is stated in (136). We note that we may
write
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Due to the given conditions, it is clear that QTµpTµ ≥ 0. Hence, exactly one of the
factors on the left hand side of (155) must be negative, and therefore cTµ,− ≤
cpTµ ≤ cTµ,+, i.e. the weak subcharacteristic condition is satisfied. �
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9. Comparison and discussion of models

In this section, we compare the models in the hierarchy. We first show plots
for relevant cases, and then briefly discuss physical and numerical aspects of the
different models.

9.1. Comparison of sound speeds. We now present plots of the sound speeds in
all the models in the hierarchy, for different physically relevant conditions, in order
to illustrate the effect of different equilibrium assumptions. Plots with the same
physical parameters were presented by Lund [40] for the v-branch of the hierarchy,
building on plots by [20]. [19] and [44] presented similar plots for the p-branch of
the hierarchy. In the following, results for the complete hierarchy are shown.

The main panel of Figure 2 shows the fluid-mechanical sound speeds of all the
models in the hierarchy for a water-steam mixture at atmospheric conditions. The
thermophysical parameters are shown in Table 1. Apart from the fact that the
subcharacteristic condition is always respected, we notice that there are mainly two
equilibrium assumptions that affect the propagation speeds, namely those of p- and
v-relaxation, respectively. First, imposing instantaneous equilibrium in pressure
attracts the sound velocities to the lower bound of the parent models, which can
be seen in the insets of Figure 2. Further imposing velocity equilibrium, the sound
velocity is reduced by a factor (see Remark 3)

√
ρ

(
αg

ρg
+
α`
ρ`

)
'
√
αgα`

ρ`
ρg
. (157)

The approximation made is valid when ρg � ρ`, which is the case here. Hence,
these equilibrium assumptions seem to have severe impact on the wave velocities,
in particular when the density difference between the phases is large.

Table 1. Parameters for a water-steam mixture at atmospheric pressure.

Quantity Symbol Unit Gas Liquid

Pressure p MPa 0.1 0.1
Temperature T K 372.76 372.76
Density ρ kgm−3 0.59031 958.64
Speed of sound c ms−1 472.05 1543.4
Heat capacity Cp J kg−1 K−1 2075.9 4216.1
Entropy s m2 s−2 K−1 7358.8 1302.6
Grüneisen coefficient Γ (–) 0.33699 0.4

In Figure 3, the sound speeds in the entire hierarchy are plotted for a CO2 mix-
ture at 50 bar, whose thermophysical properties are given in Table 2. By close in-
spection, it can be seen that the subcharacteristic condition is everywhere respected.
In particular, the sound speeds of an equilibrium system are always interlaced be-
tween the sound speeds in the parent models. Again, the pressure relaxation has
the most prominent effect on the sound speed, but also combining thermal and
chemical equilibrium seems to have a strong effect.

9.2. Discontinuous sound speeds. All the models considered in the present pa-
per are only strictly valid when the gas fraction αg ∈ (0, 1). One would expect
the sound speeds of the models to be continuous at the phase boundary, i.e. at the
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Figure 2. Sound velocities in a water-steam mixture at atmo-
spheric conditions. The insets show close-ups of parts of the plots
in the main panel.
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Figure 3. Sound speeds in a two-phase CO2 mixture at 50 bar.

transition between single and two-phase flow, in the sense that the two-phase speed
of sound should reduce to the single-phase speed of sound in the limit where one
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phase disappears:
lim
αk→1

cX → ck (158)

for a given model X in the hierarchy. However, some of the models have wave
speeds that are discontinuous at the phase boundary. In particular, this concerns
the pTµ- and vpTµ-models, whose sound speeds are discontinuous in both limits
αk → 1, which can be seen directly by evaluating the analytic expressions in these
limits (see Refs. [40, 44]).

The T - and µ-models have “half-continuous” sound speeds, in the sense that for
the “±” sound waves, only one of them is continuous in the limit αk → 1. For the
µ-model, taking α` → 1 in (105) yields
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which is equivalent to
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(160)
Clearly, only one of these approach the appropriate phasic value c2` . The result
limits for αg → 1 are found by phase symmetry. Similarly, we find for the T -model,
from (73), that

lim
α`→1

cT,+ = min




cg√
1 +

Γ2
gCp,gT

c2g

, c`


 , and lim

α`→1
cT,− = min




cg√
1 +

Γ2
gCp,gT

c2g

, c`


 ,

(161)
to which the same observation applies.

The remaining sound speeds are continuous at the phase boundary; for the Tµ-
model in the sense that limαk→1 cTµ,+ = ck and limαk→1 cTµ,− = 0, which can be
deduced from the analytic expression (144).

Table 2. Parameters for a two-phase CO2 mixture at 50 bar.

Quantity Symbol Unit Gas Liquid

Pressure p MPa 5.0 5.0
Temperature T K 287.43 287.43
Density ρ kgm−3 156.71 827.21
Speed of sound c ms−1 201.54 398.89
Heat capacity Cp J kg−1 K−1 3138.0 3356.9
Entropy s m2 s−2 K−1 1753.9 1128.8
Grüneisen coefficient Γ (–) 0.30949 0.63175
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9.3. Physical considerations. It is commonly argued that pressure relaxation is
a much faster process than the other relaxation processes [56, 69]. Temperature
relaxation, or heat flow, is associated with diffusion, which is an intrinsically slow
process. Chemical potential relaxation, i.e. mass transfer, is also slow compared to
pressure relaxation. Zein et al. [69] provide interesting discussions on the topic and
argue that temperature relaxation is faster than chemical relaxation. Generally, the
magnitudes of the different relaxation times may be strongly problem-dependent.
Such considerations may have implications, e.g., for the mass flow through a nozzle,
which has been shown to be linked to the subcharacteristic condition [37].

Apart from this, effects not captured by the coarse-grained flow models may
come into play, and which model is more accurate may depend heavily on the
flow regime under consideration. The effects that arise from having independent
phasic pressures may be of importance for the wave dynamics of the system, and
thus models with different pressures may be sensible, even though the associated
relaxation time is commonly thought to be comparatively short. With regards to
evaluating the physical relevance of the models presented herein, experimental data
on sound speeds in two-phase flow can be found for various systems [67, 34, 59, 62].

9.4. Numerical considerations. A well-known problem with p-relaxed (one–
pressure) two-fluid models is that they develop complex eigenvalues when vg 6= v`.
This is commonly resolved e.g. by adding a regularising pressure which enforces
hyperbolicity [10, 13, 17, 49, 63]. It is worth noting that the two-fluid models with
independent phasic pressures, i.e. the T -, µ- and Tµ-models, are locally hyperbolic
even for small perturbations away from velocity equilibrium, due to the following
argument: An eigenvalue of a matrix with real coefficients may only be complex if
its complex conjugate is also an eigenvalue. Since the eigenvalues of the individ-
ual phasic pressure models are real and distinct when ε = vg − v` = 0, they must
remain so for sufficiently small ε, as the eigenvalues may only become complex in
a continuous way. In order to determine how large ε may be before hyperbolicity
is lost, we must find the higher-order corrections in ε to the eigenvalues, which is
beyond the scope of this work.

10. Conclusions and further work

In this paper, we have presented and completed a hierarchy of relaxation models
for two-phase flow, which arises when we impose instantaneous equilibrium in dif-
ferent combinations of velocity, pressure, temperature and chemical potential. The
starting point of the analysis has been the classic seven-equation Baer–Nunziato
model [3] equipped with relaxation source terms. We have in the present work
provided the T -, µ-, pµ-, and Tµ-models, which represent original contributions
to the hierarchy. Explicit expressions for the sound speeds of these models have
been derived. Using the new expressions and results from the literature, we have
shown analytically that the subcharacteristic condition is always satisfied in the
hierarchy, given velocity equilibrium between the phases. To this end, we have
contributed with 15 new subcharacteristic conditions, stated in propositions 2–16.
Out of these, five have been shown in a strong sense, and ten hold in a weak sense,
i.e. given equilibrium in velocity.

In further work, the hierarchy could be extended to multi-component or multi-
phase flow, as already initiated by [28, 29, 45]. Moreover, the different models
could be implemented and studied numerically for relevant cases (cf. [55]). Upon
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comparison with experimental data, one may then unravel under which conditions
the different models are admissible.
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Appendix A. Coefficients in the pµ-model

The coefficients in the pµ-model are given by
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Herein, we have defined the shorthand denominator
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The coefficients related to the quasi-linear form are given by
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,
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∗
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,
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[
ξ`
ρ`c2`

Tgsg(sg−s∗)

C̃p,g
+

ξg
ρgc2g

T`s`(s`−s∗)

C̃p,`

]
.

Appendix B. Coefficients in the Tµ-model

The coefficients in the Tµ-model are given by

ATµµ =
(pg−p`)(vg+v`)

2 ATµg , GTµµ = − mgm`
c2gc

2
`TκTµ

[
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+
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]
,
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2
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mg
+
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]
,
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2
`TκTµ
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C̃p,gC̃p,`T

]
,
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,
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1
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a  b  s  t  r  a  c  t

Flow  of  CO2 in wells  is  associated  with  substantial  variations  in thermophysical  properties  downhole,  due
to  the coupled  transient  processes  involved:  complex  flow  patterns,  density  changes,  phase  transitions,
and  heat  transfer  to and  from  surroundings.  Large temperature  variations  can  lead  to thermal  stresses
and  subsequent  loss  of well  integrity,  and  it is therefore  crucial  to  employ  models  that  can  predict  this
accurately.  In  this  work,  we present  a model  for vertical  well  flow  that  includes  both  two-phase  flow  and
heat  conduction.  The  flow is described  by a  two-fluid  model,  where  mass  transfer  between  the  phases
is  modelled  by relaxation  source  terms  that  drive  the  phases  towards  thermodynamic  equilibrium.  We
suggest  a new  formulation  of  the mass  transfer  process  that  satisfies  the  second  law  of  thermodynamics,
and  that  is  also continuous  in the single-phase  limit.  This  provides  a more  robust  transition  from  two-
phase  to  single-phase  flow  than the  previous  formulation.  The  model  predicts  which  flow  regimes  are
present  downhole,  and  calculates  friction  and  heat  transfer  depending  on  this. Moreover,  the  flow  model
is  coupled  with  a heat  conduction  model  for the  layers  that  comprise  the  well,  including  tubing,  packer
fluid,  casing,  cement  or drilling  mud,  and  rock  formation.  This  enables  prediction  of  the  temperature  in
the  well  fluid  and  in  each  layer  of  the  well.  The  model  is applied  to sudden  shut-in  and  blowout  cases  of
a  CO2 injection  well,  where  we employ  the highly  accurate  Span–Wagner  reference  equation-of-state  to
describe  the thermodynamics  of  CO2. We  predict  pressure,  temperature  and  flow  regimes  during  these
cases  and  discuss  implications  for well  integrity.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Carbon Capture and Storage (CCS) will play an important role
on the path to a low-carbon society. In the two-degree scenario of
the International Energy Agency (IEA), CCS is expected to reduce
the global emissions of CO2 by about seven gigatonnes per year in
2050 (IEA, 2014). The captured CO2 can be transported to storage
sites using both pipelines and ships. Several authors (Austegard
et al., 2006; Kjärstad et al., 2014; Vermeulen, 2011; Roussanaly
et al., 2014) have concluded that ship transport can be a cost-
efficient solution for many offshore storage sites. Ship transport
creates additional challenges when CO2 is injected through a well
into a reservoir. The transported CO2 will typically be kept at a
low temperature and pressure, close to the triple point (5.1 bar
and −56.6 ◦C). Some heating will be required before the CO2 is
pumped into the well, in order to avoid damage to the well and the
reservoirs due to low temperatures or high pressures. To predict

∗ Corresponding author.
E-mail addresses: gaute.linga@nbi.ku.dk (G. Linga), halvor.lund@sintef.no

(H. Lund).

the temperature and pressure conditions in a well, accurate and
reliable models are required.

A significant body of research concerns the flow of CO2 in reser-
voirs, and leakage through sealed wells (Nordbotten et al., 2005a,b;
Nordbotten and Celia, 2011). The thermal effects of CO2 flow in
reservoirs have also been specifically considered (Goodarzi et al.,
2010; André et al., 2007). However, models developed specifically
for well flow of CO2 seem to be scarce, especially for transient
scenarios.

For wells without any downhole measuring equipment, steady
state models can provide predictions for the pressure and tem-
perature conditions in the well under steady conditions. Lindeberg
(2011) proposed a simple model using Bernoulli’s equation and a
model for heat exchange with the surrounding rock, and used it to
the predict temperature and pressure in the Sleipner CO2 injection
well. Pan et al. (2011) derived an analytic solution for steady-state
flow of a CO2–water mixture in a well using a drift-flux model.
Similarly, Lu and Connell (2008) proposed a quasi-steady model
to predict the bottomhole pressure and injection rate in a CO2
injection well. Singhe et al. (2013) presented a simple quasi-steady
analytical model for temperature effects in a gas injection well,
and compared their model to results from the Ketzin injection well

http://dx.doi.org/10.1016/j.ijggc.2016.05.009
1750-5836/© 2016 Elsevier Ltd. All rights reserved.
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(Henninges et al., 2011). Han et al. (2011) considered injection of
relatively hot (supercritical) CO2 at 35–45 ◦C, using a model based
on that of Lu and Connell (2008). They focused on the effects of
CO2 injection on injectivity, due to cooling when water vaporizes
in supercritical CO2, and the following precipitation of salt. Pre-
cipitation of salt has been identified as one of the main causes of
the pressure build-up experienced during CO2 injection at Snøhvit
(Hansen et al., 2013).

Transient  models allow the prediction of conditions in wells
that are subject to more transient operations such as blowout,
shut-in and varying injection rates. Ruan et al. (2013) considered
an axisymmetric two-dimensional model, accounting for the con-
vection of water in the annulus in addition to that of the CO2
in the tubing. They simulated injection using the Peng–Robinson
cubic equation of state with a reservoir pressure of 27 MPa, which
resulted in the CO2 being in a single, dense phase during the injec-
tion scenario. Pan et al. (2009) implemented a drift-flux model in
the TOUGH2 code with the ECO2N equation of state, and used it
to simulate upwards flow of CO2 and brine in a wellbore. Lu and
Connell (2014) simulated CO2 injection using the homogeneous
equilibrium model and the Peng–Robinson cubic equation of state,
coupled with a heat conduction model. The same authors have also
presented a drift-flux model with phase slip (Lu and Connell, 2014).

Krogh et al. (2012) simulated offloading of CO2 from ships and
injection of liquid CO2 using OLGA and HYSYS. They found that
there is a high risk of hydrate formation and freezing in the for-
mation and on the outside of the riser. Klinkby et al. (2011) also
used OLGA to study transient variations in pressure, temperature
and phase composition during injection of CO2–brine mixtures into
the proposed Vedsted pipeline, injection well, and reservoir. Li
et al. (2015) focused on the well-head temperature during shut-
in and start-up, also using OLGA. Azaroual et al. (2012) presented
experiments and modelling of injection of supercritical CO2 into
saline aquifers. They focused on how e.g. precipitation of salt due
to dryout in the near wellbore can lead to changes in injectivity.
Three commercial simulators – PipeSIM, PROSPER and NEWSIM –
were used and their results compared, which showed significant
differences.

The available research on flow in vertical CO2 wells is to a large
extent based on either simplified steady-state models, or commer-
cial simulators. The use of complex commercial simulators can
make model validation difficult, since there is often little public
data available about the details of the models.

1.1. Contributions of the current paper

In this paper, we aim to present a model that is suitable for ver-
tical flow of CO2, and to explain to a sufficient level of detail all
parameters and sub-models used. The flow is described by a physi-
cally consistent two-fluid model, with the Span–Wagner reference
equation-of-state (Span and Wagner, 1996) to describe the thermo-
dynamics of CO2. Friction and heat transfer in the flow are modelled
specifically for each flow regime, such as bubbly, annular and mist
flow. The flow model is coupled to a model for heat conduction
through the various layers of the well, such as tubing, packer fluid,
casing, cement and rock. Large temperature variations can be detri-
mental to well integrity and are therefore given special attention.
The performance of the model is demonstrated by using it to sim-
ulate transient well operations, in particular critical incidents such
as sudden shut-in and blowout.

1.2. Paper outline

In  Section 2, we present the model including flow equations,
heat conduction model and correlations employed for friction and
fluid-to-wall heat transfer. Section 3 gives a brief description of the

numerical methods used, with references to relevant literature, and
Section 4 presents the simulation cases considered. In Section 5 we
present results from simulations of sudden blowout and shut-in
of a vertical CO2 well, with emphasis on pressure and tempera-
ture conditions in the well. We  also discuss the implications of the
simulation results on well operations and well integrity. Finally, in
Section 6, we  summarize and draw conclusions.

2.  Model

In this section, we present the model used in our simulations.

2.1.  Flow model

In  the present work, we consider pure CO2 in at most two
phases, i.e. liquid and gas. Since the vertical length scale of a well
is several orders of magnitude larger than the radial scale, we
consider a fluid flowing in one dimension. Modelling the flow in
more than one dimension could require detailed resolution of the
gas–liquid interface, as well as a much higher computational cost.
For this reason, most models for well and pipeline flow are one-
dimensional, with constitutive relations that implicitly account for
higher-dimensional effects that cannot be explicitly captured in a
one-dimensional model.

In order to allow for three-dimensional effects, such as phase
separation, we employ a two-fluid model. This class of two-phase
flow models is characterized by the property that the two phases
are allowed to have individual velocities, i.e. each phase is gov-
erned by a separate momentum equation (Munkejord et al., 2009;
Paillère et al., 2003; Stewart and Wendroff, 1984; Toumi, 1996).
This is in contrast to the further simplified class of drift-flux mod-
els (Flåtten et al., 2010; Masella et al., 1998; Saurel et al., 2008;
Zuber and Findlay, 1965), wherein the velocities of the two  phases
are related by a functional relation (a slip law).

Two-fluid models have been extensively studied in the litera-
ture, and are commonly used in numerous applications. A general
seven-equation model for two-phase flow was derived by Baer and
Nunziato (1986), and later revived by Saurel and Abgrall (1999),
upon which many of later two-phase flow models have been based.
To bring the phases towards equilibrium in velocity, pressure, tem-
perature or specific Gibbs free energy at a finite rate, relaxation
source terms are typically included in the equations of motion. This
has been studied by a range of authors (Karlsen et al., 2004; Natalini,
1997; Pareschi and Russo, 2005; Pelanti and Shyue, 2014; Baudin
et al., 2005). By assuming instantaneous equilibrium, i.e. infinitely
stiff relaxation source terms, in zero or more of these variables,
a hierarchy of models can be derived (Linga, 2015; Lund, 2012;
Flåtten and Lund, 2011). For each imposed equilibrium condition,
the number of partial differential equations (PDEs) in the model is
reduced by one. Popular models in this context include e.g. a six-
equation two-fluid model used in nuclear industry (Bestion, 1990;
Tiselj et al., 2004), and a five-equation model used in simulation of
pipeline transport of petroleum (Bendiksen et al., 1991).

For  the purpose of our simulations, we  assume that the time
scale of the thermodynamic relaxation is much smaller than that
of the flow, and hence we assume instantaneous equilibrium in
pressure (p), temperature (T) and specific Gibbs free energy (�).
However, for practical reasons (which we shall discuss in Sec-
tion 2.2), we  choose to allow the specific Gibbs free energy to be
out of equilibrium and model mass transfer using a relaxation pro-
cess. The resulting five-equation two-fluid model (the pT-model,
cf. Linga, 2015) was studied by Martínez Ferrer et al. (2012) and
further by Morin and Flåtten (2015). Hammer and Morin (2014)
combined the model with the Span–Wagner equation of state (Span
and Wagner, 1996).
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With source terms accounting for the interaction between
phases and with the pipe wall, the model may  be stated as the
following set of PDEs, for time t and spatial coordinate x,

• Mass  balance:

∂t(˛g�g) + ∂x(˛g�gvg) = �,  (1)

∂t(˛���) + ∂x(˛���v�) = −�, (2)

• Momentum  balance:

∂t(˛g�gvg) + ∂x(˛g(�gv2
g + p)) − pi∂x˛g

= vi� + fi + ˛g�ggx − fwall,g, (3)

∂t(˛���v�) + ∂x(˛�(��v2
� + p)) + pi∂x˛g

= −vi� − fi + ˛���gx − fwall,�, (4)

• Energy  conservation:

∂tE + ∂x(Egvg + E�v� + vp) = (˛g�gvg + ˛���v�)gx + Q. (5)

Herein,  we have used the volume fraction ˛k, the density �k, and
the velocity vk for each phase k ∈ {g, � }, where g denotes gas and
� denotes liquid. We have defined the total phasic energy by

Ek = ˛k�k

(
ek + 1

2
v2

k

)
, (6)

where  ek is the specific internal energy. The common pressure is
denoted by p, the mixed density and mixed total energy are respec-
tively given by

� = ˛g�g + ˛���, and E = Eg + E�, (7)

and  the volume-averaged velocity is given by

v = ˛gvg + ˛�v�. (8)

The  regularizing interface pressure, which makes the model hyper-
bolic, is modelled as (Stuhmiller, 1977)

pi = p − ı
˛g˛��g��

˛��g + ˛g��
(vg − v�)2, (9)

where  ı ≥ 1, and in this work we choose ı = 1.2. Further, fi is an
interfacial friction term, gx is the gravitational acceleration along
the x coordinate, fwall,k represents the fluid–wall friction of phase
k, and Q represents heat exchange with the surroundings. Finally,
� represents the mass transfer between the two  phases, and vi is
the interfacial velocity. Expressions for these terms will be given in
the following.

2.2. Mass transfer

The  term �, representing mass transfer between phases, can
in general be expressed as � = K(�� − �g), where K is associated
with a characteristic relaxation time for the mass transfer. As K > 0,
the relaxation term drives the two phases asymptotically towards
equilibrium in specific Gibbs free energy, i.e. mass is transferred
from the phase with the highest Gibbs free energy to the phase
with the lowest, until the values are equal. If the mass transfer is
taken to be instantaneous (as advocated in the previous section), i.e.
K → ∞ (zero relaxation time), the model is equivalent to the four-
equation model with full thermodynamic equilibrium (Hammer
and Morin, 2014), as described by Morin and Flåtten (2015). In
particular, solutions of the relaxation model should approach solu-
tions to the equilibrium model as K → ∞. For a recent survey of
the underlying theory for general hyperbolic relaxation systems,
consider Solem et al. (2015, Sec. 1) and the references therein.

Mass transfer also leads to transfer of momentum, represented
by the term vi� in Eqs. (3) and (4). As Morin and Flåtten (2015)
point out, vi = (vg + v�)/2 is the only interfacial velocity that satis-
fies the second law of thermodynamics (i.e. that the global entropy
is nondecreasing), and that is also independent of the difference in
specific Gibbs free energy �g − ��.

The relation between change in entropy and in kinetic energy,
when transferring mass from one phase to the other, is found from
the fundamental thermodynamic relation,

d(�e) = T dS + � d� = T dS, (10)

where have utilized that the total mass is constant, d� = 0, and
introduced the total volumetric entropy S and the mixture specific
Gibbs free energy � = e + (p − TS)/�. The total energy E = �e + Ekin is
conserved,

dE = d(�e) + dEkin = 0. (11)

Combining Eqs. (10) and (11) yields

dS = − 1
T

dEkin, (12)

in other words the second law of thermodynamics, implied by the
local relation dS ≥ 0 (Morin and Flåtten, 2015; Flåtten and Lund,
2011; Lund, 2012; Linga, 2015), is satisfied as long as the kinetic
energy is not increasing during the mass transfer process. Note that
these relations only apply to the local mass transfer process, not the
fluid flow model as a whole.

The  interfacial velocity suggested by Morin and Flåtten (2015)
conserves kinetic energy during the mass transfer relaxation pro-
cess, and, in other words, no entropy is generated. However, this
interfacial velocity presents problems if the mass transfer process
brings us from a two-phase to a single-phase solution. In this case,
kinetic energy cannot be conserved and entropy must be generated,
as we will see next.

We  will solve the equation system (1)–(5) using a fractional-step
method, in which we

1.  solve Eq. (1)–(5) system with � = 0,
2. solve an ODE system for mass transfer given by

dMg

dt
= �, (13)

dM�

dt
=  −�, (14)

d�g

dt
= vi�, (15)

d��

dt
=  −vi�, (16)

dE

dt
=  0, (17)

where we  have introduced the shorthands Mk ≡ ˛k�k and �k ≡
˛k�kvk for mass and momentum of phase k, respectively. The mass
transfer term is � = K(�� − �g) where K → ∞, so the ODE  sys-
tem approaches thermodynamic equilibrium where �g = ��. We
therefore rather solve a more straightforward discrete equation
system.

Let M∗
k

and �∗
k

denote the mass and momentum of phase k after
the homogeneous step (step 1), and Mk and �k denote values after
mass has been transferred (step 2). We  need to conserve total mass,
momentum and energy,
∑

k

M∗
k =

∑

k

Mk (18)
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∑

k

�∗
k =

∑

k

�k (19)

∑

k

M∗
k

(
e∗

k + 1
2

(v∗
k)2

)
=
∑

k

Mk

(
ek + 1

2
v2

k

)
(20)

Through the equation of state we ensure thermodynamic equilib-
rium,

�g(eg, �g) = ��(e�, ��) (21)

pg(eg, �g) = p�(e�, ��) (22)

Tg(eg, �g) = T�(e�, ��) (23)

Together with
∑

k˛k = 1, this gives us 7 equations and 8 unknowns
(˛k, ek, �k, vk), which allows us to make a choice that determines
the amount of entropy generated by the mass transfer, or in other
words how much kinetic energy is lost.

However, if the equation of state predicts that the mass transfer
will lead to a single-phase solution, we are forced to set ˛V = vV = 0,
where V is the vanishing phase. Interestingly, this uniquely deter-
mines the total kinetic energy after the mass transfer,

Ekin = 1
2

MK v2
K =

(∑
k�∗

k

)2

2
∑

kM∗
k

, (24)

where K is the phase that is kept. The change in kinetic energy is
given by

�Ekin = 1
2

[(∑
k�∗

k

)2

∑
kM∗

k

−
∑

k

M∗
k(v∗

k)2

]
= −M∗

gM∗
�

2�
(v∗

g−v∗
�)2 (25)

As we see, kinetic energy is lost, which corresponds to an increase in
entropy as given by Eq. (12). With this insight, we therefore suggest
a general expression for the kinetic energy lost,

�Ekin = −1
2

(M∗
g(�v∗

g)2 + M∗
�(�v∗

�)2) ·
( |Mg − M∗

g|
� − |Mg + M∗

g−�|

)
, (26)

where �v∗
k

≡ v∗
k

− v̂∗, and

v̂∗ = �∗
g + �∗

�

�
, (27)

is the centre-of-mass velocity. This expression (26) gives a smooth
transition between cases where kinetic energy must be lost, and
those where it can be conserved. For example, �Ekin = 0 if the veloc-
ities are equal or if no mass is transferred, while eq. (25) is fulfilled
if Mg = 0 or M� = 0. We  propose that this gives a numerically more
robust transition from two-phase to single-phase flow than the
previous formulation, which we experienced to give unphysical
oscillations in the transition region.

2.3. Equation of state

The  state-of-the-art reference equation-of-state (EOS) for CO2
is that of Span and Wagner (1996), which gives the Helmholtz free
energy in terms of phasic density and temperature, i.e. a(�, T). It is
formulated in terms of the non-dimensional Helmholtz free energy
	 = a/RT, where R is the specific gas constant, and is comprised of
an ideal gas part, 	0, and a residual part, 	r,

	(
, ı) = 	0(
, ı) + 	r(
, ı). (28)

Here, 
 = Tc/T is the non-dimensional inverse temperature, and
ı = �/�c is the non-dimensional density. �c and Tc are the critical
density and temperature, respectively. The expressions in the orig-
inal paper (Span and Wagner, 1996) contain a total of 51 terms,
including logarithms and exponentials, making it computation-
ally demanding to solve compared to e.g. cubic equations of state.

However,  due to their simplicity, cubic equations of state do not
accurately describe the thermophysical properties of CO2 on the
vast range of densities and temperatures required for simulat-
ing CO2 injection wells, in contrast to the Span–Wagner EOS. The
energy–density equilibrium problem is solved using the approach
of Hammer et al. (2013).

2.4.  Flow regimes

The  behaviour of two-phase flow can change dramatically
depending on the amount of gas in the flow and the velocity of each
phase. This behaviour can typically be divided into flow regimes,
such as bubbly, stratified, slug, churn, annular and dispersed/mist
flow.

Since experimental data and mathematical models for flow
regimes in vertical CO2 flow are rather scarce, we use the RELAP
(Ransom et al., 1995) code to classify flow regimes. RELAP was
developed for simulation of water–steam flow in cooling systems
for nuclear reactors. Nevertheless, its expressions for flow regimes
and friction are formulated so that the properties of any fluid can
be used as input, which allows us to use them for CO2 flow. We
limit ourselves to bubbly, annular and mist flow, since these flow
regimes are most relevant for the cases we look at. Slug flow is not
expected to occur in vertical pipes of such large diameters as those
we consider; in the RELAP code the maximum diameter where slug
flow can occur is 8 cm.

2.5. Friction

The friction correlations we  have employed are based on the
RELAP code (Ransom et al., 1995). Since experimental data on CO2
in large-diameter tubes are scarce, we assume that RELAP’s corre-
lations hold also for CO2, as long as physical parameters for CO2 are
used as input.

2.6.  Heat transfer

Heat  transfer between the fluid and the pipe wall can depend
significantly on which flow regime is present. For turbulent flow
we use the correlation by Dittus and Boelter (1930). For subcooled
and saturated boiling, we  use the correlations by Chen (1966) and
Forster and Zuber (1955).

2.7.  Heat conduction

Heat  conduction is modelled in the layers extending outwards
from the well tubing. In a radial geometry this can be expressed as
(Cannon, 1984)

�(r)cp(r)∂tT(r, t) = 1
r

∂r(r�(r)∂rT(r, t)), (29)

where �(r), �(r) and cp(r) are the thermal conductivity, density and
specific heat capacity (at constant pressure) at radius r, respectively.
Using this formulation, we neglect any heat conducted along the
pipe (in the axial direction). Heat is nevertheless transported along
the pipe by the fluid inside the well.

3. Numerical method

In  this section, we  present the numerical methods used in the
simulations. We  may  write the equation system (1)–(5) as

∂tu + ∂xf(u) + B(u)∂xw(u) = s(u). (30)

In general terms, we can write Eq. (30) as

∂tu = (A  + B)u, (31)
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where A  and B are the solution operators for the flow and source
terms, respectively. If un is the solution at time tn, then the solution
un+1 at time tn+1 = tn + �t can be formally written as (LeVeque, 2002)

un+1 = e�t(A+B)un (32)

Since the flow and source terms have somewhat different time
scales, we treat them separately using a fractional-step approach. A
fractional-step approach applies the solution operators in separate
steps, as opposed to simultaneously. Strang splitting (Strang, 1968)
is a second-order fractional-step method, as long as each step is of
second order, and applies the operators in three steps,

un+1 = e�t/2Be�tAe�t/2Bun (33)

In other words, we first apply flux terms with time step �t/2, then
the source terms with time step �t, and finally flux terms again.
This splitting allows us to solve each substep in the most efficient
way. In the following, we describe how each substep is solved.

3.1.  Flow equations

The  flow equations

∂tu + ∂xf(u) + B(u)∂xw(u) = 0, (34)

are solved with a finite-volume scheme. To achieve second spatial
order, we use piecewise linear reconstruction based on the MUSCL
approach, and use the FORCE flux to calculate the numerical fluxes.
For more details, see Hammer and Morin (2014).

A main advantage of employing a finite-volume scheme is that
conserved quantities are well conserved over shocks, not only
for smooth solutions. However, such numerical schemes generally
apply to the flux part (∂xf) of Eq. (34), and the non-conservative
part (B∂xw) must be integrated separately, e.g. as a source term.
In our context, this affects only the numerical integration of the
momentum Eqs. (3) and (4).

An important property that should be satisfied, is therefore that
the total momentum should be conserved (up to the accuracy of the
finite-volume scheme), according to its evolution equation, which
is found by summing Eqs. (3) and (4):

∂t� + ∂x(�gvg + ��v� + p) = 0. (35)

Here we disregard wall friction, gravity and heat transfer for the
sake of the argument, and � ≡ �g + �� is the total momentum.
In order to conserve the total momentum, summing the discreti-
zations of Eqs. (3) and (4), the numerical scheme should therefore
reduce to a pure flux formulation,

∂t�i = Fi−1/2 − Fi+1/2

�x
.  (36)

In the model formulation of Hammer and Morin (2014), the
momentum equations are discretized as

∂t�g,i = Fg,i−1/2 − Fg,i+1/2 + ˛g �pi

�x
,  (37)

∂t��,i = F�,i−1/2 − F�,i+1/2 + ˛� �pi

�x
,  (38)

which yields the total momentum discretization

∂t�i = F�,i−1/2 − F�,i+1/2 + Fg,i−1/2 − Fg,i+1/2 + �pi

�x
.  (39)

The superfluous last term in Eq. (39), with respect to Eq. (36), shows
that this formulation does not conserve total momentum properly.
In the present model formulation, i.e. Eqs. (3) and (4), we  have

∂t�g,i = Fg,i−1/2 − Fg,i+1/2 + pi �˛g,i

�x
,  (40)

∂t��,i = F�,i−1/2 − F�,i+1/2 + pi �˛�,i

�x
,  (41)

which adds up to

∂t�i = F�,i−1/2 − F�,i+1/2 + Fg,i−1/2 − Fg,i+1/2

�x
. (42)

Identifying Fi±1/2 = Fg,i±1/2 + F�,i±1/2, this complies with Eq. (36). In
other words, our model formulation ensures that whatever amount
of momentum is added to one phase due to non-conservative terms,
is subtracted from the other phase. Hence, the total momentum is
conserved according to Eq. (35), up to the accuracy of the flux-based
numerical scheme.

3.2.  Source terms and closure relations

The source term ODEs

du
dt

=  s(u), (43)

are solved using the Forward Euler method. Since we let the flow
equations determine the global time step �t, it might need to be
reduced to ensure stability in the source terms ODE. In this case,
more than one smaller time step �ts is performed that in total add
up to �t.

3.3.  Heat equations

The  heat equation (29) is solved using a finite volume scheme
as described by Lund et al. (2015).

3.4. Reservoir boundary condition

The injection rate into a reservoir can be described by the
injectivity I, which determines the injection rate resulting from a
certain pressure difference between the well and the reservoir.
This is implemented as a ghost cell with prescribed pressure p =
preservoir + (A�v̂)/I where A�v̂ is the flow rate. The same procedure
is used when fluid flows out of the reservoir, in which case the pres-
sure in the well will be lower than the reservoir pressure. In other
words we assume that the productivity and injectivity are equal.

4.  Simulation cases

In  the following, we describe the simulation cases including
material parameters, initial and boundary conditions. In all cases,
we use the same well geometry and material parameters. Key
parameters are listed in Table 1. The parameters used are inspired
by the conditions at the Sleipner CO2 injection well (Lindeberg,
2011; Krogh et al., 2012), and hence the results are to some extent
applicable to this well. However, in our case we consider a purely
vertical well of length 1000 m,  whereas the Sleipner well has signif-
icant horizontal deviation. In a real-world application, the reservoir
injectivity/productivity will typically be time-dependent when the
well starts to produce. However, since the effect of injectivity is not
our main focus, we  here assume a constant reservoir injectivity.

The  heat conduction model assumes that the well is divided into
five layers, whose properties are listed in Table 2. The layers are a
7 in. tubing, packer fluid, 9.5 in. casing, drilling mud  (or cement for
the lower 100 m),  and a sandstone formation.

4.1.  Sudden blowout

In  this case, we  consider an abrupt blowout scenario from a well.
In the initial state, the well is closed at the top, and in contact with
the reservoir at the bottom. The initial condition consists of a col-
umn of liquid in the lower part of the well, and gas in the upper
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Table  1
Well  and reservoir properties used in simulations.

Parameter Value Unit Reference

Well depth 1000 m Lindeberg (2011) and Krogh et al. (2012)
Ambient water temperature 5 ◦C Krogh et al. (2012)
Geothermal gradient 41 ◦C/km Lindeberg (2011)
Reservoir pressure 104 bar Lindeberg (2011)
Injectivity/productivity 8.7 × 10−5 kg/(s Pa) Thu (2013)

Table 2
Material properties and dimensions for the layers surrounding the pipe.

Item Radial segment [cm] Axial segment [km] Density [kg/m3] Thermal conductivity
[W/(m  K)]

Specific heat capacity
[J/(kg  K)]

Tubing (ST 52-3) (Albawi, 2013) 8.5–9.0 0–1 7850 40 500
Packer  fluid (Halliburton, 2012) 9.0–11.1 0–1 1400 0.26 4000
Casing  (ST 52-3) (Albawi, 2013) 11.1–12.2 0–1 7850 40 500
Drilling  mud  (Bjørkevoll., 2014) 12.2–15.5 0–0.9 1500 0.8 2500
Cement  (Portland Class G) (Albawi, 2013) 12.2–15.5 0.9–1 1917 0.72 780
Sandstone  (Castlegate) (Albawi, 2013) 15.5–500 0–1 2600 2.0 1000

part of the well. The pressure is assumed to be hydrostatic, extrap-
olated from the reservoir pressure in the bottom of the well. The
temperature is assumed to be equal to the rock temperature until
the boiling point is reached (at around 250 m depth), above which
the temperature is set to be slightly above the boiling point, so that
the fluid is in a gas state. The initial condition is illustrated in Fig. 1.

At t = 0, the well head is opened to atmospheric pressure,
p = 1.013 bar. If the flow reaches sonic velocities, the flow is choked
(see e.g. Linga et al., 2015) by imposing the choke pressure at
the outlet, rather than the atmospheric pressure (Munkejord and
Hammer, 2015). The lower end of the well is in contact with the
reservoir, as described in Section 3.4, which causes CO2 to flow from
the reservoir into the well.

4.2. Sudden shut-in

In  the shut-in case, we  assume that there is a steady injection
of CO2 into the reservoir in the initial condition. The flow is set to
28.7 kg/s, similar to the flow in the Sleipner well (Thu, 2013). The
bottom temperature is set to the reservoir temperature, and the
pressure is set according to Section 3.4. The pressure in the rest of
the well is set so that it balances the friction and gravity forces,

∂xp = fgrav − fwall. (44)

Fig. 1. Initial condition before blowout. There is liquid below x ≈ 250 m,  and gas
above.

Fig. 2. Initial condition before shut-in.

The temperature is set by assuming the flow is isentropic, which
leads to the initial condition depicted in Fig. 2. At t = 0, valves at
both ends of the pipe are abruptly closed.

It turns out that the resulting initial well-head conditions are
rather close to those present at Sleipner. The pressure and temper-
ature at the Sleipner well-head are known to be 65 bar and 24 ◦C,
whereas the gas fraction has been estimated to be around 0.85 (Thu,
2013).

5. Results and discussion

5.1.  Blowout

The blowout case was  simulated for 150 s, after which a some-
what steady flow out of the reservoir was  reached. Fig. 3 shows
the pressure at three locations in the pipe. The pressure at the out-
let drops rapidly from 60 bar to approximately 10 bar in the first
seconds, before it increases somewhat around t = 7 s. At this time,
the speed of sound suddenly drops, since flow changes from pure
gas to a two-phase mixture, as seen in Fig. 4. This causes the flow
to be choked, resulting in a pressure jump. The pressure in the bot-
tom part of the well drops slowly as the flow out of the reservoir
increases, as specified in Section 3.4.

Fig.  4 shows the gas volume fraction for the well head and the
middle of the well. A small amount of liquid occurs at the well head
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Fig. 3. Pressure during blowout for three pipe locations.

Fig. 4. Gas volume fraction during blowout at the well head and in the middle of
the well.

in early phases of the blowout, which is likely to have been sucked
up from the liquid column due to the rapid flow of gas. The middle
of the well transitions gradually from pure liquid to almost pure
gas over the course of the simulation, as the pressure slowly drops.

Fig. 5. Flow regimes during blowout.

Fig. 6. Temperature during blowout for three pipe locations.

Fig. 5 shows the flow regimes present in each part of the well. In
the initial condition, the whole well is in a single-phase state (either
pure liquid or pure gas). During the first 50–55 s, the upper part of
the liquid column quickly boils and creates a zone of bubbly flow.
When the velocity has increased sufficiently, most of the upper
well has annular flow, with a liquid annulus and gas flowing in
the middle. After around 100 s, the flow at the well head is purely
gaseous.

During blowouts, very low temperatures can occur, which can
be detrimental to well integrity and materials. Fig. 6 shows the tem-
perature at three well locations. Since the flow in the bottom of the
well comes directly from the reservoir, which has a temperature
of 319 K, the lower part of the well does not experience any signif-
icant temperature drop. At the well head, however, temperatures
as low as 225 K (or −48 ◦C) occur in the initial phase. The well head
temperature rises somewhat when the flow is choked after around
7 s, and is thereafter steady at around 240 K (or −33 ◦C). This tem-
perature is not necessarily low enough to cause damage to the steel
pipe itself, but may  be problematic due to mechanical stresses that
arise due to thermal contraction.

It  is important to note that our simulations do not predict any
formation of dry ice in the well itself, although it might be formed
just beyond the outlet at the well head. However, we  assume that
the temperature of the flow out of the reservoir is equal to the
long-scale reservoir temperature. This is unlikely to hold on longer
time scales, since some Joule–Thomson cooling will occur as the
CO2 fluid flows through the pores of the reservoirs and out into the
well. The prediction of this phenomenon will require coupling the
flow model to a reservoir model. Over time, the temperature of the
flow from the reservoir will likely decrease, potentially damaging
the well and allowing dry ice to form.

5.2. Shut-in

The shut-in case is simulated for around 40 s, which allows us to
capture the most important features of the initial phase of a shut-
in. Since valves are closed in both ends of the well, we  can expect a
pressure jump (water hammer) at the bottom valve, and a pressure
decrease at the well head. As shown in Fig. 7, the bottom pressure
increase is close to 10 bar. The pressure decrease at the well head
is smaller, since there is two-phase flow in the upper part of the
well, which makes the fluid more compressible. The fluid column,
which is in motion initially, will be compressed at the bottom and
decompressed at the top. This will cause pressure waves that prop-
agate up and down the well, which are slowly damped by friction.
These pressure oscillations are clearly seen in Fig. 7.
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Fig. 7. Pressure during shut-in at three pipe locations.

Fig. 8. Temperature during shut-in at three pipe locations.

Fig. 8 shows the temperature at three positions in the well. The
temperature oscillations follow the pressure oscillations, since the
fluid temperature is increased by compression.

Finally, Fig. 9 shows the flow regimes during the shut-in.
The bottom of the well has a dense/liquid phase column which
stretches up to a depth of around 370 m.  At this depth, the liquid
starts boiling, which leads to a layer of bubbly flow. Above this

Fig. 9. Flow regimes during shut-in.

layer, the flow is predicted to be in a transition phase between
bubbly flow and annular flow. These flow regimes are similar to
what was observed by camera inspection in the Ketzin well during
a shut-in (Henninges et al., 2011). In the upper part of the well,
CO2 was  condensing and raining down on a layer of bubbly flow
at around 300 m depth. The amount of bubbles decreased with
depth until a stationary single-phase liquid column was reached.
Although the geothermal conditions in our simulations are
different than those at Ketzin, the results are qualitatively similar.

6.  Conclusion

We  have presented a two-fluid model for flow of CO2 in a ver-
tical injection well, coupled with a model for heat conduction in
the layers that comprise the well. The flow model predicts what
flow regime the flow is in, and calculates friction and heat transfer
accordingly. It was derived with emphasis on making sure that the
mass transfer was  continuous in the single-phase limit. The ther-
modynamic closure of the flow was provided by the Span–Wagner
reference equation-of-state for CO2.

The model was  applied to sudden blowout and shut-in cases.
The well was chosen to mimic  the Sleipner CO2 injection well, with
similar well depth, geothermal gradient, reservoir temperature and
reservoir pressure. The predicted temperature in the blowout case
was not low enough to lead to dry ice in the well itself. Dry ice may
nevertheless form as the flow exits the well head, but this is outside
the modelled domain. The assumption that flow out of the reser-
voir is at the reservoir temperature leads to steady temperature
conditions in the lower parts of the well, but this assumption dis-
regards any Joule–Thomson effect that may  occur in the reservoir.
We also predicted that annular flow is prevalent where the flow is
in a two-phase state.

In  the shut-in case, we  predicted the water hammer effect
resulting from simultaneously closing well-head and bottom-hole
valves when there is a steady downwards flow. With a flow rate
similar to that in the Sleipner well, the bottom-hole pressure jump
was predicted to be around 10 bar. The pressure then oscillates in
≈13 s cycles as the fluid is compressed and decompressed. The fluid
is found to be in a single-phase state up to around 370 m depth,
above which the liquid starts to boil.

6.1. Further work

In  further work, the model could be used to predict other tran-
sient operations of a well, such as shut-in on longer time scales,
blowout with Joule–Thomson cooling in the reservoir, or intermit-
tent injection from ships with resulting temperature variations.
More realistic blowout and shut-in scenarios could also include
valves that do not close or open suddenly, but are opened/closed
over a certain time. The effect of a non-constant (time-dependent)
injectivity, rather than a constant one used here, should also be
considered. Moreover, horizontally deviating wells may  behave
differently due to e.g. different flow regimes, and could be worth
looking into.

When  it comes to applying the model for longer time scales
(such as injection over several days/years), different numerical
schemes are probably necessary to keep the computational cost at
an acceptable level. For intermediate time scales, a semi-implicit
scheme which solves pressure waves implicitly, could be used (see
e.g. Chalons et al., 2011; Evje and Flåtten, 2005). For even longer
time scales, the flow may  be considered to be in a steady state,
hence one can solve the steady-state (∂(·)/∂t = 0) version of Eqs.
(1)–(5) using an ODE solver.

Currently,  there is little available high resolution experimental
data for CO2 wells. If such data become available, a proper model
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validation could be performed to uncover potential modelling inac-
curacies.
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Appendix A. Nomenclature

Symbol Description Dimension SI unit

A Tubing cross-sectional area L2 m2

ak Phase specific Heltmoltz free energy L2T−2 m2/s2

cp Specific heat capacity at constant pressure L2T−2�−1 m2/(s2 K)
E  Total energy density ML−1T−2 kg/(m s2)
ek Phase specific internal energy L2T−2 m2/s2

Ek Phase total energy density ML−1T−2 kg/(m s2)
Ekin Kinetic energy density ML−1T−2 kg/(m s2)
fi Interface friction density ML−2T−2 kg/(m2 s2)
fwall,k Phase wall friction density ML−2T−2 kg/(m2 s2)
gx Gravity on well axis LT−2 m/s2

I Reservoir injectivity LT ms
K Mass transfer rate constant L2T−3 m2/s3

Mk Phase mass per total volume ML−3 kg/m3

p Pressure ML−1T−2 kg/(m s2)
pi Interface pressure ML−1T−2 kg/(m s2)
Q Heat transfer ML−1T−3 kg/(m s3)
r Radius from tubing centre L m
R Specific gas constant L2T−2�−1 m2/(s2 K)
S  Volumetric entropy ML−1T−2�−1 kg/(m s2 K)
t  Time T s
vk Phase velocity LT−1 m/s
vi Interface velocity LT−1 m/s
v̂ Centre-of-mass velocity LT−1 m/s
v̄ Volume-averaged velocity LT−1 m/s
x Distance along well L m

˛k Phase volume fraction – –
ı Regularizing pressure factor – –
� Thermal conductivity MLT−1�−1 kg m/(s K)
�k Phase specific Gibbs free energy L2T−2 m2/s2

�k Phase momentum per total volume ML−2T−1 kg/(m2 s)
� Mixture mass density ML−3 kg/m3

�k Phase mass density ML−3 kg/m3

� Mass density transfer rate ML−3T−1 kg/(m3 s)
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